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Kurzfassung

Müdigkeit führt zu ca. 7% der Unfälle auf Europas Straßen und ca. 13% der unfallbedingten
Verletzungen. Trotzdem spielt für die Feststellung von Fahrtüchtigkeit Müdigkeit nur eine
untergeordnete Rolle. Ziel dieser Arbeit ist es, im Rahmen des EU-geförderten PANACEA
Projekts ein Modell zur Abschätzung von Müdigkeit durch physiologische Parameter des
Herz-Kreislaufsystems auf der KSS, der Karolinska-Schläfrigkeitsskala, zu entwickeln.

Herzratenvariabilität (HRV) und Pulswellenform stehen unter Einfluss des autonomen
Nervensystems, das Herzrate, Blutdruck und andere Körperfunktionen reguliert und durch
Müdigkeit beeinflusst wird. In dieser Arbeit basiert die Modellierung dieses Zusammen-
hangs auf aufgezeichneten Studiendaten. Jeder der 32 männlichen Studienteilnehmer ab-
solvierte sechs simulierte Fahrten. Elektrokardiographie und Photoplethysmographie wur-
den jeweils vor und nach jeder Fahrt aufgenommen. Frühere Studien belegen Zusam-
menhänge zwischen den 23 für diese Arbeit extrahierten HRV- und Pulswellenparametern
und Müdigkeit.
Für die Modellierung dieses Zusammenhangs wurde in dieser Arbeit zur Reduktion der

Variablen eine Hauptkomponentenanalyse (PCA) mit anschließender multivariater linearer
Regression durchgeführt. In einem weiteren Ansatz wurden mit schrittweiser Regression
Modelle generiert. Um individuelle physiologische Unterschiede zu erfassen, wurden für
manche Modelle individuelle Baselines für die Parameter des Herzkreislaufsystems für jeden
Studienteilnehmer definiert.
Zwölf Modelle wurden mit PCA oder schrittweiser Regression erstellt und anhand der

Wurzel des mittleren quadratischen Fehlers (RMSE), der Residuen und statistischer Signi-
fikanz von Variablen verglichen. Modelle, die mittels schrittweiser Regression mit Baseli-
nes erstellt wurden, liefern, vor allem im Bezug auf Signifikanz, bessere Ergebnisse. Die
wichtigsten unabhängigen Variablen sind der Quotient LF

HF zwischen niedrigen und hohen
Frequenzanteilen der HRV und die Herzrate. Die Pulswellenparameter zeigen zwar insge-
samt weniger Zusammenhang, aber die absolute und relative Zeit der Systole sind eben-
falls von Bedeutung. Abgesehen von der Herzrate stützen frühere Studien die berechneten
Veränderungen dieser Variablen allerdings nicht.
Das final vorgeschlagene Modell kombiniert die Ergebnisse zweier, mit schrittweiser Re-

gression mit dynamischen Baselines erstellter, Modelle. Es nutzt eine Konstante (0.3155)
und fünf Variablen mit den folgenden Koeffizienten: LF

HF (0.2751∗), relative Zeit zur dikro-
tischen Kerbe (8.4928), Verhältnis des zweiten Maximums der Pulswelle zu systolischem
Druck (5.383), Zeit der Systole (−0.0160∗) und Pulsankunftszeit (0.0598∗), wobei signifikan-
te Koeffizienten mit ∗ gekennzeichnet sind. Die beiden einfließenden Modelle sind signifikant
(p = 0.0035 und p = 0.0143) und deren Kombination hat ein adjustiertes Bestimmtheits-
maß von 0.17. Diese Arbeit zeigt, dass die Abschätzung von Müdigkeit anhand HRV- und
Pulswellenparameter realisierbar ist. Es sollten jedoch weitere Studien mit mehr Messungen
an einer vielfältigeren Teilnehmergruppe durchgeführt werden.



Abstract

Around 7% of European road accidents and around 13% accident-related injuries can be
linked to driver fatigue. Nonetheless, to date fatigue only plays a minor role when deter-
mining a driver’s ability to drive. This thesis aims to develop a model to estimate fatigue
from parameters of the cardiovascular system on the Karolinska Sleepiness Scale in the
context of the EU-funded PANACEA project.
Heart rate variability (HRV) and the pulse wave shape are influenced by the autonomic

nervous system, which controls heart rate, blood pressure and other bodily functions and is
affected by fatigue. In this thesis, modelling of this relationship is based on recorded study
data. In total, 32 male participants completed six driving simulations each. Both elec-
trocardiography and photoplethysmography measurements were recorded before and after
driving. Previous studies have shown that the 23 HRV and pulse wave shape parameters
that were extracted for this thesis are affected by fatigue.
To reduce the large number of predictors for modelling the relationship in this thesis,

a principal component analysis (PCA) and subsequent multivariate linear regression were
performed. A second approach using stepwise variable selection was also followed. To
account for individual differences in physiology, individual participant baselines for HRV
and pulse wave parameters were introduced.
Twelve models using either PCA or stepwise regression were generated and compared

with respect to root mean square error (RMSE), residuals and statistical significance of
variables. Overall, models created using stepwise regression and any kind of baseline yield
better results, especially concerning significance. The most valuable predictors are the ratio
LF
HF between low and high frequency components of HRV and heart rate. Even though pulse
wave shape parameters are less important, absolute and relative systolic time are promising
predictors. However, apart from the heart rate, the estimated change in these parameters
is not backed by previous studies.

Finally, the proposed model combines the results of two models, both generated using
stepwise linear regression with a dynamic baseline. It includes a constant (0.3155) and
five variables with the following coefficients: LF

HF (0.2751∗), relative to the dicrotic notch
(8.4928), quotient of dicrotic wave amplitude and systolic pressure (5.383), systolic time
(−0.0160∗) und pulse arrival time (0.0598∗), where significant coefficients are marked with ∗.
Overall, both contributing models are considered significant (p = 0.0035 und p = 0.0143)
and their combination has an adjusted R2 value of 0.17. These results indicate that fa-
tigue prediction from HRV and pulse wave shape parameters is feasible. However, further
research with a higher number of measurements and a more diverse participant group is
necessary.
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1 Introduction

To date, when assessing fitness to drive, predominantly impairment due to alcohol con-
sumption or drug use is measured. However, fatigue can majorly affect a driver’s vigilance
and lead to loss of attention or falling asleep at the wheel. According to a study conducted
in 19 different European countries, 17% of drivers report having fallen asleep while driving.
Approximately 7% of European road accidents as well as 13.2% of accident-related injuries
and 3.6% of fatalities can be linked to fatigue. In comparison to other European countries,
Austria has a high rate of falling asleep while driving. Therefore, any assessment system,
which can alert a driver to possible high fatigue, has the potential to reduce the number of
accidents, injuries and deaths on Europe’s roads. [19]
In the context of the EU-funded PANACEA project, which aspires to develop a more

comprehensive system to assess fitness to drive, this thesis aims to develop a predictive
model to estimate fatigue from cardiovascular parameters. The PANACEA assessment
system is intended for use in the field of commercial driving, as with bus or lorry drivers.
Although it will also take other factors such as alcohol, drugs, stress and distraction into
account, this thesis focusses only on fatigue assessment through heart rate variability (HRV)
and pulse wave shape parameters.

The variability in time between successive heartbeats is strongly connected to the activity
of the autonomic nervous system (ANS) [46]. As, with rising fatigue, the balance between
the sympathetic and parasympathetic branches of the ANS shifts, certain HRV parameters
are affected and could therefore be useful in prediction [14]. The connection between pulse
wave shape parameters and fatigue is less clear, but there are studies, that show that effects
of rising fatigue can be linked to changes in the pulse wave shape [27].
The characteristics of HRV and the pulse wave can be extracted from electrocardio-

graphy (ECG) and photoplethysmography (PPG) measurements. In this context, some
background is given on the physiology of the cardiovascular system and the functionality of
the measurement methods in use. Data is measured using the Austrian Institute of Tech-
nology’s (AIT) proprietary device, the SmartPWA, and processed by previously existing
code in MATLAB (The MathWorks Inc., Natick, USA). Since all characteristics are then
output in MATLAB, this thesis made use of MATLAB R2022b for all necessary modelling
and programming.
Within the scope of this thesis, the available cardiovascular parameters were analysed

and in further course used as variables in multivariate regression models. The number of
parameters computed from ECG and PPG measurements is too large to feasibly include
all in a predictive model, which raises the question, which parameters attribute most to
accurate prediction of fatigue. The modelling and statistical methods applied in this thesis
are largely based on the books An Introduction to Statistical Learning (James et al., [21])
and The elements of statistical learning: data mining, inference, and prediction (Hastie
et al., [20]). MATLAB’s predefined functions for the dimension reduction technique prin-
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1 Introduction

cipal component analysis (PCA) as well as stepwise variable selection were put to use to
determine the most valuable predictors and generate multivariate regression models.
Due to various anatomical factors, there can be large differences between individuals in

HRV and pulse wave parameters [24, 25]. Since these parameters are used as predictors in
the generated regression models, this can have a huge effect on the generality of the models.
Therefore, two different versions of an individual baseline were pursued: a fixed baseline,
with one reference measurement per participant, and a dynamic baseline, with changing
reference measurements.
Twelve different models were generated using various combinations of the aforementioned

modelling methods and different types of individual baselines. The models are evaluated
using the F -test and residual analysis and compared with respect to quality of fit. The
root mean square error (RMSE) and adjusted R2 statistic are the main characteristics of
goodness of fit computed for analysis.
The most important parameters in fatigue prediction are extracted from the generated

models and compared to literature. The differences between the expected effect of fatigue
on HRV and pulse wave parameters and the effect suggested by the generated models are
highlighted and discussed.

While an effect of fatigue on HRV parameters is well established, the influence on pulse
wave shape parameters is unclear. Even though many papers have been published on
fatigue assessment, most of which use classification algorithms, no example of a predictive
model mapping cardiovascular parameters to the Karolinska sleepiness scale (KSS) was
found. This thesis aims to use fresh data to validate previous results from other studies
concerning the effect of fatigue on HRV parameters, while also determining the value of
pulse wave shape parameters in fatigue prediction. Finally, after considering different
approaches, a model for predicting fatigue on the KSS is proposed.

2



2 Background

This chapter is dedicated to establishing a basis in the physiology connected to fatigue,
the cardiovascular system and its parameters derived for analysis. First, the PANACEA
Project, within which this thesis has been conducted, will be presented. The following
sections contain a short introduction to the physiology of the cardiovascular system and
an explanation of established characteristics used for its analysis. The basic functionality
of measurement methods through which they are obtained, i.e. cardiography and photo-
plethysmography, will also be explained. Lastly, the definition and measurement methods
of fatigue used in the PANACEA Project will be given.

2.1 The PANACEA Project

The PANACEA Project, short for “practical and effective tools to monitor and assess com-
mercial drivers’ fitness to drive”, is concerned with defining and measuring professional
drivers’ fitness to drive. It is funded by the European Union as part of the research and in-
novation funding programme Horizon 2020, which ran from 2014 to 2020 [57]. The duration
of the project is set to be three years, from May 2021 to April 2024. Within PANACEA,
16 partners from all across Europe, including the Austrian Institue of Technology (AIT) in
Vienna, Austria, and the Swedish National Road and Transport Research Institute (VTI)
in Linköping, Sweden, collaborate to achieve a higher standard of road safety. [35]
The main goals of the PANACEA project are to develop ways to assess the driving ability

of commercial drivers, such as bus, taxi or lorry drivers, as well as defining appropriate
counter-measures and policy recommendations. Although this thesis focusses solely on
fatigue as a possible cause for driving impairment, throughout the project the influence of
other factors, such as alcohol, drugs, stress and distraction, on one’s ability to drive are
also considered. Once a comprehensive monitoring and assessment system is developed,
its sensitivity, specificity, effectiveness and operability should be estimated. Finally, the
usefulness and acceptance of the developed methods should also be evaluated. [35]

2.2 Heart

This section will give an overview of cardiac anatomy and function in the context of the
circulatory system. Also, the electric properties and conduction system of the heart will
be described in order to understand the methods of ECG, which is used to measure heart
activity. Finally, heart rate variability, derived metrics and their interpretation will be
discussed.

3



2 Background

Figure 2.1: The heart’s place within the circulatory system can be seen on the left. On the right,
a more detailed view of the heart is given. Image adapted from [10, Ch. 7] under the license [13].

2.2.1 Physiology of the Heart

One could imagine the heart as a pump, which keeps the blood circulating within our
bodies. A healthy adult heart displaces approximately 5 litres of blood every minute. In
principle, the heart fills with blood and then, through muscular contraction, ejects the blood
into the vascular system, through which it is transported all over the body. In general one
distinguishes between veins, blood vessels leading to the heart, and arteries, blood vessels
carrying blood away from the heart. [10, Ch. 7]
The heart is divided into four chambers, the right and left atria, which sit above the

right and left ventricles, respectively. Figure 2.1 shows the heart with all corresponding
annotations. It should be noted that, although the heart is usually depicted from the
perspective of someone looking at a person, right and left are generally considered from
the opposite perspective, as if one were speaking of their own heart. [10, Ch. 7]
The right and left sides of the heart are physically separated by a wall. While the right

side of the heart is responsible for the movement of deoxygenated blood through the lungs,
the left side distributes the oxygenated blood across the rest of the body. A detailed
description of blood flow through the heart follows. [9, Ch. 26]
The right atrium collects blood low in oxygen from the veins leading to it. As it contracts,

the blood goes through a valve to the right ventricle, from which it is pushed through the
pulmonary valve into the artery leading to the lungs. The blood, now rich in oxygen,
returns from the lungs and fills the left atrium. When the left atrium contracts, the blood
passes through another valve into the left ventricle. From there it is pressed through the
aortic valve into the aorta, the biggest artery of the body. It is then circulated to all other
organs. An overview of the blood flow through the heart and circulatory system is indicated

4



2 Background

by the white arrows in Figure 2.1. [9, Ch. 26]
The valves between the four chambers are in fact very important. They assure, that

current can only flow in one direction. This allows a constant influx to the heart through
the veins while, at the same time, there is a regular output of blood to the arteries. It is
important to keep in mind, that the blood flow from the heart is not completely steady,
but echoes the rhythmic pulse of the heart. [10, Ch. 7]

2.2.2 Electric Properties of the Heart

The previous section has made clear, that the contraction of the heart muscles is essential
for the transport of oxygen through the circulatory system. To this end the muscles of the
heart are electrically stimulated around 60 times per minute [32, Ch. 2]. This section will
give an outline of the electrical activity that keeps our heart at the correct pace.
First of all, it is helpful to understand what is meant by the aforementioned stimulation.

All cells, also the muscular cells of the heart, are electrically charged. When a cell is at
rest it has a negative potential. It is considered to be polarised. Stimulation is the process
of electrical change, to the depolarised state, in which the potential level within the cell
becomes positive. This stimulation causes muscle contraction. [48, Ch. 1]
A small group of cells, called the sinus node or sinoatrial node, in the right atrium are the

main source of electrical stimulation. The frequency, in which impulses are generated in the
sinus node, can be influenced through the autonomic nervous system to adapt to certain
needs. The sinus node along with the rest of the heart’s conduction system is depicted in
figure 2.2. [32, Ch. 2]
In a healthy heart the stimulation is triggered by the sinus node and spreads to neigh-

bouring cells from there. The left atrium is depolarised shortly after the first impulse in
the right atrium. In the cardiac conduction system, the ventricles are connected to the
atria through the atrioventricular node, but are otherwise isolated. The impulse can only
pass through this node and therefore the ventricles contract only after both atria. The con-
ductors split into branches for the left and right ventricle after the atrioventricular node.
The Purkinje fibres, which seperate from the left and right branches, carry the stimulation
through the musculature. [32, Ch. 2]
Should the sinus node fail, the atrioventricular node as well as the Purkinje fibres are

capable of generating impulses, albeit at a lower frequency and without any connection to
the autonomic nervous system. [32, Ch. 2]

2.2.3 Electrocardiography

The heart displays a distinct, repeating pattern of electrical activity that can give a lot
of insight into its current state of health. Naturally, measurement of the heart’s electric
processes has been of great interest for some time and methods to quantify them have been
developed. This section gives a short introduction to current methods and the resulting
graph, the electrocardiogram (ECG).
During depolarisation, when some cells are already stimulated, i.e. have a positive po-

tential, whereas others have not yet experienced any electrical changes, there is a difference
in potential between cells. This results in an electric current from one cell to another [32,

5



2 Background

Figure 2.2: The conduction system of the heart is schematically depicted in yellow. Depolarisation
starts in the sinoatrial node, spreads through the atria as indicated by the white arrows and then
crosses to the ventricles through the atrioventricular node. The impulse is taken to the ventricular
muscles through the Purkinje fibres. Image taken from [33] under the license [13].

Ch. 1]. It is the sum of these electric currents within the heart, or the sum of differences
in potential, that is depicted in the electrocardiogram. [32, Ch. 3]
The differences in potential between cells can be treated as vectors [32, Ch. 3]. Sum-

marising these partial voltages, we obtain the cardiac vector, a vector with varying direction
and magnitute, which is defined to be fixed in the centre of the heart. The cardiac vector
represents the collective electric activity of the heart. [48, Ch. 1]
Willem Einthoven was the first to suggest measuring cardiac electric activity during

stimulation. He postulated, that the human body is a conductor and the activity of the
heart could be detected on the skin. In his first experiments, he attached electrodes to
both forearms and the left lower leg and measured the difference in potential between each
combination of two of the three electrodes. He called each pair of electrodes a lead. The
resulting curve represents the magnitude and direction of the cardiac vector in relation to
time, projected onto the corresponding lead used in measurement. This means each lead
can be attributed to a certain viewpoint, from which cardiac activity is monitored. For an
illustration see figure 2.3. [32, Ch. 4]
Einthoven termed the measurement using both forearms lead I. He named the combina-

tion of electrodes on the right forearm and left lower leg lead II and the combination of the
left lower leg and left forearm lead III. [32, Ch. 4]
Figure 2.4 shows the segment of an electrocardiogram which corresponds to a single

heartbeat. The first wave of the pattern, the P wave, is caused by the depolarisation of the
atria. As the ventricles become depolarised, the cardiac vector changes direction twice and
also reaches its maximum in magnitude at the R peak, indicating the maximum of electric
activity in the heart. This means ventricle depolarisation is seen in the QRS interval. The
T wave is generated by the repolarisation, that is the return to the state of rest, of the
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Figure 2.3: The image shows the three leads proposed by Einthoven in black. The light red
arrow represents the cardiac vector, the sum of electrical activity in the heart. The projection of
the cardiac vector onto each lead is shown in red. An Einthoven ECG measurement depicts the
magnitude of the corresponding projection. Image used under the license [13].

ventricles. Although the ECG signal could look quite different when using another lead,
the depicted signal is representative for the signals acquired in this thesis. [48, Ch. 1]
Since Einthoven’s first experiments, there have been many developments in electrocar-

diography. Today, ECGs of a clinical standard are usually recorded using twelve leads.
However, due to its simplicity, Einthoven’s procedure is still in use in many wearable or
portable ECG monitors. [48, Ch. 1]

2.2.4 Heart Rate Variability and Connected Metrics

The human heart does not beat in completely regular intervals. The ANS, which keeps
the body in homoeostasis, a state of stable physical conditions, is constantly monitoring
and correcting the heart rate to the needed pace via the sinus node. This means certain
fluctuations in the time between two successive heartbeats are in fact healthy. This variance
indicates that our bodies can quickly adapt to environmental change or stressors and shows
a degree of resilience. [46]
The ANS is divided into two branches, the sympathetic nervous system (SNS) and the

parasympathetic nervous system (PNS). A rise in sympathetic nervous activity is consid-
ered to be a ”fight or flight” response to a stressful situation. It leads to higher heart rates
and blood pressure, increased muscle strength and faster breathing [37]. The PNS on the
other hand, is associated with rest, sleepiness and lower heart rates. The variability in time
from one heartbeat to another gives insight to the balance in SNS and PNS activity. [11]
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Figure 2.4: Segment of an ECG signal corresponding to one heartbeat. Depolarisation of the atria
results in the P wave, while depolarisation of the ventricles corresponds to the QRS complex. The
repolarisation of the ventricles can be seen in the T wave. Image used under the license [13].

For further reference, HRV is defined as follows:

Definition 2.1. Heart Rate Variability (HRV) is the fluctuation of time intervals
between consecutive heartbeats [46]. HRV Analysis is the extensive analysis of beat-to-
beat intervals in both time and frequency domains [48, Ch. 1].

Since an R-peak in the ECG corresponds to a heartbeat, the time between consecutive
R-peaks, the R-peak to R-peak interval (RRI), is of special interest for the analysis and
quantification of HRV. Unfortunately, this is not a one to one correspondence. In prepro-
cessing, R-peaks resulting from so-called ectopic beats, heartbeats that do not originate
from the sinus node and therefore are not influenced by the ANS, as well as those consid-
ered to be outliers are removed. After preprocessing, the remaining intervals are referred to
as the normal-to-normal intervals (NNIs) while the remaining heartbeats are called normal
heartbeats. [28, 46]

Definition 2.2. Normal heartbeats are heartbeats originating from the sinus node which
are controlled by the ANS. The normal-to-normal intervals (NNIs) are given by the
time differences between two successive normal heartbeats.

The NNIs are usually measured in milliseconds (ms) so, obviously, the instantaneous
heart rate, usually measured in beats per minute (bpm), can be directly calculated from
the NNIs. We call all HRV measures calculated directly from the fluctuations in NNIs
over time the time-domain measures of HRV. Table 2.1 gives a detailed description of all
characteristics in the temporal domain used in this thesis as well as their physiological
interpretations. [48, Ch. 1]
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Definition 2.3. Time-domain measures of HRV are measures calculated from the
series of time differences between NN intervals. The time-domain measures used in this
work are defined in table 2.1

Table 2.1: Overview of time-domain HRV parameters derived from ECG data. A description
and physiological interpretation of the different metrics is also given. Of course all measures are
dependent on the recording time. Units are given in parenthesis. Adapted from [48] and [37] with
additional information from [46].

HRV
Parameter

Description Physiological
Interpretation

mean HR
(bpm)

mean of HRs throughout a recording mean heart rate

mean NN
(ms)

mean of NNIs throughout a recording mean duration between two normal heart
beats

SDNN
(ms)

Standard deviation of NNIs (i.e. the
square root of variance of NNIs)

estimates PNS activity, especially that related
to changes in HR caused by respiration

RMSSD
(ms)

Root mean square of successive differ-
ences between normal heartbeats

estimates high frequency variability in the
HR induced by the PNS and is correlated to
pNN50

pNN50
(%)

Percentage of successive NNIs, that
differ by more than 50 ms

pNN50 is correlated to high frequency HRV,
PNS activity and RMSSD

For further analysis the NNI data can be examined in the frequency domain. One can
observe the power spectrum of NNIs, which depicts the variance in NNIs as a function
of frequency. Characteristics derived from the power spectrum of NNIs are referred to
as frequency-domain measures. As before, all characteristics available for this thesis are
summarised in table 2.2. A detailed description and corresponding physical interpretation
is given:

Definition 2.4. Frequency-domain measures of HRV are measures calculated from
the power spectrum of the series of time differences between NN intervals. Frequency-
domain measures used in this work are defined in table 2.2.

The power spectrum can of course be obtained using the Fourier transformation, but
it is important to note, that multiple different algorithms are in use to determine the
power spectrum of NNIs. Unfortunately, their results and therefore also frequency-domain
measures calculated by different means are not comparable. Regrettably, the means of cal-
culation are mostly not included in publications, which makes the comparison of measured
values hard.
Usually SDNN is considered an indicator for overall heart rate variability. Along with

the physiological interpretation given in 2.1, this coincides with the suggestion that higher
HRV is associated with higher parasympathetic activity while lower HRV is associated with
stress. As seen in table 2.2, the high frequency component (HF) of HRV is connected to
the PNS. Even though the low frequency (LF) component has been shown to reflect both
sympathetic and parasympathetic activity, it is mostly considered to be influenced by the
SNS. [8]
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Table 2.2: Overview of frequency-domain HRV parameters derived from ECG data. A description
and physical interpretation of the different metrics is also given. Units for the parameters are given
in parenthesis. Adapted from [48] and [37] with information from [46] and [9, Ch. 38].

HRV
Parameter

Description Physiological
Interpretation

LF (ms2) Absolute power in the low frequency
band (0.04− 0.15 Hz)

Influenced mostly by baroreceptor activity, an
essential part of the ANS which keeps mean
blood pressure constant. For slow breath-
ing rates PNS influence is greater, SNS has
a larger influence for faster breathing.

LFnorm
(unitless)

absolute LF power divided by abso-
lute power of LF+HF

HF (ms2) Absolute power in the high frequency
band (0.15− 0.4 Hz)

Influenced by PNS and HR fluctuations re-
lated to breathing (at a respiration reate of
9-24 breaths per minute). Also, highly corre-
lated to RMSSD and pNN50.

HFnorm
(unitless)

absolute HF power divided by abso-
lute power of LF+HF

LF/HF
ratio

(unitless)

ratio of low frequency and high fre-
quency power

Indicates the balance between SNS and PNS
activity. The lower the ratio, the higher the
parasympathetic influence compared to sym-
pathetic activity.

TP (ms2) Absolute power in HF, LF and also
very low frequency (0.003− 0.04 Hz)

Total power across the spectrum (incl. ultra-
and very low frequencies, which can only be
extracted from longer recordings [28]).

