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Kurzfassung

In dieser Arbeit führen wir die Ein-Parameter Familie von Gauss-verteilten Prozessen - frac-
tional Gaussian fields - ein, welche auch die Brownsche Bewegung, die fraktionale Brownsche
Bewegung und das Gaussian free field inkludiert. Dieser Parameter wird auch Hurst para-
meter genannt. Wir zeigen hier die Existenz und einige Eigenschaften, wie zum Beispiel die
Kovarianzstruktur, welche bereits einiges an Arbeit und Wissen in Fourier Analysis und
Funktionalanalysis benötigen. Wir konstruieren diese Familie Gauss-verteilter Zufallsvaria-
blen mit Hilfe des Satzes von Bochner-Minlos als ein zufälliges Element des topologischen
Dualraums des Schwartz-Raums. Eine in diesem Kontext sehr interessante Frage ist wie
man die Markov-Eigenschaft, welche für die Brownsche Bewegung ein bekanntes Konzept
ist, für das fractional Gaussian field verallgemeinern kann. Dies benötigt allerdings Vor-
sicht, da die Umsetzung in diesem Setting nicht so einfach ist. Im Fall des Gaussian free
fields führen diese Überlegungen zu einem neuen Konzept, den sogenannten lokalen Mengen.

Im zweiten Teil der Arbeit führen wir das Gaussian multiplicative chaos ein, welches
derzeit ein in einigen Bereichen noch nicht gut erforschtes Objekt ist und im Bereich der
Finanzmathematik wichtige Anwendungen hat. Wir konstruieren das Gaussian multiplica-
tive Chaos direkt mit Hilfe des fractional Gaussian field. Der interessanteste Teil ist hier die
Frage, was passiert, wenn man den Hurst parameter gegen 0 gehen lässt. Wir stellen hier
ein Konvergenzergebnis, welches von Paul Hager und Eyal Neuman im Jahr 2020 entdeckt
wurde, vor. Wie im ersten Teil ist der Beweis sehr lange, wovon wir hier den Großteil zeigen.
Zuletzt führen wir noch ein paar Beispiele an, für welche man Konvergenz des Gaussian
multiplicative chaos zeigen kann.



Abstract

In this work we introduce the fractional Gaussian field as a large one-parameter family of
Gaussian processes including many important examples, as the Brownian motion, the frac-
tional Brownian motion and the Gaussian free field. This parameter is well known as the
Hurst parameter. The existence and first properties, for example the covariance structure,
are shown here, what already takes a lot of effort and knowledge in Fourier analysis and
functional analysis. We construct the fractional Gaussian field via the Bochner-Minlos the-
orem, as a random element of the topological dual space of the Schwartz space. One very
interesting question is how to generalize the Markov property, which is for the Brownian
motion a well known concept, that needs in this general setting some care. In the case of
the Gaussian free field we obtain particularly interesting results that lead to a new concept,
the so called local sets.

In the second part we introduce the Gaussian multiplicative chaos, which is a still very
unknown object, but has some important applications in financial mathematics. It can be
directly constructed out of a fractional Gaussian field. The interesting part here is what
happens if one lets the Hurst parameter go to 0. Here we prove a convergence result by
Paul Hager and Eyal Neuman discovered in 2020. Again this takes a very long proof, that
we will show the most parts of. At the very end we show some examples one can apply
this result on.
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1 Introduction

The most important object in stochastic calculus is the Brownian motion EBt€t√.0,≠E, that
was already long ago introduced in physics. Later mathematicians described it in an rig-
orous way, proved existence, observed properties and found many applications in vari-
ous fields. Thus, one interesting question is how to generalize this Gaussian process. In
this work we introduce the one-parameter family of fractional Gaussian fields, denoted by
FGFsERd€, which is a Gaussian process, that generalizes the Brownian motion in terms of
the dimension of the domain and an additional parameter s │ -d

2 . Here we define the so
called Hurst parameter

H :* s - d

2
,

where d is the dimension of the domain. As s │ -d
2 , we obtain H │ 0. The Hurst

parameter indicates the amount of dependence of the field in different regions. For H * 0
the fractional Gaussian field is at every point independent of all other parts. This special
case is called white noise. The tricky part is that the fractional Gaussian field can not be
defined point-wise for all H │ 0. Here we need to make a compromise and find another
way. In our case we define the fractional Gaussian fields as Gaussian processes with index
set being the Schwartz space SERd€. Despite the big cost of being unable to evaluate
point-wise, we obtain another interesting property. Using the Fourier transformation F ,
which is bijective on the Schwartz space SERd€, we define the fractional Laplacian operator
E-Δ€s for s A R. As the notation indicates, it is indeed a generalization of the common
Laplacian operator, i.e. E-Δ€1 * -Δ. Furthermore, E-Δ€-s is the inverse of E-Δ€s and
it holds that E-Δ€sE-Δ€t * E-Δ€s+t. The interesting part is now, that we can couple all
fractional Gaussian fields to one big random object. We can choose a white noise W and
get a fractional Gaussian field h * FGFsERd€ by

h :* E-Δ€-s)2W .

By the properties of the fractional Laplacian operator, we get the following relation. For
s, t │ -d

2 , hs * FGFsERd€ and ht * FGFtERd€, we obtain

hs
d* E-Δ€ t✁s

2 ht

in distribution.

One further generalization is that we consider Gaussian free fields in domains D ] Rd

unequal to Rd. This corresponds, in the case of the Brownian motion, to the Brownian
bridge. Let t0 \ 0 and EBt€t√.0,≠E be a standard Brownian motion. Then the Brownian
bridge is defined by EBt€t√.0,t0. conditioned on Bt0 * 0. We want to define an analogue on

1



1 Introduction

D } Rd as a fractional Gaussian field h * FGFsERd€ restricted to D and conditioned on
the event that h * 0 on ∞D. This step requires more care, as the equation h * 0 on ∞D is,
due to the fact that we are not able to evaluate point-wise, not well defined.

The rigorous proof of all these thoughts is presented in chapter 2 of this work. We follow
here mostly the paper [LSSW16], but need to mention that there are still no educational
books on this topic, that present these thoughts starting from a standard level of knowledge
in stochastic calculus. The idea of this work is to arouse interest and understanding for
the fascinating idea of fractional Gaussian fields in more people.

In the second part of this work we want to show an application of the fractional Gaussian
field. Despite connections to Liouville quantum gravity, there are many ways to use the
fractional Gaussian field for observing new ways of modeling prices in financial mathemat-
ics. One important tool is the so called Gaussian multiplicative chaos. One can think about
it as the stochastic exponential of a fractional Brownian field BH . Formally, it is defined
as a random distribution, defined via its density that is given by

MH
γ Edx€ :* exp

✂
γBHEx€ - γ2

2
E
)
BHEx€2[✡dx,

where γ \ 0 is a constant. The big question is now, what happens if one lets the Hurst
parameter H go to 0. Inspired by the work of Nathanaël Berestycki [Ber17], Paul Hager
and Eyal Neuman proved in [HN20] a statement of convergence of the Gaussian multiplica-
tive chaos. In particular they proved that for a family of fractional Brownian fields, that

own a particular form of covariance structure, there exists a constant γ° ➔
{

7d
4 , that only

depends on the dimension, such that for all γ / γ° the associated Gaussian multiplicative
chaos MH

γ converges as H ║ 0 to a Borel measure Mγ on D in probability with respect to
the weak topology of measures. This result will be given as Theorem 3.1.3 in this work. We
will show most parts of the proof, that requires much effort and is given in the subsections
3.2 and 3.3.

Finally, we discuss some examples of families of fractional Brownian fields, that satisfy
the assumption of Theorem 3.1.3. The main part is the proof of Theorem 3.4.4 that shows
different ways of constructing families of fractional Brownian fields, that we can apply
Theorem 3.1.3 on. This is done in the sections 3.4 and 3.5.
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2 Definition and properties of the Fractional
Gaussian Field

The goal of this section is to rigorously introduce the fractional Gaussian field. For this pur-
pose we look at tempered distributions, define a generalization of the Laplace differential
operator and prove the Bochner-Minlos theorem. Furthermore we discuss the covariance
structure of the fractional Gaussian field and define the fractional Brownian motion as a
special case of the fractional Gaussian field. Moreover, we shortly reflect about continuous
and differentiable versions of the fractional Gaussian field. In section 2.8 we discuss the
generalization of the Markov property. Finally, we reflect about two special cases of the
fractional Gaussian field.

2.1 Tempered distributions

We start introducing the Fourier transformation and the tempered distributions on the real
valued Schwartz space. This section follows from chapter 2.1 in [LSSW16].

Definition 2.1.1 (Schwartz space). A multi-index α * Eα1, ..., αn€ A Nd is a n-tupel of
nonnegative integers with order )α) :* ➦d

i*1 αi. The differential operator Dα is defined

as Dαf :* ,x{α{
,xα1

1 ...,xαd
d

f and the monom mαEx€ :* ➧d
i*1 x

αi
i . For two multi-indices α, β

we define the semi-norm [f[α,β :* supx√Rd )mβEx€DαfEx€). Let A denote the set of all
multi-indices. The real valued Schwartz space SERd€ is now defined as

SERd€ :*
│
f A C≠

c ERd,R€ : [f[α,β ➔ ≈ ≠α, β A A
{

equipped with the topology induced by the semi-norms [ x [α,β. The complex valued Schwartz
space SERd,C€ is defined as the space of complex valued functions, such that their real and
imaginary part are in the real valued Schwartz space.

Remark 2.1.2. The elements φ of SERd€ are called Schwartz functions. From the definition
it follows directly, that if φ is a Schwartz function and α, β are multi-indices, then mβD

αφ
is again a Schwartz function. Furthermore, SERd€ equipped with its topology is a complete
metric space. Clearly it holds that SERd€,SERd,C€ ] L2ERd€ as sets, but the topologies
are different. In particular, the topology on SERd€ induced by the semi-norms [ x [α,β is
finer as the one inherited by the L2-norm. As C≠

c ERd,C€ is dense with respect to the
L2-norm in L2ERd€ and C≠

c ERd,C€ ] SERd,C€, we get that also SERd,C€ is dense with re-
spect to the L2-norm in L2ERd€. Let us recall the definition of the Fourier transformation F .

3



2 Definition and properties of the Fractional Gaussian Field

Definition 2.1.3 (Fourier transformation). For a function φ A L1ERd€ we define the
Fourier transformation by

FφEξ€ :* 1
°2πEd)2

-
Rd φEx€e-ix-ξdx

which is a linear operation on SERd€. We often denote Fφ as φ̂. The inverse Fourier
transformation F-1 on L1ERd€ is defined as

F-1φEx€ :* 1
°2πEd)2

-
Rd φEξ€eix-ξdx.

Remark 2.1.4. One can easily see that φ A L1ERd€ is real valued if and only if for all ξ A Rd

it holds that φ̂E-ξ€ * φ̂Eξ€. Consider

φ̂E-ξ€ * 1
°2πEd)2

➺
Rd

φEx€eix-ξdx * 1

E2π€d)2
➺
Rd

φEx€e-ix-ξdx * φ̂Eξ€.

Now if φ̂E-ξ€ * φ̂Eξ€ then also φ̂Eξ€ * φ̂Eξ€ so φ̂Eξ€ * φ̂Eξ€ and therefore φ * φ. On the

other hand if φ is real valued it follows that φ̂E-ξ€ * φ̂Eξ€ * φ̂Eξ€.

We quickly recall some direct properties of the Fourier transformation.

Proposition 2.1.5. a) For all φ A SERd€ and multi-indices α it holds that

Dαφ̂ * E-i€[α[③mαφ and ③Dαφ * i[α[mαφ̂

b) F maps the complex valued Schwartz functions SERd,C€ into itself and is bijective. The
inverse function of the Fourier transformation on the complex valued Schwartz functions
is the inverse Fourier transformation F-1.

c) The Fourier transformation on SERd€ is an isometry with respect to the L2-scalar prod-
uct, i.e. Ef, g€L2°RdE * Ef̂ , ĝ€L2°RdE.

Proof. See Proposition 3.2.2 for a), Proposition 3.3.1 for b) and Theorem 3.3.2 for c) in
[Bl7]. °

For r A R we define

SrERd€ :*
│
φ A SERd€ : Dαφ̂E0€ * 0 for all )α) / r

{
.

Using Proposition 2.1.5, we get Dαφ̂E0€ * E-i€[α[③mαφE0€ * °-iE{α{
°2πEd)2

-
Rd mαEx€φEx€dx. Thus,

SrERd€ is the space of all Schwartz functions such that
-
Rd mαEx€φEx€dx * 0 for all multi

indices )α) / r. For r ➔ 0 we set SrERd€ * SERd€ and the case r * 0 indicates all Schwartz
functions with zero mean, i.e. S0ERd€ *  φ A SERd€ :

-
Rd φEx€dx * 0+. Since r A R,

multiple r satisfy the inequality for one specific α, so several spaces SrERd€ for different r
are the same. Despite this ambiguousity we still want to keep the structure like that, as this
will work well for the later introduced Hilbert spaces the fractional Gaussian field lives on.
Let us consider the image of SrERd€ under the inverse Fourier transformation and denote
that space by S̃rERd€. From Proposition 2.1.5 we know that the Fourier transformation is
bijective. Thus, it follows that

4



2 Definition and properties of the Fractional Gaussian Field

S̃rERd€ *
│
φ A SERd€ : DαφE0€ * 0 for all )α) / r

{
.

Remark 2.1.6. Let us consider the topological dual space S =ERd€, that consists of all linear
and continuous functionals on SERd€. Here we equip the functionals with the weak topology
on S =ERd€, the topology of point-wise convergence. So we have for a sequence Efn€n√N in
S =ERd€

fn <║ f >> ≠φ A SERd€ : Efn, φ€ <║ Ef, φ€.
For every linear functional f it follows that fEφn€ ║ 0 for every sequence Eφn€n√N ║ 0 in
SERd€. We observe that one can canonically embed S =ERd€ into SERd€ via

ι : SERd€ ║ S =ERd€, f <║
(
φ <║ Ef, φ€L2°RdE

)
with Ef, φ€L2°RdE :*

-
Rd fEx€φEx€dx,

whereby, in our case, an embedding indicates an injective and continuous map. We want
to point out, that one can view ι as a function into a bigger codomain. Furthermore the
Fourier transformation on the topological dual space can readily be defined by F : S =ERd€ ║
S =ERd€ Ef̂ , φ€ :* Ef,F-1φ€L2°RdE. This definition makes sense as it is consistent with the

embedding ι. Indeed with Fubini follows for f, g A SERd€

Ef̂ , g€L2°RdE *
➺
Rd

f̂Ex€gEx€dx

*
➺
Rd

✂
1

E2π€d)2
➺
Rd

fEξ€e-iξ-xdξ
✡
gEx€dx

*
➺
Rd

fEξ€
✂

1

E2π€d)2
➺
Rd

eiξ-xgEx€dx
✡
dξ

*
➺
Rd

fEξ€F-1gEξ€dξ

* Ef,F-1g€L2°RdE.

With our previous definitions we can conclude that f A S =rERd€ < f A S =ERd€ and Ef,mα€ *
0 for all )α) / r. Therefore, if we denote the polynomials on Rd with degree / r by PrERd€,
we see, that there exists a canonical isomorphism between S =rERd€ and S =ERd€(PrERd€.

Definition 2.1.7 (Tempered distributions). The elements of the space S =ERd€ equipped
with the weak topology are called the tempered distributions on Rd.

2.2 The Hilbert space the fractional Gaussian field lives on

Our goal is now to define a Hilbert space where the fractional Gaussian field lives on.
Therefore we consider the space

.
HsERd€ :*

│
f A SERd€ : ξ <║ )ξ)sf̂Eξ€ A L2ERd€

{

5



2 Definition and properties of the Fractional Gaussian Field

and equip it with an inner product for f, g A
.
HsERd€ defined by

Ef, g€ .
Hs°RdE

:*
(
ξ <║ )ξ)sf̂Eξ€, ξ <║ )ξ)sĝEξ€

)
L2°RdE

.

We want
.
HsERd€ to become a Hilbert space, thus, we need to find a suitable completion

for it. In order to do that we embed it into S =HERd€ with H :* s - d(2 being the Hurst

parameter. Let Efn€n√N be a Cauchy sequence in
.
HsERd€ and φ A SHERd€. With Proposition

2.1.5 c) and the Cauchy Schwarz inequality it follows for n,m A N

)Efn - fm, φ€L2°RdE) * )Ef̂n - f̂m, φ̂€L2°RdE)

/
(➺

Rd

)f̂nEξ€ - f̂mEξ€)2)ξ)2sdξ
) 1

2
(➺

Rd

)φ̂Eξ€)2)ξ)-2sdξ
) 1

2
.

We need to explain why the second integral is finite. Since φ̂ is again a complex Schwartz
function and )ξ)2 is, outside a small ball around zero, either bounded or of polynomial
growth, we get that, outside this ball, the integral is finite. We have to take care of the
integral near 0. As φ̂ has a zero of degree [H✉ at the origin, we get, using a Taylor approxi-
mation, that )φ̂Eξ€) / )ξ)[H]+1 near zero. Now using a polar coordinate transformation one
can see that ➺

Be°0E
)φ̂Eξ€)2)ξ)-2sdξ / C

➺ ε

0

r2[H]+2

r2s
rd-1dr *

➺ ε

0
r2[H]-2s+d+1.

The integral on the right hand side is finite if and only if the exponent is greater than
-1. We have that [H✉ * H - δ with δ A  0, 1€. Therefore we get for the exponent
2[H✉ - 2s + d + 1 * 2s - d - 2δ - 2s + d + 1 * 1 - 2δ \ -1. Thus, the integral on the
right hand side is finite. All together we conclude that Efn, φ€L2°RdE is a Cauchy sequence

in R. So we define f : SHERd€ ║ R as the point-wise limit Ef, φ€ :* limn║≠Efn, φ€ for all
φ A SHERd€. It readily follows that f is continuous. Indeed, whenever φk ║ 0 in SHERd€,
we get with Cauchy Schwarz

lim sup
k║≠

)Ef, φk€L2°RdE)2 / lim sup
k║≠

lim sup
n║≠

(➺
Rd

)f̂nEξ€)2)ξ)2sdξ
)(➺

Rd

)φ̂kEξ€)2)ξ)-2sdξ
)
.

The integral over the pole is finite for all k A N. As for all multi-indices α, it holds that
Dαφ̂E0€ ║ 0, the integral over a small neighbourhood of 0 gets arbitrarily small. Outside
the neighbourhood the function )ξ)-2s is of polynomial growth so the convergence to zero
follows from the convergence in the Schwartz sense of φ. In conclusion, f is linear and

continuous, and thus, we can embed
.
HsERd€ into S =HERd€.

Definition 2.2.1 (The space
*
HsERd€). Finally we define

*
HsERd€ as the completion of

ιE
.
HsERd€€ ] S =HERd€.

6



2 Definition and properties of the Fractional Gaussian Field

Remark 2.2.2. Let us consider L2ERd, )ξ)2sdξ€, the set of measurable functions that are

quadratic integrable with respect to the measure with density )ξ)2s. Let f A
*
HsERd€ and

Efn€n√N be a sequence in
.
HsERd€ that converges in

*
HsERd€ to f . As L2ERd, )ξ)2sdξ€ is

complete, Efn€n√N converges in
*
HsERd€ if and only if the sequence Ef̂n€n√N converges in

L2ERd, )ξ)2sdξ€. Therefore there exists a g A L2ERd, )ξ)2sdξ€ such that Ef̂n€n√N ║ g in
L2ERd, )ξ)2sdξ€. Using Cauchy-Schwartz, we obtain for φ A S̃rERd€

(((➺
Rd

gEξ€φEξ€dξ
((( / (➺

Rd

)gEξ€)2)ξ)2sdξ
) 1

2
(➺

Rd

)φEξ€)2)ξ)-2sdξ
) 1

2 ➔ ≈

and therefore g A S̃ =HERd€. With Proposition 2.1.5 c) it follows for φ A SHERd€ that

Ef, φ€ * Eg, φ̂€. We get f̂ * g whereby f̂ and g are viewed as elements in S̃ =HERd€. Thus,

we can identify the space
*
HsERd€ as

*
HsERd€ *

│
f A S =HERd€ : f̂ A L2ERd, )ξ)2sdξ€

{
.

2.3 The fractional Laplacian

This section follows from chapter 2.1 in [LSSW16].

We now want to introduce the fractional Laplacian, which extends the usual Laplacian
differential operator. For this purpose we consider for φ A S1ERd€ using Proposition 2.1.5
and the linearity of F and F-1

-ΔφEξ€ * -
d➳

i*1

∞2
∞ξ2i

φEξ€ * -F-1
d➳

i*1

F ∞2
∞ξ2i

φEξ€ * -F-1
d➳

i*1

E-i€2x2i φ̂Eξ€ * F-1)x)2φ̂Eξ€.

The inverse Fourier transformation in this case is well defined, because φ A S1ERd€ and
therefore )x)2φ̂Eξ€ A L1ERd€. This fact gives rise to the following definition:

Definition 2.3.1 (Fractional Laplacian). For an integer k │ -1, φ A SkERd€ and s \
-d+k+1

2 we define the fractional Laplacian E-Δ€s as

E-Δ€sφEξ€ :* F-1
(
ξ <║ )ξ)2sφ̂Eξ€

)
.

This is well defined due to ξ <║ )ξ)2sφ̂Eξ€ A L1ERd€. Furthermore it clearly holds that
E-Δ€0φ * φ and for s1, s2 \ -d+k+1

2

E-Δ€s1E-Δ€s2φEξ€ * E-Δ€s1F-1
(
ξ <║ )ξ)2s2 φ̂Eξ€

)
* F-1

(
ξ <║ )ξ)2°s1+s2Eφ̂Eξ€

)
* E-Δ€s1+s2φEξ€.

7



2 Definition and properties of the Fractional Gaussian Field

Remark 2.3.2. For an integer k │ -1, φ A SkERd€ and s \ -d+k+1
2 follows that E-Δ€sφ A

C≠ERd€. Indeed if we use Proposition 2.1.5 a) we see that for a multi-index α it holds that
DαF-1Eφ€ * i[α[F-1Emαφ€. We conclude that

DαE-Δ€sφ * DαF-1
(
ξ <║ )ξ)2sφ̂Eξ€

)
* i[α[F-1

(
ξ <║ mαEξ€)ξ)2sφ̂Eξ€

)
* F-1

(
ξ <║ )ξ)2smαEξ€③Dαφ

)
* E-Δ€sEDαφ€.

Furthermore with Remark 2.1.4 we get that E-Δ€sφ is real valued.

Lemma 2.3.3. For an integer k │ -1, φ A SkERd€, s \ -d+k+1
2 and a multi-index α it

holds that

sup
ξ√Rd

(
1 + )ξ)d+2s+k+1

│)∞αE-Δ€sφEξ€) ➔ sup
[β[/max [α[,k+1

[φ[β,0.

Proof. See Proposition 2.1 in [LSSW16]. °

Definition 2.3.4 (The space UsERd€). For s \ -d
2 , a multi-index α and φ A C≠ERd€

we define the semi-norm [φ[Us°RdE,α :* supξ√RdE1 + )ξ)d+2s€)∞αφEξ€) and the corresponding
space

UsERd€ :*
│
φ A C≠ERd€ : [φ[Us°RdE,α ➔ ≈ ≠α A A

{
equipped with the topology induced by the semi-norms [ x [Us°RdE,α. It clearly follows that

SERd€ ] UsERd€ ] Us°ERd€ ] C≠ERd€ whenever -d
2 ➔ s= ➔ s.

Remark 2.3.5. Together with Lemma 2.3.3 we conclude that the operator EΔ€s : SkERd€ ║
Us+°k+1E)2ERd€ is continuous. In addition, if we assume for φ A SkERd€ that E-Δ€sφ * 0,

it follows due to the injectivity of the inverse Fourier transformation, that φ̂ vanishes ev-
erywhere except at the origin. As φ̂ is smooth it has to be zero and with the injectivity of
the Fourier transformation it follows that φ * 0. Therefore E-Δ€s is injective for all s \ -d

2 .

Remark 2.3.6. Analogous to the Fourier transformation we can easily define the fractional
Laplacian E-Δ€s on the topological dual space of the image E-Δ€sSkERd€ ] Us+°k+1E)2ERd€.
For f A EE-Δ€sSkERd€€= and φ A SkERd€ we define

EE-Δ€sf, φ€ :* Ef, E-Δ€sφ€
which is well defined. For the embedding ι in Remark 2.1.6 and f A SERd€ it readily
follows with the definition of the Fourier transformation on the topological dual space that

8



2 Definition and properties of the Fractional Gaussian Field

ιEE-Δ€sf€ * E-Δ€sιEf€. To see that the element E-Δ€sf can in fact be interpreted as an
element of the dual space EE-Δ€sSkERd€€=, we consider for a f, g A SkERd€

ιEE-Δ€sf€Eg€ * EE-Δ€sf, g€ * Ef̂ )ξ)2s, ĝ€
* Ef̂ , ĝ)ξ)2s€ * Ef, E-Δ€sg€
* EE-Δ€sf, g€ * E-Δ€sιEf€Eg€.

