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Kurzfassung

Die Verwendung von synthetischer Handschrift zur Verbesserung von Machine Learning
Methoden wird für zwei Anwendungsbereiche analysiert: das Finden von Handschrift in
Bildern (Handwritten Text Detection, HTD), und die Zeichenerkennung für Handschrift
(Handwritten Text Recognition, HTR). Für HTD wird synthetische Handschrift mit-
hilfe eines bereits vorhandenen Machine Learning Modells [DMP+20] generiert und zu
gescannten Dokumenten hinzugefügt, um handschriftliche Notizen zu imitieren. Modelle
zur Objekterkennung (YOLOv5 [JAS+] und YOLOv8 [JCQ]) werden trainiert, um die
Handschrift vom restlichen Inhalt der Dokumente zu unterscheiden. Anschließend werden
diese Modelle mit echten Daten evaluaiert: Für den CVL Datensatz [KFDS13] wird eine
mAP@50 von 0.88 und ein F1@50 auf Pixelebene von 0.96 erreicht; für echte Notizen
auf einer wissenschaftlichen Publikation wird eine mAP@50 von 0.72 und ein F1@50
von 0.89 auf Pixelebene erlangt. Die synthetisch generierte Handschrift wird weiters
verwendet, um ein bereits vorhandenes Modell zur Zeichenerkennung [CCP21] zu trainie-
ren. Anschließend wird dieses Modell zur Erkennung des Inhalts von Bildern mit echter
Handschrift angewendet. Dies führt zu einer Zeichenfehlerhäufigkeit (Character Error
Rate, CER) von 28.3% und einer Wortfehlerhäufigkeit (Word Error Rate, WER) von
65.5% für Bilder aus dem IAM-Datensatz [MB02], was mehr als dreimal so hoch ist wie
die Fehlerraten ohne synthetischen Daten. Die Verwendung von synthetischen Bildern in
Kombination mit echten Daten ermöglicht jedoch eine Reduzierung der Fehlerraten im
Vergleich zur Verwendung von echten Daten allein, insbesondere für kleine Datensätze.
Die Verwendung von nur 10% der Trainingsdaten (113 Bilder) aus dem CVL-Datensatz
[KFDS13] führt zu einer CER von 54.5% und einer WER von 88.8%. Wenn das Modell
jedoch mit synthetischen Daten vortrainiert wird, ergibt sich eine CER von 14.6% und
eine WER von 43.4%.
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Abstract

The usability of synthetic HandWritten Text (HWT) to improve machine learning models
is assessed for two domains: Handwritten Text Detection (HTD) and Handwritten Text
Recognition (HTR). Synthetic HWT is generated using an existing model [DMP+20],
and added to scanned documents to mimic handwritten annotations. Object detection
models (YOLOv5 [JAS+] and YOLOv8 [JCQ]) are trained to distinguish HWT from
remaining content. Applying those models to real data results in a mAP@50 of 0.88 and
a pixel-level F1@50 of 0.96 for the CVL data set [KFDS13], and a mAP@50 of 0.72 and
F1@50 of 0.89 for a scientific paper with real handwritten annotations. The synthetic
HWT from [DMP+20] is further used to train the HTR model described in [CCP21],
which is then applied to recognize the content of real HWT data sets. This results in
a Character Error Rate (CER) of 28.3% and a Word Error Rate (WER) of 65.5% for
line images of the IAM data set [MB02], which is more than three times higher than the
state-of-the-art results. However, mixing synthetic with real data allows to reduce the
CER and WER compared to using real data only, especially for small data sets. Using
only 10% of the training data (113 images) from the CVL data set [KFDS13] results in a
CER of 54.5% and a WER of 88.8%, pre-training the model with synthetic data results
in a CER of 14.6% and a WER of 43.4%.
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CHAPTER 1
Introduction

HandWritten Text (HWT) is an important part of many societies, be it in the form of
gift cards, letters, or study notes. Processing it is crucial for applications like signature
verification [SLY22], searching in handwritten documents [KDJ16], or transcribing HWT
into a machine-readable format [CCP22].

HWT, especially compared to Computer Written Text (CWT), shows a wide variety
of styles. They not only differ between persons but also within the same individual,
e.g., due to different pens or distractions during writing [FS15]. HWT itself can be
described on various properties, such as the writing zones (size of lower-case and upper-
case characters, and lower-case characters that go above/below the baseline of HWT), the
slant of characters, or the width of different characters, especially white spaces [MMB01];
using different pens can affect the stroke width and stroke color. Spacing between lines,
line rotations, the slant of the base line, or line indentations are possible characteristics
to describe paragraphs of HWT.

HWT must be digitized to be usable in a computer-aided fashion. This can be done in
two ways: online HWT, and offline HWT. Online HWT is usually obtained by tracking
and sampling the movements of a stylus or similar means of input on electronic devices
such as tablets or whiteboards (the latter was used for the IAM Online Handwriting
Database [LB05]), resulting in a sequence of Cartesian coordinates. To interpret the
data, the tracked points can be connected via, e.g., Bézier curves to form the stroke of
HWT. Offline HWT is acquired by creating photographs or scans of HWT.

One method for transcribing offline handwritten text is to locate areas containing such
within the image, segment it into individual lines of text, and finally into individual
words. Those can then be recognized and put together to recreate the text [KGS99].
Deep learning methods allow for reducing the required granularity for segmentation by
transcribing images of entire lines or entire paragraphs [CCP22] in one step.
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1. Introduction

However, developing deep learning models usually requires a lot of training data (e.g.,
Fogel et al. [FAEC+20] used a data set of more than 100k images for a word recognition
task and achieved a word error rate of 29.75% on the IAM Handwriting Database [MB02]).
In the mentioned domain of HTR this means that images containing HWT have to be
labeled, possibly involving the collection of specimens of handwriting. This can be a
time-consuming process requiring a significant number of people – domain experts, for
example, which are trained in reading historic documents (as needed for transcription of
such documents, e.g., [SRTV16]), or volunteers providing specimens of their handwriting
(as needed for HWT data sets like the IAM database [MB02] where more than 600 writers
contributed).

Advances in deep learning models allow to reproduce HWT synthetically. Graves [Gra13]
developed a model based on the Long Short-Term Memory (LSTM) architecture to
predict the Cartesian coordinates of online HWT for different input text and styles. Brian
et al. [DMP+20] developed a Generative Adversarial Network (GAN) to generate entire
images containing HWT for different styles and arbitrary text.

The usage of synthetic data can be beneficial for HWT processing research since it
allows to reduce the efforts needed to obtain high-quality training data: the ground
truth of the synthetic data, whether the locations of synthetic HWT for HTD or the
actual transcription for HTR, is implicitly available. It is also possible to generate a
pixel-accurate ground truth for HTD. Synthetic data allows to generate arbitrarily large
data sets, as no human interaction is needed for labeling the data. Further, recent
research has shown that using computer-generated images of HWT can help to improve
the quality of word-level transcriptions [FAEC+20] (the word error rate was improved
from 12.24% to 11.68% for the IAM Handwriting Database [MB02], and from 24.73% to
23.98% for the RIMES data set [GCBG09]), or to segment HWT vs. CWT on pixel-level
[JKSC20].

Therefore, this thesis aims to further evaluate to which extent synthetic HWT can be
used to improve machine learning models working with HWT data. The domain is
narrowed down to two tasks. The first one is Handwritten Text Detection (HTD), which
aims at identifying areas of handwritten text in documents. Developing good models in
this area can have advantages for, e.g., form parsing (especially for HWT written outside
of the predefined regions) or for translating notes in various documents – i.e., documents
containing hand-written annotations – into a machine-readable format. The second task
is Handwritten Text Recognition (HTR), which means translating the content of an HWT
image into a machine-readable sequence of characters. Applying synthetic data for model
training could improve the overall model performance or allow a better writer-specific
HTR.

More precisely, the following research questions are to be answered:

RQ1 To which extent can synthetic handwritten text be used to improve handwritten
text detection models for annotated documents?
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RQ2 To which extent can synthetic handwritten text be used to improve handwritten
text recognition models on line- and paragraph-level?

On a high level, the methodology for answering the questions is the same for both: First,
various task-specific data sets containing synthetic HWT text are created. The synthetic
images for those data sets are generated with existing HWT synthesis models. Then,
existing machine learning models suitable to solve the respective tasks are trained on
the generated data. The suitability of synthetic data is evaluated by assessing the model
performance using real data.

The main contributions of this thesis are the following:

• A method for generating synthetically and realistically annotated documents is
selected and evaluated

• Using synthetic data for HTD in annotated documents in combination with state-
of-the-art object detection models is evaluated

• Using synthetic data for HTR on line- and paragraph-level using state-of-the-art
HTR models is evaluated

The remaining of this work is organized as follows: Chapter 2 gives an overview of related
work. Section 2.1 describes different methods of generating HWT, including the approach
used within this thesis. Section 2.2 and Section 2.3 describe the existing models for
HTR and HTD, which will be used for evaluating the applicability of synthetic data sets.
Section 2.4 gives an overview of existing approaches to use synthetic HWT to improve
machine learning models. Chapter 3 describes in detail how the synthetic data sets are
generated; Section 3.1 describes how the synthetic data used within this thesis is created,
Section 3.2 covers the generation of synthetically annotated documents, and Section 3.3
focuses on the generation of synthetic data for HTR. Chapter 4 describes the evaluation
results for HTD (Section 4.1) and HTR (Section 4.2). A summary of the key insights
can be found in Chapter 5.
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CHAPTER 2
Related Work

The topic of this thesis overlaps with four different research areas, which are HWT
generation, HTD, HTR, and using synthetic HWT data sets to improve models. Section
2.1 gives a brief overview of the history for different approaches to generate HWT and
describes the model architecture that is used within this thesis. Section 2.2 describes the
HTR model utilized for the evaluation workflow. Section 2.3 briefly describes the object
detection architectures for HTD; Section 2.4 outlines existing work regarding the usage
of HWT for HTD and HTR tasks.

2.1 Handwritten Text Generation
Various approaches exist for generating synthetic HWT, which either generate synthetic
online HWT text or entire images mimicking offline HWT data. Graves [Gra13] developed
a method mixing a long short-term memory model with Gaussian mixture models utilizing
online HWT data. The model predicts a series of three values based on the last prediction.
The first two values are Cartesian coordinates (actually the offset to the previous predicted
point), which, after connecting the coordinates, can be interpreted as HWT. The third
value indicates the end-of-stroke, i.e., whether the pen was lifted. Without further
constraints, the model will predict a sequence of points that look like handwriting but
do not necessarily form valid words. Dynamically weighting the characters of the input
character sequence ensures that the generated point sequence represents the text on the
input sequence. Restricting the standard deviations of the Gaussian mixture models
increases the smoothness of the generated strokes, and initializing the model with real
online HWT enables the model to predict text coordinates mimicking the given style.

Since this approach generates a sequence of points, the actual stroke must be generated
by connecting the points, e.g. using Bézier Curves. Varying the color and thickness of
the curve allows the generation of HWT with different stroke colors and widths. However,
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2. Related Work

varying pen pressure, hence varying stroke intensities and widths, can not be mimicked
with this approach.

This drawback can be solved by generating entire images containing HWT. Kang et al.
[KRW+20] developed one such solution utilizing GANs consisting of two encoders and
one generator to generate images of arbitrary (out of a fixed alphabet) but length-limited
text. The first encoder extracts style features from real HWT images. The second one
learns textual features, allowing the generation of images of words not in the training
data. The generator combines information from both encoders to generate images with a
given style and content. The model is optimized in three ways. The first one is the for
GANs typical discriminative loss aiming to distinguish real HWT images from generated
ones. A style classifier ensures that the generated images have a wide variety of different
styles. A HTR model is utilized to ensure that the content of the images match the input
string.

The limitation of input strings with a maximum length is solved with the architecture
proposed in [FAEC+20]. An important assumption in this work is that creating HWT
is a local process, i.e., a character is influenced only by its direct neighbors. As before,
the network consists of three parts: a generator, a discriminator, and a recognizer
network. However, instead of generating the entire image at once, the generator focuses
on patches of 16x32 pixels 1, which are concatenated for arbitrary-length text input. The
receptive fields of the generators overlap to account for smooth transitions between letters,
especially with cursive HWT. Each patch is generated by identical, but on the respective
character conditioned, generator. The discriminator is again operating on smaller patches
with overlapping receptive fields to learn to distinguish real from generated HWT. The
recognizer is an LSTM pre-trained on real HWT images without learning an implicit
language model to promote the training of realistic HWT images.

Using an explicit space predictor network, which takes a multi-dimensional style vector
and a character string as input and predicts the character widths in the generated image,
allows Davis et al. [DMP+20] to generate HWT images with arbitrary length and varying
character widths. The entire network architecture is again composed of multiple smaller
networks, additionally to the space predictor. A fully convolutional recognition network
is pre-trained on real images for character predictions. The output of the recognizer
network, together with the actual image, is fed into a style extractor network, which
generates a vector containing global and character-level style features. The spacing
information (which includes the text to be converted to HWT), together with the style
vector, are the input for the generator network, which finally outputs the synthetic HWT
image. The pre-trained recognizer network and a discriminator network trained to predict
real vs. generated images are appended to the generator to lead the generator towards
realistic-looking images and correct text content.

Bhunia et al. [BKC+21] followed an approach similar to [DMP+20] but with essential
differences in the style encoding. First, instead of locating the characters within the style

1The width of the patches is 16 pixels, the height is 32 pixels.
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2.2. Handwritten Text Recognition

feature sequence to apply character-specific style extraction, the individual vectors of the
feature space cover a more generic region of the input image. Secondly, while [DMP+20]
employs a convolutional network on image batches as a discriminator network, a cycle
loss [ZPIE17] is applied by Bhunia et al. to ensure that the generated image allows
the reconstruction of the encoded style features. Both enable the model to learn more
fine-grained local peculiarities of different HWT styles, such as ligatures.

