Lightweight Online Learning for Sets of Related Problems in Automated Reasoning

Haoze Wu
Stanford University
Stanford, CA, USA
haozewu@stanford.edu

Christopher Hahn
Stanford University
Stanford, CA, USA
hahn@cs.stanford.edu

Florian Lonsing
Unaffiliated
Linz, Austria
florianlonsing.com

Makai Mann
MIT Lincoln Laboratory
Lexington, MA, USA
makai.mann@ll.mit.edu

Raghuram Ramanujan
Davidson College
Davidson, NC, USA
raramanujan@davidson.edu

Clark Barrett
Stanford University
Stanford, CA, USA
barrett@cs.stanford.edu

Abstract—We present Self-Driven Strategy Learning (SDSL), a lightweight online learning methodology for automated reasoning tasks that involve solving a set of related problems. SDSL does not require offline training, but instead automatically constructs a dataset while solving earlier problems. It fits a machine learning model to this data which is then used to adjust the solving strategy for later problems. We formally define the approach as a set of abstract transition rules. We describe a concrete instance of the SDSL calculus which uses conditional sampling for generating data and random forests as the underlying machine learning model. We implement the approach on top of the KISSAT solver and show that the combination of KISSAT+SDSL certifies larger bounds and finds more counter-examples than other state-of-the-art bounded model checking approaches on benchmarks obtained from the latest Hardware Model Checking Competition.

I. INTRODUCTION

Many automated reasoning tasks involve solving a set of related problems that share common structure. For example, in Bounded Model Checking [1], [2], one repeatedly checks deeper and deeper unrolls of a transition system for a property violation. In iterative (e.g., counter-example-guided) abstraction refinement [3], one verifies a condition on an increasingly precise model of a system. And in symbolic execution [4], one analyzes the possible outcomes of a program on symbolic inputs by incrementally adding path conditions. Often, a fixed, predetermined high-level solving strategy (e.g., the choice of a solver and its parameter settings) is used in this iterative solving process. However, given the structural similarity within the set of problems, a natural question is: can we leverage information gathered while solving earlier problems to adjust the solving strategy for later problems on the fly?

Adapting high-level solving strategies for particular problem distributions, a practice often termed *meta-algorithmic design* [5], is already a well-established technique. Automated configuration techniques [6], which optimize an algorithm’s performance on a given set of problems, are widely used among practitioners. Per-instance algorithm selection techniques (e.g., SATzilla [7]) train machine learning models to predict a suitable strategy for a given problem based on its structural characteristics. More recently, attempts to improve constraint solving using deep learning also generally follow the paradigm of choosing a particular problem distribution (which can be either broad, such as main-track benchmarks from SAT competitions [8], or narrow, such as graph coloring problems [9]), gathering training data using instances in that distribution, and learning a strategy over the data.

A shared, and arguably undesirable, trait of the aforementioned approaches is that they all involve an *offline phase*, in which significant time and (often manual) effort are required to obtain an optimized solving strategy that can be used on new unseen problems. While the cost of the offline phase might be justified by the potential performance gain in the long run, the very distinction between an offline phase and an online phase already makes the reasoning less *automated*.

Our first observation is that for an automated reasoning procedure whose execution involves solving a set S of related problems, it is possible to move the meta-algorithmic design online, as part of the solving, by narrowing the scope of *problem distribution* all the way down to S itself. More concretely, we propose to solve some of the problems in S not just once, but multiple times, each time using a different solving strategy from a space of candidates. The strategies used for solving later problems are selected based on information recorded during the multiple runs (e.g., using lightweight machine learning techniques). We present this general method, which we term *Self-Driven Strategy Learning* (SDSL), as a set of transition rules, which can be used to model different ways of carrying out on-the-fly meta-algorithmic design.

Though there are many possible ways to instantiate SDSL, we focus on a strategy space consisting of one fixed solver whose parameters are allowed to vary. One obvious method for exploring this strategy space involves choosing the first few problems, optimizing the parameter settings for them with a standard tuning procedure, and then using the optimized strategy for future problems. However, a drawback of this approach is that it only operates on a fixed set of problems and cannot explicitly take into account possible relationships...
between this set of problems and later problem instances.

To allow for such flexibility, our second observation is that a tuning procedure can be viewed, not as a way to select a specific solving strategy, but instead as a means of creating a dataset, where each data point is a pair consisting of a particular solving strategy and a particular problem in the problem set. A machine learning model is trained on this dataset to predict the effect of a given solving strategy on a given problem. The model can then be used as an oracle to select the solving strategy for future problems.

We apply our methodology to a case study of Bounded Model Checking (BMC) problems. We study different SDSL instantiations and compare against existing model checkers. On satisfiable and unsolved bitvector benchmarks from the latest Hardware Model Checking Competition [10], our approach consistently boosts the performance of a BMC-procedure built on top of the KISSAT SAT solver [11]. Additionally, it compares favorably against state-of-the-art open-source model checkers AVR [12] and PONO [13], contributing several unique solutions and speeding up many more. A preview on a single benchmark is shown in Fig. 1. We see that SDSL invests time learning a good solving strategy in the beginning, which results in better performance when solving later problems.

We summarize our main contributions as follows:
1) we propose to move meta-algorithmic design online as part of solving a set of related problems;
2) we propose a general methodology called Self-Driven Strategy Learning and present it formally as a set of transition rules; and
3) we implement our approach and apply it to Bounded Model Checking problems, where it shows significant improvement over other state-of-the-art approaches.

The rest of the paper is organized as follows. After a discussion of related work in Sec. II, we first define a basic calculus for iteratively solving a set of related problems in Sec. III. Next, SDSL is presented as an extension of this calculus with additional rules for data collection, learning, and strategy updates in Sec. IV. We explore the design space of SDSL in Sec. V, discussing how to sample training data and which machine learning models to use. In Sec. VI, we describe in detail the instantiation of SDSL for Bounded Model Checking. In Sec. VII we present experimental results on Bounded Model Checking problems, and finally, we conclude with an account of current limitations and future directions in Sec. VIII.

II. RELATED WORK

Our approach is inspired and informed by several existing lines of work.

