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Kurzfassung

In dieser Arbeit fithren wir die Ein-Parameter Familie von Gauss-verteilten Prozessen - frac-
tional Gaussian fields - ein, welche auch die Brownsche Bewegung, die fraktionale Brownsche
Bewegung und das Gaussian free field inkludiert. Dieser Parameter wird auch Hurst para-
meter genannt. Wir zeigen hier die Existenz und einige Eigenschaften, wie zum Beispiel die
Kovarianzstruktur, welche bereits einiges an Arbeit und Wissen in Fourier Analysis und
Funktionalanalysis benotigen. Wir konstruieren diese Familie Gauss-verteilter Zufallsvaria-
blen mit Hilfe des Satzes von Bochner-Minlos als ein zufilliges Element des topologischen
Dualraums des Schwartz-Raums. Eine in diesem Kontext sehr interessante Frage ist wie
man die Markov-Eigenschaft, welche fiir die Brownsche Bewegung ein bekanntes Konzept
ist, fiir das fractional Gaussian field verallgemeinern kann. Dies benétigt allerdings Vor-
sicht, da die Umsetzung in diesem Setting nicht so einfach ist. Im Fall des Gaussian free
fields fithren diese Uberlegungen zu einem neuen Konzept, den sogenannten lokalen Mengen.

Im zweiten Teil der Arbeit fiihren wir das Gaussian multiplicative chaos ein, welches
derzeit ein in einigen Bereichen noch nicht gut erforschtes Objekt ist und im Bereich der
Finanzmathematik wichtige Anwendungen hat. Wir konstruieren das Gaussian multiplica-
tive Chaos direkt mit Hilfe des fractional Gaussian field. Der interessanteste Teil ist hier die
Frage, was passiert, wenn man den Hurst parameter gegen 0 gehen ldsst. Wir stellen hier
ein Konvergenzergebnis, welches von Paul Hager und Eyal Neuman im Jahr 2020 entdeckt
wurde, vor. Wie im ersten Teil ist der Beweis sehr lange, wovon wir hier den Grofiteil zeigen.
Zuletzt fithren wir noch ein paar Beispiele an, fiir welche man Konvergenz des Gaussian
multiplicative chaos zeigen kann.
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Abstract

In this work we introduce the fractional Gaussian field as a large one-parameter family of
Gaussian processes including many important examples, as the Brownian motion, the frac-
tional Brownian motion and the Gaussian free field. This parameter is well known as the
Hurst parameter. The existence and first properties, for example the covariance structure,
are shown here, what already takes a lot of effort and knowledge in Fourier analysis and
functional analysis. We construct the fractional Gaussian field via the Bochner-Minlos the-
orem, as a random element of the topological dual space of the Schwartz space. One very
interesting question is how to generalize the Markov property, which is for the Brownian
motion a well known concept, that needs in this general setting some care. In the case of
the Gaussian free field we obtain particularly interesting results that lead to a new concept,
the so called local sets.

In the second part we introduce the Gaussian multiplicative chaos, which is a still very
unknown object, but has some important applications in financial mathematics. It can be
directly constructed out of a fractional Gaussian field. The interesting part here is what
happens if one lets the Hurst parameter go to 0. Here we prove a convergence result by
Paul Hager and Eyal Neuman discovered in 2020. Again this takes a very long proof, that
we will show the most parts of. At the very end we show some examples one can apply
this result on.
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1 Introduction

The most important object in stochastic calculus is the Brownian motion (By)se[o,00), that
was already long ago introduced in physics. Later mathematicians described it in an rig-
orous way, proved existence, observed properties and found many applications in vari-
ous fields. Thus, one interesting question is how to generalize this Gaussian process. In
this work we introduce the one-parameter family of fractional Gaussian fields, denoted by
FGF,(R%), which is a Gaussian process, that generalizes the Brownian motion in terms of
the dimension of the domain and an additional parameter s > —g. Here we define the so
called Hurst parameter

d
H:=5-— 3
where d is the dimension of the domain. As s > —%, we obtain H > 0. The Hurst
parameter indicates the amount of dependence of the field in different regions. For H = 0
the fractional Gaussian field is at every point independent of all other parts. This special
case is called white noise. The tricky part is that the fractional Gaussian field can not be
defined point-wise for all H > 0. Here we need to make a compromise and find another
way. In our case we define the fractional Gaussian fields as Gaussian processes with index
set being the Schwartz space S(R?). Despite the big cost of being unable to evaluate
point-wise, we obtain another interesting property. Using the Fourier transformation F,
which is bijective on the Schwartz space S(R?), we define the fractional Laplacian operator
(=A)® for s € R. As the notation indicates, it is indeed a generalization of the common
Laplacian operator, i.e. (—A)! = —A. Furthermore, (—A)™* is the inverse of (—A)* and
it holds that (—A)*(=A)! = (=A)**t. The interesting part is now, that we can couple all
fractional Gaussian fields to one big random object. We can choose a white noise W and
get a fractional Gaussian field h ~ FGF,(RY) by

hi= (—=A)~52W.

By the properties of the fractional Laplacian operator, we get the following relation. For
s,t > —4, hy ~ FGF(R?) and hy ~ FGF,(R?), we obtain

t—s

2 hy

hs i (_A)

in distribution.

One further generalization is that we consider Gaussian free fields in domains D < R?
unequal to R?. This corresponds, in the case of the Brownian motion, to the Brownian
bridge. Let to > 0 and (Bt)se[,s0) be a standard Brownian motion. Then the Brownian
bridge is defined by (Bt)e[o,4,] conditioned on By, = 0. We want to define an analogue on
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1 Introduction

D ¢ R? as a fractional Gaussian field h ~ FGF,(R?) restricted to D and conditioned on
the event that h = 0 on ¢D. This step requires more care, as the equation h = 0 on 0D is,
due to the fact that we are not able to evaluate point-wise, not well defined.

The rigorous proof of all these thoughts is presented in chapter 2 of this work. We follow
here mostly the paper [[LSSW16], but need to mention that there are still no educational
books on this topic, that present these thoughts starting from a standard level of knowledge
in stochastic calculus. The idea of this work is to arouse interest and understanding for
the fascinating idea of fractional Gaussian fields in more people.

In the second part of this work we want to show an application of the fractional Gaussian
field. Despite connections to Liouville quantum gravity, there are many ways to use the
fractional Gaussian field for observing new ways of modeling prices in financial mathemat-
ics. One important tool is the so called Gaussian multiplicative chaos. One can think about
it as the stochastic exponential of a fractional Brownian field By. Formally, it is defined
as a random distribution, defined via its density that is given by

2
Mf(dm) = exp (wBH(m) - éE[BH(x)QDd:L‘,

where v > 0 is a constant. The big question is now, what happens if one lets the Hurst
parameter H go to 0. Inspired by the work of Nathanaél Berestycki [Berl7], Paul Hager
and Eyal Neuman proved in [HN20] a statement of convergence of the Gaussian multiplica-
tive chaos. In particular they proved that for a family of fractional Brownian fields, that

own a particular form of covariance structure, there exists a constant v* < \/742 , that only
depends on the dimension, such that for all v < +* the associated Gaussian multiplicative
chaos M7H converges as H — 0 to a Borel measure M, on D in probability with respect to
the weak topology of measures. This result will be given as Theorem 3.1.3 in this work. We
will show most parts of the proof, that requires much effort and is given in the subsections
3.2 and 3.3.

Finally, we discuss some examples of families of fractional Brownian fields, that satisfy
the assumption of Theorem 3.1.3. The main part is the proof of Theorem 3.4.4 that shows
different ways of constructing families of fractional Brownian fields, that we can apply
Theorem 3.1.3 on. This is done in the sections 3.4 and 3.5.
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2 Definition and properties of the Fractional
Gaussian Field

The goal of this section is to rigorously introduce the fractional Gaussian field. For this pur-
pose we look at tempered distributions, define a generalization of the Laplace differential
operator and prove the Bochner-Minlos theorem. Furthermore we discuss the covariance
structure of the fractional Gaussian field and define the fractional Brownian motion as a
special case of the fractional Gaussian field. Moreover, we shortly reflect about continuous
and differentiable versions of the fractional Gaussian field. In section 2.8 we discuss the
generalization of the Markov property. Finally, we reflect about two special cases of the
fractional Gaussian field.

2.1 Tempered distributions

We start introducing the Fourier transformation and the tempered distributions on the real
valued Schwartz space. This section follows from chapter 2.1 in [LSSW16].

Definition 2.1.1 (Schwartz space). A multi-index o = (aq,...,ap) € N% is a n-tupel of

nonnegative integers with order |a| := Zf=1 «;. The differential operator D% is defined
as D*f := %J‘ and the monom me(z) = ]_[?:1 z}t. For two multi-indices o, 3
.oz,

we define the semi-norm || f|ap 1= supgera |mg(z)Df(x)|. Let A denote the set of all
multi-indices. The real valued Schwartz space S(R?) is now defined as

SR = {f e CPRLR) : |flap <0 Vo,fe Al

equipped with the topology induced by the semi-norms | -|o,5. The complex valued Schwartz
space S(R?,C) is defined as the space of complex valued functions, such that their real and
imaginary part are in the real valued Schwartz space.

Remark 2.1.2. The elements ¢ of S(R?) are called Schwartz functions. From the definition
it follows directly, that if ¢ is a Schwartz function and o, 8 are multi-indices, then mgD%¢
is again a Schwartz function. Furthermore, S (]Rd) equipped with its topology is a complete
metric space. Clearly it holds that S(RY), S(R?,C) € L%(R?) as sets, but the topologies
are different. In particular, the topology on S(RY) induced by the semi-norms | - a5 is
finer as the one inherited by the L?-norm. As C*(R% C) is dense with respect to the
L%-norm in L?(R%) and C*(R?, C) < S(RY, C), we get that also S(R?, C) is dense with re-
spect to the L2-norm in L2(R?). Let us recall the definition of the Fourier transformation JF.
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2 Definition and properties of the Fractional Gaussian Field

Definition 2.1.3 (Fourier transformation). For a function ¢ € L'(R?) we define the
Fourier transformation by

FOE) = ke §ao )™

which is a linear operation on S(RY). We often denote F¢ as quS The inverse Fourier
transformation F~* on L'(R?) is defined as

F19(2) 1= s fpu 0(©) .

Remark 2.1.4. One can easily see that ¢ € L'(R?) is real valued if and only if for all £ € R?
it holds that ¢(—&) = ¢(£). Consider

~

’ ive, L — g _
4= = s | o) bo = s | ey e = (e)

Now if ¢(—&) = ¢(€) then also @(5) = % so 2(5) = ¢(€) and therefore ¢ = ¢. On the
other hand if ¢ is real valued it follows that ¢(—¢) = 5(5 ) = %

We quickly recall some direct properties of the Fourier transformation.

Proposition 2.1.5. a) For all ¢ € S(RY) and multi-indices a it holds that
Dj = (—i)'a‘@ and Do = ilolm

b) F maps the complex valued Schwartz functions S(RY, C) into itself and is bijective. The
inverse function of the Fourier transformation on the complex valued Schwartz functions
is the inverse Fourier transformation F~!.

¢) The Fourier transformation on S(RY) is an isometry with respect to the L?-scalar prod-
uct, i.e. (f,9)r2may = (f,9)2(ra)-

Proof. See Proposition 3.2.2 for a), Proposition 3.3.1 for b) and Theorem 3.3.2 for ¢) in
[B17]. [ |

For r € R we define

S,(RY) = {¢ e S(RY) : DG(0) = 0 for all |a| < r}.

Using Proposition 2.1.5, we get D*¢(0) = (—i)‘a|n/1a\<b(0) = % Sga Ma(x)p(x)dz. Thus,
S, (R?) is the space of all Schwartz functions such that {3, ma(z)¢(z)dz = 0 for all multi
indices || < r. For r < 0 we set S,.(R?) = S(R?) and the case r = 0 indicates all Schwartz
functions with zero mean, ie. Sy(RY) = {¢ € S(R?) : §pad(x)dz = 0}. Since r € R,
multiple r satisfy the inequality for one specific «, so several spaces S,(R?) for different r
are the same. Despite this ambiguousity we still want to keep the structure like that, as this
will work well for the later introduced Hilbert spaces the fractional Gaussian field lives on.
Let us consider the image of S,(R%) under the inverse Fourier transformation and denote
that space by S,(R%). From Proposition 2.1.5 we know that the Fourier transformation is
bijective. Thus, it follows that
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2 Definition and properties of the Fractional Gaussian Field

S, (RY) = {¢> e S(RY) : D(0) =0 for all |a| < r}.

Remark 2.1.6. Let us consider the topological dual space S’(R?), that consists of all linear
and continuous functionals on S(R?). Here we equip the functionals with the weak topology
on &'(R%), the topology of point-wise convergence. So we have for a sequence (fy)nen in
S (R4)

fo—f = VYoeSRY): (fa,d) — (f,0).

For every linear functional f it follows that f(¢,) — 0 for every sequence (¢, )neny — 0 in
S(R%). We observe that one can canonically embed S'(R?) into S(R9) via

SR > SRY, [ (60 (f0)ams)  With  (f,0) s i= S S (@) B@)da,

whereby, in our case, an embedding indicates an injective and continuous map. We want
to point out, that one can view ¢ as a function into a bigger codomain. Furthermore the
Fourier transformation on the topological dual space can readily be defined by F : &’'(R%) —
S'RY (f,¢) = (f, f*1¢)Lz(Rd). This definition makes sense as it is consistent with the

embedding ¢. Indeed with Fubini follows for f, g € S(R%)

r

f(x)g(z)dz
1

oo

"
J
|70 efﬁ-xgu)d:c) s
Jra
- (/.

9) 124y

r

N f(ﬁ)]: Flg(6)de
£ F 7 9) 2y

With our previous definitions we can conclude that f € SL(R?) < f e §'(R?) and (f, ma) =
0 for all || < 7. Therefore, if we denote the polynomials on R? with degree < r by P,.(R9),
we see, that there exists a canonical isomorphism between S’(R?) and S'(RY)/P,(R%).

Definition 2.1.7 (Tempered distributions). The elements of the space S'(RY) equipped
with the weak topology are called the tempered distributions on R®.

2.2 The Hilbert space the fractional Gaussian field lives on

Our goal is now to define a Hilbert space where the fractional Gaussian field lives on.
Therefore we consider the space

HY®RY) = {1 e SR : € [¢°f(€) € L (R}



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 Definition and properties of the Fractional Gaussian Field

and equip it with an inner product for f,g e H*(R?) defined by

(f,9) & IE1£(€),€ > [€1°3(9))

ﬁS(Rd) = ( LQ(Rd)'
We want H*(R?) to become a Hilbert space, thus, we need to find a suitable completion
for it. In order to do that we embed it into S};(RY) with H := s — d/2 being the Hurst

parameter. Let (f,,)nen be a Cauchy sequence in H*(R?) and ¢ € Si(R?). With Proposition
2.1.5 ¢) and the Cauchy Schwarz inequality it follows for n,m € N

[(fn = frms D) p2ey| = [(fn = fins @) 23

1 1
(|, 170 = Fmte)PlePoac) " (| 1060PIe] ag)"

R4 Rd

We need to explain why the second integral is finite. Since <Z> is again a complex Schwartz
function and |¢]? is, outside a small ball around zero, either bounded or of polynomial
growth, we get that, outside this ball, the integral is finite. We have to take care of the
integral near 0. As ¢ has a zero of degree | H| at the origin, we get, using a Taylor approxi-

mation, that |p(€)| < [¢]1+! near zero. Now using a polar coordinate transformation one
can see that

/N

n € TQlHJ“‘Q €
j |¢(§)|2|§|_28d€ < CJ Trd_ldr — J J2lH]—2s+d+1
Bg(o) 0 T S 0

The integral on the right hand side is finite if and only if the exponent is greater than
—1. We have that |H| = H — ¢ with § € [0,1). Therefore we get for the exponent
2|H| - 2s+d+1=2s—d—20—2s+d+1=1-—20 > —1. Thus, the integral on the
right hand side is finite. All together we conclude that (f,,, ¢) r2(rdy is a Cauchy sequence
in R. So we define f : Sg(R?) — R as the point-wise limit (f,$) := lim, 0 (fn, @) for all
¢ € Sy (RY). Tt readily follows that f is continuous. Indeed, whenever ¢ — 0 in Sg(R?),
we get with Cauchy Schwarz

fimsup (/. 1) e < msuptimsup( [ IF @I ag) ([ 1oue)Rlel2de).

The integral over the pole is finite for all £ € N. As for all multi-indices «, it holds that
D%@(O) — 0, the integral over a small neighbourhood of 0 gets arbitrarily small. Outside
the neighbourhood the function |¢|72% is of polynomial growth so the convergence to zero
follows from the convergence in the Schwartz sense of ¢. In conclusion, f is linear and

continuous, and thus, we can embed H*(R?) into S}, (RY).

Definition 2.2.1 (The space ]—:TS(Rd)). Finally we define P}S(Rd) as the completion of
L(H*(RY)) € St (RY).
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2 Definition and properties of the Fractional Gaussian Field

Remark 2.2.2. Let us consider L?(RY,|£|?*d€), the set of measurable functions that are
quadratic integrable with respect to the measure with density [¢]?*. Let f € H*(R?) and
(fn)nen be a sequence in HS(Rd) that converges in H*(R?) to f. As L?*(RY,[£]?%d¢) is

complete, (fy)nen converges in H $(R?) if and only if the sequence ( fn)neN converges in
L2(RY, [£]?%d€). Therefore there exists a g € L?(RY, |§|23d§) such that (fu)nen — ¢ in
L2(R?, |€]?°d€). Using Cauchy-Schwartz, we obtain for ¢ € S, (R%)

[ s@oerie] < (]| to@rieras)* ([ lo@riel de)" <o

and therefore g € Si(R%). With Proposition 2.1.5 ¢) it follows for ¢ € Sy(R?) that
(f,®) = (g9,¢). We get f = g whereby f and g are viewed as elements in S}{(Rd). Thus,

we can identify the space H? (RY) as
HRY) = {f € Sy(RY) : f e I2(RY, [¢[*d) }.

2.3 The fractional Laplacian

This section follows from chapter 2.1 in [LSSW16].

We now want to introduce the fractional Laplacian, which extends the usual Laplacian
differential operator. For this purpose we consider for ¢ € Si(R?) using Proposition 2.1.5
and the linearity of 7 and F !

—A(¢ Z%w —f12fa§2¢ _;12 0)*@}o(6) = FHal*o(&).

The inverse Fourier transformation in this case is well defined, because ¢ € &1 (R%) and
therefore |z|?¢(¢) € L'(R?). This fact gives rise to the following definition:

Definition 2.3.1 (Fractional Laplacian). For an integer k > —1, ¢ € Sp(RY) and s >
—% we define the fractional Laplacian (—A)* as

(—A)6(€) i= FL(¢ > Ig2(8) ).

This is well defined due to & — |£[2¢(¢) € LY (RY). Furthermore it clearly holds that
(—=A)¢ = ¢ and for s1, sy > —HEEL

(—8)" (=8)=6(¢) = (=A)" F (¢ = ¢*26(9))
(e lePer o)
= (—A)"26(¢).
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2 Definition and properties of the Fractional Gaussian Field

Remark 2.3.2. For an integer k > —1, ¢ € Sp(R%) and s > —HE+L follows that (—A)%¢ €
C®(R?). Indeed if we use Proposition 2.1.5 a) we see that for a multi-index « it holds that
DF Y (¢) = il F1(ma¢). We conclude that

DO (=A)'¢ = DF (£ [¢0(6))
= 7 (g - ma(©)I64($))
= F (&= [ePma(€)D79)
= (-A)(D"9).

Furthermore with Remark 2.1.4 we get that (—A)®¢ is real valued.

Lemma 2.3.3. For an integer k > —1, ¢ € Sp(R?), s > —TEH gnd o multi-index o it
holds that

sup (1 + [N 100 (A0 < sup [0
&eRd |B|<max |a],k+1

Proof. See Proposition 2.1 in [LSSW16]. [ ]

Definition 2.3.4 (The space Us(R?)). For s > —%, a multi-index o and ¢ € C*(R?)
we define the semi-norm |||y, (ra) o = SuPgera(l + €]972%)|0%p(€)| and the corresponding
space

Us(R?) i= {6 € CPRY) : Bl (a0 <0 Ve A

equipped with the topology induced by the semi-norms | - |y (wd)q- 1t clearly follows that
S(RY) € U (RY) < Uy (RT) € C*(RY) whenever —4 < ' < s.

Remark 2.3.5. Together with Lemma 2.3.3 we conclude that the operator (A)® : Sp(R?) —
L{$+(k+1)/2(]Rd) is continuous. In addition, if we assume for ¢ € Si(RY) that (—A)%¢ = 0,
it follows due to the injectivity of the inverse Fourier transformation, that qg vanishes ev-
erywhere except at the origin. As qg is smooth it has to be zero and with the injectivity of

the Fourier transformation it follows that ¢ = 0. Therefore (—A)?® is injective for all s > —%.