The models proposed in [FAEC+20], [DMP+20] and [BKC+21] are all trained, among
others, on the IAM Handwriting Database [MB02], which contains handwriting samples
of 657 writers and, in total, 9682 text lines split up into training, validation, and test
images. [FAEC+20] achieves a Fréchet Inception Distance (FID) and a Geometry Score
(GS)2 of 23.78 and 0.00076, respectively; The model proposed in [DMP+20] achieves a
FID of 20.65 but a GS of 0.0488. An evaluation with humans is additionally reported
for [DMP+20]: real and generated images were presented to humans, who had to decide
on the image’s origin (real vs. synthetic). Considering real images only, 34.2% are
correctly recognized as human origin, 15.8% are wrongly identified as computer-generated.
Considering synthetic images, 31.9% are wrongly identified to be of human origin (which
is good, as this means a realistic appearance of the text), and 18.0% of the images are
correctly identified as synthetic3. [BKC+21] achieves a FID of 19.40 and a GS of 0.0101;
a human study was executed as well: 24.9% of real images are correctly identified as such,
25.1% are predicted to be of synthetic origin. 26.8% of generated images are predicted to
be real, and 23.2% are correctly identified as synthetic HWT.

The model proposed by [DMP+20] is used throughout this thesis for generating synthetic
images due to its ability to handle HWT content of arbitrary length and to generate data
with varying character widths. [BKC+21] satisfies both conditions as well. However, the
qualitative studies reveal that, while humans can not distinguish generated from real
images better than random guessing (52.2% correct predictions for [DMP+20] vs. 48.1%
for [BKC+21]), synthetic images from [DMP+20] are more often guessed to be of human
origin than for [BKC+21] (31.9% vs. 26.8%). Figure 2.1a shows some synthetic example
images generated with the model from [DMP+20].

2.2 Handwritten Text Recognition
Early attempts for HTR systems were based on identifying single characters within an
image, recognizing them, and concatenating the results to the final transcriptions [KGS99].
Advances in deep learning allow the recognition of words [CMV+19], lines, and entire
paragraphs [CCP21]. Some of such models [KGS99] rely on an explicit segmentation
on word- or line-level during training, which requires the preparation of proper labels.
However, recent approaches [CCP21] allow the training on entire paragraphs, without any
visual segmentation into lines, words, or characters; only the recognized text is expected
to be split accordingly into individual lines.

2Lower values are better for both metrics.
3The numbers add up to 99.9%, as it does in the original paper.
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(a)

(b)

Figure 2.1: Synthetic HWT images generated by the model developed by Brian et al.
[DMP+20] using the input string “The quick brown fox jumps over the lazy dog.” and
four different styles. Notable are varying appearances of the text in (a) (e.g., the letter
“T” is written differently, the character slants or character widths are different). (b) shows
an image with a quite narrow font – the smaller the character widths, the less legible the
text tends to become.

For this thesis, the state-of-the-art segmentation-free HTR model for paragraphs proposed
by Coquenet et al. [CCP21] is used. Segmentation-free means no explicit labels for
characters, words, or lines are needed, as the model learns them implicitly during the
training process. This is achieved using a Vertical Attention Network (VAN) architecture,
which recurrently identifies individual lines of a paragraph via self-supervised implicit
line segmentation. The architecture consists of three main parts. The first one is a
fully-connected network acting as an encoder, which extracts features from the input
image preserving the two-dimensional structure of the data.

The next block is an attention module, which operates on the encoded features to (1)
identify single lines in their correct order, and (2) detect the end of the paragraph. The
former happens not only on the encoded feature space but also on the history of previous
attentions and recognized content. Three different strategies are proposed for the latter.
First is the “fixed-stop” approach, where a fixed number of line features are considered.
The decoder module, responsible for recognizing the text content, predicts an empty
string in case no text is recognized in a line feature set. The second approach, called
“early-stop”, is to stop once the first empty line is recognized. The third method, called
“learned-stop”, is to learn when to stop by predicting the probability wheter a specific
line should be considered for recognition.

The third module of the network is the decoder, which operates on line features, i.e., the
subset of the encoded features selected by the attention module. The decoder consists of
an LSTM and a convolutional layer for the final character predictions.

Parts of the VAN, more precisely the encoder and the convolutional layer of the decoder,
can be pre-trained on line images to speed up the training process on paragraph images.
With this approach, a character error rate of 4.45% and a word error rate of 14.55% are
achieved on the IAM Handwriting Database [MB02]. This method supports cross-data
set training, where the line-level images for pre-training are from a different data set
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than the paragraph images. Although this approach does not yield a better character
error rate, the final results are not more than 1% worse than with inter-data set training.

The model’s ability to achieve state-of-the-art results on line- and paragraph HWT
recognition (a character error rate of 4.45% and a word error rate of 14.55% are achieved on
paragraph images of the IAM Handwriting Database [MB02]; a more detailed comparison
of different approaches can be found in [Coq22]), the possibility to work on line- and
paragraph data separately, and the freely available source code are the reasons why the
model proposed in [CCP21] is chosen as HTR model for this thesis.

2.3 Handwritten Text Detection
Jo et al. [JKSC20] proposed a convolutional neural network to segment HWT from CWT
on pixel-level. The model is trained on synthetic data, where images of real HWT are
added to scanned documents. Evaluation is done on real data, where Optical Character
Recognition (OCR) is applied on the documents after the detected HWT being removed,
which results in an accuracy (ratio of correct characters over correct + incorrect + missing
characters) of 92.5%. However, the text was added randomly across the entire page,
whereas this thesis focuses on generating synthetic images with non-overlapping HWT
and CWT. Related work was also done by Zagoris et al. [ZPA+12], who applied the bag of
visual words paradigm to identify handwritten text in scanned index cards and in images
from the IAM Handwriting Database [MB02] and achieved a F1 score – normalized by
an approximation of the number of characters – of 0.77 and 0.99, respectively.

A different approach is evaluated in this thesis: object detection models are trained to
separate HWT from the remaining content of a scanned document. One-stage networks
based on the YOLO [RDGF16] architecture are used for this purpose due to their state-
of-the-art performance on the MS COCO data set [LMB+14] (the AP@0.5 is 64.9, see
[AYX+23] for a detailed comparison of different object detection models). More precisely,
the most recent YOLO versions YOLOv5 [JAS+] and YOLOv8 [JCQ], are utilized.

Models based on the YOLOv5 architecture are composed of three main parts. The first
one, often called “backbone”, is a feature pyramid based on the CSP Darknet53 network
[RF18]. The aggregated features of the backbone are fed into the “neck”, which is a
path aggregating network combining the features generated by the different stages of
the backbone. Finally, the “head” performs the actual predictions: the bounding box
prediction, class prediction, and confidence (objectness). YOLOv8 differs from YOLOv5
mostly by architectural changes (the “backbone” uses different convolutional layers, the
“neck” uses different modules) and using other training losses 4.

4To the best of my knowledge, no papers describing the details of YOLOv5 or YOLOv8 have been
published yet. To cite Glenn Jocher, the main contributor to both models: “YOLOv8 is not a published
paper, but rather a series of improvements and extensions made by Ultralytics to the YOLOv5 architecture.
Most of the changes made in YOLOv8 relate to model scaling and architecture tweaks, which can be
found in the code and the documentation in the Ultralytics YOLOv8 repo [...]”. Source:
https://github.com/ultralytics/ultralytics/issues/2572, last accessed on 2023-09-03.
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Both models, YOLOv5 and YOLOv8, are implemented and published for different
network sizes, following the compound scaling method discussed in [TL19], where the
network width, depth and resolution are scaled by fixed coefficients. This allows to adapt
the network to the available data (e.g., fewer parameters would be better for smaller
data sets), and on the size of the input images (e.g., more layers would be better for
bigger input images). The smallest architecture is used for YOLOv5 (YOLOv5n), and
the smallest two architectures for YOLOv8 (YOLOv8n and YOLOv8m).

The YOLOv5 achieves a mAP@50-95 of 34.3% on the validation split of images from the
COCO data set [LMB+14] with a size of 640x640 pixels using the smallest network size
(YOLOv5n); YOLOv8 achieves a mAP@50-95 of 37.3% on the same data and likewise
the smallest network size (YOLOv8n). The comparably good performance by a short
training time (2-3 days for training from scratch on the COCO data set – the data used
within this thesis will be significantly smaller and pre-trained networks can be used),
combined with the possibility to easily scale the network size, are the reasons why the
YOLOv5 and YOLOv8 models are chosen as HTD models within this thesis.

2.4 Using Synthetic Handwritten Text
One approach for HTD based on synthetic data, combining base images with HWT,
was already applied [JKSC20], where a method for segmenting handwritten and printed
text at pixel level was evaluated. Documents from the PRImA layout analysis data
set [ABPP09], and a collection of various paper forms are used as base images, and
handwritten text from the IAM data set [MB02] is added to the documents. Basic
augmentation techniques, like rotations or varying transparency, are applied on the HWT
before merging with the base images. However, the HWT was randomly placed across
the base images, which resulted in less realistic annotations compared to putting the text
in content-free areas.

Fogel et al. [FAEC+20] evaluated their GAN-based image generation model by using the
synthetic images for training a HTR model and successfully improved the performance on,
among others, the IAM Handwriting Database [MB02] by augmenting the real training
data with 100,000 generated images: the word error rate improved from 25.10% to 23.61%,
the character error rate improved from 13.82% to 13.42%. Further, generating 100,000
images in the style and lexicon of the CVL Database [KFDS13], and training the HTR
model on those synthetic and IAM images togehter, reduced the character error rate to
14.52%, compared to 15.62% when trained on the CVL data alone.

Notably, these error rates are still higher compared to the model presented in [CCP21],
which was published in 2021 – the model used by Fogel et al., discussed in [BKL+19],
was published in 2019. Further, while Fogel et al. use images on word-level, Coquenet et
al. use entire line images. However, important is the insight that using synthetic data
can improve HTR models, which is a major topic of this thesis.
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CHAPTER 3
Methodology

As already outlined in Chapter 1, the focus of this thesis is on the generation of data sets
using synthetic HWT. Existing and partially pre-trained models for HTD and HTR are
trained on this data, and evaluated on real data. This chapter explains the methodology
for generating the synthetic data sets.

Section 3.1 gives an overview for the actual usage of the HWT synthesis model from
[DMP+20], which is used for generating the HWT images needed for the synthetic data
sets (see Chapter 2 for an explanation of its architecture). This is followed by a detailed
description of the synthetic and evaluation data sets for HTD in Section 3.2. Section 3.3
gives an overview of the synthetic and evaluation data sets for HTR.

3.1 Handwritten Text Generation
As discussed in Chapter 2, two major approaches exist for synthetically generating hand-
written text. The first one is predicting a sequence of coordinates in a two-dimensional
space, which, after connecting them, can be interpreted as text. The second one generates
images that already contain the text. For this work, the focus is laid on the second
approach, especially on the state-of-the-art approach from [DMP+20]. The main reason
is its ability to mimic varying pen pressures, represented by varying color intensities of
the generated text.

The GAN proposed by [DMP+20] requires two inputs for generating images of handwritten
text:

• The input text to show on the image: This can be any string containing characters
in the character set the model was trained with. A pre-trained model with the
IAM-dataset [MB02] as training data is used; hence the input string must follow the
character set from the IAM database, which includes all alphanumerical characters
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3. Methodology

from the English alphabet (a-z, A-Z, 0-9), the characters !"#&’()*+,-./:;?,
and the space character.

• A style vector: The model from [DMP+20] uses a multivariate normal distributed
latent space with 128 dimensions to represent the style of the handwritten text to
mimic. Hence, a vector v ∼ N (0128, 1128) is needed as input as well.

Different text corpora are used as basis for generating the input strings:

LOTR The Fellowship Of The Ring is the first part of a fantasy novel by J. R. R.
Tolkien, published in 1954 with over 180,000 words.

LOB The Lancaster-Oslo/Bergen Corpus of British English [SLG78], which is a collection
of various British texts published in 1961. The corpus contains about 1 million
words from 500 texts, each having about 2000 words, and was published in 1978.
The IAM data set [MB02] is based on this text collection.

GUT This text corpus contains the books Alice’s Adventures in Wonderland by Lewis
Carroll, published in 1865, and The Tragedie of Hamlet by William Shakespeare,
published in 1599. Both texts were taken from the Project Gutenberg text corpus
from the Natural Language Toolkit [BKL09], a Python library for natural language
processing.

Since the characters of the input string must be a subset of the character set the model
was trained with, all invalid characters are removed from the text corpora. Further, all
new line or tab characters are replaced by a space, and multiple occurrences of space
characters are truncated to only one occurrence. Finally, random strings of varying
lengths (uniformly distributed with data-set dependent boundaries, e.g. between 1 and
90 characters) are extracted from the processed text corpora such that no words are split
up; those strings are the input strings for the generative model.

To mimic different styles of HWT, multiple style vectors are drawn from a random
distribution, which is the multivariate standard normal distribution for most data sets.
However, although the generative model was trained to have a normally distributed latent
space, using vectors with extreme values still provides meaningful output, as already
discussed in Chapter 2. Hence, style vectors following a uniform distribution over the
interval [−4, 4] are also used, as described in Section 3.3.

As shown in Figure 2.1, the model from [DMP+20] generates images that already mimic
different HWT font styles. However, all images mimic roughly the same stroke width,
and the model can only generate grayscale images. Hence, the stroke width and stroke
color are additionally modified for some synthetic data sets (see Sections 3.2 and 3.3 for
a detailed description of all synthetic data sets) to increase the diversity of styles: Image
dilation is applied to increase the stroke width; The foreground of the generated images
is computed and applied as fully transparent alpha channel on randomly colored images
to mimic different colors. More details on both are available in Section 3.2.

12



3.2. Data Sets for Handwritten Text Detection

3.2 Data Sets for Handwritten Text Detection
On a high level, existing images of magazines, newspapers, or scientific papers are
extended with images of HWT to mimic annotated documents. Object detection models
(YOLOv5 [JAS+] and YOLOv8 [JCQ], see Section 2.3) are trained on this data to find the
areas of handwritten text. The performance of this approach is evaluated by predicting
areas with HWT on actual documents which contain such areas.

