
Co-Scheduling oder Kein
Co-Scheduling? Effiziente
Ausnutzung von Großen

Mehrkernrechnern

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Barbara Anna Sarközi, BSc
Matrikelnummer 01633043

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Inform. Dr.rer.nat. Sascha Hunold

Wien, 17. Oktober 2021
Barbara Anna Sarközi Sascha Hunold

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

To Co-Schedule or Not To
Co-Schedule? Efficiently Utilizing

Large Multicore Machines

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering and Internet Computing

by

Barbara Anna Sarközi, BSc
Registration Number 01633043

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Inform. Dr.rer.nat. Sascha Hunold

Vienna, 17th October, 2021
Barbara Anna Sarközi Sascha Hunold

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Barbara Anna Sarközi, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17. Oktober 2021
Barbara Anna Sarközi

v

Acknowledgements

This thesis was an adventure, which is going towards its end. It would not have been
the same great experience without my supervisor, Prof. Sascha Hunold. I am extremely
grateful to have had the opportunity of crossing paths with him and being able to work
together on a research topic. At the start of this work, I was worried about finding enough
motivation to work on the same topic for several months and then having enough energy
to finish the work. As it turned out, there is only one factor relevant for being motivated
and having energy for the work, which is fun. Looking back at the past months, I can
honestly say that it was exciting and fun working on this thesis topic. Who would have
thought that the master thesis would eventually be one of the most thrilling assignments
of my university education? And I am confident that this pleasant environment was
built by my supervisor, Prof. Hunold: he always made time in his tight schedule to fit
in weekly or two-weekly meetings, he found encouraging words, even if something was
going wrong, he was always excited to see results and to work together on challenges.
I feel very lucky having experienced this type of work, because I know that it is rare.
In this sense: Thank You, Sascha, for this opportunity and Your constant motivation
and support, thank You for making this thesis work such a lovely experience, I will miss
working together!

I would also like to appreciate the encouragement and moral support of my family and
friends, who always listened to my problems, brainstormed together with me, and helped
in any other possible way they could.

Last but not least, I want to thank my mum, who always supports me and is doing her
best helping me achieve all of my dreams and goals.

vii

Kurzfassung

Hardwarekomponenten in Rechenclustern und Computersystemen entwickeln sich fortlau-
fend weiter, was zu einer steigenden Anzahl an Prozessorkernen in Mehrkernrechnern führt.
Der leistungsfähigste Supercomputer in Österreich ist der VSC-4 mit 37 920 Prozessorker-
nen. Um diese enorme Anzahl an Kernen effizienter nutzen zu können, müssen parallele
Anwendungen systematisch auf den Rechenknoten ausgeführt werden, beispielsweise
durch gleichzeitige Ausführung, durch Co-Scheduling, auf einem Knoten.

In dieser Arbeit wollen wir vorhersagen, ob zwei parallele Anwendungen auf einem
Mehrkernrechner mit oder ohne Co-Scheduling ausgeführt werden sollen. Die Anwen-
dungen sollen nur gleichzeitig ausgeführt werden, wenn die Laufzeit des Co-Schedulings
die Laufzeit eines dedizierten Durchlaufs nur minimal verändert. Das Ziel ist es, das
Potenzial eines Co-Schedulings lang laufender Anwendungen durch Messungen kurzer
Durchläufe vorherzusagen.

Zuerst untersuchen wir Laufzeit- und Skalierungsverhalten von diversen OpenMP An-
wendungen. Wir bestimmen Co-Scheduling-Strategien, die zu Ressourcenkonflikten von
Kernel Teilen führen. Weiters untersuchen wir das Laufzeitverhalten von Anwendun-
gen durch das Messen von Hardware-Performance-Events auf den Prozessoren. Zuletzt
erstellen wir ein Vorhersagemodell mittels logistischer Regression und sagen so das
Co-Scheduling-Potenzial zweier Anwendungen mit Hilfe von Performance-Zählern vorher.

Wir stellen fest, dass das Ausführen von Anwendungen auf unterschiedlichen Sockets
zu keinen Ressourcenkonflikten führt, jedoch dass das Teilen von Sockets mit einer
verstreuten Zuordnung zu höheren Kernelzeiten führen kann. Weiters zeigen wir auf,
dass es notwendig ist, Kernel-Programmteile zu synchronisieren. Dafür stellen wir unsere
neuartige Synchronisierungsbibliothek vor. Mit Hilfe unserer Vorhersagemodelle ist es
möglich, das Co-Scheduling Potenzial zweier Anwendungen vorherzusagen. Dies stellt
eine gute Möglichkeit dar, Mehrkernrechner effizienter zu nutzen.

ix

Abstract

Hardware components of computing systems are improving constantly, which leads to
an increasing number of cores on multicore machines and computing clusters. The most
powerful supercomputer in Austria, the VSC-4, has 37 920 cores, and it is important
to utilize the cores efficiently. Therefore, it is necessary to execute parallel applications
methodically, e.g., by simultaneously executing (co-scheduling) them on compute nodes.

In this work, we predict whether two parallel applications running on a multicore machine
should be co-scheduled or not. Two applications should only be co-scheduled, if there
is at most a small slowdown of the co-scheduled runtime compared to the dedicated
runtime of an application. We are interested in predicting this co-scheduling potential of
long executions by sampling a short execution.

We start by assessing runtime and scalability behaviors of diverse OpenMP applications
and determine co-scheduling strategies leading to resource sharing conflicts of compute
kernel sections. Then, we analyze hardware performance counters and select a subset
of relevant counters indicating slowdowns. Finally, we create a prediction model using
logistic regression and predict the co-scheduling potential of two applications using
performance counters.

This thesis shows that executions on different sockets do not lead to resource sharing
conflicts, whereas sharing sockets with a scatter affinity mapping lead to increased kernel
times. We show the necessity of synchronizing kernel sections of co-scheduled applications,
and therefore introduce a synchronization library. Our prediction models demonstrate
the possibility of predicting co-scheduling potentials of two applications, which represents
an efficient way of utilizing multicore machines.

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

2 Background and Related Work 7
2.1 Background Information . 7

2.1.1 Multicore Architecture on Shared Memory System 7
2.1.2 What is OpenMP? . 10
2.1.3 Measuring Parallel Computing Performance 10
2.1.4 Scheduling and How to Solve Co-Scheduling Problems 12
2.1.5 Affinity Mappings . 13
2.1.6 Regression Analysis . 14

2.2 Overview of Used Benchmarks . 16
2.2.1 Rodinia OpenMP Applications 16
2.2.2 SPEC OMP2012 Applications 20

2.3 Related Work . 22

3 Co-Scheduling Preparation: Parallel Scalability and Scheduling Po-
tential 27
3.1 Novel Execution Framework for Co-Scheduling Applications 28
3.2 Single Core Execution Behaviors . 30

3.2.1 Execution Experiments with Rodinia 32
3.2.2 Execution Experiments with SPEC OMP2012 39

3.3 Parallel Scalability . 44
3.3.1 Scalability of Rodinia Benchmarks 44
3.3.2 Scalability of SPEC OMP2012 Benchmarks 47

3.4 Performance Potential of Co-Scheduling 49
3.4.1 Definition of the Integer Programs 49
3.4.2 Evaluating the Optimization Potential of Co-Scheduling 53

4 Characterizing Co-Scheduled Applications With HW Performance
Counters 59

xiii

4.1 Configurations for Measuring the Influence of Co-Scheduling 60
4.2 The Problem of Measuring Co-scheduled Applications 62

4.2.1 Synchronization of Programs as the Solution 63
4.3 The Influence of Co-Scheduling with Different Scheduling Configurations 67

4.3.1 Co-Scheduling Experiments . 69

5 Prerequisites for Predicting Co-Scheduling Behaviors 77
5.1 Correlation of Performance Metrics with Time 77

5.1.1 Difficulties with likwid Performance Counters 78
5.1.2 Correlation of PAPI Performance Events 80

5.2 Limited Group of Performance Metrics Relevant for Prediction 83
5.2.1 Finding Good Representatives 84
5.2.2 Selecting Relevant Performance Events 90

6 Predicting Co-Scheduling Potentials 91
6.1 Prediction Model Idea . 91
6.2 Building a Prediction Model . 92

6.2.1 Data Normalization . 93
6.2.2 How to Choose Program A? . 94
6.2.3 Functionality of the Prediction Model 94

6.3 Evaluation of the Prediction Model . 94
6.3.1 Test and Train Data Sets . 95
6.3.2 Distribution of PAPI Events between Training and Validation Sets 96
6.3.3 Evaluating the Logistic Regression Models 99

7 Conclusion and Future Work 103

Bibliography 105

Appendices 111
Code Template for Measuring PAPI Performance Events 111
Pseudo Code of the Prediction Model . 112

List of Figures

1.1 Supercomputer Trend Data . 1
1.2 Relation between Running Time and Parallel Efficiency 2
1.3 Thesis Overview . 5

2.1 CPU Cores and Threads . 8
2.2 hydra Cluster . 8
2.3 A hydra compute node . 9
2.4 Optimal Speed-Up and Parallel Efficiency 11
2.5 Compact Example . 13
2.6 Scatter Example . 13
2.7 True/False Positive/Negative . 15
2.8 Metrics for Binary Classification Problems 15

3.1 Gantt Chart - Case Seq 1 . 31
3.2 Gantt Chart - Case Seq 2 . 31
3.3 Gantt Chart - Case Concur . 31
3.4 Rodinia - kernel time - gcc . 33
3.5 Rodinia - user time - gcc . 34
3.6 Rodinia - small - Arithmetic Intensity . 35
3.7 Rodinia - kernel time - compiler comparison - seq 1 38
3.8 Rodinia - kernel time - compiler comparison - concur 38
3.9 SPEC OMP2012 - benchmark execution time - gcc 40
3.10 SPEC - Arithmetic Intensity . 40
3.11 SPEC OMP2012 - execution time - compiler comparison - seq 1 43
3.12 SPEC OMP2012 - execution time - compiler comparison - concur 43
3.13 Rodinia - small - hydra - Parallel Scalability 44
3.14 Rodinia - small - hydra - Parallel Efficiency 45
3.15 Rodinia - medium - hydra - Parallel Scalability 46
3.16 Rodinia - medium - hydra - Parallel Efficiency 46
3.17 SPEC OMP2012 - test - hydra - Parallel Scalability 47
3.18 SPEC OMP2012 - test - hydra - Parallel Efficiency 48
3.19 SPEC OMP2012 - train - hydra - Parallel Scalability 48
3.20 SPEC OMP2012 - train - hydra - Parallel Efficiency 49
3.21 Scheduling Comparison (AIP) - Rodinia - small and medium - hydra . . . 55

xv

3.22 Scheduling Comparison - SPEC OMP2012 and Rodinia - hydra 57

4.1 Visualization Socket Tests - Different Sockets 60
4.2 Visualization Socket Tests - Compact Same Sockets 61
4.3 Visualization Socket Tests - Scatter Both Sockets 61
4.4 Synchronization of Two Programs . 62
4.5 Overhead of sync for Rodinia Benchmarks 64
4.6 Relevance of Sync - backprop and myocyte - small - 1 socket 65
4.7 Relevance of Sync - backprop and myocyte - small - scatter 65

5.1 Correlation Matrix - likwid - hotspot/backprop 79
5.2 Correlation Matrix - PAPI Performance Events - hotspot/backprop 82
5.3 Correlation Matrix - PAPI Performance Events - hotspot/hotspot3d . . . 83
5.4 Significance Levels of AOV . 85
5.5 Relevance of AOV - Difference between Significance Levels 86
5.6 Running times of hotspot dedicated and co-scheduled - PAPI 86

6.1 Logistic Regression Evaluation of Random Test Set 95
6.2 Performance Event Distribution of backprop 97
6.3 Performance Event Distribution of hotspot 97
6.4 Performance Event Distribution of hotspot3d 98
6.5 Performance Event Distribution of myocyte 99
6.6 Logistic Regression Evaluation of backprop 99
6.7 Logistic Regression Evaluation of hotspot 100
6.8 Logistic Regression Evaluation of hotspot3d 101
6.9 Logistic Regression Evaluation of myocyte 101

List of Tables

2.1 System description of the hydra computing cluster. 10
2.2 Tools used for measuring hardware performance counters. 12
2.3 Rodinia - Input Size small . 21
2.4 Rodinia - Input Size medium . 22

3.1 Compiler overview. 32
3.2 Performance counters obtained with likwid-perfctr. 34
3.3 Arithmetic Intensity Overview - Rodinia - small 36
3.4 Arithmetic Intensity Overview - Rodinia - medium 37
3.5 Arithmetic Intensity Overview - SPEC OMP2012 - test 41
3.6 Arithmetic Intensity Overview - SPEC OMP2012 - Train 42
3.7 Basic Integer Program (BIP) variables. 50
3.8 Advanced Integer Program (AIP) variables. 51
3.9 Schedule Comparison Makespan Overview 54

4.1 Performance Counter Difference - no sync vs. sync - hotspot/kmeans/small 66
4.2 Performance Counter Difference - no sync vs. sync - hotspot/lud/small . 67
4.3 Overview - Socket Notation . 68
4.4 Influence of Co-Scheduling - Rodinia|backprop - Sharing a Compute Node 69
4.5 Influence of Co-Scheduling - Rodinia|backprop 71
4.6 Influence of Co-Scheduling - Rodinia|hotspot 72
4.7 Influence of Co-Scheduling - Rodinia|myocyte 74

5.1 Groups of likwid performance counters . 78
5.2 PAPI Performance Groups . 80
5.3 Experimental setup for finding relevant performance counters. 86
5.4 PAPI Performance Events Significance / hotspot-streamcluster-hotspot3d 87
5.5 PAPI Performance Events Significance / hotspot-leukocyte-nw 88
5.6 PAPI Performance Events Significance / hotspot-heartwall-backprop . . . 89
5.7 PAPI Performance Group for Prediction 90

6.1 Test and Train Data Set Evaluation . 96

xvii

CHAPTER 1
Introduction

Computing systems are constantly evolving, they get better and faster, and this requires
better and faster hardware. One main component of computing systems are CPUs that
comprise several cores. Computing systems can contain several CPUs and thus the
number of cores in a system is increasing steadily. This trend of more and more cores in
a supercomputer is shown in Figure 1.1. We see a rapid evolution of computing hardware
over the last few years.

1970 1980 1990 2000 2010 2020
10−1

101

103

105

107

Transistors (thousands)

Single-thread performance
(SpecINT ×103)

Frequency (MHz)

Typical power (W)
Number of cores

Number of cores
(#1 supercomputer)

Figure 1.1: Supercomputer trend data [30, 42].

When we take a closer look at the number of cores shown in Figure 1.1, we see the
increasing number of cores over the past few years: a processor was composed of only one

1

1. Introduction

core until the early 2000’s years. In 2010, the number of cores was 16, in 2019 already
128. There is a similar increasing trend for the number of cores comprised in the number
one supercomputer of that time: the top supercomputer in 1993-1996 was Numerical
Wind Tunnel with 140 cores [30], the fastest supercomputer in 2016-2018 was Sunway
TaihuLight with 10.6 million cores across the computing system.

The most powerful supercomputer in Austria is located in Vienna, in the Vienna Scientific
Cluster [7]: the VSC-4 [8]. The VSC-4 cluster has 790 compute nodes, where each node
consists of two processors with 24 cores each. This means that one compute node provides
48 cores and the whole VSC-4 system 37 920 cores in total.

We see, supercomputers provide a tremendous number of cores. This requires scheduling
of multithreaded applications to use the provided cores efficiently. Applications running on
compute nodes often demand the maximum number of available cores for their execution
with the goal of minimizing the execution time. Sometimes, using more resources does
not even lead to smaller execution times, sometimes it only improves the running time
minimally. To depict this phenomenon, we present an example in Figure 1.2.

1 4 8 16 32 48 64
number of cores

25

50

75

100

125

150

ru
n
n
in
g
ti
m
e
(s
ec
)

use this

similar time

1 4 8 16 32 48 64
number of cores

0.2

0.4

0.6

0.8

1.0

p
ar
al
le
l
effi

ci
en
cy

threshold = 60%

use this

good

bad

Figure 1.2: Relationship between the running time and parallel efficiency of srad_v1.

Figure 1.2 shows the runtime behavior of the srad_v1 benchmark from the Rodinia
benchmark suite on the 64 core machine nebula: srad_v1 has a serial execution time
of approximately 148 seconds, with 48 cores, we achieve a running time of about 13.9
seconds, using 64 cores, the running time is around 13.2 seconds. As we notice, there
is only a minimal time difference between using 48 and 64 cores. Thinking about the
energy needed to power 48 and 64 cores, we could use less resources, like the 48 cores,
and still achieve a good performance result. Taking this thought to greater extent,
having thousands of applications using all available resources causes the needed power
for maintenance to skyrocket [38]. Therefore, energy efficiency is often considered as an
additional goal supplementing runtime minimization for scheduling problems [10, 25, 38].
This signifies the importance of finding a good balance between the minimal runtime
and more down-to-earth energy and power requirements.

Further on, we see the relation between the running time and parallel efficiency of
srad_v1 in Figure 1.2. The parallel efficiency (speedup/cores) is an important measure,

2

and we often define an acceptable parallel efficiency. This acceptable parallel efficiency
can be described as the threshold value used to differentiate between an acceptable and
an unacceptable parallel efficiency: parallel efficiencies above the threshold are acceptable,
values below this threshold are unacceptable. In Figure 1.2, this acceptable parallel
efficiency is 60%, and only parallel efficiencies over this threshold value are considered
acceptable. We see that in this example the parallel efficiency is only acceptable for 2, 4,
and 8 cores, but for more cores the parallel efficiency is too low to be acceptable. Using
this information, we can decide on using 8 cores for srad_v1 on nebula, and achieve a
small running time with an acceptable parallel efficiency.

Consequently, applications often shall not be executed with all available cores, but run
in parallel with less cores. If we execute an application with less cores, there are free
cores and the question arises, what to do with these free cores. To make sure that the
computing system is utilized efficiently, we can co-schedule different applications on one
compute node to use available resources reasonably. But then, questions arise of how
many cores should be used and what applications can be co-scheduled with each other,
without significant performance losses.

If we look at supercomputers, like the VSC-4, there are certain parallel applications that
are typically running on such supercomputers. LAMMPS [5] and GROMACS [3] are
exemplary software modules running on supercomputers [4, 6]. LAMMPS, a Large-scale
Atomic/Molecular Massively Parallel Simulator, “is a classical molecular dynamics code
with a focus on materials modeling” [5], and GROMACS “is a versatile package to
perform molecular dynamics” [3]. For us, it is not important to know what these software
modules calculate, the important fact is that they can be executed in parallel mode and
are commonly pre-installed and subsequently commonly used on supercomputers.

The goal of this thesis is to assess the co-scheduling potential of two applications on
multicore machines. To assess this potential, we need to evaluate and study several
other aspects too, like the scalability and scheduling potential of applications, and the
characterization of performance counters, to finally predict a co-scheduling potential. For
assessing the co-scheduling potential of two applications, we assume that one application
is fixed beforehand, e.g., to such a commonly used software module as LAMMPS or
GROMACS. A program then requests to be executed on the same computing system.
Can we co-schedule this application with our fixed program or not? We show that it is
possible to predict whether to co-schedule two applications or not. This knowledge can
be used by supercomputers to train models for commonly used programs, like LAMMPS
or GROMACS, and predict the co-scheduling potential with any other application.

In this thesis, we do not use large-scale distributed applications, like LAMMPS or
GROMACS. We experiment on multicore machines with OpenMP benchmarks to cover
a variety of application characteristics. We research different ways of resource sharing,
i.e., sharing the cores of a compute node by several applications, and later predict the
co-scheduled performance of four Rodinia benchmarks using performance counters and
logistic regression. The contributions of this thesis are the following:

3

1. Introduction

• We examine the technical side of Rodinia [19, 20] and SPEC OMP2012 [35] bench-
marks by doing different runtime experiments.

• We schedule applications using elaborate methods to significantly improve the
makespan, i.e., the overall execution time. Therefore, we provide an integer
program prototype for calculating how many and which cores should be used for
an optimal schedule.

• We explore different ways of sharing resources provided by a compute node, i.e.,
different strategies to share cores on a compute node.

• We examine the behavior of co-scheduled kernel sections, and show the necessity
of a synchronization mechanism around kernel sections. Thus, we introduce a
small C library to synchronize compute kernels for precisely measuring hardware
performance counters.

• We analyze hardware and performance counters using likwid [27] and PAPI [45]
to find appropriate counters for the prediction of co-scheduling performances and
behaviors. We notice measurement inconsistencies and trace it back to potential
problems of likwid’s Marker API.

• We create prediction models for four Rodinia benchmarks to show the possibil-
ity of predicting co-scheduling potentials of applications using logistic regression
with performance counter values. The goal is to use a small execution for the
prediction itself, but predict the co-scheduling potential of the applications’ full
length execution.

The structure of this thesis is depicted in Figure 1.3. Chapter 2 contains background
information on prerequisites needed in this work, e.g., information about multicore
machines, parallel performance measurements, classification problems, etc. We explore
the used Rodinia and SPEC OMP2012 benchmarks and discuss related work. In Chapter 3,
we analyze execution behaviors of the used benchmarks, such as the single core and
scalability performance. Additionally, we show the potential of scheduling by comparing
basic scheduling techniques, like a fully parallel schedule, with schedules created by
an integer program. Then, we define possible resource sharing granularities, i.e., how
applications can share a compute node, in Chapter 4. We notice fluctuating kernel times
when measuring kernel times of co-scheduled programs, and subsequently introduce a
library for synchronizing various program parts, like kernel sections. Using this sync
library for synchronizing kernel sections of co-scheduled programs, we explore what
resource sharing strategies might lead to conflicts shown by increased execution times,
i.e., slowdowns of applications. With this knowledge, we devise a specific strategy, our
scatter resource sharing, to measure performance counters in Chapter 5. We demonstrate
problems occurring with measuring performance counters with likwid’s Marker API
and show that kernel times do not correlate with any of the available hardware counter
values, even for same measurements. Therefore, we switch to PAPI hardware counters,
also called performance events, and determine relevant events needed for our prediction.
In Chapter 6, we then use some of the PAPI performance events to create a prediction
model using logistic regression. This model predicts whether two applications should

4

Co
-S

ch
ed

ul
in

g

M
ea

su
rin

g
Co

-
Ex

ec
ut

io
n

Pr
er

eq
ui

sit
es

 fo
r

Pr
ed

ic
tio

n
Pr

ed
ic

tio
n

an
d

Ev
al

ua
tio

n

Ba
ck

gr
ou

nd
 a

nd
Re

la
te

d
W

or
k

Pr
ep

ar
at

io
n

Goals Problems Methods

What applications
should we use? Related Work

Analysis of benchmarksGather background
information

Get overview of
benchmarks

Is there potential in
scheduling?

Statistical analysis

- Single Core Behaviors
- Scalability Behaviors

Explore possible ways
of co-scheduling:
Find resource sharing
granularities

Kernel times fluctuate:
Kernel sections don't
start at the same time

Synchronization of
kernel sections ()

Resource sharing kernel
tests with

How to predict the co-
scheduling potential?

Can we use performance
counters for prediction?

Problem with likwid:
Time and counter values
don't correlate

Analysis of PAPI
performance events

Predict co-scheduling of
a long execution using
performance values

Logistic regression

Model evaluation

Figure 1.3: Overview of the thesis structure.

be co-scheduled or not. For the prediction, we use measured counter values of a short
execution and predict the co-scheduling potential of this program’s long execution. We
observe that the performance values for the short and long execution have to correlate to
create a sufficiently good prediction model.

5

CHAPTER 2
Background and Related Work

In this chapter, we take a look at multicore machines and shared memory systems. We
execute OpenMP applications on such machines and measure the performance of these
parallel programs, e.g., the speedup or the parallel efficiency. Further, we introduce
scheduling strategies and the concept of regression analysis. Finally, we explore work
done in this area and summarize related topics.

2.1 Background Information
2.1.1 Multicore Architecture on Shared Memory System
For executing programs in parallel, we need corresponding computing resources that
provide parallelism. As for all computers, the main computing resource is the CPU
(Central Processing Unit) or the processor, which resides in a socket. Nowadays, a
processor contains several cores. Figure 2.1 shows a CPU with four cores, i.e., a quad-core
CPU. Each core on the CPU is an individual physical component [44] and handles
instructions on its own. Therefore, several cores lead to parallelism since each core
can compute its own batch of instructions independently. Regarding parallelism, it is
important to look at the number of threads per socket. As shown in Figure 2.1, it is
possible that one core has two threads. This means that there is not only one path, but
two paths for each core. Even though two independent computations can be executed
concurrently on one core with two threads, the applications still share the one computing
resource, the CPU, which alternates between the applications. Nonetheless, the number
of available threads is the duplicate amount of cores if there are two threads per core.
OpenMP applications use available threads, where the maximum number of threads
corresponds to the number of cores × threads per socket.

Even though there are several cores on one CPU, there is always an interest to increase
parallelism by using more cores. A CPU has a certain number of cores, but the collabo-

7

2. Background and Related Work

Thread
1

Thread
2

Thread
1

Thread
2

Thread
1

Thread
2

Thread
1

Thread
2

Core 4

Core 2Core 1

Core 3

Quad-Core CPU with 2 Threads / Core

Core 2

Core 4Core 3

Core 1

Quad-Core CPU with 1 Thread / Core

Figure 2.1: CPU cores and threads.1

ration of several sockets increases the total number of cores on a system. If a server has
more than one socket, and therefore has more than one processor, we are talking about
multi-processor servers that support multi-sockets. Intel Xeon Scalable Processors [2]
support two-socket, four-socket, and eight-socket configurations. The CPUs used for such
systems are specifically designed to work together in these multi-socket configurations.
Therefore, these systems lead to an increased parallelism since the number of cores on
this one computing system is the sum of cores on all participating processors.

We see that cores reside on separate processors and therefore on separate sockets, but
still create a unified computing system. Therefore, this single machine requires memory
shared by multiple processors. Accordingly, these systems are also called Shared Memory
Parallel Computers (SMPs) [18]. If each processor accesses any memory location with
the same speed, “they have uniform memory access (UMA) time” [18]. In comparison,
non-uniform memory access (NUMA) [?] is an architecture, where each processor has
its local memory that can be accessed fast by the processor itself, but still shares its
memory space with the other processors that access this local memory slower. Therefore,
the memory access time is not uniform for each processor and thus called NUMA.

As an example of a multicore machine, we take a look at the hydra computing cluster,
which we use in this thesis for experiments. The hydra cluster system, shown in Figure
2.2, contains a frontend node called hydra and 36 compute nodes named hydra01 to
hydra36. These 36 compute nodes can be used as individual or connected computing
resources, depending on the use case. We use one compute node individually for the
execution of OpenMP applications.

Figure 2.2: Scheme of the hydra cluster.

All 36 compute nodes on hydra are constructed equally. Figure 2.3 shows one of these
compute nodes, e.g., hydra07. Each compute node is a Dell PowerEdge C6420 machine
that supports a two-socket configuration.

1https://www.temok.com/blog/cores-vs-threads (Accessed on 2021-08-15)

8

2.1. Background Information

 (Dell PowerEdge C6420)

2 UPI

CPU Socket 1 - NUMA node 0

Intel Xeon Gold 6130F

CPU Socket 2 - NUMA node 1

Intel Xeon Gold 6130F

6 Channels DDR4 6 Channels DDR4

48 PCIe-3.0-Lanes 48 PCIe-3.0-Lanes

Figure 2.3: Composition of a hydra compute node.2,3

As we see in Figure 2.3, there are two CPU sockets and in each of them an Intel Xeon
Gold 6130F processor resides. This processor contains 16 cores with two threads per core,
but threading is disabled on the hydra nodes. Therefore, each processor on hydra07
contains 16 cores with one thread per core, and thus the whole hydra07 compute node
provides 32 cores. Each socket also corresponds to one NUMA node. We notice this
non-uniform memory access through the six connections of each socket to six channels
of DDR4 Dual Inline Memory Modules (DIMMs), which is the local memory of each
processor. For communication between the sockets, there are two UPI (Intel Ultra
Path Interconnect) channels that are responsible for the point-to-point interconnect
between processors.

Listing 2.1: Physical core assignments on a hydra compute node.
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

The physical core mapping on any Linux machine can be shown with lscpu. On any
hydra compute node, the physical core assignment corresponds to the mapping shown
in Listing 2.1.

Experimental Setup

We conduct our experiments on single compute nodes of the hydra cluster. A summary of
relevant system information for our parallel computing experiments is given in Table 2.1.

2https://www.aspsys.com/solutions/hpc-processors/intel-xeon-skylake (Accessed on 2021-08-15)
3https://www.intel.com/content/www/us/en/products/platforms/details/cascade-lake.html (Ac-

cessed on 2021-08-15)

9

2. Background and Related Work

Table 2.1: System description of the hydra computing cluster.

hydra cluster
Compute Cluster 36 compute nodes

hydra compute node
Processor Intel(R) Xeon(R) Gold 6130F CPU @ 2.10GHz

32 cores on 2 sockets with 2 NUMA domains
Memory 97.45 GB

2.1.2 What is OpenMP?
“OpenMP is a shared-memory application programming interface (API) [...] to facilitate
shared-memory parallel programming [18].” OpenMP is not a programming language,
but an extension to the used programming language. We can add specific pragmas to
parallelize parts of the program. OpenMP can be used for C, C++, and Fortran code.

We use applications annotated and therefore parallelized with OpenMP for our experi-
ments on the hydra compute nodes. This means that one application can be executed
in parallel using up to 32 cores.

2.1.3 Measuring Parallel Computing Performance
For examining the parallel computing performance, the main metric is the elapsed time
for the execution of an application. From the time measurements, we can directly derive
parallel performance metrics, like the speed-up or the parallel efficiency. But there are
several possibilities to measure the time: we can measure the elapsed time observed as a
user, the user time, i.e., the wall clock time, or the kernel time, the computational kernel
time measured as the elapsed time of kernel sections only. To clarify these two time
measurements, we take a look at an example C code using OpenMP from Listing 2.2.

Listing 2.2: Example of a dot product implementation using C [18].
1 int main(int argc, char *argv[]) {
2 double sum = 0;
3 double a[256], b[256];
4 int status, i;
5 int n = 256;
6
7 for (i = 0; i < n; i++) {
8 a[i] = i * 0.5; b[i] = i * 2.0;
9 }

10
11 #pragma omp for reduction(+:sum)
12 for (i = 1; i <= n; i++) { sum = sum + a[i] * b[i]; }
13
14 printf("sum = %f \n", sum);
15 }

10

2.1. Background Information

This program from Listing 2.2 calculates the dot product of two arrays a and b. If
we measure the user time, then we measure the time needed for the whole program
code, from line 1 to line 15. In comparison, the kernel time only occurs in the pragma
and therefore only includes the time needed for the code lines 11 and 12. For the
computational kernel time, we exclude preprocessing steps, like variable declarations
and initializations, and postprocessing steps, like printing results, from the kernel time
measurement. Even though the user time and kernel time of this program might not
differ significantly, preprocessing steps may include reading input data from input files,
while postprocessing steps may include writing a big amount of data to result files. We
will see that it is application dependent, how much time the pre- and postprocessing
steps take proportionally to the wall clock time. For parallel computing metrics it is
obvious to use the kernel time, since we are only interested in kernel level processes, not
user level processes.

Two relevant metrics for measuring the performance of a parallel algorithm are the
speed-up and the parallel efficiency [31]. The formula for the speed-up is T1

Tp
, where T1

is the elapsed time for the sequential execution of a program using one core, and Tp is
the elapsed time for the parallel execution with p processors. The parallel efficiency is
derived from the speed-up by calculating speed-up

p , where p stands for the number of used
processors. If we think of a perfectly parallelizable program, the elapsed time using two
processors takes half the elapsed time as opposed to using one processor. This means that
the speed-up will be as high as the number of processors, in this case two. Consequently,
the parallel efficiency is the speed-up divided by the number of processors, which then is
one.