Therefore, the extension of the fractional Laplacian on the topological dual space makes
sense. Furthermore, from this consideration it directly follows that the fractional Lapla-
cian on the topological dual space still satisfies the property E-Δ€s1E-Δ€s2 * EΔ€s1+s2 for
suitable s1, s2.

We want to define the fractional Laplacian operator on the space
*
HsERd€. Therefore we

embed it into the space EE-Δ€sSHERd€€= via the map

ι :

] *
HsERd€ <║ EE-Δ€sSkERd€€=
f <║ Eφ <║ Ef̂ , φ̂€€

.

First we show injectivity. Clearly ι is linear, so it suffices to show that the kernel of ι
is trivial. As E-Δ€s is injective, we get for φ A E-Δ€sSkERd€ that there exists a unique
g A SkERd€ with E-Δ€sg * φ. Now follows that

ιEf€Eφ€ * Ef̂ , φ̂€ * Ef̂ , √E-Δ€sg€ * Ef, )ξ)2sĝ€ !* 0.

As )ξ)2sĝ are dense in SHERd€, we get that f * 0. Due to the linearity, it suffices to show

continuity at the origin. Consider a sequence Efn€n√N ]
*
HsERd€ that converges to zero. As

)ξ)2sĝ A SHERd€ we have ιEfn€Eφ€ * Efn, )ξ)2sĝ€ ║ 0 as n ║ 0. Therefore ι is a well defined
embedding.

Now we can make use of the definition of E-Δ€s on the space EE-Δ€sSkERd€€= and define

E-Δ€s :
].{

*
Hs0ERd€ ║

*
Hs0-2sERd€

f <║ E-Δ€sιEf€
. (2.1)

It follows that the fractional Laplacian operator is an isometric isomorphism. This is more

easy to see if one interprets the space
*
HsERd€ as in Remark 2.2.2. Here the fractional

Laplacian operator turns out to be the usual fractional Laplacian defined for topological

dual spaces as above. Then it clearly follows for f A
*
Hs

0ER€ that

[E-Δ€sf[ °
Hs

0°RdE
* [ √E-Δ€sf[L2°Rd,[ξ[2s0✁4sdξE

* [f̂ )ξ)2s[L2°Rd,[ξ[2s0✁4sdξE
* [f̂[L2°Rd,[ξ[2s0dξE * [f[ °

Hs
0-2s°RdE

.

9



2 Definition and properties of the Fractional Gaussian Field

From that the bijectivity easily follows as well. Therefore we can define for s ➔ 0 the
fractional Laplacian operator as the inverse of E-Δ€[s[. For s * 0 we set EΔ€0 * id °

Hs0 °RdE
.

In total we arrive at the following Proposition.

Proposition 2.3.7. For s A R the fractional Laplacian operator E-Δ€s :
*

Hs0ERd€ ║
*

Hs0-2sERd€ defined in equation 2.1 is a well defined isometric isomorphism.

Proof. See Remark 2.3.6. °

The following Lemma gives us an easier way of interpreting the fractional Laplacian for
s A E0, 1€ and is following the idea of Proposition 3.3 of [NPV11].

Lemma 2.3.8. For f A SERd€, ξ A Rd and 0 ➔ s ➔ 1 it holds that

E-Δ€sfEξ€ * -1
2CEd, s€

➺
Rd

fEξ + x€ - 2fEξ€ + fEξ - x€
)x)d+2s

dx

with CEd, s€ *
(➺

Rd

E1 - cosEξ1€€
)ξ)d+2s

dξ
)-1

.

Proof. First we give an argument why the integrals exist. At 0 the numerator fEξ+x€-
2fEξ€+fEξ-x€ and its first derivatives Dα )α) / 1 are 0. Therefore, using multidimensional
Taylor we can estimate the integrand by C)x)2-2s-d for some constant C, so the integral
near 0 exists, because s \ 1. For the integral over Rd(B1E0€ we can estimate the integrand
by C)x)-d-2s for some constant. Again, the integral exists as this time s \ 0. The constant
CEd, s€ is well defined as we can see in an analogue way. First we consider

FfEξ + x€ * 1

E2π€d)2
➺
Rd

fEy + x€e-iy-ξdy

* 1

E2π€d)2
➺
Rd

fEz€e-i°z-xE-ξdz

* eix-ξ
1

E2π€d)2
➺
Rd

fEz€e-iz-ξdz

* eix-ξFfEξ€.

Now using the linearity of the Fourier transformation we calculate

F
✂

-1

2
CEd, s€

➺
Rd

fEξ + x€ - 2fEξ€ + fEξ - x€
)x)d+2s

dx

✡
* -1

2
CEd, s€

➺
Rd

Eeix-ξ - 2 + e-ix-ξ€FfEξ€
)x)d+2s

dx

* CEd, s€
➺
Rd

1 - eix-ξ+e✁ix-ξ

2

)x)2+2s
dxFfEξ€

10



2 Definition and properties of the Fractional Gaussian Field

* CEd, s€
➺
Rd

1 - cosEx x ξ€
)x)2+2s

dx❧{{{{{{{{{{{.{{{{{{{{{{{{
*:I°ξE

FfEξ€.

Let us show that IEξ€ is radially symmetric in ξ. For d * 1 this is clear as cos is even. For
d │ 2 let R be a rotation such that RE)ξ)e1€ * ξ. Then it holds that

IEξ€ *
➺
Rd

1 - cosEx x RE)ξ)e1€€
)x)d+2s

dx

*
➺
Rd

1 - cosER-1Ex€ x )ξ)e1€
)x)d+2s

dx

*
➺
Rd

1 - cosEx x )ξ)e1€
)x)d+2s

dx * IE)ξ)e1€.

Now using the symmetry and the substitution z * x
[ξ[

IEξ€ *
➺
Rd

1 - cosEx x )ξ)e1€
)x)d+2s

dx

*
➺
Rd

)ξ)-d 1 - cosEz1€
[z[d+2s

[ξ[d+2s

dx

* )ξ)2s
➺
Rd

1 - cosEz1€
)z)d+2s

dz * )ξ)2sCEd, s€-1.

Putting all together we get

-1
2CEd, s€

➺
Rd

fEξ + x€ - 2fEξ€ + fEξ - x€
)x)d+2s

dx * F-1)ξ)2sFfEξ€ * E-Δ€sfEξ€.

°

Remark 2.3.9. For s │ 0 let n :* [s✉ and let us decompose E-Δ€s * E-Δ€s-nE-Δ€n. As
E-Δ€n results from applying the usual differential -Δ operator n times, we now have, to-
gether with Lemma 2.3.8 using 0 / s- n ➔ 1, an explicit way of calculating the fractional
Laplacian.

2.4 White noise

In this section we want to define the so-called white noise, which is an analogue of a
standard Gaussian random variable on a Hilbert space H with inner product Ex, x€H. In the
case of a finite dimensional Hilbert space this is an easy procedure. For this purpose we
just choose an orthonormal basis h1, ..., hn A H, n A N and independent standard Gaussian
random variables Y1, ...Yn * NE0, 1€ on Ω and define the standard Gaussian on Ω - H in
the following way

11



2 Definition and properties of the Fractional Gaussian Field

Y :

]{.{{
Ω - H ║ R

Eω, x€ <║
n➳

i*1

YiEω€Ex, hi€H .

This random variable on H has now the characteristic property of a standard Gaussian
variable, that for x, y A H it holds that

CovEY Ex€, Y Ey€€ *
n➳

i,j*1

Ex, hi€HEy, hj€HE YiYj *
n➳

i*1

Ex, hi€HEy, hi€H * Ex, y€H

and therefore Y Ex€ * NE0, [x[2H€. However, for an infinite dimensional Hilbert space H this
is not possible. If we tried to define the standard Gaussian in an analogue way and choose
an infinite orthonormal basis Ehi€i√N and a sequence of independent standard Gaussian
random variables EYi€i√N and set

Y :

].{Ω - H ║ R
Eω, x€ <║

➳
i√N

YiEω€Ex, hi€H

we would again get CovEY Ex€, Y Ey€€ * Ex, y€H for x, y A H. The problem now is that
for the Borel sigma algebra A the function P : A ║  0, 1 , A <║ P Y A A is not a
probability measure on H any more. To see this, for x A H, r \ 0 consider the balls
BEx, r€ :*  y A H : [x - y[H ➔ r+. Computing P BEx, r€ we see that this is smaller or
equal the probability, that infinitely many independent standard Gaussian random vari-
ables take values in the compact set  -r, r , whereby the latter turns out to be 0. As the
Hilbert space H is a countable union of such balls but P H * 1, we see that P is not sigma
sub-additive anymore and therefore not a probability measure.[Jan97]

In conclusion, we need to find another way of defining a standard Gaussian on an infinite
dimensional Hilbert space, namely as a random object on the topological dual space of H.
The tool that will help us with that is the Bochner-Minlos theorem. First, we introduce
the term of a cylinder set measure.

Definition 2.4.1 (Cylinder set measure). Let X be a real separable topological vector space
and U be the set of finite dimensional subspaces U ] X. Furthermore we define

T EX€ :*
│
T : X ║ U : T linear, surjective, U A U

{
.

Then the cylinder sets are the sets of the form T-1EB€ ] X with T A T EX€ and B being a
Borel set in U , i.e. as U is finite dimensional we have that it is isomorphic to Rdim°UE and
we define the Borel sets on U via the Borel sets on Rdim°UE. The set of all cylinder sets is
denoted by CylEX€ and it holds that σECylEX€€ * BEX€.
Now a cylinder set measure is a family of probability measures EμT €T√T °XE, where μT is

a probability measure on T EX€ A U endowed with the Borel sigma-algebra, that fulfills the
following condition. For every projection PV U : V ║ U with U, V A U , U ] V it holds that

12



2 Definition and properties of the Fractional Gaussian Field

μU * μV P
-1
V U ,

i.e. μU is the push forward measure of μV under the map PV U .

For every probability measure μ on a real separable topological vector space and T A T
we can consider the measure μT :* μT-1. This collection forms a cylinder set measure.
The important part to notice is that not every cylinder set measure can be constructed by
a probability measure on X. We give an easy example of that case.

Example 2.4.2 (The canonical Gaussian cylinder set measure). Let H be a Hilbert space
equipped with an inner product Ex, x€. We endow every finite dimensional subspace U with
the inner product of H restricted to U and consider a standard Gaussian probability mea-
sure PU on U exactly constructed like in the beginning of this subsection. Then these
probability measures fulfill the requirements of a cylinder set measure. However they can-
not be extended to a standard Gaussian probability measure on H as we have seen in the
first part of this subsection.

There are Hilbert spaces such that for every cylinder set measure there exists an exten-
sion to a probability measure on the whole space. One example are dual spaces of nuclear
Hilbert spaces. The Schwartz space is indeed a nuclear space. We don’t want to introduce
the term of nuclear spaces here, but directly show, that one can extend every cylinder set
measure on S =ER€ to a probability measure. Let us state a useful characterization of the
Schwartz space via the Hermite basis, see Theorem 2.3 in [LSSW16].

Remark 2.4.3. For n A N we define

ψnEx€ :

]{.{{
R ║ R

x <║ E-1€nex2

2
dn

dxn  e-x2 
π1)4≈2nn!

.

Then the sequence Eψn€n√N is an orthogonal basis of L2ER,R€, the so called Hermite basis.

Proposition 2.4.4. Let Exn€n√N A RN. We define for an integer m the semi-norm on RN

by [Exn€n√N[m :* ➦n√NE1 + n2€m)xn). Let sm be the space of sequences Exn€n√N in R such
that all the norms [ x [m are finite, i.e.

sm :*
│
Exn€n√N A RN : [Exn€n√N[m ➔ ≈

{
.

Then we set

s :*
,
m√Z

sm,

equipped with the topology induced by all the semi norms [ x [m. It follows that the one-
dimensional Schwartz space SER€ is isomorphic to the space s. Furthermore, the topological
dual space is of the form

13



2 Definition and properties of the Fractional Gaussian Field

s= *
,
m√Z

sm.

Proof. See Theorem 2.3 in [LSSW16]. °

Remark 2.4.5. In a very analogue way one can show for the higher dimensional Schwartz
space SERd€ the existence of a Hermite basis. There one considers the so called Hilbert
Schmidt operator H and defines for all integers n and finite linear combinations of Hermite
basis elements φ, ψ the inner product Eφ, ψ€n :* Eφ, EH+I€nψ€L2°RdE. The induced norm is

denoted by [φ[n :* Eφ, φ€1)2n . If one completes this space of finite linear combinations one
gets a Hilbert space Hn for every n A Z. As H is a positive definite operator one gets for
all linear combinations that [φ[n / [φ[n+1. Furthermore H0 * L2ERd€. Finally, we arrive
at the following equalities

SERd€ *
,
n√Z

Hn and S =ERd€ *
,
n√Z

Hn.

Furthermore, for r \ 0 and n A Z we define the ball around the origin with respect to the
norm [x[n as Bn

r E0€ :*  φ A S =ERd€ : [φ[n / r+. For more details see Lemma A.3.2 in [GJ87].

Our next step to our goal of proving the Bochner-Minlos theorem is to give a sufficient
condition for the extension of the cylinder set measure to exist on the whole space S =ERd€.
For the purpose we introduce the term of a vanishing measure at infinity. This part follows
chapters A.3, A.4 and A.6 in [GJ87].

Definition 2.4.6 (vanishing measure at infinity). Let S =ERd€ be the topological dual space
characterized as in Remark 2.4.5. Then we say for a finitely additive cylinder set measure
μ on S =ERd€ it has vanishing measure at infinity if for every ε \ 0 there exist n A Z and
r \ 0 such that for all C A CylES =ERd€€ with C E Bn

r E0€ * √ we have μEC€ / ε. If we can
find for n A Z and all ε \ 0 an r \ 0, such that the inequality is fulfilled, we say that μ has
vanishing measure at infinity on Hn.

Lemma 2.4.7. Let μ be a finitely additive and regular probability measure on the cylinder
sets CylES =ERd€€ that has vanishing measure at infinity on Hn. Then μ is a countably
additive measure on Hn.

Remark 2.4.8. Here the regularity of the measure μ is defined with respect to the weak
topology on S =ERd€ discussed in Remark 2.1.6. In particular, μ is regular if for all C A
CylES =ER€€ it holds that

μEC€ * inf μEO€ : C ] O A CylES =ERd€, O is open w.r.t the weak topology+.
Proof of Lemma 2.4.7. Let ECk€k√N be a sequence of pairwise disjoint cylinder sets,

C :* /≠
k*1Ck and define C0 :* S =ERd€(C. It suffices to show
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2 Definition and properties of the Fractional Gaussian Field

≠➳
k*0

μECk€ * 1.

Indeed, if we have this equality we get

1 - μEC0€ * μ
( ≠,
k*0

Ck

)
*

≠➳
k*0

μECk€.

Therefore μ is countably additive. By the finite additivity of μ we get

≠➳
k*0

μECk€ * lim
K║≠

K➳
k*0

μEck€ * lim
K║≠

μ
( K,
k*0

Ck

)
/ μ

( ≠,
k*0

Ck

)
.

It remains to prove the other inequality. As μ is regular, it suffices to show the inequality
for weakly open sets. Indeed, for all ε \ 0 we find weakly open sets Ok { Ck such that
μECk€+ ε

2k+1 \ μEOk€ and therefore, if μ is countably additive on weakly open sets we have

≠➳
k*0

μECk€ + ε \
≠➳

K*0

μEOk€ * μ
( ≠,
k*0

Ok

)
│ μ

( ≠,
k*0

Ck

)
.

Therefore let all Ck be weakly open. Let ε \ 0. As μ has vanishing measure at infinity
on Hn, there exists r \ 0 such that for all C A CylES =ERd€€ with C E Bn

r E0€ we have
μEC€ / ε. Now we use that the ball Bn

r E0€ is, according to Banach-Anaoglu (Theorem
5.5.6 in [HWB20]), weakly compact. We get a finite open cover Ck1 , ..., CkL , L A N of
Bn

r E0€. It follows
≠➳

k*0

μEck€ │
L➳
l*1

μECkl€ * μ
( L,
l*1

Ckl

)
│ μEBn

r E0€€ │ 1 - ε.

As this inequality holds for all ε \ 0, the countably additivy of μ follows. °

Definition 2.4.9 (Characteristic function of a probability measure). Let μ be a probability
measure on S =ERd€ and Φ : SERd€ ║ C. Then Φ is called the characteristic function of μ,
if for all φ A SERd€ we have

ΦEφ€ *
➺
S°°RdE

ei°f,φEdμEf€. (2.2)

Definition 2.4.10 (positive definite functional). A C-valued linear function Φ on a Hilbert
space H is called positive semi-definite, if for all n A N, h1, ..., hn A H and c1, ..., cn A C it
holds that

n➳
i,j*1

cicjΦEhi - hj€ │ 0.

Theorem 2.4.11 (Bochner-Minlos Theorem). Let Φ : SERd€ ║ C. Then there exists a
probability measure μ on S =ERd€ such that Φ is the characteristic function of μ, if and only
if Φ is continuous, positive semi-definite and ΦE0€ * 1.
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2 Definition and properties of the Fractional Gaussian Field

Remark 2.4.12. For finite dimensional subspaces of S =ERd€ the Bochner-Minlos theorem
reduces to an easier case, which can be seen as a special case of Bochner’s theorem. In
general, Bochner’s theorem is proven for locally compact abelian groups.

Sketch of the proof of theorem 2.4.11. Let μ be a probability measure such that Φ is
its characteristic function. Clearly, it holds that ΦE0€ * E ei°f,0E * E 1 * 1. Furthermore,
for c1, ..., cn A C and φ1, ..., φn A SERd€ we have

n➳
i,j*1

cic̄jΦEφi - φj€ *
➺
S°°RdE

n➳
i,j*1

cic̄je
i°f,φi-φjEdμEf€

*
➺
S°°RdE

( n➳
i*1

cie
i°f,φiE

)( n➳
j*1

cjei°f,φjE
)
dμEf€

*
➺
S°°RdE

((((( n➳
i*1

cie
i°f,φiE

(((((
2

❧{{{{{{{.{{{{{{{{
│0

dμEf€ │ 0

and therefore Φ is positive definite. Finally, with the dominant convergence theorem, we
get, due to the continuity of every f A S =ERd€, for a sequence φn ║ φ in SERd€, that

ΦEφn€ *
➺
S°°RdE

ei°f,φnEdμEf€ <║
➺
S°°RdE

ei°f,φEdμEf€ * ΦEφ€

and therefore the continuity of Φ.

Now we take a function Φ with the three properties above and further need to construct
a probability measure μ on S =ERd€ such that Φ is its characteristic function. The main
idea is to use Bochner’s theorem for all finite dimensional cases and then put them all
together using Kolmogorov’s extension theorem (Theorem 2.9.2). For more details of that
part of the proof see Theorem A.6 in [GJ87]. For every finite dimensional linear subspace
V ofSERd€ we consider the restriction of Φ to that space ΦV :* Φ)V . Clearly, ΦV inherits
all three properties from above. Now we can use Bochner’s theorem as described in remark
2.4.12 and obtain for every V a probability measure μV on V =. As there exists a projection
PV for all V, one can view μV as a probability measure on the V-cylinder sets, i.e. on
σE P-1

V EA€ : A A BEV€+€ where BEV€ denotes the Borel sets in the subspace V. In particular,
for a set A A P-1EBEV€€ one considers the measure A <║ μVEP EA€€. We want to show that
this collection of probability measures is a cylinder set measure. Therefore let V ] U be
linear subspaces of S and P : U ║ V the projection operator. We need to show

μV * μUP-1,

which directly follows using the uniqueness part of Bochner’s theorem. Hence, we have a
projective family of cylinder set measures and therefore get a unique cylider set measure μ
such that for every projection PVS =ERd€ ║ V = we have

μV * μP-1
V .
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By construction, μ has Φ as characteristic function. It remains to show that μ can indeed
be extended to a measure on the Borel sets of S =ERd€. For that purpose it is sufficient to
show that μ is countably additive. We therefore want to apply Lemma 2.4.7. Hence, we
need to prove that μ has vanishing measure at infinity on Hn for every n A N. Let Bn

r E0€ be
defined as in remark 2.4.5 and C be a V-cylinder set such that C EB-n

r E0€ * √. Denoting
by P the projection S =ERd€ ║ V =, we get

μEC€ /
➺
V °)P °B✁n

r °0EE
1dμ / 2

➺
V °

✂
1 - e-

ln=2,

r2
]f]2✁n

✡
dμV .

The second inequality follows from the fact that on V =(P EB-n
r E0€€ the exponential term is

less than one half. Denote by Q the projection from S onto V and by I the identity, and
let A :* EQEH + I€-nQ€-1. Then we get➺

V °

exp

✂
- lnE2€

r2
[f[2-n

✡
dμVEf€

*
➺
V °

exp

✂
- lnE2€

r2
Ef,A-1f€

✡
dμVEf€

* C

➺
V

➺
V °

exp

✂
iEQf, φ€

✡
exp

✂
-r2Eφ,Aφ€

4 lnE2€
✡
dμEf€dφ,

with

C :*
(➺

V
exp

✂
-r2Eφ,Aφ€

4 lnE2€
✡
dφ

)-1

.

All together, we get

μEC€ / 2C

➺
V
E1 - ΦEφ€€ exp

✂
-r2Eφ,Aφ€

4 lnE2€
✡
dφ.

Let ε \ 0 be given. From the continuity of Φ we get n A Z and δ \ 0 such that from
[φ[2-n / δ it follows that )1 - ΦEφ€) / ε. On the other hand, we can in general estimate
)ΦEφ€) / E 1 * 1. In total, we get

μEC€ / 2ε + 4C
δ

➺
V

[φ[2-n exp

✂
-r2Eφ,Aφ€

4 lnE2€
✡
df .

With some further estimates one can show that μEC€ / 6ε. Therefore the assumptions of
Lemma 2.4.7 are fulfilled and μ is a regular probability measure on S =ERd€. °

Lemma 2.4.13. Let H be a Hilbert space and Φ : H ║ C,ΦEh€ :* expE-1
2Eh, h€H€. Then

Φ is continuous and positive semi-definite on H with ΦE0€ * 1.

Proof. The continuity is clear as Φ is a composition of continuous functions. Further-
more ΦE0€ * expE-1

2E0, 0€H€ * expE0€ * 1. So we only need to show that Φ is positive
semi-definite. Let n A N, h1, ..., hn A H and c1, ..., cn A C. We choose an orthonormal basis
e1, ..., em of span h1, ..., hn+. We want to use the characteristic function of the normal
distribution. If Z A Rm is standard normal distributed and v A Rm then we know
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E eivZ * exp

✂
-1

2

m➳
i*1

v2i

✡
* expE-1

2
Ev, v€€ * Φ

✂ m➳
i*1

viei

✡
.

We define for i A  1, ..., n+ xi :* EEhi, e1€H, ..., Ehi, em€H€ A Rm. Then we get

n➳
i,j*1

cicjΦEhi - hj€ *
n➳

i,j*1

cicjΦ

✂ m➳
k*1

Ehi - hj , ek€Hek
✡

*
n➳

i,j*1

cicjE
✒
exp

✂
i

m➳
k*1

Ehi - hj , ek€HZk

✡[

*
n➳

i,j*1

cicjE
)
exp
(
iExi - xj€Z

│[ *

n➳
i,j*1

cicjE
)
exp
(
ixiZ

│[
E
)
exp
(
ixjZ

│[
*
((((( n➳
i*1

ciE
)
expEixiZ€[(((((

2

│ 0

and we see that Φ is positive semi-definite. °

We are now ready to define the standard normal distribution on S =ERd€.

Definition 2.4.14 (White noise). Let Φ : H ║ C, ΦEh€ :* expE-1
2Eh, h€H€. Then we

define W as the unique probability measure on S =ERd€ such that Φ is its characteristic func-
tion. We call W white noise on S =ERd€.

Remark 2.4.15. From the definition of white noise we have for φ A SERd€➺
S°°RdE

exp

✂
iEf, φ€L2°RdE

✡
dW Ef€ * exp

✂
-1

2
[φ[2L2°RdE

✡
.

Therefore we can interpret W as a random Gaussian process EW,φ€φ√S°RdE with EW,φ€ *
NE0, [φ[2

L2°RdE€. As W is a random element in the topological dual space, the process

W Eφ€φ√S°°RdE is almost surely continuous.

We would like to find an extension of the process W Eφ€φ√S°°RdE to all functions of L2ERd€.
In order to do that we introduce the term of a Gaussian Hilbert space.

Definition 2.4.16 (Gaussian Hilbert space). Let EΩ,F ,P€ be a probability space. Consider
a collection of Gaussian random variables denoted by H on EΩ,F ,P€ and equip it with the
inner product EX,Y €H :* E XY  for X,Y A H. Then H is called a Gaussian Hilbert space

if it is closed with respect to the norm [X[H :* EX,X€1)2H .