Section 3.2.1 outlines the approach for generating the synthetic data sets. Section 3.2.2
describes the synthetic data sets that are generated. Section 3.2.3 describes the actual
data sets used for evaluations. The final evaluation results are described in Chapter 4.

3.2.1 Generating Synthetically Annotated Documents
Synthetic data sets for HTD are generated by adding synthetic images of HWT to “base
images”, which are scans of newspapers, magazines, or other documents. The HWT
images are placed to mimic actual annotations, i.e., on areas where they do not overlap
with any content (text, tables, images, separators, etc.) of the base images. A heuristic
algorithm is applied for this purpose, which, on a high level, does following:

1. Image selection: A base image is randomly selected from the set of all possible base
images.

2. Background area selection: A rectangular area within the base image, which only
contains background, is randomly selected.

3. HWT paragraph creation: Images of HWT lines are vertically stacked to form a
paragraph that fits into the selected background area. Modifications on the HWT
line images are applied before stacking, especially regarding stroke color and stroke
width, or image rotation.

4. HWT paragraph placement: The assembled HWT paragraph is placed on a random
location within the selected background area. Some modifications on the paragraph
image are applied before, such as randomly resizing or rotating the image.

5. Repeat steps 2. - 4. until a randomly chosen upper limit of paragraphs has been
added or no suitable background area is found anymore1.

6. Apply data-set dependent post-processing on the image: This is either a color-scale
conversion (from RGB to gray-scale or binarized black-white images), or creation of
cutouts of size 640x640 pixels to meet the requirements on the size of input images
for YOLOv5, or both, or none of them.

1Each document has a randomly chosen number of 1 .. 12 paragraphs (those boundaries are empirically
defined). The algorithm stops after 1000 iterations (also empirically defined), hence less paragraphs than
this randomly chosen upper limit are possible as well.
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3. Methodology

7. Start again at step 1. until the desired number of synthetically annotated documents
(data set dependent, most have multiple thousands of images) has been created.

The base images are taken from the PRImA-LAD data set [ABPP09], a layout analysis
data set containing scans of over 400 pages from magazines or technical articles. Each scan
is accompanied by a detailed description of the layout of the page (e.g. information about
regions containing charts, images, noise, separators, text, or other content), allowing to
distinguish foreground and background areas. 382 images with a width from 2080 – 4808
pixels, a height from 2858 – 3533 pixels, and a resolution of 300 DPI remain after sorting
out the images with an incomplete layout description or containing areas with HWT.
Those 382 scans are the base images for the synthetic HTD data sets; one such base
image is possibly used multiple times to generate synthetic images with more than 382
items, but the synthetic annotations are added with a different random seed.

A synthetic paragraph consists of up to ten lines, the upper bound is randomly chosen
and differs between paragraphs. All line images of one paragraph are based on the same
style vector. From all such images, those that fit into the available background region
are selected, taking the overall scaling factor of the entire paragraph into account. The
lines are randomly rotated by ±1°2 to mimic line orientations which are not exactly
parallel. The background area is assumed to always have a “landscape” orientation when
computing the maximum possible size of HWT lines, i.e. its width is greater or equal to
its height. This ensures that vertically aligned rectangular areas are properly utilized.

Image dilation on upscaled HWT images is applied to mimic varying stroke widths to
further augment the “originally” synthetic HWT images. The size of the dilation kernels
is randomly chosen from 1x1, 2x2, 3x3, 5x5, 10x10, a kernel of size 1x1 means that no
stroke width alteration was applied at all. All kernel sizes are applied with the same
probability. If varying stroke widths are used for a data set, then all HWT line images
within a paragraph are dilated with the same kernel size, but different paragraphs are
possibly modified using different kernels. The effect of different image dilation kernel
sizes, and the effect of upscaling the images before dilation, is visualized in Figure 3.1.

The HWT line images are artificially colored since the generative model for HWT images
produces grayscale data only. This is done by extracting a foreground mask from the
HWT images – i.e., a boolean mask indicating whether a pixel belongs to text – and
applying this mask on another image, where foreground pixels are fully transparent. This
other image is first randomly filled with selected colors from a certain color shade (i.e.
various shades of red, blue, green, or dark gray). All HWT lines of one paragraph share
the same color shade, but every paragraph on a document might have a different shade
assigned. Further details about stroke color augmentation can be found in Appendix A.

The assembled paragraphs are rotated before they are pasted into the base imaged by
α = (a + b)°, where a is randomly chosen from 0, 90, 180, 270, and b is a random integer

2The value of ±1° is empirically defined to keep a balance between clearly visible line rotations and
extreme line spacings for paragraphs with long lines.
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3.2. Data Sets for Handwritten Text Detection

(a)

(b)

Figure 3.1: Effect of different dilation kernel sizes and image resizing on the simulated
stroke width. Both sub-figures show the text “a sad tale!’ said the Mouse,” which is a
random text passage from the GUT text corpus. The first and second lines are equal
in both images. The first line shows an image generated by the model described in
[DMP+20], the second one is the same line but colored with shades of blue. All other
lines show the second line but with an altered stroke width using a dilation kernel size
of nxn, with n being 2, 4, 6, ..., 14. The lines in (a) have been resized by a factor of 4
(empirically defined) before applying the dilation operation; no resizing was done for the
lines in (b). Notable is that resizing the images increases the granularity of the image
dilation operation.
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3. Methodology

from the interval [−3, 3]. However, this random value is further bounded by the maximum
number of degrees this paragraph can be rotated with to ensure that the paragraph does
not overlap with any content. Details about the computation of this value is described
in Appendix B. In case the selected background area has “portrait” orientation, i.e. it
is higher than it is wide, the paragraph is rotated by 90° before further applying the
rotation operation.

The paragraphs are randomly resized before placing it on the base image to mimic varying
font sizes. The height of the individual image lines after resizing varies from 40 to 200
pixels. Assuming a document scanned with 300 DPI (which is the case for the base
images from the PRImA-LAD data set), computer written fonts with a size between 12pt
and 50pt would have a height of about 40 to 200 pixels. Notable is that the generated
synthetic HWT images always have a height of 64 pixels, but the text does not always
cover the entire height, hence the effective font size is possibly smaller than 64 pixels.
However, this property is exploited when stacking the images vertically into a paragraph,
as this causes a natural, style-dependent line spacing when vertically stacking the line
images without additional padding.

To support training image sizes of 640x640 pixels (as, e.g., needed for object detection
models YOLOv5), cutouts of that size with a stride of 160 pixels are created for some
data sets (see Table 3.1). The images are downscaled by 50% before resizing to reduce
the size of the data set.

The images of some data sets are converted from RGB to grayscale or binarized black-
white images to control for the influence of different color scales on the prediction
performance. Otsu’s adaptive thresholding method [Ots79] is utilized for latter.

The synthetic HTD data set labels are the bounding boxes of areas containing HWT for
different granularities – entire paragraphs, lines, or single words. The bounding boxes for
paragraphs are explicitly known. The position of a line within a paragraph is indirectly
known; the absolute position can be derived from its relative position within a paragraph.
However, the HWT synthesis model does not output any information about the location
of words within a line, which must be computed additionally (see Appendix C). The
absolute position of a word within the final image can be computed once the relative
location of a word within a line is known.

3.2.2 Synthetic Data Sets for Handwritten Text Detection
Different data sets are generated to control for various aspects of their properties,
especially:

• Color scales of the entire image data set

• HWT stroke width

• Label granularity
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COLSCALES-RGB-CUT-PAR ✓ ✗ RGB P
COLSCALES-GRAY-CUT-PAR ✓ ✗ GRAY P
COLSCALES-BW-CUT-PAR ✓ ✗ BW P
COLSCALES-STROKE-BW-CUT-PAR ✓ ✓ BW P
FULLSIZE-STROKE-BW-PAR ✗ ✓ BW P
GRANULARITY-STROKE-BW-PAR ✗ ✓ BW P
GRANULARITY-STROKE-BW-LINE ✗ ✓ BW L
GRANULARITY-STROKE-BW-WORD ✗ ✓ BW W
CWT-STROKE-BW-PAR ✗ ✓ BW P
CWT-STROKE-BW-LINE ✗ ✓ BW L
CWT-STROKE-BW-WORD ✗ ✓ BW W
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Table 3.1: A summary of different properties of the synthetic data sets for HTD. Synthetic
paragraphs contain not more than ten lines with a maximum font size of 200 pixels. The
following abbreviations are used: gray scale (GRAY), black-white (BW), paragraph (P),
line (L), word (W).

All data sets are split up into a training, validation, and test set. The HWT detection
models are trained on the images from the training set only. The validation set is used
for early stopping. All results presented in Chapter 4 are based on the test set. The data
is split on base image level, i.e., all synthetically annotated documents in the training,
validation and test sets are based on the same base images for all data sets. The synthetic
data sets and their configurations are listed in Table 3.1. The number of images and total
number of objects for each data set are listed in Table 3.2 and Table 3.3, respectively.

The COLSCALES-* data sets are all based on 2,000 synthetically annotated documents,
hence the base images from the PRImA-LAD data set occur on average more than 5
times. The actual training data is based on cutouts of the images with size 640x640
pixels and a stride of 160 pixels. The images are downscaled by 50% before creating
the cutouts to reduce the total number of images. The training, validation and test
sets contain 32,814, 7,380 and 6,335 images, respectively. Stroke color augmentation
is applied to the HWT before adding it to the base images. The font size is between
40 and 200 pixels, with up to ten lines per paragraph. COLSCALES-RGB-CUT-PAR
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3. Methodology

COLSCALES-RGB-CUT-PAR 32,814 7,380 6,335
COLSCALES-GRAY-CUT-PAR 32,814 7,380 6,335
COLSCALES-BW-CUT-PAR 32,814 7,380 6,335
COLSCALES-STROKE-BW-CUT-PAR 32,946 7,353 6,398
FULLSIZE-STROKE-BW-PAR 1,412 312 276
GRANULARITY-STROKE-BW-PAR 1,401 309 275
GRANULARITY-STROKE-BW-LINE 1,401 309 275
GRANULARITY-STROKE-BW-WORD 1,401 309 275
CWT-STROKE-BW-PAR 2,401 309 275
CWT-STROKE-BW-LINE 2,401 309 275
CWT-STROKE-BW-WORD 2,401 309 275
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Table 3.2: A summary about the number of images for the synthetic data sets for HTD.

contains RGB images, COLSCALES-GRAY-CUT-PAR contains only grayscale images,
and COLSCALES-BW-CUT-PAR only binarized data. All labels are on paragraph level
(or cutouts thereof).

Further analyzing the synthetic images reveals that the stroke width of HWT text was
generally relatively thin compared to real-world images, e.g., from the CVL data set
[KFDS13]. Hence, stroke width augmentation is introduced for the data set COLSCALES-
STROKE-BW-CUT-PAR, which is equal to COLSCALES-RGB-CUT-PAR with all other
parameters.

Switching to a different object detection model (YOLOv8 vs. YOLOv5, see Chapter 2
for further information) allows using bigger input images. Hence, creating cutouts from
the synthetic images is not needed anymore; the images can be used as-is, as done for
the data set FULLSIZE-STROKE-BW-PAR, which is equal to COLSCALES-STROKE-
BW-CUT-PAR except no cutouts are generated.

Generating synthetically annotated documents allows full control over the granularity
of the ground truth, i.e., about the position of paragraphs, lines, or single words. The
data sets GRANULARITY-STROKE-BW-PAR, GRANULARITY-STROKE-BW-LINE,
and GRANULARITY-STROKE-BW-WORD all have equal configuration, but labels on
paragraph, line, and word level, respectively. Further, those data sets additionally have
an equal configuration to FULLSIZE-STROKE-BW-PAR, but the final images appear
differently due to changes in the internal random states since they are generated after
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3.2. Data Sets for Handwritten Text Detection

COLSCALES-RGB-CUT-PAR 90,659 19,506 17,940
COLSCALES-GRAY-CUT-PAR 90,659 19,506 17,940
COLSCALES-BW-CUT-PAR 90,659 19,506 17,940
COLSCALES-STROKE-BW-CUT-PAR 91,102 19,336 17,947
FULLSIZE-STROKE-BW-PAR 17,879 3,930 3,484
GRANULARITY-STROKE-BW-PAR 17,544 3,890 3,436
GRANULARITY-STROKE-BW-LINE 22,779 4,992 4,566
GRANULARITY-STROKE-BW-WORD 91,032 20,341 18,281
CWT-STROKE-BW-PAR 20,515 3,890 3,436
CWT-STROKE-BW-LINE 30,550 4,992 4,566
CWT-STROKE-BW-WORD 139,605 20,341 18,281
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Table 3.3: A summary of the number of objects (i.e. the number of synthetic HWT
paragraphs, lines or words) for the synthetic data sets for HTD.

modifications of the underlying algorithm introducing the computation of bounding boxes
for lines and words.

The base images from the PRImA-LAD collection usually have the content centered
within the image - often using a two-column layout. Hence, the generated images have
most of the HWT content towards the border of the documents. To account for that,
i.e., to break up that structure by generating additional images with a more diverse
distribution of HWT content, different kinds of synthetic documents are added to the
data set: Paragraphs based on the LOTR corpus using computer fonts, and synthetic
HWT text paragraphs, are randomly placed on empty images, which have a width
and height randomly chosen and limited by the minimum and maximum width and
height of the images from the PRImA-LAD data set. The data sets CWT-STROKE-
BW-PAR, CWT-STROKE-BW-LINE, and CWT-STROKE-BW-WORD are equal to
GRANULARITY-STROKE-BW-*, except their training data is extended with 1000 of
such synthetic images.