Incremental solving: A well-established paradigm for exploiting structural similarity is incremental solving [14] in which each new query to a solver can be made by modifying the most recent formulas asserted in the previous query without resetting the solver. SDSL is an orthogonal approach for leveraging structural similarity and may be preferable in cases where incremental solving is not beneficial or not supported.

In principle, the two can be combined. A straightforward way would be to switch to incremental solving mode after fixing a solving strategy. A tighter combination would require updating strategies between incremental invocations, something that current solvers typically do not allow. In case one wants to both switch solvers on the fly and leverage incrementality, proof-transfer techniques such as solver state migration [15] are likely needed. For our particular BMC case study, we found that the direct use of an incremental SAT/SMT solver has mixed effects on performance (see the extended version [16] of the paper). This suggests that it might be worth revisiting BMC-specific incremental solving techniques such as conflict clause shifting [17] before investigating the interplay between SDSL and incremental solving in BMC, which we leave for future work.

Automated Configuration: Our work is motivated by the success of offline meta-algorithmic design approaches such as automated configuration [6], [18], [19] and per-instance algorithm selection [7], [20], [21]. Automated configuration focuses on finding (near) optimal parameter settings of an algorithm for a fixed set of problems, using either local search or performance prediction techniques [22]–[24]. Per-instance algorithm selection techniques were among the first to utilize machine learning to improve constraint solving. The idea is to train an oracle to predict the performance (e.g., runtime) of a set of candidate algorithms on a formula based on its structural characteristics. SDSL differs from both approaches primarily in that it moves meta-algorithmic design online.

ML for AR: Machine Learning has been applied in multiple ways to expedite a variety of automated reasoning tasks, including satisfiability checking [8], [9], [25]–[31], Mixed-Integer Convex Programming [32], [33], program/function synthesis [34]–[36], and symbolic execution [37], [38].

While most existing techniques require an offline training phase, the general idea of using online learning also appears in previous work. The Conflict-Driven Clause Learning paradigm itself can be viewed as online learning. In the MapleSAT solver [27], [28], branching is formulated as a multi-armed bandit problem where the estimated reward of each arm (i.e., variable) is maintained and updated throughout the solving. This reinforcement learning interpretation of a dynamic
branching heuristic is perhaps inspired by the study [39] of the popular VSIDS [40] branching heuristic and its later variants [41], which also track a score for each variable during the solving. In contrast to this direction of online learning, SDSL operates on a set of related problems rather than on a single instance. Moreover, SDSL focuses on selecting from a set of existing strategies rather than inventing new ones.

To conclude this section, we remark that in practice, offline learning, “in-solver” online learning, and SDSL could be combined to solve a set of related problems. For example, one could choose to use SAT/SMT solvers with built-in learning components, set the initial solving strategy using offline learning, and then use SDSL to further customize the strategy online. The exploration of such combinations is beyond the scope of this paper, but is a promising future direction.

III. SOLVING SETS OF RELATED PROBLEMS

In this section, we present a simple calculus, SR, for iteratively solving a set of related problems. Let \(\mathcal{F} = \{f_1, \ldots, f_K\} \) be a set of \(K \) related formulas. Assume we have a function \(\text{check} : \mathcal{F} \times \mathcal{V} \rightarrow \{\text{SAT}, \text{UNSAT}\} \), which takes as input a formula \(f \in \mathcal{F} \) and a solving strategy \(v \) (from a set \(\mathcal{V} \) called the strategy space) and returns either SAT (satisfiable) or UNSAT (unsatisfiable). Additionally, assume that we can stop once any formula is SAT.

The rules of the basic SR calculus are shown in Fig. 2. The rules operate over a configuration, which is either one of the distinguished symbols \(\{\text{SUCCESS}, \text{FAIL}\} \) or a tuple \(\langle i, v \rangle \), where \(i \in [1, K] \) is the current formula index and \(v \in \mathcal{V} \) is the current solving strategy. The rules describe the conditions under which a certain configuration can transform into another configuration. The Next rule says that if the current formula is unsatisfiable and the maximal index \(K \) has not been reached yet, then the current index will be increased. On the other hand, if the current formula is unsatisfiable and it is the last formula, the Failure rule transitions the system to the Fail configuration. The Success rule states that SUCCESS can be reached when the current formula is satisfiable.\(^1\)

An SR-execution is a sequence of configurations that respect the rules in SR. Note that no rule updates the solving strategy \(v \). We augment the calculus with strategy updates next.

\(^1\)The conditions for progress and termination are inspired by BMC but are applicable in other settings when solving related problems.

\[\begin{align*}
\text{Next:} & \quad i < K \quad \text{check}(f_i, v) = \text{UNSAT} \quad \frac{\text{Next}}{i, v \implies i + 1, v} \\
\text{Failure:} & \quad i = K \quad \text{check}(f_i, v) = \text{UNSAT} \quad \frac{\text{Failure}}{i, v \implies \text{FAIL}} \\
\text{Success:} & \quad \text{check}(f_i, v) = \text{SAT} \quad \frac{\text{Success}}{i, v \implies \text{SUCCESS}}
\end{align*} \]

Fig. 2. Transition rules for solving a set of related problems. The starting configuration is \(\langle 1, v \rangle \).

Given two configurations \(C, C' \), we use \(C \vdash C' \) to denote \(C \) can transition (in one or more steps) to \(C' \). We state the following two propositions which are straightforward to verify.

\begin{align*}
\text{Proposition 1 (Soundness and Completeness):} & \quad \text{If} \quad C \vdash C' \quad \text{then} \quad C \subseteq C'. \\
\text{Proposition 2 (Termination):} & \quad \text{There exist no infinite SR-executions.}
\end{align*}

IV. SELF-DRIVEN STRATEGY LEARNING

A. Informal Presentation

Self-Driven Strategy Learning (SDSL) attempts to learn, on the fly, which solving strategy among a set of candidates \(\mathcal{V} \) to use for each formula in \(\mathcal{F} \). Learning is based on data gathered during solving. To obtain the data, we occasionally solve a formula multiple times, each time with a different strategy in \(\mathcal{V} \). For a strategy \(v \), we record its effect, \(e \in \mathbb{R} \), when solving \(f \) by creating a data point \(\langle v, i, c \rangle \), where \(c \) is a measure of the cost of the strategy. For example, \(c \) could be the total run time required to solve \(f \).