Remark 2.3.6. Analogous to the Fourier transformation we can easily define the fractional
Laplacian (—A)* on the topological dual space of the image (—A)*Si(R?) < Ust (k1)) (R9).
For f e ((—A)*Sp(RY))" and ¢ € S,(R?) we define

((=A)*f,9) := (f,(=A)%¢)

which is well defined. For the embedding ¢ in Remark 2.1.6 and f € S(R?) it readily
follows with the definition of the Fourier transformation on the topological dual space that
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2 Definition and properties of the Fractional Gaussian Field

((=A)*f) = (=A)%u(f). To see that the element (—A)®f can in fact be interpreted as an
element of the dual space ((—A)*Sy(R?))’, we consider for a f, g € Sp(R%)

((=2)*1)(9) = (=1)°f.9) = (fIE[*, 4
= (f. |§|28)—( f,(=8)g
((=4)°f,9) = (=A)°u(f)(9)-

Therefore, the extension of the fractional Laplacian on the topological dual space makes
sense. Furthermore, from this consideration it directly follows that the fractional Lapla-
cian on the topological dual space still satisfies the property (—A)*1(—A)%2 = (A)*1+52 for
suitable s1, s9.

Il
~— ~—

We want to define the fractional Laplacian operator on the space H* (]Rd). Therefore we
embed it into the space ((—A)*Sy(R?))’ via the map

{HS(Rd) ((—A)$Sk(RT)Y
f o (60 (F,9))

First we show injectivity. Clearly ¢ is linear, so it suffices to show that the kernel of ¢
is trivial. As (—A)? is injective, we get for ¢ € (—A)*Sk(RY) that there exists a unique
g € Si(R?) with (—A)®g = ¢. Now follows that

UF)(9) = (F,9) = (f,(CA)g) = (. |€[°9) = 0.

As [£]?%§ are dense in Sir(R?), we get that f = 0. Due to the linearity, it suffices to show

continuity at the origin. Consider a sequence (f,)nen S I;T $(R?) that converges to zero. As
€726 € Sr(RY) we have t(f,)(¢) = (fu,|€]?*9) — 0 as n — 0. Therefore ¢ is a well defined
embedding.

Now we can make use of the definition of (—A)® on the space ((—A)*Sy(R?))" and define

(_A)s : I‘I.SO (Rd) — HS(;_QS(Rd) ) (21)
[ (=A) ()

It follows that the fractional Laplacian operator is an isometric isomorphism. This is more

easy to see if one interprets the space H*(R?) as in Remark 2.2.2. Here the fractional
Laplacian operator turns out to be the usual fractional Laplacian defined for topological

dual spaces as above. Then it clearly follows for f € Hi(R) that

”( ) f”HS Rd) H(_A)sfHL2(Rd,‘§|230_43d§)

= Hf|§|2s ‘|L2(Rd7‘£‘250*45d£)

= W leeajeroaey = 1710, gy
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2 Definition and properties of the Fractional Gaussian Field

From that the bijectivity easily follows as well. Therefore we can define for s < 0 the

fractional Laplacian operator as the inverse of (—A)*l. For s = 0 we set (A)° = idH.S o)

In total we arrive at the following Proposition.

Proposition 2.3.7. For s € R the fractional Laplacian operator (—A)® : H*(R?) —

H*0~25(R%) defined in equation 2.1 is a well defined isometric isomorphism.

Proof. See Remark 2.3.6. [ |

The following Lemma gives us an easier way of interpreting the fractional Laplacian for
s € (0,1) and is following the idea of Proposition 3.3 of [NPV11].

Lemma 2.3.8. For f € S(R?Y), ¢ e R? and 0 < s < 1 it holds that
FE+a) = 27O + fE )

(=8)°f(€) = —5C(d, s)

R |.’E|d+23
_ -1
with C(d, s) = ( fRd umﬁj‘fg(fl))dg) .

Proof. First we give an argument why the integrals exist. At 0 the numerator f(£+x)—
2f(&)+ f(§—=) and its first derivatives D |a| < 1 are 0. Therefore, using multidimensional
Taylor we can estimate the integrand by Clz|>~2*=¢ for some constant C, so the integral
near 0 exists, because s > 1. For the integral over R\ B;(0) we can estimate the integrand
by Clx|~972% for some constant. Again, the integral exists as this time s > 0. The constant
C(d, s) is well defined as we can see in an analogue way. First we consider

Ffé+m) = fly+x)e ¥idy

1
(2m) %2 Jga
1 —i(z—x)-
= W o f(Z)e ( ) gdZ
. 1 .

— ix€ —iz-£
e @) Jy (z)e dz

= EFL(©).

Now using the linearity of the Fourier transformation we calculate

1 f(€+x)=2f() + f(§—x)
]-"(—QC(d, 5) , x P x da;)
_ 1 (e —2 4+ e T Ff(§)
= —iC(d, s) fRd PLEE dx

1 _ eiz-§+67iz-§

= C(d,s) fRd W—+§Sdm}'f(§)

10
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2 Definition and properties of the Fractional Gaussian Field

= 0(d, s) JRd Wcﬂx FFE).
~i1(0)

Let us show that I(&) is radially symmetric in . For d = 1 this is clear as cos is even. For
d = 2 let R be a rotation such that R(|¢|e1) = & Then it holds that

1(€) = fRd 1 —cos(x - R(|§|el))d:p

|x|d+23

1— “(x)-
[ Leotf ) i),
R |x|d+2s

B f Lcost K10 gy — r(jelen).
Rd

|x|d+2$

iz

€]

I(¢) = fRd L —cosla-[tler) 5,

Now using the symmetry and the substitution z =

|x|d+23
g1 —cos(z1)
d 1
= f N e de
R ‘5|d+25

— e [ ATt = g C )

|Z|d+23

Putting all together we get
f€+2) =2f() + fE~2) ,

—3C(d, 5) E=E z = FHEPFFE) = (=A)°f(8).

Rd
|

Remark 2.3.9. For s > 0 let n := |s| and let us decompose (—A)* = (=A)* " (=A)". As
(—A)™ results from applying the usual differential —A operator n times, we now have, to-
gether with Lemma 2.3.8 using 0 < s —n < 1, an explicit way of calculating the fractional
Laplacian.

2.4 White noise

In this section we want to define the so-called white noise, which is an analogue of a
standard Gaussian random variable on a Hilbert space H with inner product (-, -)3. In the
case of a finite dimensional Hilbert space this is an easy procedure. For this purpose we
just choose an orthonormal basis hq, ..., h, € H,n € N and independent standard Gaussian
random variables Y7,...Y,, ~ N(0,1) on Q and define the standard Gaussian on €2 x H in
the following way

11
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2 Definition and properties of the Fractional Gaussian Field

OxH—->R

Y: L
(w,2) = > Yi(w) (2, h

=1

This random variable on ‘H has now the characteristic property of a standard Gaussian
variable, that for x,y € H it holds that

Cov(Y(x),Y(y)) = Z z, hi) 1 (y, hj)nE[Y:Y] :2 hi)u = (2, y)n

and therefore Y (z) ~ N (0, |z[3,). However, for an infinite dimensional Hilbert space H this
is not possible. If we tried to define the standard Gaussian in an analogue way and choose
an infinite orthonormal basis (h;),eny and a sequence of independent standard Gaussian
random variables (Y;);en and set

QxH->R
Vi) @,a) o Y Yiw) (@ h
1€N
we would again get Cov(Y(x),Y (y)) = (z,y)n for x,y € H. The problem now is that
for the Borel sigma algebra A the function P : A — [0,1],4 — P[Y € A] is not a
probability measure on H any more. To see this, for z € H,r > 0 consider the balls
B(z,r) :=={y e H : |r —yllx < r}. Computing P[B(x,r)] we see that this is smaller or
equal the probability, that infinitely many independent standard Gaussian random vari-
ables take values in the compact set [—r, 7], whereby the latter turns out to be 0. As the
Hilbert space H is a countable union of such balls but P[H] = 1, we see that PP is not sigma
sub-additive anymore and therefore not a probability measure.[Jan97]

In conclusion, we need to find another way of defining a standard Gaussian on an infinite
dimensional Hilbert space, namely as a random object on the topological dual space of H.
The tool that will help us with that is the Bochner-Minlos theorem. First, we introduce
the term of a cylinder set measure.

Definition 2.4.1 (Cylinder set measure). Let X be a real separable topological vector space
and U be the set of finite dimensional subspaces U € X. Furthermore we define

T(X):= {T : X — U : T linear, surjective, U € L{}.

Then the cylinder sets are the sets of the form T (B) € X with T € T(X) and B being a
Borel set in U, i.e. as U is finite dimensional we have that it is isomorphic to RE™U) gnd
we define the Borel sets on U via the Borel sets on R¥™U)_ The set of all cylinder sets is
denoted by Cyl(X) and it holds that o(Cyl(X)) = B(X).

Now a cylinder set measure is a family of probability measures (MT)TeT(X); where pr is
a probability measure on T'(X) € U endowed with the Borel sigma-algebra, that fulfills the
following condition. For every projection Py -V — U with U,V eld, U SV it holds that

12
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2 Definition and properties of the Fractional Gaussian Field

no = pv Py,

i.e. uy s the push forward measure of py under the map Pyy.

For every probability measure p on a real separable topological vector space and T € T
we can consider the measure pp := pZ~'. This collection forms a cylinder set measure.
The important part to notice is that not every cylinder set measure can be constructed by
a probability measure on X. We give an easy example of that case.

Ezample 2.4.2 (The canonical Gaussian cylinder set measure). Let ‘H be a Hilbert space
equipped with an inner product (-, -). We endow every finite dimensional subspace U with
the inner product of H restricted to U and consider a standard Gaussian probability mea-
sure Py on U exactly constructed like in the beginning of this subsection. Then these
probability measures fulfill the requirements of a cylinder set measure. However they can-
not be extended to a standard Gaussian probability measure on H as we have seen in the
first part of this subsection.

There are Hilbert spaces such that for every cylinder set measure there exists an exten-
sion to a probability measure on the whole space. One example are dual spaces of nuclear
Hilbert spaces. The Schwartz space is indeed a nuclear space. We don’t want to introduce
the term of nuclear spaces here, but directly show, that one can extend every cylinder set
measure on S’(R) to a probability measure. Let us state a useful characterization of the
Schwartz space via the Hermite basis, see Theorem 2.3 in [LSSW16].

Remark 2.4.3. For n € N we define
R—->R
IQ I
¢n(90) : (—1)”676217,”[673”2]
wl/44/2np)

Then the sequence (1, )nen is an orthogonal basis of L?(R,R), the so called Hermite basis.

Proposition 2.4.4. Let (x,)nen € RY. We define for an integer m the semi-norm on RN
by [[(@n)nenlm 1= Dpen (1 + n?)™|@y|. Let s, be the space of sequences (zp)nen in R such
that all the norms | - ||, are finite, i.e.

S 1= {(-Tn)neN € RY . [[(n)nenllm < OO}'

Then we set
sim Nom
meZ

equipped with the topology induced by all the semi norms | - |m,. It follows that the one-
dimensional Schwartz space S(R) is isomorphic to the space s. Furthermore, the topological
dual space is of the form

13
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2 Definition and properties of the Fractional Gaussian Field

meZ

Proof. See Theorem 2.3 in [LSSW16]. [ |

Remark 2.4.5. In a very analogue way one can show for the higher dimensional Schwartz
space S(R?) the existence of a Hermite basis. There one considers the so called Hilbert
Schmidt operator H and defines for all integers n and finite linear combinations of Hermite
basis elements ¢, the inner product (¢, ) := (¢, (H +1)")2(ra). The induced norm is

denoted by ||, := (¢, gb)}/ % If one completes this space of finite linear combinations one
gets a Hilbert space H,, for every n € Z. As H is a positive definite operator one gets for
all linear combinations that |¢], < |¢]n:1. Furthermore Ho = L*(R?). Finally, we arrive
at the following equalities

S(RY) = [(Hn and S'(RY) = | JH.
nez nez

Furthermore, for » > 0 and n € Z we define the ball around the origin with respect to the
norm |-|,, as B7(0) := {¢ € S'(RY) : | ¢, < r}. For more details see Lemma A.3.2 in [CJ87].

Our next step to our goal of proving the Bochner-Minlos theorem is to give a sufficient
condition for the extension of the cylinder set measure to exist on the whole space S’(RY).
For the purpose we introduce the term of a vanishing measure at infinity. This part follows
chapters A.3, A.4 and A.6 in [GJ87].

Definition 2.4.6 (vanishing measure at infinity). Let S'(R?) be the topological dual space
characterized as in Remark 2.4.5. Then we say for a finitely additive cylinder set measure
p on S'(RY) it has vanishing measure at infinity if for every ¢ > 0 there exist n € 7 and
r > 0 such that for all C € Cyl(S'(R?)) with C n B*(0) = & we have u(C) < e. If we can
find forne Z and all € > 0 an r > 0, such that the inequality is fulfilled, we say that p has
vanishing measure at infinity on H,.

Lemma 2.4.7. Let y be a finitely additive and regular probability measure on the cylinder
sets Cyl(S'(RY)) that has vanishing measure at infinity on H,. Then p is a countably
additive measure on Hp,.

Remark 2.4.8. Here the regularity of the measure u is defined with respect to the weak
topology on &'(R%) discussed in Remark 2.1.6. In particular, u is regular if for all C' €
Cyl(S'(R)) it holds that

u(C) = inf{u(0) : C < O € Oyl(S'(R?), O is open w.r.t the weak topology}.

Proof of Lemma 2.4.7. Let (Cy)ren be a sequence of pairwise disjoint cylinder sets,
C = | Ck and define Cj := S'(RY)\C. It suffices to show

14
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2 Definition and properties of the Fractional Gaussian Field

D u(Cr) = 1.
k=0

Indeed, if we have this equality we get

a0 e}
1= p(Co) = M( Ck) = > u(Ch).
k=0 k=0
Therefore p is countably additive. By the finite additivity of u we get
0 K K 0
kZ_Ou(Ck) = lim ’gou(%) = lim u(kL_JO Ck) < u(kL_JO Ck>~

It remains to prove the other inequality. As p is regular, it suffices to show the inequality
for weakly open sets. Indeed, for all ¢ > 0 we find weakly open sets O 2 C} such that
(Ck) + 5157 > 1(Oy) and therefore, if 11 is countably additive on weakly open sets we have

0

S +e> ¥ w00 =u(|J o) = (| ).
K=0 k=0 k=0

k=0
Therefore let all Cj be weakly open. Let € > 0. As p has vanishing measure at infinity
on H,, there exists r > 0 such that for all C' € Cyl(S'(R?)) with C n B*(0) we have
u(C) < e. Now we use that the ball B'(0) is, according to Banach-Anaoglu (Theorem
5.5.6 in [HWB20]), weakly compact. We get a finite open cover Cy,,...,Ck,, L € N of
B(0). It follows

0 L L
> ner) = Y (@) = (| Cn) = n(BrO) 21—
k=0 =1 =1

As this inequality holds for all € > 0, the countably additivy of p follows. |

Definition 2.4.9 (Characteristic function of a probability measure). Let p be a probability
measure on S'(RY) and ® : S(R?) — C. Then ® is called the characteristic function of i,
if for all ¢ € S(RY) we have

o) = [ U au(p) (2.2)
S/(R)

Definition 2.4.10 (positive definite functional). A C-valued linear function ® on a Hilbert
space H is called positive semi-definite, if for all n € N, hy,...,h, € H and c1,...,cp, € C it
holds that

Z Ci?j@(hi - hj) = 0.
ij=1

Theorem 2.4.11 (Bochner-Minlos Theorem). Let ® : S(RY) — C. Then there exists a
probability measure i on S'(RY) such that ® is the characteristic function of p, if and only
if ® is continuous, positive semi-definite and ®(0) = 1.

15
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2 Definition and properties of the Fractional Gaussian Field

Remark 2.4.12. For finite dimensional subspaces of S'(RY) the Bochner-Minlos theorem
reduces to an easier case, which can be seen as a special case of Bochner’s theorem. In
general, Bochner’s theorem is proven for locally compact abelian groups.

Sketch of the proof of theorem 2.4.11. Let u be a probability measure such that @ is
its characteristic function. Clearly, it holds that ®(0) = E[¢!(/:9)] = E[1] = 1. Furthermore,
for ¢1,...,c, € C and ¢y, ..., ¢p € S(RY) we have

> et - o) = [ 3 ae O duy)
4,j=1

(RY) 5 5=1

_ fS,(Rd) (lzl Ciei(f’d)i)) (jZ:l cjez'(f,q&j)) du(f)

n 2

- Lf(Rd) Z

i=1
| S
=0

and therefore ® is positive definite. Finally, with the dominant convergence theorem, we
get, due to the continuity of every f € S'(R?), for a sequence ¢, — ¢ in S(R?), that

B6n) = | () — | () = a(e)
S/(Rd) S’(Rd)

and therefore the continuity of ®.

Now we take a function ® with the three properties above and further need to construct
a probability measure p on S’'(R%) such that ® is its characteristic function. The main
idea is to use Bochner’s theorem for all finite dimensional cases and then put them all
together using Kolmogorov’s extension theorem (Theorem 2.9.2). For more details of that
part of the proof see Theorem A.6 in [G.J87]. For every finite dimensional linear subspace
V ofS(R?) we consider the restriction of ® to that space ®y := ®|y,. Clearly, ®y, inherits
all three properties from above. Now we can use Bochner’s theorem as described in remark
2.4.12 and obtain for every V a probability measure ypy on V'. As there exists a projection
Py, for all V, one can view puy as a probability measure on the V-cylinder sets, i.e. on
o({Py1(A) : A€ B(V)}) where B(V) denotes the Borel sets in the subspace V. In particular,
for a set A e P71(B(V)) one considers the measure A — py(P(A)). We want to show that
this collection of probability measures is a cylinder set measure. Therefore let ¥V < U be
linear subspaces of S and P : U4 — V the projection operator. We need to show

py = P71,

which directly follows using the uniqueness part of Bochner’s theorem. Hence, we have a
projective family of cylinder set measures and therefore get a unique cylider set measure p
such that for every projection PyS'(R%) — V' we have

py = pPyt.

16
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2 Definition and properties of the Fractional Gaussian Field

By construction, p has ® as characteristic function. It remains to show that p can indeed
be extended to a measure on the Borel sets of S'(RY). For that purpose it is sufficient to
show that p is countably additive. We therefore want to apply Lemma 2.4.7. Hence, we
need to prove that p has vanishing measure at infinity on #,, for every n € N. Let BJ'(0) be
defined as in remark 2.4.5 and C' be a V-cylinder set such that C'n B, "(0) = ¢J. Denoting
by P the projection S'(R?) — V', we get

p(C) < f 1du < 2] (1 S m)dM
~ NS V‘
VAP(B;"(0)) y

The second inequality follows from the fact that on V\P(B;"(0)) the exponential term is
less than one half. Denote by @) the projection from S onto V and by I the identity, and
let A:= (Q(H + I1)7"Q)~!. Then we get

[} exo (221512, Y
_ f ,exp(— n:2)(f,A1f)>duv(f)

~of [ ew(it@s.e)e(-2 2 Vauryan,
o (Lol

7”2
C) <20 Jv(l —®(9)) exp(—M)dqﬁ.

Let € > 0 be given. From the continuity of ® we get n € Z and 6 > 0 such that from
|#]2,, < 6 it follows that |1 — ®(¢)| < e. On the other hand, we can in general estimate
|®(¢)| < E[1] = 1. In total, we get

uE) <2+ % [ Jol2, exp( (¢’A¢)>df-

with

All together, we get

In(2)
With some further estimates one can show that ;(C) < 6e. Therefore the assumptions of
Lemma 2.4.7 are fulfilled and s is a regular probability measure on S’(R?). [ |

Lemma 2.4.13. Let H be a Hilbert space and ® : H — C, ®(h) := exp(—3(h, h)y). Then
® is continuous and positive semi-definite on H with ®(0) = 1.

Proof. The continuity is clear as ® is a composition of continuous functions. Further-
more ®(0) = exp(—3(0,0)3) = exp(0) = 1. So we only need to show that @ is positive
semi-definite. Let n € N, hq, ..., h, € H and ¢y, ...,c, € C. We choose an orthonormal basis
€1,y € Of span{hi,...,h,}. We want to use the characteristic function of the normal
distribution. If Z € R™ is standard normal distributed and v € R™ then we know

17
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2 Definition and properties of the Fractional Gaussian Field

E[e??] = exp< %i ) = exp(— 1 (v,v) (Z vlel)

We define for i € {1,...,n} x; := ((hi,e1)n, ., (hi,em)n) € R™. Then we get

i Ciqu) ( h;

,j=1 1,]

I I
D= 5=
— =
o o
MO‘ QQ‘
& !
@ S
"
o
VR
~.
Nk
- -
&
>
S
[
K
hy
N
N—
| I

P k=1

= Z czch[eXp(l(xz _%)Z)] -
i1

n

Z cicj K exp zxZZ)]E[exp(iasz)]

2

Elexp(iz; Z)]| =0

and we see that ® is positive semi-definite. [ |

We are now ready to define the standard normal distribution on S’(R9).

Definition 2.4.14 (White noise). Let ® : H — C, ®(h) := exp(—3(h, h)y). Then we
define W as the unique probability measure on S'(R%) such that ® is its characteristic func-
tion. We call W white noise on S'(R%).

