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Kurzfassung

Einzelmolekül-Lokalisationsmikroskopie (Single Molecule Localization Microscopy, SMLM) um-
geht die Auflösungsgrenze herkömmlicher Lichtmikroskopie indem die Signale einzelner Fluo-
rophore zeitlich separiert werden, sodass die entsprechenden Punktbildfunktionen nicht mehr
überlappen. Durch Fitten der Einzelmolekül-Signale kann die Position jedes einzelnen Emit-
ters mit Nanometer-Genauigkeit bestimmt werden. Die erhaltenen Koordinaten von tausenden
aufgenommenen Einzelbildern werden kombiniert und ergeben eine rekonstruierte Lokalisati-
onskarte. Dies ermöglicht es, die Anordnung von Biomolekülen in deren nativer Umgebung,
der Zelle, in bisher unvorstellbarem Detail zu erforschen.

Bei SMLM-Methoden wird die erreichbare Auflösung durch die Lokalisierungsgenauigkeit be-
stimmt. In den letzten Jahren lag der Fokus einiger Forschungsgruppen darauf, SMLM unter
Tieftemperaturen durchzuführen (cryo-SMLM). Durch die höhere Anzahl an Photonen per
Fluorophor, die dabei erreicht werden kann, sowie die Unterbindung von residualer Diffusion
der Moleküle kann die Lokalisierungsgenauigkeit noch weiter verbessert werden. Eine Heraus-
forderung besteht jedoch darin, dass dabei auch die Fluorophor-Dipole fixiert sind: Eine late-
rale Verschiebung der Intensitätsmaxima führt zu einer Verzerrung der Lokalisierung. In dieser
Dissertation zeige ich wie ein einfacher astigmatischer Bildgebungsansatz diese Verzerrung
vermeiden kann, während die Lokalisierungsgenauigkeit die Cramér–Rao-Schranke erreicht.

Das bisherige Hauptaugenmerk von SMLM-Analysen lag auf der genauen Lokalisierung von
Fluorophoren. Der natürliche nächste Schritt betrifft die qualitative und quantitative Inter-
pretation der Lokalisationskarten und deren biologische Relevanz. Solch eine Interpretation ist
herausfordernd, da durch Fluorophor-Blinken dasselbe Molekül öfters detektiert werden kann,
was zu scheinbaren Lokalisations-Clustern führt. Andere Moleküle wiederum werden aufgrund
unzureichender Markierungs- oder Detektionseffizienz übersehen. Als Konsequenz erscheint die
erhaltene Lokalisationskarte entstellt.

In dieser Dissertation stelle ich zwei verschiedene Methoden vor, die es ermöglichen echtes
molekulares Clustering von Artefakten durch Mehrfachdetektion zu unterscheiden. Als Ers-
tes erlaubt eine umfassende Charakterisierung des Fluorophor-Blinkverhaltens kombiniert mit
Monte-Carlo-Simulationen eine robuste Evaluierung von Lokalisationskarten bezüglich mole-
kularem Clustering. Zweitens erreicht ein neuer Ansatz, welcher ein Molekül kompetitiv mit
zwei verschiedenen Farbstoffen markiert, eine Beurteilung des molekularen Clustering komplett
unabhängig vom Fluorophor-Blinkverhalten. Dies ermöglicht es, biomolekulares Clustering bis
hinunter auf das Niveau von Dimeren zuverlässig und mit hoher Sensitivität zu detektieren.

Im Falle von cryo-SMLM besteht eine weitere Möglichkeit Artefakte durch Mehrfachdetektion
zu umgehen: Bei Tieftemperaturen stellen die fixierten Dipolorientierungen ein einzigartiges
Merkmal dar, welches ausgenützt werden kann, um Lokalisationen den jeweiligen Fluorophoren
zuzuordnen. Gemeinsam mit Ansätzen zur Mittelung von Eigenschaften über viele Partikeln
(particle averaging) kann die exakte Anordnung von Molekülen in Oligomer-Komplexen mit
einer Größe von wenigen Nanometern bestimmt werden. Hier wird eine Methode für präzises
Bestimmen der Größe von Oligomer-Strukturen vorgestellt. Insgesamt kann somit eine um-
fassende Analyse und Bestimmung von biomolekularen Verteilungen und Anordnungen in der
Zelle erreicht werden.





Abstract

Single molecule localization microscopy (SMLM) circumvents the diffraction limit of light by
separating the signals from individual fluorophores in time, so that the corresponding point
spread functions do not overlap anymore. Fitting the single molecule signals allows to deter-
mine the position of each emitter with nanometer precision. The obtained coordinates from
thousands of recorded frames are combined, yielding a reconstructed localization map. Thus,
the arrangement of biomolecules in their native environment can be investigated in unprece-
dented detail.

In SMLM, the localization precision limits the achievable resolution. In the recent years, several
research groups focused their interest onto SMLM performed under cryogenic conditions (cryo-
SMLM). In cryo-SMLM, a higher photon yield per fluorophore and the prevention of residual
diffusion allow to improve the localization precision beyond previous limits. One challenge,
however, are fixed fluorophore dipole orientations: A lateral shift of the intensity peak easily
leads to a localization bias. Here, I show how a simple astigmatic imaging approach avoids
this bias, while achieving a precision at the Cramér–Rao bound.

While the main focus of SMLM analysis up to now has been the precise localization of the
fluorophores, the natural next step concerns qualitative and quantitative interpretation of the
localization maps and their biological relevance. Such an interpretation is challenging, as the
same molecule of interest may be detected multiple times due to blinking, leading to apparent
localization clusters. On the other hand, molecules may be missed due to insufficient labeling
or detection efficiency. In consequence, the determined localization map appears distorted.

In this thesis, I present two different methods for distinguishing true molecular clustering
from overcounting artifacts. First, a comprehensive characterization of fluorophore blinking
behavior combined with Monte Carlo simulations allows for robust evaluation of localization
maps with respect to true molecular clustering. Second, a novel approach based on targeting
the same molecule of interest with two different labels competitively achieves an assessment
of molecular clustering completely independent of fluorophore blinking. Thus, biomolecular
clustering can be reliably detected with high sensitivity down to the level of dimers.

In case of cryo-SMLM, another possibility for circumventing overcounting artifacts arises: At
cryogenic temperatures, the fixed fluorophore dipole orientations present a unique character-
istic, which can be exploited in order to assign localizations to individual fluorophores. Com-
bined with particle averaging approaches, the exact arrangement of molecules in oligomeric
complexes of a few nanometers in size can be determined. A method for precise sizing of
oligomeric structures is presented in this thesis. Taken together, a comprehensive analysis and
description of biomolecular distributions and arrangements in the cell can be achieved.
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1. Preface

1.1. Motivation and research question

The development of superresolution microscopy in the last decades has allowed to circumvent
the diffraction limit of light and study the structural arrangement of cells in unprecedented de-
tail. One major group of superresolution techniques is single molecule localization microscopy
(SMLM), which achieves superior spatial resolution by stochastic separation of the signals of
different fluorophores in time.

Quite surprisingly, various studies based on these SMLM techniques consistently reported the
presence of nanoclustering to various degrees for virtually any investigated membrane protein.
Therefore, nanoclustering has been thought to be a prevalent feature of cell plasma membrane
organization [1,2]. More recently, however, concerns about the notion of ubiquitous nanoclus-
tering have been raised: Multiple detections of the same molecule lead to localization clusters,
which can be easily mistaken for true molecular clustering at the nanoscale [3,4]. It is essential
to note that it is the distribution of molecules of interest instead of the mere distribution of
localizations, which is of biological relevance. Several methods have been developed in order
to account for overcounting and determine whether a localization map shows features of true
molecular clustering which differ from spatial randomness. All previously proposed methods
rely on at least some knowledge or assumption about fluorophore blinking statistics—either
explicitly or implicitly [4–7]. Often, complex blinking behavior and long-lived dark states
hamper the analysis [5]. Moreover, fluorophore blinking statistics are affected by the imaging
parameters and the local molecular nanoenvironment of the dye [8].

In the first part of my thesis, I present two different approaches, which allow to distinguish
true molecular clustering from overcounting-induced clustering artifacts. In this part I address
the following research questions:

Part I — Verifying Molecular Clusters

• How is a reliable characterization of fluorophore blinking statistics possible? How can
Monte Carlo simulations based on the recorded blinking statistics help to distinguish true
molecular clustering from overcounting artifacts?

• Is it possible to distinguish true molecular clustering from overcounting artifacts inde-
pendently of fluorophore blinking statistics?

Once one has verified that the observed nanoclusters are in fact true molecule clusters, their
structural organization can be studied in greater detail. Ultimately, the resolution of SMLM
is limited by two factors: First, the available photon budget limits the localization precision
that can be achieved. Second, the resolution is affected by the quality of the sample fixation.
Thorough sample fixation is essential as SMLM image acquisition may take several minutes up
to hours. Common chemical fixatives show residual diffusion of molecules, deteriorating the
apparent localization precision [9]. In addition, chemical fixatives may distort the ultrastruc-
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1. Preface

tural organization of the cell during the fixation process, which itself takes several minutes [10].
SMLM performed at cryogenic temperatures (cryo-SMLM) promises to address these issues:
First, the photophysics of fluorophores is slowed down, allowing to achieve a higher photon
yield per fluorophore and, thus, a better localization precision. Second, cryo-fixation offers
supreme fixation and preservation of the sample’s ultrastructure [11]. Performing SMLM un-
der cryogenic temperatures promises advantages, but also poses challenges. Most evidently,
the dipole orientation of fluorophores is fixed, leading to a more complex PSF shape. The
intensity peak of the PSF is shifted laterally, which leads to a localization bias if not accounted
for correctly [12, 13].

In the second part of this thesis I describe methods to determine the exact arrangement of
proteins within an oligomer via cryo-SMLM. I address the following points:

Part II — Particle averaging in cryo-SMLM

• How can one achieve bias-free localization of fixed dipole emitters?

• How can the features of cryo-SMLM be used in order to assign localizations to individual
fluorophores? How precisely can the size of oligomers be determined with cryo-SMLM?

The content of this thesis is based on several publications, which are listed in section 1.2.

2



1.2. Published articles and contributions

1.2. Published articles and contributions

This thesis is based on the following publications (* denotes equal contribution):

• M. C. Schneider and G. J. Schütz. Single-Molecule Localization Microscopy (SMLM).
In: Imaging modalities for biological and preclinical research: A compendium, IOP Pub-
lishing, 2021. doi: 10.1088/978-0-7503-3059-6ch18

• R. Platzer*, B. K. Rossboth*,M. C. Schneider, E. Sevcsik, F. Baumgart, H. Stockinger,
G. J. Schütz, J. B. Huppa, M. Brameshuber. Unscrambling Fluorophore Blinking for
Comprehensive Cluster Detection via PALM. Nature Communications, 11, 2020.
doi: 10.1038/s41467-020-18726-9

• A. M. Arnold*, M. C. Schneider*, C. Hüsson, R. Sablatnig, M. Brameshuber, F.
Baumgart, G. J. Schütz. Verifying molecular clusters by 2-color localization microscopy
and significance testing. Scientific Reports, 10, 2020. doi: 10.1038/s41598-020-60

• F. Hinterer*, M. C. Schneider*, S. Hubmer, M. López-Martinez, P. Zelger, A. Jesacher,
R. Ramlau, G. J. Schütz. Robust and bias-free localization of individual fixed dipole
emitters achieving the Cramér Rao bound. arXiv, 2021. arXiv-ID: 2104.02449

• M. C. Schneider*, R. Telschow*, G. Mercier, M. López-Martinez, O. Scherzer, G.
J. Schütz. A workflow for sizing oligomeric biomolecules based on cryo single molecule
localization microscopy. PLoS One, 16(1), 2021. doi: 10.1371/journal.pone.0245693

Further, during my time as a PhD student I contributed to the following publications, which
are not covered in this thesis:

• T. Váradi, M. Schneider, E. Sevcsik, D. Kiesenhofer, F. Baumgart, G. Batta, T.
Kovács, R. Platzer, J. Huppa, J. Szöllősi, G. Schütz, M. Brameshuber, P. Nagy. Homo-
and heteroassociations drive activation of ErbB3. Biophysical Journal, 117(10), 2019.
doi: 10.1016/j.bpj.2019.10.001

• F. Baumgart, M. Schneider, and G. J. Schütz. How T-cells do the “search for the
needle in the haystack”. Frontiers in Physics, 7(11), 2019. doi: 10.3389/fphy.2019.00011

• J. Hellmeier, R. Platzer, V. Mühlgrabner, M. C. Schneider, E. Kurz, G. J. Schütz, J. B.
Huppa, E. Sevcsik. Strategies for the site-specific decoration of DNA origami nanostruc-
tures with functionally intact proteins. ACS Nano, 2021. doi: 10.1021/acsnano.1c05411

• J. Hellmeier, R. Platzer, A. S. Eklund, T. Schlichthaerle, A. Karner, V. Motsch, M.
C. Schneider, E. Kurz, V. Bamieh, M. Brameshuber, J. Preiner, R. Jungmann, H.
Stockinger, G. J. Schütz, J. B. Huppa, E. Sevcsik. DNA origami demonstrate the unique
stimulatory power of single pMHCs as T-cell antigens. PNAS, 118(4), 2021.
doi: 10.1073/pnas.2016857118

• M. López-Martinez, G. Mercier, K. Sadiq, O. Scherzer, M. Schneider, J. C. Schotland,
G. J. Schütz, R. Telschow. Inverse Problems of Single Molecule Localization Microscopy.
In: Time-dependent Problems in Imaging and Parameter Identification, Springer Inter-
national Publishing, 2021. doi: 10.1007/978-3-030-57784-1.
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1.3. Published software

I contributed to the following software packages, which were published along with the according
articles:

• Blinking statistics analysis for cluster detection
Code package: https://zenodo.org/record/4003734#.YG8ceD9CRPY

According publication:
R. Platzer*, B. K. Rossboth*,M. C. Schneider, E. Sevcsik, F. Baumgart, H. Stockinger,
G. J. Schütz, J. B. Huppa, M. Brameshuber. Unscrambling Fluorophore Blinking for
Comprehensive Cluster Detection via PALM. Nature Communications, 11, 2020.
doi: 10.1038/s41467-020-18726-9

• 2-CLASTA ImageJ plugin
Code package: https://github.com/schuetzgroup/2-CLASTA

According publication:
A. M. Arnold*, M. C. Schneider*, C. Hüsson, R. Sablatnig, M. Brameshuber, F.
Baumgart, G. J. Schütz. Verifying molecular clusters by 2-color localization microscopy
and significance testing. Scientific Reports, 10, 2020. doi: 10.1038/s41598-020-60

• Bias-free localization of fixed dipole emitters
Code package: https://github.com/schuetzgroup/localizationFixedDipoles

According publication:
F. Hinterer*, M. C. Schneider*, S. Hubmer, M. López-Martinez, P. Zelger, A. Jesacher,
R. Ramlau, G. J. Schütz. Robust and bias-free localization of individual fixed dipole
emitters achieving the Cramér Rao bound. arXiv, 2021. arXiv-ID: 2104.02449

• Sizing Oligomers with Cryo-SMLM
Code package: https://github.com/schuetzgroup/sizingOligomersCryoSMLM

According publication:
M. C. Schneider*, R. Telschow*, G. Mercier, M. López-Martinez, O. Scherzer, G.
J. Schütz. A workflow for sizing oligomeric biomolecules based on cryo single molecule
localization microscopy. PLoS One, 16(1), 2021. doi: 10.1371/journal.pone.0245693
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2. Background

Every living organism is composed of cells, which are often referred to as the fundamental units
of life. A crucial prerequisite for the discovery of cells was the invention of the microscope in
the 17th century. The term cell was coined by Robert Hooke in 1665, who first described the
cell-like structure of a piece of cork [14]. The existence of living cells was first observed by
Anton Van Leeuwenhoek in 1674.

Cell biology is the study of the structure, function and behavior of cells. Although cells exhibit
an astonishing variety, from unicellular organisms to human cells, their mechanism is built on
the same fundamental concepts. All living organisms are comprised of cells, and all cells origin
from the division of pre-existing cells. A schematic structure of an animal cell is depicted in
Fig. 2.1. With a size typically ranging from 1µm to 100µm, most animal cells are only visible
under the microscope.

Figure 2.1.: The cell. A schematic cross section of an animal cell. The cytoplasm is enclosed within
the cellular plasma membrane. The cell comprises a nucleus and various cell organelles. It is composed
of molecules including proteins, lipids and nucleic acids.

Optical microscopy has played a key role in the discovery and study of cells in the last centuries,
but until recently was thought to be fundamentally limited to structures above 200 nm due
to diffraction of light. While this resolution is sufficient for visualizing most cell organelles,
individual protein molecules at a scale below 10 nm cannot be resolved. Remarkably, the advent
of superresolution microscopy in the last decade has allowed to circumvent the diffraction limit
of conventional microscopy [15, 16]. Thus, superresolution techniques offer the possibility to
study cellular structures in unprecedented detail and to gain even deeper understanding of all
forms of life.

For this thesis, I developed approaches and analysis methods for single molecule localization mi-
croscopy (SMLM) which allow to investigate the distribution and arrangement of biomolecules,
in particular proteins, within the cellular plasma membrane. In section 2.1, I will give a short
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2. Background

introduction to the relevant aspects of cell biology, in particular the plasma membrane and
membrane proteins. Basic concepts of microscopy and details of the SMLM imaging technique
will be covered by sections 2.2 and 2.3, respectively.

2.1. Cell biology

2.1.1. Cell plasma membrane

A cell is enclosed by the cellular plasma membrane, which separates the cytosolic interior from
the extracellular environment. The plasma membrane is crucial for the communication of the
cell with its environment and for the transport of substances between the in- and outside of the
cell. The plasma membrane is composed of a lipid bilayer with a thickness of approximately
5 nm (Fig. 2.2). This bilayer is stabilized by hydrophobic interactions: the hydrophobic fatty
acid chains are oriented towards the inside of the bilayer, while the hydrophilic headgroups of
the lipids face towards the aqueous environment. Thus, the membrane constitutes a barrier,
which is highly impermeable to water-soluble molecules.

Besides lipids, the plasma membrane contains proteins, which are embedded in the lipid bilayer
and serve a variety of functions [17]. For example, ion channels transfer ions across the mem-
brane and thus, can establish ion gradients needed for transmitting electrical signals; receptor
proteins sense external signals and changes in the cellular environment and thus, allow the cell
to respond accordingly. It is estimated that around 20–30 percent of all proteins in the human
genome encode membrane proteins [18].

Previously, the membrane was thought to be a 2D fluid structure with proteins being present at
low concentrations only. The fluid mosaic model suggested that proteins are mainly present in
their monomeric form, freely diffusing and dispersed randomly throughout the membrane [19].
Nowadays, a different model of membrane organization prevails: The plasma membrane is
densely populated by proteins and characterized by heterogeneous structure and composition
[20]. Interactions between lipids and proteins lead to grouping of molecules, often yielding the
formation of large functional complexes.

Notably, the plasma membrane is not necessarily a flat 2D surface, but a cell may form mem-
brane undulations and protrusions such as microvilli [22]. In this thesis, I assume adhered cells
which are well attached to the microscope coverslip and, hence, can be regarded as a flat 2D
plane. Yet, also sample preparation and excitation schemes exist which allow to visualize thin
sections of a cell which exhibits more complex membrane shapes (see section 2.3.4).

Both lipids and proteins can diffuse laterally within the plasma membrane. Therefore, thor-
ough sample fixation is necessary for SMLM in order to prevent a distortion of the resulting
image during the acquisition time of several minutes up to hours [9, 11]. Common chemical
fixatives cross-link the proteins [23], while the lipids are virtually unaffected. Possible fixation
procedures and their effect on SMLM imaging will be discussed in more detail in section 2.3.3.
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2.1. Cell biology

Figure 2.2.: Cellular plasma membrane. An image of the cross section of a cell acquired by
electron microscopy is shown in panel a. The plasma membrane of the cell is clearly discernible at the
top rim of the cell. A schematic structure of the plasma membrane is illustrated in panel b: The plasma
membrane consists of a double layer of lipids (brown) with proteins (green) embedded in or associated
with the bilayer. Figure from [21] (panel a) and [20] (panel b).

2.1.2. Proteins

Proteins constitute more than half of a cell’s dry mass and fulfill a broad variety of functions
[17]. Membrane proteins, in particular, can serve as channels, pumps, enzymes or receptors [18]
and, hence, play important roles in transport and signaling. The function of proteins is directly
linked to their structure: Proteins are composed out of amino acids—organic compounds
consisting of an amino (NH2) and carboxyl (COOH) functional group, together with a side
chain (R group). The side group is specific to each type of amino acid; the general amino
acid structure is shown in Fig. 2.3a. In eukaryotic cells, 21 different side groups can be found,
each having its own characteristic chemical properties. For example, some amino acids are
nonpolar and hydrophobic, while others are negatively or positively charged. These properties
of different amino acids directly affect the conformation of a protein.

A protein molecule is a chain of amino acids, which are linked through covalent peptide bonds.
Therefore, proteins are also referred to as polypeptides. Each type of protein has its unique
sequence of amino acids, which is termed the primary structure of a protein (Fig. 2.3b). The
peptide backbone of the amino acid chain can form hydrogen bonds, leading to the folding of the
chain into either an α-helix or a β-pleated sheet. These repeating patterns are referred to as the
secondary structure of the protein (Fig. 2.3c). The tertiary structure of the protein describes
the further folding of the protein into a three-dimensional structure (Fig. 2.3d). This folding
is determined by the interactions of the amino acid side chains, including hydrogen bonds,
electrostatic interactions and van der Waals forces. In addition, hydrophobic interactions
cause amino acids with nonpolar, hydrophobic groups to arrange towards the inside of the
protein, while hydrophilic amino acids preferentially face towards the outside. Further, covalent
disulfide bonds may connect adjacent cysteine side chains. Several polypeptide chains may
associate and form a protein complex. This assembly of multiple polypeptide chains with
a specific number and arrangement of protein subunits is termed the quaternary structure
of a protein (Fig. 2.3e). The individual polypeptide chains are held together by the same
interactions as responsible for the tertiary structure, thus forming a larger protein with precisely
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defined geometry. Typical examples for proteins with a quaternary structure are ion channels,
which facilitate the passive flux of specific ions across the cell membrane [24]. As an example,
the structure of the KcsA potassium channel is depicted in Fig. 2.3e.

Figure 2.3.: Protein structure. (a) Molecular structure of an amino acid, consisting of an amino
(NH2) and carboxyl (COOH) functional group, and a side chain (R group). (b) Primary protein
structure. The primary structure is given by the sequence of amino acids in the polypeptide chain.
Here, a representative sequence is illustrated. (c) Secondary protein structure. Hydrogen bonds of the
peptide backbone lead to folding of the polypeptide chain into either α-helices or β-pleated sheets.
(d) Tertiary protein structure. Interactions of the amino acid side chains determine the folding of the
protein into a 3D structure. (e) Quaternary protein structure. Several polypeptide chains may associate
and form a larger functional protein complex with a specific number and arrangement of the protein
subunits. Here, the structure of the KcsA potassium channel is depicted [25]. Figure adapted from [26]
(a) and [27] (b,c). Images of the KcsA structure (PDB ID: 1BL8) were created via the protein data
bank [28, 29].

Overall, the specific 3D structure of a particular protein is determined by its amino acid se-
quence and the resulting interactions due to the characteristics of the amino acid side chains.
The final conformation of the protein in general is the one that minimizes the free energy of
the polypeptide chain. Most proteins exhibit a single stable conformation, but slight changes
in their structure may occur, for instance upon interaction with other molecules. For many
proteins, these structural changes are part of their proper function, for example the opening
and closing of an ion channel [24]. The correct structure of proteins is essential for their func-
tionality; a change in the structure typically causes the loss of protein function. Mutations in
the amino acid sequence, improper folding of proteins or aberrant protein-protein interactions
are the cause of many severe diseases [30, 31].

Oligomerization. An oligomer (Greek: oligo-, ’a few’; -mer, ’part, subunit’) is a protein that
is composed of more than one polypeptide subunit and thus, possesses a quaternary structure.
If all polypeptide subunits are identical, the protein complex is referred to as homo-oligomer,
otherwise as hetero-oligomer. The basic subunit of an oligomer is also termed monomer. The
oligomerization degree describes the number of subunits of an oligomer; a dimer, trimer or
tetramer is an assembly of two, three or four subunits, respectively. For example, the potas-
sium channel shown in Fig. 2.3e is comprised of four identical subunits and thus, a homo-
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tetramer [25]. For some proteins, it makes sense to conceptually combine polypeptide chains
into subgroups. For this, the term protomer was introduced: A protomer is a structural unit
of an oligomeric protein, which may be composed of a single or multiple polypeptide chains
that form a structural and functional subgroup. A complex of several protomers again forms
an oligomer. The individual subunits of an oligomer are connected primarily by noncovalent
bonds and forces, including hydrogen bonds and electrostatic interactions. These weak in-
teractions may also be disrupted, allowing the protein complex to change its oligomeric state
and undergo conformational changes that affect its biological function. Interestingly, changes
of the oligomerization states have been associated with many diseases, including Parkinson’s
disease [32] and cancer [33]. Notably, many protein oligomers have a size of a few nanome-
ters only and thus, cannot be directly resolved using conventional SMLM techniques with a
localization precision of around 10 nm. In chapter 8 I describe a workflow which allows precise
sizing of oligomeric structures via SMLM performed at cryogenic temperatures.

