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Kurzfassung

Die zunehmende Bedeutung von Wissensgraphen (Knowledge Graphs) hat großes In-
teresse an der Bereitstellung skalierbarer und effizienter Reasoning (Schlussfolgerungs)-
Fähigkeiten für eine Vielzahl von Problemen geweckt. Eine besonders bekannte Sprache,
die skalierbare Reasoning-Techniken unterstützt, ist Vadalog. Sie unterstützt fortgeschrit-
tene Reasoning-Fähigkeiten wie existentielle Quantifizierung, Rekursion, Aggregation,
probabilistisches Reasoning sowie verschiedene Datenquellen und stellt ihren Wert in
zahlreichen Finanzanwendungen wie Unternehmenskontrolle (Company Control) und
Golden Power Checks unter Beweis.

In all diesen Anwendungen ist Zeit eine entscheidende Dimension, um ein tieferes Ver-
ständnis struktureller Veränderungen zu erlangen. Bisher fehlt Vadalog jedoch die Un-
terstützung mit temporaler Information umzugehen, wodurch es nur eingeschränkt im
zeitlichen Kontext anwendbar ist. Das Fehlen einer solchen Funktionalität in Vadalog
wird durch DatalogMTL unterstrichen, einer vor kurzen erschienen Erweiterung von
Datalog mit Operatoren aus der metrischen temporalen Logik, welche das zeitliche
Reasoning im Zusammenhang mit Stream-Reasoning wieder populär gemacht hat. Da
DatalogMTL jedoch lediglich eine Erweiterung von Datalog ist, fehlen der Sprache viele
der Fähigkeiten, die für Knowledge Graph Reasoning erforderlich sind. Infolgedessen
wird in dieser Dissertation DatalogMTL mit einem Fokus auf deren Anwendung auf
Knowledge Graphen untersucht.

Zuerst werden Erweiterungen von DatalogMTL, nämlich Aggregation und existentielle
Quantifizierung, untersucht, die für zahlreiche Data-Science-Workflows von grundlegender
Bedeutung sind. Im Detail wird die formale Syntax und Semantik definiert, verschiedene
Möglichkeiten der Aggregation entlang der Zeitachse erkundet sowie eine „natürliche“ als
auch eine „einheitliche“ Semantik der existentiellen Quantifizierung untersucht.

Im Anschluss wird ein neuartiger Benchmark-Generator vorgestellt, der als erster seiner
Art die Erstellung von Benchmarks mit metrischer temporaler Logik im Zusammenspiel
mit rekursiven Abfragen, Aggregation und existentieller Quantifizierung ermöglicht. Auf
diese Weise wird gezielt das Generieren von Instanzen zum Testen bestimmter Szenarien
und Grenzfälle ermöglicht.

Danach wird Vadalog mit einer vollständig entwickelten Architektur erweitert, die die
Fähigkeit besitzt mit metrischer temporaler Logik Reasoning zu betreiben. Das System
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wird mit realen Instanzen sowie mit Benchmarks, die von dem in dieser Arbeit vorgestellten
Generator generiert wurden, evaluiert. Die Ergebnisse zeigen, dass das vorgestellte System
aktuelle Lösungen in den meisten Szenarien übertrifft.

Abschließend wird die Verwendung von DatalogMTL als Spezifikationssprache von Smart
Contracts definiert. Dadurch wird die Verwendung von DatalogMTL für dezentralisier-
te Finanzen (DeFi) ermöglicht, was eine interessante Domäne für Knowledge Graph
Reasoning darstellt.



Abstract

The rise of knowledge graphs has sparked great interest in providing scalable and efficient
reasoning capabilities for a variety of problems. A particularly prominent language
supporting scalable reasoning techniques is Vadalog, which supports advanced reasoning
capabilities such as existential quantification, recursion as well as aggregation, probabilistic
reasoning, and various data sources and has demonstrated its value in numerous financial
applications, including company control and golden power checks.

In all of these applications, time is a critical dimension to gain a deeper understanding of
the structural changes. However, so far, Vadalog is missing the support for dealing with
temporal information, limiting its applicability in temporal contexts. The absence of such
functionality is emphasized by the resurgence of temporal reasoning in the context of
stream reasoning through DatalogMTL, an extension of Datalog with operators from the
metric temporal logic. Yet, since DatalogMTL is a merely extension of Datalog, it lacks
many of the capabilities necessary for knowledge graph reasoning. As a result, in this
thesis, we conduct the first study on how to extend DatalogMTL towards its application
in knowledge graph reasoning.

For this purpose, we first study extensions of DatalogMTL, namely aggregation and
existential quantification, which are fundamental to numerous data science workflows. In
detail, we define formal syntax and semantics, explore different possibilities for aggregating
along the timeline as well as examine a natural as well as a uniform semantic for existential
quantification.

Subsequently, we present a novel benchmark generator that is the first of its kind which
is capable of supporting the generation of benchmarks for metric temporal logic, together
with recursive queries, aggregation and existential quantification. This allows us to
generate targeting instances for testing specific scenarios and edge cases.

Afterwards, we augment Vadalog with the ability to reason with metric temporal logic
providing a fully engineered reasoning architecture. We evaluate the system with bench-
marks generated from our generator as well as from real-world instances. The results
show that our system outperforms state-of-the art solutions in most of the scenarios.

Finally, we discuss the usage of DatalogMTL as specification language of smart contracts,
enabling the use of DatalogMTL for decentralized finance, an interesting domain for
knowledge graph reasoning.
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CHAPTER 1
Introduction

The rise of knowledge graphs has sparked great interest in providing scalable and ef-
ficient reasoning capabilities for a variety of problems. In detail, knowledge graphs
represent entities and relations between them in a graph structure and enrich them
with semantic information. This enables a variety of applications such as in the finan-
cial domain [BMNS20] (e.g., company takeover prediction or anti-money laundering
mechanisms), recommender systems [WHC+19] (e.g., for movies or songs), in the med-
ical domain [EMSW14, RHT+17] (e.g., to map diseases to symptoms), or in cyber
security [KEKE19] (e.g., for attack prediction).

An essential ingredient in all of these applications is the use of reasoning technolo-
gies [GO22]. Deductive reasoning enables us to use the specified semantic information
inside the knowledge graph to extract logical consequences with the help of a reasoning
engine, such as Vadalog [BSG18]. Vadalog is a prominent Datalog-based reasoner that
combines high expressive power with impressive scalability. These are fundamental
capabilities for handling a vast amount of data that are present, e.g., with the success of
Internet of Things, in nearly all domains nowadays.

Recent advances in knowledge graphs emphasize the inclusion of time-related properties
as additional metaknowledge to meet the requirements of a rapidly changing world, where
events are valid at multiple time points as well as only for a specific interval. Indeed,
the studying of temporal information is not a new topic and has been considered in
the context of temporal logics for a long time [Koy90, GFAA03] (for example, with the
well-known linear temporal logic or computation tree logic). In addition to these studies,
such languages have also been regularly considered as an extension to Datalog [Cho90,
GGV02, BKK+17a], providing first results for an integration in knowledge graph systems.

Yet, while there exists a long history of temporal logics, so far, to the best of our
knowledge, the deductive temporal reasoning capabilities are limited for knowledge
graphs: In particular, there is a missing support of an efficient and highly expressive
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1. Introduction

temporal logic in current knowledge graph-optimized reasoning systems that integrates the
desired properties of inventing new values (i.e., existential quantified variables) for creating
new edges and nodes in the knowledge graph, as well as arithmetic and aggregation for
data analysis. At the same time, the inductive approaches, in particular embedding based
deep-learning approaches, are promoting their research on temporal reasoning [GO22],
creating an imbalance of the available tools in temporal reasoning between inductive
and deductive reasoning frameworks. This creates an urgent need for the deductive
community to gain momentum, make progress and sharpen their available tools to have
a good mixture between the inductive and deductive approaches in place.

Taking this imbalance into account, in this thesis, we investigate the temporal dimension
of logical reasoning in knowledge graphs and reduce the gap of available tools between
deductive and inductive approaches. Towards this, in this introductory chapter, we
introduce knowledge graphs in a broader context before introducing the research questions
of the thesis targeting exactly the gap, namely the functionality of existing logic-based
languages and the development and evaluation of a reasoning engine with native support
of temporal information. In more detail, we are going to consider the following.

Motivation and Context. In this part, we establish the context of this thesis, progres-
sively introducing all concepts important to it:

• Knowledge Graphs (Section 1.1.1)

• Logic-based Reasoning in KGs (Section 1.1.2)

• Temporal Reasoning in KGs (Section 1.1.3)

Challenges and Contributions. In this part, we establish the main challenges and
contributions of the thesis. This includes formulating our research questions, and is
divided into four areas:

• Functionality – Providing needed functionality to languages (Section 1.2.1)

• Evaluation – Furthering principled development and evaluation (Section 1.2.2)

• System – Creating a temporal-aware reasoning engine (Section 1.2.3)

• Applications – Bringing together these points into applications (Section 1.2.4)

Structure and Publications. In this part, we present an outline of the thesis as well
as an overview of the published papers (Section 1.3)
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1.1. Motivation and Context

1.1 Motivation and Context
In this section, we introduce to a reader unfamiliar with the domain, the main concepts of
knowledge graphs. We start with a generic definition and provide an overview of different
artificial intelligence tools for knowledge graphs in Section 1.1.1. Then, in Section 1.1.2
we focus on logical reasoning, a field of artificial intelligence. In particular, we focus on
the language Datalog which we use throughout the thesis. We conclude this primer in
Section 1.1.3 with a brief introduction to temporal reasoning with Datalog.

1.1.1 Introduction to Knowledge Graphs
In 2012, Google [Sin12] introduced the term knowledge graph in the context of making
search more effective. They describe knowledge graphs as “a graph that understands
real-world entities and their relationships to one another: things, not strings”. Since then,
other researchers have proposed various definitions for knowledge graphs [Ber19] and
still new definitions are proposed regularly since “the technology used to create them
is rapidly changing“ [Dee]. For instance, Ehrlinger and Wöß [EW16] define knowledge
graphs as “A knowledge graph acquires and integrates information into an ontology
and applies a reasoner to derive new knowledge” and Bellomarini et al. [BFGS19] as a
characterization of three components: (i) a ground extensional component representing
the data in a graph-like structure, (ii) an intensional component as a set of inference rules
over the constructs of the ground extensional component and (iii) a derived extensional
component as a result of the “reasoning” process (i.e., the application of the inference
rules over the ground extensional component).

In other words, one typically considers arbitrary (semi-structured) data-sources, such
as relational databases, NoSQL stores, RDF stores or graph databases, which are
mapped into a graph-like structure on which together with given domain knowledge
certain “functions” are applied to either derive new knowledge (in the sense of extracting
unknown domain knowledge, e.g., rule learning) or new data (by the application of
reasoning techniques). Note that the mapping does not imply that the data is stored in
a graph structure and the graph is seen here only as a view on the data in a unified data
model (cf., Chen [Che76]). In the remainder of this section, we will briefly introduce
such different functions.

Example 1.1. Given a relational database in Table 1.1 that contains a table that
stores the stake of shares of companies owned by an entity (i.e., a person or a company),
where numbers indicate people and letters companies. The corresponding graph view
is given in Figure 1.1a, where orange nodes represent people, blue nodes companies
and the stake of shares are provided as properties of the edges connecting entities.

Knowledge Graph Embeddings

Knowledge graph embeddings are numerical representations, e.g., a d-dimensional vector
of real numbers, of the entities (nodes) and relations (edges) of a knowledge graph in
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1. Introduction

Table 1.1: Percentage of shares of a company per entity

Source Target Shares
1 A 55%
1 B 5%
2 C 30%
A T 20%

Source Target Shares
A B 46%
B T 11%
B C 21%
C T 20%

(a) Graph representation of Table 1.1 (b) Inference of company control per person

(c) Detection of family clusters (d) Inference of company control per family

Figure 1.1: Example of (family) company control based on Table 1.1.

a low-dimensional space, e.g., where the dimensionality d is many orders of magnitude
smaller than the number of nodes and edges. They are used for tasks such as link or
entity prediction (given a triple (h, r, ?), (h, ?, t), or (?, r, t), where h is a head entity, t a
tail entity, and r a relation between the head and the tail, predict the missing component
“?”) as well as triple classification (given a triple, is it valid) [CLMS21, WQW21].

Example 1.2. Consider the graph illustrated in Figure 1.1c, where the persons 1 and
2 are linked as family members. A family is a group of closely related people with
shared interests, which is critical to detect in settings such as anti-money laundering or
fraud detection [ABI+20]. One approach to detect such family links is by the usage of
knowledge graph embeddings, which are capable of learning that nodes 1 and 2 belong
to the same family. For example, by triple classification it can determine whether the
given triple (1, f, 2) is valid, where f represents the family relation.

16



1.1. Motivation and Context

Figure 1.2: Graph neural networks used as an encoding layer for link prediction.

Knowledge graph embeddings are formulated as an optimization problem. The aim is to
minimize the loss in such a way that the scoring function of the model provides a high
score to positive triples (i.e., triples that are very likely to be true). Typical models vary
in their representation space, their scoring functions which are used to determine the
plausibility of a triple, their exact encoding model, as well as their possible auxiliary
information that is incorporated into the embedding method [WQW21, JPC+22].

In the literature, models are often classified by their encoding model. One usually distin-
guishes between linear models, factorization, and neural networks [CLMS21, WQW21].
Linear models, such as TransE [BUG+13] or RotatE [SDNT19] usually express the
scoring function by representing the plausibility of a fact by the translational distance
between entity and relation embeddings. Models based on matrix factorization, such
as DistMult [YYH+15] or Complex [TWR+16] usually follows the semantic matching
pattern and thus use a similarity-based scoring function. Neural networks, such as
ConvE [DMSR18] or HypER [BAH19] are able to propagate neighborhood information
and use the recent advancements in neural networks [WQW21].

Graph Neural Networks

Graph neural networks (GNNs) are related to knowledge graph embeddings but serve a
different purpose. While knowledge graph embeddings are transductive (i.e., ineffective for
unseen data), GNNs are inductive (i.e., are able to reason about unseen entities). In order
to accomplish this, GNNs usually learn high-level representations of nodes by considering
the properties of entities and their interaction with their neighborhood in the graph. That
is why GNNs are seen as ideal candidates for an encoding layer (i.e., converting input
to a low-dimensional representation) for nodes before applying a decoding layer (i.e.,
converting a low-dimensional representation to an output) to accomplish a specific task
(e.g., an embedding task such as link prediction) as visualized in Figure 1.2. Other tasks
include graph and node classification as well as graph generation [WPC+21, YKS+22].

GNNs are again classified based on their method. Recurrent GNNs, such as Graph-
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1. Introduction

ESN [GM10], propagate neighborhood information until a stable fix point is obtained.
Convolutional GNNs redefine the concept of convolution neural networks (CNNs) from
the computer vision domain. They are either based on the spectral graph theory, such as
GCN [KW17], where filters are applied to remove noises from graph signals or spatially
based, such as GraphSage [HYL17], which inherits the concept of information propagation
from recurrent GNNs. Graph autoencoders, such as GraphRNN [YYR+18] are utilized
for unsupervised learning, where no ground truth for data exists [WPC+21].

Logic-based Reasoning

The term logic-based reasoning subsumes the different logic-based knowledge represen-
tation and reasoning languages, such as Cypher [FGG+18], Datalog [MTKW18], ASP
(answer set programming) [EIK09], SQL [CB74], SPARQL [PAG09] and description
logic [BCM+03]. While certain languages, such as SQL, SPARQL and Cypher, have
moved away from a rule-like syntax well-known from first order logic [Smu95], the most
relevant distinction between the languages is their supported feature set and the resulting
computational complexity of the language. For example, languages differ by the support
of disjunction in the rule head (e.g., control(Src, Tgt) in Example 1.3 is considered as
head of the rule), the supported level of recursion, the supported type of negated values,
or the support of value invention (i.e., existential quantification or in short existentials).

Yet, the reasoning with first order logic (or a variant thereof) does not yield the required
expressive power to solve certain problems. Therefore, extensions such as the family
of modal logics [Gar21] (e.g., deontic logic for legal reasoning or temporal logic for
time-based reasoning) as well as probabilistic logic [Nil86] (i.e., to reason over uncertain
data) have been established. Temporal logic, the relevant extension for this thesis, will
be introduced in Section 1.1.3.

Example 1.3. We continue our running example from the financial domain. Direct
company control [BSG18] is defined as the direct ownership of more than 50% of a
company by a single entity. As an example, consider Figure 1.1b, in which person
1 personally owns company A with 55% of the shares. The rule of direct company
control can be encoded as follows in some selected logic-based languages:

Language Query
SQL SELECT Src, Tgt INTO control

FROM own
WHERE S > 0.5

Cypher MATCH (Src:Company)-[o:Own]->(Tgt:Company)
WHERE o.S > 0.5
CREATE (Src)-[:Control]->(Tgt)

Datalog/ASP control(Src, Tgt) ← own(Src, Tgt, S), S > 0.5
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1.1. Motivation and Context

Neuro-Symbolic AI

The objective of neuro-symbolic AI is to bring together neuro (also called subsymbolic)
AI (i.e., machine-learning based methodologies such as knowledge graph embeddings or
graph neural networks) and symbolic AI (i.e., logic-based reasoning). Kautz [Kau22]
proposed a taxonomy that consists of six different types for the combination of the two
fields, which are based on whether the input or output is symbolic or subsymbolic, and
how the symbolic or subsymbolic procedure invokes/includes the subsymbolic/symbolic
portion of the program.

In the context of knowledge graph reasoning, two techniques gained significant atten-
tion. Knowledge injection, such as SimplE [KP18] and BoxE [ACLS20], aims to inject
logical rules during the training of a knowledge graph embedding such that the model
conforms to these rules. Depending on the model, different kind of rules are supported
(e.g., hierarchical, symmetric, inversion and so on). Rule mining approaches, such as
AMIE [GTHS15] and AnyBURL [MCRS19], aim to learn/extract rules from a given
knowledge graph.

1.1.2 Logical Reasoning with Datalog in Knowledge Graphs

In the previous section, we provided a general overview of the current reasoning techniques
in knowledge graphs. As this thesis contributes to logical reasoning, particularly by
contributing to Datalog extensions, we introduce Datalog in this section in further detail.

Datalog is a fully declarative programming language. It is frequently used as a query
language in deductive databases, but also for data integration, information extraction
and of course as a knowledge representation language in knowledge graphs [MTKW18].
Particularly for large graph structures, Datalog offers, with the support of recursion
and stratified negation (a limited type of negation that prohibits the use of negation in
recursion), the essential capabilities for efficient and scalable reasoning over such graph
structures while still having PTIME data complexity. With its extensions for existential
quantification, subsumed under the term Datalog±, the research community seeks to
extend the functionality of Datalog (the + term), while restricting the language (the
- term). With this, even more essential capabilities of knowledge graph reasoning are
supported, namely the creation of new nodes and edges1, while still maintaining PTIME
data complexity [GP15, BSG18].

In general, Datalog consists of a set of rules (a program) and a database of facts. In
plain Datalog (i.e., Datalog without existential quantification or negation) rules are
function-free Horn clauses (i.e., a disjunction of literals with at most one positive literal
in the clause where a literal is either a variable or a constant from a domain). These
Horn clauses are usually written as implications [MTKW18] where we sometimes replace
the conjunctions with a comma.

1Note that the solely extension by existential quantification would yield undecidability.
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1. Introduction

Example 1.4. Assume a database with a single fact father(john, anna) and a program
with a single rule that models that if X is a father of Y, then Y is the child of X. This
may be stated as a Horn Clause in disjunctive form

¬father(X, Y) ∨ child(Y, X)

or in implication form, which is usually used when writing rules

child(Y, X) ← father(X, Y)

The reasoning process then derives the fact child(anna, john).

The objective of the reasoning process is to find a model (i.e., a new database of facts)
that satisfies the program with a given database. In Datalog, there always exists a unique
minimal model that extends the given database. This unique model can be defined in
Datalog with three distinct, but equivalent semantics. From an applied perspective the
operational semantics, one of the three aforementioned equivalent semantics, offers the
most benefits since it provides an algorithm for computing the unique minimal model.
The idea of the operational semantics is to begin with the given database, and repeatedly
add the heads of an instantiated rule (i.e., where variables are replaced with constants
from the domain) whose body is satisfied, until no more rule head can be added (i.e., a
fixpoint is reached) [AHV95].

Example 1.5. Consider Figure 1.1b once more. This time we are interested not
just in direct company control, but also in indirect controls over companies. This
necessitates an additional rule of the form [BSG18]

control(X, Z) ← control(X, Y), own(Y, Z, V), S = sum(V), S > 0.5

The use of this new rule derives the control of B by 1 only after deriving that A is
controlled by 1 (by direct company control). Assuming that a family controls 100% of
person 1 and 2 in Figure 1.1d, we see that several iterations to reach a fixed point are
required to determine that the family controls every node in the graph. Note that
we already used advanced capabilities of Vadalog (introduced next) by utilizing its
aggregation capability for computing company control.

One of the most famous Datalog-based languages for reasoning in knowledge graphs is
Vadalog [BSG18], which extends Warded Datalog± [GP15] with additional capabilities
such as aggregation and arithmetic. Warded Datalog± is conceptualized in such a way
that it limits the use of existential quantification while fully supporting Datalog with
stratified negation.
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1.1. Motivation and Context

1.1.3 Temporal Reasoning with Datalog

So far, we focused on existing capabilities of Vadalog and have neglected to include the
temporal dimension in our discussion which we will now do so.2 Temporal logic, part
of the modal logic family, offers one possibility to reason over time via modalities such
as “always”, “until” or “later”. It was introduced as a tool for formal verification and
its most well-known logics are computation tree logic (CTL), and linear temporal logic
(LTL) [GFAA03]. In detail, LTL extends first order logic with temporal operators that
state whether some formula holds forever in the future (⊞)/past (⊟), sometimes in the
future ( )/past ( ), at the next ( )/previous ( ) time point or that something has to
hold at least until (U)/since (S) some other formula is true. For further details, we refer
a reader unfamiliar with LTL to the summary [GR22] to find further information.

In the thesis, we focus on metric temporal logic (MTL) [Koy90] over continuous semantics,
since it has recently demonstrated its successful application in a variety of complex real-
time and real-world use cases together with Datalog [WKCG19, BKK+17a]. MTL is an
extension of LTL in which the temporal modalities are substituted with time-constrained
counterparts, which is heavily required in real-time scenarios. This means that instead of
stating that something will hold in the future, or something holds the next state, as in
LTL, one states that something will hold for the next x to y time units (see Example 1.6).

Example 1.6. Consider the LTL formula A ∨ A saying that A will
hold either three or four states in the future. This is equivalent to the MTL formula

[3,4]A interpreted over the integer timeline, where states that A holds at some
point in the future and the interval [3, 4] restricts the range to exactly when this will
be the case (i.e., either three or four states in the future).

One popular branch that supports query answering with MTL is DatalogMTL [BKR+18],
an extension of plain Datalog with MTL operators. Although the data complexity
of this language is PSPACE-complete, different restrictions such as non-recursive pro-
grams [BKK+17a] or the restriction of temporal operators [WCGKK20b] have been
studied to achieve tractability, thus making this language attractive for knowledge graph
reasoning.

In more detail, DatalogMTL3 extends each fact with a time point where the fact is valid
and rules with the operators diamond plus ( )/minus ( ) to express that something
holds at some time point in a given interval in the future/past, box plus (⊞)/minus (⊟)
to express that something holds at all time points in a given interval in the future/past,
and until (U)/since (S) to express that something holds in a given interval until/since
some time point in the future/past.

2Due to the emphasis of this thesis on logic-based temporal reasoning, we solely introduce the
temporal domain for logical reasoning. For completeness, we would like to mention that there is active
research in the areas of temporal knowledge graph embeddings and temporal graph neural networks. For
further information, we direct the reader to one of the several surveys [WPC+21, JPC+22] in this field.

3Note that we formally introduce the syntax and semantics in Chapter 2.
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Example 1.7. A trader is flagged as suspicious for five minutes, if the trader produces
new trade offers with a maximum gap of five seconds throughout the course of the
previous minute.

⊞[0,300]suspicious(t) ← ⊟[0,60] [0,5] tradeOffer(t, o)

With this brief introduction to temporal reasoning, we conclude our primer to knowledge
graph reasoning.

1.2 Main Challenges and Contributions
This thesis aims to enable reasoning with DatalogMTL in knowledge graph systems, or in
other words to extend DatalogMTL with reasoning capabilities provided in Vadalog for
the non-temporal context. Towards this, we have to resolve a number of open challenges,
where some of them are addressed in this thesis. That is, in order to support temporal
reasoning in knowledge graphs, we have to bring together different capabilities to create
a principled, scalable system:

• Recursive reasoning. Support of full recursion, e.g., to enable the traversal of cyclic
graph structures (as provided by Datalog).

• Ontological reasoning. Support of existential quantification to create new knowledge
in a knowledge graph (as provided by Datalog±; not considered for DatalogMTL).

• Temporal reasoning. Support for temporal logic and reasoning to enable effi-
cient reasoning over temporal relationships in a knowledge graph (as provided by
DatalogMTL).

• Aggregate reasoning. Support for aggregation that is compatible with both, the
temporal, as well as the recursive aspects (as discussed for Datalog±, but no such
results are known for DatalogMTL).

Specifically, the contributions of this thesis fall into four categories, all of which have the
common theme of facilitating temporal reasoning in knowledge graphs. The categories are
visualized in Figure 1.3: (i) the enhancement of DatalogMTL with additional functionality,
(ii) the provision of benchmark data for evaluating systems, (iii) system design, and (iv)
the development of novel real-world applications on top of the three established pillars.

In the following, we discuss the main contributions of each category, with further
information and results then provided in the respective chapters.

1.2.1 Functionality
As DatalogMTL is built upon plain Datalog, the existing features defined for Datalog have
to be transformed and extended to the temporal context. For reasoning in knowledge
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Figure 1.3: Overview of contributions

graphs, we have identified two key elements that have to be extended for temporal
reasoning: monotonic aggregation and reasoning with existential quantification.

Monotonic Aggregation. Extending the support of monotonic aggregation as used
in Vadalog to the temporal domain is the first missing element for many data science
applications (e.g., the computation of temporal company control). This requires support
for several types of temporal aggregation, such as moving window or span temporal
aggregation, well-known from time-series databases [GBJ18] together with the full support
over cyclic structures. The aim of this extension is to utilize existing techniques from
Datalog, which raises the first research question:

Research Question 1. In which form can monotonic aggregation, as used in Datalog,
be used over temporal data, i.e., in DatalogMTL?

In this thesis, we provide an answer to this question and demonstrate that we are able
to reduce the different types of aggregation to a time-point aggregation, which can be
interpreted as a monotonic aggregation in Datalog. For this, we introduce an additional
granularity operator for the span temporal aggregation, which extends time points to
the complete unit of interest (e.g., the operator applied in “month-mode” on the 3rd
of April yields the range from the 1st of April to the 30th of April). Yet, aggregating
every time-point is inefficient since there are typically constant data periods, where the
same aggregation would have to be executed for each time point. Therefore, we present
efficient methods that utilize the interval information by grouping constant periods and
evaluating them together. In addition, we also identify the importance of analyzing
behavior across time to detect trends. We focus on data that is monotonically increasing
or decreasing and generalize our definitions for supporting such operations.
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Existential Quantification. The second missing element is the invention of new
values. It can be seen that the extension with existential quantification to the temporal
domain creates a number of interpretations for an existential quantification (e.g., per
time point, per concrete interval, and so on). The two edge cases we consider for the
existential value are (i) per time point separately (called the natural semantics), and
(ii) the same for all time points (called the uniform semantics). Especially, the latter
one appears to be extremely useful, as throughout an activity (e.g., a flight) something
(e.g., the airplane) usually does not change. Moreover, we know from Datalog, that the
complexity of existential quantification varies depending on the chosen restriction, which
poses the following research question:

Research Question 2. What is the complexity for different restrictions of existential
quantification? Is there a way to adapt the reasoning process towards the usage of
existential quantification?

In this thesis, we present complexity results for different examined existential quantifica-
tion fragments. While the majority of the fragments have been identified as undecidable,
we identify an interesting decidable fragment for the uniform semantics for weakly-acyclic
programs, for which we suggest an adapted reasoning method.

1.2.2 Evaluation

The combination of recursion, temporal reasoning using MTL, and aggregation is partic-
ularly relevant for temporal knowledge graphs, yet it has not been the focus of existing
benchmark datasets. To test and evaluate systems of these kinds, we have to develop our
own benchmarks, which leads us to the following research question:

Research Question 3. What queries should a benchmark for DatalogMTL include?
What datasets should be used for the benchmark?