Given such a dataset, an oracle \(T : \mathcal{V} \times [1, K] \mapsto \mathbb{R} \) is trained to predict the cost of a given strategy when run on a given formula. When solving a new formula, we select the one that \(T \) predicts will be most effective, and as more data is collected with each call to \(\text{check} \), \(T \) is updated.

An essential characteristic of SDSL is that the training data is gathered for a specific, and a priori unknown, set of formulas in an online and automatic manner, as part of the solving process. This approach has two challenging implications. The learning process must not incur a large overhead; otherwise, insufficient time is left for actual solving. Additionally, the choice of \(\mathcal{V} \) is crucial as it must be large enough to contain good candidate strategies but also not too large to explore. We address these challenges in Sections V and VI, respectively.

B. Formal presentation

Formally, we present SDSL as an extension of SR. Configurations are as in SR except that tuple configurations \(\langle i, v, D, T \rangle \) have two additional components (assumed to be left unchanged by rules in SR): \(D \in \mathcal{P}(\mathcal{V} \times [1, K] \times \mathbb{R}) \) is a dataset, each of whose members records the result of running a single strategy on a single formula; and \(T : \mathcal{V} \times [1, K] \mapsto \mathbb{R} \) is an oracle (e.g., a machine learning model) that predicts the cost of a strategy on a formula. Initially, \(D \) is empty, and \(T \) is arbitrary (e.g., always return 0). The additional transition rules of SDSL are described in Fig. 3.

\[\begin{align*}
\text{Collect:} & \quad v_i \in \mathcal{V} \quad j \leq i \quad c = \text{cost}(f_j, v_i) \quad \frac{\text{Collect}}{i, v, D, T \implies i, v, D \cup \{\langle v, j, c \rangle \}, T} \\
\text{Train:} & \quad T' = \text{fit}(D) \quad \frac{\text{Train}}{i, v, D, T \implies i, v, D', T'} \\
\text{Strategize:} & \quad v_i \subseteq \mathcal{V} \quad v' = \arg \min_{v_i \in \mathcal{V}} T(v_i, i) \quad \frac{\text{Strategize}}{i, v, D, T \implies i, v', D, T'}
\end{align*} \]

Fig. 3. Additional transition rules for Self-Driven Strategy Learning.
The Collect rule samples a strategy $v_i \in \mathcal{V}$, evaluates its cost when solving f_j, and augments D with this new data. The rule is parameterized by a function $\text{cost} : \mathcal{F} \times \mathcal{V} \rightarrow \mathbb{R}$. The Train rule updates the oracle T with a new one trained on the current dataset D. It is parameterized by a machine learning algorithm fit (e.g., k-NN, tree ensemble, deep learning, etc.). Finally, the Strategize rule updates the current strategy by sampling a set of strategies \mathcal{V}_i from \mathcal{V} and choosing the one with the best predicted cost for the current index i. The extended calculus is still sound and complete (i.e., Proposition 1 still holds). Since the added rules can effectively be applied at any time, Proposition 2 only holds if we allow only a finite number of applications of the new rules.

Note that in the Collect rule, the results of solving the formula f_j are discarded, as f_j must have been solved already in some previous application of the Next rule. It is possible to extend the SR calculus to allow unknown results from check, but the completeness property would be lost.

A reasonable strategy for applying SDSL rules is as follows:

1) After every application of Next, issue one learning epoch; that is, apply Collect m times on the current problem, then apply Train;
2) If Train has been applied at least once, apply Strategize whenever i is updated;
3) If the estimated learning time exceeds some threshold n, override the first policy and do not issue any more learning epochs;
4) Terminate whenever Success or Failure applies.

The estimated learning time is calculated as the time spent on learning so far plus $m \cdot t$, where t is the runtime of solving the current problem using the current strategy. If $|\mathcal{V}|$ is small, it may be reasonable to use $m = |\mathcal{V}|$ and try each strategy from \mathcal{V}. In the more general scenario where $m \ll |\mathcal{V}|$, the choice of which samples to use impacts the quality of the dataset. We discuss this choice and present a conditional sampling procedure in Sec. V-A. The purpose of restricting the training time in step three is to ensure that training does not dominate the total time taken. This simple criterion for when to stop learning already works reasonably well in practice. We leave the exploration of more sophisticated heuristics to future work.

V. DESIGN SPACE IN SDSL

This section discusses the design space in the implementation of SDSL and proposes solutions to the following questions: 1) How should training data be sampled? 2) Which machine learning model and training algorithm should be used? The solutions we propose focus on the case where a strategy is simply a set of values for a specific set of solver parameters. In this case, the strategy space is the cartesian product of p sub-strategy spaces, each representing a single parameter: $\mathcal{V} = \mathcal{V}_1 \times \ldots \times \mathcal{V}_p$. The set of possible values for each parameter can vary (e.g., parameter values could be Booleans, strings, or numbers), but for now we assume each \mathcal{V}_i is finite.

A. Gathering Informative Training Data

To make the most informed decision, we could try all candidate strategies on all previously considered problems, but this is infeasible when $|\mathcal{V}|$ is large. In the following, we consider the scenario where m samples are drawn from a strategy space \mathcal{V}, where $m \ll |\mathcal{V}|$.

In this restrictive setting, we need to ensure our dataset contains a sufficient number of low-cost strategies (if there are any). Sampling uniformly is unlikely to achieve this goal because in practice, many or most candidate strategies could have high cost. For this reason, we propose to explicitly favor low-cost strategies in the sampling process. One way to do this is by using Markov-Chain Monte-Carlo (MCMC) sampling, which in our setting can be used to generate a sequence of solving strategies with the desirable property that in the limit, strategies with the lowest cost are most frequently drawn. A popular MCMC method is the Metropolis-Hastings (M-H) Algorithm [42], instantiated in the context of SDSL as follows:

1) Choose a current strategy v;
2) Propose to replace the current strategy with a new one v', which comes from a proposal distribution $q(v'|v)$;
3) If $\text{cost}(f, v') \leq \text{cost}(f, v)$, accept v' as the current strategy;
4) Otherwise, accept v' as the current strategy with some probability $a(v\rightarrow v')$ (e.g., a probability inversely proportional to the increase in cost);
5) Go to step 2.