Nanoclustering. Oligomerization describes protein complexes of a specific number of subunits
and precisely defined shapes. In contrast, proteins may aggregate in the cell and form loosely
assembled clusters. These clusters do not show any distinct quaternary structure and may be
of varying occupation and extent. Still, it is usually assumed that the clusters are not formed
by random chance alone, but some underlying force or mechanism causes the formation of the
clusters. Clusters with a size below the diffraction limit of about 200 nm are typically referred
to as nanoclusters. Of note, this term has been used in the literature in various ways and thus,
is rather ambiguous as no common distinct definition of a nanocluster exists. In this thesis, I
resort to the definition of a nanocluster as given by Feher et al., who characterized a nanocluster
as ’points that are grouped on a subdiffraction-limit scale [...] to a greater extent than would
be expected for a random distribution’ [34]. This description encompasses both oligomers of
precisely defined geometry, as well as loose assemblies of varying protein numbers. Interestingly,
virtually all membrane proteins investigated with SMLM techniques were reported to exhibit
nanoclustering [1]. However, overcounting in SMLM leads to localization clusters which can
be easily mistaken for biomolecule nanoclusters. This issue will be discussed in more detail
in section 2.3.8. In the chapters 4 and 5 of this thesis, I propose two methods which allow to
distinguish true biomolecular nanoclustering from overcounting artifacts.
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2.2. Basics of microscopy

Microscopy has played a crucial role in the discovery and study of biological cells. The first
microscopy techniques relied on scattering, reflection, attenuation, absorption or phase shift
of the illumination light by the sample in order to acquire an image of the specimen. One im-
portant development in microscopy was fluorescence microscopy. The use of fluorescent labels
allows to specifically target molecules of interest and to collect the light emitted from these
labels, while the contribution of other molecules to the signal is minimized. In the following
section, I will give a short introduction to some basic concepts in fluorescence microscopy,
including the phenomenon of fluorescence itself, the diffraction limit of light, and methods for
sample illumination.

2.2.1. Fluorescence

Fluorescence is the process of absorption and subsequent emission of electromagnetic radiation
occurring in specific molecules, which are referred to as fluorophores [35]. A comprehensive
characterization of the process can only be given by quantum mechanics; in the following, I
will describe a simplified model (Fig. 2.4a). A fluorescent molecule can be excited from its
ground state S0 to a state S1 of higher energy via the absorption of a photon. Some of the
photon energy may be stored in vibrational sub-states and is dissipated as heat. After a short
time delay of usually less than a microsecond, the fluorophore emits a photon and thus, relaxes
back to its ground state. Again, some energy may be lost as heat due to dissipative processes.
Taken together, the process of fluorescence can be described by the following transitions:

S0 + hνex → S1 + Eheat,1 → S0 + hνem + Eheat,0 , (2.1)

where h is the Planck constant, νex and νem the frequency of the exciting and emitted photon,
respectively, and Eheat the energy dissipated as heat.

As some of the energy is lost in dissipative processes, it holds that the energy of the emitted
photon is lower than the energy of the absorbed photon, i.e. hνem < hνex. Therefore, the
wavelength of the emitted photon is longer than the wavelength of the absorbed photon. This
shift of the emission towards higher wavelength is the so-called Stokes shift (Fig. 2.4b).

Each type of fluorophore possesses a specific absorption and emission spectrum. For excitation
of a fluorophore, the wavelength of the excitation laser needs to be chosen according to the
absorption spectrum. The Stokes shift allows to separate the excitation from the emission light
via suitable filters, although slight overlap between the excitation and emission spectrum has
to be considered.

One important aspect for the use of fluorophores in microscopy is the transition of fluorophores
into dark states, in which the molecules cannot be excited. Fluorophores may repeatedly
transition between the bright and dark states. This property is exploited in SMLM techniques
(see section 2.3). Further, the fluorescent property of a fluorophore can be lost permanently,
which is referred to as photobleaching.
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Figure 2.4.: Fluorescence. (a) Jablonski diagram depicting a simplified model of fluorescence. A
fluorescent molecule can be excited from its ground state S0 into a state of higher energy S1 via
absorption of a photon (green arrows). The molecule relaxes back to its ground state by the emission of
a photon (red arrows). A part of the energy may be stored in vibrational sub-states (dashed lines) and is
dissipated as heat (gray arrows). (b) Stokes shift. Shown are the excitation and emission spectra of the
dye Alexa Fluor 647. As some of the excitation energy is lost in dissipative processes, the wavelength of
the emitted photon is longer than the wavelength of the absorbed photon. Hence, the emission spectrum
is shifted towards higher wavelengths compared to the excitation spectrum. Spectral data from [36].

2.2.2. Diffraction limit and point spread function

The phenomenon of diffraction describes the interaction of an electromagnetic wave with an
object, in particular an obstacle or opening. Due to bending of the waves, the light spreads
into the geometrical shadow of the object. The theory behind diffraction is given by the
Huygens-Fresnel principle and wave interference [37].

Diffraction is central to optical microscopy: Due to diffraction, a point object is not imaged
as a point, but as the diffraction pattern of this point. The response of an optical system
to a point object or point source is referred to as the point spread function (PSF). The PSF
incorporates the effect of diffraction as well as any optical imperfections in the imaging system.
The obtained microscopy image of an object can be described as a convolution of the true object
with the PSF of the optical system.

For an ideal optical system without any aberrations, the PSF (i.e. the diffraction pattern of a
point) can be well described by the Airy pattern, which is shown in Fig. 2.5 and given by

I(θ) = I0

�
2 J1(ka sin(θ))

ka sin(θ)

�2

, (2.2)

where I0 is the maximum intensity of the Airy disc center, J1 the Bessel function of first
kind and order one, k = 2π/λ the angular wavenumber (with λ being the wavelength), a the
aperture radius, and θ the observation angle. The Airy pattern shows a central diffraction
disk, also referred to as the 0th order spot, which is surround by diffraction rings (referred
to as 1st, 2nd, 3rd order diffraction ring, etc.). In case of perfect focus, the intensity minima
between the rings are zero. The size of the central spot depends on the wavelength of light
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and the aperture angle of the objective. The central spot directly determines the resolution of
the microscope, which will be discussed in the following.

In 1873, Ernst Abbe studied the resolution of a microscope based on an illuminated optical
grating [38]. He found that the grating can be resolved if the objective lens can capture at
least the 0th and 1st order diffraction maxima, which is the case if the spacing d between the
grating lines is at least

d =
λ

2n sin(α)
=

λ

2NA
, (2.3)

where λ is the wavelength of light, n the refractive index of the imaging medium, α the angular
aperture, and NA = n sin(α) the numerical aperture of the objective.

Another approach for defining the resolution limit of a microscope is the Rayleigh criterion.
According to this criterion, two points are resolvable if their mutual distance d is larger than
the radius of the central disk of the Airy pattern. The radius of the central disk is defined as
the distance between the 0th order maximum and the first minimum of the Airy pattern and
calculated as

d =
1.22λ

2NA
. (2.4)

Fig. 2.5 shows the Airy patterns of two points separated by different distances, which are clearly
resolvable (b), just resolvable (c) and not resolvable anymore (d). According to Eq. (2.3) and
(2.4), the resolution can be increased by decreasing the wavelength of the imaging light or
increasing the numerical aperture of the objective. The highest angular aperture that could
theoretically be achieved with a standard objective is 180◦, corresponding to a half-angle
α = 90◦. As sin(90◦) is equal to 1, the numerical aperture would consequently only depend
on the imaging medium. Assuming an immersion objective with oil of high refractive index
n = 1.52 and a low imaging wavelength of 450 nm, the achievable resolution according to the
Rayleigh criterion is limited by 180 nm.

Figure 2.5.: Airy pattern and resolution. (a) Airy pattern describing the PSF of an isotropic
single point emitter. (b-d) Resolution according to the Rayleigh criterion. In panel b the emitters are
sufficiently separated in order to be easily distinguishable. In panel b, the maximum of the Airy pattern
arising from the first point coincides with the first minimum of the Airy pattern arising from the second
point. Thus, the points are still resolvable. In panel d the distance between the two points is below the
diffraction limit and thus, the points cannot be resolved anymore. Figure adapted from [39,40].
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In fluorescence microscopy, the molecules of interest are labeled with fluorescent molecules,
which act as point emitters. The emission characteristics of a fluorophore can be described as
an ideal oscillating dipole. If the fluorophore can freely rotate, which is typically the case for
experiments performed at room temperature, the emission of the fluorophore is isotropic and its
PSF can be described well by the Airy pattern introduced above in Eq. (2.2). In an experiment,
the detected photons are integrated over the pixels of the camera chip. In addition, background
noise typically obscures the secondary maxima of the Airy pattern. Thus, the resulting PSF
image can in practice be well approximated by a simple Gaussian function [41]. If a fluorophore
is linked rigidly to a stationary structure, however, it is rotationally immobile. Also imaging
at cryogenic temperature prohibits the rotational diffusion of a fluorophore. In these cases, the
dipole orientation of the fluorophore is fixed and its emission is anisotropic. Hence, the PSF
cannot be described by the Airy pattern anymore, but more sophisticated models accounting
for the emission characteristics of a dipole emitter are required [42, 43]. The shape of the
resulting PSF highly depends on the orientation of the dipole moment, the numerical aperture
of the objective and the position of the emitter with respect to the focal plane. The PSF
may exhibit a complex, asymmetric shape deviating strongly from a Gaussian function [12,41].
Further, it has to be noted that the assumptions used in the derivation of Eq. (2.3) and (2.4)
are not valid in the case of fixed dipole emitters. If two points are resolvable now depends
strongly on the specific shape of the respective PSFs.

Diffraction poses a fundamental limit on the resolution of conventional optical microscopy.
Structural information about an object can only be obtained if the spatial structure of interest
is larger than this resolution limit. A resolution of around 200 nm is sufficient for identifying
most cellular organelles, including the nucleus and mitochondria. Many biological structures
in the cell, however, are smaller than the diffraction limit. Protein complexes show a lateral
diameter of around 100 nm (e.g. the nuclear pore complex, [44]) down to a few nanometers only
(e.g. ion channels, [24]). Consequently, these structures cannot be resolved with conventional
optical microscopy methods, but more advanced and sophisticated approaches are required to
investigate them in detail—one such approach is provided by SMLM.

2.2.3. TIRF microscopy

For achieving optimal resolution in fluorescence microscopy a high signal-to-noise ratio is cru-
cial. Background signal includes camera noise, but also cellular autofluorescence or other
fluorophores outside the focal plane. Total internal reflection fluorescence (TIRF) microscopy
is an excitation scheme, which excites only fluorophores close to the coverslip, while reduc-
ing the contribution of fluorescent background signals [45, 46]. The illumination schemes for
epi-illumination and TIRF microscopy are illustrated in Fig. 2.6.

The principle of TIRF is based on Snell’s law of refraction, which describes the relation between
the incidence and refraction angle of an electromagnetic wave when passing the boundary
between two isotropic media:

n1 sin(θ1) = n2 sin(θ2), (2.5)

where n1, n2 are the refractive indices of the two media, and θ1, θ2 are the angle of incidence
and refraction, respectively. According to Eq. (2.5), for an increasing angle of incidence θ1, also
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Figure 2.6.: Illumination. (a) Epifluorescence. An excitation beam parallel to the optical axis (θ =
0◦) passes directly through the whole sample, with theoretically infinite penetration depth. (b) TIRF.
The sample is excited with a laser at an angle above the critical angle (θ > θ∗). The beam is totally
reflected at the interface between the microscope slide and the specimen. Some of the incident energy
passes the interface as an evanescent wave, with exponentially decaying intensity and a characteristic
penetration depth of around 100 nm to 200 nm. Thus, fluorophores close to the glass slide (gray) are
excited, while the background fluorescence is highly reduced. Figure recreated and adapted from [47].

the refraction angle θ2 increases. The incidence angle for which the refraction angle reaches
θ2 = 90◦ is referred to as the critical angle θ∗, i.e. n1 sin(θ

∗) = n2 sin(90
◦). Solving this equation

for the critical angle yields

θ∗ = arcsin
�n2

n1

�
. (2.6)

Of note, a real-valued solution to this equation only exists if n1 > n2, which means for light
passing from the medium of higher optical density to a medium of lower optical density.

If the angle of incidence exceeds the critical angle, i.e. θ1 > θ∗, the incident light gets totally
reflected. Nevertheless, at the interface of the two media some of the incident energy passes
into the second medium. The resulting electromagnetic field in the second medium is referred
to as evanescent wave, which decays exponentially according to

I(z) = I0e
−z/d, with d =

λ

4π

�
n2
1 sin

2(θ1)− n2
2

�−1/2
, (2.7)

where I(z) describes the intensity at distance z from the interface, and d is the characteristic
penetration depth, which depends on the wavelength of light λ, the incidence angle θ1, and the
refractive indices n1, n2 of the two media. With increasing incidence angle θ1, the penetration
depth decreases.

In TIRF microscopy, the excitation light is reflected at the interface between the microscope
glass slide (n1 ≈ 1.5) and the aqueous specimen (n2 ≈ 1.33). Hence, according to Eq. 2.6 the
critical angle θ∗ calculates to around 60◦. For light in the visible spectrum, the penetration
depth ranges from approximately 100 nm to 200 nm. The evanescent wave excites fluorophores
close to the glass slide, while preventing background signal from autofluorescence or out-of
focus fluorophores. Therefore, TIRF is well suited for studying molecules in the cellular plasma
membrane at the bottom of adhered cells. This excitation scheme can be combined with many
fluorescence microscopy techniques, in particular SMLM (see section 2.3).
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2.3. Single molecule localization microscopy

This chapter contains content from the following published book chapter:
M. C. Schneider and G. J. Schütz. Single-Molecule Localization Microscopy (SMLM).
In: Imaging modalities for biological and preclinical research: A compendium, IOP Publishing,
2021. doi: 10.1088/978-0-7503-3059-6ch18

The diffraction limit of light (see section 2.2.2) has long been thought to set an inevitable
barrier to the resolution of light microscopy. In the last decades, however, the development
of superresolution microscopy techniques has achieved to circumvent the diffraction limit and
thus, has enabled the study of cellular structures in unprecedented detail. The two major types
of superresolution microscopy are stimulated emission depletion (STED) microscopy [48] and
single molecule localization microscopy (SMLM) [16]. Since this thesis builds up on SMLM
techniques, I provide in the following an introduction to the basic principles behind SMLM
and its imaging parameters, which are key for achieving optimal resolution and crucial for
appropriate interpretation of the obtained super-resolution images.

2.3.1. Principle

In 2006, different realizations of SMLM were published in parallel: photoactivated localization
microscopy (PALM) [49], fluorescence photoactivation localization microscopy (fPALM) [50]
and stochastic optical reconstruction microscopy (STORM) [51]. Further approaches include
direct stochastic optical reconstruction microscopy (dSTORM) [52] and point accumulation
for imaging in nanoscale topography (PAINT) [53], including DNA-PAINT [54].

All variants of SMLM rely on the same basic idea: to separate the signal of individual emitters
in time, which allows to determine their positions with nanometer precision. An illustration of
the principle behind SMLM is depicted in Fig. 2.7. Here, the scale of the structure of interest
is too small to be resolved by diffraction-limited microscopy. If all labels emit a signal at the
same time, their PSFs will overlap, resulting in a blurry spot with no discernible structure
(Fig. 2.7a). In SMLM, the signals of individual emitters are separated in time. In each frame,
only a sparse subset of all labels are in the bright state, so that their individual signals are well
separated (Fig. 2.7b). This is typically achieved by exploiting stochastic blinking or binding
phenomena (see section 2.3.2), leaving only a sparse subset of molecules visible at a certain
time point. Hence, for image acquisition thousands of individual frames need to be recorded
until most labels have been detected at least once.

Subsequently, the raw data is analyzed: For each detected signal, a localization coordinate
is determined, which describes the position of the emitter (see section 2.3.5). Decisively, the
position of an individual emitter can be estimated with a precision at the nanometer scale
which is well below the diffraction limit of light. This can be achieved, for example, by
simply determining the center of the fluorescence signal or by fitting a PSF model to the
recorded data [55]. Finally, the obtained localizations from all frames are combined to yield
a reconstructed image. Thereby, the resolution of the image is not limited by the diffraction
of light anymore, but instead by the precision and accuracy of the position estimation for
individual emitters.
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Figure 2.7.: Principle of single molecule localization microscopy (SMLM). The structure of
interest is labeled with fluorophores. In the diffraction-limited image (a), the PSFs of individual emitters
overlap and the structure cannot be determined. For SMLM, the fluorophores switch stochastically
between a bright (fluorescent) on-state and a dark (non-fluorescent) off-state (b). In each frame, only a
small subset of all labels is in the bright state, so that their fluorescence signals are well separated and
the position of the molecules can be determined with high precision. Finally, the obtained localizations
from all acquired frames are combined to yield a reconstructed super-resolution image (c). Figure
adapted from [56].

2.3.2. Methods for separating signals in time

The stochastic separation of fluorescence signals of individual emitters in time can be achieved
in several ways, which can be broadly distinguished into stochastic blinking of fluorophores
and transient binding events. In the following, an overview of different methods will be given,
which are also depicted in Fig. 2.8.

Switching. Switching methods are based on transitions of fluorescent labels between a bright
on- and a dark off-state. The on-state is fluorescent and the label can be detected as a signal
on the camera chip, whereas the off-state is non-fluorescent and does not emit any signal.
Stochastic transitions between the bright and dark state are achieved by irradiation with light
of appropriate wavelength. The main mechanisms are the following [35, 52,57–59]:

• (Photo-)Activation: An initially non-fluorescent molecule acquires fluorescent prop-
erties. This process can either be induced by irradiation with light of appropriate wave-
length (photoactivation) or occur spontaneously by oxidation of the fluorophore.

• Photodeactivation: Irradiation with light of appropriate wavelength causes the loss of
fluorescent properties of the molecule.

• Photoconversion: Irradiation with light of appropriate wavelength leads to a photoin-
duced shift of the excitation and/or emission spectrum.

Commonly, a combination of these mechanisms is used for imaging. A variety of underlying
physical or chemical processes have been described, resulting in varying nature of the dark
state and degree of reversibility to the bright state. Reversible transitions between the bright
and dark state are usually referred to as photoswitching, whereas the permanent transition into
the dark state is termed photobleaching. A broad range of physicochemical mechanisms are
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Figure 2.8.: Methods for separating fluorescence signals in time. (a) Depiction of
(photo)activation, photodeactivation and photoconversion. In photoactivation and -deactivation the
fluorophore is transferred from a dark into a bright state, or vice versa, upon irradiation with light.
Activation can also occur spontaneously by oxidation of the fluorophore. In photoconversion, the fluo-
rophore is transferred from one bright state into a second spectrally distinct bright state upon irradiation
with light. (b) Switching methods are exploited in STORM and PALM. Here, fluorophores are conju-
gated to the target molecules. Stochastic switching of the fluorescent labels between a bright and a dark
state allows to separate signals in time. (c) Transient binding methods, including PAINT and variants
of it, rely on the transient binding of the fluorescent labels to the target of interest. Here, DNA-PAINT
is shown: The molecule of interest is labeled with a short DNA docking strand. The complementary
imager strands carry the fluorophore and diffuse freely in solution, smearing out their fluorescence signal
over the whole camera chip. Upon binding of an imager strand to a docking strand, the fluorophore is
immobilized for a certain time and can be detected as fluorescence spot on the detector. Figure adapted
from [56].

responsible for inducing the switching behavior. Photoactivation and photoconversion typically
involve a bond cleavage. Possible underlying processes for photoswitching include cis-trans
isomerization steps, proton transfer or chemical reactions with extrinsic additives, e.g. redox
reactions. The methods PALM [49] and fPALM [50] apply photoactivatable, photoswitchable
or photoconvertible fluorescent proteins to achieve switching, while STORM [51] and dSTORM
[52] rely on chemically induced blinking of organic dyes.

Transient binding. A different approach for separating the emission of fluorescent labels in
time is based on transient binding events. This principle is exploited in PAINT [53] and various
adaptations of it. Here, fluorophores diffuse freely in the imaging solution. The diffusion times
exceed the illumination time for one frame, which leads to spreading of the signal over the
camera chip. Hence, unbound fluorophores can only be observed as background fluorescence.
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Additionally, quenching of fluorophores in the unbound state may suppress their emission.
Upon spontaneous binding to the target, the fluorophore is immobilized for at least a few
milliseconds and can be detected as a bright spot. Due to the stochastic nature of the binding
process, the fluorophores in solution bind to the target structures at different times; thus,
their signal is separated in time. The binding rate can be adjusted by changing the concen-
tration of the fluorophore in solution, while the duration of a binding event can be adjusted
via the binding affinity of the label to its target. The original PAINT approach has been gen-
eralized under the acronym uPAINT (universal points accumulation for imaging in nanoscale
topography) [60]. A main advancement of the principle is DNA-PAINT [54, 61]. Here, short
fluorescently labeled oligonucleotides (imager strands) diffuse in solution and transiently bind
to complementary DNA docking strands that are attached to the target of interest. Altering
the specific oligonucleotide sequence and its length offers the possibility to conveniently ad-
just binding strengths. In combination with the adjustment of imager strand concentration,
DNA-PAINT thus allows for programmable binding and unbinding kinetics.

In each frame of the SMLM acquisition, only a sparse subset of fluorophores is supposed to
be in the fluorescent on-state, whereas all others are required to be in the off-state. Imaging
conditions need to be adjusted in order to achieve an optimal density of active emitters. If
this density is too high, the signals of individual emitters will overlap and impede accurate
localization. On the other hand, too few active emitters will reduce the obtained number of
localizations per frame and thus, either require a high number of recorded frames or result in
a low detection efficiency. On- and off-rates depend on the illumination protocol, in particular
illumination time and power, but are also influenced by buffer conditions and the fluorophore’s
particular nanoenvironment [8, 62, 63]. These parameters need to be optimized according to
the requirements of the specific fluorescent probe used for labeling. One important aspect
which has to be kept in mind is that repeated transitions between the on- and off-state lead
to multiple detections of the very same label [59]. The issue of overcounting will be discussed
in section 2.3.8.

2.3.3. Sample preparation

Appropriate sample preparation is a key aspect in SMLM imaging. First, sample fixation is
crucial for preserving the structure of interest over the whole image acquisition time. Second,
the selected label is required to be suited for SMLM purposes, in particular it has to enable the
transition between a bright and dark state. Third, the buffer conditions need to be adjusted
in order to achieve suitable on-off switching rates. In the following, I will give an overview of
these aspects.

Sample fixation. As the image acquisition in SMLM requires several minutes up to hours,
SMLM is typically performed in fixed cells. Fixation is commonly achieved by means of
chemical fixatives, typically paraformaldehyde and/or glutaraldehyde, which cross-link cellu-
lar proteins by covalent chemical bonds [23]. Of note, only proteins are cross-linked, whereas
lipids in the cellular plasma membrane are virtually unaffected by chemical fixation, i.e. they
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can still diffuse in-between the interconnected proteins. Crucial for any fixation method is
the preservation of structural organization at the nanoscale. Applied fixation protocols should
be optimized in order to reduce any induced structural artifacts. However, for chemical fixa-
tives the fixation process takes several seconds up to minutes. During this time, the cellular
structures necessarily rearrange due to diffusion, thus distorting the original structural orga-
nization [10]. Further, SMLM requires the acquisition of thousands of individual frames for
obtaining a final reconstructed image. For achieving reliable images, it needs to be ensured
that the sample stays as static as possible during the imaging procedure. Yet, residual diffu-
sion of molecules after chemical fixation was reported [9], which distorts the recorded SMLM
localization maps.

An alternative to chemical fixation methods is provided by cryogenic approaches: Imaging at
cryogenic temperatures immobilizes all the molecules of the cell and offers the advantage of su-
perior structural preservation [11]. In addition, the photophysics of fluorophores is affected by
temperature. In particular, the photostability of fluorophores is increased at low temperatures,
leading to a higher photon yield and thus, improved localization precision. However, perform-
ing experiments at cryogenic temperatures is demanding and fluorophore dipoles are fixed,
which complicates the localization procedure [12, 55]. A further introduction to cryo-SMLM
approaches will be given in chapter 6 of this thesis.

Labeling. For SMLM applications, a critical feature of any labeling technique is its ability
to switch between a bright and a dark state. The labeling of choice further needs to fit
to the chosen target structure. Importantly, the original properties of the biomolecules of
interest should not be affected, in particular, if labeling is performed prior to fixation. Overall
requirements demanded from any fluorescent probe include high labeling efficiency and binding
specificity in order to ensure that the labeling correctly represents the structural organization
of the biomolecules of interest. Moreover, the size of the label needs to be small with regard
to the structure of interest and the desired localization precision. Otherwise, the introduced
localization bias (see section 2.3.5) will lead to a distortion of the structure. Furthermore, labels
need to exhibit favorable fluorescent properties: particularly, the on-off switching contrast and
the number of switching cycles influence the quality of the obtained image. Most importantly,
a high photon budget, i.e. brightness, is a prerequisite for achieving high localization precision
in SMLM (compare section 2.3.5). In the following, I will give a short overview of different
types of labeling methods [64]. In Fig. 2.9 the molecular structures of a few commonly used
labels are shown.

Photoactivatable fluorescent proteins (FPs) fused to the protein of interest ensure specific
targeting. Commonly, FPs are derivatives of the green fluorescent protein (GFP, Fig. 2.9b)
originally extracted from the jellyfish Aequorea victoria [67]. FPs are genetically fused to
the protein of interest. Photoactivatable, photoswitchable or photoconvertible FPs allow for
SMLM applications. However, with a size around 2 nm to 5 nm FPs are rather larger and
it has to be ensured that the FP does not perturb the functionality of the original protein.
Moreover, detection efficiency can be reduced by the presence of not fully matured FPs as well
as photobleaching before the actual detection step. Notably, the brightness of FPs is generally
worse compared to organic fluorophores, which affects localization precision. Furthermore, an
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Figure 2.9.: Structure and size of various labels. (a) Immunoglobulin G (IgG) antibody. (b)
Green fluorescent protein (GFP). (c) SNAP-tag. (d) Alexa Fluor 488. (e) Alexa Fluor 647. Note that
the scale for the Alexa Flour dyes is different (×4). Figure adapted from [65,66].

obvious disadvantage of FPs is the exclusive applicability to proteins.