In this thesis, we propose a new highly flexible and user-adaptable benchmark generator
that is aware of the temporal domain and is able to generate benchmarks that take into
account temporal operators, monotonic aggregation and recursive structures. We also
add support for existential quantification to support the evaluation of weakly-acyclic
uniform DatalogMTL programs.

1.2.3 System

The last step towards a knowledge graph reasoning system that facilitates efficient
reasoning across the temporal domain is the construction of the system itself, which
poses the following research question:

Research Question 4. How is the performance of DatalogMTL in comparison with
different state-of-the-art systems and between different implementation choices?
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In this thesis, we propose Temporal Vadalog, a fully engineered system that supports
reasoning with DatalogMTL including temporal aggregation and existential quantification.
Our system adapts the pipes-and-filters architecture used in Vadalog and optimizes it for
temporal reasoning. We evaluate our system with different competitors in its domains
and show that our system outperforms existing DatalogMTL reasoners.

1.2.4 Applications
DatalogMTL provides several opportunities for real-world applications. We were particu-
larly interested in DatalogMTL as a smart contract language since with the encoding of
smart contracts through DatalogMTL we are able to provide explainable insights into
the behavior of smart contracts4. This opens the possibility to better understand and
automatically deduce connections in the transaction flow, which is typically modelled in
a graph-like structure. In this regard, we investigate the following research question:

Research Question 5. Is it possible to encode a variety of typical smart contract
use cases in DatalogMTL? How can we enable DatalogMTL-based smart contracts on
major blockchain platforms?

In this thesis, we elaborate on the necessary principles for smart contracts written in
DatalogMTL. Particularly, we concentrate on the design of a language that is able to
express typical smart contract patterns, such as state machines and ERC20-tokens, in
DatalogMTL and can be converted to a Solidity smart contract, the most popular language
for developing smart contracts in Ethereum, for which we also suggest a preliminary
version of a translation engine.

1.3 Structure of this Thesis
The remainder of this thesis is organized as follows:

• Chapter 2 introduces the preliminaries and key notions relevant for the remainder
of this thesis, including Datalog, DatalogMTL and monotonic aggregation. We
further discuss the current state of the art in temporal reasoning, with an emphasis
on related work related to the topic of the thesis.

• Chapter 3 addresses the first main part of the thesis by introducing important
additional functionalities to DatalogMTL required for the use cases in knowledge
graphs. We begin with monotonic aggregation and analyze how DatalogMTL can be
extended with aggregation. We consider the three well-known types of aggregation:
per time point, per moving window and spanning time aggregation. We define

4We explain the details of blockchains and smart contracts in the corresponding section. For now, it
suffices to know that smart contracts are executable code that facilitate the process of executing and
enforcing the terms of an agreement between (untrusted) parties and that each execution of a smart
contract is stored as a transaction on the blockchain.
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syntax and semantics for temporal monotonic aggregation and provide methods
for the four commonly discussed aggregate types, namely, min, max, count and
sum. In addition, we analyze an additional form of aggregation, namely along the
time-axis for which we consider monotonic increasing or decreasing trends. Then,
we discuss existential quantification in DatalogMTL. We present formal definitions
of the natural and uniform semantics and provide complexity results of the studied
fragments as well as an reasoning algorithm for weakly-acyclic programs under
uniform semantics.

• Chapter 4 introduces a benchmark generator for DatalogMTL queries that allows
us to evaluate our system. We first observe the key requirements of such a genera-
tor and then suggest a generation approach to construct arbitrary DatalogMTL
programs. On top of that, we introduce a graphical user interface that allows users
to build benchmarks without understanding the details of the generator.

• Chapter 5 introduces the Temporal Vadalog System. We describe a fully engi-
neered time-aware pipes-and-filters architecture that enables temporal reasoning
with MTL operators, including stratified negation, various merge strategies for merg-
ing overlapping intervals, termination strategies as well as aggregation functions
and arithmetic. We also discuss an interface between temporal and non-temporal
reasoning. Finally, we provide an evaluation by comparing the implementation to
state-of-the-art systems.

• Chapter 6 introduces the modelling of smart contracts with DatalogMTL. We
propose a formal definition of a DatalogMTL smart contract, describe the interaction
with existing blockchains, provide a case study, and introduce a translation engine
to Solidity.

• Chapter 7 concludes this thesis with a summary of the results and a discussion of
open problems and future research directions.

The thesis is based on the following peer-reviewed papers during my doctoral studies,
which have been accomplished in joint work with different collaborators:

• Luigi Bellomarini, Markus Nissl, and Emanuel Sallinger. Monotonic Aggregation
for Temporal Datalog. RuleML+RR 2021, Rule Challenge Paper.
Winner of the Rule Challenge Award

• Luigi Bellomarini, Markus Nissl, Emanuel Sallinger. iTemporal: An Extensible
Generator of Temporal Benchmarks. ICDE 2022.

• Luigi Bellomarini, Livia Blasi, Markus Nissl, and Emanuel Sallinger. The Temporal
Vadalog System. RuleML+RR 2022.
Invited for Theory and Practice of Logic Programming
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• Markus Nissl and Emanuel Sallinger. Modelling Smart Contracts with DatalogMTL.
EcoFinKG@EDBT/ICDT 2022.

• Markus Nissl and Emanuel Sallinger. Towards Bridging Traditional and Smart
Contracts with Datalog-based Languages. Datalog 2.0 2022.

• Matthias Lanzinger, Markus Nissl, Emanuel Sallinger, and Przemysław Wałęga.
Temporal Datalog with Existential Quantification. IJCAI 2023, to appear.

In addition, I have completed several other peer reviewed publications during my doctoral
studies which are beyond the scope of this thesis:

• Luigi Bellomarini, Marco Benedetti, Stefano Ceri, Andrea Gentili, Rosario Laurendi,
Davide Magnanimi, Markus Nissl, and Emanuel Sallinger. Reasoning on Company
Takeovers during the COVID-19 Crisis with Knowledge Graphs. RuleML+RR 2020,
Industrial Paper.

• Luigi Bellomarini, Davide Magnanimi, Markus Nissl, and Emanuel Sallinger. Nei-
ther in the Programs Nor in the Data: Mining the Hidden Financial Knowledge
with Knowledge Graphs and Reasoning. MIDAS@PKDD/ECML 2020.

• Luigi Bellomarini, Markus Nissl and Emanuel Sallinger. Blockchains as Knowledge
Graphs - Blockchains for Knowledge Graphs (Vision Paper). KR4L@ECAI 2020.

• Markus Nissl, Emanuel Sallinger, Stefan Schulte, and Michael Borkowski. Towards
Cross-Blockchain Smart Contracts. DAPPS 2021.

• Nicolas Ferranti, Astrid Krickl, and Markus Nissl. Knowledge Graphs: Detection
of Outdated News. ISWC 2021, Poster Paper.

• Luigi Bellomarini, Giuseppe Galano, Markus Nissl, and Emanuel Sallinger. Rule-
based Blockchain Knowledge Graphs: Declarative AI for Solving Industrial Block-
chain Challenges. RuleML+RR 2021, Industrial Paper.

• Luigi Bellomarini, Lorenzo Bencivelli, Claudia Biancotti, Livia Blasi, Francesco
Paolo Conteduca, Andrea Gentili, Rosario Laurendi, Davide Magnanimi, Michele
Savini Zangrandi, Flavia Tonelli, Stefano Ceri, Davide Benedetto, Markus Nissl,
and Emanuel Sallinger. Reasoning on company takeovers: From tactic to strategy.
Data & Knowledge Engineering, Vol. 141 2022.

• Teodoro Baldazzi, Luigi Bellomarini, Markus Gerschberger, Aditya Jami, Davide
Magnanimi, Markus Nissl, Aleksandar Pavlovic, and Emanuel Sallinger. Vadalog:
Overview, Extensions and Business Applications. Reasoning Web 2022.

• Zilu Tian, Peter Lindner, Markus Nissl, Christoph Koch, Val Tannen. Generalizing
Bulk-Synchronous Parallel Processing for Data Science: from data to threads and
agent-based simulations. Proceedings of the ACM on Management of Data, Vol. 1,
Issue 2 2023
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CHAPTER 2
Preliminaries and State of the Art

In this chapter we present the relevant definitions from the literature used in this thesis.
We begin by introducing Datalog in Section 2.1 and extend it with the notions of stratified
negation and existential quantification in the subsections. In Section 2.2 we introduce
the notions for DatalogMTL by building on the introduced notions in Section 2.1. Then,
we present an overview of the various types of temporal aggregation in Section 2.3. In
Section 2.4 we introduce the main concepts of the reasoning framework Vadalog. Finally,
we discuss the current state of the art in temporal reasoning in Section 2.5.

2.1 Datalog
In this section we present Datalog. We first discuss the syntax and semantics of Datalog.
Then, we extend Datalog with stratified negation as well as existential variables. We
primarily follow the definitions of the book by Abiteboul et al. [AHV95], enriched with
some additional information [GOPS12, GHLZ13, GP15].

Syntax Assume a function-free first-order signature, i.e., disjoint sets of logical symbols
containing only relation and constant symbols (i.e., no function symbols) and a mapping
that assigns an arity to each relation symbol, over a domain Dom consisting of countably
infinitely constants. A term is a constant from Dom (represented by alphanumeric strings
which are either numeric or begin with a lower-case letter in the following) or a variable
(represented by alphanumeric strings beginning with an uppercase letter in the following).
An atom is an expression of the form P (s), where P is a predicate of arity n ≥ 0 and s is
a n-tuple of terms. A literal is an atom. A rule r is an expression of the form

H ← B1 ∧ · · · ∧ Bk, for k ≥ 0, (2.1)

where B1 ∧ · · · ∧ Bk and H are literals. The conjunction B1 ∧ · · · ∧ Bk of the rule is called
the body, denoted B(r), and H is called the head, denoted H(r). A rule is safe if all its
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variables occur in the body. A program Π is a finite set of safe rules. An expression is
ground (e.g., atom, rule, program) if it contains no variables. A fact is a ground atom.
A dataset D is a finite set of facts. The grounding ground(Π) of a Datalog program Π
is the set of all ground rules obtained by replacing variables in Π with constants from
Dom. Given a dataset D, ADom(Π, D) is the active domain of Π with respect to D and
contains the set of constants from Π and D. The grounding ground(Π, D) of a program Π
with respect to a dataset D is the set of all ground rules obtained by replacing variables
in Π with constants from ADom(Π, D). A predicate P is extensional if it occurs only
in rule bodies and intensional if it occurs in the head of some rule. The extensional
database (EDB) of Π consists of all extensional predicates of Π, while the intensional
database (IDB) of Π, consists of all the intensional predicates of Π.

Example 2.1. Consider Example 1.4 again. Then, the active domain is {john, anna}
and the grounding ground(Π, D) of the rule produces the following rules:

child(john, john) ← father(john, john)
child(john, anna) ← father(john, anna)
child(anna, john) ← father(anna, john)
child(anna, anna) ← father(anna, anna)

Semantics Datalog is defined via three different equivalent semantics, a proof-theoretic,
an operational (fixpoint), and a model-theoretic one. In the following, we focus on the
operational and the model-theoretic one and refer an interested reader to the literature
for the proof-theoretic one [AHV95].

In the model-theoretic semantic, the idea is to interpret the program as a first order
theory by associating each rule in Π with a first-order logical sentence. That is, for a
rule of the form given in Equation (2.1), we associate the logical sentence

∀X1, . . . , Xm(H ← B1 ∧ · · · ∧ Bk) (2.2)

where X1, . . . , Xm are the variables mentioned in the rule. Let ΣΠ be the conjunction of
first-order logical sentences associated to the rules of Π. A model of Π is an interpretation
I (a function that specifies for each grounded atom whether it is true) that satisfies ΣΠ
over a dataset D. However, there can be infinitely many models of Π, so the decision
taken by the designers of Datalog (and by the standard semantics in databases and logic
programming) was to select an intended model as answer, which is a model that should
not contain more facts than necessary. In Datalog, for each Datalog program Π and
dataset D, there exists a single unique minimal model of ΣΠ that extends D. This unique
minimal model is denoted by Π(D).

Example 2.2. Consider Example 1.4 again. The rule in first-order logic would be:

∀X, Y (child(Y, X) ← father(X, Y ))
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A model (but not a minimal model) for the given program and dataset is an interpre-
tation that satisfies child(anna, john), child(john, anna), and father(john, anna). The
unique minimal model satisfies only the facts child(anna, john) and father(john, anna)

In Datalog we often see that instead of using interpretations that assign a truth value to
a ground atom, one considers a model as a dataset that contains all ground atoms that
are satisfied by the interpretation. This allows one to work with sets that contain facts,
i.e., write P (s) ∈ D or if the unique minimal model entails the fact P (s) ∈ Π(D), instead
of using an interpretation that satisfies a fact, i.e., write I |= P (s) or Π(D) |= P (s),
where P (s) is some ground atom.

The fixpoint semantics, also called the operational semantics, relies on the immediate
consequence operator TΠ that maps a dataset to a dataset. An atom A is an immediate
consequence of a Datalog program Π and a dataset D, if A is a ground EDB atom in
D , or A ← B1 ∧ · · · ∧ Bk is a ground instance of a rule and B1, . . . , Bk ∈ D. Then we
can define TΠ as A ∈ TΠ iff A is an immediate consequence of Π and D. A fixpoint is
now a dataset such that TΠ(D) = D. The least fixpoint for TΠ containing D is a fixpoint
that is a subset of any other fixpoint for TΠ containing D. For each Datalog program
Π and dataset D, there exists a minimal fixpoint containing D, which is equal to the
minimum model Π(D). The operational semantics, hence, can be defined as a sequence
of interpretations, where ω is a limit ordinal:

T 0
Π(D) = D (2.3)

T i+1
Π (D) = TΠ(T i

Π(D)) (2.4)
Π(D) = T ω

Π(D) =
i≥0

T i
Π(D) (2.5)

Note that TΠ is monotonic and hence T i
Π(D) ⊆ T i+1

Π (D). Also note that T ω
Π(D), and

thus Π(D), can be obtained by applying TΠ finitely many times [GOPS12].

2.1.1 Stratified Datalog¬

Let us now extend Datalog with negation. For this, we extend the syntax of rules given
in Equation (2.1) to take negated literals into account [AHV95, GHLZ13].

H ← B1 ∧ · · · ∧ Bk, ∧ not Bk+1 ∧ · · · ∧ not Bk+m for k ≥ 0, m ≥ 0 (2.6)

We extend from Datalog without negation the notion of a rule (and thus for a program)
to be safe by requiring in addition that each variable mentioned in the body of a negated
literal appears also in a positive literal of the body of the rule.

In the following, we consider stratified negation, which provides tractable reasoning
capabilities. The idea of this form of negation is to partition the program into subprograms,
such that each subprogram only depends on negated predicates from the previous program.
That is, one can interpret each subprogram as a semi-positive Datalog program (i.e., a
program where negation is only applied to predicates of the EDB).
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Definition 2.1.1. A stratification of a Datalog¬ program Π is an ordered partition
of predicates in Π into strata Π1, . . . , Πn such that:

1. if H ← . . . ∧ B ∧ . . . is a rule in Π, and H is in stratum Πi while B is in stratum
Πj , then i ≥ j

2. if H ← . . . ∧ not B ∧ . . . is a rule in Π, and H is in stratum Πi while B is in
stratum Πj , then i > j

A Datalog¬ program that admits a stratification is called stratifiable.

In order to check, whether a program is stratifiable, one uses a dependency graph (see
Definition 2.1.2), where we label an edge as ¬, if the body literal is negated. A Datalog¬

program Π is stratifiable iff its dependency graph GΠ has no cycle containing an edge
labeled ¬.

Definition 2.1.2. The dependency graph GΠ of a program Π is the directed multi-
graph with a vertex vP for each predicate P ∈ Π and an edge (vP , vQ) whenever there
is a rule in Π mentioning P in the body and Q in the head.

With the definition of a dependency graph, we can now also formally define that a
program Π is recursive, if GΠ has a cycle.

Example 2.3. Given a program Π with the following rules:

A ← B B ← A D ← A, not C

Then the program has two strata: Π1 = {A, B, C} and Π2 = {D}.

2.1.2 Datalog±

The goal of Datalog± is to extend Datalog with existential quantification, with the truth
constraint false in the head and with the equality predicate.

Existential rules extend our definition of a rule as follows

∃X H ← B1 ∧ · · · ∧ Bk, ∧ not Bk+1 ∧ · · · ∧ not Bk+m for k, m ≥ 0 (2.7)

where X is a tuple of variables which are mentioned in H but not in the rule body. We
usually omit ∃X when writing a rule.

For selecting existential quantified variables, one usually differentiates between the
open world assumption (OWA) where the assignments can use arbitrary constants from
the domain Dom and the closed world assumption (CWA), where the assignments are
restricted to only constants from the active domain ADom. In the context of knowledge
graph reasoning, where we are interested in inventing new values, we usually consider
only the open world assumption.
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Rules with the truth constraint are given as follows

⊥ ← B1 ∧ · · · ∧ Bk for k ≥ 0 (2.8)

As Datalog extended with existential quantification alone is already undecidable, cer-
tain syntactic restrictions have been studied to achieve the goal of preserving tractabil-
ity [GOPS12]. We provide some of these restrictions in the following definitions [FKMP05,
GOPS12, GLP14, GP15].

Definition 2.1.3. A rule is guarded, if for each rule there is at least one atom in the
body that contains all the variables appearing in the body. A program is guarded if it
contains a finite set of guarded rules.
Definition 2.1.4. A program is linear if each rule contains only one body atom.

Let us define a slightly modified dependency graph GΠ of a program Π taking the
relationship of variables into account. The dependency graph contains a vertex v(P,i) for
each predicate P in Π and each position i ∈ {1, . . . , n}, where n is the arity of P . There
is an edge v(P,i) to v(Q,j) when there is a rule in Π mentioning P (s) in the body and Q(s )
in the head of the rule where the i-th position of s is a variable and the j-th position of
s shares the same variable. There is a special edge from any v(P,i) to v(Q,j) if the j-th
position of s is an existential variable and the i-th position of s shares the same variable
with some position in s .

Definition 2.1.5. A program is weakly acyclic, if the dependency graph GΠ of the
program has no cycle containing a special edge.

Let us end the series of introduced restrictions by introducing the underlying fragment
used in the Vadalog system, namely Warded Datalog±. For this, we have to define
harmless, harmful and dangerous variables. The i-th position of a predicate P is marked
as affected, if there exists a rule with P in the head and this position being a variable, such
that either the variable is existentially quantified, or all positions in the body mentioning
this variable are marked as affected. Then, a variable in the body is harmless if at least
one position mentioning the variable is not affected, harmful if it is not harmless and
dangerous if it is harmful and the variable appears also in the head.

Definition 2.1.6. A program is warded, if for each rule there are no dangerous
variables in the body or there exists an atom (the ward) in the body that contains all
dangerous variables of the body and all variables that are shared between the ward
and other body atoms are harmless.

Example 2.4. The following program is warded:

p(X, Z, W) ← s(X, Y), r(Y, Z)
p(Z, W, X) ← p(X, Y, Z), r(Y, W)

s(X, W) ← p(X, Y, Z), r(Y, W)
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The affected positions are p[3] due to an existential variable in the first rule as well as
p[1] and s[1] due to being part of only affected positions in the body. The underlined
positions mark the affected positions in the program.

2.2 DatalogMTL
In this section we introduce DatalogMTL interpreted over the rational timeline and under
the continuous semantics by building upon the concepts introduced for Datalog [BKK+17a,
WCGKK19, TCWCGK21].

Time and Intervals. The timeline of DatalogMTL is defined over an ordered set of
rational numbers Q, where each time point t is an element of the timeline. An interval

= −, + is a subset of Q, such that the endpoints −, + ∈ Q ∪ {−∞, ∞}, and for
each t ∈ Q where − ≤ t ≤ + we have t ∈ . The brackets and are either round or
square brackets and denote whether the endpoints of the interval are excluded (denoted
by round brackets) or included (denoted by square brackets). An interval is punctual if
it contains exactly one number, i.e., it is of form [t, t], where we often just write t. An
interval is positive if it does not contain negative numbers, and bounded if both endpoints
are rational numbers. The length of an interval, denoted by | | is ∞ if the interval is
unbounded, otherwise it is defined as + − −.

Example 2.5. The interval (−∞, 10] is unbounded, is left-open and right-closed and
has a length of ∞. The interval [0, 40) is bounded, positive, left-closed, and right
open and has a length of 40. The interval [5, 5] or 5 is bounded, positive, punctual,
left-closed and right-closed and has a length of 0.

Syntax. The syntax of DatalogMTL extends Datalog (with constraints) in the definition
of literals (which are also called metric atoms) and their positions in rules as well as
extends facts with intervals.

Formally, a literal is defined by the following grammar:

M ::= | ⊥ | P (s) | M | M | ⊟ M | ⊞ M | MS M | MU M.

Intuitively, the /⊟/S operators state that M has to hold in the past, while the /⊞/U
operators state that M has to hold in the future. In detail, M states that the literal
holds at time t if the literal M holds at some past time point in relative to t, ⊟ if M
holds at all past time points in relative to t, and M S M if M holds at some past time
point t in relative to t and M holds between t and t .

A (non-existential) rule is an expression of the form

M ← M1 ∧ · · · ∧ Mk, ∧ not Mk+1 ∧ · · · ∧ not Mk+m for k, m ≥ 0, (2.9)

where each Mi is a literal and M is a literal not mentioning , , S, and U . For
stratified DatalogMTL¬, i.e., programs containing rules mentioning a negated literal, ⊥
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Table 2.1: Semantics of ground literals

I, t |= for each t

I, t |= ⊥ for no t

I, t |= M iff I, r |= M for some r with t − r ∈
I, t |= M iff I, r |= M for some r with r − t ∈
I, t |= ⊟ M iff I, r |= M for all r with t − r ∈
I, t |= ⊞ M iff I, r |= M for all r with r − t ∈
I, t |= M1S M2 iff I, r |= M2 for some r with t − r ∈ and I, s |= M1 for all s ∈ (t , t)
I, t |= M1U M2 iff I, r |= M2 for some r with r − t ∈ and I, s |= M1 for all s ∈ (t, r)

is in addition disallowed in the rule head. A fact over an interval is an expression
P (s)@ , with P (s) a ground atom. The other definitions (e.g., program, grounding,
dataset, stratification and so on) are defined analogously to Datalog.

Example 2.6. The following program is a DatalogMTL program expressing that a
person X is employed at a company Y between their join and leave events:

employed(X, Y) ← ( [0,∞)join(X, Y)) U[0,∞) leave(X, Y)

In detail, assume, that the employee e joins a company c at time 5 and leaves at
time 10. Thus we have that join(e, c)@[5, 5], and leave(e, c)@[10, 10] hold. When
we apply , we extend the resulting fact to the infinite future, i.e., one derives an
intermediary result that holds in the interval [5, ∞). Then, with the application of U ,
we combine this resulting interval with the leave fact. For this we consider the last
line of Table 2.1, which has two conditions, one before “and”, and one after it. The
first condition results in an interval (−∞, 10] and the second condition restricts this
further to [5, 10], i.e., resulting in employed(e, c)@[5, 10].

Semantics. The semantic definition extends the notion of the model-theoretic semantic
of Datalog to DatalogMTL taking the temporal domain into account. An interpretation
I is a function which specifies for each ground atom P (s) and each time point t ∈ Q,
whether P (s) is satisfied at t, in which case we write I, t |= P (s). This notion of
satisfiability extends to ground literals as given in Table 2.1. Interpretation I satisfies
a fact P (s)@ , written I |= P (s)@ , if I, t |= P (s) for all t ∈ and a dataset D if it
satisfies all facts in D. Interpretation I satisfies not M , written I, t |= not M if I, t |= M .
Interpretation I satisfies a ground rule at t if, whenever I satisfies each body literal at
time t, then I also satisfies the head of the rule at t; and a rule if it satisfies each possible
grounding of the rule. Interpretation I is a model of a program Π if it satisfies each rule
in Π. A program Π and a dataset D entail a fact P (s)@ , if each model of both Π and
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Algorithm 2.1: Materialization procedure for DatalogMTL
Input: A DatalogMTL program Π and a dataset D
Output: A dataset D representing materialization of Π and D, or ‘inconst’ if Π

and D are inconsistent
1 D ← D;
2 repeat
3 for each r ∈ ground(Π, D ) and a (maximal) interval at which D entails the

body of r do
4 H ← head of r;
5 if H mentions ⊥ then
6 return inconst;
7 D ← D ∪ {H};
8 Coalesce facts in D ;
9 until no change to D ;

10 return D

D is a model of P (s)@ and are consistent if they have a model (in case ⊥ is used in
the head). If a program Π and a dataset D have a model, then they also have a unique
minimal model Π(D) (also called the canonical interpretation).

We want to remark that in Datalog one often considers a model as a dataset instead of
using the notion of interpretations. Thus, sometimes we abuse the notion of interpretations
and just simply write M@ ∈ I if I |= M@ .

The notions of the fixpoint-operation are defined analogously to Datalog for consistent
DatalogMTL programs with the only difference that the unique minimal model is not
always obtained in finite time but requires at most ω1 (the first uncountable ordinal)
applications.

A possible materialization algorithm for computing the least fixpoint for DatalogMTL
programs is given in Algorithm 2.1, taking also inconsistent programs into considerations,
where coalescing of facts means that facts with overlapping or adjacent intervals 1, 2
are recursively replaced with a fact over an interval 1 ∪ 2. Note that this algorithm only
terminates, if the program is inconsistent or the least-fixpoint computation is obtained
in finite time.

Normal form. We usually assume that programs are given in temporal normal
form [WCGKK19] where each rule satisfies additional requirements (e.g., no nesting of
temporal operators) resulting in following allowed rules:

⊥ ← P1(s1) ∧ · · · ∧ Pn(sn) (n ≥ 0) (2.10)
P0(s0) ← P1(s1) ∧ · · · ∧ Pn(sn) (n ≥ 0) (2.11)
P0(s0) ← P1(s1) S P2(s2) (2.12)
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P0(s0) ← P1(s1) U P2(s2) (2.13)
P0(s0) ← ⊟ P1(s1) (2.14)
P0(s0) ← ⊞ P1(s1) (2.15)
P0(s0) ← P2(s1) (2.16)
P0(s0) ← P2(s1) (2.17)

where is non-empty and non-negative and − = 0 for all unbounded intervals. We
want to note, that in literature one finds different representations of the normal form,
for example, by allowing also in addition to P1 of 2.12 and 2.13, one would cover the
rules (2.14), and (2.16), yet making it harder to define some fragments such as the one
we define next.

Definition 2.2.1. We call a program forward propagating, or in short DatalogMTLF P

if it contains only rules of the form (2.11), (2.14), and (2.16) [WKCG19].

2.3 Temporal Aggregation
In database theory, various kinds of temporal aggregation have been studied that differ
in how the values are grouped together along the timeline. For the concepts, we mainly
follow the given descriptions on the Encyclopedia of Database Systems [GBJ18].

One distinguishes between three relevant ways to compute temporal aggregations, the
instantaneous temporal aggregation (in short ITA), the moving-window temporal ag-
gregation (MWTA) and the span temporal aggregation (STA). Furthermore, there is
the multi-dimensional temporal aggregation (MDTA) which relies on one of the other
aggregation types.

Example 2.7. Let us consider the following table, which tracks the interval of each
person owning a company and whether the person is male (m) or female (f). We will
use this table in the following to explore the different aggregation types.

Id m/f Interval
1 m [1980,1984]
2 f [1984,1988]
3 m [1992,1998]
4 f [2012,2014]
5 f [2016,2022]

The ITA partitions the timeline into time instants and each time instant t is associated
with its own aggregation group. Each aggregation group contains all facts that are
valid in t, and hence each aggregation group produces a single aggregation value at each
time instant t. Finally, consecutive time instants with the same value are coalesced
into constant intervals, i.e., maximal intervals over which the aggregation result remains
constant.
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The MWTA uses a time-window for each time instant t to define the values being part
in an aggregation group. That is, it extends ITA, where the window can be seen as [t, t],
with either a single offset w ≥ 0 yielding a window [t − w, t], or a pair of offsets w ≥ 0
and w ≥ 0 yielding a window [t − w, t + w ] for determining the value of an aggregation
group. The remaining process is equal to the ITA.

Example 2.8. A typical question for ITA is to ask for the number of people owning
a company. For MWTA we would extend the question by asking for the number of
people owning a company in the last 10 years (i.e., a window of (t − 10, t]). An answer
regarding the dataset is as follows:

ITA
Count Interval

1 [1980,1984)
2 [1984,1984]
1 (1984,1988]
0 (1988,1992)
1 [1992,1998]
0 (1998,2012)
1 [2012,2014]
0 (2014,2018)
1 [2016,2022]

MWTA
Count Interval

1 [1980,1984)
2 [1984,1992)
3 [1992,1994)
2 [1994,1998)
1 [1998,2008)
0 [2008,2012)
1 [2012,2016)
2 [2016,2024)
1 [2024,2032)

The STA partitions the timeline into predefined intervals forming an aggregation group.
Each fact overlapping with the interval is associated with this aggregation group. One
usually considers for the selection of intervals regular time spans such as weeks, months
or years.