18



2 Definition and properties of the Fractional Gaussian Field

LetW be a white noise on SERd€ and consider the collection of Gaussian random variables
 EW,φ€ : φ A SERd€+ that are all defined on that one probability space EΩ,F ,P€ where the
random element W lives on and equip it with the inner product of the definition above.
Define ι : SERd€ ║  EW,φ€ : φ A SERd€+, φ <║ EW,φ€. Then ι is an isometry, because,
according to Remark 2.4.15, it holds that [ιEφ€[H * E EW,φ€2 * [φ[L2°RdE. Therefore, we
can extend ι in the following way: Let f A L2ERd€ and Efn€n√N be a sequence in SERd€
such that fn ║ f as n ║ ≈ in L2ERd€. Then we define ιEf€ :* limn║≠EW, fn€. We have
to show that this definition is well defined. From the dominated convergence theorem we
get that for all ξ A R

lim
n║≠E eiξ°W,fnE * exp

✂
-1

2
ξ[fn[2L2°RdE

✡
<║ exp

✂
-1

2
ξ[f[2L2°RdE

✡
.

Thus, there exists an almost surely unique random variable EW, f€ on L2EΩ,F ,P€ such that
EW, fn€ converges in probability to EW, f€ and EW, f€ * NE0, [f[2

L2°RdE€. Furthermore, the

random variable EW, f€ is independent of the choice of the sequence Efn€n√N. Let now H
be ιEL2ERd€€. So we get that ι : L2ERd€ ║ H is an isometry. As L2ERd€ is complete, also
H is complete and therefore a Gaussian Hilbert space. As the limit is linear, H inherits
the linear structure of  EW,φ€ : φ A SERd€+. Here one has to be careful, as point-wise the
two elements EW, f + g€ and EW, f€ + EW, g€ for f, g A L2ERd€ do not necessarily coincide.
However, in the Hilbert space H they represent the same element as the convergence in the
norm of H is the convergence in distribution on L2EΩ,F ,P€. Furthermore, from the fact
that ι is an isometry we directly get the following property

Cov

✂
EW, f€, EW, g€

✡
* E EW, f€EW, g€ 

* 1

4

✂
E EW, f + g€2 - E EW, f - g€2 

✡
* 1

4

✂
[f + g[2L2°RdE - [f - g[2L2°RdE

✡
* Ef, g€L2°RdE.

(2.3)

Definition 2.4.17 (White noise Gaussian Hilbert space). The Gaussian Hilbert space H
we constructed above is called the white noise Gaussian Hilbert space of Rd.

One important fact is that the so constructed white noise Hilbert space seen as a stochas-
tic process EW, f€f√L2°RdE is not continuous any more.

2.5 The Fractional Gaussian Field on Rd

In this section we want to define the fractional Gaussian field with parameter s A R on Rd.
For this purpose we would like to carry out the same procedure as in the last subsection
with the white noise and try to define a standard Gaussian random variable on the space

19



2 Definition and properties of the Fractional Gaussian Field

*
HsERd€ defined in subsection 2.2. Again, as this space is an infinite dimensional Hilbert
space, we need to define the random element on the topological dual space. This section
follows the ideas of chapter 3 of [LSSW16].

Using the ideas of the construction from the white noise, our goal is a random element
h of S =HERd€ such that for all φ A SHERd€ it holds that

Eh, φ€ °
Hs°RdE

* N
(
0, [φ[2°

Hs°RdE

)
. (2.4)

We would like to write out this condition in terms of the L2-scalar product. We compute
for h, φ A SHERd€

Eh, φ€ °
Hs°RdE

*
➺
Rd

ĥEξ€φ̂Eξ€)ξ)2sdξ *
➺
Rd

ĥEξ€ √E-Δ€sφEξ€dξ * Eh, E-Δ€sφ€L2°RdE.

Now it follows, with the desired property 2.4,

E
✒
Eh, φ€2L2°RdE

[
* E

✒
Eh, E-Δ€-sφ€2°

Hs°RdE

[
* [E-Δ€-sφ[2°

Hs°RdE

*
(➺

Rd

)ξ)2s)ξ)-4sφ̂Eξ€dξ
✡2

*
(➺

Rd

)ξ)-2sφ̂Eξ€dξ
)2

* [φ[2 °

H✁s°RdE
.

So if we interpret an element h A SHERd€ via ι from Remark 2.1.6 as an element of S =HERd€,
it would make sense to demand for all φ A SHERd€ that

E
✒
Eh, φ€L2°RdE

[
* [φ[ °

H✁s°RdE
.

Therefore, we define the fractional Gaussian field in the following way.

Definition 2.5.1 (Fractional Gaussian Field on Rd). For s A R the factional Gaussian
field is defined as a random element h of S =HERd€ such that for all φ A SHERd€ holds that

Eh, φ€L2°RdE * N
(
0, [φ[2 °

H✁s°RdE

)
,

where H * s - d
2 denotes the Hurst-parameter. We will write h * FGFsERd€.

Proposition 2.5.2 (Scaling property). For s A R and h * FGFsERd€ the scaling property
holds. Let a \ 0 and consider the random element haEφ€ :* hEφEax€€, where φEax€ : ξ <║
φEaξ€ is the scaled Schwartz function. Then it holds that
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2 Definition and properties of the Fractional Gaussian Field

ha
d* as-

d
2h.

Proof. For a \ 0 and φ A SERd€, using the transformation formula, we calculate

[φEax€[2 °

H✁s°RdE
*
➺
Rd

)ξ)-2sφ̂Eaξ€dξ

*
➺
Rd

)aξ)-2sa2sφ̂Eaξ€dξ

* a2s-d

➺
Rd

)ξ)-2sφ̂Eξ€dξ

* a2s-d[φ[2 °

H✁s°RdE
.

Thus, we get

Eha, φ€ * Eh, φEax€€ * N
(
0, [φEax€[ °

H✁s°RdE❧{{{{{{{.{{{{{{{{
*a2s✁d]φ]2 °

H✁s=Rd,

)

and the result follows. °

The next step is now to prove the existence of FGFsERd€. The tool we will use for that
is again the Bochner-Minlos theorem. We would like to apply it on the same functional

as for the white noise just on the Hilbert space
*

H-sERd€. The problem is that in general
this functional is not finite for all φ A SERd€, but only for functions in SHERd€. The idea
is now to change the functional only on the set φ A SERd€(SHERd€ such that it fulfills all
requirements for the Bochner-Minlos theorem.

Proposition 2.5.3. For all positive integers n A N there exists a family of Schwartz func-
tions Eφα€[α[/n such that for all multi-indices )α), )β) / n it holds that➺

Rd

mαEx€φβEx€dx * δuα*β(

where δuα*β( is 1 if and only if α * β and 0 else.

Idea of the proof. We will prove the case d * 1. For that purpose we use the Hermite
basis Eψn€n√N given in Remark 2.4.3. Clearly, it is contained in the Schwartz space SER€.
Moreover, it is easy to see that every ψn can be written as

ψnEx€ * e-
x2

2 PnEx€,
where Pn is some polynomial of degree n. As φn, φm are orthogonal for n ~ m, this is also
true for Pn, Pm if n ~ m. Thus, we have that

span ψ0, ..., ψn+ * span e-x2)2, e-x2)2x, ..., e-x2)2xn+.
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2 Definition and properties of the Fractional Gaussian Field

As those two linear subspaces are finite dimensional, there exists for every m A  1, ..., n+ a
linear combination of Hermite functions, such that for all l A  1, ..., n+➺

R

n➳
k*0

akψke
-x2)2❧{{{{{{{{.{{{{{{{{{

*:φm°xE

xldx * δum*l(.

°

Lemma 2.5.4. Using the family Eφα€[α[/[H] which we get from Proposition 2.5.3, we define

Ps :

]{.{{
SERd€ ║ SHERd€
φ <║ φ -

➳
[α[/[H]

φα

➺
Rd

mαEx€φEx€dx .

Then Ps is a linear projection from SERd€ onto SHERd€ and therefore continuous.

Proof. Ps is clearly linear. First we show that it is also idempotent. We calculate

Ps . PsEφ€ * φ -
➳

[α[/[H]

φα

➺
Rd

mαEx€φEx€dx

-
➳

[α[/[H]

φα

➺
Rd

mαEx€
(
φ -

➳
[β[/[H]

φβ

➺
Rd

mβEx€φEx€dx
)
dx

* φ - 2
➳

[α[/[H]

φα

➺
Rd

mαEx€φEx€dx

+
➳

[α[/[H]

➳
[β[/[H]

φα

➺
Rd

mαEx€φβEx€dx❧{{{{{{{{{{.{{{{{{{{{{{
*δ(α°β(

(➺
Rd

mβEy€φEy€dy
)

* φ - 2
➳

[α[/[H]

φα

➺
Rd

mαEx€φEx€dx +
➳

[α[/[H]

φα

➺
Rd

mαEx€φEx€dx * PsEφ€.

Furthermore, for all φ A SHERd€ we get per definition

PsEφ€ * φ -
➳

[α[/[H]

φα

➺
Rd

mαEx€φEx€dx❧{{{{{{{{{.{{{{{{{{{{
*0

* φ.

Finally, for all φ A SERd€ and )α) / [H✉ we get➺
Rd

PsEφ€Ex€mαEx€dx *
➺
Rd

✂
φEx€ -

➳
[β[/[H]

φβEx€
➺
Rd

mαEy€φEy€dy
✡
mαEx€dx
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2 Definition and properties of the Fractional Gaussian Field

*
➺
Rd

φEx€mαEx€dx -
➳

[β[/[H]

➺
Rd

φβEx€mαEx€dx❧{{{{{{{{{{.{{{{{{{{{{{
δ(α°β✉

✂➺
Rd

mβEy€φEy€dy
✡

* 0.

In conclusion, Ps is a projection from SERd€ onto SHERd€. °

Now we can define our updated functional.

Lemma 2.5.5. Let Φs : SERd€ ║ R, ΦsEφ€ :* exp
(-1

2[PsEφ€[2 °

H✁s°RdE

│
. Then Φs is

continuous, positive semi-definite, ΦsE0€ * 1 and for φ A SHERd€ it holds that ΦsEφ€ *
expE-1

2[φ[2 °

H✁s°RdE
€.

Proof. As Ps is continuous, Φs also is continuous. Clearly, ΦsE0€ * expE0€ * 1.
In an analogue way to Lemma 2.4.13, we get, with the linearity of Ps, that Φs is posi-
tive semi-definite. Finally, for all φ A SHERd€ we get ΦsEφ€ * expE-1

2[PsEφ€[ °

H✁s°RdE
€ *

expE-1
2[φ[ °

H✁s°RdE
€. °

Now we can again use the Bochner-Minlos theorem to define the fractional Gaussian field
with parameter s A R. Therefore we get the existence of the FGFsERd€.

Remark 2.5.6. Clearly the definition of Ps is dependent on the choice of the family of
Schwartz functions Eφα€[α[/[H] and therefore also Φs is. Therefore we restrict the FGFsERd€
to the space SHERd€, where Φs coincides with the functional φ <║ expE-1

2[φ[ °

H✁s°RdE
€.

Remark 2.5.7. Analogue to the white noise Gaussian Hilbert space we want to define a
Gaussian Hilbert space to enlarge the domain of the FGFsERd€. The procedure is the

same as before. Let h * FGFsERd€ and consider SHERd€ as a subset of
*

H-sERd€. De-
fine the isometry ι : SHERd€ ║  Eh, φ€ : φ A SHERd€+ ] L2EΩ€, φ <║ Eh, φ€. Indeed
[ιEφ€[2H * E Eh, φ€2 * [φ[2 °

H✁s°RdE
. As L2EΩ€ is complete we can extend the domain of

ι to the closure of SHERd€ ]
*

H-sERd€ which we denote with TsERd€. In an analogue
way we get that this procedure is well defined and that for φ A TsERd€ it holds that
Eh, φ€ * NE0, [φ[2 °

H✁s°RdE
€. Again, we lose the continuity of h.

Lemma 2.5.8. Let s A R and W be a white noise on Rd.Then there exists h * FGFsERd€
such that h * EΔ€-s)2W .

Proof. Let us define a random element h on T =
sERd€. For φ A TsERd€ ]

*
H-sERd€ we

get from Remark 2.3.6 that E-Δ€-s)2φ A
*
H0ERd€ *  f A SERd€ : f̂ A L2ERd€+ * SERd€ ]

S =-d)2ERd€ * S =ERd€. As the white noise Hilbert space lives on L2ERd€, we can define a

23



2 Definition and properties of the Fractional Gaussian Field

random element h on TsERd€= in the following way Eh, φ€ :* EW, E-Δ€-s)2φ€. This is well
defined and therefore the expression h * E-Δ€-s)2W makes sense. We have to show that

h * FGFsERd€. As E-Δ€-s)2 :
*

H-sERd€ ║
*
H0ERd€ is an isometry we get

E Eh, φ€2 * E EW, E-Δ€-s)2h€2 
* [E-Δ€-s)2φ[2L2°RdE
* [E-Δ€-s)2φ[2°

H0°RdE
* [φ[2 °

H✁s°RdE

so h * FGFsERd€. °

2.6 The covariance kernel of FGFs(Rd)

It is a well known fact that every centered Gaussian Process is completely determined by
its covariance structure. As all FGFsERd€ are centered Gaussian processes, this leads to
the question of how their covariance structure looks like. First, we introduce the term of a
covariance kernel. This section follows chapter 3.2 in [LSSW16].

Definition 2.6.1. Let EXf €f√H be a centered Gaussian process on a function space H with
f : Rd ║ R. If there exists a function G : Rd - Rd ║ R, such that for all f, g A H it holds
that

CovEXf , Xg€ *
➺
Rd

➺
Rd

GEx, y€fEx€gEy€dxdy,

we call G the covariance kernel of EXf €f√H.

Remark 2.6.2. Clearly, a covariance kernel is symmetric, i.e. GEx, y€ * GEy, x€ for all
x, y A Rd and it determines the Gaussian process uniquely. But for a centered Gaussian
process there can be multiple covariance kernels.

Remark 2.6.3. For the white noise we can directly derive the covariance kernel from equation
2.3

Cov

✂
EW, f€, EW, g€

✡
* Ef, g€L2°RdE *

➺
Rd

➺
Rd

δux*y(fEx€gEy€dxdy.

Therefore the covariance kernel of the white noise is GEx, y€ * δux*y(.

We now compute the covariance kernel of the fractional Gaussian field of Rd in all other
cases.

Theorem 2.6.4. For s A R the covariance kernel of the fractional Gaussian field h *
FGFsERd€, which we denote by GsEx, x€, has the following structure:
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2 Definition and properties of the Fractional Gaussian Field

a) For s \ 0 and the Hurst parameter H not being a nonnegative integer, it holds that

GsEx, y€ * CEs, d€)x - y)2H with CEs, d€ * 2✁2sπ✁d)2Γ° d
2
-sE

Γ°sE .

Note that in some cases the constant CEs, d€ is negative.

b) For s \ 0 and the Hurst parameter H being a nonnegative integer, it holds

GsEx, y€ * 2c
d)2+H
-1 )x - y)2H log)x - y)

where c
d)2+H
-1 is the residue of the function s <║ CEs, d€ at d

2 + H

c
d)2+H
-1 * E-1€H+12-2H-dπ-d)2

H!ΓEd2 + H€ .

Again the constant c
d)2+H
-1 is in some cases negative.

c) For s ➔ 0 not being a negative integer, it holds that

GsEx, y€ * CEs, d€)x - y)2H
(
1 -

[-s]➳
i*0

)x - y)2iHiΔ
iδux*y(

)
,

where, )Sd-1) being the surface of the unit sphere in Rd and the empty product is defined
to be 1, the constant Hi is given by

Hi :* )Sd-1)
2ii!

✂ i-1➵
k*0

d + 2k

✡-1

d) For s ➔ 0 being a negative integer, it holds that

GsEx, y€ * E-Δ€sδux*y(.

Idea of the Proof. As for φ A SHERd€ and h * FGFsERd€ it holds that

Eh, φ€ * N

✂
0, [φ[2 °

H✁s°RdE

✡
,

so we get for φ1, φ2 A CHERd€ that

Cov

✂
Eh, φ1€Eh, φ2€

✡
* 1

4
E Eh, φ1 + φ2€2 - Eh, φ1 - φ2€2 

* Eφ1, φ2€ °

H✁s°RdE
.

Ad a) First we assume that 0 ➔ s ➔ d
2 . Then )ξ)-2s is a tempered distribution and it holds

that (chapter 1 §1 [LD72])
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2 Definition and properties of the Fractional Gaussian Field

F-1E)ξ)-2s€ * CEs, d€)x)2H .

Now it follows that

Cov

✂
Eh, φ1€, Eh, φ2€

✡
* Eφ1, φ2€ °

H✁s°RdE

*
➺
Rd

φ̂1Eξ€φ̂2Eξ€)ξ)-2sdξ

* Eφ̂1)xi)-2s, φ̂2€L2°RdE
* EF-1E)ξ)-2s€ ° φ1, φ2€L2°RdE

* CEs, d€
➺
Rd

E)x)2H ° φ1€Ey€φ2Ey€dy

* CEs, d€
➺
Rd

➺
Rd

)x - y)2Hφ1Ex€φ2Ey€dxdy.

For s │ d
2 we need to make an argument. Let

ψ :

].{Rd - R+ ║ R

ψEx, s€ :*
➺
Rd

)x - y)2Hφ2Ey€dy
.

As in this case H │ 0 and ψ is a Schwartz function ψ is well defined. With dominated
convergence, it follows that ψ is smooth in x and analytic in s. By an analytic argument,
the statement follows (see Chapter 1 §1 in [LD72]).

Ad b) As φ1, φ2 A SHERd€ we get for y A Rd that➺
Rd

)x - y)2Hφ2
i Ex€dx * 0 for i A  1, 2+. (2.5)

We want to use a) and a limiting argument. Let t A Es- 1
2 , s- 1

2€ and t ~ s. Then it holds
with 2.5 that

Eφ1, φ2€ °

H✁t°RdE
aE* CEt, d€

➺
Rd

➺
Rd

)x - y)2t-dφ1Ex€φ2Ey€dxdy
2.5* CEt, d€

➺
Rd

➺
Rd

E)x - y)2t-d - )x - y)2s-d€φ1Ex€φ2Ey€dxdy.

With multidimensional Taylor we get that

)x- y)2t-d - )x- y)2s-d * 2Et- s€)x- y)2s-dln)x- y) +O
✂

EEt- s€)x- y)2s-dln)x- y)€2
✡
.

Furthermore, for t ║ s we see that Et - s€CEt, d€ ║ c
d)2+H
-1 , which is the residue of the

function s <║ CEs, d€ at d
2 + H. Putting all together we get

Eφ1, φ2€ °

H✁s°RdE
* 2c

d)2+H
-1

➺
Rd

➺
Rd

)x - y)2H log)x - y)φ1Ex€φ2Ey€dxdy

and the statement follows. Statements c) and d) are following from equation (1.1.10) in
[LD72]. °
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2 Definition and properties of the Fractional Gaussian Field

2.7 The Fractional Gaussian Field on a domain

The idea of this section is to define the fractional Gaussian field on proper subsets D of Rd.
For that purpose, not all subsets of Rd are suitable. We therefore introduce the term of an
allowable domain. Furthermore there is another distinction to make. We have to choose
how the fractional Gaussian field should behave like on the boundary of our domain D.
Here we define the fractional Gaussian field with zero boundary conditions. First we need

to define an appropriate space, denoted by
*
Hs

0ED€, where we define the fractional Gaussian
field with zero boundary conditions on. This section follows Chapter 4 of [LSSW16].

Definition 2.7.1 (Allowable domain). Let D ] Rd and s │ 0. Then D is called an
allowable domain if for all φ A SERd€ there exists a constant C that depends on D and φ
such that for all g A C≠

c ED€ it holds that

)Eφ, g€L2°RdE) / C[g[ °
Hs°RdE

.

Remark 2.7.2. C≠
c ED€ denotes the set of the infinitely often differentiable functions with

compact support in D, so we have C≠
c ED€ ] SERd€ ]

*
Hs.

The following Lemma gives a better perspective on when a domain D is allowable.

Lemma 2.7.3. Let s │ 0, D ] Rd and H * s - d
2 be the Hurst parameter. If Rd(D

contains an open set, then D is an allowable domain.

Proof. Let s │ 0, D ] Rd, φ A SERd€ and g A C≠
c ED€. Using Proposition 2.1.5 c) and

Cauchy Schwarz we get

)Eφ, g€L2°RdE) *
((((➺

Rd

φ̂Eξ€ĝEξ€)ξ)-s)ξ)sdξ
((((

/
✂➺

Rd

φ̂Eξ€)ξ)-s

✡✂➺
Rd

ĝEξ€)ξ)sdξ
✡

* [φ[ °

H✁s°RdE
[g[ °

Hs°RdE
.

If 0 / s ➔ d
2 i.e. -d

2 / H ➔ 0, then both norms are finite, we can set CED,φ€ :* [φ[ °

H✁s°RdE
and D is allowable. If s │ d

2 then it is not necessarily true, that [φ[ °

H✁s°RdE
is finite. We

therefore need to change our argumentation a bit. Assume that Rd(D contains an open
set. Then we find an open ball B ] Rd(D. Using a Gram Schmidt procedure we find a
function ψ A C≠

c EB€ such that for all multi-indices )α) / H we get➺
Rd

mαEξ€ψEξ€dξ *
➺
Rd

mαEξ€φEξ€dξ.

Thus, we have that DαEφ̂ - ψ̂€E0€ * 0 for all )α) / H and it holds that
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2 Definition and properties of the Fractional Gaussian Field

[φ - ψ[ °

H✁s°RdE
*
➺
Rd

)φ̂Eξ€ - ψ̂Eξ€)2)ξ)-2sdξ ➔ ≈.

Then we conclude, using Cauchy Schwarz as above, that

Eφ, g€L2°RdE * Eφ - ψ, g€L2°RdE / [φ - ψ[ °

H✁s°RdE
[g[ °

Hs°RdE
➔ ≈

and can choose the constant CED,φ€ :* [φ - ψ[ °

H✁s°RdE
. °

Let us now define the space
*
Hs

0ED€.

Definition 2.7.4 (The space
*
Hs

0ED€). Let s │ 0 and D ] Rd be an allowable domain.

Then we define
*
Hs

0ED€ to be the completion of C≠
c ED€ ]

*
HsERd€, which is a Hilbert space

by itself, equipped with the inner product of
*
HsERd€.

Remark 2.7.5. We consider for φ A SERd€ the linear functional on
*
Hs

0ED€ given by g <║
Eφ, g€L2°RdE. From the definition of

*
Hs

0ED€ and D being an allowable domain, we get, that
this functional is continuous. Therefore, we can find with the Riesz representation theorem

a unique element f A
*
Hs

0ED€ such that for all g A
*
Hs

0ED€ we have

Eφ, g€L2°RdE * Ef, g€ °
Hs

0°DE
. (2.6)

By the definition of the fractional Laplacian operator on the topological dual space in

Remark 2.3.6 and with Proposition 2.1.5 c) we get that for all g A
*
Hs

0ED€

EE-Δ€sf, g€L2°RdE * Ef, E-Δ€sg€L2°RdE
* Ef̂ , )ξ)2sĝ€L2°RdE
* Ef̂ )ξ)s, ĝ)ξ)s€L2°RdE
* Ef, g€ °

Hs
0°DE

* Eφ, g€L2°RdE.

With the injectivity of the fractional Laplacian, we get that f is the unique solution to the
distributional equation

E-Δ€sf * φ, f A
*
Hs

0ED€. (2.7)

Definition 2.7.6 (The semi-norm [ x [ °

H✁s°DE
). For s \ 0 and φ A SERd€ we choose the

unique solution f of the distributional equation 2.7 and define the map

[ x [ °

H✁s°DE
:

].{SERd€ ║ R
φ <║ [f[ °

Hs°RdE
,
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2 Definition and properties of the Fractional Gaussian Field

which is a semi-norm on SERd€. Indeed as the distributional equation is linear in its ar-

gument, we get for r A R, φ A SERd€ and its solution f A
*
Hs

0ED€ that [rφ[ °

H✁s°DE
*

[rf[ °
Hs°RdE

* )r) x [f[ °
Hs°RdE

* )r) x [φ[ °

H✁s°DE
. The triangle inequality for [ x [ °

H✁s°DE
follows

from the triangle inequality of [ x [ °
Hs°RdE

.

We consider for s │ 0 the functional

Φs
D :

].{SERd€ ║ R

φ <║ exp

✂
-1

2
[φ[2 °

H✁s°DE

✡
.

Here we want to point out that the semi-norm [ x [ °

H✁s°DE
is well defined for all φ A SERd€

and not only for φ A SHERd€ due to the allowability of the domain D. Thus, we can de-
fine the fractional Gaussian field on D as an element on S =ERd€ and not only on S =HERd€.
We first show that the assumptions of Bochner-Minlos are given: Clearly, it holds that
Φs
DE0€ * 1. The continuity follows from the continuity of the map SERd€, φ <║ [φ[ °

H✁s°DE
,

that is discussed in Lemma 2.8.5 in the next section. Next we show that Φs
D is positive

semi-definite to be able to use the Bochner-Minlos theorem and define a random element
on SERd€. From the uniqueness of the Riesz representation theorem, we get the linearity
of the map that gives us the solution of the distributional equation 2.7 for given φ A SERd€.
Therefore we get the semi-definiteness of Φs

D by Lemma 2.4.13. Now we can define:

Definition 2.7.7 (The FGFsED€ with zero boundary conditions). For s │ 0 and an al-

lowable domain D we define hD to be the unique random element of
*
HsERd€=, restricted to

S =ERd€ with characteristic function Φs
D, given by the Bochner-Minlos theorem. Then hD

is called the fractional Gaussian field with parameter s on D with zero boundary conditions.

