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Abstract

For the experimental realization of a novel type of nuclear clock we investigate
the large gap insulators MgF2, CaF2 and LiCaAlF6 with density functional theory.
In particular we determine possible charge compensation mechanisms when
doped with thorium and estimate the band gap size, which we find to be in
range of the thorium-229 isomer energy for Th:CaF2 and for Th:LiCaAlF6. To
establish an assessment on the transition rate of a proposed electron-bridge
mechanism, we reconstruct the all-electron Kohn-Sham wave functions for the
most probable charge compensating configurations of these two compounds.
For Th:CaF2, lattice vibrations at finite temperatures were also taken into ac-
count and we include an analysis when doped with the more accessible heavy
elements actinium, cerium and neptunium and calculate the electric field gra-
dient on these dopants. For Th:LiCaAlF6, we furthermore train the structure to
energy mapping with an artificial neural network using atom centered symme-
try functions.

Kurzfassung

Für die experimentelle Realisierung einer neuartigen Atomuhr untersuchen wir
die Materialien MgF2, CaF2 und LiCaAlF6 mit Hilfe der Dichtefunktionaltheorie.
Insbesondere bestimmen wir mögliche Ladungskompensationsmechanismen
bei einer Dotierung mit Thorium und schätzen die Größe der Bandlücke, die
wir im Bereich der Anregungsenergie des Thorium-229 Isomers für Th:CaF2
und Th:LiCaAlF6 befinden. Um eine Einschätzung für die Übergangsrate eines
möglichen Elektronen-Brücken Mechanismus zu ermöglichen, rekonstruieren
wir die vollelektronischen Kohn-Sham Wellenfunktionen für die wahrschein-
lichsten Ladungskompensationsmechanismen dieser beiden Verbindungen.
Für Th:CaF2 werden auch Gitterschwingungen bei erhöhten Temperaturen
berücksichtigt und wir analysieren Dotierungen mit den leichter zugänglichen
schweren Elementen Actinium, Cer und Neptunium und berechnen den elek-
trischen Feldgradienten an diesen Dotanden. Für Th:LiCaAlF6 trainieren wir
außerdem die Struktur-zu-Energie Beziehung mittels eines neuronalen Netzw-
erks mit Hilfe von atomzentrierten Symmetriefunktionen.
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Chapter 1

Introduction

Measuring time to high accuracy is a central demand of modern physics.[1–3]
With setups where electronic excitations are used as frequency standards, re-
cent developments made time measurements with unprecedented uncertain-
ties possible.[4] However, by exploiting the low energy isomer excitation of the
229Th nucleus, a novel nuclear clock has been proposed, that may outperform
even the most accurate time measurements to date.[5,6] This is because the ac-
tive atom is implanted in a crystalline lattice of a large gap insulator, which will
allow for longer and more stable measurements, while at the same time the
electronic environment shields the nucleus from external perturbations. Re-
centmeasurements estimate an energy difference of 8.10(17) eV to the ground
state, which is in reach of modern optical laser spectroscopy methods making
its excitation potentially experimentally viable.[7] A critical component for the
feasibility is that the host crystal’s band gap exceeds the predicted isomer en-
ergy.

In the present thesis we study the electronic structure and optical properties
of thorium atoms (and a number of other heavy elements) introduced into large
gap insulators like MgF2, CaF2 and LiCaAlF6.[8–12] These numerical simulations
are performed with the Vienna Ab-initio Simulation Package (VASP).[13–17]

A systematic study of impurities and the necessary charge compensation
mechanisms requires the calculation of enthalpies for all possible compounds
of the constituents which appear along the chemical pathways when introduc-
ing one or more atoms into a crystal and simultaneously removing atoms to
provide charge neutrality.

To this end we perform a large number of convergence studies testing vari-
ous versions of pseudopotentials and phases at different levels of density func-
tional theory (DFT). These convergence studies include the numerical accuracy
of the VASP calculations, the convergence of the grid in reciprocal space and
the calculation of the equilibrium geometries.
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Our study on LiCaAlF6 (LICAF) represents a peculiar case. As a quaternary
compound with a trigonal lattice structure,[18] any straightforward strategy to
scan for possible charge compensation mechanisms is doomed to fail due to
the laws of combinatorics. To overcome these problems we study the potential
application of artificial neural networks to sort out unlikely configurations. We
follow a previously devised approach to calculate a unique atomic fingerprint
in the chemical environment, which we modify to enhance the accuracy in a
crystal lattice.[19]

In the case of Th:CaF2 we also study the influence of finite temperature ef-
fects on its optical properties via the calculation of the phonon spectrum.

A possibility to excite the isomer transition is the electron-bridge mecha-
nism. The idea behind is that parts of the wave functions reach all the way
to the nucleus such that an electronic excitation can transfer its energy. We
thus calculate the respective wave functions which we provide for the research
group of Adriana Pálffy at the Max-Planck-Institut für Kernphysik in Heidelberg,
who perform the calculations of the above mentioned scheme.[20,21]

Finally, we provide calculations of the electric field gradient at the thorium
site to facilitate experiments with nuclear quadrupole resonance spectra, which
allow to discriminate between the ground state and the excited state of the
thorium nucleus.
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Part I

Theory
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Chapter 2

Insulating Crystals

2.1 Bloch Waves

In the early twentieth-century, diffraction experiments with X-rays revealed that
crystals show a periodic atomic structure. This discovery was so significant, that
two subsequent Nobel prizes were awarded in 1914[22] and 1915.[23]

In nature, most elements and inorganic compounds are solids at ordinary
temperatures and a great majority of those also show a periodic structure in
space,[24] in the same way as crystals do. The periodicity is given by the three
lattice vectors a1, a2 and a3. Naturally, physical quantities with spatial depen-
dence show the same periodicity with respect to R = n1a1 + n2a2 + n3a3,
ni ∈ Z. For example, the crystal potential energy is invariant under translations
V(r) = V(r+ R). Because of this periodicity, the potential can be expanded into
a Fourier series

V(r) =
�
K

VKeiK·r, (2.1)

where K = η1b1 + η2b2 + η3b3, ηi ∈ Z is an integer multiple of the reciprocal
lattice vectors b1, b2 and b3 and VK are the expansion coefficients.

In the following we consider the solution to the Schrödinger equation

− ℏ2

2me
∇2 + V(r)

�
Ψn(r) = EnΨn(r). (2.2)

For a given potential V we want to obtain the electronic wave function for a
fixed point in time. This case is sufficient as is discussed within the Born-
Oppenheimer approximation in section 2.3.

A general ansatz to solve the Schrödinger equation for the given periodic
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potential is to expand the wave function into plane waves

Ψn(r) =
�
k

Ckeik·r, (2.3)

where the k vectors are determined by the boundary conditions. Plugging both
Equation 2.1 and Equation 2.3 into Equation 2.2 results in


ℏ2k2

2me
− E

�
Ck +

�
K

VKCk−K = 0, (2.4)

after short calculation.[25,26] Each solution for k has a coupling of coefficients of
Ck and all those which differ by a reciprocal lattice vector Ck−K,Ck−K′ ,CK−K′′ , etc.
With this information, we can re-write Equation 2.3 as

Ψk(r) =
�
K

Ck−Kei(k−K)·r

= uk(r)eik·r.
(2.5)

This result is known as Bloch’s Theorem, which states that the electronic wave
functions in crystals are plane waves multiplied by a function, which has the
same periodicity as the crystal u(r) = u(r+ R) since it can be seen as a Fourier
expansion with the reciprocal lattice vectors K.

One of many implications of Bloch’s Theorem is that

Ψk+K(r) = Ψk(r). (2.6)

Thus, values of k are not unique and may be chosen such that they are within
the first Brillouin zone. Consequently, the energies are periodic with respect to
the reciprocal lattice

En(k) = En(k+ Kn). (2.7)

The periodicity of energy states in reciprocal space combined with the quanti-
zation of energy levels result in so-called energy bands, where certain ranges
of energies are populated by electrons while other ranges are not. These for-
bidden energy regimes are called band gaps. The collective energy bands form
the band structure of a material.[25,27] In a first approximation, a mathematical
origin for the band gaps is derived in section 2.2.

2.2 Band Structure

Interpreting band structures requires knowledge of the physical mechanisms
which can occur in the material. As an example, we first look at a potential
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which is periodic but infinitely small. In this approximation, the electrons are
free and non-interacting. Using Equation 2.7, the dispersion relation for free
electrons in the crystal is

En(k) =
ℏ2

2me
k2 = En(k+ Kn) =

ℏ2

2me
|k+ Kn|2. (2.8)

Thus, we can always find a vector K which maps the dispersion relation into the
first Brillouin zone.

−π
a Γ π

a

kx

E

Figure 2.1: Band structure of non-interacting electrons in a simple cubic lattice
in kx direction. The region outside of the first Brillouin zone is shaded. The
different energy bands originate from writing Kn in terms of Miller indices.[25]

Even in thismost simple approximation, the band structure appears as quite
complex, as can be seen when visualizing the free electron band structure for
various paths in k-space, such as the one in Figure 2.2.

As a next step we investigate a periodic potential that is non-zero, but still
small, and assume that the Fourier expansion of the potential in Equation 2.1
is adequately described by only a single component VK.[25] Translation of a re-
ciprocal lattice vector in Equation 2.4 yields[29]


E− ℏ2

2me
|k− K′|2

�
Ck−K′ =

�
K

VKCk−K′−K =
�
K′′

VK′′−K′Ck−K′′ , (2.9)

where we substituted K′′ = K + K′ on the right hand side.[25] In a first approxi-
mation, we seek a solution for the coefficients

Ck−K′ =

�
K′′ VK′′−K′Ck−K′′


E− ℏ2
2me

|k− K′|2
� (2.10)
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Γ X W L Γ K
k

E

Figure 2.2: Band structure of the free electron approximation for the fcc-lattice
along the path Γ-X-W-L-Γ-K.[27,28]

with the largest values. Substitution of E with the free electron energy of Equa-
tion 2.8 shows that the coefficient is largest when the denominator in Equa-
tion 2.10 vanishes. This is the case precisely when either k2 ≈ |k− K′|2 orK′ = 0.
The largest coefficients are therefore Ck and Ck−K′ . In both cases, the sum in
the numerator reduces to a single value. The solution of the resulting system
of two coupled equations is[25,27,29]

E± =
1
2
(Ek−K′ + Ek)±

�
1
4
(Ek−K′ − Ek)2 + |VK|2. (2.11)

The degeneracy at the parabola intersections is lifted by a factor of 2|Vk| when
Ek−K′ ≈ Ek, as can be seen in Figure 2.3.

The interactions between electrons are therefore responsible for energy
gaps in the band structure. In practice, the band structure can deviate quite
substantially from the free electron case. A method to treat the case where the
potential can no longer assumed to be weak is presented in section 2.3.

2.3 Kohn-Sham Equations

In the previous section we have studied the properties of a single electron af-
fected by the weak periodic potential in a cubic lattice. In general of course,
the structures may be more complex and the introduction of additional elec-
trons may result in strong correlation effects. The numerical analysis of materi-
als poses a significant challenge and many different approximations have been
developed to form the foundations of the broad field of materials modeling.[30]
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−3π
2a

−π
a − π

2a

2|VK|

kx

E

− π
2a Γ π

2a

2|VK|

kx

E

Figure 2.3: The origin of band gaps is explained by the introduction of a weak
potential and observation of the dominant Fourier coefficients. On the left the
region at the border of the first Brillouin zone and on the right the center of
the Brillouin zone is shown. The dashed lines correspond to the free electron
approximation in Figure 2.1. In both cases, the degeneracy is lifted in the pres-
ence of a weak periodic potential and an energy gap appears.

In quantum chemistry, a rough categorization of approaches may be done
according to the strength of correlations: If the potential V is large then often the
Hamilton operator is modeled to account for particular types of interactions, as
it is done in the Hubbard- or Heisenberg model for example. If the potential V
is not as large, usually the Hamilton-operator is retained but restrictions on the
wave functions are imposed. The latter class also goes by the name of ab-initio
methods.[30,31]

A particularly often used ab-initiomethod is Density Functional Theory (DFT),
due to its outstanding compromise between chemical accuracy and computa-
tional demand.[32] Its ongoing development was started in the second half of
the twentieth-century[30,33,34] and its significance was already acknowledged by
the award of the Nobel prize in 1998.[35] DFT is also the principal method used
in this work.

The centerpiece of DFT are the Kohn-Sham equations, which represent the
Schrödinger equation within the imposed approximations. While a brief intro-
duction demonstrating the most important concepts is given in the following,
more thorough introductions can be found in the textbooks and articles cited
in this section.

The foundation of DFT lies in the Hohenberg-Kohn theorem, which states
that for the ground state, the wave function Ψ(r1, . . . , rN) of N identical particles
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in an external potential V(r) can be uniquely represented by the particle density
of the ground state ng(r)[36,37]

Ψg(r1, . . . , rN) = Ψ
�
ng
�
. (2.12)

This astonishing property evidently simplifies handling the wave function signif-
icantly. Any observable is also defined by the particle density

⟨Ψ|Ô|Ψ⟩ = O[ng], (2.13)

including the energy. Equation 2.12 is only exact for the ground state, although
for low enough temperature, it may still be valid as an approximation. In the
following we will only be concerned with the (near) ground state and will drop
the corresponding index i.e. ng(r) = n(r).

Additionally, Equation 2.12 is only valid when the particles are moving in an
external potential. To satisfy this condition in a solid state, we require that the
electrons move in the electromagnetic field generated by the nuclei, which are
kept at fixed positions. Because the nuclei are much heavier, their movement
takes place on timescales separated from the electronic part so that the ionic
and electronic wave functions decouple

|Ψ⟩ = |Ψn⟩ ⊗ |Ψe⟩ . (2.14)

Thus, we first solve the electronic part, and then use the energy for the ionic
part

Ĥe |Ψe⟩ = Ee |Ψe⟩ , (2.15)

Ĥn |Ψn⟩ = En |Ψn⟩ , (2.16)

where the contributions of the Hamiltonians are

Ĥe = T̂e + V̂e−e + V̂n−e, (2.17)

Ĥn = T̂n + V̂n−n + Ĥe. (2.18)

This approach is known as the Born-Oppenheimer approximation[31,38] and is
valid for almost all practical applications. Only in the case of hydrogen some
care has to be applied.

We now focus solely on the electronic part in Equation 2.15 and Equa-
tion 2.17. The external interaction between electrons and nuclei can be calcu-
lated with the Coulomb attraction, and its functional with respect to the particle
density is straightforwardly obtained

Vn−e[n] = VC,n−e[n] =
	

d3rn(r)VC,n(r) (2.19)
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where

VC,n(r) =
1

4πε0

Nn�
i=1

Ziq2e
|ri − r| (2.20)

is the Coulomb potential.
For the electron-electron interaction, we proceed in the same manner as

before but since the interaction is more intricate due to exchange contributions
resulting from repulsion of electrons with equal spin due to the Pauli principle,
the energy that is left out by the Coulomb interaction is accounted for by an
extra term

Ve−e[n] = VC,e−e[n] + EX[n], (2.21)

with
VC,e−e[n] =

1
2

	
d3r

	
d3r′n(r)VC,e(r− r′)n(r′), (2.22)

where
Ve(r) =

1
4πε0

q2e
|r| (2.23)

is the Coulomb kernel.
EX[n]may for example be calculated by means of the Local Density approxi-

mation (LDA), or alternatively using the non-local approach of Hartree-Fock the-
ory, but which method to choose depends on the specific problem as each ap-
proach has its strengths and weaknesses and chemical accuracy versus com-
putational time has to be taken into account.

The final task is finding a functional form for the kinetic energy T̂e. Unfor-
tunately, a straightforward expression does not exist. However, assuming that
the kinetic energy can be separated into a non-interacting and an interacting
contribution, it is possible, with the introduction of single particle orbitals Ψs(r),
to add a term which includes energetic contributions from correlations

Te[n] = Ts[n] + EC[n], (2.24)

with

Ts[n] = Ts[{Ψs(r)}] = − ℏ2

2me

Nn�
i=1

	
d3rΨs,i(r)∇2Ψs,i(r). (2.25)

Correlation energy contributions EC originate from the fact that the motion
of an individual electron is not only influenced by the external potential of the
other electrons, but additionally there is a coupled movement: The individual
electron interacts via Coulomb repulsion with the other electrons simultane-
ously. In particular, consider the joint probability density ρab(ra, rb) to find two
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electrons a and b in some volume. Strong correlation means that it is not pos-
sible to separate this probability density for the two electrons as an approxima-
tion

ρab(ra, rb) ≈ ρa(ra)ρb(rb). (2.26)
In conclusion, the functional form of the total energy is[37]

Ee[n] = Ts[n] + VC,e−e[n] + VC,n−e[n] + EXC[n], (2.27)

where EXC[n] = EX[n] + EC[n] is the exchange-correlation functional, which, along
with {Ψs}, is still to be determined. Finding an expression for EXC[n] is not a trivial
task and many approximations may be found in the literature.[39,40] In general,
the most important distinction of different DFT calculations is the choice of an
expression for the exchange-correlation functional.

With the single particle orbitals {Ψs} we can calculate the corresponding
particle density

ns(r) =
Nn�
i=1

|Ψs,i(r)|2. (2.28)

This particle density is equal to the ground state density when minimizing the
total energy in Equation 2.27:

0 =
δEe[ns]

δns

����
ns=n

=
δTs[ns]

δns
+ ve−e(r) + vn−e(r) + vXC(r) (2.29)

=
δTs[ns]

δns
+

	
d3r′ ns(r′)VC,e(r− r′) + VC,n(r) + vXC(r), (2.30)

where we used a lower case v for the result of a functional derivative v(r) =
δV[n]/δn. Minimization in this way may also be done on the single particle func-
tional

0 =
δEe,s[ns]

δns
=

δTs[ns]

δns
+ vs(r), (2.31)

where ns can be found by solving the Schrödinger equation for the single par-
ticle orbitals 


− ℏ2

2me
∇2 + vs(r)

�
Ψs,i(r) = Es,iΨs,i(r) (2.32)

and using Equation 2.28. A comparison of Equation 2.30 with Equation 2.31
shows that we can construct an auxiliary single particle Schrödinger equation
as in Equation 2.32 when

vs(r) = ve−e(r) + vn−e(r) + vXC(r) (2.33)

=

	
d3r′ n(r′)VC,e(r− r′) + VC,n(r) + vXC(r). (2.34)
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The system of equations in Equation 2.32 with the potential in Equation 2.33
is known as the Kohn-Sham equations. Solving these equations iteratively and
self-consistently is themain procedure in DFT applications. The converged den-
sity is the ground state density as it is required for the total energy in Equa-
tion 2.27.