Organic dyes (e.g. rhodamine and cyanine dyes) represent another group of fluorescent labels.
Two commonly used families of dyes are the Alexa Fluor (Fig. 2.9d,e) and ATTO dyes, available
at various excitation and emission spectra. These synthetic fluorophores have a rather small
size of around 1 nm, high quantum yield and extinction coefficient. For application in SMLM,
a stable off-state together with appropriate photoswitching rates of the dye are required. The
probes typically cycle between their bright and dark state many times before photobleaching.
A disadvantage of organic dyes compared to FPs is the need for a chemical labeling procedure.
Organic dyes may be attached to the biomolecule of interest via immunofluorescence, enzymatic
protein tags or click chemistry, explained in more detail below.

In immunofluorescence, the structure of interest is targeted via primary and optionally sec-
ondary antibodies conjugated to fluorophores. The main advantage of immunofluorescence
labeling is its rather simple applicability. However, the comparably large size of antibodies
of around 10 nm can cause steric hindrance, thus hampering target recognition. In addition,
the fluorophores are displaced from the actual target structure; in particular, when labeling
with secondary antibodies, the position of the label can be shifted up to 20 nm away from the
biomolecule of interest. A smaller alternative is provided by nanobodies, which are camelid
antibodies with a size around 2 nm.

Another labeling approach are enzymatic protein tags, which combine the advantage of genetic
encoding with the favorable properties of fluorescent dyes, while being comparably small in size.
Here, the polypeptide tag is fused to the protein of interest and labeled after translation with
an organic fluorophore. Available tags include the SNAP, CLIP and Halo tags [68, 69]. The
SNAP-tag, for example, relies on the human O6-alkylguanine-DNA alkyltransferase (hAGT)—
a human DNA repair enzyme—as a protein tag, which can be fused to the protein of interest.
Labeling of the tag is achieved via fluorophore-conjugated O6-benzylguanine (BG) derivatives:
The hAGT protein cleaves off the BG subunit and covalently binds the fluorophore.
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An emerging versatile labeling tool is click chemistry [70], which offers labeling of various cel-
lular structures, including proteins, nucleic acids, glycans and lipids. For this, the fluorophore
can be modified for example as azide and the targeted reaction partner as alkyne, or vice versa,
which yields a selective and extremely stable covalent linkage between them. Modified amino
acids, nucleotides, monosaccharides, or fatty acids can be incorporated by the cells due to the
small size of the azide or alkyne tags, and subsequently be labeled with the fluorophore. In
particular unnatural amino acids allow for site-specific labeling of proteins of interest [71].

For DNA-PAINT [54, 61], the structure of interest is not directly labeled with a fluorescent
probe, but bound to a short oligonucleotide strand (the docking strand) via an antibody
or an enzymatic protein tag, for example. The fluorophores are coupled to complementary
oligonucleotide strands (the imager strands) as part of the imaging solution.

Imaging buffer. In a typical SMLM experiment, cells are seeded on a microscopy glass cov-
erslip and immersed in imaging buffer. In general, the refractive index of the imaging buffer
should be adjusted in order to minimize aberrations. Depending on the variant of SMLM
that is performed, the imaging buffer needs to meet additional requirements: Imaging of or-
ganic dyes in dSTORM requires special buffers for inducing blinking and controlling the on-off
switching rates; these buffers usually include thiols and an oxygen scavenging system [52, 72].
The presence of thiols leads to the formation of radical anions of the fluorophore, which provide
a stable dark state for several seconds up to minutes; oxidation of the radical anion recovers the
bright singlet state. Thus, the concentration of thiols and oxygen in the imaging buffer control
the fluorophore switching rates between bright and dark states. For fluorescent proteins in
contrast, cells can be embedded in standard water-based saline solutions without the need for
additional ingredients. In the case of DNA-PAINT, the imaging solution is also based on a
saline solution. However, it additionally needs to contain the fluorophore-conjugated imager
strands, which diffuse freely in the solution [73]. Here, the concentration of imager strands
and the salt concentration affect the imaging speed and quality. By optimizing the buffer
conditions best imaging conditions can be achieved [62, 73,74].

2.3.4. Setup

In this thesis, I will propose analysis methods both for conventional SMLM experiments per-
formed at room temperature as well as cryo-SMLM approaches performed under cryogenic
conditions. In Fig. 2.10 schematic illustrations of both considered setups are shown. For
experiments at room temperature, SMLM imaging is typically performed on modified conven-
tional inverted wide-field fluorescence microscopy systems (Fig. 2.10a).

In case of cryo-fixation, also the SMLM image acquisition needs to be performed under cryo-
genic temperature. Here, a setup as described in [75] is considered. For cryo-SMLM, the sample
needs to be cooled via liquid nitrogen or liquid helium, and an additional vacuum chamber is
required in order to prevent thermal conduction from room ambient temperature (Fig. 2.10b).
This demands for a larger working distance of the objective, thus prohibiting the use of high
numerical aperture (NA) oil-immersion objectives. Instead, the setup requires the use of an
air-objective with a larger working distance, restricting the possible NA to much lower values
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of typically 0.7 to 0.8. An interesting alternative strategy to increase the NA also for large
working distances is the use of a super-hemispherical solid immersion lens [76].

Figure 2.10.: Schematic outline of microscopy setups. (a) Setup for measurements at room
temperature. Two laser lines (640 nm, 488 nm) are used for fluorophore excitation, the 405 nm laser for
fluorophore activation. An oil-immersion objective with 1.46 NA and 100× magnification is used. (b)
Cryo-setup. Two 640 nm laser lines with linearly polarized light are used for fluorophore excitation.
The two laser lines show orthogonal polarization directions. The sample is cooled via liquid nitrogen
in the cryostat tank. An air-objective with 0.7 NA and 60× magnification is used. Abbreviations: FD
fibre decoupler, CF cleaning filter, M mirror, DM dichroic mirror, λ/2 wave plate, PBS polarizing beam
splitter, TuL tube lens, P periscope, Obj objective, VV vacuum valve connection, NI nitrogen inlet,
NO nitrogen outlet.

Sample illumination. The illumination light for activation and excitation of fluorophores
needs to be ideally uniform in intensity and of well-defined wavelength. Typically, lasers are
employed as light source, which are required to match the respective activation and excita-
tion spectra of the used fluorophores. For example, commonly used laser lines are 488 nm
and 640 nm for excitation of Alexa Fluor 488 and Alexa Fluor 647, respectively, and 405 nm
for activation. Excitation filters and beam shapers are inserted into the excitation path for
optimization of the laser beam. Emission filters separate excitation from emission light; care-
ful selection of the filters helps to improve the signal-to-noise ratio. Illumination intensities
are typically 0.5-5 kW/cm2 for excitation and less than 0.1 kW/cm2 for photoconversion or
photoactivation. Excitation intensity and illumination time influence the localization preci-
sion and detection efficiency: In general, there is a trade-off between the time required for
image acquisition and image quality [62]. For high intensities, a large fraction of fluorophores
bleaches before being detected [62]; moreover, increased background signal leads to undesired
false positive localizations [63]. Low intensities in combination with longer illumination times
generally improve the detection efficiency and localization precision; however, the problem of
overcounting increases [62]. For ideal results, it was proposed to perform the initial switch-
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off phase for STORM experiments at low intensities to retain the effective labeling efficiency,
while the actual image acquisition may be performed at higher intensities [62]. For experiments
performed at cryogenic temperature, it has to be ensured that the laser power does not lead
to heating of the sample; local heating leading to lateral diffusion of molecules would conflict
with cryo-fixation and distort the resulting localization maps. In addition, the fixed orientation
of fluorophore dipoles at cryogenic temperature offers valuable additional information which
can be exploited in analysis approaches (see chapter 8). Slight rotations of fluorophore dipole
orientations due to sample heating would confound such an analysis.

Several modes of sample illumination are available for SMLM. Ideally, all fluorophores bound
to a biomolecule of interest get excited, while background contribution is avoided. Of note,
background fluorescence may arise from cellular autofluorescence, dirt particles, unspecifically
bound labels and residual unbound fluorophores. First, homogeneous background from any
out-of-focus signal adds to the noise in the image and thus, deteriorates the localization pre-
cision. Second, background signals lead to spurious localizations which distort the analysis
of localization maps. Specialized illumination approaches exist that suppress out-of-focus sig-
nal and thus, reduce background fluorescence: TIRF microscopy (see section 2.2.3) is ideally
suited for imaging of the cellular plasma membrane of adhered cells; illumination at the critical
angle causes an evanescent wave that excites only those fluorophores that are located within
approximately hundred nanometers from the coverslip. Thus, TIRF allows for a confined ex-
citation region and yields an increased signal-to-noise ratio and image contrast. However, the
illumination power decreases exponentially with the fluorophores’ z-position. This leads to
inhomogeneous illumination of the fluorophores within the sample and thus, possibly different
blinking behavior depending on the fluorophores’ axial position. As TIRF imaging requires
a high NA objective in order to achieve a laser inclination above the critical angle, it is in-
feasible for cryo-SMLM experiments with low NA, and one has to revert to a conventional
epi-illumination scheme. In order to avoid out-of-focus fluorescence in this case, a thin cell
section can be cut out of the frozen cell by focused-ion-beam milling [77].

Objective. A microscope objective is characterized by its magnification and numerical aper-
ture. For SMLM at room temperature, oil-immersion objectives with high numerical aperture—
typically with a NA higher than 1.4—achieve a high photon collection efficiency. Currently,
the objective with the highest available NA achieves a value of 1.7 [78]. For cryo-SMLM, the
larger working distance requires the use of air-objectives with low NA of 0.7 to 0.8. Notably, for
emitters with fixed dipole orientation the numerical aperture greatly influences the obtained
PSF, as will be discussed in chapter 6.1 of this thesis. High-quality objectives typically cor-
rect for common lens errors such as spherical aberration; for dual-color imaging apochromat
objectives reduce chromatic aberrations.

Detection. Photons emitted from the fluorophores are detected and imaged on a sensitive
camera chip. Apart from traditional charge-coupled device (CCD) cameras, further options are
available. Electron-multiplying charge-coupled device (EMCCD) cameras amplify the signal
in order to increase it above read-out noise and thus allows for imaging with high frame
rates. The more recent development of scientific complementary metal-oxide-semiconductor
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(sCMOS) cameras is an even faster alternative to EMCCDs. The image pixel size of the
camera is typically chosen to be around 100 nm, which balances signal and noise and thus,
optimizes localization precision (compare section 2.3.5).

Acquisition times for a single frame range from 1ms to 20ms for STORM or PALM, and up to
100ms to 500ms for PAINT approaches, due to the longer duration of transient binding events
needed compared to fluorophore blinking. Typically, thousands of frames are recorded for one
region of interest. Sample movement relative to the detector due to mechanical instabilities
of the microscope stage and thermal drift may distort the image, especially for prolonged
imaging times. This stage drift can be compensated for by means of fiducial markers or based
on cross-correlation (see section 2.3.6). Furthermore, waiting times before the beginning of the
measurement reduce the effect of initial mechanical relaxation.

3D setups. In conventional 2D microscopy, the PSF is axially symmetric. The signal of a
fluorophore slightly above and below the focal plane cannot be distinguished and thus, the
extraction of 3D information is limited. In order to enable localization in the third dimension,
the axial symmetry has to be broken. This can be achieved by various methods that rely on
recording the fluorescence of emitters in multiple channels simultaneously and/or modifying
the shape of the PSF. Methods using multiple imaging channels include biplane imaging [79],
interferometric approaches [80,81] and supercritical angle microscopy methods [82]. The shape
of the PSF can be modified by introducing additional optical elements in the light path, as
for example in astigmatic imaging [83] or for a double-helix PSF [84]. Various 3D methods
primarily differ in their complexity, resolution along the optical axis and imaging depth. An
overview of 3D techniques can be found in [55].

2.3.5. Localization

An essential part of SMLM is the post-processing of the recorded raw image data in order
to obtain the reconstructed final image. Raw SMLM data typically consists of thousands of
individual frames. For each frame, the blinking events have to be analyzed and the positions of
active emitters need to be determined with high precision and accuracy. Difficulties that have
to be faced in the analysis include background noise, uncertainties in the size and shape of the
point spread function and possible aberrations. Localization algorithms need to process large
amounts of data, typically in the range of gigabytes for a single image. Often, the demands
for speed and precision of the localization compete.

As a first step in the analysis, active fluorophores have to be identified. For this, threshold and
rejection parameters are set in order to distinguish fluorophores from background and avoid
fitting of signals or peaks that do not arise from the fluorescent probes. Subsequently, the
localization coordinates of the detected fluorophores have to be determined. In the simplest
case, the centroid of the signal can be taken as an estimate for the emitter position. Another
commonly applied method is Gaussian fitting of the signal with a least-squares or maximum
likelihood approach [41]. More complex PSF models include theoretical ones based on the
laws of diffraction [85], and experimentally acquired PSF models [86]. In case of imaging at
cryogenic temperature, the fixed dipole orientation of fluorophores has to be taken into account
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for determining an accurate PSF model [12,13]. For 3D localization of fluorophores, the axial
position can be extracted from the shape of the PSF or the recording of multiple channels
simultaneously [55].

In general, the density of simultaneously active emitters should be low enough to ensure that
individual signals are well separated. However, as blinking is stochastic, it may occur that
neighboring fluorophores are active at the same time, leading to insufficient spatial separation
of their signals. In cryo-SMLM, in particular, the issue of overlapping signals is abundant as the
photophysics of fluorophores is slowed down [75,87]. For measurements at room temperature,
a high density of active emitters might be desired as it allows for faster acquisition and thus,
higher temporal resolution in case of live-cell imaging. Specific algorithms exist that allow
for multi-emitter fitting, i.e. the fitting of partially overlapping signals [88, 89]. Alternatively,
those frames showing only a single signal in a certain region can be determined and analyzed,
while frames with overlapping signals are neglected [90]. Of note, this procedure might distort
the resulting localization map, as more signals will be discarded in dense regions compared to
sparse ones. This is primarily an issue for the analysis of clusters with varying densities over
the region of interest; the results for homogeneous oligomer distributions will be less affected.

An evaluation and comparison of a broad range of available localization software packages both
for 2D and 3D SMLM was performed by Sage et al. [91,92]. These software tests were mainly
based on computer-simulated data sets, which provide knowledge of ground truth, and thus,
allow to reliably assess the achieved localization precision, accuracy and detection rate.

Localization precision. The fundamental concept behind SMLM is to determine the position
coordinates of isolated emitters from their PSF image. However, the position can only be
estimated with limited certainty. The standard deviation of this error distribution is referred
to as the localization precision. An estimate of the achieved precision may be acquired exper-
imentally by repeatedly imaging and localizing the same emitter, and determining the spread
of the position coordinates.

The localization precision is influenced by several parameters, including the shape and width
of the PSF, shot and background noise, and defocus. Various formulas have been derived to
describe the achievable localization precision based on these parameters [55]. Theoretically,
the best possible precision is determined by the Cramér–Rao bound (CRB) [93]: The variance
of any unbiased estimator ξ̂ of a parameter ξ is bound from below by the inverse of the Fisher
information matrix I, in particular

Var(ξ̂) ≥ I−1(ξ) , with I(ξ) = E
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where L(ξ) is the likelihood of the observed data given a model generated by ξ. Hence, the
Fisher information matrix depends on the statistical model of the underlying stochastic process
of the data (see chapter 7.4.3 for a derivation of the Fisher information matrix for SMLM data).
Commonly, the localization precision is defined as the standard deviation of the localizations;
the lower limit for the localization precision of an unbiased estimator is hence given by the
square root of I−1(ξ) [94, 95].
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Importantly, the maximum-likelihood estimator achieves the CRB [96]. Assuming a Gaussian
PSF model and a maximum-likelihood fit, the localization errors can be well described by [97]

� (Δx)2 � = s2 + a2/12

N
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where Δx is the error in localization, s is the width of the Gaussian PSF, a the pixel size and
b the background noise, i.e. the standard deviation of the background signal. The localization
precision σloc is given by the square root of � (Δx)2 �.
The main impact on localization precision arises from shot noise, which originates from the
particle nature of light and scales with the square root of the number N of detected photons;
hence, the localization precision is proportional to s/

√
N . The photon count depends on

illumination time, wavelength of illumination and photophysical properties of the fluorophore,
including extinction coefficient, quantum yield and photostability. Hence, fluorescent probes
with high photon output are desired for SMLM applications.

Background signal primarily arises from residual cellular autofluorescence, and from Rayleigh
or Raman-scattered light. Careful choice of emission filters, and selective excitation of the
focal plane (see section 2.3.4) helps to reduce these contributions. Moreover, dark current due
to thermic noise adds to the background. This type of noise causes a Poisson distributed back-
ground and increases with exposure time. Cameras are typically cooled in order to minimize
dark current. A further source of noise is camera read-out noise, which arises from the elec-
tronics when reading out the image of a camera chip and is independent of the detected photon
number. Read-out noise has been dramatically reduced by the introduction of EMCCDs and
sCMOS cameras.

In addition, localization precision is influenced by the pixel size. On the one hand, smaller
pixel size of the camera chip allows to better resolve the PSF. On the other hand, for a smaller
pixel size, fewer photons are detected per pixel and the signal ultimately gets obscured by
the detector noise. An optimal compromise was found to be given for a pixel size a fulfilling
(a/s)4 = 96πb2/N [98]. Typical pixel sizes correspond to 100 nm to 160 nm in the object plane.

For more complex PSF shapes, the formula given in Eq. 2.9, does not hold true and the CRB
cannot be easily expressed analytically. However, the CRB may be calculated numerically
based on Eq. 2.8.

Localization accuracy. The aim of the localization procedure is to correctly determine the
position coordinates of the molecules of interest. Importantly, correct position estimation is
not only affected by limited precision, but may also be impaired by a localization bias, which
describes the deviation of the mean measured position from the true position coordinate of the
target molecule. The effect of localization precision and accuracy is illustrated in Fig. 2.11.

In general, it is not the molecule of interest itself that is detected in SMLM techniques, but
a fluorescent probe attached to it (see section 2.3.3). A bias in localization may arise from
the finite size of fluorescent probes themselves, in particular for larger probes like fluorescent
proteins. Moreover, linker moieties that connect the target to the fluorophore, e.g. primary
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a b c d

Figure 2.11.: Localization precision versus accuracy. The four panels show simulated repeated
localizations of a target under the following conditions: (a) Precise and accurate. (b) Imprecise, but
accurate. (c) Precise, but inaccurate. (d) Imprecise and inaccurate. The assumed position of the target
is depicted as red cross. The localization precision was set to 5 nm and 20 nm for panels a,c and panels
b,d, respectively. For panels c,d a bias of 50 nm in each direction was assumed. Scale bar: 50 nm.

and secondary antibodies, can lead to displacements of the fluorophore of up to 20 nm in a
random direction.

Furthermore, fluorophores are dipole emitters and thus, exhibit asymmetric emission patterns.
If a fluorophore’s dipole orientation is fixed and cannot rotate freely, this will lead to distortions
of the PSF. As a consequence, localization inaccuracies arise when using common estimators
such as Gaussian approximation, in particular in case of imperfect focusing [12,13]. This aspect
will be covered in detail in chapter 7 of this thesis.

2.3.6. Post-processing

After single molecule signals have been localized, the resulting list of localizations can be
further processed. In order to minimize false positive localizations, the obtained localizations
can be filtered. This allows to discard localizations that that do not fulfill certain quality
criteria. For example, localizations showing untypical characteristics for the used fluorescent
probe, e.g. very high brightness values, large spread of the signal or enduring on-times, can
be removed. As another post-processing step, localizations from the same emitter detected in
different frames can be merged based on spatial and temporal proximity [5]. This reduces the
problem of multiple detections of the same emitter (compare section 2.3.8).

The obtained localization coordinates further need to be corrected for drift, which occurs
during the rather long acquisition times from minutes up to hours. Drift correction can either
be achieved based on fiducial markers [99, 100] or cross-correlation [101]. In the first case,
fiducial markers such as fluorescent beads or gold nanoparticles are inserted into the sample
and recorded together with it. The markers are tracked and their trajectories are used to
retrieve the drift-corrected localizations. Drift correction based on cross-correlation is feasible
if the target is highly structured. Partial images reconstructed from sub-sequences of the
recorded data can then be cross-correlated in order to determine the drift.

For multi-channel imaging, additional corrections are required in order to account for the shift,
stretch and possible distortion between the channels. Particularly, for multi-color imaging,
chromatic aberration needs to be corrected for. Registration of the individual channels can be
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performed based on multi-spectral fiducials, which are detectable in all channels [102].

For interpretation of the data, it is important to note that SMLM data substantially differs
from conventional microscopy data: Conventional microscopy yields a pixelated image, with
pixel values according to the recorded intensities. SMLM techniques, instead, yield a list of
localization coordinates. For visual interpretation of the data, the localization list can be
plotted as scatter plot or 2D histogram. Alternatively, each localization can be represented
as a Gaussian, with a mean at the determined position coordinate and a width according
to the localization precision. Notably, any visualization method is based on the determined
localization coordinates, which do not correspond to the exact fluorophore positions, and due
to linkage errors even less so to the true positions of the molecule of interest. Typically,
SMLM data is not merely analyzed visually, but the localization map coordinates are the
basis for more advanced analysis methods, in particular for quantitative analysis or structure
determination [59, 103,104].

2.3.7. Spatial, temporal and spectral resolution

A fundamental aspect of microscopy is resolution. In the following, I will shortly discuss
spatial, temporal and spectral resolution with regard to SMLM.

Spatial resolution. For localization microscopy, the term resolution used in the conventional
theory of Abbe and Rayleigh has to be redefined [105]. In the context of SMLM, spatial
resolution is commonly reported as the precision achieved in the localization of a single emitter
(see section 2.3.5). However, resolution is not only limited by localization precision, but also
by labeling density and detection efficiency. In fluorescence microscopy in general, the sample
is labeled at discrete sites, i.e. the molecules of interest. If the labeling is too sparse, structural
details cannot be resolved, even in case of optimum localization precision. Here, often the
Nyquist-Shannon sampling theorem is taken as a guideline, which states that neighboring
localized emitters need to be closer than half of the smallest structural feature that can be
resolved. However, for structures that do not show a continuous boundary, e.g. individual
molecules in the cell membrane expressed at low levels, the final image will inherently be
sparse. Thus, the reliability of the obtained information also depends on the specific features
of the structure under investigation.

Temporal resolution. In SMLM, high spatial resolution is traded for temporal resolution.
Typically, imaging is performed in fixed cells, i.e. at a single time point only. For live-cell
imaging [57], the achievable temporal resolution mainly depends on the blinking behavior of
the fluorescent probe and its photophysical properties, in particular quantum yield. Moreover,
frame rates are limited by the camera read-out speed. The overall time required for obtaining
an individual image results from the acquisition time for a single frame times the total number
of frames that are recorded.
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Multi-color imaging. In many biological questions, it is not sufficient to investigate a single
type of biomolecule, but the interaction of several different ones. This aim can be achieved by
multi-color imaging. Conventionally, multi-color imaging in SMLM is implemented by the use
of spectrally distinct dyes, each of which targeting a specific molecule of interest. The different
types of fluorophores can either be excited and imaged alternately in the same detection path,
or their respective emission can be split into different color channels and imaged on separate
regions of the camera chip. Color channels can be aligned by means of multi-color beads, which
allows also to correct for chromatic aberrations. Spectral overlap limits the number of targets
that can be imaged simultaneously to about three. In case of (d)STORM, buffer conditions
have to be optimized dependent on the specific fluorophore [74], which further complicates the
simultaneous imaging of multiple targets.

A major advancement towards multi-color imaging has been enabled by Exchange-PAINT
[106]. Based on DNA-PAINT, this method allows for imaging a large number of different
targets, only limited by the number of orthogonal DNA docking strand sequences. The idea
is to repeatedly introduce and wash out imager strands specific for a single target until all
desired targets have been imaged. The separated imaging steps allow to assign a pseudo-color
to each target and obtain a multiplexed final image. A recent study showed the capability to
differentiate up to 124 different colors based on this method [107]. For Exchange-PAINT, a
single dye and a single laser source are sufficient. Hence, a dye with optimal photophysical
properties can be selected for imaging of all targets. Moreover, the method circumvents the
problem of chromatic aberrations.

2.3.8. Quantitative biology

As SMLM yields imaging information at the single molecule level, it seems ideally suited
for quantitative biology studies [103, 104, 108]. Quantitative biology aims at characterizing
and comparing highly complex biological structures, thus allowing to gain new insights into
the functional mechanisms of cells. However, two issues—undercounting and overcounting—
impede a direct assessment of biomolecular numbers and arrangements.

First of all, for a correct representation of the biomolecules of interest a well-defined stoi-
chiometry of labeling is essential; ideally, each target molecule is labeled with exactly one dye
molecule. Due to insufficient labeling efficiencies a certain fraction of the biomolecules of in-
terest cannot be detected at all [109]. In contrast, for some labeling approaches—in particular
antibody labeling—a biomolecule of interest may carry multiple fluorophores, and thus, can
be detected multiple times, as illustrated in Fig. 2.12.

Surprisingly, even in the case of an ideal one-to-one labeling, a direct quantification of biomole-
cules via SMLM will be impeded: Ideally, every fluorophore or docking strand is in its on-state
in exactly one frame during the whole acquisition procedure and thus, detected exactly once.
However, fluorophores may bleach before being detected or never return from the dark state
during the image acquisition time. In case of DNA-PAINT, a docking strand may never be
reached by an imager strand, or only by imager strands carrying bleached fluorophores.

In contrast, if on-times exceed the acquisition time for a single frame, fluorophores will be
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target molecule

primary / secondary anƟbody
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Figure 2.12.: Reasons for overcounting. A single molecule of interest—the target molecule
(white)—is labeled with a primary antibody (dark gray), to which multiple secondary antibodies (light
gray) may bind. Again, each of the secondary antibodies may carry multiple dye molecules (red). Ad-
ditionally, each dye molecule may be observed multiple times due to repeated switching between the
on- and the off-state. In combination, this leads to numerous detections of a single target molecule.

detected in multiple consecutive frames [3]. Further, fluorescent probes can switch repeatedly
between the on- and the off-state, resulting in additional overcounting. While consecutive
detections of the same fluorophore can be merged [5], prolonged dark times impede such a
correction. Organic dyes typically show extensive and complex blinking behavior [110–112].
Blinking is less pronounced for photoactivatable fluorescent proteins, nevertheless, also FPs
were observed to transition into prolonged dark states and subsequently return into the bright
state [63]. In case of PAINT approaches, transient binding events to the same target molecule
can occur repeatedly over the whole image acquisition time.

