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Abstract—Formats for representing and manipulating veri-
fication problems are extremely important for supporting the
ecosystem of tools, developers, and practitioners. A good format
allows representing many different types of problems, has a
strong toolchain for manipulating and translating problems,
and can grow with the community. In the world of hardware
verification, and, specifically, the Hardware Model Checking
Competition (HWMCC), the BTOR2 format has emerged as the
dominating format. It is supported by BTOR2TOOLS, verification
tools, and Verilog design tools like Yosys. In this paper, we present
an alternative format and toolchain, called BTOR2MLIR, based
on the recent MLIR framework. The advantage of BTOR2MLIR
is in reusing existing components from a mature compiler infras-
tructure, including parsers, text and binary formats, converters
to a variety of intermediate representations, and executable
semantics of LLVM. We hope that the format and our tooling
will lead to rapid prototyping of verification and related tools
for hardware verification.

I. INTRODUCTION

Hardware Verification has been one of the biggest drivers of
formal verification research [1], with a history that spans many
breakthroughs. The developments in this field have thrived
through organized events such as the Hardware Model Check-
ing Competition (HWMCC) [2] which has run since 2011.
BTOR2 [3] has emerged as the dominating format in this com-
petition. BTOR2 has been translated into several languages, for
example, Constrained Horn Clauses (CHCs)12 and LLVM-IR3

to make use of existing verification techniques. Universality,
however, was not an objective of these projects, and thus, for
these translations, be it to CHCs or to LLVM-IR, similar tasks
had to be replicated.

During the past decade, the LLVM project [4] has dedicated
significant effort to universality. One such effort is MLIR [5],
a project that proposes a generic intermediate representation
with operations and types common to many programming
languages. MLIR was designed to be easily extensible, by
providing tools to build new intermediate representations (IR)
as dialects of the base MLIR. This eases the creation of
new compilers, circumventing the need to re-implement core
technologies and optimizations. Extensibility and scalability
are what MLIR strives for, making it a great candidate for the

1https://github.com/zhanghongce/HWMCC19-in-CHC
2https://github.com/stepwise-alan/btor2chc
3https://github.com/stepwise-alan/btor2llvm

creation of new tools and formats that represent many types of
problems and have strong tool support for manipulating and
translating problems.

During the same time, with the rise of LLVM as a compiler
infrastructure, many software verification tools have been
built for LLVM-IR programs. Existing tools tackle this hard
problem in many ways. For example, dynamic verification
is implemented in LIBFUZZER [6], a fuzzer, and KLEE [7],
a symbolic execution engine; SMT-based static verification
is implemented in SEAHORN [8] both as Bounded and Un-
bounded Model Checking; and CLAM [9] static analysis that
analyzes LLVM-IR statically using abstract interpretation.

This paper contributes BTOR2MLIR, a format and
toolchain for hardware verification. It is built on MLIR to
incorporate advances and best practices in compiler infras-
tructure, compiler design, and the maturity of LLVM. At its
core, BTOR2MLIR provides an intermediate representation
for BTOR2 as an MLIR dialect. This dialect has an encoding
very close to BTOR2 and preserves BTOR2’s semantics. This
design not only facilitates the creation of a new format for
hardware verification but also simplifies the extension of this
format to support future targets by using MLIR for all inter-
mediate representations. For example, BTOR2MLIR can be
used to generate LLVM-IR from our custom MLIR dialect.
The value of this approach is quite evident in CIRCT [10],
an open-source project, that applies this design to tackle the
inconsistency and usability concerns that plague tools in the
Electronic Design Automation industry. Although it has a
different goal than BTOR2MLIR, both projects draw great
benefit from adapting the benefits of an MLIR design to their
respective fields.

As an added bonus, using BTOR2MLIR to generate
LLVM-IR enables the reuse of established tools to apply
software verification techniques to verify hardware circuits. To
illustrate the usability of the toolchain, a new model checker
is developed using SEAHORN. The results are compared to
BTORMC [3], a hardware model checker provided by the
creators of BTOR2.

The rest of the paper is organized as follows. Section II lays
some background. Our format and toolchain, BTOR2MLIR,
is described in Section III. We discuss its correctness in
Section IV and evaluate the tool in Section V. We close
with a note on related works in Section VI and conclude in
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Section VII.

