
Algorithm Selection using
Machine Learning for Sudoku

Puzzles

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Rajwardhan Kumar
Matrikelnummer 11936024

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 27. Oktober 2021
Rajwardhan Kumar Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Algorithm Selection using
Machine Learning for Sudoku

Puzzles

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Rajwardhan Kumar
Registration Number 11936024

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 27th October, 2021
Rajwardhan Kumar Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Rajwardhan Kumar

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. Oktober 2021
Rajwardhan Kumar

v

Acknowledgements

I would like to extend my thanks to my friends and family for their unconditional support
and love. I would like to to extend my thanks to DI Felix Winter for his recommendations
on Gurobi solver and the running of the Hybrid Sudoku solver in the initial stages of
the thesis. I would also like to thank Matthias Steckert and Nicola Nasi for their help
in grammatically correcting the German version of the Abstract. Most importantly, I
would like to extend my special thanks to my supervisor Priv.-Doz. Dr. Nysret Musliu
for his recommendations, directions and support throughout the thesis work.

vii

Kurzfassung

Sudokus sind kombinatorische Zahlenrätsel, welche regelmäßig in Zeitschriften, Zeitungen
und auf Webseiten erscheinen und zum Brainstorming gut geeignet sind. Diese kombi-
natorischen Zahlenrätsel sind als eine quadratische Matrix mit Zeilen-, Spalten- und
Untergitterbeschränkungen definiert, wobei die Untergitter als die Quadratwurzel der Ma-
trixgröße definiert sind. Im Allgemeinen sind Sudoku-Rätsel Spezialfälle von sogenannten
lateinischen Quadraten.

Sudoku-Rätsel sind rechnerisch NP-komplette Probleme, d.h. nach dem No-Free-Lunch-
Theorem gibt es keinen einzigen Algorithmus, der alle Instanzen der Sudoku-Rätsel am
effizientesten löst. Daraus ergibt sich die Frage zur Algorithmenauswahl, bei der nicht
für jedes Rätsel ein neuer Algorithmus geschrieben werden muss, sondern der beste
Algorithmus aus einer gegebenen Liste von Algorithmen mit guter Leistung ausgewählt
werden kann. Darüber hinaus ist es möglicherweise auch wichtig, die Laufzeit von
Algorithmen für jedes Sudoku-Rätsel abzuschätzen.

In dieser Arbeit untersuchen wir das Problem der Algorithmenauswahl und Laufzeitvor-
hersage für Sudoku-Rätsel mit Methoden des maschinellen Lernens. Wir identifizieren vier
Sudoku-Solver nach aktuellem Stand der Technik, um die Problemstellung der Algorith-
menauswahl und Laufzeitvorhersage anzugehen. Zusätzlich wurde die Berechnung von 70
Merkmalen durchgeführt. Für jede Fragestellung wurden fünf Klassifizierungs- und sechs
Regressionsmethoden, zusammen mit der Merkmalselektion, der Datendiskretisierung
und verschiedenen Parametereinstellungen untersucht.

Abschließend lässt sich sagen, dass die von uns erstellte Umgebung - bezogen auf die
Frage der statischen Algorithmenauswahl und Laufzeitvorhersage für Sudoku-Rätsel –
robust in Bezug auf Genauigkeit der Algorithmenauswahl und gut bei der Vorhersage
der Laufzeit ist.

ix

Abstract

Sudokus are interesting puzzles for brainstorming and appear regularly in magazines,
papers and websites. These puzzles are defined as a square matrix having a row, column
and sub-grid constraints, where the sub-grids are the square root of the matrix size. In
general, Sudoku puzzles are special cases of Latin squares.

Computationally, Sudoku puzzles are NP-complete problems, i.e., according to the No
Free Lunch Theorem, there is no single algorithm that solves all instances of the Sudoku
puzzles most efficiently. This gives rise to the question of algorithm selection, where there
is no requirement of writing a new algorithm for every puzzle but the best performing
algorithm can be chosen from a given set of good performing algorithms. Moreover, it
may also be of importance knowing how long to run an algorithm.

In this thesis, we investigate the algorithm selection and run-time prediction problem for
Sudoku puzzles using machine learning methods. We identify four state-of-the-art Sudoku
solvers for algorithm Selection and run-time Prediction. Additionally, identification and
computation of 70 features for characterizing Sudoku puzzles distinctively was done.
Five classification and six regression methods for each of the problem statements have
been investigated along with feature selection method, discretization of data and various
parameter settings.

Finally, the environment built by us for algorithm selection and run-time prediction for
Sudoku puzzles was robust in terms of accuracy for algorithm selection and good in
predicting the run-time.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Objectives . 2
1.2 Results . 2
1.3 Organisation of Chapters . 3

2 Background 5
2.1 Sudoku . 5
2.2 Algorithms for Sudoku Puzzle . 7
2.3 Algorithm Selection and Run-time Prediction 11

3 Algorithm Selection and Run-time Prediction for Sudoku Puzzles 15
3.1 Sudoku Instances . 15
3.2 Solvers for Sudoku . 16
3.3 Features for Sudoku Puzzle . 17
3.4 Method for Algorithm Selection . 22
3.5 Method for Run-time Prediction . 23

4 Experimental Setup, Solver Evaluation and Data Sets 25
4.1 Solver Run-time Evaluation . 25
4.2 Data Sets for Algorithm Selection and Run-time Prediction 31

5 Evaluation of Algorithm Selection 33
5.1 Pre-processing and Feature Selection 33
5.2 Algorithm Selection Results . 34
5.3 Overall Analysis . 42

6 Evaluation of Run-time Prediction 45
6.1 Pre-processing . 45

xiii

6.2 Regression Results . 46
6.3 Overall Analysis . 50

7 Conclusion 55
7.1 Future Work . 56

List of Figures 57

List of Tables 61

List of Algorithms 63

Acronyms 65

Bibliography 67

Appendix A 73
Features . 73
Algorithm Selection Feature Selection . 73

Appendix B 77
Run-time Prediction Feature Selection . 77

Appendix C 81
Algorithm Selection for Easy Data Set . 81

CHAPTER 1
Introduction

Sudoku puzzles are regularly published in papers, magazines and online. Many mobile apps
and websites have been developed for Sudoku puzzles 1 2 3. This puzzle has also grabbed
the interest of many mathematicians. Puzzles have always interested mathematicians,
for example the seven bridges of Königsberg and Euler [RT12]. Interestingly, origins of
Sudoku lie with Euler’s development of Latin squares, which is a number puzzle having
row and column constraints [Lew07a]. Sudoku has been shown to have uses in binary
data encryption [WNA10] and image encryption [WZN+10].

Sudoku as presented in papers, magazines and online are generally of order 3 and are
well formed. Typically, a well formed Sudoku puzzle corresponds to one Sudoku board
and is logic solvable but it is worth noting that not all puzzles will be logic solvable
[YS03, Lew07b]. Sudoku has been proven to be a NP-Complete puzzle [YS03].

Computationally, Sudoku is modelled as a constraint program [Sim05], in conjunctive
normal form [LO06], as an integer program [BCLR08], etc. The above mentioned papers
have not involved puzzles of higher order, while state-of-the-art meta-heuristic approaches
such as [Lew07a] and [MW17] have investigated puzzles up to the order of 5. Though,
there are other papers that have also involved puzzles of higher order. Our aim is to
investigate puzzles of higher order and also include constraint optimisation and integer
programming state-of-the-art solvers like IBM Cplex, Google OR-Tools, Gurobi and
Chuffed. The performance of these solvers vary on a case by case basis of instances which
justify the no free lunch theorem [WM97].

The NP-Completeness of Sudoku leads us to the problem of algorithm selection by no free
lunch theorem [WM97, Ric76], where the need to create new algorithms for each instance
of a problem is no longer required and a best performing algorithm can be selected from

1http://sudoku.com/
2https://www.websudoku.com/
3https://www.soduko-online.com/

1

1. Introduction

an existing set of algorithms [Kot16]. The set of best performing algorithms is called the
algorithm space [Ric76].

Algorithm space is chosen on the basis of performance by making an evaluation over a
set of existing puzzle instances, which is the problem space [Ric76] of Sudoku puzzles.
Therefore, the need to generate puzzles. Additionally, puzzles of order 3 to 9 for the
purpose has been generated . The puzzles generated are described in [Lew07a].

Based on the problem space, features are computed from each puzzle instance as domain
knowledge or meta-learning features, this is the feature space [Ric76]. Additionally, Rice
model has a performance space [Ric76]. The use of machine learning is to enhance the
performance space using various state-of-the-art machine learning algorithms. The other
state-of-the-art algorithm selection papers are [XHHLB08, MS13, Kot16]. Feature space
is one of the most important aspect of algorithm selection [Kot16].

Based on the algorithm space, it may also be of importance knowing the run-time of
algorithms [HXHLB14]. The application of machine learning techniques has also been
applied to predict the run-time of algorithms.

This thesis selects the most efficient algorithm for a certain Sudoku puzzle instance from
a set of good performing algorithms.

1.1 Objectives
The main objectives of the thesis are as follows:

• Identification of solvers, computing run-time for each Sudoku puzzle instance w.r.t.
each solver and analyzing and comparing the solvers.

• Identify and compute features using domain and meta-learning knowledge for the
Sudoku puzzle instances.

• Perform algorithm selection for Sudoku puzzle instances based on supervised
machine learning classification techniques using the computed features. Here, we
wish to obtain a very high accuracy and the goal would be to select the best
performing solver.

• Perform algorithm run-time prediction for Sudoku puzzle instances based on super-
vised machine learning regression techniques using the computed features.

1.2 Results
Our contribution to algorithm selection and run-time prediction of Sudoku puzzles are as
follows:

2

1.3. Organisation of Chapters

• We identified six state-of-the-art solvers for Sudoku instances. Based on run-time of
Sudoku puzzle instances, we chose four solvers. Additionally, we were experimentally
able to show that no solver out performs for every puzzle instance.

• We identified and computed 70 features for algorithm selection and run-time
prediction.

• The goal of selecting the best performing solver was achieved for some cases. An
accuracy of almost 90% was achieved for some cases.

• Regression techniques showed good results in some cases for predicted run-time of
solvers on Sudoku instances.

1.3 Organisation of Chapters
The further chapters of the thesis are organised as follows:

In chapter 2 of the thesis, we describe the background knowledge. The background
of Sudoku as a constraint problem is discussed. The state-of-the-art algorithms and
modelling techniques that are used to solve Sudoku puzzles have been briefly discussed.
Finally, the algorithm selection and run-time prediction method are presented.

In chapter 3 of the thesis, we describe the basic algorithm selection and run-time
prediction approach for Sudoku puzzles. The method used for generating the Sudoku
puzzle instances has been discussed. The features identified and computed by us are
presented. The brief mention of solvers used by us is done. The steps for algorithm
selection and run-time prediction using the machine learning approach is mentioned.

In chapter 4 of the thesis, we describe our experimental environment and evaluation
of solvers. The evaluation of solvers based on order and empirical hardness has been
done. Finally, the data sets used for algorithm selection and run-time prediction has
been described.

In chapter 5 of the thesis, we describe the evaluation of algorithm selection approach
using five different state-of-the-art machine learning techniques. The chapter includes
results based on four data sets, pre-processing, feature selection technique, discretization
and parameter tuning. A confusion matrix for each data set has been presented. Finally,
an overall analysis has been done.

In chapter 6 of the thesis, we describe evaluation of the run-time prediction. The chapter
includes results based on four data sets, their Pre-processing and results using six machine
learning techniques. Finally, an overall analysis is presented.

Finally, we conclude with our findings in Chapter 7.

3

CHAPTER 2
Background

2.1 Sudoku
Sudoku puzzles are generally published in newspapers, magazines and websites due to its
popularity and for brainstorming [Lew07a]. Interestingly, Sudoku has found its usage in
binary data encryption [WNA10] and image encryption [WZN+10]. Sudoku has been
formally defined as a constraint programming problem [Sim05].

2.1.1 Definition
Let us represent Sn as a Sudoku board and Sp

n as a Sudoku puzzle of order n. A Sudoku
puzzle Sp

n is a partial Sudoku board Sn. The end goal is to convert the partial Sudoku
board into a complete Sudoku board. Sn is defined as a n2 × n2 matrix, where [Lew07a]:

• each row of cells contains each number from {1, . . . , n2} exactly once,

• each column of cells contains each number from {1, . . . , n2} exactly once and

• each sub-grid (n × n) of matrix contains each number from {1, . . . , n2} exactly
once.

The p in Sp
n represents the probability with which the puzzle has been generated. The

puzzle generation method is mentioned in Chapter 3, Section 3.1. A typical Sudoku
puzzle has been depicted in the Figure 2.1 (a), where the Sp

n presented is of order n = 3
and p = ·28.

A well formed Sudoku puzzle is one that has only one solution and are logic solvable
[Lew07a, Sim05]. The goal of logically solving a puzzle is to arrive to a corresponding
optimal Sudoku board, that obeys the row, column and sub-grid constraints. It is to be

5

2. Background

Figure 2.1: Sudoku as a Graph Coloring Problem [AC18]

noted that not all Sudoku puzzles are logic solvable and have one solution [Lew07a, YS03].
Additionally, Sudoku has also been proven to be a NP-Complete problem [YS03].

Interestingly, Sudoku can be converted in to a graph coloring problem [HM07]. A graph
coloring example for the Sudoku has been depicted in Figure 2.1 (b). Not only can
Sudoku be converted into a graph coloring problem but also into a Hamiltonian cycle
problem [Hay16], exact cover problem [Kap10], constraint programming problem [Sim05],
propositional satisfiability problem [LO06] and integer programming problem [BCLR08].

2.1.2 Solving Sudoku with Pen and Paper
Generally, humans solve logic solvable Sudoku puzzles using constraints. There are
various techniques to solve the problem such as the forced cell technique, twins technique,
x-wings, etc [RT12].