Both under- and overcounting have to be carefully considered, especially in quantitative anal-
ysis and interpretation of SMLM data. To this end, analysis methods tailored to the specific
features of SMLM imaging are essential. The problem of overcounting, in particular, is central
to this thesis, and possible solutions for circumventing the wrong interpretation of overcounting
artifacts will be proposed.

2.3.9. Reference structures for avoiding imaging artifacts

As SMLM requires careful preparation of the sample as well as complex experimental proce-
dures and data analysis, a wide range of parameters influence the final quality of the obtained
images. Throughout this section, several issues distorting the resulting SMLM localization
maps were pointed out which need to be considered for a correct interpretation of SMLM
data. Fig. 2.13 shows a plot summarizing the influence of these aspects on the localization
map.

First, localization precision and localization accuracy limit the achievable resolution in SMLM
(Fig. 2.13a,b). The localization precision is mainly determined by the number of available
photons in the signal, but also dependent on other parameters, including background noise
(see section 2.3.5). The localization accuracy is directly influenced by the size of the linker
used for labeling (section 2.3.3). In addition, localization bias may be caused by a spatially
fixed dipole moment, if not accounted for in the localization procedure (section 2.3.5). A
method for avoiding this localization bias in a cryo-SMLM setting will be proposed in chapter
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7 of this thesis.

The localization map is further affected by undercounting: Due to insufficient labeling or
detection efficiency some target molecules will not be detected, leading to misrepresentation
of the imaged structure (Fig. 2.13c). Particle averaging approaches can often recover the
underlying structure. An approach which allows to analyze only particles with at least one
localization per target molecule and thus, yields precise estimates of oligomer sizes will be
presented in chapter 8 of this thesis.

In contrast to undercounting, multiple detections of the same biomolecule of interest causes
overcounting (Fig. 2.13d). Overcounting in combination with localization errors leads to clus-
tering artifacts, which can be easily mistaken for true biomolecular clustering at the nanoscale
(Fig. 2.13d). Clustering artifacts and methods which allow to distinguish these artifacts from
true biomolecular nanoclustering will be the central topic of the first part of this thesis (chap-
ters 4 and 5).

a

b

c

d

Structure and labels Localization map

Target molecule Label Localization

Figure 2.13.: Possible distortions of localization maps. The left column shows the actual position
of the target molecules (circles); full and open circles indicate the presence or absence of a detectable
label, respectively. In the right column, corresponding representative localization maps are depicted.
Due to localization errors, the localizations are slightly displaced from the true molecule positions (a).
The structure is distorted or misrepresented by label displacement (b), decreased labeling efficiency (c),
or overcounting (d). Figure adapted from [56].

Directly assessing the quality of localization microscopy data has proven to be difficult, espe-
cially for imaging of a priori unknown structures. While the achievable localization precision
can be estimated either via theoretical calculations or experimentally (see section 2.3.5), for
other parameters, including the labeling and detection efficiency, a direct quality assessment
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is challenging or even impossible. Therefore, robust test samples are commonly used as a
reference in order to judge the quality of SMLM data and optimize the imaging conditions.
Natural biological samples of a well-defined structure include the nuclear pore complex and
cytoskeleton structures such as actin filaments and microtubules [109, 113]. Moreover, DNA
origami provide artificial samples that can be arbitrarily designed to exhibit a specific structure
of choice [114, 115]. As a major drawback, however, obtained results often cannot be trans-
ferred directly to the target of interest, as parameters like labeling efficiency and geometry of
the structure may differ from the reference sample.

A comprehensive alternative to experimental reference structures are computer simulations.
While they cannot directly assess parameters such as the labeling or detection efficiency in an
experiment, they are ideally suited for developing, testing and advancing new experimental
and analysis approaches [91, 92]. The major advantage of simulations is the availability of
the ground truth: All input parameters are known and adjustable at will. Thus, simulations
provide a valuable tool to assess the performance of methods and explore their limits over a wide
range of parameters. Notably, if physical concepts are correctly implemented in the simulations,
the performance of methods should directly be transferable to experiments. If experiments do
not show the same results, the physical concepts should be reconsidered. Computer simulations
provided the basis for validating all methods developed in this thesis, and for exploring their
performance and possible limits.
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3. Introduction

Molecular clusters are thought to play an important role in cellular signaling and behavior:
Many SMLM studies performed at the cellular plasma membrane have reported clustering of
proteins at the nanoscale [1]. As nanoclustering emerged to supposedly be a prevalent feature
of plasma membrane organization, a broad variety of clustering algorithms and methods have
been developed to characterize and quantify the clustering behavior of molecules in detail
[59, 116, 117]. However, two issues confound the analysis of biomolecular clustering: First,
the presence of more than one dye molecule per label leads to multiple detections of a single
protein molecule of interest. Second, researchers became aware that the stochastic nature of
photophysics frequently leads to severe overcounting in SMLM, even if label stoichiometry is
one to one. The prevalence of nanoclusters has since been put into question [4, 118].

An important aspect for the analysis and interpretation of SMLM data is that they fundamen-
tally differ from conventional pixelated images: The obtained localization maps are a list of
position coordinates. Therefore, SMLM techniques have often been associated with the term
pointillism [116,119]. The localization map can be considered as a spatial point pattern; hence,
point pattern analysis can be applied to characterize the data [120, 121]. An introduction to
point patterns and clustering methods will be given in section 3.1.

Typically, the prevalent criterion for assessing the quality and informative value of a microscopy
image is resolution—the ability to distinguish two points in spatial proximity. For SMLM im-
ages, resolution is often equated with localization precision. It has to be considered that the
quality of an image does not only depend on the localization precision, but also crucially on
the effective labeling efficiency and the presence of artifacts such as overcounting. In order
to assess the ability to answer a given biological question, the achieved resolution by itself—
characterized by a single number—is not meaningful anymore. Moreover, the resolution also
becomes a question of the structure of interest itself, in particular whether the structure is con-
tinuous (e.g. actin, microtubules) or discrete (e.g. protein monomers in the plasma membrane),
and dense or sparse. For example, if monomeric biomolecules present at low concentrations
are to be studied quantitatively, the labeling efficiency will be more critical than the obtained
localization precision. The informative value of an SMLM localization map is often difficult to
assess, even more so, by a single number only. Therefore, it has been proposed to introduce
hypothesis testing in SMLM for answering biological questions, in particular, for assessing the
obtained data against a specified hypothesis [122]. For many biological questions, the micro-
scopic resolution is not critical, but it is more important whether a difference between two
experimental conditions can be detected or not. One pending question is whether specific
biomolecules form nanoclusters or are randomly distributed—developing methods for answer-
ing this question will be the basic concern of chapters 4 and 5 of this thesis. An introduction
to p-values and significance testing will be given in section 3.2.
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3.1. Methods for cluster analysis

In the following, I will first give a short introduction into spatial point patterns (section 3.1.1).
Further, I will present an overview of various methods used for cluster analysis (sections 3.1.2
and 3.1.3). Notably, many methods used for cluster analysis in SMLM were adopted from other
fields, for example ecology or geoscience [123, 124]. One central assumption of these methods
is that every molecule of interest is detected only once; the occurrence of overcounting—an
issue specific to SMLM—is neglected. Researchers hence typically recommend to post-process
the recorded SMLM data prior to cluster analysis, in order to fulfill the requirement of a single
localization per biomolecule of interest. However, no pre-processing method exists that can
reliably identify and correct for all possible artifacts. Therefore, besides the conventional cluster
analysis methods, other approaches have been developed that allow to specifically address
overcounting artifacts (sections 3.1.4). These methods aim at analyzing the true distribution
of biomolecules of interest, which underlies the observed distribution of localizations.

3.1.1. Spatial point patterns, null models and complete spatial randomness

The main aim of cluster analysis methods is to describe the distribution of biomolecules within
the cell. In this thesis, I will consider the cellular plasma membrane, in particular. The position
of molecules within the plasma membrane can be described by a set of position coordinates =x.
The position of these molecules constitute a spatial point pattern, i.e. a set of points {=x ∈ A},
where A is the region of interest. For molecules within the plasma membrane, the region of
interest can be described by a 2D surface. For cells well-attached to a coverslip this surface
can be considered as a flat plane and thus, A is a subset of R2. As the point pattern of the
molecules consists of one type of objects only, it is a univariate point pattern. The arrangement
of molecules can be seen as a realization of a spatial point process, i.e. a stochastic process
which generated the point pattern.

Due to random variations inherent to a stochastic process, it is often difficult to directly
characterize local features of a point pattern: Those features may not be due to present
molecular interactions, but may arise from mere noise. This aspect will be considered in more
detail in section 3.2. In order not to study mere random noise only, it is therefore necessary
to investigate the pattern globally prior to a local analysis. For a global analysis of a point
pattern, the pattern is typically compared to a null model, which represents a specific spatial
structure. Based on this null model, it is assessed whether a given point pattern shows a
spatial structure which significantly deviates from the null model. For a univariate point
pattern, the most basic null model is complete spatial randomness (CSR), which is described
by a spatial Poisson process. Notably, CSR corresponds to the absence of any interactions of
the points—in particular, neither attractive nor repulsive forces affect the spatial arrangement
of the biomolecules. This null model can be used to asses whether the point pattern exhibits
any spatial structure of interest which can be distinguished from pure stochastic effects. A
realization of a random point pattern is shown in Fig. 3.1a. If, overall, points are in closer
proximity to each other than can be expected by random chance, the resulting pattern is
termed clustered (Fig. 3.1b). In this case, either an attractive force between the biomolecules
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is present, or an external factor causes the molecules to aggregate in certain subregions. For a
so-called dispersed distribution, the points are spread out and their mutual distances are larger
than expected under randomness (Fig. 3.1c). This case corresponds to repulsive interactions
between the biomolecules.

Random Clustered Disperseda b c

Figure 3.1.: Spatial distributions of point patterns. The panels show realizations of a random
(a), clustered (b), and dispersed (c) spatial point process. For each scenario, the simulated density was
set to 80 points per µm2. For the clustered scenario, the cluster density was set to 10 clusters per µm2

with a cluster radius of 60 nm; the cluster center positions were distributed randomly within the whole
region of interest. All points were distributed uniformly within the clusters. For the dispersed scenario,
the minimum required distance between neighboring points was set to 70 nm. Scale bars: 400 nm.

For a spatial Poisson process, the points are distributed randomly and independently of each
other. The spatial Poisson process is defined on the plane R2 and only depends on the pa-
rameter ρ > 0, the density of points. The number of points in an arbitrary region A ⊂ R2 is
described by a random variable N(A). The probability that the region A contains exactly n
points is characterized by the Poisson distribution and given by

P
�
N(A) = n

�
=

(ρ |A|)n
n!

e−ρ|A|, for n ∈ N, (3.1)

where |A| denotes the area of the region A. From the Poisson distribution it follows that the
expected number of points for the region A is given by E(N(A)) = ρ |A|.

3.1.2. Methods for comparison to CSR

In order to compare spatial point processes, summary statistics are used to describe certain
characteristics of point patterns. The simplest characteristic of a spatial point process—the
first-order property—is its intensity ρ, i.e. the expected number of points per area. The
influence of points on one another is described by second-order properties. One widely used
second-order statistic for point pattern analysis is Ripley’s K function [123]. It is defined as the
expected number N(Ar(P )) of points within a distance r of a typical point P in the pattern,
divided by the intensity ρ of the pattern. For a spatial point pattern on a finite region, Ripley’s
K function can be calculated as

K(r) =
E
�
N
�
Ar(P )

��
ρ

≈ 1

ρ
· 1
n

n$
i=1

N
�
Ar(Pi)

�
, (3.2)
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where N(Ar(Pi)) is the number of points within a distance r around point i of the observed
pattern, and n the number of points in the pattern (Fig. 3.2a).

Ripley’s K function is typically used for comparing a given spatial distribution of points with
a distribution as it would result from CSR, i.e. a homogeneous spatial Poisson process. For a
spatial Poisson process, it holds that the expected number of points within a circle of radius
r can be calculated by multiplying the density of the point process by the area of the circle,
i.e. E(N(Ar(P ))) = ρπr2. Hence, for CSR it holds that K(r) = πr2. Deviations from this
expected value of the K-function indicate clustering of the points (if K(r) > πr2) or dispersion
(if K(r) < πr2). As the K-function for a spatial Poisson process scales with r2, it is more
convenient to use different versions of the function. The L-function is defined as

L(r) =
�

K(r)/π, (3.3)

which can be further modified to the H-function defined as

H(r) = L(r)− r. (3.4)

The expected values for the L- and H-function for a Poisson process are L(r) = r and H(r) = 0,
respectively; hence, positive values ofH(r) indicate clustering, whereas negative values indicate
dispersion (Fig. 3.2a).

For the analysis of biomolecular distributions with Ripley’s functions, one important assump-
tion is that each biomolecule of interest is represented in the SMLM data by one single lo-
calization only. Ripley’s functions directly analyze the point pattern of the localizations and
thus, localization clusters arising from overcounting will be characterized as clustered. This
problem and a solution to it will be discussed in detail in chapter 4 of this thesis.

Ripley‘s funcƟon Pair correlaƟon funcƟon

H
(r)

a b

Figure 3.2.: Ripley’s function and pair-correlation analysis. (a) Ripley’s H function. For the
calculation of Ripley’s function, the average number of points within a circle of radius r around the
points of the pattern is determined. For CSR it holds that H(r) = 0 for all values of r. Values of
H(r) greater or less than 0 indicate clustering or dispersion, respectively. (b) Pair correlation function
(PCF). For the PCF, the number of neighboring points is not counted within a circle, but within rings
of radius r centered on each point. For CSR it holds that g(r) = 1. Values of g(r) greater or less than
1 indicate clustering or dispersion, respectively, at the corresponding scale. Figure adapted from [59].

One issue with Ripley’s analysis is the fact that it is cumulative. Hence, pronounced clustering
or depletion at short scales may obscure the analysis at larger scales. The pair-correlation
function (PCF) is based on Ripley’s function and offers a better assessment of clustering at
individual scales. Instead of counting the number of neighboring points within a circle of radius
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r, the PCF counts the number of points within rings of radius r and fixed width, centered on
each point (Fig. 3.2b). Thereby, propagation of effects on a certain length scale to larger
lengths scales is prohibited. Thus, it becomes possible to analyze true biomolecular clustering
at scales larger than the localization precision, also if overcounting is present in the data.

The pair-correlation function describes the expected point density at distance r relative to the
density of the whole point pattern. Hence, in case of complete spatial randomness it holds that
the pair-correlation function is equal to 1. Values greater than 1 indicate clustering, whereas
values smaller than 1 indicate dispersion at the given scale. Importantly, the pair-correlation
function offers information about the range of the clustering as it declines to 1 if no clustering
is present at larger scales anymore. Of note, the pair-correlation function is in practice slightly
noisier than Ripley’s K function, because its estimation is based on fewer points.

3.1.3. Segmentation of clusters

The Ripley’s functions as defined above provide only a global assessment of potential clustering.
In order to further analyze clustered localizations, several clustering algorithms can be applied
to the recorded localization data that segment the data into individual clusters. The obtained
individual clusters can further be analyzed to quantify the clustering and extract parameters
of cluster description, including for instance the number of clusters, the number of localization
per cluster and cluster radii.

Density-based spatial clustering of applications with noise (DBSCAN, [125]) counts the number
of points within a neighborhood of radius r for each point (Fig. 3.3). If this number is equal
to or exceeds a predefined threshold n, the point is considered as being part of a cluster. A
point is regarded as edge or boundary point if the circle around this point contains less than
n points, but at least one point which is itself a clustered point. Of note, not all points at the
rim of clusters necessarily need to be edge points; if those points have enough neighbors, they
are considered as core points. In case neither of the two criteria are fulfilled for a point, the
point is classified as unclustered or noise. Of note, the choice of the two parameters r and n
is user-dependent and strongly influences the cluster assignment.

A modified version of DBSCAN is provided by the method FOCAL (Fast Optimized Cluster
Algorithm for Localizations) and its extension to 3D termed FOCAL3D [126,127]. The method
is grid-based and creates a histogram of all localizations with bin size Δ (Fig. 3.4a). Based on
this histogram a density map is generated and a density thresholdminL is applied (Fig. 3.4b,c).
Regions which are larger than a specified minimum sizeminC are defined as clusters (Fig. 3.4d).
The method allows to evade overcounting artifacts by suitable choice of the three parameters
Δ, minL and minC. However, only clusters with an extent larger than the localization error
can be detected in this way. In addition, the method is computationally less expensive than
DBSCAN, in particular for very large numbers of localizations; a runtime comparison is given
in [127].

Many clustering methods, including DBSCAN and FOCAL, depend on user-defined param-
eters, and their choice highly influences the outcome of the analysis. In order to overcome
this problem, Bayesian approaches have been proposed [128–130]. They test a wide range of
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Figure 3.3.: DBSCAN. (a) For each point, the number of points within a radius r is counted. A
point is considered as a core point (blue), if the circle around it contains at least n = 3 points. For
boundary points (green), the circle around a point contains less than n points, but another core point.
All other points are considered as unclustered (orange). (b) Resulting cluster assignment of the points.
Figure adapted from [116].

a b c d

Figure 3.4.: FOCAL. (a) Histogram of the localization map. The bin size Δ of the histogram should
be chosen according to the localization precision. (b) The density map is created by replacing each
value with the sum of the 3× 3 bin region around each bin. (c) Only points that exceed a set density
threshold (here, minL = 9) and their border points are kept. Core points are indicated in bold font. (d)
Regions exceeding a certain size (here, minC = 10) are defined as clustered. Figure adapted from [126].

different clustering parameters and finally assess, which of the thousands of resulting candidate
cluster proposals scores best. Thus, the method becomes independent of an arbitrary choice
of parameters by the user. However, Bayesian analysis is a model-based approach. It relies on
a model of clustering, typically Gaussian-shaped clusters are assumed. Hence, it is restricted
to the analysis of clusters which are in accordance with a predefined model, and cannot be
applied to arbitrarily shaped clusters.

Another approach to segment localizations into clusters are tesselation-based methods, in-
cluding Voronoi tesselation and Delaunay triangulation (Fig. 3.5), which divide a region into
geometric shapes—the tiles—based on the points of a point pattern. In case of Voronoi tessella-
tion, the analyzed region is split into tiles based on equidistant bisections between localizations
(Fig. 3.5a). The localizations are positioned inside the tiles, with each tile containing exactly
one localization. Delaunay triangulation is a straightforward approach, in which all points are
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simply the vertices of triangular tiles (Fig. 3.5b). For both Voronoi tessellation and Delaunay
triangulation, the area of the tiles indicates the degree of clustering, in particular, small tiles
correspond to densely packed localizations belonging to a cluster. Subsequently, a threshold
for the tile areas can be applied in order to distinguish clustered points from unclustered ones.

a b

Figure 3.5.: Image tesselation. The panels show the results of Voronoi tesselation (a) and Delaunay
triangulation (b). Enlarged views of the green and red regions are shown on the right of each panel.
Figure adapted from [117].

Further types of clustering methods are based on graphs [131] or machine-learning [132]. SMLM
localizations can be described as a mathematical graph, with its nodes representing the local-
izations and its edges representing their interactions. Based on this graph, cluster assignments
may be deducted. Applying graph-based methods to SMLM data, however, has been rather
infrequent up to now. Machine-learning approaches require large sets of data including knowl-
edge of the ground truth for training of models. These prerequisites are fulfilled for simulated
data, but difficult to obtain for real SMLM data recorded in experiments. Further, the perfor-
mance of machine-learning approaches may strongly depend on the quality and adequacy of
the training data.

3.1.4. Accounting for cluster artifacts

All of the methods and algorithms mentioned in the previous section analyze the distribution of
the localizations obtained from an SMLM experiment. Importantly, it is not the localizations,
which are biologically relevant, but the positions of the actual biomolecules. Various artifacts,
however, may distort the localization map to different degrees [133]. With regard to clustering,
the most severe artifact is overcounting due to both the presence of multiple fluorophores per
biomolecule of interest and fluorophore blinking, leading to clustering artifacts. Notably, it is
not biologically meaningful to analyze and characterize these artifacts.

Cluster analysis via the pair-correlation function and FOCAL(3D) may circumvent overcount-
ing artifacts at length scales larger than the localization errors. However, clustering at length
scales smaller than the localization error cannot be analyzed with these methods. Moreover,
residual diffusion after chemical fixation may further increase the spread of localizations arising
from the same biomolecule of interest [9]. If residual diffusion is not accounted for appropri-
ately, this will lead to wrong results of the clustering algorithms.

41



3. Introduction

Merging approaches. In order to analyze true molecular clustering at all length scales, in
particular below the length scale of localization errors, it is often proposed to preprocess the
localization data in order to eliminate clustering artifacts. One method for this task has been
proposed by Annibale et al. [3,5]. In their approach, localizations are merged based on spatial
and temporal proximity (Fig. 3.6). However, the method has two potential flaws: (i) The
thresholds for spatial and temporal proximity are user-dependent. (ii) Fluorophores show
complex blinking behavior and may exhibit long-lived dark states; this makes it impossible to
distinguish a localization of a new dye molecule from a reappearance of a previously detected
dye molecule.

a b

Figure 3.6.: Merging of localizations. Localization map before (a) and after merging of the local-
izations within a radius of r = 35nm and 500 frames (b). Localizations are color-coded corresponding
to their frame of appearance. In total, 5000 frames were recorded. The images on the right of each
panel show an enlarged view of the region indicated by a red square on the left. Scale bars are 1µm
and 100 nm for the left and right image of each panel, respectively. Figure adapted from [134].

Recently, a more elaborate merging approach termed distance distribution correction (DDC)
was proposed [135]. For this, the distribution of pairwise distances between individual fluo-
rophores is obtained from the image sequence: Only those distances are taken into account
which are separated by a time well exceeding the average survival time of a fluorophore; i.e.
the time before it is being bleached. As an advantage, the method does neither require the
setting of user-dependent parameters nor calibration measurements. Nevertheless, it is still
not suitable if a single biomolecule may be detected repeatedly throughout the whole image
acquisition time; in particular, this is the case for long-lived dark times, for PAINT imaging
approaches, or antibody labeling, where multiple fluorophores per biomolecule of interest may
be present.

Pair-correlation analysis. Sengupta et al. [6] proposed a pair correlation-based method which
is not impacted by long dark times, but only depends on the mean number of observations of
each biomolecule of interest. The pair-correlation function of an SMLM localization map has
a contribution of both the distribution of biomolecules of interest and the spread of localiza-
tions due to localization errors. Therefore, the total pair-correlation function g(r)peaks can be
represented as a convolution:

g(r)peaks =
�
g(r)centroid + g(r)protein

�
∗ g(r)PSF (3.5)

= g(r)centroid ∗ g(r)PSF + g(r)protein ∗ g(r)PSF, (3.6)
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where g(r)centroid and g(r)protein are the correlation function of biomolecules at r=0 and r>0,
respectively, and g(r)PSF is the correlation function of the localization uncertainty. The first
term g(r)centroid ∗ g(r)PSF in Eq. (3.6) represents the correlation arising from multiple detec-
tions of the same biomolecule of interest. The second term g(r)protein ∗ g(r)PSF describes the
correlation due to the spatial distribution of the biomolecules, which is equal to 1 for a ran-
dom distribution (Fig. 3.7a). The localization error can be described by a normal distribution
with mean 0 and standard deviation σloc. Hence, the correlation function of the localization
uncertainty can be described by

g(r)PSF =
1

4πσ2
loc

exp

� −r2

4σ2
loc

�
. (3.7)

The correlation function g(r)centroid of the centroids is a delta function with amplitude equal
to 1/ρaverage, i.e. the inverse of the average density of biomolecules. This average density is
given as ρaverage = ρpeaks/N , where ρpeaks is the density of peaks present in the image and N
the average number of detections of a single biomolecule. Hence, together with Eq. (3.7) the
total pair-correlation function from Eq. (3.6) can be expressed as

g(r)peaks =
1

4πσ2
locρ

average
exp

� −r2

4σ2
loc

�
+ g(r)protein ∗ 1

4πσ2
loc

exp

� −r2

4σ2
loc

�
. (3.8)

This function has two parameters, which are the localization precision σloc and the average
density of biomolecules ρaverage, which is directly determined by N . For determination whether
biomolecules are randomly distributed, the total pair-correlation function obtained from an

experiment is fitted to Eq. (3.8), yielding fit parameters σfit
loc and N

fit
. Both parameters

can also be estimated from an additional experiment recorded at sparse label densities, i.e.
a recording of the blinking statistics. If the parameters obtained from both experimental
approaches are consistent, the biomolecular distribution is assumed to be random (Fig. 3.7a),
and clustered otherwise (Fig. 3.7b). In the clustered case, the experimentally obtained pair-
correlation function may further be fitted with a specified model of g(r)protein, which allows to
extract parameters of cluster characterization, including cluster size and the average number
of localizations per cluster. Notably, an analysis relying only on a single number describing the
blinking statistics of the label, in particular the average number of detections N , will not yield
reliable results if the distribution of the number of blinks is very broad. Especially extreme
outliers with a high number of localizations for a single biomolecule will confound the analysis.