According to the standards of measurements set by [28], all HRV measures introduced
above can be extracted from a short term ECG recording of 2 to 5 minutes. However, it
is important to compare only recordings of the same length, as some statistical measures,
such as SDNN, are only well-defined in this case. This is due to the fact that a longer
recording would also lead to a higher total variance. [28]
It should also be noted, that HRV parameters can differ greatly from person to person,

as they are affected by multiple factors, such as age, height, weight and, of course, general
health. All time domain indices as well as TP, LF and HF tend to be higher in males
than females, whereas the mean HR seems to be higher for women. Height has been
shown to correlate with lower heart rates while a greater weight has been associated with
lower normalised HF, higher normalised LF and therefore also a higher LF

HF ratio. Needless
to say, this poses some challenges when trying to compare measurements from different
people. [24, 25]

2.3 Blood Circulation System

We have already reviewed the basic action of the circulatory system while discussing the
function of the heart within it in section 2.2.1. This section will focus on the movement of
blood after it has left the heart. The form of the pulse wave and common characteristics
in its shape will be described. Finally, we will also explain how to measure the pulse wave
using photoplethysmography.
As seen in figure 2.1, blood is pumped from the heart into arteries, which divide into

smaller blood vessels, the arterioles. Both of these vessels have flexible walls to accom-
modate the changes in pressure caused by the unsteady flow of blood into the circulatory
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Figure 2.5: The wave caused by ventricular ejection is shown as a grey dashed line, while the
reflected wave is illustrated as a grey dotted line. Pr represents the point of wave reflection. The
resulting pulse wave, depicted as a solid black line, is given by the superposition of the pulse pressure
wave and its reflections. Image adapted from [47].

system. Arterioles divide into a multitude of tiny blood vessels, the capillaries, which sup-
ply the surrounding tissue with oxygen. Afterwards, vessels merge again into venules and
then veins to carry the blood back to the heart. [10, Ch. 8]

2.3.1 Pulse Wave Analysis

When the left ventricle ejects blood into the aorta, the sudden increase of blood volume
causes it to expand and a pressure pulse is sent through the arterial system [3]. The
pressure wave is partly reflected at branching points of vessels as it propagates through the
system. The reflected wave travels back towards the heart. The main interest in pulse wave
analysis (PWA) is to examine the shape of the pressure pulse wave, which is comprised of
a superposition of the wave caused by ejection from the heart and its reflection. A wave
like this can be seen in figure 2.5. [47]
Obviously, the distance the wave has travelled alters its shape, since the influence of

reflections changes. As it moves further from the heart, the amplitude rises and the trough
between the two peaks of the wave, that can be seen in figure 2.5, widens. Figure 2.6 shows
the different waveforms at multiple points of measurement. [9, Ch. 33]
Nevertheless, pulse waves measured at the same location are still not comparable. The

elasticity as well as size of arteries also have an effect on wave velocity. In stiffer vessels
the wave travels faster and therefore the reflection returns at an earlier stage, which, of
course, changes the waveform. Since age influences both artery stiffness and size, it has
a considerable effect on the wave shape. The heart rate determines the ejection time, so
obviously a change in HR also influences the pulse wave. Additionally, some other factors,
such as physical fitness and body height have been shown to have an effect on the wave
form. Differences in gender on the other hand can mostly be explained by differences in
height. [34]
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Figure 2.6: Shape change of the pulse pressure wave as it propagates through the system. From
left to right the approximate wave shapes of measurements at the aorta, arm, hand, leg or foot can
be seen. The amplitude of the wave becomes larger, while the mean arterial pressure (MAP) always
stays the same. Image taken from [9, Ch. 33].

There are a few different options for measuring pulse waves, but the following section
will focus only on photoplethysmography (PPG), which actually measures fluctuations in
blood volume. The PPG wave form is usually measured some distance away from the aorta
(e.g. finger or ear) and seems to be influenced by multiple factors in the arterial, cardiac,
respiratory and autonomic systems [2]. That being said, PPG is widely used for pulse wave
analysis and it has been established that the PPG signal measured on a finger shows the
same physiological characteristics as the pressure waveform discussed above [47].

2.3.2 Photoplethysmography

Photoplethysmography (PPG) is a measurement technique used to determine oxygen sat-
uration of blood and visualise the pulse wave. Obviously the latter is of interest in this
context. The PPG was first introduced by Alrick Hertzman in 1937. It was him who named
it a photoplethysmograph, incorporating the Greek word ”plethysmos”, which translates
to fullness. Even in its beginnings the PPG was believed to measure blood volume changes.
Although modern methods are more sophisticated, this belief turned out to be quite accu-
rate. [2]
To be exact, a photoplethysmograph measures changes in light intensity. Biological tissue

absorbs light that is transmitted to it. Some light however, still travels through the tissue or
is scattered and reflected. This remaining light is registered by the photoplethysmograph.
Most blue wavelengths are absorbed by biological tissue, while infrared and near-infrared
easily pass through. Light in the green-yellow regions is mainly absorbed by red blood
cells. In general, blood has a higher absorption rate than other tissue, which leads to a
higher measured light intensity when blood volume decreases. [48, Ch. 6]
The pulse wave can be divided into two components: a fluctuation component, called

AC after the alternating electric current, and background absorption, termed DC for direct
current. The DC component corresponds to the light absorbed by bones, skin, venous
blood and even some part of arterial blood. It is important to note, that this component
is not constant. It changes slowly, largely influenced by breathing. The AC component
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Figure 2.7: a) reflection PPG measurement at the finger. b) transmission PPG measurement at
the finger. c) Emitted light, that is not absorbed by any blood components or other tissue, such
as skin or bones, forms the steady part of the PPG. The pulsatile component of the PPG results
from light absorbtion of the pulsatile component of arterial blood. This image was taken from [15]
(original source: [49]).

corresponds to the light absorbed by the pulsating part of arterial blood. This AC part
leads to the characteristic shape of the pulse wave. As can be seen in figure 2.7, the light
intensity, which actually decreases as blood volume increases, does not directly correspond
to the pulse wave. The wave is inverted to bear a greater resemblance to the arterial
pressure wave form. [2, 48, Ch. 6]
The PPG contains a source emitting light into tissue, some of which is absorbed. A

photodetector is then used to quantify how much light returns to the device. In general,
there are two common options for PPG measurements: reflection and transmission, both
of which are depicted in figure 2.7. [39]
For PPGs using reflection, the photodetector and the light source must be attached side

by side. The sensor measures the light that is scattered back from tissue at the place of
measurement. This represents an evaluation of superficial blood flow. This method can be
used almost anywhere on the body, but is also more susceptible to motion artefacts due
to movement of the chosen area. The waveform, especially the amplitude, could also be
influenced by pressure on the sensor. Due to greater absorption rate in red blood cells,
green wavelengths are usually used for reflection PPGs. [39, 48, Ch. 6]
For transmission, the light source and photodetector must be placed on opposite sides

of the tissue under inspection. This poses an additional restriction to the measurement
location, as at least some light must be detectable after transmission through the body.
Many possible sensor placements, such as the cheek or tongue, are not normally used
since they are quite uncomfortable. The fingers or ears are usually the best candidates
for measuring a transmission PPG, even though they are easily affected by environmental
conditions, such as cold temperatures. This method mostly utilises infrared or near-infrared
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Figure 2.8: The image shows all characteristic points of the pulse wave (labelled in green) and all
significant time durations (labelled in blue) defined in this section.

wavelengths, which pass through tissue more easily, and can be used for measurement of
deeper tissue [39]. [48, Ch. 6]

Usually any PPG measurement is subject to post-processing before showing up on a
screen. In most cases a band-pass filter is used to eliminate gradual changes as well as
spikes. This eliminates the slow fluctuations due to respiration. Additionally, some sort of
smoothing is generally also applied. [2]
There are many advantages to photoplethysmography, no matter whether reflection or

transmission is chosen. It is a relatively cost-effective, non-invasive method of obtaining
pulse wave measurement. Moreover, it is simple enough to facilitate unsupervised measure-
ments. Although this may still be some time away, there is also some promising research
into the use of PPG in determining blood pressure. However, measured pulse waves are
not comparable for different individuals. There are many factors that influence the signal,
some being skin colour, the amount of fat and muscle in the tissue and pressure on the
sensor. [2, 47]

2.3.3 Pulse Wave Shape Parameters

Although pulse waves can look quite different for separate individuals and measurement
locations, they mostly have similar main features. As images so far suggest, usually one
can distinguish a prominent first peak in the wave followed by a dip and a second, less
prominent peak. This section will explain the significance of these points and give an
overview of the most important pulse wave shape parameters used in this thesis. Figure
2.8 gives a visual representation of all characteristic points and time durations defined in
this section.
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Characteristic Points

As suggested above, due to the difference between individuals, trying to characterise the
pulse wave in absolute values is pointless. Hence, the only way to find characteristic points
is by defining them in relation to their surrounding points. Of course, maxima and minima
are easy to extract and are therefore good candidates for such points.

As already stated, a pulse wave has a very prominent peak at the beginning of the wave,
which is connected to the rise in pressure and the expansion of the aorta as blood flows into
it. The level of the first peak in the pulse wave corresponds to the maximum pressure after
ventricle contraction. This is termed systolic blood pressure (SBP). In healthy individuals,
when at rest, SBP does not rise over 120 mmHg [48, Ch. 4].

Definition 2.5. Systolic blood pressure (SBP) Psys corresponds to the first peak in
the pulse wave. Usually this is also the maximum of the pulse wave over one heartbeat.[47]

Diastolic blood pressure (DBP) on the other hand, corresponds to the lowest point of the
pulse wave, e.g. the wave’s onset. It describes the arterial pressure just before ventricular
contraction, when there is no blood flow into the aorta. The DBP of a healthy person at
rest is usually below 80 mmHg [48, Ch. 4].

Definition 2.6. Diastolic blood pressure (DBP) Pdia corresponds to the minimal value
in the pulse wave over one heartbeat [47].

The trough between the first and the second peak also has a significant meaning. When
the aortic valve closes, there is a short fall and rise in pressure in the aorta which is seen
as a small dip between the two peaks of the pulse wave. This called the dicrotic notch and
marks the end of the systole, the ejection period of the heart. [10, Ch. 8].

Definition 2.7. The Dicrotic Notch Pnotch is the (most prominent) local minimum
between the first and the second peak of the pulse wave [10, Ch. 8].

Lastly, the second peak of the pulse wave is caused by the wave reflections discussed in
2.3.1, which become more prominent as the wave propagates. This is also referred to as
the dicrotic wave. Therefore, the second peak is called the dicrotic wave amplitude [22].
Sometimes the term diastolic peak is also used, since it occurs during diastole, the period
when the heart does not eject blood. It is important not to confuse it with DBP.

Definition 2.8. The dicrotic wave amplitude Pdwa corresponds to the second peak of
the pulse wave over one heartbeat. It is sometimes also called the diastolic peak. [22, 47]

Before moving on to time-related characteristics of the pulse wave, we need one more
crucial definition. Physiologically, the onset of the wave is just before the aortic valve
opens, i.e. before the ejection period of the heart begins. In contrast to the maxima and
minima discussed up to now, it is not defined, which exact point on the curve represents
the onset. The exact choice of the point and details of calculation during processing of
data in this thesis are outlined in section 3.4.3.

Definition 2.9. The onset PO of a pulse wave is a point in time, before the ventricles
contract and blood is ejected from the heart. There is no rise in blood pressure before the
onset.
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Time-Related Parameters

Using the onset PO of the pulse wave, as defined in 2.9, as a reference point, some charac-
teristic time durations can be defined. One value of interest is the total duration of a pulse,
since it gives insight to the time, that passes between two pulses, and allows us to regard
time durations between characteristic points in proportion to the total length of the pulse.

Definition 2.10. The total pulse duration (TPD) tT is the time from the onset of a
pulse wave to the the onset of the successive pulse wave [22].

The time from the onset PO of a pulse wave to the point Psys, where SBP is reached, is
called the crest time. As higher artery stiffness increases wave velocity, the time at which
the maximum in pressure is reached shortens with higher stiffness of blood vessels and
therefore also with age. [47]

Definition 2.11. The time to the systolic peak tsys is the time from the onset of a
pulse wave to the point of systolic blood pressure. It is also sometimes referred to as the
crest time. [22, 47]

Similarly, the time from the onset PO to the dicrotic notch Pnotch is defined:

Definition 2.12. The time to dicrotic notch tnotch is the time from the onset of a pulse
wave to the dicrotic notch.

The last time duration of interest is the dicrotic wave time, the time from the onset PO

of the wave to the point of dicrotic wave amplitude Pdwa. With increasing arterial stiffness
the reflections that make up this part of the pulse wave occur earlier and therefore dicrotic
wave time shortens. The ratio of body height h and the difference between crest time tsys
and dicrotic wave time has even been investigated as an index of artery stiffness. [47]

Definition 2.13. The dicrotic wave time tdw is the time from the onset of a pulse wave
to the point where dicrotic wave amplitude is reached [22].

2.3.4 Pulse Arrival Time

The pulse arrival time (PAT) is technically not a pulse wave shape parameter, but it is
defined by the pulse wave. The calculation of PAT requires simultaneous ECG and PPG
measurements, since it describes the time duration between the R-peak in an ECG and
the onset of the corresponding pulse wave at the location of PPG measurement. PAT is
representative for the time it takes a pulse wave, originating in the heart, to reach a certain
point, e.g. the finger or the ear, in the body. All information in this short subsection is
taken from [48, Ch. 4].

Definition 2.14. Pulse arrival time (PAT) is defined as the time it takes pulse waves
to reach a certain location in the body. More exactly, it is the time from an R-peak in an
ECG to the onset of the corresponding pulse wave measured in a PPG at said location.

PAT is highly related to systolic blood pressure and there is ongoing research into a form
of blood pressure measurement which utilises the pulse arrival time, mainly because it is
quite simple to measure. The details of the calculation of PAT used within this thesis are
outlined in section 3.4.3.
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2.4 Fatigue

In literature, there is no uniform definition for fatigue. It can refer to both mental and
physical tiredness. Within the PANACEA Project however, partners decided to concentrate
on the physical aspect and use the following definition:

Definition 2.15. Fatigue here also relates to sleepiness and rest. Fatigue is defined as
the biological drive for recuperative rest [55], with sleepiness as a special case referring to
accumulated sleep debt, prolonged wakefulness or troughs in the circadian rhythm. The
KSS, which is explained below, serves as a reference for the definition of fatigue[40, 41].

2.4.1 Approaches to Measuring Fatigue

Studies on fatigue in the context of driving use a variety of different techniques to es-
timate the driver’s level of fatigue. This section is based on a recent review (Doudou
et al., [14]), examining current driver drowsiness measurement technologies and available
products. Roughly, one can differentiate four different approaches: monitoring driving
behaviour, the driver’s activities, the use of physiological signals and subjective fatigue
estimates.

Monitoring Driving Behaviour

Steering wheel movement, vehicle deviation and speed can all be connected to the driver’s
fatigue. A drowsy driver is likely to need more steering corrections and will have more
difficulties keeping lane position. All these indicators require a variety of sensors in the car.

Monitoring the Driver’s Activities

Although facial expressions and head position can indicate a driver’s fatigue, the most used
metrics focus on the eyes. Studies usually examine the percentage of eyelid closure and eye
movements. Generally, as sleepiness occurs, fast eye movements will become slower and the
percentage of eyelid closure will rise. This approach requires at least one camera filming
the driver’s face, sometimes realised through wearable cameras on glasses.

Analysis of Physiological Signals

Since the effect of fatigue on cardiac activity, measured using an ECG, is one of the main
topics of this thesis, it will be discussed in more detail further on. Apart from ECGs, elec-
troencephalography (EEG) and electrooculography (EOG) measurements are also affected
by fatigue.
An EEG measures brain activity through electrodes placed on the scalp. The effects of

drowsiness or sleep can be detected by a change in frequency and amplitude of the signal.
An EOG measures eye movement and blink patterns through electrodes placed around

the eye. As mentioned above, indicators for fatigue are slower eye movements and a higher
percentage of eye closure. However, some results indicate that eye movement alone is not
sufficient for detecting drowsiness.
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Subjective Fatigue Estimates

Unfortunately, the necessary equipment, i.e. electrodes, cables, cameras or other measure-
ment devices, limits the use of the methods mentioned above in a real-life driving context.
For fast and simple assessment of fatigue, mostly subjective scales based on questionnaires
are used. Although there is a multitude of different scales, here we will highlight the
Karolinska sleepiness scale (KSS). It is a well-established method for obtaining subjective
fatigue values and focusses on sleepiness, rather than mental fatigue, which is why it was
chosen for this experiment.[40]

Definition 2.16. The Karolinska sleepiness scale (KSS) is a nine-point scale, where
1 indicates low sleepiness, while 9 is the highest level of sleepiness. A user is asked to assess
their own sleepiness in the preceding 5 minutes and marks the corresponding KSS level [40].
The nine levels of the KSS are:

Table 2.3: Levels of the Karolinska sleepiness scale (KSS) [40]

Level Description

1 Extremely alert

2 Very alert

3 Alert

4 Rather alert

5 Neither alert nor sleepy

6 Some signs of sleepiness

7 Sleepy, but no effort to keep awake

8 Sleepy, some effort to keep awake

9 Very sleepy, great effort to keep awake, fighting sleep

The KSS was first designed and tested using a sleep deprivation experiment and EEG
as well as EOG measurements in 1990 by Torbjörn Åkerstedt and Mats Gillberg [41]. In
its original version, odd steps were not labelled. However, a later study shows that results
using the fully labelled scale are comparable to results obtained using the partly labelled
scale [30].
According to a review (Åkerstedt et al., [40]) investigating KSS as an indicator for sleep

deprivation and impaired waking function, the subjective rating is highly sensitive to peri-
ods of prolonged wakefulness. Higher KSS values correlate with difficulties staying awake
and findings are consistent across indiviudal subjects. Additionally, the review’s discussion
of some articles, specifically on driving at night or after sleep deprivation, indicates an
increased risk of accidents for KSS levels 8 or 9.

2.4.2 Effects of Fatigue on the Cardiovascular System

As established in section 2.2.4, heart rate variability (HRV) is strongly connected to the
activity of the autonomic nervous system (ANS). Remember, higher HRV and more power
in the HF component mostly indicate parasympathetic activity while more power in the
LF component coincides with higher sympathetic activity. Therefore, the LF

HF ratio, which
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is considered to be a marker of balance between PNS and SNS, decreases with rising PNS
activity.
As the body prepares for sleep the heart rate decreases, allowing for more variability

between beats, and the PNS becomes dominant [37]. This leads us to believe that as fatigue
arises, SDNN and HF should increase due to higher parasympathetic activity, whereas LF,
heart rate and the LF

HF ratio should decrease, showing lower sympathetic activity [8].
A review of multiple studies on the effect of fatigue on HRV, most of them in the context

of driving, mostly confirms the expected trend. The measured change to HRV parameters
and basic information concerning the trials as well as sources are given in table 2.4. In
addition to the trends stated previously, NN50 and total power in the frequency domain
were shown to increase with fatigue. According to Awais et al. [4], normalised HF and
LF show similar behaviour to their non-normalised counterparts. One study also shows
RMSSD to decrease significantly for sleepy drivers.
As for the effect of fatigue on the pulse wave (PW) parameters, studies investigating the

connections are much harder to find. Only one publication linking fatigue to a change in
PW characteristics is included in table 2.4. The evaluation of sleepiness while flying, rather
than driving, showed a significant increase in pulse arrival time, crest time and diastolic
time, which is the time from wave onset PO to the diastolic peak Pdwa [27].

Even though the LF
HF ratio is a rather appealing parameter for fatigue assessment due

to its physiological interpretation, it tends to show some controversy. Most studies, as
reflected in table 2.4, show a negative trend for rising sleepiness, but some research, such
as [43], has inferred the opposite or no significant change [1]. However, it should also be
noted that multiple different procedures are used to estimate the power spectrum and the
applied method is often not clarfied. This could be one reason for the discrepancies in
frequency-domain measures in table 2.4.

One main reason for the inconsistencies in findings is the variance of HRV and pulse
wave parameters between individuals. Most studies concerning sleepiness while driving are
also conducted with only few participants. Furthermore, it should not be forgotten, that
there is a multitude of factors that influence HRV, therefore changes seen in parameters
may not always be due to fatigue [37].
Moreover, it can be hard to collect high quality data for the investigation of changes

in cardiovascular parameters in the context of sleepiness behind the wheel. ECG and
PPG equipment is obtrusive while driving and surrounding electromagnetic noise or driver
movements can cause artefacts in the measurement [1]. For these reasons as well as safety
concerns, most trials are completed in simulators. Although it has been suggested that
fatigue can be studied equally in real and simulated environments [38], it has also been
considered, that increased stress due to risk in real driving compared to simulated driving
could increase sympathetic activity and cover up sleep-related changes to HRV [1].

19



2
B
ack

grou
n
d

Table 2.4: Some results on the influence of fatigue on HRV and pulse wave parameters. The direction of change in each parameter for
rising fatigue is stated in the trend column.

Parameter Trend Alert Sleepy p Summary Source

LF
HF

ratio

negative
1.008± 0.122 0.994± 0.157

p < 0.01
trial simulating driving at night (0:00 - 2:00)

[45]
1.006± 0.156 0.9979± 0.147 trial simulating driving at night (3:00 - 5:00)

negative 1.8± 1.15 1.2± 0.87 p < 0.01 simulated driving tasks with sleep-deprived truck drivers [36]

none 2.1± 1.5 2.1± 0.9 none trial conducted in Sweden on real roads (no simulation) [1]

positive 3.18± 1.58 4.33± 2.27 p < 0.05 trial on real roads with professional drivers [43]

negative 2.01± 0.98 1.39± 0.59 p < 0.01 trial in a simulated driving environment [4]

RMSSD negative -28% with increasing fatigue not given simulated driving at night-time in a simulator;
trial used sensitivity test instead of hypothesis test

[26]

mean RR

positive 688.7± 84 ms 753.9± 103 ms p < 0.05 see above [1]

positive 899± 122 ms 927± 132 ms p < 0.05 see above [43]

positive 0.89± 0.05 s 0.97± 0.09 s not given simulated driving and other tests during sleep deprivation [18]

positive 781.87± 29.48 ms 958.77± 91.74 ms p < 0.01 trial with trained pilots using an aviation training simulator
at night-time (2:00-6:00)

[27]

SDNN
positive 40.8± 17 53.2± 23 p < 0.05 see above [1]

positive 63.6± 21.1 73.7± 24.3 p < 0.005 see above [43]

NN50 positive 39± 47 52.8± 48 p < 0.05 see above [1]

LF
positive 222.4± 191 449.5± 365 p < 0.05 see above [1]

positive 732.9± 434.44 1057.5± 637.42 p = 0.009 driving simulation and other tasks during day-time [56]

HF
positive 127.2± 121 241.2± 212 p < 0.05 see above [1]

negative 859.03± 77.4 626.18± 54.1 p = 0.039 see above [56]

LFnorm
negative 0.54± 0.1 0.46± 0.08 p < 0.01 see above [4]

negative 0.74± 0.11 0.21± 0.02 not given see above [18]

HFnorm positive 0.32± 0.08 0.37± 0.06 p < 0.05 see above [4]

TP positive 373.4± 302 741.4± 584 p < 0.05 see above [1]

PAT positive 407.66± 9.85 ms 443.509± 14.07 ms p < 0.05 see above [27]

diastolic time positive no values given p < 0.01 see above [27]

crest time positive no values given p < 0.05 see above [27]
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This chapter covers the theoretical basis for data analysis and generating statistical models.
First, a short recap of descriptive statistics, with a focus on the methods applied, is given.
Then, an overview of multivariate linear regression, the assessment of model quality and
some computation algorithms are presented. Before going into detail on the data collection
and processing in this thesis, some attention is given to principal component analysis and
its use in linear regression.

3.1 Hypothesis Testing in Descriptive Statistics

Descriptive statistics are simply a collection of numerical and graphical techniques, with
the goal of organising and describing data characteristics. Descriptive statistics yields no
additional information about causality or the sampled population. These tasks require
inferential statistics. Unless stated otherwise, the introduction to this section is based on
[16] and [21, Ch. 13].
In descriptive statistics, three levels of measurement are distinguished: nominal (or cate-

gorical), ordinal and continuous. Their characteristics are detailed in table 3.1. Techniques
for data analysis vary according to the level of measurement. In general, a measure of
central tendency and the spread of scores is determined.
There are three common measures for central tendency. The mode, which is simply the

category or value with the highest number of cases, can be used for unordered or nominal
data. If an ordered list of data can be produced, the median is the score in the middle of
this list. In case there is an even amount of values, the average of the two scores closest to
the middle of the list is taken as the median. Additionally, for continuous data, the mean
can be calculated as the average of all scores.
For measuring dispersion on a nominal level, it is common to determine the frequency

distribution, which corresponds to the number of cases in each category. If data can be
ordered, the range, the distance between the highest and lowest value, can be calculated.
The k-th percentile, is the score, such that k% of all scores are below the percentile.
For continuous data, the interquartile range, the difference between the quartiles (25-th
and 75-th percentile), and the standard deviation, the average difference of scores to the
mean, can be calculated.
A common graphical representation of the frequency distribution is the histogram, a bar

chart showing the number of cases per category. For continuous data, intervals can be
defined to take the place of categories. Mean and standard deviation are usually used for
data coming from a normal distribution. If data is skewed, median and interquartile range
are mostly preferred as measures. For non-normal data, histograms or boxplots, illustrating
median, quartiles and range, are used for graphical representation. Statistical analysis of
data in this thesis will be performed in accordance with these conventions.
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Table 3.1: Levels of measurement for data in descriptive statistics

Level Description Examples

Nominal scoring into broad categories with no order sex, species

Ordinal scoring into ordered categories age group, fatigue levels

Continuous data on a continuous scale temperature, height

Whether data follows a normal distribution, or not, needs to be taken into account when
performing descriptive statistics, but does not have a huge effect on the methods used.
However, for parametric methods of inferential statistics, normality of data is an indis-
pensable assumption. If data does not come from a normal distribution, non-parametric
statistics must be used. So, naturally, a method for checking data for normality is needed.
Hypothesis tests represent such a procedure for decision-making.
Hypothesis tests provide answers to “yes-or-no” questions about data in a statistical

context. They are therefore a useful tool for checking the distribution of data. First, a null
hypothesis H0, usually an assumption of no change, is defined. For example, in a clinical
trial, the null hypotheses could be, that there is no difference in a certain measured value
between two treatment groups. The null hypothesis H0 is tested against the alternative
hypothesis H1, that H0 is untrue. Hence, there are only two possibilities: H0 is true or
H0 is false.