Remark 2.7.8. Again for all φ A SERd€ we get that

EhD, φ€ * N

✂
0, [φ[2 °

H✁s°DE

✡
.

For every φ A SERd€ with suppEφ€ ] Rd(D we have that Eφ, g€L2°RdE * 0 for all g A
*

H-sED€ and therefore the solution of 2.7 is the zero function in
*
Hs

0ED€. Therefore we
have [φ[ °

H✁s°DE
* 0 and EhD, φ€ * 0 in distribution. Thus the fractional Gaussian field

is supported on the closure of D. Furthermore, as the topology on SERd€ is finer as the

one in
*
HsERd€, we get that hD is a tempered distribution on SERd€. Moreover, there is

again a way to extend the domain of the FGFsED€ by constructing a Gaussian Hilbert
space in a similar way as we did for the FGFsERd€. The domain, we can expand the
fractional Gaussian field on, is the same as the completion of C≠

c ED€ under the topology
induced by [x[ °

H✁s°DE
, which induces a metric on SED€ by the map dEφ, ψ€ :* [φ-ψ[ °

H✁s°DE
.
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2 Definition and properties of the Fractional Gaussian Field

Example 2.7.9. The explicit form of the covariance kernel of the fractional Gaussian field
on an allowable domain D is highly dependent of the structure of D and in many cases it
is very hard or not yet possible to derive an explicit form. We want to give one example
without proof here and consider the unit ball B1E0€ :*  x A Rd : [x[2 / 1+. In that case
we can find an explicit way of expressing the solution f of the distributional equation 2.7
for given φ A SERd€. It holds that

fEx€ *
➺
B1°0E

Gs
BEx, y€φEy€dxdy, x A B1E0€.

First we consider the case s A E0, 1€. In that case (see equation (2.65) in [GGS10]) the
covariance kernel is of the form

Gs
BEx, y€ * ΓE1 + d

2€
dπd)24d-1EEs - 1€!€2 )x - y)2H

➺ (({x{y✁ x
{x{

((
{x✁y{

1
Ez2 - 1€s-1z1-ddz, x, y A B1E0€.

In the case of s being an positive integer (see Corollary 4 in [BGR61]) we get

Gs
BEx, y€ * ΓEd2€

4sπd)2ΓEs€2 )x - y)2H
➺ =1✁{x{2,=1✁{y{2,

{x✁y{2

0
Ez + 1€-d)2zs-1dz, x, y A B1E0€.

In our last case (see Corollary 4 in [BGR61]) let s \ 1 and not being a positive integer.
We decompose E-Δ€s * E-Δ€s-[s]E-Δ€[s]. Using the first two cases we can conclude

φEx€ * E-Δ€[s]
➺
B1°0E

G
[s]
B Ex, y€φEy€dy

* E-Δ€s
➺
B1°0E

➺
B1°0E

G
s-[s]
B Ex, y€G[s]

B Ey, z€φEz€dzdy❧{{{{{{{{{{{{{{{{{{{{{{{{{{{{.{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
*:g°xE

.

Therefore g is a solution of the distributional equation 2.7 with parameter s. From the
uniqueness of that problem we get that

Gs
BEx, y€ *

➺
B1°0E

G[s]Ex, z€Gs-[s]Ez, y€dz.

The function Ex, y€ <║ Gs
BEx, y€ is already our covariance kernel of the FGFsEB1E0€€. Indeed

if we take φ A C≠
c ED€ we have

E EhD, φ€2 * [φ[2 °

H✁s°DE
* [f[2°

Hs°RdE
* Ef, f€ °

Hs°RdE
* Ef̂ )ξ)s, f̂ )ξ)s€L2°RdE

* EE-Δ€sf, f€L2°RdE * Eφ, f€L2°RdE

*
➺
Rd

fEx€φEx€dx *
➺
Rd

➺
Rd

Gs
BEx, y€φEx€φEy€dxdy.

As this consideration was independent of B1E0€, we conclude, given that f is in an integral
form with a kernel, that this very kernel is already the covariance kernel of the fractional
Gaussian field.
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2 Definition and properties of the Fractional Gaussian Field

2.8 The Markov property

In this section we want to generalize the idea of the Markov property for processes with
a time axis onto a multidimensional level. The main idea is the following: We split our
domain Rd into two parts D and Rd(D. Then we want to find out what the fractional
Gaussian field looks like when we condition it to be fixed in Rd(D. The approach is clearly
inspired by studying the Brownian motion considering the sets  0, r€ and  r,≈€ and then
get the Markov property. For the fractional Gaussian field we still get interesting results.
Here we do that in an very arbitrary setting, later in the special case of the Gaussian free
field, we look at this idea more closely and get more results. This section follows section 5
in [LSSW16].

We first introduce the term of a s-harmonic function.

Definition 2.8.1 (s-harmonic function and HarsED€). Let s \ 0 and D ] Rd. Then we
call a function f : Rd ║ R s-harmonic on D if EE-Δ€sf€)D * 0. Furthermore, we define
the space

HarsED€ :*
│
f A

*
HsERd€ : EE-Δ€sf€)D * 0

{
of all in D s-harmonic functions of

*
HsERd€.

Definition 2.8.2 (s-harmonic extension). Let s A R, D ] Rd a domain and f : Rd(D ║ R
a function. If a function g : Rd ║ R satisfies the two conditions

f )Rd)D * g)Rd)D, EE-Δ€sg€)D * 0

we call g the s-harmonic extension of f on D.

These terms can be extended point-wise onto random functions f, g and, because of Re-

mark 2.3.6, also onto topological dual spaces. We want to split the space
*
HsERd€ into a

direct sum of subspaces.

Lemma 2.8.3. For an allowable domain D ] Rd we have

*
HsERd€ * HarsED€ °

*
Hs

0ED€.

Proof. Let f A HarsED€ and g A
*

Hs
0ED€. Then we have

Ef, g€ °
Hs°RdE

* Ef̂ )ξ)s, ĝ)ξ)s€L2°RdE * EE-Δ€sf, g€L2°RdE *
➺
Rd

E-Δ€sfEξ€gEξ€dξ * 0
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2 Definition and properties of the Fractional Gaussian Field

as E-Δ€sf )D * 0 and g * 0 outside D. SoHarsED€ and
*
Hs

0ED€ are orthogonal. Now let f A
*
HsERd€ and consider the linear functional

*
Hs

0ED€ ║ 0, g <║ Ef, g€ °
Hs

0°DE
* EE-Δ€sf, g€L2°RdE.

From the allowability of D it follows that this functional is also continuous. With Riesz’

representation theorem we get that there exists fD A
*
Hs

0ED€ such that Ef, g€ °
Hs

0°DE
*

EfD, g€ °
Hs

0°DE
. Thus EE-Δ€sEf-fD€, g€L2°RdE * 0 for all g A

*
Hs

0ED€ so E-Δ€sEf-fD€ * 0 on

D and f-fD A HarsED€. In particular we can write f * f-fD+fD with f-fD A HarsED€
and fD A

*
Hs

0ED€. °

Remark 2.8.4. Since
*
HsERd€ is the direct sum ofHarsED€ and

*
Hs

0ED€ there exist orthogonal
projections PHar

D :
*
HsERd€ ║ HarsED€, f <║ f - fD and PD :

*
HsERd€ ║

*
Hs

0ED€, f <║ fD.
As every orthogonal projection is a contraction, they are continuous. Furthermore, the two
subspaces are closed.

Lemma 2.8.5. The semi-norm SERd€ ║ R, φ <║ [φ[ °

H✁s°DE
defined in Definition 2.7.6 is

continuous.

Proof. With the projection PD we can now solve the equation 2.7 explicitly. For

φ A SERd€ we define f :* PDE-Δ€-sφ A
*
Hs

0ED€. Indeed for g A
*
Hs

0ED€ we have

Ef, g€ °
Hs°RdE

* EPDE-Δ€-sφ, g€ °
Hs°RdE

* EE-Δ€-sφ, g€ °
Hs°RdE

* E √E-Δ€-sφ)ξ)s, ĝ)ξ)s€L2°RdE
* Eφ̂)ξ)s-2s, ĝ)ξ)s€L2°RdE
* Eφ̂, ĝ€L2°RdE * Eφ, g€L2°RdE.

As PD is a projection, and further with Remark 2.3.6 we get

[φ[ °

H✁s°DE
* [PDE-Δ€-sφ[ °

Hs°RdE
/ [E-Δ€-sφ[ °

Hs°RdE
* [φ[ °

H✁s°RdE

and therefore the continuity of the map SERd€ ║ R, φ <║ [φ[ °

H✁s°DE
. °

Theorem 2.8.6 (The Markov property of FGFsERd€). Let r │ 0 and D ] Rd be an
allowable domain. Then there exists a coupling of random elements Eh, hD, hharD € such that

(i) h * FGFsERd€
(ii) hD * FGFsED€
(iii) hHar

D is a random element on HarsED€ independent of hD.
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2 Definition and properties of the Fractional Gaussian Field

(iv) h * hD + hHar
D almost surely.

Furthermore hHar
D and hD are both determined by h.

Proof. First we define the three elements via the Bochner-Minlos theorem. Consider
the functionals

Φs
D :

].{SERd€ ║ R

φ <║ exp

✂
-1

2
[φ[2 °

H-s°DE

✡
, Φs

D,har

].{SHERd€ ║ R

φ <║ exp

✂
-1

2

((((((PHar
D E-Δ€-sφ

((((((2°
Hs°RdE

✡
.

Clearly, both are linear and with Lemma 2.8.5 we get that Φs
D is continuous. With a

similar argument we see that Φs
D,Har is also continuous. Lemma 2.4.13 shows that Φs

D

and Φs
D,Har are positive semi-definite. Thus, with the Bochner-Minlos theorem we get two

random elements hD and hHar
D respectively, that are clearly independent. As PHar

D Eφ€ * 0,

on
*
Hs

0ED€ we get that hHar
D is a random element on HarsED€. According to Definition

2.7.7 hD is a fractional Gaussian field with zero boundary conditions on D. Furthermore
we have

Φs
DEφ€Φs

D,HarEφ€ * exp

✂
-1

2
[φ[2°

Hs°DE
- 1

2

((((((PHar
D E-Δ€-sφ

((((((2°
Hs°RdE

✡
* exp

(
-1

2

✂((((((PDE-Δ€-sφ
((((((2°
Hs°RdE

+
((((((PHar

D E-Δ€-sφ
((((((2°
Hs°RdE

✡)

* exp

(
-1

2

✂((((((PDE-Δ€-sφ
((((((2°
Hs°RdE

+ 2

✂
PDE-Δ€-sφ, PHar

D E-Δ€-sφ

✡
°
Hs°RdE❧{{{{{{{{{{{{{{{{{{{{{{{{{.{{{{{{{{{{{{{{{{{{{{{{{{{{

*0

+
((((((PHar

D E-Δ€-sφ
((((((2°
Hs°RdE

✡)

* exp

✂
-1

2

((((((PDE-Δ€-sφ + PHar
D E-Δ€-sφ

((((((2°
Hs°RdE

✡
* exp

✂
-1

2

((((E-Δ€-sφ
((((2°
Hs°RdE

✡
* exp

✂
-1

2
[φ[2 °

H✁s°RdE

✡
.

As Φs, defined in Lemma 2.5.5, coinsides with φ <║ expE-1
2[φ[2 °

H✁s°RdE
€ on S =HERd€, we have

Φs
DΦ

s
D,Har * Φs for φ A S =HERd€. Hence, due to the uniqueness part of Bochner-Minlos and

the independence of hD and hHar
D , we get

E
)
ei°hD+hHar

D ,φE[ * E
)
ei°hD,φE[E)ei°hHar

D ,φE[
*
✂➺

SH°RdE
ei°f,φEdμDEf€

✡✂➺
SH°RdE

ei°f,φEdμHar
D Ef€

✡
* Φs

DEφ€Φs
D,HarEφ€
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* ΦsEφ€
*
➺
SH°RdE

ei°f,φEdμEf€ * E
)
ei°h,φE

[
.

As the characteristic function of a random variable determines it almost surely uniquely,
it follows that hD + hHar

D :* h * FGFsER€ defines a fractional Gaussian field on Rd. Fur-

thermore, since hHar
D Eφ€ * 0 for φ A

*
Hs0ED€, we get h * hD on

*
Hs0ED€. As hD only lives

on D, hD is determined by h, and thus, also hHar
D * h - hD. °

Definition 2.8.7. For s │ 0, an allowable domain D ] Rd and h * FGFsERd€ we call the
uniquely determined random element hHar

D given in Theorem 2.8.6 the harmonic extension
of h given its values on Rd(D.

Let D ] Rd be an allowable domain and let us denote PDh :* hD and PHar
D h :* hHar

D .
Consider another allowable domain O ] D. As the projections PD, P

Har
D , PO, P

Har
O all

commute, we can split a fractional Gaussian field h * FGFsER€ up into the following parts

h * hD + hHar
D * POhD + POh

Har
D + PHar

O hD + PHar
O hHar

D .

Now as POPD * PO, POP
Har
D * 0 and PHar

O PHar
D * PHar

D we get

hD * hO + PHar
O hD,

with hHar
O,D :* PHar

O hD and hO being independent. In an analogue way we get the following
Corollary.

Corollary 2.8.8. Let s │ 0 and O ] D ] Rd be two allowable domains. Then there exists
a coupling of random elements EhD, hHar

O,D, hO€ such that

(i) hD * FGFsED€
(ii) hO * FGFsEO€
(iii) hD * hHar

O,D + hO almost surely. Furthermore, hHar
O,D and hO are both determined by

hD. hHar
O,D is called the harmonic extension of hD given its values on D(O.

2.9 The fractional Broenian field and continuity properties of
the FGFs(Rd)

In this section we introduce and prove the existence of the fractional Brownian field in-
troduced by A. Yaglom in 1957 (see pages 292-338 in [Yag57]). The one dimensional case
was discussed earlier by Paul Levy in 1953 and is called the fractional Brownian motion.
We define the process over its covariance function, prove the existence with Kolmogorov’s
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2 Definition and properties of the Fractional Gaussian Field

extension theorem and finally show that the fractional Brownian field can be interpreted
as a fractional Gaussian field.

First we describe the usual way of constructing a Gaussian process via Kolmogorov’s
extension theorem.

Definition 2.9.1 (Projective family of probability measures). Let I ~ √ be an index set
such that for all i A I we have a measurable space ESi,Ai€. Furthermore, let EμF €F√F be a
family of probability measures on ESF ,AF € where SF :* √

i√F Si, AF :* ➶
i√F Ai and F

denotes the set of all nonempty finite subsets of I. In addition, for F,G A F with F ] G,
we consider the projection

➧
G,F SG ║ SF , Exi€i√G <║ Exi€i√F . Then the family EμF €F√F is

called projective or Kolmogorov consistent if for all F,G A F with F ] G we have

μF * μG
➧-1

G,F .

Theorem 2.9.2 (Kolmogorov’s extension theorem). Let I ~ √ be an index set such that
for all i A I ESi,Bi€ is a separable and complete metric space equipped with the Borel sigma
algebra and EμF €f√F a Kolmogorov consistent family of probability measures for I. Then
there exists a unique probability measure μ on EΩ,B€ with Ω :* √

i√I and B :* ➶
i√I

such that for the induced stochastic process Xi : Ω ║ Si the marginal distributions on
the finite subsets of I coincide with the projective family EμF €F√F , i.e. for all f A F
and B A BF , where SF and BF are constructed like in Definition 2.9.1, it holds that
μE EXi€i A F A B € * μF EB€.

Proof. For a rigorous proof see section 15.6 in [Sch21]. °

Definition 2.9.3. Let I ~ √ and C : I - I ║ R be a function. Then C is called a
covariance function if C is symmetric in its two arguments and positive semi-definite, i.e.
for n A N, c1, ..., cn A R and i1, ..., in A I, it holds that

n➳
j,k*1

cjCEij , ik€ck │ 0.

Proposition 2.9.4 (Construction of Gaussian processes). Let I ~ √ be an index set and
C : I - I ║ R a covariance function. For F A F we define the probability measures
μF :* NE0, CEij , ik€j,k√F € on SF :* √

i√F Ri. Then the family EμF €F√F is a Kolmogorov
consistent family of probability measures and the assumptions of Kolmogorov,s extension
theorem are fulfilled. Thus, there exists a Gaussian process with covariance function given
by C.

Proof. See Exercise 2.86 in [Sch21]. °

First we introduce the following function that we wish the covariance function of the
fractional Brwonian field to be. We define for Hurst parameter H \ 0

CFBF :

].{Rd - Rd ║ R

Ex, y€ <║ 1

2

()x)2H + )y)2H - )x - y)2H│ . (2.8)
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In the following Lemma we ensure that CFBF is indeed a covariance function. The proof
follows Remark 2.111 of  Sch21 .

Lemma 2.9.5. For H A E0, 1€ the function CFBF : Rd -Rd ║ R is a covariance function.

Proof. We need to show symmetry and positive semi-definiteness. From its definition
it clearly holds that CFBF Ex, y€ * CFBF Ey, x€. The positive semi-definiteness requires a
longer argument. Let us consider the following integral for z \ 0 solved by the transfor-
mation v * zu➺ ≠

0

1 - e-z2u2

u1+2H
du

v*zu*
➺ ≠
0

1 - e-v2

v1+2H

z1+2H

zdv * z2H
➺ ≠
0

1 - e-v2

v1+2H
dv❧{{{{{{{{.{{{{{{{{{

*:CH

.

Thus, we get

z2H * 1

CH

➺ ≠
0

1 - e-z2u2

u1+2H
du.

For z * 0 this equation remains also true. Furthermore, by the rule of de L’Hospital the
integral is well defined and finite. Furthermore, we can write the exponential term into a
power series and can exchange the series with the integral due to the monotone convergence
theorem ➺ ≠

0

e-[x[2u2Ee2°x,yEu2 - 1€e-[y[2u2

u1+2H
du

*
➺ ≠
0

e-[x[2u2

✂ ≠➳
k*1

E2Ex x y€u2€k
k!

✡
e-[y[

2u2

u1+2H
du

*
≠➳

k*1

2k

k!

➺ ≠
0

e-[x[2u2Ex x y€ke-[y[2u2

u1-2k+2H
du.

Using )x-y)2 * )x)2 +)y)2 -2x xy and the series representation of the exponential function

e2°x-yE2u2 - 1 *
≠➳

k*0

2kEx x y€2ku2k
k!

- 1 *
≠➳

k*1

2kEx x y€2k
u-2kk!

,

we get for CFBF

CFBF Ex, y€ * 1

2

()x)2H + )y)2H - )x - y)2H│
* 1

2CH

➺ ≠
0

E1 - e-[x[2u2€ + E1 - e[y[2u2€ - E1 - e-[x-y[2Hu2€
u1+2H

du

* 1

2CH

➺ ≠
0

E1 - e-[x[2u2€E1 - e-[y[2u2€
u1+2H

du + 1

2CH

➺ ≠
0

e-[x-y[2u2 - e-°[x[2+[y[2Eu2

u1+2H
du
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* 1

2CH

➺ ≠
0

E1 - e-[x[2u2€E1 - e-[y[2u2€
u1+2H

du + 1

2CH

➺ ≠
0

e-[x[2u2Ee2°x-yE2u2 - 1€e-[y[2u2

u1+2H
du

* 1

2CH

➺ ≠
0

E1 - e-[x[2u2€E1 - e-[y[2u2€
u1+2H

du + 1

2CH

≠➳
k*1

2k

k!

➺ ≠
0

e-[x[2u2Ex x y€2ke-[y[2u2

u1-2k+2H
du.

Finally, for n A N, x1, ..., xn A Rd and v1, ..., vn A R we get

≠➳
i,j*1

viCFBF Exi, xj€vj *

1

2CH

✂➺ ≠
0

➦n
i,j*1 viE1 - e-[xi[2u2€E1 - e-[xj [2u2€vj

u1+2H
du

+
≠➳

k*1

2k

k!

➺ ≠
0

➦n
i,j*1 vie

-[xi[2u2Exi x xj€ke-[xj [2u2
vj

u1-2k+2H
du

)

* 1

2CH

(➺ ≠
0

( n➳
i*1

viE1 - e-[xi[2u2€
)2

u1+2H
du +

≠➳
k*1

2k

k!

➺ ≠
0

( n➳
i*1

vie
-[xi[2u2)kxi

)2k
u1-2k+2H

du

)
│ 0

and therefore the positive semi-definiteness of CFBF . All together CFBF is a covariance
function. °

Now we finally get the existence of the fractional Brownian field for Hurst parameter
H A E0, 1€.
Corollary 2.9.6 (Existence of fractional Brownian field). For the covariance function
CFBF given in equation 2.8, there exists a unique Gaussian process BH : Ω-Rd ║ R such
that

E BHEx€BHEy€ * CFBF Ex, y€ for all x, y A Rd.

Proof. For the proof combine Lemma 2.9.5 and Proposition 2.9.4. °

Remark 2.9.7. We call the special case d * 1 of the fractional Brownian field the fractional
Brownian motion. This makes sense as for Hurst parameter H * 1

2 we get for s, t A R

CFBF Es, t€ * 1
2

(
s + t - )s - t)│,

which is the covariance function of a two-sided 1-dimensional standard Brownian motion.
From the uniqueness part of Kolmogorov’s extension theorem it then follows that these
processes coincide, so the standard Brownian motion can be seen as a special case of frac-
tional Brownian motion.

We can even go one step further and show that the fractional Brownian motion can be
interpreted as a special case of the fractional Gaussian field. The following Lemma shows
the connection between these two objects.
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2 Definition and properties of the Fractional Gaussian Field

Lemma 2.9.8. Let s A Ed(2, d(2+1€, i.e. for the corresponding Hurst parameter H A E0, 1€,
and h * FGFsERd€. Then the process BH : Ω-Rd ║ R, BHEx€ :* 1≈

2[C°s,dE[Eh, δx - δ0€ is

well defined and a fractional Brownian field with Hurst parameter H A E0, 1€, whereby δx
denotes the Dirac measure at the point x A Rd.

Proof. We need to show that for x A Rd the distribution δx - δ0 is in the domain of the
fractional Gaussian field. This is clear as we know from Theorem 2.6.4 that the covariance
kernel of h is of the form

Gs :

]
Rd - Rd ║ R
Ex, y€ <║ CEs, d€)x - y)2H .

Observe that in this case the constant CEs, d€ is negative. Therefore, for all x, y A Rd, it
holds for BH that

E BHEx€BHEy€ * E 1.
2)CEs, d€) Eh, δx - δ0€ 1.

2)CEs, d€) Eh, δy - δ0€ 

* -1

2

➺
Rd

➺
Rd

EδxEu€ - δ0Eu€€)u - v)2HEδyEv€ - δ0Ev€€dudv

* 1

2

()x)2H + )y)2H - )x - y)2H│ * CFBF Ex, y€.

From the uniqueness part of Kolmogorov’s extension theorem we get that BH is indeed a
fractional Brownian field. °

With theorem 2.9.2 and Proposition 2.9.4 we have seen a very common way of defining an
Gaussian process. A further standard tool that is often used is the Kolmogorov–Chentsov
continuity criterion for finding a modification of the Gaussian process that is locally Hölder
continuous.

Theorem 2.9.9 (Kolmogorov-Chentsov continuity criterion). Let EXt€t√Rd be a process
with values in a complete and separable metric space ES, d€, equipped with the Borel sigma
algebra B. Assume that there exist constants a, ε \ 0 such that for every compact set
K ] Rd there exists a constant CK \ 0 satisfying for all s, t A K

E dEXs, Xt€a / CK )s - t)d+ε.

Then there exists a modification EYt€t√Rd of EXt€t√Rd such that all its paths are locally Hölder
continuous for all Hölder exponents b A E0, ε

a€.
Proof. See theorem 2.102 in [Sch21]. °

There also exists a version of that Theorem as a special case of Gaussian processes that
is sometimes easier to apply. We will use it later in in the next subsection.
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Corollary 2.9.10 (Kolmogorov’s criterion for Gausssian processes). Let EXa€a√A be a
centered Gaussian process with index set A ] Rd. If there exist ε, C \ 0 such that for all
a, a= A A it holds that

E
)EXa - Xa°€2

[ / C)a - a=)ε,
then there exists a modification of EXa€a√A that is almost surely continuous.

Proof. For the proof see Lemma 3.19 in [WP21]. °

Our goal now is to show that the fractional Brownian motion has indeed locally Hölder
continuous paths.

Lemma 2.9.11. The fractional Brownian motion with Hurst parameter H A E0, 1€ has a
modification with locally Hölder continuous paths for all Hölder exponents in E0, H€.
Proof. Let x, y A R. Then it follows with the covariance function of the fractional

Brownian motion 2.8 that

E EBHEx€ - BHEy€€2 * E BHEx€2 - 2E BHEx€BHEy€ + E BHEy€ 
* )x)2H - ()x)2H + )y)2H - )x - y)2H│+ )y)2H
* )x - y)2H

and thus BHEx€-BHEy€ * NE0, )x- y)2H€. As for all positive integers n the n-th centered
moment of a standard Gaussian random variable exists and is finite (see Exercise 2.35 in
[Sch21]), there exists a constant Cn and for the fractional Brownian motion we get

E )BHEx€ - BHEy€)2n / Cn)x - y)2Hn * Cn)x - y)1+°2Hn-1E.