Label titration. An experimental approach for distinguishing real biomolecular clustering
from blinking artifacts was developed by Baumgart et al. [4]. It indirectly incorporates the
blinking statistics of fluorophores into the analysis of spatial clustering. The deliberate vari-
ation of the labeling density leads to characteristic changes in the obtained localization maps
(Fig. 3.8a). For each label density, the relative area η covered by localization clusters is plot-
ted against the normalized density ρ of localizations inside the clustered area. Of note, the
value of ρ directly depends on η. For an underlying random distribution of biomolecules, the
relative clustered area η shows a linear increase for low label densities (Fig. 3.8b). At very
high biomolecule and labeling densities, some of the randomly distributed labeled biomolecules

43



3. Introduction

Random Clustereda b

Figure 3.7.: Pair correlation analysis accounting for overcounting. Shown are the total
pair-correlation function g(r)peaks (black), the contribution arising from overcounting g(r)stoch :=
g(r)centroid ∗ g(r)PSF (blue), and the correlation function of the biomolecules g(r)protein (green). For a
random biomolecular distribution (a) it holds that g(r)protein = 1. For values of g(r)protein greater than
1, the biomolecular distribution is clustered (b). Figure adapted from [6].

will be close to each other and thus, their localization clusters due to blinking will partially
overlap. Hence, the increase of η slightly declines and is not linear anymore for high labeling
densities. Further, for a random distribution of biomolecules, the density of localizations ρ
only depends on the blinking behavior of the fluorophore. The blinking statistics is indepen-
dent of the labeling density and ρ in principle always stays the same. Hence, for a random
biomolecular distribution the density is constant (Fig. 3.8c); after normalization this curve is
constant to 1. However, at large biomolecule and labeling densities, the clustered area η does
not increase linearly anymore, leading in turn to a slight increase in the density ρ. For an un-
derlying clustered distribution of biomolecules, localization clusters of individual biomolecules
overlap at higher labeling densities. The relative covered area η decreases, which in turn also
increases the density ρ. In order to obtain a further pronounced difference between randomly
distributed and clustered biomolecules, the normalized density ρ/ρ0 is plotted against the rel-
ative covered area η (Fig. 3.8d). Deviations of the curve from the reference curve expected
for random distributions indicate real molecular clustering. While being hardly affected by
user-defined parameter settings or non-homogeneous photophysical behavior of dye molecules,
the method lacks sensitivity in case of only faint molecular clusters since discrimination is dif-
ficult and rather subjective in this case. Moreover, it requires performing the same experiment
at various label densities, which is laborious. Of note, the acquisition of experiments at low
labeling densities is similar to the recording of a blinking statistics. Finally, the method is de-
pendent on two parameters needed for the determination of the clustered area: The standard
deviation σ of the Gaussian function used for representing a single localization and a cut off
threshold. The parameter σ should be chosen in accordance with the localization precision
of the experiment. A good choice for the cut off threshold was found to be 2.5; varying the
threshold value between 0.5 and 4.5 was shown to have a negligible effect on the obtained
results [4].

An adapted version of the labeling titration approach was proposed by Spahn et al. [7]. Re-
grouping the recorded SMLM frames of a single acquisition allows to circumvent the need
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Figure 3.8.: Label titration method. (a) Variation of the labeling density leads to characteristic
changes in the localization maps for random and clustered biomolecular distributions. (b) For random
biomolecular distributions, the relative clustered area η increases approximately linearly with the num-
ber of localizations. For clustered biomolecular distributions, the increase in η is reduced. (c) The
density ρ of localizations in the clustered areas is approximately constant for random biomolecular dis-
tributions. For clustered biomolecular distributions ρ increases with increased number of localizations.
(d) Plotting the normalized density ρ/ρ0 against η further pronounces the deviation between the curves
for a clustered and random biomolecular distribution. Figure adapted from [4, 59].

for titration and thus, is supposedly more efficient. Both temporal accumulation and com-
pletely random splitting of localizations were shown to achieve comparable results. However,
the principle underlying this method is quite different from the original approach proposed by
Baumgart et al. [4]. It highly depends on the choice of the threshold used for determination of
the clustered area. For temporal accumulation, this threshold is supposed to be set dependent
on the blinking statistics; in particular, the average number of detections of a single biomolecule
needs to be multiplied with the peak height of the Gaussian function representing an individual
localization. Thus, clusters arising merely from multiple detections of the same biomolecule do
not exceed the threshold and thus, are excluded from the cluster mask. Again, the knowledge
of the average number of detections is an important prerequisite for this approach. Hence, the
method strongly depends on parameters of fluorophore blinking statistics.
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Counting of molecules. Instead of a global qualitative characterization of clustering, other
approaches aim at a quantitative assessment of biomolecular aggregations. Quantitative PAINT
(qPAINT) estimates integer numbers of biomolecules within observed localization clusters [136].
For this, the mean dark time τd∗ and the influx rate ξ of image strands need to be determined.
For each analyzed subregion, τd∗ is obtained from the cumulative distribution function of all ob-
served dark times. The influx rate ξ is calibrated based on a calibration sample with a known
number of binding sites, e.g. from previous experiments under similar conditions, or DNA-
origami. Subsequently, the number of binding sites Nb is calculated as Nb = 1/(τd∗ · ξ). While
this approach allows to obtain the number of biomolecules in each subregion, large uncertain-
ties arise due to stochastic variations if the analyzed subregions are too small or the imaging
time too short. Further, multiple imager strand binding sites per biomolecule of interest may
be present; in particular for imaging with primary and secondary antibodies, large labeling
variabilities may be present, leading to higher uncertainties in the counts of biomolecules of
interest. In addition, the approach does not account for unlabeled biomolecules which are not
detected during the imaging time; thus, the actual number of present biomolecules will be un-
derestimated. For reliable determination of molecule counts, the calibration of the influx rate
ξ is crucial. Performing the calibration with inappropriate calibration samples which do not
reflect the conditions of the actual experiment represents another source of error. For example,
for biomolecules in the plasma membrane which are facing the coverslip, the accessibility for
the image strand is low; in this case, a calibration with DNA origami on a coverslip without
cells will be inappropriate.

Another approach for counting of molecules was proposed by Hummer et al. [137] and is an
extension of a previous approach from Fricke et al. [138]. For this, obtained blinking statis-
tics are fitted by a function with the four parameters p, p0, q,m: The first two parameters p
and p0 describe the photophysics of the fluorophore, the parameter q quantifies the fraction
of active labels, and m + 1 is equal to the oligomerization degree (i.e. m = 0 for monomers).
An estimation p̂, p̂0 for the parameters p, p0 can be determined by recording blinking statistics
of monomers, and fitting of the function with q = 1 (all observed fluorophores are inherently
active) and m = 0 (monomers). The parameter q can be estimated by q̂ via imaging of dimers
and fitting the obtained blinking statistics with p̂, p̂0, and m = 1 (dimers). Finally, a blinking
statistics obtained for biomolecules of unknown oligomerization degree can be fitted with the
previously estimated parameters p̂, p̂0 and q̂, while leaving the oligomerization degree m as a
free fitting parameter; also a combination of different oligomerization degrees can be analyzed
by fitting a weighted mixture of the functions with different values of the parameter m. The
applied formula was shown to be appropriate for a variety of models of fluorophore photo-
physics, as long as there is only one single bright state, or multiple bright states but a single
dark state only [137]. One main advantage of the method compared to others is that it becomes
possible to account for missing labels via the parameter q. As a disadvantage, the approach
is complex as two calibration experiments at different and well-defined oligomerization states
are required. Creating such calibration samples which offer the same experimental conditions
as given for the biomolecule of interest can be challenging.
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3.2. The p-value and statistical significance

The informative value of an SMLM localization map is often difficult to assess: Due to in-
sufficient labeling or detection efficiency only parts of the structure of interest are visible,
while multiple detections of the same biomolecule of interest lead to overcounting and clus-
tering artifacts. In addition, false positive localizations arising from cellular autofluorescence
or background fluorescence may confound the proper analysis of localization maps. Another
important fact to keep in mind is that biological cells exhibit a natural variation—each imaged
cell will be slightly different than the previous one. On a smaller scale, this also applies to an
individual cell itself, in particular the distribution of biomolecules within a cell: Due to purely
random events, some biomolecules in the cell will be close to each other, although no attractive
force nor interaction between them exists.

When analyzing biological data, in particular SMLM localization maps, one has to question
whether observed patterns are of significance or just the outcome of random effects. Interest-
ingly, humans tend to underestimate the natural scope of random processes; extreme events
are often failed to be anticipated. At the same time, the human brain is remarkably capable
of recognizing and detecting patterns. Taken together, humans easily misinterpret random
events, recognizing patterns and attributing significance to them. Notably, also the use of
computer algorithms may lead to wrong conclusions if not applied appropriately. As an exam-
ple, let’s consider a pattern generated by a spatial Poisson point process, i.e. complete spatial
randomness. Very likely, several points will be in close spatial proximity due to random chance
alone. This can be easily seen when analyzing realizations of CSR with clustering methods,
e.g. DBSCAN, as shown in Fig. 3.9. Although the point pattern is purely random, multiple
clusters were detected by the method. Importantly, a purely local analysis of clustering with-
out assessing the global point pattern distribution would not yield valid but highly misleading
results.

Figure 3.9.: Random spatial point pattern analyzed by DBSCAN. For the simulation, the
density was set to 80 points per µm2. The analysis parameters were set to r = 50nm for the search
radius and n = 3 for the minimum number of points constituting a cluster. The color code represents
the cluster assignment. Unclustered points are shown in gray. Although the point pattern was generated
by a spatial Poisson process and thus is completely random, 22 clusters were identified by DBSCAN.
Scale bar: 200 nm.
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The p-value offers a way to assess whether data show any features which cannot be expected
from random chance alone . Hence, it prevents researchers from being misled and attributing
importance to purely random events. Statistical significance testing based on the obtained
p-values allows for tests with a well-defined false positive rate. In the following, I will give a
short introduction into the p-value and statistical significance testing. Further, I will discuss
the validity of p-values and point out important issues for a correct interpretation of obtained
results.

3.2.1. The sampling distribution

In statistics, the characteristics of a whole population are estimated based on a small subsample;
for example, the general distribution of biomolecules is investigated based on a single or several
imaged cells. The population follows an underlying unknown distribution. The sample is a data
subset which should be representative of the population. It provides an empirical distribution,
which is used to infer information about the whole population. A sample summary statistic
is a metric describing the sample’s characteristic; in the case of biomolecular distributions,
for example, nearest neighbor distances or Ripley’s H function. The summary statistics is
calculated based on the data of a sample. Due to random effects the obtained value for a
summary statistic varies from sample to sample, also if the samples are drawn from the same
underlying population. Hence, the sample summary statistic is a random variable that follows
a probability distribution. This probability distribution of the sample summary statistic over
all possible random samples of given size n is called the sampling distribution, or also finite-
sample distribution. The shape of the sampling distribution depends both on the underlying
population and the sample size. For increasing sample sizes, the distribution becomes narrower
(Fig. 3.10). For some statistics, the sampling distribution can be described by a theoretical
formula. For example, the central limit theorem states that for a large enough sample size n,
the distribution of the sample mean approximates a normal distribution. For other statistics,
the sampling distribution takes on a more complicated form, and cannot be easily described
by a mathematical formula. Nevertheless, Monte Carlo simulations or bootstrap methods can
be applied in order to approximate the sampling distribution.

3.2.2. The null hypothesis and the p-value

The null hypothesis H0 is a baseline assumption that is made about the population (for ex-
ample, that the distribution of biomolecules is purely random). In particular, the sampling
distribution of a summary statistic is assumed to take on a certain distribution. Based on this
sampling distribution under the null hypothesis, we can calculate a p-value for a single sample
drawn from the population. The p-value is the probability that, under the null hypothesis,
a sample would yield a value of the summary statistics which is as extreme or more extreme
than the observed value obtained from the sample. As the p-value is based on the sampling
distribution, it not only depends on the population but also the sample size. Hence, the same
outcome for a summary statistics may yield different p-values dependent on the sample size as
the width of the sampling distribution varies.
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Figure 3.10.: Population, sample and sampling distribution. The distribution of the whole
population (top) is estimated based on a subsample (middle) of the population. The population has
a mean value of µ which is estimated by the value µ̂ obtained from the sample. The probability
distribution of a summary statistic over many samples of given size n is the sampling distribution. It
indicates the probability of obtaining certain values of the summary statistic for random samples of
the population. The sampling distribution of µ is shown for the sample sizes n = 5, 10, 100 (bottom).
The larger the sample size, the narrower is the sampling distribution. The ground truth value of µ is
indicated by the dashed vertical line.

The p-value is a random variable in the interval [0, 1] and describes how extreme the obtained
value of a test statistic for an observed sample is. Which values are regarded as extreme de-
pends on the choice of the alternative hypothesis (see Fig. 3.11). If we are interested whether
the sample shows either only smaller values or only larger values compared to the null hy-
pothesis, we calculate a one-sided p-value; left-sided (Fig. 3.11a) or right-sided (Fig. 3.11b),
respectively. For a two-sided p-value, deviations in both directions are considered (Fig. 3.11c).
As an example, for a null hypothesis of a random biomolecular distribution and the alterna-
tive hypothesis of nanoclustering, a one-sided p-value will be calculated. Whether a left- or
right-sided p-value is appropriate depends on the chosen summary statistic.

A random variable P represents a valid p-value if the probability that P ≤ a under the null
hypothesis is smaller or equal to the threshold a, in particular P(P ≤ a | H0) ≤ a for every
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Figure 3.11.: The p-value. The green curves show the sampling distribution of a test statistic under
the null hypothesis for a given sample size n. The value of the test statistic obtained for one specific
sample is shown as dashed vertical line. The p-value is the probability that under the null hypothesis,
the summary statistic would take on a value as or more extreme than the observed one. The p-value thus
corresponds to the area indicated in gray, which is identical to the value of the cumulative distribution
function (CDF) for the left-sided p-value (a). Depending on whether deviations in only one direction
or both directions are of interest, a one-sided (a,b) or two-sided (c) p-value is calculated, respectively.
The one-sided p-value can be either left- (a) or right-sided (b).

0 ≤ a ≤ 1. If equality holds true for all values of a, i.e. P(P ≤a | H0) = a, the p-value is exact.
This definition implies that—under the null hypothesis—the p-value is uniformly distributed
in the interval [0, 1]. In the following, I will take a closer look on the left-sided p-value and
present a short prove of its uniformity under the null hypothesis. The cumulative distribution
function of a continuous test statistic T under the null hypothesis is given by FT (t) = P(T ≤ t).
The left-sided p-value is defined as P = FT (T ). For the cumulative distribution function FP

of the p-value it holds that

FP (p) = P
�
P ≤ p

�
= P

�
FT (T ) ≤ p

�
= P

�
T ≤ F−1

T (p)
�
= FT

�
F−1
T (p)

�
= p. (3.9)

As only the uniform distribution fulfills FP (p) = p, the p-value follows a uniform distribution.
Hence, it holds that P(P ≤a | H0) = a and the p-value is exact. Of note, the proof only holds if
FT is invertible, which is not fulfilled in case of a discrete random variable T . If a test statistic
T is discrete, the distribution of p-values will also be discrete. Hence, the p-value cannot
be uniformly distributed over the whole interval [0, 1], but can take on discrete values only.
Nevertheless, the p-value will be distributed uniformly in the sense that P(p ≤ a | H0) = a, if
a is a value that can be taken on by the p-value, and P(p ≤ a | H0) < a otherwise. Hence, the
p-value is valid. The validity of discrete p-values will be important for p-values based on Monte
Carlo simulations or generated controls, which will be introduced in chapter 4 and 5. Notably,
if the p-value is not distributed uniformly under the null hypothesis, the null hypothesis does
not follow the assumed distribution and thus, the p-value is not valid.

3.2.3. Statistical significance and hypothesis testing

The p-value allows to asses statistical significance, i.e. whether a result for a test statistic is
more extreme than what can be expected from random chance. It describes how incompatible
the observed data are with a statistical model specified by the null hypothesis. In hypothesis
testing, the null hypothesis H0 is tested against the alternative hypothesis H1. Of note, the

50



3.2. The p-value and statistical significance

union of H0 and H1 should cover the whole range of possibilities. For example, if we compare
two groups characterized by a summary statistic with values A and B, respectively, we can
conduct the following tests:

• Left-sided: H0: A ≥ B vs. H1: A < B,

• Right-sided: H0: A ≤ B vs. H1: A > B,

• Two-sided: H0: A = B vs. H1: A < B or A > B.

For the above tests, the left-sided, right-sided or two-sided p-value is calculated, respectively.
The test decision, i.e. whether the null hypothesis is rejected or kept, is based on the p-value
and a previously chosen threshold termed the level of significance α. The null hypothesis is
rejected if the obtained p-value is lower than or equal to α. If the p-value is larger than α, the
null hypothesis is kept.

For the interpretation of results it should be kept in mind that the outcome of any hypothesis
test may be incorrect. There are two types of errors, which are described by the type I and
type II error. The type I error corresponds to false positives: The null hypothesis is rejected
and an observed effect is assumed to be real, although it is due to random chance alone. The
probability of a type I error is directly determined by the level of significance. For a valid
p-value it holds that P(p ≤ α | H0) ≤ α for all α ∈ [0, 1]. Hence, the probability of falsely
rejecting the null hypothesis is smaller than or equal to α. Note that for an exact p-value
the false positive rate is exactly α. A type II error occurs in case of false negatives: the null
hypothesis is kept, although the alternative hypothesis is true. Of note, the probability of a
type II error is dependent on the sample size; for increasing sample size the sampling variation
decreases and even small differences in the summary statistics can be attributed to true existing
effects instead of random noise.

3.2.4. Validity and interpretation of p-values

The p-value, and consequently also significance testing, has recently become an issue of dispute.
A variety of articles and comments have been published, both arguing for and against the
validity of p-values. This is mainly due to misinterpretations of how to correctly interpret p-
values. In 2016, the American Statistical Association released a statement addressing several
misconceptions about the p-value [139].

Firstly, the p-value is not the probability that the null hypothesis is true, but rather indicates
how compatible the observed data are with the null hypothesis. Importantly, a rejection of the
null hypothesis does not prove that the null hypothesis is false. The null hypothesis could still
be true, but a very unlikely event occurred. Vice versa, not rejecting the null hypothesis does
not prove its truth. The test decision always depends on the chosen level of significance, which
usually affects the probabilities for a type I and type II error. Notably, lowering the chance for
one error increases the other and a certain probability for either error always remains. Hence,
an outcome of a test should never be taken as a sole source for proving a hypothesis.

One major issue is known as fishing for p-values. In case of a true null hypothesis, there
is still a certain probability to obtain a significant p-value. For one hypothesis test, this
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probability corresponds to the level of significance α. If one conducts multiple experiments
and performs a hypothesis test for each, the probability to obtain a significant p-value is given
by 1 − αn, where n denotes the number of experiments. Evidently, 1 − αn approaches 1 for
large values of n, i.e. for a large number of experiments, one will obtain a significant p-value
with high probability. A closely related problem concerns publication bias. Significant results
are considered as interesting and are much more likely to be published than observations which
are non-significant. In this case, p-value fishing occurs at a much larger scale. For example,
let’s assume that 1000 different experiments—all following the null hypothesis—are conducted
in 1000 different research groups. On average 50 of these observations will yield a significant
p-value at a significance level of α = 0.05 and thus, are likely to be published with the globally
wrong assessment of being statistically significant.

Moreover, statistical significance does not directly relate to practical significance. Statistical
significance is a measure of probability, which directly depends on the sampling distribution.
The sampling distribution, in turn, depends on the sample size and reflects the natural vari-
ability of a summary statistics, which can be seen as noise. Statistical significance describes
whether an observed effect could be due to noise inherent in small data sets only. For large data
samples, the noise decreases and thus, even minor differences become statistically significant.
However, this does not imply that such a difference will necessarily be of practical importance.

Calculating a p-value can be very useful for researchers in order not to be fooled by random
chance. For small sample sizes in particular, random variations lead to outcomes that can
easily be misinterpreted as interesting patterns. The p-value allows to quantitatively assess
whether an observed effect could have been due to random chance alone and whether it is
worth to study the effect in more detail.

As p-values have been controversial, the use of alternatives such as estimation statistics and
confidence intervals have been encouraged. A confidence interval is an interval estimate for an
unknown parameter. It is always associated with a certain confidence level, which corresponds
to the percentage of confidence intervals containing the true parameter. Nevertheless, both
p-values and confidence intervals are based on the same statistical theories. Inferences about
statistical significance based on either are directly linked: If a p-value is smaller than the level
of significance α, the 1− α confidence interval will not include the null hypothesis value. Vice
versa, if the 1 − α confidence interval does not include the null hypothesis value, the p-value
will be smaller than α.

Finally, as long as random variability is involved, no effect can be strictly proven merely based
on a (small) sample of observations alone. Scientific conclusions must not merely be based
on whether a p-value passes a user-set threshold without any other supporting evidence or
reasoning. Moreover, also a true but possibly small difference might be of no essential practical
importance. In general, it is necessary that researchers are aware of what statistical significance
testing really means in order not to misuse it. Merely replacing the p-value with other methods
will not solve the problem, but rather only shift it. Most importantly, completely abolishing
any assessment of statistical significance poses a great risk of everyone being fooled by random
chance.

52



3.2. The p-value and statistical significance

3.2.5. P-values for assessing biomolecular distributions

A direct interpretation of SMLM localization maps is often hampered by artifacts arising from
overcounting or background detections. Interestingly, though, even in case of a localization
map void of any artifacts a purely local analysis of features will yield misleading results as
interesting subpatterns may arise due to random chance alone (compare Fig. 3.9). A global
statistical assessment based on a p-value and statistical significance testing provides a means
for a valid evaluation of biomolecular distributions.

In the following two chapters of this thesis, I will present two different methods to assess
biomolecular distributions with regard to statistical significance. In particular, the null hy-
pothesis of a random distribution of biomolecules in the cell plasma membrane will be tested
against the alternative hypothesis of (nano-)clustering. The first method (chapter 4) relies on
the recording of reliable blinking statistics which are the basis for generating realizations of the
null hypothesis as controls via Monte Carlo simulations. For the evaluation of clustering, Rip-
ley’s H function is employed as a summary statistic. The second method (chapter 5) is based
on competitive labeling of the same type of biomolecule with labels of two different colors. By
investigating the correlations between the two color channels, clustering can be assessed com-
pletely independent of fluorophore blinking behavior. Most importantly, both methods allow
to investigate the true distribution of biomolecules which underlies the observed distribution
of SMLM localizations.

53





4. Monte Carlo simulations based on blinking
statistics

This chapter contains data and figures from the following publication:

R. Platzer*, B. K. Rossboth*, M. C. Schneider, E. Sevcsik, F. Baumgart, H. Stockinger, G. J.
Schütz, J. B. Huppa, M. Brameshuber. Unscrambling Fluorophore Blinking for Comprehensive
Cluster Detection via PALM. Nature Communications, 11, 2020.

doi: 10.1038/s41467-020-18726-9

Aim
SMLM localization maps strongly depend on the blinking characteristics of fluorescent la-
bels. In particular, multiple detections of the same biomolecule of interest lead to localization
clusters, which can easily be misinterpreted as molecular nanoclusters. Methods trying to
account and correct for overcounting typically rely on some assumption or knowledge about
fluorophore blinking parameters. However, complex blinking behavior including long-lived
dark states and broad distributions of the blinking statistics often impede a valid assessment
of the spatial arrangement of biomolecules. In addition, recording of reliable blinking statistics
is often challenging. Here, we aimed at developing methods for reliable and comprehensive
characterization of fluorophore blinking behavior, which allows for an accurate assessment of
biomolecular spatial distributions.

Contribution
Together with Benedikt Rossboth, I conceived and developed software tools for analytical
methods and simulations for the study. For analysis of the blinking data, I implemented a
software package for comprehensive characterization of fluorophore blinking statistics. More-
over, I contributed code for Monte Carlo simulations of localization maps and assessment of
biomolecular distributions via Ripley’s analysis. Further, I extended the content from the
paper to allow for statistical significance testing with regard to biomolecular clustering. The
linker system for the platform was developed by René Platzer, who also contributed all probes.
Imaging experiments were performed by René Platzer and Benedikt Rossboth.

Outcome
A specially designed platform allowed for reliable recording and evaluation of fluorophore
blinking statistics. This comprehensive characterization of the blinking behavior was the ba-
sis for Monte Carlo simulations of SMLM experiments. The resulting simulated localization
maps were used for a robust evaluation of biomolecular distributions based on experimentally
recorded SMLM localization maps and statistical significance testing.
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4.1. Introduction

Fluorophore blinking statistics crucially affect the localization maps obtained via SMLM tech-
niques. All methods for discrimination of true biomolecular clustering from clustering artifacts
discussed in section 3.1 depend on fluorophore blinking behavior. Either the recording of the
blinking statistics is incorporated in the method itself [4] or at least some parameters of the
blinking statistics, in particular the mean number of detections of a single biomolecule, need
to be known or estimated [5–7]. For the validity of these cluster analysis methods, it is hence
crucial to characterize the blinking statistics accurately.

However, a reliable characterization of blinking behavior is challenging. First, the fluorophores
need to be recorded at sparse densities in order to ensure that localizations from different fluo-
rophores can be spatially distinguished. Further, the photophysical properties of fluorophores,
including photobleaching and -blinking, have been shown to depend on their molecular nanoen-
vironment [8], in particular for organic dyes. In addition, the illumination protocol affects the
resulting blinking statistics [62]. Therefore, the characterization of blinking behavior should
be performed under the same imaging conditions and molecular environment as given for the
experiment of interest. Employing a blinking statistics for correction and analysis of data
recorded under different experimental conditions may lead to misleading results. One factor
additionally impeding proper characterization of blinking behavior are spurious background
signals. Any trace amounts of buffer- or lipid-derived dyes may distort the recorded blink-
ing statistics of the fluorophores of interest. In case blinking statistics are recorded within
the cellular environment, cellular autofluorescence may impede the proper characterization of
fluorophore blinking.

In this chapter, I will present a method for comprehensive and reliable characterization of
fluorophore blinking behavior based on a specially designed platform, which addresses the
above-mentioned issues. Subsequently, the obtained blinking statistics can be used for Monte
Carlo simulations of SMLM localization maps, which allow for a statistical assessment of true
biomolecular distributions.