It is important to understand, that while a rejection of H0 indicates that H1 may hold,
failing to reject H0 gives less information. There could be multiple reasons for this beside
the fact that H0 is true, e.g. very small sample size.
To assess the hypothesis using the given data, a test statistic T is constructed. The

test statistic is designed to measure the extent to which the data is consistent with H0. It
therefore strongly depends on the type of hypothesis to be tested.
The test statistic T can not be directly interpreted to conclude the hypothesis test. The

p-value helps quantify the values of T . It is defined as the probability p of observing an
equal or more extreme value of T , under the assumption that H0 is true. For example, for
a test statistic T , for which small values support the null hypothesis H0, and a random
data sample X, this can be formulated as

p = P(∃X̃ : TX̃ ≥ TX |H0 is true).

Therefore, a small p-value indicates that it is unlikely to observe the given data under the
H0 and speaks for its rejection. [21, Ch. 13]
Lastly, the question remains how small the p-value should be in order to reject H0.

This boundary, usually called the significance level α, is somewhat flexible. Typical
significance levels are α = 0.05 or α = 0.01. Respectively, this corresponds to a 5% or 1%
chance of observing the calculated test statistic even though H0 is true.
The significance level needs to be chosen with the application in mind. One differentiates

between type I errors, rejecting H0 if it were actually true, and type II errors, failing
to reject H0 when it is actually false. Depending on the field in question, significance levels
considerably smaller than 0.01 could be necessary, if avoiding type I errors is of utmost
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importance. Due to the fact that H0 is only rejected, if p < α, it also holds that the type I
error is bound by α.
The probability of correctly rejecting the null hypothesis H0, i.e. when H1 holds, is

defined as the power of the hypothesis test against H1 [23, Ch. 3]. Obviously, test
power also corresponds to the probability of not making an error of type II.

3.1.1 Testing for Normality

As stated previously, it is often of interest whether observations are likely to come from
a normal distribution. This is a family of continuous distributions for real-valued random
variables. It is given by the density function

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

,

where µ ∈ R is the mean and σ ∈ R is the standard deviation of the distribution. Even
though the distribution of a random variable can not be determined with complete con-
fidence, hypothesis tests can be used to estimate the goodness of fit. Most information
on tests of normality was taken from [23, Ch. 14]. Any other sources used are referenced
separately.
Denote by X1, . . . , Xn independent identically distributed real-valued observations with

the cumulative distribution function F . The empirical distribution function of the sample
X1, . . . , Xn can be defined as:

Definition 3.1. The empirical distribution function (EDF) of X1, . . . , Xn is the step
function given by

F̂n(t) =
1

n

n∑
k=1

✶Xi<t.

The EDF plays a crucial role in a well-known class of hypothesis tests, the Emipirical
Distribution Function (EDF) tests. The basic idea of EDF-tests is to measure the
discrepancy between the EDF F̂n and the believed cumulative distribution function of the
data, which will be called F0. It can be shown, that the EDF F̂n uniformly tends to the
true distribution function F with probability one (Glivenko-Cantelli theorem, [23, Ch. 11]).
Therefore, the hypotheses of an EDF test can be formulated as

H0 :F = F0 (3.1)

H1 :F ̸= F0 (3.2)

where, when testing for normality, F0 must be the cumulative distribution function of the
normal distribution.
Any metric d on the space of distribution functions fulfils the purpose of measuring

discrepancy between F and F0. Hence, d(F̂n, F0) could be used to derive the test statistic
for an EDF test. Using the Komogorov-Smirnov metric dK(F,G) = supt |F (t)−G(t)|
as the measure of distance one obtains the Kolmogorov-Smirnov test.
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Definition 3.2. The Kolmogorov-Smirnov Test is an empirical distribution function
(EDF) test. It tests the null hypothesis, that X1, . . . , Xn, with EDF F̂n, comes from a
distribution with cumulative distribution function F0, of which the parameters need not be
known. The test statistic is given by

Tn = sup
t

n1/2|F̂n(t)− F0(t)| = sup
t

n1/2dK(Fn, F )

where dK is the Kolmogorov-Smirnov metric.

By this procedure, multiple other tests of normality can also be defined. Among others,
the Anderson-Darling test is another common choice of EDF test.

Definition 3.3. The Anderson-Darling Test is an empirical distribution function (EDF)
test. It tests the null hypothesis, that X1, . . . , Xn, with EDF F̂n, comes from a distribution
with cumulative distribution function F0, of which the parameters need not be known. The
test statistic is based on the squared differences of F0 and F̂n and is given by

Tn = n

∫ ∞

−∞
(F̂n(x)− F0(x))

2[F0(x)(1− F0(x))]
−1dF0(x).

While the Kolmogorov-Smirnov-test is widely used, numerical power comparisons dis-
cussed in [23, Ch. 14] have shown the Anderson-Darling-test to outperform the Kolmogorov-
Smirnov-test. Another numerical power comparison [42] came to the same conclusion, es-
pecially for small sample sizes. Since, in this case, the amount of data available is rather
small, the Anderson-Darling-test seems to be the better choice and will be used for all tests
of normality throughout this thesis.

3.1.2 Wilcoxon Signed Rank Test

The Wilcoxon signed rank test is a useful test for comparing the measures for central
tendency of two samples. It is a non-parametric alternative to the paired t-test, which
compares the means of two samples from normal distributions. This subsection is largely
based on [54] and references to this source will be omitted. Any information taken from
other sources is cited accordingly.
Non-parametric methods do not need to estimate parameters of the underlying distri-

bution, as would be the case in parametric tests such as the paried t-test. Therefore,
non-parametric tests often require less assumptions to be made on the data.
Using the Wilcoxon signed rank test, a sample from a non-normal distribution can be

compared with a single hypothesised value. It can therefore be used to test an assumption
of the median value. Furthermore, median values of two samples can be compared by
testing the differences against zero.
The test consists of six simple steps, that are outlined in table 3.2. Let X1, . . . , Xn be

a sample of the random variable X with an absolutely continuous cumulative distribution
function. First, an assumption about the median M is made, e.g. that it is equal to the
value M0, and the null hypothesis is formulated:

H0 : M = M0. [6]
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Table 3.2: Steps of Wilcoxon signed rank test [54]

Step Details

1 Define the null hypothesis H0 and the hypothesized value M0, with which
the data should be compared.

2 Rank all observations by the magnitude of their absolute deviation from M0

from small to large. Any observation taking the exact value M0 should be
ignored. Two observations with identical absolute deviation are ranked by
the average of the two corresponding ranks.

3 For each observation, determine whether the deviation from M0 is positive
or negative

4 Calculate: R+ = sum of all ranks for observations with positive deviations
R− = sum of all ranks for observations with negative deviations.

5 Define the test statistic R as the smaller value: R = min(R+, R−).

6 Calculate the p-value.

Next, the differences
Di = Xi −M0 i = 1, . . . , n

are computed and ordered by their absolute value from small to large. The new, ordered,
list will be indexed using j = 1, . . . , n. If any Xi corresponds to the assumed median M0,
i.e. Di = 0, this value is omitted from the list. The ordered list items are then given
the ranks Rj = j according to their position in the list. Hence, the higher the absolute
deviation from the assumed median, the higher the rank. Should two differences be exactly
the same, the value is only recorded once and the rank is replaced by the average of both
values’ ranks. [6]
For the calculation of R+ and R−, the original signs need to be represented in the

resulting ordered list. This can be done, by replacing the list elements Dj with

sgn(Dj)|Dj | j = 1, . . . , n.

Denoting D+ = {j|sgn(Dj) > 0}, the calculation of R+ can be written as

R+ =
∑
j∈D+

Rj .

The calculation of R− can be obtained in an analogue fashion. Finally, the test statistic R
can be defined as R = min(R+, R−).
If H0 holds, the median M of X is equal to M0 and therefore Di are expected to be

distributed symmetrically around 0. Hence, the expected values of R+ and R− should be
equal. If M > M0 or M < M0, then E(R+) > E(R−) or E(R+) < E(R−), respectively [6].

Since R+ +R− = n(n+1)
2 and R = min(R+, R−), it follows, under the additional condition
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that H0 is fulfilled, that

E(R+) = E(R−) =⇒ E(R) =
n(n+ 1)

4
=: N

E(R+) ̸= E(R−) =⇒ E(R) < N.

Finally, the Wilcoxon signed rank test rejects the null hypothesis H0 with significance
level α, if

R ≤ Tα(n),

where Tα(n) is the smallest number to fulfil P(R ≤ Tα(n)) ≤ α. [6]

3.1.3 Correction for Multiple Testing

When performing a single test, a suitable threshold for interpreting a tests p-value as
being significant is usually α = 0.05 or α = 0.01. However, when performing multiple
tests, determining an appropriate significance level is more difficult. The significance level
needs to be adapted to account for the number of tests being conducted. This is termed a
correction for multiple testing and will be explained in detail in this subsection. It is based
entirely on information from [52].
When each test is performed with the significance level α, this means each test has a

chance of α to produce a false conclusion, i.e. a significant p-value even when there is, in
fact, no real effect. Therefore, the probability of drawing at least one false conclusion in a
series of multiple tests increases considerably with the number of tests performed. Multiple
testing without any correction can lead to false rejections of H0, i.e. type I errors.
Imagine, for example, that 15 hypotheses are to be tested at a significance level of

α = 0.05. The probability of the tests yielding a significant result on data, where there is
no real effect, can be calculated as

P(at least one significant result) = 1− P(no significant results)

= 1− (1− 0.05)15

≈ 0.54.

This means there is a probability of 0.54, that the tests yield at least one false conclusion.
There are many different approaches for correcting for multiple testing, one of which is

the simple and well known Bonferroni correction.

Definition 3.4. The Bonferroni correction is a method for decreasing the chance of
type I errors due to multiple testing. When performing m test at the significance level α,
the m tests are simply performed at the adapted significance level α

m .

This method limits the probability of making at least one false rejection. However, the
correction comes at a cost. Using the adapted significance level, only very strong effects
will be detected as being significant. Some true effects will not be interpreted as such by
the test and therefore a Bonferroni correction leads to more type II errors.
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A different approach is to control the proportion of significant test results, that are in
fact false rejections. This is less restrictive than limiting the probability of making a single
type I error, especially with a high number of tests.

Definition 3.5. Controlling the false discovery rate (FDR) is a method for decreas-
ing the expected proportion of type I errors among all significant results when performing
multiple independent or positively correlated tests. For m tests with the null hypothesis Hi,
i ∈ I = 1, . . . ,m, the p-values are sorted in increasing order: p1 ≤ p2 ≤ . . . ≤ pm. Set

k = max{i ∈ I|pi ≤ α

m
i}, (3.3)

then reject all hypothesis H1, . . . , Hk.

This means, that for larger p-values, the corrected significance level is also higher. For
the highest p-value fulfilling the requirement (3.3), and all p-values that are smaller, the null
hypotheses are rejected. The advantage of FDR compared to the Bonferroni correction, is
that it allows to control the type I errors, while also comparatively reducing the amount
of type II errors. The advantages of FDR are especially pronounced for a large number of
tests.
Depending on the application, particularly the severity of penalty for type I errors, it

may be wise to choose a highly restricting correction, such as the Bonferroni method. If,
however, a certain proportion of type I errors does not affect the overall interpretation of test
results, a less restrictive approach, such as the false discovery rate, may be favourable. In
the context of this thesis, the bonferroni correction is likely to be too restrictive. Therefore,
when correction for multiple testing is necessary, the false discovery rate will be controlled
at the level α = 0.05.

3.2 Multivariate Linear Regression

The goal of this section is to understand the theoretical background of linear regression
with multiple variables. Unless stated otherwise, the entire section is based on [20, Ch. 2-3].
First, it is helpful to go over some basic terminology used to characterise variables.
In general, a regression model geared for prediction can be interpreted as a function with

one or more input variables that influence a certain output variable. Often the goal is to
estimate an unknown output value for a given set of input values. In regression, variables
are distinguished by their function within the model as well as their nature.

Definition 3.6. The inputs to a regression model are called independent variables or
predictors, while the output is referred to as a dependent variable or response.

While some variables may be comparable in size, for example those that take values in
the real numbers, others might not be comparable in any way. They rather indicate a
certain state, such as a colour or species.

Definition 3.7. Quantitative variables have a certain order and are comparable in size.
Qualitative variables have no order or relation between different values. They are mostly
descriptive.
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With all variable types, creating a predictive model comes down to finding a function
that accurately estimates a response from given predictors. Usually the prediction of quan-
titative variables using a model is referred to as regression. When predicting qualitative
variables, the term classification is often used.
Of course, data is necessary to derive any linear model. This is usually called the training

data. Before going into detail on how such a model is obtained, some notation needs to
be clarified. In general, bold letters are used for matrices and vectors, in upper and lower
case respectively, and non-bold symbols describe scalars. Let X denote the data matrix,
where each column xj corresponds to the data observed for the j-th input variable. Each
line of X contains the data of one measurement. Thus, xij is the measured value of the
j-th variable in the i-th measurement. Let y be the response vector, where each entry yi is
the observed response of the i-th measurement. The predicted output for any given data
is denoted by ŷ. Thus, for n measurements and p variables, under the assumption they all
take values in R, a model can be described as the map

M : Rn×p → Rn

X ᶧ−→ ŷ.

3.2.1 Linear Regression

A regression model is called linear, if it is linear in all independent variables. Thus the
model has the following form:

Definition 3.8. A linear regression model M maps a data matrix X to an estimated
response ŷ such that

M(X) = β0 +

p∑
j=1

xjβj = ŷ, (3.4)

where X = (x1, . . . ,xp). The model coefficients are denoted by βj, and β0 is called the
intercept.

For the rest of this section, let us assume, that the model M has p inputs and the
training data consists of n measurements, i.e. X ∈ Rn×p. The coefficients βj as well as
the intercept β0 need to be estimated from the training data. Often β0 is included in the
coefficient vector β = (β0, β1, . . . , βp)

⊤ and a column of ones is added to the data matrix
X̃ = (1,X). Then (3.4) can be written as the matrix-vector multiplication:

ŷ = X̃β. (3.5)

Although (3.4) describes a linear function, it is also possible to fit certain non-linear
functions using linear regression. The columns of the data matrix X need not exactly cor-
respond to the measured variable data. Additional variables can be derived from measured
data. To fit a function that is quadratic in xj , for example, one must derive the additional
variable, x2

j , by taking the element-wise square of the original data. Then coefficients can
be fitted using linear regression with p+ 1 variables. The problem does not become more
complex, since the model function remains linear in the coefficients to be estimated. By this
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procedure, arbitrary polynomial functions can be fitted and interactions between variables,
modelled as the element-wise product of two variables, can be included in the model.

Ordinary Least Squares Method

The ordinary least squares method is by far the most used procedure for determining the
coefficients βj , for j = 0, . . . , p, in equation (3.4). The basic idea is quite simple: the
difference between the measured response y and the estimated response ŷ should be as
small as possible. This is realised by choosing the coefficients β = (β0, β1, . . . , βp)

⊤ such
that they minimise the sum of squared differences.

Definition 3.9. The residual sum of squares (RSS) is the sum of squared differences
between measured and estimated response:

RSS(β) =
n∑

i=1

(yi −M(xi))
2 =

n∑
i=1

(}yi − β0 −
p∑

j=1

xijβj

)}2

, (3.6)

where xi and yi correspond to the i-th row of the data matrix and response, respectively, β
is the coefficient vector and M is the linear model from definition 3.8. In some cases the
term sum of squared errors (SSE) is also used.

Now we can derive a formula for the coefficient vector β by minimising the RSS. We will
do this under the assumption, that a column of ones has been added to the data matrix and
the model is described by (3.5). We will denote each line of X̃ by x̃i. Then the residual
sum of squares (3.6) can be rewritten as the vector product

RSS(β) =
n∑

i=1

(yi − (1,xi), ,, ,
x̃i

·β)2

=
n∑

i=1

(yi − (X̃ · β)i)2

=
n∑

i=1

((y − X̃ · β)i)2

= (y − X̃ · β)⊤ · (y − X̃ · β)

where the last equality holds because the vector (y − X̃ · β) ∈ Rn multiplied with its
transpose is the sum of all squared elements. A point is a minimum of a function in
multiple variables without constraints, if the value of the Jacobi-Matrix at this point is 0
and the Hesse-Matrix at this point is positive definite. The following theorem summarises
the sufficient conditions for such a minimum.
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Theorem 3.10. The function f : Rm → R has a local minimum at x = (x1, . . . , xm) ∈ Rm,
if

1. the Jacobi matrix takes the value 0 at x ∈ Rm:

Jf (x) =

(
∂f

∂xi
(x)

)
i=1,...,m

=

(
∂f

∂x1
(x), . . . ,

∂f

∂xm
(x)

)⊤
= 0

2. the Hesse matrix Hf (x) =
(

∂2f
∂xi∂xj

(x)
)
i,j=1,...,m

is positive definite:

v⊤Hf (x)v > 0 for all v ∈ Rm\0

The Jacobi and Hesse matrices of the residual sum of squares function, described by

RSS : Rp+1 → R
β ᶧ−→ (y − X̃β)⊤(y − X̃β),

can be calculated as

JRSS =
∂RSS

∂β
= −2X̃

⊤
(y − X̃β)

HRSS =
∂2RSS

∂2β
= −2X̃

⊤
X̃.

(3.7)

Let us assume that X̃ has full rank. Then X̃
⊤
X̃, and therefore also the Hesse matrix

of the RSS (3.7), is positive definite. As for fulfilling the first requirement in theorem 3.10,
the coefficient estimates β̂ must simply be calculated by setting

−2X̃
⊤
(y − X̃β̂) = 0

⇔ X̃
⊤
y = X̃

⊤
X̃β̂

⇔ β̂ = (X̃
⊤
X̃)−1X̃

⊤
y.

(3.8)

Then, by substitution in (3.5), the predicted response for the training data X̃ can be
calculated as

ŷ = X̃(X̃
⊤
X̃)−1X̃

⊤
y, (3.9)

whereas the predicted response to any vector of new input values x̃0 = (1,x0), x0 ∈ R1×p,
can be calculated by ŷ0 = x̃0β̂. The difference between the measured response and the
estimate generated by a model is called the residual.

Definition 3.11. The residuals for the linear model (3.4) are calculated as the difference
between the measured response y, from the training data, and the response ŷ, estimated by
the model:

r = y − ŷ = y −Xβ̂. (3.10)
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Residuals can be useful for evaluating the goodness of fit of a model. However, before
reviewing criteria that can help with model selection, some characteristics and details of
computation of the least squares fit are discussed.

The Gauss-Markov Theorem

The Gauss-Markov theorem, in rough words, states that the least squares estimates β̂ of
the coefficients β have a smaller variance than any other linear, unbiased estimate. So, to
some extent, this famous result in statistics justifies the use of the least squares fit. In this
subsection, the theorem is presented in the context of linear regression.

It is important to understand that, no matter how good a model is, there will always be
an error in prediction. Denoting the true coefficients, which are unknown and approximated
by the least squares fit, by β, it still holds that

y = Xβ + ϵ, (3.11)

where X is a set of predictors, y is the corresponding response and ϵ, with ϵi > 0, is the
error term. Such an error can be caused by influence of unknown factors, that were not
included in the model, or unmeasurable variance. For such a model the Gauss-Markov
Theorem is formulated as follows:

Theorem 3.12. In the context of the model (3.11), let the data matrix X ∈ Rn×p have
full rank and the the error ϵ fulfill

(i) the expected error is 0, i.e. E(ϵ) = 0

(ii) the error has constant variance, i.e. V (ϵ)jj = 0 where V (ϵ) is the covariance
matrix of ϵ

(iii) the errors are uncorrelated, i.e. V (ϵ)ij = 0 for i ̸= j

Then the least squares estimate β̂ = (X⊤X)−1X⊤y has the minimum variance among all
estimators of the form a⊤y for arbitrary a ∈ Rn. [7]

The assumptions (i) - (iii) are essential for estimating model prediction accuracy. Due to
these additional assumptions concerning the error ϵ, it holds that the coefficient estimates β̂
have constant variance and their expected value corresponds to the true coefficients β. Some
results, e.g. whether a coefficient contributes significantly to the model, could be inaccurate,
if ϵ does not fulfill the requirements. Fortunately, results can still be trusted, if variance
and expected value of errors do not deviate too far from the assumption. Additionally, it
follows, that the residuals, as defined in (3.10), should display the the properties (i) - (iii).
This will be discussed in section 3.2.2 in more detail.

Computation by QR Decomposition

In models with many variables or a large training data set, the direct computation of β̂, as in
(3.8), may not be efficient. There are more suitable methods of computation. According to
MATLAB’s documentation [50], the main fitting algorithm for built-in regression functions
fitlm and stepwiselm uses QR factorisation. First, the definition and main characteristics
of QR factorisation are summarised:
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Definition 3.13. The QR factorisation of a matrix A is its decomposition into the
product of the matrices Q and R with the following properties:

❼ Q is an orthogonal matrix, i.e. Q⊤ ·Q = Q ·Q⊤ = I

❼ R is an upper triangular matrix, i.e. rij = 0 ∀i > j.

Theorem 3.14. For any matrix A ∈ Rn one can find an orthogonal matrix Q and an
upper triangular matrix R such that A = QR. This QR factorisation is unique, if A is
invertible and R is restricted to only positive values in its diagonal.

For easier understanding, let us at first consider a univariate linear model with no inter-
cept, i.e. (3.4) with p = 1 and β0 = 0. The data matrix X therefore corresponds to the
vector x = (x1, . . . , xn)

⊤. The coefficient estimate, as calculated in (3.8), is then

β̂ =

(
n∑

i=1

x2i

)−1

·
n∑

i=1

xiyi =

∑n
i=1 xiyi∑n
i=1 x

2
i

=
⟨x,y⟩
⟨x,x⟩ ,

where ⟨·, ·⟩ denotes the inner product of Rn, and the residuals are given by

r = y − β̂ · x = y − ⟨x,y⟩
⟨x,x⟩ · x. (3.12)

Now let us assume a multivariate linear model with p variables in Rn and an intercept.
This means the data matrix has the form X = (x0,x1, . . . ,xp), where xj ∈ Rn and x0 = 1
denotes the vector of ones added to include the intercept. Remember, we assumed that X
has full rank, which means that all xj are linearly independent. Therefore the columns of
X span an (p+ 1)-dimensional subspace in Rn. This is often called the column space of
X.
While the independent variable y could be any element of Rn, the estimated response

ŷ is given by a linear combination of xj , j = 0, . . . , p, and is therefore an element of the
subspace spanned by the columns of X. Hence, the model output ŷ can be interpreted as
a projection of y onto the column space of X. The residuals, given by equation (3.10),
are orthogonal to this subspace. This orthogonality is expressed in equation (3.8), which
determined the choice of β̂. Altogether, one can interpret the response estimate ŷ as the
orthogonal projection of y onto the column space of X.

To simplify the calculation of the coefficients β̂, we can make the additional assumption,
that the columns of X are orthogonal, i.e. ⟨xj ,xk⟩ = 0 for j ̸= k. This is not a major
restriction, since a procedure for orthogonalisation, such as the Gram-Schmidt-process, can
be applied.

Definition 3.15. The Gram-Schmidt process is a method for orthogonalising a set of
vectors v1, . . . ,vk ∈ Rn. The orthogonal vectors u1, . . . ,uk ∈ Rn are given by

u1 = v1

uj+1 = vj+1 −
j∑

i=1

⟨uj ,vj+1⟩
⟨uj ,uj⟩ uj for j = 1, . . . , k − 1.

(3.13)
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Notice the similarity between the computation of the residuals for a univariate model
(3.12) and the Gram-Schmidt process (3.13). An orthogonal set of vectors can be derived
from any number of vectors and will span the same subspace in Rn as the original set of
vectors. Therefore a basis can always be transformed to an orthogonal basis of the same
vector space.

Theorem 3.16. For any basis (v1, . . . ,vk) of a subset of Rn, where n, k ∈ N, there exists
a basis of orthogonal vectors (u1, . . . ,uk) of the same subset. The vectors (u1, . . . ,uk) can
be obtained using the Gram-Schmidt process.

Returning to the computation of coefficients for a multivariate model, under the given
restrictions, formula (3.8) can be simplified. Each element of the matrix X⊤X is given by

(X⊤X)ij = ⟨xi,xj⟩ for all i = 1, . . . , n, j = 0, . . . , p.

Hence, due to the orthogonality assumption, X⊤X is a diagonal matrix. In consequence,
the inverse is given by

(X⊤X)−1 = diag

(
1

⟨x0,x0⟩ ,
1

⟨x1,x1⟩ , . . . ,
1

⟨xp,xp⟩
)
.

Since X⊤y = (⟨x0,y⟩, ⟨x1,y⟩, . . . , ⟨xp,y⟩)⊤, each element of the coefficient vector β̂ is
given by

β̂j = ((X⊤X)−1X⊤y)j =
⟨xj ,y⟩
⟨xj ,xj⟩ for all j = 0, . . . , p. (3.14)

The computation of coefficient estimates for a linear model with p variables and an in-
tercept, under the assumption that the data matrix X = (x0,x1, . . . ,xp) has full rank, is
summarised in Algorithm 1. The algorithm uses the Gram-Schmidt process to obtain an or-
thogonal basis Z = (z0, z1, . . . , zp) for the column space of X, as well as the computations
leading up to equation (3.14).
Since the procedure uses the Gram-Schmidt process, the columns ofZ form an orthogonal

basis of the column space of X. Hence, the regression coefficients computed correspond
to the projection onto the same subspace and therefore also to the least squares fit. The
orthogonal basis is, in fact, comprised of the residuals of the regression of xj on all previous
orthogonal basis vectors z0, . . . , zj−1. This is expressed in (3.15). Of course, xj can also
be rewritten as a linear combination of z0, . . . , zj−1.