1 4 8 16 32

number of cores

1

4

8

16

32

sp
ee
d
-u
p

Optimal Speed-Up

1 4 8 16 32

number of cores

0.2

0.4

0.6

0.8

1.0

p
a
ra
ll
el

effi
ci
en

cy

Optimal Parallel Efficiency

Figure 2.4: The optimal (linear) speed-up and the optimal parallel efficiency.

Figure 2.4 shows the optimal speed-up and the optimal parallel efficiency of a perfectly
parallelizable program. The linear speed-up equals the number of processors used, while
the parallel efficiency is always one. Later, we will see that this optimal behavior, and
even approaching optimal behaviors, is rare.

Additionally to these basic measurements calculated from the elapsed time, CPUs provide
hardware counters that can count various performance metrics, which can be retrieved

11

2. Background and Related Work

with special tools like likwid [27] or PAPI [45]. Such performance counters are, e.g.,
the number of floating point operations, the number of cache misses, the memory
bandwidth, and many more. From these counters, we can derive another important
parallel performance metric, the arithmetic intensity. The arithmetic intensity is the
ratio of the floating point operations to the memory bandwidth [37], i.e., the work-to-
memory-traffic ratio. We used the listed likwid and PAPI versions in Table 2.2 for
our experiments.

Table 2.2: Tools used for measuring hardware performance counters.

Tool Version
likwid 5.1.1
PAPI 6.0.0.1

2.1.4 Scheduling and How to Solve Co-Scheduling Problems

“Scheduling is a decision-making process” [40] and is used to allocate resources to tasks
over time periods. Scheduling always has a goal, namely, an optimization goal. In our
context, we use scheduling to make a decision of which jobs are executed on which
machines [17]. There are n jobs that should be allocated to m machines. Since we only
use one machine and want to schedule on cores instead of machines, we define scheduling
as finding job allocations to cores for some specific time intervals. The optimization goal
of scheduling is to minimize the total cost function [17], but this total cost function can
be defined in numerous ways. A very common optimization goal for scheduling jobs to
machines is minimizing the makespan Cmax, the “completion time of the last job to leave
the system [40].”

Since scheduling is an optimization problem, the question arises of how to solve it. As for
optimization problems in general, we could use some heuristic or reduce the scheduling
problem to other optimization problems. One example is using linear or integer programs
[17, 22, 40] to decide job-machine allocations. A linear program maximizes or minimizes
an objective function representing the goal of our scheduling problem. Additionally,
constraints define the scheduling behavior and therefore limit the possible result space.
For a linear program, “the objective and the constraints are linear in the decision variables
[40].” An integer program is a specific type of linear program, where the decision variables
are integer numbers. The problem of allocating jobs to machines or cores can restrict the
decision variable type even more, if we answer the allocation with yes or no, i.e., if the
decision variable is binary. Even though linear programs can be solved in polynomial
time [22], integer programs are NP-hard. Therefore, often scheduling algorithms are
created that are heuristics trying to find a good resource allocation. We will use integer
programs as a proof of concept to show that scheduling leads to runtime advantages
compared to basic resource allocations.

12

2.1. Background Information

2.1.5 Affinity Mappings

With scheduling, we commonly do not use all cores of one machine for one application, but
only a few. For such use cases, there is the possibility to map the threads of applications
to physical processing units. This is called thread affinity, where we map threads to
places [36], such that the operating system cannot reassign them to other places. There
are two commonly used thread affinity mappings: compact and scatter.

For illustration purposes we assume a four-socket system with four cores on each socket.
Using this system configuration, we depict the compact and scatter thread mapping for
the case of mapping seven threads in Figures 2.5 and 2.6.

A compact affinity mapping assigns the (n + 1)th thread to a free thread context as close
as possible to the thread context of the nth thread [1]. We see this in Figure 2.5, where
we start assigning threads to socket 1, until it is full, and then fill the next socket,
socket 2. Then, our seven threads are mapped to as close as possible thread contexts.

Figure 2.5: Example of a compact affinity mapping of seven threads on a four-socket
system with four cores on each socket.

In comparison, the scatter mapping “distributes the threads as evenly as possible across
the entire system” [1], which represents the contrary to a compact mapping. Figure 2.6
shows that the thread mapping assigns one thread to each socket, then does another
round of assigning one thread to each socket. With this method, we distribute the threads
across our four-socket system.

Figure 2.6: Example of a scatter affinity mapping of seven threads on a four-socket
system with four cores on each socket.

13

2. Background and Related Work

2.1.6 Regression Analysis
We are interested in predicting values based on given input variables. Machine learning
models are helpful, and mathematical models can be used for a basic data analysis.
Regression analysis is such a technique, which is used to predict the dependent variable
based on the given independent variables [21, 29]. A regression analysis tries to find a
connection in the provided data by building a mathematical model.

There are several types of regression, one well known regression is a linear regression,
which assumes a linear relationship between the independent variables to predict the
dependent variable, i.e., it builds a linear function for prediction. Another regression
analysis form is logistic regression, which predicts a binary outcome from the independent
variables. A logistic regression also builds a function, but decides using the log odd [29]
the binary outcome. This means that logistic regression predicts a likelihood of the
binary outcome and uses this to decide, which value the dependent variable should have.

Metrics for Binary Classification Problems

Since we are interested in predicting binary outcomes, we need to validate the behavior of
our binary classification problem, e.g., the logistic regression. Since the binary outcome
only takes two values, there are four possibilities how the actual and expected outcome
are related [24]:

• True Positive: The output is correctly labeled as positive, i.e., both the actual and
expected outcome are positive.

• False Positive: The output is incorrectly labeled as positive, i.e., the actual outcome
is positive, but the expected outcome is negative.

• True Negative: The output is correctly labeled as negative, i.e., both the actual
and expected outcome are negative.

• False Negative: The output is incorrectly labeled as negative, i.e., the actual
outcome is negative, but the expected outcome is positive.

These four categories are illustrated in Figure 2.7, where we see how these names are
derived from the selected and actually relevant items.

For evaluation purposes, we are often interested in the number of true positives, false
positives, true negatives, and false negatives. A confusion matrix displays these four
categories [24] in a tabular layout.

From these values we can derive actual evaluation metrics, such as the precision or recall
of the binary classification problem. Figure 2.8 shows how these metrics are calculated:

• The recall is the ratio of true positives to all relevant items.
• The precision is the ratio of true positives to all selected items.

14

2.1. Background Information

Relevant Elements Selected Elements

Figure 2.7: Illustration of true positives, false positives, true negatives, and false nega-
tives.4

• The true positive rate describes the same ratio as the recall, i.e., the ratio of true
positives to all relevant items.

• The false positive rate is the opposite of the true positive rate, i.e., the ratio of false
positives to all non-relevant items.

PrecisionRecall True Positive Rate False Positive Rate

Figure 2.8: Metrics used to evaluate results of binary classification problems.

These evaluation metrics are often plotted in a Receiver Operator Characteristics (ROC)
curve or Precision-Recall (PR) curve. A ROC curve plots the false positive rate on the
x-axis, and the true positive rate on the y-axis. In comparison, the PR curve plots the
recall on the x-axis, and the precision on the y-axis. The ROC curve is not optimal for
presenting highly skewed data because it presents the results too optimistically. Therefore,

4https://medium.com/analytics-vidhya/evaluating-ml-models-precision-recall-f1-and-accuracy-
f734e9fcc0d3 (Accessed on 2021-10-13)

15

2. Background and Related Work

a PR curve is additionally used since these curves present a good alternative to the ROC
curves [24] for skewed data.

2.2 Overview of Used Benchmarks
This section presents an overview of the Rodinia and SPEC OMP2012 benchmarks. The
Rodinia benchmark suite does not provide inputs, therefore we analyze the benchmarks
in more detail to find appropriate input sizes. For the SPEC OMP2012 suite, we take a
closer look at the defined input instances.

2.2.1 Rodinia OpenMP Applications
The Rodinia benchmark suite [19, 20] contains 23 applications for CUDA, OpenMP, and
OpenCL parallel models. Since we are targeting multicore systems, we consider the
OpenMP applications, and 19 out of the 23 applications are available for OpenMP. There
are no predefined input sizes for the Rodinia benchmarks, thus we need to specify them.
To do so, it is necessary to get a knowledge of how to execute the applications.

Applications

We want to compare applications with one another. Thus, we will later choose such
input sizes that the applications have a similar serial running time, a similar elapsed
user time without parallelization. Some benchmarks will be excluded from our runtime
experiments since we cannot find a suitable execution that fits the input sizes.

b+tree

A b+tree is a search data structure and the benchmark traverses the b+tree to get
higher speedups. The usage of the application is ./b+tree.out cores <cores>
file <file> command <command>. The input file <file> is enumerating a range
up to a given number. The command file contains commands, like the number of bundled
queries to run on the CPU and GPU.
The command file used in these scalability experiments uses the same commands as
the exemplary command file given by the benchmark suite: j x y and k z. These
commands can be described as running a range search of x bundled queries on the CPU
and GPU with the range of each search of size y, and running z bundled queries on the
CPU and GPU.

backprop

The Back Propagation application backprop “is a machine learning algorithm that
trains the weights of connecting nodes on a layered neural network [19].” The backprop
application is executed as ./backprop <number of input elements>. The pa-
rameter for the number of input elements determines the layer size of the neural network.

16

2.2. Overview of Used Benchmarks

The number of cores needs to be changed in the header file backprop.h since there is
no parameter given to set the number of cores directly in the application call.

bfs

The bfs application is a breadth first search using a graph, which is given as a parameter
in an input file. The exact usage is ./bfs <cores> <input file>. The graph input
file can be generated with a provided generation script. Even though the parameter
<cores> should set the number of cores used, this does not happen, but we always use
an explicit affinity mapping. The user elapsed time of the serial code part in general is
quite high, because there are only small improvements in time comparing using one or
all available cores.
For the sake of similar input sizes, we need to define a very large graph with several
million nodes for bfs. Since this graph is given in the input file, the preprocessing of
reading in this graph file is high and very significant for bfs.

cfd

The cfd application is a solver for three-dimensional Euler equations used for compressible
flow. There are four versions of this benchmark: a redundant flux computation and pre-
computed fluxes, and both versions are also available with double precision computations.
We use the redundant flux computation with the usage ./euler3d_cpu <input
file>. The number of used cores needs to be changed in the Makefile according to
the documentation, but in our experiments we used explicit affinity mapping since more
cores were used than we set in the Makefile. There are three input files given with
three-dimensional Euler equations, and the smallest serial running time can be achieved
by fvcorr.domn.097K with more than 100 seconds. Since this running time is quite
high and does not fit into our input sizes, this benchmark will not be used in any
scalability experiments.

heartwall

The heartwall application tracks the movement of a mouse heart over ultrasound
images. The usage of this application is ./heartwall <input file> <number of
frames> <number of threads>. The input file is the file containing the mouse
heart movement ultrasound images and is provided in the benchmark suite. The number
of frames parameter is the parameter we used to adjust the application to different
input sizes.

hotspot

The hotspot benchmark application creates power and thermal models [47] and esti-
mates processor temperatures based on simulated power measurements and further char-
acteristics. The usage of this application is ./hotspot <grid rows> <grid cols>
<sim time> <threads> <temp file> <power file> <output file> and the

17

2. Background and Related Work

number of grid rows and columns is related to the actual data given in the initial tem-
perature and dissipated power input files. For generating additional temperature and
power files to the given ones, a script is provided.

hotspot3d

The hotspot3d benchmark is like the hotspot application, a physical simulation in
a structured grid, but in three dimensions. The application is executed by the com-
mand ./3D <rows / cols> <layers> <iterations> <power file> <temp
file> <output file>. As we can see, the used number of threads / cores can not be
determined in the execution command, and the application uses all available or mapped
threads. The given parameters rows (and implicitly columns) and layers match the
given power file and temperature file, since both these files contain a grid with a specific
number of rows and columns and an explicit amount of layers.

kmeans

The kmeans application is a clustering algorithm used in data mining by dividing a cluster
of data objects into k sub clusters. Two implementations are provided, a serial variant
kmeans_serial and kmeans_openmp. For all experiments, we use the parallelizable
OpenMP applications and execute them with a single thread to simulate serial executions.
We execute this OpenMP benchmark with the command ./kmeans_openmp/kmeans
-n <cores> -i <input file>, where the input file represents a file containing data
to be clustered. Input files can be created with a provided input generation script.

lavaMD

The lavaMD application “calculates particle potential and relocation due to mutual
forces between particles within a large 3D space [19, 20]”. The code can be executed
with ./lavaMD -cores <cores> -boxes1d <num>, where the second parameter
boxes1d describes the number of boxes in one dimension.

leukocyte

Detecting and tracking rolling leukocytes, white blood cells, is the intention of the
leukocyte benchmark. First, cells are detected in a video frame, which are then tracked
through subsequent frames. The application’s usage is ./leukocyte <number of
frames> <number of threads> <input file>, where the input file is provided.

lud

The LU decomposition application lud describes an algorithm to calculate solutions of a
set of linear equations. There are two ways to execute lud: by inputting either the matrix
size or using an input file. In our experiments, we use the option of giving a number as
the matrix size and execute ./lud_omp -n <cores> -s <matrix size>.

18

2.2. Overview of Used Benchmarks

mummergpu

The MUMmerGPU application mummergpu is a pairwise local sequence alignment
program, which uses the GPU for query sequence alignments. This application requires
Nvidia G80 or later graphics cards. An emulator is provided that does not run on the
graphics card, but on the CPU. For compiling the benchmark, the Nvidia CUDA compiler
is used. Since our benchmarking system is hydra, a machine with an Intel CPU that
does not have Nvidia components, we exclude this benchmark from our experiments.

myocyte

The myocyte benchmark models and simulates the heart muscle cell’s, the cardiac
myocyte’s, behavior. This benchmark is executed as ./myocyte.out <simulation
time in ms> <instances> <parallelization method> <threads>. The par-
allelization method is either 0 or 1, where the 0 stands for parallelization inside each
simulation instance and 1 marks the parallelization across instances. We use 1, paral-
lelization across instances, as the parallelization method.

nn

The nearest neighbor algorithm nn finds the k nearest neighbors from a data set. The ap-
plication is executed as ./nn <file-list> <number of nearest neighbors>
<target latitude> <target longitude>, where the file-list file contains file-
names to the records to search the given number of nearest neighbors. Additionally, the
target latitude and longitude determine the coordinate for the distance calculations. For
the file-list generation, a program hurricane_gen is provided.

nw

The Needleman-Wunsch application is a method for DNA sequence alignment, where
potential sequences are saved in a two-dimensional matrix. The application is executed as
./needle <max rows/max cols> <penalty> <threads>, where the maximum
number of rows and columns determines the size of the two-dimensional matrix.

particlefilter

The particlefilter application estimates the location of a target object by guess-
ing frames and calculating the probability or likelihood of the guesses. The appli-
cation’s usage is ./particle_filter -x <x dimension> -y <y dimension>
-z <frames> -np <particles>, where the x and y dimension define the frame size.

pathfinder

The pathfinder application finds a path on a two-dimensional space from the bot-
tom row to the top row by either going straight up or diagonally. It is executed as

19

2. Background and Related Work

./pathfinder <width> <number of steps>, where the width parameter deter-
mines the number of columns and the number of steps parameter determines the
number of rows in the two-dimensional grid.

srad

The srad benchmark, Speckle Reducing Anisotropic Diffusion, is one of the first
stages of the heartwall application, where mouse heart movements are tracked.
Two different srad versions are given, srad_v1 and srad_v2. Their usage differs,
as srad_v1 is executed as ./srad <iterations> <saturation coefficient>
<rows> <columns> <threads>, where the number of rows and columns defines the
rows and columns in the input image. The other version srad_v2 can be executed
as ./srad <rows> <columns> <y1> <y2> <x1> <x2> <threads> <lambda>
<iterations>, where the rows and columns refer to the domain and the y and x coor-
dinates determine the position of the speckle. In our experiments, we use srad_v1.

streamcluster

The streamcluster application is a program originating from the streamcluster
application of the PARSEC [11] benchmark suite. “For a stream of input points, it finds
a predetermined number of medians so that each point is assigned to its nearest cen-
ter [12].” It is executed as ./sc_omp <min centers> <max centers> <dim of
data points> <data points> <chunk size> <cluster size> <input
file> <output file> <threads>.

Defining Input Instances

The Rodinia benchmark suite does not provide predefined input instances. Therefore, we
define a small and medium input size for each application. These input sizes are chosen
such that the small input size has a serial running time of approximately ten seconds,
and the medium input size a serial running time of 50 seconds using gcc as the compiler.

Table 2.3 shows the definition of the small input size for Rodinia benchmarks, and the
medium input size is defined in Table 2.4.

2.2.2 SPEC OMP2012 Applications
SPEC OMP2012 [35] is a benchmark suite by the Standard Performance Evaluation
Corporation (SPEC). It contains 14 relevant parallel applications using OpenMP. These
14 applications are written in C, C++, or Fortran. The benchmark suite contains
predefined input sizes by SPEC, therefore we will not discuss the individual bench-
marks. More information about the applications can be found in the SPEC OMP2012
documentation [35].

Before executing the benchmarks, the applications need to be built. The SPEC
suite provides a defined build-process, and the applications can be built with the

20

2.2. Overview of Used Benchmarks

Table 2.3: Execution commands of the Rodinia applications with a small input size.

Benchmark Command
b+tree ./b+tree.out cores <p> file input.txt command command.txt

input.txt: 2000000, command.txt: j 1000000 50000,k 65535

backprop ./backprop 12500000

bfs ./bfs <p> graph5M.txt

heartwall ./heartwall test.avi 6 <p>

hotspot ./hotspot 1024 1024 4000 <p> temp_1024 power_1024 out.out

hotspot3d ./3D 512 2 1250 power_512x2 temp_512x2 out.out

kmeans ./kmeans -n <p> -i 290000_34.txt

lavaMD ./lavaMD -cores <p> -boxes1d 12

leukocyte ./leukocyte 3 <p> testfile.avi

lud ./lud_omp/-s 4608 -n <p>

myocyte ./myocyte.out 500 100 1 <p>

nn ./nn list669k_64.txt 3000 30 90

list669k_64.txt generated by ./hurricanegen 655360 64

nw ./needle 36864 10 <p>

particlefilter ./particle_filter -x 1024 -y 1024 -z 55 -np 10000

pathfinder ./pathfinder 1000000 80

srad ./srad_v1/srad 1350 0.5 502 458 <p>

streamcluster ./sc_omp 10 20 256 14500 14500 1000 none output.txt <p>

command runspec -config=spec_config.cfg -action=build -tune=base.
The given config file spec_config.cfg provides the necessary information like compiler,
compile flags, and further flags to make the programs. Then, each application can be run
with runspec -config=spec_config.cfg -size=<size> -noreportable
-tune=base -iterations=1 -threads=<t> <benchmark>. Since we execute
each application separately, we use the -noreportable option instead of running re-
portable runs containing all benchmarks. The number of iterations is set to one since
this runspec command also can be called x times instead of setting -iterations=x
directly. The intention is to ensure similar invocations with regard to other applications,
e.g., the Rodinia benchmark suite.

As already visible in the build command, we only use the base tuning method, which
means that the compiler options are consistent across all programs of a given language.
The execution command contains several important parameters, like the size parameter
that specifies one of the given input sizes test, train, or ref, where their magnitude can
be described as test < train < ref . The test dataset provides data for simple tests,
whereas the ref dataset is the real data set, and train can be used for feedback-directed
optimization. The number of iterations used in all experiments is strictly set to one,
since we can simply run this command several times to simulate several iterations.

21

2. Background and Related Work

Table 2.4: Execution commands of the Rodinia applications with a medium input size.

Benchmark Command
b+tree ./b+tree.out cores <p> file input.txt command command.txt

input.txt: 6000000, command.txt: j 6000000 50000,k 65535

backprop ./backprop 44000000

bfs ./bfs <p> graph21M.txt

heartwall ./heartwall test.avi 29 <p>

hotspot ./hotspot 2048 2048 4800 <p> temp_2048 power_2048 out.out

hotspot3d ./3D 512 8 1600 power_512x8 temp_512x8 out.out

kmeans ./kmeans -n <p> -i 1111500_34.txt

lavaMD ./lavaMD -cores <p> -boxes1d 202

leukocyte ./leukocyte 17 <p> testfile.avi

lud ./lud_omp/-s 8192 -n <p>

myocyte ./myocyte.out 2550 100 1 <p>

nn ./nn list669k_64.txt 18000 30 90

list669k_64.txt generated by ./hurricanegen 655360 64

particlefilter ./particle_filter -x 2048 -y 2048 -z 85 -np 10000

pathfinder ./pathfinder 1000000 290

srad ./srad_v1/srad 6650 0.5 502 458 <p>

streamcluster ./sc_omp 10 20 256 50000 50000 1000 none output.txt <p>

Looking at the serial running time of the test dataset, we already recognize different
magnitudes. All benchmarks except md, bt331, ilbdc, and applu331 have a serial
running time of approximately 10 seconds or less. As an example, the md application
with the smallest input size test already leads to a serial running time of more than
four minutes. Therefore, we do not use all provided SPEC OMP2012 benchmarks for all
experiments, simply to prevent distortion of result interpretations from plots and other
measurement results.

2.3 Related Work

Co-location of applications is a large research field and considered in several studies.
There are numerous frameworks and techniques when it comes to co-scheduling. SCALO,
a Scalability-Aware Parallelism Orchestration [26], is such a framework for multicore
machines. It can be used for orchestrating concurrent application executions with the goal
of increasing throughput. They argument that executing applications concurrently and
therefore dividing the resources among applications is often more reasonable in terms of
resource utilization than running one application on all resources. They use performance
indicators to build a speed-up model to predict the speed-up of co-scheduled programs.
In comparison to many other work, they explicitly assume existing synchronization

22

2.3. Related Work

constructs available in the runtime API to measure only time spent in parallel code
regions. In this thesis, we show the need for such a synchronization constructs and
present a small C library.
Another framework is SCAF [23], a Scheduling and Allocation system with Feedback
for shared memory systems. The goal is making good allocation decisions based on
each application’s observed efficiency. Since the parallel efficiency is calculated with
the execution time of both the parallel and serial execution, they try to circumvent
measuring potentially non-optimal serial running times. Therefore, SCAF measures the
parallel efficiency by executing the serial thread only until completion of the parallel
executed task.
Harris et al. [28] propose a resource management layer, Callisto, for parallel runtime
systems. Their goal is to implement a resource management layer responsible for
scheduling applications with each other efficiently for improved hardware utilization.
They provide Callisto, a user-mode shared library, that controls the use of hardware
contexts, i.e., threads. The scheduler used by Callisto defines which hardware contexts
are assigned to which jobs, and further defines the behavior when hardware contexts
become idle unexpectedly. This hardware context assignment to jobs is similar to our
procedure, since we are interested in finding good resource allocations to jobs.
Job striping is another method for improving performance by co-locating jobs of different
users on one compute node [15]. Job striping maps processes to cores and interleaves
distinct jobs to reduce system contention on supercomputing clusters. This striping
is defined as an additional NUMA affinity mapping, like compact and spread/scatter
mappings are. We only use a compact and scatter mapping, whereas this striped
configuration is a combination of two spread configurations and the performance of job
striping can be predicted by looking at the runtime behavior of an application when
using a spread affinity mapping.

Other works consider the problem of how to collocate or co-schedule specific workloads.
Mercier et al. [33] collocate classic HPC workloads with Big Data workloads on HPC
infrastructure. Their goal is to benefit from holes in schedules created from HPC
workloads, and fill these holes with Big Data workloads. Since these two workload types
differently exploit resources, they seem to complement each other. Therefore, they create
BeBiDa, a solution to collocate HPC and Big Data workloads. HPC workloads are
mainly executed on the available resources, but when HPC resources become idle, these
resources get attached to the Big Data resource pool, which may assign these dynamic
resources to Big Data workloads.

Breitbart et al. [14] present an HPC scheduler, Poncos, making decisions based on appli-
cations’ main memory bandwidth requirements to improve the overall system utilization.
Poncos is not intended to replace well-established HPC schedulers but shows potential of
co-scheduling applications while monitoring the main memory bandwidth utilization.
Another type of workload co-scheduling is scheduling CPU and GPU workloads on
multicore machines with GPUs. Since these two workload types differ, it is possible to
exploit performance advantages that GPUs provide. Wang et al. [46] propose CAP, a

23

2. Background and Related Work

Co-Scheduling Strategy Based on Asymptotic Profiling, which can be used for such CPU
and GPU workload schedulings.

Tangram [48] is a framework for predicting co-locating potentials of applications in an
HPC cluster. They use prior knowledge about applications, e.g., if applications are
memory or compute intensive. The co-location of applications itself uses oversubscription
of resources, i.e., jobs are assigned to the same resource while overlapping each other.
Oversubscription is said to better utilize resources and therefore should improve the
overall performance of the system. Tangram uses resource usage characteristics for
prediction, performance counters, such as the PAPI performance events. It predicts
whether co-location of MPI applications would improve the makespan or not. As this
description already implies, this is an online scheduling framework, i.e., the co-location
performance predictions are used while already scheduling. This is one difference to our
approach: we are interested in predicting beforehand, whether applications should be
co-scheduled or not. Additionally, we do not use oversubscription.

There are also approaches that analyze and monitor the co-scheduling process. Pascual
and Rzadca [39] analyze side-effects of co-locating tasks on a single machine and provide
a model describing effects of co-located tasks on machines. Breitbart et al. [13] provide
a tool called autopin+ for monitoring and optimizing co-scheduling. They explicitly
choose a memory-bandwidth-bound and a compute-bound application to be co-scheduled
and analyze performance and energy efficiency of such co-schedulings. They use CPU
performance counters to find optimal resource allocations, i.e., thread to core mappings to
increase the efficiency of the underlying system. They show that the memory bandwidth
presents a limit for performance, whereas compute-bound applications do not have
restrictions and can efficiently use all cores.

Kumar Pusukuri et al. [32] develop a scheduling framework ADAPT with the idea of
continuously monitoring the resource usage of multithreaded programs. Their goal is
very similar to our thesis goal: co-schedule applications such that they interfere with
each other as little as possible. They predict this interference with other programs using
supervised learning techniques and then adaptively co-schedule programs. This work was
written in 2013, and the state of research at this time seemed to be that cache usage
behaviors could influence the co-scheduling decision. But this ADAPT framework not
only uses cache usage behaviors, but lock contention and thread latency for making
co-scheduling decisions. They further show that lock contention and thread latency have
to be considered additionally to cache misses per accesses for an effective co-scheduling of
multithreaded programs. In contrast, we explore different performance metrics without
focusing on specific predefined categories.
The ADAPT framework consists of a Cores Allocator and a Policy Allocator. The Cores
Allocator predicts a performance loss of a program when being co-scheduled with another
program on one hand, and the performance of a program when the used core/processor
configuration is changed on the other hand. This means that the models created by
the Cores Allocator predict possible performance losses or improvements. The Policy
Allocator monitors resource allocation decisions from the Cores Allocator and dynamically

24

2.3. Related Work

selects appropriate memory allocations. We can say that this ADAPT framework is
predictor and scheduler in one.

All of these scheduling approaches have a common goal in mind: to utilize the system as
good as possible. For co-scheduling itself, the goal is often to minimize the makespan, but
another optimization goal emerges: energy efficiency [10, 25, 26, 34, 38]. Mirka et al. [34]
propose a technique to optimize energy-efficiency of compute systems running OpenMP
workloads. Their technique automatically detects OpenMP workload execution patterns
by profiling chunks of a loop iteration, a fundamental OpenMP concept, and computes
performance measurements, as the throughput chunks per second, from the measured
chunks. These measurements are then used for a dynamic control system of parallel
OpenMP workloads to find good configurations regarding the performance and energy
efficiency. Benedict et al. [10] present TOEP, the Threshold Oriented Energy Prediction,
that aims at predicting energy consumptions and execution times of MPI/OpenMP
applications. They use random forest models for training the prediction model. A
survey of different power and energy predictive models is provided by O’brien et al. [38],
since power and energy efficiency are increasingly important metrics in HPC systems.
As they argument, data centers use so much energy to power servers that the annual
power cost to operate the system itself is enormous. This makes energy an additional
optimization criterion for HPC systems. There is usually a trade-off between energy use
and performance, shown in Pareto fronts. Therefore, Endrei et al. [25] try to find a good
balance between energy usage and performance. They predict these pareto fronts using
B-splines trained in a neural network to help identifying trade-offs between performance
and energy.

Even though the following research topic is not related directly with our thesis, the
general idea and goal is very interesting. Ates et al. [9] introduce HPAS, an HPC
Performance Anomaly Suite, an anomaly generator for HPC systems. They want to
reproduce performance variabilities occurring in program executions on HPC systems
and develop an anomaly suite to reproduce such variability causes, e.g., bandwidth
interferences or memory leaks.

25

CHAPTER 3
Co-Scheduling Preparation:

Parallel Scalability and Scheduling
Potential

In this chapter, we will examine how large the co-scheduling potential on current multicore
systems is. To that end, we first examine the scalability behavior of OpenMP applications
from two important benchmark suites. The following questions will be answered in
this chapter:

• How can we characterize an application’s runtime behavior?
Does the runtime behavior change in a concurrent execution compared to sequen-
tial executions?
Can we use performance metrics to characterize an application’s runtime behavior?

• What is the parallel scalability of applications, i.e., how do they scale using more
cores? If an application has a perfect parallel scalability, we can use all available
cores and do not need co-scheduling.
How many cores should we use for co-scheduling?

• We want to co-schedule several parallel applications. Are basic strategies sufficient
or are there advantages of using more elaborate co-scheduling strategies?

In the following, we examine the runtime behavior of our applications on our parallel
machine hydra. We explore single core and serial runtime characteristics, and later
the parallel scalability of the benchmarks. These experiments have many configuration
possibilities, e.g., what compiler we use. To make sure that such configurations do not
influence the overall outcome, we experiment with different compilers and show: even

27

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

though the running time itself may change, the overall runtime behavior of OpenMP
applications is similar for different compilers.

This chapter is structured as follows: we start with single core execution experiments.
We want to find differences between executing an application using a single core on
different sockets, and whether an application interferes with itself in case of executing it
concurrently. By testing different sockets, we verify that different configurations do not
change the overall observation.
Since we observe that some benchmarks have a relatively large time increase for their
concurrent execution compared to a sequential execution, we use performance metrics,
the arithmetic intensity, to find out, which performance counter correlates with the
running time.
As already mentioned in Chapter 1, using a large number of cores does not necessarily
lead to the fastest running time, nor do we get an acceptable parallel efficiency. With
this statement in mind, we analyze the actual parallel scalability behavior of the Rodinia
and SPEC OMP2012 benchmarks.
Lastly, we examine the overall potential of co-scheduling. We take a set of applications
to be scheduled and assign one processor to each application, and all processors to one
application. Then, we compare these two strategies with an integer program. This
integer program represents the Optimization Potential, and we show that there is an
optimization potential in scheduling with elaborate algorithms.

3.1 Novel Execution Framework for Co-Scheduling
Applications

Before starting with runtime experiments, we introduce the execution framework used
for our experiments. The idea was to create a resource manager, like SLURM [49], but
for managing resources on one compute node, i.e., the cores. We use this framework1

as resource manager and scheduler: different applications should be executed on one
compute node with a given number of cores. As an example, we take a look at the
execution of three lavaMD applications from the Rodinia benchmark suite in Listing 3.1.