Example 2.9. A typical question for STA is to ask for the number of people owning
a company per decade. An answer regarding the dataset is as follows:

Count Interval
2 [1980,1989)
1 [1989,1999)
0 [2000,2009)
2 [2010,2019)
1 [2020,2029)

Finally, the MDTA decouples the result from the aggregation group allowing to specify
parts of the output that is independent of the aggregation.

Example 2.10. A typical question for MDTA is to ask for the number of male and
female people owning a company per decade. An answer regarding the dataset is as
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Figure 2.1: Vadalog system

follows:

Count M Count F Interval
1 1 [1980,1989)
1 0 [1989,1999)
0 0 [2000,2009)
0 1 [2010,2019)
0 1 [2020,2029)

2.4 Vadalog
As previously mentioned, Vadalog is built on Warded Datalog±. In this section, we
summarize the two main architectural components of the Vadalog system, namely the
pipeline architecture and its execution model, as well as termination strategies and
cycles [BBGS20].

Pipeline and Execution Model. Vadalog follows the pipes-and-filters style, where
filters transform data between their input and output flow and are connected by pipes
(buffers). For the construction of this pipeline, Vadalog applies a logical optimizer
that rewrites certain rules (e.g., removing multiple rule heads) and applies general
optimizations, a logic compiler that transform the optimized rules to a plan consisting
of pipes and filters and a query compiler that instantiates the plan with its underlying
data sources. Then, the reasoning is triggered by the sinks of the plan, which invoke
their parents to fetch new facts until no new facts are derived. In case there are multiple
parents for a filter, Vadalog supports multiple routing options to select the next parent
to pull data from (e.g., round robin or shortest EDB path) [BBGS20].

Termination Strategies and Cycles. The idea of the termination strategies is to
guarantee termination of an in general infinite reasoning process. That is, one stops the
propagation of existential variables in such a way that all relevant facts for the reasoning
process are generated (i.e., one does not lose facts). One such termination strategy is the
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isomorphism strategy, where facts that are isomorphic to an existing fact are not further
propagated. Note that two facts are isomorphic, when they have the same predicate
name, in the same positions the same constants and there exists a bijection between the
assigned values for existential variables. The presence of non-terminating sequences and
thus the application of termination strategies appear by the presence of cycles in the
program. In such cases, one equips the filters that are part of a cycle with a termination
strategy. In case the termination criteria is met (e.g., an isomorphism is detected), the
pulled fact from the parent is discarded [BBGS20].

Figure 2.1 visualizes the architecture. Squares represent filters, and dotted squares denote
filters equipped with a termination wrapper. The arrows denote that X reads from Y ,
e.g., 2 reads data from 1. The blue nodes mark input predicates (EDBs) and the red
nodes mark output predicates (sinks).

Example 2.11. Consider Figure 2.1 again. As discussed, in the pipes-and-filters
architecture, nodes pull from their parent. For example, we see that node 2 pulls
from node 1, which represents the input. In turn, node 3 pulls from nodes 2 and 4.
Note that this pulling is quite interesting as it is part of a cycle. This requires the
termination strategy (discussed in a previous paragraph) to prevent infinite loops.
The other nodes follow the same pattern. In addition, nodes may filter results that
flow through them, making up in total the pipes-and-filters architecture.

2.5 Related Work
This section summarizes the current state of research in the several areas to which this
thesis contributes. We begin by providing an overview over discussions of temporal
reasoning in Datalog and similar languages, with an emphasis on the current research
around DatalogMTL, in Section 2.5.1. Then, we focus in Section 2.5.2 on summarizing the
discussions regarding recursive aggregation in Datalog. Finally, we discuss in Section 2.5.3
the landscape of useable benchmarks for evaluating temporal programs.

2.5.1 Temporal Reasoning
First temporal extensions to Datalog were suggested already in the 1980s. Most ap-
proaches can be grouped into two types, one focusing on implementing temporal constructs
via arithmetic operations, e.g., by applying the +1 function to model different discrete
temporal units (Datalog1S [Cho90, RKG+18, Zan12]), the other including operators from
temporal logic such as the always and eventually operator from LTL or CTL into Datalog
(Templog [AM89], DatalogLite [GGV02]). Templog as well as Datalog1S are expressively
equivalent and can be seen as subsets of DatalogMTL. There is also a temporal extension
with the Halpern-Shoham logic of intervals [KPP+16].

Newest developments are based on MTL [BKK+17a, WCGKK19, KRWZ18], an extension
of LTL to enrich the expressive power of Datalog programs. DatalogMTL has been
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Table 2.2: Data complexity classes of DatalogMTL fragments with continuous semantics

Rational Timeline Integer Timeline
First-order Prop. First-order Prop.

strat. DatalogMTL¬

PSPACE-c PSPACE-c
unknown

DatalogMTL

NC1-c

DatalogMTLlin
DatalogMTLcore NL-h
DatalogMTL⊟lin P-hard PSPACE-c
DatalogMTL⊟core NC1-h
DatalogMTLlin NL-c NL-c
DatalogMTLcore TC0-c in AC0[k] for k ∈ N, not in AC0

studied for the continuous, which also our work concentrates on, as well as for the
pointwise [KRWZ18] semantics, where the timeline consists only of time points explicitly
mentioned in a dataset. In the following, we only focus on the continuous semantics
which provides a more natural understanding of temporal operators [Rey16].

Early work on DatalogMTL primarily focused on the complexity results of fact entailment,
i.e., if a program and a dataset entail a given fact (and consistency checking, i.e., if
a given program and a dataset have a model) [BKR+18, WCGKK19, TCWCGK21,
WTCKCG21]. This includes sub-fragments that restrict the operators [WCGKK20b],
that restrict the time points to the integer domain [WCGKK20a], or that consider
only finitely materializable programs [WZCG21] as well as extensions such as stratified
negation [TCWCGK21] or negation under stable model semantics [WTCKCG21]. An
overview of the mainly derived complexity classes is given in Table 2.2. The core fragment
is defined as rules of the form B ← A or ⊥ ← A1 ∧ A2, and the linear fragment as rules
of the form B ← A1 ∧ . . . ∧ An with at most one Ai being an IDB literal or of form
⊥ ← A1 ∧ A2. DatalogMTL and DatalogMTL⊟ denote that the mentioned temporal
operator (i.e., or ⊟) is the only temporal operator allowed to be used in rules.

While most of the early work for DatalogMTL purely consisted of complexity results,
there is a proposal for a non-recursive fragment [BKK+17a], as well as an algorithm for
stream reasoning [WKCG19] for the forward propagating fragment. During our work on
the thesis, additional practical results were presented, including a DatalogMTL reasoner,
called MeTeoR [WHWCG22, WWCG22], which uses a mixture of materialization (i.e.,
least fixpoint computation) and automaton-based reasoning to check whether a given
fact can be entailed.

Closely related to Datalog are temporal extensions to ASP as well as description logic.
Most prominent is LARS [BDEF15], a temporal stream reasoning framework focusing
on finite streams by extending propositional logic. It supports the usage of a window
operator that returns a sub-stream containing only n time points. In comparison with
DatalogMTL it offers a model-centric perspective (instead of a query-centric). Further,
there is also extension of ASP with metric temporal logic [CDSS22] over the integer
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timeline. Metric temporal logic has also been considered as extensions to description
logics [GJO16].

2.5.2 Aggregation

Similarly, aggregation in Datalog has been discussed for many years. The biggest
issue regarding aggregation is that the standard Datalog fixpoint semantics is defined
over monotonic transformations (w.r.t. set containment) and aggregation breaks this
requirement. Earlier solutions [RS92, ZAO93] use non-deterministic choice constructs,
partial orders that are more powerful than set containment, or an infinite level of
stratification. These approaches were of limited generality and also required to resort to
sophisticated compilers to detect monotonic programs [MSZ13]. DatalogFS [MSZ13] is
the first approach that uses continuous aggregate functions to support monotonic counts,
sums over positive values, and extrema aggregates (min,max). Shkapsky et al. [SYZ15]
provided first practical algorithms for monotonic aggregation by introducing contributor
and group-by terms, which we use in the following as foundations for our approach. While
their work focused on optimizing aggregation for plain Datalog (i.e., a single time point),
our approach aims at building monotonic aggregates for all time points efficiently, which
requires specific handling of fact validity intervals, and dealing with time axis aggregation.
Recent work studied the definition of min and max over limit Datalog [KGKH20], but
only considers restricted use of sum and count by means of a sorted list of facts. Wang
et al. [WZW+20] studied techniques to convert non-monotonic aggregates to monotonic
ones. The newest findings study aggregations by using semirings [WKN+22, KNP+22]
while keeping the standard least fixpoint operation in place. Similar ideas can be found in
a recent extension of the ASP reasoner LARS [EK20], where a formula can be evaluated
as an algebraic expression over a semi-ring, allowing to compute all aggregates bounded
by the semi-ring along the time-axis, e.g., they support to count the number of time
points at which an expression holds.

Regarding implementation, in temporal databases a lot of approaches depend on tree
structures to handle temporal aggregation. For example, one of the first algorithms
uses an aggregation tree [KS95]. This tree contains as leaf-nodes the query results of
constant intervals (i.e., the smallest intervals where in-between no tuples end or start, so
that the aggregation value cannot change). In the worst case, this tree is not balanced,
yielding a linked list of values. In addition, different suggestions were proposed that
use different tree structures, such as AVL-Trees [BGJ06] that are used to keep track of
the end-points of the tuples and add the result of an interval, if an endpoint of one of
the added tuples is reached, or MVSB-Trees [ZMT+01] (Multi Version SB-trees), based
on SB-Trees [YW03] and Multiversion B-Trees [BGO+96] that focus on a particular
interval and key-range. Newest findings are based on a temporal index [KMV+13], i.e., a
structure containing two data structures, (i) an event list that marks which entries are
activated or invalidated and (ii) a version map that keeps track of which events were
visible at a certain version (time) in the database. In addition, it uses a checkpoint table
to store which rows are active after a certain point in time to avoid recalculation for each
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query. Calculating an aggregation requires a sequential reading of the list, applying the
activation and invalidation operation to the current result (or in cases of non-cumulative
aggregates storing the top k values plus in addition the other values in unsorted lists for
accessing the next value efficiently). One such extension that improves the performance
is a sweeping-based algorithm [PH17], adding support for fixed intervals and additional
operations for constant intervals. In order to support also application time, Kaufmann
et al. [KFM+15] extended the structure with an application time event map storing the
valid events for the application times at a certain transaction time and a set of visibility
bitmaps indicating whether a row is visible (a checkpoint for the application time).

2.5.3 Benchmarks
Recent work on temporal benchmarks for databases focused on extending the widely
used TPC-H benchmark with temporal dimensions. Al-Kateb et al. [ACGR12] extended
the tables with temporal columns and use the original queries and generator as part of
the workload. In comparison, Kaufmann et al. [KFM+13] derive valid time from existing
information. They introduce “time travel”, audit (ignoring or providing constraints for
the time-dimensions for a single key), range-timeslice, and bitemporal queries. These
benchmarks are highly optimized for the relational model and do not focus on graph-based
structures. In addition, the benchmark generator and the benchmark dataset have not
been published and hence cannot be reused.

Similarly, time-series benchmarks, such as TSBS [Tim] or TS-Benchmark [HQC+21]
are targeting time-series databases that focus on aggregation, range and rolling window
queries, but not on joining multiple tables. TS-Benchmark uses a generative adversarial
network and random-walk to generate synthetic data based on real-world datasets.

The semantic web community has worked on several benchmarks. SRBench [ZPCC12]
is a benchmark for streaming RDF/SPRAQL queries based on linked open data cloud
using LinkedSensorData interlinked with GeoNames and DBPedia. It contains 17 queries,
including grouping per hour, per sliding window, checking for missing data over a pre-
defined timeframe, aggregation, and hierarchical queries. However, this benchmark
contains no queries that follow a cyclic pattern. The Linear Road benchmark [ACG+04]
focuses on Data Stream Management Systems, i.e., on relational data and not on a
graph-based structure. It supports window-based queries, aggregations, various kinds
of complex joins, e.g., theta joins or self-joins. SLUBM [NS13] is another benchmark
that extends the university ontology LUBM with timestamps by choosing a semester
granularity and forcing semester-specific data to expire. For this, they introduce a
“time-to-last” value to represent the expiration time of the conclusions and reuse 14
LUBM queries. CityBench [AGM15] is another benchmark that focuses on spatial and
temporal data. It supports similar queries as SRBench but focuses on real city data.

Apart from that, Timescales [Ulu19] is a benchmark generator for MTL monitoring tools
that is able to test ten different properties expressible by MTL (e.g., an event P does
not/always occur a number of pre-specified time units after/before another event Q or
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between two events Q and R). Hoxha et al. [HAF14] propose a benchmark for automotive
systems that is based on MTL queries and focuses on checking the operations of gear
changes, reached vehicle velocity, and engine speed (e.g., there should not be another
gear change within x seconds). In a recent work, Wang et al. [WHWCG22] extended
the LUBM benchmark with temporal rules and data, making it possible to benchmark
DatalogMTL, yet missing key components such as aggregation.
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CHAPTER 3
Functionality – Temporal

Aggregation and Existential
Quantification

In this chapter, we introduce two key capabilities for knowledge graph reasoning missing
in DatalogMTL that are similar to the extensions that transform Datalog into Vadalog.
The first contribution extends DatalogMTL with monotonic aggregation. This work is
based on the paper [BNS21a] and is presented in Section 3.1. The second contribution
extends DatalogMTL with existential quantification and is based on the paper [LNSW23],
where our main contribution was on the applied aspects of the paper. We introduce the
key definitions and an overview of the theoretical results as well as a novel algorithm in
Section 3.2 and present the evaluation in a following chapter. Finally, we summarize the
chapter in Section 3.3.

3.1 Monotonic Aggregation for DatalogMTL
The aggregation of temporal data is an essential capability in many data science workflows
as it allows to summarize data along the timeline. Typical scenarios are Internet of Things
(IoT) applications, where temporal data from heterogeneous sources (e.g., sensor streams)
is aggregated [BGZ+20], state-of-the-art security information and event management
systems (SIEM) with time-based alerts on aggregated log events [YOO+13], or the
analysis of economic phenomena, where aggregation over time series is traditionally used
for many settings such as the comparison of seasonal data or the detection of economic
trends.

Especially for the economic domain, it has been shown that a Datalog-based knowledge
graph with monotonic aggregation (i.e., aggregation that is only increasing/decreasing
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with new values) provides sufficient expressive power and scalability in many applications
of the financial realm, including company ownership, fraud detection or prevention
of potential takeovers [BMNS20]. Consequently, it is logical to build on the work of
non-temporal aggregation and consider a number of paradigmatic use cases of temporal
reasoning and aggregations that have emerged as a basis for further analysis.

• UC1: Revenue Calculation. Shareholders are interested in the revenue of a
company per week/month/year or over the complete lifespan.

• UC2: Number of Trades. Financial analysts are interested in the number of
trades in the last hour/day.

• UC3: Company Ownership/Shares. Detecting hidden company ownerships
is important to study and, if the case, prevent company takeovers. Having this
information not only for a single point in time would provide deeper insights on
the takeover determinants and would improve the prediction accuracy.

• UC4: Change of Control. Analysts wish to analyze ownership structures over
time, e.g., monotonically increasing or decreasing shareholding.

In summary, these four use cases highlight different aggregation scenarios. We consider
the first three use cases as time-point aggregation as the aggregation is applied on single
time points, or time points in an interval. That is, UC1 requires intervals of fixed periods
(which may vary in size, e.g., a month has 28 to 31 days), UC2 has a moving window of
fixed size (e.g., an hour, a week) and UC3 requires to aggregate temporal information
recursively over structures (e.g., over paths of arbitrary length). Differently from the
previous cases, UC4 requires aggregating potentially along the entire time axis and is not
bounded by any pre-determined interval; thus, we talk about time-axis aggregation.

In this section, we investigate monotonic aggregation in DatalogMTL. First, we derive
in Section 3.1.1 a set of requirements for temporal aggregation which focus on general
desiderata for declarative languages. Then, in Section 3.1.2 we focus on time point
aggregation, discussing use cases UC1 to UC3 and provide the syntax and semantic of
time point aggregation. Thereby, we introduce an additional granularity operator for
DatalogMTL for covering spanning time aggregation and introduce an algorithm that
take into account the intervals in the computation of the monotonic aggregates. We
finish in Section 3.1.3 with a discussion on time-axis aggregation. In detail, we study the
syntax and semantics of detecting monotonic trends and provide an efficient algorithm
for computing those trends.

3.1.1 Requirements
In this section, we analyze the requirements of temporal reasoning and aggregation in
DatalogMTL. We first consider general requirements that are desirable in a declarative
AI solution and then instantiate them into specific requirements for temporal aggregation:
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123232321

tradeInterval

tradeCount

This example has five trade events already extended to one-hour intervals. The five top-most intervals
denote all tradeInterval predicates. Vertical, dashed lines show all iPoint predicates. The intervals at
the bottom refer to the final result, that is, the tradeCount predicates.

Figure 3.2: Example for number of trades per hour

RQ1: Declarative. While the aggregation over temporal data can be simulated to a
certain extend in Datalog, managing such temporal properties calls for complex interval
checking logic and arithmetic. This easily leads to an error-prone and labor-intensive
procedural approach which has to be repeated for each desired aggregation. Declarative
temporal operators that specify what should be done instead of how it should be done
avoid such pitfalls.

Example 3.1. A baseline implementation for computing the number of trades for
the last hour would first extend time-point intervals to an hour-long intervals, then
split the intervals into independent “counting” intervals—at each start or end of some
interval in the data the count changes, i.e., either a trade is added or removed from
the data—and finally count the number of entries per interval. We have provided such
a sketch in Figure 3.1 and an example of this sketch in Figure 3.2.

RQ2: Implicit Time. Explicit time in rules provides the user the possibility to access
and modify temporal properties. This increases the degree of freedom to handle temporal
operations and thus requires certain semantic restrictions for the chosen operations
to block arbitrary rule behavior. Implicit time handling, such as in temporal logic or
DatalogMTL, does not have such issues, allowing for a fully declarative, composable
solution.

Example 3.2. For example, if time is explicit part of tuples and manipulated using
arithmetic, a user can add arbitrary arithmetic operations to the start and end points
of a rule as seen in the following examples:

R(S + 5, E + 5) ← P (S, E) R(S ∗ S, E + 5) ← P (S, E)

With implicit time in DatalogMTL, the information is handled via temporal operators,
which expresses the first rule as follows, while the second rule is not possible to be
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3.1. Monotonic Aggregation for DatalogMTL

expressed in DatalogMTL:

R ← [5,5]P

RQ3: Optimizability. Temporal data often stays the same for a longer interval (e.g.,
the president of a country is elected for multiple years), while temporal operations
are defined per time point (e.g., counting the number of shares of a company). While
declarative operators and implicit time already lead to a certain degree of optimizability,
any operators defined should take this fact into account and exploit the evaluation over
intervals for yielding an optimization evaluation of the operator.

Example 3.3. For example, if we have two facts A(3)@[0, 4] and A(2)@[2, 5], we only
have changes in the aggregation values at time points 0, 2, 4 and 5. That is, we require
in total an aggregation in the range [0, 2), [2, 4] and (4, 5] with the results 3, 5, and 2
respectively.

We also need support for fundamental types of temporal aggregation, as e.g., required by
the archetypal use cases discussed in the beginning of Section 3.1:

RQ4: Moving window Temporal Aggregation. The ability to aggregate over a
fixed time window, e.g., aggregate all values across the last hour. This should at least
support aggregates min, max, count, sum.
This allows the scenarios of UC2 and UC3.
RQ5: Span Temporal Aggregation. The ability to aggregate over a fixed interval,
e.g., aggregate all values from the month of April 2021. This should at least support
aggregates min, max, count, sum.
This allows the scenarios of UC1 and UC3.
RQ6: Time Axis Aggregation. The ability to aggregate over intervals of arbitrary
length, e.g., finding periods of time where values are monotonically increasing (a temporal
trend in the data). This should at least support monotonic increases and decreases.
This allows the scenario of UC4.
Finally, we note that UC3 also uses recursion as provided by Datalog, not explicitly given
as a requirement. It however, would be hard to meet in a system that does not support
recursion.

3.1.2 Time Point Aggregation
In this section, we take on the requirements for moving window and span temporal
aggregation we have laid out and introduce our core approach based on declarative
operators with implicit representation of time. In particular, we focus on moving window
and span temporal aggregation and show efficient algorithms extending the application
of the standard non-temporal aggregations [SYZ15] to the temporal context. Time axis
aggregation (RQ6) is dealt with in the next subsection.
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Moving Windows

The first type of aggregation we discuss are moving window aggregations (e.g., covering
the last hour; RQ4). As discussed in Section 2.3, this form of aggregation includes
per time point t all the facts that have been valid between t − w and t, where w is
some arbitrary window size. For this, we build upon DatalogMTLF P and structure our
aggregation into two components. First, we use the operator to extend each time point
to the window size w and then we apply the non-temporal aggregation operation [SYZ15]
for each time point.

Syntax. So far, DatalogMTL does not contain any operator that enables the aggregation
of values. Therefore, we start with the definition of the syntax of time point aggregation
for DatalogMTL. by extending the DatalogMTL normal form (cf. preliminaries) with an
additional time point aggregation rule of the following form:

P0(s0, x) ← x = aggr(P1(s0, s1, a)) (3.1)

where aggr is the aggregation type (e.g., count, sum), P1 and P0 are predicates, s0 are
the group-by terms, s1 are the contributor terms for sum and count, and a the aggregate
term. In the following, we assume for count that a is the constant term 1. Note that P1
has arity of size |s0| + |s1|, in case aggr is of type count, else |s0| + |s1| + 1 and P0 has
arity |s0| + 1.

Semantics. We define the semantics of the newly introduced rule on top of monotonic
aggregation in plain Datalog [SYZ15]. For this, we consider per time point t a set of all
valid facts at t and apply the aggregation rule in plain Datalog over this set of facts:

M, t |=ν x = aggr(P (s0, s1, a)) if
Π = {P(s0, s1, a) → AggrResult(s0, aggr a, s1 )} and
S = {P (s) | M, t |=ν P (s)} and R = Eval(S, Π) and
ν(x) ∈ {u | AggrResult(s0, u) ∈ R}

where s stands for the sequence of terms (s0, s1, a), AggrResult is a predicate storing the
aggregation value, and Eval returns the sets of facts resulting from the evaluation of Π
on S, using the aggregation in plain Datalog.

Example 3.4. Let us show the benefits of using native temporal operators by ex-
pressing UC2 in DatalogMTL extended by monotonic aggregation. Rule 1 extends
the interval of Trade facts to one hour (assuming a time granularity of seconds) and
Rule 2 applies the count operation, using the trader account u as the group-by term
and a unique identifier id as the contributing term, to derive the number of trades for
each time point.

tradeInterval(U, Id) ← [0,3600)trade(U, Id) (1)
tradeCount(U, M) ← M = mcount(tradeInterval(U, Id)) (2)
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3.1. Monotonic Aggregation for DatalogMTL

Algorithm 3.1: Calculation of time point aggregation
Input: an aggregation type T , number of group-by terms g, the aggregation

predicate A, and a set of facts D
Output: A set of aggregated facts B

1 aggrResult := ∅;
2 cStorage := ∅;
3 foreach α@σ in D ; matching predicate of A do
4 a, groupByKey, cKey = getData(α, A, T , g);
5 aggrVals = aggrResult[groupByKey];
6 cVals = cStorage[groupByKey][cKey];
7 if T = mmin then
8 UpdateList(aggrVals, a, σ−, σ+, (a, b) => min(a, b));
9 else if T = mmax then

10 UpdateList(aggrVals, a, σ−, σ+, (a, b) => max(a, b));
11 else
12 changes := UpdateList(cVals, a,σ−,σ+,(a, b) => max(a, b));
13 foreach {e, σ−

2 , σ+
2 } in changes do

14 UpdateList(aggrVals, e, σ−
2 , σ+

2 , (a, b) => a + b);
15 cStorage[groupByKey][cKey] = mergeAdjacentInterval(cVals);
16 aggrResult[groupByKey] = mergeAdjacentInterval(aggrVals);
17 return aggrResult.values()

This example immediately highlights the visual and usability advantages of using
temporal operators compared to Figure 3.1.

Algorithm. Our algorithm for time point aggregation extends the materialization pro-
cedure provided in Algorithm 2.1 to efficiently handle rules with aggregations. Whenever,
we have an instance of a rule of form 3.1, we apply Algorithm 3.1 to derive a set of
facts (for the head predicate) which are added to the dataset. That is, in comparison to
existing DatalogMTL rules, the rule is evaluated using the current dataset, and not on a
single grounding of the rule. The algorithm takes as input the type T of the aggregation
(e.g., min, max, etc.), the aggregation predicate A, and a number of group-by terms g; it
returns as output a set of facts with arity g + 1, where the first g terms are the group-by
terms followed by the aggregated value.

Line 1 defines a map, whose key is the group-by clause, and the value is an ordered
set (per time-interval) of the current aggregation values, which, by construction of the
algorithm, can contain only non-overlapping time intervals. Line 2 defines a similar
map, storing the intermediate results of specific contributor terms. Line 3 iterates over
all currently derived facts (denoted as D to match the materialization procedure in
Algorithm 2.1) filtered by the matching predicate name. Lines 4-6 extract the relevant
properties of the fact and retrieve the current sets for the provided keys. In particular,
the function getData maps the first g terms to the groupByKey, the last term to a and the
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3. Functionality – Temporal Aggregation and Existential Quantification

Algorithm 3.2: UpdateList for temporal aggregation
1 Function UpdateList(list, value, intStart, intEnd, aggr):
2 changes := emptyList;
3 if list.isEmpty() then
4 list.append({value, intStart,intEnd});
5 changes.append({value, intStart,intEnd});
6 return changes;
7 it := list.iterator();
8 while list.hasNext() do
9 el := list.next();

10 if intStart > el.intEnd then continue;
11 if intEnd < el.intStart then
12 it.prev();
13 break
14 if intStart < el.intStart then
15 it.prepend({value, intStart, prec(el.intStart)});
16 changes.append({value, intStart, prec(el.intStart)});
17 intStart = el.intStart
18 if intStart > el.intStart then
19 it.prepend({el.value, el.intStart, prec(intStart)});
20 el.intStart = intStart;
21 if intEnd < el.intEnd then
22 it.append({el.value, succ(intEnd), el.intEnd});
23 el.intEnd = intEnd;
24 newValue := aggr(el.value, value);
25 changes.append({newValue - el.value, el.intStart, el.intEnd});
26 el.value = newValue;
27 intStart = succ(el.intEnd);
28 if intStart ≤ intEnd then
29 it.append({value, intStart, intEnd});
30 changes.append({value, intStart, intEnd});
31 return changes

remaining terms to the cKey (contributor Key). Then the algorithm branches depending
on the aggregation type. For instance, we continue with Line 7 for monotonic minimum,
Line 9 for monotonic maximum, or with Line 11 for monotonic count and sum. In case of
min or max (Line 7-10) we can directly update the final result whereas for count and sum,
we first calculate the highest value per contributor (Line 11). As such value can only
increase over time, we just consider the difference with respect to the previous contributor
value for a certain interval to avoid full recomputation of the aggregate value (Lines
13-14). At the end (Lines 15-16), we iterate over the lists and call mergeAdjacentInterval,
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3.1. Monotonic Aggregation for DatalogMTL

which, as the name says, merges non-overlapping adjacent intervals with the same value
to reduce the list size and write the resulting intervals back to the storage. Line 17
returns all output facts of the algorithm (that is, it removes the required grouping for
the calculation).