Since zp only appears in xp with a non-zero coefficient, we are assured that β̂p, the
coefficient of the regression of y on zp, is, in fact, also the multiple regression coefficient
corresponding to the regression of y on xp. By rearranging variables it becomes clear that
the same holds for any other variable xj , j = 0, . . . , p. Therefore the multiple regression
coefficient of a variable xj is always given by the univariate regression coefficient of re-
gressing the response y on zj , the residual after regressing xj on all other variables. The
Elements of Statistical Learning (Hastie, Tibshirani, Friedman, [20]) gives the following in-
terpretation: ‘The multiple regression coefficient β̂j represents the additional contribution
of xj on y, after xj has been adjusted for all other variables x0, . . . ,xj−1,xj+1, . . . ,xp’.

33



3 Methods

Algorithm 1 Regression by Successive Orthogonalisation

Require: X = (x0,x1, . . . ,xp), y

Initialise z0 = x0 (= 1) ▷ step 1 of the G.-S. process

for j = 1, 2, . . . , p do ▷ steps 2 to p+1 of the G.-S. process
get coefficients γ̂lj of the linear model

∑j−1
i=0 ziγ̂ij ≈ xj :

γ̂lj =
⟨zl,xj⟩
⟨zl, zl⟩ for l = 1, . . . , j − 1

zj = xj −
j−1∑
i=0

γ̂ijzi

(3.15)

end for

get the regression coefficients β̂p =
⟨zp,y⟩
⟨zp,zp⟩

Algorithm 1 can be represented using matrices. Denote the data matrix by X =
(x0,x1, . . . ,xp), its orthogonalisation by Z = (z0, z1, . . . , zp) and

Γ =

(���������}

1 γ̂01 γ̂02 · · · γ̂0(p−1) γ̂0p
0 1 γ̂12 · · · γ̂1(p−1) γ̂1p
... 0 1

. . .
...

...
...

... 0
. . . γ̂p(p−1)

...
...

...
...

. . . 1 γ̂(p−1)p

0 0 0 · · · 0 1

)���������}
,

then (3.15) in matrix form is given by

X = ZΓ.

Introducing the diagonal matrix D = diag(⟨x0,x0⟩, ⟨x1,x1⟩, . . . , ⟨xp,xp⟩), we get the
QR decomposition of X

X = ZD−1, ,, ,
Q

DΓ,,,,
R

.

The orthogonality of Q can be verified easily and R is an upper triangular matrix by
definition. This makes the calculation of the least squares estimate significantly easier. The
coefficient and response estimate, when substituting the QR decomposition in (3.8) and
(3.9), are given by

β̂ = R−1Q⊤y

ŷ = QQ⊤y.
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The question remains, how restrictive assuming a data matrix X with full rank is. If
X did not have full rank, X⊤X would be singular. In consequence, the system of linear
equations for the coefficients β̂ (3.8) would not have a unique solution. The fact that the
response estimate ŷ is a projection of y onto the column space of X, however, remains.
Hence, the final estimate of y stays unchanged.
Rank deficiencies can usually be avoided by checking the chosen predictors for redun-

dancy. Variables, that can be formed as a linear combination of other variables, can be
omitted without losing information. Mostly, regression software packages implement strate-
gies for removing such redundancies. Another case, in which X may not have full rank, is
where the number of predictors p exceeds the number of measurements for training. This
may occur in some cases, but all in all, assuming a data matrix with full rank is usually
plausible.

3.2.2 Assessing Model Quality

All models depicting a given system will have some inherent error. Especially for predic-
tions, a model requires a certain generality for the application of findings in training data
to new data to be reasonable. The better a model generalises, the smaller the expected
prediction error on an independent test sample.
This generality is in opposition with the flexibility of a model to adapt to the underlying

structure of the training data. A quadratic or higher order polynomial model, for example,
is considerably more flexible than a linear model. Increasing model flexibility, however,
does not always yield better results. Too much flexibility when fitting a model function
can lead to the detection of patterns, that are actually random effects instead of true
model function characteristics. This is called overfitting. The model seems to produce
great results on training data, but when confronted with previously unseen test data,
performance deteriorates. Some of the formerly detected, maybe random, patterns are not
present in the new data. [21, Ch. 2]
Figure 3.1 shows an example of overfitting. The smoothing spline fit with higher flexibil-

ity, depicted in green, performs well on the training data set, but has a high error on test
data. The fitted function, which is clearly overfit, has no similarity to the true relationship
between data and response, shown in black. [21, Ch. 2]
This section will outline some of the most used characteristics for evaluating the goodness

fit of a model and is, unless otherwise indicated, based on [21, Ch. 2-3]. One key feature,
the residual sum of squares, was already introduced in definition 3.9. It indicates the overall
fit of the model to all training data, but does not take model flexibility into account and
can also be used to deduce further interesting characteristics.
In general, it is always advisable to consider multiple indicators of model performance

when choosing a model, since following one characteristic alone, can easily lead to overfit-
ting.

Mean Square Error

The mean squared error (MSE) is a measure for how well predictions match observed data.
It compares model response estimates with the corresponding observed response values.
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Figure 3.1: Left: The dots represent data simulated from the function f , depicted in black.
Different estimates of f are shown: the linear regression line (orange) and two smoothing splines
fits (blue and green) with different levels of smoothness. Right: The behaviour of mean squared
error (MSE) on training data (grey) and test data (red) with changing model flexibility. The dotted
line indicates the minimum possible MSE. The squares indicate the MSEs corresponding to the
model function estimates shown on the left. Image taken from [21, Ch. 2].

Definition 3.17. The mean squared error (MSE) is a measure for prediction accuracy
of a model and is calculated as

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2, (3.16)

where xi denotes the measured data, yi the corresponding observed response and f̂ is the
estimated model function, that maps a set of inputs to a response estimate.

The MSE is small if predicted responses are close to observed responses of the test data.
The further predictions are from the true values, the larger MSE will be. Since the square
root is a monotone function, the root of the mean squared error shows exactly the same
behaviour. Hence, the MSE and its square root, the root mean squared error (RMSE), are
comparable model characteristics.

Definition 3.18. The root mean squared error (RMSE) is computed as the square
root of MSE and is also an indicator for prediction accuracy in a model.

RMSE =
√
MSE =

┌--√ 1

n

n∑
i=1

(yi − f̂(xi))2. (3.17)

One must distinguish between training and test RMSE. When computing (3.17) using
training data, this is called the training RMSE, this gives no indication of accuracy of
model predictions from previously unknown data. The test RSME, however, is calculated
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using only previously unseen test data and therefore gives information on the prediction
accuracy for new cases. Hence, RMSE should mainly be observed on test data sets. As
seen in figure 3.1, a large difference between RMSE on test and training data sets can be
an indicator for overfitting.

Bias-Variance Trade-Off

There are two important, but conflicting, properties that must be taken into account when
choosing a model: bias and variance. Bias refers to the error made when trying to depict
a complicated real-world system in a structurally much simpler model. Variance, on the
other hand, describes the dependency of the model function on the training data.
Remember that any linear regression model, as in (3.11), will have an error in prediction.

A more general model can be written as

y = f(X) + ϵ, (3.18)

where f is the true model function, X the data matrix, y the response and ϵ denotes
the error. In general, of course, we do not even know the true model function f , but an
approximation f̂ . The expected error in prediction for a fixed training data set X and
model function estimate f̂ with f̂(X) = ŷ can be decomposed into

E(y − ŷ)2 = E[f(X) + ϵ− f̂(X)]2

= [f(X)− f̂(X)]2, ,, ,
reducible

+ Var(ϵ), ,, ,
irreducible

. (3.19)

The first term in (3.19), the reducible error, can be influenced by the choice of model,
while the second term, the irreducible error, is already present in (3.18) and can not be
eliminated.

The expected MSE, as defined in (3.16), for any fixed data point x and its corresponding
response y, can be further decomposed into bias and variance components

E(y − f̂(x)) = Var(f̂(x)) + [Bias(f̂(x))]2 +Var(ϵ). (3.20)

Again, ϵ denotes the irreducible error. Note that variance, as the expected value of
squared deviation, is always positive. Therefore all terms in (3.20) are greater than zero
and, to minimise the expected error in prediction, a model must achieve low bias and low
variance simultaneously. This, however, can be tricky. As seen in figure 3.1, a more flexible
model reduces bias, since it better adapts to the training data. However, this comes at
a cost: the model loses generality and has a high variance. If we choose to minimise the
variance, the model may not have the flexibility to find structures of interest in the training
data. Hence, bias and variance need to be carefully balanced to achieve the best prediction
results. Figure 3.2 depicts the relationship between bias, variance and total error. The
bottom of the trough in the total error, shown in black in figure 3.2, would be a good
candidate for such a balance. Comparing training and test MSE can be very helpful, when
considering the bias-variance trade-off.
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Model Complexity
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Figure 3.2: The variance component of the expected error is shown in blue, the squared bias
component in red. As flexibility, or as it is called here, complexity, in the model increases, so does
the variance. As complexity decreases, so does the bias. The black curve shows the total expected
error and he dotted line indicates a good choice of model complexity. Image used under the license
[13].

Residual Squared Error

The residual squared error (RSE) measures the average amount that the actual response
y will vary from the regression line with known coefficients. In other words, the RSE
estimates the standard deviation of ϵ in equation (3.18). The RSE is derived from the
residual sum of squares, as defined in (3.6).

Definition 3.19. The residual squared error (RSE) measures the standard deviation
in the error between model response and response estimate. It is calculated by

RSE =

√
1

n− p− 1
RSS.

The RSE gives the average deviation from the regression line in units. This is a good
indicator for the model fit, since one can expect more accurate predictions for models with
lower RSE. However, it can sometimes be difficult to interpret. How many units deviation
is acceptable is often highly dependent on the context.

R Squared

The R2 statistic is a measure of lack of fit of a model. It is derived from the residual
squared error. The R2 statistic is a relative measure rather than an absolute measure, as
RSE would be, and is therefore sometimes easier to interpret.
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The value of R2 indicates the proportion of variance in the response y that can be
explained by the variables X. It is independent of the scale of y and always assumes a
value between 0 and 1. For the calculation of R2 an additional definition is required.

Definition 3.20. The total sum of squares (TSS) is a measure for the total variance
in the response y. It is calculated as

TSS =

n∑
i=1

(yi − ȳ)2

where ȳ is the mean of all measured responses yi, i = 1, . . . , n.

The R2 statistic is then computed using RSS, describing the variance in the response
that can’t be explained by the model, and TSS, the total variance in the response. Hence,
TSS−RSS corresponds to the variance in the independent variable explained by regression.

Definition 3.21. The R2 statistic measures the proportion of variance in the response
y that can be explained using the predictors X. It is computed as

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
.

While the value of R2 is always within a given range and easier to interpret than RSE,
what value is good still depends greatly on the application. For example, in physics it
might be known, that data has a true linear relationship. Then an R2 value close to 1
can be expected. In biology and psychology however, the true relationship of response
and predictors may be considerably more complicated and some influential factors may be
unknown. In this case even a very low R2, the variance in the response explained by the
model, may already be considered good.
Even though R2 is a useful indicator of model fit, maximising its value is not a suitable

approach. When adding new variables to a model, R2 always increases. So, when making
decisions, the magnitude of change should also be considered. Also, models that are overfit
to the training data can exhibit large R2 values.

The F -Test

The F -statistic is usually used to determine whether a multiple linear regression model
describes a significant relationship. The F -Test is performed by computing the F -statistic
and tests the null hypothesis, that all coefficients are zero versus the alternative hypothesis,
that at least one coefficient is non-zero. It gives a p-value for the significance of the
relationship described by the given model in comparison to a constant model.
The F -statistic for the F -test for a model with p+ 1 variables is given by

F =
(TSS −RSS)/p

RSS/(n− p− 1)
,

where TSS denotes the total sum of squares, RSS the residual sum of squares and n is the
number of measurements.
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The F -statistic can also be adapted to test the significance of a given group of variables.
For two models, where M0 is a smaller model, with p0 + 1 variables, nested in a larger
model M1, with p1 + 1 variables, denote by RSSi the corresponding RSS. The F -statistic,
measuring the change in RSS per additional variable in M1, is the given by

F =
(RSS0 −RSS1)/(p1 − p0)

RSS1/(n− p1 − 1)
. (3.21)

The test using (3.21) as its test statistic outputs a p-value indicating the significance of the
group of variables in M1 that are not included in M0. [20, Ch. 3]

Residuals

As already stated previously, the error properties (i) - (iii) from theorem 3.12 are essential
for assessing the quality of a model and should also be represented in the residuals. It is
quite simple to check the residuals for these properties, since many problems can be seen
instantly by looking at residual plots.
Plotting the residuals against the fitted values, as seen in figure 3.3, can indicate whether

a suitable model was chosen. If the true model function is non-linear, the results of a linear
regression model can not be trusted. A distinctive pattern in the plot, as in figure 3.3 (a),
is a strong indicator of non-linearity in the data. In such a case, other model functions and
methods should be considered.
One can also easily judge, whether the residuals are centred around zero, which should

be the case if the the expected value of errors fulfils (i). The image (b) in figure 3.3 shows
an example of errors with non-constant variance, i.e. a violation of (ii). As the fitted value
increases, so does the mean error, which shows in the plot as a funnel shape. Ideally, the
plot of residuals against corresponding fitted values shows that the residuals deviate from
zero to the same extent for all fitted values. Positive and negative residuals should be
equally frequent. Figure 3.3 (c) shows a residual plot, that does not indicate any problems.
Finally, as in theorem 3.12 (iii), there should be no correlation in residuals. The lagged

residual plot shown in figure 3.4 is useful for judging whether residuals are uncorrelated.
The residual rt for the t-th measurement xt is plotted against rt−1, the residual of the
previous measurement. Figure 3.4 (a) indicates that, for a positive residual, the following
residual is also likely to be positive. They seem to be correlated. Ideally, the lagged residual
plot looks roughly circular, as in 3.4 (b).
Of course, the hoped-for residual plots do not indicate, that the corresponding model

is actually a good fit. Nevertheless, residual plots are a valuable tool for assessing model
accuracy, since they help detect many problems at an early stage.

3.2.3 Stepwise Variable Selection

In some cases, especially in those where there are many different predictors, not all data is
actually related to the response. It can be hard to judge which predictors yield the most
information. However, a model should include as many variables as necessary, to assure
adequate depiction of the relationship, but as little as possible, to avoid redundancies.
Variable selection is the process of determining which subset of predictors add valuable
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Residuals vs. Fitted Values for a Linear Regression Model

(a) non-linear true model function
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Figure 3.3: A few examples of resid-
uals plotted against fitted values show-
ing some common patterns. (a) shows
a strong pattern in residuals, indicat-
ing non-linearity. (b) shows the funnel
shape caused by non-constant variance.
(c) is a residual plot indicating no prob-
lems with the chosen model.

information and should be included in the model. The entire subsection on variable selection
is based on [21, Ch. 3].

Even for a moderately high number of variables, it is impractical to simply create and
compare all models with different variable combinations. This would amount to 2p models
for p variables. Additionally, one might run into a statistical problem: if enough models are
generated, it is very likely to find some models, that may look good on training data, but
do not describe any real relationship. Two automated, more efficient approaches, forward
and backward stepwise selection, are discussed in this subsection.
The question remains, on what basis to decide whether a model, using a certain variable

subset, is better than one using another subset. Some criterion is needed for automated
evaluation and comparison of models. Five established criteria are presented at the end of
this subsection.
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Lagged Residual Plot for a Linear Regression Model

(a) non-linear true model function
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(b) linear true model function
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Figure 3.4: A few examples of lagged residual plots, where all residuals are plotted against the
residual preceding it in the list. (a) shows a strong pattern in residuals, indicating correlation. If a
residual is positive, the following residual is likely to have the same sign. (b) shows no distinctive
correlation pattern in the residuals. The circular shape indicates, that one residual yields no infor-
mation on the following one.

Forward Stepwise Selection

Stepwise selection always starts with an initial model. Forward stepwise selection starts
with the null model, that contains only an intercept, but no predictors. In each step of the
algorithm, one predictor is added to the model. To be more exact, the variable that gives
the greatest additional improvement of fit is included.
The details of the forward stepwise selection procedure are given in algorithm 2. It only

requires generating the null model and p− k models in each step. This amounts to a total
of

1 +

p−1∑
k=0

(p− k) = 1 +
p(p+ 1)

2

models, which is considerably less than the 2p models needed for testing all combinations.
Choosing the best model Mk+1 in each step of algorithm 2 varies with the choice of

criterion, all of which will be explained in detail in the next pages. With RSS as criterion,
for example, one simply chooses the model with the lowest RSS.
Even though the forward stepwise selection algorithm has major computational advan-

tages, it does not guarantee finding the best subset of variables from the 2p combinations.
If, for example, the best model with two variables M2 does not contain the variable chosen
for the best model with one variable M1, then M2 will not be found by forward stepwise
selection.
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Algorithm 2 Forward Stepwise Selection

Require: data matrix X with p predictors, criterion C
create the initial null model M0 ▷ M0 is a model with no predictors

for k = 0, . . . , p− 1 do
1. consider each model that adds exactly one predictor to Mk ▷ p− k models
2. choose Mk+1 to be the best of the p− k models according to the criterion C

▷ possible criteria: R2, adjusted R2, RSS, AIC, BIC
end for

select one model from M0, . . . ,Mp, which performs best in the chosen criterion C

Backward Stepwise Selection

Backward stepwise selection follows a similar principle to forward stepwise selection, but
with different starting conditions. The full least squares model, containing all p variables
and an intercept, is used as the initial model. In place of adding variables to achieve better
models, in each step the least useful predictor is excluded. The details of the procedure are
given in algortihm 3.

Algorithm 3 Backward Stepwise Selection

Require: data matrix X with p predictors, criterion C
create the initial full model M0 ▷ M0 is the model containing all p predictors

for k = p− 1, . . . , 1 do
1. consider each model that removes exactly one predictor from Mk ▷ k models
2. choose Mk−1 to be the best of the k models according to the criterion C

▷ possible criteria: R2, adjusted R2, RSS, AIC, BIC
end for

select one model from M0, . . . ,Mp, which performs best in the chosen criterion C

Just as with forward stepwise selection, 1+ p(p+1)
2 models need to be generated and evalu-

ated. Backward stepwise selection has the same computational benefits as forward stepwise
selection. It also remains true, that backward stepwise selection does not necessarily find
the best variable combination, as variables needed for an optimal fit with less predictors
may be excluded at an early stage.

Variations of Stepwise Selection

In general, forward and backward stepwise selection give similar, but not identical results.
The two procedures can be combined to a hybrid approach. In this case, after predictors
are added by forward stepwise selection, the procedure may also remove variables, as in
backward stepwise selection, if they no longer contribute to the model.

It is also possible to adapt the procedures by defining criteria thresholds, that define
what makes a model good enough according to the chosen criterion. In this case the best
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model need not be chosen in any step. Predictors are simply added or removed if the
change affects the criterion as required by the defined threshold, e.g. decrease in RSS by a
given amount.

Criteria

As stated previously, many different criteria can be used to automatically evaluate a model.
The residual sum of squares (RSS) is already known from definition 3.9. In general,
one could say, the lower the RSS, the better a model. Hence, when using the RSS as the
criterion C, models with smaller RSS will be favoured. However, it is important to know,
that RSS always decreases with an increasing number of predictors. Therefore, it is not
particularly suitable for comparing models with different numbers of predictors and, when
using a threshold, one should be looking for a substantial decrease.
The R2 statistic, from definition 3.21, can also be used as a criterion C. In this case,

higher values are better than lower values. The R2 statistic has similar issues as RSS,
it always increases when additional variables are added. Hence, models with higher R2

will be favoured, but it should not be used for comparing models with different number of
variables and, when using a threshold, a considerable increase should be desired.
R2 can be adjusted for the number of predictors, to counteract these effects. Remember,

that R2 was defined as 1− RSS
TSS , where TSS is the total sum of squares.

Definition 3.22. The adjusted R2 statistic measures the proportion of variance in the
response that is explained by the predictors, irrespective of the number of variables. It is
adjusted for the number of predictors used in the model. For a model with p variables and
n measurements, it is computed as

adjusted R2 = 1−
RSS

n−p−1

TSS
n−1

.

As with R2, when using adjusted R2 as the criterion C, larger values indicate a better
model. Due to the adjustment, this statistic may actually decrease, if an added predictor
does not contribute substantially to a model. The addition of unnecessary variables in
penalised.
The Akaike information criterion (AIC) for the standard linear model, as in defini-

tion 3.8, is defined as follows:

Definition 3.23. The Akaike information criterion for a model with p predictors is
computed as

AIC =
1

nσ̂2
(RSS+ 2pσ̂2)

where n is the number of measurements and σ̂2 is an estimate of the variance of the error
ϵ associated with the response.

For simplicity, an additive constant is omitted in the formula for AIC. It is easy to see,
that the AIC is derived from the RSS, and therefore smaller AIC indicates a better model.
However, the AIC also penalises the addition of predictors, that only reduce RSS by a small
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value. AIC is intended to estimate test error, rather than training error and is therefore a
good choice for the criterion C.
Finally, the Bayesian information criterion (BIC) can also be used as the criterion

C. It is defined as follows, when omitting some, for this case irrelevant, constants:

Definition 3.24. The Bayesian information criterion for a model with p predictors
is computed as

BIC =
1

n
(RSS+ log(n)pσ̂2)

where n is the number of measurements and σ̂2 is an estimate of the variance of the error
ϵ associated with the response.

Again, the BIC tends to take smaller values for models with less test error. So models
with low BIC are considered to be better. BIC tends to penalise the addition of unnecessary
predictors more than AIC. The additive term log(n)pσ̂2 in BIC takes the place of 2pσ̂2 in
AIC and for n > 7, it already holds that log(n) > 2.

3.3 Principal Component Analysis and Regression

Principal component analysis (PCA) is a dimension reduction technique for regression. A
new, smaller, set of features is derived from the data matrix X = (x1, . . . ,xp) ∈ Rn×p.
The smaller set of features can later be used as predictors in a regression model. Unless
stated otherwise, information in this section was taken from chapters 6 and 12 of [21].
The basic idea is, that, even though all observations are in the p-dimensional column

space of X, not all of these dimensions hold the same amount of information. In terms of
PCA, the amount of information held in a dimension is measured by the variance in the
data along this dimension.

Principal components (PCs) are linear combinations of the predictors x1, . . . ,xp, where
the sum of squared coefficients amounts to one. This constraint on the coefficients, also
termed normalisation, is necessary. Without it, the variance could be blown up arbitrar-
ily by simply increasing the coefficients. Figure 3.5 shows two-dimensional data and the
corresponding principal component directions. Principal components depend only on the
given regression data, not the response, and can therefore also be useful for data analysis.
Only a rough outline of the computation of PCs will be given. The first principal com-

ponent z1 has the form

z1 = ϕ11x1, . . . , ϕ1pxp where

p∑
j=1

ϕ2
1j = 1.

Since the first principal component should be the direction of maximum variance, ϕ11, . . . , ϕ1p

are chosen to maximise the sample variance. Since, without loss of generality, it can be
assumed that each column of X is centred around zero, this amounts to

z1 = max
ϕ11,...,ϕ1p

{{{ 1

n

n∑
i=1

(} p∑
j=1

ϕ1jxij

)}2{}{ where

p∑
j=1

ϕ2
1j = 1. (3.22)
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Figure 3.5: The scatter plot shows weight and acceleration data from the MATLAB data set
‘carbig’ along with its principal components. The arrow in orange shows first associated principal
component, the smaller, blue arrow depicts the second PC.

The second principal component z2 can be calculated just like z1 in 3.22 with an additional
constraint: z2 and z1 must be uncorrelated. For vectors this simply translates to the vectors
being orthogonal to each other.
Equation (3.22) can be solved via the eigen decomposition of the matrixX⊤X, which, up

to the factor n, corresponds to the sample covariance matrix of the data X [20, Ch. 3]. The
eigenvalues of X⊤X correspond to the variances of the PCs and the corresponding eigen-
vectors, ordered by the size of eigenvalues, are the PCs. The terminology is summarised in
definition 3.25.

Definition 3.25. Principal component analysis (PCA) is a technique, in which new
variables, the principal components, are derived from the data matrix X. The principal
components (PCs) correspond to the eigenvectors, ordered by the size of their respective
eigenvalues in decreasing order, of the matrix X⊤X. They are of the form

zi = ϕi1x1, . . . , ϕipxp where

p∑
j=1

ϕ2
ij = 1.

For the i-th PC, ϕij, j = 1, . . . , p, are called the loadings and the the elements of zi are
the scores.

Due to the properties of the eigen decomposition, the PCs are uncorrelated and form a
basis of a subspace. Geometrically, principal component analysis can be interpreted as the
projection onto this subspace. For each PC the loadings are unique up to a sign flip, which
is consistent with the PC describing a direction. The score vector is also unique up to a
sign flip, since Var(z) = Var(−z).
For principal component regression (PCR), the principal components are con-

structed and used as predictors in a multivariate regression model. The model can be fit
using the least squares method explained in section 3.2.1.
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Figure 3.6: The Scree plot shows the eigenvalues, which can be a measure for variance, for each
principal component. In this case, using more than two PCs is not advisable, since, in comparison,
there is not much information gain.

However, not all principal components are used. This would simply lead to the least
squares fit on the data matrix X. Instead, to achieve a dimension reduction, only some
principal components are included. In theory, as long as the chosen principal components
explain a decent amount of the variance in the data, they should hold enough information
for a good regression model. Of course, it is desirable to use the smallest set of PCs possible,
that achieves this. Also, the question remains, how much explained variance suffices.
There is no fixed amount of variance, that the PCs should explain. In practice, usually

more than 80% of the total variance is decent. However, the Scree plot presents a good
technique for visual judgement of the number of principal components.