Remark 2.4.15. From the definition of white noise we have for ¢ € S(R?)

; 1
JS/(Rd) xp <Z(f’ ¢)L2(Rd)> dW (f) = exp <_2|¢|%2(Rd)> .

Therefore we can interpret W as a random Gaussian process (W, ¢) $eS(RY) with (W, ¢) ~
N(0,|o|? T2(rd) ). As W is a random element in the topological dual space, the process

W () ges(ray is almost surely continuous.

We would like to find an extension of the process W (@) ses/(ra) to all functions of L?(RY).
In order to do that we introduce the term of a Gaussian Hilbert space.

Definition 2.4.16 (Gaussian Hilbert space). Let (2, F,P) be a probability space. Consider
a collection of Gaussian random variables denoted by H on (2, F,P) and equip it with the
inner product (X,Y )y := E[XY] for X,Y € H. Then H is called a Gaussian Hilbert space

if it is closed with respect to the norm || X |y = (X,X);f.

18
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2 Definition and properties of the Fractional Gaussian Field

Let W be a white noise on S(R?) and consider the collection of Gaussian random variables
{(W, ¢) : ¢ € S(R?)} that are all defined on that one probability space (£2, F,P) where the
random element W lives on and equip it with the inner product of the definition above.
Define ¢ : S(RY) — {(W,¢) : ¢ € S(R))},¢ — (W,¢). Then ¢ is an isometry, because,
according to Remark 2.4.15, it holds that [c(¢)|y = E[(W, ¢)?] = |9l £2(raey- Therefore, we
can extend ¢ in the following way: Let f € L?(R?) and (f,)nen be a sequence in S(RY)
such that f, — f as n — oo in L2(R%). Then we define ¢(f) := lim, o (W, f,). We have
to show that this definition is well defined. From the dominated convergence theorem we
get that for all £ € R

. iE(W, fn 1 !
lim E[e §Wfn)] = eXp<_2§|fn”%2(Rd)) > eXp <_2£|f|iz(Rd)>'

Thus, there exists an almost surely unique random variable (W, f) on L?(€, F,P) such that
(W, fn) converges in probability to (W, f) and (W, f) ~ N(0, HfH%Q(Rd)). Furthermore, the
random variable (W, f) is independent of the choice of the sequence (fy,)nen. Let now H
be «(L?(R%)). So we get that ¢ : L*>(RY) — # is an isometry. As L?(R?) is complete, also
‘H is complete and therefore a Gaussian Hilbert space. As the limit is linear, H inherits
the linear structure of {(W,®) : ¢ € S(R?)}. Here one has to be careful, as point-wise the
two elements (W, f + g) and (W, f) + (W, g) for f,g e L*(R?) do not necessarily coincide.
However, in the Hilbert space H they represent the same element as the convergence in the
norm of  is the convergence in distribution on L?(Q, F,P). Furthermore, from the fact
that ¢ is an isometry we directly get the following property

Cou ((W, 1.0, g>) _ E[(W, /)W, g)]

(Bw. -+ 971 - BL0V. £ - 971

N e S

(17 + 68200 = 15 = ol2e0

f29) 12 ®ay-

—~

Definition 2.4.17 (White noise Gaussian Hilbert space). The Gaussian Hilbert space H
we constructed above is called the white noise Gaussian Hilbert space of RY.

One important fact is that the so constructed white noise Hilbert space seen as a stochas-
tic process (W, f) jer2(ra) is not continuous any more.

2.5 The Fractional Gaussian Field on R?

In this section we want to define the fractional Gaussian field with parameter s € R on R%.
For this purpose we would like to carry out the same procedure as in the last subsection
with the white noise and try to define a standard Gaussian random variable on the space
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2 Definition and properties of the Fractional Gaussian Field

H*(R?) defined in subsection 2.2. Again, as this space is an infinite dimensional Hilbert
space, we need to define the random element on the topological dual space. This section
follows the ideas of chapter 3 of [LSSW16].

Using the ideas of the construction from the white noise, our goal is a random element
h of S (R?) such that for all ¢ € Sy (R?) it holds that

(1.9) 7.y ~ N (0100, ) (2.4)

We would like to write out this condition in terms of the L?-scalar product. We compute

for h, ¢ € Sp(R?)
A 2s s
(10) gy = |, HOKOIETE = | BORT A = (1 (=)0 2ga
Now it follows, with the desired property 2.4,

E{(f% ¢)%2(Rd):| = E{(h’ (_A)_SQS)ES(RGZ)}
= |(=2)~"¢|?

Hs(RY)

~ 2
- (f |5|2S|§|—48¢<5>d§)
Rd
2
- <f |§|28é<§)d§> = l12.
R4 S(Rd)

So if we interpret an element h € Sy (R?) via ¢ from Remark 2.1.6 as an element of S}, (R?),
it would make sense to demand for all ¢ € Sg(R?) that

E| (1, 0)zse0 | = lol

—s(Rd)’

Therefore, we define the fractional Gaussian field in the following way.

Definition 2.5.1 (Fractional Gaussian Field on R%). For s € R the factional Gaussian
field is defined as a random element h of S}I(Rd) such that for all ¢ € S (R?) holds that

. 2
e CY T

where H = s — § denotes the Hurst-parameter. We will write h ~ FGFy(R9).

Proposition 2.5.2 (Scaling property). For s € R and h ~ FGFs(RY) the scaling property
holds. Let a > 0 and consider the random element ho(¢) := h(¢(a-)), where ¢(a-) : & —
¢(a&) is the scaled Schwartz function. Then it holds that
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2 Definition and properties of the Fractional Gaussian Field

Proof. For a > 0 and ¢ € S(R?), using the transformation formula, we calculate
@), = [l o)
H—s(R4)  Jpd
= [ lag o0 d(ag)de
Rd
= ot | jeaeas
R4

2s—d 2
=a . .
O+
Thus, we get
(ha, ) = (h,6(@)) ~ N (0, [6(a)] - )
|
=a?~d|¢|*,
H—$(Rd)
and the result follows. |

The next step is now to prove the existence of FGF;(R%). The tool we will use for that
is again the Bochner-Minlos theorem. We would like to apply it on the same functional

as for the white noise just on the Hilbert space H*(RY). The problem is that in general
this functional is not finite for all ¢ € S(R?), but only for functions in Sg(R?). The idea
is now to change the functional only on the set ¢ € S(RY)\Sg(R?) such that it fulfills all
requirements for the Bochner-Minlos theorem.

Proposition 2.5.3. For all positive integers n € N there exists a family of Schwartz func-
tions (¢a)jaj<n Such that for all multi-indices |a|, |8| < n it holds that

|, mat@s(erds = 510

where dq—py is 1 if and only if = B and 0 else.

Idea of the proof. We will prove the case d = 1. For that purpose we use the Hermite
basis (¢ )nen given in Remark 2.4.3. Clearly, it is contained in the Schwartz space S(R).
Moreover, it is easy to see that every 1, can be written as

Un(z) = ¢ 5 Po(x),

where P, is some polynomial of degree n. As ¢,, ¢, are orthogonal for n # m, this is also
true for P,, P, if n # m. Thus, we have that

span{g, ..., v} = spcm{e_xQ/Q, e_x2/2x, ey e_xQ/za:”}.
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2 Definition and properties of the Fractional Gaussian Field

As those two linear subspaces are finite dimensional, there exists for every m € {1,...,n} a
linear combination of Hermite functions, such that for all I € {1,...,n}

J 2 apre " 2 gldy = Sfm=1}-
R =0
|
::¢m(z)
|

Lemma 2.5.4. Using the family (¢a)|a\<[Hj which we get from Proposition 2.5.3, we define
S(RY) — Sp(RY)
PiYoro— 3 o[ male)o(w)is

BEVIE
Then Py is a linear projection from S(R?) onto Sg(R?) and therefore continuous.

Proof. P is clearly linear. First we show that it is also idempotent. We calculate

P, o Py( - > ¢af ma(x d

jaf<|H
- ) % NG <¢— > ¢>B mg (@ )d
ol <|H J B1<|H f
=¢—2 Z ¢cx ma(z
ol <|H f
+ Z Z qﬁa ma(x)pp(x dm( mga(y )
lal<LH] |8|<|H f f
*5{a s}
=¢—2 > %J ma(v)¢(z)dz + ) %J me(x)p(x)de = Py(¢).
ol <|H jaf<|H

Furthermore, for all ¢ € Sir(R%) we get per definition

Ps(¢) = ¢ — Z ba ma(z)p(z)dr = ¢.

Finally, for all ¢ € S(RY) and |a| < |H| we get

[ P@@m@ic= [ (6= % o560 [ mawotuds )maaras

\BI<[H]
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2 Definition and properties of the Fractional Gaussian Field

- [ otomane= 52 [ o e dx(f ma(w)6)dy) =0

Ofa=p}

In conclusion, P is a projection from S(R?) onto Sg(RY). [

Now we can define our updated functional.

Lemma 2.5.5. Let &, : S(RY) — R, ®4(¢) := exp(—3||Ps(9)]>. ). Then @, is
H—s(R%)

continuous, positive semi-definite, ®5(0) = 1 and for ¢ € Sg(RY) it holds that ®,(¢) =
Ly 412
exp(—3lo[*. ).
H—s(RY)

Proof. As P; is continuous, ®, also is continuous. Clearly, ®,(0) = exp(0) = 1.
In an analogue way to Lemma 2.4.13, we get, with the linearity of P;, that ® is posi-
tive semi-definite. Finally, for all ¢ € Sp(R?) we get ®4(¢) = exp(—3|Ps(¢) ||H._ (Rd)) =

|
expl=4ol . ., )

Now we can again use the Bochner-Minlos theorem to define the fractional Gaussian field
with parameter s € R. Therefore we get the existence of the F'GF,(R%).

Remark 2.5.6. Clearly the definition of P is dependent on the choice of the family of
Schwartz functions (¢a)|q|<|z| and therefore also @ is. Therefore we restrict the FGFj (R

to the space Sy (R?), where ®, coincides with the functional ¢ — exp(—1 Rd))'

Remark 2.5.7. Analogue to the white noise Gaussian Hilbert space we want to define a
Gaussian Hilbert space to enlarge the domain of the FGF(RY). The procedure is the

same as before. Let h ~ FGFy(R?) and consider Sg(R?) as a subset of H*(R%). De-
fine the isometry ¢ : Sy(RY) — {(h,¢) : ¢ € Sy(RY)} < L*(Q),¢ ~— (h,¢). Indeed
le(®)3, = E[(h,¢)?] = ||¢||12LI, &y As L?(Q) is complete we can extend the domain of
¢ to the closure of Sy(RY) € H*(R%) which we denote with Ty(R?). In an analogue
way we get that this procedure is well defined and that for ¢ € T,(R?) it holds that
(h,¢) ~ N(0, |9|?. ( d)). Again, we lose the continuity of h.

H—s(R

Lemma 2.5.8. Let s € R and W be a white noise on R%. Then there exists h ~ FGFs(R%)
such that h = (A)~52W.

Proof. Let us define a random element h on T!(RY). For ¢ € T,(R?) < H~*(R%) we

get from Remark 2.3.6 that (—A)~%2¢ € HO(RY) = {f € S(RY) : f € L2(R%)} = S(RY) <
S, /2( ) = §'(RY). As the white noise Hilbert space lives on L?(R?), we can define a
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2 Definition and properties of the Fractional Gaussian Field

random element h on T,(R?) in the following way (h, ¢) := (W, (=A) */2¢). This is well
defined and therefore the expression h = (—A)~*2IW makes sense. We have to show that

h ~ FGF,(R?). As (—=A)~%/?: H.*S(Rd) — I;O(Rd) is an isometry we get
E[(h, $)°] = E[(W, (=4)*/?h)*]
= (=)

— [(=A) 262 _ 2
) Pal, =0

so h ~ FGFs(R%). [ |

2.6 The covariance kernel of FGF,(R?)

It is a well known fact that every centered Gaussian Process is completely determined by
its covariance structure. As all FGF,(R?) are centered Gaussian processes, this leads to
the question of how their covariance structure looks like. First, we introduce the term of a
covariance kernel. This section follows chapter 3.2 in [LSSW16].

Definition 2.6.1. Let (Xf) ten be a centered Gaussian process on a function space H with
f:RY = R. If there exists a function G : R® x R* - R, such that for all f,g € H it holds
that

Con(xp. %) = | | G s@sdnay,

we call G the covariance kernel of (Xf) fen.-

Remark 2.6.2. Clearly, a covariance kernel is symmetric, i.e. G(x,y) = G(y,x) for all
z,y € R? and it determines the Gaussian process uniquely. But for a centered Gaussian
process there can be multiple covariance kernels.

Remark 2.6.3. For the white noise we can directly derive the covariance kernel from equation
2.3

Coo((W.1.0%.9)) = (Fdizgen = [ [ 0 F@ds(01aay.

Therefore the covariance kernel of the white noise is G(z,y) = d(z—y-

We now compute the covariance kernel of the fractional Gaussian field of R? in all other
cases.

Theorem 2.6.4. For s € R the covariance kernel of the fractional Gaussian field h ~
FGF,(R?), which we denote by G4(-,-), has the following structure:
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2 Definition and properties of the Fractional Gaussian Field

a) For s > 0 and the Hurst parameter H not being a nonnegative integer, it holds that

—2s —d/ d_
Gs(z,y) = C(s,d)|z — y|*" with C(s,d) = *

Note that in some cases the constant C(s,d) is negative.

b) For s > 0 and the Hurst parameter H being a nonnegative integer, it holds
d/2+H
Gs(x,y) = 20_/1 |z — y|*log|z — y|

where ccf/12+H is the residue of the function s — C(s,d) at %l +H

d/2+H (_1)H+1272H7d —d/2

=1 HID( + H)

/+

Again the constant ¢’ 18 in some cases negative.

c) For s <0 not being a negative integer, it holds that
[—s] A A
Gs(xvy) = C(S,d)|l‘ - y|2H 1- Z |£B - y|21HiAZ5{az=y} ’
1=0

where, | S| being the surface of the unit sphere in RY and the empty product is defined
to be 1, the constant H; is given by

d) For s <0 being a negative integer, it holds that
G’s(sc,y) = (_A)86{$=y}'

Idea of the Proof. As for ¢ € Sy(R?) and h ~ FGFy(R?) it holds that

(. 9) ~ < S d))

Cov((hu60) (k) ) = {ELh. 1+ 620" = (hon = 62
= (¢1,02) -«

H-s(Rd)

so we get for ¢1, g9 € Crr(RY) that

Ad a) First we assume that 0 < s < %. Then |£|~2¢ is a tempered distribution and it holds
that (chapter 1 §1 [LD72])
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2 Definition and properties of the Fractional Gaussian Field

(g1 %) = C(s, d) P
Now it follows that

Cov((h,¢1),(h,¢2)> (¢1,¢2) o)

- | oo lel e

= (1|27, $2) r2(Ray

— (FM(€]=25) * 61, 62) 2z

—Csud) | (P ¢ 01)()oa(u)dy
Rd

=) [ [ 1o = uPHor(@)a(o)dods

For s > % we need to make an argument. Let
RY x Ry - R
vle) = | o= yPa(dy

As in this case H > 0 and 1t is a Schwartz function ¢ is well defined. With dominated
convergence, it follows that 1 is smooth in x and analytic in s. By an analytic argument,
the statement follows (see Chapter 1 §1 in [LD72]).

P

Ad b) As ¢1, ¢ € Si(RY) we get for y € R? that
f |z — y|*H ¢ (z)dx = 0 for ie{l1,2}. (2.5)
Rd

We want to use a) and a limiting argument. Let ¢t € (s — %, s — %) and t # s. Then it holds
with 2.5 that

. 9o C(t,d) 2t—d dxd
(0109 1 2O [ [ 1o =y 01 (@) a(0)dody
25 0(t, d) f f (2 — P — |z — y >~ (2) bo(y)dady.
Rd JRd
With multidimensional Taylor we get that
& — g2 — o — | = 2t — )| — > infe — y| + 0(<(t ~ 8l — yPinja y|>2).

d/2+H

Furthermore, for ¢ — s we see that (t — s)C(t,d) — ¢;{' ", which is the residue of the
function s — C(s,d) at 4 + H. Putting all together we get
o U/2HH
01090 =20 || =l ogla = yios (@) ey
and the statement follows. Statements ¢) and d) are following from equation (1.1.10) in
[LD72]. [
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2 Definition and properties of the Fractional Gaussian Field

2.7 The Fractional Gaussian Field on a domain

The idea of this section is to define the fractional Gaussian field on proper subsets D of R,
For that purpose, not all subsets of R? are suitable. We therefore introduce the term of an
allowable domain. Furthermore there is another distinction to make. We have to choose
how the fractional Gaussian field should behave like on the boundary of our domain D.
Here we define the fractional Gaussian field with zero boundary conditions. First we need

to define an appropriate space, denoted by H(D), where we define the fractional Gaussian
field with zero boundary conditions on. This section follows Chapter 4 of [LSSW16].

Definition 2.7.1 (Allowable domain). Let D < R? and s > 0. Then D is called an
allowable domain if for all ¢ € S(R?) there exists a constant C that depends on D and ¢
such that for all g € C(D) it holds that

(6. 0)zaqea] < Clal g, oo

Remark 2.7.2. CP(D) denotes the set of the infinitely often differentiable functions with
compact support in D, so we have C®(D) < S(RY) € H®.

The following Lemma gives a better perspective on when a domain D is allowable.

Lemma 2.7.3. Let s > 0, D € R and H = s — % be the Hurst parameter. If Rd\D
contains an open set, then D is an allowable domain.

Proof. Let s > 0, D € R?, ¢ € S(R?) and g € C®(D). Using Proposition 2.1.5 ¢) and
Cauchy Schwarz we get

(6.9 LQRM—U a(e |€|‘SI£ISdE‘

([, ¢(5)|§|8) ([ aprac)

=l ., oo ol

() Ho(RY)

fo<s< % ie. %l H < 0, then both norms are finite, we can set C(D, ¢) := quH R

and D is allowable. If s > 4 then it is not necessarily true, that ||¢||H._ - is ﬁmte. We

therefore need to change our argumentation a bit. Assume that R\ D contains an open
set. Then we find an open ball B € RN\ D. Using a Gram Schmidt procedure we find a
function ¢ € C(B) such that for all multi-indices |a| < H we get

ma(§Y(E)dS = | ma(§)d(&)de.

R4 R4

Thus, we have that D%(¢ — )(0) = 0 for all |o| < H and it holds that
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2 Definition and properties of the Fractional Gaussian Field

o= 611 gy = |, 1900 — BOPIEI g < o
H=s(R%) Rd
Then we conclude, using Cauchy Schwarz as above, that

(0,9)12 R = (0=, )L2 R4) < ¢ - wH lgll »

<
“o(re)'”  He (RA)

and can choose the constant C(D, ¢) := |¢ — w||H._ RS [

Let us now define the space Hj(D).

Definition 2.7.4 (The space H§(D)). Let s = 0 and D < R? be an allowable domain.
Then we define H3(D) to be the completion of C (D) < H*(R?), which is a Hilbert space
by itself, equipped with the inner product of H*(R?).

Remark 2.7.5. We consider for ¢ € S(RY) the linear functional on }}3 (D) given by g +—

(¢, 9)2(ray- From the definition of Hg(D) and D being an allowable domain, we get, that
this functlonal is continuous. Therefore, we can find with the Riesz representation theorem

a unique element f € .F}S (D) such that for all g € f.;g(D) we have

(¢ag)L2(Rd) = (f’g)h;g(D) (26)

By the definition of the fractional Laplacian operator on the topological dual space in

Remark 2.3.6 and with Proposition 2.1.5 ¢) we get that for all g € H§(D)

((—A)Sf7g)L2(Rd (f( A)? )L2(Rd)
= (f, 1 9) 12 ()
= (f |§|8 91&1°) 2 (R4)
=(f.9) .

= (¢,

H3 (D)

9) 12(R4)-

With the injectivity of the fractional Laplacian, we get that f is the unique solution to the
distributional equation

(=A)y°f=¢,  feHiD). (2.7)
Definition 2.7.6 (The semi-norm | - | & ). For s > 0 and ¢ € S(RY) we choose the

H=s(D)
unique solution f of the distributional equation 2.7 and define the map

S(Rd) >R

ity Yo 11
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2 Definition and properties of the Fractional Gaussian Field

which is a semi-norm on S(RY). Indeed as the distributional equation is linear in its ar-
gument, we get for r € R, ¢ € S(RY) and its solution f € H(D) that ”T‘(;SHH: =

(D)
[7f] o =|r|-|f] « y = 7| - Hd)HH._ o) The triangle inequality for | - | follows

He (R He (R ) H(D)

from the triangle inequality of || - H]{'s(Rd)'

We consider for s > 0 the functional

SRY) - R
1 2
5o eXp(—2|¢|H.S (D))

Here we want to point out that the semi-norm || - ||H._ ) is well defined for all ¢ € S(RY)

oF -

and not only for ¢ € Sy(R?) due to the allowability of the domain D. Thus, we can de-
fine the fractional Gaussian field on D as an element on &'(R?) and not only on S} (R?).
We first show that the assumptions of Bochner-Minlos are given: Clearly, it holds that

®%(0) = 1. The continuity follows from the continuity of the map S(R?), ¢ — ||¢||H._ 0y
that is discussed in Lemma 2.8.5 in the next section. Next we show that ®%, is positive
semi-definite to be able to use the Bochner-Minlos theorem and define a random element
on S (Rd). From the uniqueness of the Riesz representation theorem, we get the linearity
of the map that gives us the solution of the distributional equation 2.7 for given ¢ € S(R%).