Example 3.5. Consider the aggregation of tradeInterval according to Rule (2) in
Example 3.4 with the following incrementally added tradeInterval to the dataset:

tradeInterval(u1, id1)@[1, 6) tradeInterval(u1, id2)@[7, 12)
tradeInterval(u1, id3)@[3, 8) tradeInterval(u2, id4)@[9, 14)
tradeInterval(u2, id5)@[5, 10)

Algorithm 3.1 computes the following values (gK is groupByKey, cK is cKey):

a gK cK aggrVals (L5) changes aggrVals (L16)
1 u1 id1 ∅ [{1, [1, 6)}] [{1, [1, 6)}]
1 u1 id2 [{1, [1, 6)}] [{1, [7, 12)}] [{1, [1, 6)}, {1, [7, 12)}]
1 u1 id3 [{1, [1, 6)},

{1, [7, 12)}]
[{1, [3, 8)}] [{1, [1, 3)}, {2, [3, 6)}, {1, [6, 7)},

{2, [7, 8)}, {1, [8, 12)}]
1 u2 id4 ∅ [{1, [9, 14)}]
1 u2 id5 [{1, [9, 14)}] [{1, [5, 10)}] [{1, [5, 9)}, {2, [9, 10)}, {1, [10, 14)}]

The UpdateList function is detailed in Algorithm 3.2. It iterates over a list of intervals
and updates it with the new values. In case the interval list is empty, it just adds the
interval (Lines 3-6), otherwise it searches for the first interval starting after the interval
to be inserted (Line 10). Then, it checks whether there is some interval to be inserted
before the current interval (Lines 14-17), modifies the boundaries of the current entry in
case the interval starts or ends in this entry (Lines 18-23), and updates the value of the
current entry (Lines 24-27). If the end of the list is reached or the inserting interval ends
before the next list entry (Lines 10-12), it adds the remaining interval to the list (Lines
28-30).

Note that storing the aggregation result enables an efficient incremental approach in
the algorithm, so that in further applications of the derivation rules, only partial “delta-
updates” are computed. For this reason, we skip the initialization of the global variables
and keep the current values. In addition, in Line 3 we do not check over all facts, but
only over the newly derived ones. We use the function symbols prec and succ to reference
the preceding (resp. succeeding) interval points and use them to harmonize the interval
endpoints.

Theorem 3.1. Algorithm 3.1 has worst-case runtime O(n2) and worst-case memory
consumption O(n), where n is the number of facts contributing to the aggregation. The
output has maximum size O(n).
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Proof. We first show the space requirements. For this, we consider UpdateList, which is
the only part where new data is added, where we show a space requirement of O(n). Let
us start with the list which in total contains at most 2n entries. There are two different
options: (1) the list is empty, then the fact is added (Line 3-6), which creates at most
one entry for a single fact, or (2) the set is not empty, then the number of added facts
depend on existing facts in the list. It is clear that Line 14-17 (resp. 18-20), only fire
at most once, that is when the new interval to be inserted starts (resp. ends) inside an
existing interval. The same applies when the interval starts or ends not in an existing
interval, where Line 14-17 add the starting interval before the current entry and Line
28-30 append the ending interval after the current entry. This in total creates at most 2
new entries. It remains to show the additional firings of Line 14-17. If n entries exist in
the set, there can be a maximum of n − 1 gaps. It is clear that a gap is only created
when the inserted interval fits between two existing intervals, requiring only 1 new entry.
So, in worst case, Line 14-17 only fill up the remaining budget of 2n entries. Let us now
consider changes. In worst case, when the new interval spans over the complete list, then
each entry in the list requires one changes entry, that is in total at most 2n entries. In
total, this yields O(2n + 2n) = O(4n) = O(n) as the space bound.

For runtime, we can build upon the space requirements. It is clearly visible that the
runtime for mmin and mmax equals to the first part of msum and mcount, i.e., the
update operation of line 11 and 9 are equal for mmax or similar for mmin. Hence, we
only have to consider the else part inside the outer foreach loop. For each fact (O(n)),
we update the contributor set (Line 13) and then apply updates to the aggregation value
(Line 15-16). We start by showing the runtime of the update for the contributor set. It
is clear that UpdateList iterates once over the list, which runs in O(2n) in worst case.
We now consider the update process and show that we will not exceed the runtime of
the updating process. We have shown that the space bound of aggrValues as well as
changes is O(2n). Since those sets are ordered, we can scan both sets together within an
one-pass iteration by checking the boundaries of the following intervals. Hence, we do not
exceed the runtime of O(2n). The same applies to the merging operations, which iterates
over the list once. This concludes the argument that the algorithm takes O(2n) = O(n)
time in worst case for a single added value. Now we consider that n facts contribute to
the aggregation, hence the algorithm is executed n times and thus runs in O(n2). The
final flattening step loops over the aggrResult of size O(2n) and maps the result to the
appropriate format of the output. Hence, the output size is also at most O(n).

Theorem 3.2. Algorithm 3.1 is sound and complete.

Proof. Let us start with the completeness of the algorithm. We have to show that for each
aggregation predicate in the dataset and for each interval of the aggregation predicate
a value is derived in the result. The only place where we add values to the result is
inside of UpdateList, which is executed with each fact and interval in the dataset. On a
high-level this function iterates over the list and inserts values into the list whenever the
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current fact contains a range in the interval which is currently not covered in the list.
There exist multiple cases of how two intervals can overlap:

• The list is empty. The full interval is added and returned (Lines 3-6)

• The interval starts but not ends before the next list entry. The interval is inserted
up to the start of the next list entry (Lines 14-17) and the start value is then
updated to the end of the next list entry (Line 27).

• The interval starts inside a list entry. The interval is split (Lines 18-20) and the
start value is then updated to the end of the next list entry (Line 27).

• The (remaining) interval starts after the last list entry. The interval is inserted
(Lines 28-30).

• The (remaining) interval ends between list entries. The interval is inserted (Lines
28-30).

• The interval ends inside a list entry. The interval is split (Lines 21-23) and the
start value is then updated to the end of the next list entry (Line 27).

At the end of this loop, by the above cases, there exists a value for each time point in
the interval, thus the algorithm is complete.

Let us now consider the soundness of the algorithm. We have to show that each derived
interval contains the correct value. This is for mmin the lowest possible value and for
mmax, msum and mcount the highest possible value at each time point. Following the
argument for completeness, the only place where we change the values of one interval
is inside of UpdateList, which is executed with each fact in the dataset. In detail, this
update is given by the chosen aggr-function in Line 24 of UpdateList that calculates the
correct value for each interval. This function is triggered for each already existing entry
that may change (due to the splitting in Lines 18-20 and 21-23) or missing entry of the
list, thus the algorithm is sound.

Spanning Intervals

The next type of aggregation we discuss is span temporal aggregation (i.e., aggregating
values per period, e.g., months that vary between 28 and 31 days). While for moving
windows, we could use an existing temporal operator to extend the interval to the desired
window size, for span temporal aggregation no such operator exists in DatalogMTL.
Therefore, we introduce an additional granularity operator that extends intervals to their
complete unit of interest, e.g., an interval from the 15th of March to 17th of April to the
1st of March to the 30th of April. Such kinds of operators have been successfully applied
in the context of temporal databases (cf., Bettini et al. [BJW00]).
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Syntax. We extend the DatalogMTL normal form to formally define the new granularity
operator with an additional rule of the following form:

P0(s0) ←
unit

P1(s1) (3.2)

where is the new granularity operator that extends the interval to the full period of an
interest and unit is the time unit of interest, e.g., day, month, or year.

Semantics. The semantics of the operator is defined as follows:

M, t |=ν

unit
A if M, s |=ν A for some s with conv(t, unit) = conv(s, unit)

where conv converts the time point to the provided time unit. For example, the date
31.12.2020 with unit year, would be converted to 2020.

Example 3.6. Let us demonstrate the span temporal aggregation by expressing UC1.
Rule 1 extends the interval of the sales predicate to its corresponding year and Rule 2
applies the sum operation, using the Id as contributing term and Price as aggregation
term, to derive the revenue of the year.

yearSale(Id, Price) ←
year

sale(Id, Price) (1)

revenue(M) ← M = msum(yearSale(Id, Price)) (2)

Looking Ahead. With the introduced granularity operation, we are able to extend
intervals to periods of interest and combined with the DatalogMTL operators we are
able to offset and extend the periods of interest. Yet, there exist typical operations that
require more advanced reasoning techniques. For example, in the financial domain we
wish to compare the revenue of a year on a weekday basis. While it is possible to some
extend to handle this with the available operations (e.g., grouping facts per weekday with
a join and then extending them to a year as visualized in Example 3.7), we suggest for
such requirements the introduction of unwrapping operations that map the timestamp to
an appropriate representation in plain Datalog, e.g., by introducing rules of the following
form:

saleEscaped(Id, Price, weekday(t)) ← Sale(Id, Price)@t

An implementation of the unwrapping operation is considered in Chapter 5.

Example 3.7. In DatalogMTL the given example of computing the revenue basis of
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a year on a weekday basis could be formulated in the following way:

weekday(monday)@[20220103, 20220104)
weekday(tuesday)@[20220104, 20220105)
. . .

weekday(W) ← [7d,7d]weekday(W)
saleGroup(W, Id, Price) ← sale(Id, Price), weekday(W)

yearSaleGroup(W, Id, Price) ←
year

saleGroup(W, Id, Price)

revenue(W, M) ← M = msum(yearSaleGroup(W, Id, Price))

3.1.3 Time Axis Aggregation

So far, we have focused on aggregating values per time point. In this section, we now
move to aggregations along the time axis. As introduced in UC4 and RQ6, this means
we need to consider adjacent time points and summarize their changes over time. In this
work we focus on one concrete type of time axis aggregation that was raised as important
requirement by industrial stakeholders from the financial domain, namely the detection
of whether a trend is monotonically increasing/decreasing over time. Let us call it minc
resp. mdec. This is effective in many domains, e.g., that of change of control we have
introduced, but also for example population counts. We first start with an example and
consider the desired behavior.

In the following, we assume that the domain of this type of time axis aggregation is
that of disjoint intervals, and so, for a single group-by key, no ambiguity arises w.r.t.
the aggregation term. This makes time axis aggregation fully orthogonal to time point
aggregation, where, instead, intervals are combined. Also, time point aggregation can
be effectively used to disambiguate values per time interval (e.g., by considering their
maximum/minimum resp. the summation) before proceeding with time axis aggregation.

Example 3.8. Assume that we want to detect changes of control as described in
UC4. Then, we are interested in finding all intervals in which the number of shares
has been monotonically increasing as well as the minimum and maximum values in
those intervals. Assume now that the atom shares(P, C, S) represents the number of
shares S that an investor P owns of a company C. Then a possible operator has to
take as argument the number of shares, groups them by investor and company and
returns as output the lower bound (i.e., the leftmost value) and the upper bound (i.e.,
the rightmost value) per monotonically increasing interval. This is exactly shown in
Rule 1, which applies the monotonic increasing operator (minc) to derive the lower
and upper point of the monotonic increasing interval.

sInc(P, C, L, U) ← L, U = minc(shares(P, C, s)) (1)
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As for time point aggregation, in the following we (i) provide a syntax for time axis
aggregation, (ii) specify the semantics, and (iii) suggest an algorithm for the operations.

Syntax. For time axis aggregation, we build upon the syntax of time point aggregation
(Equation (3.1)) and generalize it to a generic form supporting multiple output values. For
this, we extend the DatalogMTL normal form with an aggregation rule of the following
form (actually already used in Example 3.8):

P0(s0, x) ← x = aggr(P1(s0, s1, a)) (3.3)

Functor aggr is the name of the time axis aggregation, in our case minc or mdec, and P1
and P0 are predicates. Like in time point aggregation, s0 defines the group-by clause, s1
the contribution terms (not used for detecting monotonic trends but kept for uniformity
reasons), and a is the aggregation term of P1. Over time, there can be multiple values
of interest, for example the start and end value of a monotonically increasing interval.
Hence, the function returns a vector x = x1, . . . , xn of aggregation values instead of a
single value. For minc and mdec we use x = L, U to denote the lower and upper bound
of the monotonic interval.

Semantics. With the requirement of using disjoint intervals, the semantics for detecting
monotonic trends can be easily formulated by moving from time points to time intervals,
i.e., M, σ |=ν φ if M, t |=ν φ for all t ∈ σ as we see in the following semantic definition:

M, σ |=ν l, u = minc(P1(s0, a)) if M, σ |=ν M(P1, s0, l, u)
M, σ |=ν M(P1, s0, a, a) if M, σ |=ν P1(s0, a)
M, σ |=ν M(P1, s0, l, u) if M, σ1 |=ν M(P1, s0, l, u1) and

M, σ2 |=ν M(P1, s0, l2, u) and
u1 ≤ l2 and σ+

1 ≺ σ−
2 and σ = σ1 ∪ σ2

where ≺ is the predecessor relation (i.e., the intervals are adjacent), and M a fresh
predicate for deriving minc. In short, the second definition states that a constant value
in an interval is both lower and upper bound, and the third one merges two intervals if
their lower and upper bounds match. The semantics for mdec is analogous, with u1 ≤ l2
changed to u1 ≥ l2.

Algorithm. Like for time point aggregation, we provide an efficient algorithm for minc
and mdec which uses the benefits of native temporal operators. Algorithm 3.3 takes as
input the aggregation predicate A, a number of group-by indices g and the currently
derived set of facts D and returns as output a set of facts B. Line 1 defines an empty
map for the result, where the keys are the group-by terms, and the values are B-trees with
the intervals as key of the entries. Then for each fact, we add the fact to the appropriate
group-by clause (Lines 3-5). We then merge the inserted fact (Line 7-12) with their
adjacent intervals, if they exist, so that we derive the largest possible, monotonically
increasing interval. For deriving monotonically decreasing intervals, the comparison
operator in Lines 7 and 11 has to be changed from ≤ to ≥. Line 13 returns all output
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Algorithm 3.3: Calculation of monotonic monotonically increasing intervals
Input: number of group-by terms g in α, and the aggregation predicate A, a set

of facts D
Output: A set of aggregated facts B

1 B := ∅;
2 foreach α@σ in D ; matching predicate of A do
3 a, groupByKey := getData(α,A,g);
4 aggrGroup := X [groupByKey];
5 nNode := aggrGroup.insert((a, a)#σ);
6 lNode := nNode.previous;
7 if σ− = lNode.σ+ ∧ lNode.max ≤ a then
8 Remove lNode, nNode from aggrGroup;
9 nNode := Insert (lNode.min, nNode.max)# lNode.σ−, σ+ to aggrGroup;

10 rNode := nNode.next;
11 if σ+ = rNode.σ− ∧ a ≤ rNode.min then
12 Apply merging for rNode similar to lNode;
13 return X.values()

facts of the algorithm (that is, it removes the required grouping for the calculation). Note
that, similarly to Algorithm 3.1, delta-updates can be applied by skipping Line 1 of the
algorithm.

Example 3.9. Consider the computation of monotonic trends according to Exam-
ple 3.8 with the following dataset:

shares(p1, c1, 5)@[4, 7) shares(p1, c1, 8)@[7, 9) shares(p1, c1, 3)@[3, 4)

Algorithm 3.3 computes the following values:

a groupByKey aggrGroup (L5) aggrGroup (L12)
5 (p1,c1) [(5, 5)#[4, 7)] [(5, 5)#[4, 7)]
8 (p1,c1) [(5, 5)#[4, 7), (8, 8)#[7, 9)] [(5, 8)#[4, 9)]
3 (p1,c1) [(3, 3)#[3, 4),(5, 8)#[4, 9)] [(3, 8)#[3, 9)]

Theorem 3.3. Algorithm 3.3 has runtime O(nlog(n)) in the worst case and worst-case
memory consumption O(n), where n is the number of facts contributing to the aggregation.
The output has maximum size O(n).

Proof. First, we show the space requirement of O(n). Each fact can be added to the
tree at most once (Line 5). This state is reached if the facts are strictly monotonically
decreasing when monotonically increasing is asked. The other lines remove more facts
than those added, hence the size of the list only reduces. This ends the argument of space
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requirement of at most O(n). This also shows the output size of O(n) of the algorithm.
Now, we show the runtime complexity of O(nlog(n)). Inserting and removing facts in
a B-tree has a complexity of O(log(n)). We then consider that we have to execute this
for each fact contributing to the aggregation, i.e., O(n) times. This yields a runtime
complexity of O(nlog(n)).

Theorem 3.4. Algorithm 3.3 is sound and complete.

Proof. Let us start with completeness, which follows immediately. Since all values (with
their intervals) are inserted in the tree, the algorithm does not miss any case. We now
show the soundness of the algorithm. We show this by induction. In the base case, we
add the first interval to a group-by key, which is simply the value of the fact. We now
assume that we have maximal monotonic increasing intervals and that we add another
fact. Since the considered facts must have a disjunct interval by definition, there are
three cases, we have to distinguish.

• The added interval is not adjacent to any neighbor. Then we are done, and we
have the maximum monotonic increasing interval.

• The interval is adjacent to the left neighbor. If the two monotonic intervals are
increasing, then by Line 7-9, we merge the two neighbors creating a new bigger
maximal interval over the currently maximal interval of the left neighbor and the
added interval and update the bounds.

• The interval is adjacent to the right neighbor. We have two cases, either the inserted
interval is not adjacent with the left neighbor, or the interval is also adjacent with
the left neighbor. In both cases, we assume that the current interval is already the
maximal interval regarding the left boundary (i.e., it has already been merged with
the left neighbor in case the intervals are adjacent and monotonic (see Line 9)). By
Line 11, we merge the current maximal interval with the right interval in case they
are monotonic, creating the biggest monotonic interval.

Hence, we derive always the maximum interval, and the algorithm is sound and complete.

3.2 DatalogMTL with existential quantification
Existential rules allow the invention of new values in the reasoning process. This is
especially interesting in the domain of knowledge graph reasoning as it allows to enrich
incomplete data with domain knowledge and is heavily applied among other uses in the
Vadalog system for non-temporal reasoning [BSG18].

The usage of existential rules for temporal reasoning has been studied in the context
of temporal description logics [AF05] and atemporal languages with linear-order opera-
tors [ABBV18], which can simulate some form of temporal reasoning. However, there is
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a lack of comprehensive research on highly expressive temporal extensions of Datalog as
decidability was obtained only in very restrictive cases, for example when the temporal
domain is bounded [UKE22].

In this section, we introduce DatalogMTL∃, an extension of DatalogMTL with existential
rules. In Section 3.2.1 we define the syntax and two different semantics, a natural one,
where existential rules are evaluated at each time point, and a uniform one, where an
existential variable of a rule gets assigned the same constant for each time point. Then,
we provide the main complexity results for the given fragments in Section 3.2.2. Finally,
in Section 3.2.3 we provide an extension of the materialization algorithm of Section 2.2
to existential quantification for the only decidable fragment under OWA.

Note that as mentioned earlier, we mainly contributed to the applied results of the
studying of existential quantification, thus we refer an interested reader to the paper for the
theoretical details [LNSW23] as well as to an extended abstract of our colleagues [LW22].

3.2.1 Syntax and Semantics of DatalogMTL∃

Similar to existential rules in Datalog, we extent DatalogMTL with (temporal) existential
rules to obtain DatalogMTL∃.

Formally, an existential rule is given as

∃X M ← M1 ∧ · · · ∧ Mn, for n ≥ 0,

where X is a tuple of variables mentioned in M but not in the rule body. Similar to
Datalog, we usually omit ∃X when writing a rule. The other definitions (e.g., safe rules,
program, grounding, and so on) apply analogously to DatalogMTL, usually considering
only free variables (i.e., variables that are not existential quantified). This means for
example that a rule is safe if all its free variables are mentioned in the body or that the
grounding assigns constants to free variables.

Regarding the semantics, we distinguish between two types, a ‘natural’ semantics (N),
which is based on the standard reading of existential quantification (i.e., applying
existential quantification in the usual way, e.g., as in Datalog∃, also for DatalogMTL)
and a ‘uniform’ semantics (U) that avoids some intuitive situations for temporal reasoning:
A rule in natural semantics can invent, for an interval in which the body holds, distinct
constants for each t ∈ . This is shown in Example 3.10.

Example 3.10. Consider the following program Πex, modelling that if a person X is
CEO, that they have to work for a company C

work(X, C) ← person(X, ceo)

and a given dataset Dex consisting of a single fact person(p1, ceo)@[2008, 2012].

The natural semantics allows models where a person works for different companies
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for each time instant in the interval [2008, 2012]. Under uniform semantics there is a
single model where a person works for a company c1 between 2008 and 2012.

In detail, the definitions are:
Definition 3.2.1. Under the natural semantics, an interpretation I satisfies an
existential rule r, written as I |=N r, if for each ground rule r ∈ ground({r}) of the
form ∃X M ← M1 ∧ · · · ∧ Mn and every time point t in which I satisfies all body
atoms M1, . . . , Mn, there exists an assignment ν of constants in Dom to variables of
M such that I, t |= ν(M ). Interpretation I satisfies a program Π under the natural
semantics, written as I |=N Π, if and only if I |=N r, for each r ∈ Π.

Definition 3.2.2. Under the uniform semantics, an interpretation I satisfies an
existential rule r, written as I |=U r, if for every atom M there exists an assignment
νr,M of constants to variables of M such that for each ground rule r ∈ ground({r}) of
the form ∃X M ← M1 ∧ · · · ∧ Mn and every time point t in which I satisfies all body
atoms M1, . . . , Mn, we have I, t |= νr,M (M ). Interpretation I satisfies a program Π
under the uniform semantics, written as I |=U Π, if I |=U r for each r ∈ Π.

The semantics relate in such a way that if a fact is entailed under natural semantics by
some program and dataset, then it will also be entailed under uniform semantics, as
Proposition 3.5 shows:

Proposition 3.5. Let Π be a DatalogMTL∃ program, D a dataset, and P (s)@ a fact.
If (Π, D) |=N P (s)@ , then (Π, D) |=U P (s)@ , but the opposite implication does not
hold. This property holds under both OWA and CWA.

This proposition can be exemplified as follows:

Example 3.11. Consider the reasoning of Example 3.10 again. As the natural
semantics allows multiple models, it does not entail the fact work(p1, c1)@[2008, 2012],
i.e., Πex, Dex |=N work(p1, c1)@[2008, 2012]. However, under uniform semantics, which
enforces the same existential quantification for all time instants, there is a single
model, entailing the fact Πex, Dex |=U work(p1, c1)@[2008, 2012].

Furthermore, if we forbid the use of temporal operators, DatalogMTL∃ under either
semantics behaves exactly like Datalog∃, as we state formally next.

Proposition 3.6. Let P (s)@0 be a fact, Π a DatalogMTL∃ program not mentioning any
temporal operators, D a set of facts of the form P (s) @0, and D = {P (s) | P (s) @0 ∈ D}.
Then the following are equivalent: (i) Π, D |=N P (s)@0 under OWA, (ii) Π, D |=U P (s)@0
under OWA, and (iii) Π and D entail P (s) in Datalog∃.

3.2.2 Complexity results
In this section, we summarize the complexity results. Clearly, undecidability of N - and U -
consistency in full DatalogMTL∃ follows immediately from the well-known undecidability
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of Datalog∃. Thus, our results consider the guarded and weakly-acyclic fragments,
two useful practical fragments requested by stakeholders, which are both decidable in
Datalog∃. Note that checking S-consistency and S-entailment reduce in logarithmic
space to the complement of each other, where S ∈ {U, N}.

We observe that N -consistency is undecidable in each of these fragments, even under
the restrictive case of CWA where existentially quantified variables are bound only to
constants in ADom.

Theorem 3.7. Under both OWA and CWA, checking N -consistency for guarded as well
as for weakly acyclic DatalogMTL∃ programs is undecidable.

Under uniform semantics, we observe a similar result for guarded programs under OWA,
which implies undecidability of many other well-known fragments, such as weakly-guarded
or frontier-guarded programs. The decidability of less expressive formalisms are at the
moment unknown and up to further research.

Theorem 3.8. Checking U -consistency is undecidable for guarded DatalogMTL∃ pro-
grams under OWA.

Note that the undecidability under CWA can be shown by a reduction to the undecidability
of consistency checking of DatalogMTL with (0,1) in the head [BKK+17a]. For the case
of OWA, one can create a program which provides access to infinitely many constants
(one constant per (integer) time point) and thus allows to simulate a Turing machine. As
only integers are used in the proof, we further observe that all the undecidability proofs
apply also to the case when the timeline consists of integer time points only. In contrast,
all uniform DatalogMTL∃ programs become decidable for CWA as well as for weakly
acyclic programs under OWA.

Theorem 3.9. Under OWA, checking U -consistency is 2-EXPSPACE-complete for weakly
acyclic DatalogMTL∃ programs.

Theorem 3.10. Under CWA, checking U -consistency is EXPSPACE-complete for arbi-
trary DatalogMTL∃ programs.

Note that the upper bounds for the decidability can be shown by a reduction to a ground
DatalogMTL program by carefully constructing a set of constants (with nulls) that is
used to non-deterministically guess assignments for interpreting existential rules. The
EXPSPACE-hardness is inherited from DatalogMTL and the 2-EXPSPACE-hardness by
constructing a simulation of a Turing machine with doubly-exponentially many tape cells.

A summary of the results is provided in Table 3.1.
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Table 3.1: Summary of complexity results for DatalogMTL∃

DatalogMTL∃ G. DatalogMTL∃ W.-A. DatalogMTL∃

Natural
Semantics

OWA undecidableCWA
Uniform
Semantics

OWA 2-EXPSPACE-complete
CWA EXPSPACE-complete

3.2.3 Implementation
In this section, we provide the first approach for reasoning in weakly acyclic DatalogMTL∃

programs under uniform semantics, which is based on materialization (see Algorithm 2.1).
It is worth noting that naïve materialization of DatalogMTL (and so DatalogMTL∃)
programs, as applied in this algorithm, is not guaranteed to terminate [WTCKCG21].
However, such a procedure is sufficient for reasoning in a wide range of practical problems
and many other techniques that involve materialization as a sub-procedure.

To support DatalogMTL∃ programs we propose the adaption of a well-known technique
for weakly-acyclic Datalog∃ programs [Mar09, BKM+17] called Skolemization, in which
existential variables z in rules are replaced by Skolem terms fz(X) that depend only on
the frontier variables X (i.e., those variables that are shared between the head and the
body of a rule) and where f is a unique function symbol per existential variable in a rule
head.

Example 3.12. Consider the rule of Example 3.10. The existential variable C in the
rule is replaced by r1C(X), where r1 is a unique id of the rule, resulting in the rule:

work(X, r1C(X)) ← person(X, ceo)

The full materialization process is provided in Algorithm 3.4, which adapts the material-
ization approach for DatalogMTL to support interpretation of existential rules under the
uniform semantics. The procedure takes a DatalogMTL∃ program Π and a dataset D as
input, and returns their materialization , if it terminates, or detects that Π and D are
inconsistent. To simplify the presentation, we assume without loss of generality that Π is
in normal form (i.e., has no temporal operators in rule heads). First, the existential rules
of Π are rewritten according to the procedure described before by introducing Skolem
terms for all existentially quantified positions. Then the procedure performs in a loop,
consequent materialization steps (Lines 4–17) until inconsistency is detected (Line 13)
or the full materialization is obtained, that is, there are no more facts to be derived
(Line 17). The loop (Lines 5–16) first derives the new facts per grounded rule (Line 6),
thereby replacing the Skolem terms with constants according to a maintained set of
assignments. The set of assignments is built up successively, such that newly encountered
Skolem terms are mapped to fresh constants, while previously seen terms map to the same
constant as before (Lines 7–10), thus enforcing uniformity. Note that since the loop in
Line 5 is over ground rules, the arguments of the Skolem terms are also constants. Then
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Algorithm 3.4: Materialization under the uniform semantics
Input: A DatalogMTL∃ program Π and a dataset D
Output: A dataset representing materialization of Π and D, or ‘inconst’ if Π and

D are inconsistent
1 ΠS ← Skolemisation of Π;
2 D ← D;
3 assignments ← empty set of assignments;
4 repeat
5 for each r ∈ ground(ΠS , D ) and a (maximal) interval at which D entails

the body of r do
6 H ← head of r;
7 for each Skolem term fz(c) in H do
8 if no assignment for fz(c) in assignments then
9 d ← a fresh constant ;

10 Add fz(c) → d to assignments;
11 Replace Skolem terms in H according to assignments;
12 if H mentions ⊥ then
13 return inconst;
14 D ← D ∪ {H};
15 Coalesce facts in D ;
16 until no change to D ;
17 return D ;

(Lines 12–13), the derived head is checked for any inconsistency. Finally, the derived
facts are coalesced (Line 15), that is, facts with overlapping or adjacent intervals 1, 2
are recursively replaced with a fact over an interval 1 ∪ 2.

Theorem 3.11. Consider Algorithm 3.4 running on inputs Π and D. If the output is
inconst, then Π and D are inconsistent. Otherwise they are consistent, and for every
fact M@ mentioning only constants from Π and D, we have D |= M@ if and only if
Π, D |=U M@ , where D is the output dataset.

Proof sketch. We argue soundness by showing inductively that for every satisfying in-
terpretation I of Π and D under uniform semantics, there is a certain type of tem-
poral homomorphism from D to I, akin to the role of universal models in Datalog∃

(cf. [DNR08]). To observe correctness in the case where the output is D , it suffices to
verify that the returned D is always a satisfying interpretation of Π and D under the
uniform semantics.