Definition 3.26. The Scree plot, connected to the PCA of a data matrix X, depicts
the explained variance of data by each principal component. An example of a scree plot is
shown in figure 3.6

A good candidate for the number of PCs to use in regression is given by the point in
the scree plot, where the curve flattens. It is often characterised by a sort of elbow shape.
Intuitively, this is easy to understand, since all PCs past the point, where the curve flattens,
do not add much additional information to the regression model.
PCR utilises the underlying assumption, that those directions in the data matrix X,

that show the highest variance, are also those, that are connected to the response. This,
of course may not be true. Nevertheless, the assumption is reasonable in many cases and
often leads to good results.

3.4 Data Collection and Processing

In the following sections the structure and acquisition process of the data, on which this
thesis is based, is explained. First, a detailed description of the pilot trial and its partici-

47



3 Methods

Demographics of Participants

170 175 180 185 190 195 200
0

2

4

6

8

10

12

Height

O
cc
u
re
n
ce

70 80 90 100 110 120
0

2

4

6

8

Weight

20 30 40 50 60
0

2

4

6

8

10

12

Age

Figure 3.7: Weight, height and age histograms of the 30 participants of the pilot trial.

pants is given. This is followed by an overview of the device used to record data and the
subsequent data processing.

3.4.1 Experiment Setup

We received data from a pilot trial within the PANACEA Project, which took place at the
VTI in Linköping, Sweden. Before going into detail on driving tasks and data collection in
this trial, an overview of participant demographics is given.

Participant Demographics

In total, 32 professional drivers, who are free of motion sickness and sleep disorders, were
recruited. In addition, no participants who work nights were accepted. Drivers were asked
to complete driving simulation tasks as well as taking ECG and PPG measurements. Two
of the participants dropped out before the trial began which brings the number of drivers
to 30. The drivers, whose measurements were removed, are also omitted when regarding
the demographics of the group.
All recruited participants are male professional drivers between the ages of 25 and 60 of

varying stature. Since homogenous groups in trials are preferable, and professional drivers
are predominantly male, female drivers were not included. As seen in Figure 3.7, most
participants were aged between 30 and 50. Only 7 of the 30 drivers were over 50 or under
30. The median age of drivers was 40 years with an interquartile range of 12 years. The
participants had a median height of 183 cm, which is just slightly above the Swedish male
average height [31]. The interquartile range in height amounts to 9 cm. The weight of
drivers in median was 91 kg with an interquartile range of 21 kg. Although there were less
participants at the top end of the scale, their weights were more evenly distributed across
the range. A full list of the recorded age, weight and height of all drivers at the time of the
trial can be found in Table 3.3. Figure 3.7 shows histograms of the same data.
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Table 3.3: Demographic data of all trial participants, excluding the drivers whose data was excluded
from the beginning.

Participant Gender Height (cm) Weight (kg) Age (yrs)

1 Male 178 115 45

2 Male 186 93 29

3 Male 183 75 36

4 Male 180 76 38

5 Male 183 100 39

6 Male 183 110 38

7 Male 173 74 35

8 Male 188 110 59

9 Male 183 79 28

10 Male 174 81 51

12 Male 176 76 47

13 Male 188 100 37

14 Male 197 95 50

15 Male 181 80 45

16 Male 197 85 30

17 Male 190 105 39

18 Male 182 74 37

19 Male 172 96 34

20 Male 190 120 45

21 Male 183 93 46

22 Male 181 78 41

23 Male 185 82 31

24 Male 171 93 49

25 Male 194 91 47

26 Male 188 87 51

27 Male 188 115 26

28 Male 181 91 30

29 Male 183 115 48

30 Male 179 88 47

32 Male 172 78 49
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Figure 3.8: Left: One of the two identical driving simulators used in the pilot trial.
Right: Two examples of the simulated driving environment in rural (top) and urban (bottom)
surroundings.

Tasks and Measurement

Each driver was asked to complete six identical simulated driving exercises under varying
conditions. Two driving simulators of the same kind were used. Each of them was made
up of a car seat, all necessary pedals, a steering wheel and three screens showing the
simulated driving environment. The simulation lasted approximately 35 minutes and took
the participants through both urban and rural areas.
The drivers completed the six drives on three different days, on each of which two drives

were completed back to back. The participants were under no known influence for one
of these sets of two simulations. This is referred to as the baseline measurement and is
labelled condition C. Another set of drives was completed under the influence of alcohol
with a blood alcohol content (BAC) between 0.3❤ and 0.7❤, which is referred to as
condition A. Lastly, one set of simulated driving exercises was conducted the day after
consuming alcohol. In this case, which will be named condition B, blood alcohol content
was not measured. Although the three sets of simulations were not necessarily conducted
in this order for all participants, the driving tasks in condition B were always performed
the day after those of condition A. The simulations in conditions B and C were conducted
in the first half of the day, between 7 a.m. and 1 p.m., while those in condition A took
place between 3 p.m. and 9.30 p.m. The basic parameters for each condition are also
summarised in table 3.4.
ECG and PPG signals were recorded in the minutes before and after the driving sim-

ulation using AIT’s smartPWA device, which will be explained in the next section. The
measurement requires the use of both hands, therefore its execution was not possible during
the simulated drive. Additionally, at the times of measurement, participants were asked to
give a subjective rating of their sleepiness on the KSS.
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Table 3.4: Summary of basic parameters for the different conditions in which each participant
completed the simulated driving exercises.

Condition Purpose Influence No. of Drives Time of Day

A Alcohol BAC 0.3❤- 0.7❤ 2 3 p.m. - 9.30 p.m

B Day After Residual Alcohol 2 7 a.m. - 1 p.m

C Baseline None 2 7 a.m. - 1 p.m

Figure 3.9: The smartPWA as seen during measurement. It is held with both thumbs on the
conductive surfaces and the right index finger on the PPG sensor. The signals are immediately
processed and visualised on the connected tablet.

3.4.2 Recording Device

All measurements were conducted using the smartPWA (smart pulse wave analysis) device
depicted in figure 3.9. This is the AIT’s own apparatus, originally developed and built on
their premises in Vienna and Wiener Neustadt. Although its original intended purpose is
its use in a breathing relaxation exercise, as described in [5], it also constitutes a simple
and fast method of obtaining ECG and PPG measurements.
For acquiring these signals, the device must be held with both hands. The surface of the

smartPWA has three separate conductive areas, on which the left index finger and both
thumbs should be placed. Using these, the device measures a standard Einthoven lead I
ECG. The right index finger is placed on an optical sensor, through which a PPG, showing
blood volume changes in the finger, can be acquired. [29]
Using Bluetooth low energy, the measured signal is continuously sent to a smartphone

or tablet application, where a live display of incoming data is shown [29]. Moreover, the
app records the received data and can share it via email to make it available for further
analysis [5]. In accordance with the standards of measurement for heart rate variability
[28], at least two minutes of data was recorded for each measurement in this trial.
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Table 3.5: Overview and explanation of metadata with corresponding given variable names in
MATLAB.

Variable Details

filename Name of the file containing the measured smartPWA data saved as string

participant Participant numbers as listed in table 3.3

beforeAfter Variable showing when the data was taken:
beforeAfter = 1 indicates the data was measured before driving
beforeAfter = 2 indicates the data was measured after driving

condition categorical variable containing A, B or C, corresponding to the condition

drive Variable indicating the simulation in which the measurement was taken:
drive = 1 corresponds to data from the first simulation of the day
drive = 2 corresponds to data from the second simulation of the day

weight Weight of the participant of the corresponding measurement

height Height of the participant of the corresponding measurement

age Age of the participant of the corresponding measurement

3.4.3 Data Structure and Processing

While all metadata as well as KSS values were collected and supplied by the VTI, the
physiological data used in regression was obtained by processing the ECG and PPG signals
acquired through the smartPWA device.
The provided metadata includes time and condition of measurement, as described in

table 3.4. Participant demographics and filenames linking the smartPWA data to the
measurements was also handed over. Additionally, the metadata contains a variable called
’drive’, taking the value 1 for the first, and 2 for the second drive of a given participant in
a certain condition. All metadata was shared in an Excel file and transferred to a table in
MATLAB. An overview of all variables relating to metadata can be found in table 3.5.
KSS values were made available in a MATLAB structure array, which also includes corre-

sponding participant numbers and information on the condition and time of measurement,
such as the variable ’drive’ and whether the KSS value was acquired before or after driv-
ing. This information was used to link the KSS results to the metadata and data filenames
retrieved from Excel.
The ECG and PPG data was received in text files. Existing code is able to read these files

and extract all relevant HRV and pulse wave data. Since the calculation of characteristic
numbers from the measured signals is not subject of this thesis, only a rough outline of
their computation will be given. For definition and physical interpretation of the HRV and
pulse wave parameters see sections 2.2.4 and 2.3.3 in the previous chapter. In concordance
with the guidelines for the measurement of HRV (Task Force of the European Society of
Cardiology and North American Society of Pacing and Electrophysiology, [28]), all data
relating to HRV is calculated using 2 minutes of recorded data. Since signal quality at the
beginning of the recording is often lower due to motion artefacts and familiarisation with
the device, only the last 2 minutes of each measurement are used.
Since the R-peaks of an ECG correspond to the curve’s maxima, their extraction is

relatively simple. Remember, the time difference between two R-peaks, also called the RR-
Interval, is considered to indicate the heart rate. Ectopic beats and outliers are removed to
obtain the normal-to-normal intervals (NNIs). To avoid an effect of short-term variations,

52



3 Methods

Table 3.6: Overview and explanation of all HRV metrics derived from ECG data, paired with their
corresponding given variable names in MATLAB.

Variable Details

hr heart rate

rmssd root mean square of successive differences of NN intervals

sdnn standard deviation of NN intervals

pnn50 percentage of successive NN intervals that differ more than 50 ms

lfp low frequency power

hfp high frequency power

totalpwr total power

lhratio ratio of low and high frequency lfp
hfp

lfp_n normalised low frequency power lfp
lfp + hfp

hfp_n normalised high frequency power hfp
lfp + hfp

the heart rate given by the NNIs is averaged over the whole 2-minute interval. All other
HRV parameters in the time domain, such as SDNN, RMSSD and pNN50, can be directly
calculated from the series of NN-Intervals over the two minute window. [5]
For HRV measures in the frequency domain, the series of successive NNIs is transformed

to the frequency domain using the Lomb-Scargle-periodogram [5]. This algorithm is not
subject of this thesis, but more details can be found in [17, 51]. From this, the power in
the low frequency band (0.04−0.15 Hz), the power in the high frequency band (0.15−0.04
Hz) as well as the total power can be derived. Subsequently, the ratio of low and high
frequency powers along with normalised high and low frequency powers can be directly
computed as defined in table 2.2. An overview of all variables connecting to HRV measures
used is shown in table 3.6.
The PAT is measured as the time difference between an R-Peak, as the source of a pulse

wave, and its arrival in the index finger. The onset of the pulse wave is considered to be
the point of intersection between the tangent of the rising slope of the wave and a constant
baseline, given by the minimum of the signal. Therefore, PAT is given as the time elapsed
from any R-Peak in the ECG to the subsequent pulse wave onset in the PPG. For the same
reasons as above, PAT is averaged over the last two minutes of each recording. Figure 3.10
visualises the calculation. Values for PAT and HR were removed, if either the heart rate
was above 200 bpm or below 30 bpm, or the time intervals between consecutive R-Peaks
changed by more than 0.2 seconds. [5]
Finally, to calculate the rest of the pulse wave parameters, the total duration of the

wave as well as some critical points are extracted. The first peak in the wave indicates the
systolic pressure, whereas the dicrotic wave pressure is given by the second peak. There is
a minimum between these two peaks, which corresponds to the dicrotic notch. Details on
pulse wave parameters and the algorithm used for extracting dicrotic wave pressure and
dicrotic notch are presented in [12]. More detailed descriptions of pulse wave parameters
were given in section 2.3.3. Some additional variables were derived from the previously
defined pulse wave parameters. An overview of all pulse wave related variables used is
given in table 3.7.
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Figure 3.10: In the left image, the time difference corresponding to the PAT is marked in simul-
taneous ECG and PPG measurements. A visualisation of the calcualtion of the pulse wave onset
is shown on the right. The onset of the wave is given by the point of intersecting tangents (IT),
passing through the minimum and the maximum systolic upstroke (MSU). Image taken from [5].

Table 3.7: Overview and explanation of all variables derived from measurement of the pulse wave,
matched with corresponding given variable names in MATLAB.

Variable Details

t_T total pulse duration (TPD), i.e. time from wave onset to its end

t_sys time from wave onset to systolic pressure Psys (1st peak)

t_sys_rel time from wave onset to systolic pressure Psys in relation to TPD

t_notch time from wave onset to dicrotic notch Pnotch (minimum between 1st and 2nd peak)

t_notch_rel time from wave onset to dicrotic notch Pnotch in relation to TPD

t_dwp_rel time from wave onset to dicrotic wave pressure Pdwa (2nd peak) in relation to TPD

P_dwp_sys amplitude of dicrotic wave pressure divided by amplitude of systolic pressure: Pdwa
Psys

P_notch_sys amplitude of dicrotic notch divided by amplitude of systolic pressure: Pnotch
Psys

P_notch_dwp amplitude of dicrotic notch divided by amplitude of dicrotic wave pressure: Pnotch
Pdwa

pat pulse arrival time
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This chapter will guide through the steps of deriving a predictive model from the provided
data. A good starting point is a univariate analysis of the data, that is, the analysis of key
features in dependence of one single variable. Next, the training data set, from which the
model is derived, needs to be defined. Multiple different choices of training data sets and
approaches to deriving a predictive model are presented in this chapter.

4.1 Data Analysis

First of all, it is important to keep in mind, that the comparability of the available data
is limited. There are differences of unknown extent between measurements of individu-
als. Additionally, as stated in 3.4, some measurements were taken under the influence of
alcohol, which has been shown to have an impact on HRV [44]. However, the exact physio-
logical effects of alcohol consumption in healthy individuals, as well as differences between
individual reactions, are unknown.
Even though some measurements could not be conducted or had to be aborted, for the

majority of participants, all twelve planned measurements were recorded. Also, in some
available measurements, the processing algorithm failed to extract certain values from the
measured signals due to quality issues. This is especially profound for the pulse wave shape
parameters. The amount of missing values for each variable in available measurements are
detailed in table 4.1. From a total of 346 measurements, 77 have at least one missing value
while 269 are complete. All together, there are considerably less measurements of satisfying
quality, than expected. Especially considering the number of variables to be examined in
the model, the lack of high quality data poses challenges.
A closer look at the measured KSS values, reveals that most measurements are around

the centre of the scale. The distribution of KSS values is shown in figure 4.1. While 81.5%
of all values are between 3 and 6, only 10.98% are lower than this. Measurements with KSS
values at the top end of the scale are rare. Only 0.03% of all KSS values are 7 or higher,
while 9, the highest value on the scale, was never recorded.

Table 4.1: Missing Values by Variable
Variable Missing Variable Missing Variable Missing
hr 1 totalpwr 1 t_dwp_rel 62
lfp 2 lfp_n 2 t_sys 62
hfp 2 hfp_n 2 P_dwp_sys 62
lhratio 2 t_T 62 P_notch_sys 62
rmssd 1 t_notch 62 P_notch_dwp 62
sdnn 1 t_sys_rel 62 pat 7
pnn50 0 t_notch_rel 62 kss 15
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Figure 4.1: Histogram of KSS values given throughout the trial.

As stated in 3.4, some measurements were conducted before driving, while others were
taken afterwards. Since driving in itself can be a stressful task and can therefore have
an effect on the ANS and HRV, it is worth considering whether there are differences in
measurements depending on the time they were obtained. The Wilcoxon signed rank test
can be used to conduct such a comparison for each variable separately. Since this amounts
to a total of 21 hypothesis tests, a correction for multiple testing is necessary. The false
discovery rate was controlled at the level α = 0.05. To assure the comparison of only
corresponding ‘before’ and ‘after’ measurements, the test is conducted using 324 of the 346
recordings.
Restricting the comparison to condition C could avoid unwanted effects due to alcohol.

However, this would not leave enough measurements to obtain meaningful results. There-
fore, the comparisons are conducted with all available data of all conditions. The results of
the comparison are detailed in table 4.2. The null hypothesis, that the difference of com-
pared values comes from a distribution with mean zero is rejected for LF

HF ratio, LFnorm,
HFnorm, KSS, LF, TP, SDNN, and HR. Therefore, the available data suggests, that the
driving task has an impact on the measured values of these variables. For all other vari-
ables, the Wilcoxon signed rank test fails to reject the null hypothesis. Nevertheless, one
can not conclude, that driving has no effect on their values.
While these results suggest that it may not be wise to mix data from before and after

driving, it also can, heuristically, give insight on which variables might be of greater impor-
tance with respect to fatigue. The comparison seems to show, that participants felt more
fatigued after the driving task. Therefore, other variables for which the null hypothesis
was rejected may warrant special attention when deriving a model. Of course, the detected
effect could also be due to impacts of driving other than rising fatigue. However, correla-
tions between KSS and other variables, as seen in table 4.3, show similar relationships, at
least for LF

HF ratio, LFnorm, HFnorm, LF and HR.
While a rise of the LF

HF ratio has only been detected in few studies and changes in nor-
malised LF and HF as well as crest time tsys seem to be contradictory to previous results
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Table 4.2: Results of the comparison of data recorded before and after driving using the Wilcoxon
signed rank test. The result 1 indicates a rejection of the null hypothesis, that the difference between
the two times of measurement comes from a distribution with the mean zero. The result 0 indicates
failure to reject the null hypothesis. Remember, the null hypothesis is rejected, if the p-value is
below the modified significance level, both of which are given in the last columns of the table.

Variable Result p-Value Modified Significance
Level (FDR)

LF
HF

ratio 1 < 0.0001 0.0024

LFnorm 1 < 0.0001 0.0048

HFnorm 1 < 0.0001 0.0071

KSS 1 < 0.0001 0.0095

LF 1 0.0009 0.0119

TP 1 0.0017 0.0143

SDNN 1 0.0045 0.0167

HR 1 0.0054 0.0190

PAT 0 0.0237 0.0214

tT 0 0.0404 0.0238

Pnotchdwp 0 0.1794 0.0262

Pnotchsys 0 0.1824 0.0286

tnotch 0 0.2151 0.0310

tsysrel 0 0.5949 0.0333

Pdwpsys
0 0.6936 0.0357

HF 0 0.7262 0.0381

RMSSD 0 0.7666 0.0405

tdwprel
0 0.8557 0.0429

tnotchrel 0 0.8709 0.0452

pnn50 0 0.8830 0.0476

tsys 0 0.9201 0.0500

collected in table 2.4, the changes seen in LF, TP and SDNN are in line with the existing
research outlined in table 2.4.

4.2 Allocation of Test and Training Sets

This section describes three different ways of dividing the available data into training- and
test data sets. Remember, the data can be structured by the condition of measurement,
A, B or C, and the time of measurement, before or after driving.
Since the magnitude of the effect of alcohol on HRV is unclear, both immediately after

and a day after drinking, it may be advisable to train the model only on data from condition
C, where there is no known influence. Also, for sufficiently accurate results, the potential
differences between individuals should be taken into account.
It can be difficult, or even impossible, to exclude all unwanted effects, due to alcohol,

time of measurement or individual differences, from the training data set. Being too strict
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Table 4.3: Correlations between KSS and other variables, computed using the Spearman’s cor-
relation coefficient ρ, and corresponding p-values are listed. The result 1 indicates a significant
correlation where the FDR was controlled at the level α = 0.05. The result 0 indicates no signif-
icant correlation. Remember, a result is deemed significant, if the p-value is below the modified
significance level, both of which are given in the last columns of the table.

Variable ρ Result p-Value Modified Significance
Level (FDR)

LF
HF

ratio 0.2123 1 0.0001 0.0025

LFnorm 0.2123 1 0.0001 0.0050

HFnorm −0.2123 1 0.0001 0.0075

HR −0.1800 1 0.0010 0.0100

LF 0.1640 1 0.0028 0.0125

tsysrel −0.1319 0 0.0306 0.0150

Pnotchsys −0.1269 0 0.0372 0.0175

TP 0.1138 0 0.0388 0.0200

SDNN 0.1076 0 0.0508 0.0225

Pnotchdwp −0.1093 0 0.0736 0.0250

tsys −0.1023 0 0.0941 0.0275

pnn50 0.0648 0 0.2396 0.0300

HF 0.0592 0 0.2844 0.0325

tT 0.0629 0 0.3043 0.0350

RMSSD 0.0517 0 0.3492 0.0375

Pdwpsys
−0.0425 0 0.4879 0.0400

tnotchrel −0.0399 0 0.5148 0.0425

PAT 0.0158 0 0.7764 0.0450

tnotch 0.0108 0 0.8607 0.0475

tdwprel
0.0087 0 0.8866 0.0500

N

SLN PCN

F

SLF

D

SLDC SLDS PCD

no baseline

stepwise
lin. model PCR

fixed
baseline

stepwise
lin. model

dynamic
baseline

combined
stepwise
lin. model

single
stepwise
lin. model PCR

Figure 4.2: The tree represents an overview of different choices of training data sets and modelling
approaches for generating a model from each set. The options are explained in detail in this chapter.
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on training data requirements could result in a miniscule data set, which is not suitable
for training a model. The following three approaches attempt to strike a balance between
excluding unwanted effects from training data and retaining enough measurements in the
training set to sensibly derive a model.

Figure 4.2 outlines the options for training data sets and models, that can be derived from
them. The structural overview shows all different combinations of training data sets and
modelling approaches examined in this thesis, which will be explained in detail throughout
this chapter. The abbreviations used in figure 4.2 will be used throughout the rest of this
thesis.

4.2.1 No Participant Baseline (N)

In a first attempt, all measurements recorded prior to the driving simulation in the baseline
condition C, where there were no known influences, are used as training data. This excludes
many measurements, and therefore also unknown effects due to driving and alcohol, but
does not account for individual differences in HRV. This choice of training data, with no
so-called baseline measurement for individual participants, will be abbreviated as N.
After subjecting the data to these training set requirements, only 56 out of the 346

measurements remain. This still includes 16 recordings with missing values, 13 of which
are in pulse wave data and 3 of which correspond to missing KSS values. Therefore, the
data set that can actually be used for training is comprised of only 40 measurements.
Since this is already a very small data set, none of it was reserved as test data. The

models are tested on data from both remaining conditions, A and B, irrespective of the
time of recording, as well as data measured in condition C after driving. Due to issues of
comparability, model results on each of these test sets will be reviewed separately.

4.2.2 Dynamic Participant Baseline (D)

Similar to the approach in 4.2.1, only data in baseline condition C is included in the
training data set. However, in this case, measurements recorded both before and after
driving are used. In order to account for individual differences when training a model, the
measurement before driving acts as a baseline in values for each participant. The training
data then corresponds to the differences from this individual participant baseline, rather
than the measured HRV and pulse wave parameters at a given time.
The chosen baseline, the measurement recorded directly before driving, is dynamic in

the sense, that for each driving simulation a new participant baseline is set. The training
data set is comprised of the difference in measured values before and after completing the
driving simulation. This choice of training data will be abbreviated as D.
Of course, this data can only be derived if both measurements, before and after driving,

are recorded in adequate quality. From the 346 measurements, 10 need to be excluded
because there is no corresponding recording before or after driving. After dividing the data
by time of recording and computing the differences, this is reduced to 168 samples, 56 of
which are in baseline condition C. This, however, still includes 20 recordings with missing
values, 4 of which correspond to missing KSS values and all of which include missing pulse
wave data.
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As in 4.2.1, the possible training data set in this case is too small to reserve some of it
for testing. The models are tested on the before-after difference data of the conditions A
and B and model results will be examined on both sets separately.

4.2.3 Fixed Participant Baseline (F)

Lastly, an approach with one fixed participant baseline for all measurements is used. For
each individual, the first measurement taken in baseline condition C, before driving, is
used as the baseline. Optionally, when two measurements in condition C, recorded before
driving, are available, the average of both measurements can be used as the fixed baseline.
Then the training data consists of the differences between any other measurement and the
allocated participant baseline. This approach will be abbreviated as F.
In this case, due to lack of data, it is unfeasible to use only recordings from baseline

condition C to train a model. Instead, for each participant, the two measurements for a
given recording time (before or after driving) and a given condition (A,B or C) are randomly
divided between the test and training data set. If there is only one measurement, e.g. if
the corresponding recording is missing, it is simply randomly allocated to either the test
or training set.
With this approach, the training data set may not exclude many of the unwanted effects

that could arise in the data. However, setting the first recording as individual baseline has
the advantage, that only a single baseline measurement is needed for multiple evaluations,
while also resulting in a larger training data set. The training data set consists of 141
recordings, 85 of which have no missing values. There are no missing HRV values, 45
missing pulse wave parameters and 11 KSS values, that were not recorded.
If there are multiple measurements taken in condition C before driving, averaging them

for a baseline, while ignoring missing values, leads to an even larger training data set. Only
those variables, that are missing their value in both averaged measurements, will result in
a missing value in the baseline. This leads to less problems evaluating the difference to the
baseline and therefore less missing values. In this case, 103 of the 141 measurements are
free of missing values. The distribution of missing values is as follows: 6 KSS values and
32 pulse wave parameters.

4.3 Multivariate Stepwise Linear Models (SL)

One of the main approaches is creating a multivariate stepwise linear regression model
from the chosen training data set. Matlab provides a function, stepwiselm, for exactly
this purpose [50].
Data can be handed to stepwiselm as a data matrix and a response vector or in a

table, where the last column holds the response data. The function automatically takes
care of removing missing values and performs forward and backward selection in a hybrid
approach. In the optional arguments of stepwiselm, one of five criteria (residual sum of
squares (RSS), R2, adjusted R2, AIC and BIC) can be set for the selection process. Since
there are not too many criteria, all of them were tested when generating stepwise models.
The default starting model is the constant model while the default upper limit is a model
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including all variable interactions. Upper and lower limits for the generated model can also
be adapted through optional arguments. [50]
Even though the Karolinska sleepiness scale measures fatigue on an ordinal scale, rather

than continuously, the generated regression models still give real-valued outputs. These
are mapped to a KSS prediction by the rounding to the closest integer. Values larger than
9 are mapped to the top end of the scale, while values smaller than 1 are mapped to the
lowest KSS value.
All generated models are linear in all variables. Fitting polynomials of higher order

simply leads to overfitting. This could suggest, that the underlying relationship of the
data is, in fact, linear. However, overfitting using higher order polynomials could also be
a result of a small training data set. In either case, it is unwise to attempt fitting higher
order polynomials. Hence, this thesis focuses on the linear approach.