Strictly speaking, the Kohn-Sham eigenvalues Es,i have no physical meaning.
A relation to the electronic energy Ee can be found as follows. The total Kohn-
Sham energy is

Ee,s[n] =
Nn�
i=1

Es,i = Ts[n] +
	

d3r vs(r)n(r). (2.35)

Solving Equation 2.35 for the kinetic energy and plugging the result together
with the potential in Equation 2.33 into the total energy in Equation 2.27
yields[41]

Ee[n] =
Nn�
i=1

Es,i

− 1
2

	
d3r

	
d3r′ n(r′)VC,e(r− r′)n(r)

−
	

d3r vXC(r)n(r) + EXC[n].

(2.36)

With the electronic part of the problem solved, we can move on to the ionic
part. Due to the large mass of the nuclei, a quantum calculation is usually un-
necessary. The ionic positions as required in the external potential in Equa-
tion 2.20 can be updated by moving along the total force vector as generated
by the electrons. After the nuclei are displaced, the particle density no longer
represents the ground state and it needs to be minimized again. In an ionic
relaxation, this procedure is repeated until the forces become smaller than an
externally defined threshold.

In a nutshell, the initial approach in quantum chemistry is to decouple the
ionic and the electronic problem. Then, in DFT the all-electron wave function
is replaced by a particle density, which is only valid for the ground state, and
all observables become functionals of this density. In the Kohn-Sham scheme,
the kinetic energy functional is then again expressed in terms of single-particle
wave functions and the electron-electron interaction is modeled to be due to
coulomb repulsion. This neglect of correlations and quantum interactions is
treated by the type of exchange-correlation functional, which has to be chosen
for the simulation. The singe particle Kohn-Sham orbitals are obtained by solv-
ing an auxiliary Schrödinger equation self consistently. The eigenvalues and

12



the converged particle density is finally used to obtain the total electronic en-
ergy.[37,42]

It is appropriate to note, that apart from the Born-Oppenheimer approxima-
tion, DFT would in fact be an exact theory.[34] The only deviation from the result
of the many-body Schrödinger equation originates solely from the exchange-
correlation functional, where no exact expression is known. Thus, if DFT is a
suitable choice for the simulation of a particular material greatly depends on
how the exchange-correlation functional is useful to the problem.

2.4 Phonons

In section 2.3 we have seen that it is in principle possible to calculate the elec-
tronic ground state given an external potential V. However, atomic positions
change due to temperature, not arbitrarily, but along certain modes. Various
properties of solid state systems originate from this collective displacement of
atomic positions. For instructive reasons, we start with simple systems and
eventually treat the general case.

2.4.1 Classical Approach

The simplest system consists of an atomic chain in one dimension x with a sin-
gle atom in its unit cell. The unit cells, as well as their containing atoms are
labeled with the indices i and j. The displacement of an atom from its equilib-
rium position in unit cell j is denoted by uj. The force on each atom may be
calculated with classical mechanics because of the Born-Oppenheimer theo-
rem. For small displacements, the interatomic potential may be approximated
by the harmonic oscillator and the force acting on an atom in i is obtained by

Fj =
�
i

ζ ji
�
uj − ui

�
, (2.37)

where ζ ji is the coupling constant

ζ ji = −∂2V(x)
∂xj∂xi

. (2.38)

This being the case, the system can be thought of mass points connected by
springs.

We can choose an index p = j − i and rewrite ζ ji = ζp where p ∈ Z. We
additionally assume that the interaction only acts on neighboring sites, hence
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the forces can be expressed as

Fj =
1�

p=−1
ζp
�
uj+p − uj

�
, (2.39)

where the symmetry can again be used to express ζ−p = ζp and

Fj = ζ1
�

p=−1,1

�
uj+p − uj

�
. (2.40)

The equations of motions as given by Newton’s second law

m
∂2uj(t)
∂t2

= Fj (2.41)

pose the challenge of having to solve n-coupled differential equations. An
ansatz for the solution of the problem is

uj+p = ARe
�
ei(q(j+p)a−ωt)�, (2.42)

where A is the amplitude, q is the wave number and ω the frequency of the har-
monic motion. Plugging the ansatz into the equations of motions and setting
j = 0 for simplicity we obtain

−mω2Ae−iωt = ζ1
�

p=−1,1

�
Aei(qpa−ωt) − Aeiωt

�
(2.43)

⇒ ω2 = −ζ1
m
�
eiqa + e−iqa − 2

�
(2.44)

=
2ζ1
m

(1− cosqa) (2.45)

=
4ζ1
m

sin2
qa
2
, (2.46)

Since the negative solution is non-physical for a periodic motion, the dispersion
relation results in[43–45]

ω(q) =
�
4ζ1
m

���sin qa
2

���, (2.47)

as is shown in Figure 2.4.
For a unit cell containing two atoms we proceed with the same approxi-

mations as in the previous case and label the two different atoms with α and
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ω

Figure 2.4: Dispersion Relation for a 1D atomic chain with a single atom in the
unit cell.

β. Since we have only nearest neighbor interactions, the coupling constant is
again ζ1. There are two sets of equations of motion

mα
∂2ujα

∂t2
= ζ1

�
uj−1β − ujα

�
+ ζ1

�
ujβ − ujα

�
(2.48)

mβ
∂2ujβ

∂t2
= ζ1

�
ujα − ujβ

�
+ ζ1

�
uj+1α − ujβ

�
(2.49)

We use the same ansatz as before

ujα = Re
�
Aαei(qja−ωt)� (2.50)

to obtain by considering nearest-neighbor interactions and setting j = 0

−mαω2Aα = ζ1
�
Aβe−iqa − Aα

�
+ ζ1

�
Aβ − Aα

�
, (2.51)

−mβω2Aβ = ζ1
�
Aα − Aβ

�
+ ζ1

�
Aαeiqa − Aβ

�
. (2.52)

This is a linear system of equations

Aα
�
mαω2 − 2ζ1

�
+ Aβζ1

�
1+ e−iqa� = 0, (2.53)

Aαζ1
�
1+ eiqa

�
+ Aβ

�
mβω2 − 2ζ1

�
= 0, (2.54)

and after some linear algebra and discarding the two negative frequencies, the
solutions are[43,46,47]

ω2 =
ζ1

mαmβ

�
mα +mβ ±

��
mα +mβ

�2 − 4mαmβ sin2
qa
2

�
. (2.55)
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Here we end up with two solutions, depending on the sign, ω+ and ω−. The
physical interpretation is that the lower frequencies correspond tomotions of α
and β in phase, whereas the higher frequencies oscillate in antiphase. The latter
case creates stronger dielectric fields, since the atoms move closer together.
Thus, these oscillations can be excited by low-frequency electromagnetic waves,
hence this dispersion relation is called optical mode. In contrast, the lower
frequency does not show this behavior and is called acoustic mode.

−π
a Γ π

a

qx

ω

Figure 2.5: Optical and acoustic mode in a 1-D atomic chain with two atoms in
the unit cell. The solid line represents the dispersion relation when mα = 2mβ,
while the dashed line represents the case when mα = mβ.

In principle, the approach in two and three dimensions is the same. The
equations of motions are generalized when l = x, y, z is the spatial dimension

mα
∂2ujαl

∂t2
= −

�
j′α′l′

ζ j
′α′l′
jαl uj′α′l′ . (2.56)

We are always free to choose the origin, thus j = 0. In the 1D case, the spatial
coordinate l = x could be dropped. In the single atomic unit cell the index
α = α′ could also be dropped, in the two atomic case α, α′ = {α, β}. We only
considered nearest neighbor interactions so j′ = {1,−1} and further ζ1 ≡ ζ10 =
ζ−10

The wave ansatz in two or three dimensions contains a scalar product in the
exponent

ujα = Aαei(q·aj−ωt). (2.57)
For 2D lattices, this leads to a dispersion relation ω(q) : R2 → R, whereas for
3D lattices ω(q) : R3 → Rmay be visualized with a band structure in complete
analogy to section 2.2.
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In practice however any real system makes analytic solutions challenging to
solve. For example in 3D, the equations are sixth order in ω and while a cubic
lattice containing one atomwith only nearest neighbor interaction has relatively
compact solutions, next nearest neighbor interactions already include lengthy
expressions for the coefficients, which is not helpful considering the solutions
of these sixth order equations are also quite extensive themselves.[48]

2.4.2 Quantum Approach

Since lattice modes have an assigned frequency and wave length, the wave-
particle duality can be applied to study phonons as the respective quasiparticles
in the quantum picture.

The 1D chain with one-atomic unit cells is again the starting point for our
considerations. In the harmonic approximation, the Hamilton-Operator reads

H =
�
n

�
1
2m

p2j +
1
2
ζ
�
xj+1 − xj

�2�
. (2.58)

A Fourier transform to phonon-coordinates for the displacement and momen-
tum operators has to be performed

xj =
1√
N

�
q

Xqeiqja, (2.59)

pj =
1√
N

�
q

Pqe−iqja. (2.60)

This means for the momentum part of the Hamiltonian�
j

p2j =
1
N

�
j,q,q′

PqPq′e−i(q+q′)ja (2.61)

=
�
j,q,q′

PqP−q′δ(−q,q′) (2.62)

=
�
q

PqP−q (2.63)
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and for the position part�
n

�
xj+1 − xj

�2
=

1
N

�
j,q,q′

XqXq′ei(q+q′)a


1+ e−i(q+q′)a − eiq′a − eiqa

�
(2.64)

= 2
�
q

XqX−q(1− cosqa) (2.65)

= 4
�
q

XqX−q sin2
qa
2
. (2.66)

(2.67)

Introducing the dispersion relation

ωq =

�
4ζ
m

sin2
qa
2
, (2.68)

the Phonon Hamiltonian is

H =
�
q



1
m
PqP−q +

1
2
mω2

qXqX−q

�
. (2.69)

The equations of motion are obtained by the time evolution in the Heisen-
berg picture

iℏẊq = [Xq,H] = iℏ
P−q

M
. (2.70)

It is instructive to look at the second derivative as well

iℏẌq =
�
Ẋq,H

�
=

1
M
[P−q,H] = iℏω2

qXq. (2.71)

Thus, the equations of motion are

Ẍq + ω2
qXq = 0, (2.72)

which are the equations of motion for the harmonic oscillator with frequency
ωq. This is a standard problem and its energy eigenvalues are known to be

Eq = ℏωq



nq +

1
2

�
, nq ∈ N. (2.73)

Since phonons are bosonic quasiparticles, they follow the Bose-Einstein statis-
tics, where the average occupation number of a mode is expected to be

⟨nq⟩ = 1
eℏωq/kBT − 1

, (2.74)

for a state with energy Eq at temperature T with the chemical potential μ.[49]
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2.5 Impurities in Insulators

As we have shown in section 2.2, interactions create gaps in the electronic band
structure. Materials can be classified as conducting and insulating via the po-
sition of the Fermi level. If it lies within a band, the electrons can respond to
external fields and transfer current through a collective momentum, since the
band is only partially occupied.[50]

If the Fermi level lies within a band gap, electrons lose the ability for collec-
tive motion and the material is insulating. In particular, the band gap becomes
large when the valence electrons completely fill the outer shell. Insulators can
therefore be classified via the dominant type of chemical bonding.[51]

1. Molecular Insulators: As an example of this class, the solid form of noble
gases show extreme tight-binding via the Van-der-Waals interaction with
the orbitals remaining largely in their atomic configuration and thus lo-
calized around the nuclei. Since these elements have a completely filled
shell, a lot of energy is required for an electron to be promoted into the
conduction band.

2. Ionic Insulators: Here the electronic charge distribution is also localized
around the nuclei but the material is composed of atomic species with
sharply different electronegativity. Thus the atoms become ionized by
donating or accepting some electrons to accommodate a full shell. Ex-
amples are binary compounds consisting of elements from group I or II
in a bond with elements from group VI or VII.

3. Covalent Insulators: In a covalent bond the electrons are not localized
near the nuclei but in a region in between. An atommay share their elec-
trons with other atoms such that each can fill up their shell. A well known
covalent insulator is diamond, where each C atom shares four electrons
with its nearest neighbors in the interstitial space.

Note that the while the distinction between metallic and insulating is done
in momentum space, the classification of insulators is done by analyzing the
particle density in real space. While the former ismore precise and quantitative,
the latter may help us further in understanding the material qualitatively.

So far, we have described materials by choosing an infinite periodic atomic
structure. Evidently, this is only an idealized picture. For one thing, there is the
obvious omission of the materials surface. Its microscopic study is an extensive
topic in itself and is not part of this work. The only property of the surface we
want to keep in mind is that there is in general an energy barrier with regards
to the exchange of particles with the environment.
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Apart from that, the lattice structure itself usually shows distortions in its pe-
riodicity. On the one hand theremight be grain boundaries, where two or more
rotated periodic structures meet. Macroscopic crystals with no such boundary
are rarely found in nature but can be grown in artificial conditions in a labora-
tory.

On the other hand, a common occurrence are crystals where there are de-
fects or impurities in their lattice structure. On defect sites there is either a
vacancy or an interstitial placement of an atom that forms the lattice. Impuri-
ties denote the presence of an external atom which is not part of the original
arrangement. These two irregularities are often important for the physical char-
acteristics of the material, such as thermal conductivity by scattering phonons
or optical properties.[52]

Impurities and defects are imperfections that are energetically unfavorable
to the original structure, however they cannot overcome the various internal
energy barriers and the surface for the material to relax into its ground state.

In the following we focus on impurities in insulators. Impurity atoms will
be situated either on an interstitial position in the lattice, or they substitute
atoms on their lattice position. In any case, the impurity is usually the cause of
a charge imbalance in its local environment*. For the shell to remain completely
filled, particles will be positioned on a location near the impurity atom. Thus,
not only the impurity itself, but also the specific types of charge compensation
determine the alternation of the material’s properties. Hence impurities are
not necessarily undesirable but can in fact be actively introduced to the crystal
as a dopant.

Numerical simulations can be made to study the microscopic compensa-
tion mechanism. A realistic approach would be to simulate the diffusion of
the atoms taking part in the impurity during charge compensation formation
through the surface as well as inside the bulk. Unfortunately, a quantum treat-
ment of this problem is, as of this date, mostly prohibited by the huge compu-
tational cost, even when using efficient methods such as DFT.

However, it is possible to alleviate this issue by considering the static pos-
sible final states of the system, forgoing the diffusion aspect. By evaluating
the total energy of the material and the impurity constituents, the microscopic
compensation mechanism can be studied. A comparison of the total energy of
different realizations of the charge compensation yields a statistical average of
the occurrence for the respective scheme.

In this approach the first and most significant step is to carefully determine

*The only exception where this effect is minor is substitutional doping with an element in
the same group in the periodic table. This trivial case should not require any sophisticated
treatment and is therefore not specifically mentioned in the following discussions.
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the possible charge compensation schemes by studying the atoms required
for the impurity formation processes. This ensures that the outcome of the
study is not erroneous due to the involuntary oversight of a specific scheme.
An example is shown in Figure 2.6. Next, total energies may be calculated for
each scheme, keeping inmind that the number of particles has to stay the same
for a valid comparison. The number of possible charge compensation schemes
is generally large, hence it is useful to rule out several nonphysical realizations
beforehand.

When the dopant has donated its valence electrons to the crystal and charge
compensation atoms, often the next excited state lies within the band gap. Be-
cause the impurity is non-periodic, these states are immobile and localized.
They retain their quasi atomistic properties and do not interact with the con-
duction band electrons.
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A B AC

H = AC
I

Figure 2.6: An example for charge compensation schemes. Top: All possible
constituents that may take part in the impurity are depicted. There are three al-
lotropes A, B and C, where the circles are meant to be non-periodic and outside
the host in the gas phase in their respective preferred formation at standard
conditions. A square indicates a periodic lattice. Below, the periodic host crys-
tal H shall be composed of H = AC = nA+mC. The dopant has been introduced
to the host crystal, either as an interstitial or a substitutional placement form-
ing an impurity I. Next, several different possibilities for charge compensation
mechanisms are depicted. The labels are omitted for visual clarity. Middle, left:
I absorbs B. Middle, right: C leaves behind a vacancy in I and together with A
forms a new unit cell of AC. Bottom left: a part of A is at I, while its other part re-
mains gaseous. Bottom row, right: a part of A is at I while its other part creates
another defect somewhere else in H. This list is not exhaustive, as there may
even bemore cases to be considered. The complexity can increase additionally
when there are possibilities with other species D, E, etc.
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Chapter 3

Computational Methods

3.1 Exchange Correlation Potential

3.1.1 Local Density Approximation

The methods introduced in section 2.3 require a functional form for the ex-
change and correlation energy with respect to the particle density. A useful
starting point is the homogeneous interacting electron gas with Ne electrons in
a box with volume Ω and Born-von Karman periodic boundary conditions. In
this case, the exchange energy can be explicitly calculated.

The main idea behind the Local Density Approximation (LDA) is that regions
in space each behave locally as a homogeneous electron gas such that the
exchange energy density εX = EX/Ne can be obtained by spatial integration

EX =
	

d3rn(r)εX(n). (3.1)

The derivation of εX is briefly shown in the following.
First, the total exchange energy is by definition calculatedwithin theHartree-

Fock approximation[53–56]

EX = −1
2

e2

4πε0

Ne�
i,j=1
i̸=j

		
Ω
d3r1d3r2

Ψi(r1)Ψ∗
i (r2)Ψ

∗
j (r1)Ψj(r2)

|r1 − r2| . (3.2)

The wave functions
Ψj(r) =

eikj·r√
Ω

(3.3)

are obtained by solving the stationary Schrödinger equation for the potential
well with a volume of Ω.[54,56] After plugging this result into the Hartree-Fock
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approximation, the exchange energy is

EX = − e2

8πε0Ω2

Ne�
i,j=1
i̸=j

		
Ω
d3r1d3r2

ei(ki−kj)·(r1−r2)

|r1 − r2| . (3.4)

To solve the integral, the following result can be used:[57]	
d3r

eik·r

|r| =
4π
|k|2

. (3.5)

Additionally reducing the two spatial integrals with a transformation r′ = r1− r2
to 		

Ω
d3r1d3r2 → Ω

	
d3r′, (3.6)

gives a simple expression for the exchange energy

EX =
e2

2ε0Ω

Ne�
i,j=1
i̸=j

1��ki − kj
��2 . (3.7)

Further, instead of taking the sum over all electrons, it is equivalent to sum over
all wave vectors. In this approximation, the number of electrons Ne needs to
be large enough such that the states ki are almost continuously occupied up
until the Fermi wave vector kF. Hence the sum can be replaced by an integral
according to the relation[58] �

i

→ Ω
(2π)3

	
d3k (3.8)

and the exchange energy is

EX = − e2Ω
ε027π6

		 kF

0

d3kid3kj��ki − kj
��2 . (3.9)

With the substitution of k′ = ki − kj such that		 kF

0
d3kid3kj → k3F

	 kF

0
d3k′, (3.10)

and performing the integration in spherical coordinates, the integral results in		 kF

0

d3kid3kj��ki − kj
��2 = 4π2k4F . (3.11)
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Thus the total exchange energy is

EX = − e2Ω
ε025π4

k4F . (3.12)

It can be shown that for the uniform electron gas[54,59]

kF =
�
3π2n

� 1
3 (3.13)

and consequently, the exchange energy per electron is after some simplifica-
tions

εX =
EX
Ne

= − 3e2

25ε0π



3n
π

� 1
3

. (3.14)

The exchange energy contribution follows from the antisymmetry of the
wave function. For this reason it can be viewed as a correlation of electronic
spins. Note that the actual term “correlation” energy is ambiguously reserved
for the quantity of the difference between the total energy and theHartree-Fock
exchange energy where the basis set is assumed to approach completeness[53]

EC = E− EHF. (3.15)

Also note that in the Hartree-Fock formalism, the energy is composed of an
electrostatic Coulomb term, denoted by lowercase c, and an exchange term
EHF = Ec + EX.