Listing 3.1: Example input file for the resource manager and scheduler.
JOBS
1;./lavaMD -cores 16 -boxes1d 40;0-15
2;./lavaMD -cores 16 -boxes1d 20;16-31
3;./lavaMD -cores 5 -boxes1d 15;0-10:2
ORDER
0: 1,3
3: 2,1

There are two macros # JOBS and # ORDER that are used for separating the application
commands from the execution ordering. After # JOBS, we can name execution commands

1https://gitlab.com/bsarkoez/resource-manager_scheduler

28

3.1. Novel Execution Framework for Co-Scheduling Applications

with the syntax id;command;cores of applications. The cores part may be a single
core number, a range of cores, an enumeration of cores, or an interleaved range of cores.
In our example, we execute three jobs using the lavaMD application with different sizes,
i.e., different boxes1d, and on different cores. Job 3 uses the interleaved core range
syntax and is executed on the cores 0, 2, 4, 6, 8. The # ORDER represents the order in
which jobs are submitted to the resource manager. This simulates live behaviors on
multicore machines, where jobs are submitted at different times to the compute node.
As in the example, jobs 1 and 3 are submitted at time 0, i.e., without delay. If we look
at the core assignment, we notice that these two jobs cannot be executed concurrently,
since they demand same cores. Which one of job 1 and job 3 will be executed first, is the
scheduler’s assignment. It is possible to configure different scheduling strategies, and in
this example we use the create-schedule-in-order strategy, i.e., we execute job
1 first, and after it has finished, we execute job 3. After a time delay of three seconds,
job 2 and job 1 are submitted. Assuming that job 1 takes 1.5 seconds, and job 3 takes
2.5 seconds, we can already start executing job 2, while job 3 is running, since there are
no resource sharing conflicts. After job 3 finishes, we execute job 1 again, while job 2
may still be running. This scenario shows the need for this resource manager: if we use
create-schedule-in-order, while the jobs at timestamp 3 are submitted as 1,2,
there would be a resource conflict.

To make sure that applications are only executed on the given number of cores, the resource
manager executes application commands using an affinity mapping with numactl
--physcpubind=<binding> <command>. This means that job 1 would be executed
as numactl --physcpubind=0-15 ./lavaMD -cores 16 -boxes1d 40.

Using this execution framework, we can provide one input file, which contains the jobs
that need to be executed and the job ordering. Assuming that the input file is called
launching_order and we want to execute it on one compute node of the hydra
cluster, we can submit the following command to SLURM on hydra: main.py -c 32
-f launching_order. Then, our list of applications from the file launching_order
will be executed on one compute node with 32 cores.

Some further examples clarify the usage and behavior of our execution framework. For
the runtime experiments we use the ordering given by # ORDER. This means that the
scheduling policy used by the internal scheduler is create-schedule-in-order.

Listing 3.2: Executing lavaMD three times sequentially on core 0.
JOBS
1;./lavaMD -cores 1 -boxes1d 15;0
2;./lavaMD -cores 1 -boxes1d 15;0
3;./lavaMD -cores 1 -boxes1d 15;0
ORDER
0: 1,2,3

Listing 3.2 shows the execution of three lavaMD applications executed serially on core
0. Since all three jobs are submitted at time 0 and they all require the same core, they

29

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

will be executed one after another, i.e., job 2 starts after job 1 finishes, job 3 starts after
job 2 finishes.

Listing 3.3: Executing lavaMD three times concurrently with one core.
JOBS
1;./lavaMD -cores 1 -boxes1d 15;0
2;./lavaMD -cores 1 -boxes1d 15;1
3;./lavaMD -cores 1 -boxes1d 15;2
ORDER
0: 1,2,3

Listing 3.3 shows the execution of three lavaMD applications executed concurrently
using a single core. Since all three jobs are submitted at time 0, but can be executed on
different cores, they all start their execution at time 0 and will be executed concurrently.

Listing 3.4: Pausing between two executions.
JOBS
1;./lavaMD -cores 20 -boxes1d 30;0-19
2;./lavaMD -cores 20 -boxes1d 30;12-32
ORDER
0: 1
10: 2

Sometimes, we want to make sure that jobs are not interleaving one another. Then, we
can add a higher time delay for the start of the execution. For the job executions in
Listing 3.4, we assume that this lavaMD execution using 20 cores takes around 2 seconds.
Even though they share cores, we could start job 2 after job 1 finishes. But using this
order, the execution framework waits ten seconds before submitting and executing job 2.

3.2 Single Core Execution Behaviors
We start by executing our applications on a single core. We examine differences between
the running time of sequential executions with one core and a concurrent execution of an
application with itself using a single core.
As already mentioned in Chapter 2, hydra has two sockets. We want to make sure
that the execution time of any application is not influenced by the socket on which it is
executed. Further on, executing the same application concurrently on all available cores
leads to the matter of resource sharing, since the same application requires the same
resources. With this motivation, we define the following three execution strategies for
one application using a single core:
Case Seq 1
We run the application on one thread of socket one in a serial way. For socket one, we
use core 0 to run one application 32-times one after another. Each execution of the
application is called a job. The corresponding Gantt chart of this strategy is shown in
Figure 3.1.

30

3.2. Single Core Execution Behaviors

. . .

. . .

Figure 3.1: Gantt Chart of the execution strategy Case Seq 1 with 32 jobs and cores.

Case Seq 2

We run the application on one thread of socket two in a serial mode. The first core of
socket two is core 1, as the affinity mapping for hydra shows in Listing 2.1. We run an
application 32-times one after another on core 1. The corresponding Gantt chart of this
strategy looks like Figure 3.2.

. . .

. . .

Figure 3.2: Gantt Chart of the execution strategy Case Seq 2 with 32 jobs and cores.

Case Concur

. . .

. . .

Figure 3.3: Gantt Chart of the execution strategy Case Concur with 32 jobs and cores.

Since our testing machine hydra has 32 cores on one compute node, we take all avail-
able cores and execute the same application concurrently on all available cores. The
corresponding Gantt chart is shown in Figure 3.3.

31

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

We compare these three defined strategies case seq 1, case seq 2, and case
concur for both benchmark suites Rodinia and SPEC OMP2012. We use gcc as the
default compiler, but also examine the sequential and concurrent case execution using
icc, pgcc, and clang. Table 3.1 shows the used compiler versions and commands used
for the compilation.

The running times shown in the following are the average execution times of a job, where
a job corresponds to the notion of a job in the execution strategies from Figures 3.1 – 3.3.

Table 3.1: Compiler overview.

gcc icc pgcc clang
Version 10.2.0 19.1.304 20.7-0 11.1.0
C gcc icc pgcc clang
C++ g++ icc pgc++ clang++
Fortran gfortran ifort pgfortran
OpenMP flag -fopenmp -qopenmp -mp -fopenmp
Optimization flags -O2 -O2 -O2 -O2

-O3 -O3 -O3 -O3
-ffast-math -fast -Mfprelaxed -ffast-math
-ffree-form -FR -Mfree

3.2.1 Execution Experiments with Rodinia
Rodinia has no provided input instances for its benchmarks, therefore we defined a
small and medium input size for the running time experiments in Table 2.3 and Table
2.4. For the single core execution experiments with different compilers, we only use the
small input size. We measure the kernel time of each benchmark, the time of the
computational kernel, which excludes the time needed for pre- and postprocessing steps.
Additionally, we measure the real user time, i.e., the wall clock time. This kernel time
measurement is added manually to almost all benchmarks, only a few contain a time
measurement around their kernel section. The kernel section is clearly visible for the
Rodinia benchmarks due to a simple structure of the code.

Differences between Sequential and Concurrent Cases

In the following, we see results obtained from the comparison of the different execution
strategies case seq 1, case seq 2, and case concur using the Rodinia bench-
mark suite applications. Each application is executed 32 times, in either a sequential or
concurrent way. The plots show the mean time, while error bars indicate the deviation
(minimum and maximum times) of these 32 time measurements.

Figure 3.4 shows the achieved kernel times on hydra for the three different execution
strategies using gcc as the compiler.

32

3.2. Single Core Execution Behaviors

b+tree

backprop

bfs
heartwall

hotspot

hotspot3d

kmeans

lavaMD

leukocyte

lud
myocyte

nn nw particlefilter

pathfinder

srad
streamcluster

benchmark

0

2

5

7

10

12

15

17
ti
m
e
in

se
c

Kernel Time of Rodinia benchmarks compiled with gcc

case

seq 1

seq 2

concur

Figure 3.4: Kernel runtime of the small Rodinia benchmarks compiled with gcc from
32 runs.

One assumption was that using different sockets for the same execution order does not
affect the running time. The results of these experiments confirm this assumption, since
there are hardly run time differences between the cases seq 1 and seq 2. Looking at
the application execution times closer, we see that some applications, like backprop
or hotspot, perform badly in the concurrent execution. This could mean that these
applications use many resources which are rare when executed concurrently with itself.

For the nw application, we did not obtain valid results for the case concur execution.
The results obtained from these runs are invalid, since the execution exited with failure
due to memory allocation errors. Such invalid runs are excluded from our results by
ignoring their results, as the empty bar indicates.

Additionally to the kernel time, Figure 3.5 shows the user time of the Rodinia applications
compiled with gcc. We observe similar differences between the sequential and concurrent
execution for the user times. Interestingly, pathfinder only seems to have concurrent
runtime issues with itself in the user time measurements, but not in the kernel time
measurements, which leads to the assumption that the pre- and postprocessing steps are
resource conflicting.

As this clearly shows, it is indeed important to differentiate between kernel and user time
measurements, since some artifacts may occur in pre- or postprocessing steps, but are
irrelevant for the kernel section itself.

Arithmetic Intensity

Since there are big differences for some applications between a sequential and concurrent
execution, we take a closer look on possible reasons behind this. For this purpose, we
measure performance counters for the sequential case seq 1 using likwid. We measure

33

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

b+tree

backprop

bfs
heartwall

hotspot

hotspot3d

kmeans

lavaMD

leukocyte

lud
myocyte

nn nw particlefilter

pathfinder

srad
streamcluster

benchmark

0

5

10

15

20

ti
m
e
in

se
c

User Time of Rodinia benchmarks compiled with gcc

case

seq 1

seq 2

concur

Figure 3.5: User time of the small Rodinia benchmarks compiled with gcc from 32 runs.

three runs and use the median values of the kernel assessment to calculate the arithmetic
intensity. Table 3.2 gives an overview of the used performance counters, where each
counter value was measured on core 0, since we look at case seq 1.

Table 3.2: Performance counters obtained with likwid-perfctr.

Group Performance Counter
Memory Bandwidth MEM_SP and MEM_DP Memory bandwidth

[MBytes/s]

Flops Single Prec. MEM_SP SP [MFLOP/s]
Flops Double Prec. MEM_DP DP [MFLOP/s]

Arithmetic Intensity MEM_SP or MEM_DP Operational intensity

L3 Cache Misses L3CACHE MEM_LOAD_RETIRED_L3_MISS
L3 Cache Miss Ratio L3CACHE L3 miss ratio

The arithmetic intensity is already calculated for both the single and double precision
performance groups. For a better visualization of the arithmetic intensity, a roofline
model is helpful to differentiate between compute- and memory-bound applications.

Figure 3.6 shows the roofline model for the Rodinia benchmark applications with a small
input size. The peak bandwidth and peak performance used to plot the roofline model
are taken from all measured performance counters, including the performance counters
obtained from the SPEC OMP2012 benchmark suite too (see later). Applications below
the Bandwidth Roof are called memory-bound and applications below the Performance
Roof are called compute-bound. Benchmarks that are not plotted in this roofline model
have an arithmetic intensity of less than 1/8 and are memory-bound.

34

3.2. Single Core Execution Behaviors

1/8 1/2 2 8 32 128 512

Arithmetic Intensity [Flops/byte]

0

1

2

4

8

16

P
er
fo
rm

a
n
ce

[G
F
lo
p
s/
s]

Performance Roof
B
an
dw

id
th

R
oo
f

Arithmetic Intensity Rodinia

benchmarks

heartwall

hotspot

hotspot3d

kmeans

lavaMD

leukocyte

lud

myocyte

particlefilter

srad

streamcluster

Figure 3.6: Arithmetic intensity of the small Rodinia benchmarks compiled with gcc
for the seq 1 case. b+tree, backprop, bfs, nn, nw, and pathfinder are outliers
with an AI < 1/8.

The roofline model for the small Rodinia benchmarks is plotted in Figure 3.6. There are
no applications depicted under the bandwidth roof, but some applications are not even
represented in this model: b+tree, backprop, bfs, nn, nw, and pathfinder are not
plotted because their arithmetic intensity is too small, AI < 1/8. These applications are
therefore under the bandwidth roof and thus memory-bound. The other applications are
correspondingly compute-bound.

Table 3.3 gives a detailed overview for the executions with a small input size of the
running times, the proportional running time difference, the measured arithmetic intensity,
whether an application is memory-bound (MB) or compute-bound (CB) and the L3 cache
misses and cache ratios. The entries are sorted by the proportional time difference in
descending order.

Using likwid to get performance counters for a specific region, i.e., using the Marker
API, there are some unresolved problems with particlefilter and gcc. Therefore,
we compile particlefilter with clang to get these performance metrics. All
other benchmarks are analyzed with the performance groups MEM_SP and MEM_DP, but
these performance groups lead to memory allocation problems with particlefilter.
Therefore, we measure the memory bandwidth and the floating point operations using
the performance groups MEM and FLOPS_DP instead of MEM_DP, from which we can
calculate the same metrics used from MEM_DP.

As we can see in this overview in Table 3.3, a large time difference between the sequential
and concurrent execution does not necessarily mean a high arithmetic intensity implying
compute-bound applications, like backprop shows, but also does not always indicate a
memory-bound application, like hotspot shows.

35

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

Table 3.3: Arithmetic intensity overview of the small Rodinia apps compiled with gcc
for the kernel measurements. Time Diff ... time difference between seq 1 and concur,
MB ... memory-bound, CB ... compute-bound, AI in Flops/Byte

App Seq 1 Concur Time
Diff

SP
DP

AI MB
CB

L3 cache
misses

L3
miss
ratio

backprop 5.04 s 17.18 s 240.87% SP 0.01 MB 381 594 900 1.00
bfs 0.67 s 1.49 s 122.39% DP 0.00 MB 1 544 947 0.09
hotspot 8.12 s 16.41 s 102.09% SP 681.30 CB 4 507 0.00
streamcluster 10.67 s 13.18 s 23.52% SP 160.45 CB 965 0.00
b+tree 4.15 s 4.30 s 3.73% SP 0.00 MB 1 679 451 0.36
lud 9.87 s 10.09 s 2.23% SP 5.56 CB 2 002 875 0.48
srad 10.11 s 10.22 s 1.09% SP 99.94 CB 630 0.00
hotspot3d 4.66 s 4.71 s 1.07% SP 213.68 CB 88 0.00
pathfinder 1.62 s 1.63 s 0.62% SP 0.00 MB 73 362 0.62
particlefilter 2.99 s 3.00 s 0.33% DP 9.48 CB 2 481 0.07
myocyte 10.72 s 10.75 s 0.28% SP 3.04 CB 3 498 0.11
leukocyte 9.96 s 9.97 s 0.10% DP 137.33 CB 2 643 0.01
nn 10.43 s 10.44 s 0.10% SP 0.03 MB 107 0.04
lavaMD 10.49 s 10.50 s 0.10% DP 134.86 CB 3 400 0.32
heartwall 10.67 s 10.68 s 0.09% SP 34.91 CB 7 669 0.03
nw 6.78 s - - SP 0.00 MB 192 215 300 1.00
kmeans 9.12 s 9.11 s -0.11% SP 4.06 CB 432 122 0.88

Since some sequential kernel times are small, we also take a look at the running times
and performance metrics of the medium input size of the Rodinia applications. Table
3.4 shows an overview of the achieved sequential and concurrent kernel times for the
medium input size of the Rodinia benchmarks and the corresponding performance counter
values. The backprop application was not executed 32-times concurrently with a single
core (as the other benchmarks), but only 14-times concurrently. The reason for this
behavior is that an execution of 16 or more concurrent backprop applications leads
to an execution time of more than one hour for each concurrently executed backprop
program on hydra. Therefore, the relative time difference is even much larger than
shown in this table for the case of executing backprop 32-times concurrently on hydra.

The results from Table 3.4 show similar results regarding the relative time differences for
the top four applications backprop, bfs, hotspot, and streamcluster. We keep
these applications in mind because they seem to have problems with resource sharing.

36

3.2. Single Core Execution Behaviors

Table 3.4: Arithmetic intensity overview of medium Rodinia apps compiled with gcc.
Time Diff ... time difference between seq 1 and concur, MB ... memory-bound, CB ...
compute-bound, AI in Flops/Byte

App Seq 1 Concur Time
Diff

SP
DP

AI MB
CB

L3 cache
misses

L3
miss
ratio

backprop 17.15 s 164.89 s 861.49% SP 0.01 MB 1 361 258 000 1.00
myocyte 50.13 s 101.45 s 102.37% SP 2.67 CB 14 409 0.10
bfs 3.64 s 7.12 s 95.74% DP 0.00 MB 23 560 420 0.35
hotspot 42.55 s 78.96 s 85.57% SP 1.53 CB 39 901 740 0.60
streamcluster 51.19 s 55.67 s 8.75% SP 0.47 MB 74 594 010 0.77
srad 48.12 s 50.08 s 4.07% SP 102.99 CB 1 514 0.00
hotspot3d 23.65 s 23.84 s 0.82% SP 7.50 CB 69 020 0.11
pathfinder 5.75 s 5.78 s 0.52% SP 0.00 MB 260 591 0.60
nn 48.77 s 48.88 s 0.22% SP 0.01 MB 977 0.00
heartwall 49.71 s 49.76 s 0.10% SP 35.97 CB 22 833 0.02
b+tree 26.59 s 26.61 s 0.08% SP 0.00 MB 227 557 0.70
leukocyte 51.60 s 51.62 s 0.04% DP 139.73 CB 22 302 0.06
lavaMD 51.88 s 51.90 s 0.04% DP 109.07 CB 20 789 0.35
kmeans 43.08 s 43.05 s -0.08% SP 3.90 CB 891 965 0.90
particlefilter 3.81 s 3.75 s -1.57% DP 11.86 CB 4 495 0.06
lud 46.29 s 45.51 s -1.70% SP 3.80 CB 61 019 080 0.07

Compiler Comparison

For the previous experiments, we used gcc as the compiler, since it is also the default
setting in the makefiles of the Rodinia benchmarks. But nonetheless, it should also
be possible to use other compilers. For this reason, we explore the differences when
other compilers are used. We compare the gcc kernel runtime of the case seq 1
and the case concur with the runtime compiled with icc, pgcc, and clang. The
other sequential case, case seq 2, can be left out from these experiments since our
assumption of equal running times on different sockets was already confirmed. We have
already seen the used versions of compilers, compile commands, and compile flag for
OpenMP in Table 3.1.

Figure 3.7 shows the comparison of the compilers gcc, icc, pgcc, and clang used
for the sequential case seq 1, and Figure 3.8 shows this comparison for the concurrent
case concur. From both these comparisons, we cannot see a clear winner in terms of
constantly smaller running times, but we see that using another compiler may affect
the runtime of some applications. Still, the icc compiler performs better for many
applications like kmeans, myocyte, nn, srad, and streamcluster since the running
time differences compared to gcc are improved by at least a factor of two. The pgcc

37

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

b+tree

backprop

bfs
heartwall

hotspot

hotspot3d

kmeans

lavaMD

leukocyte

lud
myocyte

nn nw particlefilter

pathfinder

srad
streamcluster

benchmark

0

5

10

15

20
ti
m
e
in

se
c

Kernel Time Compiler Comparison seq 1 for Rodinia

compiler

gcc

icc

pgcc

clang

Figure 3.7: Kernel times of the small Rodinia benchmarks compiled with gcc, icc,
pgcc, and clang for the seq 1 case (32 executions).

b+tree

backprop

bfs
heartwall

hotspot

hotspot3d

kmeans

lavaMD

leukocyte

lud
myocyte

nn particlefilter

pathfinder

srad
streamcluster

benchmark

0

5

10

15

20

25

ti
m
e
in

se
c

Kernel Time Compiler Comparison concur for Rodinia

compiler

gcc

icc

pgcc

clang

Figure 3.8: Kernel times of the small Rodinia benchmarks compiled with gcc, icc,
pgcc, and clang for the concur case (32 concurrent executions).

compiler also leads to some faster running times than gcc, but hardly outperforms icc
and often even leads to slower execution times. An interesting observation is that higher
concurrent runtimes are not influenced by changing compiler settings, as the concurrent
running time of, e.g., backprop is high for all compilers, while the sequential time
is comparatively smaller. Outliers coming from compiler differences are also reflected

38

3.2. Single Core Execution Behaviors

in Figures 3.7 and 3.8, like the pgcc measurement for hotspot. So we see that it
does make a difference what compiler we use, but the compiler does not change the
runtime behavior of applications. To double check our findings so far, we will do the
same experiments with the SPEC OMP2012 benchmark suite.

3.2.2 Execution Experiments with SPEC OMP2012
The SPEC OMP2012 benchmark suite already provides input instances, therefore we do
not need to define them. In the following experiments, we use the test dataset size, which
corresponds to the smallest provided input size. Still, the serial user running time of this
test data size varies for the 14 provided applications, as many applications are executed
with a single core in a few seconds, and others take up to four minutes. Therefore, we
exclude md, bt331, ilbdc, and applu331 from the following experiments due to their
different magnitude of serial execution time.

Regarding analyzing the execution time, SPEC OMP2012 already provides a very stable
time measurement shown as runtime=<time> in the log output file of an execution.
This provided time corresponds to the user time as described for Rodinia, the time
needed for the application’s main function. The SPEC benchmarks are not designed
for measuring pure kernel time of parallel constructs, since source code changes are not
intended and not accepted as official benchmarking results. For measuring performance
counters with the Marker-API of likwid, we need to add the start and end of the
marker to the start and end of the main function. Many SPEC OMP2012 do not have a
single kernel section, but do some kernel calculations, then some pre- and postprocessing
operations, then kernel calculations again. This makes it hard to narrow down the
measurements to the kernel section solely. Therefore, we will only analyze the benchmark
execution times provided in the log output files with runtime=<time>.

We do not use the real input size of the SPEC OMP2012 benchmarks, i.e., the ref
input size, due to its long running time, and more importantly long serial running time.
Regarding measuring kernel times, this long runtime of the SPEC OMP2012 benchmarks
renders the time needed for pre- and post-processing steps irrelevant, which may be a
reason that kernel sections are not explicitly clocked. Still, this input size is too large for
our use cases.

Differences between Sequential and Concurrent Cases

We start by comparing the three execution strategies case seq 1, case seq 2, and
case concur using a single core for the benchmark execution time. As for the Rodinia
benchmarks, we assume that there is no clear time difference between case seq 1 and
case seq 2 since both underlying sockets are equal. An interesting question is if we
find similar relative time differences for some benchmarks between a purely sequential
and purely concurrent execution.

Figure 3.9 shows the execution time measurements for the single core execution cases
of the SPEC OMP2012 benchmarks. In the plot, we see almost no difference between

39

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

bwaves

nab
bt331

botsalgn

botsspar

fma3d

swim
imagick

mgrid331

applu331

smithwa

kdtree

benchmark

1/64

1/16

1/4

1

4

16

64

ti
m
e
in

se
c

Execution Time of SPEC OMP2012 benchmarks compiled with gcc

case

seq 1

seq 2

concur

Figure 3.9: Benchmark execution times of the test SPEC OMP2012 benchmarks compiled
with gcc.

the two serial execution cases seq 1 and seq 2, which confirms the assumption of no
runtime differences between the two sockets on hydra. Regarding the difference between
seq 1 and concur, we observe small differences, like for bt331 or applu331. Even
though there seems to be a big relative difference for the concurrent case for fma3d and
imagick, this difference is so small in absolute values that it can be considered irrelevant.

Arithmetic Intensity

The roofline model for the SPEC OMP2012 test size benchmarks is shown in Figure 3.10.

1/8 1/2 2 8 32 128

Arithmetic Intensity [Flops/byte]

0

1

2

4

8

16

P
er
fo
rm

a
n
ce

[G
F
lo
p
s/
s]

Performance Roof

B
an
dw
id
th
R
oo
f

Arithmetic Intensity SPEC OMP2012

benchmarks

bwaves

nab

bt331

botsspar

imagick

mgrid331

Figure 3.10: Arithmetic intensity of the test SPEC benchmarks compiled with gcc for
the seq 1 case. botsalgn, fma3d, swim, applu331, smithwa, and kdtree are
outliers with an AI < 1/8.

40

3.2. Single Core Execution Behaviors

For the calculation of the arithmetic intensity, we used the median values of the per-
formance counters obtained from three executions. In Figure 3.10, we see one memory-
bound application, bwaves, but the applications botsalgn, fma3d, swim, applu331,
smithwa, and kdtree, which are not plotted, are also memory-bound with an arithmetic
intensity of less than 1/8 flops per byte. The other applications are compute-bound.

More details about the arithmetic intensity and performance metrics are shown in
Table 3.5. We see an overview of the running time and arithmetic intensity for the test
size of the SPEC OMP2012 benchmarks. We observe the running times, the proportional
running time difference, the measured arithmetic intensity, whether an application is
memory-bound (MB) or compute-bound (CB), and the L3 cache misses and miss ratios.
The entries are sorted by the proportional time difference in descending order.

Table 3.5: AI overview of test SPEC OMP2012 applications compiled with gcc. Time
Diff ... time difference between seq 1 and concur, MB ... memory-bound, CB ...
compute-bound, AI in Flops/Byte

App Seq 1 Concur Time
Diff

SP
DP

AI MB
CB

L3 cache
misses

L3
miss
ratio

fma3d 0.01 s 0.04 s 300.00% DP 0.01 MB 344 0.50
imagick 0.03 s 0.07 s 133.33% DP 2.98 CB 444 0.21
applu331 20.66 s 25.01 s 21.03% SP 0.00 MB 1 765 208 0.02
mgrid331 0.39 s 0.42 s 9.09% DP 3.17 CB 1 038 0.01
bt331 66.88 s 71.63 s 7.12% DP 1.93 CB 110 281 300 0.51
swim 0.15 s 0.16 s 6.67% SP 0.00 MB 20 796 0.81
bwaves 2.78 s 2.89 s 3.96% DP 0.33 MB 1 035 522 0.94
kdtree 8.97 s 9.00 s 0.39% DP 0.00 MB 16 338 0.00
nab 3.28 s 3.29 s 0.30% DP 118.20 CB 471 0.40
smithwa 6.23 s 6.24 s 0.16% DP 0.00 MB 60 0.04
botsalgn 0.74 s 0.74 s 0.00% DP 0.00 MB 99 0.28
botsspar 0.20 s 0.20 s 0.00% SP 65.28 CB 708 0.06

From these measurements in Table 3.5, we cannot clearly say if there is a significant
relative difference between sequential and concurrent executions, since this relative
difference is only significant for fma3d and imagick, where the running times are
so small that no reasonable conclusions can be drawn. Therefore, we measure these
performance metrics for the train input size, which expectedly leads to a higher sequential
kernel time. The measured performance values for the train input size are presented in
Table 3.6.

We see a change in the ordering of Table 3.6, which means that the relative differences
between sequential and concurrent executions change. For the train input size, we now
see an increased relative difference for swim, mgrid331, and applu331. Even though

41

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

Table 3.6: AI overview of train SPEC OMP2012 applications compiled with gcc. Time
Diff ... time difference between seq 1 and concur, MB ... memory-bound, CB ...
compute-bound, AI in Flops/Byte

App Seq 1 Concur Time
Diff

SP
DP

AI MB
CB

L3 cache
misses

L3
miss
ratio

swim 29.38 s 111.29 s 278.80% SP 0.00 MB 65 578 0.92
mgrid331 2.96 s 7.20 s 143.24% DP 0.47 MB 51 415 0.25
applu331 38.46 s 61.56 s 60.08% SP 0.00 MB 38 080 840 0.22
botsspar 1.49 s 2.00 s 34.23% SP 89.79 CB 3 544 0.05
fma3d 56.33 s 68.62 s 21.83% DP 0.44 MB 384 351 000 0.65
bwaves 24.91 s 28.20 s 13.23% DP 0.29 MB 11 007 920 0.97
bt331 282.13 s 292.57 s 3.70% DP 1.50 CB 635 414 200 0.79
imagick 175.34 s 177.37 s 1.15% DP 165.57 CB 12 045 0.02
nab 274.18 s 275.76 s 0.58% DP 124.14 CB 2 599 0.00
kdtree 117.31 s 117.56 s 0.22% DP 0.00 MB 562 424 0.02
botsalgn 18.85 s 18.82 s -0.13% DP 0.00 MB 123 0.15
smithwa 23.92 s 23.88 s -0.17% DP 0.00 MB 166 0.00

these two input sizes do not correlate for the relative difference between seq 1 and
concur, we can at least observe similarly as for Rodinia that some benchmarks have
resource conflicts when executed concurrently with itself.

The running time of the different benchmarks is still problematic for comparison since
the magnitudes of the runtimes are so different. Additionally, using the big input size
ref, we need at least 15 minutes for one sequential run, which makes this big input size
non-applicable for our purposes of getting to know applications in a short period of time.

Compiler Comparison

Similarly to Rodinia, we compare the running times using different compilers for the cases
seq 1 and concur, shown in Figures 3.11 and 3.12. We execute the applications 32
times either sequentially or concurrently and therefore use the median values of these 32
measurements for plotting, where error bars indicate minimum and maximum obtained
values.

The observation from Rodinia, that icc often leads to better running times, is still
valid, while also pgcc seems to be a good choice for fast running times. As we can
see in both plots, for some applications like bwaves or bt331 the clang compiler
measurements are missing. Since these applications (bwaves, bt331, fma3d, swim,
mgrid331, or applu331) are written in Fortran, we cannot use clang, which only
supports C and C++.

42

3.2. Single Core Execution Behaviors

bwaves

nab
bt331

botsalgn

botsspar

fma3d

swim
imagick

mgrid331

applu331

smithwa

kdtree

benchmark

1/64

1/16

1/4

1

4

16

64
ti
m
e
in

se
c

Execution Time Compiler Comparison seq 1 for SPEC OMP2012

compiler

gcc

icc

pgcc

clang

Figure 3.11: Benchmark execution times of the SPEC OMP2012 benchmarks compiled
with gcc, icc, and pgcc for the seq 1 case.

bwaves

nab
bt331

botsalgn

botsspar

fma3d

swim
imagick

mgrid331

applu331

smithwa

kdtree

benchmark

1/16

1/4

1

4

16

64

ti
m
e
in

se
c

Execution Time Compiler Comparison concur for SPEC OMP2012

compiler

gcc

icc

pgcc

clang

Figure 3.12: Benchmark execution times of the SPEC OMP2012 benchmarks compiled
with gcc, icc, and pgcc for the concur case.

Looking back at our examination of the Rodinia and SPEC OMP2012 benchmarks, we
notice some benchmarks that seem to have resource sharing problems when executed
concurrently with itself. The arithmetic intensity additionally does not help figuring
out whether an application might have problems with resource sharing or not. Further,
we need to pay attention, which compiler is used since the compiler does affect the
runtime itself.

43

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

3.3 Parallel Scalability
We look at the scalability of our benchmarks from the Rodinia and SPEC OMP2012
suite. Additionally to the small and test input size, we also use the medium and train
input size. We measure the kernel time five times for 1, 2, 4, 8, 16, and 32 cores. First,
we take a look at the mean kernel running times, how they scale with the number of
cores. Then, we additionally plot the parallel efficiency and strengthen our statement
from Chapter 1: using all available cores often leads to an insufficient parallel efficiency,
i.e., the parallel efficiency is smaller than an acceptable threshold.

3.3.1 Scalability of Rodinia Benchmarks
For the Rodinia benchmark suite’s parallel scalability tests, we measure kernel times
achieved with different compilers, gcc, icc, and clang.