The forced cell technique has 2 different types; either a cell in the puzzle can always
be identified for a candidate value or a row, column or sub-grid can have only one
cell available for a given digit [RT12]. The twins technique is similar to the forced
cell technique but concerning pair of numbers for 2 and more cells and finally one cell
is considered filled by logic [RT12]. These are techniques very similar to constraint
programming in computer science.

The other way of solving Sudoku could be, adding the numbers in rows, columns and
sub-grids [RT12]. They arrive to the same count for every Sudoku board. Similarly,
multiplication could be used [RT12]. In case of addition and multiplication, there could

6

2.2. Algorithms for Sudoku Puzzle

be a loss of information if the digits are not following the Sudoku constraints in rows,
columns or sub-grids.

2.2 Algorithms for Sudoku Puzzle
In this section of the thesis, the state-of-the-art algorithms and modelling techniques used
for Sudoku puzzles will be discussed in brief. The Sudoku puzzle problem is known to be
a NP-Complete problem [YS03]. Computationally, Sudoku has been popularly known
to be modelled with constraint programming [Sim05], as a propositional satisfiability
problem (SAT) [LO06] and integer programming [BCLR08].

NP-complete problems are the hardest problems of class NP [Woe03]. Though these
problems can be solved by exhaustive search, there are larger instances of problems that
can increase the running time of the exhaustive search algorithms and for some instances
heuristic methods may be more effective than the exact methods [Woe03].

Sudoku as Constraint Programming

As known by now, Sudoku is a constraint programming problem [Apt03, Sim05] and
can be described using the alldifferent constraints [vH01]. The alldifferent constraint
in the case of Sudoku is applicable to each row, each column and each sub-grid, where
the domain is {1, . . . , n2}. Throughout the thesis, some solvers used by us use the basic
alldifferent constraint modelling approach for Sudoku. The approaches and propagation
methods to solving will be discussed in the later sub-section.

Sudoku as a SAT

Sudoku has also been modelled as a propositional satisfiability (SAT) problem, where
the clauses have been encoded in conjunctive normal form [LO06]. These encoding
can be solved using propositional satisfiability inferencing techniques, such as picosat,
unit propagation or dpll algorithm[Bie08, DP60]. The paper [LO06] describes two
SAT encoding; minimal and extended. The minimal encoding is a sufficient encoding
whereas the extended encoding adds redundant clauses [LO06]. The extended encoding
described by Lynce and Ouaknine [LO06] is similar to the alldifferent approach of
constraint programming [Sim05]. The number of assignments for a variable in Sudoku
for alldifferent constraint is same as the unit propagation [DP60, LO06].

Sudoku as an Integer Program

Sudoku has also been formalized as a binary integer linear program (BILP) [BCLR08].
The decision variable considered for BILP is xijk = {0, 1}, where xijk = 1 if element
(i, j) of the n2 × n2 Sudoku matrix contains the integer k = {1, . . . , n2} and xijk = 0
otherwise. Moreover, as known to us by Helmut Simonis [Sim05] that Sudoku is a
constraint programming problem. BILP’s formulation of the constraints are; there is
only one k value for each row, there is only one k value for each column, there is only
one k value for each sub-grid, every position in the Sudoku matrix must be filled and
finally, xijk = 1 [BCLR08]. Since this is a satisfiability problem no objective function

7

2. Background

is generally required but for the use in programming such as MATLAB [MAT10] an
objective function is defined as 0T x, where 0T is a vector of objective function coefficients
[BCLR08]. The objective function is to be minimised.

2.2.1 General Exact Solving Strategies
Helmut Simonis has mentioned several approaches to solve the Sudoku using constraint
programming [Sim05], all of them using the alldifferent constraint for the Sudoku
puzzle. The propagation schemes mentioned are forward checking, forward checking
with channeling, alldifferent with bound-consistency, bound-consistency with channeling,
alldifferent with hyper arc-consistency (HAC), HAC with colored matrix, HAC with
rows or sub-grids interaction, HAC with colored matrix and same constraints, HAC with
same constraints and rows or sub-grids interaction, HAC with colored matrix and rows
or sub-grids interaction, alldifferent with forward checking plus shaving, alldifferent with
bound-consistency plus shaving and alldifferent with hyper arc-consistency plus shaving
[Sim05]. The alldifferent survey in [vH01] describes the different consistency methods
[Sim05].

Shaving [TL00] is a technique that uses the complete constraint set by trying to set
variables to values in the domain of the Sudoku puzzle, i.e. {1, . . . , n2} [Sim05]. Many
inconsistent values are removed before the search begins by shaving, if the assignment
has failed. For the Sudoku puzzle all the values of the domain needs to be tested for
shaving [Sim05].

NP-Complete problems such as Sudoku can be solved by pruning the search tree [Woe03].
The steps include the identification of the feasible solution for each search space, deter-
mining the domain of the space and the enumeration of the branch into several sub-values,
like a tree structure. Generally the sub-trees that do not give optimal behaviour are
removed from the search space. Every branch and bound algorithm works on this method
[Woe03].

Every NP-Complete problem can be solved using a Dynamic programming approach
over the subsets [Woe03]. For each set of a chosen subset there are polynomial number
of corresponding subsets or the state space. Generally, dynamic programming uses a
complexity of O(2n) [Woe03]. An extended approach is to pre-process the data, it usually
means the reduction of the data before the algorithmic run [Woe03].

Another extensively used method for NP-Complete problems such as Sudoku is the
combination of exact (exact exponential time algorithm) approach using local search
which looks for a solution in the set of feasible solutions [Woe03]. It moves from one
feasible solution to the other in its neighbour. Mathematically, the neighbour is to be
found using a certain criteria, for example; in propositional satisfiability (SAT) it uses
the truth values {0, 1} [Woe03].

8

2.2. Algorithms for Sudoku Puzzle

Above we have described some of the common methods to solve a NP-Complete constraint
problem. One of the most important exact methods in trend is that of lazy clause
generation and has proved to out perform other methods [DYS20]. Our thesis investigates
Google OR-Tools CP-SAT 1 and Chuffed [CdlBS10] based on the approach of lazy clause
generation for Sudoku puzzles. These lazy clause generation solvers based on a hybrid
approach of constraint programming and SAT has proved to be more efficient than
any state-of-the-art constraint satisfaction problem (CSP) solvers [DYS20]. Lazy Clause
Generation is a technique in which finite domain propagation is used for solving constraint
programming and is combined with SAT’s conflict learning ability [DYS20].

2.2.2 Population-Based Approaches
Genetic Algorithms

Genetic Algorithms (GA) are inspired by Darwin’s theory of evolution [Hol92]. There have
been evolutionary approaches to the Sudoku puzzle in the computer science community.
Moraglio et al.[MTL06] have used product geometric crossover coupled with GA to solve
Sudoku puzzles. The other method that is more efficient is the approach using than
Moraglio et al.’s approach is using more straight forward GA approach [MK07]. The
method used swap mutations along with a fitness, the fitness function was designed to
be penalized on every constraint violation of the Sudoku [MK07] and in the optimal
solution all constraints are satisfied and the fitness function becomes zero. Moreover,
these algorithms have been tested only for order, n = 3 puzzles.

Ant Colony Optimisation

Ant colony optimisation is a population-based search method which has been inspired by
the ants behaviour [DDC99]. The approach has been used to solve several computational
problems such as the TSP [DG97]. The [LA20] uses a variant of constraint propagation
and uses ant colony optimisation rather than using a search based approach. In [LA20]
two basic rules have been applied; first is the fix the value that has been prefixed and
second is to fix the value that can be fixed by constraints, i.e., the domain set. Due to
these other cells could also be fixed recursively. The method used in [LA20] is a variant
of the method used in [DG97]. After each iteration, each ant starts with a new puzzle
and the aim of the ants to fix as many cells as possible [LA20]. The approach has been
generalized and the paper [LA20] have solved puzzles up to the order of n = 5.

Artificial Bee Colony

The artificial bee colony population-based method for Sudoku puzzles that we will discuss
here is an improvised version of the approach mentioned in [QS08]. In the artificial bee
colony method [PSY09] four parameter values have been defined which are, maximum

1https://developers.google.com/optimization/reference/python/sat/python/
cp_model

9

https://developers.google.com/optimization/reference/python/sat/python/cp_model
https://developers.google.com/optimization/reference/python/sat/python/cp_model

2. Background

number of cycles, number of employed bees, number of onlooker bees and number of scout
bees. the first three parameters are user defined while the fourth is 0.1 times the number
of employed bees. During initialization each bee is given a copy of the Sudoku puzzle
and they randomly start filling the empty cells and then the population is evaluated, the
cycle continues until a stopping criteria is met [PSY09].

Particle Swarm Optimization

The approach we will discuss here is based on integer particle swarm optimization. It is
based on the approach of discrete binary particle swarm optimisation described in [KE97].
Kennedy et al.approach was binary where as in this method the approach is multi-valued
[HG08].The velocity assumed was different for the dimensional space. The particles had a
multi-dimensional velocity vector and each was updated separately [HG08]. The velocity
vector had been scaled to a value of 0 to 1. The probability with which the number will
be randomly selected from the domain set of the Sudoku and is replaced by the current
value. The string of numbers is finally put back and the fitness is calculated [HG08].

2.2.3 Local Search Based Approaches

Simulated Annealing

The meta-heuristic based approach was introduced by Lewis [Lew07a] for solving Sudoku
puzzles. The approach uses the Sudoku constraints of sub-grids to solve the puzzle using
a random filling of the puzzle with the domain elements {1, . . . , n2}. In order to maintain
the sub-grid constraint a swap of cell elements is done for the cells that do not satisfy
this constraint. This produces an initial candidate solution that ensures the sub-grid
constraint of the puzzle is met. The candidate solution is evaluated using the row and
then the column constraint. The cost function is to be evaluated based on the number
of constraint violations and they are then fixed, first for the rows and secondly for the
column. The cost function for an optimal solution is evaluated to zero. The other paper
of Lewis [Lew07b] also discusses the method of simulated annealing.

Hybrid Tabu Search

Here we mention two hybrid Tabu search methods, one uses the alldifferent constraint
[SCG+15] and the other uses arc-cosistency 3 (AC3) [SCG+13] along with tabu search.
The first approach proposes to filter the the variable domain in a pre-processing phase and
at every iteration of the Tabu search [SCG+15]. The alldifferent constraint is applicable
to the rows, columns and sub-grids iteratively. For a full solution a best solution is found
or a maximum iteration limit has been reached.

The second method using AC3 and Tabu search, it merges classic tabu search based
method with AC3 filtering. The values that do not lead to the solution are removed.
The reduction in the number of iterations is done [SCG+13].

10

2.3. Algorithm Selection and Run-time Prediction

Hybrid Iterated Local Search

The hybrid approach uses forward checking for the CP approach along with dynamic
variable ordering coupled with iterated local search [MW17].

2.3 Algorithm Selection and Run-time Prediction
In this section, we will discuss the Algorithm Selection (AS) and Run-time Prediction
(RP) approach to a given problem. We will introduce the background knowledge of
the approaches and also include some important state-of-the-art research. The Rice
Framework [Ric76] for AS and the Leyton et al.[HXHLB14] approach to RP will be
briefly discussed.

2.3.1 Algorithm Selection
Although there are many optimisation and heuristic approaches for NP-complete combi-
natorial problems, algorithms out perform each other over some instances [WM97]. This
theorem is named the No Free Lunch Theorem [WM97]. The idea of AS is to reduce the
hassle of writing new algorithms for every combinatorial problem instance separately and
select the best performing algorithm from the existing set of algorithms. The problem
of AS was first introduced in 1976 by Rice [Ric76]. The framework consisted of two
models a basic model and a refined model. The model has been presented to have a high
algorithmic performance. The basic model of Rice Framework does not introduce the
feature space whereas the refined model considers the feature space into the framework.
The introduction of the feature space was done to make it simpler and to reduce the
dimension from that of the problem space [Ric76].

In the adapted model of Rice [Ric76], set of problem instances is represented by P , set of
features by F (which identifies each problem instance separately), the set of algorithms
by A and Y represents the performance space. The adapted schematic diagram of the
AS is based on [SM09] and is presented in Figure 2.2. The definition of the AS problem
is as follows [SM09]:

"For a given problem instance x ∈ P , with features f(x) ∈ F , find the selection mapping
S(f(x)) into algorithm space A, such that the selected algorithm α ∈ A maximises the

performance mapping y(α(x)) ∈ Y."

2.3.2 Problem Space and Algorithm Space
For NP-Complete problems, there are generally benchmark problems for instances of the
P. These instances tend to cover the varying empirical hardness of P, which generally
vary for each algorithm [WM97]. This makes sense for AS to have a varying instance
empirical hardness of the P .

11

2. Background

Figure 2.2: The Rice framework as adapted from Kate Smith-Miles [Ric76, SM09]

The other important aspect of the AS problem is the algorithm space A, it is of importance
to have good performing set of algorithms. The no free lunch theorem is a good motivation
to the problem statement of AS [Kot16]. Moreover, in AS the algorithm portfolio can be
of two distinct types; static and dynamic [Kot16]. In static portfolio, the designer decides
which algorithms to include for the AS approach based on instances and in dynamic
portfolio, the composition of algorithms vary for different problem instances [Kot16].

2.3.3 Feature Space
Features are one of the most important aspects of the algorithm selection approach
[Kot16, MS13, XHHLB08]. Every f(x) ∈ F is to be computed within the average time
of the run-time of algorithm over P and the computation should not cause overhead
[MS13, Kot16]. In addition to the computation time of the features, the feature space
should be able to detect the phase transitions in instances [Kot16, Ric76].

There are different types of features that have been computed for the approaches of AS.
They are the domain knowledge features, which have been implemented by other stat-
of-the-art approaches [MS13], SAT based features [XHHLB08] and other meta-learning
features have been discussed in [XHHLB08].