Therefore we get the semi-definiteness of %, by Lemma 2.4.13. Now we can define:

Definition 2.7.7 (The FGFs(D) with zero boundary conditions). For s = 0 and an al-

lowable domain D we define hp to be the unique random element of H*(R?)', restricted to
S'(R?) with characteristic function &7, given by the Bochner-Minlos theorem. Then hp
is called the fractional Gaussian field with parameter s on D with zero boundary conditions.

Remark 2.7.8. Again for all ¢ € S(R?) we get that

2 )
H-s(D)

For every ¢ € S(R?) with supp(¢) < RN\D we have that (0,9)2ray = 0 for all g €

(hp6) ~ N(o, I9l

H~%(D) and therefore the solution of 2.7 is the zero function in I;Tg (D). Therefore we
have ¢ = 0 and (hp,¢) = 0 in distribution. Thus the fractional Gaussian field

H#(D)
is supported on the closure of D. Furthermore, as the topology on S(R%) is finer as the
one in H*(RY), we get that hp is a tempered distribution on S(R?). Moreover, there is
again a way to extend the domain of the FGFs(D) by constructing a Gaussian Hilbert
space in a similar way as we did for the FGF,(R%). The domain, we can expand the
fractional Gaussian field on, is the same as the completion of C°(D) under the topology
induced by ||| , which ind tri S(D) by th: d(p, ) := ||op—1)| .
induced by || HHiS(D) which induces a metric on S(D) by the map d(¢, 1) := |¢ @Z)||H75(D)
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2 Definition and properties of the Fractional Gaussian Field

Example 2.7.9. The explicit form of the covariance kernel of the fractional Gaussian field
on an allowable domain D is highly dependent of the structure of D and in many cases it
is very hard or not yet possible to derive an explicit form. We want to give one example
without proof here and consider the unit ball By(0) := {x € R? : ||z]] < 1}. In that case
we can find an explicit way of expressing the solution f of the distributional equation 2.7
for given ¢ € S(R?). It holds that

f(x) = f Giy(a,y)b(y)dady, @€ By(0).
B1(0)

First we consider the case s € (0,1). In that case (see equation (2.65) in [GGS10]) the
covariance kernel is of the form

[

r(1+4 =
(1+5) |z — y|2HJ . (22 = 1) 121 7ddz, x,y € B1(0).
1

drd/244-1((s — 1)!)2
In the case of s being an positive integer (see Corollary 4 in [BGRG1]) we get
r(4)
457Td/2F(5)2

In our last case (see Corollary 4 in [BGRG1]) let s > 1 and not being a positive integer.
We decompose (—A)* = (—A)*~lsl(=A)ls]. Using the first two cases we can conclude

o(x) = (—A)l fB o, Cl oy

Gy(z,y) =

]z —|y|?)

P
G3y(,y) = j — y[?H f T 1)y, aye Bi(0).
0

— (—A) j f ) (2, )Gl (g, 2)(2)d=dly
Bl(O) B1(0)

/

g

=:g(z)
Therefore g is a solution of the distributional equation 2.7 with parameter s. From the
uniqueness of that problem we get that

Gy () = j Gz, )G (z, y)d=
B1(0)

The function (x,y) — G5 (x,y) is already our covariance kernel of the FGF,(B1(0)). Indeed
if we take ¢ € C(D) we have

Bl(ho. 0] = lol2. =111
= (1) 5 = (FlEF FIEF) o

Sf f)Lz(Rd = (&, f) L2(re)
J f@o)n = || Ghlamotomdsdy

As this consideration was independent of Bj(0), we conclude, given that f is in an integral
form with a kernel, that this very kernel is already the covariance kernel of the fractional
Gaussian field.
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2 Definition and properties of the Fractional Gaussian Field

2.8 The Markov property

In this section we want to generalize the idea of the Markov property for processes with
a time axis onto a multidimensional level. The main idea is the following: We split our
domain R? into two parts D and R¥\D. Then we want to find out what the fractional
Gaussian field looks like when we condition it to be fixed in R\ D. The approach is clearly
inspired by studying the Brownian motion considering the sets [0,7) and [r, o) and then
get the Markov property. For the fractional Gaussian field we still get interesting results.
Here we do that in an very arbitrary setting, later in the special case of the Gaussian free
field, we look at this idea more closely and get more results. This section follows section 5
in [LSSW16].

We first introduce the term of a s-harmonic function.

Definition 2.8.1 (s-harmonic function and Hary(D)). Let s > 0 and D € R?. Then we
call a function f : R* — R s-harmonic on D if (—=A)*f)|p = 0. Furthermore, we define
the space

Hary(D) := {f e HS(RY) : (A f)|p = o}

of all in D s-harmonic functions of ]i.TS(Rd).

Definition 2.8.2 (s-harmonic extension). Let s € R, D € R? a domain and f : R\D — R
a function. If a function g : R* — R satisfies the two conditions

flravp = 9lra\p; ((=A)°g)[lp =0

we call g the s-harmonic extension of f on D.

These terms can be extended point-wise onto random functions f, g and, because of Re-

mark 2.3.6, also onto topological dual spaces. We want to split the space H*(R%) into a
direct sum of subspaces.

Lemma 2.8.3. For an allowable domain D < R we have

H*(RY) = Hary(D) ® H(D).

Proof. Let f € Hars(D) and g € H3(D). Then we have

(F29) g, gy = (TIP3 s2gwy = (CAV L)y = [ (~AV (€)= 0
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2 Definition and properties of the Fractional Gaussian Field

as (—A)*f|p = 0 and g = 0 outside D. So Hars(D) and f}g(D) are orthogonal. Now let f €

HS(]Rd) and consider the linear functional H0 (D) - 0,9 — (f, g)h;s(D) ((=A)°f,9) r2(ray-
0

From the allowability of D it follows that this functional is also continuous. With Riesz’

representation theorem we get that there exists fp € H§(D) such that (f, g)ﬁS(D) =
0

(fDs9) ». . Thus (=A)*(f—=fD),g) L2(ray = O forall g € f}g(D) so (—A)*(f—fp) =0on

H§(D)
D and f—fp € Hars(D). In particular we can write f = f— fp+ fp with f—fp € Harg(D)
and fp € H§(D). [ |

Remark 2.8.4. Since H*(R?) is the direct sum of Harg(D) and Hg(D) there exist orthogonal

projections P : H*(RY) — Hary(D), f = f — fp and Pp : H*(RY) — H(D), f = fp.
As every orthogonal projection is a contraction, they are continuous. Furthermore, the two
subspaces are closed.

Lemma 2.8.5. The semi-norm S(RY) — R, ¢ +> HQSHH._ ) defined in Definition 2.7.6 is
continuous.

Proof. With the projection Pp we can now solve the equation 2.7 explicitly. For
¢ € S(RY) we define f := Pp(—A)"*¢ € H3(D). Indeed for g € H3(D) we have

(.9) 3.y = (PO(=A)"0.9) 5

" i)
(=8)76,9) 5. 0
(D)5l G1El°) 12 gmay
= (DIE1° 2%, 91€1°) Lagray

= (&@)H(Rd = (¢, 9) L2(may-

As Pp is a projection, and further with Remark 2.3.6 we get
e - P § \ _A -5 .
H¢HH75(D) |Pp(=A) 9| . I=2)7°¢ s, gy = 121 2

Hs (Rd —s (Rd)

and therefore the continuity of the map S(RY) — R, ¢ > Hd)H (D) [

Theorem 2.8.6 (The Markov property of FGFs(R%)). Let r > 0 and D < R? be an
allowable domain. Then there exists a coupling of random elements (h,hp, h’g”") such that
(i) h ~ FGF4(RY)
(ii) hp ~ FGFs(D)

(iii) hi9" is a random element on Hars(D) independent of hp.
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2 Definition and properties of the Fractional Gaussian Field

(iv) h = hp + hHE almost surely.
Furthermore hg‘”’ and hp are both determined by h.

Proof. First we define the three elements via the Bochner-Minlos theorem. Consider
the functionals
Hs Rd))

S(R?) - R Sa(RY) - R
1 , D3
omvesp(=glol. )7 TP |6 enp( B oy
2" "H—s(D)
Clearly, both are linear and with Lemma 2.8.5 we get that ®%, is continuous. With a
similar argument we see that ®7, ;. is also continuous. Lemma 2.4.13 shows that ®7,
and ®% 5, are positive semi-definite. Thus, with the Bochner-Minlos theorem we get two

o7 -

random elements hp and hg‘“” respectively, that are clearly independent. As Pg a(¢) =0,

on H{(D) we get that hE is a random element on Hars(D). According to Definition
2.7.7 hp is a fractional Gaussian field with zero boundary conditions on D. Furthermore
we have

2
<1>8D<¢><1>8D,Har<¢>—exp(—|¢|§l ) 2HPH‘“" —A)7 I;S(Rd))
o3 (ool o2 ) )
:exp<_;(HpD( ISR P

)

+2(PD<—A>—S¢,P£”<—A>-S¢) +||Pher =)y

HS(]Rd))

Hs(Rd

=0

1

_ exp(—2HPD(—A)_S¢+Pg‘"( A)=¢
1
2

HS(]Rd)>

— 1 2
- (3o, )

As @, defined in Lemma 2.5.5, coinsides with ¢ — exp(—3]¢|>. ) on 87, (RY), we have
H-s(RY)

1(=2)7"¢]

PHPD par = Ps for p € S’ (R?). Hence, due to the uniqueness part of Bochner-Minlos and
the independence of hp and hg‘“", we get

E[eho+hE )] = B[eitho D]E[c/59)]

([ e ([ o)
Su(R9) S (R4)
= q)sD(¢) SD,HaT(¢)
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2 Definition and properties of the Fractional Gaussian Field

= CI)S(¢)
- f O du(f) = E[ei(hﬁ)]‘
S (R%)

As the characteristic function of a random variable determines it almost surely uniquely,
it follows that hp + hH2% := h ~ FGF4(R) defines a fractional Gaussian field on RY. Fur-

thermore, since h2% (¢) = 0 for ¢ € H.SO(D), we get h = hp on H.So(D). As hp only lives
on D, hp is determined by h, and thus, also hID{‘“” =h—hp. |

Definition 2.8.7. For s > 0, an allowable domain D € R? and h ~ FGF,(RY) we call the
uniquely determined random element hg‘”" given in Theorem 2.8.6 the harmonic extension
of h given its values on RN\D.

Let D € R be an allowable domain and let us denote Pph := hp and Pg “Th = hg‘”“.
Consider another allowable domain O < D. As the projections PD,Pga’",PO,Pg“T all
commute, we can split a fractional Gaussian field h ~ FGFs(R) up into the following parts

h = hp + hBe" = Pohp + Pohller + pHary, + PHaerpHaer,
Now as PoPp = Po, PoPH =0 and P PHor = PH" we get
hp = ho + Pgarhp,

with hg% = Pg “hp and ho being independent. In an analogue way we get the following
Corollary.

Corollary 2.8.8. Let s > 0 and O € D € R? be two allowable domains. Then there exists

a coupling of random elements (hp, hB%, ho) such that

(i) hp ~ FGF,(D)
(ii) ho ~ FGF,(O)

(i1i) hp = hgleT + ho almost surely. Furthermore, hg% and ho are both determined by
hp. hg% is called the harmonic extension of hp given its values on D\O.

2.9 The fractional Brownian field and continuity properties of
the FGF,(RY)

In this section we introduce and prove the existence of the fractional Brownian field in-
troduced by A. Yaglom in 1957 (see pages 292-338 in [Yag57]). The one dimensional case
was discussed earlier by Paul Levy in 1953 and is called the fractional Brownian motion.
We define the process over its covariance function, prove the existence with Kolmogorov’s
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2 Definition and properties of the Fractional Gaussian Field

extension theorem and finally show that the fractional Brownian field can be interpreted
as a fractional Gaussian field.

First we describe the usual way of constructing a Gaussian process via Kolmogorov’s
extension theorem.

Definition 2.9.1 (Projective family of probability measures). Let Z # & be an index set
such that for all i € T we have a measurable space (S;, A;). Furthermore, let (up)per be a
family of probability measures on (Sg, Ap) where Sp := X,cp Si, Ap := QepAi and F
denotes the set of all nonempty finite subsets of Z. In addition, for F,G € F with F € G,
we consider the projection HG,F Sa — Sr, (zi)iec — (zi)ier. Then the family (up)rer is
called projective or Kolmogorov consistent if for oll F,G € F with F € G we have

UF =BG HEJlF

Theorem 2.9.2 (Kolmogorov’s extension theorem). Let I # & be an index set such that
forallieT (S;,B;) is a separable and complete metric space equipped with the Borel sigma
algebra and (1) fer a Kolmogorov consistent family of probability measures for I. Then
there exists a unique probability measure p on (2, B) with Q = X,.7 and B := Q;er
such that for the induced stochastic process X; : Q — S; the marginal distributions on
the finite subsets of I coincide with the projective family (pp)per, i.e. for all f € F
and B € Bp, where Sp and Bgr are constructed like in Definition 2.9.1, it holds that
u([(X)i € F e B) = jue(B).

Proof. For a rigorous proof see section 15.6 in [Sch21]. |

Definition 2.9.3. Let T # & and C : T x T — R be a function. Then C is called a
covariance function if C' is symmetric in its two arguments and positive semi-definite, i.e.
forneN, ci,...,cp, € R and i1, ...,1, € Z, it holds that
n

D ¢jCij ir)ex = 0.

k=1
Proposition 2.9.4 (Construction of Gaussian processes). Let Z # & be an index set and
C : 7 xT — R a covariance function. For F' € F we define the probability measures
pr = N(0,C(ij,ik)jker) on Sk := X,ep Ri. Then the family (1r)rer is a Kolmogorov
consistent family of probability measures and the assumptions of Kolmogorov’s extension
theorem are fulfilled. Thus, there exists a Gaussian process with covariance function given
by C.

Proof. See Exercise 2.86 in [Sch21]. [ |

First we introduce the following function that we wish the covariance function of the
fractional Brwonian field to be. We define for Hurst parameter H > 0

R? x RY - R

1 2.8
(@) = 5 (e + [y = |z — ) 28)

CrBr:
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2 Definition and properties of the Fractional Gaussian Field

In the following Lemma we ensure that Crpp is indeed a covariance function. The proof
follows Remark 2.111 of [Sch21].

Lemma 2.9.5. For H € (0,1) the function Cppp : R? x R? - R is a covariance function.

Proof. We need to show symmetry and positive semi-definiteness. From its definition
it clearly holds that Crpp(z,y) = Crpr(y,x). The positive semi-definiteness requires a
longer argument. Let us consider the following integral for z > 0 solved by the transfor-
mation v = zu

) —22u? 0 —v? o0 —v?
J %du U:Z“f %zdv = zQHf %dv.
0 U 0 1w o v
=:Cyg

Thus, we get

2,,2

1 CDl_efzu
2H _
z —CHJ iz

For z = 0 this equation remains also true. Furthermore, by the rule of de L’Hospital the
integral is well defined and finite. Furthermore, we can write the exponential term into a
power series and can exchange the series with the integral due to the monotone convergence
theorem

du

J‘OO 6_|$‘2u2 (62(7:711)“2 — ]_)6_|y‘2u2

wl+2H

el (i W) R

=1 :
f ult2H du
© 9 e~ 1ol (g .y ke lylu?
2 kJ ul—2k+2H du

Using |z —y|? = |z|? + |y|? — 27 -y and the series representation of the exponential function

0

(2 © 2k 2k 0 2k
’ -y, He Z
e
U Qkk" )

k=0 k=1

we get for Crppp

1
Crpr(z,y) = §(|5U|2H e y|2H)

1 J‘OO (1 - e_\93|2u2) +(1- e\y\qu) —(1- e_‘x_y|2Hu2)du

= 2Cy wl+2H
L[ (1= e laPu?y(1 — e~lul?u?) 1 (0 ele—yPu? _ o—(le2+yl?)u?
- 2Cy J wl+2H du + 2Cs j ul+2d
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2 Definition and properties of the Fractional Gaussian Field

du

1 JOO (1 _ e—\x|2u2)(1 _ e—|y\2u2)d 1 J*OO 6—|J:\2u2 (62($~y)2u2 _ 1)6—\y|2u2

~ 20y, ul2H U+ 20y wlr2H

1 (% (1 = e~ l2lPu?y(q = e~ lylw? 1 —[z|?u? 2k o—y|*u?
Ys! J e u1)+(2H - i t50 2 f - wl- 21@221{ du.
" Jo H =

Finally, for n € N, z1, ..., z, € R? and vy, ..., v, € R we get

o8]
Z v;Crpr(xi, x;)v; =
3,j=1
Zz] pui(l—e m|2uz)(1 - 67|mj|%2)vjd
20H ult2H u
ok Zz‘,j:l v;e —|zi|*u? (2; - )k —Jwj[?u? Uﬂd
® wl—2k+2H w

. . (Zn: v (1 — e*|xi|2u2))2 (2 vie —|zi|?u /k )
T 20y (fo - wl2H d“+kZ f = L 2k+2H du) =0

and therefore the positive semi-definiteness of Cpgpr. All together Crpp is a covariance
function. m

Now we finally get the existence of the fractional Brownian field for Hurst parameter
€ (0,1).

Corollary 2.9.6 (Existence of fractional Brownian field). For the covariance function
Crpr given in equation 2.8, there exists a unique Gaussian process By : €} X R% - R such
that

E[By(x)Br(y)] = Crar(z,y) for all z,y € RY.

Proof. For the proof combine Lemma 2.9.5 and Proposition 2.9.4. |

Remark 2.9.7. We call the special case d = 1 of the fractional Brownian field the fractional
Brownian motion. This makes sense as for Hurst parameter H = 5 we get for s,t € R

CFBF(S,t) = 5(8 +t— |S —t|),

which is the covariance function of a two-sided 1-dimensional standard Brownian motion.
From the uniqueness part of Kolmogorov’s extension theorem it then follows that these
processes coincide, so the standard Brownian motion can be seen as a special case of frac-
tional Brownian motion.

We can even go one step further and show that the fractional Brownian motion can be
interpreted as a special case of the fractional Gaussian field. The following Lemma shows
the connection between these two objects.
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2 Definition and properties of the Fractional Gaussian Field

Lemma 2.9.8. Let s € (d/2,d/2+1), i.e. for the corresponding Hurst parameter H € (0, 1),

and h ~ FGF4(R?). Then the process By : Q x R? - R, By () := m(b, 0z — do) is

well defined and a fractional Brownian field with Hurst parameter H € (0,1), whereby d,
denotes the Dirac measure at the point x € RY.

Proof. We need to show that for x € R% the distribution &, — &g is in the domain of the
fractional Gaussian field. This is clear as we know from Theorem 2.6.4 that the covariance
kernel of h is of the form

R x RY 5 R
Gy :
(z,y) = C(s,d)|z — y|*"

Observe that in this case the constant C(s,d) is negative. Therefore, for all z,y € R?, it
holds for By that

B[Bu(2)Biu(v)] = E[M(h, 5o = 30) s 3y = )]

_J j o(w)|u — v[* (8,(v) — do(v))dudu
R4 JRd

§(|I|2H + |y — |z = y*") = Cppr(z,y).

From the uniqueness part of Kolmogorov’s extension theorem we get that By is indeed a
fractional Brownian field. |

With theorem 2.9.2 and Proposition 2.9.4 we have seen a very common way of defining an
Gaussian process. A further standard tool that is often used is the Kolmogorov—Chentsov
continuity criterion for finding a modification of the Gaussian process that is locally Holder
continuous.

Theorem 2.9.9 (Kolmogorov-Chentsov continuity criterion). Let (X;),cgpa be a process
with values in a complete and separable metric space (S,d), equipped with the Borel sigma
algebra B. Assume that there exist constants a,e > 0 such that for every compact set

K C R? there exists a constant Cg > 0 satisfying for all s,t € K
E[d(Xs, X;)?] < Ogls — t|?+e.

| <
Then there exists a modification (Yy)epa of (Xt)tera such that all its paths are locally Hélder
continuous for all Hélder exponents b e (0, <).

Proof. See theorem 2.102 in [Sch21]. [ |

There also exists a version of that Theorem as a special case of Gaussian processes that
is sometimes easier to apply. We will use it later in in the next subsection.
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2 Definition and properties of the Fractional Gaussian Field

Corollary 2.9.10 (Kolmogorov’s criterion for Gausssian processes). Let (Xg)aea be a
centered Gaussian process with index set A € RY. If there exist €,C > 0 such that for all
a,a’ € A it holds that

E[(Xa — Xo)?] < Cla—d'[%,
then there exists a modification of (Xa)aea that is almost surely continuous.