1 2 4 8 16 32

cores

0

2

4

ti
m
e
in

se
c

b+tree

1 2 4 8 16 32

cores

0

2

4

backprop

1 2 4 8 16 32

cores

0.0

0.5

bfs

1 2 4 8 16 32

cores

0

10

heartwall

1 2 4 8 16 32

cores

0

5

10
hotspot

1 2 4 8 16 32

cores

0

5

ti
m
e
in

se
c

hotspot3d

1 2 4 8 16 32

cores

0

5

10
kmeans

1 2 4 8 16 32

cores

0

5

10

lavaMD

1 2 4 8 16 32

cores

0

5

10

leukocyte

1 2 4 8 16 32

cores

0

5

10

lud

1 2 4 8 16 32

cores

0

5

10

ti
m
e
in

se
c

myocyte

1 2 4 8 16 32

cores

0

5

10

nn

1 2 4 8 16 32

cores

0

5

10

nw

1 2 4 8 16 32

cores

0

2

particlefilter

1 2 4 8 16 32

cores

0

1

pathfinder

1 2 4 8 16 32

cores

0

5

10

ti
m
e
in

se
c

srad

1 2 4 8 16 32

cores

0

5

10

streamcluster

Parallel Runtime of Rodinia small benchmarks

gcc

icc

clang

Figure 3.13: Parallel scalability of the Rodinia benchmark suite for the small input size
applications on hydra with 5 repetitions.

The obtained kernel running times for the parallel scalability of the Rodinia benchmark
suite with a small input size are shown in Figure 3.13. We see that most of the applications
scale well, e.g., b+tree, heartwall, lavaMD. In comparison, nn does not scale well for

44

3.3. Parallel Scalability

our defined input size (even though we set the environment variable OMP_NUM_THREADS
accordingly to the number of cores). Looking at the usage of different compilers, we
notice runtime differences. Still, the scaling behavior is similar for the compilers. As
an example, we look at kmeans and observe the same scaling behavior for gcc, icc,
and clang: the kernel time decreases using more cores until we reach 8 or 16 cores,
afterwards the kernel time increases again.

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

b+tree

1 2 4 8 16 32

cores

backprop

1 2 4 8 16 32

cores

bfs

1 2 4 8 16 32

cores

heartwall

1 2 4 8 16 32

cores

hotspot

1 2 4 8 16 32

cores

hotspot3d

1 2 4 8 16 32

cores

kmeans

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

lavaMD

1 2 4 8 16 32

cores

leukocyte

1 2 4 8 16 32

cores

lud

1 2 4 8 16 32

cores

myocyte

1 2 4 8 16 32

cores

nn

1 2 4 8 16 32

cores

nw

1 2 4 8 16 32

cores

particlefilter

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

pathfinder

1 2 4 8 16 32

cores

srad

1 2 4 8 16 32

cores

streamcluster

Parallel Efficiency of Rodinia small benchmarks

threshold

gcc

icc

clang

Figure 3.14: Parallel efficiency of the small sized Rodinia benchmark suite. The green
area marks acceptable efficiencies over 60%, while the red area marks too low values.

The parallel efficiency of the Rodinia benchmarks with a small input size is plotted
in Figure 3.14. For each compiler separately, we calculate the parallel efficiency. This
means that the parallel efficiencies are relative to their corresponding compiler. We mark
an acceptable threshold for the parallel efficiency as 60%. Since the optimal parallel
efficiency would be one for any number of cores, we notice some benchmarks that scale
well: b+tree, heartwall, and lavaMD. Regarding well scaling applications, we would
assume that they are compute-bound, since memory-bound applications often point out
memory limitations. Interestingly, not all well scaling applications are compute-bound,
e.g., b+tree is a memory-bound application. Still, these three well-scaling applications
are a minority considering a total of 18 applications. Nonetheless, this observation
shows that it is often reasonable to run an application with less cores instead of fully
parallelizing it.

Next, we look at the medium input size of the Rodinia benchmarks and capture the
scaled kernel times in Figure 3.15, and the parallel efficiencies of the benchmarks in
Figure 3.16. As mentioned earlier, we do not define nw for the medium input size, which
is why nw is missing from the plots for the medium size.

The conclusions we draw from both the parallel scalability and parallel efficiency for the
medium input instances are almost equal: some applications scale fairly well and therefore

45

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

1 2 4 8 16 32

cores

0

10

20

ti
m
e
in

se
c

b+tree

1 2 4 8 16 32

cores

0

10

backprop

1 2 4 8 16 32

cores

0

2

bfs

1 2 4 8 16 32

cores

0

25

50

heartwall

1 2 4 8 16 32

cores

0

50

hotspot

1 2 4 8 16 32

cores

0

20

40

ti
m
e
in

se
c

hotspot3d

1 2 4 8 16 32

cores

0

20

40

kmeans

1 2 4 8 16 32

cores

0

20

40

lavaMD

1 2 4 8 16 32

cores

0

20

40

leukocyte

1 2 4 8 16 32

cores

0

25

50

lud

1 2 4 8 16 32

cores

0

20

40

ti
m
e
in

se
c

myocyte

1 2 4 8 16 32

cores

0

20

40

nn

1 2 4 8 16 32

cores

0

2

4

particlefilter

1 2 4 8 16 32

cores

0.0

2.5

5.0

pathfinder

1 2 4 8 16 32

cores

0

20

40

srad

1 2 4 8 16 32

cores

0

20

40

ti
m
e
in

se
c

streamcluster

Parallel Runtime of Rodinia medium benchmarks

gcc

icc

clang

Figure 3.15: Parallel scalability of the medium sized Rodinia benchmarks (5 repetitions).

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

b+tree

1 2 4 8 16 32

cores

backprop

1 2 4 8 16 32

cores

bfs

1 2 4 8 16 32

cores

heartwall

1 2 4 8 16 32

cores

hotspot

1 2 4 8 16 32

cores

hotspot3d

1 2 4 8 16 32

cores

kmeans

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

lavaMD

1 2 4 8 16 32

cores

leukocyte

1 2 4 8 16 32

cores

lud

1 2 4 8 16 32

cores

myocyte

1 2 4 8 16 32

cores

nn

1 2 4 8 16 32

cores

particlefilter

1 2 4 8 16 32

cores

pathfinder

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

srad

1 2 4 8 16 32

cores

streamcluster

Parallel Efficiency of Rodinia medium benchmarks

threshold

gcc

icc

clang

Figure 3.16: Parallel efficiency of the medium sized Rodinia benchmarks. The green area
marks acceptable efficiencies over 60%, while the red area marks too low values.

46

3.3. Parallel Scalability

have an acceptable parallel efficiency for any number of cores, but this statement does not
hold for all benchmarks. Using different compilers leads to different measured times, but
the compiler does not change the scaling behavior, nor the universal runtime behavior of
an application.

3.3.2 Scalability of SPEC OMP2012 Benchmarks
We are also interested in the parallel scalability of the SPEC OMP2012 benchmarks. In
comparison to the Rodinia experiments, we choose gcc as our default compiler since the
compiler does not affect the behavior of applications in general.

1 2 4 8 16 32

cores

0

2

ti
m
e
in

se
c

bwaves

1 2 4 8 16 32

cores

0

2

nab

1 2 4 8 16 32

cores

0

50

bt331

1 2 4 8 16 32

cores

0.0

0.5

botsalgn

1 2 4 8 16 32

cores

0.0

0.2
botsspar

1 2 4 8 16 32

cores

0

100

ti
m
e
in

se
c

ilbdc

1 2 4 8 16 32

cores

0.00

0.02

fma3d

1 2 4 8 16 32

cores

0.0

0.1

swim

1 2 4 8 16 32

cores

0.00

0.02

imagick

1 2 4 8 16 32

cores

0.00

0.25

mgrid331

1 2 4 8 16 32

cores

0

20

ti
m
e
in

se
c

applu331

1 2 4 8 16 32

cores

0

5

smithwa

1 2 4 8 16 32

cores

0

5

kdtree

Parallel Runtime of SPEC OMP2012 test benchmarks

Figure 3.17: Parallel scalability of the SPEC OMP2012 benchmark suite for the test
input size with 5 repetitions.

Figures 3.17 and 3.18 show the parallel scaling behaviors and parallel efficiencies of the
SPEC OMP2012 benchmarks for the test input size. It seems like almost all apps scale
well, with an exception of fma3d and imagick. But the execution time of these two
applications is also very small, which makes time differences seem relatively large, even
though there is only a small absolute difference.

Therefore, it is necessary to take a look at a bigger input size, like the train input size, to
avoid artifacts. We see the results in Figures 3.19 and 3.20. As we can see for the parallel
scalability of the train size, the execution time for fma3d and imagick does not lead
to such artifacts as in Figure 3.17. Further, all benchmarks seem to scale fairly well.

Regarding the parallel efficiency of the train input size, shown in Figure 3.20, we see
that several applications, e.g., bwaves, bt331, ilbdc, smithwa, kdtree, have an

47

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

bwaves

1 2 4 8 16 32

cores

nab

1 2 4 8 16 32

cores

bt331

1 2 4 8 16 32

cores

botsalgn

1 2 4 8 16 32

cores

botsspar

1 2 4 8 16 32

cores

ilbdc

1 2 4 8 16 32

cores

fma3d

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

swim

1 2 4 8 16 32

cores

imagick

1 2 4 8 16 32

cores

mgrid331

1 2 4 8 16 32

cores

applu331

1 2 4 8 16 32

cores

smithwa

1 2 4 8 16 32

cores

kdtree

Parallel Efficiency of SPEC OMP2012 test benchmarks

threshold

gcc

Figure 3.18: Parallel efficiency of the SPEC OMP2012 benchmark suite for the test input
size. The green area marks acceptable efficiencies over 60%, while the red area marks too
low values.

1 2 4 8 16 32

cores

0

20

ti
m
e
in

se
c

bwaves

1 2 4 8 16 32

cores

0

200

nab

1 2 4 8 16 32

cores

0

200

bt331

1 2 4 8 16 32

cores

0

10

botsalgn

1 2 4 8 16 32

cores

0

1

botsspar

1 2 4 8 16 32

cores

0

200

ti
m
e
in

se
c

ilbdc

1 2 4 8 16 32

cores

0

50

fma3d

1 2 4 8 16 32

cores

0

20

swim

1 2 4 8 16 32

cores

0

100

imagick

1 2 4 8 16 32

cores

0

2

mgrid331

1 2 4 8 16 32

cores

0

25

ti
m
e
in

se
c

applu331

1 2 4 8 16 32

cores

0

20

smithwa

1 2 4 8 16 32

cores

0

100

kdtree

Parallel Runtime of SPEC OMP2012 train benchmarks

Figure 3.19: Parallel scalability of the SPEC OMP2012 benchmark suite for the train
input size with 5 repetitions.

acceptable parallel efficiency for all cores or are closely there. Still, other benchmarks, like
imagick or fma3d, do not have such a good parallel efficiency, and these applications
benefit from co-scheduling.

By exploring the Rodinia and SPEC OMP2012 benchmarks, we notice that applications
often do not perfectly scale, which makes it unreasonable to execute them in a fully
parallel mode using all available cores of a machine. This means that we can benefit
from co-scheduling regarding the parallel scalability.

48

3.4. Performance Potential of Co-Scheduling

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

bwaves

1 2 4 8 16 32

cores

nab

1 2 4 8 16 32

cores

bt331

1 2 4 8 16 32

cores

botsalgn

1 2 4 8 16 32

cores

botsspar

1 2 4 8 16 32

cores

ilbdc

1 2 4 8 16 32

cores

fma3d

1 2 4 8 16 32

cores

0.0

0.5

1.0

p
ar
al
le
l
effi

ci
en
cy

swim

1 2 4 8 16 32

cores

imagick

1 2 4 8 16 32

cores

mgrid331

1 2 4 8 16 32

cores

applu331

1 2 4 8 16 32

cores

smithwa

1 2 4 8 16 32

cores

kdtree

Parallel Efficiency of SPEC OMP2012 test benchmarks

threshold

gcc

Figure 3.20: Parallel efficiency of the SPEC OMP2012 benchmark suite for the train
input size. The green area marks acceptable efficiencies over 60%, while the red area
marks too low values.

3.4 Performance Potential of Co-Scheduling
Next, we are interested in a possible potential of co-scheduling. Executing many appli-
cations with an execution strategy implies creating or having a schedule. To see the
potential of co-scheduling, we create three schedules with the goal to minimize the overall
makespan. We call these three schedules Sequential, Parallel, and Optimization Potential.

The SEQUENTIAL schedule assigns one core to each program. We use hydra with
32 cores. If there are at most 32 applications, then the applications will be executed
concurrently using a single core each. Having more than 32 applications means that some
programs will be assigned to the same core and executed one after another.

The PARALLEL schedule executes each program with the full number of cores, 32 on
hydra. Thus, only one program runs concurrently scheduled on all cores.

For the OPTIMIZATION POTENTIAL, we implement an integer linear program. The
assumption is that we have measured the runtime of each application for each number
of used cores. There are two versions of the integer program: one only returns which
job should be placed on which core/machine and how many cores should be used for the
parallelization (the basic integer program), the other integer program is more sophisticated
and additionally returns a concrete order, i.e., the starting times of each job. We limit
the integer program to a time limit of 600 seconds. Since the more sophisticated program
does not always find a solution in this time limit for big input sizes, i.e., many programs,
we also use the basic IP without a concrete order. To create a concrete schedule from the
basic IP, we try to find a good schedule with the smallest possible makespan by testing
different orderings of jobs.

3.4.1 Definition of the Integer Programs
We assume that we know the running times for k ∈ {1, 2, 4, 8, 16, 32} cores of our n jobs,
which will be scheduled on m machines or cores.

49

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

Basic Integer Program (BIP) that does not return a Specific Job Order

Table 3.7 presents a description of the variables used for the basic IP. The constraints of
the minimization problem are shown in Equation 3.1.

Table 3.7: Basic Integer Program (BIP) variables.

Variable Type Description
i Integer Represents the number of jobs.
j Integer Represents the total number of machines/cores.
k Integer Represents the number of cores with known runtimes.
Cmax Continuous Represents the makespan of the schedule.
jobNprocsi,k Binary Does job i use k cores? E.g., jobNprocs1,4 = 1 means

that job 1 uses 4 cores.
jobMachNprocsi,j,k Binary Is job i scheduled on machine/core j with k cores?

E.g., jobMachNprocs1,4,2 = 1 means that job 1 is as-
signed to core 4 and will be executed with 2 cores in
total. This also means that there has to be another as-
signment jobMachNprocs1,x,2 representing the other
core x assigned to job 1.

timeEsti,k Continuous Estimated Time for job i using k cores.

Minimize Makespan Cmax

Subject to: Each job uses either 1, 2, 4, 8, 16, or 32 cores:

k

jobNprocsi,k = 1, ∀i

A job using x cores has to be assigned to x machines/cores:

j

jobMachNprocsi,j,k = jobNprocsi,k × k, ∀i ∀k

If a job is assigned to a machine with k cores, the estimated
running time of that job with k cores has to be smaller or
equal to the makespan:

i,k

jobMachNprocsi,j,k × timeEsti,k ≤ Cmax, ∀j

Binary variables:
jobNprocsi,k ∈ {0, 1}, jobMachNprocsi,j,k ∈ {0, 1}

Possible values for i, j, k :
i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m}, k ∈ {1, 2, 4, 8, 16, 32}

(3.1)

50

3.4. Performance Potential of Co-Scheduling

This basic integer program returns the assignments jobNprocsi,k and jobMachNprocsi,j,k,
which means that we know how many cores a job should use and on which cores it should
be executed. From these two variables, we cannot derive an ordering of jobs inside one
machine/core. Therefore, we test six different orderings of the jobs and take the one with
the smallest overall makespan. The six orderings are: the original order, the reversed
order, a sorted order according to the number of used cores and this sorted order reversed,
an order, where the jobs are sorted according to their assumed running time and this
order reversed. Since the integer program also returns a value for the makespan, we can
compare the IP’s makespan with the makespan of the different orders. In our experiments,
these six orders always find a very similar makespan to the IP’s minimized makespan.

Advanced Integer Program (AIP) that returns a Specific Job Order

The advanced integer program solves the issue of the ordering of jobs. Thus, we need
more variables, which leads to more constraints in the integer program. Therefore, this
integer program cannot solve larger instances in a small time period. Table 3.8 shows the
used variables of the integer program, where we already notice three relevant variables
for this method: the starting time of a job jobStimei, the end time of a job jobCtimei,
and an ordering of two jobs jobBefJobi1,i2,j . Equation 3.2 shows the constraints used for
this advanced integer program.

Table 3.8: Advanced Integer Program (AIP) variables.

Variable Type Description
i Integer Represents the number of jobs.
j Integer Represents the total number of machines/cores.
k Integer Represents the number of cores with known runtimes.
Cmax Continuous Represents the makespan of the schedule.
jobNproci,k Binary Does job i use k cores? E.g., jobNprocs1,4 = 1 means

that job 1 uses 4 cores.
jobMachi,j Binary Is job i assigned to machine/core j? E.g.,

jobMach1,4 = 1 means that job 1 is assigned to ma-
chine/core number 4.

jobStimei Continuous Start time of job i.
jobCtimei Continuous End time of job i.
timeEsti,k Continuous Estimated Time for job i using k cores.
jobBefJobi1,i2,j Binary Is job i1 executed before job i2 on machine/core j?

E.g., jobBefJob1,9,4 = 1 means that job 1 is executed
before job 9 on machine/core number 4.

seqTimei Continuous Sequential running time of job i, i.e., using 1 core.

51

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

Minimize Makespan Cmax

Subject to: Each job is executed with either 1, 2, 4, 8, 16, or 32 cores:

k

jobNproci,k = 1, ∀i

The assignments of jobs to machines/cores has to correspond
to the number of used cores k of job i :

j

jobMachi,j =
k

k × jobNproci,k, ∀i

The end time of a job corresponds to the starting time plus
the time estimation for the used number of cores:
jobStimei +

k

jobNproci,k × timeEsti,k = jobCtimei, ∀i

All jobs must not end after the makespan:
jobCtimei ≤ Cmax, ∀i

One and the same job cannot be ordered with itself:
jobBefJobi1,i2,j = 0, ∀i1 ∈ i ∀i2 ∈ i ∀j, if i1 = i2

If two jobs are executed on the same machine, one job will be
executed before the other one:
jobBefJobi1,i2,j + jobBefJobi2,i1,j ≥ jobMachi1,j + jobMachi2,j − 1,

∀i1 ∈ i ∀i2 ∈ i ∀j, if i1 = i2

Only one of two jobs can be executed before the other one:
jobBefJobi1,i2,j + jobBefJobi2,i1,j ≤ 1, ∀i1 ∈ i ∀i2 ∈ i ∀j,

if i1 = i2

The ending time of a previously executed job must not be later
than the start time of a following job:
jobCtimei1 ≤ jobStimei2 +

i

seqTimei−

jobBefJobi1,i2,j ×
i

seqTimei, ∀i1 ∈ i ∀i2 ∈ i ∀j, if i1 = i2

Binary variables:
jobMachi,j ∈ {0, 1}, jobNproci,k ∈ {0, 1}, jobBefJobi1,i2,j ∈ {0, 1}
Continuous variables:
jobStimei ∈ R, jobCtimei ∈ R
Possible values for i, j, k :
i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m}, k ∈ {1, 2, 4, 8, 16, 32}

(3.2)

52

3.4. Performance Potential of Co-Scheduling

This AIP also returns the assignments jobNproci,k and jobMachi,j , i.e., how many cores
a job should use and on which cores the job will be executed. But in comparison
to the basic integer program, there are additional variables jobStimei, jobCtimei, and
jobBefJobi1,i2,j that return ordering information. In our schedule implementation, we use
the jobBefJobi1,i2,j variable as information about the ordering to create the schedule.

3.4.2 Evaluating the Optimization Potential of Co-Scheduling
We implement the sequential, parallel, and optimization potential strategies and submit
the created schedules to our execution framework, which then executes these schedules
on a hydra compute node. Since our execution framework is written in Python, we show
a possible, but still easily understandable way to represent schedules using Python: the
schedule is a dictionary with keys and values. A key corresponds to one core of a hydra
compute node, and the value to the job assignments of that core. Since our execution
framework only executes jobs if all requested resources are available, we only submit
the order of jobs on a core. This means that the value to one key in the dictionary
corresponds to a list of job IDs, and the list from left to right determines the job ordering.
As an example of this schedule structure, we assume a compute node with four cores and
five jobs, and present the parallel schedule in Listing 3.5.

Listing 3.5: Parallel schedule dictionary of a four-core machine with five jobs.
schedule = {

'0': [1,2,3,4,5], # core 0
'1': [1,2,3,4,5], # core 1
'2': [1,2,3,4,5], # core 2
'3': [1,2,3,4,5] # core 3

}

For the optimization potential, we implement the basic and advanced integer program,
such that our execution framework can execute the resulting schedule. We create these
four schedules SEQ, PAR, BIP, and AIP for multiple collections of jobs and execute each
schedule for each application group three times on hydra, to get an average value for
the makespan. These collections of jobs are either benchmarks from one benchmark
suite with a specific input size, or a combination thereof. As a small summary of these
experiments, Table 3.9 presents the mean overall makespans achieved with schedules
created from the sequential, parallel, or the linear program strategies on hydra.

The advanced integer program does not return any schedule for both input sizes of SPEC
OMP2012, and the combination of the Rodinia and SPEC OMP2012 applications within
the given time limit of 600 seconds. We notice this in Table 3.9, where no average
time is shown in the rows of Rodinia and SPEC OMP2012 and SPEC OMP2012 - Test
and Train.

We see that sometimes a simple scheduling strategy like SEQ may suffice, as for small
input sizes, i.e., schedules created for a small number of applications. But having several
applications to be co-scheduled, there is a great optimization potential, e.g., for Rodinia

53

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

Table 3.9: Overview of the schedule comparison mean makespan results (3 repetitions).

Applications Used From SEQ PAR BIP AIP
Rodinia and SPEC OMP2012 419.96 s 511.64 s 123.78 s timeout
Rodinia - Small and Medium 52.40 s 350.17 s 52.58 s 53.80 s
Rodinia - Medium 53.31 s 278.80 s 52.31 s 54.92 s
Rodinia - Small 11.70 s 71.05 s 13.15 s 12.28 s
SPEC OMP2012 - Test and Train 380.80 s 159.06 s 80.51 s timeout
SPEC OMP2012 - Test 113.27 s 48.89 s 16.19 s 14.83 s
SPEC OMP2012 - Train 373.09 s 113.12 s 72.62 s 111.40 s

and SPEC OMP2012 we could achieve a more than three times faster makespan with
co-scheduling compared to executing each application sequentially.

For a better visualization of the possible optimization potential, we plot the expected and
computed schedules of the three strategies SEQUENTIAL, PARALLEL, and OPTIMIZATION
POTENTIAL. The computed executed schedule in the plots is the execution with the
smallest makespan out of our three measurements.

Figure 3.21 shows expected and real schedules for all Rodinia benchmarks, i.e., both
the small and medium input sized applications. For the optimization potential, we
use the advanced integer program, which returns an order for the schedule. We see
the visualization of the strategies themselves: using the SEQUENTIAL strategy, each
application is run in sequential mode, i.e., on one core out of the 32 cores on hydra. In
comparison, the PARALLEL schedule executes each application on all available cores and
creates a serial schedule, one application after the other one. For the OPTIMIZATION
POTENTIAL, we do not recognize a pattern, because it is not a basic strategy.

The expected schedules of 31 Rodinia benchmarks is plotted in the first row of the plot in
Figure 3.21, the real execution is plotted in the second row. We see that the schedule on
hydra corresponds to our created schedule, but sometimes the time assumptions do not
fit perfectly. The left column presents the schedule using the SEQUENTIAL scheduling,
and we notice that each benchmark is assigned to one core and therefore executed in a
serial mode, but concurrently with the other applications. This SEQUENTIAL execution
leads to a makespan of 52.40 seconds. In the middle, we see the PARALLEL strategy, where
each benchmark is executed on all 32 cores of a hydra compute node. This strategy leads
to a high expected and real makespan, the execution on hydra leads to 350.17 seconds.
Thus, this PARALLEL execution is about seven times slower than the SEQUENTIAL
strategy. Taking a look at the OPTIMIZATION POTENTIAL using the AIP on the right,
we do not see any logic behind the job-to-core assignments. Our integer program leads
to a makespan of 52.58 seconds. We see that there is an optimization potential for
co-scheduling, since the PARALLEL execution leads to an insufficient execution, meaning
that the PARALLEL strategy is insufficient for the creation of a schedule.

54

3.4. Performance Potential of Co-Scheduling

0 10 20 30 40 50

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

C
o
re
s

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Expected SEQUENTIAL

0 50 100 150 200 250 300

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

Expected PARALLEL

0 10 20 30 40 50

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

26

31

25

27

18

24

5

21

28

27

13

30 1

3 26

11 16

17 10

30

8

19

24

15 29

9 12

10

20 2

21

22

27

27

23

20

7 14

4

6

Expected OPTIMIZATION POTENTIAL

0 10 20 30 40 50

Running Time [s]

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

C
o
re
s

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Real SEQUENTIAL

0 50 100 150 200 250 300

Running Time [s]

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

17 18 21 22 27 28 29

Real PARALLEL

0 10 20 30 40 50

Running Time [s]

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

26

31

25

27

18

24

5

21

28

27

13

30 1

3 26

11 16

17 10

30

8

19

24

15 29

9 12

10

20 2

21

22

27

27

23

20

7 14

4

6

Real OPTIMIZATION POTENTIAL

Rodinia - Small and Medium

1 btree-small

2 bfs-small

3 heartwall-small

4 hotspot-small

5 hotspot3d-small

6 kmeans-small

7 lavaMD-small

8 leukocyte-small

9 lud-small

10 myocyte-small

11 nn-small

12 nw-small

13 particlefilter-small

14 pathfinder-small

15 srad-small

16 streamcluster-small

17 btree-medium

18 bfs-medium

19 heartwall-medium

20 hotspot-medium

21 hotspot3d-medium

22 kmeans-medium

23 lavaMD-medium

24 leukocyte-medium

25 lud-medium

26 myocyte-medium

27 nn-medium

28 particlefilter-medium

29 pathfinder-medium

30 srad-medium

31 streamcluster-medium

Figure 3.21: Scheduling approach comparison for applications of the Rodinia suite with
a small and medium input size using the AIP (top: schedule computed by the integer
program; bottom: actual schedule obtained by executing the schedule on real hardware,
i.e., a hydra node).

55

3. Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential

Comparing the SEQUENTIAL and OPTIMIZATION POTENTIAL, the makespan is very
similar, and for the execution of these 31 Rodinia benchmarks we can even say that a
basic sequential allocation strategy suffices.

We also take a look at the scheduling strategy comparison using 57 Rodinia and SPEC
OMP2012 benchmarks in Figure 3.22. For the optimization potential, we use the BIP,
since the AIP does not find a solution in the given time limit.

Figure 3.22 shows the expected schedules in the first row, and the real execution in the
second row of the plot. Taking a look at the left column, the SEQUENTIAL strategy,
we now see that each application is executed on a single core. Since this is a basic
scheduling approach, we do not look at how long an application takes and do not make
a scheduling decision based on such observations. Therefore, we take the jobs in their
order. There are three jobs which have a very long sequential running time: job 46
(nab with the train size), job 47 (bt331 with the train size), and job 50 (ilbdc with
the train size). These long sequential executions lead to the big makespan of 419.96
seconds. Executing all applications in a PARALLEL mode also leads to a big makespan
of 511.64 seconds. Comparing these observations to the schedules created for the Rodinia
benchmarks in Figure 3.21, we notice that the runtime behavior of the applications
determines whether a basic co-scheduling is sufficient or not. For the combination of
Rodinia and SPEC OMP2012 benchmarks, these basic approaches are insufficient. A
clever scheduling approach, as shown by our OPTIMIZATION POTENTIAL, can improve
the makespan significantly. Our integer program results in a makespan of 123.78 seconds,
which means that this advanced co-scheduling improves the makespan by almost a factor
of five.

We summarize our main observations:

1. The arithmetic intensity itself does not imply resource sharing conflicts of an
application with itself.

2. Even though the kernel time differs for different compilers, neither the runtime
behavior, nor the parallel scalability change by using another compiler.

3. Applications do not have a perfect scalability, i.e., it is possible to find an optimal
number of cores to be used and it is reasonable to choose less cores than all available
cores for a parallel execution.

4. An advanced scheduling algorithm leads to an overall better makespan compared
to basic scheduling strategies, like a sequential or parallel schedule.

56

3.4. Performance Potential of Co-Scheduling

0 100 200 300 400

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

C
o
re
s

31

30

29

28

27

26

25 57

24 56

23 55

22

21 53

20 52

19 51

18 50

17

48

47

46

45

42

37

34

Expected SEQUENTIAL

0 100 200 300 400

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

Expected PARALLEL

0 20 40 60 80 100

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

22 57

50

18 25 13

50

20 14

47

47 42

56 48 2 11 9

27

17 57 7

47

34

46 54

26 52 6

46 8 10

53 5 43

50

37 12 33

37

30 16 1

31 25

24 10

47 44 3

46

28 57

51 57

50

21 45 4

53 15

46

23 29

19 55 7

Expected OPTIMIZATION POTENTIAL

0 100 200 300 400

Running Time [s]

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

C
o
re
s

31

30

29

28

27

26

25 57

24 56

23 55

22

21 53

20 52

19 51

18 50

17

48

47

46

45

42

37

34

Real SEQUENTIAL

0 100 200 300 400

Running Time [s]

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

17 18 21 22 27 28 29 50

Real PARALLEL

0 20 40 60 80 100

Running Time [s]

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

22 57

50

18 25 13

50

20 14

47 49

47 42

56 48 2 11 9

27

17 57 7

47

34

46 54

26 52 6

46 8 10

53 5 43

50

37 12 33

37

30 16 1

31 25

24 10

47 44 3

46

28 57

51 57

50

21 45 4

53 15

46

23 29

19 55 7

Real OPTIMIZATION POTENTIAL

Rodinia and SPEC OMP2012

1 btree-small

2 bfs-small

3 heartwall-small

4 hotspot-small

5 hotspot3d-small

6 kmeans-small

7 lavaMD-small

8 leukocyte-small

9 lud-small

10 myocyte-small

11 nn-small

12 nw-small

13 particlefilter-small

14 pathfinder-small

15 srad-small

16 streamcluster-small

17 btree-medium

18 bfs-medium

19 heartwall-medium

20 hotspot-medium

21 hotspot3d-medium

22 kmeans-medium

23 lavaMD-medium

24 leukocyte-medium

25 lud-medium

26 myocyte-medium

27 nn-medium

28 particlefilter-medium

29 pathfinder-medium

30 srad-medium

31 streamcluster-medium

32 bwaves-test

33 nab-test

34 bt331-test

35 botsalgn-test

36 botsspar-test

37 ilbdc-test

38 fma3d-test

39 swim-test

40 imagick-test

41 mgrid331-test

42 applu331-test

43 smithwa-test

44 kdtree-test

45 bwaves-train

46 nab-train

47 bt331-train

48 botsalgn-train

49 botsspar-train

50 ilbdc-train

51 fma3d-train

52 swim-train

53 imagick-train

54 mgrid331-train

55 applu331-train

56 smithwa-train

57 kdtree-train

Figure 3.22: Scheduling approach comparison for applications of both the Rodinia and
SPEC OMP2012 suite for all provided input sizes using the BIP (top: schedule computed
by the integer program; bottom: actual schedule obtained by executing the schedule on
real hardware, i.e., a hydra node).

57

CHAPTER 4
Characterizing Co-Scheduled
Applications With Hardware

Performance Counters

This chapter is led by the following motivation questions:

• How can we efficiently co-schedule two applications on one multicore machine?
How can we share resources on a multicore machine?

• Are the running times affected if we schedule two applications on two distinct
sockets or NUMA domains of the multicore machine?
How do two applications interfere with each other if we schedule them on the same
socket or on the same NUMA domain?

We start by creating configurations or strategies to co-schedule two applications. There
are different possibilities to co-schedule two applications on the two sockets with 32 cores
in total on hydra. The main goal is to discover how we can co-schedule two applications
on these available resources and which configurations do or do not lead to increased
kernel times with co-scheduling. If we see increased co-scheduled kernel times, we imply
some resource sharing conflicts. We are interested to explore such cases.

Then, we will see a problem occurring with measuring kernel times of co-scheduled
applications: kernel sections of two independent programs do not start and stop at
the same time, which makes it difficult to measure only the time needed in the kernel
section. After presenting and discussing the problem, we propose a solution: a library
for synchronizing programs.