It is worth observing that Algorithm 3.4 provides a sound reasoning approach for the
uniform semantics, but not for the natural semantics. Indeed, our Skolemisation approach
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introduces the same Skolem terms for all time points which satisfy the body of a ground
rule, which is in the spirit of Definition 3.2.2, but not of Definition 3.2.1.

3.3 Summary
In this chapter, we introduced two key capabilities for knowledge graph reasoning missing
in DatalogMTL. In the first part we extended DatalogMTL with various kinds of
aggregations. We focused on adding support for instantaneous, moving window and
span temporal aggregation as well as on time-axis aggregation, in particular on detecting
monotonic increasing and decreasing intervals. To this end, we provided algorithms that
efficiently integrate into the materialization process. In the second part we extended
DatalogMTL with existential quantification, a necessary extension for generating new
entities in knowledge graphs. We observed two different kinds of semantics and provided
an adapted materialization algorithm for weakly-acyclic programs under the uniform
semantics, the only fragment that has been shown to be decidable under OWA. Together,
these results are the foundations for enabling expressive reasoning capabilities for temporal
knowledge graph systems.
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CHAPTER 4
Evaluation Tooling - Fundamental

Benchmark Generator

Having laid the foundation for temporal knowledge graph reasoning in the previous
chapter, the importance to have efficient systems that interpret and execute DatalogMTL
sparks the consequential and dire need for benchmarks. This is both to measure the
performance of reasoning in such systems and to stimulate and evaluate the theoretical
underpinnings of the language at hand.

While there exist benchmarks for various kinds of use cases involving temporal data
and reasoning as introduced in Section 2.5, some of these benchmarks are not publicly
available, and nearly all of them share the common problem of neglecting recursion,
a key requirement of time-based reasoning, as we have seen and will explore further.
In particular, nearly none of the existing benchmarks tests full recursion. Also, their
coverage of aggregation is highly insufficient, as the performance of aggregation can be
measured only independently of time and in non-recursive settings.

Hence, there is a widespread wish and need for a well-established benchmark in the area
around DatalogMTL in order to ensure fair system competition. While there has been
a lot of work around DatalogMTL so far, benchmarks have been recognized as the one
missing piece to put well-established theory into practice.

In this chapter, we introduce iTemporal, a benchmark generator targeted for generating
DatalogMTL programs, including the discussed extensions in the previous chapter. This
generator is not just a set of benchmark instances, but a flexible benchmark generator
of both rules and data that can be configured for various scenarios to explore how the
systems capture the theoretical underpinnings of DatalogMTL.

This chapter is based on our ICDE paper [BNS22], were we first introduced the gen-
erator, and an extension for existential quantification established during the work on
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DatalogMTL∃. The remainder of this chapter is organized as follows: We discuss along
the lines of a running example the key capabilities of a benchmark generator in Section 4.1.
Then, in Section 4.2 we introduce the core of our benchmark generator, followed by the
aggregation module in Section 4.3 and the existential quantification module in Section 4.4.
Finally, we summarize the chapter in Section 4.5.

4.1 Requirements
In this section, we analyze the requirements for generating benchmarks of DatalogMTL.
We first consider Example 4.1, a running example, we will use throughout this chapter.
This example naturally uses the components mentioned so far – (1) recursion, (2) temporal
operators, (3) aggregation, and (4) existential quantification.

Example 4.1. The following rules feed a resource management dashboard monitoring
total expenses after each transaction.

expense(Id, P) ← salary(Id, P) (1)
expense(Id, F) ← noResp(Id)S[24,24]claim(Id, F) (2)

expenses(T) ← expense(Id, P), T = msum(P) (3)
expense(−1, T) ← (0,1]expenses(T) (4)

report(Id, T) ← expenses(T) (5)

The first two rules model possible types of expenditures for a company (indeed, many
more exist in practice). In particular, Rule 1 accounts for expenditures that correspond
to salaries, each characterized by an Id and an amount P to be paid. Rule 2 deals
with claims: if a Claim Id of value F receives no response within 24 hours, as denoted
by the since (S) operator, it will generate a new expenditure. The goal of Rule 3 is
to calculate the sum (T ) over all Expense items per timepoint t, by summing their
amount P . Rule 4 interacts with Rule 3, propagating partial sums through time by
jointly using the (0,1] operator and recursion. In particular, whenever there are
expenses in the [t − 1, t) interval, their total T is carried as a partial contributor for
the evaluation at t of Rule 3. Rule 5 introduces an existential quantified variable for
providing a unique id for an expense report.

For example, consider the facts with the given intervals:

salary(s1, 500)@0. salary(s2, 500)@120.

claim(c1, 50)@96. noResp(c1)@[96, 120].
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Then, we retrieve the following (final) facts

expense(s1, 500)@0. expense(s2, 500)@120.

expense(c1, 50)@120.

expenses(500)@[0, 120). expenses(1050)@[120, ∞).
expense(−1, 500)@(0, 120]. expense(−1, 1050)@(120, ∞).
report(r1, 500)@[0, 120). report(r2, 1050)@[120, ∞).

and the intermediary recursive results expenses(500)@0, expenses(550)@120 by Rule 3,
and by Rule 4 expense(−1, 550)@(120, ∞] and expenses(550)@(120, ∞].

Based on existing benchmark tools and our observations in Example 4.1, we recognize
the following fundamental requirements of a temporal benchmark generator:

1. Full recursion: The benchmark generator should be able to build rules that explore
full recursion for a fixed timepoint (i.e., default Datalog recursion) as well as over
the temporal domain (i.e., temporal recursion – a set of recursive rules that contains
a temporal operator).

2. Temporal Operators: The benchmark generator should at least support the temporal
operators of DatalogMTL.

3. Aggregation: The benchmark generator should be able to calculate the aggregation
per timepoint. Other forms of temporal aggregation are not required as those can
be simulated by using additional temporal operators (see Chapter 3).

4. Existential Quantification: The benchmark generator should be able to handle
existential quantified rules, at least supporting weakly-acyclic programs under the
uniform semantics.

5. Extensibility: The benchmark generator should be able to be extended with ad-
ditional features. This includes additional rule types (e.g., detection of temporal
trends, temporal constraints, etc.) as well as exchangeable components. For exam-
ple, to generate real-world like scenarios, one has to have the option to replace the
data generation by statistics of the underlying scenario.

While the first four requirements allow one to generate queries that cover ones day-to-day
programs and address the shortcomings of existing solutions, the fifth requirement ensures
that the generator can be extended in the event that additional features are required,
rather than being a generator for a single setting like existing solutions.

4.2 The Core
In this section, we present the core of our benchmark generator. We first provide a
general overview and then describe each phase of the generation algorithm in detail.
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Figure 4.1: Overview of the phases of the benchmark generator

4.2.1 Overview
The core of our generator adapts the concept of a dependency graph of Datalog programs
for the generation process, which we call a generative dependency graph. A generative
dependency graph is a graph whose nodes represent the predicate names over which our
programs are formulated, and edges represent dependencies between predicate names.
These dependencies represent templates for rules, where the tail predicate appears in
a body atom, and the head predicate appears in the head atom. Note that the plain
generative dependency graph deliberately does not contain the arities of predicates (hence
we speak of predicate names), because selecting them is an important part of generation.
Hence, this generative dependency graph is augmented in two ways: (i) each edge is
annotated by a rule type, such as type , and (ii) each node and edge are annotated by
properties. For an edge of rule type , the property is an interval (e.g., [3, 4]). For a
node, a property is the arity of the predicate.

Definition 4.2.1. A generative dependency graph is a directed graph where nodes are
predicate names. An edge may have a rule type. A node or edge may have properties,
which are pairs of property name and property value.

Note that the dependency graphs play a similar role in (recursive) data processing
systems as logical query plans play in traditional database systems and more generally,
data-flow graphs in many parts of Data Engineering: they are abstract representations
of the query. In a generator, apart from being a natural data structure for providing the
query, they allow to generate data by following this data-flow graph. Hence, the more a
given dependency graph is augmented with types and properties, the more restricted the
generated programs represented by it are. A fully augmented dependency graph (i.e., all
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(a) Graph Generation (b) Graph Normalization (c) Rule Type Assignment

(d) Rule Type Decomposition (e) Property Assignment (f) Rule Composition

expense(Id, P) ← salary(Id, P)
expense(Id, F) ← noResp(Id)S[24,24]claim(Id, F)

expenses(−1, T) ← expense(Id, P), T = msum(P)
expense(−1, T) ← (0,1]expenses(_, T)

report(Id, T) ← expenses(_, T)

(g) Rule Generation

Salary(s1, 500)@0.

Salary(s2, 500)@120.

Claim(c1, 50)@96.

NoResp(c1)@[96, 120].

(h) Data Generation

Figure 4.2: The state of the graph of Example 4.1 after each phase.

possible types and properties are set) precisely individuates one single program/query.
That is, a generative dependency graph can, in principle, be instantiated by arbitrary
DatalogMTL rules that follow the above-mentioned patterns. However, in the context of
our generator, we need more fine-grained control over this generation, allowing to modify
the generative dependency graph along the generation process.

Phases. Procedurally, the generator revolves around eight phases, visualized in
Figure 4.1. The eight-phase design was conceived to reflect real-world instances to an
arbitrary degree. We grouped the related tasks together so that each user-input (phases
1 – the generation of the plain dependency graph, 3 – the selection of rule types, and 5 –
the selection of properties) is followed by a required transformation of the graph (phases
2, 4, and 6). For real-world use cases, one provides (full) input in all three input phases
to specify the query. Yet, one often wishes to generalize to make sure to cover a broader
range of settings by omitting some of the input in phases 1, 3, and 5.

For this, all eight phases are designed in an extensible way, so that new modules can
interact with them and support the (partial) pre-configuration of certain phases (marked

71



4. Evaluation Tooling - Fundamental Benchmark Generator

in blue in Figure 4.1) by the user to support interaction during the generation process.
This means that the user can replace the graph generation with a custom graph (phase 1),
pre-assign specific rule types to edges in a graph (phase 3) and choose specific properties
(phase 5). The phases 7 and 8 produce the actual output, i.e., the query (program) and
the data. We now describe the phases in detail:

Example 4.2. Figure 4.2 shows the result after each phase for the generation of the
running example. We will reference to this example in the following subsections.

1. Graph Generation. The first step is to build a directed graph. Such graph can
be generated by either one of the many existing graph generation tools, or our
generation tool that we provide together with the benchmark generator. It offers
the possibility to control or hand-pick the desired amount or form of recursion,
especially relevant to carefully select the underlying graph structure for targeted
test scenarios.

2. Graph Normalization. This step decomposes the graph in such a way that each
node has at most two incoming edges. This simplifies the following steps without
loss of generality, as we shall see.

3. Rule Type Assignment. So far, the graph just contains nodes and edges, without
any associated semantics. In this step we assign to each edge a type, i.e., we decide
whether it represents a ⊟-, -based, etc. rule.

4. Rule Type Decomposition. We decompose edges into simplified operations. For
example, we convert a since edge to a , intersections, and a closing edge.

5. Property Assignment. In this crucial step, the interplay between the edges and
nodes is realized. We assign the arity of the nodes and decide on the attributes,
e.g., the intervals of the temporal operators.

6. Rule Composition. After having assigned the properties to the nodes, the next
goal is to generate the rules. As the dependency graph is an internal representation,
to make rules executable, we may have to merge (i.e., compose) some of them, to
facilitate the direct conversion of the graph into a query syntax that fits the target
platform.

7. Rule Generation. In the last step of the rule generation, the result of the rule
composition is used to generate the query. For the moment, we support queries
for our Vadalog system [BSG18], non-recursive queries for PostgresSQL, as well
as a restricted set of queries for QuestDB [Que21], a state-of-the-art time-series
database.

8. Data Generation. As we have seen, the availability of data is a fundamental
ingredient in a benchmark. Such data should be (i) of types that are supported by
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Figure 4.3: Result of a generated graph.

the target systems and, (ii) fitting with the generated rules so that they produce
non-empty results.

The flexibility of the system, given to the user by the possibility to choose between a
generated graph of our tool or decide for any other (partially assigned) initial graph,
combined with the non-triviality posed by the undefined (and potentially large) number
of operations causes a series of technical challenges. This includes controlling the difficulty
of recursion during graph generation, assigning the atom (node) arity, which cannot be
chosen arbitrarily but is limited by the concrete graph structure and rule types, and
generating data that is appropriate for the given flexible graph structure, all of which
have to be solved while supporting extensibility (requirement 5).

Example 4.3. For example due to the flexibility, a user who generates a benchmark
can provide as input a custom graph (i.e., skip phase 1), with partial assigned edges
(i.e., skip (some) assignments of phase 3 such as providing only the information that
an edge is temporal but not the temporal operation) with some of them containing
specific properties (i.e., skip (some) assignments of phase 5 such as providing no
intervals to temporal operators).

4.2.2 Graph Generation
This phase generates the graph that is then the input of the subsequent phases. The
structure of the graph is essential for the support of different use cases. In principle, any
off-the-shelf graph generation tool could be adopted here, however, let us discuss the
fundamental required characteristics of an optimally tunable graph generator:

• Number of Nodes. The total number of nodes to decide how large the benchmark
should be.

• Number of Inputs. The number of nodes that contain no incoming edges. This is
required to interweave the generator with possible other programs and to know for
which nodes data should be generated.
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• Number of Outputs. The number of nodes without outgoing edges. This is required
to interweave the generator with other possible programs and to know which nodes
have to be considered for generating queries.

• Percentage of nodes with multiple incoming edges. Depending on the number of
incoming edges, different rules will be generated. For example, rules (1), (2), (3),
and union require multiple incoming edges, while (4), (5), , , and linear rules
require a single incoming edge.

• Percentage of recursive edges. In order to support recursive queries, we have to
control the number of recursive edges in the graph, i.e., those edges whose presence
in the graph determine a cycle.

• Recursive complexity. Recursion can be of increasing complexity levels, starting
with trivial chordless cycles. With this parameter, the user can control recursion by
adjusting the number of connected components in which the nodes, having indegree
higher than one, are involved.

To the best of our knowledge, a graph generator that supports all these requirements
together is not present and is therefore an essential ingredient of our benchmark tool.
The parameters we use from hereinafter are either chosen from a Gaussian distribution
by providing mean and variance or by providing a value between zero and one.

Example 4.4. Figure 4.3 shows such a generated graph with 10 nodes (thereof 2
inputs, 1 output), 40% multi-edges, 20% recursive edges and recursive complexity of
0.6. Figure 4.2a shows one possible graph for the running example.

Our generator uses a multi-step build process. In the first step, we partition the graph
into strongly connected components based on the number of nodes with multiple incoming
edges. This step depends on the recursive complexity, which, as we have seen, selects
how many such nodes are put into a single strongly connected component. Then we
connect the nodes inside the strongly connected component ensuring that the number of
recursive edges is met. Finally, we connect the strongly connected components to form
a direct acyclic graph from the input nodes via the strongly connected components to
a single output node. The other outputs are given by selecting a random node in the
graph and adding a path to the output node.

Example 4.5. The parameter of recursive complexity takes a value between 0 and 1.
In case of 0 the graph is chordless, in case of 1 it introduces the maximum number of
chords possible based on the other parameters (i.e., in “worst case” a fully connected
graph).

4.2.3 Graph Normalization
The graph normalization phase has the goal of simplifying the graph to a normalized
format. In particular, we simplify the graph in such a way that (i) there are at most two
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(a) Before Normalization (b) After Normalization

Figure 4.4: Normalization of edges

incoming edges to a single node and (ii) all incoming edges to a single node belong to the
same type. While the former is independent of the user’s input, simplifies the handling
of later phases, and has to be applied for any generated graph, the latter is only required
as we support the pre-assignment of properties for the next phases to ensure flexibility of
the generation process.

Example 4.6. We visualize (i) in Figure 4.2b and (ii) in Figure 4.4, where we combine
the introduction of the middle node of a boxminus (⊟) edge and the propagation of
the intersection information, noted via the mathematical symbol (∩).

We define the normalization process as follows: Let x be the number of incoming edges
to a node n from nodes mi, with 0 ≤ i < x, and let us denote with ei the incoming edges
to n, i.e., ei = (mi, n). Then, we compute the normalization of the graph as follows:

Conversion of single-edge rules. We first start with (ii) where we first convert all rules
requiring a single incoming edge and then check for consistency. In case x ≥ 2 and
there is an edge ei whose type is none of generic (i.e., denoting it is not assigned yet),
intersection, union, since, or until then create a node o, change the edge ei to (mi, o) and
add an additional generic edge (o, n).

Type propagation. We now ensure that all incoming edges to a node belong to the same
type. For this, we ensure first that there is no conflicting assignment, i.e., (a) there are
not edges ei and ej for 0 ≤ i, j < x, so that the edge type of ei is not generic, ej is not
generic and the types are different, and (b) in case of since and until the number of
incoming edges is exactly two. In case there is such a conflict, then the user provided
an indistinguishable dependency graph, i.e., we do not know which edges should be
considered first in the evaluation.

In case the user provided an edge type at least for one edge (i.e., for some ei the type is
not generic) we propagate this type to all incoming edges to ensure that all edges belong
to the same type.

Middle Node Insertions. In the last step, we focus on (i) and transform nodes with x > 2
by inserting nodes so that each node has at most two incoming edges. We create x − 2
middle nodes oi. We connect the first two edges e1, e2 to the first middle node o1, the
last middle node ox−2 and the last edge ex to n, and each remaining middle node oi−1
and the edge ei+1 to the next middle node oi.
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4.2.4 Rule Type Assignment
In Section 4.2.2 we already discussed that certain rules require a different number of
incoming edges. In this section, we propose a two-phase rule assignment process. In the
first phase, we assign a category to each rule marked as generic. In a second phase, we
select one specific category type for each edge. This two-phased process gives the user the
possibility to fine-tune the distribution of rule types used in the generated benchmark.
We structure the rule categories/types as follows for single incoming edges:

• Elemental: Linear

• Temporal: BoxMinus, DiamondMinus, BoxPlus, DiamondPlus

and for multiple incoming edges:

• Elemental: Intersection, Union

• Temporal: Since, Until

That is, we allow the user to provide a percentage for each category (e.g., Elemental
(Single) or Temporal (Multi)) and the sum of the percentages of each category has to sum
up to 100% for single, for multiple incoming edges, and for the types in each category.

In detail, the assignment process is implemented as follows: First, we count the number
of edges per type provided by the user and the total number of edges. We then assign
according to the computed statistics to each generic edge the selected category, and
finally assign per category the exact type.

Example 4.7. In Figure 4.2c we see such an assignment for the running example
with a configuration of 100% for Since, Union, Linear, DiamondMinus and ITA (see
Section 4.3) and the categories evenly distributed for single incoming edges and 33%
(resp. 66%) for temporal (elemental) for multiple incoming edges.

4.2.5 Rule Type Decomposition
In the previous step, we assigned a rule type to each edge. While we provide the user
with a diverse set of rule types for the assignment, not all of them are made up of a
single operation and can be represented by a composition of rules.

The goal of this phase is the conversion of such rules (edges in the dependency graph)
into simplified components to simplify the data generation as well as rule generation for
different platforms. In the core module, we have to consider the until and since rules,
which can be decomposed on an interval-level to diamond ( resp. ), intersections and a
closing-rule (a rule, that just closes open non-infinite intervals) [WCGKK19]. Note, that
when this decomposition is applied on a fact that contains multiple intervals, then the
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decomposition satisfies facts for more intervals than allowed. Yet, we explicitly favored
this decomposition as it simplifies the following generation steps from an implementation
perspective (i.e., one does not have to handle a complex join that requires for each
pair of intervals to (i) join, (ii) apply the diamond operator and (iii) join again) under
the presumption that this simplification should not have a large impact on the data
generation process.

Example 4.8. The decomposition of the since rule is visible in Figure 4.2d, the until
rule is analogous by replacing with .

4.2.6 Property Assignment
We now have established a graph that is reduced to edges that contain unique operations,
i.e., a single job per node (e.g., computing the intersection of incoming edges, or shifting
the interval of the incoming data). While this provides the general structure of the rules
in the program, we still miss information to generate a final program. For example, we
still have to choose the arity of the nodes1, the intervals of the temporal operators, and
so on. In this phase, we exactly select those properties.

Example 4.9. In Figure 4.2e, we show the graph of the running example with assigned
arities and intervals.

The property selection is built around the arity selection of the nodes by a multi-phased
process. That is the case, as some properties depend on the arity, which cannot be freely
chosen per node as the following proposition shows.

Proposition 4.1. Let S be a strongly connected component at the beginning of phase 5.
If there is no intersection edge in S, then the arity for all nodes in S is the same.

Proof. Assume there is a strongly connected component (SCC) with n nodes and each
node has some arbitrary arity xi. We show that all nodes have arity x = min(xi). By the
definition of the dependency format, each node has either two incoming edges (union or
intersection) or one incoming edge (linear, temporal operators) and at least one incoming
and outgoing edge must be connected to a node in the same SCC, otherwise the SCC
condition would be violated. We now chose a node y such that the outgoing edge reaches
a node z, such that xy < xz. Node z has either a single incoming edge (the edge of
node y or multiple incoming edges). By definition of DatalogMTL, each rule is safe
(i.e., there is no support of existential quantification) and duplicates of variables are
forbidden by our assumption. Hence, in case it has a single incoming edge, the edge
cannot create additional terms and hence the arity of the node has to be updated to xy.
In case, there are multiple incoming edges, then by restriction of the theorem it must

1We assume that a single body term maps exactly to a single head term. This represents no restriction
to the generator, as multiple occurrences can be simulated by using intersection of newly created auxiliary
predicates.
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Algorithm 4.1: Algorithm for computing arity of nodes
Input: Dependency Graph G
Output: Dependency Graph G, each node assigned its arity

1 functions ← [maxArity, minArity, infArity, intersectionArity,
randomArity ];

2 components ← getSCCs(G);
3 while components.length > 0 do
4 component ← getNextSCC(components);
5 setInitialArity(components.nodes);
6 hasChanged ← true;
7 while hasChanged = true do
8 hasChanged ← false;
9 for function in functions do

10 hasChanged ← function(component);
11 if hasChanged = true then
12 goto Line 7;
13 return G;

be a union edge. As all incoming union edges must have the same arity, by the same
argument, the arity has to be updated to xy. This process can be repeated for each node
in the dependency graph until there is no further change. That is, at the end all nodes
have arity x = min(xi).

Hence, we structure our process into a pre-arity-selection phase, an arity-selection phase,
and a post-arity-selection phase, which we discuss in the following.

Pre-Arity and Post-Arity Phases Before beginning the arity property selection
procedure, the pre-arity phase ensures a preliminary graph structure (e.g., that input
and output types are assigned to the corresponding nodes). We assign attributes that
depend on the arity in the post-arity phase. One such example is the order of terms (i.e.,
which term of the source node is passed to which term in the target node), another is the
modification for existential quantification (see Section 4.4). We also include activities
like assigning parameters that are independent of arity, such as the interval of temporal
operators, which can be chosen in either the pre-arity or post-arity phase.

Example 4.10. The results of the property selection of the running example are
given in Figure 4.2e. Note that we have added intervals for the temporal operators
(pre-arity), the arity of the nodes (arity phase) and the existential quantified variable
in the output node (post-arity).

Arity-Selection Phase The goal of this phase is to assign arity dependent properties.
This includes the arity of the node, as well as the number of joining and non-joining
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Algorithm 4.2: Algorithm for maximum arity assignment
Input: Dependency Graph Component C
Output: True, if the component has been updated, else false

1 for node in C .nodes do
2 maxOp ← sum if node.type = Isection else min;
3 newMaxA ← node.inEdge.maxOp(source.maxA);
4 if newMaxA < node.maxA then
5 node.maxA ← newMaxA;
6 return true;
7 return false;

terms for intersections. As Proposition 4.1 has shown, the variance of the nodes’ arity
inside a single connected component is restricted by the operations. In order to compute
the arity, we propose in Algorithm 4.1 a back-propagating approach that manages the
current possible minimum and maximum arity of each node in the graph starting with
the output nodes. The advantage of a back-propagating approach is the gained flexibility
with the maximum arity, as the arity only increases along the path. In case a specific
input arity is required, one can run a forward propagation of the input arity to the other
nodes to restrict the arity of following nodes.

Algorithm 4.1 takes as input the current dependency graph and returns a modified
dependency graph that contains for each node an assigned arity according to the algorithm.
The algorithm computes in Line 2 an ordered list of strongly connected components
(starting with the output nodes) and for each strongly connected component we initialize
the nodes (Line 5) with the minimum and maximum arities (i.e., some random arity
for output nodes, the pair (MIN_ARITY, ∞) for nodes that receive a minimum arity
by an already handled strongly connected component and for all other nodes the pair
(0,∞)2) and execute a list of functions until nothing has changed (6-12). At the end, all
arity-dependent parameters are assigned. In the following we explain the functions in
detail:

Maximum Arity Propagation (Algorithm 4.2). This algorithm propagates the
maximum arity to the following node in the same strongly connected component. The
new maximum arity is the sum of the maximum arities of the source nodes for intersections
and the minimal maximum arity of the source nodes for all other nodes. The maximum
arity is only updated in case the new maximum arity is lower.

Minimum Arity Propagation (Algorithm 4.3). This algorithm propagates the
minimum arity to the previous nodes in the same strongly connected component. The
new minimum arity is the maximal minimum arity of the target nodes. In case the target
node is connected via an intersection edge, the minimum arity is defined as the difference

2We followed the approach to minimize the arity of each node. Optionally, we increase the minimum
arity between strongly connected components.
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Algorithm 4.3: Algorithm for minimum arity assignment
Input: Dependency Graph Component C
Output: True, if the component has been updated, else false

1 for node in C .nodes do
2 for out in node.outEdges do
3 if out.type = Isection then
4 newMinA ← out.target.minA - out.target.

inEdge.otherEdge(out).source.maxA);
5 else
6 newMinA ← out.target.minA;
7 if newMinA > node.minA then
8 node.minA ← newMinA;
9 return true;

10 return false;

between the minimum arity of the target node minus the maximum arity of the other
intersection edge. The minimum arity is only updated in case the new minimum arity is
higher.

Infinite Arity Assignment. The goal of this assignment is to pin down the arity of a
specific node. For this, we choose a node that is connected with an outgoing edge to a
different SCC (i.e., a component we already have a minimum arity from that component),
its maximum arity is infinite and has the highest minimum arity. In case such a node
exists, we set its maximum arity to the minimum arity. This influences the propagation
of the maximum arity through the components.

Intersection Arity Assignment (Algorithm 4.4). This algorithm assigns the num-
ber of join terms and non-join terms to an intersection node and fixes the arity of such
an intersection. First, we compute the number of join terms (Lines 6-10), where it is
essential to consider the minimum number of required non-join terms to fulfil the chosen
arity (Lines 4-5). Then, we choose the number of non-join terms, where the minimum
(resp. maximum) number of the one source node’s arity depends on the maximum (resp.
minimum) arity of the other node’s arity. Note that in addition to the presented algorithm
we internally use the concept of reference edges that ensure that the arity between edges
is synchronized, which is important for the support of the since/until operator.

Example 4.11. Consider a node with an arity of up to 5 (in Line 4-5) and two
incoming edges, the first with maximum arity 2 and the second with maximum arity
3 (yielding minMaxArity of 2 and maxMaxArity of 3). Then the algorithm computes
the following values, where the final value of the ranges can be determined by choosing
jT (e.g., if jT in range 0 − 2 has value 1 and noJT has a range of 3 − 1, then the
value in this range must be 2).
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Algorithm 4.4: Algorithm for intersection arity assignment
Input: Dependency Graph Component C
Output: True, if the component has been updated, else false

1 for n in C .nodes.filter(type = Isection) do
2 if n.propertiesAssigned then
3 continue;
4 n.minA ← nextInt(n.minA, n.maxA);
5 n.maxA ← n.minA;
6 minMaxArity ← min(n.inEdge[0].source.maxA, n.inEdge[1].source.maxA);
7 maxMaxArity ← max(n.inEdge[0].source.maxA, n.inEdge[1].source.maxA);
8 minNoJT ← max(0, n.minA − maxMaxArity);
9 maxJT ←min(minMaxArity − minNoJT, n.minA);

10 jT ← nextInt(0, maxJT ));
11 noJT ← n.minA − jT ;
12 maxE1 ←min(noJT , n.inEdge[0].source.maxA − jT );
13 maxE2 ←min(noJT , n.inEdge[1].source.maxA − jT );
14 minE1 ←max(0, noJT − maxE2 );
15 noJT1 ←max(minE1 , nextInt(0, maxE1 ));
16 noJT2 ← noJT − noJT1 ;
17 updateJoinTerms(n.inEdge, jT , noJT0 , noJT1 );
18 return true;
19 return false;

n.minA minNoJt maxJt jT noJT maxE1 maxE2 minE1
5 2 0 0 5 2 3 2
4 1 1 0-1 4-3 2-1 3-2 1
3 0 2 0-2 3-1 2-0 3-1 0
2 0 2 0-2 2-0 2-0 2-0 0
1 0 1 0-1 1-0 1-0 1-0 0
0 0 0 0 0 0 0 0

Random Node Arity Assignment. In case there is no change in the previous steps
and there are nodes where its maximum arity is higher than its minimum arity, then
we pick such a node with the highest minimum arity and set its maximum arity to a
random value between the minimum and maximum arity. This ensures that in case no
other assignment works, we can continue the assignment.