4.2. Results

4.2.1. Recording of blinking statistics

For the recording of fluorophore blinking statistics, we developed a specially designed platform
(Fig. 4.1). The platform consists of monovalent and recombinant streptavidin (mSAv�-3cHis6),
which is anchored via three histidine tags to a gel-phase planar glass-supported lipid bilayer
(SLB). The fluorophore of interest is coupled to the platform site-specifically via a biotin modifi-
cation. For localization of the platform itself, a spectrally complementary dye is site-specifically
conjugated to an unpaired cysteine residue within the same streptavidin subunit. The use of
the platform together with appropriate buffer conditions allows to mimic the environment of
a cell, while minimizing false positive localizations, which are particularly prominent under
strong illumination conditions. In addition, the platform not only ensures that just a single
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fluorophore molecule is bound, but further can be diluted to arbitrarily low densities. Thus,
localizations from different fluorophores are well separated from each other and can be spatially
distinguished.

Figure 4.1.: Platform design for recording of blinking statistics. The platform consists of
monovalent and recombinant streptavidin (mSAv�-3cHis6) and is anchored to a glass-supported lipid
bilayer (SLB) via three histidine tags. The fluorophore of interest (blue) is site-specifically bound to
the platform via a biotin-modification. A spectrally complementary fluorophore (red) is conjugated
to an unpaired cysteine residue within the same streptavidin subunit and used to identify platform-
bound fluorophores of interest, while distinguishing them from background localizations. Figure adapted
from [63].

We characterized the blinking behavior of four fluorescent labels: the photoswitchable fluo-
rophores PS-CFP2 and mEOS3.2, and the photoactivatable organic dyes Abberior CAGE635
(CAGE635) and Janelia Fluor 549 (PA-JF549). To label the platform itself we used Alexa
Fluor 488 (AF488; for characterization of CAGE635) or Abberior STAR635 P (STAR635; for
the characterization of PS-CFP2, mEOS3.2 and PA-JF549), which were site-specifically con-
jugated to the biotin-binding subunit of mSAv�-3cHis6. These platform-fluorophores are spec-
trally distinct to the respective fluorophores of interest. Imaging of the platform-fluorophores
allowed to determine the platform positions. Subsequently, a density filter was applied to the
platform data; platform positions with a neighbor in a vicinity of 500 nm were discarded. This
density filtering allowed to omit fluorophores with overlapping point spread functions. The
fluorophore of interest was imaged in a separate color channel. The two color channels for the
platform and blinking data were corrected for chromatic aberration via an affine transformation
matrix, which was determined by imaging of multi-spectral beads.

Subsequently, the recorded localizations of the fluorophore of interest were grouped into local-
ization clusters arising from individual fluorophores via hierarchical agglomerative clustering
as described in Fig. 4.2. Of note, other methods may be used as alternative for this task,
e.g. clustering can also by performed via a tracking algorithm. Finally, a colocalization anal-
ysis between the centers of the localization clusters and the platform signals was performed
(Fig. 4.2c). This ensured that any background signals were discarded, which would distort the
blinking statistics.

Subsequently, a characterization of fluorophore blinking was performed based on the remain-
ing localization data. In Fig. 4.3, representative intensity traces of two recorded individual
fluorophore molecules are shown. Via an intensity threshold, these traces were converted into
a binary sequence of on- and off-states. The estimated positions of fluorophores in the on-state
are given by the corresponding localization map. A simplified blinking trace is depicted in
Fig. 4.4. The blinking sequence can be characterized by several parameters. For a comprehen-
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Figure 4.2.: Grouping of localizations and colocalization with platform data. Panel (a)
shows an illustrative localization map including the platform signals (gray crosses) and the localization
data of the fluorophore of interest (black dots). Localizations arising from individual fluorophores are
grouped via hierarchical clustering using the Euclidean distance metric. Unweighted average distance
(UPGMA) was selected as linkage criterion. The resulting dendrogram (b) was cut at 200 nm (dashed
line) to obtain individual clusters indicated by color-code in panel (c). Localizations are considered
colocalized with a platform if a platform signal is located within a radius rcoloc from the localization
cluster center. Colocalized localization clusters are kept for further analysis, all other localizations are
discarded.

sive characterization of fluorophore blinking, we determined the number N of total detections
of a single fluorophore, the numbers of consecutive frames ton and toff a fluorophore is in its
on- or off-state, respectively, the number of gaps g in the blinking trace (i.e. the number of
switches between the on- and off-state), and the frame number fstart of the first appearance.
The values of these parameters are different for each recorded single fluorophore and thus, yield
a probability distribution. Optionally, the resulting distributions may be filtered for outliers.
Here, we discarded labels detected more often than a specified threshold value (see Methods,
section 4.4) and removed these outliers from the blinking distributions. Of note, many meth-
ods for the detection of true molecular clustering only take into account the mean number of
detections N of a single fluorophore, reducing the whole distribution of N to a single number.
This approach may be sufficient if the standard deviation of the distribution is low. In case of
a broad distribution with heavy tails, however, outliers will confound the analysis.

Fig. 4.5 shows the resulting blinking statistics recorded for the four investigated fluorophores
PS-CFP2, mEOS3.2, PA-JF549 and CAGE635. The figure includes histograms for the total
number of detections N , the number of gaps g, as well as on- and off-times ton and toff,
respectively. Notably, nearly all obtained distributions exhibit heavy tails. In principle, high
values of N , g and ton can be accounted for by simple merging of localizations as proposed by
Annibale et al. [3, 5]. However, high values of toff impede this analysis, as repeated detections
of the same fluorophore cannot be distinguished from a newly appearing fluorophore. As we
observed, a considerable percentage of toff values exceeds a value of 200 frames for the recorded
data (Fig. 4.5), which is higher than typical threshold values chosen for merging of localizations.
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Figure 4.3.: Representative intensity traces of PS-CFP2 molecules. Intensity traces of single
PS-CFP2 molecules (a,b) were recorded over 10 000 frames. Both molecules exhibited multiple bursts
of detections. Insets show enlarged views of the indicated regions. Figure adapted from [63].

Figure 4.4.: Blinking statistic parameters. The state of a fluorophore is shown over the time
given in frame numbers. A fluorophore can switch between its bright on-state and its dark off-state.
The blinking trace can be characterized by the total number of detections of the fluorophore N , the
duration of on- and off-states ton and toff, respectively, and the number of switches between the on- and
off-state, which is described by the number of gaps. Figure recreated and adapted from [63].
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4. Monte Carlo simulations based on blinking statistics

Figure 4.5.: Experimentally recorded blinking statistics. The four panels show the blinking
statistics for the fluorescent proteins PS-CFP2 (a) and mEOS3.2 (b), and the organic dyes PA-JF549
(c) and CAGE635 (d). Imaging was performed at 2ms illumination and 3 or 4 kW/cm2, respectively,
in the presence of 4% paraformaldehyde (PFA). Histograms show the distribution of the total number
of detections N , the number of gaps g, and the on- and off-times ton and toff, respectively. Vertical
dashed lines indicate the mean for N , g and ton, and the median for toff. Figure adapted from [63].
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4.2.2. Cluster analysis via simulation envelopes

Fluorophore blinking prohibits adequate cluster analysis via methods that do not account for
the blinking behavior, as for example analysis via Ripley’s H function. This can be easily seen
via simulations: For Fig. 4.6a, we simulated a random distribution of molecules (left column).
For the corresponding localization maps (Fig. 4.6b), we included multiple detections of each
label. The assigned number of detections for each biomolecule was chosen randomly based
on the experimentally determined blinking statistics of PS-CFP2, mEOS3.2, PA-JF549 and
CAGE635. Subsequently, the resulting localization maps were analyzed via Ripley’s analysis.
As described in section 3.1.2, in case of complete spatial randomness Ripley’s H function is
equal to 0 at all scales, i.e. H(r) = 0 for all r ∈ R+. Fluorophore blinking, however, leads
to localization clusters which cannot be distinguished from true molecular clustering. The
resulting Ripley’s H functions show a clear deviation from 0 (Fig. 4.6c). Therefore, a simple
analysis based on deviations of Ripley’s H function from 0 leads to misleading results and is
not adequate in the presence of overcounting.

Spatial point patterns of localizations arising from complex blinking statistics lead to a form
of the Ripley’s function that cannot easily be described theoretically. Hence, comparing an
obtained curve to the form of Ripley’s function under a random distribution is not straight-
forward. Nevertheless, if a comprehensive characterization of fluorophore blinking properties
is available, true molecular clustering may be discriminated from overcounting artifacts by
means of Monte Carlo simulations [121, 140]: Simulations of randomly distributed molecules
including experimentally recorded blinking statistics allow to estimate the form of Ripley’s H
function for random molecule distributions. In order to obtain reliable estimates, the number
of simulations n should be high; here, we used n = 99.

A representative localization map for an underlying random distribution is shown in the top
panel of Fig. 4.7a. For each simulated localization map, Ripley’s H function was determined,
yielding different realizations from the sampling distribution (Fig. 4.7b). From this set of
curves, the pointwise mean E(r) (black solid line), the standard deviation V (r) (indicated
by the dotted lines) and 95% confidence intervals (dashed lines) were calculated. Further,
Ripley’s H function was normalized by subtracting E(r) (Fig. 4.7c). Thus, for a truly random
distribution of underlying biomolecules, the function again follows the 0-line. For the analysis
of a new data set (green lines), Ripley’s H function H(r) is determined from which E(r) is
subtracted. Now, deviations of the function H(r) − E(r) from 0 indicate distributions that
differ from the null hypothesis of an underlying random biomolecular distribution (Fig. 4.7c):
Values greater than 0 indicate clustering, whereas values below 0 indicate dispersion [141,142].

The top and bottom row in Fig. 4.7 show the analysis in case of a random and clustered
biomolecular distribution. As can be seen in panel c, the obtained function H(r)−E(r) for the
simulated data shown in panel a (green line) follows the 0-line in case of a random distribution.
In case of true biomolecular clustering, however, the green line shows a clear deviation from
the confidence band at distances smaller than 200 nm, indicating nanoclustering.

Further, a significance test for the null hypothesis of a random biomolecular distribution can be
conducted based on the simulated localization maps [120,140]: Let T be a statistic describing
the spatial distribution of a localization point pattern. As we are interested in nanoclustering,
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a

b

c

Figure 4.6.: Cluster analysis via Ripley’s H function in the presence of overcounting.
The left and right column show simulated point patterns for randomly distributed and clustered
biomolecules, respectively, at a density of 70 molecules per µm2. For the clustering scenario, the
cluster radius was set to 60 nm. The density of clusters was 20 clusters per µm2, with 80% of molecules
inside clusters. The top panel (a) shows the ground truth distribution of molecules. The four panels
below (b) show localization maps which include multiple detections of each biomolecule. The number
of detections assigned to each biomolecule was chosen randomly based on experimentally determined
blinking statistics of PS-CFP2, mEOS3.2, PA-JF549 and CAGE635 from Fig. 4.5. Scale bars: 1µm.
(c) Resulting Ripley’s H functions (mean ± SD) from the analysis of 15 simulated point patterns as
illustrated in panels a and b within an area of 15 × 15µm2. Notably, Ripley’s H functions for the
simulations of random molecular distributions which include overcounting well exceed values of 0 and
thus, cannot be distinguished from clustered molecular distributions. Figure adapted from [63].

the value of the Ripley’s function at r = 50nm was taken as test statistic T for the analysis,
in particular T := H(50) − E(50). With t0 we denote the value of the statistic for the data
set of interest, and ti for i = 1, ..., n denote the values obtained for a set of n Monte Carlo
simulations under the null hypothesis, i.e. a random biomolecular distribution. Subsequently,
the obtained set of values T := {ti | i = 0, ..., n} was ordered. Based on this order a rank was
assigned to each value. The corresponding one-sided p-value for t0 was calculated as

p =
rank(t0, T )

n+ 1
, (4.1)

where rank(t0, T ) denotes the rank of t0 within the set T in descending order, i.e. the maximum
value has a rank of 1. Of note, this calculated p-value is limited to discrete numbers; the
minimum p-value that can be obtained is given by 1/(n + 1). For hypothesis testing, the
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Figure 4.7.: Monte Carlo simulations and simulation envelopes. (a) Localization maps of
a random (top) and clustered (bottom) biomolecular distribution were simulated with a density of 50
molecules/µm2, including overcounting based on fluorophore blinking statistics of PS-CFP2. Parameters
for clustered scenario: 10 clusters/µm2, 60 nm cluster radius, 80% of molecules inside clusters. Scale
bars: 1µm. (b) In order to obtain an estimation of Ripley’s H function under the null hypothesis,
n = 99 simulation runs of randomly distributed molecules were performed. For each simulation, Ripley’s
H function H(r) was calculated, creating a set of curves (gray lines) which constitute a simulation
envelope. The pointwise mean E(r) (black solid line), standard deviation V (r) (indicated by the dotted
lines) and 95% CI (dashed lines) are shown. The green curve was obtained for the localization data
shown in panel a. (c) Deviations of H(r) − E(r) from 0 indicate non-random molecule distributions.
For the random biomolecular distribution (top), the green line lies well within the simulation envelope.
The curve for the clustered biomolecular distribution (bottom) exhibits a clear peak which lies outside
the simulation envelope. Investigating clustering at a range of r = 50nm yielded p-values of p = 0.64
and p = 0.01 for the random and clustered scenario, respectively.

null hypothesis was rejected if the obtained p-value was smaller than the specified level of
significance α, chosen as α = 0.05. For the simulated data from Fig. 4.7, a p-value of p = 0.64
and p = 0.01 was obtained for the randomly and clustered scenario, respectively.

4.2.3. Analysis of experimental data

We applied our approach for investigating the spatial distribution of proteins in the T-cell, in
particular the T-cell receptor (TCR) and the integrin LFA-1, which play important roles in
T-cell activation [143, 144]. TCR-CD3ζ was fused to PS-CFP2, and LFA-1 was labeled with
a biotinylated antibody for detection via PS-CFP2. T-cells were chemically fixed and imaged
using the same experimental settings as used for the characterization of the fluorophore blinking
behavior (see Methods, section 4.4 for details).

63



4. Monte Carlo simulations based on blinking statistics

In order to perform Monte Carlo simulations which correspond to the experimental data, one
required parameter is the density of molecules. The simulated density needs to be similar to
the density of molecules in the experiment which is to be evaluated. This density was estimated
from the experimental data set by dividing the total number of localizations by the average
number of detections N derived from the recorded blinking statistics. For the simulations, a
density of 86 molecules per µm2 for TCR-CD3ζ and 145 molecules per µm2 for LFA-1 was
used.

Fig. 4.8 shows the experimentally obtained localization maps (panel a) as well as a representa-
tive simulated localization map (panel b) for both TCR-CD3ζ (top row) and LFA-1 (bottom
row). In all cases, the localization maps exhibited obvious clustering. However, for TCR-
CD3ζ a comparison of Ripley’s H function with the simulated data sets revealed no significant
deviation from an underlying random distribution of biomolecules (Fig. 4.8c). The obtained
p-value at a range of r = 50nm was p = 0.23, which is in accordance with previous results on
the distribution of TCR-CD3ζ in non-activated T-cells [118, 145]. In contrast, LFA-1 showed
a significant deviation from the random scenario with a p-value of 0.01. In this case, the ob-
served localization clusters cannot be explained by mere overcounting, but true nanoclustering
of LFA-1.
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Figure 4.8.: Analysis of TCR-CDζ and LFA-1 distributions in the T-cell. Localization maps
for experimental data (a) and a representative simulation (b) for TCR-CDζ (top row) and LFA-1
(bottom row). The simulated control data sets assumed a random distribution of molecules with a
density of 86 molecules per µm2 for TCR-CD3ζ and 145 molecules per µm2 for LFA-1. A number of
n = 99 simulations was performed for each scenario. Scale bars: 500 nm. (c) For each localization
map, Ripley’s H function H(r) was calculated (gray lines). The pointwise mean E(r) (black solid line),
standard deviation V (r) (indicated by the dotted lines) and 95% CI (dashed lines) are shown. Ripley’s
H functions obtained for the experimental data are shown as green curves. The curve obtained for
TCR-CD3ζ could not be discriminated against a random scenario; in contrast, the curve for LFA-1
exhibited a clear deviation from the simulation envelope. Investigating the clustering at a range of
r = 50nm yielded p-values of p = 0.23 for TCR-CD3ζ, and p = 0.01 for LFA-1.
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4.3. Discussion

The results of cluster analysis methods are crucially affected by fluorophore blinking behavior.
Simple approaches to account for overcounting artifacts are based on merging of localizations
in spatial and temporal proximity [5]. However, such approaches are not suitable for complex
blinking behavior, in particular long dark times, and fail to account for outliers exhibiting
excessive blinking. Evidently, merging procedures cannot prohibit multiple detections of the
same biomolecule in case of labeling strategies including multiple dyes per biomolecule of
interest. Hence, merging approaches are not sufficient for reliable cluster assessment in case of
antibody labeling, for example. Similarly, merging of localizations cannot account for multiple
detections in case of PAINT imaging, as the time between multiple detections of the same
biomolecule of interest is in principle unlimited.

Other cluster analysis approaches rely on a single number summarizing the blinking behav-
ior, in particular the mean number of localizations [6, 7]. However, broad distributions of
blinking parameters including heavy tails typically impede correct cluster assessment in this
case. Consequently, not only the average number of detections of a fluorophore is important,
but the overall shape of its blinking parameter distributions affects its suitability for accurate
assessment of molecular clustering.

Organic dyes typically show extensive and complex blinking behavior [110–112]. Blinking of
photoactivatable fluorescent proteins is less pronounced; nevertheless, also FPs may transition
into prolonged dark states with a subsequent return into their bright state [3, 146, 147]. We
showed that both PS-CFP2 and mEOS3.2 molecules may exhibit several cycles of emissive
states on a timescale of several seconds to minutes. More than half of all molecules were
detected at least twice. The maximum number of observations of a single molecule exceeded
20 and 50 detections for PS-CFP2 and mEOS3.2, respectively. Often, high excitation power
is employed in a typical experiment, aiming to bleach the fluorophore after detection and thus
suppress blinking. However, this approach does not solve the problem, as it causes a high
number of unspecific background signals which cannot be distinguished from signals arising
from molecules of interest [63]. In addition, fluorophores may be bleached before detection,
which decreases the effective labeling efficiency [62].

For reliable cluster analysis results, the blinking behavior should be characterized under the
same imaging conditions as the experiment which is supposed to be analyzed based on the
recorded blinking statistics. This is important as blinking properties change with experimental
conditions, including illumination protocols and the molecular nanoenvironment [8]. Interest-
ingly, PFA-based fixation was shown to have no significant effect on the blinking behavior [63].
Further, changing the excitation power and illumination time while keeping the excitation
energy per frame constant was shown to have only a minor effect on blinking statistics [63],
although the effective labeling efficiency was reported to decrease for very high excitation in-
tensities [62]. In contrast, varying the excitation intensity while keeping the exposure time
constant affects the blinking statistics, in particular the observed on-times and number of
localizations [62].

The presented approach for characterization of blinking statistics relies on a specially designed
SLB-based experimental platform, which mimics experimental conditions. The colocalization
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of blinking data with platform signals minimizes false positive detections arising from back-
ground signals. Blinking analysis without the platform data should only be performed if
background signals are known to be negligible.

On the one hand, this platform-based approach allows to screen and identify suitable fluo-
rophores and appropriate imaging conditions which minimize fluorophore blinking. On the
other hand, the platform serves as an ideal tool for an exhaustive characterization of flu-
orophore blinking. Monte Carlo simulations based on the recorded blinking statistics offer
a comprehensive way for analyzing localization maps and comparing them with various as-
sumed models of biomolecular distributions, in particular, random distributions of underlying
molecules of interest. Optionally, the presented assessment of clustering via Ripley’s H func-
tion can be readily substituted with other cluster analysis tools, e.g. pair-correlation analysis,
which offers the advantage of being non-cumulative. Further, a statistical significance test can
be performed based on the obtained simulation envelopes. Of note, the presented approach
assesses clustering at a single length scale only. If multiple length scales are tested at the same
time, this should be accounted for in order to avoid an inflation of the type I error [124] (see
also chapter 5.2.4 for a way to account for multiple tests). Moreover, the sensitivity of clus-
ter detection will be affected by undercounting issues due to insufficient labeling or detection
efficiency.

In conclusion, knowledge of fluorophore blinking statistics is crucial for accurate cluster anal-
ysis, in particular, if subtle differences in clustering behavior of individual samples are inves-
tigated. With conventional (1-color) SMLM imaging approaches, an assessment of clustering
at or below the length scale of the localization error is impossible without correct knowledge
about blinking behavior.
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4.4. Methods

All details of the preparation of glass-supported lipid bilayers, protein expression, refolding and
preparation of imaging tools as well as preparation of cell samples for microscopy are described
in the Methods section of [63].

Platform design for recording of blinking statistics. The platform, consisting of monovalent
and recombinant streptavidin (mSAv�-3cHis6), was anchored to a glass-supported lipid bilayer
(SLB) via three histidine tags. The fluorophore of interest (PS-CFP2, CAGE635, mEOS3.2, or
PA-JF549) was site-specifically bound to the platform via a biotin-modification. A spectrally
complementary fluorophore (AF488 for characterization of CAGE635; STAR635 for character-
ization of PS-CFP2, mEOS3.2 and PA-JF549) was conjugated to an unpaired cysteine residue
within the same streptavidin subunit and used to identify platform-bound fluorophores of
interest.

Microscopy. Objective-based TIRF microscopy was conducted using an inverted microscope
(Axiovert 200, Zeiss) equipped with a chromatically corrected objective (100×, NA = 1.46,
Plan-Apochromat, Zeiss) and 405 nm (photoswitching of PS-CFP2 and mEOS3.2 and pho-
toactivation of CAGE635 and PA-JF549; iBeam smart, Toptica), 488 nm (imaging of AF488
and PS-CFP2; optically pumped semiconductor, Sapphire; Coherent), 532 nm (imaging of
mEOS3.2 and PA-JF549; LCX532L with additional AOM, installed in L6Cc laser combiner,
Oxxius), and 647 nm (imaging of STAR635 and CAGE635; iBeam smart, Toptica) laser sources.
For rapid shuttering of the 488 nm laser illumination, an acousto-optical modulator was used
(1205C, Isomet). Fluorescence emission was detected with a back-illuminated EMCCD camera
(iXon Ultra 897, Andor). Timing protocols were generated by in-house developed programs
implemented in LabVIEW (National Instruments) and executed by a built-in digital/analog
IO-card (model PCI-6713, National Instruments). Single mSAv�-STAR635 (or mSAv�-AF488)
molecules were imaged using 647 nm (or 488 nm) excitation with a 100ms time lag for at least
50 frames and employing a power density of 1.5 kWcm−2 during the illumination time of 2ms.
For PS-CFP2 PALM measurements, 2ms of illumination at 3 kW cm−2 were followed by a
delay time of 4ms, which was necessary to read out the cropped camera chip, yielding frames
rates of 167Hz. A total of 10 000 frames were recorded. For T-cell microscopy experiments,
the T-cells were seeded on ICAM-1-His12 coated glass slides and fixed with 4% PFA. The
same microscopy setup, illumination scheme, and laser power was used as for recording of the
blinking data of PS-CFP2. For CAGE635 PALM measurements, 10 000 frames were recorded
with 2ms of illumination at 4 kW cm−2 with a delay time of 4ms (167Hz frame rate). Excita-
tion light was uncoupled from emission light with the use of a dichroic mirror (zt488/640rpc;
Chroma). Emission was then split by a Dual View system (Photometrics) equipped with a
640dcxr dichroic mirror and HQ700/75 (both Chroma) and 525/45 (Semrock) emission filters.
For mEOS3.2 and PA-JF549 PALM measurements, 10 000 frames were recorded with 2ms of
illumination at 4 kW cm−2 with a delay time of 4ms (167Hz frame rate). Excitation light
was uncoupled from emission light with the use of a dichroic mirror (zt405/488/532/640rpc;
Chroma). Emission was split by a Dual View system (Photometrics) equipped with a 640dcxr
dichroic mirror and HQ700/75 and HQ585/40m (all three filters Chroma) emission filters.

67



4. Monte Carlo simulations based on blinking statistics

Single-molecule blinking analysis. For both channels, single molecules were detected and
localized by using a Maximum Likelihood Estimator implemented in the ThunderSTORM Im-
ageJ plugin [89]. The position of mSAv�-STAR635 (or mSAv�-AF488) molecules was averaged
over the imaging period by using the localization merging algorithm implemented in Thun-
derSTORM (parameter settings: maximum toff = 10 000 frames, maximum displacement = 1
pixel). This mean position was then employed for colocalization analysis. Determined posi-
tions of mSAv�-STAR635 (or mSAv�-AF488) were corrected for chromatic aberration by an
affine transformation matrix, which was experimentally derived from imaging TetraSpeck beads
(Thermo Fisher Scientific). Any mSAv�-STAR635 (or mSAv�-AF488) molecules with a near-
est neighbor within a distance smaller than 500 nm were discarded. Fluorescent signals from
individual labels (i.e. PS-CFP2, mEOS3.2, PA-JF549, or CAGE635 molecules) were grouped
via hierarchical agglomerative clustering using the Euclidean distance metric. Unweighted av-
erage distance (UPGMA) was selected as linkage criterion. The resulting dendrogram was cut
at 200 nm to obtain individual clusters. Localization clusters were regarded as colocalized if a
platform signal was located within a radius of 500 nm from a cluster center. Only colocalized
localization clusters were selected for further analysis. Localization clusters with a number
of detections exceeding a certain threshold were discarded as outliers. This threshold was set
to 150 (for mEOS3.2 and PA-JF549); less than three localization clusters were lost for each
scenario. For the PS-CFP2 and CAGE635 data no filter was applied.