Using this synchronization method for the kernel section of two programs, we measure
the influence of co-scheduling with the different configurations for co-scheduling two

59

4. Characterizing Co-Scheduled Applications With HW Performance Counters

applications. This demonstrates which configuration of concurrent executions of two
applications may lead to resource sharing conflicts.

4.1 Configurations for Measuring the Influence of
Co-Scheduling

At first, we define possible co-scheduling strategies that can be used to explore runtime
behaviors of co-scheduled applications. To find out whether there are conflicts or not, we
co-schedule two applications A and B. We measure the dedicated kernel time of A and
the kernel time of A while B is executed concurrently with A, namely the co-scheduled
time of A.

As we have already seen in Figure 2.3, hydra has two sockets with 16 cores on each
socket. With this prerequisite, we define three configurations for measuring the influence
of co-scheduling:

• Sharing a compute node by assigning the separate sockets to the applications.

• Sharing one socket by assigning half the cores to each application.

• Sharing both sockets by giving each application the same number of cores on
each socket.

These strategies are depicted in Figures 4.1 – 4.3.

Executing Program Dedicated on Socket 1 Executing Programs and on Different Sockets

Figure 4.1: Visualization of the Different Sockets strategy.

As we see in Figure 4.1, sharing a compute node for co-scheduling means assigning
different sockets to each application. Each application is assigned to a socket, and

60

4.1. Configurations for Measuring the Influence of Co-Scheduling

Executing Program on Half Socket 1 Dedicated Executing Programs and on Same Socket

Figure 4.2: Visualization of the Compact Socket 1 strategy.

therefore to a NUMA domain. Our hypothesis is that the co-scheduled time of A with B
does not differ greatly from the dedicated time of A.

If two programs share a socket, share a NUMA domain, as shown in Figure 4.2, we
call this a compact thread mapping. Sharing a NUMA domain means sharing compute
resources of this one socket, which could lead to time penalties. Therefore, our hypothesis
is that there are differences between a dedicated and co-scheduled execution of A using
this compact scheduling strategy.

Executing Program on Both Sockets as Executing Programs and on Both Sockets as

Figure 4.3: Visualization of the Scatter Socket 1+2 strategy.

The last configuration is shown in Figure 4.3. We see two applications sharing both
sockets when being co-scheduled. Since we use cores of all sockets, in our case two
sockets, this strategy behaves like a scatter thread mapping. This case is interesting

61

4. Characterizing Co-Scheduled Applications With HW Performance Counters

to observe since already the dedicated execution of A should have some overhead due
to the communication between the two sockets. For the co-scheduling we assume time
differences between the dedicated and co-scheduled execution of A, as already for the
compact strategy, since both applications share the same resources, now on both sockets.

4.2 The Problem of Measuring Co-scheduled Applications
In the previous section, we discussed measuring the dedicated kernel time of A and the
kernel time of A while being co-scheduled with B. This sentence already triggers the
problem of measuring co-scheduled applications:

• How can we measure the kernel time of A while A is being co-scheduled with B?
• How can we co-schedule the kernel sections of A and B?

The problem is depicted in Figure 4.4 as No Sync. We see that the kernel sections of two
concurrently executed applications might not start and end at the same time. Therefore,
while one kernel section already starts, the other application might do some pre- or
postprocessing concurrently. This behavior is problematic, since the time needed for
preprocessing or postprocessing steps often fluctuates. As a result, the measured kernel
time results are not deterministic and often depend on external factors that have nothing
to do with the parallel computing part. As we can see, it is problematic to measure
the kernel time of two concurrently executed applications, and further not possible to
measure the co-scheduled time of kernel sections without changing the source code of
the applications.

Figure 4.4: Synchronization possibilities of two programs A and B. The kernel section is
the area of interest.

62

4.2. The Problem of Measuring Co-scheduled Applications

4.2.1 Synchronization of Programs as the Solution
Therefore, we need a mechanism for synchronizing co-located applications, before they
enter their kernel section. As a solution, we propose a synchronizer sync, a static C and
C++ library that synchronizes a defined number of programs.

Figure 4.4 visualizes the synchronization as the solution. In this example, we have
two applications that are co-located. We assume that each program has some kind of
preprocessing (e.g., reading in a file, allocating memory, etc.), a kernel section, and a
postprocessing part (e.g., writing results to an output file, deallocating memory, etc.).

Without synchronization (No Sync), the two programs are run the way they are. As we
can see, the preprocessing time of these two applications varies, which leads to one kernel
section already starting while the other application still does its preprocessing. Therefore,
we can call the synchronizer after the preprocessing by adding the call do_sync after each
program’s preprocessing part (sync 1). Then, both kernel sections start concurrently
and if both kernel sections take equally long, we can guarantee a non-distortion of
co-scheduled kernel section measurements. But it is still possible and very likely that
two kernel sections are not identical and therefore have different running/kernel times,
whereas we need a second synchronization call do_sync of both programs after their
kernel section (sync 2). With these two synchronization calls for applications with a
preprocessing, kernel section, and postprocessing part, we can assure non-distortion of
measurements regarding the kernel section.

The synchronization library (published on GitLab1) can synchronize as many applications
as needed. An environment variable NUM_SYNC_PROGRAMS is responsible for commu-
nicating the number of applications to be synchronized and therefore needs to be set
correspondingly, as shown in Listing 4.1.

Listing 4.1: Setting the environment variable NUM_SYNC_PROGRAMS.
synchronize 2 programs
NOTICE: number written in quotes
export NUM_SYNC_PROGRAMS="2"

Each application participating in the synchronization process needs to call the functions
for initializing the synchronizer, doing the synchronization, and cleaning up the synchro-
nizer: init_sync(), do_sync(), and cleanup_sync(). The synchronization call
do_sync() can be written at any program point where a synchronization should happen.
A program can contain several do_sync() calls. Internally, we use semaphores that
allow implicit waiting until all participating programs reach their synchronization point.

Overhead of the Synchronization Library

An important question is if the usage of the synchronizer creates an overhead. The
assumption is that there is almost no noticeable overhead in the runtime, as the sync

1https://gitlab.com/bsarkoez/program-synchronizer

63

4. Characterizing Co-Scheduled Applications With HW Performance Counters

libarary is a very lightweight library. To analyze the overhead, we compare the median
kernel times of sequentially executing the Rodinia benchmarks on one core. We only
synchronize this one application with itself, i.e., wrapping synchronizer code around
the kernel section (init_sync(), do_sync(), cleanup_sync()), and setting the
environment variable for the number of programs as NUM_SYNC_PROGRAMS="1". Then,
we compare the kernel time without synchronizing code and the time for the kernel
section wrapped with synchronizer elements around it.

b+tree

backprop

bfs
heartwall

hotspot

hotspot3d

kmeans

lavaMD

leukocyte

lud
myocyte

nn nw particlefilter

pathfinder

srad
streamcluster

benchmark

1

2

4

8

ti
m
e
in

se
c

Overhead of Using Sync

case

original

sync 2

Figure 4.5: Overhead of using synchronization for the small Rodinia benchmarks.

Figure 4.5 shows the difference of these two differently measured times, and we notice no
obvious time difference in the plot. In fact, there is a small time difference of approximately
0.2 ms, which is minimal and supports the hypothesis of an imperceptible overhead.

Relevance of Synchronizing Kernel Sections

Furthermore, we want to show the relevance of using a synchronizer for synchronizing
the kernel sections of concurrently executed applications. For this, we need to compare
the concurrent kernel time of applications without synchronization with the co-scheduled
kernel time of synchronized applications. It does not matter which synchronization
method (no sync, sync 1, sync 2) yields the smallest running time. To show the
relevance of using sync for concurrent executions, it is sufficient to show that there are
time differences between running the programs with and without synchronization.

We take the first memory- and compute-bound benchmarks from the Rodinia benchmark
suite ranked in Table 3.3: backprop and myocyte. Then, we use these two applications,
backprop and myocyte, as our program A, while all other programs of the benchmark
suite represent program B, and we co-schedule A with B as shown in Figures 4.1 – 4.3.
This means, we co-schedule A and B, where both programs use a whole socket, share a
socket with a compact mapping, or share both sockets using a scatter mapping. Each of
these co-scheduling configurations is executed without synchronization of A and B (no
sync), with synchronization before the kernel sections of A and B (sync 1), and with
synchronization before and after their kernel sections (sync 2).

64

4.2. The Problem of Measuring Co-scheduled Applications

The compact mapping leads to similar results as using a whole socket. Therefore, we only
take a closer look at the time differences between no synchronization and synchronization
for the whole socket and scatter mapping strategies.

backprop-b+tree

backprop-bfs

backprop-heartwall

backprop-hotspot3d

backprop-hotspot

backprop-kmeans

backprop-lavaMD

backprop-leukocyte

backprop-lud

backprop-myocyte

backprop-nn

backprop-nw

backprop-particlefilter

backprop-pathfinder

backprop-srad

backprop-streamcluster

myocyte-b+tree

myocyte-backprop

myocyte-bfs

myocyte-heartwall

myocyte-hotspot3d

myocyte-hotspot

myocyte-kmeans

myocyte-lavaMD

myocyte-leukocyte

myocyte-lud

myocyte-nn

myocyte-nw

myocyte-particlefilter

myocyte-pathfinder

myocyte-srad

myocyte-streamcluster

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ru
n
n
in
g
ti
m
e
in

se
c

No Sync vs. Sync 1 vs. Sync 2 - backprop and myocyte small - whole socket

type

no sync

sync 1

sync 2

Figure 4.6: Differences in the concurrent execution time with and without synchronization
for the small input size of backprop and myocyte assigned to a socket (9 repetitions
for no sync, 9 repetitions for sync 1, 30 repetitions for sync 2).

Figure 4.6 shows the time difference between using no synchronization and using syn-
chronizations when two applications are executed on a whole socket, i.e., on 16 cores
each. As we can see, for backprop there are small differences, but for myocyte, the
synchronization does not seem to change the runtime.

backprop-b+tree

backprop-bfs

backprop-heartwall

backprop-hotspot3d

backprop-hotspot

backprop-kmeans

backprop-lavaMD

backprop-leukocyte

backprop-lud

backprop-myocyte

backprop-nn

backprop-nw

backprop-particlefilter

backprop-pathfinder

backprop-srad

backprop-streamcluster

myocyte-b+tree

myocyte-backprop

myocyte-bfs

myocyte-heartwall

myocyte-hotspot3d

myocyte-hotspot

myocyte-kmeans

myocyte-lavaMD

myocyte-leukocyte

myocyte-lud

myocyte-nn

myocyte-nw

myocyte-particlefilter

myocyte-pathfinder

myocyte-srad

myocyte-streamcluster

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ru
n
n
in
g
ti
m
e
in

se
c

No Sync vs. Sync 1 vs. Sync 2 - backprop and myocyte small - scatter

type

no sync

sync 1

sync 2

Figure 4.7: Differences in the concurrent execution time with and without synchronization
for the small input size of backprop and myocyte using a scatter affinity mapping (9
repetitions for no sync, 9 repetitions for sync 1, 30 repetitions for sync 2).

Looking at Figure 4.7, we see executions of two programs mapped to two sockets with
a scatter affinity mapping, where each application is executed on eight cores. In this

65

4. Characterizing Co-Scheduled Applications With HW Performance Counters

plot, we notice time differences between no synchronization and synchronization for all
benchmark executions.

Regarding the relevance of sync, both Figures 4.6 and 4.7 show, that it is possible to
achieve other running times when using synchronization. Since the motivation of the
synchronizer is measuring only concurrently executed kernel sections without pre- and
postprocessing steps, we now see that there is indeed a time difference, which suggests
using a synchronization for comparing kernel sections.

Another motivating reason for using sync is getting more reasonable and meaningful
performance counter measurements, which should help characterizing phenomena seen in
concurrent executions. Therefore, it is interesting to see if there are indeed differences
regarding performance counter values with and without synchronization.

Hence, we pick two concurrent executions: hotspot-kmeans (small) and hotspot-
lud (small) with the scatter strategy and compare performance values measured with
likwid of synchronized and non-synchronized kernel sections. Table 4.1 shows the
performance counter differences of the concurrent execution of hotspot and kmeans
while being synchronized and not synchronized. We see some differences, e.g., L1 DTLB
load misses or L3 bandwidth.

Table 4.1: No Sync vs. Sync 1 vs. Sync 2 for a scatter co-location of hotspot
and kmeans.

Counter No Sync Sync 1 Sync 2 No Sync vs.
Sync 2

L1 DTLB load misses STAT 123271 149614 70680 -42.66%
L1 DTLB store misses STAT 142685 222986 88438 -38.02%
L1 ITLB misses STAT 29249 113854 41228 +40.96%
L2 bandwidth [MBytes/s] STAT 928490.23 1144265.00 1413717.00 +52.26%
L2 data volume [GBytes] STAT 1221.25 1475.98 1688.02 +38.22%
L2 miss rate STAT 0.12 0.14 0.14 +18.91%
L2 miss ratio STAT 0.92 1.10 1.02 +10.26%
L2 request rate STAT 0.76 0.89 0.97 +26.56%
L3 bandwidth [MBytes/s] STAT 485640.38 704378.30 303925.26 -37.42%
L3 data volume [GBytes] STAT 636.25 845.23 546.06 -14.18%
L3 miss rate STAT 0.00 0.00 0.00 +179.35%
L3 miss ratio STAT 0.05 0.14 0.08 +50.00%
L3 request rate STAT 0.00 0.01 0.01 +38.64%

Looking at the differences in performance counters at the co-location of hotspot
and lud, Table 4.2 also shows differences, but on different performance counters, e.g.,
L1 ITLB misses.

66

4.3. The Influence of Co-Scheduling with Different Scheduling Configurations

Table 4.2: No Sync vs. Sync 1 vs. Sync 2 for a scatter co-location of hotspot
and lud.

Counter No Sync Sync 1 Sync 2 No Sync vs.
Sync 2

L1 DTLB load misses STAT 115305 95726 98054 -14.96%
L1 DTLB store misses STAT 147263 67558 139440 -5.31%
L1 ITLB misses STAT 82520 35294 44128 -46.52%
L2 bandwidth [MBytes/s] STAT 949651.38 1412271.00 1404189.00 +47.86%
L2 data volume [GBytes] STAT 1258.93 1685.59 1688.62 +34.13%
L2 miss rate STAT 0.12 0.09 0.14 +18.51%
L2 miss ratio STAT 0.91 0.77 1.03 +12.16%
L2 request rate STAT 0.76 0.60 0.95 +24.10%
L3 bandwidth [MBytes/s] STAT 473628.44 246494.81 700631.77 +47.93%
L3 data volume [GBytes] STAT 624.58 559.27 826.34 +32.30%
L3 miss rate STAT 0.00 0.00 0.00 +0.00%
L3 miss ratio STAT 0.14 0.13 0.09 -31.79%
L3 request rate STAT 0.00 0.01 0.01 +62.50%

Although it is not important now to investigate, which performance counter differs
significantly with and without synchronization, the fact that there are differences is very
relevant. We see that synchronizing the kernel section of co-located applications can
improve the quality of the measurements.

Therefore, we use the synchronization mechanism sync 2 for all subsequent co-scheduling
experiments to achieve results explicitly showing observations of the co-scheduling of
kernel sections.

4.3 The Influence of Co-Scheduling with Different
Scheduling Configurations

We are interested if our defined co-scheduling configurations from Figures 4.1 – 4.3 lead
to time differences between a dedicated and co-scheduled execution, i.e., have an influence
on co-scheduling. Since we synchronize the kernel sections of applications with sync 2,
we need to modify the source code of the benchmarks. Therefore, we stick with the
Rodinia benchmark suite, since the SPEC OMP2012 suite is stricter regarding changes
in the source code. Additionally, Rodinia does not have fixed input sizes, which allows
the definition of fine granularity input sizes.

For these experiments, we choose three Rodinia benchmarks to represent our program A,
the program for which we measure differences between a dedicated and co-scheduled kernel
time: backprop (memory-bound), hotspot (compute-bound), and myocyte (compute-

67

4. Characterizing Co-Scheduled Applications With HW Performance Counters

bound). Since these benchmarks had the biggest time difference between a pure sequential
and concurrent execution in Tables 3.3 and 3.4, they seem to lead to resource sharing
conflicts when being co-scheduled. Accordingly, we are interested in exploring, which
scheduling configuration leads to such conflicts and which configuration avoids them.

Table 4.3: Overview of the socket test notations and icons.

Notation Description

A@S1
Runtime of A when executing A dedicated
on socket 1 (Figure 4.1).

A@S1 | B@S2
Runtime of A when executing A and B on
different sockets (Figure 4.1).

A@1/2@S1
Runtime of A when executing A on half of
socket 1 dedicated (Figure 4.2).

A@1/2@S1 | B@1/2@S1
Runtime of A when executing A and B on
the same socket compact (Figure 4.2).

A@1/4@S1+S2
Runtime of A when executing A on both
sockets dedicated scatter (Figure 4.3).

A@1/4@S1+S2 | B@1/4@S1+S2
Runtime of A when executing A and B on
both sockets scatter (Figure 4.3).

For the presentation and discussion of the results, we use the notations given in Table 4.3.

Sharing a compute node by assigning separate sockets to the two applications A and
B is depicted in Figure 4.1. We say that application A is executed on socket 1 (A@S1)
and application B on socket 2 (B@S2). This constellation compares time differences that
can occur by sharing a compute node. Our hypothesis is that this leads to no runtime
differences between a dedicated and co-scheduled execution of A, since both applications
are executed on different compute resources, namely the sockets, which do not share
resources with one another.

Sharing one socket, where each application gets half the number of cores of one socket,
i.e., eight cores, is depicted in Figure 4.2. We say that A is executed on half the number
of cores of socket 1 (A@1/2S1) and B on the other half of socket 1 (B@1/2S1). As we can
see, the granularity of the resource sharing got smaller by comparing runtime differences
when sharing the same socket. This sharing of one socket also corresponds to sharing
the same NUMA domain on hydra. Our hypothesis is that there are resource sharing
conflicts if both A and B are executed concurrently on the same socket. This can be
explained by the fact that we choose applications with a much higher concurrent running
time than a sequential running time as our program A, which is an indication that this
program A allocates many resources.

68

4.3. The Influence of Co-Scheduling with Different Scheduling Configurations

The third introduced resource-sharing possibility, sharing both sockets with a scatter
mapping, is depicted in Figure 4.3. We therefore say that A is executed on a quarter of
cores of both sockets 1 and 2 (A@1/4S1+S2), and the same applies to B (B@1/4S1+S2).
Since both programs A and B share the same resources, i.e., the same sockets, our
hypothesis is that there is a difference between the execution time of executing program
A dedicated in a scatter way and the execution time of the concurrent execution of
A and B.

4.3.1 Co-Scheduling Experiments
We use the Rodinia benchmarks backprop, hotspot, and myocyte as program A and
compare the dedicated kernel time of A with the co-scheduled kernel time of A. Each
co-scheduled run of any A with B is executed 30 times and we present the median kernel
time achieved.

Table 4.4: Influence of co-scheduling for backprop by sharing a compute node [A@S1 |
B@S2] (30 repetitions for the dedicated backprop and all co-scheduled executions).

small medium

Ratio Ratio

backprop - b+tree 1.33 s 1.27 s 95.85% 4.35 s 4.24 s 97.36%
backprop - bfs 1.33 s 1.40 s 105.28% 4.35 s 4.34 s 99.89%
backprop - heartwall 1.33 s 1.28 s 96.60% 4.35 s 4.31 s 99.20%
backprop - hotspot3d 1.33 s 1.31 s 99.25% 4.35 s 4.12 s 94.83%
backprop - hotspot 1.33 s 1.31 s 98.49% 4.35 s 4.10 s 94.25%
backprop - kmeans 1.33 s 1.28 s 96.60% 4.35 s 4.21 s 96.67%
backprop - lavaMD 1.33 s 1.31 s 98.49% 4.35 s 4.34 s 99.77%
backprop - leukocyte 1.33 s 1.31 s 98.87% 4.35 s 4.17 s 95.75%
backprop - lud 1.33 s 1.27 s 96.23% 4.35 s 4.11 s 94.48%
backprop - myocyte 1.33 s 1.31 s 98.49% 4.35 s 3.91 s 89.77%
backprop - nn 1.33 s 1.29 s 96.98% 4.35 s 4.25 s 97.70%
backprop - particlefilter 1.33 s 1.29 s 97.74% 4.35 s 4.21 s 96.78%
backprop - pathfinder 1.33 s 1.36 s 102.64% 4.35 s 4.17 s 95.75%
backprop - srad 1.33 s 1.28 s 96.60% 4.35 s 4.26 s 98.05%
backprop - streamcluster 1.33 s 1.27 s 96.23% 4.35 s 4.22 s 97.01%

min 1.14 s 0.97 s 85.09% 3.80 s 3.35 s 88.16%
mean 1.32 s 1.30 s 98.19% 4.29 s 4.16 s 97.11%
median 1.33 s 1.30 s 98.11% 4.35 s 4.19 s 96.32%
max 1.47 s 1.54 s 104.76% 4.63 s 5.38 s 116.20%

Before discussing the influence of co-scheduling, we take a look at Table 4.4 as an example.
We see the mean value of the 30 dedicated and co-scheduled kernel times of backprop,

69

4. Characterizing Co-Scheduled Applications With HW Performance Counters

where backprop and any other benchmark is executed on a separate socket, i.e., the
A@S1 | B@S2 co-scheduling configuration. The ratio shown refers to the ratio between
the mean kernel time of the co-scheduled and dedicated run. If the ration x/y of two
numbers x and y is 100%, then x and y are the same number. This means that if these two
numbers differ greatly, the ratio would be significantly different from 100%. As the results
from Table 4.4 show, there is no significant ratio, i.e., a ratio ≥ 110%. We are interested
in significant ratios and therefore exclude insignificant ratios, i.e., ratios < 110%, from
the following result presentations.

backprop - MB

We use backprop as our program A and compare the dedicated and co-scheduled kernel
times of the three defined co-scheduling strategies.

The results in Table 4.5 show that there are no significant ratios for A@S1 and A@S1 |
B@S2, nor for A@1/2S1 and A@1/2S1 | B@1/2S1. Since A@S1 and A@S1 | B@S2 lead
to very similar results, our hypothesis is strengthened: executing applications on different
sockets helps avoiding resource sharing problems, since both applications do not share
resources this way.

Additionally, as the results from Table 4.4 show, co-scheduling even seems to improve the
dedicated kernel time, which is somehow contradictory. It seems that resource sharing,
even if it is only resources of one compute node, may lead to faster kernel times compared
to no resource sharing at all. Still, we see this phenomenon in several experiments.

Interestingly, there is significant ratio comparing A@1/2S1 and A@1/2S1 | B@1/2S1,
even though both A and B are executed on the same socket, and therefore share resources,
since the cores inside of one socket do not have separate resources available.

Then, we look at the ratio of the dedicated A@1/4S1+S2 and the co-scheduled A@1/4S1+S2
| B@1/4S1+S2 execution and notice relevant relative time differences for almost all
execution combinations. If we compare the mean or median kernel time of the dedicated
compact mapping (A@1/2S1) with the mean or median kernel time of the dedicated scatter
mapping (A@1/4S1+S2), we already notice a difference, even though both strategies
use eight cores. The question is: what resources are shared that lead to these kernel
time differences? Figure 2.3 helps answering this question: since A@1/4S1+S2 uses both
sockets, and A@1/2S1 only uses one socket, there is an additional communication overhead
for A@1/4S1+S2. This communication across the two sockets might be a bottleneck, as
the increased kernel times of A@1/4S1+S2 | B@1/4S1+S2 indicate.

70

4.3. The Influence of Co-Scheduling with Different Scheduling Configurations

Table 4.5: Influence of co-scheduling with backprop as program A (30 repetitions).

small medium

Rel. Diff. Rel. Diff.

min 1.14 s 0.97 s 85.09% 3.80 s 3.35 s 88.16%
mean 1.32 s 1.30 s 98.19% 4.29 s 4.16 s 97.11%
median 1.33 s 1.30 s 98.11% 4.35 s 4.19 s 96.32%
max 1.47 s 1.54 s 104.76% 4.63 s 5.38 s 116.20%

Rel. Diff. Rel. Diff.

min 1.15 s 1.13 s 98.26% 4.12 s 3.89 s 94.42%
mean 1.17 s 1.19 s 102.31% 4.22 s 4.30 s 101.92%
median 1.17 s 1.17 s 100.00% 4.22 s 4.25 s 100.71%
max 1.19 s 1.57 s 131.93% 4.26 s 5.16 s 121.13%

Rel. Diff. Rel. Diff.

backprop - b+tree 1.72 s 1.98 s 115.12% 5.61 s 6.40 s 114.18%
backprop - bfs 1.72 s 1.90 s 110.76% 5.61 s 7.21 s 128.55%
backprop - heartwall 1.72 s 2.12 s 123.55% 5.61 s 6.86 s 122.39%
backprop - hotspot3d 1.72 s 1.97 s 114.53% 5.61 s 7.71 s 137.64%
backprop - hotspot 1.72 s 2.02 s 117.73% 5.61 s 7.37 s 131.49%
backprop - kmeans 1.72 s 2.02 s 117.44% 5.61 s 7.06 s 125.96%
backprop - lavaMD 1.72 s 1.90 s 110.76% 5.61 s 7.70 s 137.38%
backprop - leukocyte 1.72 s 2.07 s 120.35% 5.61 s 7.23 s 128.99%
backprop - lud 1.72 s 2.12 s 123.55% 5.61 s 7.63 s 136.22%
backprop - myocyte 1.72 s 2.15 s 124.71% 5.61 s 7.54 s 134.61%
backprop - nn 1.72 s 2.02 s 117.73% 5.61 s 6.86 s 122.30%
backprop - particlefilter 1.72 s 2.02 s 117.44% 5.61 s 7.13 s 127.30%
backprop - pathfinder 1.72 s 2.03 s 118.02% 5.61 s 7.17 s 127.83%
backprop - srad 1.72 s 2.00 s 116.28% 5.61 s 7.29 s 129.97%
backprop - streamcluster 1.72 s 2.16 s 125.58% 5.61 s 7.55 s 134.70%

min 1.47 s 1.51 s 102.72% 5.16 s 5.08 s 98.45%
mean 1.73 s 2.05 s 118.92% 5.63 s 7.59 s 134.71%
median 1.72 s 2.03 s 118.02% 5.61 s 7.25 s 129.35%
max 2.04 s 4.10 s 200.98% 6.62 s 14.96 s 225.98%

71

4. Characterizing Co-Scheduled Applications With HW Performance Counters

hotspot - CB

The measured kernel times for hotspot are presented in Table 4.6.

Table 4.6: Influence of co-scheduling with hotspot as program A (30 repetitions).

small medium

Rel. Diff. Rel. Diff.

min 0.64 s 0.64 s 100.00% 4.07 s 3.98 s 97.79%
mean 0.65 s 0.66 s 100.54% 4.38 s 4.32 s 98.68%
median 0.65 s 0.65 s 100.00% 4.38 s 4.29 s 97.95%
max 0.68 s 0.73 s 107.35% 4.73 s 5.01 s 105.92%

Rel. Diff. Rel. Diff.

hotspot - lud 1.14 s 1.15 s 100.88% 8.04 s 9.79 s 121.70%
hotspot - streamcluster 1.14 s 1.17 s 102.63% 8.04 s 11.23 s 139.61%

min 1.13 s 1.13 s 100.00% 7.78 s 7.61 s 97.81%
mean 1.15 s 1.16 s 100.72% 8.07 s 8.47 s 105.02%
median 1.14 s 1.15 s 100.88% 8.04 s 8.11 s 100.87%
max 1.19 s 1.46 s 122.69% 8.44 s 11.83 s 140.17%

Rel. Diff. Rel. Diff.

hotspot - b+tree 1.26 s 1.79 s 142.46% 5.86 s 9.77 s 166.64%
hotspot - backprop 1.26 s 2.12 s 168.25% 5.86 s 10.10 s 172.27%
hotspot - bfs 1.26 s 1.48 s 117.86% 5.86 s 6.52 s 111.26%
hotspot - heartwall 1.26 s 1.46 s 116.27% 5.86 s 6.38 s 108.87%
hotspot - hotspot3d 1.26 s 2.27 s 180.16% 5.86 s 9.14 s 155.97%
hotspot - kmeans 1.26 s 2.33 s 185.32% 5.86 s 15.08 s 257.34%
hotspot - lavaMD 1.26 s 1.66 s 131.75% 5.86 s 6.54 s 111.60%
hotspot - leukocyte 1.26 s 1.68 s 133.33% 5.86 s 6.31 s 107.76%
hotspot - lud 1.26 s 1.30 s 103.17% 5.86 s 7.94 s 135.49%
hotspot - particlefilter 1.26 s 2.20 s 174.60% 5.86 s 7.14 s 121.93%
hotspot - pathfinder 1.26 s 1.59 s 126.19% 5.86 s 6.77 s 115.53%
hotspot - srad 1.26 s 2.33 s 184.52% 5.86 s 6.04 s 103.16%
hotspot - streamcluster 1.26 s 1.29 s 102.78% 5.86 s 8.04 s 137.29%

min 1.21 s 1.16 s 95.87% 5.54 s 5.35 s 96.57%
mean 1.26 s 1.83 s 145.05% 5.94 s 8.16 s 137.42%
median 1.26 s 1.77 s 140.08% 5.86 s 7.26 s 123.98%
max 1.32 s 3.18 s 240.91% 6.53 s 17.50 s 267.99%

72

4.3. The Influence of Co-Scheduling with Different Scheduling Configurations

There is no significant ratio for A@S1 and A@S1 | B@S2. Interestingly, we see a difference
between A@1/2S1 and A@1/2S1 | B@1/2S1 for the combinations hotspot-lud and
hotspot-streamcluster for the medium input size, and the ratio is significant,
i.e., > 120%. This means that for some co-scheduling combinations of applications or
benchmarks the resource sharing on one socket might be problematic. This observation
is important since we have not seen this behavior for backprop in Table 4.5.

For the scatter strategy A@1/4S1+S2 and A@1/4S1+S2 | B@1/4S1+S2, we notice less
displayed combinations, e.g., hotspot-nn is missing, and this implies that there is
no significant ratio present. Additionally, there are some co-scheduling combinations,
hotspot-srad medium as an example, with an insignificant ratio. This is a new
observation, since all combinations of both the small and medium input size for backprop
imply relevant ratios and therefore relevant differences between a dedicated and co-
scheduled execution. This phenomenon shows that the difference between dedicated and
co-scheduled execution might not always correlate for both our input sizes.

Still, we notice a similar influence of co-scheduling with a scatter mapping on both
sockets, the A@1/4S1+S2 | B@1/4S1+S2 co-scheduling strategy. As already discussed
for backprop, this again might be derived from resource sharing problems regarding
the communication between the two sockets.

myocyte - CB

For our last co-scheduling experiments exploring the influence of co-scheduling, we use
myocyte as our application A. The obtained results are shown in Table 4.7.

As already seen for backprop and hotspot, there is no obvious resource sharing
problem when each application uses a different socket, i.e., A@S1 | B@S2.

For the co-scheduling combination A@1/2S1 | B@1/2S1, we notice that the small and
medium input size of myocyte-lavaMD do not correlate since there is no significant
ratio for the small input size, but a big relative difference between the dedicated and
co-scheduled execution time of the medium input size.

This non-correlation between the small and medium instances is also present for A@1/4S1+S2
| B@1/4S1+S2. Even though we are not interested in the correlation, but in which
co-scheduling configurations might lead to resource sharing conflicts, this is an impor-
tant observation.

Since several combinations of co-scheduling with myocyte as program A lead to an
increased kernel time for A@1/4S1+S2 | B@1/4S1+S2 without a significant kernel time
increase for A@1/2S1 | B@1/2S1, we conclude that the communication between the two
sockets leads to this resource conflict, as we already observed for backprop in Table 4.5
and hotspot in Table 4.6.