With the Kolmogorov-Chentsov continuity criterion we now get for all integers n a mod-
ification of the fractional Brownian motion with locally Hölder continuous paths with
Hölder exponent less than 2Hn-1

2n . In conclusion, we arrive at the result that there ex-
ists a modification with paths locally Hölder continuous for all Hölder exponents less than
supn√N

2Hn-1
2n * H. °

At the very end of this chapter we present two further properties of the fractional Gaus-
sian field. The first shows that the higher the Hurst parameter H gets, the more differen-
tiable the fractional Gaussian field is.

Theorem 2.9.12. Let s \ 0, h * FGFsERd€ and H be the corresponding Hurst parameter
and define k :* [H]-1. Then, h A Ck,αERd€ almost surely for all multi-indices α with
0 ➔ )α) ➔ H - [H].

Proof. See Proposition 6.2 in [LSSW16]. °
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The second theorem shows the existence of a big coupling of fractional Gaussian fields. It
is very interesting, especially for generating and plotting fractional Gaussian fields. Indeed
one can start with an white noise or a Brownian motion and get all the other fractional
Gaussian fields by applying a suitable fractional Laplacian operator.

Theorem 2.9.13. There exists a coupling of random fields Ehs€s√R with hs * FGFsER€
for all s A R and hs * E-Δ€ t✁s

2 ht for all s, t A R.

Proof. See Proposition 6.3 in [LSSW16]. °

2.10 The Gaussian free field

One further special case of the fractional Gaussian field is the Gaussian free field, or short
GFF, that corresponds to FGF1ERd€ or FGF1ED€. It can be interpreted as a natural gen-
eralization of the Brownian motion. For this case, there is much more literature than for
the general case. There are many ways to approximate the Gaussian free field by a discrete
version. Furthermore, there is a larger theory of the Markov property and so called local
sets. In addition, the two dimensional case is particularly interesting due to its connec-
tions to complex analysis and the Schramm-Loewner evolution, discovered in 2000 by Oded
Schramm. In this section we want to give an overview of some interesting facts about the
Gaussian free field. We start analysing the covariance kernel, also called Green’s function.
Then we cite a version of the Markov property and define local sets. Finally, we show that
the Gaussian free field can be represented as a random Fourier series. This section follows
the lecture notes of Wendelin Werner [WP21].

In this entire section we assume a domain D ] Rd to satisfy certain conditions. We want
it to be a bounded, connected and open subset of Rd, such that all its boundary points
are regular. Here a boundary point z A ∞D is said to be regular, if for all d-dimensional
Brownian motions EBt€t√.0,≠E starting in z, we have that inf t A  0,≈€ : Bt ∂ D+ * 0
almost surely. We first consider the Green’s function of the fractional Gaussian field i.e.
the covariance kernel, that we denote as GD : Rd -Rd ║ R in this section. For y A Rd, we
define the following function

Hy : Rd ║ R, x <║

]{.{{
1

2π
log

1

)x - y) for d * 2

1

ad)x - y)d-2
for d │ 3

,

where ad denotes the surface of the d-dimensional unit ball. In the case of D * Rd, we
already get the Green’s function G : Rd -Rd ║ R, by defining GEx, y€ :* HyEx€. It readily
follows that this function is, up to a multiplicative constant, the unique harmonic function
on Rd( y+ that tends to zero for )x) ║ ≈. Now for D ~ Rd, we define the function

hy,D :

]
D( x+ ║ R
x <║ Ex

)
HyEBτ €

[ ,
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whereby Ex denotes the expectation under which B is a Brownian motion that starts at
x and τ is the stopping time τ :* inf t A  0,≈€ : Bτ A ∞D+. In other words, we start a
Brownian motion in the point x A D and stop it in the first moment, where it hits the
boundary of D and consider the value of Hy at this boundary point. Then we take the
expected value of this random value. This is well defined, as D is suitable for that problem.
The function hy,D is then the unique solution of the Dirichlet problem with boundary
conditions Hy, which means that it is the unique function on D that is harmonic and has
the values of Hy on ∞D. The Green’s function then can be represented as

GDEx, y€ :* HyEx€ - hy,DEx€.
The following Proposition sums up the last thoughts.

Proposition 2.10.1. Let D ~ Rd be a domain and y A D. Then x <║ GDEx, y€ is the
unique continuous function on D̄( y+, such that the following three properties holds true.

i) It vanishes at ∞D, i.e. GDEx, y€ * 0 for y A ∞D.

ii) It is harmonic in D( y+.
iii) The function x <║ GDEx, y€ - HyEx€ stays bounded in a neighbourhood of y.

Proof. See Lemma 3.7 in [WP21] °

Furthermore, one can consider the Green’s function to be the inverse of the Laplacian
operator. Let f A CcED€, i.e. f is continuous with compact support in D, then we can look
at the following construction. We define

GDEf€ :
].{D ║ R

x <║
➺
D
fEy€GDEx, y€dy .

Then it follows that GDEf€ is a continuous function on D that is twice continuously differ-
entiable in D and vanishes on ∞D. Furthermore, we have -ΔGDEf€ * f . We can use that
to show that for all Schwartz functions the Green’s function is indeed a positive definite
integral kernel. Let φ A SERd€. Then we have for h * GFF

E
)Eh, φ€2[ *

➺
D

➺
D
φEx€GDEx, y€φEy€dxdy

*
➺
D
GDEφ€Ex€φEx€dx

*
➺
D
GDEφ€Ex€E-Δ€GDEφ€Ex€dx

*
➺
D

(((▼GDEx€
(((2dx │ 0.

We will add one last comment about the Green’s function. As D is bounded, we can find an
orthonormal basis Eφn€n√N of L2ED€, such that all φn vanish on ∞ED€ and are eigenfunctions
of -Δ, i.e. -Δφn * λn for some λn │ 0. As Eφn€n√N is an orthonormal basis, we have for
all f A L2ED€
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f *
≠➳

n*1

fnφn, where fn :*
➺
D
fEx€φnEx€dx.

If we apply -Δ to f , we get

-Δf *
≠➳

n*1

fnE-Δ€φn *
≠➳

n*1

fnλnφn.

Thus, we can find an explicit way to represent the above mentioned function GDEx€, seen
as the inverse operator of -Δ on L2ED€. For f A L2ED€ we have

GDEf€Ex€ *
≠➳

n*1

1

λn
fnφnEx€. (2.9)

We use that to get a representation of the Green’s function in terms of the orthonormal
basis Eφn€n√N. Using Eφn, φm€L2°DE * δun*m(, we have

GDEx, y€ *
≠➳

n*1

➺
D
φnEz€GDEx, z€dzφnEy€

*
≠➳

n*1

GDEφn€Ex€φnEy€

2.9*
≠➳

n*1

≠➳
m*1

(➺
D
φmEz€φnEz€dz

✡
1

λm
φmEx€φnEy€

*
≠➳

n*1

1

λn
φnEx€φmEy€,

as Eφn€n√N is an orthonormal basis.

Let us now continue with the second topic. Clearly we cannot evaluate the Gaussian free
field point-wise and thus, it makes even less sense to talk about continuity. But we can find
a subset of the domain of the Gaussian free field on which we will try to find a continuous
modification. Therefore, we need to notice that the Gaussian free field can be defined on a
larger domain as the Schwartz functions in D. In particular we can extend the process on
all functions f that fulfill ➺

D

➺
D
fEx€GDEx, y€fEy€dxdy ➔ ≈. (2.10)

In [WP21] the Gaussian free field is directly defined on all these functions. A special sub-
class of functions that satisfy 2.10 is the set of the so called cycle averages that we will
introduce now.

Definition 2.10.2 (cycle averages). Let z A Rd and r \ 0. Then λz,r is defined to be the
density of the uniform measure on the surface of the ball BrEz€ with center z and radius r.
It is easy to see that for all domains D ] Rd, such that BrEz€ ] D, the density λz,r can be
integrated over the Green,s function as in 2.10 and thus, ΓEλz,r€ is well defined. We denote
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γEz, r€ :* ΓEλz,r€.
An interesting fact is that one can construct a standard Brownian motion out of a Gaus-

sian free field.

Proposition 2.10.3. For Br0Ez€ ] D, we define the process EBz,r0
t € A  0,≈€ by

Bz,r0
t :*

]
EγEz, r0e-t€ - γEz, r0€ for d * 2

γEz, Et + r2-d
0 €1)°2-dE€ - γEz, r0€ for d │ 3

.

Then EBz,r0
t €t√.0,≠E is a standard Brownian motion. Furthermore, if one considers count-

ably many disjoint balls BrnEzn€, n A N, contained in D, then the corresponding processes
EBzj ,rj

t €t√.0,≠E are independent Brownian motions.

Proof. Let Γ be a Gaussian free field on an domain D and f a function that agrees
with condition 2.10 and is supported in D(Br0Ez€. As the Green’s function is, according to
Proposition 2.10.1, harmonic in both its arguments except the diagonal, it follows for all
0 ➔ r ➔ r0

E
)
γEz, r€ΓEf€[ *

➺
D

➺
D
fEx€GDEx, y€λz,rEy€dxdy

*
➺
D
fEx€

➺
D
GDEx, y€λz,rEy€dydx

*
➺
D
fEx€GDEz€dx

and thus, for all 0 ➔ r ➔ r0, we get

E
)EγEz, r€ - γEz, r0€€ΓEf€ * 0.

Since Γ is Gaussian distributed, we get that the process EγEz, r€ - γEz, r0€€r√°0,r0. is inde-

pendent of all ΓEf€, where f is supported in D(Br0Ez€. Now, we want to determine the
covariance structure of this process. Using again the harmonicity and the symmetry of the
Green’s function, we get for 0 ➔ r ➔ r= ➔ r0

E
)EγEz, r€ - γEz, r=€€2[ *

➺
D

➺
D

(
λz,rEx€ - λz,r°Ex€

)
GDEx, y€

(
λz,rEy€ - λz,r°Ey€

)
dy

*
➺
D
λz,rEx€

✂➺
D
GDEx, y€λz,rEy€dy❧{{{{{{{{{{{{.{{{{{{{{{{{{{

*GD°x,zE

✡
dx -

➺
D

✂➺
D
λz,rEx€GDEx, y€dx❧{{{{{{{{{{{{.{{{{{{{{{{{{{

*GD°z,yE

✡
λz,r°Ey€dy

-
➺
D
λz,r°Ex€

✂➺
D
GDEx, y€λz,rEy€dy❧{{{{{{{{{{{{.{{{{{{{{{{{{{

*GD°z,yE

✡
dx +

➺
D

✂➺
D
λz,r°Ex€GDEx, y€dx❧{{{{{{{{{{{{{.{{{{{{{{{{{{{{

*GD°z,yE

✡
λz,r°Ey€dy

*
➺
D
λz,rEx€GDEx, z€dx -

➺
D
λz,r°Ex€GDEx, z€dx.
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With Proposition 2.10.1, it follows that this is equal to➺
D
λz,rEx€GBr° °zEEx, z€dx *

]
logE r°r € if d * 2,

r2-d - Er=€2-d if d │ 3
, (2.11)

where GBr° °zE denotes the Green’s function of the domain Br°Ez€. Thus, the first result
follows. As we have seen that these processes are independent of all ΓEf€ such that the
support of f is contained in D(Br0Ez€, the second result follows. °

Proposition 2.10.4. There exists a modification of the Gaussian free field on D such that
the process γ :  Ez, r€ : z A D, r A E0, dEz, ∞D€€+ ║ R, Ez, r€ <║ γEz, r€ is continuous.

Idea of the proof. We want to apply Corollary 2.9.10. For a change in the radius we
get an estimate with 2.11. For a change of the center it is easy to find a similar one of the
form

E
)EγEz, r€ - γEz=, r€€2[ / CEr0€)z - z=)

for all dEz, z=€ ➔ r0, dEz, ∞D€, dEz=, ∞D€ \ r0. Thus, we get the existence of a constant
CEr0, D€ \ 0 such for all r, r= \ r0 and z, z= A D with dEz, z=€ / r0

2 and dEz, ∞D€ \ r0, it
holds that

E
)EγEz, r€ - γEz=, r=€€2[ / CEr0, D€()z - z=) + )r - r=)│.

Using Corollary 2.9.10, we can conclude that there exists a modification of the Gaus-
sian free field such that for all Ez, r€ with dEz, ∞D€ \ r0 the process Ez, r€ <║ γEz, r€
is continuous. As we can do this whole procedure for a sequence of r0,n ║ 0, we see
that there exists a modification such that Ez, r€ <║ γEz, r€ is continuous on the whole set
 Ez, r€ : z A D, r A E0, dEz, ∞D€€+. °

Another point regarding the Gaussian free field, that one has to think about, are scaling
properties, analogue to Proposition 2.5.2. In the case of d │ 3, we can deduce directly from
the covariance structure of the Gaussian free field that for a domain D ] Rd, r \ 0 and
x, y A D we have for the Green’s function

GrDErx, ry€ * r2-dGDEx, y€,
where rD denotes the scaled domain. Thus, we get in law for a Gaussian free field ΓD on
D the following property

ΓrD
d* rd)2-1ΓD.

In the case d * 2, we obtain a very special property. With Proposition 2.5.2 it follows,
plugging in s * 1, that the Gaussian free field is scaling invariant. However, that is not the
only property. It is even conformal invariant, i.e. if we have an angle preserving bijection
Φ : D ║ D̃, Gaussian free fields ΓD,ΓD̃ with domains D and D̃ respectively, and any f̃ on

D̃ that agrees with 2.10 it holds that
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ΓD̃Ef̃€ * ΓDEf€,
where f is the push forward map under Φ, defined by

f :

]
D ║ R
x <║ f̃EΦ-1Ex€€((EΦ-1€=Ex€€((2 .

Let us conclude this subsection with one more topic. We want to describe the Markov
property in an analogue way as in Corollary 2.8.8. As we are now in a more specific setting,
we are able to get a stronger version of the Markov property. We state the version in the
lecture notes of Wendelin Werner (see Proposition 4.3 in [WP21]).

Theorem 2.10.5 (weak Markov property of the GFF). Let D ] Rd be a domain and
A ] D a compact set such that the boundary of D(A is regular and Γ a Gaussian free
field in D. Then there exist two generalized random functions ΓA,ΓA on D such that the
following holds

i) ΓA and ΓA are independent Gaussian processes.

ii) ΓA)D)A is a Gaussian Free field in D(A.

iii) There exists a version of ΓA such that ΓA)D)A is almost surely equal to a harmonic
function in D(A.

Proof. See section 4.1 in [WP21]. °

Remark 2.10.6. The idea of the weak Markov property for the Gaussian free field is the
following. One chooses a suitable compact set A ] D where we know what happens. By
Theorem 2.10.5, we can now restrict Γ to the set A where we know it and extend it on
the complement by the unique harmonic function, that has zero boundary on ∞D and the
values of Γ on ∞A. Here one has to be careful, as Γ is not a function and therefore this
step requires more care. Once we have found that harmonic function, we can sample an
independent Gaussian free field on D(A with zero boundary conditions. If we now sum
them up, we just end up with a Gaussian free field in D. This is particularly interesting for
sampling a Gaussian free field. It would be analogue to receive a simulation of a Brownian
motion by sampling Gaussian random variables step by step.

Remark 2.10.7. Analogue to chapter 2.8, we get a result for splitting a Gaussian free field
into two parts twice. Let A ] B ] D be two compact subsets of D that satisfy the
assumptions of Theorem 2.10.5, then it follows in an analogue way that

ΓB * EΓA€B and ΓB * ΓA + EΓA€B.
Remark 2.10.8. Here we define a function f being harmonic by Δf * 0. If f is continuous,
this is equivalent to the mean value property, i.e. for all balls, completely included in the
domain of f , the value of f at the center is the same as the average of f on the surface
of the ball. We will use this fact later to show the equivalence between the strong Markov
property and a set A being a local set.
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Here we call this decomposition the weak Markov property of the Gaussian free field,
based on the weak Markov property of the Brownian motion. As in the case of the Brownian
motion we can even find an analogue of the strong version of the Markov property, namely
that the set A is not deterministic any more.

Definition 2.10.9 (Strong Markov property of the GFF). Let Γ be a Gaussian free field
on D and A a random compact subset of D such that D(A has a regular boundary. We say
A satisfies the strong Markov property for Γ, if there exist two random generalized functions
ΓA,Γ

A such that

i) Γ * ΓA + ΓA

ii) ΓA is linear in its argument and there exists a random function hA in the complement
of A that is harmonic almost surely and such that ΓAEφ€ * hAEφ€ on the event that
the support of φ is contained in D(A.

iii) Conditionally on EA,ΓA€, ΓA is a Gaussian free field in D(A with zero boundary con-
ditions.

Here the notion hAEφ€ denotes the integral

hAEφ€ *
➺
D
hAEx€φEx€dx.

Remark 2.10.10. As every harmonic function is determined by its values on the boundary,
ΓA is measurable with respect to the sigma-algebra generated by Γ restricted to A. As
conditionally on EA,ΓA€ the process ΓA is a Gaussian free field in D(A and ΓA can be
explicitly described in a measurable way by A, it is, conditionally on A, independent of
ΓA. Thus, if A is deterministic, we get the weak Markov property. Therefore, every deter-
ministic set satisfies the strong Markov property.

By Remark 2.10.10, we have seen the Definition 2.10.10 makes sense as an extension of
the weak Markov property. Nevertheless, it is not an easy definition to work with. For
example, if one wants to prove that, under additional assumptions, the union of two sets,
that satisfy the strong Markov property, satisfies again the strong Markov property, the
proof gets very long and complicated. Therefore, one can derive an equivalent notion, the
so called local sets, that is easier to work with.

Definition 2.10.11 (dyadic approximation). Let n A N and A ] D compact, further for
i A Zd let

Qi :*
) i1
2n

,
i1 + 1

2n

[
- x x x -

) id
2n

,
id + 1

2n

[
.

Then, we define the dyadic approximation of the set A as follows

An :*
,

i√Zd,Qi❳A.∞
Qi.
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Remark 2.10.12. We call sets that can be represented as a finite union of cubes Qi of
length 2-n intersected with D 2-n-dyadic sets. In the case of A ] D, it follows by the
boundedness of D that An is a finite union of cubes Qi ED and therefore a 2-n-dyadic set.
In addition, it holds that An { A and ,

n√N
An * A.

Furthermore, one can define the dyadic approximation of a random set in an analogue way.
Here it is important that the dyadic approximation of a random set is a deterministic and
therefore measurable function of the random set.

Definition 2.10.13 (dyadic local sets). Let Γ be a Gaussian free field on D and n A N.
Then we call a random set A an 2-n-dyadic local set of Γ, if it is a random 2-n-dyadic set
and for all deterministic 2-n-dyadic sets B the process ΓB, defined by Theorem 2.10.5, is
independent of the sigma-algebra generated by EΓB, B€.

A direct consequence of this definition is the following Lemma.

Lemma 2.10.14. For all n A N, every 2-n-dyadic local set satisfies the strong Markov
property.

Proof. Let A be a 2-n-dyadic local set. It readily follows that A is a compact random
set such that D(A has regular boundary. Now for every deterministic 2-n-dyadic set B,
by Theorem 2.10.5, there exist ΓB and ΓB that split Γ up with corresponding harmonic
functions hB on D(B. As D is bounded, there are only finitely many 2-n-dyadic sets in
D. Thus, the following random processes are well defined

ΓA :*
➳
B

1uA*B(ΓB, Γ
A :*

➳
B

1uA*B(ΓB, hA :*
➳
B

1uA*B(hB.

Furthermore, it follows that ΓA + ΓA * Γ almost surely, hA is almost surely harmonic on
D(A and ΓAEφ€ * hAEφ€ on the event that the support of φ is contained in D(A. Finally,
conditionally on A and therefore also conditionally on EA,ΓA€, ΓA is a Gaussian free field
in D(A. °

Remark 2.10.15. On the other hand it is easy to see that every random 2-n-dyadic set,
that satisfies the strong Markov property, is a 2-n-dyadic local set.

Now we are ready to define local sets.

Definition 2.10.16 (local set). Let Γ be a Gaussian free field on D and A a random
compact set such that D(A has a regular boundary. Then A is a local set of Γ, if every
2-n-dyadic approximation is a 2-n-dyadic local set of Γ.
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2 Definition and properties of the Fractional Gaussian Field

Let us show that the two notions, A satisfying the strong Markov property and A being
a local set, coincide.

Theorem 2.10.17. Let Γ be a Gaussian free field on D and A ] D a random compact
set. Then A satisfies the strong Markov property for Γ if and only if it is a local set for Γ.

Idea of the proof. We start assuming that A satisfies the strong Markov property,
thus there exist ΓA and ΓA. Let n A N. By Lemma 2.10.14, conditionally on EΓA, A€, we
can split the process ΓA, that is a Gaussian free field in D(A, further up. We get

ΓA * EΓA€An + EΓA€An .

It follows that, conditionally on EΓA, A€ and EΓA€An , the process EΓA€An is a Gaussian free
field in D(An and ΓA + EΓA€An is restricted to D(An, as a sum of harmonic functions,
again a harmonic function. We define ΓAn :* ΓA + EΓA€An and ΓAn :* Γ - ΓAn . As An is
a deterministic and therefore measurable function of A and the information of A, we have
split up Γ into two parts such that one is conditioned on EAn,ΓAn€ a Gaussian free field
in D(An and the other is a harmonic function in D(An. As already mentioned in Remark
2.10.15, it follows that An is a 2-n-dyadic local set.

Let us now assume that A is a local set for Γ. Therefore, we have, for all n A N,
a splitting ΓAn ,ΓAn . We want to construct the two processes ΓA and ΓA. As An is a
measurable function of A and

➇
n│mAn * A for all m A N, the sigma-algebra generated by

A is the same as the sigma-algebra generated by EAn, n │ m€ for all m A N. Furthermore,
as An is already determined by An+1 for all n, ΓAm is measurable with respect to the ΓAn

for all m │ n. Let us now define the sigma-algebras

Gn : * σEA,ΓAn€ * σEΓAn , An, An+1, An+2, ...€
* σEΓAn ,ΓAn+1 ,ΓAn+2 , ..., An, An+1, An+2, ...€,

that is a decreasing sequence of sigma-algebras. Clearly ΓAn is measurable with respect to
Gn. We have, using Remark 2.10.7,

ΓAn * ΓAn+1 + EΓAn+1€An ,

where EΓAn+1€An is independent of EAn+1,ΓAn+1€, and therefore of Gn+1, and centered
Gaussian. Thus, we get

ΓAn+1 * E
)
ΓAn )Gn+1

[
.

In conclusion, EΓAnEφ€€n√N is an inverse martingale with respect to the inverse filtration
EGn€n√N for all φ A SED€ and therefore converges almost surely and in Lp for all p \ 1 to
some limit, we call ΓAEφ€. Further, we define

ΓA :* Γ - ΓA.
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2 Definition and properties of the Fractional Gaussian Field

Now, we need to show that this splitting agrees with the definition of the strong Markov
property in 2.10.9. We start showing that ΓA restricted to D(A is a harmonic function.
Remember that D is open, thus, for every z A D we have dEz, ∞D€ \ 0. We define for
z A D, 0 ➔ r ➔ dEz, ∞D€ and n A N the random variable γnEz, r€ as the average of ΓAn on
the surface of the ball BrEz€ ] D. As also the process γnEz, r€ is a reverse martingale, it
converges almost surely and in Lp for all p \ 1 to the spherical average of ΓA, we denote by
γ≠Ez, r€. By Remark 2.10.8, this process needs to coincide almost surely with the harmonic
function hAn on D(An and is therefore independent of the chosen r ➔ dEz, ∞D€. Now, we
define the event EEz, r€ of the ball BrEz€ being contained in D(A and the sequence of the
harmonic functions 1E°z,rEhAnEz€ converges almost surely and in all Lp for p \ 1 to some
limit. As again this process is independent of r ➔ dEz, ∞D€ and therefore can be defined on
the whole event D(A, we can define

hAEz€ :* 1D)AEz€hAnEz€.
We notice that for all suitable f , we have ΓAEf€ * hAEf€ on the event that the support of
f is contained in D(A. Thus, on this event we have

ΓAEf€ * lim
n║≠ΓAnEf€ * lim

n║≠hAnEf€ * hAEf€.

To use Remark 2.10.8, we need to show that there exists a continuous version of that process
that has the mean value property. We want to apply the Kolmogorov-Chentsov continuity
criterion 2.9.9. Let z, z= A D with dEz, ∞D€, dEz=, ∞D€ \ 2r. Using the Lp convergence,
conditional Jensen inequality and equation 2.11, we conclude

E
)
Eγ≠Ez, r€ - γ≠Ez=, r€€2d+2

[
* lim

n║≠E
)
EγnEz, r€ - γnEz=, r€€2d+2

[
* lim

n║≠E
)
E
)
γEz, r€ - γEz=, r€)Gn

[2d+2
[

/ E
)
EγEz, r€ - γEz=, r€€2d+2

[
* E

)
EγEz, r€ - γEz=, r€2

[d+1
E2d + 1€! / CEr€)z - z=)d+1.