II. BACKGROUND

BTOR2: BTOR2 [3] is a format for quantifier-free for-
mulas and circuits over bitvectors and arrays, with SMT-LIB
[11] semantics, that is used for hardware verification. BTOR2
files are often generated using tools like YOSYS [12], from the
original design in a language like VERILOG [13]. A simple 4-
bit counter is shown in Fig. 1. Its corresponding description, in
VERILOG, is shown in Fig. 1b. The circuit updates its output
at each step starting from 0 to its maximum value, 15. It also
has the safety property that the output should not be equal to
15, shown by the assertion in Fig. 1b. The circuit together with
the desired safety property are captured in BTOR2 in Fig. 1c.
First, a bitvector of width 4 is defined as ’1’ in line 1. Sort
are used later when declaring registers and operations. For
example, lines 2, 3, 5, and 8 refer to sort ’1’, respectively, by
declaring ’2’ to be a zero bitvector (0000) (line 2), state out
to be a register of sort ’1’ (line 3), ’5’ to be a one bitvector
(0001) (line 5) and ’8’ to be bitvector of ones (1111) (line
8). On line 4, out is initialized with value ’2’. On line 7, the
transition function is defined (activated at each clock edge), by
assigning the next state of out to the value out incremented
by one (the result of line 6). Finally, a safety property is
defined in line 11 with the keyword bad, requiring that the
equality of line 10 does not hold. That is, the value of out
is never 1111. Note that no clock is specified in Fig. 1c. In
BTOR2 it is always assumed that there is one single clock,
and the keyword next is used to declare how registers are
updated after a clock cycle. For a register that has not been
assigned a next value, it will get a new non-deterministic value
or keep it’s initial value (if one was given).

BTORMC: BTORMC [3] is a bounded model checker
(BMC) for BTOR2. BTORMC generates verification condi-
tions as SMT formulas and uses BOOLECTOR [3] as an
SMT solver. Based on the satisfiability result of the formula,
BTORMC on our example tells us that the safety property is
violated, as expected, since out does reach a state with value
1111.

MLIR: Multi-Level Intermediate Representation
(MLIR) [5] is a project that was developed for
TensorFlow [14] to address challenges faced by the
compiler industry at large: modern languages end up
creating their own high-level intermediate representation
(IR) and the corresponding technologies. Furthermore, these
domain-specific compilers have to be recreated for different
compilation and optimization targets and do not easily share
a common infrastructure or intermediate representations. To
remedy this, MLIR facilitates the design and implementation
of code generators, translators, and optimizers at different
levels of abstraction and also across application domains,
hardware targets, and execution environments.

Modern languages vary in the set of operations and types
that they use, hence the need to create domain-specific high-
level IRs. MLIR addresses this problem by making it easy for
a user to define their own dialects. An MLIR dialect captures

the operations and types of a target language. It is created
using TABLEGEN, a domain specific language for defining
MLIR dialects. It is used to automatically generate code to
manipulate the newly defined dialect including its Abstract
Syntax Tree (AST) and parsing. MLIR tools and optimizations
such as static single assignment, constant propagation, and
dead-code elimination can be applied off the shelf to custom
MLIR dialects. These capabilities make MLIR a reusable and
extensible compiler infrastructure. One of its strengths is the
builtin dialects it introduces, such as a BUILTIN, STANDARD,
and LLVM dialects4, among others. These dialects make it
possible to have a rich infrastructure for dialect conversion that
enables a user to define pattern-based rewrites of operations
from one dialect to another. For example, a dialect conversion
pass is provided to convert operations in the STANDARD di-
alect to operations in the LLVM dialect. MLIR also provides
an infrastructure for user-defined language translation passes.
One such pass that is provided out of the box is a translation
from LLVM dialect to LLVM-IR.

III. BTOR2MLIR

We present our tool, BTOR2MLIR, which contributes the
BTOR DIALECT, and three modules on the existing MLIR
infrastructure: a BTOR2 to BTOR DIALECT translation pass,
a BTOR DIALECT to BTOR2 translation pass and a dialect
conversion pass from BTOR DIALECT to LLVM dialect.
Our tool has approximately 3 900 lines of C++ code and
1 200 lines of TABLEGEN. Fig. 2 shows the architecture
of our tools with our contributions highlighted in green.
BTOR2MLIR uses the original BTOR2 parser provided in
BTOR2TOOLS [3], marked in blue, and MLIR builtin passes,
marked in brown. BTOR2MLIR is open-sourced and publicly
available on GitHub5.