73

4. Characterizing Co-Scheduled Applications With HW Performance Counters

Table 4.7: Influence of co-scheduling with myocyte as program A (30 repetitions).

small medium

Rel. Diff. Rel. Diff.

min 0.95 s 0.95 s 100.00% 4.40 s 4.40 s 100.00%
mean 0.96 s 0.96 s 99.95% 4.43 s 4.44 s 100.24%
median 0.96 s 0.96 s 100.00% 4.43 s 4.44 s 100.23%
max 0.97 s 0.99 s 102.06% 4.55 s 4.59 s 100.88%

Rel. Diff. Rel. Diff.

myocyte - lavaMD 1.47 s 1.47 s 100.00% 6.82 s 11.20 s 164.15%

min 1.46 s 1.46 s 100.00% 6.78 s 6.78 s 100.00%
mean 1.47 s 1.48 s 100.62% 6.83 s 7.17 s 105.03%
median 1.47 s 1.47 s 100.00% 6.82 s 6.86 s 100.59%
max 1.54 s 1.58 s 102.60% 6.96 s 11.46 s 164.66%

Rel. Diff. Rel. Diff.

myocyte - backprop 1.73 s 2.04 s 117.97% 7.49 s 7.63 s 101.87%
myocyte - hotspot3d 1.73 s 2.45 s 142.03% 7.49 s 7.71 s 102.94%
myocyte - hotspot 1.73 s 1.98 s 115.07% 7.49 s 7.76 s 103.67%
myocyte - kmeans 1.73 s 2.04 s 118.55% 7.49 s 7.49 s 100.00%
myocyte - leukocyte 1.73 s 1.94 s 112.46% 7.49 s 7.64 s 102.00%
myocyte - lud 1.73 s 1.90 s 110.14% 7.49 s 7.68 s 102.54%
myocyte - nn 1.73 s 2.13 s 123.48% 7.49 s 7.66 s 102.27%
myocyte - pathfinder 1.73 s 2.00 s 116.23% 7.49 s 7.36 s 98.26%
myocyte - srad 1.73 s 2.09 s 121.16% 7.49 s 7.62 s 101.67%
myocyte - streamcluster 1.73 s 1.97 s 114.20% 7.49 s 7.48 s 99.87%

min 1.51 s 1.50 s 99.34% 7.04 s 7.06 s 100.28%
mean 1.82 s 2.13 s 116.79% 7.62 s 7.81 s 102.48%
median 1.73 s 1.93 s 111.88% 7.49 s 7.54 s 100.67%
max 3.67 s 5.82 s 158.58% 9.41 s 19.07 s 202.66%

As a summary of gained information from this chapter, we conclude:

• There are several ways to co-schedule two applications on hydra. We choose three
types of resource sharing granularities to find resource sharing conflicts: sharing
the compute node by using different sockets, sharing one socket, and sharing
both sockets.

74

4.3. The Influence of Co-Scheduling with Different Scheduling Configurations

• To measure the kernel time of co-scheduled applications, it is necessary to synchro-
nize kernel sections with one another, otherwise pre- and postprocessing steps can
be executed concurrently with the kernel section, which often leads to distorted
measurement results.
The synchronization itself can be accomplished with a lightweight library using
semaphores as the synchronization mechanism.

• Sharing a compute node, i.e., where each co-scheduled application is assigned to a
separate socket or NUMA domain, does not lead to increased co-scheduled kernel
times and therefore can be considered resource conflict free.

• Sharing a socket with a compact core mapping often does not lead to increased kernel
times, which also implies a resource conflict free co-scheduling. Even though two
applications share one socket with the same resources, we only observe occasional
resource conflicts.

• Sharing both sockets with a scatter core mapping means more communication
between the sockets/NUMA domains. This is already visible for dedicated execu-
tions because the kernel time is increased for A@1/4S1+S2 compared to A@1/2S1,
even though both configurations use eight cores. Since the co-scheduled times of
A@1/4S1+S2 | B@1/4S1+S2 are increased, we assume resource sharing conflicts
regarding the communication between the sockets/NUMA domains.

75

CHAPTER 5
Prerequisites for Predicting

Co-Scheduling Behaviors

We are interested in predicting the co-scheduling potential of two applications, i.e., to
answer our question: To co-schedule or not to co-schedule? For this, we have to analyze
what we need for this prediction, i.e., what data we can use for training a prediction
model. Therefore, these questions motivate the work of this chapter:

• What do we need for creating a prediction model to predict the co-scheduling
potential of two applications?

• Are performance counters reliable and suitable for a prediction?
Which hardware counter changes its value between dedicated and co-scheduled
executions, i.e., which hardware counter helps identifying the quality or goodness
of a co-scheduling?

5.1 Correlation of Performance Metrics with Time
We assess whether it is possible to predict the co-scheduling potential by using performance
or hardware counters. For this, we need two types of measurements: co-scheduled
executions that do not increase the dedicated kernel time and co-scheduled executions
that increase the dedicated kernel time. These two types are necessary to find correlations
between performance metrics and the kernel time, to further predict whether applications
should be co-scheduled or not by means of performance counters. Therefore, we use the
scatter strategy from the previous chapter, where the co-scheduling of two programs A
and B takes place on both sockets: A@1/4S1+S2 | B@1/4S1+S2. Since these scatter
results often show an increased co-scheduled kernel time compared to the dedicated runs,
we hope to see these observations reflected in performance counter values. We pose our

77

5. Prerequisites for Predicting Co-Scheduling Behaviors

essential hypothesis: hardware performance counters correlate with the kernel time, e.g.,
if the kernel time increases, also one of the counter values has to increase, say the L3
cache miss ratio.

5.1.1 Difficulties with likwid Performance Counters
We had already analyzed the arithmetic intensity of Rodinia and SPEC OMP2012
benchmarks with the Marker API of likwid. Therefore, we continued using likwid
to measure performance metrics.

There are several performance groups provided by liwkid, where a single execution can
measure values that are part of a specific performance group. We execute all performance
groups to get an overview of which groups might show a correlation for increased kernel
times, and choose the following four likwid performance groups: CYCLE_STALLS,
L2CACHE, TLB_DATA, TLB_INSTR. Table 5.1 shows the measured performance counters
of these groups.

Table 5.1: likwid performance counters and their corresponding group. For all perfor-
mance counters, we use the aggregated STAT value for measuring counter values on all
used cores.

Group Performance Counter Our Notation
CYCLE_STALLS Stalls caused by L1D misses [%] stalls.l1.misses

Stalls caused by L2 misses [%] stalls.l2.misses

Stalls caused by L1D misses rate [%] stalls.l1d.miss.rate

Stalls caused by L2 misses rate [%] stalls.l2.miss.rate

L2CACHE L2 request rate l2.request.rate

L2 miss rate l2.miss.rate

L2 miss ratio l2.miss.ratio

TLB_DATA L1 DTLB load misses l1.dtlb.load.misses

L1 DTLB load miss rate l1.dtlb.load.miss.rate

L1 DTLB load miss duration [Cyc] l1.dtlb.load.miss.duration

L1 DTLB store misses l1.dtlb.store.misses

L1 DTLB store miss rate l1.dtlb.store.miss.rate

L1 DTLB store miss duration [Cyc] l1.dtlb.store.miss.duration

TLB_INSTR L1 ITLB misses l1.itlb.misses

L1 ITLB miss rate l1.itlb.miss.rate

L1 ITLB miss duration [Cyc] l1.itlb.miss.duration

We pick one example from the A@1/4S1+S2 vs. A@1/4S1+S2 | B@1/4S1+S2 experi-
ments above that shows a big relative difference between the dedicated and co-scheduled
execution: hotspot-backprop with a small input size. This big relative difference
is necessary such that it is possible to see a correlation between increasing kernel

78

5.1. Correlation of Performance Metrics with Time

times and increasing counter values. For each likwid performance group, we exe-
cute 1000 dedicated hotspot@1/4S1+S2, and 1000 co-scheduled hotspot@1/4S1+S2
| backprop@1/4S1+S2 runs.
For each likwid performance group, we plot a correlation matrix shown in Figure 5.1.

l
1
.
i
t
l
b
.
m
i
s
s
e
s

l
1
.
i
t
l
b
.
m
i
s
s
.
r
a
t
e

l
1
.
i
t
l
b
.
m
i
s
s
.
d
u
r
a
t
i
o
n

t
i
m
e

l1.itlb.misses

l1.itlb.miss.rate

l1.itlb.miss.duration

time

1 1 0.01 -0.02

1 1 0.01 -0.03

0.01 0.01 1 -0.01

-0.02 -0.03 -0.01 1

hotspot backprop small - TLB INSTR

0.0

0.2

0.4

0.6

0.8

1.0

l
2
.
r
e
q
u
e
s
t
.
r
a
t
e

l
2
.
m
i
s
s
.
r
a
t
e

l
2
.
m
i
s
s
.
r
a
t
i
o

t
i
m
e

l2.request.rate

l2.miss.rate

l2.miss.ratio

time

1 0.98 0.93 -0.01

0.98 1 0.98 0.04

0.93 0.98 1 0.12

-0.01 0.04 0.12 1

hotspot backprop small - L2CACHE

0.0

0.2

0.4

0.6

0.8

1.0

l
1
.
d
t
l
b
.
l
o
a
d
.
m
i
s
s
e
s

l
1
.
d
t
l
b
.
l
o
a
d
.
m
i
s
s
.
r
a
t
e

l
1
.
d
t
l
b
.
l
o
a
d
.
m
i
s
s
.
d
u
r
a
t
i
o
n

l
1
.
d
t
l
b
.
s
t
o
r
e
.
m
i
s
s
e
s

l
1
.
d
t
l
b
.
s
t
o
r
e
.
m
i
s
s
.
r
a
t
e

l
1
.
d
t
l
b
.
s
t
o
r
e
.
m
i
s
s
.
d
u
r
a
t
i
o
n

t
i
m
e

l1.dtlb.load.misses

l1.dtlb.load.miss.rate

l1.dtlb.load.miss.duration

l1.dtlb.store.misses

l1.dtlb.store.miss.rate

l1.dtlb.store.miss.duration

time

1 0.97 -0.04 0.91 0.89 0.37 -0.13

0.97 1 -0.04 0.88 0.93 0.45 -0.16

-0.04 -0.04 1 -0.03 -0.03 -0.01 0.04

0.91 0.88 -0.03 1 0.95 0.28 -0.08

0.89 0.93 -0.03 0.95 1 0.39 -0.14

0.37 0.45 -0.01 0.28 0.39 1 0.02

-0.13 -0.16 0.04 -0.08 -0.14 0.02 1

hotspot backprop small - TLB DATA

0.0

0.2

0.4

0.6

0.8

1.0

s
t
a
l
l
s
.
l
1
d
.
m
i
s
s
e
s

s
t
a
l
l
s
.
l
2
.
m
i
s
s
e
s

s
t
a
l
l
s
.
l
1
d
.
m
i
s
s
.
r
a
t
e

s
t
a
l
l
s
.
l
2
.
m
i
s
s
.
r
a
t
e

t
i
m
e

stalls.l1d.misses

stalls.l2.misses

stalls.l1d.miss.rate

stalls.l2.miss.rate

time

1 0.97 0.96 0.93 -0.03

0.97 1 0.98 0.98 0.06

0.96 0.98 1 0.99 0.06

0.93 0.98 0.99 1 0.11

-0.03 0.06 0.06 0.11 1

hotspot backprop small - CYCLE STALLS

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Correlation matrices of likwid performance counters of hotspot and
backprop (correlation from 1000 repetitions).

Since a correlation between any counter and kernel time is necessary to predict whether
an application with similar performance metric values should be co-scheduled or not, we
notice a problem: there is no significant correlation between the metrics and the time. This
non-correlation of performance values with the time is not a phenomenon appearing solely
for the hotspot-backprop combination, but for several other execution combinations
too.
Additionally to this correlation problem, we notice another complication with our mea-
surements: measuring performance values for the same code region using the likwid
Marker API leads to different kernel times of this section, i.e., the kernel time of one
and the same code region fluctuates for different executions. These kernel time mea-
surements fluctuate highly. Without measuring performance counter values using the

79

5. Prerequisites for Predicting Co-Scheduling Behaviors

likwid Marker API, we do not notice this kind of strong fluctuation. Therefore, we
deem the usage of likwid to measure performance values of kernel sections for our
prediction unreasonable.

5.1.2 Correlation of PAPI Performance Events
As an alternative, we try using PAPI instead of likwid. We do the same experiments
as described above, i.e., 1000 dedicated and 1000 co-scheduled runs of some application
combinations while measuring performance metrics. As above, we use the co-scheduling
combination hotspot-backprop with a small input size, and additionally take a look
at metrics of hotspot-hotspot3d with a small input size. For evaluating PAPI events,
we use the PAPI Low Level API.

We want to measure all performance events available on hydra that are not derived from
any other event. Therefore, we use the papi_avail command and take all non-derived
performance events. On hydra, there are 37 such events. Since these performance events
use registers to count the metrics, it is not possible to measure all 37 events altogether in
one run. To determine, which events can be measured concurrently, we use the command
papi_event_chooser PRESET <event> ... <event>. With this, we create
four custom performance event groups Cycles, Branches, Load/Store misses,
Instructions, and Data. These groups with the corresponding PAPI events are listed
in Table 5.2.

Table 5.2: Performance groups from the set of PAPI performance events.

Group Event Description
Cycles PAPI_MEM_WCY Cycles Stalled Waiting for memory writes

PAPI_STL_ICY Cycles with no instruction issue
PAPI_STL_CCY Cycles with no instructions completed
PAPI_FUL_CCY Cycles with maximum instructions completed
PAPI_RES_STL Cycles stalled on any resource
PAPI_TOT_CYC Total cycles
PAPI_REF_CYC Reference clock cycles

Branches, PAPI_BR_CN Conditional branch instructions
Load/Store misses PAPI_BR_NTK Conditional branch instructions not taken

PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_L3_LDM Level 3 load misses
PAPI_L1_LDM Level 1 load misses
PAPI_L1_STM Level 1 store misses
PAPI_L2_LDM Level 2 load misses
PAPI_L2_STM Level 2 store misses

80

5.1. Correlation of Performance Metrics with Time

Table 5.2 continued
Group Event Description
Instructions PAPI_TOT_INS Instructions completed

PAPI_LD_INS Load instructions
PAPI_SR_INS Store instructions
PAPI_BR_INS Branch instructions
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L2_ICM Level 2 instruction cache misses
PAPI_L2_ICH Level 2 instruction cache hits
PAPI_L2_ICA Level 2 instruction cache accesses
PAPI_L3_ICA Level 3 instruction cache accesses
PAPI_L2_ICR Level 2 instruction cache reads
PAPI_L3_ICR Level 3 instruction cache reads
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_PRF_DM Data prefetch cache misses

Data PAPI_L1_DCM Level 1 data cache misses
PAPI_L2_TCM Level 2 cache misses
PAPI_L3_TCM Level 3 cache misses
PAPI_L2_DCA Level 2 data cache accesses
PAPI_L2_DCR Level 2 data cache reads
PAPI_L3_DCR Level 3 data cache reads
PAPI_L3_DCW Level 3 data cache writes
PAPI_L3_TCA Level 3 total cache accesses
PAPI_L3_TCW Level 3 total cache writes

As mentioned above, we pick two execution combinations for getting an overview of
the correlation between PAPI events and the kernel time: hotspot-backprop and
hotspot-hotspot3d. These two combinations lead to higher running times when
being co-scheduled compared to hotspot executed in a dedicated mode.

Since we are interested in the correlation between performance events and the running
time, the data set used for the correlation matrix contains both the dedicated events
and running times of hotspot, as well as the co-scheduled events and running times of
hotspot with backprop or hotspot3d correspondingly.

Correlation Matrices of hotspot-backprop

We use the defined PAPI groups from Table 5.2 and plot the correlation matrices for
hotspot-backprop with a small input size in Figure 5.2. We are interested in the
correlation between the time, i.e., the kernel time, and PAPI performance events. This
correlation matrices display a high correlation with a light color, while small correlations
are displayed as dark areas. When we look at the time columns of all four matrices,

81

5. Prerequisites for Predicting Co-Scheduling Behaviors

P
A
P
I
M
E
M
W
C
Y

P
A
P
I
S
T
L
I
C
Y

P
A
P
I
S
T
L
C
C
Y

P
A
P
I
F
U
L
C
C
Y

P
A
P
I
R
E
S
S
T
L

P
A
P
I
T
O
T
C
Y
C

P
A
P
I
R
E
F
C
Y
C

t
i
m
e

PAPI MEM WCY

PAPI STL ICY

PAPI STL CCY

PAPI FUL CCY

PAPI RES STL

PAPI TOT CYC

PAPI REF CYC

time

1 -0.16 -0.25 -0.25 -0.07 -0.25 -0.25 -0.35

-0.16 1 0.69 0.68 0.04 0.69 0.69 0.58

-0.25 0.69 1 0.99 0.08 1 1 0.74

-0.25 0.68 0.99 1 -0.04 1 1 0.74

-0.07 0.04 0.08 -0.04 1 0.03 0.03 0.07

-0.25 0.69 1 1 0.03 1 1 0.74

-0.25 0.69 1 1 0.03 1 1 0.74

-0.35 0.58 0.74 0.74 0.07 0.74 0.74 1

hotspot backprop small - Cycles

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
A
P
I
B
R
C
N

P
A
P
I
B
R
N
T
K

P
A
P
I
B
R
M
S
P

P
A
P
I
L
3
L
D
M

P
A
P
I
L
1
L
D
M

P
A
P
I
L
1
S
T
M

P
A
P
I
L
2
L
D
M

P
A
P
I
L
2
S
T
M

t
i
m
e

PAPI BR CN

PAPI BR NTK

PAPI BR MSP

PAPI L3 LDM

PAPI L1 LDM

PAPI L1 STM

PAPI L2 LDM

PAPI L2 STM

time

1 1 0.53 0.36 -0.05 -0.07 -0.1 0.08 0.76

1 1 0.53 0.36 -0.05 -0.07 -0.1 0.08 0.76

0.53 0.53 1 0.19 -0.07 -0.08 -0.09 0.05 0.39

0.36 0.36 0.19 1 -0.03 -0.03 0.02 0.23 0.45

-0.05 -0.05 -0.07 -0.03 1 0.87 0.89 -0.05 0.02

-0.07 -0.07 -0.08 -0.03 0.87 1 0.81 -0.07 -0.01

-0.1 -0.1 -0.09 0.02 0.89 0.81 1 0.25 0.08

0.08 0.08 0.05 0.23 -0.05 -0.07 0.25 1 0.49

0.76 0.76 0.39 0.45 0.02 -0.01 0.08 0.49 1

hotspot backprop small - Branches, Load/Store misses

0.0

0.2

0.4

0.6

0.8

1.0

P
A
P
I
T
O
T
I
N
S

P
A
P
I
L
D
I
N
S

P
A
P
I
S
R
I
N
S

P
A
P
I
B
R
I
N
S

P
A
P
I
L
1
I
C
M

P
A
P
I
L
2
I
C
M

P
A
P
I
L
2
I
C
H

P
A
P
I
L
2
I
C
A

P
A
P
I
L
3
I
C
A

P
A
P
I
L
2
I
C
R

P
A
P
I
L
3
I
C
R

P
A
P
I
T
L
B
I
M

P
A
P
I
P
R
F
D
M

t
i
m
e

PAPI TOT INS

PAPI LD INS

PAPI SR INS

PAPI BR INS

PAPI L1 ICM

PAPI L2 ICM

PAPI L2 ICH

PAPI L2 ICA

PAPI L3 ICA

PAPI L2 ICR

PAPI L3 ICR

PAPI TLB IM

PAPI PRF DM

time

1 1 1 1 0.29 0.29 0.07 0.29 0.29 0.29 0.29 0.02 0.16 0.74

1 1 1 1 0.29 0.29 0.07 0.29 0.29 0.29 0.29 0.02 0.16 0.74

1 1 1 1 0.34 0.35 0.1 0.34 0.35 0.34 0.35 0.02 0.19 0.77

1 1 1 1 0.29 0.29 0.07 0.29 0.29 0.29 0.29 0.02 0.16 0.74

0.29 0.29 0.34 0.29 1 1 0.41 1 1 1 1 0.09 0.74 0.84

0.29 0.29 0.35 0.29 1 1 0.35 1 1 1 1 0.1 0.75 0.85

0.07 0.07 0.1 0.07 0.41 0.35 1 0.41 0.35 0.41 0.35 0 0.14 0.31

0.29 0.29 0.34 0.29 1 1 0.41 1 1 1 1 0.09 0.74 0.84

0.29 0.29 0.35 0.29 1 1 0.35 1 1 1 1 0.1 0.75 0.85

0.29 0.29 0.34 0.29 1 1 0.41 1 1 1 1 0.09 0.74 0.84

0.29 0.29 0.35 0.29 1 1 0.35 1 1 1 1 0.1 0.75 0.85

0.02 0.02 0.02 0.02 0.09 0.1 0 0.09 0.1 0.09 0.1 1 0.08 0.07

0.16 0.16 0.19 0.16 0.74 0.75 0.14 0.74 0.75 0.74 0.75 0.08 1 0.61

0.74 0.74 0.77 0.74 0.84 0.85 0.31 0.84 0.85 0.84 0.85 0.07 0.61 1

hotspot backprop small - Instructions

0.0

0.2

0.4

0.6

0.8

1.0

P
A
P
I
L
1
D
C
M

P
A
P
I
L
2
T
C
M

P
A
P
I
L
3
T
C
M

P
A
P
I
L
2
D
C
A

P
A
P
I
L
2
D
C
R

P
A
P
I
L
3
D
C
R

P
A
P
I
L
3
D
C
W

P
A
P
I
L
3
T
C
A

P
A
P
I
L
3
T
C
W

t
i
m
e

PAPI L1 DCM

PAPI L2 TCM

PAPI L3 TCM

PAPI L2 DCA

PAPI L2 DCR

PAPI L3 DCR

PAPI L3 DCW

PAPI L3 TCA

PAPI L3 TCW

time

1 -0.18 0.03 -0.97 -0.97 -0.92 0.06 -0.18 0.06 0.03

-0.18 1 0.09 0.23 0.21 0.37 0.64 1 0.64 0.53

0.03 0.09 1 0.01 0 0 0.09 0.09 0.09 0.26

-0.97 0.23 0.01 1 1 0.9 -0.04 0.23 -0.04 0.07

-0.97 0.21 0 1 1 0.89 -0.05 0.21 -0.05 0.05

-0.92 0.37 0 0.9 0.89 1 0.25 0.37 0.25 0.1

0.06 0.64 0.09 -0.04 -0.05 0.25 1 0.64 1 0.45

-0.18 1 0.09 0.23 0.21 0.37 0.64 1 0.64 0.53

0.06 0.64 0.09 -0.04 -0.05 0.25 1 0.64 1 0.45

0.03 0.53 0.26 0.07 0.05 0.1 0.45 0.53 0.45 1

hotspot backprop small - Data

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.2: Correlation matrices of PAPI performance events of hotspot and backprop
(correlation from 1000 repetitions).

we notice several PAPI performance events showing a correlation with the time, e.g.,
PAPI_TOT_CYC, PAPI_BR_CN, PAPI_TOT_INS, PAPI_L1_ICM, and several others.

Correlation Matrices of hotspot-hotspot3d

We also take a look at another execution combination, hotspot-hotspot3d, to make
sure that the observed high correlations from Figure 5.2 are not artifacts.

The correlation matrices of our PAPI groups for hotspot-hotspot3d with a small
input size are plotted in Figure 5.3. Again, we see a high correlation for several PAPI
events, e.g., PAPI_TOT_CYC, PAPI_BR_CN, PAPI_TOT_INS, PAPI_L1_ICM, and oth-
ers. Interestingly, the correlation between the counter values and the time is not that high
as for hotspot-backprop shown in Figure 5.2, but we notice that similar performance
counters show a good correlation with the kernel time.

82

5.2. Limited Group of Performance Metrics Relevant for Prediction

P
A
P
I
M
E
M
W
C
Y

P
A
P
I
S
T
L
I
C
Y

P
A
P
I
S
T
L
C
C
Y

P
A
P
I
F
U
L
C
C
Y

P
A
P
I
R
E
S
S
T
L

P
A
P
I
T
O
T
C
Y
C

P
A
P
I
R
E
F
C
Y
C

t
i
m
e

PAPI MEM WCY

PAPI STL ICY

PAPI STL CCY

PAPI FUL CCY

PAPI RES STL

PAPI TOT CYC

PAPI REF CYC

time

1 -0.3 0.04 0.04 -0.03 0.04 0.04 -0.54

-0.3 1 0.46 0.46 -0.01 0.46 0.46 0.62

0.04 0.46 1 1 0.09 1 1 0.58

0.04 0.46 1 1 0.01 1 1 0.58

-0.03 -0.01 0.09 0.01 1 0.06 0.06 0.08

0.04 0.46 1 1 0.06 1 1 0.58

0.04 0.46 1 1 0.06 1 1 0.58

-0.54 0.62 0.58 0.58 0.08 0.58 0.58 1

hotspot hotspot3d small - Cycles

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
A
P
I
B
R
C
N

P
A
P
I
B
R
N
T
K

P
A
P
I
B
R
M
S
P

P
A
P
I
L
3
L
D
M

P
A
P
I
L
1
L
D
M

P
A
P
I
L
1
S
T
M

P
A
P
I
L
2
L
D
M

P
A
P
I
L
2
S
T
M

t
i
m
e

PAPI BR CN

PAPI BR NTK

PAPI BR MSP

PAPI L3 LDM

PAPI L1 LDM

PAPI L1 STM

PAPI L2 LDM

PAPI L2 STM

time

1 1 0.63 0.39 0.08 -0.07 -0.11 -0.09 0.62

1 1 0.63 0.39 0.08 -0.07 -0.11 -0.09 0.62

0.63 0.63 1 0.29 0.02 -0.07 -0.1 -0.08 0.38

0.39 0.39 0.29 1 0.02 -0.01 -0.07 -0.13 0.08

0.08 0.08 0.02 0.02 1 0.84 0.85 -0.06 0.11

-0.07 -0.07 -0.07 -0.01 0.84 1 0.76 -0.14 -0.11

-0.11 -0.11 -0.1 -0.07 0.85 0.76 1 0.31 0.14

-0.09 -0.09 -0.08 -0.13 -0.06 -0.14 0.31 1 0.46

0.62 0.62 0.38 0.08 0.11 -0.11 0.14 0.46 1

hotspot hotspot3d small - Branches, Load/Store misses

0.0

0.2

0.4

0.6

0.8

1.0
P
A
P
I
T
O
T
I
N
S

P
A
P
I
L
D
I
N
S

P
A
P
I
S
R
I
N
S

P
A
P
I
B
R
I
N
S

P
A
P
I
L
1
I
C
M

P
A
P
I
L
2
I
C
M

P
A
P
I
L
2
I
C
H

P
A
P
I
L
2
I
C
A

P
A
P
I
L
3
I
C
A

P
A
P
I
L
2
I
C
R

P
A
P
I
L
3
I
C
R

P
A
P
I
T
L
B
I
M

P
A
P
I
P
R
F
D
M

t
i
m
e

PAPI TOT INS

PAPI LD INS

PAPI SR INS

PAPI BR INS

PAPI L1 ICM

PAPI L2 ICM

PAPI L2 ICH

PAPI L2 ICA

PAPI L3 ICA

PAPI L2 ICR

PAPI L3 ICR

PAPI TLB IM

PAPI PRF DM

time

1 1 1 1 -0.08 -0.09 0 -0.08 -0.09 -0.08 -0.09 0.03 -0.2 0.57

1 1 1 1 -0.08 -0.09 0 -0.08 -0.09 -0.08 -0.09 0.03 -0.2 0.57

1 1 1 1 -0.01 -0.02 0.04 -0.01 -0.02 -0.01 -0.02 0.04 -0.14 0.62

1 1 1 1 -0.08 -0.09 0 -0.08 -0.09 -0.08 -0.09 0.03 -0.2 0.57

-0.08 -0.08 -0.01 -0.08 1 1 0.55 1 1 1 1 0.1 0.86 0.76

-0.09 -0.09 -0.02 -0.09 1 1 0.51 1 1 1 1 0.11 0.87 0.76

0 0 0.04 0 0.55 0.51 1 0.55 0.51 0.55 0.51 0.01 0.37 0.45

-0.08 -0.08 -0.01 -0.08 1 1 0.55 1 1 1 1 0.1 0.86 0.76

-0.09 -0.09 -0.02 -0.09 1 1 0.51 1 1 1 1 0.11 0.87 0.76

-0.08 -0.08 -0.01 -0.08 1 1 0.55 1 1 1 1 0.1 0.86 0.76

-0.09 -0.09 -0.02 -0.09 1 1 0.51 1 1 1 1 0.11 0.87 0.76

0.03 0.03 0.04 0.03 0.1 0.11 0.01 0.1 0.11 0.1 0.11 1 0.08 0.1

-0.2 -0.2 -0.14 -0.2 0.86 0.87 0.37 0.86 0.87 0.86 0.87 0.08 1 0.59

0.57 0.57 0.62 0.57 0.76 0.76 0.45 0.76 0.76 0.76 0.76 0.1 0.59 1

hotspot hotspot3d small - Instructions

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
A
P
I
L
1
D
C
M

P
A
P
I
L
2
T
C
M

P
A
P
I
L
3
T
C
M

P
A
P
I
L
2
D
C
A

P
A
P
I
L
2
D
C
R

P
A
P
I
L
3
D
C
R

P
A
P
I
L
3
D
C
W

P
A
P
I
L
3
T
C
A

P
A
P
I
L
3
T
C
W

t
i
m
e

PAPI L1 DCM

PAPI L2 TCM

PAPI L3 TCM

PAPI L2 DCA

PAPI L2 DCR

PAPI L3 DCR

PAPI L3 DCW

PAPI L3 TCA

PAPI L3 TCW

time

1 -0.1 -0.01 -0.96 -0.96 -0.89 0.08 -0.1 0.08 0.03

-0.1 1 -0.21 0.15 0.12 0.36 0.66 1 0.66 0.54

-0.01 -0.21 1 0.01 0.02 -0.04 -0.12 -0.21 -0.12 -0.1

-0.96 0.15 0.01 1 1 0.86 -0.04 0.15 -0.04 0.1

-0.96 0.12 0.02 1 1 0.85 -0.06 0.12 -0.06 0.09

-0.89 0.36 -0.04 0.86 0.85 1 0.31 0.36 0.31 0.12

0.08 0.66 -0.12 -0.04 -0.06 0.31 1 0.66 1 0.43

-0.1 1 -0.21 0.15 0.12 0.36 0.66 1 0.66 0.54

0.08 0.66 -0.12 -0.04 -0.06 0.31 1 0.66 1 0.43

0.03 0.54 -0.1 0.1 0.09 0.12 0.43 0.54 0.43 1

hotspot hotspot3d small - Data

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.3: Correlation matrices of PAPI performance events of hotspot and
hotspot3d (correlation from 1000 repetitions).

Therefore, we can say that an increased kernel time is reflected in several increased PAPI
performance events for both hotspot-backprop and hotspot-hotspot3d. This
correlation between performance events and the kernel time implies that it is possible
to predict increased kernel times using performance and hardware counters. Thus, it is
possible to predict the co-scheduling potential of applications.

5.2 Limited Group of Performance Metrics Relevant for
Prediction

As we see in Figures 5.2 and 5.3, not all PAPI performance events correlate with the
kernel time. Additionally, we measure all non-derived PAPI counters. Since hardware
counters are measured by counting events in registers, some PAPI performance events
cannot be measured concurrently, because they share the same register for counting. This
means that we need four executions to measure all non-derived events. Therefore, we are
interested in limiting these performance counters to measure them in a single execution.

83

5. Prerequisites for Predicting Co-Scheduling Behaviors

5.2.1 Finding Good Representatives
The goal is to find a group of representatives, such that we can measure relevant
performance events with a single execution. To determine, which metrics are useful, we
analyze the correlation matrices from Figures 5.2 and 5.3. As we can see, some of these
PAPI events show a high correlation with the kernel time. Additionally, there are several
events that show a similar correlation with the time and further on correlate perfectly
with one another.