Note that for the equality in the last line, we used that for X * NE0, σ2€, we have E X2n *
E2n- 1€!σn. Using the Kolmogorov-Chentsov continuity criterion, we get that there exists
a continuous modification of ΓA on the event D(A. We need to show that this contiunuous
version also has the mean value property. We already know that for z A D and 3r \
dEz, ∞D€, it holds that

hAEz€ * γ≠Ez, r€ * lim
n║≠ γnEz, r€.

Furthermore, the averages γnEz, r€ converge almost surely. Thus, to see that hAEz€ is equal
to its average on ∞BrEz€, which we denote by γAEz, r€, we need to show that the averages
γnEz, r€ converge to the average of hA. This is, because of the uniqueness of the limit,
almost surely true. Therefore, it suffices to show

1E°z,rEhAnEz€ ║ 1E°z,rEγAEz, r€.
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2 Definition and properties of the Fractional Gaussian Field

This follows readily as it is bounded in L2. For the details see Proposition in [WP21].
Finally, we need to show that ΓA is conditioned on EA,ΓA€ a Gaussian free field in
D(A. As ΓAn is a Gaussian free field in D(An for all n A R, it is independent of
Gn { G≠ { σEA,ΓA€. Furthermore, ΓAn is independent of Am for m │ n as with Re-
mark 2.10.7 we get ΓAn * EΓAm€An . In conclusion ΓA is independent of ΓA. °

Finally, we show, using the equality of the two notions, the following lemma.

Lemma 2.10.18. Let Γ be a Gaussian free field in D and A,A= two local sets of γ that
are, conditioned on Γ, independent. Then also A  A= is a local set.

Proof. We first show the result for two 2-n-dyadic local sets. Let B be a deterministic
2-n-dyadic set, f1, ..., fm, g1, ..., gm suitable functions in the domain of the Gaussian free
field and U1, ..., Um, V1, ..., Vm open sets in R. We define the following, with respect to
σEΓB€ and σEΓB€, measurable events

UB :*
]
ΓBEfj€ A Uj : j A  1, ...,m+

.
and VB :*

]
ΓBEgj€ A Vj : j A  1, ...,m+

.
.

Then, the set of all events of the form of UB is stable under intersection and generates
σEΓB€, analogue to that, the set of all events of the form VB is intersection stable and
generates σEΓB€. Furthermore, for a 2-n-dyadic set B= ] B, the set of events of the form
VB, VB E A * B=+ generates σEΓB,  A * B=+€ and analogue for A=. Now, for all 2-n-dyadic
sets B1, B2 with B1  B2 * B we get

P
)
UB, VB, A * B1, A

= * B2

[ * E
)
P
)
UB, VB, A * B1, A

= * B2)Γ
[[

* E
)
1UB❳VB

P
)
A * B1, A

= * B2)Γ
[[

* E
)
1UB1VB

P
)
A * B1)Γ

[
P
)
A= * B2)Γ

[[
.

As ΓB is independent of σEΓB,  A * B1+€, it follows that P A * B1)Γ * P A * B1)ΓB 
and also that P A= * B2)Γ * P A= * B2)ΓB . Using that ΓB and ΓB are independent, we
have

P
)
UB, VB, A * B1, A

= * B2

[
* P

)
UB
[
E
)
1VB

P
)
A * B1)Γ

[
P
)
A= * B2)Γ

[[
* P

)
UB
[
P
)
VB, A * B1, A

= * B2

[
.

Now summing over all B1, B2 satisfying B1  B2 * B, we get

P
)
UB, VB, A  A= * B

[
* P

)
UB
[
P
)
VB, A  A= * B

[
.

Thus, we get that ΓA∂A°
is independent of EΓA∂A° , AA=€ and AA= is a 2-n-dyadic local

set. With Lemma 2.10.14 the result follows. °
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3 Convergence of the Gaussian multiplicative
chaos associated to the fractional
Broenian field

In this chapter we define the Gaussian multiplicative chaos of a fractional Brownian field
and want to describe its limit in an useful way when the Hurst parameter converges to 0.
Let BH be a fractional Brownian motion, then the Gaussian multiplicative chaos associated
to that fractional Brownian field BH is a random measure, that is formally given by

MH
γ Edx€ :* exp

✂
γBHEx€ - γ2

2
E
)
BHEx€2[✡dx,

where γ \ 0 is a constant. Often the Gaussian multiplicative chaos is shortly denoted by
GMC. We are interested in the case when the Hurst parameter H tends to 0. The first
approach to this topic was the definition of a Gaussian multiplicative chaos associated to
a log-correlated Gaussian field that was introduced by J. Kahane, see [Kah85]. In the first
three sections we want to present and prove a result of P. Hager and E. Neuman (see The-
orem 2.4 of [HN20]) that shows convergence in probability. In the second part we discuss
normalizations of fractional Brownian fields that fit the assumptions of the convergence
result.

3.1 The statement of convergence of the Gaussian multiplicative
chaos

In the following, D denotes always a bounded domain. This section follows section 2.1 of
[HN20].

Definition 3.1.1 (family of normalized fractional Brownian fields). Let D be a bounded
domain and H0 A E0, 12€. Then we call EXH€H√°0,H0E a family of normalized fractional
Brownian fields if for every H A E0, H0€, XH is a random element of tempered distributions
on D. Furthermore, we have the following covariance structure

E
)
XHEx€XhEy€

[ * CEH,h€
✂
1 - [x - y[H+h

H + h
+ gH,hEx, y€

✡
(3.1)

for x, y A D and H,h A E0, H0€, whereby CEH,h€ \ 0 is a constant that depends only on H
and h and gH,h : D - D ║ R is a bounded function for every h,H A E0, H0€.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Definition 3.1.2 (Gaussian multiplicative chaos). Let EXH€H√°0,H0E be a family of nor-

malized fractional Brownian fields and γ \ 0. Then we call the random measure MH
γ on

D with density

MH
γ Edx€ :* exp

✂
γXHEx€ - γ2

2
E
)
XHEx€2[✡dx,

the multiplicative chaos associated to EXH€H√°0,H0E.

The interesting case of the Gaussian multiplicative chaos is when H tends to 0. Is there
a useful way of normalizing to get a non trivial limit? This is, in the general setting, a very
hard question to answer and for many cases still unknown. Here we present a result of P.
Hager and E. Neuman from 2020 (see Theorem 2.4 in [HN20]).

Theorem 3.1.3. Let H0 A E0, 12€, EXH€H√°0,H0E be a family of normalized fractional Brow-

nian fields on a domain D, γ \ 0 and MH
γ the associated Gaussian multiplicative chaos.

Let the covariance function 3.1 of EXH€H√°0,H0E fulfill the following two properties:

i) The function C : E0, H0€2 ║ R+ that describes the constant of 3.1 is uniformly contin-
uous and it holds that

lim
H̄║0

sup
0\h,H\H̄

)CEH,h€ - 1) * 0. (3.2)

ii) The function g : E0, H0€2 ║ R, Eh,H€ ║ gH,hEx, y€ that describes the bounded functions
of 3.1 is uniformly continuous, uniformly in x, y A D, and there exists a bounded
function g : D - D ║ R such that

lim
°H,hE║0

sup
x,y√D

((gH,hEx, y€ - gEx, y€(( * 0. (3.3)

Then there exists a constant γ° \
{

7d
4 that depends only on the dimension, such that for

all γ / γ° the sequence of random measures EMH
γ €H√°0,H0E converges as H ║ 0 to a Borel

measure Mγ on D in probability with respect to the weak topology of measures.

Remark 3.1.4. The constant γ° can be calculated explicitly. For ρ defined in 3.16 we have

γ°Ed€ *
{

d

1 - ρ
\
{

7d

4
,

where ρ = 0.42872.

Remark 3.1.5. From the two assumptions 3.2 and 3.3 of Theorem 3.1.3 and the covariance
structure of the normalized fraction Brownian field, given in 3.1, the point-wise convergence
of the covariance function for all x, y A D, x ~ y
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

lim
H║0

E
)
XHEx€XHEy€[ * log

1

[x - y[ + gEx, y€,

where g is the function defined in 3.3, readily follows.

Remark 3.1.6. The proof of Theorem 3.1.3 is very long and extensive. First, we prove the
uniform integrability of the random measures EMH

γ €H√°0,H0E. This is done in section 3.2.
Then we prove convergence in section 3.3. The main idea of the proof of uniform integra-
bility is the principle of good points. This approach is based on the work of N. Berestycki
on the construction of the Gaussian multiplicative chaos (see [Ber17]). Theorem 3.1.3 also
generalizes Corollary 2.2 in [NR18] to a higher dimensional setting.

3.2 The Uniformly Integrability of the Gaussian multiplicative
chaos

In this section we show that for all γ ➔ γ° the family of random measures EMH
γ €H√°0,H0E

from Theorem 3.1.3 is uniformly integrable. This takes, in that setting, a bigger amount
of effort. We start recalling the definition of a family of random measures being uniformly
integrable.

Definition 3.2.1 (uniformly integrable family of random measures). Let EΩ,F ,P€ be a
probability space and I ~ √ an index set. Then a family Eμi€i√I of random measures on
EΩ,F€ is uniformly integrable if for all A A F the family of random variables EμiEA€€iinI is
uniformly integrable in the usual sense.

First, we introduce the so called good points where the mass of our limiting measure
should be concentrated on.

Definition 3.2.2 (good points). Let H̄ A E0, H0€ and H A E0, H̄2 €. Define the set

JH,H̄ :*
]
H + 1

n
: n A N and

1

H̄ - H
➔ n / 1

H

.
.

Let x A D and α \ 0. Then we call the subset of Ω

GH,H̄
α EX€ :*

]
ω A Ω : XhEx€Eω€ / α

h + H
for all h A JH,H̄

.
the event of x being a good point of order α.

The following Lemma is the first step of our proof of uniformly integrability. It shows
that the limiting measure, unless it does not exist, will be concentrated on the good points.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Lemma 3.2.3. For all H̄ A E0, H0€ and orders α \ 0 there exists a positive constant pH̄α \ 0
that only depends on H̄ and α, such that we get the uniform bound from below

P
)
GH,H̄

α Ex€[ │ 1 - pH̄α for all x A D and 0 ➔ H ➔ H̄

2
.

Furthermore it holds that pH̄α ║ 0 if H̄ ║ 0.

Before we prove Lemma 3.2.3, we shortly show an easy but useful estimate.

Proposition 3.2.4. Let Z * NE0, σ2€. Then, for all x \ 0 the following inequality holds

P
)
Z \ x

[ / exp

✂
- x2

2σ2

✡
.

Proof. Define fEx€ :* expE- x2

2σ2 €-P Z \ x , that is smooth. We want to show that for
all x \ 0 we have fEx€ │ 0. Calculating the derivative, we get that f has a maximum at
x° :* σ,

2π
. It follows fEx°€ │ fE0€ * 1 - 1

2 * 1
2 \ 0. Furthermore, it readily follows that

f is monotone increasing in  0, x° and monotone decreasing in  x°,≈€. Therefore, f │ 0
in the first interval. Finally we get for x │ x°

fEx€ │ lim
y║≠ fEy€ * lim

y║≠ exp

✂
- y2

2σ2

✡
- P

)
Z \ y

[ * 0

and the result follows. °

Proof. of Lemma 3.2.3 Using the covariance function 3.1 of the family of fractional
Brownian fields EXH€H√°0,H0E and the two assumptions 3.2 and 3.3 of Theorem 3.1.3 we
get that there exist two constants c1, c2 \ 0 such that for all h A E0, H0€ it holds that

0 / E
)
XHEx€2[ * CEh, h€

✂
1

2h
+ gh,hEx, x€

✡
/ E1 + c1€

( 1

2h
+ c2

)
. (3.4)

Here it is important that the functions C and g are uniformly continuous to be able to
extend them in R (for more details see Theorem 10.45 in [Cla14]). Now, we start estimating
the complementary probability of a point x A D being a good point of order α \ 0 with a
rough but good enough bound

P Ω(GH,H̄
α Ex€ * P

✒
❉h A JH,H̄ : XhEx€ \ α

h + H

[
/

➳
h√JH; -H

P
✒
XhEx€ \ α

h + H

[
. (3.5)

As Xh is normally distributed we get with Proposition 3.2.4, equation 3.4 and setting
h * H + 1

n as h A JH,H̄

P
✒
XhEx€ \ α

h + H

[
/ exp

✂
- α2E2H + 1

n€-2

2E XH+ 1
n
Ex€2 

✡
/ exp

✂
- α2

2Ec1 + 1€
E2H + 1

n€-2

EH + 1n€-1 + c2❧{{{{{{{{{.{{{{{{{{{{
β°H,nE

✡
.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

We further estimate using H + 1
n / 1 and setting m :* [ 1

H ✉

βEH,n€ * 1

E2H + 1
n€2

H + 1
n

1 + c2EH + 1
n€

* 1

2E2H + 1
n€2

2H + 2
n

1 + c2EH + 1
n€

│ 1

2E2H + 1
n€

1

1 + c2EH + 1
n€

│ 1

4EH + 1
n€E1 + c2€

│ 1

4E 1
m + 1

n€E1 + c2€
.

Putting the last two calculations together we get

P
✒
XhEx€ \ α

h + H

[
/ exp

✂
- α2

8Ec1 + 1€Ec2 + 1€❧{{{{{{{{{.{{{{{{{{{{
*:κ/0

1
1
m + 1

n

✡
.

From the definition of good points 3.2.2 it follows that the sum in equation 3.5 starts at
[ 1
H̄-H

✉ - 1 │ [ 1
H̄

✉ - 1 and continues up to m. Putting all together, we arrive at

P Ω(GH,H̄
α Ex€ /

m➳
n*[ 1

-H
]-1

exp

✂
- κ

1
n + 1

m

✡
/ exp

✂
-mκ

2

✡
+

m-1➳
n*[ 1

-H
]-1

exp

✂
- κ

1
n + 1

m-1

✡
.

Using the last inequality iteratively, we get

P Ω(GH,H̄
α Ex€ /

m➳
n*[ 1

-H
]-1

exp

✂
-nκ

2

✡
/

≠➳
n*[ 1

-H
]-1

exp

✂
-nκ

2

✡
*: pH̄α .

As the series converges, it follows that pH̄α ║ 0 if H̄ ║ 0. °

Lemma 3.2.5. Let α \ γ. Then there exists for every ε A E0, αγ - 1€ a sufficiently small

H̄ \ 0 such that for pH̄α-γ°1+εE defined as in Lemma 3.2.3 and for all x A D and 0 ➔ H / H̄
2

it holds that

E
)
eγXH°xE- γ2

2
E.XH°xE2.1uGH; -H

α °xE(
[ │ 1 - pH̄α-γ°1+εE,

where 1A denotes the characteristic function of the subset A.

Proof. As XHEx€ is a centered Gaussian random variable, we get

E
)
eγXH°xE- γ2

2
E.XH°xE2.[ * 1.

We therefore can define a equivalent probability measure Q on EΩ,F€ via

dQ
dP

:* eγXH°xE- γ2

2
E.XH°xE2..
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

With Girsanov’s theorem we see that the Gaussian process EXh€h√°0,1E has the same variance
as before but a shifted mean under the new measure Q. Let EQ x denote the expectation
under the measure Q. We want to estimate the mean of EXh€h√°0,1E under the new measure
Q. Using the covariance function 3.1 and the second assumption 3.3 of Theorem 3.1.3, we
can bound the functions gH,h by a constant c \ 0, such that for all x A D, it holds that

EQ
)
XhEx€[ * γE

)
XhEx€XHEx€[ / CEH,h€γ

✂
1

H + h
+ c

✡
.

Furthermore, from the definition of JH,H̄ it follows that all h A JH,H̄ are bounded by
2H / h / H̄. Now let 0 ➔ ε ➔ α

γ - 1. As due to 3.3, sup0\h,H\H̄ )Ch,H - 1) ║ 0 when

H̄ ║ 0, we get for H̄ sufficiently small

E
)
XhEx€XHEx€[ / γ

1 + ε

h + H
for all x A D and h A JH,H̄ .

All together, it follows that

E
)
eγXH°xE- γ2

2
E.XH°xE2.1uGH; -H

α °xE(
[ * EQ

)
1
GH; -H

α °xE
[ * QEGH,H̄

α Ex€€

* Q
✂
XhEx€ / α

h + H
for all h A JH,H̄

✡
* P

✂
XhEx€ / α

h + H
- γE

)
XhEx€XHEx€[ for all h A JH,H̄

✡
│ P

✂
XhEx€ / α

h + H
- γ

1 + ε

h + H
for all h A JH,H̄

✡
* P

✂
XhEx€ / Eα - γE1 + ε€€ 1

h + H
for all h A JH,H̄

✡
* P

)
GH,H̄

α-γ°1+εEEx€[.
Now, with Lemma 3.2.3 we get that

E
)
eγXH°xE- γ2

2
E.XH°xE2.1uGH; -H

α °xE
[ │ 1 - pH̄α-γ°1+εE,

which concludes the proof. °

Our goal is now to define a good approximation of our random measure MH
γ using the

concept of good points. Let BED€ denote the sigma algebra of measurable sets in D. For

all 0 ➔ H̄ ➔ H0, H A E0, H̄2 €, α \ γ and A A BED€, we define the approximation as

IH,H̄
α,γ EA€ :*

➺
A
eγXH°xE- γ2

2
E.XH°xE2.1uGH; -H

α °xE(dx, (3.6)

which defines a random measure on D. In fact, IH,H̄
α,γ is MH

γ restricted to the event of good

points. In Lemma 3.2.5 we showed that IH,H̄
α,γ almost defines a probability measure. Now,

we want to show that IH,H̄
α,γ is square integrable.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Theorem 3.2.6. For all γ ➔ γ°Ed€ and all α \ γ close enough to γ, there exists a
sufficiently small H̄ \ 0 such that

sup
0\H/H̄)2

sup
A√B°DE

E
)
IH,H̄
α,γ EA€2[ ➔ ≈.

The proof of this theorem takes a lot of effort. We therefore show the main idea of it and
skip one step, that needs a very long calculation. For the proof in all details see Proposition
3.4 in [HN20]. First, we shortly prove an inequality that is needed in the proof of Theorem
3.2.6.

Proposition 3.2.7. Let z A E0, 1 and α A E0, 1€. Then, it holds that

1 - zα

α
/ - logEz€.

Proof. The inequality is equivalent to zα- logEz€α │ 1. For z * 1 we get 1α- logE1€α *
1 - 0 │ 1, so the inequality is true. Now, we calculate the derivative for z A E0, 1 

d
dz

(
zα - logEz€α│ * αzα-1 - α

z
* α

(
zα-1 - 1

z

│ / α
(
1 - 1

z

│ / 0.

As for z * 1 the inequality is true and for z / 1 the derivative of the left hand side is less
than d

dz1 * 0, we get, using the fundamental theorem of calculus, that the inequality holds
for all z A E0, 1 . °

Proof of 3.2.6 As the integrand in 3.6 is positive, it immediately follows that for all
A A BED€ we have

E
)
IH,H̄
α,γ EA€2[ / E

)
IH,H̄
α,γ ED€2[.

Thus, it suffices to show that

sup
0\H\H̄)2

E
)
IH,H̄
α,γ ED€2[ ➔ ≈,

for small enough H̄ \ 0. For x, y A D and H A E0, H0€, let ZHEx, y€ :* γXHEx€+γXHEy€-
γ2

2 E EXHEx€ + XHEy€€2 . Then it follows

γXHEx€ - γ2

2
XHEx€2 + γX°y€ - γ2

2
X°y€2 * ZHEx, y€ + γ2E

)
XHEx€X°y€

[
.

Note that the term γ2E
)
XHEx€X°y€

[
is deterministic and with 3.1 completely known to us.

We define an equivalent probability measure Qx,y by

dQx,y

dP
* eZH°x,yE. (3.7)

As γXHEx€ + γXHEy€ is centered Gaussian, Qx,y is well defined. We want to use that

probability measure to find an estimate for E IH,H̄
α,γ ED€2 . With Fubini’s theorem, the
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

covariance function 3.1, our considerations about the measure Qx,y and a uniform bound
C \ 0 for all the functions gh,H , we get

E
)
IH,H̄
α,γ ED€2[

* E

│✂➺
D
eγXH°xE- γ2

2
E.XH°xE2.1uGH; -H

α °xE(dx
✡2
-

* E

│➺
D

➺
D
eγXH°xE- γ2

2
E.XH°xE2.+γXH°yE- γ2

2
E.XH°yE2.1uGH; -H

α °xE❳GH; -H
α °yE(dxdy

-

*
➺
D

➺
D
E
)
eγXH°xE- γ2

2
E.XH°xE2.+γXH°yE- γ2

2
E.XH°yE2.1uGH; -H

α °xE❳GH; -H
α °yE(

[
dxdy

*
➺
D

➺
D
E
)
eZH°x,yE+γ2E

)
XH°xEX=yE

[
1uGH; -H

α °xE❳GH; -H
α °yE(

[
dxdy

*
➺
D

➺
D
eγ

2E.XH°xEXH°yE.Qx,y

)
GH,H̄

α Ex€ E GH,H̄
α Ey€[dxdy

*
➺
D

➺
D
exp

✂
CEH,H€γ2 1 - [x - y[2H

2H
+ gH,HEx, y€

✡
Qx,y

)
GH,H̄

α Ex€ E GH,H̄
α Ey€[dxdy

/ eC
➺
D

➺
D
exp

✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
Qx,y

)
GH,H̄

α Ex€ E GH,H̄
α Ey€[dxdy. (3.8)

We need to bound the last term of this estimate uniformly in H. For that purpose, we split
the integral into four regions and bound the term region by region. For three of them, this
is an easy procedure. One of them requires a long argument. First we define

κ :* max
z√.1,2.

2E1 - e-z€2
zE2 - e-2z€ , (3.9)

which is well defined and finite as  1, 2 is compact and we take a maximum over a contin-
uous function. In fact, we have κ A E1, 2€. We choose the regions that split D - D in four
parts, in the following way

R1 :*
]

Ex, y€ A D - D : [x - y[ ➔ e-κ)H
.

R2 :*
]

Ex, y€ A D - D : e-κ)H / [x - y[ ➔ e-2)H̄
.

R3 :*
]

Ex, y€ A D - D : e-2)H̄ / [x - y[ ➔ 1

.
R4 :*

]
Ex, y€ A D - D : 1 / [x - y[

.
.

(3.10)

As H
H̄

A E0, 12  , it readily follows that the four regions are pairwise disjoint, nonempty and
fill up D-D. In addition as D is bounded, also all Rj are bounded and so they have finite
measure. We denote the four integrals resulting from our partition as

IH,H̄
j ED€ :*

➺ ➺
Ri

exp

✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
Qx,y

)
GH,H̄

α Ex€ E GH,H̄
α Ey€[dxdy,
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

where j A  1, 2, 3, 4+. IH,H̄
j also depends on γ and α, but for readability we do not put

them into the notation. In total, we get with K :* eC ,

E
)
IH,H̄
α,γ ED€2[ / K

4➳
j*1

IH,H̄
j ED€.

Now we want to bound each IH,H̄
j . We start with IH,H̄

1 . Let ε \ 0, again by assumption

3.2, we see that we can bound CEH,H€ by 1 + ε for H A E0, H̄2 €, H̄ sufficiently small. As
J1 has finite measure, we get

IH,H̄
1 ED€ /

➺ ➺
R1

exp

✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
dxdy

/
➺ ➺

R1

exp

✂
E1 + ε€γ2 1 - [x - y[2H

2H

✡
dxdy

/
➺ ➺

R1

exp

✂
E1 + ε€γ2 1

2H

✡
dxdy

/ exp

✂
1 + ε€γ2 1

2H

✡
)R1)

/ exp

✂
E1 + ε€γ2 1

2H
- κd

H

✡
, (3.11)

where C arises from the volume of the unit ball in Rd. Now for the last term to be finite
we need E1 + ε€γ2 1

2H - κd
H to stay finite for all H A E0, H̄2 €. As ε is arbitrarily small and

κ \ 1, we have

E1 + ε€γ2 1

2H
- κd

H
/ γ2

2H
- d

H
.

For γ2 ➔ 2d it follows that the first integral is finite, so it holds that

sup
H√°0,H̄E

IH,H̄
1 ED€ ➔ ≈.

For the second bound we use the inequality in 3.2.7. For H A E0, 12€ and for x, y A [x-y[ ➔ 1
we get

1 - [x - y[2H
2H

/ - log [x - y[.

Plugging in this inequality and using that for all Ex, y€ A R3, we have [x- y[ │ expE 2
H €, so

we arrive at

IH,H̄
3 ED€ /

➺ ➺
R3

exp

✂
γ2

1 - [x - y[2H
2H

✡
dxdy

/
➺ ➺

R3

exp

✂
γ2E- log [x - y[€

✡
dxdy
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

/
➺ ➺

R3

exp

✂
γ2

2

H̄

✡
dxdy

/ exp

✂
γ2

2

H̄

✡
)D)2.

Therefore, it follows that

sup
0\H/H̄)2

IH,H̄
3 ED€ ➔ ≈.

The bound for IH,H̄
4 ED€ is easy to get. As in R4, 1 - [x - y[ / 0 and CEH,H€ \ 0, it

follows for all H A E0, H̄2 € that

IH,H̄
4 ED€ /

➺ ➺
R4

exp

✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
dxdy

/
➺ ➺

R4

expE0€dxdy

* )R4) / )D) ➔ ≈.