We illustrate how each of the components of BTOR2MLIR
works by translating a factorial circuit, shown in Fig. 3a, that
is described in BTOR2. There are two safety properties, one
per bad statement. Line 14 states that the loop counter, i,
reaches 15. Line 19 states that the value of factorial is
always even.

BTOR DIALECT: Our first contribution is the BTOR DI-
ALECT, an MLIR dialect to represent BTOR2 circuits. Fig. 3b
shows the BTOR DIALECT code corresponding to Fig. 3a. It
represents the execution of the circuit using an MLIR function
main. The control flow is explicit, using a standard MLIR
representation of basic blocks with arguments and branches.
The example has two basic blocks: an unnamed initial block
(bb0) and a block bb1. Circuit initialization is modeled by
instructions in bb0, and each cycle by instructions in bb1.
Note that bb1 has two predecessors: bb0 for initialization and
bb1 for each cyle. Bitvector types are mapped to integer types
(provided by MLIR), for example, bitvec 4 becomes i4.
Each operation in the BTOR DIALECT, prefixed with btor,
models a specific BTOR2 operation. For example, btor.mul

4https://github.com/llvm/llvm-project/tree/release/14.x/mlir/include/mlir/
Dialect

5https://github.com/jetafese/btor2mlir/tree/llvm-14
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(a) Circuit.

�
module counter (

input clk,
output reg[3:0] out);
always @ (posedge clk)
begin

assert (out != 15)
out <= out + 1

end
endmodule� �

(b) Counter in VERILOG.

�
1 sort bitvec 4
2 zero 1
3 state 1 out
4 init 1 3 2
5 one 1
6 add 1 3 5
7 next 1 3 6
8 ones 1
9 sort bitvec 1
10 eq 9 3 8
11 bad 10� �

(c) Counter in BTOR2.

Fig. 1: 4-bit counter.
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Fig. 2: BTOR2MLIR Architecture.

is mul, and btor.slice is slice. Safety properties such
as bad are represented by btor.assert_not. Special
operators such as one, ones and constd are represented
by the btor.constant operation with the expected integer
value. Boolean operators are represented by btor.cmp. For
example, eq becomes btor.cmp eq.

Translating BTOR2 to BTOR DIALECT: BTOR2MLIR
takes BTOR2 circuits as input, using BTOR2TOOLS to create
a data structure for each BTOR2 line. Our pass then generates
a program in BTOR DIALECT by constructing the appropriate
MLIR AST. Each BTOR2 operator is mapped to a unique
operation in BTOR DIALECT, a capability that is greatly
simplified and enabled by the MLIR infrastructure.

A program in MLIR can be written using multiple dialects
since the MLIR framework enables the interaction of multiple
IRs. To enable this capability, MLIR provides dialects that
are designed to serve as building blocks for more domain-
specific dialects. We utilized the framework by building the
BTOR DIALECT using the STANDARD and BUILTIN dialects.
For example, we use the module, func and bb operations
from BUILTIN. We utilize the br operation in the STANDARD
dialect to enable interaction between the two basic blocks in
Fig. 3b. This approach is consistent with the intended use of
the STANDARD and BUILTIN dialects. It saves time and effort
since we do not need to recreate operations that already exist
in other dialects. Furthermore, MLIR provides a conversion
pass from STANDARD dialect to LLVM dialect, making it
worthwhile to build BTOR DIALECT on top of the BUILTIN

and STANDARD dialects.
Dialect conversion: The BTOR2MLIR conversion pass

from BTOR DIALECT to LLVM dialect utilizes the MLIR
infrastructure for pattern-based rewrites. It rewrites BTOR DI-
ALECT operations into LLVM dialect operations. For most op-
erations in BTOR DIALECT there exists a semantically equiv-
alent operation in LLVM dialect. For example, btor.constant
in Fig. 3b is converted to llvm.mlir.constant in LLVM dialect.
For some operations, an equivalent in LLVM dialect does
not exist, in these cases it is required to rewrite them into
several LLVM operations (e.g., in btor.slice) and/or to modify
the module structure (e.g., btor.assert not). In LLVM dialect,
btor.slice is replaced by a logical shift right, llvm.lshr, and
a truncation operation, llvm.trunc. btor.assert not is mapped
to a new basic block in the LLVM dialect that has the
llvm.unreachable operation. We split the basic block bb1, in
Fig. 3b, by adding a conditional branch, llvm.cond br, to direct
control flow to the new block when the assertion is satisfied.