Therefore, we remove strongly correlating performance events from our set of performance
events. These events are those performance events that correlate perfectly with one
another, i.e., they have a correlation of one. Such events represent a similar metric and
measuring any counter out of these similar events gives us the same information regarding
the correlation with the kernel time.

Taking a closer look at the correlation matrices from Figures 5.2 and 5.3, we see a perfect
correlation between each one of PAPI_TOT_CYC, PAPI_STL_CYC, PAPI_FUL_CYC,
and PAPI_REF_CYC. Therefore, we choose one of these four metrics since all four of
them are strongly correlating. With this procedure, we eliminate strongly correlating
performance events and minimize the set of hardware counters.

Still, there are many events after this elimination and we want to know, which performance
counter values grow when the base application is co-scheduled. Therefore, we measure
this smaller set of performance events with PAPI and compare performance values when
an application is executed dedicated and when being co-scheduled.

For this experimental setup, we choose an application A as our base application. We then
need to find two other applications: one that changes the runtime behavior of A when
being co-scheduled, application B, and one that does not change the runtime behavior of
A, application C.

For each of these executions A-B and A-C, we measure the performance events 1000
times in two ways:

• A being executed dedicated, and
• A being co-scheduled with B or C.

These measured performance values are then inspected using a one-way analysis of
variance tests (anova) in R. We are interested if there is a significant difference between
the average performance counter values in the two scenarios of dedicated and co-scheduled
executions of A.

For each performance counter separately, we perform an anova (called aov in R) for
the execution of A-B and an anova for the execution of A-C, as shown in Listing 5.1.

84

5.2. Limited Group of Performance Metrics Relevant for Prediction

Listing 5.1: Anova in R to find significant performance events.
data_a_b # data of execution of A-B
data_a_c # data of execution of A-C
both data frames have a column for each performance counter
both data frames have a column ded_co which contains either the value
’dedicated’ or ’co-scheduled’

for (perf_counter in all_performance_counter_names) {
aov_a_b <- aov(data_a_b[[perf_counter]] ~ data_a_b[[ded_co]])
aov_a_c <- aov(data_a_c[[perf_counter]] ~ data_a_c[[ded_co]])

}

The results of an analysis of variance provide a p-value for each test. This p-value can
then be used to get knowledge whether there are significant differences between the
groups, namely between dedicated and co-scheduled executions. To determine the
significance of differences between dedicated and co-scheduled executions, we use
the significance levels shown in Figure 5.4.

Figure 5.4: Significance levels of an analysis of variance.

As Figure 5.4 shows, we can say that the difference between a dedicated and a
co-scheduled execution is significant, if p-value ≤ 0.05. Still, there are different
gradations of significance, like a p-value ≤ 0.001 indicates the most significant
difference between mean values of groups.

If we encode the significance to integer numbers, i.e., the most significant difference is 1,
the least significant difference is 5, then we could measure the absolute difference between
two significance levels and use this as a relevance measurement, as shown in Figure 5.5.

The intention for this relevance is to show whether a performance counter measured for
A-B and A-C has a similar significance level, or if there is a difference in significance for
A-B and A-C.

As in our example, the co-scheduling of A-B changes the runtime behavior of A, while this
does not happen with the co-scheduling of A-C. Hence, if there is a significant difference
of a performance counter when being executed dedicated and co-scheduled for A-B, but
there is no significant difference for A-C, we assume that this performance event may be
a good coefficient for any prediction regarding co-scheduled runtime behaviors.

We stick with hotspot as program A, and therefore need to find suitable programs B
and C for this significance and relevance analysis of performance events. Therefore, we

85

5. Prerequisites for Predicting Co-Scheduling Behaviors

Figure 5.5: Relevance of the difference between two significance levels.

measure the Cycles group of performance events (any group would be a valid choice),
and monitor the kernel times. Figure 5.6 presents the observed kernel times of 1000 runs.

ho
tsp

ot
de
dic

ate
d

ho
tsp

ot
ba
ckp

rop

ho
tsp

ot
bfs

ho
tsp

ot
he
art

wa
ll

ho
tsp

ot
ho
tsp

ot3
d

ho
tsp

ot
km

ean
s

ho
tsp

ot
lav

aM
D

ho
tsp

ot
leu

ko
cyt

e

ho
tsp

ot
lud

ho
tsp

ot
my

ocy
te

ho
tsp

ot
nn

ho
tsp

ot
nw

ho
tsp

ot
pa
rti
cle

filt
er

ho
tsp

ot
pa
thfi

nd
er

ho
tsp

ot
sra

d

ho
tsp

ot
str

eam
clu

ste
r

1.5

2.0

2.5

3.0

3.5

T
im

e

Running Times of 1000 runs of hotspot with PAPI

Figure 5.6: Running times of 1000 dedicated and co-scheduled runs of hotspot using
PAPI as the performance measurement tool.

Using these observed kernel times, we choose the three combinations listed in Table 5.3
to observe different significance behaviors of performance events.

Table 5.3: Experimental setup for finding relevant performance counters.

Base Application A Does not affect A = Application C Affects A = Application B

hotspot (A) streamcluster (C) hotspot3d (B)
hotspot (A) leukocyte (C) nw (B)
hotspot (A) heartwall (C) backprop (B)

As we can see in Figure 5.6, the co-scheduled execution of hotspot-streamcluster,
hotspot-leukocyte, and hotspot-heartwall lead to similar median kernel times
as the dedicated execution of hotspot. Therefore, we choose streamcluster,
leukocyte, and heartwall as our program C. In comparison, hotspot-hotspot3d,
hotspot-nw, and hotspot-backprop lead to significantly increased kernel times com-

86

5.2. Limited Group of Performance Metrics Relevant for Prediction

pared to the dedicated execution of hotspot, hence hotspot3d, nw, and backprop
represent program B. In case we see a non-significant difference of any performance event
between the dedicated and co-scheduled execution of A-C, but a significant difference
between the dedicated and co-scheduled execution of A-B for the same performance
event, we conclude that this event might be relevant for predicting the co-scheduling
potential of applications.

Case: hotspot (A) | streamcluster (C) | hotspot3d (B)

The co-scheduled runtime of hotspot-streamcluster is not significantly increased
compared to the dedicated execution of hotspot. But the co-scheduled runtime of
hotspot-hotspot3d is significantly higher than the dedicated runtime of hotspot.
Therefore, we compare the significance of the differences of the performance events
between dedicated and co-scheduled executions. The results obtained from the analysis
of variance for 1000 measurements are shown in Table 5.4.

Table 5.4: Significance and relevance of PAPI performance events for hotspot co-
scheduled with streamcluster and hotspot3d.

Performance Event Significance of Significance of Relevance
hotspot-streamcluster hotspot-hotspot3d

PAPI_MEM_WCY 0.83 0.00
PAPI_STL_ICY 0.00 0.00
PAPI_RES_STL 0.04 0.00
PAPI_TOT_CYC 0.00 0.00
PAPI_BR_CN 0.42 0.00
PAPI_BR_MSP 0.00 0.00
PAPI_L3_LDM 0.00 0.00
PAPI_L1_LDM 0.09 0.00
PAPI_L1_STM 0.07 0.00
PAPI_L2_LDM 0.00 0.00
PAPI_L2_STM 0.00 0.00
PAPI_TOT_INS 0.66 0.00
PAPI_L1_ICM 0.00 0.00
PAPI_L2_ICH 0.57 0.00
PAPI_TLB_IM 0.24 0.00
PAPI_PRF_DM 0.07 0.00
PAPI_L1_DCM 0.06 0.21
PAPI_L2_TCM 0.10 0.00
PAPI_L3_TCM 0.00 0.00
PAPI_L2_DCR 0.08 0.00
PAPI_L3_DCR 0.02 0.00
PAPI_L3_DCW 0.00 0.00

87

5. Prerequisites for Predicting Co-Scheduling Behaviors

As Table 5.4 shows, the following PAPI performance events can be considered relevant:
PAPI_MEM_WCY, PAPI_BR_CN, PAPI_L1_LDM, PAPI_L1_STM, PAPI_TOT_INS,
PAPI_L2_ICH, PAPI_TLB_IM, PAPI_PRF_DM, PAPI_L2_TCM, and PAPI_L2_DCR.

Case: hotspot (A) | leukocyte (C) | nw (B)

To prevent artifacts, we also look at other co-scheduled executions. The co-scheduled
execution of hotspot-leukocyte does not significantly increase compared to the
dedicated execution of hotspot, whereas hotspot-nw does. The significance and
relevance of the PAPI performance events observed by the analysis of variance are shown
in Table 5.5.

Table 5.5: Significance and relevance of PAPI performance events for hotspot co-
scheduled with leukocyte and nw.

Performance Event Significance of Significance of Relevance
hotspot-leukocyte hotspot-nw

PAPI_MEM_WCY 0.00 0.00
PAPI_STL_ICY 0.33 0.00
PAPI_RES_STL 0.62 0.00
PAPI_TOT_CYC 0.00 0.00
PAPI_BR_CN 0.00 0.00
PAPI_BR_MSP 0.53 0.00
PAPI_L3_LDM 0.00 0.00
PAPI_L1_LDM 0.25 0.00
PAPI_L1_STM 0.18 0.00
PAPI_L2_LDM 0.19 0.00
PAPI_L2_STM 0.01 0.00
PAPI_TOT_INS 0.00 0.00
PAPI_L1_ICM 0.01 0.00
PAPI_L2_ICH 0.00 0.00
PAPI_TLB_IM 0.01 0.00
PAPI_PRF_DM 0.29 0.00
PAPI_L1_DCM 0.00 0.46
PAPI_L2_TCM 0.97 0.00
PAPI_L3_TCM 0.00 0.00
PAPI_L2_DCR 0.14 0.00
PAPI_L3_DCR 0.00 0.00
PAPI_L3_DCW 0.78 0.00

Table 5.5 shows possibly relevant PAPI events: PAPI_STL_ICY, PAPI_RES_STL,
PAPI_BR_MSP, PAPI_L1_LDM, PAPI_L1_STM, PAPI_L2_LDM, PAPI_PRF_DM,
PAPI_L2_TCM, PAPI_L2_DCR, PAPI_L3_DCW. We have observed some of these events

88

5.2. Limited Group of Performance Metrics Relevant for Prediction

already as being relevant in the combination hotspot-streamcluster-hotspot3d,
but other events appear to be relevant for this combination too.

Case: hotspot (A) | heartwall (C) | backprop (B)

As another attempt to prevent artifacts, we look at the significance differences between
hotspot-heartwall and hotspot-backprop shown in Table 5.6.

Table 5.6: Significance and relevance of PAPI performance events for hotspot co-
scheduled with heartwall and backprop.

Performance Event Significance of Significance of Relevance
hotspot-heartwall hotspot-backprop

PAPI_MEM_WCY 0.68 0.00
PAPI_STL_ICY 0.02 0.00
PAPI_RES_STL 0.97 0.00
PAPI_TOT_CYC 0.00 0.00
PAPI_BR_CN 0.00 0.00
PAPI_BR_MSP 0.00 0.00
PAPI_L3_LDM 0.32 0.00
PAPI_L1_LDM 0.82 0.41
PAPI_L1_STM 0.06 0.75
PAPI_L2_LDM 0.13 0.00
PAPI_L2_STM 0.00 0.00
PAPI_TOT_INS 0.00 0.00
PAPI_L1_ICM 0.00 0.00
PAPI_L2_ICH 0.04 0.00
PAPI_TLB_IM 0.01 0.00
PAPI_PRF_DM 0.00 0.00
PAPI_L1_DCM 0.01 0.24
PAPI_L2_TCM 0.09 0.00
PAPI_L3_TCM 0.20 0.00
PAPI_L2_DCR 0.01 0.02
PAPI_L3_DCR 0.01 0.00
PAPI_L3_DCW 0.00 0.00

As the results in Table 5.6 show, a new set of performance events is deemed relevant:
PAPI_MEM_WCY, PAPI_RES_STL, PAPI_L3_LDM, PAPI_L2_LDM, PAPI_L2_TCM, and
PAPI_L3_TCM. As we notice, these events already occurred relevant in at least one of
our previous experiment results from Tables 5.4 and 5.5. Still, not all performance events
show this relevance in all our experiments, and additionally these experiments do not
cover the whole range of possibilities. Therefore, it is important to carefully choose our
limited custom group of PAPI performance events.

89

5. Prerequisites for Predicting Co-Scheduling Behaviors

5.2.2 Selecting Relevant Performance Events
Using the relevance experiments and the correlation matrices of event groups, we create
a new group of events, which combines performance events that seem to be relevant
for us. Strongly correlating performance events have already been removed, such that
there is only one representative of these perfectly correlating counters. By creating a
new performance event group, we can make sure that it is only necessary to execute an
application once to get relevant performance values for the later prediction. This group
of events contains the PAPI performance events shown in Table 5.7.

Table 5.7: Performance group formed containing relevant performance events for co-
scheduling prediction.

Event Description
PAPI_TOT_CYC Total cycles
PAPI_STL_ICY Cycles with no instruction issue
PAPI_BR_CN Conditional branch instructions
PAPI_L3_LDM Level 3 load misses
PAPI_TOT_INS Instructions completed
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L2_ICH Level 2 instruction cache hits
PAPI_L3_TCM Level 3 cache misses
PAPI_L3_DCW Level 3 data cache writes

The code template we used for measuring these performance events is provided in
Appendix 7 in Listing 1.

We summarize our observations from this chapter:

• Performance counters have to correlate with the elapsed time of kernel sections.
Then, we can predict increased kernel times and thus predict the co-scheduling
potential of applications.

• The likwid Marker API leads to inconsistent results when measuring hardware
counters of kernel sections. On one hand the time measurements fluctuate highly
for same executions, on the other hand performance counters and the time do not
correlate with one another.

• We analyzed the correlation, significance, and relevance of PAPI performance
events. Then, we defined a small group of PAPI performance events (shown in
Table 5.7) that correlate highly with kernel time measurements. These counters can
be measured concurrently, thus, a single execution suffices to measure the necessary
performance events.

90

CHAPTER 6
Predicting Co-Scheduling

Potentials

We want to predict the co-scheduling potential of two applications. The idea is to use
performance counter measurements to create a prediction model and further determine,
whether applications should be co-scheduled or not. In this chapter, we present the idea
of a prediction model for predicting the co-scheduling potential of two applications, and
then evaluate the prediction model. The following questions will be answered:

• Can we predict the co-scheduling potential of two applications? What should be
predicted to find out, whether two applications can be co-scheduled or not?

• Which data should be used for training and evaluating the model? Can we use
measurements directly or are preliminary preparations necessary?

• How good does the prediction work?

6.1 Prediction Model Idea
We are interested in predicting the performance of co-scheduling two applications and
whether we should co-schedule these applications or not. We assume having two applica-
tions A and B, and we want to know if we can co-schedule program A with program B
without delaying the execution time of A significantly. Under the assumption that the
execution of program A is long, e.g., half an hour or even more, we want to measure
relevant performance events for a small amount of time and decide with this information
whether to co-schedule A with B or run A in a dedicated mode. These mentioned relevant
performance events are those events that help identifying the co-scheduling potential.
We take the PAPI performance events listed in Table 5.7.

91

6. Predicting Co-Scheduling Potentials

There are only two possible answers to our prediction question of whether to co-schedule
A and B: yes or no. Since our problem represents a binary classification problem, we use
a logistic regression.

We measure the performance events of A for a small amount of time in dedicated mode
and in co-scheduled mode with B and use the classification

co_schedule_A_B =
1 if co_scheduled_time_A ≤ t × min_dedicated_time_A,
0 otherwise,

(6.1)

where t > 1 stands for a threshold value.

6.2 Building a Prediction Model
For our prediction model, we use the dedicated and co-scheduling combination from our
scatter affinity mapping: A@1/4S1+S2 for the dedicated execution of A and A@1/4S1+S2
| B@1/4S1+S2 for the co-scheduling of A and B. We choose this affinity mapping since
this leads to diverging results when it comes to co-scheduling. Therefore, we should be
able to see changing performance event values when the runtime behavior changes.

We continue using the Rodinia benchmark suite and use the following 14 applications:
backprop, bfs, heartwall, hotspot, hotspot3d, kmeans, lavaMD, leukocyte,
lud, myocyte, nn, pathfinder, srad, and streamcluster. One of these 14
benchmarks represents application A and the other benchmarks application B.

The goal is to predict the co-scheduling potential of A and B, where these two applications
have a long running time. Therefore, we co-schedule A and B for a small amount of
time and predict the co-scheduling potential of the long run by using the measured
performance events of the short execution . This means that the prediction model has to
be trained with the small execution results and validated with the long execution results.

Our initial approach was to run the long execution and stop the performance event
measurement, along with this long execution run, after a few seconds. Since this is rather
complicated with core mapping and additionally intrusive for the benchmark to stop
its execution after some seconds, we use the small instances of Rodinia as the short
measurement, and the medium instances as the long measurement. Subsequently, we
train our logistic regression model with co-scheduled measurements of the small input
size, and validate the model with co-scheduled measurements of the medium input size.

As mentioned previously, there are 14 Rodinia applications. If we choose one application
to represent A, then there are 13 combinations for a co-scheduling of A and B. We measure
the performance events of a dedicated execution of A with a small input size 1000 times,
and also each of the 13 co-scheduling combinations with a small input size 1000 times.

92

6.2. Building a Prediction Model

The training set of the model only consists of the co-scheduled runs without the dedicated
measurements, we only use the kernel time of the dedicated runs to assign either 0 or 1
to the decision variable co_schedule_A_B. This means that the training set consists of
13 000 entries. For the validation we use the medium input size and only execute each
co-scheduling combination 500-times. Therefore, the validation set contains 6 500 entries.

6.2.1 Data Normalization
To make sure that we can train the model with the small input size, but predict the long
execution with the medium instances, we need to normalize our performance values. It is
important that there is no difference between taking the performance event values from
the short or long execution. We achieve this requirement by calculating the event value per
time ratio to make sure that long_run_time/sec ≡ short_run_time/sec. Additionally,
it is very common to normalize data to get better prediction models [16, 41, 43], since
models work better if data is scaled to a common range.

As a first step we normalize the performance values per time, i.e., we get a value per time
ratio. For a performance value e, we define x = e/sec. We then normalize this value x
with machine learning normalization methods.

There are several common ways to normalize data for machine learning, e.g., min-max
scaling, z-score method, or robust scaling.

The min-max normalization normalizes a value x according to the formula xnorm =
(x−xmin)/(xmax−xmin). The values xmin and xmax are taken from all measurements for x.
The normalized value xnorm lies in the range [0, 1]. The drawback of this normalization
is that the scaling is sensitive to outliers [43] since we use the minimum and maximum
value for scaling.

The z-score method uses the mean µ and standard deviation σ of the measured values
[41]. Therefore, it is also called standardization. The standardized x value is calculated
by xstd = (x−µ)/σ. This normalization method also has difficulties with outliers, since the
mean and standard deviation are affected by outliers.

The robust scaling calculates the normalized value xnorm by taking the median and
quartile values of the measured x values into account. As quartile values are not affected
by outliers compared to the mean or min-/max-values [43], this robust scaling eliminates
drawbacks of the min-max scaling and the z-score method. The normalized x value is
calculated by xnorm = (x−Q2(x))/(Q3(x)−Q1(x)), where Q2(x) equals the median value of all
x values, and Q1(x) and Q3(x) present the first and third quartile, respectively.

We experiment with all three of these scaling methods and eventually use the robust
scaling for our prediction model since it is the most robust normalization method and
works the best in our settings. Since we train the model with small input sized data, we
also use this small input set for normalization. The normalization for the validation set
is done independently for each y of the validation set by normalizing the data using the
median, first, and third quartile values of the training set, i.e., the small instances.

93

6. Predicting Co-Scheduling Potentials

6.2.2 How to Choose Program A?
From Definition 6.1, we can say that a good candidate for training a model has a similar
amount of zeros and ones, such that both classification groups are represented equally in
the model.

As shown in Table 4.6, backprop, hotspot, hotspot3d, and myocyte being co-
scheduled with other applications using the scatter mapping often leads to a big relative
time difference between dedicated and co-scheduled executions. Therefore, these applica-
tions seem like good candidates to train a model for predicting whether to co-schedule or
not, due to different runtime behaviors. Such applications, like backprop, hotspot,
hotspot3d, or myocyte, are therefore good candidates as application A because the
training set can be balanced regarding the amount of zeros and ones.

6.2.3 Functionality of the Prediction Model
For our prediction model, we create a logistic regression model. The pseudo code is listed
in Appendix 7.

We read in our measurements with the PAPI event values and the kernel time of
the small and medium input sized runs and create an additional column represent-
ing the classification of a good time. For creating this classification in the method
create_good_bad_column, we use the minimum kernel time measured for the dedi-
cated runs of program A and then create this classification column for all co-scheduled
measurements. We use the threshold value t = 1.35 for the formula shown in Definition
6.1 that is used to create a prediction model for a program A. If the co-scheduled time of
an entry is smaller or equal to the minimum dedicated time × the threshold t, then we
classify this as a good-time, otherwise it is not a good-time. This threshold value t means
that co-scheduled times with an increase of less than 35% compared to the dedicated
kernel time are considered as a good time. Still, it is possible to specify this threshold
value explicitly for one application. If we only create a prediction model for an application
like LAMMPS, then it may be better to rethink the threshold value and specify it for
this application explicitly. As a next step, the performance measurements have to be
normalized, where we normalize the validation data with the measurements from the
training data. This is necessary because we assume that we only have the training data
set. If a new measurement is given as input to the prediction model, we have to predict
the co-scheduling potential only using the provided training data.

6.3 Evaluation of the Prediction Model
For the model evaluation, we choose several Rodinia benchmarks to be program A. We
analyze the distribution of the PAPI performance events normalized per time for the small
and medium input size. Since we define a common threshold for all used applications as
program A, we also take a look at the balance of the classification of the training data. We
want to prevent a high imbalance because this would lead to a biased prediction model.

94

6.3. Evaluation of the Prediction Model

6.3.1 Test and Train Data Sets
Before we use all of the small input sized runs as our training set and predict the
co-scheduling potential of the validation set with the medium input size, we have to make
sure that the training set can create a sufficiently good prediction model. As already
argued, there are 13 co-scheduling combinations for a program A. We do not use all
of these measurements as the training set and therefore split this training set into a
smaller training and test set. Out of these 13 co-scheduling combinations, we choose
four combinations randomly to represent our test set, and the other nine combinations
are used for model training. This means that approximately 30% of the available data
represents the test set, and the other 70% are used for training. With this procedure,
we show that the prediction model works within itself, i.e., within similar measurements
and conditions.

0 1

Predicted label

0
1A

ct
u
al

la
b
el

3710 4

32 254

Test Set - backprop

0 1

Predicted label

0
1A

ct
u
al

la
b
el

1948 189

7 1856

Test Set - hotspot

0 1

Predicted label

0
1A

ct
u
al

la
b
el

162 50

6 3782

Test Set - hotspot3d

0 1

Predicted label

0
1A

ct
u
al

la
b
el

1470 18

6 2506

Test Set - myocyte

1000

2000

3000

500

1000

1500

1000

2000

3000

500

1000

1500

2000

2500

Confusion Matrices for Randomly Chosen Test Sets

Figure 6.1: Evaluating the logistic regression model, where the test set contains randomly
chosen applications from the Rodinia benchmark suite.

Figure 6.1 shows the confusion matrices of a random test set for each of the benchmarks
backprop, hotspot, hotspot3d, and myocyte. We evaluate these test sets by
looking at the number of true and false positives, and true and false negatives. Taking
a look at the leftmost confusion matrix for backprop, we see that 3710 zeros and 254
ones are predicted correctly, whereas the false positives are 4, and the false negatives
are 32. This is an acceptable outcome, even though the model seems biased due to
the many true negatives, i.e., the correctly labeled zeros. For hotspot, the test set is
more balanced, and there are 7 false negatives and 189 false positives. This is a small
fraction compared to the correctly labeled zeros and ones. The test set for hotspot3d
is imbalanced towards the ones, but the false negative and false positive rate is very low.
Similarly, the test set for myocyte also shows a low false negative and false positive rate.

As a proof of concept that our randomly chosen test set is not an artifact, we created
50 models with distinct test sets, and therefore distinct training sets, for backprop,
hotspot, hotspot3d, and myocyte. Table 6.1 gives an overview of minimum and
maximum values, i.e., worst and best achieved precision, recall, and accuracy values.

As the best and worst evaluation metrics in Table 6.1 show, the worst precision from
200 models in total, i.e., 50 models for each one of backprop, hotspot, hotspot3d,
and myocyte, is 83% for hotspot. The minimum precision values for backprop,

95

6. Predicting Co-Scheduling Potentials

Table 6.1: Best and worst evaluation metrics for 50 randomly chosen test sets.

Min.
Precision

Max.
Precision

Min.
Recall

Max.
Recall

Min.
Accuracy

Max.
Accuracy

backprop 0.97 1.00 0.88 0.98 0.98 1.00
hotspot 0.83 1.00 0.97 1.00 0.87 1.00
hotspot3d 0.97 1.00 0.98 1.00 0.95 1.00
myocyte 0.99 1.00 0.98 1.00 0.99 0.99

hotspot3d, and myocyte are even greater or equal to 97%, which is a good outcome.
The worst recall value is 88% for backprop and the worst accuracy was found for
hotspot with 87%. Overall, this is a good outcome since all minimum performance
metrics are greater than 80%, and many are greater than 95%.

6.3.2 Distribution of PAPI Events between Training and
Validation Sets

We are interested in the distribution differences of the PAPI performance events for our
training and validation set, i.e., the small and medium sized inputs. The performance
events are already normalized by time, and we compare the performance value per time
ratio of the two different input sizes.

In Figures 6.2 – 6.5, we see the distribution of the PAPI performance events per time
for both the dedicated and co-scheduled mode for both the training and validation set.
Even though it is interesting to see what PAPI performance events per time show a
different behavior between the dedicated and co-scheduled execution, we are interested
in differences between the training and validation set. Our assumption and hope is that
there is no difference between the training and validation set, otherwise we cannot assume
that the short execution behavior with our small input size corresponds to the behavior
of the long execution with a medium input size.
For the boxplots in Figures 6.2 – 6.5, we used the measurements of the 1000 dedicated
and 13 000 co-scheduled executions from the small input size as the training set, and
500 dedicated and 6500 co-scheduled executions from the medium input size as the
validation set.

Taking a closer look at the PAPI performance events for backprop in Figure 6.2, we no-
tice no significant distribution difference between the training and validation set. Looking
at the distributions of PAPI_L3_LDM/s, PAPI_TOT_INS/s, PAPI_L3_TCM/s, and
PAPI_L3_DCW/s, we see a difference between the median values of the dedicated and
co-scheduled executions. Still, the important observation for us is to see a similar behavior
between the training and validation data.

96

6.3. Evaluation of the Prediction Model

training validation

1.00

1.25

1.50

1.75

2.00

P
A
P
I
T
O
T
C
Y
C
/
s

×109 PAPI TOT CYC/s

training validation

0.0

0.5

1.0

1.5

P
A
P
I
S
T
L
I
C
Y
/
s

×108 PAPI STL ICY/s

training validation

2

3

4

5

P
A
P
I
B
R
C
N
/
s

×108 PAPI BR CN/s

training validation

0

1

2

3

P
A
P
I
L
3
L
D
M
/
s

×107 PAPI L3 LDM/s

training validation

1.0

1.5

2.0

2.5

P
A
P
I
T
O
T
I
N
S
/
s

×109 PAPI TOT INS/s

training validation

0

100000

200000

300000

400000

P
A
P
I
L
1
I
C
M
/
s

PAPI L1 ICM/s

training validation

0

100000

200000

300000

400000

P
A
P
I
L
2
I
C
H
/
s

PAPI L2 ICH/s

training validation

0.2

0.4

0.6

0.8

1.0

P
A
P
I
L
3
T
C
M
/
s

×108 PAPI L3 TCM/s

training validation

0.00

0.25

0.50

0.75

1.00

1.25

P
A
P
I
L
3
D
C
W
/
s

×107 PAPI L3 DCW/s

PAPI Performance Value Comparison for backprop

dedicated co-scheduled

Figure 6.2: Performance event distribution comparison between the training and validation
set of backprop.

training validation

0.75

1.00

1.25

1.50

1.75

2.00

P
A
P
I
T
O
T
C
Y
C
/
s

×109 PAPI TOT CYC/s

training validation

2

4

6

P
A
P
I
S
T
L
I
C
Y
/
s

×107 PAPI STL ICY/s

training validation

2

3

4

5

6

7

P
A
P
I
B
R
C
N
/
s

×108 PAPI BR CN/s

training validation

0

100000

200000

300000

400000

500000

P
A
P
I
L
3
L
D
M
/
s

PAPI L3 LDM/s

training validation

2

3

4

5

P
A
P
I
T
O
T
I
N
S
/
s

×109 PAPI TOT INS/s

training validation

50000

100000

150000

200000

250000

P
A
P
I
L
1
I
C
M
/
s

PAPI L1 ICM/s

training validation

0

20000

40000

60000

P
A
P
I
L
2
I
C
H
/
s

PAPI L2 ICH/s

training validation

0

1

2

3

P
A
P
I
L
3
T
C
M
/
s

×107 PAPI L3 TCM/s

training validation

0.5

1.0

1.5

P
A
P
I
L
3
D
C
W
/
s

×107 PAPI L3 DCW/s

PAPI Performance Value Comparison for hotspot

dedicated co-scheduled

Figure 6.3: Performance event distribution comparison between the training and validation
set of hotspot.

97

6. Predicting Co-Scheduling Potentials

Figure 6.3 shows the performance event distribution of hotspot. We clearly see that
our assumption of same distribution behaviors between the training and validation set
does not hold for several performance events, e.g., PAPI_STL_ICY/s, PAPI_BR_CN/s,
PAPI_L3_LDM/s, PAPI_TOT_INS/s, and PAPI_L3_TCM/s. The median values of
both the dedicated and co-scheduled measurements differ significantly between the
training and validation set.

training validation

0.75

1.00

1.25

1.50

1.75

2.00

P
A
P
I
T
O
T
C
Y
C
/
s

×109 PAPI TOT CYC/s

training validation

2

4

6

P
A
P
I
S
T
L
I
C
Y
/
s

×106 PAPI STL ICY/s

training validation

0.5

1.0

1.5

2.0

2.5

3.0

P
A
P
I
B
R
C
N
/
s

×108 PAPI BR CN/s

training validation

0.0

0.5

1.0

1.5

2.0

P
A
P
I
L
3
L
D
M
/
s

×106 PAPI L3 LDM/s

training validation

4

6

8

P
A
P
I
T
O
T
I
N
S
/
s

×109 PAPI TOT INS/s

training validation

5000

10000

15000

20000

25000

30000

P
A
P
I
L
1
I
C
M
/
s

PAPI L1 ICM/s

training validation

2000

4000

6000

8000

P
A
P
I
L
2
I
C
H
/
s

PAPI L2 ICH/s

training validation

0

1

2

3

P
A
P
I
L
3
T
C
M
/
s

×107 PAPI L3 TCM/s

training validation

50000

100000

150000

200000

250000

P
A
P
I
L
3
D
C
W
/
s

PAPI L3 DCW/s

PAPI Performance Value Comparison for hotspot3d

dedicated co-scheduled

Figure 6.4: Performance event distribution comparison between the training and validation
set of hotspot3d.

The distribution of the performance counter values of hotspot3d is shown in Fig-
ure 6.4. There are three performance events, PAPI_BR_CN/s, PAPI_TOT_INS/s, and
PAPI_L3_DCW/s, which are not similarly distributed for the training and validation set
executions. Comparing these non-correlating performance events to the non-correlating
events from hotspot, we notice that these three events are a subset of the non-uniform
distributions of hotspot.

Our forth evaluated benchmark as program A is myocyte. In Figure 6.5, we see the
event value distributions for myocyte and find similar observations as for backprop,
i.e., similar median values between the training and validation set. Still, there are small
distribution differences, as for PAPI_TOT_CYC/s or PAPI_TOT_INS/s. Comparing
such differences to hotspot in Figure 6.3, the differences seem insignificant compared
to hotspot.