Feature Selection

Selection of informative features are important in AS [Kot16]. There needs to be a good
relation between the features and the performance of algorithms used in the AS approach
[Kot16, MS13]. There are various feature selection techniques, manually selecting features
[HDH+00], feature selection based on forward selection, backward selection, genetic search,
statistical feature selection, etc [GE03, FPHK94, MS13].

12

2.3. Algorithm Selection and Run-time Prediction

2.3.4 Performance Measure
Performance measure of AS is the mapping of an algorithm based on its performance
metric and problem, in this case the run-time of the algorithm over an instance [Kot16].

2.3.5 Run-time Prediction
The Run-time Prediction (RP) of an algorithm has continuously been investigated. Al-
gorithmic empirical hardness was first determined by Leyton [LBNS02] for the Winner
Determination Problem. The running time of IBM-Cplex was examined [Cpl09]. RP
for problems such as SAT, (Mixed Integer Programming) MIP and Travelling Sales-
person (TSP) along with several methods and their evaluation has been discussed by
Leyton et al.[HXHLB14]. The RP for NP-Complete problems [LBHHX14] has also been
investigated.

The methodology proposed by Leyton et al.[LBNS02, LBHHX14, HXHLB14] has a
similar approach and is closely related to AS approach of problem space P, algorithm
space A and feature space F . The data sets are compiled with features along with the
algorithmic run-time.

13

CHAPTER 3
Algorithm Selection and

Run-time Prediction for Sudoku
Puzzles

In this chapter, the algorithm selection and run-time prediction approach for Sudoku
puzzles is discussed. Section 3.1, discusses the Sudoku puzzle instance generation method.
Section 3.2, the Sudoku solvers considered for algorithm selection and run-time prediction
is mentioned. Section 3.3, a discussion on features identified and computed is done.
Finally in Section 3.4, the steps involved for algorithm selection and run-time prediction
of Sudoku puzzles is presented.

3.1 Sudoku Instances
For this thesis Sudoku puzzles have been generated by the method described in [Lew07a].
The puzzles generated range from a order of 3 to 9, i.e., n ∈ {3, . . . , 9}. As already
mentioned, puzzles that are presented in magazines and websites are generally solvable
by logic (having one clue for one position), having only one solution [Lew07a, YS03].

3.1.1 Instance Generation Method
The instance generation method is based on a randomised probabilistic approach [Lew07a].
A Sudoku that is completely filled and satisfies all constraints is an optimal Sudoku
board. For a given optimal board permutation of cells of rows and columns is performed
to obtain another optimal board.

The mentioned method can generate n!2(n+1) − 1 valid Sudoku boards from a single
optimal board [Lew07a]. The optimal boards are obtained by taking the row, column

15

3. Algorithm Selection and Run-time Prediction for Sudoku Puzzles

and sub-grid constraints into consideration. This generation method does not produce
all the possible boards [Lew07a].

Considering the above mentioned points puzzles are generated by the removal of numbers
from boards with a probability of 1 − p, where 0 ≤ p ≤ 1. The removal of numbers are
done using a randomised approach. The removal of numbers generate Sudoku puzzles
corresponding to optimal Sudoku boards. For higher values of p the puzzles generated will
be highly constrained and for low p values generated puzzles will be fairly unconstrained
[Lew07a].

In our thesis, we have considered generating puzzle instances from the orders of 3 to 9.
The p values considered for generating puzzles lie in between 0 · 05 and 0 · 95 with an
interval of 0 · 05. Therefore a total of 19 p values have been considered for each order.
Additionally, for each order and for each p value 20 different puzzles have been generated
bringing the count of each different Sp

n instance to 20. The total number of puzzles
generated for each order n is 380. The total number of puzzles generated were 2660 for
the considered values of n and p.

As mentioned in [Lew07a], higher p value generates highly constrained puzzles and low
p values will generate fairly unconstrained puzzles. Therefore, the higher p values will
generate puzzles that are fairly easy to solve and may also be logic solvable in many cases.
Whereas lower p values in many cases will produce puzzles that are not logic solvable
[Lew07a]. Due to its randomised probabilistic nature there may be puzzles generated
that are same.

3.2 Solvers for Sudoku
The Sp

n instances generated require high performing algorithms for solving, specially
for the case of higher n values. For the algorithm space of AS and RP problems, the
below mentioned exact and meta-heuristic approaches have been considered. Several
solvers were investigated. After investigation, these solvers were considered due to their
ability to solve Sp

n instances most efficiently. Other Sudoku solvers and algorithms have
been mentioned in Chapter 2 of the thesis. Six Sudoku solvers were tested during the
experimentation phase of our thesis.

3.2.1 Exact Approaches
By now we know that Sudoku can be modelled as a constraint satisfaction problem
[Sim05]. There exist several optimisation solvers for solving constraint satisfaction
problems. Narrowing the look for solvers we considered 4 of them, namely OR-Tools
CP-SAT (ORTL) by Google 1, IBM-Cplex (CPLEX) [Cpl09], Chuffed (CHUF) [CdlBS10]
and Gurobi (GUROBI) [GO21].

1https://developers.google.com/optimization/reference/python/sat/python/
cp_model

16

https://developers.google.com/optimization/reference/python/sat/python/cp_model
https://developers.google.com/optimization/reference/python/sat/python/cp_model

3.3. Features for Sudoku Puzzle

The modelling of Sudoku constraints was done using the alldifferent constraints for all of
the above mentioned solvers [vH01, Sim05]. In a set of variables an alldifferent constraint
implies that no two variables from that set have the same value, for Sudoku the set of
variable v = {1, . . . , n2} [vH01].

In ORTL, the alldifferent constraint along with the CP-SAT solver was used. The
CP-SAT involves constraint optimisation along with the SAT methods 2. For CPLEX,
CHUF and GUROBI, the alldifferent constraint was used for modelling the Sudoku
constraint optimisation problem. The Sp

n instances for the latter were run using the
MiniZinc tool [NSB+07, SFS+14].

Both CHUF and ORTL are based on Lazy Clause Generation. These lazy clause
generation solvers based on a hybrid approach of constraint programming (CP) and
propositional satisfiablity (SAT) has proved to be more efficient than any state-of-the-art
constraint satisfaction problem (CSP) solvers [DYS20]. Lazy Clause Generation is a
technique in which finite domain propagation is used for solving CP and is combined
with SAT’s conflict learning ability [DYS20].

3.2.2 Heuristic Approaches
The Simulated Annealing (SIMA) meta-heuristic based approache for Sudoku puzzles were
introduced in [Lew07a, Lew07b]. SIMA approach introduces the alldifferent approach
for the third constraint of sub-grids and couples it with a cost function for rows and
columns. The solution is optimal if the cost is 0.

The other heuristic approach is a hybrid approach which includes a CP based approach
of forward checking with dynamic variable ordering applied in between phases of local
search iterations [MW17]. It will be mentioned as HYILS throughout the thesis.

3.3 Features for Sudoku Puzzle
As mentioned earlier, features are one of the most important aspects for AS and RP
using machine learning. In this section we will present the features identified that can
distinguish one Sp

n instance from another. The features are broadly related to the domain
knowledge of Sudoku instances, their graph coloring variant and flatzinc features from
MiniZinc.

A brief recap of terms; a Sudoku, which is completely filled and follows all constraints is
a Sudoku board. A Sudoku puzzle is a partially filled Sudoku board.

Factors taken into consideration when computing the features:

• time for computation of features.
2https://developers.google.com/optimization/reference/python/sat/python/

cp_model

17

https://developers.google.com/optimization/reference/python/sat/python/cp_model
https://developers.google.com/optimization/reference/python/sat/python/cp_model

3. Algorithm Selection and Run-time Prediction for Sudoku Puzzles

The features presented below are specific to the Sp
n instances generated by the method

mentioned in the above section. For simplicity, we will introduce each feature belonging
to a certain class C and denote it as Cx where x is the feature. Features related to Sudoku
are meaningful using statistical metrics. The features identified and computed here are
inspired by papers [MS13, XHHLB08, HXHLB14, HM07, RT12].

3.3.1 Problem Based Features
Order Features
It is known by now that Sudoku puzzles are referred to as n2 ∗ n2 puzzles, where n ≥ 2
is an integer. The order (On) and size (On2) of the puzzles were included in our set of
features. The order and size of the puzzle distinguish the puzzles of varying orders in
between 3 ≤ n ≤ 9.

Sudoku Specific Features
A Sudoku puzzle is a partially filled Sudoku board as introduced in Chapter 2. Summation
(a) and Products (p) of Sudoku puzzle rows, columns or sub-grids can be different for
puzzles but are same for a Sudoku board of that order n. The total summation and
product of a partial Sudoku may also be different in the case of puzzles but is always
same in the case of a board for order n. Aggregate functions such as minimum, maximum,
mean, ratio (ra), range (r), inter quartile range (iqr for puzzle) and standard deviation
(sd) can also be used as attributes. The features that we use have been presented in
Table 3.1.

Counting the number of digits with aggregates mentioned above using rows, columns and
sub-grids can categorize puzzles distinctively. Similarly, counting the number of empty
and full rows, columns or sub-grids along with their aggregates are some other features
introduced. The domain set of a Sudoku board is {1, . . . , n2}, it may be of importance
knowing the number of elements from the domain set of Sudoku present and missing
from the puzzle. These features belong to the class N Sx where x is the feature name.
The features that we use have been presented in Table 3.2.

3.3.2 Graph Coloring Features
Some of the counting strategies mentioned above are similar when a Sudoku board is
converted to its graph coloring variant. The notion of a Sudoku board of order n has
a proper coloring of n2. It is known that a graph is called regular if the degree of each
vertex is the same, which is the case for every order n Sudoku board [HM07]. The
maximum degree of a vertex in a board is given by 3n2 − 2n − 1 [HM07]. The Sudoku
board graphs are regular hence every node of a Sudoku board has the same degree.

Since the concern is Sp
n instances, the equivalent graph from a puzzle is a partially colored

Sudoku graph or a partial Sudoku graph [HM07]. Some of the features for the partial
graph of a Sudoku puzzle has been inspired by [MS13]. They are mentioned as nodes,
node degree, edges and clique. The paper [MS13] focuses on graph coloring problems

18

3.3. Features for Sudoku Puzzle

1 N Smp mean of puzzle
2 N Sma mean of board
3 N Ssrp range of sum from puzzle to board
4 N Salr largest sum row
5 N Salc largest sum of column
6 N Salsg largest sum of sub-grid
7 N Ssar smallest sum of row
8 N Ssac smallest sum of column
9 N Ssasg smallest sum of sub-grid
10 N Splr largest product of row
11 N Splc largest product of column
12 N Splsg largest product of sub-grid
13 N Sspr smallest product of row
14 N Sspc smallest product of column
15 N Sspsg smallest product of sub-grid
16 N Ssdsr standard deviation for row sum of puzzle from board row sum
17 N Ssdsc standard deviation for column sum of puzzle from board column sum
18 N Ssdssg standard deviation for sub-grid sum of puzzle from board sub-grid sum
19 N Srmmsr ratio of minimum to maximum sum of row
20 N Srmmsc ratio of minimum to maximum sum of column
21 N Srmmssg ratio of minimum to maximum sum of sub-grid
22 N Srmtsr ratio of minimum puzzle to total row of board sum
23 N Srmtsc ratio of minimum puzzle to total column of board sum
24 N Srmtssg ratio of minimum puzzle to total sub-grid of board sum
25 N Sminon minimum occurrence of a digit
26 N Smaxon maximum occurrence of a digit
27 N Sfomin frequency of occurrence for minimum
28 N Sfomax frequency of occurrence for maximum
29 N Sds domain size
30 N Smds missing domain size
31 N Ssc is the domain complete? yes/no
32 N Ssp sum of the puzzle

Table 3.1: Table of features related to sum, product and domain of Sudoku puzzle.

which has the requirement of finding the optimal number of colors for a graph. The
Sudoku board has a known chromatic number of n2. Note, while the features computed
may be of the same name as that in [MS13], many are different and has a different
meaning due to its partial graph nature. Moreover, the computation time for graph
coloring features for Sudoku puzzles are very low as the puzzle does not need to be
converted into a graph and the features can be obtained from the puzzle itself.

Node Features

19

3. Algorithm Selection and Run-time Prediction for Sudoku Puzzles

1 N Spp percent of the puzzle filled
2 N Siqr inter quartile range of puzzle
3 N Sssr size of smallest row
4 N Sssc size of smallest column
5 N Ssssg size of smallest sub-grid
6 N Sslr size of largest row
7 N Sslc size of largest column
8 N Sslsg size of largest sub-grid
9 N Srmmr range from minimum to maximum size row
10 N Srmmc range from minimum to maximum size column
11 N Srmmsg range from minimum to maximum size sub-grid
12 N Srmtr range from minimum to total size row
13 N Srmtc range from minimum to total size column
14 N Srmtsg range from minimum to total size sub-grid
15 N Srammr ratio from minimum to maximum size row
16 N Srammc ratio from minimum to maximum size column
17 N Srammsg ratio from minimum to maximum size sub-grid
18 N Sramtr ratio from minimum to total size row
19 N Sramtc ratio from minimum to total size column
20 N Sramtsg ratio from minimum to total size sub-grid
21 N Ssdmtr standard deviation from total board row to puzzle row size
22 N Ssdmtc standard deviation from total board column to puzzle column size
23 N Ssdmtsg standard deviation from total board sub-grid to puzzle sub-grid size
24 N Snrfc number of filled completely rows
25 N Sncfc number of completely filled columns
26 N Snsgfc number of completely filled sub-grids
27 N Snrce number of completely empty rows
28 N Sncce number of completely empty columns
29 N Snsgce number of completely empty sub-grids
30 N Sde number of digits in the puzzle diagonal
31 N Sde puzzle diagonal filled completely, yes/no

Table 3.2: Table of features related to row, column and sub-grid size of Sudoku puzzle.