Translate LLVM Dialect to LLVM-IR: BTOR2MLIR
uses a translation pass from LLVM dialect to LLVM-IR,
provided by MLIR. Note the optimizations in the resulting
LLVM-IR, shown in Fig. 3c, such as constant propagation
and phi nodes.

IV. CORRECTNESS

When introducing a new tool or framework to the
community, there is always a question of how polished
it is. BTOR2MLIR builds on two mature frameworks:
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�
1 sort bitvec 4
2 one 1
3 state 1 factorial
4 state 1 i
5 init 1 3 2
6 init 1 4 2
7 add 1 4 2
8 mul 1 3 4
9 next 1 4 7
10 next 1 3 8
11 ones 1
12 sort bitvec 1
13 eq 12 4 11
14 bad 13
15 slice 12 3 0 0
16 constd 1 3
17 ugt 12 4 16
18 and 12 17 15
19 bad 18� �
(a) Factorial in BTOR2.

�
module {
func @main() {
%0 = btor.constant 1 : i4
br ˆbb1(%0, %0 : i4, i4)

ˆbb1(%1: i4, %2: i4):
%3 = btor.constant 1 : i4
%4 = btor.add %2, %3 : i4
%5 = btor.mul %1, %2 : i4
%6 = btor.constant -1 : i4
%7 = btor.cmp eq, %2, %6 : i4
btor.assert_not(%7)
%8 = btor.constant 0 : i4
%9 = btor.constant 0 : i4
%10 = btor.slice %1, %8, %9 : i4,

i1
%11 = btor.constant 3 : i4
%12 = btor.cmp ugt, %2, %11 : i4
%13 = btor.and %12, %10 : i1
btor.assert_not(%13)
br ˆbb1(%5, %4 : i4, i4)

}
}� �

(b) Factorial in BTOR DIALECT.

�
declare void @__VERIFIER_error()
define void @main() !dbg !3 {
br label %1

1: ; preds = %14, %0
%2 = phi i4 [%5,%14], [1,%0]
%3 = phi i4 [%4,%14], [1,%0]
%4 = add i4 %3, 1
%5 = mul i4 %2, %3
%6 = icmp eq i4 %3, -1
%7 = xor i1 %6, true
br i1 %7, label %8, label %15

8: ; preds = %1
%9 = lshr i4 %2, 0
%10 = trunc i4 %9 to i1
%11 = icmp ugt i4 %3, 3
%12 = and i1 %11, %10
%13 = xor i1 %12, true
br i1 %13, label %14, label %16

14: ; preds = %8
br label %1

15: ; preds = %1
call void @__VERIFIER_error()
unreachable

16: ; preds = %8
call void @__VERIFIER_error()
unreachable

}� �
(c) Factorial in LLVM-IR.

Fig. 3: BTOR2 to BTOR DIALECT.

original roundtrip

time safe/unsafe TO time safe/unsafe TO

bitvectors

wolf/18D 157 34/0 2 168 34/0 2
wolf/19A 146 0/1 17 151 0/1 17
wolf/19B 2 3/0 0 2 3/0 0
wolf/19C 834 108/0 5 797 108/0 5
19/beem 278 9/2 4 280 10/2 3
19/goel 190 26/2 43 176 26/2 43
19/mann 4 442 29/15 9 4 751 30/15 8
20/mann 257 10/5 0 268 10/5 0

bitvectors + arrays

wolf/18A 70 20/0 0 71 20/0 0
wolf/19B 2 2/3 0 2 2/3 0
19/mann 126 1/1 1 138 1/1 1
20/mann 18 3/3 0 18 3/3 0

TABLE I: Comparing round tripped files.

BTOR2TOOLS and MLIR. This is done not only because of
the frameworks’ functionalities, but because they have been
extensively reviewed, used, and tested. BTOR2TOOLS has
been widely used in the hardware model-checking community
since its introduction in 2018. MLIR builds on LLVM, a
compiler framework that has been used and improved over
numerous projects in the last two decades and is actively
supported by industry.