4.3.1 Model without Participant Baseline (SLN)

Two models using no participant baseline were generated. As aforementioned, the training
set consists of all measurements in condition C recorded prior to driving. The simplest
approach, of using stepwise multiple regression on the entire training set, did not yield
satisfying results. It mostly lead to constant models with a large prediction error. Since the
training set is rather small, especially due to missing values in the pulse wave parameters,
the HRV and pulse wave data were modelled separately as an attempt to increase the
sample size. The size of the training set for the pulse wave model remains unchanged, but
the HRV model can be generated using 53 measurements, instead of 40. When predicting
a KSS value from HRV and pulse wave data, both models are evaluated and the mean of
both KSS values is output as prediction.
For the first model, which will be called SLN1, the HRV model was generated by

stepwiselm, using the constant model as a starting model. A linear relationship between
data and response was used as an upper limit. Stepwise selection was performed with the
criterion AIC, where variables were removed from the model, if this resulted in a change
in AIC greater than 2. The threshold for a variable to be included in the model, was a
change of less than 1, i.e. when the addition of a variable results in a decrease of AIC
or an increase by less than 1. The model generated from pulse wave data only differs in
the thresholds used. For the pulse wave model, a variable is included, if the change in
AIC is less than 1.7, while variables resulting in a change larger than 1.8 were removed.
The chosen thresholds for AIC are above the standard values for this criterion. Using a
constant starting model, the requirements for variables to be added need to be relaxed for
any variables to be chosen. The exact values of the thresholds were determined empirically.
A second model, SLN2, was generated using the same principle. The results of the two

models, using HRV and pulse wave data separately, are combined for a final prediction. The
two single models are both created using stepwise variable selection with a linear starting
model, while the variables are also at most in a linear relationship to the response, i.e. no
quadratic terms or interactions. The R2 statistic was used as a criterion with the default
thresholds. This means a variable is included in the model, if it results in an increase of
R2 of at least 0.1. If a variable only leads to an increase of less than 0.05, the variable is
removed. These are standard threshold values for the R2 criterion that work well with a
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Table 4.4: Parameters of models created without participant baseline, as well as the starting model,
upper limit and variables included by stepwise selection. The results are obtained by a combination
of two linear models, generated using either HRV or pulse wave data, as indicated in the column
‘Data’. DiffAIC denotes the difference in AIC resulting from adding or removing a variable and
DiffR2 denotes the same for R2.

Model Data Method Model Limits Thresholds Selected Variables

SLN1

HRV stepwise
regression

Start: constant
Upper: linear

Enter: DiffAIC < 1
Remove: DiffAIC > 2

age, hr, lfp, lhratio, sdnn, pnn50,
totalpwr

PW stepwise
regression

Start: constant
Upper: linear

Enter: DiffAIC < 1.7
Remove: DiffAIC > 1.8

height, age, t_T, t_sys_rel,
t_sys, P_dwp_sys, P_notch_sys,

P_notch_dwp, pat

SLN2

HRV stepwise

regression

Start: linear

Upper: linear

Enter: DiffR2 > 0.1

Remove: DiffR2 < 0.05

age, hr, lhratio, sdnn, totalpwr

PW stepwise

regression

Start: linear

Upper: linear

Enter: DiffR2 > 0.1

Remove: DiffR2 < 0.05

height, age, t_T, t_sys_rel,

t_sys, P_notch_sys

linear starting model. The main parameters of both models are summarised in table 4.4.

4.3.2 Model using Dynamic Participant Baseline (SLD)

Four different models using a dynamic participant baseline will be discussed in this the-
sis. As in 4.3.1, for two of these models, SLDC1 and SLDC2, HRV and pulse wave data
were modelled separately and later combined. The other two models, SLDS1 and SLDS2,
were generated by stepwise multiple regression using both data sets, HRV and pulse wave,
simultaneously. The main parameters of all SLD models are summarised in table 4.5.
SLDC1 combines two multivariate stepwise linear models with a small number of predic-

tors. The algorithm was given the constant model as a starting model and the upper limit
was defined as linear. When selecting the pulse wave variables, a parameter was included,
if the AIC decreased or increased by less than 0.8. Variables were removed if their addition
caused an increase of more than 0.81. The AIC thresholds are above the standard values,
since, for a constant starting model, standard thresholds do not allow the addition of any
variables. The exact values of the thresholds were determined empirically. For the HRV
data, residual sum of squares (RSS), also known as SSE (sum of squared errors), as it is
termed in MATLAB, was used as a threshold criterion with the default thresholds. It is
evaluated by the F -test with the test statistic (3.21), determining the change in RSS in two
models of different size. If a variable was significant at the level p < 0.05, it was included
in the model. A p-value larger than 0.1 leads to removing the variable in question. These
thresholds, as well as all other thresholds for SLD models, are the standard values for the
corresponding criteria.

When modelling pulse wave and HRV data simultaneously with the same parameters
as used for the HRV component of SLDC1, only hrv data is included in the model. No
variables concerning the pulse wave are selected. This model, generated by a single multiple
regression, only contains one variable, lhratio, and will be called SLDS2.

For the second combined model SLDC2, generated from two multiple regression models,
both the starting model and the upper limit were set as linear. Pulse wave and HRV data
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Table 4.5: Parameters of models created with a dynamic participant baseline, as well as the starting
model, upper limit and variables included by stepwise selection. For the models with the index C,
the results are obtained by a combination of two linear models, generated using either HRV or pulse
wave data, as indicated in the column ‘Data’. The models using the index S were generated as a
single model from HRV and pulse wave data. DiffAIC denotes the difference in AIC resulting from
adding or removing a variable. DiffBIC and DiffR2 denote the same for BIC and R2, respectively.
DiffpSSE

is the p-value for the F -test of the change in SSE resulting from addition or removal of a
variable.

Model Data Method Model Limits Thresholds Selected Variables

SLDC1

HRV stepwise

regression

Start: constant

Upper: linear

Enter: DiffpSSE < 0.05

Remove: DiffpSSE > 0.1

lhratio

PW stepwise

regression

Start: constant

Upper: linear

Enter: DiffAIC < 0.8

Remove: DiffAIC > 0.81

t_dwp_rel, t_sys, P_dwp_sys,

pat

SLDC2

HRV stepwise

regression

Start: linear

Upper: linear

Enter: DiffR2 > 0.1

Remove: DiffR2 < 0.05

hr, lfp, hfp, lhratio, pnn50,

hfp_n

PW stepwise
regression

Start: linear
Upper: linear

Enter: DiffR2 > 0.1
Remove: DiffR2 < 0.05

t_notch, P_dwp_sys, t_sys,
P_notch_sys, P_notch_dwp,

t_sys_rel,

SLDS1 all

data

stepwise

regression

Start: constant

Upper: linear

Enter: DiffpSSE < 0.05

Remove: DiffpSSE > 0.1

lhratio

SLDS2 all

data

stepwise

regression

Start: linear

Upper: linear

Enter: DiffBIC < 0

Remove: DiffBIC > 0.01

weight, height, age, hr,

lfp, hfp, lhratio, pnn50,
t_notch_rel, t_sys, P_dwp_sys

were modelled separately, both using R2 as a criterion with the standard thresholds, i.e.
variables were included in the model, if the change in R2 was larger than 0.1 and were
removed if they lead to a change smaller than 0.05.
Finally, SLDS1 represents a larger model in comparison to SLDS2. It is also created by

stepwise multiple regression using pulse wave and HRV simultaneously, but with a linear
starting model. The upper limit is also set as linear and BIC with default thresholds is
used as a criterion. A variable is included in the model, if it leads to a decrease in BIC. If
the increase in BIC, caused by the addition of a variable, is larger than 0.01, the parameter
is removed from the model.

4.3.3 Model using a Fixed Participant Baseline (SLF)

Two models, SLF1 and SLF2, were created using a fixed participant baseline, as described
in section 4.2.3. Both models were generated using stepwise multiple regression on HRV
and pulse wave data simultaneously. Creating and combining two separate models, as done
previously, did not lead to satisfying results. For both models, a constant model was used
as a starting model and a linear model as an upper limit. The thresholds used are the
standard thresholds for the respective selection criteria. The model parameters of SLF1

and SLF2 are summarised in table 4.6.
For the model SLF1, the baseline was set to be the very first measurement, irrespective

of the number of missing values. The thresholds were defined using AIC with the default
values. This means a variable is added to the model, if it results in a decrease in AIC,
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Table 4.6: Parameters of models created with a fixed participant baseline, as well as the starting
model, upper limit and variables included by stepwise selection. The column ➫BL’ indicates whether
the first measurement or the average of both initial measurements was used as the baseline. All
models are generated using HRV and pulse wave data. DiffAIC denotes the difference in AIC
resulting from adding or removing a variable. DiffAdjR2 is the change in adjusted R2 due to variable
addition or removal.

Model BL Method Model Limits Thresholds Selected Variables

SLF1 first stepwise

regression

Start: constant

Upper: linear

Enter: DiffAIC < 0

Remove: DiffAIC > 0.01

age, lfp_n, t_sys_rel,

t_notch_rel, P_dwp_sys,
P_notch_sys, P_notch_dwp

SLF2 average stepwise

regression

Start: constant

Upper: linear

Enter: DiffAdjR2 > 0

Remove: DiffAdjR2 < −0.05

height, age, hr, lfp,

lhratio, totalpwr, lfp_n,

t_T

whereas an increase of more than 0.01 leads to its removal.
The model SLF2 uses the average of both initial measurements as a baseline. The

adjusted R2 value determines, whether a variable is added or removed. Since adjusted R2

already penalises for adding variables, any variable causing an increase in adjusted R2 is
included. A decrease in adjusted R2 of more than 0.05 indicates, that the corresponding
variable should be removed from the model.

4.4 Principal Component Regression (PC)

The second main approach in this thesis is principal component regression, that is, multi-
variate regression with the computed principal components (PCs) instead of the measured
variables. MATLAB provides a function for the principal component analysis of raw data,
pca. For a given array containing data, the function computes the corresponding PC vec-
tors, as well as their coefficients and the percentage of the total variance explained by each
PC. [50]
The data and response are centred before computing the principal components of the

data and conducting regression. The multivariate linear regression is performed using the
MATLAB function fitlm. No stepwise procedure is used for selection, since the PCA
already excludes unnecessary information. The data transformation is later reversed to
obtain corresponding non-centred KSS estimates from the principal component regression
results.
The method of principal component regression (PCR) was followed both with a dynamic

baseline and without any participant baseline. Since these attempts did not yield more
accurate predictions than the corresponding stepwise linear models, the procedure was
abandoned. No further PCR models, such as models using a fixed baseline, were generated.

4.4.1 Model without Participant Baseline (PCN)

First, PCA is conducted for a model without any participant baseline. The principal
components for all data recorded in condition ‘C’ before driving, excluding the response
KSS, are computed and ordered by the size of their eigenvalues, and therefore also their
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Figure 4.3: The Scree plot indicates the variance explained by each principal component computed
from the data recorded in the baseline condition ‘C’ before driving.

explained variance, in decreasing order. Figure 4.3 shows the corresponding Scree plot, a
visual aid for selecting the number of principal components to use in regression.
The choice was made to use either the first 6 or 8 principal components, since they

explain 86.74% and 93.85% of the total variance, respectively. For each choice, a principal
component regression (PCR) model was then generated using the function fitlm. From
here on, the model using 6 PCs will be called PCN1, while PCN2 refers to the model with
8 PCs.

Table 4.7: The percentage of total variance explained by each principal component (PC) and the
five largest contributors to each PC are given. The contribution of any original variable to a PC
is determined by the correlation between the computed values of PCs, the scores, and the original
variables. The correlation coefficient ρ is given in brackets following the corresponding variable and
computed using Spearman’s correlation coefficient.

PC Variance

explained

Largest Contributors

1 29.18% lfp (0.94), totalpwr (0.83), sdnn (0.83), rmssd (0.79), pnn50 (0.78)

2 22.39% t_notch (0.90), t_sys (0.75), pat (0.73), hr (−0.64), t_T (0.62)

3 14.75% t_T (−0.76), hr (0.75), t_dwp_rel (0.74), P_dwp_sys (−0.70), P_notch_sys (0.68)

4 8.52% height (−0.55), P_notch_dwp (0.46), hfp_n (−0.45), lfp_n (0.45), lhratio (0.45)

5 6.55% hfp_n (−0.64), lfp_n (0.64), lhratio (0.64), P_notch_dwp (0.43), pat (0.31)

6 5.35% height (0.59), P_notch_sys (0.38), weight (0.36), pnn50 (0.27), P_dwp_sys (0.26)

7 3.89% weight (0.53), age (0.48), P_dwp_sys (−0.28), P_notch_sys (0.24), height (0.17)

8 3.22% weight (0.56), age (−0.46), P_notch_dwp (0.29), P_dwp_sys (−0.28), pnn50 (0.17)

Table 4.7 illustrates which variables contribute most to each principal component used.
Instead of assessing the contribution of a single variable by the size of its coefficient, the

65



4 Approaches to Deriving a Predictive Model

0 5 10 15 20 25

Component Number

0

1

2

3

4

5

6

7

E
ig

e
n
v
a
lu

e

Figure 4.4: The Scree plot indicates the variance explained by each principal component computed
from the differences between data recorded before and after driving in the baseline condition ‘C’.

correlation between the values of each variable and each PC is computed. Those variables
with the largest correlation coefficients also have the highest influence on the PC in question.

4.4.2 Model using Dynamic Participant Baseline (PCD)

Finally, two PCR models using a dynamic participant baseline are discussed. The training
data set consists of the differences between recordings before and after driving, in the
baseline condition ‘C’. The response is separated from the rest of the data, before computing
the PCs. As previously, these are ordered by the percentage of total variance they explain
in decreasing order. Figure 4.4 depicts the corresponding Scree plot.
Again, models are generated using the function fitlm and a fixed number of PCs. In

this case models using 5 PCs, explaining 81.11% of the total variance, or 6 PCs, explaining
86.27%, look most promising. The model using 5 PCs will be referred to as PCD1, the
model generated with 6 PCs as PCD2. Table 4.8 gives insight concerning the influence of
the original variables on the PCs used in modelling.
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Table 4.8: The percentage of total variance explained by each principal component (PC) and the
five largest contributors to each PC are given. The contribution of any original variable to a PC
is determined by the correlation between the computed values of PCs, the scores, and the original
variables. The correlation coefficient ρ is given in brackets following the corresponding variable and
computed using Spearman’s correlation coefficient.

PC Variance
explained

Largest Contributors

1 30.43% t_sys_rel (−0.83), t_notch_rel (−0.73), t_sys (−0.69), hfp_n (−0.66), lfp_n (0.66)

2 20.11% t_dwp_rel (0.73), t_notch_rel (0.68), t_notch (0.62), P_dwp_sys (−0.59), t_sys_rel (0.51)

3 14.61% t_T (0.68), hr (−0.67), rmssd (0.58), pnn50 (0.50), hfp (0.50)

4 8.42% age (0.71), lhratio (−0.53), hfp (0.50), hfp_n (0.49), lfp_n (−0.49)

5 7.53% P_notch_dwp (0.55), weight (−0.49), hr (−0.4322), t_T (0.50), P_notch_sys (0.41)

6 5.16% height (0.60), P_notch_dwp (0.44), weight (0.32), lfp (0.30), P_dwp_sys (−0.25)
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5 Results

The main results for each of the models introduced in chapter 4 are presented in this chapter.
Each section is dedicated to one of the models, using the abbreviations introduced in figure
4.2. The coefficients, their significance and characteristics of quality of fit are described in
detail.
The F -test is used to determine whether variable coefficient estimates are significantly

different from zero. Stepwise regression models are compared to a constant model, that
uses only an intercept. The PCR models do not contain an intercept, therefore y ∼ 0,
where y denotes the response, is used as a reference in these cases.

Since many models with different numbers of variables are discussed, adjusted R2 is
used as a measure of goodness of fit rather than R2. Additionally, the root mean square
error (RMSE) of the model’s predictions is given. Lastly, two residual plots, one plotting
residuals against corresponding fitted values, the other against the preceding residual, are
provided for analysis.

5.1 Model SLN1

The regression model SLN1 contains 15 variables and is given by the formula

KSSest =
(KSSHRV +KSSPW)

2

where the KSS values from HRV and PW data are estimated by separate models described
by the formulas

KSSHRV =KHRV + c1age+ c2hr+ c3lfp+ c4lhratio+ c5sdnn+ c6pnn50+ c7totalpwr

KSSPW =KPW + c8height+ c9age+ c10t_T+ c11t_sys_rel+ c12t_sys+

c13P_dwp_sys+ c14P_notch_sys+ c15P_notch_dwp+ c16pat.

The computed variable coefficients cj , j = 1, . . . , 16 are given in table 5.1.

Assessing Model Accuracy

The Model SLN1 fits the data considerably better than a simple model using only an
intercept. The F -statistic of the pulse wave component SLN1 versus the constant model is
computed as 2.21, which corresponds to the p-value p = 0.0496. The part of SLN1 using
HRV data only has an F-statistic of 3.08 when comparing it to the constant model, which
results in p = 0.0097. Therefore, using α = 0.05 as the level of significance, the combination
of variables chosen for SLN1 has a significant relationship to the response.
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Table 5.1: Coefficients for the variables of the model SLN1 and their significance in the model.

Variable Coefficient Estimate p-Value

intercept KHRV+KPW
2

−1.5800 pHRV < 0.0001
pPW = 0.3553

age c1+c9
2

−0.0915 pHRV = 0.0022

pPW = 0.0079

height c8 −0.0413 p = 0.3174

hr c2 −0.0688 p = 0.0012

lfp c3 418.15 p = 0.1944

lhratio c4 0.1858 p = 0.1089

sdnn c5 −0.0967 p = 0.0093

pnn50 c6 −2.282 p = 0.4453

totalpwr c7 358.86 p = 0.2103

t_T c10 0.0206 p = 0.0154

t_sys_rel c11 65.219 p = 0.0226

t_sys c12 −0.0690 p = 0.0306

P_dwp_sys c13 29.611 p = 0.1811

P_notch_sys c14 −32.164 p = 0.1411

P_notch_dwp c15 18.749 p = 0.2606

pat c16 −0.0142 p = 0.4339

However, the statistical significance of single variables, also computed using the F -test,
has a larger range. All p-values indicating the significance of single variables with their
computed coefficients in the model are given in table 5.1 in the corresponding rows. Of the
15 variables included in the model only 6, age, hr, sdnn, t_T, t_sys_rel and t_sys are
considered significant.

Quality of Fit

The quality of fit is summarised using the adjusted R2 statistic and the root mean square
error. The adjusted R2 value for the model generated using HRV data is 0.2188 while that
of the model using pulse wave parameters is 0.2190. The computed adjusted R2 statistic
of the combined model SLN1 is 0.2077.
Figure 5.1 shows the model estimates computed using SLN1 plotted against the measured

KSS values. The data is displayed for each condition during driving, A, B or C, and each
time of measurement, before or after driving, separately. The root mean square error
(RMSE) of predictions, calculated for each of these categories separately, ranges between
1.04 and 1.78. The lowest error is achieved on data in condition C, before driving, on which
the model was trained. The exact values are given in table 5.2.

Residual Analysis

Figure 5.2 shows two types of residual plots for each of the models used to obtain a predic-
tion. The residuals are plotted against the corresponding fitted values and each residual is
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Figure 5.1: KSS values fitted by the model SLN1 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

Table 5.2: RMSE for KSS estimates of SLN, SLF and PCN models. The RMSE is given for each
data category separately.

Data SLN1 SLN2 SLF1 SLF2 PCN1 PCN2

C (before) 1.04 1.11 - - 1.33 1.26

C (after) 1.21 1.22 1.16 1.08 1.27 1.23

B (before) 1.68 1.52 1.40 1.35 1.42 1.49

B (after) 1.78 1.76 1.58 1.52 1.56 1.65

A (before) 1.35 1.29 1.14 1.03 1.29 1.35

A (after) 1.61 1.60 1.11 1.08 1.64 1.69

plotted against its predecessor in the list of residuals.
The Anderson-Darling test of normality rejects the null hypothesis, that data comes from

a normal distribution, if the probability p, of observing a result at least that extreme when
the null hypothesis is true, fulfils p < 0.05. The test is performed separately for residuals
from different measurement conditions as well as time of recording. For SLN1, all residuals
pass the test of normality, indicating no systematic error. The p-values are computed as:
p = 0.5125 for condition C (before driving), p = 0.2525 for C (after driving), p = 0.1901
for B (before driving), p = 0.5338 for B (after driving), p = 0.2841 for A (before driving)
and p = 0.3193 for A (after driving).
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Figure 5.2: Left: Residuals plotted against the values fitted by SLN1. Right: The residuals of
the model SLN1 are plotted against their predecessor in the list of residuals. In both images zero is
indicated by black dotted lines.
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Table 5.3: Coefficients for the variables of the model SLN2 and their significance in the model.

Variable Coefficient Estimate p-Value

intercept KHRV+KPW
2

6.9476 pHRV < 0.0001
pPW = 0.9375

age c1+c7
2

−0.0790 pHRV = 0.0042

pPW = 0.0134

height c6 −0.0514 p = 0.1153

hr c2 −0.0545 p = 0.0027

lhratio c3 0.2280 p = 0.0440

sdnn c4 −0.0984 p = 0.0066

totalpwr c5 587.1 p = 0.0109

t_T c8 0.0205 p = 0.0144

t_sys_rel c9 64.91 p = 0.0198

t_sys c10 −0.0703 p = 0.0238

P_notch_sys c11 −4.0639 p = 0.1022

5.2 SLN2

The regression model SLN2 contains ten variables and is given by the formula

KSSest =
(KSSHRV +KSSPW)

2

where the KSS values from HRV and PW data are estimated by

KSSHRV =KHRV + c1age+ c2hr+ c3lhratio+ c4sdnn+ c5totalpwr

KSSPW =KPW + c6height+ c7age+ c8t_T+ c9t_sys_rel+

c10t_sys+ c11P_notch_sys.

The computed variable coefficients cj , j = 1, . . . , 11 are given in table 5.3.

Assessing Model Accuracy

Both models, whose combination amounts to SLN2, are significantly better than the con-
stant model according to the F-test. The HRV model has an F-statistic of 3.85, or a
p-value of p = 0.0053. The F-statistic of the model using pulse wave data is computed as
2.76, which corresponds to p = 0.0274. Hence, the chosen set of variables has a significant
relationship to the response, the KSS values.
The F-statistic for judging the significance of single variables with their computed co-

efficients is also calculated. The corresponding p-values can be found in table 5.3. Only
two of the ten variables, P_notch_sys (p = 0.1022) and height (p = 0.1153), as well as
the intercept of the pulse wave model (p = 0.9375), are not considered to be statistically
significant.
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Figure 5.3: KSS values fitted by the model SLN2 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

Quality of Fit

The adjusted R2 statistic is very similar for both the model based on HRV data and
the model based on pulse wave data. The computed adjusted R2 is 0.2152 and 0.2134,
respectively. For SLN2, the combination of both models, adjusted R2 is calculated as
0.2091.

Figure 5.3 shows the KSS predictions of SLN2 plotted against the corresponding recorded
KSS values. The data is plotted for each condition of measurement, A,B or C, and each
time of measurement, before or after, separately. The RMSE for the model’s predictions
is calculated for the same categories. The lowest RMSE, 1.11 is achieved on the training
data, while the highest RMSE of 1.76 is measured in condition B, before driving. The exact
values on all data categories are summarised in table 5.2.

Residual Analysis

Figure 5.4 shows the residuals plotted against corresponding fitted values. Also, each
residual plotted against the preceding residual is shown. Both plots are displayed for each
of the models, that determine the KSS prediction.
Again, the normality of residuals is checked using the Anderson-Darling test of normality.

For the residuals of SLN2, the null hypothesis is rejected for data measured in condition
B before driving (p = 0.0443). For all other data categories, the residuals pass the test of
normality. The computed p-values for the remaining residuals from data recorded before
driving is p = 0.9252 for condition C and p = 0.5716 for condition A. The residuals from
data measured after driving pass the test of normality with p = 0.2821 for condition C,
p = 0.7469 for condition B and p = 0.5716 for condition A.
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Figure 5.4: Left: Residuals plotted against the values fitted by SLN2. Right: The residuals of
the model SLN2 are plotted against their predecessor in the list of residuals. In both images zero is
indicated by black dotted lines.
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Table 5.4: Coefficients for the variables of the model SLDC1 and their significance in the model.

Variable Coefficient Estimate p-Value

intercept KHRV+KPW
2

0.3155 pHRV = 0.1172
pPW = 0.2354

lhratio c1 0.2751 p = 0.0035

t_dwp_rel c2 8.4928 p = 0.0856

t_sys c3 −0.0160 p = 0.0055

P_dwp_sys c4 5.383 p = 0.0641

pat c5 0.0598 p = 0.0259

5.3 SLDC1

The regression model SLDC1 contains five variables and is given by the formula

KSSest =
(KSSHRV +KSSPW)

2

where the KSS values from HRV and PW data are estimated by

KSSHRV = KHRV + c1lhratio

KSSPW = KPW + c2t_dwp_rel+ c3t_sys+ c4P_dwp_sys+ c5pat.

The computed variable coefficients cj , j = 1, . . . , 5 are given in table 5.4.