Example 4.12. For the running example, we start by computing the SCCs which are
the set of nodes (E, 1, and Es) and an own SCC for each node not in the set. Then
we continue with the assignment of the initial minimum and maximum arity of the
nodes. The report (output) node gets the minimum and maximum arity 1a (short
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(1, 1)) and all other nodes the initial arity (0, ∞). The minimum arity is transferred
to Es and (optionally) increased by 1 leading to arity (2, ∞) and by the minimum
arity propagation, the other entries get the same minimum arity. By the infinite arity
assignment, the chosen node gets the min/max value of (2, 2), which is propagated to
the other nodes by the maximum arity assignment. This also fixes the aggregation
parameters (see Section 4.3.2) to the aggregation term, one group-by term, and no
contributor or other terms. By the same logic, this value is propagated to the SCCs
3, S, and 2, as well as for 5 and N later in the process. What remains are the
intersections, where we have one join term, and one (resp. no) additional terms for 6
(4). The same is forced by the given constraints for node 4 to the nodes C and 4.

aThe final arity 2 is derived by introducing an existential quantified variable (see Section 4.4).

4.2.7 Rule Composition
We need to target many different platforms for rule execution, each having different
languages, dialects, and characteristics. Thanks to the internal representation, our
approach can be translated into different languages. In fact, while for Datalog the
translation is straightforward, other target platforms require more care. In any case, we
proceed by composing the rules, which means that we merge and transform the nodes
to a compatible graph, in such a way that we can simply iterate over the graph for
rule generation. For example, when targeting a relational or SQL-like database (e.g.,
QuestDB), we convert the graph to nodes and edges following a SELECT-FROM-WHERE
structure in case the current graph (query) is compatible with the target platform, or for
Datalog we revert the rule type decomposition step.

Example 4.13. Consider the running example (Figure 4.2f) again. There we trans-
formed the graph to the minimal required rules for Datalog by removing auxiliary
nodes in the final query.

4.2.8 Rule Generation
The last step is the actual generation of the query (program). In this phase, the goal
is to convert the nodes and edges to the query format of the platform. Algorithm 4.5
highlights the process for Datalog-based systems. In short, we iterate over each node,
considering the incoming edges as individual body atoms and the node as head of the
rule. Depending on the Datalog-specific language, certain operations may be output
differently, e.g., the symbol of the temporal operator, how the interval is specified, and
so on. We consider three options to insert operators, one before the atom (e.g., for the
temporal operators), one after the atom (e.g., for aggregations), and one between atoms
(e.g., for joins).

Example 4.14. Consider Figure 4.2g. It shows a generated rule set for the running
example.
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Algorithm 4.5: Algorithm for generating rules
Input: Dependency Graph G
Output: The program P

1 P ← “”;
2 for n in G.nodes do
3 if n.type is Multi then
4 P += n.getAtom() + “:-”;
5 P += e.source[0].getAtom();
6 P += e.getPossibleJoinOperator();
7 P += e.source[1].getAtom();
8 else
9 for e in n.inEdge do

10 P += n.getAtom() + “:-”;
11 P += e.getPossiblePreOperator();
12 P += e.source.getAtom();
13 P += e.getPossiblePostOperator();
14 return P;

4.2.9 Data Generation

So far we concentrated on the generation of rules. Yet, one key ingredient for generating
benchmarks is missing, namely the data. Hence, this phase is about this final component.
Data generation per se is a highly critical task as it is important that every component
of the graph contains data such that the following benchmarking rules have an effective
impact on the performance and do not produce empty results. This is non-trivial as one
has not only to deal with joins, but also with recursion and temporal data.

If one were to choose a forward-propagating approach (i.e., choosing random variables
for the input atoms (nodes)), one has to carefully select those tuples, such that whenever
an intersection (join) of atoms is required, the time of some atoms overlaps. As one
can see, one has to anticipate how the data will flow and adapt the input generation
accordingly, which includes recursive structures, which may shift the time forward or
backward, aggregations which results depend on the number of tuples in the joins, and
so on.

In order to overcome that issue of anticipating what follows, we propose a back-propagating
approach. The goal of this approach is to start with a seeding data set for the output
atoms and back-propagate this information to its predecessors. We want to emphasize
the word “seeding”, as an application of a forward propagation after the backpropagation
may yield additional, non-covered values by the back-propagation3.

3As the generation of data is complex, one can use the seeding as well for getting statistical information
of the input nodes which can be used to produce further input data. We have not implemented this but
consider it as a viable option for future versions.

83



4. Evaluation Tooling - Fundamental Benchmark Generator

The data generation evolves over three critical components in the core model dealing
with temporal operators: (a) the generated output intervals must have a minimum size,
such that the temporal operators can be applied, (b) in cyclic graphs they cause infinite
chains, and (c) one has to decide which recursive generated data is kept in the input as
not all data is required. We discuss these three points in the following.

Minimum Interval Size. Temporal operators produce new intervals. When back-
propagating the output intervals, we apply the opposite mathematical operations. That
is, if we subtract some intervals, then the produced interval may be of negative size and
is discarded. Hence, it is important to produce an interval of minimum size. In order to
generate at least one valid interval, we need to know the minimal interval length of the
output intervals, which we solve by forward-propagating the temporal operators. That
is, we start by the input nodes with an interval of 0, 0 . For each node, we compute
the shortest interval, that is, we pass the interval along each edge until there is no
further change. We compute the target node’s interval length (i) for temporal operators
by applying the temporal operator to the current interval of the source node, (ii) for
intersection and union nodes, we choose the interval with the smaller length, and (iii)
for all other edges we copy the interval. In case we have cycles with negative length, we
restrict the minimum length of the interval in the SCC to zero.

Example 4.15. In case of the running example, the minimum interval length is zero,
as there is a direct path from the output to one input.

Infinite Intervals. Infinite chains are created by a recursive application of temporal
operators, which colloquially speaking shifts the interval always by an amount n forward
or backward in the timeline. In order to prohibit infinite cycles, the user can apply a
likelihood that defines the probability of how likely the derived fact comes from a previous
cycle. So, per each iteration, we will lose some of the facts until no additional facts are
back-propagated.

Minimum Datasets. While we back-propagate the intervals, all intervals from the
previous recursive rounds have been stored. Providing all of those data to the next SCC
is not useful, as the temporal operators would produce data that is already in the set of
existing data and hence the recursive application of temporal rules cannot be measured
(i.e., each application of the rule produces an existing interval in the dataset). In order
to remove such data, we apply a forward propagation to the derived facts (starting
with the facts derived latest) to remove data that is already generated by the recursive
application. As also the forward propagation can cause infinite intervals, we limit the
produced facts to existing data generated during the back-propagation step and discard
any other intervals. That is the case, as it is only important to remove the existing data
from previous recursive rounds.
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Example 4.16. One trivial setting of the running example (Figure 4.2h) for seeding
data of the output may be R(r1, 500)@0, R(r2, 500)@120 and R(r3, 50)@[96, 120] with
a really high probability that facts will not be recursively iterated via the cycle.

4.2.10 Time and Space Complexity

In this section, we shortly discuss the time and space complexity of the generator. Apart
from data generation, the generator is polynomial in time and the space requirement is
linear in the graph size. For data generation, it is in fact primarily the user parameter
“temporal recursion percentage” (which determines how likely a given fact will recursively
produce another fact) that determines the complexity. For low values, it is polynomial in
the graph size, if a user chooses 100%, the system will produce data until manual cutoff.
This gives the user full control over the complexity here.

4.3 Aggregation Module
In this section, we present our extension to the core module which focuses on aggregation.
As discussed in Section 2.3, there are various kinds of temporal aggregations we have
to consider in the benchmark generation process. We first start to describe how this
module integrates with the core, and then introduce the characteristics of this module,
e.g., property assignment of aggregations, data generation, and so on.

4.3.1 Integration with the Core

We developed the core module in such a way that additional tasks from other modules
can be registered with a priority (managing the execution order of the tasks in the
corresponding phase). This allows one to exactly integrate the new tasks where they are
required by the module. In the following, we explain the additions of this module.

• In the phase rule type assignment, we add an additional category aggregation with
the three main aggregation types, i.e., ITA, MWTA, and STA.

• In the phase rule type decomposition, we add a decomposition of MWTA and STA
as described in Section 3.1 to its individual components. In summary, this leads
to additional ITA and triangle-up edges (for STA aggregation) in the resulting
dependency graph of this phase.

• In the phase property assignment, we have to consider the properties of the new
edges. Especially ITA has an influence on the arity, which we discuss in Section 4.3.2.

• In the phase data generation, we have to be aware of the new edge types as they
influence the possible intervals that are produced.
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Algorithm 4.6: Algorithm for aggregation arity assignment
Input: Dependency Graph Component C
Output: True, if the component has been updated, else false

1 edge ← C .edges.filter(type = Aggregation)
.filter(hasUnassignedAggrProps).selectRandom ;

2 if edge = NULL then
3 return false;
4 grBys ← numberOfGroupBys() ;
5 grBys ← min(edge.target.maxA − 1, grBys);
6 grBys ← max(edge.target.minA − 1, grBys);
7 contrib ← numberOfContributors() ;
8 sub ← 1 + grBys;
9 contrib ← min(edge.source.maxA − sub, contrib);

10 sub ← sub + contrib;
11 others ← numberOfOthers() ;
12 others ← min(edge.source.maxA − sub, others);
13 others ← max(edge.source.minA − sub, others);
14 updateAggregationTerms(edge, grBys, contrib, others);
15 return true;

4.3.2 Adaption of the Arity Algorithm
As mentioned in Section 4.3.1 aggregation has an influence on the arity. That is the case,
as the syntax of (monotonic) aggregation in Datalog defines different groups of terms, as
introduced in Section 3.1:

• Group-by terms. These terms are forwarded to the head to group the aggregation.

• Aggregation term. This term is the aggregate. For count, such a term is not
required, but at least some other term is required so that the count is useful (i.e.,
does not return 1 per group-by key).

• Contributor terms. To support monotonic aggregation, only the maximum value
per contributor is considered in the aggregation. These terms are only allowed to
be part of the body, as only the maximum aggregation term of these contributors
is part of the aggregation result.

• Other terms. These terms have no direct meaning in the aggregation but allow to
have multiple data values that may influence the aggregation result.

As one can see, the arity of an aggregation depends on multiple parameters. We
decided to add the arity assignment directly before the intersectionArity function
of Algorithm 4.1. This gives us enough flexibility to select the different aggregation
parameters where possible, before narrowing down the amount with the intersections.
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Algorithm 4.6 highlights the selection process of the number of group-by terms and
contributor terms. First, we decide on the number of group-by terms. The range of
group-by parameters is selected by a Gaussian distribution (Line 4) based on user-defined
parameters and is limited by the minimum and maximum arity of the target (Lines 5-6).
We then add contributors and other terms in a similar way (Lines 7 and 11). These
parameters depend on the minimum and maximum arity of the source node (Lines 9
and 12-13), where they have to sum up together with the group-by terms to reach the
minimum arity of the source node. We assign the chosen parameters to the edge and
the received arity to the nodes (Line 14). We then continue with the distribution of
the maximum and minimum values from the previous steps (discussed in Section 4.2.6),
before considering the next aggregation term, as this fixes the arity of dependent nodes
and other aggregations are depending on the propagated arity information.

4.3.3 Data Generation
In the core module we discussed the characteristics of the temporal operators where we
introduced a back-propagating algorithm for data generation. As both newly introduced
edge types have an impact on the generated intervals, we describe the changes in the
following.

Aggregation. In the back-propagation step, we receive as value the output of the
aggregation and have to generate the input values. As discussed in the previous section,
there are different terms that influence aggregation. Hence, the input values may vary in
multiple dimensions, and we have to consider that when generating the data. That is,
we split a fact by (i) the time interval, (ii) the aggregation value (and other terms), or
(iii) its contributor terms to create different input facts to the aggregation. We handle
the support of the three dimensions as follows:

1. We start by splitting the aggregation interval into n buckets. A bucket contains
the aggregation values for a specific sub-interval of the output interval. For the
creation of the buckets, we create n − 1 random dividers between the interval range
and use these dividers to create the boundaries of the sub-intervals. (This creates
the possible splitting along the time (i))

2. For each bucket (starting with the first one):

a) We compute the number of facts in the bucket.
b) Randomly move some facts from the previous bucket to the current bucket

(to support different input interval lengths of the facts).
c) Then, we fill up part of the remaining bucket with randomly generated facts

(keeping the aggregation result in mind).
d) And finally, we fill up the remaining part with contributor values by selecting

a specific fact of the bucket and modifying the aggregation value.
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3. Finally, we merge equal facts that are adjacent in the buckets.

In order to avoid any possible dependencies that influence the aggregation negatively, we:
(i) compute per temporal-interval the aggregation only once, and (ii) during the removal
of recursive generated temporal intervals (i.e., during the forward-propagating step), we
map the aggregation to the value in storage instead of computing the aggregation again
to improve performance.

Triangle-Operator. The time granularity operator extends the interval to a certain
time-range. In the back-propagation step, the input interval (i.e., the interval at the
target node of the edge) has to match exactly the granularity definition (e.g., if the
granularity is month, the interval range has to match for example 1 Jan to 31 Mar, 10
Jan to 20 Mar would not be allowed, as such an interval cannot be produced by the
operation). Providing a minimum interval length as in the core module is not possible
as this operation does not depend on the interval length, but on a calendar system.
That is, one has to always generate an interval for the output nodes that matches the
interval shifts plus the granularity operations. As this is a too time-intensive approach,
we considered the influence on the operation in detail. As this operator only extends
the length of the intervals, each smaller interval established by other operators is also
part of the extended interval. As this operation has neglectable impact on the other
operations, we decided to ignore the influence on the intervals of this edge during the
back-propagation procedure and retrieve in the worst case always intervals that are longer
than required for the program.

4.4 Existential Quantification Module
In this section, we present our extension to the core module which focuses on existential
quantification for uniform weakly-acyclic DatalogMTL programs. This module is placed
in the post-arity phase of the property generation, which gives us the possibility to
modify the arity of the program after the full benchmark program without existential
quantification has been created. In detail, for each existential variable we add to the
program, we apply the following two steps:

1. We select a random node (which we call start node) and add a fresh new variable.
This variable becomes existentially quantified as no source node of an incoming
edge can contain this variable.

2. We forward-propagate this variable by iterating over the outgoing edges, by either
adding the variable to successor nodes or pointing the variable to an existing variable
in a successor node, which is not breaching the weakly-acyclic condition. We repeat
this step until either we (a) reach a certain maximum path length (counting the
number of edges starting from the start node), (b) have selected an existing variable,
(c) or stop randomly by a user-provided factor before reaching the maximum path
length.
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This process ensures that we introduce only weakly acylic existential quantification. The
following phases (rule composition, rule-, and data-generation) are transparent to this
process and require no adaption.

Example 4.17. In the running example, the introduction of an existential quantified
variable is visible at the report node where a new report ID is generated.

4.5 Summary
In this chapter, we presented a novel, open source4, and easily extensible temporal
benchmark generator. This generator allows one to generate different forms of temporal
rules including recursion, aggregation, and existential quantification, is output-focused,
and allows to support multiple systems. With its different phases, it is easily extensible
to new operators as well as new target platforms.

We also implemented a graphical user interface, shown in Figure 4.5, to make the graph
generator accessible to a wide range of users, including a save and load option to share
(partial) configurations. The user-interface is split into a configuration panel for selecting
parameters for the generation process on the right side, and for presenting the graph
details on the left side. The left side is in addition split into a top and bottom component.
The top component shows the current dependency graph (which we call graph selector)
and the bottom component allows to edit the properties of a node or edge selected in the
graph selector. The key components are 1 Graph Generator, 2 Graph Selector, 3
Rule Assignment, 4 Arity Assignment, 5 Property Assignment, 6 View and Edit
of Nodes, 7 View and Edit of Edges, 8 Rule and Data Generation, 9 Store and
Load Graph.

4https://github.com/kglab-tuwien/itemporal
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Figure 4.5: User interface of iTemporal
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CHAPTER 5
System - Temporal Vadalog

With the establishment of iTemporal, an evaluation framework for measuring the system
performance of DatalogMTL, it is time to establish a fully engineered system that is
capable of reasoning with DatalogMTL including aggregation and existential reasoning.

In general, the development of temporal reasoners based on DatalogMTL is still in its
infancy: the two implementations currently available are of experimental nature and
do not satisfy these needs altogether. For example, the system proposed by Brandt et
al. [BKK+17b] is implemented by the OnTop system [KBC+19]. It does not support
recursion. The second system, MeTeoR [WHWCG22] supports recursive queries using a
combination of materialization for non-recursive and automaton-based reasoning for check-
ing fact entailment for recursive settings. However, despite showing efficient reasoning
capabilities, MeTeoR lacks support for aggregation and basic numeric operations.

This chapter aims to make the first step towards a production-ready temporal reasoner
and presents the first system that, to the best of our knowledge, supports temporal
reasoning, aggregation, and negation. This chapter is mainly based on our system paper at
RuleML [BBNS22]1, and includes additional experiments established during the work on
DatalogMTL∃ as well as on the temporal benchmark generator. In Section 5.1 we discuss
the functional and architectural requirements of an efficient reasoning system. Then, in
Section 5.2 we illustrate the system. We evaluate the performance of different components
of the system in Section 5.3. Finally, we summarize this chapter in Section 5.4.

1We want to note that this paper has been conducted together with another PhD Student. Section 5.1,
the introduction to Section 5.2 and Section 5.2.1 are only introductory sections without technical
contributions and this was conducted equally by both students. The realistic and real-world experiments
(part of Section 5.3.2) and the practical parts of Section 5.2.5 have been conducted by the other PhD
student, which are listed for completeness, and should not be considered as a contribution to this thesis.
All other sections are personal contributions including the theoretical part of Section 5.2.5.
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5.1 Requirements
Let us start the analysis of requirements again with a running example, a use case from
the economic domain encoded in DatalogMTL, given in Example 5.1, which, although
simplified, highlights some of the core features a production system for temporal reasoning
with DatalogMTL should support.

Example 5.1. A governmental institution is supervising the changes in the corporate
structure of some companies that operate in economic sectors of national strategic
relevance. As part of this supervision, the institution is interested in the shareholders’
actions, especially in those who are buying into the companies. For this, consider the
following rules:

significantOwner(X, Y ) ← [0,1] significantShare(X, Y ),
¬ [0,1] significantShare(X, Y ) (1)

watchCompany(Z) ← watchCompany(Y ), significantOwner(X, Y ),
connected(X, Z) (2)

The atom watchCompany(Y ) denotes that a company Y is in the watchlist of the
governmental institution and significantShare(X, Y ) states that entity X owns a
relevant amount of shares of company Y . Rule 1 captures the dynamics of new
shareholders buying in or increasing their shares. It states that if at a certain interval
in the past (expressed by [0,1]), entity X does not hold a significant amount of shares
of Y , while that is the case at some point in a future interval (denoted by [0,1]),
we consider X as a significantOwner(X, Y ). Rule 2 now adds to the watchlist for
every new significantOwner(X, Y ) all companies Z that are connected — for instance,
according to the definition of connection given by other rules (omitted here) — to the
new owner of shares X.

Functional Requirements. The required characteristics of DatalogMTL reasoners
can be laid out along the lines of the desiderata of knowledge graph management
systems [BGPS17]. They should support simple, modular, highly expressive and low-
complexity fragments of DatalogMTL; they should have the ability to perform basic oper-
ations over numeric values, as well as aggregations and negation. The recent DatalogMTL
fragments, such as DatalogMTLFP [WCGKK19] and its core and linear eponymous
DatalogMTLcore and DatalogMTLlin [WCGKK20b], or DatalogMTL [WCGKK20a] over
the integer timeline point in the right direction, are offering simple structure, recursion,
and good complexity characteristics.

Architectural Requirements. The semantics of DatalogMTL is enforced by existing
systems by inference algorithms based on time-aware variants of the well-known chase
procedure [MMS79]. The native adoption of the chase presents a number of limitations
in the development of production architectures. For example, it requires the entirety of
the database and the generated data to be available at every possible chase step. Also,
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it does not offer simple extension points, for instance to plug in different termination
control policies, as discussed in Section 2.4. Specifically for temporal reasoning, this
extension points are essential when infinite temporal patterns can be generated to choose
between different memory management policies and select among multiple time interval
merging strategies needed to handle temporal operators.

5.2 The Temporal Vadalog System
For the design and implementation of the system, we propose a novel time-aware rea-
soning architecture based on the volcano iterator model [GM93]. Thereby, we take
inspiration from recent advances in building database and knowledge graph management
systems [BSG18] and built around the core of Vadalog [BSG18], a state-of-the-art reasoner
for the Datalog± family [CGP11], which we discussed in Section 2.4.

Our system offers:

• a fully engineered time-aware execution pipeline utilizing a pipes-and-filters architecture
that enables:

- the application of rewriting-based optimization, for instance, to deal with as well
as to optimize more complex temporal operators;

- fragment aware termination strategies which provide the ability to determine
the specific fragment of DatalogMTL used in the input program to guarantee
termination of the reasoning process by choosing from a range of pluggable
algorithms one that exploit the specific theoretical underpinnings of the fragments;

- a clear interface between temporal and non-temporal reasoning;

• high expressive power, implementing:

- the DatalogMTL temporal operators natively, as well as
- recursion and stratified negation,
- existential quantification for uniform weakly-acyclic programs, and
- aggregate functions and numeric operations over time.

In the following, we provide a thematic walk-through of the architectural components in
the system, with a focus on addressing the temporal reasoning challenges, starting with
a discussion of our time-aware execution pipeline.

5.2.1 A Time-aware Execution Pipeline
Along the lines of the pipes-and-filters architectural style [BHS07], a DatalogMTL program
Π is compiled into an execution pipeline that reads the data from the input sources,
applies the needed transformations, such as relational algebra operators (e.g., projection,
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Figure 5.1: The reasoning pipeline for Example 5.1.

selection) or time-based ones, and finally produces the desired output as a result. In
detail, the pipeline is built in four steps:

1. A logic optimizer performs a set of rewriting tasks, with the aim of reducing
programs to a canonical form, where individual temporal operators are grouped
together.

2. A logic compiler then transforms the DatalogMTL rules into a graph structure,
where each component is aware of which transformation it needs to perform.

3. A heuristic optimizer intervenes at this point and produces variants of the generated
pipeline to target higher performance, with ad-hoc simplifications.

4. A query compiler finally translates this logical graph structure into a reasoning
query plan, where a filter is generated out of each component that will apply the
transformations, and a pipe is induced by each read-write dependency between the
rules.

Example 5.2. The pipeline for our running Example 5.1 is shown in Figure 5.1. The
atom significantShare is denoted by the filter S, significantOwner by N, watchCompany
by W, connected by C, and J is an artificial filter to decompose, for simplicity, the
ternary join of Rule 2 into binary joins.

Runtime Model. The reasoning process then consists of a pull-based approach, where
some rule heads are marked as sinks which iteratively pull data by issuing next() and
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get() messages to their preceding filters. These filters in turn propagate such messages
to their predecessors and eventually to a set of source filters that directly read from initial
data sources thanks to dedicated record managers, i.e., data adapters. Each filter applies
specific transformations, depending on the form of the associated rules (e.g., linear, joins,
temporal operators, aggregations, etc.). Clearly, the next() primitive succeeds as long
as facts are available in the cascade of invoked filters.

Example 5.3. Consider again Figure 5.1. The facts for our output filter W are
generated directly from the input data, but also recursively from J.

Temporal Challenges. While the implementation and optimization of the different
relational algebra operators is certainly interesting, it is not of central relevance in this
thesis, where we focus on the many time-related challenges that arise and for which the
Temporal Vadalog System provides support, which we list next:

• Application of Temporal Operators. We discuss the encoding of the temporal operators
in the pipeline (e.g., the operator in Figure 5.1) in Section 5.2.2.

• Merging strategies. Facts that share the same terms and have adjacent or overlapping
intervals can be simplified by merging them to a fact with a single interval and is
even necessary when we want to apply the semantics of the ⊟ operator correctly. In
Section 5.2.3 we discuss the adoption of different merging strategies of adjacent or
overlapping intervals.

• Temporal Joins and Stratified Negation. Temporal reasoning needs a time-aware version
of the usual join (e.g., filter W in the figure), where the different intervals are considered
when matching facts. We present our implementation, which also supports stratified
negation, in Section 5.2.4.

• Termination Strategy. DatalogMTL allows to formulate programs where the least
fixpoint operation does not terminate [BNS21b]. That is intuitively the case, as one
can formulate rules that capture infinitely repeating domain events, like the repetition
of weekdays. We describe in Section 5.2.5 our approach to handle termination in such
scenarios.

• Existential Quantification. As shown in Section 3.2 the number of decidable existential
fragments of DatalogMTL is limited. Our system is, to best of our knowledge, the first
and at the moment only DatalogMTL reasoner that supports existential quantification
for uniform weakly-acyclic DatalogMTL∃ programs. Furthermore, our system provides
support for converting facts between DatalogMTL∃ and plain Datalog, to execute
more advanced existential quantification tasks under well-established decidable Datalog
fragments, as detailed in Section 5.2.6.

• Aggregate functions and numeric operations. Our system offers standard scalar and
temporal arithmetic operations. Aggregate functions are also supported in the form
of time-point or cross-time monotonic aggregations, which allows for a non-blocking
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implementation that also works with recursion. To the best of our knowledge, the Tem-
poral Vadalog System is the only DatalogMTL reasoner that implements aggregation.
We have already introduced the syntax and semantics in Section 3.1.

5.2.2 Temporal Operators in the Execution Pipeline
DatalogMTL provides six temporal operators, which are pairwise symmetric; we can
therefore concentrate only on the forward propagating ones: , S, and ⊟. The main
idea of the reasoning pipeline is to introduce a filter node for each occurrence of an
operator in a rule and feed it with the output of the operand atom. Then, the output of
the operator filter is provided as an intermediate result. This process is straightforward
for the operator, which is converted into a single filter that applies a transformation
of the interval according to its semantics. For the ⊟ operator we require in cases of
unmerged adjacent and overlapping intervals an additional pipeline filter before the
temporal operator to preliminarily merge such intervals to ensure this operator captures
the intended semantics (we will discuss the merging operation in Section 5.2.3). For
the S operator, we apply a mixture of rewriting (applying the closing operator) and an
extension of the join to take the required interval constraints into account.

Example 5.4. Given a dataset D containing the following facts

a@(3, 4] a@(5, 10] b@(2, 4] b@(5, 9]

and a program Π containing the following rules:

c ← [0,1]b d ← ⊟[1,4]b e ← aS[3,5]b

then the reasoning engine will derive the following facts:

c@(2, 10] d@(9, 10] e@(8, 10]

Optimization. In addition, we apply an optimization to chains of temporal operators
by rewriting them to a single efficient temporal operator. According to the semantics of
DatalogMTL, we have for a fact with an interval t1, t2 the following matching arithmetic
expressions when applying a temporal operator with an interval o1, o2 :

t1 + o1, t2 + o2 ( )
t1 + o2, t2 + o1 (⊟)
t1 − o2, t2 − o1 ( )
t1 − o1, t2 − o2 (⊞)

Note that the application of and will produce an invalid interval (i.e., an interval,
where the lower endpoint is higher than the upper endpoint) only in case both, the
interval of the input and the operator are punctual and at least open at one endpoint,
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while for ⊟ and ⊞ the subtraction easily causes invalid intervals. By definition of an
interval, we have that o1 ≤ o2. That is, for the combination, we add consecutive temporal
operators as long as the left endpoint is smaller or equal2 to the right endpoint and
then replace all matching rules with an interval transformation of the combined interval.
Similarly, to the endpoints, also the interval boundaries can be computed. That is, since
the interval boundaries of the temporal operators are fixed by the rule, one only has to
derive once the resulting interval boundary for an open and closed boundary of a fact by
chaining together the boundary rules.

Example 5.5. Consider the following example, where (1) can be reduced to an
interval [3, 3] while (2) cannot, although they contain the same temporal operators,
just in a different order.

⊟[0,5] [0,3] [0,2]A (1)

[0,3] ⊟[0,5] [0,2]A (2)

Regarding the interval boundaries in (1): An open (closed) left endpoint results in an
open (closed) left endpoint, and an open (closed) right endpoint results in an open
(closed) right endpoint. Note that the resulting facts D2 of (2) are always a subset of
the resulting facts D1 of (1), i.e., D2 ⊆ D1.