Specifically, BTOR2MLIR uses the parser from
BTOR2TOOLS to generate corresponding operations and
functions in the BTOR DIALECT of MLIR. The BTOR
DIALECT is written in TABLEGEN— an MLIR domain-

specific language for dialect creation. We show how our
dialect and the class of binary operations are defined in Fig. 4a.
For example, the BtorBinaryOp class defines a class of
operations that have two arguments lhs, rhs and a result
res. It also has a trait SameOperandsAndResultType
to enforce that lhs, rhs and res have the same type.
Finally, the class specifies how the default MLIR parsers
and printers should handle such operations. We create our
arithmetic operations as shown in Fig. 4b. We mark relevant
operations as Commutative. Operation descriptions are not
shown for simplicity. We ensure that each BTOR2 operator
has a one-to-one mapping with an operation in the BTOR
DIALECT so that the translation from BTOR2 to BTOR
DIALECT is lossless and preserves BTOR2 semantics.

BTOR2MLIR relies on the optimization, folding, and can-
onization passes that MLIR provides in its translation from the
LLVM Dialect in MLIR to LLVM-IR. MLIR also provides
the mechanism for pattern-based rewrites which has helped us
avoid the introduction of undefined behavior into the resulting
LLVM-IR. We show an example of this in Fig. 5. MLIR
allows us to identify which operations in the BTOR DIALECT
we want to replace at the end of our conversion pass. A subset
of such operations are shown in Fig. 5a. For each operation
that has been identified, we provide a lowering that maps it
to a legal operation in the LLVM dialect. We are able to use
lowering patterns like VectorConvertToLLVMPattern
from MLIR for common arithmetic and logical operations as
shown in Fig. 5b.

We performed extensive testing using the HWMCC20
benchmark set to verify the correctness of BTOR2MLIR. This
is the same benchmark set used to test [15]. The tests are run
on a Linux machine with x86 64 architecture, using BTORMC
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�
def Btor_Dialect : Dialect {
...
}

class BtorArithmeticOp<string mnemonic, list<Trait> traits = []> :
Op<Btor_Dialect, mnemonic, traits>;

class BtorBinaryOp<string mnemonic, list<Trait> traits = []> :
BtorArithmeticOp<mnemonic, !listconcat(traits

[SameOperandsAndResultType])>,
Arguments<(ins SignlessIntegerLike:$lhs,

SignlessIntegerLike:$rhs)>,
Results<(outs SignlessIntegerLike:$result)>

{
let assemblyFormat = "$lhs ‘,‘ $rhs attr-dict ‘:‘ type($result)";

}� �
(a) Creating BTOR DIALECT.

�
def AddOp : BtorBinaryOp<"add",

[Commutative]> {
...

}

def SubOp : BtorBinaryOp<"sub"> {
...

}

def MulOp : BtorBinaryOp<"mul",
[Commutative]> {
...

}

def UDivOp : BtorBinaryOp<"udiv"> {
...

}� �
(b) Creating Operations for BTOR DIALECT.

Fig. 4: Using TABLEGEN for Dialect Creation.

with an unroll bound of 20, a timeout of 300 seconds and
memory limit of 65 GB. We present the results in Table I,
where bitvector benchmarks categories are in the top half
and bitvector + array benchmark categories are in the bottom
half. All times in this table reflect solved instances and do
not include timeouts. We do not show the time it takes to
run BTOR2MLIR since the time is negligible. The results are
grouped by competition contributor such that each row shows
the time, instances solved (safe/unsafe) and timeouts (TO) for
both the original and round-tripped circuits. For example, for
the wolf/18D category, we can see that the original BTOR2
circuit solves 34 safe instances and 0 unsafe instances in 157
seconds, with 2 timeouts. The round-tripped circuit solves 34
safe instances and 0 unsafe instances in 168 seconds with two
timeouts.

We can see that the safety properties in BTOR2 circuits
are neither changed nor violated after being round-tripped
by BTOR2MLIR. In two categories with only bitvectors,
19/beem and 19/mann, one more instance in each cat-
egory is found safe after round trip, while the original
circuit leads to a memout and timeout respectively. This
gives us confidence that the translation to BTOR DIALECT,
using the BTOR2TOOLS parser, is indeed correct. Then, we
tested whether the same holds after translation to LLVM-
IR. Through this method, we were able to ensure that
BTOR2MLIR does not have errors when handling operations
that are represented in the benchmark set. This approach is
not complete, however, since it would not identify errors
that might be in our implementation but are not exercised
by the benchmarks we use. For example, BTOR2 expects
that a division by zero would result in −1, but there are no
benchmarks that exercise this kind of division. We mitigate
this by generating benchmarks for division, remainder, and
modulus operators to ensure that the expected behavior of
BTOR2 operators are represented in our test suite.