Simulations. A 15 × 15µm2 region of interest featuring molecules at specified densities was
simulated as described previously [118]. Briefly, a probability mask was generated by placing
centers of clusters randomly according to a uniform distribution, and distributing the positions
of molecules within clusters based on a two-dimensional Gaussian distribution located at the
cluster center and truncated at the cluster size, i.e. one time the standard deviation of the
Gaussian. A given proportion of molecules was attributed to clusters (% of molecules in
clusters). The remaining molecules were randomly added on areas outside the clusters. To
include blinking, the number of detections per label was drawn from the experimentally derived
probability distribution of N . Finally, a localization error was added by shifting the positions
into a random direction by a distance drawn from a normal distribution with mean 0 and
experimentally derived localization precision as standard deviation. For performing simulations
used for comparison with cell-associated microscopy data, the approximate expression levels of
CD3ζ-PS-CFP2 and LFA-1 (stained with the mAb TS2/4-biotin and fluorophore-conjugated
mSAv�) within a region of interest was determined by dividing the number of localizations
with the mean number of detections per fluorescence molecule.

Calculation of p-values. For each experimentally acquired or simulated data set, the test
statistic T := H(r) − E(r) with r = 50nm was calculated, where H(r) denotes Ripley’s H
function and E(r) is the pointwise mean of Ripley’s H function over a set of n = 99 Monte
Carlo simulations under the null hypothesis. With t0 we denote the value of the statistic for the
data set which is to be analyzed; ti for i = 1, ..., n denote the values obtained for the simulations
under the null hypothesis. The one-sided p-value was calculated as p = rank(t0, T )/(n + 1),
where rank(t0, T ) denotes the rank of t0 within the set T := {ti | i = 0, ..., n} in descending
order. For hypothesis testing, the null hypothesis was rejected if the obtained p-value is smaller
than or equal to the specified level of significance α = 0.05.
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This chapter contains content from the following publication:

A. M. Arnold*, M. C. Schneider*, C. Hüsson, R. Sablatnig, M. Brameshuber, F. Baumgart,
G. J. Schütz. Verifying molecular clusters by 2-color localization microscopy and significance
testing. Scientific Reports, 10, 2020. doi: 10.1038/s41598-020-60

Aim
SMLM localization maps and, in consequence, cluster analysis methods crucially depend on
fluorophore blinking behavior. As fluorophore blinking statistics are subject to the local na-
noenvironment of the chromophore and the applied imaging protocol, they need to be deter-
mined for every experimental condition individually. However, recording of reliable blinking
statistics is challenging and time-consuming. Especially in cases of faint clustering, subtle
differences in the blinking may lead to different results in the evaluation of clustering. Here,
we aimed to develop an approach which is not affected by fluorophore blinking behavior and
assesses biomolecular clustering in the framework of statistical significance testing.

Contribution
I first started to work on this project during my Master thesis [148], and further developed
and extended work on this project during my time as PhD student. I developed the analytical
method for p-value calculation for the null hypothesis of an underlying random distribution of
biomolecules. Further, I developed a method which calculates a p-value for multiple experi-
ments, i.e. which accounts for multiple testing. Together with Andreas Arnold, I developed code
for simulations of SMLM localization maps. In addition, I developed code for our 2-CLASTA
analysis method. Further, together with Christoph Hüsson, I conceived and developed an Im-
ageJ plugin for 2-CLASTA analysis. I performed imaging experiments together with Andreas
Arnold and Florian Baumgart. Together with Andreas Arnold and Mario Brameshuber, I
analyzed the data.

Outcome
The developed 2-CLASTA method allows for identification of even faint biomolecular clustering
completely independent of fluorophore blinking behavior. It is parameter-free and not suscep-
tible to clustering artifacts due to overcounting. The method was extensively characterized via
simulations of SMLM localization maps. A proof of concept was performed experimentally via
SNAP-concatemers, which exhibit a defined oligomerization degree. The developed ImageJ
plugin offers easy applicability of the method. In addition, I developed a method to correctly
ascribe a p-value to a set of independent experiments, thereby avoiding the problem of fishing
for p-values.
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5.1. Introduction

The potential of SMLM to reliably detect molecular nanoclusters is impeded by overcounting
artifacts. Multiple detections of the same biomolecule are caused by the presence of multiple
dye molecules per molecule of interest, as well as stochastic blinking of dye molecules. Pre-
vious attempts to account for overcounting artifacts all pose assumptions on at least some
characteristics of the blinking statistics of fluorophores [3–7]. These methods either require
the choice of user-defined parameters [3, 5–7], which should be chosen in correspondence with
fluorophore blinking, or incorporate a direct recording of fluorophore blinking statistics [4].
Without any knowledge of fluorophore blinking behavior, previous approaches may yield mis-
leading results concerning true biomolecular clustering. Of note, fluorophore blinking statistics
are also affected by the dye’s nanoenvironment and illumination protocols [8, 62, 63]. Hence,
for reliable results, blinking statistics need to be recorded for each experimental condition sep-
arately. Taken together, a parameter-free method independent of any assumptions on blinking
behavior would be of great advantage.

In this chapter, I present a method termed 2-Color Localization microscopy And Significance
Testing Approach (2-CLASTA). The aim of the method is to determine the underlying dis-
tribution of biomolecules of interest rather than the mere observed localizations: It allows
to assess whether biomolecules of interest show any significant difference from a completely
random distribution. The major advantage of 2-CLASTA is its complete independence of any
assumptions on fluorophore blinking behavior; especially, it does not require the recording of
blinking statistics. Moreover, it can readily be applied to a single two-color localization map
without the need of any additional experiments. In this approach, the same molecule of interest
is targeted with two fluorescent labels of different color, which are imaged in two separate color
channels. Nearest neighbor distances across the two channels are calculated and compared to
nearest neighbor distances distributions for randomized data sets, which are calculated directly
from the recorded data without the need for further experiments. The method was extensively
validated via simulations. Additionally, experiments in cells expressing artificially clustered
proteins showed that molecular nanoclustering down to only two molecules per cluster could
be reliable detected.

5.2. Results

5.2.1. Testing the null hypothesis of a random biomolecular distribution

For 2-CLASTA, the biomolecules of interest are labeled competitively with fluorescent labels
of two different colors. Importantly, a single biomolecule of interest must be labeled with one
type of fluorophore only. Of note, a one-to-one label stoichiometry is not required for the
method; a single biomolecule may carry multiple dyes as long as they are of the same type. In
particular, this allows for the use of fluorescently labeled antibodies. The different fluorophore
types can either be imaged alternately, or simultaneously on two separate regions of the camera
chip. We assume in the following that fluorophores are imaged alternately in two separate color
channels, a blue and a red one, respectively. Thereby, a two-color SMLM localization map is

70



5.2. Results

obtained.

Fig. 5.1a depicts simulated localization maps of an underlying random (top) and clustered
(bottom) biomolecular distribution. In both cases, localizations show clear clustering due to
multiple observations of dyes belonging to the same biomolecule. As a crucial feature, all
localizations belonging to a single biomolecule are of one color only, as the biomolecule carries
only fluorophores of one type. When comparing the two-color localization maps arising from the
underlying random and clustered biomolecular distribution, one can identify a characteristic
difference between them: For an underlying random distribution of biomolecules, the two point
patterns of all red and all blue localizations are independent of each other. For a clustered
distribution, in contrast, the biomolecules are close to each other. Hence, localization clusters
of different colors overlap and the two point patterns become correlated. This offers a basis
for discriminating the two cases: The correlation between the two point patterns needs to
be investigated, while the univariate clustering of localization in each color channels arising
from overcounting artifacts should be neglected. As a quantitative measure of the correlation
between the two point patterns, we used the cross-nearest neighbor distance r, which is the
distance from all localizations in one color channel to their nearest neighbor in the other color
channel. From all obtained distances r, we calculated their empirical cumulative distribution
function (CDF), denoted as cdf(r) in the following. Of note, it is difficult to derive the form of
the CDF of cross-nearest neighbor distances theoretically. The CDF not only depends on the
underlying distribution of biomolecules, but also on the number of dyes conjugated to a single
biomolecule, as well as fluorophore blinking statistics. As these parameters are unknown or
difficult to obtain, the exact form of the CDF is difficult to be derived. Consequently, it is also
virtually impossible to conclude on the underlying distribution of biomolecules based only on
the empirical CDF obtained from the recorded localization map.

In order to determine whether a recorded localization map arises from a random or clustered
distribution, we compared the obtained CDF of cross-nearest neighbor distances with CDFs
obtained for randomized data sets, for which the correlation between the two color channels
was broken via toroidal shifts [150]. The principle of a toroidal shift is illustrated in Fig. 5.2.
The randomized data was constructed directly from the original data. For this, all localiza-
tions of one color channel were shifted by a vector =v, considering periodic boundary conditions
(Fig. 5.1b). Applying this toroidal shift to the localizations of one color channel breaks poten-
tial correlations between localizations of the two color channels while conserving the univariate
characteristics of the individual point patterns, i.e. the patterns of the red and blue localiza-
tions, respectively. Notably, the obtained randomized data sets do not necessarily represent a
complete randomization of underlying biomolecules. In case of true biomolecular clustering,
biomolecules belonging to the same cluster and being labeled with the same fluorophore type
will not be separated in the randomized data sets.

We calculated a set of n = 99 randomized data sets. For each data set, the shift vector =v
was chosen randomly within the region of interest. As the randomized data sets are directly
calculated from the experimental data of a single recorded localization map, the method re-
quires neither additional experiments nor any prior information or assumptions on fluorophore
blinking behavior.

For all obtained randomized data sets we calculated the CDFs of cross-nearest neighbor dis-
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Figure 5.1.: Analysis of localization maps with 2-CLASTA. (a) Simulated two-color localization
maps for a random (top) and a clustered (bottom) distribution of biomolecules. Images show a 2×2µm2

region. For the simulation of blinking we used experimental data obtained for SNAP-AF488 (blue
channel) and SNAP-AF647 (red channel). (b) Shifting all localizations of the blue color channel by the
shift vector =v breaks correlations between the two color channels. The principle of the toroidal shift is
illustrated in Fig. 5.2. (c) The cumulative distribution function of nearest neighbor distances, r, between
the two color channels is plotted in green for the localization data shown in panel a. The functions
cdfrand(r) of n = 99 control curves, generated with randomly chosen toroidal shifts, are depicted in light
gray. The mean of all control curves is shown in black. From the rank of the curves, we calculated a
p-value p = 0.50 for the random case, and p = 0.01 for the clustered case. Figure adapted from [149].

Figure 5.2.: Principle of a toroidal shift. The whole image is shifted by a vector (white arrow).
Consequently, the areas indicated by II–IV lie outside the region of interest. Reassembling the image
according to a toroidal geometry results in the image depicted on the right side.
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tances, yielding a set of n CDFs, denoted as cdfrand,i(r) for i = 1, ..., n. These CDFs implicitly
account for the correct blinking statistics and stoichiometry of labeling. Hence, they serve as a
randomized control for uncorrelated two-color localization maps, irrespective of any univariate
clustering, which arises from overcounting and is present in the individual color channels.

In case of a completely random distribution of biomolecules, the CDFs obtained for the original
data set and the randomized controls are equal, except for variations due to sampling noise
(Fig. 5.1c, top). For non-random distributions of biomolecules, however, the CDFs for the
original and the randomized data differ from each other: Particularly, in case of clustered
biomolecules the CDF for the original data will show a tendency towards shorter cross-nearest
neighbor distances compared to the randomized controls (Fig. 5.1c, bottom).

Due to noise inherent in the sampling process, the empirical CDFs show variations; the more
data points are available for the calculation of the CDFs, the less is the variation. In order to
determine whether a CDF obtained from a sample can be expected from an underlying random
distribution of biomolecules, we can select a test statistic and calculate a p-value. The p-value
assesses whether the result of the test statistic obtained from the sample is more extreme than
can be expected from random chance. Here, as a summary statistic T for the data we define
the integral

t =

� rmax

0
cdf(r) dr. (5.1)

The parameter rmax determines the length scale over which clustering is considered. If prior
knowledge on cluster sizes is available, the analysis can be restricted to shorter distances by
setting rmax according to the expected cluster size and localization precision. Otherwise, rmax is
set to the maximum occurring distance in the analysis, in which case the method is completely
independent of any user-defined parameters. The influence of setting a threshold for rmax will
be discussed later (see Fig. 5.8).

The summary statistic T defined in Eq. (5.1) is calculated for the CDF of the original data,
yielding a value t0, as well as for all randomized controls, yielding a set of values ti with
i = 1, ...n. Subsequently, all values of the set T := {ti | i = 0, ...n} are sorted in descending
order and a rank is assigned to each value according to its position in the ordered sequence:
A value ti has the rank j if it is the jth largest element; consequently, the largest value of the
set has rank 1.

Since we want to test the null hypothesis of a random distribution against the alternative hy-
pothesis of nanoclustering, we are interested whether the original data show a tendency towards
shorter nearest neighbor distances. Deviations towards larger distances are not considered of
importance here. Hence, we calculate a one-sided p-value according to

p =
rank(t0, T )

n+ 1
, (5.2)

where rank(t0, T ) denotes the descending rank of t0 within the set T . The approach for
determining the p-value is analogous to a p-value based on Monte Carlo simulations (compare
section 4.2.2 and [120,140]). The p-value shows a discrete uniform distribution on S = {i/(n+
1) | i = 1, ..., n+ 1} under the null hypothesis of randomly distributed biomolecules (Fig. 5.3).

73



5. 2-CLASTA

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

p-value

N
um

b
er

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

p-value

cd
f(
p-
va
lu
e)

a b

Figure 5.3.: Distribution of the p-value under the null hypothesis. Realizations of the null
hypothesis of randomly distributed biomolecules were simulated and tested with 2-CLASTA. We simu-
lated 36 different parameter sets, varying the number of molecules (50; 75; 100 molecules per µm2), the
labeling efficiency (40%, 60%, 80% and 100%) and the labeling ratio (3:7, 2:3, 1:1). All other simulation
parameters were held constant. (a) Histogram of the p-values obtained for one exemplary parameter set.
(b) Cumulative distribution functions of p-values for various parameter settings are shown in light gray.
The ideal uniform distribution is indicated by the solid black line, as comparison. For each parameter
set we performed 1000 independent simulations. Figure from [149].

Based on the p-value from Eq. (5.2) and a chosen level of significance α, we can construct a
significance test for the null hypothesis of a random distribution of biomolecules against the
alternative hypothesis of a clustered biomolecular distribution: The null hypothesis is rejected,
if the obtained p-value is smaller than or equal to α, and kept otherwise. This is an exact,
one-sided test of size α [140]. The performance of the test can be described by its sensitivity
(= true positive rate, TPR) and specificity (= true negative rate, TNR), which are calculated
as

TPR =
TP

TP + FN
and TNR =

TN

TN+ FP
, (5.3)

where TP denotes the number of true positives (i.e. cases of correctly detected clustering),
FN the number of false negatives (i.e. cases of erroneously missed clustering), TN the number
of true negatives (i.e. correctly identified random distributions), and FP the number of false
positives (i.e. cases of erroneously detected clustering).

The specificity of the test is directly determined by the chosen significance level α, and is calcu-
lated as 1−α. The significance level itself is equal to the probability of falsely rejecting the null
hypothesis, i.e. the erroneous detection of molecular clustering in case of an underlying random
distribution of biomolecules. Especially, for low values of α the 2-CLASTA method is hardly
susceptible to misinterpretation of overcounting-induced localization clusters as biomolecular
nanoclusters. Of note, setting α to a low value will decrease the number of false positives at
the cost of the sensitivity. High sensitivity is crucial for the performance of the test and will
be extensively assessed in the following sections.
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5.2.2. Simulations

We assessed the performance of 2-CLASTA, in particular its sensitivity, via extensive sim-
ulations of various clustering scenarios. Two different types of biomolecular clustering were
considered: (i) oligomerization into dimers, trimers, or tetramers, (ii) spatially extended clus-
ters of varying size and occupancy.

The spatial distribution of the biomolecules and the corresponding two-color localization maps
were generated via Monte Carlo simulations. In particular, positions of biomolecules on a region
of 10 × 10 µm2 were simulated according to the specified distribution of biomolecules. Two
different types of labels (referred to as red and blue in the following) were assigned randomly
and competitively to the simulated biomolecules according to the labeling ratio and overall
labeling efficiency. Localizations were simulated using the respective blinking statistics of the
labels and normally distributed localization errors. If not specified otherwise, experimentally
derived blinking statistics for SNAP-AF488 and SNAP-AF647 were used for the simulations.
The details for recording of the blinking statistics are given in the Methods, section 5.4.2. The
histograms of the resulting number of detections of SNAP-AF488 and SNAP-AF647 are shown
in Fig. 5.4.
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Figure 5.4.: Single molecule blinking statistics for SNAP-labels. Blinking statistics of indi-
vidual SNAP-AF488 (a) and SNAP-AF647 molecules (b) were recorded on fixed HeLa cells expressing
monomeric SNAP-GPI protein construct. Cells were labeled at sufficiently low concentrations of the
SNAP-ligand so that well-separated single molecule signals could be observed. Histograms show the
probability of a single label to result in N localizations. Figure adapted from [149].

The obtained two-color localization maps were tested for the null hypothesis of an underlying
random distribution of biomolecules via the 2-CLASTA method. For generation of the ran-
domized data sets, toroidal shifts were applied to the localizations of the red color channel. For
calculation of the CDF of cross-nearest neighbor distances, we calculated the distances from
each red localization to the nearest blue localization. If not specified otherwise, the upper
limit rmax for the calculation of the summary statistic T , Eq. (5.1), was set to the maximum
occurring value during the analysis. The level of significance was set to α = 0.05. For each pa-
rameter set, 1000 simulation runs were performed. For each run, 2-CLASTA yielded a p-value
and the respective test decision. The number of correctly detected clustering cases was taken
as an estimate for the sensitivity of the method.

75



5. 2-CLASTA

In the following, we assessed the performance of 2-CLASTA for both an ideal and a realistic
scenario. If not specified otherwise, the parameters for the two scenarios were set as follows:
For the ideal scenario, we assumed an overall labeling efficiency of 100% (i.e. every molecule
was detected at least once), balanced labeling ratio for the two different label types, and
the absence of any unspecific signals. In a realistic scenario, however, not every biomolecule
of interest carries a detectable label. For this reason we additionally assessed the method
performance for a realistic scenario with a reduced overall labeling efficiency of 40% (i.e. only
40% of molecules were detected at least once). Further, localizations arising from unspecifically
bound labels or background signals may be present in a real-life experiment, which affect
the localization maps. Therefore, for the realistic scenario we added 5 unspecifically bound
labels per µm2 per color channel. In addition, we simulated 1 or 2 unspecific background
sources per µm2 in each color channel, respectively. The blinking statistics for the background
were determined experimentally in unlabeled cells. Further details of the simulations and all
simulation parameters are described in the Methods, section 5.4.1.

Sensitivity to detect biomolecular oligomerization

In the following, we investigated the performance of 2-CLASTA in case of biomolecular oligomer-
ization. In particular, we determined its sensitivity for dimers, trimers and tetramers. Notably,
dimers consist of two biomolecules only and thus constitute the smallest possible cluster of
biomolecules.

In order to obtain statistical significant results, the size of the sample needs to be large enough.
Hence, sensitivity depends on the number of observations. Therefore, we assessed the sensi-
tivity of the method as a function of the total number of biomolecules present in the region of
interest (Fig. 5.5a). Results are shown both for the ideal (solid line) and realistic (dashed line)
scenario. Already low numbers of biomolecules of approximately 1000 molecules per region
of interest, corresponding to 10 molecules per µm2 in the simulations, allowed for sensitive
detection of oligomerization. It can be seen that the sensitivity decreased with lower degree
of oligomerization. Further, the sensitivity was reduced for the realistic scenario. This is ex-
pected, as the method relies on the presence of two different types of labels in close proximity.
For dimers, the fraction of oligomers that carries two labels of different type is small, especially
in case of low overall labeling efficiency for the realistic scenario. For all following simulations,
we fixed the number of molecules to 7500, corresponding to 75 molecules/µm2 on a 10×10 µm2

region of interest.

As aforementioned, the method relies on the presence of two different types of labels within
one biomolecular cluster. The probability for this and thus the method’s sensitivity is directly
influenced by the overall labeling efficiency (Fig. 5.5b) as well as the labeling ratio of the two
different types of labels (Fig. 5.5c). For labeling efficiencies down to around 20%, the method
was highly robust. For even lower labeling efficiencies, the sensitivity dropped rapidly. In an
experiment, two different types of labels may show different binding affinities for the target
molecules, leading to unbalanced labeling. This can be compensated for by adjusting the
concentration of the two labels in the experiment. However, also in case of unbalanced label
ratios sensitivity remained high (Fig. 5.5c).
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Figure 5.5.: Robustness of 2-CLASTA. To assess the influence of individual parameters we deter-
mined the sensitivity as a function of the number of molecules (a,d), the labeling efficiency (b,e) and
the labeling ratio (c,f). In panels a-c results are shown for simulations of dimers ( ), trimers ( ) and
tetramers ( ), both for the ideal (solid lines) and the realistic scenario (dashed lines). Panels d-f show
the influence of different fluorescent labels on 2-CLASTA sensitivity for simulations of dimers, assum-
ing the realistic scenario. Included are experimentally derived blinking statistics for SNAP-AF488 and
SNAP-AF647 ( , black solid lines), and for KT3-AF647 and PS-CFP2 ( , gray dashed lines), as well
as analytical blinking statistics assuming a log-normal distribution of the number of blinks ( , gray
dotted lines). Log-normal distributions were simulated with a mean of 2.54 and 25.4 localizations per
biomolecule for the red and blue color channel, respectively; standard deviations were adjusted to 2
and 20 localizations, respectively. If not varied in the respective subpanel, parameters in all simulations
were set to a molecular density of 75 molecules/µm2, a labeling efficiency of 40% for the realistic case
and 100% for the ideal case and a labeling ratio of 1 :1. Each data point corresponds to 100 independent
simulations. Figure adapted from [149].

Additionally, we assessed the influence of the blinking statistics on the performance of the
method (Fig. 5.5d-f). We performed simulations of the realistic scenario with the following
pairs of blinking statistic for the two different label types (assumed blue and red color channel,
respectively): SNAP-AF499 and SNAP-AF647; photoactivatable protein PS-CFP2 and KT3
antibody conjugated with multiple AF647 fluorophores (KT3-AF647) [118]. These blinking
statistics were obtained from experiments performed at low labeling concentrations in cells.
Therefore, they accurately reflect the variability in the blinking present in experimental con-
ditions. We also simulated a scenario using artificial blinking statistics with a log-normally
distributed number of detections for each label. Here, we assumed a rather extreme difference
in the blinking behavior of the two labels with a ten-fold difference in the mean number of
detections per biomolecule. As expected, the resulting sensitivity curves for all different blink-
ing scenarios were virtually identical, because the 2-CLASTA method is independent of the
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blinking statistics.

Furthermore, we were interested in the influence of experimental errors on the sensitivity of our
method. First, we studied the influence of unspecifically bound labels, which were randomly
distributed over the region of interest (Fig. 5.6a). As these labels were randomly distributed,
localizations arising from them were not correlated in the two color channels. Hence, a slight
decrease of sensitivity could be expected. Still, even high numbers of unspecific labels yielded
only minor influence on the sensitivity.
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Figure 5.6.: Influence of experimental errors on the sensitivity. The sensitivity of 2-CLASTA
was determined as a function of unspecifically bound labels (a), localization precision (b), stage drift
(c) and lateral chromatic aberration (d). For chromatic aberration, the values on the x-axis denote
the mean displacement over the whole region of interest. We simulated dimers ( ), trimers ( ) and
tetramers ( ), both for the ideal (solid lines) and the realistic scenario (dashed lines). Each data point
corresponds to 100 independent simulations. For panel c, virtually all simulated scenarios yielded a
sensitivity of 1. Figure adapted from [149].

Second, we investigated the influence of localization precision (Fig. 5.6b). Due to localization
errors, the localization of a molecule is displaced from its true position. Consequently, molecules
which belong to the same biomolecular cluster may appear further apart in the localization
map. Nevertheless, localizations are spread around the true positions and thus, the correlation
between the two color channels is in general not lost in case of sufficient localization precision.
Only in case of very large localization errors exceeding the distance between different clusters,
we could observed that the correlation was broken and the sensitivity decreased. Typically, a
localization precision below 30 nm can be achieved for SMLM experiments. In this length range,
the sensitivity of the method was hardly affected. Of note, the sensitivity drastically decreased
only beyond 200 nm, which corresponds to the diffraction limit and thus, is unrealistic for an
SMLM experiment.
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Similarly, simulated stage drift during image acquisition of a velocity up to 500 nm over 10000
frames barely had an influence on the sensitivity results (Fig. 5.6c). Again, as alternating
laser excitation was assumed, correlations between localizations which occurred not only in
spatial but also temporal proximity were kept and detected by the method. Note that possible
correlations are broken if the two different label types are imaged consecutively, as in Exchange-
PAINT, and the results of Fig. 5.6c are not valid in this case. Of note, stage drift can be
corrected for using fiducial markers or image cross correlation [99–101,151].

Next, we assessed the influence of lateral chromatic aberrations (Fig. 5.6d). Likewise, for mod-
erate aberrations the effect on sensitivity was negligible, as correlations between the two color
channels were preserved around the optical axis. The simulated vector field of displacements
is described in detail in the Methods, section 5.4.1. Notably, this type of experimental error is
only present if the two labels are distinguished based on different emission spectra. If another
property is exploited for the discrimination, chromatic aberrations will not be present. In case
of spectrally distinct labels, lateral chromatic aberrations may also be corrected for based on
recordings of multi-spectral beads.