Contrary to the electron exchange energy, an analytic density functional for
the correlation of the homogeneous electron gas is not known. Finding a suit-
able parametrization is deeply rooted in Møller-Plesset perturbation theory or
configuration interaction methods.

Near exact Quantum Monte Carlo calculations for the correlation energy
have been performed[60] and consequently, multiple different parametrizatio-
ns for interpolating the data points have been published.[39,40] A particularly
simple functional form was found in 2016[61] with only two parameters

εc(rs) = a ln


1+

b
rs

+
b
r2s

�
, (3.16)

where
4πr3s
3

=
1
n

(3.17)

is the local Seitz radius, defined to be the radius of a sphere which contains
exactly one electron.
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Figure 3.1: Exchange and correlation energy densities of the uniform electron
gas with respect to the particle density in atomic units. Both curves meet at the
origin.

3.1.2 Generalized Gradient Approximation

Due to its close relation to the uniform electron gas, LDA may be a suitable
approximation for systems where the electron density varies relatively little. In
the case of strongly varying density, a possibility to improve on LDA is to take
information of the density gradient∇n into account

EXC[n] =
	

d3r f(n,∇n), (3.18)

which is called generalized gradient approximation (GGA).
The most widely used GGA is the one devised by Perdew, Burke and Ernz-

erhof (PBE).[62] It is remarkable due to the fact that it is derived only by first
principles and as such turned out to be suitable for a wide range of different
systems.

The ansatz for both the exchange and correlation functionals is that they
should converge to the result of the uniform electron gas in the limit of a van-
ishing density gradient. Otherwise they aremodified by an attenuation function

EX[n] =
	

d3rn(r)εunifX (n)FX(n,∇n), (3.19)

EC[n] =
	

d3rn(r)


εunifC (n) + H(n,∇n)

�
. (3.20)

One of the immediate successes of GGA was the description of the ground
state of magnetic iron. While LDA favors FCC iron, the application of a gradient
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corrected functional correctly gives the BCC structure as the ground state in
when magnetism is considered.

3.1.3 Meta-Generalized Gradient Approximation

Evenmore information about the degree of variation of the electron density can
be obtained by considering its second derivative. The inclusion of the orbital
kinetic energy densities

τ =
Ne�
i

1
2me

��∇2Ψs,i
�� (3.21)

defines the meta-Generalized Gradient Approximation (mGGA)

EXC =
	

d3rn(r)εXC(n,∇n, τ). (3.22)

A recently developed mGGA which satisfies all known exact constraints is the
Strongly Constrained and Appropriately Normed (SCAN) functional.[63] Gener-
ally it can be expected to increase on chemical accuracy in comparison with
PBE.

It is appropriate to note, that LDA, PBE and SCAN are all similar methods in
a sense that they all use roughly the same amount of computational resources,
although the predictive capabilities can vary significantly. For this reason, sys-
tematic errors of (semi-)local DFT like the underestimation of the band gap can-
not be adequately avoided.

Using other non-local methods than DFT, e.g. the HF-approximation, or hy-
brid functionals such as HSE,[64] help to overcome these systematic errors but
at the price of an increase in computational demand of several orders of mag-
nitude.

3.2 The Projector Augmented Wave Method

In chemistry, interactions between atoms solely take place between valence
electrons. Considering the core electrons with the same effort is thus not nec-
essary. However, in the bonding region the wave function is smooth, whereas
close to the nucleus it becomes highly oscillating due to the large attractive
forces. Unfortunately, resolving highly oscillating wave functions numerically
requires a finer grid and a larger basis set. As such even more computational
effort would be necessary for the core electrons. Historically this problem has
led to two different approaches.[65]
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The Augmented Plane Wave (APW) method tackles this issue by separating
the space into two regions and within these regions describe the wave func-
tion with a suitable basis set. Near the nucleus the wave functions are nearly
atomic and thus expanded into spherical harmonics analogously to a partial
wave expansion. This spherical region around the nucleus position is defined
by a cutoff radius rC. Outside this sphere the potential is weak and the wave
functions may be expanded into plane waves. For the wave function to be con-
tinuous at the cutoff radius, the coefficients of the spherical harmonics can be
expressed in terms of the coefficients of the plane waves.

In the pseudopotential approach the goal is to make the wave functions
near the core smooth by replacing the Coulomb-potential with a pseudopo-
tential which shows no singularity at the nucleus position. Again, at the cutoff
radius, the smooth pseudo wave function should coincide with the standard
wave function.

rC

Ψ
Ψ̃

Figure 3.2: Illustration of the pseudopotential approach. The dashed line rep-
resents the wave function as obtained from the pseudopotential, whereas the
solid line is a wave function following the Coulomb potential. Outside the cutoff
radius, both functions overlap.

The Projector Augmented Wave (PAW) method[66] demonstrates a relation-
ship between both ideas in a concise formalism. It requires a transformation
between the KS wave function |Ψ⟩ and the pseudo wave function ˜|Ψ⟩ in terms
of a linear operator T

|Ψ⟩ = T |Ψ̃⟩ . (3.23)

The wave functions should only be augmented near the nuclei within some
augmentation sphere with radius rC. The transformation operator reads

T = 1+
K�

α=1

Tα, (3.24)
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where each of the Tα only acts in the augmentation sphere of nucleus α. This
region separates the local electrons |φi⟩ from the valence electrons, where the
pseudo and all-electron wave functions are equal.

rc

Figure 3.3: Illustration of the augmentation regions in the Projector Augmented
Wave approach. Inside the cutoff radius rc, the wave function is modified to
decrease computational demand with minimal loss of chemical accuracy.

Because of Equation 3.24, it is also possible to construct pseudized core
states

|φi⟩ = (1+ Tα) |φ̃i⟩ (3.25)
In this region, the KS wave functions |Ψ⟩ as well as the pseudo wave functions
|Ψ̃⟩ are expanded into partial waves, i.e. into their core states |φi⟩ and |φ̃i⟩,
where i denotes a composite index of the quantum numbers n, l,ml and ms

|Ψ⟩ =
�
i

|φi⟩ ci, (3.26)

|Ψ̃⟩ =
�
i

|φ̃i⟩ ci, (3.27)

with the same expansion coefficients ci. As mentioned before, the transforma-
tion is required to be linear in |Ψ̃⟩. Thus, the expansion coefficients need to be
written as a scalar product

ci = ⟨pi|Ψ̃⟩ , (3.28)
with so-called projector functions ⟨pi|. When plugging this expression for ci into
the partial wave expansion for the pseudo wave function in Equation 3.27, it
can be seen that

�
i |φ̃i⟩⟨pi| = 1 and hence

⟨pi|φ̃j⟩ = δij. (3.29)

It is now possible to find an expression for the operator T by calculating

|Ψ⟩ = |Ψ̃⟩ − |Ψ̃⟩+ |Ψ⟩
= |Ψ̃⟩ −

�
i

|φ̃i⟩ ci +
�
i

|φi⟩ ci

= |Ψ̃⟩+
�
i

( |φi⟩ − |φ̃i⟩)ci.
(3.30)
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Together with Equation 3.28 and Equation 3.23, this means that

T = 1+
�
i

( |φi⟩ − |φ̃i⟩) ⟨pi| . (3.31)

It is evident that three quantities are needed in order to construct T .
|φi⟩: As in APW approaches, these functions are the true KS-states in the aug-

mentation region. They are obtained by solving the Schrödinger equation
for the free atom. To account for the oscillations, their values are calcu-
lated on a radial grid.

|φ̃i⟩: Again, these functions are the solutions to the Schrödinger equation of
the free atom, but with a pseudopotential Ṽn−e instead of the Coulomb
potential VC,n−e. Constructing accurate pseudopotentials is a complex task
that is described elsewhere.[67]

⟨pi|: The projector functions follow from the orthogonality relation in Equa-
tion 3.29. The most general form for the projector functions is[66]

⟨pi| =
�
j

�
S−1

�
ij ⟨fj| , (3.32)

where S = { ⟨fk|φ̃l⟩}.
In a nutshell, the PAW-method combines earlier APW and PP approaches

into a single framework. This method allows for faster calculations, since the
core electrons are treated with less accuracy than valence electrons.

3.3 Neural Network Potentials

The introduction of the single-particle Kohn-Sham orbitals φi is necessary be-
cause a good approximation for an explicit functional of the kinetic energy op-
erator with respect to the electron density n has not been found, i.e. Te ̸= Te[n]
but Te ≈ Ts[{Ψs(r)}]. This results in a computational bottleneck to solve the
Schrödinger equations with Kohn-Sham orbitals.

Because of the recent advancements made in the field of artificial intelli-
gence and machine learning, scientists became aware of its extraordinary ca-
pabilities.[68] One of its tools are neural networks,[69] which are essentially a so-
phisticated way to fit an unknown function through data. Once a suitable fit has
been obtained, its extrapolation capacities may be explored.
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The idea of enhancing DFT with neural networks is straightforward:[19] First,
the total energies are calculated for a sufficiently large dataset. The atomic
positions and chemical species act as the input data, which in principle have a
direct mapping to the total energy. In the second step, the neural network is
trained on the data. Third, the total energy of new structures can be obtained
by the neural network, without the need to solve the KS-equations, reducing the
computational time by a large amount. It is hoped that the total error made by
the extrapolation can be neglected.

It is advantageous to represent the input coordinates to the neural network
in a smart way. While it would be possible to simply use the Cartesian coor-
dinates of all the atoms, the network would have poor transferability to new
structures, since the Cartesian coordinates cannot represent symmetries of the
system.[19]

To account for this, the Cartesian coordinates may be transformed with a
set of so-called symmetry functions. The assumption is that, in leading order,
short range interactions contribute the most to the total energy and long range
interactions are neglected.[19] The local surrounding of the atom is probed by
parametrized symmetry functions multiplied with a cutoff function fij, which is
defined to vanish outside of the cutoff radius rc and inside it is monotonically
decreasing. We choose

fij = tanh3


1− rij

rc

�
, (3.33)

for atom i and neighbor j, the distance is rij =
��ri − rj

��.
By using a set of different parameters, an atomic “fingerprint” (AFP) can be

calculated, which is a vector of real numbers representing the local surrounding
of an atom. Each set of individual parameter values generates one dimension
of the AFP.

Every atom has its corresponding neural network, where the weights and
biases are trained for each chemical species respectively. After all neural net-
works predict an energy Ei, the total energy is taken as the sum of the individual
energies

E =
N�
i

Ei. (3.34)

In this work we used weighted atom-centered symmetry functions[70] and
apply a slight alteration to the approach to enhance its capabilities in crystal
lattices. There are two types of symmetry functions:

• Radial symmetry functions probe only the distance between the nearest
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Figure 3.4: The structure of the neural network potential is depicted. Vertically,
there are N paths corresponding to each atom i in the system. At the very left
the nearest neighbors are determined. Then, a unique atomic fingerprint (AFP)
is calculated, which serves as the input to the neural network (NN), where each
chemical species is represented by a NN with its weights, biases and structure.
In this example, there are two chemical species labeled A and B. All N paths
converge as the sum of the single output neurons Ei to yield the total energy E.
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neighbors with parameters η and μ

Wrad
i =

N�
j̸=i

gije−η(rij−μ)
2

fij. (3.35)

For the weight function gij we calculate differences of oxidation numbers
gij = max

�
0.5,

��oxi − oxj
��� and oxi is the oxidation number of atom i. We

choose this weight function because we assume the difference in oxida-
tion state to be of great importance to the strength of the bond. μ and
η control the center and the width of the Gaussians. Setting μ = 0 and
varying η generates central radial symmetry functions, while varying μ and
η generates displaced Gaussians.
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W
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Figure 3.5: The radial symmetry functions and the cutoff function are shown.
The cutoff function shows an almost linear decrease from rij = 0 with a smooth
transition to the final value 0 after the cutoff radius rc. Top: μ = 0 (atom-
centered) and η varies. Bottom: μ varies and η is fixed.
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• Angular symmetry functions give information about the relative position-
ing of two nearest neighbor atoms. The rotational symmetry of the angle
θijk is taken into account by using the cosine, the respective distances are
again modeled by Gaussians

Wang
i = 21−ζ

N�
j̸=i

N�
k̸=i,j

g̃ijk
�
1+max

�
cos

�
θijk − φ

�
, cos

�
θijk + φ

���ζ×
e−η(rij−μ)

2

e−η(rik−μ)2fijfik.

(3.36)

Here we adapt the weight function from the radial AFP to be the mean
value for atoms i and j as g̃ijk =

gij+gik
2 .
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Figure 3.6: Angular symmetry functions in a polar plot are shown. The radial
distances to the center are equal to their magnitude. The different levels cor-
respond to several different distances rij. As ζ increases, the symmetry function
becomes more directed towards the angle φ.
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Chapter 4

Magnesium Fluoride

4.1 Single Crystal

Magnesium Fluoride (MgF2) occurs in nature as the mineral sellaite.[71] It has a
tetragonal structure (rutile, space group 136) with lattice constants a = 4.62Å
and c = 3.05Åmaking the ratio c/a = 0.66.[72]Mgoccupies the position (0,0,0)
and F sits at (0.30,0.30,0) thus the F anions form a distorted octahedron, with
a distance to the closest cations of approximately 2 Å.[73]

MgF

Mg

F

F

F

F

F

Mg
Mg

Mg

Mg

Mg
Mg
Mg

Figure 4.1: The conventional unit cell of MgF2 is depicted. F anions form an
octahedron around a Mg site, whose edges are also shown.

MgF2 features strong ionic bonds, making it optically transparent. It demon-
strates transmittance above at the Ly-α line at 10.20eV and beyond.[8] We cal-
culate its band structure with the SCAN mGGA functional[63] and obtain a band
gap of Δ = 8.03eV, which shows the systematic underestimation of band gap
energies within DFT.[74–76] A slice through the charge density is also shown in
Figure 4.2.
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It is often the case that the form of the electronic bands is not notably in-
fluenced by level of theory applied, only the size of the band gap changes, as
we find in the next section on CaF2. An estimate for the true size of the band
gap can thus be given by multiplying the DFT gap by the experiment/DFT ratio
for the band gap in the unit cell.[77,78] We make use of this method throughout
this work when we want to emphasize possible experimental applications. Nat-
urally, many body effects may alter the size of the band gap and as such cation
is advised when interpreting these values.

Γ X M Γ Z R A Z X R M A

EF

Δ

8.
0
eV

Figure 4.2: Electronic structure of MgF2 in reciprocal and real space calculated
with SCAN. Top: Band structure with the lowest global band gap at Γ. Bottom:
Contour lines of the charge density through the (11̄0) plane. In the very center
and the corners are Mg cations, the rest are F anions.
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4.2 Thorium Doping

4.2.1 Introductory Remarks

We have studied Th doped MgF2 previously but made an important lapse con-
cerning the charge compensation mechanism. In Appendix C.1.4 of Pimon
[42] we did not consider a formation of additional MgF2 (“crystal reference”) for
the Mg vacancy case and instead used the single crystal and gaseous variants
Mg + F2 (“atomic reference”). Naturally, the energy balance favors E(MgF2) <
E(Mg + F2), however the enthalpy of formation is experimentally obtained as
−12.7eV which is among the largest of the materials featured in the CODATA
key values for thermodynamics.[79] Even though we obtain −11.7eV with our
choice of pseudopotentials, the overall energy balance is tipped in favor of the
Mg vacancy instead of the published +2F interstitial configuration.

In a subsequent publication on the same topic, these considerations were
also studied and the same conclusion was obtained.[80] However, there were
two key differences in the computational parameters: 1. Their choice was a
2× 2× 2 super cell, where c = 6.1Å. In our calculations, the distance between
the Th and the Mg vacancy is about 2.4Å in c direction, meaning that in this
case the impurity makes up a significant proportion of the whole cell. 2. They
used LDA for the determination of charge compensation.

To get rid of doubt, we increased the accuracy of our previous SCAN calcu-
lations with a 4×4×4 super structure by using an even higher energy cutoff of
1300eV and a similar convergence criterion for forces as in Barker [80]. These
results were published elsewhere.[81] In agreement with Barker [80] we found
the Mg vacancy to be energetically preferred.

Unfortunately, some time after publication we discovered that the pseu-
dopotential files were erroneously labeled on the VSC cluster*. Consequently,
the Th potential we used didn’t contain the necessary kinetic energy densities
required for SCAN calculations. Thus we repeated our published calculations
but used the F_GW_new pseudopotential and a lower cutoff of 500 eV to greatly
decrease computational demand. At the same time we took the opportunity
to also consider configurations where an O atom replaces an F atom and more
chemical pathways including the MgO crystal, both of which has not been done
previously. The results are still consistent with the published findings and are
shown in the following.

*This issue has been immediately resolved by the VSC team (Jun. 18th 2021)
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4.2.2 Charge Compensation Study

Since the oxidation state of Th is 4+ in a broad range of compounds[80] and Mg
is 2+, we consider different types of charge compensation mechanisms, which
compensate for two electrons when Th substitutes Mg: A Mg vacancy, +2F in-
terstitial, +1O interstitial, +2O substitutional and +1O substitutional and +1F
interstitial. Favorable chemical pathways outside of the crystal are molecular
F2 and O2 as well as solid Mg, MgO andMgF2 crystals. We neglect phases which
we do not expect to occur at room temperature such as e.g. F or O crystals or
gaseous Mg.

TheMg vacancy is energetically favored but has a lower band gap compared
to +2F interstitial doping types. It is also very unlikely that oxygen plays a role
for charge compensation in Th:MgF2.