Finally, we need a bound for IH,H̄
2 ED€, which one is not so easy to obtain and takes a lot of

effort. Therefore, we skip that step here and refer the reader to Proposition 3.5 in [HN20]
for a rigorous proof. The upper bound γ° is determined in that prove. Now, having all
four bounds we eventually conclude that

E
)
IH,H̄
α,γ ED€2[ / K

4➳
j*1

IH,H̄
j ED€ ➔ ≈,

and the square integrability of IH,H̄
α,γ EA€ follows for all A A BED€. °

Analogue to IH,H̄
α,γ , we can define for α \ γ, H̄ A E0, H0€, H A E0, H̄2 € and A A BED€

LH,H̄
α,γ EA€ :*

➺
A
eγXH°xE- γ2

2
E.XH°xE2.1uΩ)GH; -H

α °xE(dx.

Then clearly it holds that MH
γ EA€ * IH,H̄

α,γ EA€ + LH,H̄
α,γ EA€. With Lemma 3.2.5 we immedi-

ately get the following result for LH,H̄
α,γ .

Corollary 3.2.8. For all α \ γ and ε \ 0 there exists a H̄ \ 0 such that

sup
0/H\H̄)2

sup
A√B°DE

E
)
LH,H̄
α,γ EA€[ / ε.

Proof. Let α \ γ and ε \ 0, we choose a δ A E0, αγ - 1€. Recall that D is bounded and

therefore )D) ➔ ≈. With Lemma 3.2.5 and Fubini’s theorem we get a H̄ \ 0 sufficiently
small such that

E
)
IH,H̄
α,γ ED€[ * E

✒➺
D
eγXH°xE- γ2

2
E.XH°xE2.1uΩ)GH; -H

α °xE(dx
[
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

│
➺
D

(
1 - pH̄α-γ°1+δE

│
dx * )D)(1 - pH̄α-γ°1+δE

│
.

As E MH
γ Ex€ * 1 for all x A D and H A E0, H0€, we have, with Fubini’s theorem, )D) *

E MH
γ ED€ * E IH,H̄

α,γ ED€ + E LH,H̄
α,γ ED€ . Thus, we get

sup
0\H\H̄)2

sup
A√B°DE

E
)
LH,H̄
α,γ EA€[ / sup

0\H\H̄)2
E
)
LH,H̄
α,γ ED€[

* sup
0\H\H̄)2

(
)D) - E

)
IH,H̄
α,γ ED€[) / )D)pH̄α-γ°1+δE.

Finally, by Lemma 3.2.5 we can choose H̄ \ 0 small enough to get

sup
0\H\H̄)2

sup
A√B°DE

E
)
LH,H̄
α,γ EA€[ / )D)pH̄α-γ°1+δE / ε

and the result follows. °

The result of Corollary 3.2.8 shows the interesting fact that the random measure MH
γ is

more and more supported in the good points the smaller H gets. This we want to use to
prove the uniform integrability of EMH

γ €H√°0,H0E. We now have all the ingredients for that.

Theorem 3.2.9. For all γ ➔ γ°Ed€ the family of random measures EMH
γ €H√°0,H0E is uni-

formly integrable.

Proof. As already mentioned, we have for all A A BED€, H̄ A E0, H0€, H A E0, H̄2 € and
α \ γ

MH
γ EA€ * IH,H̄

α,γ EA€ + LH,H̄
α,γ .

First we have a look at IH,H̄
α,γ . We see that for all A A BED€, we get for α sufficiently close

to γ and H̄ \ 0 small enough,

sup
0\H/H̄)2

sup
A√B°DE

E
)
IH,H̄
α,γ EA€2[ ➔ ≈.

With Hölder’s inequality we get for n A N and A A BED€

sup
0\H/H̄)2

E
)
IH,H̄
α,γ EA€1uIH; -H

α;γ °AE/n(
[ / sup

0\H/H̄)2
E
)
IH,H̄
α,γ EA€2[1)2P)IH,H̄

α,γ EA€ \ n
[1)2

.

As P IH,H̄
α,γ EA€ \ n 1)2 ║ 0 when n ║ ≈, the uniform integrability follows. For LH,H̄

α,γ the

uniform integrability follows directly from Corollary 3.2.8. Now let ε \ 0. As IH,H̄
α,γ EA€ is

uniformly integrable, there exists a δ \ 0 such that for all B A BED€ with P B ➔ δ it holds
that

sup
0\H\H̄)2

E
)
IH,H̄
α,γ EA€1B

[ ➔ ε

2
.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Furthermore, with Corollary 3.2.8 it follows for H̄ sufficiently small that

sup
0\H\H̄2

E
)
LH,H̄
α,γ EA€[ ➔ ε

2
.

Combining these results, it follows that

sup
0\H\H̄)2

E
)
MH

γ EA€1B

[ / sup
0\H\H̄)2

E
)
LH,H̄
α,γ EA€1B

[+ sup
0\H\H̄)2

E
)
LH,H̄
α,γ EA€[ ➔ ε,

and thus, the uniform integrability of EMH
γ €H√°0,H̄)2E. Therefore, for all EMH

γ €H√°0,H0E to
be uniformly integrable, it suffices to show that EMH

γ €H√.H̄,H0E is bounded in L2EΩ,F ,P€.
As already done, we can, due to the assumptions 3.2 and 3.3, estimate )CEh,H€) / C1 and
)gh,HEx, y€) / C2 for all 0 ➔ h,H ➔ H0 and x, y A D, where C1, C2 \ 0 are constants.
With the covariance function 3.1 we get, similar as in the proof of Theorem 3.2.6, for all
H A  H̄,H0€ and A A BED€

E
)
MH

γ EA€2[ /
➺ ➺

A
exp

✂
CEH,H€γ2 1 - [x - y[2H

2H
+ gH,HEx, y€

✡
dxdy

/
➺ ➺

A
exp

✂
C1γ

2 1 - [x - y[2H
2H

+ C2

✡
dxdy

/
➺ ➺

]x-y]\1
exp

✂
C1γ

2 1 - [x - y[2H
2H

+ C2

✡
dxdy

+
➺ ➺

]x-y]│1
exp

✂
C1γ

2 1 - [x - y[2H
2H

+ C2

✡
dxdy.

As [x - y[2H ➔ 1 if [x - y[ ➔ 1, we can estimate the first integral by➺ ➺
]x-y]\1

exp

✂
C1γ

2 1 - [x - y[2H
2H

+ C2

✡
dxdy

/
➺ ➺

]x-y]\1
exp

✂
C1γ

2 1

2H
+ C2

✡
dxdy

/
➺ ➺

]x-y]\1
exp

✂
C1γ

2 1

2H̄
+ C2

✡
dxdy

/ C exp

✂
C1γ

2 1

2H̄
+ C2

✡
➔ ≈.

From )D) ➔ ≈ it follows that also the second integral is finite, since➺ ➺
]x-y]│1

exp

✂
C1γ

2 1 - [x - y[2H
2H

+ C2

✡
dxdy

/
➺ ➺

]x-y]│1
expEC2€dxdy

/ )D)2 expEC2€ ➔ ≈.

All together, we have for all A A BED€ that
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

sup
H√.H̄,H0E

E
)
MH

γ EA€2[ ➔ ≈

and the uniform integrability of EMH
γ €H√°0,H0E follows. °

3.3 Convergence of the Gaussian multiplicative chaos

In this section we want to prove the convergence of EMH
γ €H√°0,H0E as H ║ 0. First, we

show that EIH,H̄
α,γ EA€€H√°0,H̄E converges in L2EΩ,F ,P€ for all A A BED€. This will take more

effort. The proofs of these two results follow chapter 6 in [HN20]. Second, we conclude
that for all A A BED€, EMH

γ EA€€H√°0,H0E converges in L1EΩ,F ,P€, that is, using the last
section, a quicker result. Finally, we derive from those two results the convergence of the
random measures EMH

γ €H√°0,H0E with respect to the weak topology of measures on D. Here
we follow chapter 6 in [HN20] and chapter 6 in [Ber17].

First we show a direct consequence of the assumptions 3.2 and 3.3 of Theorem 3.1.3. We

will need it later for the proof that EIH,H̄
α,γ EA€€H√°0,H0E converges in L2EΩ,F ,P€.

Proposition 3.3.1. Let H1 A E0, H̄2 €. Then for all x, y A D the limits

CEh, 0€ :* lim
H║0

CEh,H€ and ghEx, y€ :* lim
H║0

gh,HEx, y€

exist and the following two statements are true.

i) For all A A BED€ it holds that

lim
H║0

sup
x√A,h│H1

((((E)XhEx€XHEx€[- CEh, 0€
✂
1

h
+ ghEx, x€

✡(((( * 0.

ii) For β A E0, e-2)H̄€ it holds that

lim
H║0

sup
]x-y]│β,h│H1

((((E)XhEx€XHEy€[- CEh, 0€
✂
1 - [x - y[h

h
+ ghEx, y€

✡(((( * 0.

Proof. The existence of the two limits is a direct result of 3.2 and 3.3, as every uniformly
continuous function can be extended continuously (for more details see Theorem 10.45 in
[Cla14]). With 3.1 we get for some constants C1, C2 \ 0

lim
H║0

sup
x√A,h│H1

((((E)XhEx€XHEx€[- CEh, 0€
✂
1

h
+ ghEx, x€

✡((((
* lim

H║0
sup

x√A,h│H1

((((CEh,H€
✂

1

H + h
+ gH,hEx, x€

✡
- CEh, 0€

✂
1

h
+ ghEx, x€

✡((((
/ lim

H║0
sup

x√A,h│H1

(((CEh,H€ - CEh, 0€(((((( 1

H + h
+ gH,hEx, x€

((((
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+ CEh, 0€
✂(((( 1

H + h
- 1

h

((((+ ((((gh,HEx, x€ - ghEx, x€
((((✡
)

/ lim
H║0

sup
x√A,h│H1

(((CEh,H€ - CEh, 0€((C1 + C2

✂(((( 1

H + h
- 1

h

((((+ ((((gh,HEx, x€ - ghEx, x€
((((✡
)

* 0.

The second limit works the same way. We have

lim
H║0

sup
]x-y]│β,h│H1

((((E)XhEx€XHEy€[- CEh, 0€
✂
1 - [x - y[h

h
+ ghEx, y€

✡((((
* lim

H║0
sup

]x-y]│β,h│H1

((((CEh,H€
✂
1 - [x - y[H+h

H + h
+ gH,hEx, y€

✡
- CEh, 0€

✂
1 - [x - y[h

h
+ ghEx, y€

✡((((
/ lim

H║0
sup

]x-y]│β,h│H1

(
)CEh,H€ - CEh, 0€)C1 + C2

((((1 - [x - y[H+h

H + h
- 1 - [x - y[h

h

((((
+ C2)gh,HEx, y€ - ghEx, y€)

)
* 0.

°

Now, we need to focus on showing the convergence of EIH,H̄
α,γ EA€€H√°0,H̄E in L2EΩ,F ,P€.

Let A A BED€ and h,H A E0, H̄€. Then it holds that

E
)EIh,H̄α,γ EA€ - IH,H̄

α,γ EA€€2[ * E
)
Ih,H̄α,γ EA€2[- 2E

)
Ih,H̄α,γ EA€IH,H̄

α,γ EA€[+ E
)
IH,H̄
α,γ EA€2[.

In order to make the expression on the left hand side small, we try to find a sharp upper
bound and a sharp lower bound for

E
)
IH,H̄
α,γ EA€2[ and E

)
Ih,H̄α,γ EA€IH,H̄

α,γ EA€[
respectively. The following two Lemmas will show that such bounds exist.

Lemma 3.3.2. Let A A BED€, H̄ A E0, H0€ and α \ γ sufficiently close to γ. Then there
exists a nonnegative function gα depending only on α, H̄ and γ such that

lim sup
H║0

E
)
IH,H̄
α,γ EA€2[ /

➺
A

➺
A
eγ

2g°x,yE gαEx, y€
[x - y[γ2 dxdy,

where gEx, y€ is the limiting function in 3.3.

Idea of the proof. We can use a lot of work that we have already done in the last
section. Let us choose β A E0, e-2)H̄€. As 3.8 in the proof of Theorem 3.2.6, we can estimate

E IH,H̄
α,γ EA€2 in the following way

E
)
IH,H̄
α,γ EA€2[

/ K

➺
A

➺
A
1u]x-y]\β( exp

✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
Qx,y

)
GH,H̄

α,γ Ex€ E GH,H̄
α,γ Ey€[dxdy

64



3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

+ K

➺
A

➺
A
1u]x-y]│β( exp

✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
Qx,y

)
GH,H̄

α,γ Ex€ E GH,H̄
α,γ Ey€[dxdy

*: KJ1Eβ,H€ + KJ2Eβ,H€.

We want to estimate J1Eβ,H€ and J2Eβ,H€. Recall the four regions in 3.10 we split D-D
with. As β ➔ e-2)H̄ , the support of the integrand of J1Eβ,H€ is contained in R1  R2.
Thus, we get

J1Eβ,H€

/
➺ ➺

R1

1u]x-y]\β( exp
✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
Qx,y

)
GH,H̄

α,γ Ex€ E GH,H̄
α,γ Ey€[dxdy

+
➺ ➺

R2

1u]x-y]\β( exp
✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
Qx,y

)
GH,H̄

α,γ Ex€ E GH,H̄
α,γ Ey€[dxdy

*: J1,1Eβ,H€ + J1,2Eβ,H€.

Using the estimate in 3.11, we get

J1,1Eβ,H€ / C

➺ ➺
u]x-y]\β(❳R1

exp

✂
E1 + ε€ γ

2

2H

✡
dxdy ➔ ≈.

In an similar way we get an estimate for R2. We cannot show the details here, as we
skipped that part in the proof of theorem 3.2.6. For the details see section 4 in [HN20].
We have

J1,2Eβ,H€ / C

➺ ➺
]x-y]\β

[x - y[-°1-ηEγ2
dxdy ➔ ≈,

where η \ 0 can be chosen such that the right hand side is finite. Summing up what we
did, we can find a function gα,1Eβ€ such that gα,1Eβ€ ║ 0 if β ║ 0 and

sup
0\H/H̄

J1Eβ,H€ / gα,1Eβ€. (3.12)

Next we want to bound J2Eβ,H€. We want to use the equivalent probability measure Qx,y,
as defined in 3.7 again. With Girsanov’s theorem, it follows that under Qx,y, the vector
EXhEx€, XhEy€€h√°0,H̄. is again Gaussian distributed with the same variance but a different
mean, given by

EQx;y

)
XhEx€[ * γE

)
XhEx€EXHEx€ + XHEy€€[

* γCEh,H€
✂

1

H + h
+ gH,hEx, x€ + 1 - [x - y[2H

H + h
+ gH,hEx, y€

✡
,

EQx;y

)
XhEy€

[ * γE
)
XhEy€EXHEx€ + XHEy€€[

* γCEh,H€
✂
1 - [x - y[2H

H + h
+ gH,hEy, x€ + 1

H + h
+ gH,hEy, y€

✡
.

With Proposition 3.3.1 it follows that on the event [x-y[ │ β, the joint law of EXhEx€, X°y€€h√°0,H̄.
converges weakly and uniformly on compact sets K ] E0, H̄ under the measure Qx,y to a
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joint distribution EYhEx€, YhEy€€h√°0,H̄. for H ║ 0. Furthermore, it has the same covariance
structure as EXhEx€, XhEy€€h√°0,H̄. but shifted mean, i.e.

E
)
YhEx€[ * γCEh, 0€

✂
2 - [x - y[h

h
+ ghEx, x€ + ghEx, y€

✡
,

E
)
YhEy€

[ * γCEh, 0€
✂
2 - [x - y[h

h
+ ghEy, y€ + ghEx, y€

✡
.

Let us define, for H̄ A E0, H0€, α \ γ sufficiently close to γ and x A D, the event

G̃H̄
α Ex€ :*

]
ω A Ω : YhEx€Eω€ /

α

h
+ γCEh, 0€

✂
2 - [x - y[h

h
+ ghEx, x€ + ghEx, y€

✡
for all h A E0, H̄ 

.
.

Comparing with the definition of good points in 3.2.2, we immediately see that the event

G̃H̄
α Ex€ under P has the same probability as the event GH,H̄

α Ex€ under the measure Qx,y. It
may be easily shown that the probability of the event G̃H1

α Ex€EG̃H1
α Ey€ converges uniformly

to 1 as H1 ║ 0 on the event [x - y[ │ β. Furthermore, it follows that

lim
H║0

Qx,y

)
GH,H̄

α Ex€ E GH,H̄
α Ey€[ * P

)
G̃H̄

α Ex€ E G̃H̄
α Ey€[ *: gαEx, y€. (3.13)

Using 3.1 and 3.2, we eventually get, uniformly in [x - y[ │ β, that

lim
H║0

E
)
XHEx€XHEy€[ * - log [x - y[ + gEx, y€.

Since g is bounded, it follows with dominated convergence that

lim
H║0

J2Eβ,H€ (3.14)

* lim
H║0

➺
A

➺
A
1u]x-y]│β( exp

✂
CEH,H€γ2 1 - [x - y[2H

2H

✡
Qx,y

)
GH,H̄

α,γ Ex€ E GH,H̄
α,γ Ey€[dxdy

/ C lim
H║0

➺
A

➺
A
1u]x-y]│β(eγ

2E.XH°xEXH°yE.Qx,y

)
GH,H̄

α E GH,H̄
α Ey€[dxdy

/
➺
A

➺
A
1u]x-y]│β(eγ

2g°x,yE gαEx, y€
[x - y[γ2 dxdy. (3.15)

We want to show that this estimate is finite, in order to be able to use dominated conver-
gence. This part we again have to shortcut as we did not go through the whole proof of
3.2.6. For more details see Lemma 4.2 in [HN20]. In their paper P. Hager and E. Neuman
showed that for δ \ 0 there exists H̄ \ 0 small enough satisfying

lim
H║0

Qx,y

)
GH,H̄

α Ex€ E GH,H̄
α Ey€[ / C

γ2
exp

✂
γ2ρ log [x - y[

✡
,

where ρ is defined as

ρ :* max
z√.0,2.

2E1 - e-z€2
zE2 - e-2z€ = 0.42872. (3.16)
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Using Lemma 4.2 in [HN20] and 3.13, we conclude for γ ➔ γ° that

sup
β√°0,e✁2) -HE

➺
A

➺
A
1u]x-y]│β(eγ

2g°x,yE gαEx, y€
[x - y[γ2 dxdy

/ sup
β√°0,e✁2) -HE

CEγ€
➺
A

➺
A
1u]x-y]│β(

expEγ2ρ log [x - y[€
[x - y[γ2 dxdy

/ CEγ€
➺
A

➺
A

1

[x - y[γ2°1-ρEdxdy ➔ ≈.

Now, we have shown that the estimate in 3.14 is finite and can use dominated convergence.
We arrive at

lim
β║0

lim
H║0

J2Eβ,H€ /
➺
A

➺
A
eγ

2g°x,yE gαEx, y€
[x - y[γ2 dxdy.

Together with 3.12 we conclude that

E
)
IH,H̄
α,γ EA€2[ ➔ ≈.

°

Lemma 3.3.3. For A A BED€, α \ γ sufficiently close to γ, it holds that

lim inf
h,H║0

E
)
Ih,H̄α,γ EA€IH,H̄

α,γ EA€[ │
➺
A

➺
A
eγ

2g°x,yE gαEx, y€
[x - y[γ2 dxdy.

Proof. The proof is very similar to that one of Lemma 3.3.2. We will not show the
details here. For a full version see Lemma 6.4 in [HN20]. °

Corollary 3.3.4. For A A BED€, α \ γ sufficiently close to γ, H̄ A E0, H0€ and γ ➔ γ°,
EIH,H̄

α,γ EA€€H√°0,H̄E is a Cauchy sequence in L2EΩ,F ,P€ and therefore converges to some limit

in L2EΩ,F ,P€.
Proof. Let A A BED€, α \ γ sufficiently close to γ, H̄ A E0, H0€ and γ ➔ γ°. Then we

get

E
)EIh,H̄α,γ EA€ - IH,H̄

α,γ EA€€2[ * E
)
Ih,H̄α,γ EA€2[- 2E

)
Ih,H̄α,γ EA€IH,H̄

α,γ EA€[+ E
)
IH,H̄
α,γ EA€2[.

Due to Lemma 3.3.2 and Lemma 3.3.3 we can estimate

0 / lim sup
h,H║0

E
)EIh,H̄α,γ EA€ - IH,H̄

α,γ EA€€2[
/ 2

➺
A

➺
A
eγ

2g°x,yE gαEx, y€
[x - y[γ2 dxdy - 2

➺
A

➺
A
eγ

2g°x,yE gαEx, y€
[x - y[γ2 dxdy * 0.

Therefore E
)EIh,H̄α,γ EA€ - IH,H̄

α,γ EA€€2[ is a Cauchy sequence in L2EΩ,F ,P€. As L2EΩ,F ,P€ is
complete, the sequence converges to some limit. °
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Corollary 3.3.5. For all A A BED€ the sequence of random variables EMH
γ EA€€H√°0,H0E

converges in L1EΩ,F ,P€.
Proof. Analogue as in the proof of Theorem 3.2.9, for all A A BED€, H̄ A E0, H0€ and

H A E0, H̄2 €, we can split up our random measure

MH
γ EA€ * IH,H̄

α,γ EA€ + LH,H̄
α,γ EA€.

Now let ε \ 0 and A A BED€. By Corollary 3.2.8 we can make the second term small.
Thus, we can choose H̄ \ 0 sufficiently close to 0 such that

sup
0\H/H̄)2

E
)
LH,H̄
α,γ EA€[ / ε

4
.

As we have shown in Corollary 3.3.4, EIH,H̄
α,γ EA€€H√°0,H0E is a Cauchy sequence in L2EΩ,F ,P€.

Therefore, we can choose a H1 A E0, H̄€ such that for all h,H A E0, H1€ we get with Jensen’s
inequality

E
))Ih,H̄α,γ EA€ - IH,H̄

α,γ EA€)[2 / E
)EIh,H̄α,γ EA€ - IH,H̄

α,γ EA€€2[ / ε2

4
.

Summing up we get for all h,H A E0, H1€

E
))Mh

γ EA€ - MH
γ )[ / E

))Ih,H̄α,γ EA€ - IH,H̄
α,γ EA€)[+ E

))Lh,H̄
α,γ EA€ - LH,H̄

α,γ EA€)[
/ ε

2
+ E

))Lh,H̄
α,γ EA€)[+ E

))LH,H̄
α,γ EA€)[

/ ε

2
+ 2

ε

4
* ε.

Thus EMH
γ €H√°0,H0E is a Cauchy sequence in L1EΩ,F ,P€. As L1EΩ,BED€,P€ is complete,

the convergence result follows. °

Proof of Theorem 3.1.3 LetA A BED€. By Corollary 3.3.5, we know that EMH
γ EA€€H√°0,H0E

converges in L1EΩ,F ,P€. As convergence in L1EΩ,F ,P€ implies convergence in probability
for γ ➔ γ°, we define

A :*
]
A *  x1, y1€ - ... -  xd, yd€ : xi, yi A Q, xi / yi for all i A  1, ..., n+ and A ] D

.
.

Then A is non empty, countable, intersection stable and generates the Borel sets BED€ on
D. As for every sequence EHn€n√N with Hn ║ 0 and all A A A we have that EMH

γ EA€€
converges in probability, we can find a subsequence EHnk

€k√N such that EMHnk
γ EA€€k√N

converges almost surely to some limit. Thus, by the countability of A, we find a subsequence

EHnl
€l√N such that for all A A A and D at the same time, the sequence EMHnl

γ EA€€l√N
converges almost surely to some limit. We denote that limit by MγEA€ for A A A. As A
is intersection stable, generated the Borel sets and M

Hnl
γ ED€ ║ Mγ almost surely, there

exists a random measure on BED€ that extends Mγ such that EMHnl
γ €l√N converges almost
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surely in the sense of weak convergence to Mγ . We want to show uniqueness of the limit.
Let A A A. We want to have

MγEA€ * sup
B√A,B{A

MγEB€. (3.17)

It immediately follows that the right-hand side is less or equal then the left-hand side.
For the other inequality we need to make an argument. With Fubini’s theorem we get for
A A A and H A E0, H0€

E
)
MH

γ EA€[ * E
✒➺

A
eγXH°xE- γ2

2
E.XH°xE2.dx

[
*
➺
A
E
)
eγXH°xE- γ2

2
E.XH°xE2.[dx

*
➺
A
dx * )A).

As MH
γ EA€ converges in L1EΩ,F ,P€, we get that

E
)
MγEA€[ * lim

H║0
E
)
MH

γ EA€[ * )A).