This process is repeated until m samples are drawn. Importantly, under this scheme, a proposal that results in lower cost is always accepted, while a proposal that does not may still be accepted. This means that the algorithm greedily moves to a better strategy whenever possible, but also has a means for escaping local minima. In our implementation, the acceptance probability is computed using a common method [43] described as follows. We first transform $\text{cost}(f, v)$ into a probability distribution $p(v)$:

$$p(v) \propto \exp(-\beta \cdot \text{cost}(f, v)),$$

where $\beta > 0$ is a configurable parameter. The acceptance probability is then computed as:

$$a(v\rightarrow v') = \min \left(1, \frac{p(v')}{p(v)}\right) = \min \left(1, \exp\left(\beta \cdot (c - c')\right)\right),$$

where $c = \text{cost}(f, v)$ and $c' = \text{cost}(f, v')$. Under this acceptance probability, the larger that c' is compared to c, the lower the probability to accept. On the other hand, the larger β is, the more reluctant we are to move to a worse proposal.

To ensure the aforementioned convergence property of MCMC in the limit, the proposal distribution must be both symmetric and ergodic.2 For discrete search spaces, a common proposal distribution is the symmetric random walk, which is

2A proposal distribution q is symmetric if $q(v'|v) = q(v|v')$ for any $v,v' \in \mathcal{V}$ and is ergodic if there is a non-zero probability of reaching a strategy $v \in \mathcal{V}$ from any other strategy $v' \in \mathcal{V}$ in a finite number of steps.
moves to one of the neighbors of the current sample with equal probability. For our strategy space, we define the neighbors of a strategy as all strategies for which exactly \(k \) parameter values are different. We use \(k = 1 \) in our implementation.

Note that MCMC sampling can be used not only in the data collection process, but also in the Strategize rule (i.e., to choose \(\mathcal{S}_i \subseteq \mathcal{V} \)). Since in this case we use the machine learning model as an oracle of cost (which is much cheaper than calling a solver), a larger sample size is affordable.

The sampling scheme presented above largely coincides with many local search approaches used in the automated configuration literature [5]. Borrowing more insights from that literature and devising more sophisticated sampling schemes are interesting directions for future work.

B. Lightweight Online Learning

In the online setting, the machine learning model must generalize from sparse data in limited time. This means the model needs to be both robust against outliers and efficient to train. Training a neural network from scratch, for example, is likely unsuitable, because it requires large amounts of data and, depending on the architecture, could be costly to train. On the other hand, lightweight ensemble models, which consist of a set of sub-models with different strengths and weaknesses, are well-suited for sdsd.

Our data is what is often called tabular data, that is, it can be represented as a table with rows and columns, where each row corresponds to a sample, and each column corresponds to a feature. When the strategy space consists of parameter settings, each sample has \(p + 2 \) features: the \(p \) parameters, the problem index, and the cost. Tree-based ensemble methods such as random forests are generally considered to be a good match for such data [44].

A random forest consists of a set of \(B \) regression trees \(\{f_1, \ldots, f_B\} \). Each tree is trained independently by sampling data from the data set \(D \). A regression tree makes a prediction by following a path from the root node to a leaf node, based on the values of the input features, and returning the cost associated with the leaf node (which generally is the average of the costs of the training points that map to that leaf node). The predictions of a random forest \(f \) are computed by averaging the predictions of the individual trees in \(f \).

A random forest is both efficient to train and efficient for prediction [45]. The time complexity of training a random forest with \(B \) trees is \(O(B \cdot m \cdot n \cdot \log m) \), where \(m \) is the number of data points and \(n \) is the number of input features. The inference time complexity for a random forest is \(O(B \cdot n) \).

Many machine learning algorithms are themselves parameterized and the performance of the model depends on a good choice of the hyperparameters. For a tree-based algorithm like random forest, an important hyperparameter is the maximal depth allowed for each individual regression tree: too shallow, and the model’s prediction will be inaccurate; too deep, and the model might overfit to outliers.\(^3\) The standard way to find suitable values of the hyperparameters is via (cross-)validation: split the data into a training set and a validation set, train models with different hyperparameters on the training set, evaluate them on the validation set, and pick the best one. However, in the sdsd setting where data is already sparse, validation is less feasible because it is hard to make sure that both the training set and the validation set are representative of the input space. Instead, we propose the following pragmatic heuristic: start by training a random forest with shallow trees and then retrain with incrementally deeper trees as needed until the training score is high enough.

VI. CASE STUDY: BOUNDED MODEL CHECKING

Bounded Model Checking (BMC) [1], [2], [17] is a well-known technique for checking whether a property \(P \) holds along bounded executions of a given system \(M \). The algorithm starts by checking all executions of length \(k \); if no counter-example is found, \(k \) is increased and the system checked until either a counter-example is found, the problem becomes intractable, or some upper bound on \(k \) is exceeded.

BMC is useful in practice for at least two reasons. First, it is often the most efficient way to find counter-examples (if they exist) when trying to prove that a system has a particular property. Second, when techniques capable of providing a full (i.e. unbounded) proof fail (which is often the case in practice), BMC still establishes a certain confidence in the system by providing formal guarantees for bounded executions. The larger the certified bound, the stronger the guarantee.

A basic BMC formula for checking whether a property \(P \) holds for a system \(M \) along executions of length \(k \) is:

\[
I_0 \land \bigwedge_{i=0}^{k-1} \rho(i, i+1) \land (\bigvee_{i=0}^{k} \neg P_i) \, ,
\]

where \(I_0 \) represents the initial state of \(M \), \(\rho(i, i+1) \) represents how the system evolves in a single step, and \(P_i \) represents the property at step \(i \) in the execution. This formula is satisfiable iff there is an execution of length less than or equal to \(k \) such that the property \(P \) does not hold at the end of the execution.