The feature number of nodes are equivalent to the number of digits on a puzzle. The
missing nodes from the partial graph is the number of missing digits from the puzzle.
These features belong to the class of graph size GSx. The features are number of nodes
for the puzzle as GSn, number of missing nodes for the puzzle GSmn and total nodes for
the board GStn.

Edge Features
As mentioned earlier, the maximal degree of a Sudoku board is 3n2 − 2n − 1. The case of
a puzzle is a partial graph and hence the maximum degree can be less than 3n2 − 2n − 1.

20

3.3. Features for Sudoku Puzzle

Similarly, number of edges of the partial graph can be computed. The class graph size
GSx has also been used for the edge features. The edge based features are edges of the
puzzle GSe, maximum number of edges w.r.t. the degree and missing nodes for the puzzle
GSmne, number of maximum missing edges w.r.t. the degree and missing nodes for the
puzzle GSnmme, total edges of the board GSte and maximal degree for the Sudoku GSmdb.

Chromatic Number Features
The chromatic number of a Sudoku board graph is always n2 whereas the chromatic
number of a partial Sudoku graph is a number from the domain {1, . . . , n2}. Another
important feature that was obtained from here is the minimum condition for a Sudoku
puzzle to have one solution. These features belong to the class χx. The features are
as follows; chromatic number χcn, missing chromatic number χmcn and total chromatic
number χtcn.

A Sudoku puzzle having a chromatic number of at least n2 − 1 is a minimal requirement
for a Sudoku puzzle to have a single solution. If the chromatic number of a Sudoku
puzzle is less than n2 − 1 then we can always swap two of them to obtain another solution
[RT12, HM07]. This feature is named as χmc.

Maximal Clique Features
The maximal clique of a Sudoku puzzle is the maximum of maximal digits in a row,
column or sub-grid. The maximal clique can have nodes less than n2 for a puzzle. For a
Sudoku board the maximal clique is always n2. The computation of maximal clique MCx

for the puzzle was done for our thesis. The features introduced are as follows; maximal
clique for the puzzle MCmc, total clique for the Sudoku board MCtc and missing clique
from the Sudoku board MCrc.

3.3.3 SAT Features
The computation of SAT based features was not computed because of time taken to
generate clauses, nevertheless we make a mention of it. The average computation time can
be seen in Figure 3.1. For propositional satisfiability (SAT) based features we referred to
the conjunctive normal form encoding mentioned in [LO06]. While SATZilla [XHHLB08]
mentions many SAT features, it is time consuming to generate the clauses in conjunctive
normal form (CNF) for puzzles Sp

8 and Sp
9 . The SAT clauses of Sp

6 and Sp
7 puzzles take

4 and 14 seconds respectively whereas, the average time to compute the entire set of
features mentioned until now was 3 · 6 seconds. This time taken to generate clauses can
in fact solve many of the puzzles by solvers such as CHUF, ORTL, SIMA and HYILS.

3.3.4 MiniZinc Constraint Programming Features
MiniZinc constraint modelling language [NSB+07] was used for solving Sudoku instances.
For solvers CHUF [CdlBS10], GUROBI [GO21] and CPLEX [Cpl09] flatzinc features
(FZx) were obtained using MiniZinc parameters. The features that were collected are
namely, FZchi, FZchc, FZcht, FZgi, FZgc, FZgt, FZcpi, FZcpc and FZcpt, they are
flatintvar, flatintconstraint, flattening time for CHUF, GUROBI and CPLEX, respectively.

21

3. Algorithm Selection and Run-time Prediction for Sudoku Puzzles

3 4 5 6 7 8
0

50

100

1 · 10−2 2 · 10−1 9 · 10−1 4
14

40 T
im

e

n-values

Figure 3.1: Average clause generation computing time for SAT w.r.t. the order of puzzle.

The features for GUROBI and CPLEX were the same and both were not used for any of
the further experimentation, due to their excessive computation time. The features from
CHUF were used as the computation time was low but only flatintvar and flatintconstraint.

3.3.5 Feature Space for Algorithm Selection and Run-time Prediction
A total of 89 features were presented in this section. The total features computed for
algorithm selection and run-time prediction problems are 70 (F70). Most features not
included in the data sets are SAT, CPLEX, GUROBI and multiplication based features.
These features were not included due to their excessive computation time or computation
overhead in the case of multiplication.

The maximum number of features selected by the feature selection method in the
evaluation process of algorithm selection 5 is 25 and for run-time prediction 6 is 70.

3.4 Method for Algorithm Selection
In the above sections we have discussed the problem space (Sudoku instances) P, the
algorithm space A and the feature space F . From Rice’s framework 2.2, it is known that
the best performing algorithm is to be selected for each Sudoku instance. The selection
mapping over the set of features is required and a performance mapping over the puzzle
instance.

The features for each puzzle instance f(Sp
n) ∈ F belong to the class of features Cx and

has been discussed in detail in the previous section of Features for the Sudoku puzzle.
The best performing algorithm is to be selected α ∈ A for each Sp

n instance. A data set
for the Machine Learning (ML) approach is created with the set of features f(Sp

n) ∈ F70
along with the best performing algorithm. Moreover, these data sets are used for the ML
classification approach.

22

3.5. Method for Run-time Prediction

The ML models are then to be trained such that for the next Sp
n instance, the model

can identify the most efficient algorithm from A. The goal would be to obtain a high
accuracy in the case of classification of algorithms.

3.5 Method for Run-time Prediction
Similar to the above approach, algorithm space A, set of features, i.e. the feature space
F and the problem space P is also be considered for Run-time Prediction (RP). The
run-time required to solve a certain problem can help us choose which algorithm to run
for a Sudoku instance.

The methodology proposed by Leyton et al.[LBNS02, LBHHX14, HXHLB14] has a
similar approach and is closely related to the AS approach. The training data sets are
created with features F70 and the run-time for an algorithm. The RP is done using ML
regression techniques.

23

CHAPTER 4
Experimental Setup, Solver

Evaluation and Data Sets

In this chapter, the evaluation of our system is presented. In Section 4.1, a detail
evaluation of Sudoku solvers is presented. Section 4.2, describes the data sets for the
machine learning approach of classification and regression for algorithm selection and
run-time prediction, respectively.

4.1 Solver Run-time Evaluation
In this section, we present the experimental results of six state-of-the-art solvers and
their evaluation. Our experiments were performed on Ubuntu 18.04 using Intel-Core
I5-3340M 2.70GHz × 4 processor having a 16GB RAM. The same system has been used
for the entire computation processes involved in our thesis.

As discussed earlier, the Sudoku instances used are of orders ranging between 3 and 9.
They were generated using the methodology used in [Lew07b, Lew07a, MW17]. The
method is described in the previous Chapter 3, Section 3.1. Each instance set of order n
consists of 380 instances. Therefore, the total number of Sp

n instances generated were
2660.

4.1.1 Solver Evaluation based on Order
The evaluation of Sudoku solvers are based on their run-time performance. A solver
evaluation on the hardness of puzzles has also been discussed. The time limit for each
solver on an instance was set to an hour. Note, that all percentages in graphical figures
have been rounded to its nearest integer. It can be noted that their are works based on
the evaluation of Sudoku solvers only until the order of 5. We present an evaluation until
the order of 9.

25

4. Experimental Setup, Solver Evaluation and Data Sets

As discussed in chapter 3 the Sudoku solvers considered are based on exact methods using
alldifferent constraints and meta-heuristics methods. The exact solvers considered are
ORTL 1, CPLEX [Cpl09], GUROBI [GO21] and CHUF [CdlBS10]. The meta-heuristics
methods used are SIMA [Lew07a] and HYILS [MW17]. MiniZinc [NSB+07, SFS+14]
tool was used for solvers CPLEX, GUROBI and CHUF. For MiniZinc used solvers, total
computation time of a Sp

n instance is the time taken to generate the MiniZinc (flatzinc)
constraints and variables along with the solving time.

The Sudoku solvers were run with a time limit of an hour. Each experiment performed
over an instance by MiniZinc tool with solvers CPLEX, GUROBI and CHUF was run
one time. Solvers SIMA and HYILS were run twice for each instance and an average
time was taken. Solver ORTL was run twice and an average taken.

According to the experiments conducted, the Sudoku solvers were very efficient and
solved 2096 problems from the problem space of orders n ∈ {3, . . . , 9}. The percent of
problems solved is depicted in Figure 4.1 w.r.t. to each solver and order. The higher the
order of the puzzle the fewer the number of instances solved for each Sudoku solver.

As mentioned in chapter 3, the Sp
n instances generated highly constrained puzzles with

higher values of p and lower values of p generated fairly unconstrained puzzles [Lew07a].
The puzzle instances Sp

8 with lower p values were hard to solve by all of the solvers,
CHUF solved a few of the instances. Similarly, Sp

9 instances with lower p values were not
solvable within the time limit of an hour. All instances of order 8 and 9 were solvable
most efficiently either by CHUF or ORTL.

However, ORTL and CHUF also could not solve lower p value puzzles and mostly solved
instances which were highly constrained. The Sp

6 and Sp
7 instances did have a good number

of solved instances for all our solvers. HYILS and SIMA also outperformed the exact
approaches of CHUF and ORTL in a few instances. The instances of order {3, . . . , 5}
were all solved. The total percent of problems solved for each order n ∈ {3, . . . , 9} is
depicted in Figure 4.2.

The above evaluation describes all puzzles solved according to the benchmarks that were
generated using the method described in the previous chapter 3.1. Due to the random
and probabilistic nature of the generation, there may be similar puzzles in many cases.
Therefore all similar puzzles have been removed from further evaluation.

Based on the instances, 1968 puzzles were distinct for CHUF, 1725 were distinct for
ORTL, 1253 were distinct for SIMA and 1795 were distinct for HYILS. Therefore, the
data sets consist of only puzzle instances that are distinct and solved.

Looking at the percent of problems solved of order n ∈ {8, 9} 4.2, further investigation was
done on orders n ∈ {3, . . . , 7}. The efficiency of each solver for orders from n ∈ {3, . . . , 7}
is depicted in Figure 4.3. Therefore, the solvers CPLEX and GUROBI has also been
removed from any further analysis as the solvers were not as efficient as the other solvers

1https://developers.google.com/optimization/reference/python/sat/python/
cp_model

26

https://developers.google.com/optimization/reference/python/sat/python/cp_model
https://developers.google.com/optimization/reference/python/sat/python/cp_model

4.1. Solver Run-time Evaluation

when solving Sudoku puzzle instances 4.3. This could be due to the reason of including
the MiniZinc flattening time into the solving time. One would also need to investigate

CHUF
ORTL

SIM
A

HYIL
S

CPLEX

GUROBI 0

20

40

60

80

10010
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

96
10

0
10

0
10

0
10

0
99

89
94 94 94

98

76

29

85

48

67
74

45

13

56

42 4243

36

5

37 37 3837
32

5

34 37 37 P
er

ce
nt

ag
e

(%
)

3 4 5 6 7 8 9

Figure 4.1: Percent of puzzles solved for each order by each solver.

3 4 5 6 7 8 9
0

20

40

60

80

100
100 100 100 98

84

45

37

N
um

be
r

of
in

st
an

ce
s

so
lv

ed

n-values

Figure 4.2: Total percent of puzzles solved for each order.

27

4. Experimental Setup, Solver Evaluation and Data Sets

the other aspect of theses solvers, i.e., without the MiniZinc flattening time.

CHUF ORTL SIMA HYILS CPLEX GUROBI
0

50

100

37

52

7 4 0 0

P
er

ce
nt

ag
e

(%
)

Solvers

Figure 4.3: Percent of puzzles solved by each solver most efficiently for orders 3 to 7.

Based on the above mentioned results 4.3, a further analysis of solvers and order was
conducted. Three sets of algorithms were considered for further analysis. The sets of
algorithms are A1 = {CHUF, ORTL, HY ILS}, A2 = {CHUF, ORTL, SIMA} and
A3 = {CHUF, ORTL, HY ILS, SIMA}. The order sets considered are n1 ∈ {3, . . . , 6}
and n2 ∈ {3, . . . , 7}.

The algorithm set A1 solved 1665 distinct Sp
n instances for order set n2. The percent of

problems solved most efficiently is depicted in Figure 4.4. Since, the solver SIMA did not
solve any Sp

n instance of order 7 most efficiently, the order set considered for algorithm
space A2 was only n1 ∈ {3, . . . , 6}. The percent of problems solved by each solver is
presented in Figure 4.5.

CHUF ORTL HYILS
0

50

100

37

53

10

P
er

ce
nt

ag
e

(%
)

Solvers

Figure 4.4: Percent of puzzles solved by each solver most efficiently for orders 3 to 7.

28

4.1. Solver Run-time Evaluation

Out of the total of 1385 distinct problem instances solved by the algorithm set A2 of
order set n1, 125 puzzle instances were solved by SIMA most efficiently. The overall
percentage for A2 and n1 is depicted in Figure 4.5. ORTL solved most of the problems
efficiently followed by CHUF and SIMA.

CHUF ORTL SIMA
0

50

100

31

58

11

P
er

ce
nt

ag
e

(%
)

Solvers

Figure 4.5: Percent of puzzles solved by each solver most efficiently for orders 3 to 6.

Another analysis for the combination of algorithm space of A3 = {CHUF, ORTL, HY ILS,
SIMA} and the instance order set n2 was done. A total of 1665 Sudoku instances solved,
i.e. from orders 3 to 7. The most efficient solvers (taking number of puzzles solved)
were ORTL, CHUF, SIMA and HYILS, in that order. The percent of Sudoku problem
instances solved by each solver efficiently is presented in Figure 4.6.