0 2 4 6 8 10
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E (eV)

Δ+
(e
V)

−Mg (vac.)
+2F (int.)
+1O (int.)
+2O (subs.)
+O (subs.) +F (int.)

Figure 4.3: The total energy E and the respective scaled band gap Δ+ = 10.20
8.03 ΔDFT

for calculated configurations is compared. Note that the different stoichiome-
tries inside the crystal have been accounted for in the total energy E. Off the
chart are Th interstitial placements with +4F (int.) at 12.0eV and +2O (int.) at
19.7eV respectively.
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atom exchange
in out E (eV) Δ+ (eV) Path

−2Mg 0.0 7.4 2MgF2 +O2
+2F −1Mg 1.3 8.9 MgF2 +O2
+1O −1Mg 5.3 7.9 MgF2 + F2 + 1/2O2
+2O −2F− 1Mg 9.4 7.2 MgF2 + 2F2
+4F 12.0 7.9 O2
+2O 19.7 5.3 2F2

Table 4.1: Details for the most favorable configurations of each stoichiometry
in a chemical environment containing the MgF2 crystal and additional 2 F2, 1O2
and 1 Th is shown. This set of compounds should represent the system when
the dopant is introduced via ThF4. The first two columns denote the extra or
vacant atoms around the impurity omitting Th. Next follow the relative energies
and scaled band gap values. The rightmost column shows the energetically pre-
ferred chemical path for compensation outside of the crystal. Added together
we consider 42 different configurations.
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Chapter 5

Calcium Fluoride

5.1 Single Crystal

Calcium Fluoride (CaF2) occurs in nature as the abundant mineral fluorite. It
shows a face centered cubic (FCC) structure (space group 225), with a lattice
constant of 5.46Å where the ion Ca occupies the position (0,0,0) and F anions
are at (1⁄4,1⁄4,1⁄4) and (1⁄4, 1⁄4, 3⁄4), making the Ca – F bond length 2.37Å.[82,83]

Ca Ca

Ca

Ca Ca

F

F

F

F

F F

F F

Ca

CaCa

Ca

Ca

Ca

Ca

Ca

Ca

Figure 5.1: Conventional fcc unit cell of CaF2.

Because of the different electronegativities of Ca and F, the crystal exhibits
ionic bonding and is an insulator,[84,85] which is visualized by the analysis of the
charge density in Figure 5.2 and the band structure in Figure 5.3. Its experi-
mentally measured band gap ranges from 10eV to 12 eV.[9,10]
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Figure 5.2: Slice of the charge density with isosurfaces along the (11̄0) plane.
Darker regions represent more charge at the position of the F atoms, gray re-
gions is less charge at the Ca atoms. Due to the localized density with small
overlap and the charge distribution, the strong ionic character of the bonds is
evident.
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Figure 5.3: The band structures for CaF2 calculated with different levels of the-
ory are shown. The qualitative form of the bands stays the same while only the
Gap Δ changes in size. The material shows an indirect band gap from X → Γ.
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5.2 Thorium Doping

5.2.1 Charge Compensation Mechanism

Because of its high band gap, CaF2 is a suitable candidate as a host crystal for
a potential nuclear clock. In the same manner as MgF2, Th creates a charge
imbalance when doped into CaF2 due to the different oxidation numbers of Th
and Ca.[86,87]

In a previous study, the most probable configuration for Th:CaF2 was deter-
mined to include two interstitial fluorines, where Th substitutes a Ca atom. The
two fluorines would be in the vicinity, with an unrelaxed configuration of a 90°
angle. Note that after relaxation the angle changes. The study was performed
with both HSE and PBE xc-potentials and a 2× 2× 2 unit cell.[88]

Weaim to improve this calculation by choosing a lower doping concentration
with one Th per 3 × 3 × 3 unit cells and more chemical pathways to compare
the individual types of compensation. The different mechanisms investigated
are a vacancy of calcium, 2 interstitial fluorine, 2 oxygens substitute fluorines,
and 1 interstitial oxygen.

In addition, we consider more chemical pathways outside of the crystal in-
cluding molecular F2, O2 and OF2 as well as solid Ca, CaO and CaF2 crystals.
This set of elements should resemble the chemical composition during crystal
growth. We neglect phases which we do not expect to occur at room temper-
ature such as e.g. F or O crystals or gaseous Ca.
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Figure 5.4: This plot depicts scaled gap sizes Δ+ = 11.8
7.09ΔDFT and energies of the

investigated configurations. Coincidentally, the most probable configuration
also shows the largest gap size. In Th:CaF2, the gap size tends to get smaller
the less probable a configuration is.
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atom exchange
in out E (eV) Δ+ (eV) Path

+2F 0.00 10.89 O2
−1Ca 3.53 8.71 CaF2 +O2

+1O 4.50 8.00 OF2
+2O −2F 8.68 8.80 2F2

Table 5.1: Details for the energetically lowest configuration in each stoichiom-
etry in a chemical environment containing the Th:MgF2 crystal (substitutional
doping) and additional 1 F2, 1O2 is shown. This set should resemble the sys-
tem when the dopant is introduced via ThF4, since the substitutional Ca can
be assumed to join with F2 to produce CaF2. The first two columns denote the
change in atomic number with respect to a Th:CaF2 crystal, that has substitu-
tional doping of thorium for calcium and no charge compensation. Next follow
the energies and scaled band gap values. The rightmost column shows the pre-
ferred chemical path for compensation outside of the crystal. Added together
we consider 10 different configurations.

We confirm that two interstitial Fluorines are energetically favorable. Re-
markably, these systems also show the highest band gap. The final arrange-
ment of the two interstitial fluorines shows a 71.09° F – Th – F angle and a Th– F
distance of 2.30Å.
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Figure 5.5: Relaxation of the impurity in Th:CaF2. Left: The average ionic dis-
placement per ionic step. Right: Final configuration. Note that the perspective
is slightly turned out of the axis of symmetry to visualize all 10 F ions. In order
to make room for the two interstitial F ions, there is a shift in positions of the
original arrangement with the closest F ions being pushed outwards.
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5.2.2 Fluorine Defects

So far we considered CaF2 doping via melting the crystal and adding ThF4 com-
pounds. Now we choose a more general approach of considering ThFn com-
pounds but only 2 F are required for charge compensation leaving n− 2 F un-
accounted for. In the following, we aim to find the energetically most favorable
configuration of these surplus F anions inside the crystal as additional defect
and determine the energy balance compared to gaseous F2.

Even for high doping concentrations there are many more CaF2 unit cells
available than there are surplus F atoms. We consider it therefore to be suffi-
cient to compare cases for 2×2×2 unit cells where nF = 1,2,3,4,5,6 interstitial
F atoms surround a Ca atom.

Interstitial positions before the relaxations are in vacant spaces between
the lattice sites. These can be imagined as the face centers of a cube with the
same orientation as the unit cell and with an edge length of 2× Ca−F distance
and Ca in its body center. Due to the high symmetry of the lattice, we need only
consider one configuration for the +1F, +5F and +4F cases, two configurations in
the +2F case (∠F−Ca−F = {90°,180°}) and two configurations for the +3F and
+4F cases. For both latter defects, one configuration has all interstitial fluorines
on one plane, while the other has one interstitial fluorine perpendicular to the
plane of the other interstitials.

A way to arrive at comparable energies is to add these 2× 2× 2 structures
with and without the defect, such that the amount of particles is the same in
all cases. The total number of cells to add is computed by the least common
multiple (lcm) of the set of surplus F, in this case lcm(1,2,3,4,5,6) = 60. First,
m = 60/nF CaF2 cells with the defect are added such that there are a total of 60
interstitial Fluorines and subsequently 60−m cells without defects are summed
to arrive at the same number of particles. We divide the result by 60 to get an
energy equivalent per surplus F.

We find that it is energetically favorable for 3 surplus F atoms to group up
in the Ca vicinity. From their highly symmetric starting positions forming 90°
angles respectively as measured from the central Ca atom, they relax in a con-
figuration where, together with a fluorine from the original lattice, they form a
regular tetrahedron with an edge length of 2.69Å. This tetrahedron is located
in between four Ca lattice positions which also form a regular tetrahedron with
an edge length of 3.80Å, such that, if one would make a compound of these
two tetrahedra, the F and Ca atoms would alternately occupy the vertices of
an (irregular) cuboid, because each F –Ca – F angle is 69.51° and the Ca – F –Ca
angle is 107.16°.

In any case, the energy difference of solid F:CaF2 and molecular F is 0.40eV,
corresponding to a Boltzmann-Factor of e−βΔE = 94.34% at the crystallization
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#F 1 2 3 4 5 6

E (eV) 0.21 0.12 0.00 0.19 0.06 0.15
E+ (eV) — 0.12 0.00 0.05 0.05 0.00
EG (eV) 0.61 0.52 0.40 0.45 0.45 0.40

Table 5.2: Relative energies of a varying number of surplus Fluorine atoms. The
first row displays the energy differences for 2×2×2 super cells of CaF2, where
all nF surplus Fluorines are in the vicinity of a central Ca atom. The second row
shows the energy balance when we allow combinations of different nF config-
urations to reach the same number of particles. The change in values for 4, 5,
and 6 F atoms is due to the low energy of the +3F configuration, which enables
the energetically lower (1+ 3)F, (2+ 3)F and (3+ 3)F arrangements to spread
out over two super cells. The third row corresponds to the second, however
the energy reference is molecular F2, which is always preferred.

point T = 1691K. Since the constituents of a defect originate from the lattice,
the band gap is not notably reduced.

5.2.3 AE-KS Wave Function
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Figure 5.6: Electronic density of states for the most probable Th:CaF2 configu-
ration. Localized Th-states are at the upper edge of the band gap.

Th:CaF2 is currently under investigation as a host crystal for the application
of a nuclear clock.[89] However, from both the uncertainties of DFT’s band gap
and the energy level of the Th isomer state, it is not clear whether the nucleus
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can be excited by a laser pulse. In any case, the electronic and the nuclear lev-
els might be energetically very close together. This could trigger a mechanism
called electron-bridge, where an electron transfers its energy to the nucleus
instead of dissipating a VUV photon.

Due to the very weak periodicity of the dopant in the crystal lattice, there
will be atomic-like f-states at the edge of the band gap localized around the
Th nucleus. Naturally these will be also composed of a mixture of spherical
harmonics, including s-states, which have a non-vanishing probability density
at the nucleus.

In case an excited electron occupies one of these valence states, we spec-
ulate that there is a possibility that it will in turn excite the nucleus via a virtual
electronic state, which has the isomer energy. Thus it is of interest to obtain
the wave function of the thorium electronic states overlapping with the crystal
conduction band states.

Since VASP uses the PAW-method,[66] the resulting pseudo wave function
cannot be directly applied to the above mentioned mechanism. The next step
was thus to try to calculate these wave functions with all-electron DFT codes
(CP2K, pySCF)[90–92] but unfortunately we were not able to converge the elec-
tronic states. We also tried out GPAWwhich provides an all-electron wave func-
tion reconstructed from the pseudo wave function, however in the open source
version thorium pseudopotentials were not available.[93,94] We thus had to re-
turn to VASP and modified the source code in order to calculate the required
all electron wave functions from their pseudized counterpart.[95]

However, we had to accept three limitations from our approach, which are
a direct result from our modifications to VASP’s code: 1. We cannot use spin-or-
bit coupling. 2. We can only do a calculation at the Γ-point while using VASP’s
complex version. 3. We must perform the calculation on a single core (on some
architectures a single node may be possible).

Because of Th’s relatively high charge, point 1 is especially notable. The
other two points are dependent on each other: Since we only have one core
for the SCF loop, we are restricted in size of the system, which in turn lowers
the validity of a Γ-only choice.

As a compromise, we use a 2 × 2 × 2 super structure, with the +2F (int.)
charge compensating configuration. Because we want to calculate the struc-
ture with the HSE functional and the pseudopotential for F is mainly responsi-
ble for the high energy cutoff requirements in our previous calculations, we use
the soft F_s pseudopotential and set the cutoff to 400 eV.

To prioritize accuracy around the nucleus we calculate the wave function on
a radial grid. We use the grid points in r direction as specified by the partial
waves in VASP’s POTCAR file. These grid points start at about 10−5 Å from the
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nucleus and increase in exponentially spaced distances (from approximately
10−5 Å to 10−1 Å) to about 4.30Å from the Th position. Note that this is far
larger than the actual PAW-sphere which is given in the pseudopotential as be-
ing 1.80Å.

As the grid is very dense around the nucleus, a simple linear interpolation
is used between each grid point. However, in order to get wave function values
arbitrarily close the nucleus, we have to extrapolate from the calculated data.

Reminiscent of the radial solutions of Schrödinger’s equation for the hydro-
gen atom, our extrapolation function is f(r) = Ψ0 exp(−ar), corresponding to
states similar to l = 0, which can have a non-vanishing value at the nucleus. Ψ0,
the value of the wave function at the origin, and a are parameters. For each
pair of (θ,φ), we perform an extrapolation in r → 0 direction.

However, with increasing distance the fit function becomes less representa-
tive, thus the number of data points used for the fit is also a parameter. We de-
termine this systematically by adding an uncertainty on each data point which
is proportional to rn and optimize for the number n under the condition that
the fits in all directions coincide at the origin as best as possible. As it turns out,
the number n is usually quite large, suggesting that almost all of the s-character
of the wave function is given by the closest couple of grid points.

To verify that we did the AE-KS reconstruction of Ψ correctly, we compare
the two products ΔΨ = ⟨ �Ψi|S| �Ψi⟩ − ⟨Ψi|Ψi⟩ !

= 0, where the product with the
overlap operator S = 1 +

�
ij |�pi⟩



⟨φi|φj⟩ − ⟨�φi|�φj⟩

�
⟨�pj| does not depend on

the reconstructed AE-KS states.
To summarize the results in Table 5.3, the extrapolation works well when

values of the probability density at the nucleus Ψ2
0 are large. Out of 7 localized

Th-states, we identify one which has a relatively large contribution at the nu-
cleus position. The overall electron-bridge transition-rates also depend on the
overlap with the conduction band states and their energy differences. In two
publications, these rates were calculated and discussed using the wave func-
tions provided.[20,21]

5.2.4 Lattice Vibrations

Under experimental conditions, the material may be subject to moderate tem-
peratures and lattice vibrations may alter the optical properties of the crystal.
These effects can be studied by calculating phonon modes of the super struc-
ture. As described previously, 3D lattices include a great number of interactions
and in particular long range interactions spanning more than one unit cell may
become important. Therefore, it is imperative to calculate phonons on large
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Band v1 v2 v3 v4
E (eV) 6.190 6.637 6.696 6.703
Loc. (%) 95 95 97 97

ρ(r)

Ψ2
0(Å

−3
) 7.75e−5 9.35e−2 3.35e−6 9.83e−4

Band v5 v6 v7
E (eV) 6.777 6.809 6.851
Loc. (%) 96 96 94

ρ(r)

Ψ2
0(Å

−3
) 3.39 5.04e−5 6.19e−4

Table 5.3: Energies, localizations, band decomposed charge densities and ex-
trapolation results for the HSE calculation of the favorable +2F (int) configura-
tion in Th:CaF2 are shown. The Th nucleus is illustrated as a circle and surround-
ing p-states originate from neighboring F-positions.
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Figure 5.7: Numerical tests to estimate the uncertainty of the AE-KS reconstruc-
tion (Table 5.3) are shown. The figures are histograms for the wave function
value at the origin Ψ2

0 for the selected valence states on Th, where individual
values are obtained from extrapolations along each (θ,φ) direction. Angular
spacing is such that Δθ = Δφ = 2°. Brackets on top of each plot are to be read
as: (state label, uncertainty exponent n, 100× ΔΨ). For some states, the fourth
number measures the percentage of extrapolations in (θ,φ) directions which
do not coincide at the origin and are omitted in the histogram. We find that v5
dominates the result being at least two orders of magnitude larger than all the
others. Note that for v5 all extrapolations coincide.
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cells. However the caveat is of course that the number of displacements for
the numerical analysis is directly dependent on the number of atoms.

We consider the 3×3×3 super structure as the best compromise that is pos-
sible with respect to the computational limits. We use the code phonopy[96] to
generate the displacements, VASP to calculate the configurations and phonopy
again to analyze the results. Displacements are determined using phonopy’s
default parameters for symmetry detection. In total we calculate 1032 displace-
ments.

We assume that the greatest impact on the optical properties are modes
where the Th and a neighboring atom oscillate in anti-phase. For each q-point
and each band, we analyze the eigenvectors of Th and its neighboring atoms
and assign each mode a dimensionless value

Score =

�����
��dij

����rij�� − 1

�����, (5.1)

where dij is the difference between the real parts of the phonon eigenvectors
x for Th and the neighboring atom plus their spatial positions respectively, i.e.
dij = ri − rj + xi − xj and rij = ri − rj is the distance vector between the atoms.
This score should represent a measure for the relative difference of the atomic
positions at rest and in the vibration mode.

The modes with the largest score lie around 9.80 THz and 10.10 THz. Their
occupation can be avoided if the sample is cooled (see Figure 5.8).

5.3 Electric Field Gradients on other Dopants

An experimental way to determine whether the Th nuclei are in fact in the ex-
cited isomer state is nuclear quadrupole resonance (NQR) spectroscopy. The
non-spherical charge distribution of the bonding valence electrons create an
electric field gradient (EFG) at the nucleus, which interacts with the nuclear
quadrupole moment Q, causing a level splitting in nuclear states depending
on Q, which has a different value for the nuclear ground state and the excited
state.

However, the 229Th isotope is rare and thus not feasible for calibrating and
testing the experimental setup. More readily available elements are Ac, Ce, Np
and U, which offer the additional advantage that there exist values for Q for
some of the isotopes in the literature.[97] The EFG on U:CaF2 has been deter-
mined previously,[98] as such we focus on Ac, Ce and Np. As a first step, we need
to affirm the oxidation state of the doped ions in the CaF2 crystal. Because of
the studies performed for Th doping, we assume an interstitial F configuration
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Figure 5.8: Top: Estimated impact of selected phonon modes over frequency.
Displayed are 130 of themodes with the highest score as described in themain
text. There are a few outstanding modes around 9.80 THz and a little above
10.10 THz. Bottom: Phonon density of states (DOS, solid line, left axis) and
Bose-Einstein statistics (B-E, dashed line, right axis) at 300K and 30K.
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and vary the number of interstitial atoms. In the experiment, the doping con-
centration can be higher than with 229Th, as such the case of a 2 × 2 × 2 CaF2
super structure is sufficient.