Proof. For the proof see Lemma 3.19 in [WP21]. [ |

Our goal now is to show that the fractional Brownian motion has indeed locally Holder
continuous paths.

Lemma 2.9.11. The fractional Brownian motion with Hurst parameter H € (0,1) has a
modification with locally Hélder continuous paths for all Hélder exponents in (0, H).

Proof. Let z,y € R. Then it follows with the covariance function of the fractional
Brownian motion 2.8 that

E[(Bu(x) — Bu(y))’] = E[Bp (2)°] — 2E[Bp (2) B (y)] + E[Bu(y)]
= e = (Je " + [y = o —yP) + [y

= |z —y?"

and thus By (x) — By (y) ~ N(0, |z —y[*). As for all positive integers n the n-th centered
moment of a standard Gaussian random variable exists and is finite (see Exercise 2.35 in
[Sch21]), there exists a constant C), and for the fractional Brownian motion we get

E[|Bu(z) — Bu(y) "] < Culz — yP" = Oz — y |+ CH=D),

With the Kolmogorov-Chentsov continuity criterion we now get for all integers n a mod-
ification of the fractional Brownian motion with locally Holder continuous paths with

Holder exponent less than 2}12#71 In conclusion, we arrive at the result that there ex-
ists a modification with paths locally Hélder continuous for all Hélder exponents less than

2Hn—1 _ H [
SUDpeN <5 .

At the very end of this chapter we present two further properties of the fractional Gaus-
sian field. The first shows that the higher the Hurst parameter H gets, the more differen-
tiable the fractional Gaussian field is.

Theorem 2.9.12. Let s > 0, h ~ FGF,(RY) and H be the corresponding Hurst parameter
and define k := [H|-1. Then, h € C**(R%) almost surely for all multi-indices o with
0<l|of<H-[H]

Proof. See Proposition 6.2 in [LSSW16]. [
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2 Definition and properties of the Fractional Gaussian Field

The second theorem shows the existence of a big coupling of fractional Gaussian fields. It
is very interesting, especially for generating and plotting fractional Gaussian fields. Indeed
one can start with an white noise or a Brownian motion and get all the other fractional
Gaussian fields by applying a suitable fractional Laplacian operator.

Theorem 2.9.13. There exists a coupling of random fields (hs)ser with hy ~ FGFs(R)
for all se R and hs = (—A)FTsht for all s,t € R.

Proof. See Proposition 6.3 in [LSSW10]. [ |

2.10 The Gaussian free field

One further special case of the fractional Gaussian field is the Gaussian free field, or short
GFF, that corresponds to FGFy(R%) or FGF; (D). It can be interpreted as a natural gen-
eralization of the Brownian motion. For this case, there is much more literature than for
the general case. There are many ways to approximate the Gaussian free field by a discrete
version. Furthermore, there is a larger theory of the Markov property and so called local
sets. In addition, the two dimensional case is particularly interesting due to its connec-
tions to complex analysis and the Schramm-Loewner evolution, discovered in 2000 by Oded
Schramm. In this section we want to give an overview of some interesting facts about the
Gaussian free field. We start analysing the covariance kernel, also called Green’s function.
Then we cite a version of the Markov property and define local sets. Finally, we show that
the Gaussian free field can be represented as a random Fourier series. This section follows
the lecture notes of Wendelin Werner [WP21].

In this entire section we assume a domain D € R? to satisfy certain conditions. We want
it to be a bounded, connected and open subset of R%, such that all its boundary points
are regular. Here a boundary point z € 0D is said to be regular, if for all d-dimensional
Brownian motions (By)[o,0) starting in z, we have that inf{t € [0,00) : B, ¢ D} = 0
almost surely. We first consider the Green’s function of the fractional Gaussian field i.e.
the covariance kernel, that we denote as Gp : R¢ x R — R in this section. For y € R?, we
define the following function

1 1

— log for d = 2
2m 7 |z —y|
1

Hy,:R? >R,z
_ ford > 3

aqlr —yl+? '
where a4 denotes the surface of the d-dimensional unit ball. In the case of D = R%, we
already get the Green’s function G : R? x RY — R, by defining G(x,y) := Hy(z). It readily
follows that this function is, up to a multiplicative constant, the unique harmonic function
on RA\{y} that tends to zero for |z| — 0o. Now for D # R? we define the function

b D\{z} - R
wh T = Em[Hy(BT)]

i
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2 Definition and properties of the Fractional Gaussian Field

whereby [E, denotes the expectation under which B is a Brownian motion that starts at
x and 7 is the stopping time 7 := inf{t € [0,00) : B; € 0D}. In other words, we start a
Brownian motion in the point x € D and stop it in the first moment, where it hits the
boundary of D and consider the value of H, at this boundary point. Then we take the
expected value of this random value. This is well defined, as D is suitable for that problem.
The function h, p is then the unique solution of the Dirichlet problem with boundary
conditions H,, which means that it is the unique function on D that is harmonic and has
the values of H, on dD. The Green’s function then can be represented as

Gp(z,y) := Hy(x) — hy,p(2).
The following Proposition sums up the last thoughts.

Proposition 2.10.1. Let D # R¢ be a domain and y € D. Then x — Gp(x,y) is the
unique continuous function on D\{y}, such that the following three properties holds true.

i) It vanishes at 0D, i.e. Gp(x,y) =0 for ye€ dD.

ii) It is harmonic in D\{y}.

i) The function x — Gp(x,y) — Hy(x) stays bounded in a neighbourhood of y.
Proof. See Lemma 3.7 in [WP21] |
Furthermore, one can consider the Green’s function to be the inverse of the Laplacian

operator. Let f € C.(D), i.e. f is continuous with compact support in D, then we can look
at the following construction. We define

D—>R

o) T JD f(W)Gp(z,y)dy

Then it follows that Gp(f) is a continuous function on D that is twice continuously differ-
entiable in D and vanishes on ¢D. Furthermore, we have —AGp(f) = f. We can use that
to show that for all Schwartz functions the Green’s function is indeed a positive definite
integral kernel. Let ¢ € S(R?). Then we have for h ~ GFF

E[(h, ¢)%] = fD fD &(2)Gp (0, 1) () ddy
_ j G p(6)(2)b(x)da
D
- jD Gp(0)(2)(—A)Gp(6)(w)dx
_ f ‘VGD(x)r
D

We will add one last comment about the Green’s function. As D is bounded, we can find an
orthonormal basis (¢, )nen of L?(D), such that all ¢,, vanish on d(D) and are eigenfunctions
of —A,ie. —A¢, = A, for some A\, = 0. As (¢, )nen is an orthonormal basis, we have for
all f e L2(D)

dx = 0.
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2 Definition and properties of the Fractional Gaussian Field

£= 3 b where fui= | f@)on(o)dz
n=1 D

If we apply —A to f, we get

_Af = Z fn(_A)¢n = 2 fn)\n(bn

n=1 n=1

Thus, we can find an explicit way to represent the above mentioned function Gp(-), seen
as the inverse operator of —A on L?(D). For f € L?(D) we have

LRI C (29)

We use that to get a representation of the Green’s function in terms of the orthonormal
basis (¢n)nen. Using (én, dm)r2(py = S{n=m}, we have

%@@=2L%w%@mwm>

Il
Q
S
°
<

as (¢n)nen is an orthonormal basis.

Let us now continue with the second topic. Clearly we cannot evaluate the Gaussian free
field point-wise and thus, it makes even less sense to talk about continuity. But we can find
a subset of the domain of the Gaussian free field on which we will try to find a continuous
modification. Therefore, we need to notice that the Gaussian free field can be defined on a
larger domain as the Schwartz functions in D. In particular we can extend the process on
all functions f that fulfill

f j F(2)Gp(a,9) f (y)dady < . (2.10)
D JD

In [WP21] the Gaussian free field is directly defined on all these functions. A special sub-
class of functions that satisfy 2.10 is the set of the so called cycle averages that we will
introduce now.

Definition 2.10.2 (cycle averages). Let z € RY and r > 0. Then ), is defined to be the
density of the uniform measure on the surface of the ball B,(z) with center z and radius .
It is easy to see that for all domains D € R?, such that B,(z) € D, the density Az can be
integrated over the Green’s function as in 2.10 and thus, T'(\, ;) is well defined. We denote
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2 Definition and properties of the Fractional Gaussian Field

Y(z,7r) =T ().

An interesting fact is that one can construct a standard Brownian motion out of a Gaus-
sian free field.

Proposition 2.10.3. For B,,(z) S D, we define the process (B;"®) € [0, 0) by

BZJ“O — (’7(277“067” - 7(Z7T0) ford =2
o Y(z, (t+ r?fd)l/@—d)) —y(z,r0) ford >3

Then (Bf“)te[()’oo) 1s a standard Brownian motion. Furthermore, if one considers count-
ably many disjoint balls By, (z,),n € N, contained in D, then the corresponding processes
(ijmj)te[o,oo) are independent Brownian motions.

Proof. Let I' be a Gaussian free field on an domain D and f a function that agrees
with condition 2.10 and is supported in D\B,,(z). As the Green’s function is, according to
Proposition 2.10.1, harmonic in both its arguments except the diagonal, it follows for all
O<r<mrg

E[(z, r)T(f)] = jD fom)GD(x,y)Az,r(y)dxdy
=f f(@) f G ) A (y)dyde
D D
:f f(x)Gp(z)dx
D

and thus, for all 0 < r < rg, we get

E[(v(z,7) — ~(2,10))T(f)] = 0.

Since I' is Gaussian distributed, we get that the process (y(z,7) —¥(2,70))re(0,ro] is inde-
pendent of all I'(f), where f is supported in D\B,,(z). Now, we want to determine the
covariance structure of this process. Using again the harmonicity and the symmetry of the
Green’s function, we get for 0 < r <7’ < ry

B[0Gr) = 1] = [ | (M) = Aesr@)) G (a) (A 0) = Ao )

- [ o) ( [ et y))\Z,T(y)dy> w- | ( [ rr@nte y)dx) A (9)dy

)

:G;(x,z) :G;(ZJJ)
- Azm)( | GD(:c,yMz,T(y)dy)dm | ( | Az,T«m)GD(m,y)dx)xmy)dy
D LD , D \D ,
=GD(zvy) :GD(Z7y)
= J Aoy (2)Gp(z, 2)dx — f Az (2)Gp(x, 2)dx.
D D
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2 Definition and properties of the Fractional Gaussian Field

With Proposition 2.10.1, it follows that this is equal to

log(™) if d =2,

r2=d — (yh)2—d ifd>3 (2.11)

)

J /\z,T(w)GBr,(z)(m,z)dx = {
D

where G ,(.) denotes the Green’s function of the domain B,/(z). Thus, the first result
follows. As we have seen that these processes are independent of all I'(f) such that the
support of f is contained in D\B,,(z), the second result follows. [ |

Proposition 2.10.4. There exists a modification of the Gaussian free field on D such that
the process v : {(z,7) : z€ D,r € (0,d(2,0D))} = R, (z,7) = v(z,r) is continuous.

Idea of the proof. We want to apply Corollary 2.9.10. For a change in the radius we
get an estimate with 2.11. For a change of the center it is easy to find a similar one of the
form

E[(v(z,7) = 2(2,1))?] < C(ro)lz — #/|

for all d(z,2') < rg, d(z,0D),d(z',0D) > ry. Thus, we get the existence of a constant
C(ro, D) > 0 such for all 7,7’ > rg and z,2' € D with d(z,2') < %3 and d(z,0D) > ro, it
holds that

]E[(v(z,r) - 7(2’,7"'))2] < C(ro, D)(|z — 2|+ r— 7“’|).

Using Corollary 2.9.10, we can conclude that there exists a modification of the Gaus-
sian free field such that for all (z,7) with d(z,0D) > 7o the process (z,7) — ~(z,7)
is continuous. As we can do this whole procedure for a sequence of 79, — 0, we see
that there exists a modification such that (z,7) +— v(z,7) is continuous on the whole set
{(z,r): ze D,r € (0,d(z,0D))}. [ |

Another point regarding the Gaussian free field, that one has to think about, are scaling
properties, analogue to Proposition 2.5.2. In the case of d > 3, we can deduce directly from
the covariance structure of the Gaussian free field that for a domain D < R, r > 0 and
x,y € D we have for the Green’s function

GTD(rxv "’y) = r2_dGD (:1:7 y)7

where rD denotes the scaled domain. Thus, we get in law for a Gaussian free field I'p on
D the following property

I'vp 4 Td/2_1FD.

In the case d = 2, we obtain a very special property. With Proposition 2.5.2 it follows,
plugging in s = 1, that the Gaussian free field is scaling invariant. However, that is not the
only property. It is even conformal invariant, i.e. if we have an angle preserving bijection
® : D — D, Gaussian free fields I'p, T’ p with domains D and D respectively, and any f on

D that agrees with 2.10 it holds that
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2 Definition and properties of the Fractional Gaussian Field

where f is the push forward map under ®, defined by

f ' {D —-> R
e f@ @)@ ) (@)

Let us conclude this subsection with one more topic. We want to describe the Markov
property in an analogue way as in Corollary 2.8.8. As we are now in a more specific setting,
we are able to get a stronger version of the Markov property. We state the version in the
lecture notes of Wendelin Werner (see Proposition 4.3 in [WP21]).

Theorem 2.10.5 (weak Markov property of the GFF). Let D < R? be a domain and
A € D a compact set such that the boundary of D\A is reqular and T' a Gaussian free
field in D. Then there exist two generalized random functions T4, T4 on D such that the
following holds

i) T4 and T 4 are independent Gaussian processes.
ii) FA|D\A is a Gaussian Free field in D\A.

i11) There exists a version of I'g such that FA|D\A 18 almost surely equal to a harmonic
function in D\A.

Proof. See section 4.1 in [WP21]. [ |

Remark 2.10.6. The idea of the weak Markov property for the Gaussian free field is the
following. One chooses a suitable compact set A € D where we know what happens. By
Theorem 2.10.5, we can now restrict I to the set A where we know it and extend it on
the complement by the unique harmonic function, that has zero boundary on ¢D and the
values of I on 0A. Here one has to be careful, as I' is not a function and therefore this
step requires more care. Once we have found that harmonic function, we can sample an
independent Gaussian free field on D\A with zero boundary conditions. If we now sum
them up, we just end up with a Gaussian free field in D. This is particularly interesting for
sampling a Gaussian free field. It would be analogue to receive a simulation of a Brownian
motion by sampling Gaussian random variables step by step.

Remark 2.10.7. Analogue to chapter 2.8, we get a result for splitting a Gaussian free field
into two parts twice. Let A € B € D be two compact subsets of D that satisfy the
assumptions of Theorem 2.10.5, then it follows in an analogue way that

I'B =048 and I'p =Ty + (T'4)p.

Remark 2.10.8. Here we define a function f being harmonic by Af = 0. If f is continuous,
this is equivalent to the mean value property, i.e. for all balls, completely included in the
domain of f, the value of f at the center is the same as the average of f on the surface
of the ball. We will use this fact later to show the equivalence between the strong Markov
property and a set A being a local set.
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2 Definition and properties of the Fractional Gaussian Field

Here we call this decomposition the weak Markov property of the Gaussian free field,
based on the weak Markov property of the Brownian motion. As in the case of the Brownian
motion we can even find an analogue of the strong version of the Markov property, namely
that the set A is not deterministic any more.

Definition 2.10.9 (Strong Markov property of the GFF). Let I' be a Gaussian free field
on D and A a random compact subset of D such that D\A has a regular boundary. We say
A satisfies the strong Markov property for I, if there exist two random generalized functions
'4,T4 such that

i) T=Ty+T4

it) T4 is linear in its argument and there exists a random function ha in the complement
of A that is harmonic almost surely and such that T' s4(¢) = ha(¢) on the event that
the support of ¢ is contained in D\A.

iti) Conditionally on (A,T4), T4 is a Gaussian free field in D\A with zero boundary con-
ditions.

Here the notion h4(¢) denotes the integral

ha() = fD hoa(2)6()d.

Remark 2.10.10. As every harmonic function is determined by its values on the boundary,
I' 4 is measurable with respect to the sigma-algebra generated by I restricted to A. As
conditionally on (A,T4) the process I'* is a Gaussian free field in D\A and T'4 can be
explicitly described in a measurable way by A, it is, conditionally on A, independent of
I'4. Thus, if A is deterministic, we get the weak Markov property. Therefore, every deter-
ministic set satisfies the strong Markov property.

By Remark 2.10.10, we have seen the Definition 2.10.10 makes sense as an extension of
the weak Markov property. Nevertheless, it is not an easy definition to work with. For
example, if one wants to prove that, under additional assumptions, the union of two sets,
that satisfy the strong Markov property, satisfies again the strong Markov property, the
proof gets very long and complicated. Therefore, one can derive an equivalent notion, the
so called local sets, that is easier to work with.

Definition 2.10.11 (dyadic approximation). Let n € N and A € D compact, further for
ieZ% let

_ 11 11+ 1 iq tq+1
Qi= [27 2n ] S [27 2n ]
Then, we define the dyadic approximation of the set A as follows

An = U Q,L

i€24,Qin A% D
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2 Definition and properties of the Fractional Gaussian Field

Remark 2.10.12. We call sets that can be represented as a finite union of cubes @Q; of
length 27" intersected with D 27"-dyadic sets. In the case of A € D, it follows by the
boundedness of D that A, is a finite union of cubes Q; N D and therefore a 27 "-dyadic set.
In addition, it holds that A, 2 A and

(4. = A

neN

Furthermore, one can define the dyadic approximation of a random set in an analogue way.
Here it is important that the dyadic approximation of a random set is a deterministic and
therefore measurable function of the random set.

Definition 2.10.13 (dyadic local sets). Let I' be a Gaussian free field on D and n € N.
Then we call a random set A an 27" -dyadic local set of T, if it is a random 27" -dyadic set
and for all deterministic 2~ "-dyadic sets B the process T'B, defined by Theorem 2.10.5, is
independent of the sigma-algebra generated by (I'p, B).

A direct consequence of this definition is the following Lemma.

Lemma 2.10.14. For all n € N, every 27 "-dyadic local set satisfies the strong Markov
property.

Proof. Let A be a 27"-dyadic local set. It readily follows that A is a compact random
set such that D\A has regular boundary. Now for every deterministic 2~ "-dyadic set B,
by Theorem 2.10.5, there exist I'? and T'p that split I' up with corresponding harmonic

functions hp on D\B. As D is bounded, there are only finitely many 2~ "-dyadic sets in
D. Thus, the following random processes are well defined

Iy:= Eﬂ{A:B}F& r4 = Zﬂ{A:B}FB’ ha = Eﬂ{A:B}hB'
B B B

Furthermore, it follows that T'y + I'4 = I" almost surely, h4 is almost surely harmonic on
D\A and T'4(¢) = ha(¢) on the event that the support of ¢ is contained in D\A. Finally,
conditionally on A and therefore also conditionally on (A4,T4), I'4 is a Gaussian free field
in D\A. [ |

Remark 2.10.15. On the other hand it is easy to see that every random 27 "-dyadic set,
that satisfies the strong Markov property, is a 27 "-dyadic local set.

Now we are ready to define local sets.

Definition 2.10.16 (local set). Let I' be a Gaussian free field on D and A a random
compact set such that D\A has a regular boundary. Then A is a local set of T, if every
27" -dyadic approximation is a 27" -dyadic local set of T'.
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2 Definition and properties of the Fractional Gaussian Field

Let us show that the two notions, A satisfying the strong Markov property and A being
a local set, coincide.

Theorem 2.10.17. Let I’ be a Gaussian free field on D and A € D a random compact
set. Then A satisfies the strong Markov property for I' if and only if it is a local set for I.

Idea of the proof. We start assuming that A satisfies the strong Markov property,
thus there exist T'4 and I'*. Let n € N. By Lemma 2.10.14, conditionally on (I'4, A), we
can split the process I'4, that is a Gaussian free field in D\A, further up. We get

4 = (T4 + (T4)4,,.

It follows that, conditionally on ("4, A) and (I'4) 4,,, the process (I'4)4" is a Gaussian free
field in D\A,, and T4 4+ (I'4) 4, is restricted to D\A,, as a sum of harmonic functions,
again a harmonic function. We define Ty, := T'a + (T')4, and T4 :=T — Ty, . As A, is
a deterministic and therefore measurable function of A and the information of A, we have
split up I' into two parts such that one is conditioned on (A,,I'4,) a Gaussian free field
in D\A,, and the other is a harmonic function in D\A4,,. As already mentioned in Remark
2.10.15, it follows that A, is a 27 "-dyadic local set.