Now since all MH
γ EA€ and MγEA€ are non negative random variables it follows that in 3.17

equality holds. Likewise, there also holds equality in

MγEA€ * inf
B√A,B}A

MγEB€ (3.18)

for all A A A. Using that M
Hnl
γ ED€ ║ MγED€ almost surely, we get that the random

measures  MHnl
γ ,Mγ+ are tight in the space of Borel measures on D, equipped with the

topology of weak convergence. Let M̃γ be another limit in probability with respect to the
weak convergence. Using Portmanteau’s theorem and the equation 3.17 and 3.18, it follows
that M̃γEA€ * MγEA€ for all A A A and therefore, by the uniqueness of the measures, that
M̃γ * Mγ . This implies the weak convergence in probability of EMH

γ €H√°0,H0E. °

3.4 Normalization of fractional Broenian fields, statements

In this section we want to show some examples of normalized fractional Brownian fields
that agree with the assumptions of Theorem 3.1.3. For that purpose we introduce two
ways of generating families of fractional Brownian fields, together with a class of normal-
izing kernels. The main part will be to prove that all such normalized fractional Brownian
fields indeed agree with the assumptions of Theorem 3.1.3. This will be done in the next
section. We start giving some examples of fractional Brownian fields. This section follows
section 2.2 of [HN20].
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Example 3.4.1 (Mandelbrot-van-Ness representation). Let d * 1, EΩ,F , EFt€t√R,P€ a fil-
tered probability space and EWt€t√R be a two-sided Brownian motion. Then for H A
E0, 1€( 1

2+ we consider

B̃HEt€ :* CEH€
➺
R

(Et - s€H- 1
2+ - E-s€H- 1

2+
│
dWs, t A R (3.19)

where CEH€ \ 0 is a constant only depending on H. Mandelbrot and Van-Ness showed in
[MVN68] that EB̃HEt€€t√R defines a fractional Brownian motion with Hurst parameter H.
Furthermore V. Dobrićand and F. Ojeda calculated in [DO06] the covariance structure of
the process EB̃HEt€€t√R that is given by

E
)
B̃HEt€B̃hEs€

[ * C1Eh,H€()s)h+H + )t)h+H - )t - s)h+H
│- C2Eh,H€fh,HEs, t€ (3.20)

whereby s, t A R and h,H A E0, 1€ with H + h ~ 1, and fh,H : R2 ║ R given by

fh,HEs, t€ :* sgnEs€)s)h+H + sgn )t)h + H - sgnEt - s€)t - s)h+H .

For this family of fractional Brownian motions there is no useful extension to higher di-
mensions.

Example 3.4.2. Another example of a construction of a family of fractional Brownian fields
is the following. Let again d * 1, H A E0, 1€( 1

2+. We define

BHEt€ :* C3E1, H€
➺
R

()t - s)H- 1
2 - )s)H- 1

2

│
dWs, t A R, (3.21)

where H A E0, 1€( 1
2+ and C3E1, H€ \ 0 is a constant only depending on H. In [DO06] the

covariance structure of this process was calculated and is given by

E
)
BHEt€BhEs€

[ * c13EH,h€()s)h+H + )t)h+H - )t - s)h+H
│
, s, t A R, (3.22)

where c13Eh,H€ \ 0 is a constant depending on h and H. This process can be extended in
a multidimensional setting in the following way. For d │ 1 we define

BHEt€ :* C3Ed,H€
➺
Rd

([x - y[H- 1
2 - [y[H- 1

2

│
W Edy€, x A Rd, (3.23)

where W is a white noise in Rd and again H A E0, 1€( 1
2+. In Lemma 2.8 of [HN20] it was

shown that the covariance structure of this process is given by

E
)
BHEx€BhEy€

[ * cd3EH,h€([x[H+h + [y[H+h - [x - y[H+h
│

(3.24)

where x, y A Rd and cd3EH,h€ \ 0 is a constant only depending on d,H and h.

Next, we define a class of normalizing kernels for which we will make use of generating
families of normalized fractional Brownian fields agreeing with Definition 3.1.

70



3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Definition 3.4.3 (Normalizing kernels). Let d │ 1, H0 A E0, 12€ and ψ : Rd - Rd ║ R+ be
a measurable function. We say that ψ is a normalizing kernel of order H0 if the following
conditions hold true:

i) For all y A D the map x <║ ψEx, y€ is almost everywhere continuous and it holds that➺
Rd

ψEx, y€dx * 1. (3.25)

ii) ψ is bounded in the following ways:

sup
y√D

➺
Rd

[x[2H0ψEx, y€dx ➔ ≈ (3.26)

sup
y√D

➺
Rd

min log [x - y[, 0+2ψEx, y€dx ➔ ≈ (3.27)

sup
y,v

➺
Rd

➺
Rd

min log [x - u[, 0+2ψEx, y€ψEu, v€dxdu ➔ ≈. (3.28)

The set of normalizing kernels of order H0 is denoted by NH0ED€.

The result of generating families of fractional Broenian motions by P. Hager and E.
Neunman is the following.

Theorem 3.4.4. Let EBH€H√°0,H0E be a family of fractional Brownian fields constructed
either by 3.21 or 3.23 and ψ A NH0ED€. We define

XHEx€ :* ΓEH€ 1
2

✂
BHEx€ -

➺
Rd

BHEy€ψEy, x€dy
✡
, x A D,H A E0, H0€, (3.29)

where ΓEx€ denotes the gamma function and H0 * 1 as in the case of Example 3.4.1 and
H0 * 1

2 as in Example 3.4.2. Then EXH€H√°0,HoE is a family of normalized fractional
Brownian fields according to Definition 3.1.1 which agrees with the assumptions of The-
orem 3.1.3, i.e. the associated Gaussian multiplicative chaos converges in probability as
H ║ 0 with respect to the weak topology.

The proof of this theorem takes some effort and is shown in the next section. Using this
result and Levy’s continuity theorem on the space of tempered distributions, one gets a
very strong convergence result. First we state Levy’s theorem.

Theorem 3.4.5 (Levy’s continuity theorem on the space of tempered distributions). Let
Ehn€n√N be a sequence of generalized random fields on SERd€ and EΦn€n√N their characteris-
tic functions given by 2.2, where all hn are seen as probability measures on S =ERd€. If EΦn€
converges point-wise to a functional Φ : SERd€ ║ R that is continuous at the origin, then
there exists a generalized random field h on SERd€ such that Φ is its characteristic function
and hn converges in distribution to h in probability with respect to the strong topology.
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3 Convergence of the Gaussian multiplicative chaos associated to the fractional Brownian field

Proof. See Theorem 2.3 in [BDW17]: °

A very interesting consequence of this theorem is the following.

Corollary 3.4.6. Let Ehn€n√N and h be generalized random fields on SERd€. Then the
following statements are equivalent:

i) Ehn€n√N converges in distribution with respect to the strong topology to h.

ii) Ehn€n√N converges in distribution with respect to the weak topology to h.

iii) The corresponding characteristic functions EΦn€n√N converge point-wise on SERd€.
iv) EhnEφ€n√N converges in distribution for all φ A SERd€.
Proof. See Corollary 2.4 in [BDW17]. °

Remark 3.4.7. Let EXH€H√°0,HE be a family of random fields constructed as in Theorem
3.4.4. Then the theorem states that the covariance structure is of a form as in 3.1 and
in addition fulfills the assumptions 3.2 and 3.3 of Theorem 3.1.3. Therefore, by Remark
3.1.5 it holds that the covariance kernels converge point-wise to a log correlated covariance
kernel i.e.

lim
H║0

E
)
XHEx€XHEy€[ * log

1

[x - y[ + gEx, y€,

where g is a bounded function. If one showed now that

lim
H║0

E
)EXH , φ€EXH , φ€[ *

➺
Rd

➺
RdE

✂
log

1

[x - y[ + gEx, y€
✡
dxdy, for φ, ψ A SERd€,

one would get, with Corollary 3.4.6, the weak convergence in probability of EXH€H√°0,H0E
to a log correlated field X. A special case of that result was proven as Theorem 2.1 of
[NR18]. Nevertheless, the convergence of the Gaussian multiplicative chaos associated to
EXH€H√°0,H0E follows from Theorem 3.1.3.

We give a famous example of a process that can be represented such that it fulfills the
requirements of Theorem 3.4.4.

Example 3.4.8 (fractional Ornstein-Uhlenbeck process). Let m A R be a mean and param-
eter α, γ \ 0 given. We define the fractional Ornstein-Uhlenbeck process via the fractional
Brownian motion EBH€H√°0, 1

2
E in the following way

dZHEt€ * γdBHEt€ - αEZHEt€ - m€dt, t A R.

In section 1 in [CKM03] it was shown that the Ornstein-Uhlenbeck process has the following
representation.
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ZHEt€ * m + γBHEt€ - γ

➺ t

-≠
αe-α°t-sEBHEs€ds.

If one subtracts the mean and scales the process by
.
ΓEH€, it is possible to find a rep-

resentation of the process in the form given in Theorem 3.4.4. It readily follows that the
normalizing kernel needed is given by

ψ :

]
R - R ║ R
Ex, y€ <║ 1ux/y(αe-α°y-xE .

Furthermore, ψ is indeed a normalizing kernel of order H0 for all H0 A E0, 12€ and every
bounded domain D.

3.5 Normalization of fractional Broenian fields, proof

In this section we present the proof of Theorem 3.4.4. It follows section 8 in [HN20]. First
we denote the integral in 3.29 as

IHEx€ :*
➺
Rd

BHEy€ψEy, x€dy, x A Rd.

We start showing simple properties of IHEx€.

Proposition 3.5.1. Let EBH€H√°0,H0E be a fractional Brownian field defined as in Example

3.4.1 or Example 3.4.2. Then the integral IHEx€ is well defined for all x A Rd, almost surely
finite and Gaussian.

Proof. By Lemma 2.9.11, it holds that EBH€H√°0,H0E has almost surely Hölder continuous
paths. Therefore, it is also measurable. Furthermore, by Lemma 5 and Remark 5 in
[KMM15] for all Rε \ 0 there exists an almost surely finite random variable Yε such that

)BHEx€) a.s./ Yε
(
1 + [x[H+ε

│
for all x A Rd.

As ψ A NH0ED€, it follows, by choosing ε * H0 and equations 3.25 and 3.26, that➺
Rd

)BHEy€)ψEy, x€dy /
➺
Rd

Yε
(
1 + [y[H+ε

│
ψEy, x€dx

/ Yε

✂➺
Rd

ψEy, x€dx❧{{{{{{{.{{{{{{{{
*1

+
➺
Rd

[y[2H0ψEy, x€dx❧{{{{{{{{{{{.{{{{{{{{{{{{
\≠

✡
➔ ≈

uniformly for all x A D. Therefore the integral is well defined and almost surely finite. As
the Riemann integral is defined over converging Riemann sums and those are, in our case,
finite sums of centered Gaussian random variables, it follows that the Riemann integral is
also centered Gaussian (see Theorem 2.60 in [Sch21]). °
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Next we want to calculate the covariance structure of the normalization XH . There we
have to distinguish between the two cases. The important part is that it agrees with 3.1.

Lemma 3.5.2. The family of random fields EXH€H√°0,H0E, given in 3.29, is a family of
normalized fractional Brownian motions according to Definition 3.1.

Proof. First we treat the case, where EBH€H√°0,H0E is given by 3.23. In that case we
have

E
)
BHEx€BhEy€

[ * cd3EH,h€([x[H+h + [y[H+h - [x - y[H+h
│
, x, y A Rd, h,H A E0, H0€.

We want to use Fubini’s theorem in order to be able to exchange the integral with the
expectation. Therefore we estimate using )ab) / a2 + b2 for a, b A R and 3.26➺

Rd

E
))BHEx€BhEu€)[ψEu, y€du /

➺
Rd

E
)
BHEx€2 + BHEu€2[

2
ψEu, y€du

*
➺
Rd

✂
cd3EH,H€[x[2H + cd3Eh, h€[u[2h

✡
ψEu, y€du ➔ ≈.

In an analogue way, with 3.25 and 3.26, it follows that➺
Rd

➺
Rd

E
))BHEv€BhEu€)[ψEu, y€ψEv, x€dudv

/
➺
Rd

➺
Rd

✂
cd3EH,H€[u[2H + cd3Eh, h€[v[2h

✡
ψEu, y€ψEv, x€dudv

/ cd3EH,H€
➺
Rd

➺
Rd

ψEv, x€dv❧{{{{{{{.{{{{{{{{
*1

[u[2HψEu, y€du + cd3Eh, h€
➺
Rd

➺
Rd

ψEu, y€du❧{{{{{{{.{{{{{{{{
*1

[v[2hψEv, x€dv

/ cd3EH,H€
➺
Rd

[u[2HψEu, y€du + cd3Eh, h€
➺
Rd

[v[2hψEv, x€dv ➔ ≈.

Therefore, we are allowed to use Fubini’s theorem and get

1

ΓEH€ 1
2ΓEh€ 1

2

E
)
XHEx€XhEy€

[
* E

✒✂
BHEx€ -

➺
Rd

BHEu€ψEu, x€du
✡✂

BHEy€ -
➺
Rd

BHEv€ψEv, y€dv
✡[

* E
)
BHEx€BhEy€

[-
➺
Rd

E
)
BHEx€BhEu€[ψEu, y€du

-
➺
Rd

E
)
BHEy€BhEv€

[
ψEv, x€dv +

➺
Rd

➺
Rd

E
)
BHEu€BhEv€

[
ψEu, y€ψEv, x€dudv.

First we consider, using the covariance structure of EBH€H√°0,H0E given in 3.24,

1

cd3EH,h€
➺
Rd

E
)
BHEx€BhEu€[ψEu, y€du
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*
➺
Rd

(
[x[H+h + [u[H+h - [x - u[H+h

)
ψEu, y€du

* [x[H+h

➺
Rd

ψEu, y€du❧{{{{{{{.{{{{{{{{
*1

+
➺
Rd

[u[H+hψEu, y€du -
➺
Rd

[x - u[H+hψEu, y€du.

Furthermore, we get

1

cd3EH,h€
➺
Rd

➺
Rd

E
)
BHEu€BhEv€

[
ψEu, y€ψEv, x€dudv

*
➺
Rd

➺
Rd

✂
[u[H+h + [v[H+h - [u - v[H+h

✡
ψEu, y€ψEv, x€dudv

*
➺
Rd

[u[H+hψEu, y€du +
➺
Rd

[v[H+hψEv, x€dv -
➺
Rd

➺
Rd

[u - v[H+hψEu, y€ψEv, x€dudv.

Now, we define the constant CEH,h€ and the functions gH,h

CEH,h€ :* cd3EH,h€
.
ΓEH€ΓEh€EH + h€

gH,hEx, y€ :* -
➺
Rd

1 - [x - u[H+h

H + h
ψEu, y€du -

➺
Rd

1 - [y - v[H+h

H + h
ψEv, x€dv

+
➺
Rd

➺
Rd

1 - [u - v[H+h

H + h
ψEu, y€ψEv, x€dudv. (3.30)

It clearly holds that CEH,h€ is finite. Furthermore, as ψ A NH0ED€ and with 3.26, it follows
that gH,h is finite. Now, putting all together, we get

1

cd3EH,h€
.
ΓEH€ΓEh€E

)
XHEx€XhEy€

[
* [x[H+h + [y[H+h - [x - y[H+h - [x[H+h -

➺
Rd

[u[H+hψEu, y€du

+
➺
Rd

[x - u[H+hψEu, y€du - [y[H+h -
➺
Rd

[v[H+hψEv, x€dv +
➺
Rd

[y - v[H+hψEv, x€dv

+
➺
Rd

[u[H+hψEu, y€du +
➺
Rd

[v[H+hψEv, x€dv -
➺
Rd

➺
Rd

[u - v[H+hψEu, y€ψEv, x€dudv

* -[x - y[H+h +
➺
Rd

[x - u[H+hψEu, y€du +
➺
Rd

[y - v[H+hψEv, x€dv

-
➺
Rd

➺
Rd

[u - v[H+hψEu, y€ψEv, x€dudv

3.25* 1 - [x - y[H+h -
➺
Rd

✂
1 - [x - u[H+h

✡
ψEu, y€du -

➺
Rd

✂
1 - [y - v[H+h

✡
ψEv, x€dv

+
➺
Rd

➺
Rd

✂
1 - [u - v[H+h

✡
ψEu, y€ψEv, x€dudv.

Using 3.5 we finally get
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E
)
XHEx€XhEy€

[ * CEH,h€
✂
1 - [x - y[H+h

H + h
+ gH,hEx, y€

✡
.

Eventually, it follows that EXH€H√°0,H0E is a family of normalized fractional Brownian mo-
tions.

Now for EBH€H√°0,H0E, defined as in Example 3.4.2, the whole procedure works in a very
analogue way. We will skip the details here and just write down the outcome. The constant
is given by

C̃EH,h€ :* C1EH,h€
.
ΓEH€ΓEh€EH + h€. (3.31)

Clearly, this is finite. Moreover, the family of functions g̃H,h is given by

g̃H,hEx, y€ :* gH,h + C2EH,h€
C1EH,h€EH + h€

(➺
R
sgnEu€)x - u)H+hψEu, y€du

+
➺
R
sgnEv€)y - v)H+hψEv, x€dv -

➺
R

➺
R
sgnEv - u€)u - v)H+hψEu, y€ψEv, x€dudv

)
.

(3.32)

Again, the boundedness of g̃H,h follows by 3.26. °

Next, we want to prove that the maps EH,h€ ║ CEH,h€ and EH,h€ ║ gH,h agree with
the assumptions 3.2 and 3.3 of Theorem 3.1.3. For that purpose, we will cite a proposition
that we need for the proof.

Remark 3.5.3. For a A R it holds that ea - 1 │ a. This is equivalent to ea - 1 - a │ 0.
For a * 0 we have e0 - 1 - 0 * 0 │ 0. Furthermore the derivative is given by ea - 1
and therefore it is / 0 for a / 0 and │ 0 for a │ 0. With the fundamental theorem of
calculus the inequality follows. Furthermore, for b \ 0 we get ba-1 * ea log°bE-1 │ a logEb€.

Proposition 3.5.4. For H0 A  12 , 1 and h A E0, 2H0 it holds that

0 / log
1

z
- 1 - zh

h
/ 3h

2
log2Ez€, for z A E0, 1 

0 / log
1

z
- 1 - zh

h
/ 4H2

0h
(
z2H0 - 1 - logEz€│, for z A E1,≈€.

Proof. The proof is very elemental. For z \ 0 and h A  0, 1 we define

βEh, z€ :* log
1

z
- 1 - zh

h
. (3.33)

First we discuss the lower bound βEh, z€ │ 0. This is equivalent to hβEh, z€ │ 0 and further

0 / hβEh, z€ * -h logEz€ - 1 + zh * -h logEz€ - 1 + eh log°zE

< h logEz€ / eh log°zE - 1,
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which is indeed true by Remark 3.5.3. We apply Taylor’s theorem to the function h <║ 1-zh

at h * 0 and get

1 - zh *
≠➳

k*1

- ,k
,hk z

h

k!
hk *

≠➳
k*1

- logEz€kzh
k!

hk.

It follows that

lim
h║0

1 - zh

h
* - logEz€. (3.34)

Thus, we can conclude

lim
h║0

βEh, z€
h

* lim
h║0

✂- logEz€
h

- 1 - zh

h2

✡
* lim

h║0

✂- logEz€
h

+
≠➳

k*1

logEz€kzh
k!

hk-2

✡
* lim

h║0

✂- logEz€
h

+ logEz€zh
h

+ logEz€2zh
2

✡
* lim

h║0

✂
logEz€(zh - 1

│
h

+ logEz€2zh
2

✡
* - logEz€ lim

h║0

1 - zh

h
+ logEz€2

2

3.34* logEz€ logEz€ + logEz€2
2

* 3 logEz€2
2

.

Furthermore, we calculate

∞
∞h

βEh, z€
h

* ∞
∞h
✂
log

1

z
- 1 - zh

h

✡
* ∞

∞h
✂-h logEz€ - E1 - zh€

h2

✡

*

(
- logEz€ + logEz€zh

)
h2 +

(
h logEz€ + E1 - zh€

)
2h

h4

* h logEz€E1 + zh€ + 2E1 - zh€
h3

.

For z A E0, 1 it follows with Remark 3.5.3

∞
∞h

βEh, z€
h

/ 2h logEz€ + 2E1 - eh log°zE€
h3

/ 2h logEz€ - 2h logEz€
h3

* 0.

Thus, by the fundamental theorem of calculus it follows for z A E0, 1 

0 / βEh, z€
h

/ lim
h║0

βEh, z€
h

* 3 logEz€2
2

and, by multiplying the inequality with h \ 0, the result follows. Now we treat the case
z A E1,≈€. Again, with Remark 3.2.7, we can estimate
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∞
∞h

βEh, z€
h

* h logEz€E1 + zh€ + 2E1 - zh€
h3

│ 2h logEz€ - 2h logEz€
h3

* 0.

By the fundamental theorem of calculus and using H0 │ 1
2 and logEz€ \ 0, it follows that

*/ βEh, z€
h

/ βE2H0, z€
2H0

* - logEz€
2H0

- 1 - z2H0

4H2
0

/ 1 - z2H-0 - logEz€
4H2

0

.

By multiplying the inequality with h \ 0, the result follows. °

Now we are finally able to proof Theorem 3.4.4.

Idea of the proof of Theorem 3.4.4. First we consider the map E0, H0€2 ║ R+, EH,h€ <║
CEH,h€ that was defined in 3.30. This map can be calculated explicitly (see section 8 in
[HN20]). It is given by

CEH,h€ *
.
ΓEH€ΓEh€

ΓEH+h+1
2 €

{
ΓEH+d

2 €HΓE2H€ sinEHπ€ΓEh+d
2 €hΓE2h€ sinEhπ€

ΓEH+h+d
2 €ΓEH + h€ sinEH+h

2 π€
{
ΓEH + 1

2€ΓEh + 1
2€

.

For the limit EH,h€ ║ 0, we consider first

lim
z║0

sinEz€
z

* 1

and the following property of the Gamma function for z \ 0

zΓEz€ * ΓEz + 1€ > lim
z║0

zΓEz€ * lim
z║0

ΓEz + 1€ * ΓE1€ * 1.

Thus, it follows for a, b \ 0 that

lim
z║0

ΓEaz€ sinEbz€ * b

a
lim
z║0

ΓEaz€az sinEbz€
bz

* b

a
.

Furthermore, using ΓE12€ * ≈
π, it follows that

lim
°H,hE║0

CEH,h€ * lim
°H,hE║0

{
1

Hh

ΓEH+h+1
2 €

{
ΓEH+h+d

2 €H2H 1
HπΓEh+d

2 €h 1
2hhπ

ΓEH+h+d
2 € 1

H+h
H+h
2 π

{
ΓEH + 1

2€ΓEh + 1
2€

* 1.

For C̃EH,h€, the result follows in an analogue way.

Now, we want to prove that assumption 3.3 holds for gH,h. Again, we start with the
case of Example 3.4.1. First we show the uniform continuity. In particular we show that it
has a uniformly bounded derivative. With Proposition 3.2.7 for z \ 0 and h A E0, 2H0€ we
estimate (((( ∞

∞z
1 - zh

h

(((( * ((((-zh logEz€h - E1 - zh€
h2

((((
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*
((((-zh logEz€h + logEz€h + logE1z €h - E1 - zh€

h2

((((
/
((((1 - zh

h

(((() logEz€) + (((( logE1z € - 1-zh

h

h

((((
/ C

(
log2-Ez€ + z2H0

│
,

where C \ 0 is a constant. Now, plugging that into the definition of gH,h and interchanging
the integral and differentiation, we get that the map EH,h€ <║ gH,hEx, y€ is indeed differen-
tiable for all x, y A D and using 3.26, 3.27 and 3.28 it follows that the derivative is bounded
for Eh,H€ A E0, H0€2 uniformly in x, y A D.

In the second case our function g̃H,h is given in 3.32. As we have shown the assumption
3.3 for gH,h already, we only need to consider the second part of g̃H,h. Therefore, we
consider the second part

fH,hEx, y€ :* g̃H,hEx, y€ - gH,hEx, y€

* C2EH,h€
C1EH,h€EH + h€

(➺
R
sgnEu€)x - u)H+hψEu, y€du

+
➺
R
sgnEv€)y - v)H+hψEv, x€dv -

➺
R

➺
R
sgnEv - u€)u - v)H+hψEu, y€ψEv, x€dudv

)
.

As we can estimate ) sgnEx€) / 1 and using 3.26, it readily follows that

sup
x,y√D

)fH,hEx, y€) /
(((( C2EH,h€
C1EH,h€EH + h€

((((
(➺

R
)x - u)H+hψEu, y€du❧{{{{{{{{{{{{{{.{{{{{{{{{{{{{{{

\≠

+
➺
R

)y - v)H+hψEv, x€dv❧{{{{{{{{{{{{{{.{{{{{{{{{{{{{{{
\≠

-
➺
R

➺
R

)u - v)H+hψEu, y€ψEv, x€dudv❧{{{{{{{{{{{{{{{{{{{{{{{.{{{{{{{{{{{{{{{{{{{{{{{{
\≠

)

/ C

(((( C2EH,h€
C1EH,h€EH + h€

((((
for a constant C \ 0. Finally, using limz║0

sin°zE
z * 1, we get(((( C2EH,h€

C1EH,h€EH + h€
(((( * (((( sinEπ2 Eh - H€€ sinEπ2 Eh + H€€

cosEπ2 Eh - H€€ cosEπ2 Eh + H€€EH + h€
(((( / CEH + h€,

where C \ 0 is a constant. Thus fH,h converges to 0 uniformly in Eh,H€ uniformly for all
x, y A D. °
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