2+ 3+ 4+ 5+ 6+ 7+

Ac 5.86 0
Ce 7.87 2.40 0
Np 10.15 4.87 1.50 0 0.15 0.48

Table 5.4: Determination of oxidation states of heavy elements based on a +F
(int.) charge compensation analysis on a 2 × 2 × 2 super structure of doped
CaF2 with values given in eV.

The most probable configurations are +1F, +2F and +3F interstitials for the
dopants Ac, Ce and Np respectively. For these configurations, the electric field
gradient reads:

Vzz (V/Å
2
) η

Ac −222.211 0.000
Ce 115.807 0.158
Np 329.064 0.751

Table 5.5: EFG values for doped CaF2 on the dopant for the most favorable
charge compensating configuration. Calculations were performed with PBE
and symmetry switched off.

Level Vzz (V/Å
2) η

SCAN 301.054 0.871
B3LYP 319.021 0.765
PBE0 318.381 0.757
HSE06 316.827 0.757

Table 5.6: For the +3F Np configuration we also compute the EFG for differ-
ent levels of theory: mGGA SCAN and hybrid functionals B3LYP, PBE0 and
HSE.[63,64,99–102]
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Figure 5.9: Relaxed structures for three heavy elements doped into CaF2 with
the energetically lowest charge compensation mechanism. Interstitial F anions
aremarked as F’. Top: Ac (one excess electron) doped into CaF2. Middle: Ce (two
excess electrons) is in the same group as Th and also the charge compensation
mechanism is similar. Bottom: Np (three excess electrons) has three interstitial
F ions that relax in a peculiar configuration. The final structure is reminiscent of
a +2F configuration like in Ce or Th doped CaF2, but with the exception that an
original F atom is pushed outwards (upper left corner). The distance from Np
to this F anion is 3.8Å, arguably too far away for meaningful bonding but still
relevant for the compensation energy.
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Chapter 6

LiCaAlF6

6.1 Single Crystal

LiCaAlF6 (LICAF) does not appear naturally but instead was developed for use as
the active medium of an UV tunable solid-state laser.[103] We find experimental
band gap sizes to be at 12.7eV and 11.1eV.[11,12] Indeed, the band structure in
Figure 6.2 features extremely flat bands. The material shows a relatively elabo-
rate trigonal crystal system with a ratio of c/a ≈ 1.9 in the unit cell.[18]

F
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F

F

F

F

F

F

F
F

F Li

Li Al

Al

CaCaCa

CaCa

CaCa Ca

Ca

Ca CaCa

Figure 6.1: This unit cell of LICAF contains 12 F anions and 2 Li, Ca, Al cations
respectively.
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Figure 6.2: Top: The band structure of LICAF as computed with PBE is depicted.
Even some of the valence bands exhibit localization as illustrated by their flat-
ness. Bottom: Slice through the charge density in the (11̄1) plane with contour
lines.
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6.2 Thorium Doping

6.2.1 Determining Structures

LICAF is also a candidate as a host crystal for a Th nuclear clock.[104] Due to its
complex structure, a quantum mechanical treatment for the impurity is as of
yet outstanding. While for the simpler materials Th:CaF2 and Th:MgF2 possible
compensation mechanisms could easily be guessed, this is now no longer the
case. We tackle this problem by recursively constructing configurations which
are effectively neutral in charge. For this the assumption is made that the oxi-
dation states are +1, +2 and +3 for Li, Ca and Al respectively.[86,87]

Further, we assume that thorium either takes an interstitial position in the
lattice, or it substitutes either cations Li, Ca or Al. In particular, it is not assumed
that Th substitutes an F anion. Now, depending on the type of doping there is a
charge imbalance of+3,+2,+1 for the replacement of Li, Ca and Al respectively
or +4 in an interstitial scenario.

To account for this we allow each chemical species to be introduced to the
system or to leave the cell. We define the impurity inside the crystal as a sphere
with radius rI containing all irregular atoms, be it interstitials, substitutionals or
vacancies.

Because of periodic boundary conditions we aim to have relatively equal dis-
tances between each defect. As a compromise between computational speed
and chemical accuracy, we choose a 2 × 2 × 1 super-cell, with c/a = 0.97 and
72 atoms, which corresponds to a doping concentration of ≈ 1.4%.

Within this super cell we search for regions of empty space to accommo-
date possible interstitial atoms. In total, we find 76 potential positions, which
together with the 24 vacancy locations results in an extremely large number of
potential configurations. Thus we have to impose some restrictions: The max-
imum and minimum distance between two defect locations shall be 2rI and
rD < rI respectively. Additionally, we consider 14 different stoichiometries rang-
ing from 4 Li vacancies, to 4 F interstitials. To minimize sampling bias, we de-
termine configurations with three different approaches for limitation:

1. Set the number of impurity atoms, set values for rI and rD, generate con-
figurations, then change numbers for impurity atoms, rI and rD (“number”).

2. Choose a charge compensation mechanism, then set rI and rD, generate
configurations, then choose other mechanisms with different sets of rI
and rD (“choice”).

3. Same as 2. but measure rI from Th only, thus making Th the center of the
impurity (“central”).
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Figure 6.3: Visualization of the 2× 2× 1 super structure. Notice the hexagonal
arrangement of alternating Li and Al atoms with Ca in its center. In this per-
spective, behind each Al atom is a Li atom and vice versa. Note that in addition
to Ca atoms at the corners and half points of the lattice vectors, there is a Ca
atom at the center of the whole cell.

To clarify the difference of these datasets, we give an example in the following.
Consider the possible charge compensating mechanism with + 1 Th, – 1 Al and
–1 Li (which is neutral in charge because +4 − 3 − 1 = 0). Omitting the in-
terstitial Th, which is always given, the number of impurity atoms is 2. For this
count it is tantamount whether we create a vacancy or an interstitial atom. Now
we define the maximum and minimum distances 2rI and rD between any two
atomic impurity locations. Next we generate structures considering all possible
charge compensation mechanisms where the number of impurity atoms is 2
and place atoms on the pre-defined interstitial positions, create vacancies or
substitute cations while taking the overall symmetry into account. We call the
generated configurations ”number“.

However, with this method it is not guaranteed whether all charge compen-
sation mechanisms are contained in the dataset. It may very well be that the
constraints of rI and rD are too strict for some stoichiometry to be generated.
Thus we now create different sets of rI and rD such that each compensation
pathway has at least several configurations created. For computational reasons
we aim to keep this number below about 24 for each compensation pathway.
We give these configurations the name ”choice“.

Since thorium is by far the most inert of all the LICAF constituents, we spec-
ulate that Th will be at the center of the impurity. So far this has not been re-
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flected by our method since it would be possible that Th and another impurity
atom are 2rI apart. As such we change the meaning of rI to be the maximum al-
lowed distance of an impurity atom to the thorium position. Now we repeat the
above mentioned procedure of choosing sets rI and rD for each compensation
pathway. Note that the number of generated configurations shows a step-like
behavior with respect to the distance parameters. We disregard compensating
structures where this step is very high, i.e. much larger than 24. Also, we ne-
glect configurations where 2rI is a significant proportion of the LICAF cell. The
generated configurations are named ”central“.

These datasets generate the following amounts of configurations: number
contains 575, choice contains 396 and central contains 63, totaling at 1034.
All structures are then relaxed with an accuracy of forces being smaller than
10−2 eVÅ−1. In practice, this requires 25 to 425 ionic steps in the relaxation
procedure per configuration (on average between 100 to 200).

Although thismethod reduces the number of combinatorial possibilities to a
set of physically reasonable configurations, the remaining computational effort
still presents the main constraint.

6.2.2 Obtaining Chemical Pathways

Outside of the crystal, the four elements Li, Ca, Al and F may form various dif-
ferent compounds. For this project, the challenge is to determine which com-
bination of materials is the energetically most favorable.

A great number of compounds and corresponding energies can be found
in the materials project database.[105] Determining chemical pathways for com-
pensating atoms in this work is done by exhausting every possibility in a recur-
sive search.

The fact that each compound may have different phases presents an ad-
ditional difficulty. As an example, in Ca – F compounds we find a CaF struc-
ture, four CaF2 phases, two CaF3 phases and one Ca2F structure in the materi-
als project database. Naturally, the most favorable phase per stoichiometry is
readily obtained by considering only the one with the lowest energy. Nonethe-
less, there is a question whether there are situations where one of the stoi-
chiometries is preferred over the other. We aim to find an answer by choosing
an ideal mixing ratio of the elements for the compounds, and then comparing
its energy with that of the mixture.

As an example, we already know from previous knowledge that CaF2 is the
most stable phase. On the other hand, CaF may be created by 1/2CaF2 + 1/2Ca,
however the latter is energetically preferred, hence CaF is disregarded. Gener-
ally, if a specific material is lower in energy than any combination of its building
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blocks, we select it for consideration of Th:LICAF’s charge compensation.
To determine chemical pathways, we assume that there is a type of bonding

which is so strong, that it uses up all of the available atoms for one element.
Then, this process is iterated with the elements left over until no atoms remain.

Although this method usually follows the energetic minimum, there are in-
stances of co-existing phases, where the assumption is not enough to obtain
the lowest energy. In this work, we find two examples of this peculiarity: CaO+
CaO2 < Ca2O3 as well as 4LiAl + Li3Al2 < Li7Al6. The former case in particular
can be problematic, because additionally Ca2O3 < 2CaO + 1/2O2 and conse-
quently we would have erroneously selected an unstable phase. In all other
cases the predictions are, to our knowledge, correct within the computational
limits.

By disregarding energetically unfavorable phases, the following remain:

• Singular compounds: solid Li, Ca, Al and molecular F2.

• Binary compounds: AlF3, Li2Ca, CaF2, LiF and CaAl2, Ca8Al3, Ca13Al14 and
LiAl, LiAl3, Li2Al, Li3Al2.

• Ternary compounds: LiCa2Al, Li3AlF6 and CaAlF5

• Quaternary compound: LiCaAlF6.

6.2.3 DFT Results

Using preferred chemical paths per stoichiometry, we can compare energies
of all calculations. The gap for lowest energy per stoichiometry is presented in
Table 6.1 and in Figure 6.4.

It is interesting to note that out of all 14 stoichiometries, 2 with the lowest
energy originated from the number dataset, 9 from choice and 3 from central
datasets. Relative to the respective number of configurations 0.35%, 2.27%
and 4.76% of all calculations per number, choice and central turned out to be
the lowest in energy. It seems that physical intuition helps in finding low-energy
states, however themost favorable scheme originates from the number dataset.

6.2.4 AE-KS Wave Functions

Now that we have obtained themost probable configurations, we can also have
a look at the possibility for electron-bridge processes. For this, a large value of
the wave function at the nucleus position is a necessity.
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atom exchange
in out E (eV) Δ+ (eV) Path

−1Al− 1Li 0.00 10.66 2LICAF+ 1/3Li3AlF6 + 2/3AlF3
−2Ca 0.52 8.74 2LICAF+ 2CaF2

+1F −1Al 0.67 11.08 2LICAF+ AlF3
+2F −1Ca 0.78 10.06 2LICAF+ CaF2
+1Li −1Ca− 1Al 2.19 8.93 LICAF+ 2CaAlF5

−4Li 2.70 9.24 2LICAF+ 4LiF
+1F −3Li 2.89 9.63 2LICAF+ 3LiF
+1Ca −2Al 3.20 10.80 LICAF+ 1/3Li3AlF6 + 8/3AlF3

+1F+ 1Li −2Ca 3.38 9.19 LICAF+ CaAlF5 + 2CaF2+
+2F −2Li 3.70 10.53 2LICAF+ 2LiF
+3F −1Li 4.14 9.70 2LICAF+ LiF

+2F+ 1Li −1Al 4.16 11.08 LICAF+ CaAlF5 + AlF3
+4F 4.69 10.15 2LICAF
+2Li −2Al 5.88 9.97 2CaAlF5 + 2AlF3

Table 6.1: Details for each stoichiometry in a chemical environment containing
the 2 × 2 × 1 LICAF structure, 4 F from the doping procedure, and an addi-
tional 2LICAF cells to compensate all generated stoichiometries. The first two
columns denote the amount atom exchange for each compensation scheme,
omitting Th. Next follows the relative energies and scaled band gap Δ+ =
12.65
7.59 ΔDFT values. The rightmost column shows the energetically preferred chem-
ical path for compensation outside of the crystal.
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F

Ca

Ca

Ca

Ca

CaCa Ca

Ca

CaF

F

F

F

F

FF

F

F

F

FF F

F

F

F

Li

AlAl

Li

Al

Li

Al

Li

F

F

F

F

F

F F

F

F

F

F F

F

F

F

F

Ca

Ca

Ca

Ca Ca

Ca

Ca

Ca

Ca

F

F

F

F

F

F

F

F

F

FF

F

F

FF

F

Al

Th

Li

Li

Al

Li

Al

V’

F

FF

F

F

FF F

F

F

F F

F

F F

F

Ca

Ca

Ca

Ca

Ca CaCa

Ca

Ca
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We investigate the energetically lowest configuration and identify valence
band states lying directly above the band gap with localizations around the Th
impurity, having dominantly f-character. In comparison to Th:CaF2, there seem
to be higher values of the wave function at the origin. We show the results in
Table 6.2.
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Figure 6.6: Numerical tests to estimate the uncertainty of the AE-KS reconstruc-
tion (Table 6.2) are shown. The figures are histograms for the wave function
value at the origin Ψ2

0 for the selected valence states on Th, where individual
values are obtained from extrapolations along each (θ,φ) direction. Angular
spacing is such that Δθ = Δφ = 3°. Brackets on top of each plot are to be read
as: (state label, uncertainty exponent n, 100 × ΔΨ). See subsection 5.2.3 for a
definition of ΔΨ. For some states, the fourth number measures the percentage
of extrapolations in (θ,φ) directions which do not coincide at the origin and are
omitted in the histogram.

6.2.5 Neural Network Approach

Finding the most favorable configuration for a doped complex material such
as LICAF requires a lot of computational resources, even when simplifying the
problemanddisregarding potential configurations. The tools ofMachine Learn-
ing could in principle alleviate this issue to some degree. An accurate mapping
of the structure to the energy with a neural network could speed up calculation
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Band v1 v2 v3 v4
E (eV) 5.887 6.006 6.157 6.220
Loc. (%) 98 96 96 96

ρ(r)

Ψ2
0 (Å

−3
) 0.11 19.32 5.16 0.03

Band v5 v6 v7 v8
E (eV) 6.423 6.476 6.574 6.826
Loc. (%) 73 95 94 60

ρ(r)

Ψ2
0 (Å

−3
) 82.43 0.54 0.04 3.04

Band v9 v10 v11 v12
E (eV) 7.356 7.759 8.072 8.118
Loc. (%) 69 49 42 13

ρ(r)

Ψ2
0 (Å

−3
) 2.96 0.01 49.42 0.93

Table 6.2: Energies, localizations, charge densities and the values of Ψ2
0 of lo-

calized valence states for the most favorable Th:LICAF configuration are shown.
In the charge density plots, Th is illustrated as having a black outline and sur-
rounding p-states are in the same band but on F-positions.
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time by a large amount, possibly making a more thorough search for suitable
configurations and/or higher doping concentrations feasible.

In the following, we try to find the structure to energy mapping for Th:LICAF
using the DFT data of the previous study. Considering each ionic step as a
separate data point and removing high energy outliers, the dataset contains
196833 configurations.

−470 −460 −450 −440 −430 −420

0

0.5

1
·104

Energy (eV)

#
of

da
ta

po
in
ts

Figure 6.7: Energy distribution of all data points. Because the dataset has been
generated using relaxations of different stoichiometries, the histogram is char-
acterized by a distinctive peak structure. It must be noted that for the pur-
poses of training a neural network, such peak structures are suboptimal and
should rather be replaced by a more physically intuitive distribution, e.g. fol-
lowing Boltzmann-factors.

Atomic Fingerprint Calculation

The atomic fingerprints (AFPs) are calculated from the atomic coordinates, us-
ing the interatomic distances rij. In the crystal environment, these distances
show an uneven distribution due to bond lengths and the resulting nearest
neighbor shells, even though doping breaks the symmetry of the lattice. Ar-
guably, this has an undesirable effect to the AFPs, which decreases the accu-
racy of the neural network. Of great importance is the parameter η as the width
of the Gaussians:

• If η is large, the AFP values per atom tend to get very similar and conse-
quently a structure to energy mapping is less obvious.
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• If η is small, the AFP values per atom get spread out more, but tend to
produce outliers, and/or produce a number very close to zero for a sig-
nificant proportion of the dataset. Consequently, this may propagate an
error through the neural network if not trained correctly.

Therefore, precise values for μ and η are essential to improve the training proce-
dure. η should be as small as possible to accurately represent small deviations
in the nearest-neighbor distances and the values for μ should be chosen ac-
cordingly. Because atoms can not get arbitrarily close, it is straightforward that
central AFPs (μ = 0) would require a very large η to give non-zero entries and
are thus discarded entirely. From Figure 6.8 it is evident that η and μ need to
be different for each chemical species in order to obtain AFPs which are mostly
non-zero and spread out. Best results are obtained when μ is at peaks in the
distribution for interatomic distances. For the cations Li, Ca, Al and Th, the near-
est neighbor distances have a definite peak structure thus μ is readily obtained.
Since the anions F are more spread out, the distances vary accordingly, making
it more difficult to find suitable values for μ and η.

For cations Li, Ca, Al and Th we only probe the space around the nearest
neighbor peak. We use four different μ around the peak: The first one has its
maximum at the closest cation-anion distance and a relatively large width. The
other three are located at themaximum value of the nearest neighbor peak and
in between the “start” and “end” of it. The width of these Gaussians is chosen
such that there is a small overlap over the whole range. Their purpose is to
roughly sort distances into categories ranging from ”near“ to ”far“.

The distances of F atoms not only contain cation-anion distances but also
F – F distances. Due to the ionic bonding, there should be a repulsive force
which we also desire to capture. Cation-anion distances are roughly mapped
with three AFPs: One which is sensitive to the closest distances with a large
width and then two more to indicate Al/Li or Ca/Th bonding respectively. We
then use 6moreGaussianswith varyingwidth to scan the rest of the interatomic
distances up to the cutoff radius. A visualization of radial AFPs with regards to
interatomic distances can be found in Figure 6.8.

In the crystal environment, cation-anion pairs are found to exhibit octahe-
dral structure, which means that interatomic angles are also not evenly dis-
tributed. We try to sort commonly found angles with angular AFPs including
a phase shift and large values for ζ to increase their localization. We do not
aim to accurately sort for interatomic distances in the angular AFPs, thus we
set μ = η = 0, making the cutoff function the only property which is influenced
by the distance. The distribution of the angles as well as the angular AFPs are
found in Figure 6.9.