Let us now assume that A is a local set for I'. Therefore, we have, for all n € N,
a splitting T4, T4 . We want to construct the two processes I'* and I'y. As A, is a
measurable function of A and (,,-,, A, = A for all m € N, the sigma-algebra generated by
A is the same as the sigma-algebra generated by (A,,n = m) for all m € N. Furthermore,
as A, is already determined by A,1; for all n, I'4,, is measurable with respect to the I' 4,
for all m > n. Let us now define the sigma-algebras

gn : O'(A,FAn) = U(FAn)AnyAn+laAn+2u )

= U(FAH) FAn+1)FAn+25 erey Anu An+17 An+27 )7

that is a decreasing sequence of sigma-algebras. Clearly I'4, is measurable with respect to
Gn. We have, using Remark 2.10.7,

Ta, =Ta, , + (TA+1)

n+1 n?

where (T'4»+1), is independent of (A, ;1,T4,11), and therefore of G, 1, and centered
Gaussian. Thus, we get

La,i = E[l4,]Gn41]

In conclusion, (I'4, (¢))nen is an inverse martingale with respect to the inverse filtration
(Gn)nen for all ¢ € S(D) and therefore converges almost surely and in LP for all p > 1 to
some limit, we call I'4(¢). Further, we define

r4:.=T7-Ty4.
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2 Definition and properties of the Fractional Gaussian Field

Now, we need to show that this splitting agrees with the definition of the strong Markov
property in 2.10.9. We start showing that I'4 restricted to D\A is a harmonic function.
Remember that D is open, thus, for every z € D we have d(z,0D) > 0. We define for
z€ D, 0 <r <d(z,dD) and n € N the random variable ~,(z,r) as the average of I'4, on
the surface of the ball B,.(z) € D. As also the process 7, (z,r) is a reverse martingale, it
converges almost surely and in LP for all p > 1 to the spherical average of I' 4, we denote by
Yoo (2,7). By Remark 2.10.8, this process needs to coincide almost surely with the harmonic
function h,4, on D\A,, and is therefore independent of the chosen r < d(z,0D). Now, we
define the event E(z,7) of the ball B,(z) being contained in D\ A and the sequence of the
harmonic functions 1., ha,(2) converges almost surely and in all L? for p > 1 to some
limit. As again this process is independent of r < d(z, 0D) and therefore can be defined on
the whole event D\ A, we can define

ha(z) == 1p\a(2)ha,(2)-

We notice that for all suitable f, we have I'4(f) = ha(f) on the event that the support of
f is contained in D\A. Thus, on this event we have

La(f) = T}gT(}OFAn(f) = nli_I}C}OhAn(f) = ha(f).

To use Remark 2.10.8, we need to show that there exists a continuous version of that process
that has the mean value property. We want to apply the Kolmogorov-Chentsov continuity
criterion 2.9.9. Let 2,2’ € D with d(z,0D),d(z',0D) > 2r. Using the LP convergence,
conditional Jensen inequality and equation 2.11, we conclude

E| (v (2, 7) = 70 (/s 7))+ | = lim E[ (2. 7) = 7 (/7))

n—co

S CRCUREEAT AR

<E[(1(z,1) = (2,1)*?]

= E[(v(z) — 1?2+ D < O - 2P

Note that for the equality in the last line, we used that for X ~ N (0, 0?), we have E[X?"] =
(2n —1)lo™. Using the Kolmogorov-Chentsov continuity criterion, we get that there exists
a continuous modification of I 4 on the event D\ A. We need to show that this contiunuous
version also has the mean value property. We already know that for z € D and 3r >
d(z,0D), it holds that

ha(2) = 7(z) = lim ya(z,m).

Furthermore, the averages ~,(z,r) converge almost surely. Thus, to see that h4(z) is equal
to its average on 0B, (z), which we denote by ya(z,7), we need to show that the averages
Yn(z,7) converge to the average of hy. This is, because of the uniqueness of the limit,
almost surely true. Therefore, it suffices to show

]lE(z,r)hAn (Z) - ]lE(z,r)VA(Zvr)‘
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2 Definition and properties of the Fractional Gaussian Field

This follows readily as it is bounded in L?. For the details see Proposition in [WP21].
Finally, we need to show that T'4 is conditioned on (A,T'4) a Gaussian free field in
D\A. As T4 is a Gaussian free field in D\A, for all n € R, it is independent of
Gn 2 G 2 0(A,T'4). Furthermore, I'4» is independent of A,, for m > n as with Re-
mark 2.10.7 we get T4 = (T'4m)4n In conclusion T is independent of T'4. |

Finally, we show, using the equality of the two notions, the following lemma.

Lemma 2.10.18. Let I’ be a Gaussian free field in D and A, A’ two local sets of v that
are, conditioned on T, independent. Then also A U A’ is a local set.

Proof. We first show the result for two 27 "-dyadic local sets. Let B be a deterministic
27 "-dyadic set, fi,...; fin, g1, .., gm suitable functions in the domain of the Gaussian free
field and Uy, ...,Upn, V1, ..., Vi, open sets in R. We define the following, with respect to
o(I'P) and o(I'g), measurable events

UB .= {PB(fj) eU,:je{l, m}} and Vg := {FB(gj) eV;:je{l, m}}

Then, the set of all events of the form of UP? is stable under intersection and generates
o(I'P), analogue to that, the set of all events of the form Vg is intersection stable and
generates o(I'g). Furthermore, for a 27 "-dyadic set B’ € B, the set of events of the form
VB, Ve n{A = B’} generates o(I'p,{A = B’}) and analogue for A’. Now, for all 27 "-dyadic
sets B1, Bs with By u By = B we get

P[UP, Vi, A = Bi, &' = Bo] = E[P[U”, Vg, A = By, A" = BT |
_ E[]lUBmVBIP[A = By, A = BQ|F]]
— E[1y5 1y, P[A = BiT|P[4" = BT .

As I'B is independent of o(T', {A = By}), it follows that P[A = B{|T'] = P[A = B;|T'5]
and also that P[A’ = By|T'] = P[A’ = Bs|l'g]. Using that I'® and I'p are independent, we
have

P|UP, Vi, A= By, A' = B,| = PUP|E[ 1y, P[4 = B[T|P[4’ = By|T] |
— P[UP]P| Vi, A = By A' = By|.
Now summing over all By, B, satisfying By U By = B, we get
IP’[UB,VB,A U A = B] — IP’[UB]]P’[VB,A U A = B].

Thus, we get that T4%4 is independent of (Taoa, AuA")and Au A is a 27"-dyadic local
set. With Lemma 2.10.14 the result follows. |
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3 Convergence of the Gaussian multiplicative
chaos associated to the fractional
Brownian field

In this chapter we define the Gaussian multiplicative chaos of a fractional Brownian field
and want to describe its limit in an useful way when the Hurst parameter converges to 0.
Let By be a fractional Brownian motion, then the Gaussian multiplicative chaos associated
to that fractional Brownian field By is a random measure, that is formally given by

2
Mf(da:) = exp (’yBH(x) — éE[BH(x)Q])dx,

where v > 0 is a constant. Often the Gaussian multiplicative chaos is shortly denoted by
GMC. We are interested in the case when the Hurst parameter H tends to 0. The first
approach to this topic was the definition of a Gaussian multiplicative chaos associated to
a log-correlated Gaussian field that was introduced by J. Kahane, see [I[<ah85]. In the first
three sections we want to present and prove a result of P. Hager and E. Neuman (see The-
orem 2.4 of [HN20]) that shows convergence in probability. In the second part we discuss
normalizations of fractional Brownian fields that fit the assumptions of the convergence
result.

3.1 The statement of convergence of the Gaussian multiplicative
chaos

In the following, D denotes always a bounded domain. This section follows section 2.1 of
[HN20].

Definition 3.1.1 (family of normalized fractional Brownian fields). Let D be a bounded
domain and Hy € (0, %) Then we call (Xu)pe(o,1y) @ family of normalized fractional
Brownian fields if for every H € (0, Hy), Xg is a random element of tempered distributions
on D. Furthermore, we have the following covariance structure

1— [ —y| "

H+h

E[Xp(z)Xn(y)] = C(H, h)( + gH,h(377y)) (3.1)

forx,y e D and H,h € (0, Hy), whereby C(H,h) > 0 is a constant that depends only on H
and h and g 2 D x D — R is a bounded function for every h, H € (0, Hyp).
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Definition 3.1.2 (Gaussian multiplicative chaos). Let (Xu)ge(o,m,) be a family of nor-
malized fractional Brownian fields and v > 0. Then we call the random measure Mf on
D with density

2
M7H (dz) := exp <’)/XH(JJ) — ZE[XH(x)ﬂ) dz,

the multiplicative chaos associated to (X ) pe(o,Ho)-

The interesting case of the Gaussian multiplicative chaos is when H tends to 0. Is there
a useful way of normalizing to get a non trivial limit? This is, in the general setting, a very
hard question to answer and for many cases still unknown. Here we present a result of P.
Hager and E. Neuman from 2020 (see Theorem 2.4 in [HIN20]).

Theorem 3.1.3. Let Hy € (0, %), (X#)He(0,H) be a family of normalized fractional Brow-
nian fields on a domain D, v > 0 and Mf the associated Gaussian multiplicative chaos.
Let the covariance function 3.1 of (XH)He(O,HO) fulfill the following two properties:

i) The function C : (0, Hg)*> — R, that describes the constant of 5.1 is uniformly contin-
uous and it holds that

lim sup |C(H,h)—1|=0. (3.2)
H—00<p H<H

ii) The function g : (0, Hy)> - R, (h, H) — g n(x,y) that describes the bounded functions
of 3.1 is uniformly continuous, uniformly in x,y € D, and there exists a bounded
function g : D x D — R such that

lim  sup |gun(z,y) —g(z,y)| = 0. 3.3
(Hﬁ)%x’yw\ (z,y) — g(z,y)| (3.3)

Then there exists a constant v* > 4/ 74—d that depends only on the dimension, such that for

all v < v* the sequence of random measures (M—lyq)He(O,Ho) converges as H — 0 to a Borel
measure M~ on D in probability with respect to the weak topology of measures.

Remark 3.1.4. The constant v* can be calculated explicitly. For p defined in 3.16 we have
d 7d
vHd) =4/ P \ 1
where p ~ 0.42872.

Remark 3.1.5. From the two assumptions 3.2 and 3.3 of Theorem 3.1.3 and the covariance
structure of the normalized fraction Brownian field, given in 3.1, the point-wise convergence
of the covariance function for all x,y € D, x # y
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

}IiglOE[XH(:r)XH(y)] = log “ +9(z,y),

|z —y

where ¢ is the function defined in 3.3, readily follows.

Remark 3.1.6. The proof of Theorem 3.1.3 is very long and extensive. First, we prove the
uniform integrability of the random measures (Mf )He(0,Hy)- Lhis is done in section 3.2.
Then we prove convergence in section 3.3. The main idea of the proof of uniform integra-
bility is the principle of good points. This approach is based on the work of N. Berestycki
on the construction of the Gaussian multiplicative chaos (see [Ber17]). Theorem 3.1.3 also
generalizes Corollary 2.2 in [NR 18] to a higher dimensional setting.

3.2 The Uniformly Integrability of the Gaussian multiplicative
chaos

In this section we show that for all v < 4* the family of random measures (Mf ) He(0,Ho)
from Theorem 3.1.3 is uniformly integrable. This takes, in that setting, a bigger amount
of effort. We start recalling the definition of a family of random measures being uniformly

integrable.

Definition 3.2.1 (uniformly integrable family of random measures). Let (2, F,P) be a
probability space and T # & an index set. Then a family (p;)ier of random measures on
(Q, F) is uniformly integrable if for all A € F the family of random variables (u;(A))iinz 5
uniformly integrable in the usual sense.

First, we introduce the so called good points where the mass of our limiting measure
should be concentrated on.

Definition 3.2.2 (good points). Let H € (0, Hy) and H € (0, g) Define the set

1 1 1
g:=<H+ —: = < =
Ju.m { +n neNandH_H<n H}
Let x € D and o > 0. Then we call the subset of ()
GE’H(X) = {we Q: XMz)(w) < th for all h e JH,H}

the event of x being a good point of order a.

The following Lemma is the first step of our proof of uniformly integrability. It shows
that the limiting measure, unless it does not exist, will be concentrated on the good points.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Lemma 3.2.3. For all H € (0, Hy) and orders a > 0 there exists a positive constant paf{ >0
that only depends on H and «, such that we get the uniform bound from below

7 7 H
P[Gﬁl’H(:r)] >1-plforallze Dand 0 < H < 5

Furthermore it holds that pg — 0 if H— 0.
Before we prove Lemma 3.2.3, we shortly show an easy but useful estimate.

Proposition 3.2.4. Let Z ~ N(0,02). Then, for all z > 0 the following inequality holds

22
P[Z > 93] < exp(—w>.
Proof. Define f(z) := exp(—%) —P[Z > z], that is smooth. We want to show that for
all z > 0 we have f(x) > 0. Calculating the derivative, we get that f has a maximum at

x* = \/% It follows f(z*) > f(0) =1 — 3 = 1 > 0. Furthermore, it readily follows that

f is monotone increasing in [0, z*] and monotone decreasing in [z*,00). Therefore, f > 0
in the first interval. Finally we get for x > z*

f(z) = lim f(y) = lim exp(—ii) —IP’[Z > y] =0

Yy—00 Yy—0

and the result follows. [ |

Proof. of Lemma 3.2.3 Using the covariance function 3.1 of the family of fractional
Brownian fields (Xu)ge(o,1,) and the two assumptions 3.2 and 3.3 of Theorem 3.1.3 we
get that there exist two constants ¢, ca > 0 such that for all h € (0, Hp) it holds that

1 1
0 < B[Xu@P] = COu) (5 + analen)) < (e (g 4ea). ()
Here it is important that the functions C' and ¢ are uniformly continuous to be able to
extend them in R (for more details see Theorem 10.45 in [Clal4]). Now, we start estimating
the complementary probability of a point « € D being a good point of order @ > 0 with a
rough but good enough bound

PIO\GH (2)] = p[ahe Ty Xn(z) > th] < 3 ]P’[Xh(m) > th] (3.5)
hedy @

As Xj, is normally distributed we get with Proposition 3.2.4, equation 3.4 and setting
h=H+Xashelyp

| <or(-iafsiom) <o e os)

“

«
P[Xh(x) > ht H

B(H.n)
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

We further estimate using H + 2 < 1 and setting m := | |

1 H+1
B(an): oOH + 1)2 1 Hn 1
(2H + 3)° 1+ co(H + 7))
B 1 2H + 2
C2Q2H+ L1214 e(H + 1)
1 1
2 1 1
202H + ) 1+ co(H + )
1 1
>

SHH+ Dt it D)

Putting the last two calculations together we get

P|Xp(z) > —— | <e o !
< expl| — .
4 h+H PUB@+)(er1) L4+12

“

YT
=:xk>0

From the definition of good points 3.2.2 it follows that the sum in equation 3.5 starts at

[ﬁj -1 [%J — 1 and continues up to m. Putting all together, we arrive at

7 m m—1
PG (@] < )] exp(_lﬁl) < eXP(—m> + > exp(—ﬁl).
n=|%|-1 n T m 2 + L
H

PIO\GE (2)] < i eXp(—n;>< i eXp<—n;) = pll.

n=l1-1 n=l}1-1

As the series converges, it follows that paH — 0if H — 0. [ |

Lemma 3.2.5. Let o« > ~. Then there exists for every € € (O,% — 1) a sufficiently small

H > 0 such that for pf_ﬂy(lﬁ) defined as in Lemma 3.2.3 and for allz € D and 0 < H < g
it holds that

, ]
E[efyXH(x)—%E[XH(x)Q]]I{Gg’g(x)}] >1-pl 10

where 1 4 denotes the characteristic function of the subset A.
Proof. As Xy (z) is a centered Gaussian random variable, we get
E[evxm)—éﬁ[xmm] _
We therefore can define a equivalent probability measure Q on (€2, F) via

4Q  _ X))~ LE[Xn(2)2]
dP
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

With Girsanov’s theorem we see that the Gaussian process (X},) he(0,1) has the same variance
as before but a shifted mean under the new measure Q. Let Eg[-] denote the expectation
under the measure Q. We want to estimate the mean of (X}) he(0,1) under the new measure
Q. Using the covariance function 3.1 and the second assumption 3.3 of Theorem 3.1.3, we
can bound the functions gg; by a constant ¢ > 0, such that for all = € D, it holds that

Eg[Xh(2)] = vE[Xn(2)Xu(z)] < C(H, hh(H i_ . + c).

Furthermore, from the definition of Jy 5 it follows that all h € Jy 7 are bounded by
2H < h < H. Now let 0 < € < 5 — 1. As due to 3.3, supo<p g<i|Cha — 1| — 0 when

H — 0, we get for H sufficiently small

1+e¢
h+H

E[X)(z)Xu(2)] <v for all z € D and h € Jy g.

All together, it follows that

2
E[eVXH(x)*%]E[XH(x)Q]]l{GH,H(m)}] - E@[]IGH’H(m)] = QG2 (@)

[e3 [e3

- Q(Xh(x) <7 fH for all h € JHJ;,)

+ €

1
> P X, (z) < _ for all -
( n(z) e Ve era heJH7H)

1
7 for all h e JH,H)

Now, with Lemma 3.2.3 we get that

T —ﬁ x)? Z
E[e’YXH( ) 2 E[Xp () ]H{Gf’ﬁ(:c)] =1 _pglf'y(lJrE)7

which concludes the proof. [ |

Our goal is now to define a good approximation of our random measure Mf using the
concept of good points. Let B(D) denote the sigma algebra of measurable sets in D. For
all 0 < H < Hy, H € (0, g), a >y and A € B(D), we define the approximation as

1L (A) = L 1 Xn (2) =7 B[Xn @] 1, 4% (3.6)

a7y

which defines a random measure on D. In fact, Ig ’7H is Mf restricted to the event of good
points. In Lemma 3.2.5 we showed that If, ’VH almost defines a probability measure. Now,

we want to show that Io{{ lyH is square integrable.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Theorem 3.2.6. For all v < v*(d) and all « > ~ close enough to =y, there exists a
sufficiently small H > 0 such that

sup  sup E[Ig;YH(A)Q] < .
0<H<H/2 AeB(D)

The proof of this theorem takes a lot of effort. We therefore show the main idea of it and
skip one step, that needs a very long calculation. For the proof in all details see Proposition
3.4 in [HN20]. First, we shortly prove an inequality that is needed in the proof of Theorem
3.2.6.

Proposition 3.2.7. Let z € (0,1] and o € (0,1). Then, it holds that

1 — o
© < —log(2).

Proof. The inequality is equivalent to z® —log(z)a = 1. For z = 1 we get 1% —log(1l)ar =
1 —0 =1, so the inequality is true. Now, we calculate the derivative for z € (0, 1]

o o 1 1
4 (2> —log(z)a) = az®"! — o= a1 - ;) <al- ;) <0.

As for z = 1 the inequality is true and for z < 1 the derivative of the left hand side is less
than d%l = 0, we get, using the fundamental theorem of calculus, that the inequality holds
for all z € (0, 1]. [

Proof of 3.2.6 As the integrand in 3.6 is positive, it immediately follows that for all
A € B(D) we have

E[L5"(4)7] < E[25(D)?].
Thus, it suffices to show that

sup E[Ig’WH(D)ﬂ < o,
O0<H<H/2
for small enough H > 0. For 2,y € D and H € (0, Hp), let Zy(z,y) = vXu(z) +vX g (y) —

72—2E[(XH(Q:) + X#(y))?]. Then it follows
o8 08
Y Xn(2) = 5 Xn(@) +7X) = 5 XW)* = Zu(@,y) + VB[ Xu(2) X )]

Note that the term ’yQIE[X m(z)X (y)] is deterministic and with 3.1 completely known to us.
We define an equivalent probability measure Q, , by

de7y _ Zu(zy)
—p ¢ . (3.7)

As vXpu(x) + vXu(y) is centered Gaussian, Qg is well defined. We want to use that

probability measure to find an estimate for E[IO{{ ZYH(D)Q]. With Fubini’s theorem, the
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

covariance function 3.1, our considerations about the measure Q, , and a uniform bound
C > 0 for all the functions g, g, we get

E[1:.1 (D)?]