In practice, when the bound is increased, additional constraints are added stating that previously checked states are safe (in order to prune the search space). For example, suppose the check for bound \(k' \) is unsatisfiable. To check bound \(k > k' \), we use the following formula:

\[
bmc(k', k) := I_0 \land \bigwedge_{i=0}^{k-1} \rho(i, i+1) \land \bigwedge_{i=0}^{k'} P_i \land (\bigvee_{i=k'+1}^{k} \neg P_i) .
\]

We use BMC as a case study for our approach. For a given system and property, we solve the following set of problems:

\[
\mathcal{F} = \{bmc(k-s, k) \mid k = i \cdot s, 1 \leq i \leq K\} ,
\]

\(^3\)Instead of tuning the tree depth while fixing the number of trees, one could alternatively grow deep trees and tune the number of trees (to be large enough). However, this makes training and prediction much more costly.
where s is the step size. We focus on hardware model checking problems where the set of formulas to solve is in the theory of bitvectors [46]. We use standard techniques to encode the bitvector problems as Boolean satisfiability (SAT) problems [47]. Thus, F is a set of Boolean formulas, and we can implement check using an off-the-shelf SAT solver. We use the state-of-the-art KISSAT SAT solver [11]. In the following, we discuss the choice of the cost function $cost$ and the strategy space \mathcal{V} for this case study.

A. Choosing the Cost Function

One plausible cost function for a strategy v and a formula f_i, is the ratio of the runtime to that of some default strategy v_0, i.e., if the runtime is t with strategy v and t_0 with v_0, then $cost(f_i, v) = \frac{t}{t_0}$. While this definition works in practice, the use of runtime makes SDSL’s behavior non-deterministic across different runs. This is undesirable for many reasons, including experimental reproducibility. Therefore, we instead use the number of conflicts generated by the SAT solver, which is accepted as a good proxy for runtime [48]. Given the same parameter settings, the number of conflicts generated by KISSAT on the same problem is deterministic.

B. Choosing the strategy space

As discussed in Sec. IV-B, the choice of the strategy space is crucial to the effectiveness of SDSL. KISSAT has over 90 configurable parameters, so considering all of them is impractical. One plausible approach is to rely on expert/domain knowledge and empirical studies to identify a reasonable set of parameters to consider. We follow this approach to define two strategy spaces for KISSAT.

The first one, \mathcal{V}_{exp} (Table I), is based on a study by Dutertre [49] on the effect of SAT solver parameters on bitvector problems. We allow two possible values for each parameter, the default one and an alternative one. For options that were found to be beneficial in [49], we include the corresponding parameter in KISSAT and for non-Boolean parameters, we set the alternative value to be more aggressive; for Boolean parameters, we simply set the alternative value to be the opposite of the default. In total, \mathcal{V}_{exp} contains $8192 (2^{13})$ possible parameter settings.

The second strategy space, \mathcal{V}_{dev} (Tab. II), is based on suggestions made by the developer of KISSAT. It contains significantly fewer possible parameter settings (216).

Designing principled ways to automatically construct the strategy space (e.g., using techniques for assessing parameter importance [51]) is an important direction for future work.

C. Implementation

We implemented an SDSL-based BMC procedure in PYTHON3.7 Our prototype takes as input a model checking problem in the BUTOR/BTOR2 format [52], [53] and can run BMC on that input with or without SDSL. We implemented SDSL following the strategy described in Sec. IV-B. The BMC step size and the maximal bound are also command-line arguments. Additional input arguments include:

1. \mathcal{V}: path to a CSV file representation of the strategy space (e.g., Tabs. I and II);
2. n: the time budget for the learning epochs (see Sec. IV-B), by default 15% of the total time limit;
3. m: the number of samples to draw per learning epoch, by default 100;
4. The number of samples to draw in the Strategize rule, by default 500;
5. The number of trees in the random forest, by default 50;
6. The initial tree depth, by default a third of the number of parameters in \mathcal{V};
7. The random seed, by default 0.

The default values are used in all experiments unless otherwise specified.

The formula $bmc(k', k)$ is generated online by first creating a bitvector formula using the PONO Model Checker [13],

TABLE I

<table>
<thead>
<tr>
<th>KISSAT option</th>
<th>default</th>
<th>alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bumpreasonsrate</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>chrono</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>eliminateint</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>eliminateoccldm</td>
<td>2000</td>
<td>20</td>
</tr>
<tr>
<td>forwardforint</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>ifthenelse</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>probeint</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>rephaseint</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>stable</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>substituteeffort</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>subsumeoccldm</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>vivifyeffort</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>KISSAT option</th>
<th>default</th>
<th>alternative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chrono</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>phase</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>stable</td>
<td>1</td>
<td>0, 2</td>
</tr>
<tr>
<td>target</td>
<td>1</td>
<td>0, 2</td>
</tr>
<tr>
<td>tier1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>tier2</td>
<td>6</td>
<td>3, 9</td>
</tr>
</tbody>
</table>

7. Available at https://github.com/anwu1219/sdsl/
then bit-blasting it into a SAT formula using the BOOLECTOR solver [54]. The versions of the solvers are reported in the extended version [16] of the paper. Our prototype does not leverage incrementality for reasons discussed in Sec. II. We use the Scikit-Learn machine learning library [55] for training the Random Forest. Apart from the number of trees and the depth of the trees, we use the default hyperparameters of Scikit-Learn’s Random Forest module. The prototype runs on one thread, though the sampling, training, and inference are in principle parallelizable.

VII. EXPERIMENTAL EVALUATION

We consider the bitvector track benchmarks from the latest Hardware Model Checking Competition (HWMCC) [10]. We omit all unsatisfiable benchmarks, since these are not solvable using BMC. What remain are 65 benchmarks that were reported to be satisfiable during the competition and 24 benchmarks that were unsolved during the competition. All experiments are performed on a cluster equipped with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz running Ubuntu 20.04. Each job is given one physical core and 8 GB memory.

A. Unrolling the unsolved benchmarks

In the first experiment, we focus on the 24 unsolved benchmarks. For each benchmark, the goal is to either find a property violation or to prove that the property holds for as large a bound as possible. A CPU time limit of 2 hours is given for each benchmark. We consider two BMC step sizes: 1 and 10. For each step size, we run as baselines our KISSAT-based BMC implementation without SDSL (denoted KISSAT) and the BMC engine of PONO (denoted PONO), which makes incremental calls to BOOLECTOR to solve bitvector queries.