98

6.3. Evaluation of the Prediction Model

training validation

0.75

1.00

1.25

1.50

1.75

P
A
P
I
T
O
T
C
Y
C
/
s

×109 PAPI TOT CYC/s

training validation

0.5

1.0

1.5

P
A
P
I
S
T
L
I
C
Y
/
s

×108 PAPI STL ICY/s

training validation

1.5

2.0

2.5

3.0

P
A
P
I
B
R
C
N
/
s

×108 PAPI BR CN/s

training validation

0

20000

40000

60000

P
A
P
I
L
3
L
D
M
/
s

PAPI L3 LDM/s

training validation

1.0

1.5

2.0

2.5

3.0

3.5

P
A
P
I
T
O
T
I
N
S
/
s

×109 PAPI TOT INS/s

training validation

0.2

0.4

0.6

0.8

1.0

P
A
P
I
L
1
I
C
M
/
s

×107 PAPI L1 ICM/s

training validation

0.2

0.4

0.6

0.8

1.0

P
A
P
I
L
2
I
C
H
/
s

×107 PAPI L2 ICH/s

training validation

0

100000

200000

300000

P
A
P
I
L
3
T
C
M
/
s

PAPI L3 TCM/s

training validation

10000

20000

30000

40000

50000

P
A
P
I
L
3
D
C
W
/
s

PAPI L3 DCW/s

PAPI Performance Value Comparison for myocyte

dedicated co-scheduled

Figure 6.5: Performance event distribution comparison between the training and validation
set of myocyte.

6.3.3 Evaluating the Logistic Regression Models
For each of our evaluated benchmarks backprop, hotspot, hotspot3d, and myocyte,
we create a logistic regression model as shown in Appendix 7 in Listing 2. We use the
small input sized co-scheduled runs as the training set and then validate the prediction
model with the medium sized co-scheduled executions. We choose a threshold value of
t = 1.35 for each application. This means that we tolerate a 35% increase in the runtime
of application A.

0 1

Training label

11257 1743

Training Set Ratio

0 1

Predicted label

0
1A
ct
u
al

la
b
el

4836 116

0 1548

Confusion Matrix - Validation Set

0.0 0.5 1.0

False Positive Rate

0.00

0.25

0.50

0.75

1.00

T
ru
e
P
os
it
iv
e
R
at
e

R
A
N
D
O
M

C
LA

SS
IF
IE
R

PERFECT CLASSIFIER

ROC Curve

Validation Set

0.0 0.5 1.0

Recall

0.00

0.25

0.50

0.75

1.00

P
re
ci
si
on

RANDOM CLASSIFIER

PERFECT CLASSIFIER

Precision Recall Curve

Validation Set

0

5000

10000

0

1000

2000

3000

4000

Evaluating the prediction for backprop (t = 1.35): Precision = 0.93, Recall = 1.00, Accuracy = 0.98

Figure 6.6: Evaluating the logistic regression model created for co-scheduling applications
with backprop.

Figure 6.6 shows the logistic model evaluation of backprop being program A. Since the
common threshold value is t = 1.35, we get an imbalanced classification ratio zeros:ones

99

6. Predicting Co-Scheduling Potentials

of 11257 : 1743. This training data is used to train the logistic regression. Then, we
validate this model by using the validation set, i.e., the medium input sized runs. The
confusion matrix of the validation set shows a good result, since not any one-value is
predicted to be a zero-value, i.e., there are no false negatives. Contrarily, some of the
zeros are predicted as ones, but this corresponds to a small false positive rate. The ROC-
and Precision Recall-Curves show that the model is good. The precision of this model is
0.93, the recall 1.00, and the accuracy 0.98. Therefore, we can predict the co-scheduling
behavior for co-scheduled runs with backprop well.

0 1

Training label

5363 7637

Training Set Ratio

0 1

Predicted label

0
1A
ct
u
al

la
b
el

2785 0

3715 0

Confusion Matrix - Validation Set

0.0 0.5 1.0

False Positive Rate

0.00

0.25

0.50

0.75

1.00

T
ru
e
P
os
it
iv
e
R
at
e

R
A
N
D
O
M

C
LA

SS
IF
IE
R

PERFECT CLASSIFIER

ROC Curve

Validation Set

0.0 0.5 1.0

Recall

0.00

0.25

0.50

0.75

1.00

P
re
ci
si
on

RANDOM CLASSIFIER

PERFECT CLASSIFIER

Precision Recall Curve

Validation Set

0

5000

10000

0

1000

2000

3000

Evaluating the prediction for hotspot (t = 1.35): Precision = 0.00, Recall = 0.00, Accuracy = 0.43

Figure 6.7: Evaluating the logistic regression model created for co-scheduling applications
with hotspot.

For hotspot, we get a more balanced training set with a zeros:ones ratio of 5363 : 7637.
As the evaluation metrics in Figure 6.7 show, the model for hotspot is not good: the
precision and recall values are zero, the accuracy is only 43%. All entries of the validation
set are predicted as zeros, i.e., that no application should be co-scheduled with hotspot.
The ROC- and Precision Recall-Curve are distorting the bad outcome, because it seems
like the model should be acceptable. This happens because the false negative rate is high,
and this rate is not represented in any of these curves directly. Further, the calculated
precision and recall values are both 0.00, these two values refer to the precision and recall
of the model as a whole, whereas the precision recall curve consists of many precision and
recall values, of whom the majority are small values near zero. Since the precision and
recall of this model are zero, we see that the prediction model for hotspot is not good.
The question arises, what may lead to this poor prediction behavior. If we look back
at the distribution of the PAPI events in Figure 6.3, many event distributions do not
correlate between the training and validation set. One explanation for this poor prediction
behavior therefore might be the fact that the training and validation set measurements
do not correlate. We train the model to behave in a certain way, but this behavior is not
reflected in the validation set for several performance counters, e.g., PAPI_STL_ICY/s,
PAPI_BR_CN/s, PAPI_L3_LDM/s, PAPI_TOT_INS/s, and PAPI_L3_TCM/s.

Therefore, one preliminary for predicting the co-scheduling behavior with a prediction
model should be: the performance values used as the input for prediction have to correlate
with the training data of the prediction model.

100

6.3. Evaluation of the Prediction Model

0 1

Training label

773 12227

Training Set Ratio

0 1

Predicted label

0
1A
ct
u
al

la
b
el

1642 0

2181 2227

Confusion Matrix - Validation Set

0.0 0.5 1.0

False Positive Rate

0.00

0.25

0.50

0.75

1.00

T
ru
e
P
os
it
iv
e
R
at
e

R
A
N
D
O
M

C
LA

SS
IF
IE
R

PERFECT CLASSIFIER

ROC Curve

Validation Set

0.0 0.5 1.0

Recall

0.00

0.25

0.50

0.75

1.00

P
re
ci
si
on RANDOM CLASSIFIER

PERFECT CLASSIFIER

Precision Recall Curve

Validation Set

0

5000

10000

0

500

1000

1500

2000

Evaluating the prediction for hotspot3d (t = 1.35): Precision = 1.00, Recall = 0.51, Accuracy = 0.64

Figure 6.8: Evaluating the logistic regression model created for co-scheduling applications
with hotspot3d.

Figure 6.8 shows the evaluation of the prediction model for hotspot3d. Regarding
the correlation of the training and validation data set, we remember that hotspot3d
did not correlate for all performance events similarly for the two sets. The prediction
model for hotspot3d is highly biased towards the ones, with a ratio of 773 : 12227.
Even though the precision is 100%, there are many false negatives, but no false positives.
This is reflected in the recall of 51% and the accuracy of 64%. The ROC curve is again
misleading, since the model seems like a good fit. But the ROC curve only considers true
and false positive rates, and there are no false positives in this example. Overall, this
model is not applicable for prediction. Even though the training set is biased towards
one classification option, we assume that the bad outcome of the prediction still might
be a result of the non-correlating performance events of the training and validation set.

0 1

Training label

4933 8067

Training Set Ratio

0 1

Predicted label

0
1A
ct
u
al

la
b
el

277 2

18 6203

Confusion Matrix - Validation Set

0.0 0.5 1.0

False Positive Rate

0.00

0.25

0.50

0.75

1.00

T
ru
e
P
os
it
iv
e
R
at
e

R
A
N
D
O
M

C
LA

SS
IF
IE
R

PERFECT CLASSIFIER

ROC Curve

Validation Set

0.0 0.5 1.0

Recall

0.00

0.25

0.50

0.75

1.00

P
re
ci
si
on

RANDOM CLASSIFIER
PERFECT CLASSIFIER

Precision Recall Curve

Validation Set

0

5000

10000

2000

4000

6000

Evaluating the prediction for myocyte (t = 1.35): Precision = 1.00, Recall = 1.00, Accuracy = 1.00

Figure 6.9: Evaluating the logistic regression model created for co-scheduling applications
with myocyte.

In Figure 6.9, we see the model evaluation for myocyte, using a training set with a
zeros:ones ratio of 4933 : 8067. Even though this training set is not perfectly balanced,
the precision, recall, and accuracy values being 100% show that this model predicts the
long execution runs very well with only short execution runs trained.

101

6. Predicting Co-Scheduling Potentials

Using these observations, we can summarize our insights from this chapter:

• Predicting the co-scheduling potential of random applications with a specified
program A is possible under certain circumstances.

• A logistic regression model suffices for predicting the co-scheduling potential.

• Normalizing performance values per time is necessary to equate the measurements
long_run_time/sec ≡ short_run_time/sec.

• It is important to create balanced training data sets, but they do not have to be
perfectly balanced. If the short execution’s and long execution’s performance values
correlate, we can accurately predict the co-scheduling potential of two applications.

• We have to be careful with applications, where the long execution run’s perfor-
mance values normalized per time do not correlate with the short execution run’s
performance values. Such applications are not suitable for this kind of co-scheduling
potential prediction since the foundation of the training data set and the actual
prediction differs. Still, it is hard to discover whether the performance values
of short and long executions correlate. This might only be possible if both the
validation and evaluation set are large enough.

102

CHAPTER 7
Conclusion and Future Work

The improvements in hardware design and the increasing number of cores in supercom-
puters demand efficient resource utilization on multicore machines. We explored scaling
and runtime behaviors of various OpenMP applications from the Rodinia and SPEC
OMP2012 benchmark suites. While the SPEC OMP2012 benchmark suite comes with
predefined input instances, the Rodinia suite does not provide input instances. Therefore,
we analyzed the Rodinia applications in detail and defined input sizes. We assessed scaling
and runtime behaviors of applications on different computing resources, like sockets,
and compared runtime differences of compilers. Then, we explored the optimization
potential of co-scheduling, where we compared basic strategies with advanced scheduling
algorithms. A basic strategy may be executing programs in parallel on all cores of a
multicore machine, while integer programs represent advanced scheduling methods. For
this optimization potential assessment, we used our novel execution framework, which is
resource manager and scheduler for single compute nodes in one. Since there is great
co-scheduling potential, we analyzed configurations of co-scheduled executions of two
applications on our multicore machine hydra. Some configurations share close resources,
which lead to increased co-scheduled times. We evaluated hardware performance counters
to witness the interference of co-scheduling. Since we see this resource interference
reflected in performance counter values, we use hardware counters to predict the co-
scheduling potential of two applications. Assuming that there are two programs A and
B with a long execution time, we predict the co-scheduling potential of A with B by
sampling the co-scheduling for a short period of time. Sometimes it is possible to predict
the co-scheduling potential well, sometimes not.

We learned several lessons from this thesis work:

• The majority of applications from our analysis show poor scaling behaviors, for
what reason it is not necessary to execute programs in a fully parallel mode on all
available cores of a system.

103

7. Conclusion and Future Work

• Measuring kernel times of co-scheduled programs is difficult, because co-scheduled
programs have different pre- and postprocessing steps. It is necessary to intervene
into the co-scheduled executions by synchronizing the kernel sections. For this
purpose, we implemented a lightweight synchronization library.

• A computing system provides many hardware performance counters. Choosing
relevant and significant counters that can be used to predict the interference of
co-scheduled applications, i.e., the co-scheduling potential of applications, is not
trivial. We used several techniques to find relevant performance counters, e.g.,
correlation matrices and analysis of variance.

• Since we predict the co-scheduling potential of two long applications by executing
and measuring performance counters for a short run, the performance measure-
ments from both the short and long execution have to correlate with one another.
Additionally, the potential slowdown of co-schedulings has to be visible in the
performance counters as well. This is often hard to achieve since program parts of
co-scheduled applications differ in their functionality and their execution time.

Even though we learned many lessons on application behaviors and the prediction of
co-scheduling potentials, there are some shortcomings in this thesis, which point out
future work:

• We explored the scalability and runtime behaviors of a limited set of applications
on a limited set of hardware.
In this thesis, we use one multicore machine, but it remains to confirm our findings
on other multicore machines too, to make sure that our observations are machine-
independent.
Regarding the limited set of applications, we used OpenMP applications from the
Rodinia and SPEC OMP2012 benchmark suite. The problem of using applications
from benchmark suites is the amount of computational patterns behind the programs.
For several benchmarks, the computational pattern is similar, which leads to a
limited set of computational patterns. Looking at a related research topic, HPAS [9],
a HPC Performance Anomaly Suite for generating anomalies on HPC systems,
we can use their idea of generating anomalies to generate computational patterns.
Further, we would create applications with specific computational patterns, e.g.,
programs with many floating point operations, or programs with many cache misses.
Having such a generator for computational patterns would moreover control the
model training of prediction models.

• For our prediction model, we were satisfied with a binary decision: whether
to co-schedule applications or not. The logistic regression used for this binary
classification problem is a sufficient first basis. To create prediction models without
biased decisions, it is necessary to use more advanced machine learning methods.
Additionally, we trained our models with performance counter interferences from
short executions because we validated the prediction potential using long executions.
But precisely these long executions should be used for training the prediction model
to cover a wider range of co-scheduling behaviors.

104

Bibliography

[1] Intel Developer Guide and Reference - Thread Affinity Interface (Linux* and Win-
dows*). https://software.intel.com/content/www/us/en/develop/d
ocumentation/cpp-compiler-developer-guide-and-reference/top/
optimization-and-programming-guide/openmp-support/openmp-l
ibrary-support/thread-affinity-interface-linux-and-windows
.html, 2021, accessed on 2021-08-20.

[2] Intel® Xeon® Scalable Processors. https://www.intel.com/content/www/
us/en/products/details/processors/xeon/scalable.html, accessed
on 2021-08-15.

[3] About GROMACS. https://www.gromacs.org/About_Gromacs, accessed
on 2021-08-28.

[4] Software Modules. https://apps.fz-juelich.de/jsc/hps/juwels/soft
ware-modules.html, accessed on 2021-08-28.

[5] LAMMPS Molecular Dynamics Simulator . https://www.lammps.org/, ac-
cessed on 2021-08-28.

[6] LAMMPS. https://wiki.vsc.ac.at/doku.php?id=doku:molecular_d
ynamics#lammps, accessed on 2021-08-28.

[7] Vienna Scientific Cluster. https://vsc.ac.at, accessed on 2021-08-28.

[8] VSC-4. https://vsc.ac.at/systems/vsc-4, accessed on 2021-08-28.

[9] E. Ates, Y. Zhang, B. Aksar, J. Brandt, V. J. Leung, M. Egele, and A. K. Coskun.
HPAS: An HPC Performance Anomaly Suite for Reproducing Performance Variations.
In Proceedings of the 48th International Conference on Parallel Processing, ICPP
2019, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362955. doi: 10.1145/3337821.3337907.

[10] S. Benedict, P. Gschwandtner, and T. Fahringer. TOEP: Threshold Oriented Energy
Prediction Mechanism for MPI-OpenMP Hybrid Applications*. In 2018 Eleventh
International Conference on Contemporary Computing (IC3), pages 1–6, 2018. doi:
10.1109/IC3.2018.8530575.

105

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/thread-affinity-interface-linux-and-windows.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/thread-affinity-interface-linux-and-windows.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/thread-affinity-interface-linux-and-windows.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/thread-affinity-interface-linux-and-windows.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/thread-affinity-interface-linux-and-windows.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html
https://www.gromacs.org/About_Gromacs
https://apps.fz-juelich.de/jsc/hps/juwels/software-modules.html
https://apps.fz-juelich.de/jsc/hps/juwels/software-modules.html
https://www.lammps.org/
https://wiki.vsc.ac.at/doku.php?id=doku:molecular_dynamics#lammps
https://wiki.vsc.ac.at/doku.php?id=doku:molecular_dynamics#lammps
https://vsc.ac.at
https://vsc.ac.at/systems/vsc-4

[11] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and architectural implications. In 2008 International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 72–81, 2008.

[13] J. Breitbart, J. Weidendorfer, and C. Trinitis. Case Study on Co-scheduling for
HPC Applications. In 2015 44th International Conference on Parallel Processing
Workshops, pages 277–285, 2015. doi: 10.1109/ICPPW.2015.38.

[14] J. Breitbart, S. Pickartz, S. Lankes, J. Weidendorfer, and A. Monti. Dynamic
Co-Scheduling Driven by Main Memory Bandwidth Utilization. In 2017 IEEE
International Conference on Cluster Computing (CLUSTER), pages 400–409, 2017.
doi: 10.1109/CLUSTER.2017.59.

[15] A. D. Breslow, L. Porter, A. Tiwari, M. Laurenzano, L. Carrington, D. M. Tullsen,
and A. E. Snavely. The Case for Colocation of High Performance Computing
Workloads. Concurr. Comput.: Pract. Exper., 28(2):232–251, Feb. 2016. ISSN
1532-0626. doi: 10.1002/cpe.3187.

[16] J. Brownlee. Data Preparation for Machine Learning: Data Cleaning, Feature
Selection, and Data Transforms in Python. Machine Learning Mastery, 2020.

[17] P. Brucker. Scheduling algorithms. Springer, Berlin [u.a.], 5. ed.. edition, 2007. ISBN
354069515X.

[18] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP : portable shared memory
parallel programming. Scientific and engineering computation. MIT Press, Cambridge,
Mass. [u.a.], 2008. ISBN 0262533022.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. Ro-
dinia: A benchmark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC), pages 44–54, 2009.

[20] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, Liang Wang, and K. Skadron. A
characterization of the Rodinia benchmark suite with comparison to contemporary
CMP workloads. In IEEE International Symposium on Workload Characterization
(IISWC’10), pages 1–11, 2010.

[21] R. D. Cook and S. Weisberg. Criticism and Influence Analysis in Regression.
Sociological Methodology, 13:313–361, 1982. ISSN 00811750, 14679531.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
The MIT Press, Cambridge, Mass. [u.a.], 3. ed.. edition, 2009. ISBN 0262033844.

106

[23] T. Creech, A. Kotha, and R. Barua. Efficient Multiprogramming for Multicores with
SCAF. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, page 334–345, New York, NY, USA, 2013. Association
for Computing Machinery. ISBN 9781450326384. doi: 10.1145/2540708.2540737.

[24] J. Davis and M. Goadrich. The Relationship between Precision-Recall and ROC
Curves. In Proceedings of the 23rd International Conference on Machine Learning,
ICML ’06, page 233–240, New York, NY, USA, 2006. Association for Computing
Machinery. ISBN 1595933832. doi: 10.1145/1143844.1143874. URL https:
//doi.org/10.1145/1143844.1143874.

[25] M. Endrei, C. Jin, M. N. Dinh, D. Abramson, H. Poxon, L. DeRose, and B. R.
de Supinski. Statistical and machine learning models for optimizing energy in
parallel applications. The International Journal of High Performance Computing
Applications, 33(6):1079–1097, 2019. doi: 10.1177/1094342019842915.

[26] G. Georgakoudis, H. Vandierendonck, P. Thoman, B. R. D. Supinski, T. Fahringer,
and D. S. Nikolopoulos. SCALO: Scalability-Aware Parallelism Orchestration for
Multi-Threaded Workloads. 14(4), Dec. 2017. ISSN 1544-3566. doi: 10.1145/3158643.

[27] T. Gruber. likwid perfctr. https://github.com/RRZE-HPC/likwid/wiki/
likwid-perfctr, 2020, accessed on 2020-08-27.

[28] T. Harris, M. Maas, and V. J. Marathe. Callisto: Co-Scheduling Parallel Runtime
Systems. EuroSys ’14, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450327046. doi: 10.1145/2592798.2592807. URL https:
//doi.org/10.1145/2592798.2592807.

[29] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009.
ISBN 9780387848846.

[30] S. Hatfield. Supercomputer trend data. https://samhatfield.co.uk/2019
/04/10/supercomputer-trend-data/, accessed on 2021-08-28.

[31] A. H. Karp and H. P. Flatt. Measuring Parallel Processor Performance. Commun.
ACM, 33(5):539–543, May 1990. ISSN 0001-0782. doi: 10.1145/78607.78614. URL
https://doi.org/10.1145/78607.78614.

[32] K. Kumar Pusukuri, R. Gupta, and L. N. Bhuyan. ADAPT: A Framework for
Coscheduling Multithreaded Programs. ACM Trans. Archit. Code Optim., 9(4),
Jan. 2013. ISSN 1544-3566. doi: 10.1145/2400682.2400704. URL https:
//doi.org/10.1145/2400682.2400704.

[33] M. Mercier, D. Glesser, Y. Georgiou, and O. Richard. Big data and HPC collocation:
Using HPC idle resources for Big Data analytics. In 2017 IEEE International
Conference on Big Data (Big Data), pages 347–352, 2017. doi: 10.1109/BigData.20
17.8257944.

107

https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr
https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr
https://doi.org/10.1145/2592798.2592807
https://doi.org/10.1145/2592798.2592807
https://samhatfield.co.uk/2019/04/10/supercomputer-trend-data/
https://samhatfield.co.uk/2019/04/10/supercomputer-trend-data/
https://doi.org/10.1145/78607.78614
https://doi.org/10.1145/2400682.2400704
https://doi.org/10.1145/2400682.2400704

[34] M. Mirka, G. Sassatelli, and A. Gamatié. Online Learning for Dynamic Control of
OpenMP Workloads. In 2020 9th International Conference on Modern Circuits and
Systems Technologies (MOCAST), pages 1–6, 2020. doi: 10.1109/MOCAST49295.
2020.9200292.

[35] M. S. Müller, J. Baron, W. C. Brantley, H. Feng, D. Hackenberg, R. Henschel, G. Jost,
D. Molka, C. Parrott, J. Robichaux, P. Shelepugin, M. van Waveren, B. Whitney,
and K. Kumaran. SPEC OMP2012 – an Application Benchmark Suite for Parallel
Systems Using OpenMP. In Proceedings of the 8th International Conference on
OpenMP in a Heterogeneous World, IWOMP’12, page 223–236, Berlin, Heidelberg,
2012. Springer-Verlag.

[36] NERSC. Process and Thread Affinity. https://docs.nersc.gov/jobs/affi
nity/. Accessed on 2021-08-20.

[37] NERSC. Measuring Arithmetic Intensity. https://docs.nersc.gov/perfo
rmance/arithmetic_intensity/, accessed on 2021-08-17.

[38] K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou. A Survey of
Power and Energy Predictive Models in HPC Systems and Applications. ACM
Comput. Surv., 50(3), June 2017. ISSN 0360-0300. doi: 10.1145/3078811.

[39] F. Pascual and K. Rzadca. Colocating tasks in data centers using a side-effects
performance model. European Journal of Operational Research, 268, 02 2018. doi:
10.1016/j.ejor.2018.01.046.

[40] M. Pinedo. Scheduling : theory, algorithms, and systems. Springer, Cham, fifth
edition. edition, 2016. ISBN 3319265806.

[41] S. Raschka and V. Mirjalili. Python Machine Learning: Machine Learning and Deep
Learning with Python, Scikit-Learn, and TensorFlow, 2nd Edition. Packt Publishing,
2nd edition, 2017. ISBN 1787125939.

[42] K. R. S. Hatfield. Microprocessor (and Supercomputer) Trend Data. https:
//github.com/samhatfield/microprocessor-trend-data, accessed on
2021-09-05.

[43] D. Sarkar, R. Bali, and T. Sharma. Practical Machine Learning with Python: A
Problem-Solver’s Guide to Building Real-World Intelligent Systems. Apress, USA,
1st edition, 2017. ISBN 1484232062.

[44] Y. Solihin. Fundamentals of Parallel Multicore Architecture. Chapman and Hall/CRC
Computational Science Series. Chapman and Hall/CRC, an imprint of Taylor and
Francis, Boca Raton, FL, 1st edition. edition, 2015. ISBN 0429069413.

[45] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting Performance Data
with PAPI-C. In M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, editors,

108

https://docs.nersc.gov/jobs/affinity/
https://docs.nersc.gov/jobs/affinity/
https://docs.nersc.gov/performance/arithmetic_intensity/
https://docs.nersc.gov/performance/arithmetic_intensity/
https://github.com/samhatfield/microprocessor-trend-data
https://github.com/samhatfield/microprocessor-trend-data

Tools for High Performance Computing 2009, pages 157–173, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. ISBN 978-3-642-11261-4.

[46] Z. Wang, L. Zheng, Q. Chen, and M. Guo. CAP: Co-Scheduling Based on Asymptotic
Profiling in CPU+GPU Hybrid Systems. PMAM ’13, page 107–114, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN 9781450319089. doi: 10.1
145/2442992.2443004. URL https://doi.org/10.1145/2442992.2443004.

[47] Wei Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R.
Stan. HotSpot: a compact thermal modeling methodology for early-stage VLSI
design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(5):
501–513, 2006. doi: 10.1109/TVLSI.2006.876103.

[48] Q. Xiong, E. Ates, M. C. Herbordt, and A. K. Coskun. Tangram: Colocating
HPC Applications with Oversubscription. In 2018 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–7, 2018. doi: 10.1109/HPEC.2018.8547644.

[49] A. B. Yoo, M. A. Jette, and M. Grondona. SLURM: Simple Linux Utility for
Resource Management. In D. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,
Job Scheduling Strategies for Parallel Processing, pages 44–60, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. ISBN 978-3-540-39727-4.

109

https://doi.org/10.1145/2442992.2443004

Appendices

Code Template for Measuring PAPI Performance Events
For measuring our limited set of PAPI performance events, we use the PAPI low level
API. Listing 1 shows the synchronization and PAPI calls that need to be added around
the kernel section of a program.

Listing 1: Template for measuring PAPI events.
1 #include "sync.h"
2 #include <papi.h>
3
4 /* everything before kernel section: preprocessing, etc. */
5
6 int EventSet=PAPI_NULL;
7 int events[] = {PAPI_TOT_CYC, PAPI_STL_ICY, PAPI_BR_CN, PAPI_L3_LDM, PAPI_TOT_INS,
8 PAPI_L1_ICM, PAPI_L2_ICH, PAPI_L3_TCM, PAPI_L3_DCW};
9 int num_events = sizeof(events) / sizeof(events[0]);

10 long_long values[num_events];
11
12 init_sync();
13
14 if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) {/* error handling */}
15 if (PAPI_create_eventset(&EventSet) != PAPI_OK) {/* error handling */}
16 if (PAPI_add_events(EventSet, events, num_events) != PAPI_OK) {/* error handling */}
17
18 do_sync();
19
20 if (PAPI_start(EventSet) != PAPI_OK) {/* error handling */}
21 /* kernel section */
22 if (PAPI_read(EventSet, values) != PAPI_OK) {/* error handling */}
23
24 do_sync();
25
26 for (int i = 0; i < num_events; i++) {
27 char EventCodeStr[PAPI_MAX_STR_LEN];
28 if (PAPI_event_code_to_name(events[i], EventCodeStr) != PAPI_OK) {
29 /* error handling */
30 }
31 printf("%s: %lld\n", EventCodeStr, values[i]);
32 }
33
34 if (PAPI_stop(EventSet, values) != PAPI_OK) {/* error handling */}
35
36 cleanup_sync();
37 /* postprocessing etc. */

111

Pseudo Code of the Prediction Model

Listing 2: Pseudo code of the logistic regression model.
1 from sklearn.linear_model import LogisticRegression
2 import pandas as pd
3
4 def create_good_bad_column(df, app):
5 # min_time is minimum dedicated time of app, t is threshold for app
6 good_bad_col = []
7 for i, row in df.iterrows():
8 if row[’time’] <= t * min_time:
9 good_bad_col.append(1)

10 else:
11 good_bad_col.append(0)
12 df[’good-time’] = good_bad_col
13
14 def read_in_data_create_good_bad_column(size):
15 all_dataframes = []
16 # read in all measurements from co-scheduled combinations with size
17 for a in all_apps:
18 df = pd.read_csv(filename_for_a)
19 df = create_good_bad_column(df, a)
20 all_dataframes.append(df)
21 return pd.concat(all_dataframes)
22
23 def normalize_training_values(df, cols):
24 # normalizes values per time, then uses robust scaling
25 # values for robust scaling are taken from df[x],
26 where x is a performance event in cols
27
28 def normalize_training_values(df_train, df_validation, cols):
29 # normalizes values from df_validation per time, then uses robust scaling
30 # values for robust scaling are taken from df_train[x],
31 where x is a performance event in cols
32
33 def main():
34 # feature_cols is an array of all PAPI performance events used
35
36 dataframe_training = read_in_data_create_good_bad_column(’small’)
37 dataframe_validation = read_in_data_create_good_bad_column(’medium’)
38
39 normalize_training_values(dataframe_training, feature_cols)
40 normalize_validation_values(dataframe_training, dataframe_validation,
41 feature_cols)
42
43 feature_cols = [’%s-norm/s’ % x for x in feature_cols]
44
45 X = dataframe_training[feature_cols]
46 y = dataframe_training[’good-time’]
47
48 random_state = 5
49 log_reg = LogisticRegression(solver=’liblinear’, random_state=random_state,
50 max_iter=100)
51 log_reg.fit(X, y)
52
53 X_validation = dataframe_validation[feature_cols]
54 y_validation = dataframe_validation[’good-time’]
55 y_pred_validation = log_reg.predict(X_validation)

112

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Background Information
	Multicore Architecture on Shared Memory System
	What is OpenMP?
	Measuring Parallel Computing Performance
	Scheduling and How to Solve Co-Scheduling Problems
	Affinity Mappings
	Regression Analysis

	Overview of Used Benchmarks
	Rodinia OpenMP Applications
	SPEC OMP2012 Applications

	Related Work

	Co-Scheduling Preparation: Parallel Scalability and Scheduling Potential
	Novel Execution Framework for Co-Scheduling Applications
	Single Core Execution Behaviors
	Execution Experiments with Rodinia
	Execution Experiments with SPEC OMP2012

	Parallel Scalability
	Scalability of Rodinia Benchmarks
	Scalability of SPEC OMP2012 Benchmarks

	Performance Potential of Co-Scheduling
	Definition of the Integer Programs
	Evaluating the Optimization Potential of Co-Scheduling

	Characterizing Co-Scheduled Applications With HW Performance Counters
	Configurations for Measuring the Influence of Co-Scheduling
	The Problem of Measuring Co-scheduled Applications
	Synchronization of Programs as the Solution

	The Influence of Co-Scheduling with Different Scheduling Configurations
	Co-Scheduling Experiments

	Prerequisites for Predicting Co-Scheduling Behaviors
	Correlation of Performance Metrics with Time
	Difficulties with likwid Performance Counters
	Correlation of PAPI Performance Events

	Limited Group of Performance Metrics Relevant for Prediction
	Finding Good Representatives
	Selecting Relevant Performance Events

	Predicting Co-Scheduling Potentials
	Prediction Model Idea
	Building a Prediction Model
	Data Normalization
	How to Choose Program A?
	Functionality of the Prediction Model

	Evaluation of the Prediction Model
	Test and Train Data Sets
	Distribution of PAPI Events between Training and Validation Sets
	Evaluating the Logistic Regression Models

	Conclusion and Future Work
	Bibliography
	Appendices
	Code Template for Measuring PAPI Performance Events
	Pseudo Code of the Prediction Model