CHUF ORTL SIMA HYILS
0

50

100

37

52

7 4

P
er

ce
nt

ag
e

(%
)

Solvers

Figure 4.6: Percent of puzzles solved by each solver most efficiently for orders 3 to 7.

The above analysis is the basis for the creation of data sets. They have been described in
detail in the next section.

29

4. Experimental Setup, Solver Evaluation and Data Sets

4.1.2 Solver Evaluation Based on Hardness

hardness of Sudoku instances is shown to have a transition of easy, hard, easy, based
on p values of the instances [Lew07a, MW17]. The above papers [Lew07a, MW17]
included orders of {3, 4, 5}. The instances showed a different transition of hardness easy,
hard, medium. The unconstrained puzzles were more difficult to solve than the highly
constrained puzzles, i.e. the puzzles generated with very low p values were more difficult
to solve than the puzzles generated with higher p values.

An evaluation based on hardness of puzzles for order n ∈ {3, . . . , 7} has been done. The
p values have been divided into three parts based on the hardness of the instances. The
division of instances based on hardness and p values is depicted in Table 4.1.

p-values % Puzzle Filled
Easy ·95 ≥ p ≥ ·65 65% to 95%
Hard ·65 > p > ·40 40% to 65%
Medium ·40 ≥ p ≥ ·5 5% to 40%

Table 4.1: Table Depicting hardness of the puzzle instances based on p-values and %
puzzle filled with digits.

The percent of Sudoku instances solved based on hardness is depicted in Figure 4.7. In
the case of easy puzzles, SIMA and HYILS has solved 25% of the puzzles most efficiently.

CHUF
ORTL

SIM
A

HYIL
S

0

50

100

3 · 10−3

75

19

6

40

52

5 · 10−3
7

70

29

0 1

P
er

ce
nt

ag
e

(%
)

Easy Hard Medium

Figure 4.7: Percent of puzzles solved by each solver most efficiently for orders 3 to 7,
according to the hardness of puzzles described in Table 4.1.

30

4.2. Data Sets for Algorithm Selection and Run-time Prediction

4.2 Data Sets for Algorithm Selection and Run-time
Prediction

Based on the above evaluation of efficient Sudoku solvers, we have created several data
sets for AS and RP. The data sets are briefly mentioned in this section. The order of
puzzles from 3 to 9 and a mix of algorithms has been considered for our data sets. During
our experimentation only puzzles that were highly constrained were mainly solved of
order 8 and 9. The puzzles were mainly solved by CHUF and ORTL. Therefore, the
order set n ∈ {3, . . . , 7} has been considered for AS and order set n ∈ {3, . . . , 9} for RP.
The other data set that we have considered for AS is based on hardness HardSet, also of
order 3 to 7.

4.2.1 Data Sets for Algorithm Selection
The four categories of data division is based on the previous chapter of solver evaluation.
The data sets are named COH37, COS36, COHS37 and HardSet, where C represents
CHUF, O represents ORTL, H represents HYILS and S represents SIMA and 36 and 37
represent the problem space of order set n1 and n2, respectively. The HardSet data set is
based on the hardness 4.7 of the puzzles, i.e. the hard puzzles.

The sets of algorithms are A1 = {CHUF, ORTL, HY ILS}, A2 = {CHUF, ORTL,
SIMA} and A3 = {CHUF, ORTL, HY ILS, SIMA}. The order sets considered are
n1 ∈ {3, . . . , 6} and n2 ∈ {3, . . . , 7}.

COH37

The total number of problems solved in the problem space n2 by the algorithm space
A1 is 1793 out of 1900 Sudoku instances. Out of which, 1665 puzzles were distinct.
Therefore, the data set consists of 1665 puzzle instances. The percentage of problems
solved by each solver from A1 is presented in the Figure 4.4.

COS36

The total number of problems solved in the problem space n2 by the algorithm space
A2 is also 1513 out of 1520 Sudoku instances. Out of which, 1385 puzzles were distinct.
Therefore, the data set consists of 1385 puzzle instances. The percentage of problems
solved by each solver from A2 is presented in the Figure 4.5.

COHS37

The total number of problems solved in the problem space n2 by the algorithm space
A3 is also 1793 out of 1900 Sudoku instances. Out of which, 1665 puzzles were distinct.
Therefore, the data set consists of 1665 puzzle instances. The percentage of problems
solved by each solver from A3 is presented in the Figure 4.6. This data set includes the
orders n ∈ {3, . . . , 7} and all four best performing Sudoku solvers.

31

4. Experimental Setup, Solver Evaluation and Data Sets

HardSet

The HardSet data set is based on the empirically hard puzzles, the solver evaluation of
hardness is depicted in Figure 4.7. The p values considered for hardness is depicted in
Table 4.1. A total of 416 were identified solved puzzles from the HardSet. Out of which,
393 puzzles were distinct. Therefore the data set consists of 393 puzzle instances. Most
were solvable most efficiently by either ORTL or CHUF. HYILS did solve 7% of the
hard puzzles and it would be interesting to train the machine learning models based on
this data set to see the accuracy results. SIMA solved only 2 puzzles most efficiently of
the hard puzzles. Therefore, it has been excluded from the HardSet. The Sp

n instances
considered for this data set are n ∈ {3, 4, 5, 6, 7} and ·65 > p > ·40.

4.2.2 Data Sets for Run-time Prediction
The order of puzzles investigated for each solver from the algorithm space A = {CHUF,
ORTL, SIMA, HY ILS} are n ∈ {3, . . . , 9}. For each solver considered, a naming suffix
of 39 is considered for the data sets. Four data sets have been constructed for the
algorithmic RP namely; CHUF39, ORTL39, SIMA39 and HYILS39. In the solver
evaluation section is shown the percent of problems solved by each Sudoku solver from A
and for each order n 4.1.

32

CHAPTER 5
Evaluation of Algorithm Selection

In this chapter, the evaluation and analysis of Algorithm Selection (AS) is presented.
Section 5.1 introduces the pre-processing and feature selection methods used the ML
classification method. In Section 5.2 the results of the machine learning classifiers are
presented. Section 5.2.8, presents analysis of the classification based on confusion matrix.
Finally, a brief overall analysis is done.

The investigated ML classification methods are Random Forest Classifier (RFC), Decision
Trees Classifier (DTC), k-Nearest Neighbour Classifier (kNN), Multi Layer Perceptron
Classifier (MLPC) and Linear Support Vector Classifier (LSVC).

5.1 Pre-processing and Feature Selection
As discussed in chapter 4, the data sets are COH37, COS36, COHS37, HardSet and include
70 features each, i.e., the feature space F70. Pre-processing involves data discretization.
Additionally, the feature selection method is also described.

5.1.1 Discretization
For discretization, we have implemented KBinsDiscretizer (KBD) technique from the
Python pre-processing library [PVG+11]. It is used to transform continuous data and
into intervals. The number of bins used is 15. Data discretization allows certain machine
learning techniques to perform better due to the transformation of continuous features
to discrete values 1. A better accuracy for discretized data over non-discretized data
was obtained using kNN, MLPC and LSVC classifiers in our case. The method of
discretization was implemented along with non-discretized data to analyse the effects of
discretization.

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
KBinsDiscretizer.html

33

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html

5. Evaluation of Algorithm Selection

5.1.2 Feature Selection
For feature Selection, the implementation of SelectKBest (SKB) technique from the
Python library [PVG+11] has been implemented. It is a filter based feature selection
method. The feature selection method selects the k best features according to statistical
feature scoring. Information gain [KSG04, Ros14, PVG+11] is used for feature scoring.
The feature scores are done by comparing each feature individually to the target data
[KSG04, Ros14, PVG+11]. The results achieved by using SKB will be discussed in the
further sections. The experiments below have been conducted using k-values of 5 (F5),
15 (F15) and 25 (F25).

5.2 Algorithm Selection Results
In this section, the classification results are presented. A Cross Validation (CV) for the
entire experimentation process was used with a number of repeats to 10, i.e. 10-fold cross
validation.

5.2.1 Random Forest Classifier
The parameter number of trees was tested for RFC. RFC obtained an overall good
accuracy for feature F5 for the HardSet. The result for which is depicted in Figure
5.1. For discretized data the accuracy was lower than that of non-discretized data for
all parameter values. The discretized and non-discretized data of COH37 and COS36
had similar accuracy for all number of trees tested 5.1. The non-discretized data had a
continuously higher accuracy for COHS37 5.1.

50 100 20070

80

90

100

Number of Trees

A
cc

ur
ac

y(
C

V
)

F5

(a) COH37

50 100 20080

85

90

95

100

Number of Trees

F5

(b) COS36

50 100 20070

80

90

100

Number of Trees

F5

(c) COHS37

50 100 20080

85

90

95

100

Number of Trees

F5

(d) HardSet

Figure 5.1: Random forest classifier: Accuracy for non-discretized data is presented in
blue and discretized data is presented in red. The k-value for SKB is 5 and the number
of trees generated is 50, 100 and 200.

A good accuracy for non-discretized data sets of COH37, COS36 and COHS37 with
F15 was obtained. The overall result can be viewed in Figure 5.2. The discretized
data’s accuracy was almost similar to the non-discretized for F15 with data sets COS36
and HardSet. The non-discretized data of COH37 and COHS37 had a better accuracy
continuously over discretized data.

34

5.2. Algorithm Selection Results

50 100 20080

85

90

95

100

Number of Trees

A
cc

ur
ac

y(
C

V
)

F15

(a) COH37

50 100 20080

85

90

95

100

Number of Trees

F15

(b) COS36

50 100 20080

85

90

95

100

Number of Trees

F15

(c) COHS37

50 100 20080

85

90

95

100

Number of Trees

F15

(d) HardSet

Figure 5.2: Random forest classifier: Accuracy for non-discretized data is presented in
blue and discretized data is presented in red. The k-value for SKB is 15 and the number
of trees generated is 50, 100 and 200.

The overall result for F25 is depicted in Figure 5.3. For the other data sets the accuracy
for non-discretized data was almost always higher. The exception being, the COS36 and
HardSet with 200 trees.

50 100 20080

85

90

95

100

Number of Trees

A
cc

ur
ac

y(
C

V
)

F25

(a) COH37

50 100 20080

85

90

95

100

Number of Trees

F25

(b) COS36

50 100 20080

85

90

95

100

Number of Trees

F25

(c) COHS37

50 100 20080

85

90

95

100

Number of Trees

F25

(d) HardSet

Figure 5.3: Random forest classifier: Accuracy for non-discretized data is presented in
blue and discretized data is presented in red. The k-value for SKB is 25 and the number
of trees generated is 50, 100 and 200.

Based on the experiments conducted using RFC classifier the non-discretized data set
was giving an overall higher accuracy consistently with all tree value, except for the
HardSet. The parameter values changes did effect the accuracy of the classifier and so
did the Fk value.

5.2.2 Decision Trees
The parameter value maximum depth of the tree was tested in the case of DTC. The
results of DTC is depicted in Figure 5.4. Discretized data sets accuracy was consistently
observed to be lower than that of non-discretized data for all data sets. As for the other
accuracy observations based on Fk value, the data sets had varying accuracy.

COH37 data set observed high accuracy for F25. The COS36 data set observed a high
accuracy for F5. For COHS37 data set, a high accuracy was observed for F25. The

35

5. Evaluation of Algorithm Selection

COH37

COS3
6

COHS3
7

Hard
Set

40

60

80

100
A

cc
ur

ac
y(

C
V

)
F5

COH37

COS3
6

COHS3
7

Hard
Set

40

60

80

100
F15

COH37

COS3
6

COHS3
7

Hard
Set

40

60

80

100
F25

Figure 5.4: Decision trees classifier: Accuracy for non-discretized is presented in blue
with depth 3. In red is presented the accuracy for the discretized data with depth 3.

HardSet noted the highest accuracy for F15. There was variation in the accuracy with
the change in k-values. The accuracy for each considered case is depicted in Figure 5.4.

5.2.3 K-Nearest Neighbour Classifier

The parameter value number of neighbours was investigated in the case of kNN. The
results of kNN is depicted in Figure 5.5. The discretized data showed continuously higher
accuracy for all data sets with F15 and F25.

COH37

COS3
6

COHS3
7

Hard
Set

70

80

90

100

A
cc

ur
ac

y(
C

V
)

F5

COH37

COS3
6

COHS3
7

Hard
Set

70

80

90

100
F15

COH37

COS3
6

COHS3
7

Hard
Set

70

80

90

100
F25

Figure 5.5: kNN classifier : Accuracy for non-discretized data is presented in blue with 3
neighbours. Discretized data accuracy is presented in red star with 3 neighbours.

The COHS37 and HardSet data set observed higher accuracy for F5 with non-discretized
data. Whereas COS36 and COH37 data set observed a high accuracy for F5. The
accuracy for each considered case is depicted in Figure 5.5. The discretization of data
was beneficial in the case of kNN.

36

5.2. Algorithm Selection Results

5.2.4 Multi Layer Perceptron Classifier

The MLPC method was examined with parameter value of maximum iterations. The
accuracy for 3 discretized data was observed to be higher than that of non-discretized
data 5.6.

COH37

COS3
6

COHS3
7

Hard
Set

60

80

100

A
cc

ur
ac

y(
C

V
)

F5

COH37

COS3
6

COHS3
7

Hard
Set

60

80

100
F15

COH37

COS3
6

COHS3
7

Hard
Set

60

80

100
F25

Figure 5.6: MLPC: Accuracy for non-discretized data is depicted in blue with maximum
iterations of 1000. In red is depicted the discretized data accuracy with maximum
iterations of 1000.

The MLPC method proved very promising for discretized data and for k-value of F15 and
F25. The accuracy for non-discretized data sets were low, specially for F5. The accuracy
results are depicted in Figure 5.6. The accuracy for HardSet, COH37 and COHS37 was
observed higher with F15. For COHS37 non-discretized data had higher accuracy for
F15 and F25.