Figure 3.2 shows a synthetically annotated document in RGB color scale, similar to the
images of the COLSCALES-RGB-CUT-PAR data set before creating cutouts (however,
stroke width augmentation is applied for the image in Figure 3.2). A sample of a binarized
image, similar to those from the FULLSIZE-STROKE-BW-PAR data set, is shown in
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Figure 3.3. Figure 3.4 contains an example for the fully synthetic image with random
CWT and HWT paragraphs.

3.2.3 Evaluation Data Sets for Handwritten Text Detection
Object detection models are trained on the data sets described in Section 3.2.2 to
distinguish areas of HWT from everything else in the documents (CWT, images, and
more). The performance of those models is evaluated using two data sets.

The first one is the CVL-Database [KFDS13], which contains in total 1604 scanned
pages with CWT and HWT. The images contain an area of CWT on the top, which
are transcribed by, in total, 310 participants beneath this area. Seven different texts
were to transcribe, of which one was in German, the others in English. The German
text and one of the English texts are not used within this work, as they contain German
umlauts which the HWT synthesis model was not trained to generate. The data set is
split into 189 training images and 1415 test images. All images are accompanied by a
ground truth containing the bounding boxes and content of the entire HWT area, single
lines, and individual words. The scans are available in an RGB color scale, but most
HWT was written with a blue pen. An example image of the CVL data set is shown
in Figure 3.5. Further summary of the properties of the CVL data set are shown in
Table 3.4. Not all data sets based on the CVL database are explicitly listed, but the
following rules apply: the name of all data sets based on the CVL database start with
CVL-; those ending with -PAR, -LINE or -WORD contain labels on the paragraph-, line-
or word-level, respectively; those that contain -BW- or -GRAY- contain binarized or
grayscale images, respectively; the images of those data sets with a -CUT- in the name
were downscaled by 50% and contain cutouts of size 640x640 pixels with a stride of 160
pixels.

The second data set was created specifically for this thesis. It contains a scan of the
paper “ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text Generation”
[FAEC+20], which was manually annotated by two persons with random text lines from
[Tol20]. Ten images are available in total. The annotations were made with different
pens and pen colors. Each image contains various annotations, most of which contain
multiple lines. Labels were created manually for paragraph-, line- and word-level by one
person using the web-based image annotation software DataTorch3. Figure 3.6 shows an
example image of this data set. Further details can be found in Table 3.4. The same
naming rules which apply to the CVL-* data sets also apply to the SCAN-* data sets.

3.3 Data Sets for Handwritten Text Recognition
Models for handwritten text recognition take images of HWT as input and predict a
sequence of characters shown in the image at hand. The focus of this thesis is the use of
synthetic training images. Thus, Section 3.3.1 outlines the approach for generating such

3https://datatorch.io, last accessed on 2023-07-16
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3.3. Data Sets for Handwritten Text Recognition

Figure 3.2: An example of a synthetically annotated document, similar to the images
from the COLSCALES-RGB-CUT-PAR data set before creating cutouts (but with stroke
width augmentation). A page from this thesis is taken as base image, the synthetic HWT
is generated with the model proposed by [DMP+20] using input strings from the GUT
text corpus.
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Figure 3.3: An example of a synthetically annotated and binarized document, similar to
the images from the FULLSIZE-STROKE-BW-PAR data set. A page from this thesis
is taken as base image, the synthetic HWT is generated with the model proposed by
[DMP+20] using input strings from the GUT text corpus.
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3.3. Data Sets for Handwritten Text Recognition

Figure 3.4: An example of a fully synthetic document, similar to the images of the
CWT-STROKE-BW-PAR data set. Artificially assembled paragraphs using CWT and
synthetic HWT (generated using the model proposed by [DMP+20]) are randomly added
to an empty image. The text samples are taken from the GUT text corpus, but extended
with random alpha-numeric strings.
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Figure 3.5: A sample image from the CVL data base (0052-1.tif from the testset).
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3.3. Data Sets for Handwritten Text Recognition

Figure 3.6: A sample image from the SCAN-* data sets (page 4 of [FAEC+20]) with
manual annotations from [Tol20].
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Property CVL SCAN
Image width 2,480 – 2,663 pixels 2,473 pixels
Image height 3,507 – 3,634 pixels 3,495 pixels
Number of images 1,411 10
Number of objects, total 1,409 / 11,849 / 88,825 65 / 228 / 877
Number of objects / image, average 1 / 8 / 63 6 / 23 / 88

Table 3.4: Summary of the evaluation data sets for HTD. If multiple values are listed in
a table cell, then they refer to the paragraph-, line- and word-level data sets, respectively.

data sets, Section 3.3.2 describes the ones that have been created. Section 3.3.3 describes
the real data sets used for evaluations. The final evaluation results are described in
Chapter 4.

3.3.1 Generating Synthetic Data Sets for Handwritten Text
Recognition

Two different kinds of data sets are generated, containing either paragraphs or lines only.
The approach for creating synthetic paragraphs is similar to the one used for synthetic
HTD data sets: synthetic images of HWT lines are vertically stacked after they have been
modified (stroke width, stroke color, font size, indentation, rotation, and background
removal). The generation of synthetic line data sets is a bit simpler, as only the line
images themselves have to be modified (stroke width, stroke color, and font size).

3.3.2 Synthetic Data Sets for Handwritten Text Recognition
As for HTD, different data sets are generated to control for the influence of various
aspects of their properties, especially:

• The text corpus

• Image scaling

• Data set size

• Style vectors for the HWT synthesis model

All data sets are split up into a training and test set, which have the same usage as for the
HTD tasks. A validation set is not used, since no early stopping is applied while training
the HTR models. A summary about the most important properties of the synthetic HTR
data sets follows below and in Table 3.5.

The input strings for the first data set, LOTR-LINE, are based on the LOTR text corpus
and were constrained to contain at most 12 words (basically a randomly chosen value as
a basis for further analysis). Stroke width and stroke color augmentation are applied.
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3.3. Data Sets for Handwritten Text Recognition

LOTR-LINE LOTR Line 51 192 ✓ 10,000 2,500
GUT-PAR GUT Paragraph 51 70 ✓ 6,000 1,500
GUT-LINE GUT Line 51 70 ✓ 10,000 2,500
LOB-LINE LOB Line 39 300 ✓ 10,000 2,500
LOB-50K-LINE LOB Line 39 300 ✓ 50,000 5,000
LOB-UNIFORM-LINE LOB Line 39 300 ✓ 10,000 2,500
LOB-SEED-LINE LOB Line 39 300 ✓ 10,000 2,500
LOB-RAW-LINE LOB Line 64 64 ✗ 10,000 2,500
LOB-NOAUG-LINE LOB Line 64 64 ✗ 10,000 2,500
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Table 3.5: A summary about different properties of the synthetic data sets for HTR.

To have a variation in word length and out-of-vocabulary words, the remaining data
sets are based on different text corpora. One of them is the GUT text corpus, which
is the basis for the GUT-LINE and GUT-PAR data sets. The former is a line data,
the latter is a paragraph data set where between two and ten randomly chosen lines
from the same style are stacked after some pre-processing was applied (stroke width
and stroke color modification, line image rotation and indentation). Since training using
a synthetic paragraph data set with up to 12 words per line and up to ten lines per
paragraph exceeds the hardware resources (esp. available GPU memory on a NVIDIA
A40), the lines for both data sets have at most 45 characters (which is about half of the
maximum characters per line for the IAM data set [MB02]), ensuring that no words are
split up, and the scaling factor for the lines in the data set is changed from 80% – 300%
to 80% – 110% (i.e., maximum font size is limited to 70 pixels).

The input lines for the remaining six synthetic data sets are taken from the LOB text
collection, which is the same corpus the IAM data set is based on, which is the data
set the HWT generation model used within this thesis is trained on. A different image
scaling strategy is applied to generate a more diverse distribution of pixels / character
(see Section 4.2.3 for further details): the aspect ratio is distorted intentionally, and the
images are scaled so that the widths after scaling more closely match the image width
distribution of the IAM data set.

The following five data sets are based on this scaling strategy: LOB-LINE, LOB-LINE-
50K containing 50k training images (vs. 10k as for the reminaing line data sets),
LOB-LINE-SEED generated with a different initial random seed compared to LOB-
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(a)

(b)

Figure 3.7: Two sample images from the GUT-PAR data set. Synthetic HWT lines
(generated using the model proposed by [DMP+20]) are rotated, and vertically stacked.
The text samples are taken from the GUT text corpus. No stroke width augmentation is
applied for (a), opposed to (b).

LINE, LOB-LINE-NOAUG without any stroke augmentation (only image scaling), and
LOB-LINE-UNIFORM where style vectors for the synthetic images are drawn from
a multivariate uniform distribution over the interval [−4, 4] instead of a multivariate
standard normal distribution. The last data set, LOB-RAW-LINE, is likewise based on
the LOB text corpus, but uses the raw data as-is without any modifications (no stroke
augmentation, no image scaling).

Summarized, following synthetic HTR data sets are generated:

LOTR-LINE Line data set, based on the LOTR text corpus, up to 12 words per line.
Contains stroke width and stroke color augmentation. Images are resized to a font
size of 51 - 192 pixels.

GUT-PAR Paragraph data set, based on the GUT text corpus, up to 45 characters
per line. Contains stroke width and stroke color augmentation. Images are resized
to a font size of 51 - 70 pixels.
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3.3. Data Sets for Handwritten Text Recognition

Property IAM CVL
Number of samples, train split 747 / 6,482 135 / 1,130
Number of samples, test split 336 / 2,915 846 / 6,836
Average number of characters / sample, train split 378 / 43 359 / 42
Average number of characters / sample, test split 374 / 42 350 / 42

Table 3.6: Summary of the evaluation data sets for HTR. Multiple values in a table cell
describe the paragraph- and line-level data sets, respectively.

GUT-LINE Paragraph data set, based on the GUT text corpus, up to 45 characters
per line. Contains stroke width and stroke color augmentation. Images are resized
to a font size of 51 - 70 pixels.

LOB-LINE Line data set, based on the LOB text corpus, up to 90 characters per line.
Contains stroke width and stroke color augmentation. Images are resized to a font
size of 39 - 300 pixels, intentionally discarding the aspect ratio.

LOB-50K-LINE As LOB-LINE, but more images. The number of different styles for
the generated synthetic HWT lines is increased as well, from 400 to 2,000 (with 25
images per style).

LOB-UNIFORM-LINE As LOB-LINE, but the style vectors for the synthetic HWT
lines are drawn from a uniform distribution over the interval [−4, 4] instead of a
multivarate standard normal distribution.

LOB-SEED-LINE As LOB-LINE, but the random number generator for the style
vectors for the synthetic HWT lines was initialized with a different seed.

LOB-RAW-LINE As LOB-LINE, but neither stroke width and stroke color augmen-
tation is done, nor are the images resized.

LOB-NOAUG-LINE As LOB-LINE, but neither stroke width and stroke color aug-
mentation is done, only image scaling is applied.

3.3.3 Evaluation Data Sets for Handwritten Text Recognition
Two data sets are used for evaluating the HTR model performance. The first one is the
IAM Handwriting Database [MB02], which consists of 1,593 handwritten paragraphs
(13,353 lines, 115,320 words) from 657 different persons. The text samples are based on
the LOB text corpus. The second evaluation data set is the CVL database [KFDS13],
already introduced in Section 3.2.3 - as for the HTD evaluation, only the texts without
German umlauts are used, i.e. two texts are ignored. Images containing invalid HWT
data (e.g. drawings) or labels are removed as well. Finally, all images are converted to
grayscale. Table 3.6 summarizes the properties of both data sets.
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The HTR model is trained with a specific character set, i.e., all characters within this set
can be classified. The HTR model proposed in [CCP21], which is used for this thesis,
was trained on the character set from the IAM database. The evaluation data based on
the CVL data set does not contain following symbols:

• The apostrophe “ ’ ”

• The numbers 0 – 9

• The lower case character “j”

• The upper case characters “B”, “C”, “E”, “G”, “J”, “K”, “M”, “O”, “Q”, “R”, “V”,
“X”, “Z”
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CHAPTER 4
Evaluation

Different synthetic data sets containing HWT are introduced and discussed in Chapter
3. Those data sets are used as training data for task-specific deep learning models to
evaluate to which extent they are meaningful for solving comparable tasks with real data.
As already explained in Chapter 1, two domains are selected: handwritten text detection,
and handwritten text recognition.

The problem of HTD is approached by training object detection models on the synthetic
data and assessing their performance using the evaluation data sets presented in Chapter
3. The deep learning models YOLOv5 [JAS+] and YOLOv8 [JCQ] by Ultralytics are
used for this purpose. HTR is approached by training the OCR network proposed by
[CCP21] on synthetic HWT images. The trained models are evaluated on real HWT
images to assess the appropriateness of synthetic data for HTR tasks. All models are
trained on computers of the Vienna Scientific Cluster, more precisely the VSC-5, which
offers two different GPU-enabled nodes containing either 2x NVIDIA A40 or 2x NVIDIA
A10 GPUs. Both node types are used, depending on availability.

Section 4.1 discusses different object detection model configurations and the results when
trained with different HTD data sets. Section 4.2 explains the modifications that had to
be implemented for the VAN for HTR, as well as the results when trained on different
HTR data sets.

4.1 Evaluating Synthetic HTD Data Sets
Section 4.1.1 gives an overview of the model configurations applied for the experiments
and the metrics the results are assessed with. The trained models can be grouped into
four groups. The first group, described in Section 4.1.2, focuses on assessing the effect of
image color scales and HWT augmentation. Section 4.1.3 describes the result of different
model architectures and sizes of the training data. The effect of using different labels
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(on paragraph-, line-, word-level) are described in Section 4.1.4. Enhancing the training
data with fully synthetic images is assessed in Section 4.1.5. The model configuration
and metrics are summarized in Tables 4.1, 4.2, 4.3, and 4.4 – one table for each of the
four groups. Section 4.1.6 summarizes the findings.