9 2
_ X1 (2) - G E[Xp (2)?] _
(i )

2
:E[j J X (2)= 5 E[Xp ()47 Xu () -5 E[Xa ()] {GH*H(m)me’H(y)}dxdy]

@

VX1t (0) = S EX i (@) 49X m (W)~ S EXa ()2 )
E g Lyt |40

Larn @aatn

ey EXn@XnwlQ, [GHH (z) A GHH (y)]dzdy

f [erner B Xn@Xwly g g ardy

e 12H .
f exp (OO =5 4 g1 (5.9) ) Qe[ G2 0) 0 GO oy

JJexp( (H, H)? |‘””;Iy|2H)@x,y[ H() A G ()| dady. (3.8)

We need to bound the last term of this estimate uniformly in H. For that purpose, we split
the integral into four regions and bound the term region by region. For three of them, this
is an easy procedure. One of them requires a long argument. First we define

B 2(1 —e#)?
A zren[i}Q(] 2(2 —e=22)’ (39)

which is well defined and finite as [1,2] is compact and we take a maximum over a contin-
uous function. In fact, we have x € (1,2). We choose the regions that split D x D in four
parts, in the following way

Ry := {(w,y) EDxD:|z—y|| < e”/H}

Ry e {<x,y> eDx D < o —y| < /H}
) (3.10)
R3 := {(SC,?J) eDxD:e M < |z —y| < 1}

Ry := {(az,y)erD:l < ||m—y|}

As % € (0, %], it readily follows that the four regions are pairwise disjoint, nonempty and
fill up D x D. In addition as D is bounded, also all R; are bounded and so they have finite
measure. We denote the four integrals resulting from our partition as

17 (p) ” exp( (H, H)y 21”§;Iy'm>@x,y[ (2) A GI ()] dady,
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

where j € {1,2,3,4}. IJH’g also depends on v and «, but for readability we do not put

them into the notation. In total, we get with K := e,

4 _
E[51(D)?] < K Y. 1;"(D).
j=1

Now we want to bound each I . We start with I . Let € > O again by assumption

3.2, we see that we can bound C(H, H) by 1+ ¢ for H € (0, 5), sufficiently small. As
J1 has finite measure, we get

i 1—fz—y[*"
D) <
) ijl exp (C i dxdy
1z —yl?"
< (1 2 dxd
JJRlexp< +€)y 5H ray
< JJ exp< (1+¢) 7 )d:vdy
Ry

Sexp(l—i—e) )|R1|

1 d
< exp((l + 6)72ﬁ - ,;_{), (3.11)

where C' arises from the Volume of the unit ball in R%. Now for the last term to be finite
we need (1 + €)y%5 s = o to stay finite for all H € (0, %) As € is arbitrarily small and
k > 1, we have

1 Iid 72 d
1 e 0
Oy~ <sm~w
For 72 < 2d it follows that the first integral is finite, so it holds that

sup IlH’H(D) < .
He(0,H)

For the second bound we use the inequality in 3.2.7. For H € (0, 3) and for z,y € [z—y| < 1
we get

1— [ —y|?"

< -1 —yl-
— gz~ y]

Plugging in this inequality and using that for all (z,y) € R3, we have || —y| > exp(ﬁ) SO

we arrive at
7 1— |z —y|*"
IH’H(D) < JJ exp (72 dxdy
3 s 2H

<[] exp (12~ log o =) ) oy
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

2
< exp (72 _> dxdy
f JR;; H

2
< exp (72H> |D|2.

Therefore, it follows that

sup I;I’H(D) < 0.
O<H<H/2

The bound for If’H(D) is easy to get. Asin Ry, 1 — |z —y|| < 0 and C(H,H) > 0, it

follows for all H € (0, %) that

H.H 21— [ —y*”
I,7 (D) < exp| C(H,H)~ dxdy
2 2H

< Jf exp(0)dxdy
Ry

= |R4| < |D] < .

Finally, we need a bound for 12H ’H(D), which one is not so easy to obtain and takes a lot of
effort. Therefore, we skip that step here and refer the reader to Proposition 3.5 in [FHN20]
for a rigorous proof. The upper bound v* is determined in that prove. Now, having all
four bounds we eventually conclude that

_ 4 _
E[ (D] < K Y. 1" (D) < o,
j=1
and the square integrability of If, ’VH(A) follows for all A € B(D). [ |

Analogue to Iglyg, we can define for a > v, H € (0, Hy), H € (0, %) and A € B(D)

L (A) = f X (@) G B2 da.
A

@y (G (2)}

Then clearly it holds that Mf(A) = Io{{AYH(A) + Lgfl(A) With Lemma 3.2.5 we immedi-

ately get the following result for Lgf

Corollary 3.2.8. For all o > v and € > 0 there exists a H > 0 such that

sup  sup E[Lfﬁ(A)] <e.
0>H<II/2 AeB(D)
Proof. Let a >~ and € > 0, we choose a § € (O,% —1). Recall that D is bounded and
therefore |D| < oo. With Lemma 3.2.5 and Fubini’s theorem we get a H > 0 sufficiently
small such that

H,H _ X z—gmx x)? _
E[11LH(D)] = E[JD eV XH (@) [Xn () ]H{Q\Gf*H(z)}d:ﬂ]
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

> | @=pl ) = DI = ).

As E[Mf(x)] = 1for all x € D and H € (0, Hp), we have, with Fubini’s theorem, |D| =
E[MT(D)] = E[1y"(D)] + E[L&" (D)]. Thus, we get
sup sup E[Lg,f[(A)] < sup E[Lff(D)]
O0<H<H/2 AeB(D) ’ 0<H<H/2 ’

— s (IDI=E[IET(D)]) < 1D 14,
O<H<H/2

Finally, by Lemma 3.2.5 we can choose H > 0 small enough to get

sup  sup ]E[Lglf(A)] < |D|pgfy(1+5) <e¢
0<H<H/2 AeB(D)

and the result follows. |
The result of Corollary 3.2.8 shows the interesting fact that the random measure Mf is

more and more supported in the good points the smaller H gets. This we want to use to
prove the uniform integrability of (Mf ) He(0,Hy)- We now have all the ingredients for that.

Theorem 3.2.9. For all v < v*(d) the family of random measures (Mf)He(O,HO) is uni-
formly integrable.

|

Proof. As already mentioned, we have for all A € B(D), H € (0, Hy), H € (0,
a >y

) and

M (A) = L' (A) + ey

First we have a look at Ig ’WH. We see that for all A € B(D), we get for « sufficiently close
to v and H > 0 small enough,

sup  sup E[Ig’vH(A)Q] < .
0<H<H/2 AeB(D)

With Holder’s inequality we get for n € N and A € B(D)

sup E[IH’H(A)Q]UQIP’[IQ;YH(A) > n]l/Q.

sup E[IH’FI(A)]I ay
0<H<H/2 ’

— <
_ ay H,H ] =
0<H<H/2 {Iay" (A)>n}

As P12 LYH(A) > n]'/2 — 0 when n — o, the uniform integrability follows. For Lg%,g the
uniform integrability follows directly from Corollary 3.2.8. Now let € > 0. As Ii{ ’VH(A) is
uniformly integrable, there exists a § > 0 such that for all B € B(D) with P[B] < ¢ it holds
that

sup E[Ig’vH(A)]lB] <
O<H<H/2

DO
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Furthermore, with Corollary 3.2.8 it follows for H sufficiently small that

7 €
sup E[Lff(A)] <3

O<H<H2

Combining these results, it follows that

sup IE[MH(A)ILB]< sup E[Lf’f(A)ILB] sup E[L (A)]<e,
O0<H<H/2 0<H<H/2 7 0<H<H/2

and thus, the uniform integrability of (M 5 Ve, i /2) Therefore, for all (Mf ) He(0,Hy) tO

be uniformly integrable, it suffices to show that (M1 ) tel i, i) 1S bounded in L*(Q, F,P).
As already done, we can, due to the assumptions 3.2 and 3.3, estimate |C'(h, H)| < Cy and
lgn,m(z,y)] < Co for all 0 < h,H < Hp and x,y € D, where C1,Cy > 0 are constants.
With the covariance function 3.1 we get, similar as in the proof of Theorem 3.2.6, for all
H e [H,Hy) and A € B(D)

1= o —y|*
E[M. P C(H,H)y’ Vi + g1 (2,y) |drdy

21—z —y*"
<fj exp| C1y 577 + Oy |dzdy
1z -y )
2
exp( 1y + Cs |dxdy
JL yl<1 2H

1=z —y[*"
Cy | dxdy.
sz y“>1exp( 17 20 B At

As ||z — y|*" < 1if ||z — y| <1, we can estimate the first integral by

1 — |z —y|?”
exp (C’l’yz + C )dxdy
J Lm yl<1 20
exp (C’lfy — + Cg)dacdy
J Lx yl<1 2H

1
< JJ exp (C’lfy — + Cg)dxdy
le—yl<1 2H

< Cexp <C’1fy % + Cg)

From |D| < o it follows that also the second integral is finite, since

1— |z —y|*"
exp <C’1’y2 + Cy )dxdy
J J”my}l 2H

< JJ exp(Ca)dxdy
lz—yl=1
< |D2exp(Ca) < oo.

All together, we have for all A € B(D) that

62



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

sup E[Mf(A)Z] <
HE[H,H())

and the uniform integrability of (Mf ) He(0,Hy) follows. |

3.3 Convergence of the Gaussian multiplicative chaos

In this section we want to prove the convergence of (M7H ) He(0,Hy) @ H — 0. First, we

show that (Ig’VH (A)) He(o, iy converges in L3(Q, F,P) for all A€ B(D). This will take more
effort. The proofs of these two results follow chapter 6 in [[HIN20]. Second, we conclude
that for all A € B(D), (Mf(A))HE(O7HO) converges in L'(Q, F,P), that is, using the last
section, a quicker result. Finally, we derive from those two results the convergence of the
random measures (Mf ) He(0,H,) With respect to the weak topology of measures on D. Here
we follow chapter 6 in [HN20] and chapter 6 in [Berl7].

First we show a direct consequence of the assumptions 3.2 and 3.3 of Theorem 3.1.3. We
will need it later for the proof that (Ig’WH(A))He(QHO) converges in L?(Q, F,P).

Proposition 3.3.1. Let H; € (0, g) Then for all x,y € D the limits
=1 H =1
C(h,0) := lim C(h, H) and gn(w,y) := lim gnp(z.y)
exist and the following two statements are true.

i) For all A e B(D) it holds that

lim  sup
H—0ze A h>H,

E[X),(2) X5 (2)] — C(h,0) (; + gn(x, m)) ‘ 0.

i) For B € (0,e %) it holds that

1— [ —y|"

lim sup A

+ gh(w,y))‘ = 0.
H=0 ¢y 28,h=H

E[ X0 (2) X1 (y)] = Clh, 0)(

Proof. The existence of the two limits is a direct result of 3.2 and 3.3, as every uniformly
continuous function can be extended continuously (for more details see Theorem 10.45 in
[Clal4]). With 3.1 we get for some constants C1,Cy > 0

lim  sup

1
H=0 pe A h>H, E[Xn () Xn (x)] = C(h,0) ( + gh(%fﬂ))‘

h

1 1
= li h, H oot
iz, (00 (G ot =00 (5 4o )|
1
< lim su C(h,H) - C(h,0 + ,
HHOxeA,thl (‘ ( ) ( )“H—i—h gH,h( )
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

1 1
‘+ gt (2, 2) — ga(, )

vt b

< lim  sup |C(h, H) — C(h,0)|Cy + Cy <‘
T H-0 e,

+ gh,H(if,'f) - gh(a?,x)

)
i

H+h h

)-

The second limit works the same way. We have

E| X4 (2) X (y)] — C(h,0) (1|hy|| + gh(x,y)>‘

lim sup
Ho0 g —y|=8,h>H

1— [ —y| ™" 1— o —y|"

H+h

= lim sup
A0 )0 —y|=8,h=H,

C(h, H)(

o =y 1o —y|"
H+h h

1 _
< lim sup |C(h,H) — C(h,0)|Cy +C’2‘ |
P

+@mwxaw—gmaw0=0-
]

Now, we need to focus on showing the convergence of (I, HWH(A)) He(o,i) 1N L?(Q, F,P).
Let A€ B(D) and h, H € (0, H). Then it holds that

E[(12: (4) — 125 ()] = E[167 (4)%] - 2B[16 ()15 (A)] + B[22 (4)%).

In order to make the expression on the left hand side small, we try to find a sharp upper
bound and a sharp lower bound for

B[22 (4)2] and B2 (A) 125 (4)]

respectively. The following two Lemmas will show that such bounds exist.

Lemma 3.3.2. Let A € B(D), H € (0, Hy) and o > 7y sufficiently close to . Then there
exists a nonnegative function g, depending only on «, H and v such that

hmsupIE IHH f f e 9(@y) ga X)) —————dxdy,
H—0 |z —y[*

where g(x,y) is the limiting function in 3.3.

Idea of the proof. We can use a lot of work that we have already done in the last
section. Let us choose 3 € (0, e*Q/H). As 3.8 in the proof of Theorem 3.2.6, we can estimate

E[If ’VH(A)Q] in the following way
B[22 (4)]
21—z —y? H.H H.H
<K N A]I{H:c—y||<6} exp{ C(H, H)y g Qx,y[Ga,’7 () N Gay (y)]dady
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

1— ||z —y|*¥ _ _
R L JA Hleuli=s) X (C(H7 H)’Y2|2H”) Quy [Gf}f{(x) n Gg,’wH(y)]dxdy

= KJ1(B,H) + KJ2(5,H).

We want to estimate Ji (3, H) and Ja2(3, H). Recall the four regions in 3.10 we split D x D
with. As 8 < e~?H the support of the integrand of Ji(8, H) is contained in Ry U Ry.
Thus, we get

Jl(/Ba‘H)
< ) | Mieyi<p x| CUL H)Y* =507 | Quy [Gay () 0 Gay' ()] dady
1

1=z — y 2H _ _
+ f JRQ Lijey<p) XD (C (H, H )72”2H|> Quy[Gay' (@) N Gay' (y)]dady

= J11(8, H) + Ji2(8, H).

Using the estimate in 3.11, we get
2

J11(8, H) SCJJ exp<(1+e)7)dxdy<oo.
{lz—y|<B}r Ry 2H

In an similar way we get an estimate for Re. We cannot show the details here, as we
skipped that part in the proof of theorem 3.2.6. For the details see section 4 in [HN20)].
We have

Ja(B, H) < C j f "0 dedy < o,
lz—yll<B

where 1 > 0 can be chosen such that the right hand side is finite. Summing up what we
did, we can find a function g,,1(5) such that g,1(5) — 0 if 5 — 0 and

sup _J1(B, H) < ga,1(8). (3.12)
O<H<H

Next we want to bound Jo(3, H). We want to use the equivalent probability measure Q,,,
as defined in 3.7 again. With Girsanov’s theorem, it follows that under Q. ,, the vector
(Xn(2), Xn(Y)) ne(o,m) 18 again Gaussian distributed with the same variance but a different
mean, given by

Eq,., [Xn(2)] = vE[ X (#)(Xu(z) + Xa(y))]

_ 1 1— [z -y

=~C(h, H) H+h + g n(x, ) + Y +gm.n(z,y) |,
Eq., [Xn@)] = vE[Xn(v)(Xu(2) + Xu(y))]

_ 1— o —y?* 1

=C(h, H) —Hih +9m.n(y, ) + T+ h + 910y, Y) |-

With Proposition 3.3.1 it follows that on the event |z—y[ = 3, the joint law of (Xp,(2), X(¥)) ne(o, i
converges weakly and uniformly on compact sets K < (0, H] under the measure Q,, to a
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

joint distribution (Yy,(x), Y (y))pe(o,i) for H — 0. Furthermore, it has the same covariance
structure as (Xp(2z), Xn(Y)) he(o,i but shifted mean, i.e.

e — oyl
B[Yi(0)] =100 (257 4 gue0) e,

g — ol
E[Yi(y)] = ~C(h,0) (2”hy| + 9n(y,y) + gn(z, y))-

Let us define, for H € (0, Hy), a > v sufficiently close to v and z € D, the event

GH(z):= {w €0 : Yy (z)(w) <
« — |z —y|* _
7 +~vC(h,0) (2”hy| + gp(z,x) + gh(:v,y)) for all h e (O,H]}.

Comparing with the definition of good points in 3.2.2, we immediately see that the event
GH () under P has the same probability as the event G4 (z) under the measure Quy- It
may be easily shown that the probability of the event Gt (x) n GH1 (1) converges uniformly
to 1 as Hy — 0 on the event |z — y|| = . Furthermore, it follows that

()] =: ga(z,y). (3.13)

le

Jim Quy[GEH (@) 0 G (y)] = P[G (2) 0 G

Using 3.1 and 3.2, we eventually get, uniformly in ||« — y| = 3, that

lim B[Xp(2)Xn(y)] = —log | — y| + g(w,y).

Since g is bounded, it follows with dominated convergence that

lim (3. H) (3.14)
= limf f 1 ~pexp| C(H H)VQM Q [GHH(CE) mGH’H(y)]dxdy
g0 ), ), evl=5} ’ 2o Ty [ My ayy
S C}}E‘of f Ljamyppye’ D0 OXHONQ,  [GIF 0 G (y)]dedy
x al\T,
f f Lla-ylzre” *CY ”g : iyv) dudy. (3.15)

We want to show that this estimate is finite, in order to be able to use dominated conver-
gence. This part we again have to shortcut as we did not go through the whole proof of
3.2.6. For more details see Lemma 4.2 in [HHN20]. In their paper P. Hager and E. Neuman
showed that for § > 0 there exists H > 0 small enough satisfying

) C
Jim @y [G2 ) 0 G2 )] < G exp(Pplog e — 1),

where p is defined as
2(1 —e™%)?
= ————— ~ 0.42872. 1
P= N ez YT (3.16)
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Using Lemma 4.2 in [HN20] and 3.13, we conclude for v < v* that

T
sup | [ Aaypagesen S 9l20), ey

Be(0,e~2/y JA |z —y[*
exp(v*plog |z — y|)
S osup ffﬂ{nx vl =6} =y dxdy
Be Oe—Z/H) Zz y”

<C g .

Now, we have shown that the estimate in 3.14 is finite and can use dominated convergence.
We arrive at

Y)
lim lim Jy(S, Jjengy ——dzd
Jimey Jimm, J2(8, H ||a:— g

Together with 3.12 we conclude that

E[124(4)?] < 0.

Lemma 3.3.3. For A€ B(D), o > ~v sufficiently close to =, it holds that

hmlnf]E[IZ:g(A IHH J f ’Y g ,y ga T y) d dy
=0 |z —y[*

)

Proof. The proof is very similar to that one of Lemma 3.3.2. We will not show the
details here. For a full version see Lemma 6.4 in [HN20]. [ |

Corollary 3.3.4. For A € B(D), a > v sufficiently close to v, H € (0,Hp) and v < ~*,
(IQ’WH(A))HE(QH) is a Cauchy sequence in L*(, F,P) and therefore converges to some limit
in L?(Q, F,P).

Proof. Let A € B(D), a > ~ sufficiently close to v, H € (0, Hy) and v < 7*. Then we
get

E[ (1A (4) — L5 (4))2] = B[LA (4)2] — 2B [ 104 () 1 (4)] + B[ 1 (4)?].
Due to Lemma 3.3.2 and Lemma 3.3.3 we can estimate

0< lirrésu(I))E[(IhH(A) IOZLYH(A))Q]

vg(w,y)ga dd _2ff 72 g(x.y) )dd
Y € y=
j f |z~ yH7 Hﬂf —y”

Therefore E[(Ig?(/l) - Ig’WH(A))ﬂ is a Cauchy sequence in L?(Q, F,P). As L?(Q, F,P) is
complete, the sequence converges to some limit. |
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Corollary 3.3.5. For all A € B(D) the sequence of random variables (Mf(A))HE(O7HO)
converges in L*(Q, F,P).

Proof. Analogue as in the proof of Theorem 3.2.9, for all A € B(D), H € (0, Hy) and
H e (0,4), we can split up our random measure

MH(A) = T (4) + LI 4).

Now let ¢ > 0 and A € B(D). By Corollary 3.2.8 we can make the second term small.
Thus, we can choose H > 0 sufficiently close to 0 such that

sup E[LE(A)] <
O<H<H/2

As we have shown in Corollary 3.3.4, (I2 ( )) He(0,Hy) 18 a Cauchy sequence in L3(Q, F,P).

Therefore, we can choose a Hy € (0, H) such that for all h, H € (0, Hy) we get with Jensen’s
inequality

€2

E[|2: (4) - L (W] < E[(8 (4) - L5 ()] < T

Summing up we get for all h, H € (0, H;)

B[ (4) — M) < B[R (4) — 7Ol + B[ (4) - L )
§+E[|L A1) + B[ )]

€

\7 27:
2+ 4

Thus (M. )He(() H,) 1s a Cauchy sequence in LY(Q, F,P). As LY(Q,B(D),P) is complete,
the convergence result follows. |

Proof of Theorem 3.1.3 Let A € B(D). By Corollary 3.3.5, we know that (M (A)) ge(o, 1)

converges in L*(Q, F,P). As convergence in L!(£2, F,P) implies convergence in probability
for v < v*, we define

A= {A = [21,y1) X .. X [T, ya) : 75,y € Q,2; < y; forallie {1,...,n} and A }
) o

Then A is non empty, countable, intersection stable and generates the Borel sets B( n
D. As for every sequence (Hp)nen with H,, — 0 and all A € A we have that (M, H(A))

converges in probability, we can find a subsequence (Hy, )ken such that (M, " (A))ren
converges almost surely to some limit. Thus, by the countability of A, we find a subsequence

(Hp,)en such that for all A € A and D at the same time, the sequence (anl (A))en
converges almost surely to some limit. We denote that limit by M,(A) for Ae A. As A

is intersection stable, generated the Borel sets and My ™ (D) — M, almost surely, there

. Hy
exists a random measure on B(D) that extends M., such that (M, ™ )en converges almost
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

surely in the sense of weak convergence to M,. We want to show uniqueness of the limit.
Let A e A. We want to have

M,(A) = sup M,(B). (3.17)
BeA,BCA
It immediately follows that the right-hand side is less or equal then the left-hand side.