1) Performance of SDSL using the strategy space in Tab. I: We first evaluate KISSAT + SDSL, the SDSL-extended BMC procedure using \(V_{exp} \) (Tab. I) as the strategy space. The results are shown in Tab. III. We report the largest solved (i.e., certified or falsified) bound \(k \) for each configuration. For KISSAT + SDSL and KISSAT, we also show the total time to solve all formulas up until the largest commonly solved bound \((t_{c.s.}) \). For KISSAT + SDSL, this includes the time spent on learning. We further report the number of learning epochs \((ep) \) and the time spent on learning \((t_{learn}) \) for KISSAT + SDSL. Graphic illustrations in the style of Fig. 1 and the duration of each training epoch are presented in the extended version [16] of the paper.

When the BMC step size is 1, KISSAT + SDSL is able to certify larger bounds compared with the baseline configurations on 22 out of the 24 benchmarks, with an average bound increase of 3.9 (52.6 – 48.7). This improvement is highly non-trivial, considering that to reach a larger bound, KISSAT + SDSL needs to 1) certify all the formulas up to the baseline bound; 2) spend time (on average 975 seconds) learning a solving strategy; and 3) solve an additional set of harder formulas with the remaining time, one for each increase in the bound size. Comparing \(t_{c.s.} \) sheds further light on the performance gain enabled by SDSL: on average, KISSAT + SDSL is 1.3× faster (\(\frac{6354}{3871} \)) on the set of commonly solved problems. The fraction of \(t_{c.s.} \) that KISSAT + SDSL spends on actual solving (not including learning) is 3836 seconds (4811 – 975). Thus, on average, a 1.7× speedup (\(\frac{6354}{3836} \)) is achieved in the sheer performance of the SAT solver. Upon closer examination, the learning time is dominated by the data collection, with actual training and inference only taking 2.1% of \(t_{learn} \) on average.

When using BMC step size 10, both the KISSAT-based baseline and KISSAT + SDSL can find counter-examples on 8 benchmarks (highlighted in red). In all but one of those benchmarks, KISSAT + SDSL finds counter-examples faster. Additionally, KISSAT + SDSL certifies a larger bound than KISSAT on 4 benchmarks. For the remaining 12 benchmarks, the two configurations certify the same bounds, but KISSAT + SDSL reduces the runtime on only 3 of them. One explanation for this is that the number of affordable learning epochs is significantly smaller when the step size is 10 due to the increased hardness of individual formulas. As a result, fewer strategies are considered. For example, on arb.n2.w128.d64, a total of 871 unique solving strategies are evaluated when the step size is 1, whereas only 175 strategies are evaluated when the step size is 10. Nonetheless, overall, KISSAT + SDSL is still 1.3× faster (\(\frac{3712}{2927} \)) at certifying the same bounds.

It is important to note that using step size 10 does not necessarily lead to a larger certified bound. Take circ.w128.d128 for example: KISSAT + SDSL can unroll to an execution length of 46 with step size 1 while only unrolling to 30 with step size 10. This also applies to an incremental solver like PONO, which certifies an execution length of 39 with step size 1 versus 20 with step size 10. This suggests that the optimal step size varies in practice.

2) Performance of SDSL using the strategy space in Tab. II: We repeat the same experiment for the other SDSL configuration KISSAT + SDSL-dev, which uses the smaller strategy space \(V_{dev} \) (Tab. II). The result is shown in Tab. IV. To summarize, KISSAT + SDSL-dev still boosts the performance of KISSAT though the overall gain is less. For step size 1, the average solved bound by KISSAT + SDSL-dev is 49.4 compared to 48.7 by KISSAT. The overall reduction in \(t_{c.s.} \) is not significant (2.8%) though the reduction in the pure solving time (computed by subtracting \(t_{learn} \) from \(t_{c.s.} \)) is still clear (16.5%). For step size 10, KISSAT + SDSL and KISSAT unroll to the same bound on each instance, but it takes KISSAT + SDSL 12.7% less time to get there. It is not too surprising that the performance gain resulting from KISSAT + SDSL-dev is smaller than from KISSAT + SDSL. The smaller strategy space has far fewer strategy options and might simply not contain a better strategy than the default one.

In the extended version [16] of the paper, we also consider two additional SDSL configurations. One includes all boolean flags in the strategy space; the other uses local-search-based tuning instead of machine learning to pick the solving strategy. Both configurations perform worse than the KISSAT-based
tuning does also result in speedup in BMC baseline. It is worth noting that local-search-based KISSAT gain is less significant compared to ABC have contacted the information about the commands and version used for the competition. We consider the basic portfolios, one of PONO procedure (also using step size 10) as a baseline. In addition, this experiment. We evaluate KISSAT empirically. As in the competition, we use a time limit of 1 hour for satisfiable and unsolved bitvector benchmarks from HWMCC.

B. Mini Hardware Model Checking Competition

We evaluate KISSAT + SDSL_exp with step size 10 on all the satisfiable and unsolved bitvector benchmarks from HWMCC. As in the competition, we use a time limit of 1 hour for this experiment. We consider the basic KISSAT-based BMC procedure (also using step size 10) as a baseline. In addition, we perform an apples-to-oranges comparison to two algorithm portfolios, one of PONO and the other of the AVR model checker [12], which was the winner of the most recent competition. We use the competition portfolio of AVR, which consists of 16 single-threaded solving modes. The PONO portfolio contains 13 single-threaded modes selected by the developers.

We hope to also compare with the bit-level solver ABC [57] but have no information about the commands and version used for the competition. We have contacted the ABC team and will include such results after hearing back.

C. Ablation studies of training budget and model architecture

To study the effect of dataset size and model accuracy, we select one benchmark picor_pcregs_p0, and vary the learning budget (in seconds) in the set \{180, 360, 720, 1080, 1440\} and the decision tree depth from.

TABLE III

EVALUATION OF KISSAT + SDSL_exp ON BV BENCHMARKS OF HARDWARE MODEL CHECKING COMPETITION 2020 THAT WERE NOT SOLVED DURING THE COMPETITION, ep IS THE NUMBER OF TRAINING EPOCHS, t_learn IS THE TIME SPENT ON DATA COLLECTION, TRAINING, AND INFERENCE, t_c.s. IS THE CUMULATIVE TIME (t_learn INCLUDED) TO SOLVE ALL THE FORMULAS UP UNTIL THE LARGEST BOUND COMMONLY SOLVED BY KISSAT + SDSL_exp AND KISSAT. k IS THE LARGEST SOLVED BOUND WITHIN 2 HOURS AND IS HIGHLIGHTED IF A VIOLATION IS FOUND (I.E., THE BENCHMARK IS SOLVED).