Assessing Model Accuracy

The model SLDC1 is comprised of two models, one based on pulse wave data, the other
on HRV data. According to the F-test, both models are significantly better than the
constant model. The F-statistic of the HRV model versus the constant model is 9.41, which
corresponds to p = 0.0035, while that of the pulse wave model is 3.69, which corresponds to
p = 0.0143. Therefore, the group of variables chosen in SLDC1 has a statistically significant
relationship with the response.
The F-test comparing the HRV model to the constant model is equivalent to testing the

significance of the variable lhratio, since this is the only parameter included in the model.
For the pulse wave variables, their significance, computed using an F-test, is given in the
corresponding rows of table 5.4. The intercept is not considered as being significant. Of
the five variables included in SLDC1, two have a p-value above the level of significance.
These are t_dwp_rel (p = 0.0856) and P_dwp_sys (p = 0.0641).

Quality of Fit

The adjusted R2 statistic of the model generated using HRV data is 0.1416, while that
of the pulse wave model is 0.2354. The adjusted R2 statistic of the model SLDC1, which
combines both previously mentioned models, is 0.1715.
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Figure 5.5: KSS values fitted by the model SLDC1 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

Table 5.5: RMSE for KSS estimates of models using dynamic baselines, i.e. SLD and PCD models.
The RMSE is given for each data category separately.

Data SLDC1 SLDC2 SLDS1 SLDS2 PCD1 PCD2

C 1.19 0.93 1.30 0.76 1.19 1.18

B 1.52 1.60 1.29 1.48 1.68 1.54

A 1.30 1.50 1.35 1.97 1.36 1.44

Figure 5.5 shows KSS estimates of the model SLDC1 plotted against the respective mea-
sured KSS values. Since data recorded both before and after driving is used for a prediction,
the data is shown in only three separate categories, each containing recordings from only
one of the conditions, A, B or C. The RMSE of the predictions is evaluated on the same
categories and is displayed in table 5.5. It ranges between 1.19, on the training data set,
and 1.52, for data recorded in condition B.

Residual Analysis

Figure 5.6 shows four residual plots, two for each model used in the KSS prediction. One
displays the residuals, plotted against the corresponding fitted values. The other shows the
plot of each residual against the previous residual.
The normality of residuals is checked for data from condition A, B and C separately

using the Anderson-Darling Test of normality. The p-values calculated are: p = 0.1503
for condition C, p = 0.7392 for condition B and p = 0.5734 for condition A. Therefore all
residuals pass the test of normality.
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Figure 5.6: Left: Residuals plotted against the values fitted by SLDC1. Right: The residuals of
the model SLDC1 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.
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Table 5.6: Coefficients for the variables of the model SLDC2 and their significance in the model.

Variable Coefficient Estimate p-Value

intercept KHRV+KPW
2

0.2788 pHRV = 0.8038
pPW = 0.0158

hr c1 −0.0603 p = 0.0006

lfp c2 −813.46 p < 0.0001

hfp c3 3677.9 p < 0.0001

lhratio c4 0.5073 p = 0.0011

pnn50 c5 −11.138 p = 0.0002

hfp_n c6 −4.8431 p = 0.0295

t_notch c7 0.0370 p = 0.0376

t_sys_rel c8 28.101 p = 0.0325

t_sys c9 −0.0696 p = 0.0150

P_dwp_sys c10 45.601 p = 0.0137

P_notch_sys c11 −37.86 p = 0.0333

P_notch_dwp c12 29.858 p = 0.0408

5.4 SLDC2

The regression model SLDC2 contains twelve variables and is given by the formula

KSSest =
(KSSHRV +KSSPW)

2

where the KSS values from HRV and PW data are estimated by

KSSHRV =KHRV + c1hr+ c2lfp+ c3hfp+ c4lhratio+ c5pnn50+ c6hfp_n

KSSPW =KPW + c7t_notch+ c8t_sys_rel+ c9t_sys+ c10P_dwp_sys+

c11P_notch_sys+ c12P_notch_dwp.

The computed variable coefficients cj , j = 1, . . . , 12 are given in table 5.6.

Assessing Model Accuracy

The F -test is used to determine the accuracy of coefficient estimates. The F -statistic of
the model generated from HRV data versus the constant model is 9.34, which corresponds
to p < 0.0001. The F -statistic of the pulse wave model is 2.99, which corresponds to p =
0.0214. Hence, The combination of variables used in SLDC2 has a significant relationship
the response.
The F -test is also used to determine the statistical significance of single variables within

the model. The intercept determined from HRV data has an exceptionally high p-value
(p = 0.8038). Otherwise all variables are deemed to be significant by the F -test at a
significance level of α = 0.05. The p-values for all variables are given in table 5.6 in the
corresponding rows.
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Figure 5.7: KSS values fitted by the model SLDC2 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

Quality of Fit

The adjusted R2 statistic of the model generated from HRV data is computed as 0.4953,
while that of the model trained on pulse wave data is 0.2542. The combination of both
models, SLDC2, has an adjusted R2 statistic of 0.3983.
Figure 5.7 shows the KSS estimates of SLDC2 plotted against the measured KSS values.

The data is shown for each condition during driving, A, B or C, separately. The RMSE
of predictions, also calculated for each of these categories separately, ranges from 0.93 to
1.50. The RMSE for all conditions is summarised in table 5.5. The lowest error is achieved
on condition C, the data the model was trained on. The highest error was calculated for
data from condition A.

Residual Analysis

Figure 5.4 shows the residuals plotted against corresponding fitted values. Also, in a
second plot, each residual is plotted against the preceding residual. Both residual plots are
displayed for each of the models, that determine the KSS prediction.
The normality of residuals is checked using the Anderson-Darling test. The residuals of

both the conditions A (p = 0.9671) and B (p = 0.8937) pass the test of normality. However,
for data from condition C, the test rejects the null hypothesis, that it comes from a normal
distribution, with p = 0.0480.

5.5 SLDS1

The regression model SLDS1 contains one variable and is given by the formula

KSS = K + c1lhratio.

where the KSS values are estimated from only one HRV parameter. The computed variable
coefficient for lhratio is given by c1 = 0.2751 with a significance of p = 0.0035. The
intercept is estimated as K = 0.3123 with a significance level of p = 0.1172.
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Figure 5.8: Left: Residuals plotted against the values fitted by SLDC2. Right: The residuals of
the model SLDC2 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.
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Figure 5.9: KSS values fitted by the model SLDS1 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

Assessing Model Accuracy

The F-statistic of SLDS1 versus the constant model is 9.41 and the corresponding p-value
is p = 0.0035. Therefore, according to the F-test, the variable included in the model,
lhratio, has a significant relationship to the response. The intercept K (p = 0.1172) has
a p-value above the level of significance.

Quality of Fit

The adjusted R2 statistic of the model SLDS1 is computed as 0.1416. The KSS estimates
calculated by SLDS1 are shown in figure 5.9, plotted against the corresponding measured
KSS values. The data is displayed separately for each of the conditions, A, B or C. The
RMSE is calculated for the same data categories is shown in table 5.5. The RMSE of all
categories is very similar. The lowest RMSE, 1.29 is measured on condition B, while the
highest, 1.35, is from condition A.

Residual Analysis

Figure 5.10 shows two residual plots. The residuals are plotted against the corresponding
fitted values as well as against their preceding residual. The Anderson-Darling test con-
firms, that the residuals are likely to follow a normal distribution. The calculated p-values
are: p = 0.1990 for condition C, p = 0.8843 for condition B and p = 0.6210 for condition
A.

5.6 SLDS2

The regression model SLDS2 contains eleven variables and is given by the formula

KSS =K + c1weight+ c2height+ c3age+ c4hr+ c5lfp+ c6hfp+

c7lhratio+ c8pnn50+ c9t_notch_rel+ c10t_sys+ c11P_dwp_sys.

where the KSS values are estimated from HRV and PW data simultaneously. The computed
variable coefficients cj , j = 1, . . . , 11 are given in table 5.7.
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Figure 5.10: Left: Residuals plotted against the values fitted by SLDS1. Right: The residuals of
the model SLDS1 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.

Table 5.7: Coefficients for the variables of the model SLDS2 and their significance in the model.

Variable Coefficient Estimate p-Value

intercept K −7.2307 p = 0.1906

weight c1 −0.0298 p = 0.0612

height c2 0.0453 p = 0.1263

age c3 0.0379 p = 0.1261

hr c4 −0.0966 p = 0.0201

lfp c5 −1175.5 p = 0.0015

hfp c6 5567.1 p = 0.0011

lhratio c7 1.0477 p < 0.0001

pnn50 c8 −13.467 p = 0.0004

t_notch_rel c9 22.762 p = 0.0214

t_sys c10 −0.0237 p = 0.0156

P_dwp_sys c11 6.3948 p = 0.0490
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Figure 5.11: KSS values fitted by the model SLDS2 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

Assessing Model Accuracy

In comparison to a constant model, the F -statistic of SLDS2 is 5.83, which corresponds to
p = 0.0002. Hence, the selected variables with their estimated coefficients have a significant
relationship to the response. The F statistic is also used to determine the statistical signif-
icance of single variables with their computed coefficient. The coefficient of the intercept
K (p = 0.1906) is not deemed statistically significant by the F -test. Of the eleven chosen
variables, three have p-values above the level of significance α = 0.05. This concerns all
variables from metadata: weight (p = 0.0612), height (p = 0.1263) and age (p = 0.1261).
All p-values for all other variables are below 0.05 and are summarised in table 5.7.

Quality of Fit

The adjusted R2 statistic of SLDS2 is 0.6029. The estimates of SLDS2, plotted against
the corresponding recorded KSS values, can be seen in figure 5.11. The values are plotted
separately for each of the conditions. The RMSE was also calculated for each of the
conditions and is given in table 5.5. The range between the lowest RMSE, 0.76 on the
training data fro condition C, and the highest RMSE, 1.97 on condition A, is comparatively
large.

Residual Analysis

Figure 5.12 shows two residual plots for the model SLDS2. The first shows the residuals
plotted against the corresponding fitted values. The second shows each residual plotted
against its predecessor.

All residuals pass the Anderson-Darling test of normality. For condition C, the training
data, the test result is p = 0.9457. For conditions B and A the results are p = 0.2228 and
p = 0.4328, respectively.
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Figure 5.12: Left: Residuals plotted against the values fitted by SLDS2. Right: The residuals of
the model SLDS2 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.

Table 5.8: Coefficients for the variables of the model SLF1 and their significance in the model.

Variable Coefficient Estimate p-Value

intercept K −1.8512 p = 0.0596

age c1 0.0595 p = 0.0118

lfp_n c2 2.6633 p = 0.0182

t_sys_rel c3 −21.868 p = 0.0034

t_notch_rel c4 −21.654 p = 0.0109

P_dwp_sys c5 15.309 p = 0.0223

P_notch_sys c6 −8.3211 p = 0.1491

P_notch_dwp c7 8.2952 p = 0.0429

5.7 SLF1

The regression model SLF1 contains seven variables and is given by the formula

KSS =K + c1age+ c2lfp_n+ c3t_sys_rel+ c4t_notch_rel+

c5P_dwp_sys+ c6P_notch_sys+ c7P_notch_dwp.

where the KSS values are estimated from HRV and PW data simultaneously. The computed
variable coefficients cj , j = 1, . . . , 7 are given in table 5.8.

Assessing Model Accuracy

The F -statistic for SLF1 versus a constant model is 4.46, which corresponds to p = 0.0003.
Hence, the variables selected for SLF1 with their coefficients describe a statistically signif-
icant relationship to the response. When using the F test to determine the significance of
single variables in the model, the intercept has a result, p = 0.0596 just above the level of
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Figure 5.13: KSS values fitted by the model SLF1 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

significance. Only one of the seven selected variables, P_notch_sys (p = 0.1491) does not
pass the F -test. All computed p-values are given in table 5.8.

Quality of Fit

The adjusted R2 statistic of SLF1 is calculated as 0.2238. Figure 5.13 shows the KSS
estimates by SLF1 plotted against the corresponding measured KSS values. The data from
before and after driving, as well as data from different conditions, is evaluated separately.
Since all data from condition C, before driving, is used to determine baselines, this data can
not used for evaluations. The RMSE is calculated for the same categories and displayed in
table 5.2. The RMSE ranges from 1.11, on data from condition A after driving, to 1.58, on
data from condition B after driving.

Residual Analysis

Two residual plots were created for the model SLF1. They are displayed in figure 5.14.
The first shows the residuals plotted against the corresponding fitted values. The second
shows each residual plotted against its predecessor.
The residuals are checked for normality using the Anderson-Darling test. For residuals

from condition C, after driving, and condition B, after driving, the null hypothesis, that they
come from a normal distribution, is rejected with p = 0.0360 and p = 0.0431, respectively.
For residuals from condition B, before driving, the determined p-value is p = 0.0580,
which is above the level of significance. Residuals from condition A, both before driving
(p = 0.5805) and after driving (p = 0.9282), also pass the test of normality.
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Figure 5.14: Left: Residuals plotted against the values fitted by SLF1. Right: The residuals of
the model SLF1 are plotted against their predecessor in the list of residuals. In both images zero is
indicated by black dotted lines.

Table 5.9: Coefficients for the variables of the model SLF2 and their significance in the model.

Variable Coefficient Estimate p-Value

intercept K 4.8773 p = 0.1623

height c1 −0.0318 p = 0.0807

age c2 0.0378 p = 0.0160

hr c3 −0.0736 p = 0.0845

lfp c4 −394.46 p = 0.0613

lhratio c5 −0.1314 p = 0.1413

totalpwr c6 325.96 p = 0.0188

lfp_n c7 4.3528 p = 0.0142

t_T c8 −0.0093 p = 0.0240

5.8 SLF2

The regression model SLF2 contains 8 variables and is given by the formula

KSS =K + c1height+ c2age+ c3hr+ c4lfp+ c5lhratio+

c6totalpwr+ c7lfp_n+ c8t_T.

where the KSS values are estimated from HRV and PW data simultaneously. The computed
variable coefficients cj , j = 1, . . . , 8 are given in table 5.9.

Assessing Model Accuracy

The F -test suggests there is a significant relationship between the chosen set of variables
with their coefficient estimates and the KSS value. The computed F -statistic of SLF2

versus a constant model is 3.11, which corresponds to p = 0.0037. When testing the
statistical significance of single variables in SLF2 using the F -test, only four of the eight
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Figure 5.15: KSS values fitted by the model SLF2 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

selected variables pass the test. They are: age (p = 0.0160), totalpwr (p = 0.0118), lfp_n
(p = 0.0142) and t_T (p = 0.0240). All other variables, as well as the intercept, have
p-values higher than the level of significance. All p-values are given in table 5.9.

Quality of Fit

The model SLF2 has an adjusted R2 statistic of 0.1419. Figure 5.15 shows the model’s KSS
estimates plotted against the corresponding measured KSS values. The values are plotted
separately for data recorded before and after driving, and for each condition. There is no
data in condition C, before driving, since this was used to generate baselines. The RMSE
is also evaluated separately for different conditions and times of measurement. All RMSE
values can be found in table 5.2. The lowest RMSE, 1.03, is recorded on data from condition
A, before driving, while the highest RMSE, 1.52, is measured in condition B, after driving.

Residual Analysis

Figure 5.12 shows two residual plots for the model SLF2. The first shows the residuals
plotted against the corresponding fitted values. The second shows each residual plotted
against its predecessor.

Residuals are checked for normality using the Anderson-Darling test. Residuals from
condition C, after driving, and condition A, both before and after driving, pass the test
of normality with p = 0.2896, p = 0.8554 and p = 0.6833, respectively. Residuals from
condition B, both before driving (p = 0.0197) and after driving (p = 0.0021), fail the test
of normality.
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Figure 5.16: Left: Residuals plotted against the values fitted by SLF2. Right: The residuals of
the model SLF2 are plotted against their predecessor in the list of residuals. In both images zero is
indicated by black dotted lines.

Table 5.10: Coefficients for the variables of the model PCN1 and PCN2, as well as their significance
in the corresponding model.

Variable Coefficient
PCN1 PCN2

Estimate p-Value Estimate p-Value

PC1 c1 0.1579 p = 0.0973 0.1704 p = 0.0701

PC2 c2 0.0635 p = 0.5405 0.0692 p = 0.4963

PC3 c3 0.0227 p = 0.8596 0.0079 p = 0.9502

PC4 c4 −0.0114 p = 0.9465 −0.0049 p = 0.9763

PC5 c5 0.2545 p = 0.1928 0.2723 p = 0.1567

PC6 c6 −0.3018 p = 0.1775 −0.3117 p = 0.1559

PC7 c7 - - −0.4634 p = 0.0769

PC8 c8 - - 0.1577 p = 0.5693

5.9 PCN1

The regression model PCN1 is a principal component regression model using 6 PCs without
an intercept. It is given by the formula

KSS =

6∑
i=1

ci · PCi.

The computed variable coefficients cj , j = 1, . . . , 6 are given in table 5.10.

Assessing Model Accuracy

For PCN1, the F -statistic is returned as 1.07, which corresponds to p = 0.5726. Hence,
there seems to be no significant relationship between the chosen PCs and the response. The
F -test, determining the significance of single variables in the model, gives high p-values for

88



5 Results

0 5 10

0

5

10

K
S

S
 E

s
ti
m

a
te

C (before)

0 5 10

Measured KSS

0

5

10
C (after)

0 5 10

0

5

10
B (before)

0 5 10

0

5

10

K
S

S
 E

s
ti
m

a
te

B (after)

0 5 10

Measured KSS

0

5

10
A (before)

0 5 10

0

5

10
A (after)

Figure 5.17: KSS values fitted by the model PCN1 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

all variables. Hence, none of the principal components are considered to be statistically
significant. The exact p-values are given in table 5.10.

Quality of Fit

The PC model using 6 PCs and no baseline achieves an adjusted R2 statistic of 0.0295,
which is exceptionally low. Figure 5.17 shows the KSS estimates by PCN1 plotted against
the corresponding measured values. The data is displayed separately for each condition, A,
B or C, and both times of recording, before or after driving. The RMSE for PCN1 predic-
tions ranges between 1.27, on data from condition C, after driving, to 1.64, on condition
A, after driving. The RMSE for each data category is given in table 5.2.

Residual Analysis

Figure 5.18 depicts the model’s residuals plotted against the corresponding fitted values.
The same figure also shows a second plot, where each residual is plotted against the pre-
ceding residual.
The normality of residuals is checked using the Anderson-Darling test. Residuals from

all conditions and times of measurement pass the test of normality. The p-values, by
condition and time of recording, are: p = 0.7817 and p = 0.9728 (C, before and after
driving), p = 0.5431 and p = 0.1406 (B, before and after driving), and lastly p = 0.7582
and p = 0.4985 (A, before and after driving).
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Figure 5.18: Left: Residuals plotted against the values fitted by PCN1. Right: The residuals of
the model PCN1 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.

5.10 PCN2

The regression model PCN2 is a principal component regression model using 8 PCs without
an intercept. It is given by the formula

KSS =
8∑

i=1

ci · PCi.

The computed variable coefficients cj , j = 1, . . . , 8 are given in table 5.10.

Assessing Model Accuracy

As with the previous model, that uses less PCs, the combination of variables in the model
is not considered to be statistically significant. The F -statistic of PCN2 is 1.28, which cor-
responds to p = 0.4924. Similar to the previously discussed model, none of the coefficients
are deemed statistically significant. The exact p-values returned by the F -test are given in
table 5.10.

Quality of Fit

The adjusted R2 statistic of PCN2 is computed as 0.0708, which is extremely low. Figure
5.19 shows the KSS estimates by PCN2 plotted against the corresponding measures values
for each condition and time of measurement separately. The model’s RMSE ranges from
1.26 to 1.69. The lowest value is achieved on data from condition C, after driving, while the
highest RMSE is measured on data from condition A, after driving. The RMSE is shown
for each category separately in table 5.2.
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Figure 5.19: KSS values fitted by the model PCN2 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.
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Figure 5.20: Left: Residuals plotted against the values fitted by PCN2. Right: The residuals of
the model PCN2 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.
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Table 5.11: Coefficients for the variables of the model PCD1 and PCD2, as well as their significance
in the corresponding model.

Variable Coefficient
PCD1 PCD2

Estimate p-Value Estimate p-Value

PC1 c1 0.0687 p = 0.4765 0.0728 p = 0.4518

PC2 c2 −0.1297 p = 0.2915 −0.1355 p = 0.2722

PC3 c3 −0.2866 p = 0.0294 −0.2884 p = 0.0289

PC4 c4 −0.3954 p = 0.0369 −0.3925 p = 0.0386

PC5 c5 0.3400 p = 0.0743 −0.3351 p = 0.0791

PC6 c6 - - 0.2050 p = 0.3376

Residual Analysis

Figure 5.20 shows the residuals of PCN2 plotted against corresponding fitted values. The
plot of each residual against its predecessor is also shown.
According to the Anderson-Darling test of normality, the residuals from all conditions,

before and after driving, are likely to be normally distributed. The p-values for condition
C are p = 0.8471 for data from before and p = 0.5257 for data from after driving. Those of
condition B are p = 0.4248 before and p = 0.2880 after driving. In condition A the results
are p = 0.4360 and p = 0.3464, before and after driving, respectively.

5.11 PCD1

The regression model PCD1 is a principal component regression model using 5 PCs without
an intercept. It is given by the formula

KSS =

5∑
i=1

ci · PCi.

The computed variable coefficients cj , j = 1, . . . , 5 are given in table 5.11.

Assessing Model Accuracy

The F -test against the constant model suggest, that the combination of PCs is statistically
significant. The results are F = 3.28 and p = 0.0235. The F -test is also used to determine
the statistical significance of single variables. Of the five PCs included in the model, only
the third (p = 0.0294) and fourth (p = 0.0369) PC are considered significant. The F -test’s
results for each PC with its coefficient estimate is given in table 5.11.

Quality of Fit

This principal component model with a dynamic baseline has an adjusted R2 of 0.2429.
The higher quality of fit, compared to models using no baseline, can also be seen in figure
5.21, where the PCD1 estimates are plotted against the corresponding measured values.
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Figure 5.21: KSS values fitted by the model PCD1 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.
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Figure 5.22: Left: Residuals plotted against the values fitted by PCD1. Right: The residuals of
the model PCD1 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.

The data is shown for each condition and time of measurement separately. The lowest
RMSE for PCD1 is 1.18, measured on the training data from condition C. The highest
RMSE, 1.68, is measured on data from condition B. The RMSE values for each category
are given in table 5.5.

Residual Analysis

Two residual plots are shown in figure 5.22. One shows the residuals plotted against the
fitted values, the other shows each residual plotted against its predecessor.
The normality of the residuals is checked using the Anderson-Darling test. The residuals

from all three conditions pass the test of normality. The p-values are p = 0.1724, p = 0.3902
and p = 0.1396 for conditions C, B and A, respectively.
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Figure 5.23: KSS values fitted by the model PCD2 are plotted against the corresponding measured
KSS values in each group. The black dotted line indicates where the fitted and measured values are
equal.

5.12 PCD2

The regression model PCD2 is a principal component regression model using 6 PCs without
an intercept. It is given by the formula

KSS =

6∑
i=1

ci · PCi.

The computed variable coefficients cj , j = 1, . . . , 6 are given in table 5.11.

Assessing Model Accuracy

The model PCD2 has the F -statistic 2.89, when comparing it to the constant model. The
corresponding p-Value, p = 0.0369, is under the level of significance. According to the
F -test, determining the significance of single variables in the model, only two principal
components are statistically significant in the model. The result for the third principal
component PC3 is p = 0.0294 and that of the fourth PC4 is p = 0.0369. All other p-values
are given with the coefficient estimates in table 5.11.

Quality of Fit

The adjusted R2 statistic for PCD2 is 0.2479. Figure 5.23 shows the KSS estimates by
PCD2 plotted against the corresponding measured values. The data is displayed separately
for each condition, A, B and C. The RMSE for PCD2 predictions ranges between 1.18, on
data from condition C, to 1.54, on condition B. The RMSE for each data category is given
in table 5.5.

Residual Analysis

Figure 5.24 shows the model’s residuals plotted against corresponding fitted values. The
same figure also shows a second plot, where each residual is plotted against the preceding
one.
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Figure 5.24: Left: Residuals plotted against the values fitted by PCD2. Right: The residuals of
the model PCD2 are plotted against their predecessor in the list of residuals. In both images zero
is indicated by black dotted lines.

The normality of residuals is checked using the Anderson-Darling test. According to this
test, the residuals from all conditions are normal. The p-values are p = 0.1605, p = 0.4343
and p = 0.4864 for conditions C, B and A, respectively.

5.13 Summary

For analysis and discussion of the results, it can be helpful to see some key indicators of
different models side by side. For this purpose this section contains two summary tables.
Table 5.12 shows two of the most important indicators of quality of fit, the root mean

square error and the adjusted R2 statistic. The number of predictors for each model is also
included in the table. The RMSE is calculated for two data categories: the training data,
which is mostly, but not always, from condition C, and test data, which is comprised of all
remaining data, after training data has been removed.

Table 5.13 gives an overview of the variables included in each model. Each variable is
indicated by the sign of its coefficient. If the variable was determined to be statistically
significant in the corresponding model, it is additionally marked by an asterisk. The table
represents an overview of the importance of variables in connection to predicting fatigue,
as well as the direction of change with rising fatigue.

The models generated using principal component regression (PCR) are not represented
in table 5.13, since, due to the chosen method, all variables contribute to fatigue prediction.
For the PCR models, the correlations of the PCs to each variable are given in tables 4.7
and 4.8. The coefficients of the PCs in each of the models are presented in tables 5.10 and
5.11.
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Table 5.12: The table shows some key characteristics of quality of fit, the adjusted R2 statistic
and the root mean square error (RMSE) on both training and test data, for each of the models
discussed. Additionally, the p-value of the F -test versus a constant model is given for each of the
models.