5.2.3 Merging Strategies
As discussed in the previous section, the evaluation of the box operator, that is, deciding
whether M, t |= ⊟ A, requires to check that for all s such that t − s ∈ , it holds that
M, s |= A, requires the merging of adjacent and overlapping intervals, as Example 5.6
exemplifies.

Example 5.6. Given a dataset D containing the following facts:

significantShare(A, B)@[1.6, 1.9]
significantShare(A, B)@(1.8, 3.7]
significantShare(A, B)@(2.9, 4.0]

and a program Π containing the following rule:

longTimeInvestor(X, Y ) ← ⊟[0,2]significantShare(X, Y ) (1)

where Rule 1 expresses that X is a longTimeInvestor of Y if X has continuously held
a significantShare of Y for at least two years.

2For equal endpoints it is required that the computed interval boundaries are closed for facts with
closed boundaries.
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Observe that the facts of the predicate significantShare in D do not individually cover
a 2-years interval, while when considered together, their combined intervals result in
the fact significantShare(A, B)@[1.6, 4.0]. Hence, the program is able to derive the
final fact longTimeInvestor(A, B)@[3.6, 4.0].

When we design a software component in a reasoning pipeline, we have to make a trade-off
and balance between a more streaming-based approach with the goal of staying responsive
(usually coming along with a low-memory footprint and in-memory computation), and a
blocking-based approach with the goal of an overall performance optimization (usually
coming along with large memory occupation and a materialization of intermediate results).

This is well-known in relational systems where such a balance depends on both the
semantics of the individual relational algebra operators and the optimization choices. Some
operators are inherently streaming-oriented, or stateless (e.g., selection or projection),
whereas others are partially or fully blocking, or stateful (e.g., join or sort) [Sci20].
Moreover, the optimizer may interleave intermediate materialization filters into the
pipeline to pre-compute and store parts of it to maximize the reuse of intermediate
results.

When it comes to the architecture of a modern temporal reasoning system, we recognize
similar challenges when we implement the box operator, which plays the same role as
data materialization in relational systems. Like the join, the box operator is partially
blocking. That is, when invoked via a next() call, it is able to answer positively only
once it has collected enough facts that cover an interval of a certain length such that the
transformation implied by semantics of the box operator produces a valid interval. Yet,
unlike the sort operator, once it starts to produce output, not necessarily it is finished
with consuming its input facts and may produce further facts, extending the period of
the valid intervals.

In the Temporal Vadalog System we offer two orthogonal options: two implementations
of the box operators and three interleaving strategies.

Streaming and Blocking Box. The streaming box generates facts as soon as it has
merged enough input facts, while the blocking box pulls and merges intervals until next()
returns false and then, for each next() call, it forwards a single stored fact without
calling the parent streams. The streaming box supports reactivity as merging is done
on-the-fly and the intermediate merging results are forwarded without waiting for all the
incoming data to be processed, while the blocking box reduces the amount of facts and
intervals in the system.

Algorithms 5.1 and 5.2 present the logic for the blocking and the streaming strategy,
respectively. Both inherit the logic of the linear filter of Vadalog to retrieve the next
entry, which is visualized by a call to super .next(). The next() function returns a
Boolean value denoting whether a new fact has been derived. The access to the terms is
handled in successive calls to getter functions returning the value of a term’s position
only if required by the next pipeline step. The call createMergeStructure creates a data
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Algorithm 5.1: Blocking strategy
1 mergeStructure ← createMergeStructure();
2 counter ← 0;
3 Function Next():
4 changed ← false;
5 if counter ≥ mergeStructure.length then
6 while super .next() do
7 (changed, mergedEntry) ← mergeStructure.add(getCurrentEntry());
8 if changed then
9 counter ← 0;

10 else
11 counter ← counter + 1;
12 return counter < mergeStructure.length;

Algorithm 5.2: Streaming strategy
1 mergeStructure ← createMergeStructure();
2 Function Next():
3 next ← super .next();
4 if next then
5 (changed, mergedEntry) ← mergeStructure.add(getCurrentEntry());
6 setCurrentEntry(mergedEntry);
7 return next;

structure for merging3, the call of getCurrentEntry returns the current entry retrieved
with the super.next() call, and setCurrentEntry updates the entry with the merged
intervals. To exemplify the difference between strategies, let us look at a variation of
Example 5.6.

Example 5.7. Consider Example 5.6 again. The Streaming strategy would read
the first two entries, which is sufficient to apply the ⊟[0,2] operator to derive the
intermediate result longTimeInvestor(A,B)@[3.6,3.7] first, and then derives the final
result longTimeInvestor(A,B)@[3.6,4.0]. The Blocking strategy would wait for all
significantShare facts to be read first, and applies the box operator only then, thus
returning only the final result.

Interleaving Strategies. The planner is equipped with multiple options to decide
how to interleave explicit interval merge operations in the pipeline to achieve different
performance goals or even just to guarantee correctness. We support the following options

3Our data structure is built around a HashMap, whose key is the fact and whose values are a collection
of intervals. Currently, we use a tree-like structure as a collection that auto-merges adjacent intervals on
insert.
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Figure 5.2: Overview of interleaving strategies

for which we provide a visualization in Figure 5.2 where merging positions are marked in
red.

• Minimal Merge. The planner inserts a merge operation only before each box operator.
In addition, one can provide hints to the planner regarding merging, such that it inserts
an additional merge transformation prior to a linear transformation. Typically, such
hints are useful after unions of different rules, after a diamond operator that could
produce many overlapping intervals that should be combined, after the input or before
the output to eliminate duplicates before showing the results.

• Always Merge. The planner inserts merge operations whenever the intervals are not
merged. The application of temporal operators on a set of intervals will always result in
a merged set, as the coalescing is applied directly on the set.

• Earliest Merge. If no merge operation is required (i.e., there is no box operator) the
planner avoids merging; otherwise, it inserts the merge in the earliest position so that
each fact contains all intervals when the box operator is reached. Operations between
the merge and the box operator benefit from the reduced number of facts.

5.2.4 Temporal Joins and Stratified Negation
In Temporal Vadalog we extend the slot machine join algorithm of Vadalog [BBGS20].
This algorithm is based on an index nested loop join [GUW09], enhanced with dynamic
in-memory indexing. In comparison to an index-nested loop join, there is no persistent
pre-calculated index, but the index is built in-memory during the first full scan of each
predicate Ak with 0 ≤ k < n to be joined. We provide in Algorithm 5.3 a simplified
algorithm that performs the temporal join only between two predicates, i.e., n = 2. That
is, for each Ak, we first (Line 7) check whether a matching fact can be found in the index
matching the known terms from the previous Aj with 0 ≤ j < k, and if not, we continue
with the full scan until a fact matches in case the index is not yet fully built (Line 8-11).
In case, no atom has matched (Line 12-19) we either return true in case of a join with a
negated atom, continue with the next fact, or if there is no next fact, stop the process.
In case an atom matches, we have to compare the intervals, as the index was designed
to be unaware of intervals. This is, when a fact matches, we either intersect (join, Line
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22-23) or subtract (in case of stratified negation; Line 20-21) the interval from the current
partially computed interval (i.e., the computed interval up to Aj), and continue with a
similar decision process as for the non-matching case (Line 24-29).

Algorithm 5.3: Temporal join between two predicates
Input: predicates A0 and A1 to be joined

1 Ii ← Ai.iterator();
2 A0(X) ← I0.next();
3 Function Next():
4 interval ← 0;
5 while true do
6 A1(Y ) ← A1.getNext(X);
7 if A1(Y ) is null then

// Continue full scan if index miss
8 while A1(Y ) ← A1.next(X) do
9 A1.addIndex(A1(Y ));

10 if Y == X then
11 break;
12 if A1(Y ) is null then

// No further matching fact A1 found
13 if A1 is negated then
14 return true;
15 if I0.hasNext() is false then
16 return false;

// Repeat loop for next A0
17 A0(X) ← I0.next() ;
18 interval ← 0;
19 continue;
20 if A1 is negated then
21 interval ← interval − (interval ∩ 1);
22 else
23 interval ← interval ∩ 1;
24 if interval is empty then

// Repeat loop for next A0
25 A0(X) ← I0.next() ;
26 interval ← 0;
27 continue;
28 if A1 is not negated then
29 return true;
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5.2.5 Termination Strategy for the Infinite Chase of Intervals
We discussed in a related work that there exist fragments of DatalogMTL where the
fixpoint computation does not terminate [BNS21b], which however admit a finite rep-
resentation in DatalogMTLFP (and symmetrically in DatalogMTLBP). In detail, three
cases are possible for a DatalogMTLFP (resp. BP) program Π: (i) it is harmless, a
sufficient condition to admit a finite model; (ii) it is DatalogMTL temporal linear or
DatalogMTL⊟ union free, a sufficient condition to admit an eventually constant model
under certain conditions; (iii) it is not in the previous sets but in DatalogMTLFP, a
sufficient condition to admit an eventually periodic model.

The Temporal Vadalog System guarantees termination of the reasoning process, with a
two-phases compile time and runtime technique.

Compile Time. At compile time, the planner determines the fragment of Π, according
to the following procedure.

• Using [BNS21b, Algorithm 1], that checks if the program has “harmful” temporal
cycles, it determines whether Π is harmless. If so, we fix modelKind = Finite.

• Else, it determines whether Π is temporal linear, checking that for each rule there
is at most one body predicate that is mutually temporal recursive with the head in
the dependency graph of Π; if it is the case and temporal linear operators [t1,t2]
are such that t1 = t2, then we fix modelKind = Constant.

• Else, it determines whether Π is union free, checking that there are no rules of Π
sharing the same head predicate; if it is the case and the box operators ⊟[t1,t2] are
such that t1 = t2, then we fix modelKind = Constant.

• Else, we are in DatalogMTLFP and fix modelKind = Periodic.

In all the non-terminating cases, according to [BNS21b, Lemma 2], and [BNS21b, The-
orem 4], the system determines the repetition pattern length pLength, based on the
combination of the pattern lengths of the different strongly connected components (SCCs)
of Π. This will result in the production, at runtime, of facts of the form P (τ)@ and
{P (τ)@ o1, o2 , n}, where the intervals are given by o1 + x ∗ pLength, o2 + x ∗ pLength
for all x ∈ N, where x ≥ n, in the periodic case, or o1 + x ∗ pLength, ∞ , in the constant
case. All the pipeline filters are wrapped by functional components named termination
strategies, whose goal is inhibiting the runtime generation of specific facts that may cause
non-termination. All termination strategies are instructed with modelKind and, where
applicable, pLength.

Runtime. At runtime, the system behaves in a fragment-aware fashion, depending on
modelKind. If it is Finite, the only causes of non-termination may be the usual Datalog
recursion, which is easily checked by the termination strategies with an embedded hash
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index. The reasoning process will produce facts of the form P (τ)@ . If modelKind is
Constant or Periodic, then the termination strategies intercept the facts generated by the
“non-finite” filters and detect when they match a repeating pattern. If the model is con-
stant, the reference interval of ground atoms is immediately converted by the termination
strategies into o1 + x ∗ pLength, ∞ , therefore preventing the generation of redundant
facts in sub-intervals; else, if periodic, the termination strategies associated to non-finite
filters, generalize the numeric intervals, with their pattern-based symbolic equivalent, so
that redundant sub-intervals are not generated in this case either. Example 5.8 shows
one of such cases.

Example 5.8. The stock market opening days are each week from Monday to Friday.
Rule 1 establishes this pattern by repeating the weekly pattern. When there is an
anniversary for a company X of our multinational holding, the celebration lasts for two
days (Rule 2). We want to intercept all the cases in which a celebration coincides with
the stock market opening days for a company X, to study the impact on its business.
In other terms, we want to compute whether celebrationDuringOpeningDays(A) holds
(Rule 3).

stockMarketOpeningDays ← [7,7]stockMarketOpeningDays (1)
celebration(X) ← [0,2)anniversary(X) (2)

celebrationDuringOpeningDays(X) ← stockMarketOpeningDays, celebration(X) (3)

The initial dataset contains the following facts, which are the initialisation of the stock
market opening days as well as the list of anniversaries:

D = {stockMarketOpeningDays@[0 , 4 ], anniversary(c)@[125, 125]}

At compile time, the planner determines that modelKind = Periodic with pLength = 7.

At runtime, after the generation of the fact stockMarketOpeningDays@[7, 11], the
termination strategy infers that n = 0, and so all facts generated by Rule 2 have
the form stockMarketOpeningDays@[x × 7, x × 7 + 4], for x ≥ 0, and the genera-
tion of future intervals is stopped. It remains to apply the join of Rule 3 between
celebration(A)@[125, 127) produced by Rule 2 and the pattern generated by Rule 1.
That is, computing x ∈ N such that [x × 7, x × 7 + 4] ∩ [125, 127) is not the empty
interval, which holds for x = 18 resulting in the operation [126, 130] ∩ [125, 127). Thus
we derive the fact celebrationDuringOpeningDays(A)@[126, 127).

5.2.6 Combining Temporal and Non-Temporal Reasoning

We have shown in Section 3.2 that the combination of DatalogMTL with existential
quantification provides only decidability for a limited number of fragments. While we
support reasoning with existential quantification according to Algorithm 3.4 by introduc-
ing Skolem terms, we also provide support for more advanced existential quantification
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by considering the two fragments orthogonally —in Datalog with existential quantifica-
tion [BBGS20] we forbid temporal operators and in DatalogMTL we forbid other forms
of existential quantification — to avoid undecidability of the program.

In order to support both modes within one program we add support for temporal wrapping
and unwrapping of rules, shortly mentioned in Section 3.1 in the context of span temporal
aggregation, which are of form:

P1(s)@temporalAtom(LB, −, +, RB) → P0(s, LB, −, +, RB)
P0(s, LB, −, +, RB) → P1(s)@temporalAtom(LB, −, +, RB)

where LB (RB) denotes if the left (right) bracket is closed and temporalAtom is an atom
annotation to denote wrapping/unwrapping of intervals. Note that not all terms in the
tuple are required in the non-temporal atom and constants can be used.

Example 5.9. Consider the conversion of a temporal fact P1(a)@[0, 4) and a non-
temporal fact P0(b, false, 0, 3, true) according to the provided conversion rules. These
rules will map the temporal fact to P0(a, true, 0, 4, false) and the non-temporal fact to
P1(b)@(0, 3].

5.3 Evaluation
The evaluation section combines the results from three papers, the benchmark gen-
erator [BNS22], where we did an early evaluation of our system, the system paper
itself [BBNS22], and the existential quantification paper [LNSW23], all with a different
target. The benchmark paper (Chapter 4) aims to establish a baseline by comparing the
system itself as well as comparing temporal aggregation with well-established time-series
databases, where the target was to create a flexible and comprehensive benchmark gener-
ator, and provide contribution in this direction, rather than providing a basic benchmark
and evaluate a large number of systems with it. The system paper (this chapter) aims to
compare our system against the state-of-the-art reasoner MeTeoR for DatalogMTL, which
was not available at the time of writing the benchmark paper and show the efficiency of
our system. Finally, the existential quantification paper (Section 3.2) aims to measure
the overhead of the introduced existential variables.

5.3.1 Establishing a baseline
As already mentioned, except our system introduced in this section, there are currently no
systems that are optimized for the set of features our benchmark generator can construct.
The goal of the benchmark generator is to enable such development bringing together the
features we need in modern data engineering (i.e., the success of time-series DBs have
shown the desire for more complex temporal reasoning, graph-based data engineering
has shown the need of recursion, and data engineering in financial systems has shown
the need of arithmetic and aggregation). That is the reason why we have presented in
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Figure 5.3: Diamond benchmark

this chapter our implementation in our reasoning system Vadalog, which is the first of its
kind4 which supports the advanced reasoning capabilities.

In this section we evaluate the implementation on a standard personal platform (MacBook
Pro 13 with M1 CPU and 16GB RAM) to provide a baseline for further systems. We
believe that having established a baseline leads to competition and improved results in
future systems. We first describe the chosen benchmarks generated with our benchmark
generator and then report the results.

Benchmark Queries

In total, we consider three archetypal benchmark queries. These queries have been
selected with the goal of including and executing different rule types of the generator
to demonstrate the flexibility of the generator for generating different types of bench-
mark settings, as well as to mimic scenarios (shapes of graphs) encountered by various
stakeholders. This includes over the three benchmark queries the application of temporal
operators, (time-based) aggregations, and recursion.

Diamond Benchmark. The first benchmark is diamond-shaped and visualized in Figure 5.3.
For this, we provide to the generator a predefined graph which yields in total three
edge types A = (I1, N1), B = (I1, N2) and C = (N1, O1), (N2, O1), where A and B are
single-edge rules and C is a multi-edge rule. We pre-configured A with diamond ( ), B
with an ITA and C with an intersection edge (∩) and left the remaining decisions to the
generator. The generated arity is given in the figure. We produced two variants of this
program: one in DatalogMTL and one in Datalog with aggregation. This is to compare
time-aware and non-time-aware reasoners.

Aggregation Benchmark. Different kind of aggregations are supported by a number of
time-series benchmarks. This benchmark generates an aggregation dataset exploring

4Note that there exist non-optimized systems that allow to express such queries under small assump-
tions and with substantial rewritings, e.g., Datalog reasoners with support of arithmetic and aggregation
as we show in the first benchmark query where we consider a rewriting to such a system.
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Figure 5.4: Recursive benchmark

(a) Diamond benchmark (b) Aggregation benchmark (c) Recursive benchmark

Figure 5.5: Benchmark results

the discussed aggregation types. That is, a graph with two nodes and a single edge,
encoding the aggregation. For STA, we choose an interval size of a month, for window
aggregation of one day5. This benchmark allows us to provide a comparison between our
implementation and the performance of an optimized time-series database.

Recursive Benchmark. The third benchmark we consider for evaluation is a recursive
benchmark. Here we create a graph that models a simulated behavior of temporal
company control (visualized in Figure 5.4, where L denotes a linear edge, ∪ union, ∩
intersection and ITA temporal aggregation). This benchmark does not include temporal
operators as it only uses temporal facts, recursion, and aggregation.

Performance Report

In the following, we report the performance of the three benchmark queries. For each
query, we reused the exact program and created instances with 10, 100 and 1000 seeding
values for the output nodes to get results on the performance regarding the data size.

5Moving Window Aggregation is not supported in QuestDB yet.
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We executed each benchmark three times, each after warm-up, and reported the average
execution time. We provide the results in Figure 5.5, where we report vertically the
times in ms, horizontally the number of seeding values. TempExt stands for temporal
extension, Date for datetime, and Numeric for numerical values.

Diamond Benchmark. We executed the benchmark in four different configurations, i.e.,
in Vadalog extended by temporal operators and Vadalog without this extension, each in
two different modes. The modes distinguish how temporal data is provided to the system.
We either support datetime (i.e., Gregorian Calendar) or numeric values. The results
show, as could be anticipated, that date conversions have an overhead and hence one
should favor simple numeric values whenever possible. The second difference is given by
the temporal reasoning extension. The main advantage of the extension in this example
is due to the intersection, as it exploits an optimized strategy to derive overlapping parts
of intervals.

Aggregation Benchmark. The goal of this benchmark is to show the current gap of our
implementation to highly optimized time-series databases for different kind of aggregations.
For a fair comparison, we compare the total time of loading and querying the data
and interface with both platforms over REST APIs. We use the date mode for our
implementation as this is required for the calculation of the STA and restrict the generated
time intervals to punctual intervals (as required by the time-series database). As already
discussed, the date parsing in our implementation is quite inefficient, which is also
visible in the result. An additional overhead is caused by the monotonic aggregation
implementation (a fundamental feature for recursive aggregates) which forwards the
intermediary aggregation result immediately to the output (i.e., it is implemented in
a more streaming oriented way). To reduce the overhead, we also added a blocking
aggregate operation, but there is still enough room for improvement to catch up with
specialized time-series databases for such operations for STA (with an average overhead
of around 250%) while we already achieve satisfactory results for ITA. Note, however,
that our implementation supports aggregation over interval ranges and not only single
timepoints which enables a wider range of scenarios.

Recursive Benchmark. The goal of this benchmark is to provide evidence for a real-world
like scenario. Again, we execute the program in the numeric and date mode and report
the values. This time, we provide an additional seed of 10000. This figure (logarithmic
scale) highlights that the execution in date mode takes around twice as long as in numeric
mode, but both modes scale the same way with increasing data size.

Note that we typically use the generator based on real-world data or data provided by
our company graph generator (synthetic with real-world statistical properties such as
skew and value distribution). This is done by providing the properties of such data in
phases 1, 3 and 5 and using the instance generated in phases 1-7 together with that data.
Orthogonally, critical for testing, and hard to ensure for temporal systems, our provided
data generator ensures that intermediate results remain non-empty to a large extent. In
this benchmark we explored the latter setting using the data of the generator.
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(a) Temporal, Negation, and
Aggregation on N7-N28

(b) Box and Diamond in Tem-
poral Vadalog and MeTeoR

(c) Real-world dataset in all
scenarios

(d) iTemporal Diamond (e) iTemporal Box (f) iTemporal Union and In-
tersection

Figure 5.6: Result Overview of Experiments

To summarize, the implementation shows a promising result for numeric values. It beats
our highly efficient non-temporal reasoning system by an order of four in the diamond
benchmark with one thousand seeding nodes and has an overhead of only 2.5 times
compared to highly optimized time-series databases (while still using the non-efficient
date implementation). We expect a drop to around 150% overhead, when one adds
numeric support for this operation based on the measurements of the third benchmark.

5.3.2 System Evaluation
The second evaluation targets the comparison of our system with state-of-the-art
DatalogMTL reasoners as well as targets specific implementation choices. For this,
we evaluated our system in a variety of scenarios with temporal operators, recursion,
negation, numerical computation, and aggregate functions, on real-world, realistic, and
synthetic datasets. The performance has been compared with MeTeoR, when applicable,
and against several benchmarks. The execution environment for this system evaluation
is a memory-optimized virtual machine with sixteen cores and 256 GB RAM on an Intel
Xeon architecture.

Experiments with Realistic and Real-World Data

We used real-world, and realistic datasets. The real-world dataset (RW) comes from
the KG of Italian companies [BBC+20] and represents the proprietary chains from the
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second half of 2019 to the end of 2021, taken at 6-months snapshots with a monthly
granularity, for a total of 5 timepoints and around 31M edges evolving through time. The
realistic datasets (N7, N11, N14, N20, N28) represent the ownerships in synthetic graphs,
generated as variations on RW. These graphs evolve through time, e.g., with changes in
shares, new shareholders, exit of shareholders, and so on, over five timepoints, and have
from 700K to 2.8M nodes and from 2.7M to 10.8M edges. We ran the experiments on
realistic and real-world data on five scenarios:

1. Temporal: temporal operator, recursion, and constraints on variables

2. Negation: stratified negation and recursion

3. Aggregation: aggregation

4. Diamond: diamond operator and recursion

5. Box : box operator and recursion

We executed each scenario against the datasets N7-N28 and RW in the Temporal Vadalog
System and, for Box and Diamond, also in MeTeoR — scenarios that include features
that are supported by MeTeoR. For Temporal, Negation, and Aggregation we performed
three runs each and averaged the elapsed time; the merging strategy was always merge.
For the Box scenario, we tested minimal, earliest and always merge. We used an one-hour
timeout to abort long-running experiments.

Figure 5.6a shows the performance of our system on the scenarios Temporal, Negation,
and Aggregation over the realistic datasets N7-N28. We have achieved good scalability,
with a linear increase in the elapsed time. The more expensive Negation runs at just over
166 secs for the biggest dataset, N28, while Aggregation performs best at 32-141 secs,
given the non-recursive setting.

Figure 5.6b shows the Diamond and Box scenarios comparatively with MeTeoR. Temporal
Vadalog is 80% faster than MeTeoR in the Diamond scenario. For Box, Temporal Vadalog
is 80% faster with earliest merge (em) and always merge (am). This test also highlights
the importance of the merging strategy choice. In fact, in the case of earliest merge the
performance is better, ranging from 43 to 186 secs, while the minimal merge requires
four times of it, as more data is sent through the pipeline until the merging operation is
applied. In the case of earliest merge, the merging operations are concentrated, and the
same happens for always merge.

Finally, Figure 5.6c shows the performance of the five scenarios (plus three merging
strategy variations for Box) on our real-world dataset. While MeTeoR exceeds the
established timeout in all applicable scenarios, our system always terminates within one
hour, with the Temporal and the Negation scenarios being the best, having an elapsed
time of 780-790 secs (∼13 mins). Comparing the rules of Temporal where execution takes
around ∼13 minutes with Diamond where execution takes around ∼16 minutes, one can
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explains the performance improvement for the Temporal scenario. While both scenarios
share the same rules, the Temporal scenario contains one additional variable constraint,
which allows to skip many edges in the graph, thus yielding less facts to be processed in
the remaining program. The Box scenario shows differences of around 2 minutes between
the strategies, favoring minimal merge due to less overlapping intervals in the graph.

Temporal Foundation Benchmark

Observing a substantial speedup of the Temporal Vadalog System with respect to MeTeoR
in the realistic scenarios, we generated specific temporal benchmarks to confirm this
aspect. In particular, we compared the systems as of their main temporal operations,
that is, temporal operators, joins and unions. To generate our benchmarks, we used our
benchmark generator iTemporal to generate DatalogMTL programs with different data
sizes between 1K to 10M (S1-S10M) facts per input atom randomly distributed over a
given domain. Figures 5.6d-f present the results. For all operations, we see that our
system outperforms MeTeoR with a factor of 3 to 4 (depending on the benchmark) for
10M facts.

5.3.3 Performance of Existential Quantification
In this section, we present an experimental evaluation of our reasoning approach from
Algorithm 3.4 for reasoning in DatalogMTL∃ under the uniform semantics.
All experiments were performed on a personal computing platform, namely a MacBook
Pro 13 with M1 CPU and 16GB RAM. Each experiment computes the materialization
of the model, as in Algorithm 3.4, three times and the average time is reported.

The Performance Cost of Existential Rules

In the first series of experiments, we study the performance impact of adding existential
rules. For this, we created four instances I1–I4 (that are pairs of DatalogMTL∃ programs
and datasets) that vary in the existence/non-existence of recursion in the programs, the
number of rules, the number of existential positions, and the size of datasets, as described
in Table 5.1. Instance I1 contains a program with a single linear rule, I2 has a complex
non-recursive program, I3 has a simple recursive program (with no ‘recursion via time’),
and I4 has a complex recursive program.
We compared the running times on instances I1–I4 and on their counterparts without
existential rules; the results are reported in Table 5.2. Clearly, inference times in the
DatalogMTL∃ cases are expected to be higher. The experiment shows that a total
overhead caused by existential rules was between 5% and 35%. The increase in time is
only moderate and primarily seems to correlate with the number of existential positions
in a program. The impact of the size of the dataset is mostly relevant for I2, where
the number of facts in the final materialization increases by 16% due to existence of
existential rules. In the case of I3, the increase is around 1% while in the remaining
instances the increase is neglectable.
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recursive? # rules: # exist. positions: # facts:
I1 no 1 1 10M
I2 no 14 3 2M
I3 yes 4 1 20M
I4 yes 23 3 200k

Table 5.1: Overview of generated instances

I1 I2 I3 I4
DatalogMTL 83.3 s 16.6 s 47.9 s 9.4 s
DatalogMTL∃ 91.4 s 22.4 s 50.5 s 11.5 s

Table 5.2: Comparison of DatalogMTL and DatalogMTL∃

# of exist. positions:
1 5 10

paths’
length

1 15.4 s 16.8 s 19.6 s
5 15.0 s 8.9 s 20.5 s

10 17.3 s 19.5 s 11.4 s

Table 5.3: Performance for different path lengths and number of existential positions

Existential Positions and Length of Propagation

In the second experiment, we investigate in more detail the impact on the performance of
the form of existential rules. For this, we generated a recursive DatalogMTL∃ program
with 20 rules and a dataset with around 20000 temporal facts, for which reasoning takes
13.77 seconds. Next, we have extended the program by adding existential rules in several
ways, which resulted in programs differing in the number of existential positions and
lengths of paths in the dependency graphs which contain existential positions. Our results
are summarized in Table 5.3.