In the future, it is interesting to explore other translation
validation and verification approaches. For example, it would
be useful for BTOR2MLIR to produce a proof trail that

justifies all of the transformations that are performed by the
tool. This, for example, might be possible to achieve by
building on the work of [16], [17].

Limitations: BTOR2MLIR is able to round trip BTOR2
operators and their sorts. In LLVM-IR all BTOR2 operators
and their sorts are supported as well, but not fairness and
justice constraints.

V. EVALUATION

To evaluate BTOR2MLIR, we have built a prototype
hardware model checker by connecting our tool with SEA-
HORN [8], a well-known model checker for C/C++ programs
that works at the LLVM-IR level. It has recently been extended
with a bit-precise Bounded Model Checking engine [18]. This
BMC engine was evaluated in a recent case study [19] and we
use the same configuration of SEAHORN in our evaluation.

The goal of our evaluation is to show that BTOR2MLIR
makes it easy to connect hardware designs with LLVM-based
verification engines. We did not expect the existing software
engines to outperform dedicated hardware model checkers.
However, we hope that this will enable further avenues of
research. In the future, we plan to extend the framework to
support other LLVM-based analysis tools, such as symbolic
execution engine KLEE [7], and fuzzing framework [6].

For the evaluation, we have chosen the bitvector category
of BTOR benchmarks from the most recent Hardware Model
Checking Competition (HWMCC) [2]. We have excluded
benchmarks with arrays since the export to LLVM-IR is
not supported by SEAHORN in our experimental setup. All
our experiments are run on a Linux machine with x86 64
architecture, with unroll bound of 20, a timeout of 300 seconds
and memory limit of 65 GB. The results are presented in
Table II, grouped by competition contributor. All times in this
table reflect solved instances and do not include timeouts. We
do not show the time it takes to run BTOR2MLIR since the
time is negligible. In the rest of this section, we highlight some
of the interesting findings.

We have run BTORMC on the same machine and exact
same experimental setup (unroll bound and CPU and memory
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�
void BtorToLLVMLoweringPass::runOnOperation() {

LLVMConversionTarget target(getContext());
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext());
mlir::btor::populateBtorToLLVMConversionPatterns(converter,

patterns);
...
/// binary operators
// arithmetic
target.addIllegalOp<btor::AddOp, btor::SubOp, btor::MulOp,

btor::UDivOp...>();
...

}� �
(a) Identifying operations.�

...
using AddOpLowering =

VectorConvertToLLVMPattern<btor::AddOp, LLVM::AddOp>;
using SubOpLowering =

VectorConvertToLLVMPattern<btor::SubOp, LLVM::SubOp>;
using MulOpLowering =

VectorConvertToLLVMPattern<btor::MulOp, LLVM::MulOp>;
using UDivOpLowering =

VectorConvertToLLVMPattern<btor::UDivOp, LLVM::UDivOp>;
...
void mlir::btor::populateBtorToLLVMConversionPatterns(

LLVMTypeConverter &converter, RewritePatternSet
&patterns) {

patterns.add<
AddOpLowering, SubOpLowering, MulOpLowering,
UDivOpLowering, ...>(converter);

}
...� �

(b) Converting operations to LLVM-IR.

Fig. 5: Using Patter Based Rewriters in MLIR.
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Fig. 6: Verification Strategies.

limits). We chose BTORMC because it is well integrated with
the HWMCC environment and is specifically designed for
BTOR2. The results of running BTORMC are shown in the first
columns of BTORMC in Table II. For each category, we show
the total time for all instances that are solved in that category,
and the number of instances that are solved as safe, unsafe,
and timed-out (TO), respectively. For example, the 20/mann
category is solved in 257 seconds, 10 instances are safe, 5 are
unsafe, and no instance has timed out. The performance of
BTORMC is quite good across the board.