The cutoff for both radial and angular AFPs for all cations is set to the end
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of the nearest neighbor shell, which is in units of Å 2.75, 3.10, 2.10 and 3.15 for
Li, Ca, Al and Th respectively. For F, we use the maximum cation cutoff of 3.15
for angular AFPs to sort for angles to the cations only, while the radial AFPs use
a larger cutoff of 4.15 to allow F-F probing.

Although we have attempted to make AFPs distinguishable to the neural
network by flattening peak-like structures in their histograms, it was not always
possible. The distribution of values for the AFPs for each element over 20000
random configurations are visualized in Figure 6.10–Figure 6.14.
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Figure 6.10: Distribution of AFPs for Li. Radial and angular AFPs are separated
by rows and denoted by the label to the left. On top of each plot is a pair of
parameters (μ, η) for radial AFPs and (ζ,φ) for angular AFPs.
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Figure 6.11: Distribution of AFPs for Ca. See caption of Figure 6.10 for reading
instructions.
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Figure 6.12: Distribution of AFPs for Al. See caption of Figure 6.10 for reading
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Figure 6.13: Distribution of AFPs for F. See caption of Figure 6.10 for reading
instructions. Angular AFPs are found in the gray box.
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Figure 6.14: Distribution of AFPs for Th. See caption of Figure 6.10 for reading
instructions.

Training

With these AFPs we train a neural network on the data using PyTorch.[106] We
choose the size of the hidden layers such that for each of the five elements, its
neural network has a number of parameters equal to NSamples

NElement

1
α(Ni+No)

, where i and
o denote ”input“ and ”output“.[107] We find best results for α = 2. The number of
hidden layers is chosen such that the maximum dimension is not many times
larger than Ni, while keeping the number of hidden layers to a minimum.

In Hidden

F 12 22 33 42 32 22
Li 7 12 17 21 16 11
Ca 6 12 17 23 18 12
Al 6 12 17 23 18 12
Th 6 10 8

Table 6.3: Neural Network layers and their sizes. The input dimension is de-
termined by the number of AFPs. Each element has a single output neuron
representing the elements contribution to the total energy. Best results were
obtained by using the SELU activation function.[108]

For the training procedure we separate the dataset into a training set with
size 0.9NSamples which we validate on a validation set sized 0.05NSamples after
each epoch and when training on these two datasets cannot be improved we
validate again on the test set 0.05NSamples. Remarkably, we find that the min-
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imum error has a time dependence similar to ee−ktc1+c2 , where t is the epoch
number and k, c1, c2 are fit constants. We can thus estimate the final error in
the limit t → ∞, which is ΔE∞ = ec2 . Results are shown in Figure 6.15, where we
find ΔE∞ = 2.9meV.
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Figure 6.15: Average errors per epoch with minimum value 2.92meV and an
estimated final error of ΔE∞ = 2.91meV. Only the last half of the data was
used to arrive at ΔE∞. Note the logarithmic y-axis.
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Qualitative comparison of DFT and ANN

Now that the neural network has learned the energymapping in our dataset, we
aim to find out whether it could potentially determine favorable stoichiometries
or even configurations.

To this end, we compare two approaches on the trained data. First, we let
the neural network predict energies for the energetically lowest configuration
in each stoichiometry in the dataset and compare these predictions with the
actual DFT energies (i.e. the result of Table 6.1), where we calculate the mean
absolute error (MAE) to be 0.2eV. Second, we look at the reverse case, where
we find minimum prediction energies per stoichiometry and compare these
with DFT energies and find a MAE of 0.5eV. The respective numerical values
per stoichiometry are shown in Table 6.4 and a visualization of this data can be
found in Figure 6.17.

In the first case, the error is small enough to allow the neural network to
accurately predict the energetic ordering of the first few favorable stoichiome-
tries, up to an energy of 2.7eV. However, themagnitude of the error is far larger
than what the convergence criterion for forces allows in a single relaxation run.

In the second case, even though the MAE is larger, the ordering is again
correct, this time to about 2.9eV. Note that the ANN did not predict the final
relaxed configuration as having the lowest energy. This is because the energetic
deviations between relaxation steps may be many orders of magnitude smaller
than the average error of the test set (2.9meV/atom).
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Figure 6.17: DFT energies versus ANN predictions from Table 6.4. Circles cor-
respond to the minimum energy for each stoichiometry with DFT calculations,
as shown in Figure 6.4, while squares denote the ANN prediction counterpart.

73



DFT Energy (eV) ANN Energy (eV)
min(DFT) min(ANN) min(DFT) min(ANN)

0.000 0.066 0.015 −0.303
0.517 0.521 0.371 0.345
0.672 0.730 0.647 0.396
0.781 1.249 0.895 0.711
2.191 2.367 2.188 1.951
2.700 2.962 2.776 2.594
2.890 3.592 2.687 2.522
3.217 3.499 3.555 3.024
3.381 3.383 3.128 3.114
3.698 4.195 3.792 2.518
4.142 4.187 4.109 3.995
4.163 4.392 4.686 4.179
4.694 4.811 4.864 4.606
5.878 6.099 6.235 5.424

Table 6.4: Comparison of predictions for the total energy of DFT and the ANN.
In the first column is the DFT result as seen in Table 6.1, while in the second
column are DFT energies for the ANN predicted most favorable configurations
per stoichiometry. In the third column are ANNpredicted energies for the result
in Table 6.1 and finally in the fourth column are the ANN energies of its own
predicted favorable configurations per stoichiometry.
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Chapter 7

Conclusion

In this work we present various DFT results obtained with VASP of the doped
large gap insulators MgF2, CaF2 and LICAF. Mainly we investigate thorium dop-
ing due to its proposed application as a nuclear clock. The three materials each
have different structural properties, withMgF2 showing a tetragonal lattice, CaF2
a fcc-lattice and finally LICAF presents a major increase in structural complexity
with its trigonal lattice.

Thorium has a different oxidation state than all the constituents of the in-
vestigatedmaterials. Therefore the dopant is accompanied by charge compen-
sating atoms, which we determine by studying the energy contributions of the
impurity and the chemical environment outside of the doped crystal.

Th:MgF2 and Th:CaF2 were studied previously albeit with different computa-
tional parameters.[80,81,88] In several aspects, we increase the computational ac-
curacy compared to these previous studies and confirm their qualitative results.
Although Mg and Ca are in the same group in the periodic table, their different
structures in fluoride crystals also favor different compensation mechanisms:
A cation Mg vacancy in Th:MgF2 and two interstitial F anions in Th:CaF2. Substi-
tutional thorium doping for the cations in both cases is energetically preferred.
While the band gap of Th:MgF2 is considerably reduced, the favorable configu-
ration of Th:CaF2 shows the largest band gap of all investigated compensation
mechanisms.

Further, we determine the possibility that surplus fluorine atoms, originating
from the doping procedure, create another defect in CaF2 instead of leaving the
crystal to be in the molecular F2 arrangement. Our simulations indicate that it
is favorable for any surplus fluorines to form groups of three around a central
Ca atom. The energy penalty when compared to the gas phase is 0.4eV/atom
of fluorine, which corresponds to a Boltzmann factor at the crystallization point
of 94.3%. However, we do not estimate the band gap to reduce notably in this
defect configuration.
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Also we estimate the impact of lattice vibrations at finite temperature on the
optical properties of Th:CaF2 by assigning a score to each mode based on the
vibrational displacements with respect to the thorium position and the inter-
atomic distance. We identify several modes at around 9.8 THz and 10.1 THz,
which we assume to have the greatest impact. Cooling the sample to 30K
should eliminate virtually all occupation of these modes.

An experimental verification that 229 Th is in its excited state may be done
with nuclear quadrupole resonance spectroscopy. To aid in the calibration of
the measurement devices, we calculate the electric field gradient of actinium,
cerium and neptunium doped CaF2. Again, we perform a charge compensation
analysis and find that interstitial placements of one, two and three fluorines
are energetically preferred respectively. When comparing the relaxed impurity
structures for all dopants, we find that interstitial fluorines tend to forman angle
of about 70° with the cation (except Ac:CaF2, which has only one interstitial
fluorine) and an approximate distance to the dopant of 2.2Å.

Because of the above mentioned complexity of LICAF, a computational
charge compensation analysis has not been published before this work. We
develop a systematic approach concerning both the possible charge compen-
sation placements and also the stoichiometries outside of the doped crystal.
To achieve a convincing analysis, we calculate a sizable number of compensa-
tion schemes find that the favored compensation mechanism does not feature
interstitial atom placements. Instead, thorium substitutes an Al in the vicinity
of a Li vacancy. Band gap sizes for all compensation schemes range between
9eV to 11 eV, with the systematic underestimation of DFT being considered via
the scissors-operator.

Inspired by recent developments in the field of machine learning and its
promising capabilities in computational materials science, we use the calcu-
lated configurations of LICAF to train a neural network on the structure to en-
ergy mapping, where we modify the atom centered symmetry functions as de-
vised by Behler.[19] If the predictions are accurate enough it would greatly aid
in the search for new promising charge compensation configurations and/or
enable an increase of the doping concentration. Our best network was able to
predict energies with an average error of 2.9meV/atom, which is far smaller
than the total energetic deviation in the dataset. Thus, the network would be
able to categorize the configuration’s energetic region, but it would be unable
to identify whether a configuration is fully relaxed.

Since the 229 Th isomer transition is very close to the band gap energies in
doped CaF2 and LICAF, an electron bridge mechanism could transfer the en-
ergy of an excited electron to the thorium nucleus. In collaboration with the
Max-Planck Institut für Kernphysik in Heidelberg we obtain transition rates for

76



this scheme in Th:CaF2. The rates are calculated by using wave functions of
the impurity and conduction band states obtained in this work. Because VASP
uses the PAW-method and an accurate wave function in the core region is re-
quired, we calculate the all-electron Kohn-Sham (AE-KS) states from the pseudo
wave functions. The results for Th:CaF2 were published elsewhere and we also
present the AE-KS states for themost probable configuration in Th:LICAF, where
the impurity states show promising estimates for the wave function values at
the nucleus but a conclusive investigation on electron-bridge rates has not yet
been attempted.

In general, the quality of the results in the present work depends on the in-
herent properties of DFT: On the one hand, its efficiency allows us to perform
relaxation of impurities with realistic doping concentrations or negligible long
range interactions. On the other hand, we are mainly interested in the band
gap, which DFT systematically underestimates. In particular, DFT can only per-
form calculations on the ground state; any true description of excitation effects
is therefore out of the scope of this work. Additionally, the approximations in
DFT are best suited for systems with low correlations. Insulating crystals do
not fall into this category per se, however since the band gap is large and the
form of the band structure does not change with SCAN or HSE approaches as
compared to PBE, it is our assumption that systematic DFT errors are not an
exceedingly serious concern for our purposes. In any case, it would be highly
interesting to compare the results with other many body methods. Often such
methods start from DFT relaxed ionic positions, as such this work provides the
foundation for further research.

It is important to note that our charge compensation analysis may depend
on the choice of the overall chemical environment, which we decide on by imag-
ining doping via ThF4 and additional unit cells of the host crystals as required to
realize all charge compensation schemes. We include an analysis for oxygen im-
purities in Th:CaF2 and Th:MgF2 and conclude that it is unlikely for oxygen to take
part in the impurity. However, should the sample be contaminated, e.g. exclu-
sively with cations, the resulting chemical paths could tilt the energy balance in
favor of other charge compensation mechanisms. To gain more confidence in
our predictions, further research could be done by studying different chemical
environments considering the actual crystallization procedure and comparing
the results.

Also, the treatment of heavy elements makes relativistic effects more promi-
nent, especially in the regions around the nuclei. By default VASP performs
scalar relativistic calculations[109] but spin-orbit coupling has to be enabled by
the user. Our main motivation was to calculate AE-KS wave functions, a feature
that VASP does not supply. However we could not converge our structure using
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other open source DFT packages and consequently we modified VASPs source
code in order to extract the necessary projector functions. Our modification is
not yet able to operate when spinors are calculated as is the case when consid-
ering spin-orbit coupling. Fixing this matter would enable a full relativistic calcu-
lation, whichmay give a more accurate estimation on electron-bridge transition
rates. At least for the prediction of the electric field gradient on U:CaF2, VASP
results were not significantly altered by the inclusion of spin-orbit coupling.[98]

Finally, we conclude the application of artificial neural networks on our LICAF
dataset with an ambiguous assessment. While we were able to minimize the
mean average error by carefully choosing the atomic fingerprint parameters,
the overall inaccuracy is still too large for determining highly favorable config-
urations with enough certainty. We want to point out that the dataset was not
meant to be solely responsible for training the network, because first and fore-
most we determined the charge compensation mechanism of Th:LICAF. There-
fore, a further improvement on the accuracy may be achieved by exploiting cur-
rent knowledge about favorable stoichiometries and calculate structures closer
to the ground state, possibly using Boltzmann-factors to choose new configura-
tions and increase the overall quality of the input data. However, even with this
dataset it may be conceivable to decide whether a generated configuration is
not a likely candidate for a low energy structure; the neural network would then
act as a binary classifier. In this sense, it could aid the search for reasonable
configurations with the additional need to perform a DFT relaxation on them.
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Part III

Appendix
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A Convergence Studies and Total Energies

A.1 Introduction

The following sections contain a multitude of Figures and Tables concerning
the convergence and experimental comparison of various compounds using
the pseudopotentials of the respective elements. We perform several types of
convergence studies:

1. Energy cutoff convergence: We calculate a reference energy with a cut-
off far larger than what was used in the generation of the pseudopoten-
tial, i.e. ENCUT ≫ ENMAX. We then vary the cutoff and compute ΔrefE =
|Eref − EENCUT|/N, where N is the number of atoms in the cell. In the Figure
axis labels, the index ”ref“ is replaced by the reference cutoff. We deem
the cutoff as converged when ΔrefE < 10meV, which usually results in a
value slightly larger than ENMAX.

2. k-mesh cutoff convergence (only for solid phases): In the same way as
previously, we perform a reference calculation with a large grid size in re-
ciprocal space and compute ΔrefE. The number of k-grid points in each
direction is adjusted according to the relative size of the lattice vectors.
A converged grid size has the same criteria as previously, i.e. ΔrefE <
10meV.

3. Equilibrium lattice constant determination (only for solid phases): For cu-
bic lattices, we plot points of energy per atom over a volume scaling factor
s. We choose the points for s in the following fashion: After the first three
s points are calculated, the next calculation proceeds half way between
the two s-points with the lowest energy. This process is iterated until the
difference in energy between both points has reached a threshold (usu-
ally 10meV but sometimes lower). We then interpolate these points with
a Morse fit

E(s; s0,D, a) = D


1− e−a(s−s0)

�2
, (7.1)

where the DFT equilibrium volume scaling factor s0, the depth of the po-
tential well D and the steepness of the slope a are the fit parameters. It
is then possible to calculate the bulk modulus

B = V
∂2E
∂V2

����
V=V0

= 2Da2V0, (7.2)

which can be compared to the experiment viameasured elastic constants
B = 1/3(C11 + 2C12).[110]
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For lattices where a = b ̸= c, we have two scaling factors: One scales the
c/a ratio while the other scales the volume as previously. The above men-
tioned routine is then performed for each scaling factor in a double loop.
The convergence threshold is usually reduced to 1meV. Next, for each
fixed c/a we interpolate the volume scaling data points with a Morse po-
tential and interpolate the fit parameters s0,D and a of each c/a ratio with
a quadratic spline. We then plot these results as a contour plot together
with the energetic minimum.

4. Distance convergence (only for gaseous compounds): Since VASP uses
periodic boundary conditions, wemust calculate non-periodic systems by
using a large unit cell with enough vacuum in between such that interac-
tions are negligible. Therefore wemust converge on the vacuumdistance.
To do this we again calculate a reference energy for a large distance and
vary distances smaller than the reference to compute ΔrefE. The conver-
gence criteria is ΔrefE < 10meV. A further option is to interpolate on the
calculated data points with the function

E(d; a,b, E0) = 10−adb+ E0, (7.3)

where d is the length of periodicity and a,b and E0 are fit parameters. In
the limit d → ∞, E0 is the final energy. This is especially useful when it is
hard to converge on the distance e.g. because the compound is ionized
hence the interactions are long range.

Apart from convergence studies, we have a few additional remarks about
notation:

• After convergence tests have been thoroughly performed we often seek
an experimental comparison, which we denote as ΔexptO = OVASP − Oexpt,
where O is an observable quantity.

• We denote the total free energy of our calculations with E0. This is the
value as stated in the last line of VASP’s OSZICAR file, whichwe often reduce
accordingly to represent a certain number of atoms.

• Usually we denote a pseudopotential by its TITEL flag but there are ex-
ceptions when we want to emphasize certain properties thereof. As an
example Ca267sv denotes the sv type of the Ca pseudopotential which has
a value ENMAX = 267.

81



A.2 Compensating Thorium Doped Magnesium Fluoride

Magnesium

In its metallic allotrope Magnesium forms a hexagonal close packed (hcp) lat-
tice.[111] However, we find a discrepancy in the materials project database,[105]
where the cubic fcc lattice (ID 1056702) is energetically preferred and labeled
as stable, although it is noted that a high-pressure phase is considered.

We aim to find out whether this error stems from DFT by calculating the
energy for both the hexagonal and the cubic lattice. Indeed, our calculations
show that the hcp lattice is energetically preferred. It was also not possible to
reproduce the final energy from the VASP input files of the materials project
database.

Pseudopotential
GW pv_GW sv_GW

PBE E (eV) fcc −1.491 −1.488 −15.638
hcp −1.520 −1.515 −15.665

SCAN E (eV) fcc −4.939 −4.967 −19.113
hcp −4.976 −4.996 −19.150

Table 7.1: Energy per atom for different pseudopotentials and crystal structures
with different levels of DFT.

Fluorine

For the highly reactive Fluorine, VASP supplies seven pseudopotentials. A rough
categorization may be done to separate two approaches: the PBE generation
of the pseudopotential with types default, here also called std, s and h, as well
as the GW generation with types GW, GW_new, d_GW and h_GW.

First, we determine the electron affinity with gaseous Fluorine. To further
test the pseudopotentials, accuracy of forces are investigated for molecular
Fluorine F2. All studies were done with the PBE XC-functional except otherwise
stated.

At standard conditions, Fluorine is a diatomic gas F2 with a bond length of
1.4119Å.[112] We also test the pseudopotentials on the molecular bond disso-
ciation energy of ΔH = 158.670(96) kJmol−1.[113]

Following the convergence studies in Figure 7.2 and Figure 7.3 we deter-
mine the total energies for both the neutral and ionized states and calculate
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Figure 7.1: Final volume convergence tests for fcc (top) and hcp (bottom) Mg
for different pseudopotentials GW (left), pv_GW (middle, the spike in contour lines
is an interpolation artifact) and sv_GW (right). Convergence tests of the energy
cutoff and k-points are not shown for the sake of brevity.

the electron affinities (see Table 7.2).