5.2.5 Linear Support Vector Classifier

The parameter tested for Linear Support Vector Classifier (LSVC) was maximum it-
erations. The accuracy for COH37, COS36 and COHS37 was higher in the case of
discretized data. The accuracy was higher for HardSet in the case of non-discretized
data. The higher accuracy values was observed in the case of F15. The result of LSVC is
depicted in Figure 5.7. The LSVC classifier proved to be very good for non-discretized
data of HardSet.

5.2.6 Effects of Discretization

As mentioned, KBD pre-processing having a bin number of 15 was used. In our experi-
ments with discretized and non-discretized data, there was a variation in results. The
accuracy for discretized data was higher in the many cases for classifiers kNN, MLPC and
LSVC. In LSVC the Hardset observed an accuracy lower in discretized data continuously.

37

5. Evaluation of Algorithm Selection

COH37

COS3
6

COHS3
7

Hard
Set

60

70

80

90

100
A

cc
ur

ac
y(

C
V

)
F5

COH37

COS3
6

COHS3
7

Hard
Set

60

70

80

90

100
F15

COH37

COS3
6

COHS3
7

Hard
Set

60

70

80

90

100
F25

Figure 5.7: LinearSVC accuracy: In blue is depicted the accuracy for non-discretized
data with maximum iteration of 1000 and in red for discretized data with maximum
iteration of 1000.

The table 5.1 shows the case of MLPC and the percent of change in accuracy due to
discretization for F25. The result high performing discretized data is depicted in Figure
5.8. For COHS37 data set the results were different 5.8.

Discretized Accuracy Non-Discretized Accuracy Change in Accuracy
COH37 83.37 78.16 5.21
COS36 85.84 82.58 3.26
COHS37 79.95 80.67 -.72
HardSet 86.52 69.65 16.87

Table 5.1: MLP classifier accuracy changes from non-discretized to discretized data for
k-value of 25.

5.2.7 Comparison of Classifiers

Just like it is important to know whether our AS approach is robust, it is of importance
to know the efficient classifiers. Here we will present the highest accuracy for each data
set corresponding to each classification method. This is presented in the Figure 5.9.

5.2.8 Analysis using the Confusion Matrix

Finally for the analysis of confusion matrix, the non-discretized data sets were considered.
The goal of this was to show that our machine learning approach selected the best
performing algorithm in most number of cases. The data sets were split into a training,
testing set of 70% and 30%, respectively.

38

5.2. Algorithm Selection Results

COH37

COS3
6

COHS3
7

Hard
Set

60

80

100
A

cc
ur

ac
y(

C
V

)

Figure 5.8: Highest accuracy for discretized vs non-discretized data with MLPC: The
highest accuracy for discretized data is presented in red. Accuracy for the same parameters
for non-discretizeed data is presented in blue.

RFC
DTC

KNN
MLPC

LSV
C80

85

90

95

100

A
cc

ur
ac

y(
C

V
)

Figure 5.9: Highest accuracy for all machine learning classifiers for data COH37 in blue,
COS36 in red, COHS37 in green and HardSet in black. The results presented are with
F5, F15 or F25.

5.2.9 COH37

The RFC with number of trees 100 was tested. An accuracy of 92% was observed, which
included a high precision and recall value for all solvers. which was above 90% for CHUF
and ORTL and a recall value 0f 83% for HYILS. The confusion matrix is presented in
Table 5.2.

Figure 5.10 shows that our RFC was able to select the best algorithm in most number of
cases.

39

5. Evaluation of Algorithm Selection

CHUF HYILS ORTL
CHUF 172 0 10
HYILS 2 53 9
ORTL 15 4 239

Table 5.2: Confusion matrix using RFC for the data set COH37.

CHUF ORTL HYILS RFC
0

200

400

600

182

258

64

464

In
st

an
ce

s
fr

om
th

e
te

st
se

t.

Solvers

Figure 5.10: Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using RFC for the test case of COH37.

5.2.10 COS36
The DTC with a maximum depth of 3 was investigated. An accuracy of 94% was observed.
A high precision and recall value for all solvers was achieved, above 90% for CHUF,
ORTL and SIMA. The confusion matrix can be seen in the Table 5.3.

CHUF ORTL SIMA
CHUF 134 17 0
ORTL 5 221 4
SIMA 0 4 34

Table 5.3: Confusion matrix using DTC for the data set COS36.

Similarly, Figure 5.11 shows that DTC was able to select the best Sudoku solver in most
number of cases.

5.2.11 COHS37
The DTC with maximum depth of 5 was investigated. The accuracy obtained was 93%.
For ORTL, CHUF and SIMA the precision and recall was over 90%, HYILS obtained a
precision and recall over 61%. The confusion matrix can be seen in the Table 5.4.

40

5.2. Algorithm Selection Results

CHUF ORTL SIMA DTC
0

200

400

157

226

33

389

In
st

an
ce

s
fr

om
th

e
te

st
se

t.

Solvers

Figure 5.11: Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using DTC for the test case of COS36.

CHUF HYILS ORTL SIMA
CHUF 178 0 14 0
HYILS 0 11 6 1
ORTL 11 3 243 0
SIMA 0 1 0 32

Table 5.4: Confusion matrix using DTC for the data set COHS37.

Similarly, Figure 5.12 shows that DTC was able to select the best performing algorithm
for most number of Sudoku instances.

CHUF ORTL HYILS SIMA DTC
0

200

400

600

192

257

18 33

464
In

st
an

ce
s

fr
om

th
e

te
st

se
t.

Solvers

Figure 5.12: Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using DTC for the test case of COHS37.

41

5. Evaluation of Algorithm Selection

5.2.12 HardSet
The non-discretized data set HardSet using the RFC with number of trees as 100 was
considered. The accuracy obtained was 92%. The precision and recall for HYILS was
over 64%. For ORTL and CHUF the precision and recall was over 90%. The confusion
matrix can be seen in the Table 5.5.

CHUF HYILS ORTL
CHUF 39 0 3
HYILS 0 7 1
ORTL 1 4 63

Table 5.5: Confusion matrix using RFC for the HardSet.

Similarly, Figure 5.13 shows that our RFC was able to select best performing algorithm
for most number of number of instances.

CHUF ORTL HYILS RFC
0

50

100

150

200

42

68

8

109

In
st

an
ce

s
fr

om
th

e
te

st
se

t.

Solvers

Figure 5.13: Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using RFC for the test case of HardSet.

5.3 Overall Analysis
The experiments with different Fk values noted a variation in accuracy over all data sets.
The accuracy values for F5 were low as compared to the other k-values. The effects of
discretization was seen to be good for kNN, MLPC and LSVC classifier.

The 15 highest scoring features for classification based on SKB are presented in Table 5.6.
The features are in the Table 5.6 is for COHS37. The F15 features for the COS36 and
COH37 were similar to COHS37 data set using SKB except for one exception. HardSet
also had the feature importance of MCrc. Overall the features were included from each

42

5.3. Overall Analysis

class of features Cx such as graph coloring features, Sudoku board features and flatzinc
from MiniZinc.

The result of the best classifiers has been depicted in Figure 5.9. The accuracy indicates
that the ML method was able to select the best performing algorithm in many cases.

Feature Name Feature Name
1. GSmne 9. N Spp

2. GSnmme 10. N Ssdsc

3. N Sramtr 11. N Ssdsr

4. N Sramtc 12. N Ssdssg

5. N Sramtr 13. N Ssrp

6. N Sramtsg 14. FZchi

7. GSmn 15. N Salr

8. GSn

Table 5.6: F15 features for algorithm selection of COHS37.

Figure 5.10 shows that AS using RFC technique selects the best performing algorithm in
most number of cases. Similarly, Figures 5.11, 5.12 and 5.13 shows high accuracy for AS.

43

CHAPTER 6
Evaluation of Run-time

Prediction

In this chapter, the algorithm Run-time Prediction (RP) of the solvers based on six
different regression methods is presented. The analysis of the RP will be done based
on algorithms from the algorithm space A = {CHUF, ORTL, SIMA, HY ILS}, in that
order. Data sets have been formed for each individual solver from A to analyse the RP.
They are based on the order of the puzzles n ∈ {3, . . . , 9}.

The chapter is arranged into 3 sections; Pre-processing, Regression Results and Overall
analysis.

The pre-processing step includes outlier detection and removal. Thereafter, the regression
based Machine Learning (ML) methods are investigated. The regression methods inves-
tigated are Random Forest Regressor (RFR), Decision Tree Regressor (DTR), Linear
Supprt Vector Regressor (LSVR), Extreme Gradient Boosting Regressor (XGBR), Ridge
Regressor (RR) and Gradient Boosting Regressor (GBR).

6.1 Pre-processing
Pre-processing for regression involves outlier detection and removal. Two automatic
outlier detection methods from the python library [PVG+11] had been tried and result
of one has been presented.

6.1.1 Outliers: Detection and Removal

For outlier detection, we chose to investigate between two automatic methods; isolation
forest [LTZ08] and local outlier factor [BKNS00]. The methods have been implemented

45

6. Evaluation of Run-time Prediction

in python library [PVG+11] as class IsolationForest 1 and LocalOutlierFactor 2.

Isolation factor is a tree based outlier detection method and is computationally not
expensive for data sets having large feature space. Outliers in isolation factor are detected
based on whether they are few in number and having attribute values that are different
from normal instances [LTZ08]. Local outlier factor is useful for data sets having lower
feature space and outliers are detected based on nearest neighbours and their degree of
outlier-ness [BKNS00].

Since, the feature space for Sudoku puzzles computed for the purpose of RP is not large,
computing time is not a concern. Therefore, we decided to use local outlier factor as it is
useful for outlier detection in data sets with lower feature space. The results presented
are based on local outlier factor.

6.2 Regression Results
In this section, the regression results of our data sets are presented. An evaluation of
the regression methods is done based on Root Mean Square Error (RMSE), Pearson’s
Correlation Coefficient (PCC) and scatter plots. The ML methods were expected to
predict the computation time with minimum error (RMSE), a RMSE value of 0 shows
over fitting. The PCC score is expected to in between 0 and 1, the better predictions
show value closer to 1 (exactly 1 is a over fitting situation). The presented results for
regression are obtained with all the features, i.e., F70. The data sets were split into a
training, testing set of 70% and 30%, respectively.

6.2.1 CHUF39
The CHUF solver’s RP based on RMSE scores are depicted in Figure 6.1. Six different
regression techniques were tested, RFR and GBR show low RMSE scores. Higher RMSE
scores were noted for DTR.

The predicted time versus test time was plotted using scatter plots and PCC was also
observed. The scatter plot of predicted time vs test time for all regression techniques
used can be seen in Figure 6.2. The PCC score is depicted in Figure 6.3.

The PCC scores were not good for RP of CHUF. A maximum PCC was observed using
XGBR with score of 0·435.

6.2.2 ORTL39
The RMSE scores for the RP of ORTL are depicted in Figure 6.4. Six different regression
techniques were tested. LSVR observed the highest RMSE score, whereas RFR observed

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html

2https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
LocalOutlierFactor.html

46

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html

6.2. Regression Results

RFR
DTR

LSV
R

XGBR RR
GBR100

150

200

250

R
M

SE

Figure 6.1: CHUF39 RMSE scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR.

(a) Random Forest (b) Decision Tree (c) Linear SV Regressor

(d) XGBoost (e) Ridge Regressor (f) Gradient Boost

Figure 6.2: Scatter plot for CHUF39: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DTR and maximum iterations
of 1000 for LSVR.

the lowest RMSE score.

ORTL’s predicted versus test scatter plot shows correlation with the RMSE scores. This
can be observed with the RMSE score of LSVR and the scatter plot of LSVR. The scatter
plot of predicted time versus test time for all regression techniques is depicted in Figure
6.5. The PCC scores can be observed in Figure 6.6. The maximum PCC score for ORTL
was obtained using RFR with score of 0·614.

47

6. Evaluation of Run-time Prediction

RFR
DTR

LSV
R

XGBR RR
GBR0

0.2

0.4

0.6

0.8

1
PC

C

Figure 6.3: PCC scores for CHUF39: The PCC score was above 0·4 for RFR, XGBR
and GBR. The parameter configuration used for regression methods were; 100 trees for
RFR, maximum depth of 3 for DTR and maximum iterations of 1000 for LSVR.

RFR
DTR

LSV
R

XGBR RR
GBR200

300

400

500

R
M

SE

F15, F25, F35

Figure 6.4: ORTL39 RMSE scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR.

6.2.3 SIMA39
SIMA’s RMSE scores are depicted in Figure 6.7. Six different regression techniques were
tested, RFR observed the lowest RMSE score. The RMSE score of LSVR was highest.

SIMA’s predicted vs test scatter plot shows good correlation between RMSE scores and
scatter plots. The scatter plot of predicted versus test time for all regression techniques
used can be seen in Figure 6.8. The PCC can be observed in Figure 6.9. A good PCC
score of above 0·90 was observed throughout the experimentation of SIMA39. There was

48

6.2. Regression Results

(a) Random Forest (b) Decision Tree (c) Linear SV Regressor

(d) XGBoost (e) Ridge Regressor (f) Gradient Boost

Figure 6.5: Scatter plot ORTL solver: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DTR and maximum iterations
of 1000 for LSVR.

RFR
DTR

LSV
R

XGBR RR
GBR0

0.2

0.4

0.6

0.8

1

PC
C

Figure 6.6: ORTL’s PCC scores: The parameter configuration used for regression methods
were; 100 trees for RFR, maximum depth of 3 for DTR and maximum iterations of 1000
for LSVR.

good correlation between the scatter plots and PCC scores.

6.2.4 HYILS39
RMSE scores for HYILS are depicted in Figure 6.10. Six different regression techniques
were tested out of which RFR observed the lowest RMSE score. LSVR observed the
highest RMSE score.