We evaluate the problems generated by BTOR2MLIR by

plugging them into SEAHORN. SEAHORN pre-processes pro-
grams before attempting to verify them. This includes, stan-
dard LLVM optimizations (i.e., -O3), loop unrolling and loop
cutting are applied. We found that SEAHORN was able to,
in some instances, remove the assertions in the LLVM-IR,
meaning that the program was found to be safe statically,
before invoking the BMC. The BMC also runs simplifications
on the formulas that it sends to Z3, its default underlying SMT
solver. The results for this run are shown in the Z3 columns
of Table II. For example, the 20/mann category is solved
in 94 seconds, 8 instances are safe, 5 are unsafe and 2 have
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BTORMC SEAHORN

20 25 VCGen + Z3 VCGen BTOR
w
o
l
f
/
1
8
D Time (s) 157 394 560 543 745

Safe 34 34 29 - 34
Unsafe 0 0 0 - 0
TO 2 2 7 2 2

w
o
l
f
/
1
9
A Time (s) 146 106 - - -

Safe 0 0 0 - 0
Unsafe 1 1 0 - 0
TO 17 17 18 18 18

w
o
l
f
/
1
9
B Time (s) 2 2 2 2 3

Safe 3 3 3 - 3
Unsafe 0 0 0 - 0
TO 0 0 0 0 0

w
o
l
f
/
1
9
C Time (s) 834 1 101 354 418 1 085

Safe 108 107 102 - 106
Unsafe 0 0 0 - 0
TO 5 6 11 2 7

BTORMC SEAHORN

20 25 VCGen + Z3 VCGen BTOR

1
9
/
b
e
e
m Time (s) 278 251 309 35 85

Safe 9 8 6 - 7
Unsafe 2 2 2 - 2
TO 4 5 7 4 6

1
9
/
g
o
e
l Time (s) 190 349 489 132 335

Safe 26 25 25 - 28
Unsafe 2 2 1 - 2
TO 43 44 45 27 41

1
9
/
m
a
n
n Time (s) 4 442 8 674 3 811 175 3 015

Safe 29 28 19 - 30
Unsafe 15 15 14 - 14
TO 9 10 20 2 9

2
0
/
m
a
n
n Time (s) 257 495 94 35 188

Safe 10 10 8 - 9
Unsafe 5 5 5 - 5
TO 0 0 2 0 1

TABLE II: HWMCC20 Results.

timed out. The reported time does not include the instances
that have timed out.

The aggregate time of SEAHORN on most of the categories
is higher than that of BTORMC, often by a significant amount.
We looked into this and found that SEAHORN treats the given
bound as a lower bound, rather than an upper bound. That
is, it ensures that it unrolls the programs to a depth of at
least 20, but it may continue past that point. Taking this into
account, we ran BTORMC with a bound of 25. The results are
in the second columns of BTORMC in Table II. As expected,
its aggregate times are higher than the run of BTORMC with
bound 20. We notice, however, that it is slower than SEAHORN
in the 19/mann category.

BOOLECTOR and Z3 are the SMT solvers used by BTORMC
and SEAHORN respectively. Given that BOOLECTOR is op-
timized for BTOR2 circuits, we evaluated whether the SMT
formulas generated by SEAHORN would be solved faster
by BOOLECTOR. The results for generating SMT-LIB for-
mulas using SEAHORN are presented in the VCGen col-
umn of Table II. The times are low for most categories
except wolf/18D, wolf/19C, 19/goel and 19/mann.
For example, it takes SEAHORN 175 seconds to generate the
verification conditions for instances in the 19/mann category,
with two timeouts. This includes the time it takes SEAHORN
to print the SMT formulas to disk. We plug the resulting SMT
formulas into BOOLECTOR and present the results in the BTOR
columns of Table II. The results show that using SEAHORN
to generate verification conditions and BOOLECTOR to solve
these instances is often better than using BTORMC. For exam-
ple, for category 19/mann, it takes 3 015s for BOOLECTOR
to solve 44 instances with 9 timeouts. Therefore, the total
time for SEAHORN and BOOLECTOR (3 190) represents the

BTORMC SEAHORN

20 25 VCGen+Z3 VCGen BTOR

Time (s) 6 309 11 373 5 621 1 340 5 456
Safe 219 215 192 - 217
Unsafe 25 25 22 - 23
TO 80 84 110 55 84

TABLE III: Total results for each tool.

time it takes to translate, generate SMT formula and verify
the 19/mann category. Note that two of the 9 timeouts in
this category are attributed to the fact that SEAHORN has a
timeout when generating verification conditions.