Model Adjusted R2 Training

RMSE

Test

RMSE

Number of

Predictors

F -Test

SLN1 0.21 1.04 1.61 15 pHRV = 0.0097

pPW = 0.0496

SLN2 0.21 1.11 1.55 10 pHRV = 0.0053

pPW = 0.0274

SLDC1 0.17 1.19 1.41 5 pHRV = 0.0035
pPW = 0.0143

SLDC2 0.40 0.94 1.55 12 pHRV < 0.0001
pPW = 0.0214

SLDS1 0.14 1.30 1.32 1 p = 0.0035

SLDS2 0.60 0.76 1.75 11 p = 0.0002

SLF1 0.22 1.18 1.40 7 p = 0.0003

SLF2 0.14 1.14 1.3 8 p = 0.0037

PCN1 0.03 1.33 1.48 6 p = 0.5726

PCN2 0.07 1.26 1.55 8 p = 0.4924

PCD1 0.25 1.19 1.52 5 p = 0.0235

PCD2 0.25 1.18 1.49 6 p = 0.0369
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Table 5.13: An overview of the variables chosen by each model as well as the sign of the computed
coefficient. The sign is marked with an asterisk, if the corresponding variable is statistically signif-
icant in the given model.

Variable SLN1 SLN2 SLDC1 SLDC2 SLDS1 SLDS2 SLF1 SLF2

age −∗ −∗ + +∗ +∗

height − − + −
weight −

hr −∗ −∗ −∗ −∗ −
lfp + −∗ −∗ −
hfp +∗ +∗

lhratio + +∗ +∗ +∗ +∗ +∗ −
rmssd

sdnn −∗ −∗

pnn50 − −∗ −∗

totalpwr + +∗ +∗

lfp_n +∗ +∗

hfp_n −∗

t_T +∗ +∗ −∗

t_notch +∗

t_sys_rel +∗ +∗ +∗ −∗

t_notch_rel +∗ −∗

t_dwp_rel +

t_sys −∗ −∗ −∗ −∗ −∗

P_dwp_sys + + +∗ +∗ +∗

P_notch_sys − − −∗ −
P_notch_dwp + +∗ +∗

pat − +∗
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6 Discussion

In this chapter, the models and results described in chapters 4 and 5 will be analysed and
compared. First, the importance of the different variables, when modelling fatigue from
HRV and pulse wave data, will be discussed. Then, the results obtained in this thesis
will be compared to the results from existing research, which were summarised in chapter
2. Additionally, model results will be compared in the context of quality of fit. The
main characteristics to be examined are the adjusted R2 statistic, the root mean square
error (RMSE) and the residuals.

6.1 Model Parameters

While the models generated using principal component regression make use of all measured
variables, the linear regression models using a stepwise procedure exclude a large number
of variables. This section is dedicated to discussing the contribution of the variables to
fatigue prediction. Table 5.13, which gives an overview of the selected variables for each
model, can be helpful throughout this section.

6.1.1 Accuracy of Estimates

For all but two models, the group of variables chosen is statistically significant, according
to the F -test. This means, that all variable coefficient estimates are simultaneously sig-
nificantly different from zero. The PCR models without a baseline, PCN1 and PCN2, are
far from passing the F -test. The contributing variables to the principal components with
their corresponding coefficients can not be considered to have a significant relationship to
the response. The pulse wave parameters of SLN1 are barely significant and, overall, the
model parameters of PCD1 and PCD2 are less significant in comparison to those of other
stepwise linear regression models.

Hence, for models based on PCR and models using no baseline, apart from SLN2, the
computed coefficients and chosen variable combinations are considerably less reliable than
for other models. That being said, the results of SLN1, PCD1 and PCD2 should not be
disregarded completely, since the chosen variables are considered to be significant at the
level α = 0.05. The parameters of PCN models will not be discussed in further course of
this subsection.
These results already suggest, that some kind of individual baseline is of great importance

to capture the fatigue-related changes in HRV and pulse wave variables. The principal
component analysis (PCA), which, in theory, should lead to better results due to dimension
reduction, does not seem to have the desired effect. With respect to parameter significance,
the PCR models perform considerably worse than comparable stepwise regression models.
This could be caused by the complexity of the cardiovascular system and the variety of
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Figure 6.1: The schematic diagram shows a simplified model of heart rate regulation. The arrows
indicate dependencies and the dashed boxed show additional factors, that have a considerable
influence on the heart rate. [53]

factors regulating the heart rate, a simplification of which is illustrated in figure 6.1. Fatigue
is by far not the only factor, that affects HRV and pulse wave parameters. When performing
the PCA, the variance of dimensions with the highest variability may be connected to
influencing factors other than fatigue, which could explain the lack of significance for most
computed PCs.

Regarding the selected HRV parameters, lhratio is clearly the most important predictor.
The ratio, indicating the balance in the ANS, is chosen in the stepwise variable selection
process of seven out of eight models, in five of which it is deemed significant. The heart rate
also appears to be valuable predictor. Furthermore, age is also one of the most selected
variables, most likely due to dependencies of other parameters on age. Both of these
variables is included in five different models, statistically significant in all but one. There
are six predictors of moderate importance: hfp, sdnn and lfp_n, which are each selected in
two models, totalpwr and pnn50, which appear in three models and lfp, which is included
in four models. For each of these variables the coefficients are significant in two different
models. The normalised high frequency power hfp_n is only selected in one model, where
it is deemed significant. Variables of little importance are height, weight and rmssd.
Although some of them are included in certain models, the coefficients are not considered
to be statistically significant.
In general, the HRV parameters appear to be more sensitive to changes in fatigue than
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pulse wave shape parameters. For most models generated from all data simultaneously,
a higher number of HRV parameters was selected. The most important variables derived
from the pulse wave for fatigue prediction are the absolute and relative time until systolic
pressure. Both t_sys, which is included in five models, and t_sys_rel, which appears in
four models, are deemed statistically significant in each of these models. Further important
predictors are P_dwp_sys, which is selected in five models, in three of which the variable
is significant, and t_T, which is included in three models with a statistically significant
coefficient. P_notch_dwp and P_notch_sys, which are chosen three and four times, re-
spectively, with only some of the coefficients being significant, can be considered to be less
influential in fatigue prediction. The variables t_notch_rel and pat are each only chosen
twice, with opposite signs. Hence, there is no clear contribution to fatigue. Also, t_notch
and t_dwp_rel can be neglected in fatigue prediction.

After PCR with a dynamic baseline (PCD), the third and fourth PC, which explain
14.61% and 8.42% of the variance in the data, are considered statistically significant. The
main contributors to the third PC are hr with a negative sign, and t_T, rmssd, pnn50 and
hfp with a positive sign. However, for interpretation these signs must be reversed, since
both significant PCs have a negative coefficient. The negative contributors to the fourth PC
are lhratio and lfp_n, while the positive contributors are age, hfp and hfp_n. Remember,
all main influencing variables for each PC along with their correlation coefficients are given
in tables 4.7 and 4.8. Even though the variables with larger influence only partly coincide
with those from stepwise regression models, these results emphasise the importance of hr,
age and lhratio. It is also worth noting, that the main contributors to the statistically
significant PCs do not include any pulse wave parameters, which underlines the importance
of HRV in fatigue prediction.

Overall, the finding, that the variables lhratio and hr are the most important factors
in fatigue prediction, while the predictors lfp_n and lfp can also have a considerable
influence, is supported by the data analysis performed in section 4.1. While the correlations
between KSS and totalpwr, sdnn, t_sys, t_sys_rel or P_notch_sys, as seen in table 4.3,
are not deemed significant, their low p-values do support their value in predicting fatigue.
The data analysis suggests a greater importance of hfp_n, than seen in the generated
models, and less influence of hfp and pnn50.

6.1.2 Comparison to Data Analysis and Research

In this section the most influential variables in the generated fatigue prediction models will
be discussed with respect to the previously conducted research summarised in chapter 2,
especially in table 2.4. When referring to the sign of a variable, this always indicates the
coefficient sign, i.e. the direction of change with rising fatigue.

Even though, according to the literature review presented in chapter 2, all measured
metadata can have an influence on HRV and pulse wave parameters, this is not seen in
the generated regression models. While age is in fact an important parameter, height and
weight seem to have a negligible effect.
As for the HRV parameters, the ratio of low and high frequencies LF

HF and the heart
rate, which are of great importance in the generated models, are also the most prominent
factors in existing research. The rise in the mean RR interval, as noted in table 2.4, can be
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equated with a decrease in heart rate. This coincides with the generated stepwise regression
models. The PCD models, however, include the heart rate with a positive sign, which is
contradictory to previous studies.
The LF

HF ratio is more difficult to interpret, since there are varying results in different
studies. While Abtahi et al. [1] measured no significant effect and Rodriguez-Ibañez et
al. [43] found a positive change in LF

HF , most other studies show a negative effect in LF
HF

with rising fatigue. The sign of LF
HF ratio in all SLN and SLD models is positive, which is

consistent only with the results of Rodriguez-Ibañez et al. [43]. In SLF2 the coefficient is
negative, which is consistent with the majority of results in existing research. However, in
this model the coefficient in question is not significantly different from zero. It is clear, that
the LF

HF is of utmost importance for fatigue prediction, but the large discrepancy in results
poses challenges in its use as a predictor. As suggested in the standards of measurement
for HRV [28], varying results could be the result of varying methods in use to obtain the
frequency-domain measures. Since most studies do not clarify the applied method, the
exact influence can not be determined. Alternatively, there could be confounding factors
that influence the LF

HF ratio in both Rodriguez-Ibañez et al. [43] and the data provided for
this thesis, leading to contradictory results in comparison to other research.
The discrepancy between existing research and the generated models does not only con-

cern LF
HF , but extends to almost all frequency domain HRV measures. While the low

frequency power has been shown to increase with rising fatigue, it is mostly included in
models with a negative coefficient. The high frequency power is included with a positive
sign. In this case, previous research is inconclusive, showing both statistically significant
increase or decrease in HF , which again indicates the difficulties when comparing frequency
domain HRV measures from different sources. The results for normalised LF and HF also
deviate from those of previous studies. They are included in the generated models with
the opposite sign, than could be expected from the literature review in chapter 2. The
only frequency domain measure, that shows similar results to existing research, is the total
power. As expected, it is included with a positive sign, i.e. the total power increases with
rising fatigue.
Even though a negative change in RMSSD has been shown in Mahachandra et al.[26], it

was not selected as a variable in a single multivariate model using stepwise variable selection.
However, RMSSD is a positively contributing factor to the third principal component of
the dynamic baseline models PCD1 and PCD2. Taking into account the negative coefficient
of PC3, this is in line with existing research.
It is surprising, that the percentage of NN50, the number of consecutive RR-intervals

that differ more than 50 ms, is included in SLDC2, SLDS2 and PCD models with a negative
coefficient, since Abtahi et al. [1] finds that NN50 increases significantly. Similarly, SDNN
has been shown to increase with rising fatigue, but is only included with negative coefficients
in stepwise regression models.

The pulse arrival time seems to be considerably less sensitive to changes in fatigue than
expected. The study Majumder et al. [1] suggests, that PAT increases with rising fatigue.
Nevertheless, PAT is only selected in two different models, with opposite signs. Only the
positive coefficient, which is in line with the mentioned study, in SLDC2 is statistically
significant.
According to Majumder et al. [1], both the crest time, corresponding to t_sys, and
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the diastolic time, which is calculated as t_T − t_sys, increase with rising fatigue. Both
the total pulse duration and the crest time have been identified as valuable pulse wave
parameters for prediction. The crest time is included with a negative coefficient, while the
total pulse duration is selected with a positive sign. It stands to reason, that if both crest
time and diastolic time increase simultaneously, their sum, the total pulse duration, should
also increase. Hence, the variable t_T is included as expected in the SLN models, but
not in SLF2 and the principal component analysis with dynamic baseline. As for the crest
time, a positive change can be expected. Since this parameter is also essential for computing
diastolic time, the change should not surpass the increase in total pulse duration. However,
crest time is included with a negative coefficient in all models. This may not coincide with
the expected change in crest time itself, but the combined changes in total pulse duration
and crest time in the SLN models do coincide with the expected increase in diastolic time.
The models SLN1, SLN2 and SLF2 coincide most with the results found in the literature

review of chapter 2. They all include the heart rate and total power as expected. Addi-
tionally, both SLN models include the total pulse duration with the expected positive sign
and the combination of the coefficients of total pulse duration and systolic time are in line
with a rise in diastolic time. Three further models include one variable in the way that
research would suggest. These are SLDC1, SLDC2 and SLDS2, the first of which includes
the pulse arrival time while the others include the heart rate. The models SLDS2, SLF1 as
well as all PCR models are mostly not supported by literature.

6.2 Model Assessment

This section is dedicated to the comparison of the different models, as introduced in chapter
4, with respect to quality of fit. The residuals are checked for unwanted patterns that
indicate systematic error, while both the adjusted R2 statistic and the RMSE are used to
judge goodness of fit.

6.2.1 Residual Analysis

Both types of residual plots look acceptable for all models. The plots of residuals versus
fitted values do not show any periodic patterns or funnel shapes and therefore to do not
indicate systematic error. It is noticeable, that KSS estimates close to the ends of the scale
are rare. However, this is most likely to arise from the KSS distribution in the training data,
as seen in figure 4.1, rather than systematic error in modelling. The lagged residual plots,
in which each residual is plotted against its predecessor, mostly show an even distribution
of points around the centre. The lagged residual plot for PCN1, shown in figure 5.18,
shows slight variations in the distribution in each quadrant, but this could still be caused
by random effects.
The residuals of the models SLN1, SLDC1, SLDS1, SLDS2 and all principal component

models pass the test of normality. Therefore, there is no reason to believe they have
systematic error. This also indicates, that a linear model with a dynamic baseline or no
baseline is representative of the relationship between the cardiovascular data and fatigue.
For SLN2 the residuals from recordings before driving in condition B, where measure-

ments were taken the day after drinking, are not normally distributed (p = 0.0443). For
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the model SLDC2, the residuals of condition C failed the test of normality (p = 0.0480).
These results could indicate systematic error in SLN2 and SLDC2. Even though α = 0.05 is
a well-established level of significance, it is still arbitrary and does not represent a precise
boundary. As the residuals of the models SLN2 and SLDC2 only fail the test of normality
by a slight margin, these models will not be disregarded completely. Nonetheless, their
results should be interpreted with great caution.
Residuals from both models using a fixed baseline, SLF1 and SLF2, are likely to come

from a non-normal distribution. The normality is violated in condition C and B, after
driving, for SLF1 (p = 0.0360, p = 0.0431), and condition B, before and after driving, for
SLF2 (p = 0.0197, p = 0.0021). This indicates, that the method using a fixed baseline for
each participant leads to systematic error.

6.2.2 Quality of Fit

Since the generated models have a varying number of coefficients, the variance, explained
by the different models, can only be compared using the adjusted R2 statistic, which is
summarised along with the RMSE of all models in table 5.12. Even though this is a key
indicator of quality of fit, we can not expect any values close to 1. As stated in James
et al. [21, Ch. 3], for applications in biology a linear model only constitutes a very rough
approximation of the relationship between predictors and response. It is common, that
the larger portion of variance in the data is left unexplained by the model. In some
situations, even values as low as 0.1 can be considered good. Small values of the adjusted
R2 statistic could be the result of unmeasured factors, that have an effect on fatigue, but are
not included as predictors, or factors that influence the HRV and pulse wave parameters,
such as stress. In a large interdependent system, such as the cardiovascular system, small
adjusted R2 values must be considered normal.
Since the models are intended for the prediction of fatigue on the nine point KSS scale,

ranging from 1 to 9, a root mean square error below 1 would be preferable. Even though a
large difference between test and training RMSE clearly indicates a loss of generality and
overfitting, a larger difference may be acceptable in this case, since the effects of alcohol,
both just after consumption and the day after drinking, are present in most test data and
their influence is unclear.

In most cases, for those models that were not based on difference data, predictions are
more accurate for data from recordings before driving than for data measured after driving.
This is not surprising, as most models were also trained on data recorded before driving, but
also supports the assumption, that the driving task itself already has an influence on fatigue
and HRV parameters, as the test results in table 4.2 suggested. With some exceptions, most
notably the SLDS models, there is also a clear pattern, that errors in condition B, the day
after drinking, are larger than those in condition A, under the influence of alcohol, which
in turn, are larger than those in condition C, the training data with no known influence.
There are two possible reasons for this, the first simply being that HRV and pulse wave
parameters deviate more from the individual baseline one day after drinking than they do
while being drunk. Possibly this discrepancy could also be caused by a change in perceived
fatigue the day after drinking. Since the KSS scale is a subjective measure, evaluated by
each participant for themselves before and after driving, differences could also arise from
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over- or underestimated fatigue.
In general, the models without any baseline did not perform as well as those using a

baseline. The stepwise regression models SLN1 and SLN2 both have an acceptable R2 value
of 0.21 as well as training RMSE slightly above the target of 1. However, the difference
between training and test RMSE is rather large, which suggests that the SLN models do
not generalise well. Also, the models use 15 and 10 different predictors, respectively, which
seems to be more than necessary, since other models achieve similar or better results using
less variables. Additionally, figures 5.1 and 5.3 show cleary, that the predictions do not fit
the proposed relationship as well as other model options.
The models PCN1 and PCN2 have the lowest adjusted R2, 0.03 and 0.07, respectively.

The PCA using no baseline does not adequately capture the variance in the data connected
to fatigue. In comparison to other models, the training RMSE of these models are also
among the highest. The difference in training and test RMSE is smaller, than with many
other models, but this likely due to a higher training RMSE, rather than better generali-
sation. All in all, both PCN models show a poor quality of fit, which also becomes obvious
in the comparison of predictions and recorded KSS values shown in figures 5.17 and 5.19.
The PCR models using a dynamic baseline, the adjusted R2 of both of which is 0.25,

perform better than their counterparts without baseline. While the results of both PCD
models are very similar, PCD2, using more PCs, has a slightly lower error, making it the
better fit. The difference of around 0.3 between test and training RMSE is slightly larger
than with some other models, but is not large enough to indicate a problem with generality.
Similar to the PCD models, SLF1 also has a decent goodness of fit. While the adjusted

R2 is only slightly lower and the error on training data is the same, the test RMSE is lower
than with the PCD models, indicating a higher generality. The model SLF2 shows an even
smaller difference of only 0.16 in error between test and training data, but also a lower
R2 statistic. However, since the SLF models are the only generated models, where test
data does not exclusively include data under the influence of alcohol, these results may not
indicate a higher generality of the model, but come from the more heterogeneous grouping
of data.
Even though the methods using dynamic baselines are promising, the single models

generated from all data simultaneously do not look as promising as other models. SLDS1

emphasises the importance of the LF
HF -ratio, since it demonstrates that decent results can

be achieved using this variable alone. However, in comparison to other models, the test
RMSE, 1.3, is high while R2, 0.14, is comparatively low. While this model has no problems
with generality, since test and training RMSE are almost identical, including more variables
leads to more accurate predictions. The large difference between RMSE on training and
test data and comparatively high R2 value for SLDS2 are a clear sign of overfitting. Hence,
using this model for predictions should be discouraged.
The stepwise linear models with a dynamical baseline, that model HRV and pulse wave

data separately and then combine the predictions, have promising results. SLDC1 has a
moderate R2 value, 0.17, and an RMSE of 1.19 or 1.41, on test and training data respec-
tively. This is comparable with the error of SLF1 and the training error of the PCD models,
but shows a greater generality than the PCD models. The model SLDC2 has a high R2

value, 0.40, and very low RMSE on the training data, 0.94. Even though the difference
between test and training error is moderately high, it is not clear, whether this is due to
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overfitting. SLDC2 achieves a considerably lower training error while keeping the test error
on a similar level as other models. It is unclear, whether this model yields meaningful
results when applied to conditions other than the baseline condition C. Nevertheless, the
low error on data with no known influence is promising. To understand how reliable these
results are, the generality of this model should be tested using new data.
All in all, the combined models, using a dynamical baseline (SLDC), and those models

using a fixed baseline (SLF) seem to have the best quality of fit. The model SLDC2 achieves
the lowest RMSE on data from condition C, while still retaining some generality.

6.3 Summary

First of all, it can not be mentioned often enough, that the data provided for the purpose
of generating these regression models is not perfectly suited for the task. Considering the
fact, that predicting high KSS values is of most interest in the context of driving, it is
unfortunate, that over 90% of all recorded KSS values are below 7. During the entire trial,
no participant was tired enough to evaluate themselves at the highest KSS value of 9. This
makes it difficult to generate or even test a model, that predicts fatigue accurately at the
top end of the scale. Additionally, the training data set is rather small, after removing data
influenced by alcohol. Therefore, no data without known influences can be used for model
testing, which makes the interpretation of results difficult.
In general, linear regression models appear to be a good choice when modelling fatigue

from HRV and pulse wave parameters. However, the principal component analysis and
regression did not lead to the expected improvement compared to stepwise linear models,
especially with respect to statistical significance. This could be due to the complexity of
the cardiovascular system and the multitude of confounding factors, many of which could
not be included in the regression data. Due to the large individual differences in HRV and
pulse wave data, using a baseline improves model results. In general, the prediction error
is highest in condition B, the day after drinking, while it is lowest on data from condition
C, on which most models were trained. The most important variables in literature and
the regression models generated in this thesis are age, the LF

HF -ratio for HRV data, and
systolic time and total pulse duration for pulse wave data. However, for the systolic time
and most frequency-domain HRV measures, the coefficient signs are the opposite of what
could have been expected from previous research. Nonetheless, little research has been
conducted on the connection between pulse wave parameters and fatigue and, as some
studies demonstrate, there are definitely comparability issues with frequency-domain HRV
measures. Contrary to literature, the influence of height, weight, RMSSD and PAT is
mostly not seen in the discussed models.
While the SLN models and SLF2 show the largest similarity to the results in previous

research, three other models, SLDC1, SLDC2 and SLDS2, at least include one variable as the
literature review would suggest. Even though all residual plots look acceptable, the residu-
als of the models SLN2, SLDC2 and both SLF models fail the test of normality. Therefore
their results should be used with caution. The overall best quality of fit, determined by
the combination of adjusted R2 statistic and RMSE on test and training data sets, is seen
in the models using a fixed baseline (SLF), which retain a higher generality, and the model
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SLDC2, which achieves a low training error.
In the context of predictions, low p-values and RMSE are essential. Therefore, even

though SLN1 seems to score decently in all aspects, it may not be suited for the intended
use, since only 6 out of 15 variable coefficients are statistically significant. The combination
of all variables is considered significant at the level α = 0.05, which is higher than the level
of significance achieved by other models. The models SLN2 and SLDC2, which both have
a better statistical significance and quality of fit, are, at least regarding some variables,
supported by the literature review. However, both models residuals narrowly fail the test
of normality, which could indicate systematic error. The model SLDC1 seems to strike
a balance, where a decent amount of variance is explained through a small number of
variables, while statistical significance, prediction error and the normality of residuals are
acceptable. Nevertheless, the results should be interpreted with caution, since this model
includes some variables, most notably the LF

HF ratio and systolic time, in a different manner
than the majority of previous research.
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This thesis aimed to quantify the relationship between fatigue and physiological parameters
of the cardiovascular system, which are sensitive to changes in fatigue due to their connec-
tion to the autonomic nervous system. The main goal was the derivation of a predictive
model, that has the ability to accurately predict fatigue on the well-established KSS scale.
The model is intended for application in a comprehensive system for assessment of fitness
to drive in the commercial context of the EU-funded PANACEA project.
Data from a pilot trial held in Sweden was supplied to train and test statistical mod-

els. Key measures of heart rate variability (HRV) in both the time and frequency domain
were determined using electrocardiography (ECG), while a number of pulse wave shape pa-
rameters and pulse arrival time (PAT) were extracted from photoplethysmography (PPG)
measurements. A number of missing values due to lack of signal quality, as well as alcohol
as a confounding factor, considerably reduced the number of measurements available for
training.
Twelve multivariate linear regression models generated using six different approaches

were discussed and evaluated in this thesis. With the goal of reducing the 23 potential
predictors to a manageable number, both stepwise variable selection in multivariate linear
regression and principal component analysis (PCA) with subsequent linear regression were
applied. To account for the considerable individual differences in HRV and pulse wave
parameters, two options for an individual baseline, fixed or dynamic, were introduced.
While the linear regression models using stepwise variable selection produced promis-

ing results, the principal component analysis (PCA) and subsequent linear regression did
not bring the improvement, that could be expected when applying a dimension reduction
method to a data set with a large number of different variables. Models using either form
of participant baseline generally performed better, than those neglecting the individual
variations in physiology.
While, in general, most variables, especially frequency-domain HRV parameters, were not

included in the manner the literature review had suggested, the established importance of
the LF

HF -ratio and heart rate in fatigue prediction is underlined by the generated models.
It should be noted, that while a multitude of studies discuss the connection between single
HRV measures and fatigue, only one study was found, that evaluates this relationship for
pulse wave shape parameters. Furthermore, no previously conducted research on predictive
regression models for fatigue based on cardiovascular parameters was found, which makes
the results of this thesis difficult to put into context.
Many models, notably SLDC2 or SLN2, that produced good results concerning statistical

significance and goodness of fit, have issues with the normality of residuals, which could
indicate systematic error. Instead, the further use of the model SLDC1 is encouraged, since
there are no such issues and it balances a high statistical significance, a decent amount of
explained variance (adj. R2 = 0.17) and an acceptable level of generalisation, indicated
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by the relation between training and test root mean square error (RMSE) (1.19 and 1.41,
respectively). However, it should be mentioned, that the RMSE well above one indicates,
that there can be considerable error in KSS prediction. Furthermore, some chosen variables
with their respective coefficients are contradictory to previous results in this context.
Even with the restriction of a small data set with avoidable confounding factors, this the-

sis shows, that the prediction of fatigue on the KSS scale through a regression model using
cardiovascular parameters is not only feasible in theory, but also in practice. Of course, the
methods and models presented and discussed in this thesis need to be refined, especially
by incorporating larger and more heterogeneous data sets, before fatigue assessment for
commercial drivers can be used at a large scale. Most importantly, as the trial conducted
within the PANACEA Project included only male participants, mainly between the ages of
30 and 50, the models must be generalised and re-evaluated to be applicable to the entire
adult population, independently of age or sex.
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