The scatter plot of predicted versus test time for all regression techniques is depicted in

49

6. Evaluation of Run-time Prediction

RFR
DTR

LSV
R

XGBR RR
GBR0

2

4

6

8

10
R

M
SE

Figure 6.7: SIMA39 RMSE scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR.

(a) Random Forest (b) Decision Tree (c) Linear SV Regressor

(d) XGBoost (e) Ridge Regressor (f) Gradient Boost

Figure 6.8: Scatter plot SIMA39: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DTR and maximum iterations
of 1000 for LSVR.

Figure 6.11. The PCC can be observed in Figure 6.12. The PCC score was high for RFR,
XGBR and GBR. There was correlation between the scatter plots and PCC scores.

6.3 Overall Analysis
The RMSE, PCC scores and scatter plots presented above are the basis for our analysis.
The scatter plots show a good relationship between the predicted versus test computation
time for SIMA39 and HYILS39 to a good extent. The PCC scores for CHUF39 was not

50

6.3. Overall Analysis

RFR
DTR

LSV
R

XGBR RR
GBR0.8

0.85

0.9

0.95

1

PC
C

Figure 6.9: PCC Scores for SIMA39: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DT and maximum iterations
of 1000 for LSVR.

RFR
DTR

LSV
R

XGBR RR
GBR100

200

300

400

R
M

SE

Figure 6.10: HYILS39 RMSE Scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR.

good for any of the regression methods and always remained below 0·5. The PCC scores
for ORTL39 was satisfactory and was highest for RFR.

The regression technique that performed well were XGBR, GBR and RFR consistently,
based on low RMSE scores. The PCC values depicted a correlation with the scatter
plots.

51

6. Evaluation of Run-time Prediction

(a) Random Forest (b) Decision Tree (c) Linear SV Regressor

(d) XGBoost (e) Ridge Regressor (f) Gradient Boost

Figure 6.11: Scatter plot for HYILS39: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DTR and maximum iterations
of 1000 for LSVR.

RFR
DTR

LSV
R

XGBR RR
GBR0.4

0.6

0.8

1

PC
C

Figure 6.12: HYILS39 PCC : LSVR obtained the lowest PCC score and the correlation
can be noticed in the scatter plot in Figure 6.11 (c), where as RFR obtained the highest
PCC score.

6.3.1 Feature Selection
As we know from the previous chapter that SKB selects the k best features according
to feature scoring. Feature scoring is done using mutual information regression [KSG04,
Ros14, PVG+11]. The regression models are not presented based on feature selection
but we will present the 25 highest scoring features using SKB. We will denote it as F25.

The F25 for our data set CHUF39 is presented in Table 6.1. From the table it can be
seen that the top 25 features were selected from most of the class of features that we

52

6.3. Overall Analysis

described in Chapter 3, such as graph size (GS), Sudoku puzzle features (N S), order
(O), chromatic number (χ), maximal clique (MC) and flatzinc (FZ).

Feature Name Feature Name
1. N Salc 14. N Salr

2. N Salsg 15. N Siqr

3. N Sslc 16. N Sslr

4. N Sslsg 17. χmc

5. MCmc 18. GSmdb

6. GSmne 19. FZchi

7. GSmn 20. GSte

8. GSnmme 21. FZchc

9. N Sma 22. N Ssp

10. N Smp 23. On2

11. N Snd 24. N Smaxon

12. GSn 25. N Ssrp

13. On

Table 6.1: Top 25 features: Run-time Prediction for CHUF39.

53

CHAPTER 7
Conclusion

In this thesis, we have developed an approach towards algorithm selection of Sudoku
puzzles. Run-time prediction for Sudoku puzzles using machine learning has also been
investigated. For the purpose we have computed features based on domain knowledge
of Sudoku puzzle, their graph coloring equivalence and flatzinc. Identification and
computation of 70 features from Sudoku puzzle instances for algorithm selection and
run-time prediction was done.

We investigated several Sudoku solvers and selected four state-of-the-art solvers for our
further analysis. Four data sets for algorithm selection and four for run-time prediction
were created. The data sets were based on evaluation of solvers, the order of the puzzles
and hardness of the puzzle instances.

The machine learning methods investigated for classification of algorithms were RFC,
DTC, kNNC, MLPC and LSVC. The algorithm selection approach selected the best
performing algorithm in many cases.

The machine learning methods investigated for regression were RFR, DTR, LSVR, XGBR,
RR and GBR. The four data sets were based on four Sudoku puzzle solvers. The predicted
versus test time scatter plot showed good relationship in some of the cases, specifically
for Sudoku solvers SIMA and HYILS. The RMSE scores were low for some regression
techniques.

Finally, the algorithm selection method introduced for Sudoku puzzles was able to select
the best performing Sudoku solver on many instances. The run-time prediction errors
showed good correlation between predicted and test computation time for some machine
learning methods.

55

7. Conclusion

7.1 Future Work
To the best of our knowledge, algorithm selection and run-time prediction for Sudoku
puzzles were not inspected before. This thesis lays a foundation for considering other
puzzles such as N-Queens, Latin squares and several other versions of Sudoku.

A deeper analysis on impact of proposed features and the development of additional
features for Sudoku could also be considered in the future work.

56

List of Figures

2.1 Sudoku as a Graph Coloring Problem [AC18] 6
2.2 The Rice framework as adapted from Kate Smith-Miles [Ric76, SM09] . . 12

3.1 Average clause generation computing time for SAT w.r.t. the order of puzzle. 22

4.1 Percent of puzzles solved for each order by each solver. 27
4.2 Total percent of puzzles solved for each order. 27
4.3 Percent of puzzles solved by each solver most efficiently for orders 3 to 7. 28
4.4 Percent of puzzles solved by each solver most efficiently for orders 3 to 7. 28
4.5 Percent of puzzles solved by each solver most efficiently for orders 3 to 6. 29
4.6 Percent of puzzles solved by each solver most efficiently for orders 3 to 7. 29
4.7 Percent of puzzles solved by each solver most efficiently for orders 3 to 7,

according to the hardness of puzzles described in Table 4.1. 30

5.1 Random forest classifier: Accuracy for non-discretized data is presented in
blue and discretized data is presented in red. The k-value for SKB is 5 and
the number of trees generated is 50, 100 and 200. 34

5.2 Random forest classifier: Accuracy for non-discretized data is presented in
blue and discretized data is presented in red. The k-value for SKB is 15 and
the number of trees generated is 50, 100 and 200. 35

5.3 Random forest classifier: Accuracy for non-discretized data is presented in
blue and discretized data is presented in red. The k-value for SKB is 25 and
the number of trees generated is 50, 100 and 200. 35

5.4 Decision trees classifier: Accuracy for non-discretized is presented in blue with
depth 3. In red is presented the accuracy for the discretized data with depth
3. 36

5.5 kNN classifier : Accuracy for non-discretized data is presented in blue with
3 neighbours. Discretized data accuracy is presented in red star with 3
neighbours. 36

5.6 MLPC: Accuracy for non-discretized data is depicted in blue with maximum
iterations of 1000. In red is depicted the discretized data accuracy with
maximum iterations of 1000. 37

57

5.7 LinearSVC accuracy: In blue is depicted the accuracy for non-discretized
data with maximum iteration of 1000 and in red for discretized data with
maximum iteration of 1000. 38

5.8 Highest accuracy for discretized vs non-discretized data with MLPC: The
highest accuracy for discretized data is presented in red. Accuracy for the
same parameters for non-discretizeed data is presented in blue. 39

5.9 Highest accuracy for all machine learning classifiers for data COH37 in blue,
COS36 in red, COHS37 in green and HardSet in black. The results presented
are with F5, F15 or F25. 39

5.10 Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using RFC for the test case of COH37. . . 40

5.11 Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using DTC for the test case of COS36. . . . 41

5.12 Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using DTC for the test case of COHS37. . . 41

5.13 Instances solved most efficiently for the solvers and number of times best
solver selected by AS approach using RFC for the test case of HardSet. . 42

6.1 CHUF39 RMSE scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR. 47

6.2 Scatter plot for CHUF39: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DTR and maximum
iterations of 1000 for LSVR. 47

6.3 PCC scores for CHUF39: The PCC score was above 0·4 for RFR, XGBR and
GBR. The parameter configuration used for regression methods were; 100
trees for RFR, maximum depth of 3 for DTR and maximum iterations of 1000
for LSVR. 48

6.4 ORTL39 RMSE scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR. 48

6.5 Scatter plot ORTL solver: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DTR and maximum
iterations of 1000 for LSVR. 49

6.6 ORTL’s PCC scores: The parameter configuration used for regression methods
were; 100 trees for RFR, maximum depth of 3 for DTR and maximum iterations
of 1000 for LSVR. 49

6.7 SIMA39 RMSE scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR. 50

6.8 Scatter plot SIMA39: The parameter configuration used for regression methods
were; 100 trees for RFR, maximum depth of 3 for DTR and maximum iterations
of 1000 for LSVR. 50

6.9 PCC Scores for SIMA39: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DT and maximum
iterations of 1000 for LSVR. 51

58

6.10 HYILS39 RMSE Scores: The number of trees for RFR was 100, maximum
depth for DTR, 3 and maximum iteration of 1000 for LSVR. 51

6.11 Scatter plot for HYILS39: The parameter configuration used for regression
methods were; 100 trees for RFR, maximum depth of 3 for DTR and maximum
iterations of 1000 for LSVR. 52

6.12 HYILS39 PCC : LSVR obtained the lowest PCC score and the correlation
can be noticed in the scatter plot in Figure 6.11 (c), where as RFR obtained
the highest PCC score. 52

1 Feature Importance according to the table 1 for COH37 data set. 75
2 Feature Importance according to the table 1 for COS36 data set. 75
3 Feature Importance according to the table 1 for COHS37 data set. 76
4 Feature Importance according to the table 1 for HardSet data set. 76

5 Feature Importance according to the table 1 for CHUF39 data set. 77
6 Feature Importance according to the table 1 for ORTL39 data set. 78
7 Feature Importance according to the table 1 for SIMA39 data set. 78
8 Feature Importance according to the table 1 for HYILS39 data set. 79

9 Instances Solved most efficiently w.r.t. the Solvers and Algorithm Selection
approach using RF (F25) for the test set of Easy data set. 82

59

List of Tables

3.1 Table of features related to sum, product and domain of Sudoku puzzle. . 19
3.2 Table of features related to row, column and sub-grid size of Sudoku puzzle. 20

4.1 Table Depicting hardness of the puzzle instances based on p-values and %
puzzle filled with digits. 30

5.1 MLP classifier accuracy changes from non-discretized to discretized data for
k-value of 25. 38

5.2 Confusion matrix using RFC for the data set COH37. 40
5.3 Confusion matrix using DTC for the data set COS36. 40
5.4 Confusion matrix using DTC for the data set COHS37. 41
5.5 Confusion matrix using RFC for the HardSet. 42
5.6 F15 features for algorithm selection of COHS37. 43

6.1 Top 25 features: Run-time Prediction for CHUF39. 53

1 Features: The features as computed for the data sets. 74

2 Confusion Matrix using RF with k-value 15 and number of trees 100 for the
data set EasySet. 81

61

List of Algorithms

63

Acronyms

AS Algorithm Selection.

CHUF Chuffed.

CPLEX IBM-Cplex.

CV 10-Fold Cross Validation.

DTC Decision Tree Classifier.

DTR Decision Tree Regressor.

GBR Gradiant Boost Regressor.

GUROBI Gurobi.

HYILS Hybrid Iterated Local Search.

kNN K-Nearest Neighbour Classifier.

LSVC Linear Support Vector Classsifier.

LSVR Linear Support Vector Regressor.

ML Machine Learning.

MLPC Multi Layer Perceptron Classifier.

ORTL OR-Tools.

PCC Pearson’s Correlation Coefficient.

RFC Random Forest Classifier.

RFR Random Forest Regressor.

65

RMSE Root Mean Square Error.

RP Run-time Prediction.

RR Ridge Regressor.

SIMA Simulated Annealing.

XGBR Extreme Gradiant Booster Regressor.

66

Bibliography

[AC18] Francisco J. Aragón Artacho and Rubén Campoy. Solving graph coloring
problems with the douglas-rachford algorithm. Set-Valued and Variational
Analysis, 26(2):277–304, January 2018.

[Apt03] Krzysztof Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[BCLR08] Andrew C. BartlettTimothy, P. Chartier, Amy Nicole Langville, and Timo-
thy D. Rankin. An integer programming model for the sudoku problem. In
Journal of Online Mathematics and its Applications, Vol. 8, Article ID 1798,
2008.

[Bie08] Armin Biere. Picosat essentials. J. Satisf. Boolean Model. Comput., 4(2-
4):75–97, 2008.

[BKNS00] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
Lof: Identifying density-based local outliers. In Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, SIGMOD
’00, page 93–104, New York, NY, USA, 2000. Association for Computing
Machinery.

[CdlBS10] Geoffrey Chu, Maria Garcia de la Banda, and Peter J. Stuckey. Automatically
exploiting subproblem equivalence in constraint programming. In Andrea
Lodi, Michela Milano, and Paolo Toth, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems, pages 71–86, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[Cpl09] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business
Machines Corporation, 46(53):157, 2009.

[DDC99] M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic.
In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), volume 2, pages 1470–1477 Vol. 2, 1999.

[DG97] M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1(1):53–66, 1997.

67

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, July 1960.

[DYS20] R. V. Driel and N. Yorke-Smith. Towards unsatisfiable core learning for
chuffed. In CP’20 Workshop on Progress Towards the Holy Grail, 2020.

[FPHK94] F.J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of tech-
niques for large-scale feature selection* *this work was suported by a serc
grant gr/e 97549. the first author was also supported by a fpi grant from
the spanish mec, pf92 73546684. In Edzard S. GELSEMA and Laveen S.
KANAL, editors, Pattern Recognition in Practice IV, volume 16 of Machine
Intelligence and Pattern Recognition, pages 403–413. North-Holland, 1994.