4.1.1 Model Configuration and Metrics
The object detection networks YOLOv5 [JAS+] and YOLOv8 [JCQ] are trained on the
training set of the synthetic HTD data sets described in Chapter 3. All models are
trained to detect objects of one class only, namely areas containing HWT. Evaluation is
done using the test set of the synthetic data, as well as the CVL-* and SCAN-* data
sets presented in Chapter 3.

A standard metric to compare object detection models is the Mean Average Precision
(mAP), which is the mean of all Average Precisions (AP) for all classes – since the HTD
tasks have one class only, this is equal to the average precision of this class. The AP is
the Area Under Curve (AUC) of the interpolated precision vs. recall curve for different
prediction confidence levels. The mAP is often interpreted at a certain threshold of the
Intersection Over Union (IoU), which indicates how much a predicted bounding box
overlaps with a bounding box from the ground truth. The typical threshold of 0.5 is
used in this work, meaning that the IoU must be at least 50%. The reported metric
is therefore named mAP@50. [PPD+21] provides additional details about the AP and
mAP.

The remaining metrics reported are based on pixel-level comparisons of the predictions
vs. ground truth: a pixel either belongs to a bounding box containing HWT, or not; a
pixel is either within a bounding box prediction, or not. This allows the definition of true
positive, false positive, true negative, and false negative pixel predictions; this further
enables the computation of pixel-level precision (P), recall (R), and F1 score (F1) for each
image. Only predictions with a confidence level of at least 0.5 are considered. Therefore,
the metrics P@50, R@50, and F1@50 are the averages of the pixel-level precision, recall,
and F1 score of all images considering predictions with a confidence of at least 0.5.

Summarized, the following metrics are reported:

P@50 The average of the pixel-level precision for all images and predictions with a
confidence level of at least 0.5.

R@50 The average of the pixel-level recall for all images and predictions with a confidence
level of at least 0.5.

F1@50 The average of the pixel-level F1 score for all images and predictions with a
confidence level of at least 0.5.

mAP@50 The mean average precision using an IoU threshold of 0.5 for predictions
with a confidence level of at least 0.5.
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4.1. Evaluating Synthetic HTD Data Sets

Those metrics are reported for 16 different models, each trained with a different ar-
chitecture, training data, or granularity of labels. As already mentioned in Chapter 2,
the model architectures YOLOv5n (5n) [JAS+], YOLOv8n (8n), and YOLOv8m (8m)
[JCQ] are used. If not stated otherwise, models pre-trained on the COCO data set
[LMB+14] are used with the default parameters listed in Appendix D. All models are
trained with the implementations’ default optimizer, stochastic gradient descent with
Nesterov momentum, with learning rate γ = 0.1 and momentum µ = 0.937. Early
stopping is enabled, with the default patience of 100 iterations for YOLOv5 models and
50 iterations for YOLOv8 models. The maximum epochs per training run was limited to
1000. The models are trained with the implementations’ default hyperparameters (which
differ between model architectures, see Appendix D), unless stated otherwise.

Predictions on data sets containing cutouts of size 640x640 pixels are merged to still
obtain results comparable to full-sized data sets. The utilized algorithm can be explained
using concepts known from graph theory: The predictions (i.e. bounding boxes) from the
cutouts are mapped to their absolute position on the original image. Since the cutouts
overlap, predictions will overlap as well. Each bounding box is interpreted as a node
of a tree. Two nodes within a tree are considered as connected, if and only if their
corresponding bounding boxes overlap. All predictions of a document together form one
or multiple trees, hence a forest. The task of finding predictions to merge together is
now equivalent to finding the individual trees within a forest. Once the trees are isolated,
the final predictions are derived from the minima and maxima of the bounding box
coordinates of all predictions within a tree.

4.1.2 Effect of Color Scales and Handwritten Text Augmentation
Table 4.1 lists results for models trained on two different kinds of data sets: COLSCALES-
*-CUT-PAR with images in different color scales (RGB, grayscale and binarized images),
and COLSCALES-STROKE-BW-CUT-PAR with binarized images and stroke width
augmentation.

Images with RGB color scale provide the best results considering the synthetic data
only: the mAP@50 is 0.86, the F1@50 is 0.89. However, using binarized training images
decreases the mAP@50 for synthetic data to 0.82, but increases it from 0.27 to 0.42 for
the CVL data, and from 0.17 to 0.52 for the SCAN data. The F1@50 is unchanged for
the synthetic data, decreases slightly from 0.88 to 0.85 for the CVL data, but increases
from 0.44 to 0.81 for the SCAN data. Introducing stroke width augmentation has no
further effect for the synthetic data. However, the mAP@50 and F1@50 on the CVL data
are increased from 0.42 to 0.47, and from 0.85 to 0.90, respectively; the mAP@50 for the
SCAN data is increased from 0.52 to 0.56, but the F1@50 decreases from 0.81 to 0.69.

Using grayscale or binarized data yields strictly better results when evaluating on real
data, likely due to less details the model has to filter out. Grayscale vs. binarized images
do not have a clear outcome. However, using binarized images provides the best results
for the SCAN data sets although stroke width augmentation has different effects on
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5n, 640, COLSCALES-RGB-CUT-PAR 0.83 0.97 0.89 0.86
5n, 640, COLSCALES-GRAY-CUT-PAR 0.82 0.97 0.89 0.84
5n, 640, COLSCALES-BW-CUT-PAR 0.83 0.96 0.89 0.82
5n, 640, COLSCALES-STROKE-BW-CUT-PAR 0.82 0.96 0.89 0.82
5n, 640, COLSCALES-RGB-CUT-PAR 0.91 0.85 0.88 0.27
5n, 640, COLSCALES-GRAY-CUT-PAR 0.90 0.88 0.89 0.35
5n, 640, COLSCALES-BW-CUT-PAR 0.91 0.80 0.85 0.42
5n, 640, COLSCALES-STROKE-BW-CUT-PAR 0.89 0.90 0.90 0.47
5n, 640, COLSCALES-RGB-CUT-PAR 0.60 0.35 0.44 0.17
5n, 640, COLSCALES-GRAY-CUT-PAR 0.76 0.82 0.79 0.55
5n, 640, COLSCALES-BW-CUT-PAR 0.83 0.80 0.81 0.52
5n, 640, COLSCALES-STROKE-BW-CUT-PAR 0.65 0.74 0.69 0.56
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Table 4.1: Description and metrics for HTD models trained on different data sets. Each
row within a segment refers to a model trained on the architecture, image size, and data
set described in the second column. The models across segments are equal, but the test
data differs, as indicated in the first column. The highest metrics are shown in bold font.

F1@50 and mAP@50, but image binarization together with stroke width augmentation
provides the best results for the CVL data. Hence, all following experiements are done
one binarized images with stroke width augmentation.

4.1.3 Assessing Different Model Architectures and Image Sizes

Considering different model architectures reveals that models based on the YOLOv8
architecture perform better than those based on the YOLOv5 architecture, as shown in
Table 4.2. The best results on synthetic data are achieved using a YOLOv8m model with
training data sized 1280x1280 pixels; the mAP@50 is 0.96, the F1@50 is 0.97.

The best model regarding the CVL data is a YOLOv8n model trained on cutouts of
640x640 pixels: the mAP@50 is 0.78, the F1@50 is 0.90. However, the mAP@50 for
the other models is significantly lower, and has with 0.02 its minimum; but the best
performing model on the synthetic data (YOLOv8m with image sizes pf 1280x1280 pixels)
still yields a F1@50 of 0.85, whereas the mAP@50 is 0.38. The precision of 0.95 indicates
that HWT was correctly identified in the sense that if the model predicted an HWT
bounding box, it contained HWT to a large extent. But since the paragraphs for the CVL
data are relatively big compared to the synthetic images, the predicted bounding boxes
also need to be larger, otherwise the predictions would be too small. This would result
in a low recall, a low F1, a low IoU, many false positives, and finally a low mAP@50.
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4.1. Evaluating Synthetic HTD Data Sets

5n, 1280, FULLSIZE-STROKE-BW-PAR 0.95 0.93 0.94 0.95
8n, 640, FULLSIZE-STROKE-BW-PAR 0.95 0.94 0.95 0.87
8n, 1280, FULLSIZE-STROKE-BW-PAR 0.97 0.95 0.96 0.94
8m, 1280, FULLSIZE-STROKE-BW-PAR 0.98 0.97 0.97 0.96
5n, 1280, FULLSIZE-STROKE-BW-PAR 0.94 0.14 0.24 0.02
8n, 640, FULLSIZE-STROKE-BW-PAR 0.96 0.84 0.90 0.78
8n, 1280, FULLSIZE-STROKE-BW-PAR 0.95 0.76 0.85 0.48
8m, 1280, FULLSIZE-STROKE-BW-PAR 0.95 0.77 0.85 0.38
5n, 1280, FULLSIZE-STROKE-BW-PAR 0.84 0.80 0.82 0.51
8n, 640, FULLSIZE-STROKE-BW-PAR 0.87 0.67 0.75 0.53
8n, 1280, FULLSIZE-STROKE-BW-PAR 0.89 0.76 0.82 0.44
8m, 1280, FULLSIZE-STROKE-BW-PAR 0.89 0.69 0.78 0.41

Model Description P@
50

R
@

50

F1
@

50

m
A

P@
50

SY
N

C
V

L
SC

A
N

Table 4.2: Description and metrics for HTD models trained using different model
architectures and image sizes. Each row within a segment refers to a model trained on
the architecture, image size, and data set described in the second column. The models
across segments are equal, but the test data differs, as indicated in the first column. The
highest metrics are shown in bold font.

Using cutouts mitigates this problem, as the distribution of bounding box sizes is more
equal for synthetic and CVL data.

This problem exists for the SCAN data as well, but is less severe. Using cutouts results
again in the highest mAP@50 of 0.53, but the lowest value is 0.26 using a YOLOv8n
model. The highest F1@50 is 0.82, achieved on both the YOLOv5n and YOLOv8n
models. Although the YOLOv5 architecture provides the best results for the SCAN data,
using models based on the YOLOv8 architecture are used for the remaining experiments,
as they excel for both the synthetic and the training data.

4.1.4 Effect of the Label Granularity
As mentioned in Section 4.1.3, the distribution of bounding box sizes of the training data
should match that of the target data the model is trained for. Using synthetic HWT
easily allows to reduce the label granularity from entire paragraphs to lines or single
words, which is one method to align the bounding box sizes. Table 4.3 summarizes the
results for models trained with equal data, but different labels.

Notably is, again, that using labels on paragraph level yields the lowest mAP@50 (0.13
for the CVL data, 0.30 for the SCAN data), while the precision is at 0.98 for the CVL
data and 0.96 for the SCAN data. Reducing the label granularity increases both the
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8n, 1280, GRANULARITY-STROKE-BW-PAR 0.97 0.96 0.97 0.94
8n, 1280, GRANULARITY-STROKE-BW-LINE 0.97 0.97 0.97 0.97
8n, 1280, GRANULARITY-STROKE-BW-WORD 0.96 0.96 0.96 0.89
8n, 1280, GRANULARITY-STROKE-BW-PAR 0.98 0.76 0.85 0.13
8n, 1280, GRANULARITY-STROKE-BW-LINE 0.94 0.92 0.93 0.79
8n, 1280, GRANULARITY-STROKE-BW-WORD 0.88 0.86 0.87 0.76
8n, 1280, GRANULARITY-STROKE-BW-PAR 0.96 0.74 0.84 0.30
8n, 1280, GRANULARITY-STROKE-BW-LINE 0.96 0.81 0.88 0.56
8n, 1280, GRANULARITY-STROKE-BW-WORD 0.95 0.69 0.80 0.67
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Table 4.3: Description and metrics for HTD models trained for different label granularities.
Each row within a segment refers to a model trained on the architecture, image size, and
data set described in the second column. The models across segments are equal, but the
test data differs, as indicated in the first column. The highest metrics are shown in bold
font.

F1@50 and the mAP@50 for both real data sets: Using labels on line-level provides the
best results for the synthetic data (mAP@50 and F1@50 are both 0.97) and for the CVL
data (mAP@50 is 0.79, F1@50 is 0.93). Although the F1@50 using line-level labels is
with 0.88 the highest for the SCAN data, the highest mAP@50 of 0.67 is achieved using
labels on word-level.

4.1.5 Using Fully Synthetic Data

Another approach to align the bounding box distributions is to add bigger HWT para-
graphs, as done with the CWT-STROKE-BW-* data sets, which are equal to the
GRANULARITY-STROKE-BW-* data sets but with additional 1,000 fully synthetic
images. The results for models trained on this data are listed in Table 4.4.

Notably is the mAP@50 for the CVL and SCAN data when trained on the YOLOv8
model compared with the results of the same model architecture shown in Table 4.3.
Adding fully synthetic data with bigger paragraphs increased the mAP@50 from 0.13 to
0.84 for the CVL data, and from 0.30 to 0.37 for the SCAN data.

The main motivation for using this data set is to allow a more diverse placement of HWT.
Magazines or papers tend to have most of the content centered in the page, with only
limited space between paragraphs or columns. Hence, most of the HWT must be placed
towards the borders of the image; using completely synthetic data, where CWT and
HWT are randomly placed, allows to break up this structure.
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8n, 1280, CWT-STROKE-BW-PAR 0.97 0.97 0.97 0.94
8n, 1280, CWT-STROKE-BW-LINE 0.98 0.97 0.97 0.97
8n, 1280, CWT-STROKE-BW-WORD 0.95 0.97 0.96 0.90
8m, 1280, CWT-STROKE-BW-PAR 0.98 0.98 0.98 0.96
8m, 1280, CWT-STROKE-BW-LINE 0.98 0.98 0.98 0.97
8n, 1280, CWT-STROKE-BW-PAR 0.98 0.93 0.95 0.84
8n, 1280, CWT-STROKE-BW-LINE 0.94 0.93 0.93 0.82
8n, 1280, CWT-STROKE-BW-WORD 0.88 0.88 0.88 0.78
8m, 1280, CWT-STROKE-BW-PAR 0.99 0.93 0.96 0.88
8m, 1280, CWT-STROKE-BW-LINE 0.95 0.93 0.94 0.84
8n, 1280, CWT-STROKE-BW-PAR 0.98 0.80 0.88 0.37
8n, 1280, CWT-STROKE-BW-LINE 0.96 0.83 0.89 0.62
8n, 1280, CWT-STROKE-BW-WORD 0.95 0.77 0.85 0.72
8m, 1280, CWT-STROKE-BW-PAR 0.96 0.75 0.84 0.48
8m, 1280, CWT-STROKE-BW-LINE 0.97 0.83 0.89 0.59
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Table 4.4: Description and metrics for HTD models trained with data sets containing
synthetic CWT. Each row within a segment refers to a model trained on the architecture,
image size, and data set described in the second column. The models across segments
are equal, but the test data differs, as indicated in the first column. The highest metrics
are shown in bold font.