To get the big picture of how the different infrastruc-
tures performed, we collected the results over all categories
in Table III. From this table, we can see that our hybrid
pipeline combining BTOR2MLIR, SEAHORN, and BOOLEC-
TOR solves 240 instances with 84 timeouts in 6 796s (sum
of VCGen and BTOR total times), which is very encouraging.
We also present plots that compare the different pipelines that
have been explored in Fig. 7. We set the time for all timeout
instances to 350 seconds so that they are distinguished from
instances that were solved close to the timeout threshold. First,
we look at the performance of the hybrid pipeline that com-
bines BTOR2MLIR, SEAHORN and its default SMT solver Z3
against BTORMC in Fig. 7a. Z3 does as well as BTORMC for
most instances that are easy, however, it struggles when the
problems are harder. This is not as clear from Table II since
focuses on the number of timeouts and benchmarks solved.
Second, we present the performance of BTORMC against the
hybrid pipeline that combines BTOR2MLIR, SEAHORN and
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(a) VCGen + Z3 vs BTORMC. (b) VCGen + BOOLECTOR vs BTORMC. (c) VCGen + Z3 vs VCGen + BOOLECTOR.

Fig. 7: Verification strategy comparison.

BOOLECTOR in Fig. 7b. We can see that there are more
benchmarks that this pipeline solves faster than BTORMC.
It is also clear that it solves more benchmarks than the Z3
configuration in Fig. 7a, as we would expect from Table III.
Third, we compare the two hybrid pipelines in Fig. 7c. We
can see that the configuration that uses SEAHORN to generate
verification conditions and BOOLECTOR for solving easily
outperforms the Z3 configuration.

VI. RELATED WORK

Translating BTOR2 circuits into other formats enables the
application of different verification methods and techniques.
The gains that can be made from applying one method
of encoding over another could enable solving a class of
benchmarks that are not solved with existing approaches.

BTOR2LLVM6 and BTOR2CHC7 are tools that convert
BTOR2 circuits to programs in LLVM-IR and CHCs, re-
spectively. These tools are developed in Python, in order to
be light weight, but end up repeating shared functionality
and tools since they lack a common infrastructure. Translated
BTOR2 benchmarks8 have also been collected to facilitate
research, but information of what tools were used to get the
CHC format is not publicly available. While a collection of
translated benchmarks is valuable, it is important that there
are tools to do the translation on demand. This enables rapid
prototyping in a way that saved benchmarks do not.

BTOR2C [15] is a recent tool that converts BTOR2 circuits
to C programs. It has been used to facilitate the utilization
of software analyzers by serving as a pre-processing step that
bridges the gap between the world of software verification
and hardware verification. There are limitations that arise,
however, from differences in the semantics of BTOR2 and

6https://github.com/stepwise-alan/btor2llvm
7https://github.com/stepwise-alan/btor2chc
8https://github.com/zhanghongce/HWMCC19-in-CHC

C. An important limitation that C imposes on this project
is the inability to represent arbitrary width bitvectors. This
means that BTOR2 circuits which operate on bitvectors of
width greater than 128 are not supported. These limitations,
as well as BTOR2C lack of support for BTOR2 operators that
have overflow detection are resolved by using LLVM-IR as
the target language.

A common theme across these efforts is that they are not
built on an architecture that can be easily extended. Each
project aims to make it easier to utilize advances in formal
verification, but they fail to offer a solution that does not
require recreating components that already exist.

VII. CONCLUSION

In this paper, we present BTOR2MLIR — a new format
and toolchain for hardware verification, based on the MLIR
intermediate representation framework of the LLVM compiler
infrastructure. Our goal is to open new doors for the research
and applications of hardware verification by taking advantage
of recent innovations in compiler construction technology. We
believe that this project opens new avenues for exploring
the application of existing verification and testing techniques
developed for software to the hardware domain. As a proof of
concept, we have connected BTOR2MLIR with the SEAHORN
verification engine. While out-of-the-box, this gives acceptable
performance, when combined with BOOLECTOR, a combina-
tion that is competitive against BTORMC. In the future, we
plan to continue this line of research and explore applying
testing and simulation technologies such as KLEE [7] and
LIBFUZZER [6]. We also plan to generate formats for other
verification techniques such as AIGER [20], Constrained Horn
Clauses, and SMT-LIB.
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