[GE03] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. J. Mach. Learn. Res., 3(null):1157–1182, March 2003.

[GO21] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

[Hay16] M. Haythorpe. Reducing the generalised sudoku problem to the hamiltonian
cycle problem. AKCE Int. J. Graphs Comb., 13:272–282, 2016.

[HDH+00] Adele E. Howe, Eric Dahlman, Christopher Hansen, Michael Scheetz, and
Anneliese von Mayrhauser. Exploiting competitive planner performance. In
Recent Advances in AI Planning, pages 62–72. Springer Berlin Heidelberg,
2000.

[HG08] James M. Hereford and Hunter Gerlach. Integer-valued particle swarm
optimization applied to sudoku puzzles. In 2008 IEEE Swarm Intelligence
Symposium, pages 1–7, 2008.

[HM07] Agnes Herzberg and Ram Murty. Sudoku squares and chromatic polynomials.
Internationale Mathematische Nachrichten, 54, 06 2007.

[Hol92] John H. Holland. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence.
MIT Press, Cambridge, MA, USA, 1992.

[HXHLB14] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm
runtime prediction: Methods & evaluation. Artificial Intelligence, 206:79–
111, January 2014.

[Kap10] A. Kapanowski. Python for education: the exact cover problem. ArXiv,
abs/1010.5890, 2010.

[KE97] J. Kennedy and R.C. Eberhart. A discrete binary version of the particle
swarm algorithm. In 1997 IEEE International Conference on Systems, Man,
and Cybernetics. Computational Cybernetics and Simulation, volume 5,
pages 4104–4108 vol.5, 1997.

68

[Kot16] Lars Kotthoff. Algorithm Selection for Combinatorial Search Problems: A
Survey, pages 149–190. Springer International Publishing, Cham, 2016.

[KSG04] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating
mutual information. Physical Review E, 69(6), Jun 2004.

[LA20] Huw Lloyd and Martyn Amos. Solving sudoku with ant colony optimization.
IEEE Transactions on Games, 12(3):302–311, 2020.

[LBHHX14] Kevin Leyton-Brown, Holger H. Hoos, Frank Hutter, and Lin Xu. Under-
standing the empirical hardness of <i>np</i>-complete problems. Commun.
ACM, 57(5):98–107, May 2014.

[LBNS02] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learning the
empirical hardness of optimization problems: The case of combinatorial
auctions. In Proceedings of the 8th International Conference on Principles
and Practice of Constraint Programming, CP ’02, page 556–572, Berlin,
Heidelberg, 2002. Springer-Verlag.

[Lew07a] Rhyd Lewis. Metaheuristics can solve sudoku puzzles. Journal of Heuristics,
13(4):387–401, May 2007.

[Lew07b] Rhydian Lewis. On the combination of constraint programming and stochas-
tic search: The sudoku case. In Thomas Bartz-Beielstein, María José
Blesa Aguilera, Christian Blum, Boris Naujoks, Andrea Roli, Günter
Rudolph, and Michael Sampels, editors, Hybrid Metaheuristics, pages 96–107,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[LO06] I. Lynce and J. Ouaknine. Sudoku as a sat problem. In ISAIM, 2006.

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
2008 Eighth IEEE International Conference on Data Mining, pages 413–422,
2008.

[MAT10] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Mas-
sachusetts, 2010.

[MK07] Timo Mantere and Janne Koljonen. Solving, rating and generating sudoku
puzzles with ga. In 2007 IEEE Congress on Evolutionary Computation,
pages 1382–1389, 2007.

[MS13] Nysret Musliu and Martin Schwengerer. Algorithm selection for the graph
coloring problem. In Giuseppe Nicosia and Panos Pardalos, editors, Learn-
ing and Intelligent Optimization, pages 389–403, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

69

[MTL06] A. Moraglio, J. Togelius, and S. Lucas. Product geometric crossover for
the sudoku puzzle. 2006 IEEE International Conference on Evolutionary
Computation, pages 470–476, 2006.

[MW17] Nysret Musliu and Felix Winter. A hybrid approach for the sudoku problem:
Using constraint programming in iterated local search. IEEE Intell. Syst.,
32(2):52–62, 2017.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard cp
modelling language. In Christian Bessière, editor, Principles and Practice
of Constraint Programming – CP 2007, pages 529–543, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[PSY09] Jaysonne A. Pacurib, Glaiza Mae M. Seno, and John Paul T. Yusiong.
Solving sudoku puzzles using improved artificial bee colony algorithm. In
2009 Fourth International Conference on Innovative Computing, Information
and Control (ICICIC), pages 885–888, 2009.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[QS08] Haiyan Quan and Xinling Shi. On the analysis of performance of the
improved artificial-bee-colony algorithm. In 2008 Fourth International
Conference on Natural Computation, volume 7, pages 654–658, 2008.

[Ric76] John R. Rice. The algorithm selection problem. Advances in Computers,
15:65–118, 1976.

[Ros14] Brian C. Ross. Mutual information between discrete and continuous data
sets. PLoS ONE, 9(2):e87357, February 2014.

[RT12] J. Rosenhouse and L. Taalman. Taking Sudoku Seriously: The Math Behind
the World’s Most Popular Pencil Puzzle. Oxford University Press, United
Kingdom, 2012.

[SCG+13] Ricardo Soto, Broderick Crawford, Cristian Galleguillos, Eric Monfroy, and
Fernando Paredes. A hybrid ac3-tabu search algorithm for solving sudoku
puzzles. Expert Systems with Applications, 40(15):5817–5821, 2013.

[SCG+15] Ricardo Soto, Broderick Crawford, Cristian Galleguillos, Fernando Paredes,
and Enrique Norero. A hybridalldifferent-tabu search algorithm for solving
sudoku puzzles. Computational Intelligence and Neuroscience, 2015:1–10,
2015.

70

[SFS+14] Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien
Fischer. The MiniZinc challenge 2008–2013. AI Magazine, 35(2):55–60, June
2014.

[Sim05] H. Simonis. Sudoku as a constraint problem. In Workshop Modeling and
Reformulating Constraint Satisfaction Problems, pages 13–27, 2005.

[SM09] Kate A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Comput. Surv., 41(1), January 2009.

[TL00] P. Torres and P. Lopez. Overview and possible extensions of shaving tech-
niques for job-shop problems. In Proceedings of the Second International
Workshop on Integration of AI and OR techniques in Constraint Program-
ming for Combinatorial Optimization Problems, pages 181–186, 2000.

[vH01] Willem Jan van Hoeve. The alldifferent constraint: A survey. CoRR,
cs.PL/0105015, 2001.

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
Trans. Evol. Comp, 1(1):67–82, April 1997.

[WNA10] Yue Wu, Joseph P. Noonan, and Sos Agaian. Binary data encryption using
the sudoku block cipher. In 2010 IEEE International Conference on Systems,
Man and Cybernetics, pages 3915–3921, 2010.

[Woe03] Gerhard J. Woeginger. Exact Algorithms for NP-Hard Problems: A Survey,
pages 185–207. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[WZN+10] Yue Wu, Yicong Zhou, J. Noonan, K. Panetta, and S. Agaian. Image
encryption using the sudoku matrix. In Defense + Commercial Sensing,
2010.

[XHHLB08] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Satzilla:
Portfolio-based algorithm selection for sat. Journal of Artificial Intelligence
Research, 32:565–606, 06 2008.

[YS03] T. Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., 86-A:1052–1060, 2003.

71

Appendix A

Features
The features presented in the Table 1 are total features that have been utilised in the
entire experimentation process of the thesis. A total of 70 features has been utilised for
the entire experiments of Algorithm Selection and Run-time prediction but a maximum of
only 35 were selected by the feature selection method. The features have been presented
as in the data sets for Algorithm Selection and Run-time Prediction. By presenting this
table of features, feature importance for each data set will be presented in the case of
Algorithm Selection and Run-time Prediction, respectively.

Algorithm Selection Feature Selection
COH37
Feature importance for COH37, the feature scores has been depicted in Figure 1. The
missing values from the puzzle show more important, like missing nodes, missing edges,
etc.

COS36
Feature importance for COS37, the feature scores has been depicted in Figure 2.

COHS37
Feature importance for COS37, the feature scores has been depicted in Figure 3.

HardSet
While the above three data sets for Algorithm Selection had almost similar data im-
portance. The HardSet features were slightly different. The feature scores has been
depicted in Figure 4. Although the missing values from the Sudoku puzzle depicted
similar importance.

73

0 : columncomplete
1 : columnempty
2 : highestcolumnsum
3 : highestmaxcolumn
4 : highestmaxrow
5 : highestmaxsubgrid
6 : highestoccpuzzle
7 : highestrowsum
8 : highestsubgridsum
9 : iqrpuzzle
10 : largestcolumn
11 : largestrow
12 : largestsubgrid
13 : leastcolumnsum
14 : leastconditionbin
15 : leastconditionforsolution
16 : leasthighestcolumn
17 : leasthighestrow
18 : leasthighestsubgrid
19 : leastmaxcolumn
20 : leastmaxrow
21 : leastmaxsubgrid
22 : leastrowsum
23 : leastsubgridsum
24 : lowestoccpuzzle
25 : maxclique
26 : maxdegree
27 : maxnumedges
28 : maxoccurence
29 : maxmissingnumedges
30 : maxratiorow
31 : meanadd
32 : meanpuzzle
33 : minoccurence
34 : minmaxcolumn
35 : minmaxrow
36 : minmaxsubgrid

37 : minratiocolumn
38 : minratiorow
39 : minratiosubgrid
40 : missingdomain
41 : missingnodes
42 : numdomain
43 : numnodes
44 : orderpuzzle
45 : percentpuzzle
46 : puzzlediagonal
47 : rangemaxclique
48 : rangeminmaxsubgrid
49 : rangemintotalsubgrid
50 : rowcomplete
51 : rowempty
52 : sdcolumnadd
53 : sdrowadd
54 : sdsubgridadd
55 : sdsizerow
56 : sdsizesubgrid
57 : domaincover
58 : sizediagonal
59 : sizepuzzle
60 : smallestcolumn
61 : smallestrow
62 : smallestsubgrid
63 : subgridscomplete
64 : subgridsempty
65 : sumrangepuzzle
66 : sumratiopuzzle
67 : totaledges
68 : flatintvarschuf
69 : flatintconstraintschuf

Table 1: Features: The features as computed for the data sets.

74

Figure 1: Feature Importance according to the table 1 for COH37 data set.

Figure 2: Feature Importance according to the table 1 for COS36 data set.

75

Figure 3: Feature Importance according to the table 1 for COHS37 data set.

Figure 4: Feature Importance according to the table 1 for HardSet data set.

76

Appendix B

Run-time Prediction Feature Selection

CHUF39
Feature importance for CHUF39 shows that order and size of the puzzle does have some
importance for the regression of this data. The most important feature is flattening
time, as the addition of the flattening time was done to the solving time. The feature
importance has been depicted in Figure 5.

Figure 5: Feature Importance according to the table 1 for CHUF39 data set.

ORTL39
The most important feature for ORTL39 using regression using SKB was number of
nodes on the Sudoku puzzle. The feature importance has been depicted in Figure 6.

77

Figure 6: Feature Importance according to the table 1 for ORTL39 data set.

SIMA39
The most important feature for SIMA39 with regression using SKB was the flattening
variables of chuffed. The feature importance has been depicted in Figure 7.

Figure 7: Feature Importance according to the table 1 for SIMA39 data set.

78

HYILS39
Similar to ORTL39, HYILS39’s most important feature was number of nodes on the
Sudoku puzzle. The feature importance has been depicted in Figure 8.

Figure 8: Feature Importance according to the table 1 for HYILS39 data set.

79

Appendix C

Algorithm Selection for Easy Data Set
This section we will present the result of the easy empirically easy data set. The empirical
hardness of the Sudoku instances are presented in Table 4.1 and Figure 4.7. The accuracy
achieved using RF was 94%. The RF machine learning technique out performs the best
performing algorithm, i.e. ORTL. This is depicted clearly by Figure 9.

HYILS ORTL SIMA
HYILS 4 1 7
ORTL 0 140 2
SIMA 2 0 34

Table 2: Confusion Matrix using RF with k-value 15 and number of trees 100 for the
data set EasySet.

Figure 9 shows that our RF classifier performed much better than any other solver. The
RF classifier was able to correctly classify many instances showing the robust nature of
our algorithm selection approach.

81

HYILS ORTL SIMA RF
0

50

100

150

200

12

142

36

178

In
st

an
ce

s
fr

om
th

e
te

st
se

t.

Solvers

Figure 9: Instances Solved most efficiently w.r.t. the Solvers and Algorithm Selection
approach using RF (F25) for the test set of Easy data set.

82

	Kurzfassung
	Abstract
	Contents
	Introduction
	Objectives
	Results
	Organisation of Chapters

	Background
	Sudoku
	Algorithms for Sudoku Puzzle
	Algorithm Selection and Run-time Prediction

	Algorithm Selection and Run-time Prediction for Sudoku Puzzles
	Sudoku Instances
	Solvers for Sudoku
	Features for Sudoku Puzzle
	Method for Algorithm Selection
	Method for Run-time Prediction

	Experimental Setup, Solver Evaluation and Data Sets
	Solver Run-time Evaluation
	Data Sets for Algorithm Selection and Run-time Prediction

	Evaluation of Algorithm Selection
	Pre-processing and Feature Selection
	Algorithm Selection Results
	Overall Analysis

	Evaluation of Run-time Prediction
	Pre-processing
	Regression Results
	Overall Analysis

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography
	Appendix A
	Features
	Algorithm Selection Feature Selection

	Appendix B
	Run-time Prediction Feature Selection

	Appendix C
	Algorithm Selection for Easy Data Set