However, this approach yields little improvement using labels on line and word level
compared to labels on paragraph level. For the synthetic data, the mAP@50 increased
only for labels on word-level, from 0.89 (in Table 4.3) to 0.90. Using the CVL data set and
labels on line-level, the mAP@50 increased from 0.79 to 0.82, the F1@50 is unchanged;
using labels on word-level increases the mAP@50 from 0.76 to 0.78, the F1@50 from 0.87
to 0.88. A stronger effect is observed on the SCAN data: on line level, the mAP@50 is
increased from 0.56 to 0.62, the F1@50 from 0.88 to 0.89; on word level, the mAP@50 is
increased from 0.67 to 0.72, the F1@50 from 0.80 to 0.84.

Using YOLOv8m models instead of YOLOv8n further increases the performance when
evaluated on synthetic or CVL data. The best results for those data sets are achieved
with labels on line level: for the synthetic data, a mAP@50 of 0.97 and a F1@50 of 0.98
are reached; for the CVL data, a mAP@50 of 0.88 and a F1@50 of 0.96 is reached. For
the SCAN data, the highest F1@50 of 0.89 is likewise achieved using a YOLOv8m model
trained with labels on line-level. However, the highest mAP@50 of 0.72 is reached with
a YOLOv8n model with labels on word level. No YOLOv8m model could be trained
with this label granularity due to hardware limitations, hence it is possible that this
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architecture would outperform YOLOv8n as well.

4.1.6 Summary
Using full-size images and models based on the YOLOv8 architecture yields the best
results. The distribution of label sizes should be similar between training and test data to
achieve a high mAP@50. This is possible due to the use of synthetic data, as it allows to
adjust the granularity of labels and the size of paragraphs in the training data. Overall,
a mAP@50 of 0.88 and a F1@50 of 0.96 is reached for the CVL data set; and a mAP@50
of 0.72 and a F1@50 of 0.89 for the SCAN data set. Summarized, synthetic HWT allows
generation of images tailored to the respective target data. Apart from selecting the
correct model architecture (YOLOv8m for the CVL data, YOLOv8n or YOLOv8m for
the SCAN data), the following had the biggest impact:

• The possibility of generating paragraphs of arbitrary size

• The possibility of mimicking different stroke widths

• The possibility of generating labels with different granularity

• The possibility to generate data sets of arbitrary size

4.2 Evaluating Synthetic HTR Data Sets
This section is divided into four parts: First, the HTR model and metrics are described
in Section 4.2.1. Section 4.2.2 contains the baseline for the HTR model if trained on real
data only, and describes the results if trained on synthetic data only and evaluated on
real data – for both line and paragraph images. The properties of different synthetic and
real data sets and their effect on the model performance are compared and discussed in
Section 4.2.3. Results of mixing synthetic and real data for training are the content of
Section 4.2.4.

4.2.1 Model and Metrics
As already explained in Chapter 2, the model proposed by [CCP21] is a VAN for end-to-
end paragraph transcription with implicit line segmentation. Hence, images containing
entire paragraphs or single lines only can be used as training data. The source code
provided by the authors is used as-is except following changes potentially affecting the
model performance:

• The usage of NVIDIA Apex1, a package for mixed precision and distributed training,
is replaced with the features for automatic mixed precision and distributed training

1https://nvidia.github.io/apex/, last accessed on 2023-08-19
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built-in into PyTorch2, the Python package the HTR model is built with. The
reason is software incompatibilities.

• Image binarization is added as an optional pre-processing step as an attempt to
improve prediction performance.

The image pre-processing and data augmentation steps for the HTR models described in
this thesis are the same as described in the original paper. The only difference is image
normalization and binarization, which are two pre-processing steps that are additionally
done for some models (the respective pre-processing steps applied for each model are
explained in Section 4.2.2). The results reported in the original paper are trained on
gray-scale images, which is done as well within this thesis (except for models trained
on binarized images). The Adam optimizer with a learning rate of 10−4 is used. The
original models were trained on one GPU with a training time limited to two days; the
best model found in this time period is reported. The batch size is set to 16 for line-, and
8 for paragraph training. If not stated otherwise, the models reported in this thesis are
trained on two GPUs, the training time was limited to one day or 3000 epochs, whatever
is reached first; the best model based on the evaluation split of the data (or the test
data set if no evaluation data is available, as for the CVL data set [KFDS13]) within this
period is reported. All line-based models are trained with a batch size of 32, and with a
batch size of 8 for all paragraph models; the values for the original models are 16 and 8
for line-based and paragraph-based models, respectively.

Two metrics are reported in the original paper [CCP21]: The Character Error Rate
(CER), and the Word Error Rate (WER). The CER and WER allow for assessing how
many characters or words, respectively, have been wrongly transcribed by the OCR
model. The computation for both is similar; the general formula for the error rate is
shown in Equation 4.13. This formula should be interpreted as follows for the CER: S is
the number of characters that were substituted in the transcription, D is the number
of characters that were deleted, I is the number of characters that were additionally
inserted, C is the number of characters which are correctly transcribed, N is the total
number of actual characters, hence the sum of all substitutions, deletions and correct
transcription, hence N = S +D+C. The same holds for the WER, but with the following
interpretation: S is the number of substituted words, D is the number of deleted words,
and so forth.

ER = S + D + I

S + D + C
= S + D + I

N
(4.1)

Notably is that the values for both the CER and WER do not have an upper limit of
1: If many characters or words are additionally inserted for the transcription so that I

2https://pytorch.org/, last accessed on 2023-08-19
3Taken from the PyTorch documentation, https://torchmetrics.readthedocs.io/en/

stable/text/char_error_rate.html, last accessed on 2023-09-08
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4. Evaluation

Training Data PP
IAM – 5.2 17.2 12.2 43.0
IAM N 5.6 18.0 9.9 30.7
IAM N, B 5.8 18.6 13.3 46.3
CVL – – – 3.7 11.2
CVL N – – 3.8 12.0
CVL N, B – – 3.3 10.4

IAM CVL
CER WER CER WER

Table 4.5: Evaluation results of HTR models trained on real HWT line images. The
first column contains the training data, the second one the pre-processing steps (PP) –
image normalization (N), image binarization (B), or none of them. The third and fourth
column contain the CER and WER for the IAM data, the last two columns for the CVL
data. The same pre-processing steps are applied for training and test data. The best
results for each section are presented in bold font. All values are in percent.

is large enough so that S + D + I > N holds, then the error rate exceeds 1. Further,
the WER is naturally larger than the CER because words are composed of multiple
characters; hence the denominator of the error rates, N , is smaller. Finally, both metrics
can be interpreted as a percentage of wrongly predicted characters/words.

4.2.2 Training a Handwriting Recognition Model on Synthetic Data
Baseline for HWT line images The baseline reported in [CCP21] for a model trained
and evaluated on the IAM data set is a CER of 5.1% and a WER of 16.5%. Those values
could not be reproduced precisely, but a CER of 5.2% and a WER of 17.2% are reached,
as shown in Table 4.5. Data normalization or using binarized images does not improve
the model performance on that data.

Training and evaluating the model on images taken from the CVL data set yields lower
error rates than for the IAM data set. Without any pre-processing steps, a CER of
3.7% and a WER of 11.2% is achieved. Using data normalization and image binarization
provides the best results, the CER is 3.3%, the WER is 10.4%. An explanation is that the
CVL images have a lower contrast compared to the IAM images (the average Michelson
contrast is 1.85 for the CVL data and 6.7 for the IAM data; the average root mean
square contrast is 25.62 for the CVL data and 43.64 for the IAM data), since binarization
increases the contrast, it has more effect on the CVL data; a higher contrast means that
the text is more distinct from the background, which might help for OCR.

Applying inter-data set evaluation, i.e., training on images from the IAM data set and
evaluating the model on the CVL data, yields a CER of 9.9% and a WER of 30.7%, as
shown in Table 4.5. Training on synthetic data and evaluating on real data is an inter-data
set evaluation as well. Since the best results using real data only are achieved with image
normalization enabled, this pre-processing step is used for further experiments.
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Training Data PP
LOTR-LINE – 5.3 10.4 28.3 65.5 30.0 74.0
GUT-LINE, N N 4.6 10.5 29.8 66.7 33.3 75.8
LOB-LINE, N N 0.6 2.9 33.3 70.5 36.8 91.2
LOB-50K-LINE, N N 0.4 2.0 30.8 66.7 32.6 75.4
LOB-SEED-LINE, N N 0.5 1.9 32.4 70.0 34.3 78.7
LOB-UNIFORM-LINE, N N 0.7 3.3 32.8 71.0 34.6 79.2
LOB-RAW-LINE, N N 26.0 43.8 71.8 101.0 70.9 104.7
LOB-NOAUG-LINE, N N 0.2 1.2 29.0 66.3 34.0 87.5
LOB-LINE, N / B N, B 0.7 3.1 31.6 68.8 35.7 79.8

SYN IAM CVL
CER WER CER WER CER WER

Table 4.6: Evaluation results of HTR models trained on HWT line images. The first
column contains the training data, the second one additional pre-processing steps (PP) –
image normalization (N), image binarization (B), or none of them. The third and fourth
column contain the CER and WER for the test split of the synthetic data, the fifth
and sixth column for the IAM data, the last two columns for the CVL data. The same
pre-processing steps are applied for training and test data. The best results are presented
in bold font. All values are in percent.

Training on synthetic line images Table 4.6 shows the results for training on
synthetic data only. All models presented in this table are trained on different data sets
or image pre-processing steps. Intra-data set generalization works, in general, quite well.
The lowest error rates are a CER of 0.2% and a WER of 1.2%, achieved when trained on
the LOB-NOAUG-LINE data set with normalization enabled.

However, inter-data set generalization does not reach the state-of-the-art performance of
the baseline models; the error rates are more than tripled: the CER and WER on the
IAM data are 28.3% and 65.5%, respectively; the CER and WER for the CVL data is
30.0% and 74.0%, respectively. Those values are all achieved with the model trained on
the synthetic LOTR-LINE data set.

Those results are robust against the usage of different text corpora. Using the GUT text
corpus with the GUT-LINE data set does not improve the error rates (CER and WER are
29.8% and 66.7%, respectively, for the IAM data, and 33.3% and 75.8%, respectiely, for
the CVL data). The same holds for using the LOB text corpus on which the LOB-LINE
and IAM data sets are based on (CER and WER are 33.3% and 70.5% for the IAM data,
and 36.8% and 91.2% for the CVL data).

Neither increasing the training data from 10k images to 50k images (as done with
LOB-50K-LINE, the maximum training time is doubled from one to two days for this
data set), nor using a different seed for the image generation model (as done with
LOB-SEED-LINE), nor using a different distribution for the style vectors for the image
generation model (as done with LOB-UNIFORM-LINE) improves the error rates. Using
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Training Data PP
IAM-LINE / IAM-PAR – 4.8 16.4 13.0 37.2
CVL-LINE / CVL-PAR N – – 5.0 15.9

IAM CVL
CER WER CER WER

Table 4.7: Evaluation results of HTR models trained on real HWT paragraph images.
The first column contains the training data (the VAN is pre-trained on line images), the
second one contains pre-processing steps (PP) – normalized (N) vs. no pre-processing.
The third and fourth column contain the CER and WER for the IAM data, the last
two columns for the CVL data. The same pre-processing steps are applied for line and
paragraph data, and for training and test sets. All values are in percent.

no image augmentation at all (as done with LOB-RAW-LINE) or only image resizing
but no stroke augmentations (as done with LOB-NOAUG-LINE), or image binarization
as pre-processing step, do not improve the inter-data set error rates either.

In summary, synthetic data alone is insufficient to get comparable results on HTR tasks
for line images. However, a closer look at the properties of the synthetic data sets reveals
that the distribution of image sizes and pixels per character show significant differences
between synthetic and real HWT data sets, hence affecting the model performance
negatively. A detailed discussion can be found in Section 4.2.3. In general, the following
factors likely influenced the results:

• The applied model architecture does, in general, perform poorly on inter-data set
generalization. The error rates for the CVL images of a model trained on IAM data
are about three times as high as if trained directly on the CVL data (see Table
4.5).

• The generated HWT images do sometimes have unrealistic styles, as already
discussed in Chapter 2.

• Some properties of the generated HWT images (e.g., pixels/character) show major
differences compared to the real data sets (see Section 4.2.3).

Baseline for HWT paragraph images The applied HTR model architecture uses a
two-step approach for training on paragraph-level. The first one consists of pre-training
parts of the VAN on line images. The second one is training on paragraph images using
the pre-trained weights. The baseline models following this approach, i.e. pre-training
on real HWT line images followed by real paragraph images, are listed in Table 4.7.

A CER of 4.8% and a WER of 16.4% are achieved for the IAM data set, which is quite
close to the values mentioned in the original paper from [CCP21], where a CER of 4.45%
and a WER of 14.55% is reported. The results for the CVL data set are similar: a
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Training Data PP
GUT-LINE / GUT-PAR N 5.9 12.8 33.3 71.9 32.9 76.4

SYN IAM CVL
CER WER CER WER CER WER

Table 4.8: Evaluation results of HTR models trained on HWT paragraph images. The
first column contains the training data (the VAN is pre-trained on line images), the
second one the applied pre-processing steps (PP) – only normalization (N) is applied.
The third and fourth column contain the CER and WER for the test split of the synthetic
data, the fifth and sixth column for the IAM data, the last two columns for the CVL
data. The same pre-processing steps are applied for line and paragraph data, and for
training and test sets. All values are in percent.