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>step size = 1</th>
<th>step size = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KISSAT + SDSL_exp</td>
<td>KISSAT</td>
</tr>
<tr>
<td>arb.n2.w128.d64</td>
<td>10 1040 4816 59</td>
<td>7198 54 45</td>
</tr>
<tr>
<td>arb.n2.w64.d64</td>
<td>9 936 4431 53</td>
<td>6515 53 48</td>
</tr>
<tr>
<td>arb.n2.w8.d128</td>
<td>10 1031 5599 54</td>
<td>6795 52 45</td>
</tr>
<tr>
<td>arb.n3.w16.d128</td>
<td>9 937 4988 58</td>
<td>7118 53 48</td>
</tr>
<tr>
<td>arb.n3.w64.d128</td>
<td>10 1062 4856 58</td>
<td>7132 53 44</td>
</tr>
<tr>
<td>arb.n3.w4.d64</td>
<td>9 985 4809 58</td>
<td>7055 53 46</td>
</tr>
<tr>
<td>arb.n3.w8.d128</td>
<td>9 983 4760 58</td>
<td>6996 53 46</td>
</tr>
<tr>
<td>arb.n4.w128.d64</td>
<td>9 963 6143 54</td>
<td>6107 53 46</td>
</tr>
<tr>
<td>arn.n4.w16.d64</td>
<td>10 984 4768 57</td>
<td>6599 53 49</td>
</tr>
<tr>
<td>arn.n4.w8.d64</td>
<td>10 1081 5863 54</td>
<td>6659 52 48</td>
</tr>
<tr>
<td>arn.n5.w128.d64</td>
<td>9 1105 5095 57</td>
<td>6731 53 47</td>
</tr>
<tr>
<td>circ.w128.d128</td>
<td>7 845 5746 46</td>
<td>6549 44 39</td>
</tr>
<tr>
<td>circ.w128.d64</td>
<td>8 887 6071 47</td>
<td>6452 46 39</td>
</tr>
<tr>
<td>circ.w16.d128</td>
<td>11 967 4997 58</td>
<td>7199 54 47</td>
</tr>
<tr>
<td>circ.w64.d128</td>
<td>9 870 5409 51</td>
<td>6895 48 44</td>
</tr>
<tr>
<td>dspf.p22</td>
<td>4 1078 3741 31</td>
<td>5654 28 27</td>
</tr>
<tr>
<td>pgm.3.prop5</td>
<td>10 1019 7128 128</td>
<td>5663 133 131</td>
</tr>
<tr>
<td>picor.AX.nom.p2</td>
<td>2 929 3307 16</td>
<td>6366 15 14</td>
</tr>
<tr>
<td>picor.pcregs-p0</td>
<td>5 992 4020 32</td>
<td>6402 30 30</td>
</tr>
<tr>
<td>picor.pcregs-p2</td>
<td>5 840 6149 30</td>
<td>5003 31 31</td>
</tr>
<tr>
<td>shift.w128.d64</td>
<td>7 858 4098 27</td>
<td>5393 25 21</td>
</tr>
<tr>
<td>shift.w16.d128</td>
<td>9 1084 3020 45</td>
<td>5817 39 28</td>
</tr>
<tr>
<td>shift.w32.d128</td>
<td>8 821 2778 43</td>
<td>6273 35 27</td>
</tr>
<tr>
<td>zipversa.p03</td>
<td>5 1110 2961 82</td>
<td>6683 59 45</td>
</tr>
</tbody>
</table>

Mean 8.1 975 4811 52.6 6354 48.7 43.1 1.5 580 2927 57.5 3712 55.4 55.4

BMC baseline. It is worth noting that local-search-based tuning does also result in speedup in t_c.s. and improves upon KISSAT on 16 of the 24 instances. However, the performance gain is less significant compared to KISSAT + SDSL_dev and, on certain benchmarks, tuning landed on parameter settings that drastically harm the performance. This suggests that using empirical performance models can be more robust than direct tuning in our setting.

We use the competition portfolio of AVR, which consists of 16 single-threaded solving modes. The PONO portfolio contains 13 single-threaded modes selected by the developers.

9We hope to also compare with the bit-level solver ABC [57] but have no information about the commands and version used for the competition. We have contacted the ABC team and will include such results after hearing back.

The number of solved instances and the total time on solved instances are shown in Tab. V. To study the complementarity of the configurations, we also report the number of unique solutions and the performance of a virtual best configuration. Results on individual benchmarks are reported in the extended version [16] of the paper.

KISSAT + SDSL_exp solves all the instances solved by KISSAT plus 7 more, suggesting that while SDSL might create overhead for easy instances, this overhead is overcome by benefits in the long run. Impressively, those 7 problems are also not solved by the AVR and PONO portfolios. This suggests that including an SDSL-driven BMC procedure in a model checking algorithm portfolio can be beneficial.