PP E0 (eV) E− (eV) ΔexptEea (eV)

std −0.51 −5.06 1.16
s −0.50 −5.05 1.15
h −0.43 −4.96 1.13
GW −0.43 −4.96 1.13
GW_new −0.42 −4.97 1.15
d_GW −0.42 −4.97 1.15
h_GW −0.43 −4.99 1.16

Table 7.2: The results of the convergence studies are summarized. From left to
right: pseudopotential type, converged total energy for the neutral atom, con-
verged total energy for the anion, difference of the electron affinity as calculated
with DFT to the experimental reference value of Eea = 3.4011897(24) eV.[114]
The calculated electron affinity has a mean systematic error of 1.15eV. Be-
tween the pseudopotentials the differences are small compared to the sys-
tematic deviation. For the h_GW pseudopotential we also performed an HSE
calculation and find Δexpt = 0.85eV.
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Figure 7.2: Top: Energy cutoff convergence study for gaseous Fluorine with the
available pseudopotentials. The different types show great variability in con-
vergence. Bottom: Vacuum convergence studies for all pseudopotentials. The
greater variability of the hard pseudopotentials can be seen starting from 7Å
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Figure 7.3: Convergence of vacuum size for every pseudopotential in the atomic
F− state, where the dots represent individual calculation results and the solid
line is an interpolation function.

PP E0 (eV) Δexptd (Å) ΔexptdH (eV)

std −3.782 −0.011 0.220
d_GW −3.675 −0.003 0.192
GW −3.650 −0.008 0.208
GW_new −3.683 −0.002 0.187
h −3.693 −0.002 0.185
h_GW −3.695 −0.001 0.186
s −3.649 −0.039 0.285
GW −6.935 −0.009
GW_new −6.931 −0.009

Table 7.3: Total energy E0 and difference of bond length and bond dissociation
energy when compared to the experiment. Calculations were done with PBE
except for the last two rows, which were done with SCAN.
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Figure 7.4: Convergence studies on F2 for energy cutoff (top) and molecular
distance on energy and bond length (middle, bottom).
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Oxygen

Molecular oxygen is a diatomic molecule at standard conditions. It has an
observed bond length of 1.207Å and we find an enthalpy of formation of
249.18(10) kJmol−1.[79,115]One of its exceptional properties is the triplet ground
state. We compare our calculated values to the experiment an obtain total en-
ergies as shown in Figure 7.5 and Figure 7.6.

PP E0O (eV) E0O2
(eV) ΔexptH (eV) Δexptd̄ (Å)

s −1.606 −9.399 −0.511 0.084
h −1.565 −10.028 −0.866 0.011
sv −2042.442 −4091.768 −0.859 0.012
GW −1.564 −9.925 −0.816 0.019
GW_new −1.565 −9.997 −0.851 0.016
s_GW −1.565 −9.508 −0.606 0.065
h_GW −1.563 −10.027 −0.868 0.011
GW_new −12.531 0.005

Table 7.4: Experimental comparison for all pseudopotentials of oxygen. Hard
pseudopotentials show better bond lengths, whereas soft pseudopotentials
are closer to the experiment w.r.t. the enthalpy of formation. Because the lat-
ter is more important for further considerations, the s_GW type is chosen due
to its reasonable compromise between both observables. All calculations were
done on a PBE level except the last row which was done with SCAN.

Oxygen Difluoride

OF2 has a bent structure similar to the water molecule. The O–F bond length
is 1.4Å and the F –O–F angle is 103°. We find that for PBE calculations, OF2
has a negative enthalpy of formation, whereas SCAN favors 1⁄2O2 + F2.

Level E0 (eV) Δrefd (Å) Δref∠FOF (°)
PBE −8.572 0.022 1.680
SCAN −13.059 0.001 0.783

Table 7.5: Total energies for the OF2 molecule for PBE (O_s_GW, F_h_GW) and
SCAN (O_GW_new, F_GW_new).
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Figure 7.5: Top: Energy cutoff convergence study for the oxygen atom. Off
the chart is the sv pseudopotential, which is only converged at the unusu-
ally high cutoff of 1600eV, where the reference is 1800eV. Bottom: Vacuum
convergence studies for every pseudopotential. Softer pseudopotentials show
smoother convergence with respect to the distance between atoms.
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Figure 7.6: Top: Energy cutoff convergence study for the oxygen molecule. The
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convergence study.
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Magnesium-Oxygen Compounds

For Mg–O compounds we find one stable phase MgO with its experimental
lattice constant 4.213Å[116] and Bulk modulus 163.447GPa.[117]

ID #Mg #O Space Group atoms E (eV)

1265 1 1 Fm-3m 2 −11.968
2589 1 2 Pa-3 12 −66.513

Table 7.6: Lowest energy phases of magnesium-oxygen compounds found in
the materials project’s database are listed.[105]

E (eV) E (eV)

−11.968 = MgO < 1/2MgO2 + 1/2Mg = −9.114
−16.628 = MgO2 > MgO+ 1/2O2 = −16.931

Table 7.7: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.8: Convergence studies for MgO with PBE and SCAN with pseudopo-
tentials Mg_pv, O_s_GW and Mg_GW, O_GW_new respectively.
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Level E0 (eV) Δrefa (Å) ΔrefB (GPa)

PBE −11.851 0.047 −3.182
SCAN −17.317 0.029 8.572

Table 7.8: Data for MgO on PBE and SCAN level. The total energy is given for
two atoms MgO.

Magnesium-Fluorine Compounds

ID #Mg #F Space Group atoms E (eV)

1249 1 2 P42/mnm 6 −31.975
1185862 1 3 l4/mmm 4 −15.497

Table 7.9: Stable phases of magnesium-fluorine compounds found in the ma-
terials project’s database are listed.[105]

E (eV) E (eV)

−15.988 = MgF2 < 2/3MgF3 + 1/3Mg = −10.865

Table 7.10: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.

Mg_GW F_GW E0 (eV) Δrefa (Å) Δrefc (Å) ΔrefdH (eV)

new −23.564 −0.019 −0.028 1.043
pv new −23.513 −0.019 −0.012 1.096
sv new −37.676 −0.019 −0.012 1.087

Table 7.11: Comparison of various pseudopotential combinations of F and Mg
with experimental values and the total energy.
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Figure 7.9: Convergence studies of MgF2 for the combination of F_GW_new and
Mg_GW pseudopotentials using the SCAN functional. Left: Energy cutoff con-
vergence. Middle: K-mesh convergence, where the number of grid points in c
direction was reduced according to the c/a ratio. Right: Finding the equilibrium
geometry.

Table for Compensation Energies

Compound E0 (eV) ΔH/Atom (eV)

Mg −4.976
F2 −6.931
O2 −12.531
OF2 −13.059 0.069
MgO −17.317 −3.038
MgF2 −23.564 −3.886

Table 7.12: Summary of total energies for compounds needed for charge com-
pensation analysis in Th:MgF2 outside of the host crystal. Calculations were
done with SCAN and pseudopotentials Mg_GW, F_GW_new and O_GW_new. Conver-
gence studies and experimental comparisons are shown in the previous sec-
tions.

A.3 Compensating Thorium doped Calcium Fluoride

Calcium

Gaseous Ca For a gaseous Ca atom, the ionization energy is determined.
First, a basic convergence study for the neutral atom was performed and then
the interatomic distance between positively charged Ca+ cations was varied
and its energy extrapolated. The experimental data for ionization energies
shows:[118] I = 6.113eV, II = 11.872eV and III = 50.913eV.
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Figure 7.11: Extrapolation for the energy with respect to the vacuum size
of an ionized Ca atom, where we interpolate data points. Left: Ioniza-
tion I (E0 = 0.39eV), Middle: Ionization II (E0 = 10.32eV), Right: Ionization III
(E0 = 57.70eV).

Ion. EVASP (eV) ΔexptE (eV)

I 5.29 0.82
II 9.93 1.94
III 47.38 3.54

Table 7.13: Ionization energies compared to the reference values for a Ca atom.
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Crystal Ca The materials project database[105] determines several phases of
single Ca crystals, where the cubic lattice has the lowest energy.
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Figure 7.12: Convergence studies for solid Ca with the Ca_sv_GW pseudopoten-
tial. Left: Energy cutoff convergence. Middle: k-mesh convergence. Right: Vol-
ume convergence. The relaxed cell volumewas taken from thematerials project
website.[105] We find good agreement with the database values; the minimum
lies at 0.99.

The total energy for Ca crystal with the Ca_sv_GW pseudopotential is found
to be−6.85eV and the difference to experimental lattice constant is 0.06Å.[111]

Calcium-Oxygen

ID #Ca #O Space Group atoms E (eV)

2605 1 1 Fm-3m 2 −12.879
634859 1 2 l4/mmm 3 −18.521

1120811 2 3 P1 40 −248.126
1182382 1 10 4/mmm 22 −111.885

Table 7.14: Energetically favorable phases of calcium-oxygen compounds found
in the materials project’s database are listed.[105]

The final energy for two atoms in the CaO crystal with the Ca_sv_GW and
O_s_GW pseudopotentials is −17.763eV and its deviation to the experimental
lattice vector is 0.023Å.

Calcium Fluoride

The final total energy of the three CaF2 constituents is −22.314eV when us-
ing Ca_sv_GW and F_h_GW pseudopotentials. Bader Charge analysis shows an
electron reduction on Ca sites by 1.673 and an increase in electron number
on F sites by 0.836. We find a difference to the experimental lattice parameter

94

https://materialsproject.org/materials/mp-2605/
https://materialsproject.org/materials/mp-634859/
https://materialsproject.org/materials/mp-1120811/
https://materialsproject.org/materials/mp-1182382/


E (eV) E (eV)

−12.879 = CaO < 1/3Ca2O3 + 1/3Ca = −11.007
−18.521 = CaO2 > CaO+ 1/2O2 = −17.841
−31.016 = Ca2O3 > CaO+ CaO2 = −31.400
−55.943 = CaO10 > CaO2 + 4O2 = −58.221

Table 7.15: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.13: ENCUT convergence plot for the stable phase CaO. The relaxed cell
volume was taken from the materials project website. We find good agreement
with the database values, the minimum lies at 0.998.

ID #Ca #F Space Group atoms E (eV)

1183545 1 1 P63mc 4 −18.121
2741 1 2 Fm-3m 3 −17.577

554355 1 2 P4/mmm 3 −16.857
560030 1 2 Pmc21 6 −34.061
10464 1 2 Pnma 12 −69.684

1183590 1 3 l4/mmm 4 −18.459
1183589 1 3 P63/mmc 8 −36.869
684949 2 1 Cm 15 −57.061

Table 7.16: All phases of calcium-fluorine compounds found in the materials
project’s database are listed.[105]
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E (eV) E (eV)

−9.061 = CaF > 1/2CaF2 + 1/2Ca = −9.792
−17.577 = CaF2 < 2/3CaF3 + 1/3Ca = −12.974
−18.459 = CaF3 > CaF2 + 1/2F2 = −19.468
−11.412 = Ca2F > 1/2CaF2 + 3/2Ca = −11.798

Table 7.17: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.14: Different Pseudopotential combinations for enthalpy of formation
(left), (volume) and band gap (right) for the SCAN mGGA.
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Figure 7.16: Convergence studies for CaF2 with Ca_sv_GW and F_h_GW pseu-
dopotentials.

of 0.061Å and to the experimental Bulk modulus of −1.764GPa.[82,83,117] For
this combination of pseudopotentials, we calculate an enthalpy of formation of
−11.772eV, which is a difference to the experimental value of −0.122eV.[119]

Table for Compensation Energies

Compound E0 (eV) ΔH/Atom (eV)

Ca −6.847
F2 −3.695
O2 −9.508
OF2 −8.572 −0.041
CaO −17.763 −3.081
CaF2 −22.314 −3.924

Table 7.18: Summary of total energies for compounds needed for charge com-
pensation analysis in Th:CaF2 outside of the host crystal. Calculations were
done with PBE and pseudopotentials Ca_sv_GW, F_h_GW and O_s_GW. Conver-
gence studies and experimental comparisons are shown in the previous sec-
tions.

A.4 Compensating Thorium Doped LICAF

Lithium

We obtain a total energy for one crystal Li atomwith the Li_GW pseudopotential
of −1.892eV.

Aluminum

Weobtain a converged total energy for the Al_GW pseudopotential of−3.742eV
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ID Space Group Atoms E (eV) E (eV/Atom)

51 Fm-3m 1 −1.906 0.003
135 lm-3m 1 −1.904 0.005

10173 P63/mmc 2 −3.813 0.002
1018134 R-3m 3 −5.727 0.000
1063005 P6/mmm 3 −5.671 0.019
976411 P63/mmc 4 −7.625 0.003
604313 P4132 4 −6.589 0.262
567337 l-43d 8 −15.189 0.010
1103107 Cmce 12 −22.243 0.055

Table 7.19: Phases and PBE energies of Li on thematerials project database.[105]
All calculations are performed with the Li_sv pseudopotential. Contrary to
what one might expect, the lowest lying energy is not the cubic but a trigo-
nal lattice. In an experimental database, we find three different phases which
do not turn out to be energetically lowest in DFT.[111] We speculate that the sig-
nificance is very low, since there are several phases which are just a few meV
apart and omit our own investigation into this manner.
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Figure 7.17: Convergence studies for the trigonal phase of solid Li. Left: Energy
cutoff convergence. Middle: K-mesh convergence. The unit cell has a ratio
c/a > 7. Thus, values on the x-axis are only for a and b dimensions in reciprocal
space, whereas only a single k-point was used in c-direction. The reference
values were obtained using a 15 × 15 × 2 mesh. Right: Volume convergence.
The relaxed cell volume was taken from the materials project website. The dot
represents our lowest calculated value, the trueminimum is obtained byMorse
fits.
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ID Space Group Atoms E (eV) E (eV/Atom)

134 Fm-3m 1 −3.746 0.000
998860 lm-3m 1 −3.653 0.093
1183144 P63/mmc 4 −14.937 0.011
1239196 l4/mmm 4 −13.774 0.302

Table 7.20: Phases and PBE energies of Al on thematerials project database.[105]
All calculations are performed with the Al pseudopotential. The lowest lying
energy is the fcc cubic lattice.
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Figure 7.18: Convergence studies for solid Al. Left: Energy cutoff convergence.
Middle: K-mesh convergence. Right: Volume convergence. The relaxed cell
volume was taken from the materials project website.[105]

and differences to the experimental values of the lattice constant of −0.002Å
and Bulk modulus of −1.089GPa.[111,117]

Lithium-Calcium

ID #Li #Ca Space Group atoms E (eV)

11644 2 1 Fd-3m 6 −11.717
570466 2 1 P63/mmc 12 −23.387
976075 3 1 l4/mmm 4 −7.550
975929 3 1 Fm-3m 4 −7.538
976272 1 3 l4/mmm 4 −7.634
1185350 1 3 P63/mmc 8 −15.341
1211157 1 4 Fd-3m 10 −16.713

Table 7.21: All phases of lithium calcium compounds found in the materials
project’s database are listed.[105]
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E (eV) E (eV)

−5.858 = Li2Ca < 2Li+ Ca = −5.823
−7.550 = Li3Ca > Li2Ca+ Li = −7.767
−7.634 = LiCa3 > 1/2Li2Ca+ 5/2Ca = −7.943
−7.670 = LiCa4 > 1/2Li2Ca+ 7/2Ca = −9.949

Table 7.22: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.19: Convergence studies for the stable Li2Ca phase. Left: Energy cut-
off convergence. Middle: k-mesh convergence. Right: Determination of equi-
librium volume. The relaxed cell volume was taken from the materials project
website.[105]

101



The final energy for Li2Ca with the Li_GW and Ca_sv_GW pseudopotentials is
−10.698eV.

Lithium-Aluminum

ID #Li #Al Space Group atoms E (eV)

1067 1 1 Fd-3m 4 −12.020
1079240 1 1 P63/mmc 8 −23.346
1191737 1 1 Cmce 24 −68.592
1211134 1 2 Fd-3m 12 −34.711
10890 1 3 Pm-3m 4 −13.552
975906 1 3 l4/mmm 4 −13.466
1210753 2 1 Cmcm 6 −16.104
1210792 2 1 Fd-3m 12 −28.263
975868 3 1 l4/mmm 4 −9.791
16506 3 2 R-3m 5 −14.154

1212183 7 6 Cmmm 13 −14.983
568404 9 4 C2/m 13 −34.045

Table 7.23: All phases of lithium-aluminum compounds found in the materials
project’s database are listed.[105]

E (eV) E (eV)

−6.010 = LiAl < 1/3Li3Al2 + 1/3Al = −5.967
−8.678 = LiAl2 > LiAl+ Al = −9.756

−13.552 = LiAl3 < LiAl+ 2Al = −13.502
−8.052 = Li2Al < 1/2Li3Al2 + 1/2Li = −8.032
−9.791 = Li3Al > Li2Al+ Li = −9.961

−14.154 = Li3Al2 < 3/2Li2Al+ 1/2Al = −13.951
−14.983 = Li7Al6 > 7/3Li3Al2 + 4/3Al = −38.021

Table 7.24: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.

Note that the compound Li7Al6 is one of the rare instances where the algo-
rithm fails to find the lowest energy solution since it is assumed that each ele-

102

https://materialsproject.org/materials/mp-1067/
https://materialsproject.org/materials/mp-1079240/
https://materialsproject.org/materials/mp-1191737/
https://materialsproject.org/materials/mp-1211134/
https://materialsproject.org/materials/mp-10890/
https://materialsproject.org/materials/mp-975906/
https://materialsproject.org/materials/mp-1210753/
https://materialsproject.org/materials/mp-1210792/
https://materialsproject.org/materials/mp-975868/
https://materialsproject.org/materials/mp-16506/
https://materialsproject.org/materials/mp-1212183/
https://materialsproject.org/materials/mp-568404/


ment is completely absorbed by only one compound. Li7Al6 in fact composes
to

Li3Al2 + 4LiAl = −38.194eV, (7.4)

which is impossible to find in our algorithm since none of these two compounds
completely absorbs an element. Instead our algorithm erroneously gives the
pathway

7/3Li3Al2 + 4/3Al = −38.021eV. (7.5)

It seems that in this case neither of the two phases are dominant.
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Figure 7.20: Convergence studies for the selected phases of Li – Al compounds
with pseudopotentials Li_sv_GW and Al_GW. Cell parameters were obtained
from the materials project database.[105] The black dot in the contour plot il-
lustrates our calculation with the lowest energy. The true minimum may be
obtained by the Morse fit.