CER of 5.00% and a WER of 15.87% is achieved, but only by normalizing the line and
paragraph images (as opposed to not normalizing as done for the IAM data).

Training on synthetic paragraph images Pre-training using synthetic data yields
similar results as using line data only, as shown in Table 4.8: evaluating the model on the
synthetic test data yields a CER of 5.9% and a WER of 12.8%, but predictions on the
IAM data yield a CER of 33.3% and a WER of 71.9%, and a CER of 32.9% and WER
of 76.4% on the CVL images. The reason is probably the same as for the line data since
the actual character recognition backbone applied to segmented lines is the same for
line and paragraph recognition, and because the model detected the correct number of
lines in 97.5% (2843 out of 2915) of all evaluation images. Hence, no further experiments
regarding paragraph-level HTR are done.

4.2.3 Comparison of Synthetic and Real Data Sets for Handwritten
Text Recognition

The synthetic data sets have properties with different distributions compared to the
real data sets. Figure 4.1 shows the distribution of pixels per character for five different
data sets: IAM-LINE, CVL-LINE, LOB-RAW-LINE (a synthetic data set without any
augmentations), LOTR-LINE (a synthetic data set based on the LOTR text corpus
with image augmentation) and LOB-LINE (a synthetic data set based on the LOB text
corpus with image augmentation). The first two only contain HWT written by humans.
Notably, their shape, location, and variance seem to be quite similar: most images have
between 20 and 60 pixels/character with a peak at around 40 pixels/character, and a
long right tail to around 140 pixels/character.

Another data set in the chart, LOB-RAW-LINE, contains synthetic images without any
augmentations applied, hence also without image resizing. Notable is that most images
have up to 40 pixels/character, with a peak at around 14 pixels/character, and again
a long right tail. The different distributions of text length/image across the data sets,
shown in Figure 4.2, is a partial explanation only: the number of characters on the images
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Figure 4.1: The distribution of pixels per character – computed by dividing the image
width by the text length – for selected HTR data sets. IAM-LINE and CVL-LINE – the
black lines – contain images written by humans. Notable is their matching distributions.
The blue line represents the LOB-RAW-LINE data set which contains raw data only,
i.e., without any augmentations or scaling applied. The other lines – red and orange –
show data sets with different image scaling strategies. This image is zoomed in on the
x-axis – the IAM and CVL data sets have a right tail until about 140 pixels/character,
LOTR-LINE (red) until about 130 pixels/character, and LOB-LINE (orange) until about
600 pixels/character.
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4.2. Evaluating Synthetic HTR Data Sets

Figure 4.2: The distribution of characters/line for selected HTR data sets. IAM-LINE
and CVL-LINE – the black lines – contain images written by humans. Notable are their
matching distributions. The data set LOTR-LINE (red) has at most 12 words, and the
data sets LOB-RAW-LINE (blue) and LOB-LINE (orange) have at most 90 characters.

follows more a uniform distribution for synthetic data and more a normal distribution for
real data; however, the distribution of pixels/character for the synthetic data is positively
skewed, and the maximum extent is at fewer pixels/character than for the real data.
Hence, although trained on the IAM data set, the GAN generating the synthetic HWT
images tends to create more narrow fonts than the training data.

This property is affected by image scaling: Figure 4.1 shows the pixels/character distribu-
tion for the LOTR-LINE data set also, which contains images that were randomly scaled
by 80% – 300%. The peak of the distribution was shifted to 29 pixels/characters, but it
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Figure 4.3: All three lines show the text “regarded than physical”, which is a random
excerpt from the LOB corpus. The middle line was created using the HWT generation
model proposed by [DMP+20]. The top line has the same width as the middle line but
was resized to have a height that is 30% smaller. Similar to the bottom line, which has a
30% bigger height than the middle line. Notable is that resizing HWT images without
keeping the aspect ratio can still generate realistic images.

also extended the right tail from 60 pixels/character for the LOB-RAW-LINE data set
to 130 pixels/character. Hence, random scaling alone is insufficient to obtain a similar
distribution to the real images.

The HWT synthesis model proposed by [DMP+20] only allows an indirect influence on
the font width via the style vector. Hence, applying a different image scaling strategy
to the synthetic raw images is an attempt to arrange the pixels/character distribution
better between real and synthetic data sets. The main idea is to use the image widths
as proxy for the pixels/character by aligning the distributions of the widths. Instead of
randomly scaling the images, the target scale is computed by standardizing the widths of
the synthetic images, which are then shifted towards the distribution of the IAM data
set. The new values are clipped to the upper limit of image widths of the IAM data set –
around 2400 pixels – to avoid long right tails. This approach is formalized in Equation
4.2, where µSY N , σSY N , µIAM and σIAM are the mean and standard deviations of the
widths of the synthetic images and the images from the IAM dataset, respectively, w is
the width of the raw synthetic image, and w′ is the width after scaling:

w′ = min


w − µSY N

σSY N
σIAM + µIAM , 2400


(4.2)

The scaling factor for the entire image is computed using the new width w′. The images
are not scaled with the aspect ratio to improve the diversity of the input images. Instead,
the scaling factor for the image height is randomly distorted by ±30% from the scaling
factor for the image width. The effect of not keeping the aspect ratio when scaling the
HWT images is shown in Figure4.3.

This scaling strategy is applied for all data sets using the LOB corpus, except LOB-
RAW-LINE. The effect of different scaling strategies on the image widths is shown in

46



4.2. Evaluating Synthetic HTR Data Sets

Figure 4.4 using the LOB-LINE data set - applying the new approach shows that the
width distributions of the LOB-LINE images better matches the distributions of the
real data sets compared to random or no scaling: The mean of the image width went
from 838 / 1249 pixels for LOB-RAW-LINE / LOTR-LINE, respectively, to 1614 pixels
for LOB-LINE, while IAM-LINE and CVL-LINE have a mean of 1696 / 1686 pixels,
respectively. Further, as shown in Figure 4.1, this strategy helps to eliminate quite narrow
font widths - after scaling, the pixels/character start at around 20, as for the IAM data
set. However, the peak of the distribution is again at around 29 pixels/character, and
the distribution is again positively skewed

4.2.4 Training a Handwriting Recognition Model on Real and
Synthetic Data

In the case where only small data sets with handwritten data are available, the combination
with synthetic data brings a clear advantage for HTR (no more data has to be annotated
manually for better results). Table 4.9 shows the results for experiments with the IAM
data set [MB02], Table 4.10 for the CVL data set [KFDS13]. For mixed training, the
models are pre-trained for 1500 epochs on the LOB-LINE data set followed by another
1500 epochs with the corresponding share of the real data. The models based on real
data only are trained for 3000 epochs.

Using 10% of the IAM data set (which are 648 training images) results in a CER of 12.5%
and a WER of 36.3%. Pre-training the model using 10,000 synthetic images reduces the
CER by 3.3% to 9.2% and the WER by 8.5% to 27.8%. This effect decreases with an
increasing number of real training data, and vanishes when using about 50% or more of
the IAM training data, or 3,241 images. Figure 4.5a visualizes the results.

The results are more extreme on the CVL data set: using 10% of the training data only
(or 113 images) results in a CER of 54.4% and a WER of 88.8%. Pre-training the model
with 10,000 synthetic images reduces the CER by almost 40% to 14.6% and the WER by
more than 45% to 43.4%. Notable is that the error rates of synthetic + real data and
real data do not converge, as it is the case when using IAM images. Using about 45%
of the CVL data, or 508 images, yields almost the same CER for both cases (7.9% for
synthetic + real, 8.2% for real data only). The WER, however, is already 1.6% lower if
real data only is used (26.2% vs. 24.6%). This effect increases with an increasing number
of real training images. Overfitting is likely the reason for this: the CVL training data
contains only five different texts, therefore similar words, or word sequences, occur with
more varying styles compared to the IAM data or the synthetic data – from 1130 total
training images, only 391 have a unique ground truth; for all of the remaining 739 images,
at least one image shows exactly the same text. Adding synthetic images increases the
training data’s diversity, thus reducing the effect of overfitting. Figure 4.5b visualizes the
results for the CVL data.
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Figure 4.4: The distribution of image widths for selected HTR data sets. IAM-LINE
and CVL-LINE – the black lines – contain images written by humans. Notable are their
matching distributions. The blue line represents the LOB-RAW-LINE data set which
contains raw data only, i.e., without any augmentations or scaling applied. Its width
distribution is positively skewed; the peak is around 14 pixels. The red line represents
LOTR-LINE containing randomly scaled images. Although random resizing helped to
move the peak of the distribution a bit, it created a quite long right tail. The scaling
strategy discussed in this section is applied for LOB-LINE (orange) - the distribution
matches more closely the width distribution of the real images.
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0% 0 33.3 70.5 – – – – -27.7 -52.5
5% 324 10.6 31.3 21.4 52.6 10.8 21.3 -5.0 -13.3

10% 648 9.2 27.8 12.5 36.2 3.3 8.4 -3.6 -9.8
15% 972 8.5 26.0 10.1 30.4 1.6 4.4 -2.9 -8.0
20% 1,296 8.0 24.8 8.9 27.3 0.9 2.5 -2.4 -6.8
25% 1,620 7.5 23.4 8.1 25.2 0.6 1.8 -1.9 -5.4
30% 1,945 7.3 22.8 7.6 24.1 0.3 1.3 -1.7 -4.8
35% 2,269 6.9 21.9 7.2 23.0 0.3 1.1 -1.3 -3.9
40% 2,593 6.9 21.8 6.9 21.9 0.0 0.1 -1.3 -3.8
45% 2,917 6.7 21.3 6.9 21.9 0.2 0.6 -1.1 -3.3
50% 3,241 6.5 20.8 6.5 21.0 0.0 0.2 -0.9 -2.8
60% 3,889 6.3 20.2 6.4 20.4 0.1 0.2 -0.7 -2.2
70% 4,537 6.1 19.6 6.1 19.7 0.0 0.1 -0.5 -1.6
80% 5,186 5.9 18.9 5.7 18.5 -0.2 -0.4 -0.3 -0.9
90% 5,834 5.7 18.5 5.6 18.1 -0.1 -0.4 -0.1 -0.5

100% 6,482 5.6 18.0 5.6 18.0 0.0 0.0 0.0 0.0
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Table 4.9: Evaluation results of HTR models trained on IAM or synthetic + IAM line
images with different fractions of the real training data. The first two columns show the
percentage and absolute value of real images. “SYN + Real” shows the results if the
model is pre-trained on synthetic data for 1500 epochs, followed by another 1500 epochs
with the respective fraction of real data. “Real” shows the results if trained with real
data only for 3000 epochs. The improvement of using synthetic + real data over using
real data only is listed in columns seven and eight – negative values indicate that using
real data only yields better results, positive values indicate that using mixed data yields
better results. The last two columns show the difference between the best result obtained
with real data only (CER 5.6%, WER 18.0%) and “SYN + Real”. The utilized synthetic
data set is LOB-LINE. All results are in percent.
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0% 0 36.8 91.2 – – – – -33.0 -79.2
5% 56 17.6 50.7 73.6 99.6 56.0 48.9 -13.8 -38.7

10% 113 14.6 43.4 54.4 88.8 39.8 45.4 -10.8 -31.4
15% 170 12.8 39.2 42.7 78.5 29.9 39.3 -9.0 -27.2
20% 226 11.3 35.7 31.5 67.1 20.2 31.4 -7.5 -23.7
25% 282 10.2 33.1 22.4 54.2 12.2 21.1 -6.4 -21.1
30% 339 9.4 30.8 16.2 43.1 6.8 12.3 -5.6 -18.8
35% 396 8.8 29.0 11.5 33.0 2.7 4.0 -5.0 -17.0
40% 452 8.3 27.5 9.4 27.7 1.1 0.2 -4.5 -15.5
45% 508 7.9 26.2 8.2 24.6 0.3 -1.6 -4.1 -14.2
50% 565 7.3 24.5 7.0 21.3 -0.3 -3.2 -3.5 -12.5
60% 678 6.5 21.9 5.1 16.0 -1.4 -5.9 -2.7 -9.9
70% 791 6.0 20.5 4.3 13.2 -1.7 -7.3 -2.2 -8.5
80% 904 5.5 18.8 3.8 12.0 -1.7 -6.8 -1.7 -6.8
90% 1,017 5.1 17.3 3.6 11.4 -1.5 -5.9 -1.3 -5.3

100% 1,130 5.1 17.6 3.8 12.0 -1.3 -5.6 -1.3 -5.6
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Table 4.10: Evaluation results of HTR models trained on CVL or synthetic + CVL line
images with different fractions of the real training data. The first two columns show the
percentage and absolute value of real images. “SYN + Real” shows the results if the
model is pre-trained on synthetic data for 1500 epochs, followed by another 1500 epochs
with the respective fraction of real data. “Real” shows the results if trained with real
data only for 3000 epochs. The improvement of using synthetic + real data over using
real data only is listed in columns seven and eight – negative values indicate that using
real data only yields better results, positive values indicate that using mixed data yields
better results. The last two columns show the difference between the best result obtained
with real data only (CER 3.8%, WER 12.0%) and “SYN + Real”. The utilized synthetic
data set is LOB-LINE. All results are in percent.
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(a) (b)

Figure 4.5: The CER (red, left y-axis) and WER (blue, right y-axis) for models based
on a varying amount of images (x-axis) from the IAM data set (a) or the CVL data set
(b). The dotted lines represent models trained on real data only; the solid lines represent
models trained on synthetic and real data.
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CHAPTER 5
Conclusion

The potential of using synthetic data sets is examined for two domains: handwritten
text detection and handwritten text recognition. On a high level, the approach is the
same for both cases: synthetic data is generated, deep learning models solving the task
at hand are trained on those data sets, and the applicability of the generated data sets is
evaluated by applying the model on real data sets.
For HTD, synthetic HWT is added to scans of documents to mimic human annotations.
Object detection models (YOLOv5 [JAS+] and YOLOv8 [JCQ]) are trained on this data
to distinguish HWT from remaining content in the documents. The suitability of using
synthetic data is evaluated by assessing the performance of those models on two data sets
containing real HWT: the CVL data set [KFDS13], and a new SCAN data set explicitly
created for this thesis, where handwritten text is manually added to a scientific paper.
The models are trained with different granularity of the labels: paragraphs, lines, and
single words. The best models on the CVL data set achieved a mAP@50 of 0.88 and a
F1@50 of 0.96 on paragraph level, a mAP@50 of 0.84 and F1@50 of 0.94 on line level,
and a mAP@50 of 0.78 and F1@50 of 0.88 on word level; For the SCAN data set, a
mAP@50 of 0.48 and a F1@50 of 0.84 are achieved on paragraph level, a mAP@50 of 0.62
and F1@50 of 0.89 on line level, and a mAP@50 of 0.72 and F1@50 of 0.85 on word level.
Summarized, synthetic HWT allows the generation of images tailored to the target data.
Considering the results, following had the most significant impact:

• Generating paragraphs of arbitrary size and the possibility to mimic different stroke
widths, as this allows to align the properties of the synthetic data with those of the
target data

• The possibility of generating labels with different granularity allows to account
for imperfections inherent to the data (e.g., varying sizes of white spaces or line
lengths)
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• It is easily possible to generate data sets of arbitrary size to adjust for model sizes

The research question RQ1, “To which extent can synthetic handwritten text be used
to improve handwritten text detection models for annotated documents?” is therefore
answered as follows: Using synthetic data allows control over the properties of the training
data, which would not be possible with real data only. This, together with selecting the
correct model architecture, allows to achieve a F1@50 of up to 0.96, and a mAP@50 of
up to 0.88 on real data.