Our experiment reveals that the performance depends on the interactions of existential
rules with the remaining part of the program and with the dataset. Interestingly in some
cases this interaction leads to a decrease of the running time, so that the running time
becomes smaller than in the case of no existential rules. Indeed, one of such interaction
we observed is as follows. Due to existential positions in a program, our procedure can
derive facts which cannot be coalesced, and so, other rules with boxes in bodies cannot
be fired. This stops derivations of more facts, which are present in the corresponding
program without existential rules.
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Figure 5.7: Scalability of our implementation

Scalability

Finally, we tested the scalability of our implementation. For this, we use the recursive
program from the previous experiment (20 rules) with 1 existential position and path
length 10, together with datasets of increasing size, namely with 2k, 5k, 10k, 20k, 50k,
100k, 200k, and 500k facts6. The results of this experiment are reported in Figure 5.7.
We see that our implementation scales linearly for the given program and dataset and
despite the high theoretical complexity of DatalogMTL∃, we observe inference times that
are feasible for practical applications even on large instances. In particular, we observe
an average running time of 159 seconds for the largest test instance, which contains 500k
facts.

5.4 Summary
In this chapter, we presented a novel architecture and system for reasoning with Data-
logMTL, delving into our optimization techniques, including specific termination strate-
gies to detect periodic models as well as query rewriting methods. We emphasized its
performance and scalability with various benchmarks, i.e., a mixture of fundamental
benchmarks testing individual operators as well as programs provided by stakeholders,
and outperformed state-of-the-art reasoners in this language. Furthermore, we study
the practicality of DatalogMTL∃ via a first implementation. Through a series of exper-
iments, we illustrate that despite high theoretical worst-case complexity, reasoning in
DatalogMTL∃ can be feasible in practice.

6Note that the datasets differ by three orders of magnitude.
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CHAPTER 6
Applications

Distributed ledger technologies (for example, blockchains) provide the foundation and
core infrastructure for decentralized finance (DeFi), a type of finance that does not rely
on intermediaries like exchanges, banks or brokers [Sin21]. DeFi applications are built by
utilizing smart contracts, an executable code that facilitates the process of executing and
enforcing the terms of an agreement between (untrusted) parties [AvM17].

Example 6.1. Consider a contract that models the following situation: A person
lends from a private funding company ten Bitcoins with an interest rate of 3% per
year for three years. The interest payment is monthly.

It has been shown that the usage of logic-based smart contract languages allows to better
represent and reason upon the conditions of a smart contract [AvM17, IGRS16]. In
particular the temporal dimension is of high interest when modeling smart contracts,
as even in simple examples such as Example 6.1 it is a natural component. Yet, all
approaches [IGRS16, FN16, SU19, HZ18, CMMO19, SD20] to the best of our knowledge
either neglect the temporal domain at all, handle it in a sub-optimal way, or miss the
support of a widely accepted secure blockchain technology.

In this chapter we study the applicability of DatalogMTL as a smart contract specification
language with the aim to make it translatable to Solidity, a widely-accepted and the
main programming language for Ethereum, one of the largest blockchains.

This chapter is based on our recent papers on making DatalogMTL accessible to the
financial community [NS22a] and the Datalog community aware of blockchain related top-
ics [NS22b]. We start in Section 6.1 by providing a high-level introduction to blockchains
and continue by discussing the requirements of a DatalogMTL-based smart contract
language in Section 6.2. Then, in Section 6.3 we discuss the main components which
are required by a smart contract language and formally define a DatalogMTL-based
smart contract. We discuss preliminary results on a DatalogMTL to Solidity converter in
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Figure 6.1: Blockchain 101

Section 6.4 and provide a case study in Section 6.5. Finally, we summarize the chapter
in Section 6.6.

6.1 Blockchain 101
A distributed ledger technology (DLT) is a decentralized, immutable, and append-only
database across different nodes that is managed by multiple participants. At the core
of the DLT is a consensus mechanism which contains procedures and rules on how
transactions are validated by the nodes [10121].

A blockchain is a form of DLT, where transactions are recorded and grouped into blocks,
where each block includes a hash of the previous block. Other forms of DLTs are
Tangle [Pop18], built on top of a directed acyclic graph, or Corda [HB16], a leading DLT
for regulated industries where the ledger stores per node only the facts the node is aware
of that they exist.

Smart Contracts are programs stored on the distributed ledger technology that run when
certain conditions are satisfied. Usually, smart contracts manage an agreement (i.e.,
rules) between multiple parties per code without requiring a third party. They reduce
risk due to the tamper-proof property of DLTs and provide transparency to the process.
Typical smart contract applications include voting, supply chains, mortgage, copyright
protection, or employment arrangements [Anw18].

Figure 6.1 visualizes a blockchain with a block containing multiple transactions (Tx), and
a transaction that is signed by a user and invokes a method of a smart contract which
interacts with another smart contract.
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Figure 6.2: Overview of approach

6.2 Requirements
In this section, we provide what we think are the most essential temporal requirements a
logic-based smart contract language has to support to provide a minimum amount of
useful reasoning capabilities for DeFi applications.

1. Validity Interval. It is necessary to represent intervals, i.e., when a specific kind
of operation is valid, and not only punctual points. For example, voting contracts
specify an interval when voting is allowed.

2. Periodicity. It is necessary to specify periodic patterns that encode repeating
agreements, for example, to encode that the salary is paid per month.

3. One Time Event/Delay. It is necessary to encode single future events. For example,
in shopping contracts a payment reminder has to be sent in case the money has
not been paid.

4. Negation. While only indirectly related to the temporal domain, it is necessary to
support negation. This is illustrated in the third point of this list, which encodes
that something has not occurred within a specific interval.

5. Verification. It is necessary to verify whether a given model is satisfied for a given
set of rules. This helps for the verification of certain properties and is in line with
the work of using temporal logic for verification of smart contracts.

Note that DatalogMTL supports intervals (1) as a core concept, periodicity (2) by
recursive rules, delays (3) by temporal operators, (4) by stratified negation, and (5) by
the rule head ⊥ out of the box. Yet, for many programs one requires a more relaxed
form of stratified negation, namely sequential stratified negation [Zan12]. This form
allows the usage of negated body atoms in recursive rules in case the negated body
atoms maintain the monotonicity property of DatalogMTL. Furthermore, analogously
to sequential stratified negation, we allow sequential stratified arithmetic (i.e., +,−,×,÷).
Figure 6.2 provides an overview of our approach including the stack of used language
features.

115



6. Applications

6.3 Language Definition
In this section we discuss the modelling of smart contracts with DatalogMTL over the
integer timeline [WCGKK20a]. We start by formally defining DatalogMTL-based smart
contracts and then explain the individual components in detail with a running example.
Note, that smart contracts often follow best-practice patterns, such as in Solidity [Eth22],
the leading smart contract language, which we explore in Example 6.2.

Definition 6.3.1. A smart contract is a quadruple (N, Π, D, A) where:

• N is a unique name of the contract (namespace).

• Π is a forward propagating DatalogMTL program encoding the rules of the
smart contract.

• D is the initial dataset encoding the initial state of the smart contract.

• A is the set of activators containing predicates which may be invoked by other
smart contracts or parties.

Example 6.2 (Running Example). We consider one of the main patterns here, namely
that contracts often are modelled as state machines. Let us consider a state machine
with the following four stages: init, acceptingBids, execution, and finished. A contract
is being initialized, stays in the “accepting bids” state for exactly 10 days, then is in
execution and finally finished.

Initial Dataset. In Solidity one usually sets up the initial values with the constructor
which is invoked when deploying the smart contract in the blockchain. In DatalogMTL
this corresponds to providing the initial values as a given dataset at a certain timestamp.
For the timestamps, we have two options:

• Local timestamp. The smart contract does not depend on any other timestamps (ei-
ther time-information such as the current date or information from other contracts).
Then one can initialize the timestamp t with zero or any other number.

• Global timestamp. The smart contract uses the timestamp of the blockchain for
initialization. This allows to use a shared timestamp and the actual current time
inside the contract. As for the contract itself, the initial value has no influence
on the reasoning (it is just shifted to a different timestamp), we always use a
globally shared timestamp. That is, we set the t = now(), where now is the current
timestamp in the blockchain.

Example 6.3. (continued) The initial values are given by the following dataset encod-
ing the initial stage of the state machine: {stage(init)@t}, where t is the deployment
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timestamp as discussed above.

Invoking a Smart Contract. Usually, to invoke a smart contract in Solidity one calls
a method of a smart contract. Each call is initialized by a transaction, which allows the
called smart contract to invoke other smart contracts. In DatalogMTL we only have
rules that fire (i.e., derive the rule head) when the body is satisfied. In order to model
an invocation of a method in DatalogMTL, we mark predicates as activators. These
activators can be “called” by adding the activator for the current timestamp to the
dataset. By writing rules that use these activators in the body one triggers the derivation
of further facts. As we use activators for triggering rules, they have to obey the following
restrictions to enforce compatibility with Ethereum: (i) an activator is only allowed in
the body of the rule, (ii) only one activator is allowed to be executed per timestamp (to
have an implicit method call order and prevent conflicting states).

Example 6.4. (continued) The set of activators for the bidding state machine consists
of the following activators: {bid, execute}.

Program. One usually encodes in a method of a smart contract the transition of
data/state before and after the execution of a method. We already covered in the
previous paragraph the activation via an “activator”. This activator triggers a set of
rules that state how the current dataset at timepoint t is changed for the next state at
timepoint t + 1. This implies that such rules are not allowed to derive facts for entries in
the past.

Example 6.5. (continued) The rules for the state machine are given as follows:

⊞(0d,10d)stage(acceptingBids) ← stage(init) (1)⊞[10d,10d]stage(execution) ← stage(init) (2)⊞[1,1]stage(execution) ← stage(execution), ¬execute, bid(_, _) (3)⊞[1,1]stage(finished) ← stage(execution), execute (4)
doAction . . . ← stage(execution), execute (5)

vBid(S, A) ← stage(acceptingBids), bid(S, A) (6)⊞[1,1]highBid(S, A) ← vBid(S, A), highBid(_, CA), A > CA (7)⊞[1,1]highBid(S, CA) ← vBid(_, A), highBid(S, CA), A <= CA (8)⊞[1,1]highBid(S, CA) ← highBid(S, CA), ¬vBid(_, _), bid(_, _) (9)⊞[1,1]highBid(S, CA) ← highBid(S, CA), ¬vBid(_, _), execute (10)

Rule 1 defines the duration of the acceptingBids stage, Rule 2 marks the start of the
execution and Rule 3 extends this stage in case there was no execute-action. Rule 4
translates the stage to finished in case of an execution and Rule 5 simulates a possible
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action of the execution. Rules 6-10 manage the bidding phase, which defines on how
the data is changed in the possible settings (there is a bid which is higher/not higher
and there is no bid). Note, that we model also the “unchanged” values (3, 9-10) in
DatalogMTL to derive a well-defined next state (requiring always some given activator
for a given timepoint for executing the rules only for the eligible time).

Namespaces. So far, we focused on modelling a single smart contract. However, a
method of a smart contract can invoke a different (target) smart contract and use the
return value in the remaining method. In order to handle this case in DatalogMTL, we
require the following:

• Namespaces to uniquely identify a given smart contract.

• Triggers to “trigger” an activator of a different smart contract. Note that due to
the restrictions of one activator per timestamp, this creates a temporal chain of
calls.

• A Default Activator (Caller.default) to handle the passing of “return values” to the
calling smart contract. In case different default activators are required, one can
introduce additional intermediary smart contracts, which default activator triggers
a named activator of the original contract.

Example 6.6. (continued) A namespace for the running example could be “Biding-
Contract” and the doAction could be an invocation of a contract (e.g., namespace
Token) to transfer tokens, e.g., Token.transferFrom(Src, Tgt, 20). After a successful
application it uses the default activator to trigger the calling smart contracts so that
it can continue the execution.

Blockchain-specific Parameters While the introduced concept so far allows one to
model several use cases, there is one open point for discussion, namely blockchain-specific
parameters. In the following, we study the most important properties of Solidity and
how we can ensure the usage in DatalogMTL. Typically, one distinguishes between three
different classes of properties:

• Block-specific properties, such as the block number, or the timestamp.

• Transaction-specific properties, such as the initiator of the transaction (origin)
considering the full chain of executions starting from an external call to the activator.

• Message-specific properties, such as the caller or the number of coins sent to the
invoked contract.

We inject these properties by introducing pre-defined predicates which are added to the
dataset, e.g., block(Number), transaction(Origin) or msg(Caller). The only property we
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Figure 6.3: Overview of translation process

do not consider in this mapping is the timestamp as this causes ambiguity and hence has
to be treated in a special way, which the following two points highlight:

• Timestamp per block. In Ethereum, the timestamp is provided per block and the
only requirement for the timestamp is that it is higher than the previous block.
This means, that the timestamp received in a method is the timestamp of the block.
That is, each transaction, and hence each method invocation (i.e., message) shares
the same timestamp and the actual timestamp is dependent on the miner of the
block and may not model the exact time.

• Time and ordering. For modelling smart contracts, we require two different kinds
of timestamps. One that models the real time, for example to check if something
happened within the last 24 hours, and one to model the sequential order of method
invocations.

In order to handle this representation problem in DatalogMTL, we decided to assign
each message its own timestamp. This is possible as the main goal is the conversion to
the Ethereum platform, where the natural mapping discussed above can be used, which
yields a quite natural, relatively simple structure of time.

6.4 Translation Engine
In the previous section we established the required formalism to model an Ethereum-
compatible smart contract in DatalogMTL. In this section, we present our proof of concept
for translating DatalogMTL rules into Solidity. Figure 6.3 shows a general overview
of the process, where each step is discussed in the following. We want to remark that
Solidity is Turing-complete, hence more expressive then DatalogMTL without arithmetic
and thus allows to formulate more complex programs. Yet, in the examples studied with
stakeholders we identified that the given examples can be formulated in a logic-based
language with the integration of the discussed extensions in Section 6.2.

Phase 1 - Parser. The first phase is all about parsing and normalizing the program.
For this, we read a DatalogMTL smart contract from file and apply a normalization
procedure to ensure that each rule has a head without a temporal operator and the body
either has literals containing no temporal operator or consists of exactly one literal with
a single temporal operator.
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Example 6.7. (continued) Rule (3) of the running example would be rewritten by
introducing an auxiliary predicate and moving the temporal operation into the body
as follows:

temp1 (execution) ← stage(execution), ¬execute
stage(execution) ← [1,1]temp1 (execution)

Phase 2 - Grouping of Rules and Method Detection. The goal of this step is to
group rules executed together and sort them by execution order to create for each group
a method in a Solidity contract. By the usage of the activators, we directly derive the
starting points of these methods. These points can be used to trace the derivation to
check whether additional rules are activated. Next to that, we find some other common
patterns in rules:

• Negated activators are often used for describing the continuation of the current
state which does not require any handling in Solidity. If this is not the case, such
negated activator has to be checked before each method call.

• Global rules may not be triggered by any activator, i.e., they can depend on the
current state of the smart contract. Similar to the second case of negated activators,
these rules have to be enforced before any method call. Such rules are detected
by checking the body of the rule whether it is not only directly enforced by a rule
containing an activator, e.g., there is an initial state or some time delay in between.

• Initial rules. These are similar to global rules but are only executed on deployment
of the smart contract. These rules typically live in the constructor and have no
time-dependent condition in the future (as otherwise they would be global rules).

Example 6.8. (continued) The group of rules for the running example are the execu-
tion group (4-5) containing the execute activator, the bidding rules (6-8) containing
the bid identifier and the global group (1-2) which are activator independent. Rules
(3), (9) and (10) are detected as negated activators copying the current state and are
removed as no further consideration in Solidity is requireda.

aNote that we have added those rules at the beginning to allow the smart contract to be interpreted
by a Datalog reasoner. When the only goal is the conversion to Solidity, one can ignore the rules
when writing the smart contract in DatalogMTL.

Phase 3 - Data Types. We distinguish between the following two types:

• Term Type. We derive the data type of a term where possible from the internal
values (e.g., from the dataset). However, when there is an activator, we are unaware
of which values are provided by the user (e.g., is it 8bit or 256bit integer). Therefore,
we extend the activator syntax to provide data types for the activators.
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• Atom Type. An atom can be either stored by one or more variables, each either
being a primitive, array or map. First, we distinguish whether there exists only one
valid atom per time unit, then single values are sufficient and per term a variable
is created. Otherwise, we check if there is a pattern for accessing the atom to
identify a map type (e.g., there is an access in body and head and some variables
are shared).

Example 6.9. (continued) The activator for bidding would be bid(Int). Note that
with the introduction of the message-specific parameters the sender S is extracted
into an own atom msg(Caller). The atom type of highBid would consist of multiple
primitives.

Phase 4 - State Types. For the state of the smart contract, we have to distinguish
between local state where the derived fact is not shared with any other method and does
not need historical information, state variables where we only require the latest state (are
not time-dependent), variables where we need a last-timestamp of action, and variables
where we need a history of changes for a time period. For detecting the local state, we
use the grouping to check whether there exists no other group that contains the same
atom and uses information from other time units. In such a case, we can inline the
state at contract generation. For detecting the latest state atoms, we check whether the
state always depends on the previous timestamp in DatalogMTL. To distinguish between
the remaining cases, we differentiate on whether we have to check if some condition is
currently fulfilled or whether there is a more complex comparison where the other case is
not enough1.

Example 6.10. (continued) Variables Stage0, HighestBid0 and HighestBid1 are
identified as global state, where the numbers reference to the term position. In
addition, a variable storing the timestamp when stage(init) becomes true is created.

Phase 5 - Contract Generation. What now remains is the processing of the rules
per group. We start by adding preliminary checks, then continue per activator. That
is, we structure the rules by a dependency graph and convert each rule to Solidity. In
case there is an option to handle multiple rules at the same time, we try to find specific
structures that follow a specific pattern. For example, for the bidding rules, we detect
that these rules are a typical if-else structure and furthermore that only the if part is
relevant.

Example 6.11. (continued) The generated function for bidding is as follows, with
checks for the correct phase and a valid offer. Note that __global is a modifier
executed before the function that handles automatic state transitions. The full program
is given in Figure 6.5.

1Note that, by definition, non-local state is only allowed to be set for future time points.
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contract ERC20 {
mapping(address => int) _balanceof1;
mapping(address => mapping(address => int)) _allowances2;

constructor() {
_balanceof1[msg.sender] = 2000;

}

function transfer(address to_, int value_) public {
require(value_ <= _balanceof1[msg.sender], "invalid request");
int newbalance1_ = _balanceof1[msg.sender] - value_;
int newbalance2_ = _balanceof1[msg.sender] + value_;
_balanceof1[msg.sender] = newbalance1_;
_balanceof1[to_] = newbalance2_;

}

function approve(address spender_, int value_) public {
_allowances2[msg.sender][spender_] = value_;

}

function transferFrom(address from_, address to_, int value_) public {
require(_allowances2[from_][msg.sender] >= value_, "invalid request");
require(value_ <= _balanceof1[from_], "invalid request");
int newbalance1_ = _balanceof1[from_] - value_;
int newbalance2_ = _balanceof1[from_] + value_;
_balanceof1[from_] = newbalance1_;
_balanceof1[to_] = newbalance2_;
int newvalue3_ = _allowances2[from_][msg.sender] - value_;
_allowances2[from_][msg.sender] = newvalue3_;

}
}

Figure 6.4: Generated ERC20 Solidity contract

function bid(int a_) public __global {
require(compareStrings(_stage0, "acceptingBids"), "invalid request");
require(a_ > _highestbid1, "invalid request");
_highestbid0 = msg.sender;
_highestbid1 = a_;

}

6.5 Case Study
In this section, we discuss the results of our smart contract language and generation
process by encoding the running example as well as the ERC-20 standard for tokens in our
language and comparing the generated code with the original Solidity code [Eth18, Eth22].
The results of our generation are given in Figure 6.4 as well as Figure 6.5.

In general, the generation of the smart contracts shows similar code as the compared
original code. This means, that the supposed steps of the pipeline achieve the desired
goals. In a detailed comparison, we detected some possible improvement potentials: (i)
code reduction, (ii) check for variable range (e.g., overflows), and (iii) improvement of
variable types to reduce execution costs.

Besides the discussed limitations, we want to remark that the current implementation is
a proof-of-concept not supporting all cases yet, especially it misses support of handling
looping structures. Furthermore, we identified that the detection of the required state
types and their dependencies given by the rules requires more detailed investigation. Still,
as the results have shown, the generation process is feasible, and we continue sharpening
the generator to cover more advanced tasks in the future.

6.6 Summary
In this section, to the best of our knowledge, we introduced the first temporal logic-based
smart contract language that is executable on a widely used blockchain. While it is still
a proof of concept, it already handles many of the subtleties and challenges, in particular
blockchain-specific variables, or state types. Our translator is able to produce meaningful
code for widely used patterns, including the ERC-20 token and the state machine.
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// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.7;

contract BIDINGCONTRACT {

string _stage0 = "InitState";
address _highestbid0;
int _highestbid1;
uint stageInitStateUpdated = block.timestamp;
uint stageInitStateUpdatedLastFired;

constructor() {}

modifier __global() {
if(stageInitStateUpdatedLastFired < stageInitStateUpdated &&

block.timestamp > stageInitStateUpdated + 0.0 days &&
block.timestamp < stageInitStateUpdated + 10.0 days) {
stageInitStateUpdatedLastFired = stageInitStateUpdated;
_stage0 = "AcceptingBids";

}
if(stageInitStateUpdatedLastFired < stageInitStateUpdated &&

block.timestamp >= stageInitStateUpdated + 10.0 days) {
stageInitStateUpdatedLastFired = stageInitStateUpdated;
_stage0 = "ExecutionState";

}
_;

}

function bid(int a_) public __global {
require(compareStrings(_stage0, "AcceptingBids"), "invalid condition");
require(a_ > _highestbid1, "invalid request");
_highestbid0 = msg.sender;
_highestbid1 = a_;

}

function execute() public __global {
require(compareStrings(_stage0, "ExecutionState"), "invalid condition");
_stage0 = "Finished";

}

function compareStrings(string memory a, string memory b) public pure returns (bool) {
return keccak256(abi.encodePacked(a)) == keccak256(abi.encodePacked(b));

}
}

Figure 6.5: Generated running example Solidity contract
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CHAPTER 7
Conclusion

In this thesis we enabled temporal reasoning with DatalogMTL for knowledge graphs by
advancing the state-of-the-art in several directions: by supporting new features, namely
aggregation and existential quantification, by creating a benchmark generator as an
evaluation tool, by developing a fully engineered reasoning system and by studying new
applications for DatalogMTL.

In this chapter, we examine in Section 7.1 the research questions in retrospect and
highlight the key findings. Then, in Section 7.2, we look ahead and explore open points
that should be addressed in future work.

7.1 Summary
In this section, we summarize and discuss the answers to the research questions introduced
in Chapter 1. For each main chapter of the thesis, we first recall the context of the chapter,
and then restate the research question from the introduction with a brief discussion about
the most significant results.

The first two research questions addressed the missing functionality for temporal reasoning
in knowledge graphs with DatalogMTL by adding two key capabilities: aggregation and
existential quantification.

Research Question 1. In which form can monotonic aggregation, as used in Datalog,
be used over temporal data, i.e., in DatalogMTL?

In Section 3.1 we introduced different kind of time-point aggregations for DatalogMTL.
We showed that it is possible to reduce time-point aggregation to the classical aggrega-
tion of Datalog, with a coalescing of adjacent intervals. Furthermore, we introduced a
granularity operator that is capable of extending intervals to the granularity of weeks,
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months, or years and thus is able to provide the right interval boundaries for the
span temporal aggregation. Finally, we discussed time-axis aggregation to summarize
the behavior of values over the timeline, giving a concrete semantics for monotonic
increasing and decreasing intervals.

Research Question 2. What is the complexity for different restrictions of existential
quantification? Is there a way to adapt the reasoning process towards the usage of
existential quantification?

In Section 3.2 we introduced DatalogMTL∃, an extension of DatalogMTL, with its
natural and uniform semantics. We obtained for the studied fragments under OWA
only for weakly acyclic programs a decidability result, which is 2-EXPSPACE-complete.
We provided for this fragment an algorithm by introducing Skolem terms which map
existential quantified variables to the same constant for all time instants.

The next research question addressed the missing evaluation scenarios for reasoning in
knowledge graphs, combining temporal reasoning with the use of aggregation, existential
quantification, and full recursion over cyclic graph structures.

Research Question 3. What queries should a benchmark for DatalogMTL include?
What datasets should be used for the benchmark?

In Chapter 4 we observed that state-of-the-art reasoners are not capable of providing a
rich feature set to test a combination of required features in knowledge graph systems.
Thus, we proposed a benchmark generator which targets exactly those scenarios where
a benchmark on the combination of the multiple features is required. That is, instead
of providing datasets (which we among others generated during the creation of the
generator), we give the community the possibility to generate targeted instances to
evaluate a broad range of cases as well as edge cases of their implemented system.

Then, our next research question addressed the implementation and evaluation of the
system itself by making use of the previously established functionality and evaluation
toolset.

Research Question 4. How is the performance of DatalogMTL in comparison with dif-
ferent state-of-the-art systems and between different implementation choices?

In Chapter 5 we discussed the implementation of Temporal Vadalog, our novel
reasoning system for knowledge graphs supporting the newest results of DatalogMTL.
We evaluated the system regarding state-of-the-art reasoners and showed that our
system is capable of (a) supporting temporal aggregation in a reasonable time compared
to optimized time-series databases and (b) outperforming state-of-the-art reasoners
supporting DatalogMTL.

Finally, our last research question addressed as a concrete application on top of the
established system the creation of smart contracts with DatalogMTL.
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7.2. Future Work

Research Question 5. Is it possible to encode a variety of typical smart contract use
cases in DatalogMTL? How can we enable DatalogMTL-based smart contracts on major
blockchain platforms?

In Chapter 6 we highlighted the importance of the temporal domain and developed a
smart contract language based on DatalogMTL that complies with the principles of
blockchain transactions while maintaining the possibility to reason with DatalogMTL.
We showed the applicability of this language by providing case studies and encodings
of multiple patterns. Furthermore, we introduced a first version of a translation engine
that is capable of making this language accessible to Ethereum, one of the currently
most widely used blockchain technologies.

7.2 Future Work

This section reviews some of the remaining open points for future research in multiple
dimensions.

Theoretical Contributions. While this work mainly focused on enabling reasoning
with DatalogMTL in the setting of knowledge graphs, we encountered several points
that require further theoretical research. As seen in the application scenario, we used a
restricted form of arithmetic in the programs, which has not been studied for DatalogMTL.
Similarly, theoretical results are required for enabling stratified negation along the time
axis. Yet, the biggest challenge of DatalogMTL is its data complexity. Using just the past
diamond operator with an interval of [1, 1] would already allow to generate programs that
are PSPACE-hard in data complexity. While there is ongoing research in the direction
of finding tractable (i.e., PTIME) fragments, the currently available fragments are quite
limited as either a restricted single operator is allowed or some form of temporal-acyclicity
is required. Furthermore, as mentioned in Chapter 5 the chase of DatalogMTL is not
terminating in all cases, requiring finding periodic patterns. While we achieved some first
results in this regard [BNS21b], further insights are required for efficiently detecting such
patterns for full DatalogMTL.

System Design. The integration of temporal reasoning does not end with the support
of DatalogMTL. On the one hand, the implementation itself can be improved, for example
by optimizing the algorithms such as for joins, or by using optimized data structures
for the temporal domain. On the other hand, the temporal features can be extended to
go beyond DatalogMTL. For example, one can add support for Allen interval relations,
allowing to provide constraints on the relationship of data, where one possible approach
is to consider the work by Kontchakov et al. [KPP+16] as a starting point. Another line
of interesting future work is the extension of the subject of study to spatial-temporal
Datalog queries.
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7. Conclusion

Benchmarks. The extension of spatial-temporal Datalog queries also raises an inter-
esting possibility for extending the benchmark generator with even more sophisticated
features such as spatial data. In addition, it would be also interesting to integrate
iWarded [ABBS22], a generator targeting existential rules in Vadalog, and extend it to
the temporal domain for generating advanced temporal existential rules. Moreover, it
would be interesting to also provide a data generator that is directly operating on the
input nodes, providing a more real-world oriented generation approach to the users.

Applications. Vadalog is known for its efficient reasoning over multiple financial use
cases [BFGS19, BBC+20, BBB+22]. While these use cases work on a single snapshot
of the data, it is of high interest to extend these applications to continuous time (and
not a collection of snapshots) to make full use of the reasoning capabilities provided
by DatalogMTL, providing new insights on the performance of real-world scenarios.
Also, the application scenario considered in the thesis, namely using DatalogMTL as
a smart contract specification language requires some future work. On the one hand,
our results of the translation engine are only preliminary and have to be tested against
broader scenarios and extended to full DatalogMTL. On the other hand, it is interesting,
especially for DeFi applications, to explore and reason on the insights given by the smart
contracts in the analysis of transaction data, since just the reasoning over transaction
data in a knowledge graph has shown promising results [BGNS21]. Furthermore, it would
be fascinating to study the framework around the creation of a traditional contract by
strengthening the interdisciplinary collaboration between jurisprudence and computer
science.
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