C. Ablation studies of training budget and model architecture

To study the effect of dataset size and model accuracy, we select one benchmark picor_pcregs_p0, and vary the learning budget (in seconds) in the set \{180, 360, 720, 1080, 1440\} and the decision tree depth from.
TABLE IV
Evaluation of KISSAT + SDSL. The setup is the same as Tab. III.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>step size = 1</th>
<th>KISSAT + SDSL<sub>dev</sub></th>
<th>KISSAT</th>
<th>step size = 10</th>
<th>KISSAT + SDSL<sub>dev</sub></th>
<th>KISSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ep t<sub>learn</sub> t<sub>dev</sub> k</td>
<td>ep t<sub>learn</sub> t<sub>dev</sub> k</td>
<td>ep t<sub>learn</sub> t<sub>dev</sub> k</td>
<td>ep t<sub>learn</sub> t<sub>dev</sub> k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n2.w128.d64</td>
<td>11 861 6714 54 7198 54</td>
<td>2 631 3720 70 4940 70</td>
<td>2 657 4981 70 4224 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n2.w64.d64</td>
<td>10 896 6158 54 6515 53</td>
<td>2 624 3764 60 5528 60</td>
<td>2 657 4981 70 4224 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n2.w8.d128</td>
<td>11 1006 6291 53 6795 52</td>
<td>2 636 3905 60 5792 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n3.w16.d128</td>
<td>9 824 6061 54 7118 53</td>
<td>2 635 3703 60 5619 70</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n3.w64.d64</td>
<td>10 966 6417 53 6995 52</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n3.w8.d128</td>
<td>9 857 5780 55 6966 54</td>
<td>2 635 3703 60 5619 70</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n4.w16.d64</td>
<td>11 1053 5452 55 7055 53</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n4.w8.d64</td>
<td>10 901 5859 55 6731 53</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n5.w128.d64</td>
<td>10 898 5626 55 6599 53</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n5.w64.d64</td>
<td>11 973 4749 55 6659 54</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arb.n5.w8.d64</td>
<td>10 869 4948 43 5879 44</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>circ.w128.d128</td>
<td>8 694 6948 43 5879 44</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>circ.w16.d128</td>
<td>8 829 6650 45 5803 46</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>circ.w64.d128</td>
<td>12 969 6961 54 7179 54</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dspf.p22</td>
<td>4 959 4148 31 5672 31</td>
<td>2 735 3937 60 5120 60</td>
<td>2 735 3937 60 5120 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pgm.3.prop5</td>
<td>16 920 6933 133 6996 133</td>
<td>3 557 5664 190 6052 190</td>
<td>3 557 5664 190 6052 190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>picor.AX.nom.p2</td>
<td>2 590 3540 15 3636 15</td>
<td>1 59 191 20 85 20</td>
<td>1 59 191 20 85 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>picor.pcregs-p0</td>
<td>6 873 6573 28 3337 30</td>
<td>0 0 86 20 85 20</td>
<td>0 0 86 20 85 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>picor.pcregs-p2</td>
<td>5 646 6045 28 2786 31</td>
<td>0 0 86 20 85 20</td>
<td>0 0 86 20 85 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shift.w128.d64</td>
<td>8 666 5965 25 5393 25</td>
<td>1 179 4361 40 4294 40</td>
<td>1 179 4361 40 4294 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shift.w16.d128</td>
<td>9 940 5209 40 5817 39</td>
<td>1 179 4361 40 4294 40</td>
<td>1 179 4361 40 4294 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shift.w32.d128</td>
<td>8 796 5551 36 6273 35</td>
<td>1 268 3650 20 6622 20</td>
<td>1 268 3650 20 6622 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zipversa.p03</td>
<td>2 460 7037 59 6683 59</td>
<td>1 268 3650 20 6622 20</td>
<td>1 268 3650 20 6622 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8.8 840 5962 49.4 6134 48.7 1.5 454 3242 55.4 3712 55.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE V
Comparison with two algorithm portfolios on satisfiable and unsolved BV HWMC benchmarks (89 in total).

<table>
<thead>
<tr>
<th>Config</th>
<th>Threads</th>
<th>Slv.</th>
<th>Time</th>
<th>Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>KISSAT + SDSL<sub>exp</sub></td>
<td>1</td>
<td>68</td>
<td>27362</td>
<td>7</td>
</tr>
<tr>
<td>KISSAT</td>
<td>1</td>
<td>61</td>
<td>6358</td>
<td>0</td>
</tr>
<tr>
<td>AVR PORTFOLIO</td>
<td>16</td>
<td>48</td>
<td>12113</td>
<td>2</td>
</tr>
<tr>
<td>PONO PORTFOLIO</td>
<td>13</td>
<td>63</td>
<td>10723</td>
<td>0</td>
</tr>
<tr>
<td>VIRTUAL BEST</td>
<td>31</td>
<td>72</td>
<td>24700</td>
<td>–</td>
</tr>
</tbody>
</table>

1 to 10. We consider all 50 combinations of the two. For each combination, we run KISSAT + SDSL_{exp} (step size 1, time limit 2 hours) 12 times, each time with a different random seed (0 . . . 11); we show the median certified bound in the top half of Fig. 4 and the average training score (R² score, the larger the better) in the last learning epoch in the bottom half. The largest bound certified by KISSAT without SDSL is 30.

Noticeably, on this instance, improvements in the certified bound are achieved when the depth of the tree is at least 4 and the learning budget is at least 1080 seconds. This suggests that both a sufficient amount of training data and an accurate model are necessary for SDSL to work in practice. If not enough data is collected (bottom right), the machine learning model cannot extrapolate well to new problem instances. On the other hand, if the machine learning model is not accurate enough (top left), the strategy it suggests can also be misleading. Determining the optimal learning budget on a per-benchmark basis is a topic worth studying in the future.

10For this experiment we use a fixed tree depth instead of the dynamic one described in Sec. V-B.

Fig. 4. Varying the learning budget and tree depth on picor.pcregs-p0.
VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduced Self-Driven Strategy Learning, a conceptually simple, easy-to-implement online learning approach for solving sets of related problems in automated reasoning. We presented the methodology formally as a set of transition rules and instantiated it in the context of Bounded Model Checking. Our experiments show that equipping a BMC-procedure with SDSL results in a significant performance boost, both in terms of certified bounds and solved instances, when comparing against state-of-the-art open-source model checkers.

One thing to consider when applying SDSL is that a good return on investment in learning depends on a sensible a priori choice of the strategy space. Another limitation is that the problem set is small, gathering sufficient training data can be challenging. An intriguing question is whether a problem can be decomposed into sub-problems automatically in order to obtain sufficient data. Other future directions include alternative orders of applying the SDSL rules, applying SDSL to other automated reasoning tasks (e.g., symbolic execution, max-satisfiability, iterative abstraction refinement), and combining SDSL with offline learning and incremental solving.

Acknowledgments: We thank the anonymous reviewers for their careful reviews and constructive feedback. This work was supported in part by the National Science Foundation (grant 1269248) and by the Stanford Center for Automated Reasoning. Additionally, the NASA University Leadership initiative (grant #80NSSC20M0163) provided funds to assist the authors with their research, but this article solely reflects the opinions and conclusions of its authors and not any NASA entity.

REFERENCES