The domain of HTR is examined by generating synthetic images containing HWT, both
lines and entire paragraphs. The HTR model proposed by [CCP21] is trained on those
images and evaluated on the IAM [MB02] and CVL [KFDS13] data sets. With this
approach a CER of 28.3% and a WER of 65.5% can be achieved for IAM line images
(training on real data only yields a CER of 5.2% and a WER of 17.2% for IAM line
data), and a CER of 30.0% and a WER of 74.0% on the CVL data set; the training
data for the best models is based on the LOTR text corpus (see Chapter 3). Neither
increasing the number of training images, using different text corpora, utilizing other
image augmentation methods or variances in the synthetic image generation process led
to better results. A CER of 33.3% and a WER of 71.9% are achieved on the IAM data
set on paragraph level (training on real data only yields a CER of 4.8% and a WER
of 16.4%); a CER of 32.9% and a WER of 76.4% are reached for the CVL data. The
training data for those models is based on the GUT text corpus; synthetically generated
images are vertically stacked to form paragraphs, including stroke width and stroke color
augmentation, and line rotations before stacking.

While using synthetic data alone to train HTR models does not yield competitive
performance, combining synthetic and real data does have advantages for small data sets
containing line images. Using 10% of the IAM training data on line-level, or 648 images,
achieves a CER and WER of 12.5% and 36.2%, respectively. Pre-training the model on
10,000 synthetic images reduces the error rates to 9.2% and 27.8%, respectively. This
holds with an increasing number of real training data until about 50%, or 3241 images –
although with decreasing improvement. Applying the same strategy to the CVL data
yields a CER and WER of 54.4% and 88.8%, respectively, if the model is trained on 10%
of the training data only, or 113 images. Pre-training the model with synthetic images
reduces the CER to 14.6% and the WER to 43.4%. However, training on real images
alone achieves better results if the model is trained with 45% (508 images) of the data
or more, which is likely due to overfitting as the CVL data shows a smaller variety of
content compared to the IAM images.

Those results do not contradict the findings reported by Fogel et al. [FAEC+20]: training
their HTR model on word level using all training images from the IAM database together
with 100,000 synthetic images improved the WER from 12.24% to 11.68%, and the CER
from 3.81% to 3.57%. Similar results are found within this thesis, but the improvement of
the error rates is only observed if 50% or less of the real data is used. This might have two
possible reasons: First, the model used within this thesis [CCP21] shows better error rates
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even if no data augmentation is done; hence, there’s less room for improvement. Secondly,
as discussed in Section 4.2.3, the images of the HWT generation model used within this
thesis [DMP+20] show different statistics compared to the real data, especially regarding
the distribution of pixels per character. The HWT generation method developed by
Fogel et al. has a fixed width per character (32 pixels if normalized to an image height of
64 pixels), which more closely matches the peak of the actual distribution (around 40
pixels).

Summarized, the research question RQ2, “To which extent can synthetic handwritten text
be used to improve handwritten text recognition models on line- and paragraph-level?”
is answered as follows: Using synthetic training data alone does not yield competitive
performance compared to state of the art models. The differences in the statistics
of the data, especially the distribution of pixels/character, might be an important
reason. However, mixing synthetic and real data can significantly improve the error rates,
especially for small data sets containing only a few hundred real images. This is not only
beneficial for existing ones, but also for data sets to-be created as it helps to save time
while labelling raw data.

Aligning the properties of synthetic images with those of real HWT data (e.g. pix-
els/character) seems to be a promising approach to improve the HTR performance.
Re-creating the results with another HWT generation model (e.g. [FAEC+20] – due
to its fixed character width – or [BKC+21] – due to its better writer adaption com-
pared to [DMP+20]) to observe the effect of different synthetic HWT data on the HTR
performance would give a first outlook whether such an undertaking can be successful.
Adapting the HWT generation models to historic handwriting to generate synthetic
training data could help to improve the digitization of documents within this domain by
reducing the required annotation effort.
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Appendix A: Stroke Color
Augmentation

Stroke color augmentation is done by overlaying the HWT image with transparent
foreground (i.e., the text) and white background over a randomly colored image. The
latter is done by first creating an image with the same dimensions as the input data,
but with three channels. The pixels within this image are randomly set with values of a
particular color – e.g,. the first channel with the corresponding red value, the second
with the blue value, and the third with the green value. A Gaussian filter with a kernel
of 9x9 pixels is applied to this image, and the HWT image with transparent foreground
is finally overlayed. Figure 1 visualizes this method. The random colors used to fill the
image must all be from the same color shade. For example, only shades of blue are used
to mimic a blue pen, only shades of red for a red pen, and so on.

(a) (b)

(c) (d)

Figure 1: An example for stroke color augmentation targeting a blue pen. (a) shows the
input image whose stroke should be colored, the image is generated using [DMP+20].
(b) is an image with equal size as the input image which has been randomly filled with
different shades of blue. (c) shows the randomly colored image after a Gauss filter with a
9x9 kernel has been applied. The final result is obtained by overlaying the input image
having a transparent foreground over the filtered random image, as shown in (d).
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Appendix B: Compute Maximum
Rotation of Handwritten Text

Suppose two rectangles, where one rectangle has, at most, the dimensions (width and
height) of the other; hence it is possible to place the smaller rectangle within the second
one. The task is to find the maximum number of degrees the inner (i.e., the smaller)
rectangle can be rotated around its center so that it is still enclosed by the outer rectangle,
as shown in Figure 2. Denoting wo, ho, wi, and hi the width and height of the outer
and inner rectangles, respectively, and r as half the diagonal of the inner rectangle, then
the formula for computing the maximum degrees the inner rectangle can be rotated at
without crossing the outer rectangle, αmax, is shown in Equation 1.

αmax = αtot − αstart
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Notable is that Equation 1 is only valid if ho − hi ≤ wo − wi holds. In other words, the
equation holds if the vertical margin between the inner and the outer rectangle is smaller
or equal to the horizontal margin between the two rectangles. If the horizontal margin
becomes smaller than the vertical margin, then ho and hi in the numerators of Equation
1 must be replaced with wo and wi, respectively – one can think of this as rotating
the rectangles by 90° counterclockwise, then the heights of the rectangles become their
widths.

For Equation 1, it is assumed that the inner rectangle is centered within the outer
rectangle. Considering Figure 2, if the inner rectangle would be moved upwards, then the
available space for rotation would be reduced; the same applies if the rectangle is moved
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Figure 2: The width and height of the outer rectangle are wo and ho, respectively.
The width and height of the inner rectangle are wi and hi, respectively r equals half
the diagonal of the smaller rectangle. αstart is the angle at the beginning. αtot is the
maximum possible angle where, after rotation of the inner rectangle, it is still enclosed
by the outer rectangle. αmax is the maximum possible angle the inner rectangle can be
rotated by without crossing the borders of the outer rectangle. The dashed line represents
the inner rectangle after being rotated by the maximum allowed angle; the dotted lines
are helper lines for visualization.

downwards. Moving the inner rectangle to the left or the right would again decrease the
available space, assuming the horizontal margin between the inner and outer rectangle is
smaller than the vertical margin. Hence, centering the inner rectangle within the outer
one maximizes the space for rotating the inner rectangle without crossing the borders of
the outer one, which is why this assumption is made for Equation 1.
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Appendix C: Finding Bounding
Boxes for Words

The labels for HTD data sets must contain the positions of the HWT within the image.
Computing those positions is straightforward for paragraphs, as it’s known where they are
placed within the image. Since the locations of lines within a paragraph are known, their
absolute location within the image is also easily derived. However, the HWT synthesis
model [DMP+20] does not output any information about the position of single words
within an HWT line. Hence, they have to be computed to generate labels on word-level.

This is done by identifying the N − 1 largest whitespaces within an HWT line image,
where N is the number of words within that image. Whitespaces are identified by
computing the pixel-sums for each column of the binarized image (the background must
be represented as 0, the HWT stroke as 1), all consecutive columns whose sum is 0 are
considered as whitespace. This allows to identify the horizontal position of the words.
A similar approach is applied to identify the vertical position. Figure 3 visualizes this
method.
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Figure 3: The first line shows the text “The quick brown fox jumps over the lazy dog”,
which has nine words, on a synthetic HWT image generated using the model described
in [DMP+20]. The second line shows the binarized version using Otsu’s method [Ots79].
The gray areas in the third row mark those columns of the second image that do not
contain HWT pixels. The outer two dark gray areas are the first and the last section
without any HWT pixels, hence can be used to derive the beginning and end of the first
and last word in the image, respectively. The remaining eight dark gray areas are the
N − 1 = 9 − 1 = 8 widest consecutive sequences without any HWT pixels, hence can be
used to derive the remaining start- and end-coordinates of the words. The black lines
in the third row show the HWT pixel intensities for each column. The fourth line is
similar to the third one, except only areas containing words are considered. I.e., the row
segments are summed up, the gray areas indicate sequences without HWT pixels (only
the lower and upper ones are of interest, filled with dark gray), and the black lines again
show the HWT pixel intensities. The fifth line finally shows the derived bounding boxes.
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Appendix D: Training Parameters
for Object Detection Models

For YOLOv5 models, the default hyper parameters for low-augmentation training are
used1:

• Optimizer: Stochastic Gradient Descent (SDG)

• Initial learning rate: 0.01

• Final OneCycleLR learning rate (lr0 * lrf): 0.01

• SGD momentum: 0.937

• Optimizer weight decay: 0.0005

• Warmup epochs: 3.0

• Warmup initial momentum: 0.8

• Warmup initial bias lr: 0.1

• Box loss gain: 0.05

• Cls loss gain: 0.5

• Cls BCELoss positive weight: 1.0

• Obj loss gain (scale with pixels): 1.0

• Obj BCELoss positive weight: 1.0

• IoU training threshold: 0.20

• Anchor-multiple threshold: 4.0
1The descriptions are taken from https://github.com/ultralytics/yolov5/blob/master/

data/hyps/hyp.scratch-low.yaml, last accessed on 2023-09-12.
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• Anchors per output layer: 3.0

• Focal loss gamma: 0.0

• Image HSV-Hue augmentation (fraction): 0.015

• Image HSV-Saturation augmentation (fraction): 0.7

• Image HSV-Value augmentation (fraction): 0.4

• Image rotation (+/- deg): 0.0

• Image translation (+/- fraction): 0.1

• Image scale (+/- gain): 0.5

• Image shear (+/- deg): 0.0

• Image perspective (+/- fraction), range 0-0.001: 0.0

• Image flip up-down (probability): 0.0

• Image flip left-right (probability): 0.5

• Image mosaic (probability): 1.0

• Image mixup (probability): 0.0

For YOLOv8 models, following hyper parameters are used2

• Optimizer: Stochastic Gradient Descent (SDG)

• Initial learning rate: 0.01

• Final learning rate: 0.01

• SGD momentum: 0.937

• Optimizer weight decay: 0.0005

• Warmup epochs: 3.0

• Warmup initial momentum: 0.8

• Warmup initial bias lr: 0.1

• Box loss gain: 7.5
2The descriptions are taken from https://github.com/ultralytics/ultralytics/blob/

main/ultralytics/cfg/default.yaml, last accessed on 2023-09-12.
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• Cls loss gain (scale with pixels): 0.5

• Dfl loss gain: 1.5

• Keypoint obj loss gain: 1.0

• Label smoothing (fraction): 0.0

• Image HSV-Hue augmentation (fraction): 0.015

• Image HSV-Saturation augmentation (fraction): 0.7

• Image HSV-Value augmentation (fraction): 0.4

• Image rotation (+/- deg): 0.0

• Image translation (+/- fraction): 0.1

• Image scale (+/- gain): 0.5

• Image shear (+/- deg): 0.0

• Image perspective (+/- fraction): 0.0

• Image flip up-down (probability): 0.0

• Image flip left-right (probability): 0.5

• Image mosaic (probability): 1.0

• Image mixup (probability): 0.0
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