For the other inequality we need to make an argument. With Fubini’s theorem we get for
Ae Aand H € (0,Hp)

2
E[M (4)] = E[ JA evXHwWE[XH(dex]

_ J E[ewXH@)—ﬁE[XH(x)ﬂ]dx
A

:J. dx = |A|.
A

As Mf(A) converges in L'(€, F,P), we get that

E[M,(A)] = Jim E[M(A)] = |A]
Now since all Mf (A) and M, (A) are non negative random variables it follows that in 3.17
equality holds. Likewise, there also holds equality in

M,(4) = inf  M(B) (3.18)

for all A € A. Using that Mf "(D) — M,(D) almost surely, we get that the random

H’n, . . . .
measures {M, "', M,} are tight in the space of Borel measures on D, equipped with the
topology of weak convergence. Let M, be another limit in probability with respect to the
weak convergence. Using Portmanteau’s theorem and the equation 3.17 and 3.18, it follows
that M,(A) = M,(A) for all A e A and therefore, by the uniqueness of the measures, that
M, = M,. This implies the weak convergence in probability of (Mf ) He(0,Ho)- |

3.4 Normalization of fractional Brownian fields, statements

In this section we want to show some examples of normalized fractional Brownian fields
that agree with the assumptions of Theorem 3.1.3. For that purpose we introduce two
ways of generating families of fractional Brownian fields, together with a class of normal-
izing kernels. The main part will be to prove that all such normalized fractional Brownian
fields indeed agree with the assumptions of Theorem 3.1.3. This will be done in the next
section. We start giving some examples of fractional Brownian fields. This section follows
section 2.2 of [HN20].

69



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Ezample 3.4.1 (Mandelbrot-van-Ness representation). Let d = 1, (Q, F, (Fi)wer, P) a fil-
tered probability space and (W;),er be a two-sided Brownian motion. Then for H €
(0,1)\{2} we consider

_1 _1
2 _ (o) 2)aw,, ter (3.19)

where C'(H) > 0 is a constant only depending on H. Mandelbrot and Van-Ness showed in
[MVNGE] that (Bp(t))er defines a fractional Brownian motion with Hurst parameter H.
Furthermore V. Dobri¢and and F. Ojeda calculated in [DO06] the covariance structure of
the process (Bp(t))swer that is given by

E[BH(t)Bh(s)] = Cy(h, H)(|s|h+H + |t~ — s|h+H) — Cy(h, H) fru(s,t)  (3.20)
whereby s,t € R and h, H € (0,1) with H + h # 1, and f5 g : R* - R given by
fo(s,t) = sgn(s)|s|" ™ +sgn|t|h + H —sgn(t — s)|t — s|" 1

For this family of fractional Brownian motions there is no useful extension to higher di-
mensions.

Example 3.4.2. Another example of a construction of a family of fractional Brownian fields
is the following. Let again d = 1, H € (0,1)\{3}. We define

By (t) = 03(1,H)f (It = s|T=2 —|s|T=2)dW,, t € R, (3.21)
R

where H € (0,1)\{3} and C5(1, H) > 0 is a constant only depending on H. In [DO06] the
covariance structure of this process was calculated and is given by

E[By(t)Bu(s)] = 5 (H, h)(|s|" ™ + |t|" T — ¢t — s|"*H), s, t e R, (3.22)

where ci(h, H) > 0 is a constant depending on h and H. This process can be extended in
a multidimensional setting in the following way. For d > 1 we define

Bu(t) = Cad. 1) | (o =l "4 — Iyl )W) w e R, (323

where W is a white noise in R? and again H € (0,1)\{}. In Lemma 2.8 of [[IN20] it was
shown that the covariance structure of this process is given by

E[Br(2)Br(y)] = c§(H, h) (|| " + Jy] " =l — ") (3.24)

where z,y € R? and cgl(H, h) > 0 is a constant only depending on d, H and h.

Next, we define a class of normalizing kernels for which we will make use of generating
families of normalized fractional Brownian fields agreeing with Definition 3.1.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Definition 3.4.3 (Normalizing kernels). Let d > 1, Hy € (0, %) and ¥ : R4 x R4 - R be
a measurable function. We say that 1 is a normalizing kernel of order Hy if the following
conditions hold true:

i) For all y € D the map x — (x,y) is almost everywhere continuous and it holds that

f Y(z,y)de = 1. (3.25)
R4
i1) 1 is bounded in the following ways:
r
sup | |z |*Hop(x, y)da < o0 (3.26)
yeD JRd
r
supj min{log |z — y|, 0}*¢(z, y)dx < o (3.27)
yeD JRd
r
supj j min{log |z — u, 0}%¢(z, y)¥ (u, v)drdu < 0. (3.28)
y,v JRd JRd

The set of normalizing kernels of order Hy is denoted by N, (D).

The result of generating families of fractional Broenian motions by P. Hager and E.
Neunman is the following.

Theorem 3.4.4. Let (BH)He(o,Ho) be a family of fractional Brownian fields constructed
either by 3.21 or 3.23 and ¢ € Ny,(D). We define

N

Xpy(x) := T(H) (BH<x> -[ dBH@)wy,x)dy), reD He(0.Hy),  (320)
R

where T'(+) denotes the gamma function and Hy = 1 as in the case of Example 3./.1 and

Hy = % as in Bxample 3.4.2. Then (Xu)pe,m,) i a family of normalized fractional

Brownian fields according to Definition 3.1.1 which agrees with the assumptions of The-

orem 3.1.3, i.e. the associated Gaussian multiplicative chaos converges in probability as

H — 0 with respect to the weak topology.

The proof of this theorem takes some effort and is shown in the next section. Using this
result and Levy’s continuity theorem on the space of tempered distributions, one gets a
very strong convergence result. First we state Levy’s theorem.

Theorem 3.4.5 (Levy’s continuity theorem on the space of tempered distributions). Let
(hn)nen be a sequence of generalized random fields on S(R?) and (®,)nen their characteris-
tic functions given by 2.2, where all hy, are seen as probability measures on S'(RY). If (®,)
converges point-wise to a functional ® : S(RY) — R that is continuous at the origin, then
there exists a generalized random field h on S(RY) such that ® is its characteristic function
and h,, converges in distribution to h in probability with respect to the strong topology.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Proof. See Theorem 2.3 in [BDW17]: [

A very interesting consequence of this theorem is the following.

Corollary 3.4.6. Let (hyp)neny and h be generalized random fields on S(R?). Then the
following statements are equivalent:

i) (hn)neny converges in distribution with respect to the strong topology to h.

1) (hn)nen converges in distribution with respect to the weak topology to h.
iii) The corresponding characteristic functions (®,)nen converge point-wise on S(RY).
i) (hp()nen converges in distribution for all ¢ € S(R?).

Proof. See Corollary 2.4 in [BDW17]. [ |
Remark 3.4.7. Let (Xu)pge(,my be a family of random fields constructed as in Theorem
3.4.4. Then the theorem states that the covariance structure is of a form as in 3.1 and
in addition fulfills the assumptions 3.2 and 3.3 of Theorem 3.1.3. Therefore, by Remark

3.1.5 it holds that the covariance kernels converge point-wise to a log correlated covariance
kernel i.e.

lim E| Xy (2)Xg(y)| =log—— + g(z,y),

Jim B[ X () Xu(w)] = log [~ +g(z.)

where ¢ is a bounded function. If one showed now that
lim E| (X, 0)( Xy, ¢ f J < ,y)dmdy, for¢,¢€SRd,
Al o e (OB + o )

one would get, with Corollary 3.4.6, the weak convergence in probability of (Xpr) He(0,Ho)
to a log correlated field X. A special case of that result was proven as Theorem 2.1 of
[NR18]. Nevertheless, the convergence of the Gaussian multiplicative chaos associated to
(X#) He(0,H,) follows from Theorem 3.1.3.

We give a famous example of a process that can be represented such that it fulfills the
requirements of Theorem 3.4.4.

Ezample 3.4.8 (fractional Ornstein-Uhlenbeck process). Let m € R be a mean and param-
eter a,y > 0 given. We define the fractional Ornstein-Uhlenbeck process via the fractional
Brownian motion (Bp) e 1y in the following way

2

dZ5(t) = vdBr(t) — a(Zg(t) — m)dt,t € R.

In section 1 in [CKMN03] it was shown that the Ornstein-Uhlenbeck process has the following
representation.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

t
Zp(t) =m+~yBu(t) — vf ae ) By (s)ds.
—00

If one subtracts the mean and scales the process by 4/I'(H), it is possible to find a rep-
resentation of the process in the form given in Theorem 3.4.4. It readily follows that the
normalizing kernel needed is given by

) RxR-—->R
) (z,y) — ]l{mgy}ae_a(y_m)
1

Furthermore, v is indeed a normalizing kernel of order Hy for all Hy € (0,5) and every
bounded domain D.

3.5 Normalization of fractional Brownian fields, proof

In this section we present the proof of Theorem 3.4.4. It follows section 8 in [HHN20]. First
we denote the integral in 3.29 as

@) = | Buly)otua)dy, v € B

We start showing simple properties of Ig(z).

Proposition 3.5.1. Let (BH)He(O,Ho) be a fractional Brownian field defined as in Example
3.4.1 or Example 3.4.2. Then the integral I (x) is well defined for all x € RY, almost surely
finite and Gaussian.

Proof. By Lemma 2.9.11, it holds that (Bg) He(0,Ho) has almost surely Hélder continuous
paths. Therefore, it is also measurable. Furthermore, by Lemma 5 and Remark 5 in
[IKEMIM15] for all Re > 0 there exists an almost surely finite random variable Y. such that

a.s.

|Br(z)] < Ye(1+ |z|7*€) for all 2 € RY.

As ¢ € Ny, (D), it follows, by choosing € = Hy and equations 3.25 and 3.26, that
[ Ba@loady < [ ¥+ 1Yo, e

<vi( [ vatdos [ lyouty.ajis) <o

v

~
=1 <0

uniformly for all x € D. Therefore the integral is well defined and almost surely finite. As
the Riemann integral is defined over converging Riemann sums and those are, in our case,
finite sums of centered Gaussian random variables, it follows that the Riemann integral is
also centered Gaussian (see Theorem 2.60 in [Sch21]). [ |
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Next we want to calculate the covariance structure of the normalization Xg. There we
have to distinguish between the two cases. The important part is that it agrees with 3.1.

Lemma 3.5.2. The family of random fields (Xu)pe(o,ny), given in 5.29, is a family of
normalized fractional Brownian motions according to Definition 3.1.

Proof. First we treat the case, where (Bpy)pe(o,m,) is given by 3.23. In that case we
have

E[ B (2)Bu(y)] = (H, h) (o] T+ + |yl = o — y|"+"), 2,y € RY, h, H € (0, Ho).

We want to use Fubini’s theorem in order to be able to exchange the integral with the
expectation. Therefore we estimate using |ab| < a? + b? for a,b € R and 3.26

X 2 u 2
JRdE[|BH($)Bh(U)|]¢(U,y)dU<f E|Bu(z)? + Bu(u)?]

y 5 Y(u,y)du

= fRd (cg(H, H)||lz|?" + c&(h, h)|u|2h)1/1(u,y)du < 0.
In an analogue way, with 3.25 and 3.26, it follows that
f J E[| B (v) Bh(u)| |4 (u, y)ib (v, x)dudv
Rd JRd
<| ] (c%<H, H)[ul + ci(h, h>|v|2h)¢<u, y)(v, 2)dudo

< | | o oo o || oo .o
=1 =1

< ULH) | [P o )du+ ) [ ol o) < o

Therefore, we are allowed to use Fubini’s theorem and get

1

1

~ 5 (Buto) - [ Butiwaan) (Bt - [ Buvwni)]

= E[Ba(@)Byw)] = | B[Bata) )]l )i

E[Xu(x)Xn(y)]

—f E[BH(y)Bh(v)]z/J(v,x)dv—i-f J E[ B (u) By (v) | (u, y)¢ (v, z)dudv.
R4 Rd JRd

First we consider, using the covariance structure of (Bp) He(0,Hy) glven in 3.24,

1

c3(H, h) J]Rd E[Bu () Bp(u)]v(u, y)du
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

= |l R =l Y )

= ol [ pwgpu [l e = [ =l g
R R R

=1

Furthermore, we get
1
—_ E|B B
T Jue | ELBH OB )00, )
= L L (bl g — o Y oo, )
Ra JRA
= [l gdus | ol oo = [ [ = o0 )i, 2)duds
Rd R4 Rd JRA
Now, we define the constant C'(H, h) and the functions gg j,
C(H,h) := c¢&(H,h)\/T(H)T(h)(H + h)

1-— ”:13 - UH h 1— Hl/ - UH h
r = = du — z)d
gH,h( 7y) J d F[ h ¢(u7 y) U J‘ d F[ h w(/v7 ) v

_ _ | H+h
JRd fRd ! |Z +1;1” U(u, Y)Y (v, x)dudv. (3.30)

It clearly holds that C'(H, h) is finite. Furthermore, as 1) € Ny, (D) and with 3.26, it follows
that gp p, is finite. Now, putting all together, we get

1
c§(H, h)/T(H)T(h)

= [0+ g = o = gy = ] - fRd a4 (w, ) du

E[ X (2)Xn(y)]

] =l g = [y [ ol e + [y = oG, o)
Rd Rd Rd
+f Jal 4, )+ j ol F ey (o, z)dv — f f Jut — o] 4 () (0, ) o
R4 R4 R JRd
= ey f Ja — ] P () + f ly — o F (v, 2)dv
R4 Rd
—j f o — o7, ) (0, ) dud
R4 JRA
E 1yl - | (1 - u|H+h)¢<u,y>du - (1 —y - vnH*h)w(v,x)dv
Rd Rd

i J}Rd fRd <1 - U”HHL)WU’ Y)Y (v, z)dudv.

Using 3.5 we finally get
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

1— |z —y|""
H+h

LX) X, 0)] = €, aralen)).
Eventually, it follows that (Xzr) He(0,Ho) 18 a family of normalized fractional Brownian mo-
tions.

Now for (Bu) ge(0,m,), defined as in Example 3.4.2, the whole procedure works in a very
analogue way. We will skip the details here and just write down the outcome. The constant
is given by

C(H,h) := Cy(H, h)\/T(H)T(h)(H + h). (3.31)

Clearly, this is finite. Moreover, the family of functions gp j, is given by

)= 95+ G T ( || sentwle =l o)

+ jR sgn(v)|y — v (v, z)dv — J;R JR sgn(v — w)|u — v T (u, y)ib (v, x)dudv) :
(3.32)

Again, the boundedness of g j, follows by 3.26. |

Next, we want to prove that the maps (H,h) — C(H,h) and (H,h) — gu agree with
the assumptions 3.2 and 3.3 of Theorem 3.1.3. For that purpose, we will cite a proposition
that we need for the proof.

Remark 3.5.3. For a € R it holds that e* — 1 > a. This is equivalent to e* —1 —a > 0.
For a = 0 we have ¢® —1 —0 = 0 > 0. Furthermore the derivative is given by e® — 1
and therefore it is < 0 for ¢ < 0 and > 0 for a > 0. With the fundamental theorem of
calculus the inequality follows. Furthermore, for b > 0 we get b* —1 = ¢?1°8() —1 > qlog(b).

Proposition 3.5.4. For Hy € [3,1] and h € (0,2Hy] it holds that

1 1-2" 3hn

0< log; - < ?logz(z), for z € (0,1]
1 1-2" 2, 2H

0 <log - — . < 4HGh (2?0 — 1 —log(2)), for z € (1, 00).
z

Proof. The proof is very elemental. For z > 0 and h € [0, 1] we define

1 1-2z"
h = log — — . .
B(h, z) 0g N (3.33)

First we discuss the lower bound S(h, z) = 0. This is equivalent to h3(h, z) = 0 and further

0 < hB(h,z) = —hlog(z) — 1 + 2" = —hlog(z) — 1 + eMloe(?)
& hlog(z) < ehlos(x) — 1,
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

which is indeed true by Remark 3.5.3. We apply Taylor’s theorem to the function h — 1—2"
at h = 0 and get

w _ o8 h 0 k. h
ho_ RF* ok —log(2)"2"
TR S T e
k=1 k=1
It follows that N
o 1—z
}IL% = log(2). (3.34)

Thus, we can conclude

Blhz) . (—log(z) 1—2t
Lk St B A | _
o h o\ "k 12

lim
. 0 Lk _h
L ( log(2) | 3 log(e)" hkz)

h—0 h =1 k!
. [ —log(z) log(z)z" log(z)?z"
=1
zﬂ%( R T h T 2
1 h _ 1 2, h
_ lim< og(2)(z ) N log(z)?z )
h—0 h 2
. 1—=2" log(z)?
- o i 5
0 - 1 2 1 2
g0 log(e) & B _ Blog()”
2 2
Furthermore, we calculate
0 B(h,z) 0 ! 1_1—2}‘
oh h on\ %z &
_ 0 (—hlog(z) — (1 - 2
~ 0h h?
(— log(z) + log(z)zh) h? + (h log(z) + (1 — zh))2h
~ hlog(z)(1+ 2") +2(1 - 2")
= = )

For z € (0, 1] it follows with Remark 3.5.3
0 B(h,z) - 2hlog(z) + 2(1 — ellos(2)) - 2hlog(z) — 2hlog(z)
oh h h3 D h3
Thus, by the fundamental theorem of calculus it follows for z € (0, 1]
2
52) _ o Blb2) _ 3log()
h h—0 h 2

and, by multiplying the inequality with h > 0, the result follows. Now we treat the case
z € (1,00). Again, with Remark 3.2.7, we can estimate

=0.

0<
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

0 B(h,z) _ hlog(z)(1 + 2 +2(1 = 2 - 2hlog(z) — 2hlog(z)
oh h h3 - h3
By the fundamental theorem of calculus and using Hy > % and log(z) > 0, it follows that

. B(h, 2) - B(2Ho,z) _ log(z) 1- z2Ho - 1 — 22170 _1og(2)
~ h T 2Hy  2H 4HZ 4H?

=0.

By multiplying the inequality with A > 0, the result follows. |
Now we are finally able to proof Theorem 3.4.4.
Idea of the proof of Theorem 3.4.4. First we consider the map (0, Hy)? — R, (H, h) +>

C(H,h) that was defined in 3.30. This map can be calculated explicitly (see section 8 in
[HIN20]). It is given by

F(HJFTM)\/F(HT”)HP(ZH) sin(Hn)r(M)hr(zh) sin(h)

C(H,h) = A/T(H)T(h)

DA (H + h) sin( \/F H+ 3 +3)
For the limit (H,h) — 0, we consider first
lim sin(z) .
z—0 z

and the following property of the Gamma function for z > 0

2I(z) =T(2+ 1) = lim 2T'(z2) = ii_x)r(l)f‘(z +1)=0I(1)=1.

z—0

Thus, it follows for a,b > 0 that

. . b . sin(bz) b
lim (az)sin(bz) - lim (az)az i "

Furthermore, using I'(3) = /7, it follows that

H+h+l \/P H+h+d H2H F(thd)h hi
lim C(H,h) = lim

(H,h)—0 (H,h)—0 Hh F(H+§+d H}i-h H;hﬂ\/l—\ H+l +1)

For C(H, h), the result follows in an analogue way.

Now, we want to prove that assumption 3.3 holds for gp ;. Again, we start with the
case of Example 3.4.1. First we show the uniform continuity. In particular we show that it
has a uniformly bounded derivative. With Proposition 3.2.7 for z > 0 and h € (0,2H) we
estimate

il—zh
0z h

—zPlog(2)h — (1 — 2M)
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

B ‘—zh log(2)h + log(2)h + log(L)h — (1 — 2")
— )

1= h log(l) — 1=="
g‘ hz |10g(z)|+‘0g(z)hh

< C(log? (2) + Z2HO),

where C' > 0 is a constant. Now, plugging that into the definition of gpj, and interchanging
the integral and differentiation, we get that the map (H,h) — gm n(z,y) is indeed differen-
tiable for all z,y € D and using 3.26, 3.27 and 3.28 it follows that the derivative is bounded
for (h, H) € (0, Hp)? uniformly in x,y € D.

In the second case our function g4 is given in 3.32. As we have shown the assumption
3.3 for gy already, we only need to consider the second part of ggjp. Therefore, we
consider the second part

Jan(x,y) == gan(e,y) — gun(z,y)

_ CQ(H, h) (J;R sgn(u)|x _ u|H+hw(u, y)du

Ci1(H,h)(H + h)
+ JR sgn(v)|y — v[F (v, z)dv — JR J;R sgn(v —u)u — o[ TP (u, y)o (v, x)dudv) .

As we can estimate |sgn(-)| < 1 and using 3.26, it readily follows that

C. h
sup |fun(z,y)| < ‘Cl(H,ng,i}IL 7 ‘ (IR |z — u|H+h¢(u, y)du

x,y€D _
<0
# = ol oo = | [ e ol )6, a)duds
< <o
< C CQ(Ha h)
Cy(H,h)(H + h)
for a constant C' > 0. Finally, using lim,_,q %(Z) =1, we get

sin(5(h — H))sin(5(h + H))
cos(5(h — H))cos(5(h + H))(H + h)

< C(H + h),

Co(H,h) |
C1(H, h)(H + h)‘ -

where C' > 0 is a constant. Thus fpj converges to 0 uniformly in (h, H) uniformly for all
x,y € D. |
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