Lithium-Fluorine

The final energy for LiF with pseudopotentials Li_GW and F_h_GW is −9.611eV
with differences in lattice parameter and Bulk modulus being 0.039Å and
−10.499GPa respectively.
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Compound E0 (eV) Δrefa (Å) Δrefc (Å)

LiAl −6.016 0.003
LiAl3 −13.565 0.016
Li2Al −8.024
Li3Al2 −14.097 −0.042 0.113

Table 7.25: Converged final energies for compounds with pseudopotentials
Li_GW and Al_GW and differences to experimental lattice parameters if avail-
able.[120–122]

ID #Li #F Space Group atoms E (eV)

1138 1 1 Fm-3m 2 −9.690
1009009 1 1 Pm-3m 2 −9.115
1185301 1 1 P63mc 4 −19.354
1185348 1 3 P63/mmc 8 −23.980

Table 7.26: All phases of lithium-fluorine compounds found in the materials
project’s database are listed.[105]

E (eV) E (eV)

−9.690 = LiF < 1/3LiF3 + 2/3Li = −5.269
−11.990 = LiF3 > LiF+ F2 = −13.472

Table 7.27: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.21: Convergence studies for LiF. Left: Energy cutoff convergence. Mid-
dle: k-mesh convergence. Right: Determination of equilibrium volume. The
relaxed cell volume was taken from the materials project website.[105] We find
good agreement with the database values; the minimum lies at 0.997.
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Calcium-Aluminum

For Ca –Al compounds we find three stable phases CaAl2, Ca8Al3 and Ca13Al14
with energies −15.319, −67.800 and −148.619 respectively in units of eV.

ID #Ca #Al Space Group atoms E (eV)

2404 1 2 Fd-3m 6 −20.961
1749 1 4 l4/mmm/1 5 −17.962

1214044 4 1 Fd-3m 10 −20.134
1190736 8 3 P1 22 −57.964
1193055 13 14 C2/m 27 −85.527

Table 7.28: All phases of calcium-aluminum compounds found in the materials
project’s database are listed.[105]

E (eV) E (eV)

−10.480 = CaAl2 < 1/13Ca13Al14 + 12/13Al = −10.037
−17.962 = CaAl4 > CaAl2 + 2Al = −17.972
−10.067 = Ca4Al > 1/3Ca8Al3 + 4/3Ca = −12.335
−28.982 = Ca8Al3 < 3/14Ca13Al14 + 73/14Ca = −28.787
−85.527 = Ca13Al14 < 7CaAl2 + 6Ca = −85.398

Table 7.29: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.

Compound E0 (eV)

CaAl2 −15.319
Ca8Al3 −67.800
Ca13Al14 −148.619

Table 7.30: Converged final energies for Ca –Al compounds with pseudopoten-
tial Ca_sv_GW and Al_GW
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Figure 7.22: Convergence studies for stable phases of Ca –Al compounds. Top
left: Energy convergence. Top right: k-mesh convergence. Bottom: Determi-
nation of the PBE equilibrium cell volume.

ID Space Group Atoms E (eV) E (eV/Atom)

8039 Pm-3m 4 −23.5729 0.0007
468 R-3c 8 −47.1510 0.0000

1183007 C2/c 8 −47.0766 0.0093
125276 Cmmm 8 −46.8699 0.0352

1251148 P2/m 8 −46.8618 0.0362
1182902 P1 8 −46.8186 0.0416
635425 P1 8 −44.9770 0.2718
110329 P321 12 −70.6916 0.0029
559871 Cmcm 24 −141.4193 0.0014
555026 P4/mbm 40 −235.5522 0.0051
1323 P4/nmm 64 −376.3264 0.0138

Table 7.31: Phases and PBE energies of AlF3 on the materials project’s
database.[105] All calculations are performed with the std pseudopotentials. A
few phases are very close in energy.
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E (eV) E (eV)

−23.576 = AlF3 < Al+ 3/2F2 = −9.419

Table 7.32: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.23: Convergence studies if AlF3. Left: Energy cutoff convergence. Mid-
dle: k-mesh convergence. The mesh has the same ratio c/a = 2.506 as the
unit cell. Right: Determination of equilibrium volume where we observe inter-
polation artifacts. The relaxed cell volume was taken from the materials project
website.[105]

Aluminum-Fluorine

The final converged energy for themost stable phase of AlF3 with the Al_GW and
F_h_GW pseudopotentials is −23.409eV.

Lithium-Calcium-Aluminum

ID #Li #Ca #Al Space Group atoms E (eV)

1079781 1 1 3 P63/m 10 −28.289
862632 1 2 1 Fm-3m 4 −10.239
1185028 2 1 1 Fm-3m 4 −10.022
1096622 2 1 1 lmmm 4 −3.928

Table 7.33: All phases of lithium-calcium-aluminum compounds found in the
materials project’s database are listed.[105]

The total energy for a LiCa2Al unit is −19.923eV.
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E (eV) E (eV)

−14.145 = LiCaAl3 > LiAl+ CaAl2 = −16.490
−10.239 = LiCa2Al < 1/4Ca8Al3 + 1/4Li2Al+ 1/2Li = −10.213
−10.022 = Li2CaAl > 1/2LiCa2Al+ 1/2Li2Al+ 1/2Li = −10.100

Table 7.34: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.24: Convergence studies for LiCa2Al. Left: Energy cutoff convergence.
Middle: k-mesh convergence. Right: Determination of the PBE equilibrium cell
volume.

Lithium-Aluminum-Fluorine

ID Space Group Atoms E (eV) E (eV/Atom)

1111291 Fm-3m 10 −51.3383 0.1658
556020 Pna21 40 −211.7593 0.0056
15254 C2/c 60 −317.9733 0.0000

Table 7.35: Phases and PBE energies of Li3AlF6 on the materials project
database.[105] All calculations are performed with the Li_sv and std pseudopo-
tentials. A few phases are very close in energy.

The final energy for the compound Li3AlF6 with pseudopotentials of type
Li_GW, Al_GW and F_h_GW is −52.625eV.

Lithium-Calcium-Fluorine

No stable Li – Ca – F compounds have been found.
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E (eV) E (eV)

−52.996 = Li3AlF6 < 3LiF+ AlF3 = −52.646

Table 7.36: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.

800 900
10−2.5

10−2

10−1.5

ENCUT (eV)

Δ 1
20

0
E
(e
V)

1 2
10−5

10−4

10−3

10−2

k-mesh

Δ 3
E
(e
V)

0.98 1 1.02

−5.26

−5.26

−5.26

−5.26

volume scaling

E
(e
V)

Figure 7.25: Convergence studies for Li3AlF6. Left: Energy cutoff convergence.
Middle: k-mesh convergence. Right: determination of the PBE equilibrium cell
volume.

ID #Li #Ca #F Space Group atoms E (eV)

1017626 1 1 3 Pm-3m 5 −26.331

Table 7.37: The only phase LiCaF3 found in the materials project’s database is
shown.[105]

E (eV) E (eV)

−26.331 = LiCaF3 > LiF+ CaF2 = −27.268

Table 7.38: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.

109

https://materialsproject.org/materials/mp-1017626/


Calcium-Aluminum-Fluorine

ID #Ca #Al #F Space Group atoms E (eV)

8836 1 1 5 C2/c 14 −82.497
16795 1 1 5 P21/c 28 −164.903

1213962 1 2 8 C2/c 22 −128.148
1227363 1 2 10 C2 13 −67.219
29221 2 1 7 Pnma 40 −235.207

Table 7.39: All phases of calcium-aluminum-fluorine compounds found in the
materials project’s database are listed.[105]

E (eV) E (eV)

−41.248 = CaAlF5 < 1/2Ca2AlF7 + 1/2AlF3 = −41.189
−64.074 = CaAl2F8 > CaAlF5 + AlF3 = −64.824
−67.219 = CaAl2F10 > CaAlF5 + AlF3 + F2 = −68.606
−58.802 = Ca2AlF7 > CaAlF5 + CaF2 = −58.826

Table 7.40: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.26: Convergence studies of CaAlF5. The relaxed cell volume was
taken from the materials project website.[105] We find good agreement with the
database values, the minimum lies at 1.000.

The final converged total energy for CaAlF5 with the Ca_sv_GW, Al_GW and
F_h_GW pseudopotentials is −45.780eV.
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E (eV) E (eV)

−51.204 = LiCaAlF6 < CaF2 + 1/3Li3AlF6 + 2/3AlF3 = −50.960

Table 7.41: Phases are deemed as stable when for an ideal mixing of its con-
stituents it has a lower energy than all other possible combinations. In this
table a < sign indicates a stable phase and > indicates an unstable phase and
is disregarded in subsequent considerations.
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Figure 7.27: Top left: Energy cutoff convergence study. The convergence is en-
tirely dependent on the choice of the pseudopotential for fluorine. Top right:
K-mesh convergence study. The data point at 1.5 indicates a 2 × 2 × 1 mesh,
while other points were calculated with a n× n× nmesh. Bottom left: Varying
lattice constants for the LICAF unit cell. Bottom right: Varying the lattice con-
stants for Th:LICAF with substitutional doping for Ca and +2F interstitials.
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Lithium-Calcium-Aluminum-Fluoride

Because there are four different elements in LICAF, the number of all possible
permutations of PPs is extremely large. Therefore, the number of convergence
studies is reduced by disregarding PPs if they were not calculated with the GW
method. In the case of fluorine the outdated GW-pseudopotential was also not
considered. This reduces the number of possible pseudopotentials to three for
Li one for Ca and two for Al and for F, respectively.

Name Date # e− ENMAX

Li_GW 11May2007 1 112
Li_AE_GW 25Mar2010 3 434
Li_sv_GW 25Mar2010 3 434

Ca_sv_GW 31Mar2010 10 281

Al_sv_GW 2Feb2008 11 411
Al_GW 19Mar2012 3 240

F_GW 19Mar2012 7 488
F_h_GW 20May2014 7 849

Table 7.42: Types of pseudopotentials for all elements in LICAF.

Compared to the reference values we find a discrepancy in length of the
lattice vector Δexpt.a = 0.077 and Δexptc = 0.208 in units of Å.[18] The final con-
verged energy for LiCaAlF6 is −55.714eV. Considering the observations in Fig-
ure 7.27 and in Figure 7.28, we opt for the Li_GW, Al_GW, Ca_sv_GW and F_h_GW
pseudopotentials, we set ENCUT = 900 and calculate only on the Γ point to gen-
erate the dataset.
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Figure 7.28: Comparison of combinations for pseudopotentials. Left: Energy
Gap Δ, which shows a dependence on the fluorine pseudopotential. Since we
want to counter the underestimation of the band gap as much as possible we
use the hard pseudopotential. Middle: Volumewith respect to the reference.[18]
Right: CPU time of the unit cell on the cluster with 48 cores. Naturally, an in-
crease in computational time can be observed when using a pseudopotentials
with more electrons.
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Table for Compensation Energies

Compound E0 (eV)

Li −1.892
Ca −6.847
Al −3.742
F2 −3.695
Li2Ca −10.698
LiAl −6.016
LiAl3 −13.565
Li2Al −8.024
Li3Al2 −14.097
LiF −9.611
CaAl2 −15.319
Ca8Al3 −67.800
Ca13Al14 −148.619
CaF2 −22.314
AlF3 −23.409
LiCa2Al −19.923
Li3AlF6 −58.060
CaAlF5 −45.780
LiCaAlF6 −55.714

Table 7.43: Summary of total energies for compounds needed for charge com-
pensation analysis outside of the host crystal. Calculations were done with PBE
and pseudopotentials Li_GW, Ca_sv_GW, Al_GW and F_h_GW convergence studies
and experimental comparisons are shown in the previous sections.

A.5 Heavy Elements

Actinium

For Ac we find an experimental lattice constant at standard conditions for the
fcc structure at 5.31Å.[111] However, the corresponding entry 10018 in the ma-
terials project database[105] shows 5.66Å which is a surprisingly large discrep-
ancy. Indeed in our calculations we arrive at the roughly the same lattice con-
stant as the materials project.
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Figure 7.29: Convergence studies for a fcc Ac single crystal. Left: Energy cut-
off convergence. Middle: K-mesh convergence. Right: Volume convergence.
Compared against the experimental value for the lattice constant, the relative
deviation is 1.07.

Cerium

Experimental data shows three phases of solid Ce. In particular, there are two
fcc structures αCe and γCe where the γ variant exists at room temperature and
the α phase at −177 °C. We could compare against the experimental elastic
moduli for the γ phase[123] but were unable to converge on it evenwhen starting
from the lattice parameters for γ. Nevertheless, the structure parameters are in
good agreement with the experiment with the relative deviation being 1.79%.
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Figure 7.30: Convergence studies for a fcc Ce single crystal. Left: Energy cutoff
convergence. Middle: K-mesh convergence. Right: Volume convergence. Note
that the initial point, i.e. scaling = 1 is for the γCe phase, which is considerably
larger than the αCe phase. Relative to the lattice vectors for the α phase, the
minimum scaling factor is 0.98.

Neptunium

Solid Neptunium has a stable αNp phase at standard conditions. The differ-
ences for our calculated best configuration to the experimental lattice vectors
are Δexpta = −0.056Å, Δexptb = −0.091Å and Δexptc = −0.076Å.
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Figure 7.31: Convergence studies for solid αNp. The volume convergence was
performed on the materials project values for the lattice constants.[105]

Thorium

VASP supplies two pseudopotentials for thorium, namely the default, here called
std and a soft s version. We test the potentials on the ionization energies, lattice
parameters and bulk modulus.

Gaseous Thorium First the neutral atom’s energy is calculated. Thereafter,
the ionized atom is calculated to determine the ionization energy.
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Figure 7.32: Top left: Energy cutoff convergence study for the available pseu-
dopotentials for Thorium. Top right: Vacuum size convergence on the neutral
atom. Bottom: same as top left but with an extrapolation.

Solid Thorium At standard conditions, Th crystallizes into a fcc structure.
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Figure 7.33: Vacuum convergence studies for ionized thorium atoms with both
pseudopotentials. Extrapolated values are given at the top of the y-axis.

Ion EVASP (eV) ΔEref (eV)

I 5.35 0.96
II 9.75 2.15
III 20.16 −0.16
IV 35.63 −6.83

Ion EVASP (eV) ΔEref (eV)

I 3.59 2.72
II 10.68 1.22
III 15.05 4.95
IV 26.24 2.56

Table 7.44: Ionization Energies and comparison with the experimental val-
ues.[124] Left: std, Right: s-type pseudopotentials.
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Figure 7.34: Difference in Lattice constant for the reference compared to the
VASP calculation.[125,126]
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Figure 7.35: Convergence studies for solid Th. Top left: Energy cutoff conver-
gence. Top right: k-mesh convergence. Bottom: Finding the DFT equilibrium
volume where the calculations were done with PBE/std., PBE/s and SCAN/std,
SCAN/s (from left to right).
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A.6 Zinc Bromide

Zinc Bromide
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Figure 7.36: Convergence studies for ZnBr2. Left: Energy cutoff convergence.
Right: k-mesh convergence.

The electric quadrupole moment and nuclear spin of 81Br and NQR spectra
of ZnBr2 with this isotope can be found in the literature,[127,128] which enables
an experimental comparison of VASP’s electric field gradient, since the NQR
frequencies on 81Br can be calculated as

ν =
eVzzQ
2h

�
1+

η2

3
. (7.6)

Vzz (V/Å
2
) η ν (MHz)

−292.191 0.540 96.207
−293.584 0.530 96.509
−295.636 0.505 96.799
−297.335 0.492 97.161
−296.697 0.508 97.192
−297.466 0.501 97.338
−293.981 0.735 100.386
−293.709 0.739 100.376

Table 7.45: Unique electric field gradient values on Br positions for the experi-
mental lattice parameters and calculated NQR frequencies for 81Br. The exper-
imental reference values are 81.425, 83.100 and 84.137 in units of MHz. The
space group 142 of the ZnBr2 crystal would allow four different Wyckoff posi-
tions for Br.
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Description NA Ne k-mesh ENCUT EDIFF ISMEAR SIGMA EDIFFG ISPIN Level

Figure 4.2 6 44 443 Γ 900 1e−7 0 0.1 0 1 SCAN
Figure 4.3 383 2056 111 500 1e−6 0 0.05 −1e−2 2 SCAN
Figure 5.2 12 96 999 MP 900 1e−6 0 0.01 0 2 PBE
Figure 5.3 3 24 999 MP 900 1e−6 0 0.01 0 2 PBE
Figure 5.3 3 24 999 MP 1000 1e−6 0 0.001 0 2 SCAN
Figure 5.3 3 24 555 MP 900 1e−6 0 0.01 0 2 HSE
Figure 5.4 326 2608 111 1000 1e−7 0 0.05 −1e−2 2 PBE
Figure 5.5 326 2608 111 1000 1e−10 0 0.05 −1e−5 2 PBE
Table 5.2 99 789 111 900 1e−6 0 0.2 −1e−2 2 PBE
Figure 5.8 326 2608 111 1000 1e−8 0 0.05 0 1 PBE
Figure 5.6 326 2608 111 1000 1e−10 0 0.05 0 2 PBE
Table 5.4 97 776 111 900 1e−7 0 0.1 −1e−2 2 PBE
Table 5.4 98 784 111 900 1e−7 0 0.1 −1e−2 2 PBE
Table 5.4 99 794 111 900 1e−6 0 0.2 −1e−4 2 PBE
Table 5.3 98 720 111 400 1e−6 0 0.001 0 2 HSE
Table 5.5 97 776 111 900 1e−7 0 0.1 −1e−2 2 PBE
Table 5.5 98 784 111 900 1e−9 0 0.1 0 2 PBE
Table 5.5 99 794 111 900 1e−6 0 0.2 0 2 HSE
Figure 6.2 18 112 221 Γ 900 1e−10 0 0.05 0 1 PBE
Table 6.1 71 456 111 900 1e−6 0 0.05 −1e−2 1 PBE
Table 6.2 71 456 111 900 1e−8 0 0.05 0 1 PBE

Table 7.46: The most relevant input parameters for a selection of calculations are listed in this table. In addition
to this listing, we always set LREAL=.FALSE. and PREC=A and usually LASPH = .TRUE. and GGA_COMPAT=.TRUE.
NA is the total number of atoms (only approximately when describing multiple stoichiometries) and Ne the total
number of electrons, which we used instead of the pseudopotential description for the sake of brevity. The
k-mesh columns denote the number of grid points in abc-direction and Γ and MP stand for a Γ-centered grid or
a Monkhorst-Pack[129] grid respectively. If the mesh size is 111, then a Γ-only calculation has been performed.
When EDIFFG is listed as 0, no ionic relaxation has been performed.
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