Eventually, we investigated how the choice of the summary statistic influenced the test results.
For this, we first evaluated simulations of dimers using the k-nearest neighbor statistics for
k = 1, 3, 5, 10, and the Lcross statistics [152]. In case of the k-nearest neighbor statistics, the
CDF of the mean distance of the k cross-nearest neighbors was taken in Eq. (5.1). In case of
the Lcross statistics, the CDFs of L = Lcross(r

∗) with a radius r∗ = 50nm were generated. The
integral of the CDF in Eq. (5.1) was then taken over L. Since high values of Lcross indicate
clustering, the rank in Eq. (5.2) was determined in ascending order. Notably, Lcross requires
the setting of the radius r∗ and thus, is not parameter-free. Importantly, using other summary
statistics than the cross-nearest neighbor distance did not improve the sensitivity of the test,
as can be seen in Fig. 5.7.
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Figure 5.7.: Influence of different summary statistics on 2-CLASTA sensitivity. Dimers were
simulated under the realistic scenario with varying labeling efficiency and analyzed with 2-CLASTA
based on the distances to 1 ( ), 3 ( ), 5 ( ) or 10 cross-nearest neighbors ( ), as well as values of Lcross

at a radius of 50 nm ( ) as a summary statistic. Each data point corresponds to 1000 independent
simulations. Figure from [149].

Further, the summary statistics is influenced by the choice of rmax in Eq. (5.1). Without prior
knowledge on the length range of clustering, rmax can be set to the maximum occurring value
during the analysis. In this case, the 2-CLASTA method is completely parameter-free. If
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prior knowledge is available, rmax may be set in accordance with the assumed cluster size and
localization precision. However, restricting the analysis to shorter distances had only minor
effects on sensitivity (Fig. 5.8). Effects were most pronounced for simulations of dimers, but
negligible for extended clusters.
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Figure 5.8.: Influence of rmax on 2-CLASTA sensitivity. (a) Influence of the analysis parameter
rmax on 2-CLASTA sensitivity for the detection of biomolecular dimers, both for the ideal (solid line, )
and realistic scenario (dashed line, ). Note that virtually all simulated scenarios yielded a sensitivity
of 1. Hence, we also included simulations for cases with reduced labeling efficiency of only 15%, while
keeping all other parameters as before ( ). (b) Influence of the analysis parameter rmax on 2-CLASTA
sensitivity for the detection of circular nanodomains of 100 nm radius, 3 clusters per µm2 and 20% of
molecules inside the nanodomains, both for the ideal (solid line, ) and the realistic scenario (dashed
line, ). The symbol ∞ denotes the maximum cross-nearest neighbor distance occurring in the analysis.
Each data point corresponds to 1000 independent simulations. Figure from [149].

Sensitivity to detect areas of enrichment or depletion of biomolecules

As a second type of biomolecular clustering we studied spatially extended clusters. For this,
we simulated circular domains, the centers of which were randomly distributed over the region
of interest. We varied the radius of domains from 20 nm to 150 nm, and the number of domains
from 3 to 20 domains per µm2. The fraction of molecules inside the domains was varied between
20% and 100%, leading to different densities of molecules inside and outside the domains, while
the average density across the whole image was kept constant at 75 molecules per µm2. In
case of overlapping domains, the density in the intersection area was adjusted to the density
of a single domain. Depending on the respective densities in and outside of the domains,
domains represented either areas of enrichment or depletion. Of note, depletion inside the
domains corresponded to clustering outside the domains. Examples of domains, respective
distributions of biomolecules and corresponding localization maps are depicted in Fig. 5.9.

We performed simulations of spatially extended clusters both for the ideal and realistic scenario
and determined the sensitivity for each parameter set (Fig. 5.10). Each table shows the results
for a specific domain size. The top right corner of each table corresponds to scenarios in which
molecules are enriched within the domains, the bottom left corner corresponds to scenarios in
which molecules are enriched outside of the domains. The gray-scale indicates the sensitivity for
a particular parameter set. All scenarios showing substantial relative enrichment of molecules
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p=0.01 p=0.01 p=0.01 p=0.01 p=0.55a b c d e

Figure 5.9.: Examples of simulated nanodomains. The underlying simulated nanodomains (top
row), the positions of simulated biomolecules (middle row), and the resulting localization maps (bottom
row) under the ideal scenario are shown for rare small clusters (a), medium clusters (b), frequent large
clusters (c), exclusion areas (d), and a random distribution of biomolecules (e). The resulting p-value
for each scenario is indicated on top. Scale bars 250 nm (inset) and 2 µm. Figure adapted from [149].

either inside or outside the domains could reliably be detected. The realistic scenario yielded
similar results as the ideal scenario, with a slightly reduced sensitivity. Notably, the 2-CLASTA
method was more sensitive than the previously published approach from our group based on
label titration, as can be seen by comparing Fig. 5.10 with Supplementary Figure 5 and 6
from [118].

Importantly, some parameter combinations yielded a relative enrichment of molecules inside
the nanodomains of around 1, corresponding to a random distribution of molecules over the
whole image. Rejecting the null hypothesis in this case would lead to false positive results.
Consistently, for such scenarios we indeed observed sensitivity values close to the chosen level
of significance of 0.05.
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Figure 5.10.: Sensitivity of 2-CLASTA to detect spatially extended clusters. We determined
the sensitivity of 2-CLASTA for varying densities of circular domains and percentage of molecules inside
the domains. Simulations were performed for circular nanodomains with radii of 20, 40, 60, 80, 100 and
150 nm for both the ideal and realistic scenario. The number of domains per µm2 was varied between
3 and 25, and the percentage of molecules inside the domains between 20% and 100%. The numbers
in individual fields indicate the average number of molecules per domain, and the relative enrichment
or depletion of molecules compared to a random distribution with identical average density. The gray
scale indicates the fraction of scenarios with a p-value below the significance level α = 0.05, reflecting
the sensitivity. Each field corresponds to 100 independent simulations. The bold black boxes indicate
the scenarios depicted in Fig. 5.9, letters indicate the respective subpanels. Figure adapted from [149].

82



5.2. Results

In addition, we repeated the simulations for domains of 100 nm radius with the blinking statis-
tics of PS-CFP2 and KT3-AF647 [118]. As was the case for oligomerization, also for spatially
extended clusters the blinking statistics did not have any impact on the sensitivity results
(Fig. 5.11).
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Figure 5.11.: Sensitivity results for different fluorescent labels. We determined the sensitivity
of 2-CLASTA for varying densities of circular domains and percentage of molecules inside the domains,
assuming the blinking statistics of PS-CFP2 and KT3-AF647. Data are shown for a cluster radius
of 100 nm for the ideal (a) and the realistic scenario (b). The numbers in individual fields indicate
the average number of molecules per domain, and the relative enrichment or depletion of molecules
compared to a random distribution with identical average density. The gray scale indicates the fraction
of scenarios with a p-value below the significance level α = 0.05, reflecting the sensitivity. Each field
corresponds to 100 independent simulations. Figure from [149].

Moreover, we assessed whether localization errors had any influence on the results for spatially
extended clusters (Fig. 5.12). For this, we simulated circular domains of 60 nm radius with
a localization precision of 30 and 70 nm, respectively. We could observe a slight decrease in
sensitivity for high localization errors. However, a localization precision well above 30 nm is
unrealistic for SMLM experiments. Localization errors for a precision below 30 nm showed
only negligible influence on the sensitivity of the method.

Finally, we investigated the influence of the shape of the nanodomains on the sensitivity of 2-
CLASTA. For this, we simulated clusters with a rectangular shape of 80×400 nm2 (Fig. 5.13).
As the method does not require any assumptions about the shape of clusters, results should
be independent of the cluster shape. Indeed, results agreed very well with those obtained for
circular clusters of 100 nm radius, which show an approximately identical cluster area.
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Figure 5.12.: Influence of localization precision on the sensitivity of 2-CLASTA for spatially
extended clusters. We determined the sensitivity of 2-CLASTA for varying densities of circular
domains and percentage of molecules inside the domains, assuming a localization precision of 30 nm
(a) and 70 nm (b). Data are shown for a cluster radius of 60 nm for the ideal scenario. The numbers
in individual fields indicate the average number of molecules per domain, and the relative enrichment
or depletion of molecules compared to a random distribution with identical average density. The gray
scale indicates the fraction of scenarios with a p-value below the significance level α = 0.05, reflecting
the sensitivity. Each field corresponds to 100 independent simulations. Figure adapted from [149].

5
2.2×

3
1.4×

1.5
0.7×

1
0.5×

0.75
0.4×

0.6
0.4×

10
4.4×

6
2.7×

3
1.5×

2
1.1×

1.5
0.9×

1.2
0.7×

15
6.5×

9
4.1×

4.5
2.2×

3
1.6×

2.25
1.3×

1.8
1.1×

20
8.7×

12
5.4×

6
3×

4
2.1×

3
1.7×

2.4
1.5×

25
10.9×

15
6.8×

7.5
3.7×

5
2.6×

3.75
2.1×

3
1.8×

3

5

10

15

20

25

20 40 60 80 100

D
om

ai
n
s
p
er

µ
m

2

% of molecules inside domains

Ideal

5
2.2×

3
1.4×

1.5
0.7×

1
0.5×

0.75
0.4×

0.6
0.4×

10
4.4×

6
2.7×

3
1.5×

2
1.1×

1.5
0.9×

1.2
0.7×

15
6.5×

9
4.1×

4.5
2.2×

3
1.6×

2.25
1.3×

1.8
1.1×

20
8.7×

12
5.4×

6
3×

4
2.1×

3
1.7×

2.4
1.5×

25
10.9×

15
6.8×

7.5
3.7×

5
2.6×

3.75
2.1×

3
1.8×

0.09

0.15

0.27

0.38

0.47

0.55

20 40 60 80 100

R
el
at
iv
e
cl
u
st
er
ed

ar
ea

% of molecules inside domains

Realistic

0

0.2

0.4

0.6

0.8

1

S
en
si
ti
vi
ty

Figure 5.13.: Influence of cluster shape on the sensitivity of 2-CLASTA. The sensitivity for
the detection of rectangular clusters with a size of 80×400 nm2 is shown both for the ideal and realistic
scenario. The numbers in individual fields indicate the average number of molecules per domain, and
the relative enrichment or depletion of molecules compared to a random distribution with identical
average density. The gray scale indicates the fraction of scenarios with a p-value below the significance
level α = 0.05, reflecting the sensitivity. Each field corresponds to 100 independent simulations. Figure
adapted from [149].
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5.2.3. Experimental validation

In order to validate the 2-CLASTA method experimentally, we engineered protein constructs
mimicking either monomers or oligomers. For this, we concatenated one to four SNAP-tag pro-
teins, representing monomers (1-SNAP), dimers (2-SNAP), trimers (3-SNAP) and tetramers
(4-SNAP), respectively. The protein constructs were expressed in HeLa cells and anchored in
the cell membrane via a glycosyl-phosphatidylinositol (GPI) anchor. Of note, GPI-anchored
proteins are assumed to be distributed randomly within the cell membrane, and oligomerization
of the GPI-anchor itself is not expected [4]. Hence, the 1-SNAP construct yielded randomly
distributed proteins in the plasma cell membrane.

The SNAP-tag proteins were labeled competitively with SNAP-Surface Alexa Fluor 488 (SNAP-
AF488) and SNAP-Surface Alexa Fluor 647 (SNAP-AF647). The concentrations of the dyes
were adjusted in order to yield a balanced labeling ratio of the two colors. We performed
dSTORM experiments with alternating excitation at 640 nm and 488 nm, and split the sig-
nals from the two labels into two separate color channels, yielding two-color localization maps
(Fig. 5.14a).
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Figure 5.14.: 2-CLASTA analysis of experimental data. We analyzed GPI-anchored concatemers
of SNAP-tags with one to four subunits expressed in HeLa cells, mimicking monomers, dimers, trimers
and tetramers. For dSTORM experiments, cells were labeled with SNAP-AF488 and SNAP-AF647.
Panels (a) show two-color localization maps for representative cells, and panels (b) histograms of p-
values obtained from at least four independent experiments per SNAP construct. Scale bars: 250 nm
(inset) and 2 µm. Figure adapted from [149].

For each SNAP-construct we imaged at least 25 cells and analyzed each two-color localization
map with the 2-CLASTA method. For each cell, we thus obtained a p-value for the null
hypothesis of an underlying random distribution of proteins. A histogram of the resulting p-
values for each SNAP-construct is shown in Fig. 5.14b. For the 1-SNAP construct, p-values are
uniformly distributed between 0 and 1, thereby showing no indication for clustering of proteins.
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For the oligomeric SNAP constructs, in contrast, the distribution of p-values exhibits a peak at
low p-values below 0.05, as is expected for an underlying clustered distribution of proteins. The
peak is less pronounced for dimers, but increases for trimers and tetramers, according to the
higher sensitivity of the method to detect higher degrees of oligomerization. Also for oligomeric
constructs, some cells yielded p-values above 0.05, the chosen level of significance. Hence, these
were false negative cases. The sensitivity may have been reduced in these cases by low labeling
efficiency of the SNAP-tag [69, 109], unspecifically bound labels or autofluorescence from the
cell. In addition, protein expression levels and the size of the analyzed region of interest vary
from cell to cell. Thus, also the number of proteins within the region of interest varies. If only
1000 or less proteins are present, the sensitivity of the method is decreased, as was shown in
Fig. 5.5a. This relationship was also discernible for the experimental data (Fig. 5.15). Overall,
the 2-CLASTA method could reliably detect true molecular clustering in experiments for even
low degrees of oligomerization, while avoiding the misinterpretation of overcounting artifacts
as biomolecular clustering.
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Figure 5.15.: Obtained p-value versus number of analyzed localizations. For each analyzed
region of interest (data from Fig. 5.14), the obtained p-value is plotted versus the minimum of the
number of localizations nblocs, n

r
locs recorded in the blue and red color channel, respectively. Results for

monomers, dimers, trimers, and tetramers are shown from left to right. Figure adapted from [149].

5.2.4. Multiple experiments

In practice, a single experiment often is repeated. This is reasonable, for example, if a single
cell provides a small region of interest only. In this case, the included number of molecules
may be too low for a detection of clustering with high sensitivity. In addition, an assessment
based on a single experiment might not be robust, as the particular experimental conditions
for this experiment (e.g. the labeling efficiency) might decrease the sensitivity. If the same
experiment is performed multiple times, a different p-value will be obtained for each individual
experiment. In order to assess the overall outcome of all experiments in a joint statistical
analysis, one straightforward option seems to be taking the minimum of all observed p-values
as overall p-value and reject the null hypothesis if this minimum p-value is significant. However,
this procedure is not valid as it drastically increases the type I error rate, i.e. the false positive
rate. This can be seen as follows: If only one test is performed, the false positive rate equals
the chosen level of significance α. Under the null hypothesis, the probability of observing no
significant p-value for one test is 1− α. For m independent experiments, the probability that
none of the p-values is significant can be calculated as (1 − α)m. In turn, the probability
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that at least one of the m p-values is significant is given by 1 − (1 − α)m. For example, if
m = 100 independent tests are performed with a significance level of α = 0.05, the expected
number of significant p-values is 5, and the probability to obtain at least one significant p-
value is 1 − (1 − 0.05)100 = 0.994. Hence, the false positive rate increases drastically with
the number of experiments m. This is also evident from the probability distribution of the
minimum p-value. In case of a continuous p-value, the distribution of the minimum of m
uniformly distributed values pmin = min(p1, ...pm) is not uniform but follows the probability
density function

f(pmin) = m · (1− pmin)
m−1. (5.4)

In order to obtain a valid p-value, we need to adjust the overall p-value for multiple experiments
for the number m of performed tests. This can be achieved by the following transformation
function [153]:

pcorr = 1− (1− pmin)
m , (5.5)

yielding a uniform distribution of pcorr on the interval [0, 1].

In case of a p-value estimated from Monte Carlo simulations, the p-value is not continuously
distributed, but can only take on discrete values i/(n + 1) for i = 1, ..., n + 1, where n is the
number of simulated controls. Hence, pmin is bounded by 1/(n + 1), and pcorr is bounded by
1− (1− 1

n+1)
m = 1− ( n

n+1)
m. However,

1−
�

n

n+ 1

�m

−→ 1 for m → ∞, (5.6)

which means that for a large number of experiments m the null hypothesis would never be
rejected. Therefore, in case of discrete p-values a different method for adjusting the p-value
for multiple experiments is required, which will be presented in the following.

Method for discrete p-values

In case of discrete p-values, the p-value for a single experiment under the null hypothesis shows
a discrete uniform distribution, i.e.

P
�
P =

i

n+ 1

�
=

1

n+ 1
for i = 1, ..., n+ 1, (5.7)

where n is the number of simulated controls. In order to combine the p-values obtained
from multiple experiments, we can determine whether the number of observed p-values falling
below a certain threshold p0 can be expected from a discrete uniform distribution or not.
Of note, p0 needs to be selected from the set {i/(n + 1) | i = 1, ..., n + 1}. Under the null
hypothesis, the probability for obtaining a p-value with p ≤ p0 for a single experiment is
given as P (P ≤ p0) = p0. Hence, the probability to obtain a p-value below or equal to the
threshold p0 in exactly k out of m experiments can be described by a Binomial distribution
B(k | p0,m). In contrast, in case of true molecular clustering the histogram of p-values obtained
from multiple experiments will show a peak at low p-values. Thus, the number of p-values
below the threshold p0 will be higher than expected under the null hypothesis.
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In general, the obtained number k of p-values below the threshold p0 can be described by a
Binomial distribution with B(k | q,m), where q ∈ [0, 1], describes the probability for a single
experiment. In case of the null hypothesis of a random biomolecular distribution it holds that
q = p0; in case of biomolecular clustering a peak at small p-values is expected, and hence,
q > p0. Therefore, we can perform a Binomial test in order to determine whether the p-values
obtained from multiple experiments are in correspondence with a uniform distribution and
thus, also with the null hypothesis of a random biomolecular distribution. Particularly, we
performed a right-sided Binomial test of the null hypothesis q ≤ p0 against the alternative
hypothesis q > p0, corresponding to a clustered biomolecular distribution. The overall p-value
p∗ for multiple experiments is calculated as

p∗ = P(X ≥ k) =

m$
i=k

B(i | p0,m) =

m$
i=k

�
m

i

�
pi0(1−p0)

m−i = 1−
k−1$
i=1

�
m

i

�
pi0(1−p0)

m−i, (5.8)

where k is the number of observed p-values below the chosen threshold p0 and m the number
of performed experiments. If p∗ is smaller than the chosen level of significance α∗ for the joint
analysis of experiments, the null hypothesis was rejected and we assumed that the molecular
distribution is clustered.

The increase in sensitivity for the joint analysis of multiple experiments compared to a single
experiment is shown in Fig. 5.16a. For this, dimers were simulated under the realistic scenario
with varying labeling efficiency. A joint analysis of 20 or 50 simulated experiments yielded a
drastic increase of the sensitivity compared to the analysis of a single experiment only. Inter-
estingly, the method is very robust with regard to the chosen threshold p0 (Fig. 5.16b). As
expected, the higher the number of analyzed experiments, the higher is the sensitivity of the
method. The proposed joint analysis of multiple experiments was also applied to the results of
the SNAP constructs from Fig. 5.14. The calculated overall p-values for multiple experiments
are shown in Fig. 5.17. As anticipated, the null hypothesis of a random protein distribution
was kept for the monomeric 1-SNAP construct. For all the oligomeric constructs representing
dimers, trimers and tetramers, the null hypothesis was rejected and the biomolecular distribu-
tion was correctly identified as clustered.
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Figure 5.16.: Sensitivity for joint analysis of multiple experiments. Dimers were simulated un-
der the realistic scenario and analyzed with 2-CLASTA. Each data point corresponds to 100 simulation
runs. (a) Sensitivity for varying labeling efficiency. The sensitivity for analysis of a single experiment
is shown by the dotted line. The sensitivity in case of joint analysis of 20 and 50 cells is shown by the
dashed and solid line, respectively; a threshold of p0 = 0.05 was chosen. For calculation of the sensitiv-
ity, the level of significance was set to α∗ = 0.05. (b) Influence of the threshold p0 and the number of
experiments on the sensitivity. Here, the labeling efficiency was set to 15%. The obtained sensitivity is
indicated by color; a significance level of α∗ = 0.001 was chosen for calculating the sensitivity.
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Figure 5.17.: Overall p-value for multiple experiments. (a) Histograms of p-values as shown in
Fig. 5.14. For each SNAP construct, the corresponding overall p-value p∗ for multiple experiments is
indicated. The threshold p0 was set to 0.05. (b) Logarithmic plot of the values of p∗ obtained from
panel a. The horizontal dashed line indicates a significance level of α∗=0.05. Note that p∗=0 for the
4-SNAP construct.
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5.3. Discussion

The presented 2-CLASTA approach offers a parameter-free method for statistical assessment
of molecular clustering based on a single recorded two-color localization map. The method
is ideally suited for a global assessment whether true molecular clustering is present at all,
before a detailed characterization of clustering is performed via other methods. As a note
of caution, clustering methods such as DBSCAN [125] may detect local features arising from
purely random variations or overcounting artifacts, thus leading to misleading results if no
previous global assessment is performed.

While other methods for a global assessment of clustering exist [4,6,63], all previous methods
rely on at least some assumption or knowledge about fluorophore blinking statistics. The blink-
ing behavior, however, is dependent on experimental conditions [8, 62, 63] and the recording
of reliable blinking statistics is challenging and laborious. Crucially, deviations in fluorophore
blinking may impede correct assessment of the clustering behavior of biomolecules, in par-
ticular, in cases of faint clustering. Hence, one key advantage of 2-CLASTA is its complete
independence of blinking statistics. The method performs well in detecting clustering even in
the case of dimers, which represent the smallest possible clusters.

Merging procedures aim at generating an image corrected for overcounting based on averaging
of localizations in temporal and spatial proximity [5,135], which subsequently can be analyzed
for clustering by conventional cluster analysis methods. Those merging approaches rely on the
assumption that the signal obtained from a single biomolecule is confined to a certain time
interval much shorter than the image acquisition time. However, this assumption is not valid in
case of PAINT imaging, where fresh probes may consistently bind to the same target over the
whole image acquisition time. The same holds true if the same biomolecule of interest is labeled
with multiple dyes, as given for example in case of antibody labeling: One of the dyes may be
activated right at the beginning of the image acquisition, while another dye belonging to the
same label may be activated towards the end only. Further, also in case of PALM or STORM
in combination with a one-to-one label stoichiometry, prolonged dark states will impede the
accuracy of merging approaches [63]. Hence, merging procedures are not appropriate in these
cases. In contrast, 2-CLASTA is completely independent of blinking behavior. Although it
does not yield a corrected image, 2-CLASTA accurately assesses biomolecular clustering even
in case of PAINT imaging approaches, labeling with multiple dyes per molecule of interest, or
in the presence of long-lived dark states.

Additionally, 2-CLASTA is independent of cluster characteristics. It does not require any
assumptions on cluster parameters such as cluster size, cluster shape or occupancy, and will
correctly identify molecular clustering for any clustering scenario. This is an advantage com-
pared to Bayesian approaches, which require a model of clustering—often, circular clusters
with Gaussian-shaped molecular distributions are assumed [128]. Subsequently, different mod-
els or model parameters are compared to each other and the model or parameter maximizing
the likelihood is selected. However, the best selected model does not necessarily need to give
a valid description of clustering if all of the provided models were inappropriate in the first
place.

The 2-CLASTA method calculates a p-value for the null hypothesis of an underlying random
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biomolecular distribution and thus, provides the basis for a statistical significance test. The
performance of the test is described by its specificity and sensitivity. The specificity can be
directly set via the chosen level of significance; the sensitivity was extensively investigated via
simulations. Overall, the 2-CLASTA method was found to be robust against experimental
errors. First, the sensitivity is virtually unaffected by localization errors in the range typically
achieved in SMLM. Localization errors only spread the localizations belonging to a single
molecule, but preserve the correlation of the two color channels. Similarly, errors in two-color
image registration or drift correction have only marginal impact on the performance. As long
as the errors are small compared to the cross-correlation distances of the two color channels,
the sensitivity of the method is hardly affected. Further, the method is stable with regard to
experimental challenges, including non-specific localizations, insufficient degree of labeling or
unbalanced labeling ratios of the two different labels. If prior knowledge about cluster size
is available, the sensitivity of the test can be further increased by restricting the analysis to
certain ranges defined by a chosen value for rmax.

In practice, certain experimental conditions may lead to decreased sensitivity, e.g. low labeling
or detection efficiency, a small region of interest with a low number of molecules, or a large
number of unspecifically bound labels. Hence, it often is reasonable to repeat an experiment
under different, improved experimental conditions. In order to avoid fishing for p-values, it is
crucial to account for multiple performed experiments. An approach for this was presented in
section 5.2.4. This combined approach increases the resulting sensitivity without inflating the
type I error rate.

As a key feature, 2-CLASTA requires the competitive labeling of the biomolecule of interest
with two distinguishable labels. For this work, fluorophores were distinguished based on their
emission spectra, and imaged alternately in two separate color channels. Notably, the label
types may be distinguished based on other fluorophore characteristics (e.g. excitation spectra,
fluorescence lifetime), or via complementary docking strands in Exchange-PAINT [106]. Cru-
cially, the two labels need to be well distinguishable. A label of one type must not be detected
erroneously as a label of the other type; any overlap between the two channels must be prohib-
ited, including crosstalk between channels or photoblueing of dyes [154]. Otherwise, spurious
clustering will be detected. Similarly, a single biomolecule of interest must carry one label type
only; otherwise, clustering will be detected also in case of random biomolecular distributions.
A one-to-one label stoichiometry is not required for the method; a single biomolecule may
carry multiple dyes as long as they are of the same type. 2-CLASTA is compatible with many
fluorescence labeling techniques, including protein tags, nanobodies, antibodies, or low affinity
binders. The different fluorophore types can either be imaged alternately, or simultaneously
on two separate regions of the camera chip. The label types may also be imaged consecutively,
as required for Exchange-PAINT. Notably, the choice of the labeling and imaging technique
slightly influences the properties of the method. In Fig. 5.6c we showed that moderate stage
drift hardly affects the sensitivity of 2-CLASTA as correlations between localizations in spatial
and temporal proximity are not broken. However, possible correlations will be broken if the
two different label types are imaged consecutively, as required for Exchange-PAINT; in this
case, the results of Fig. 5.6c are not valid. Nevertheless, stage drift can be corrected for via
fiducial markers or image cross correlation [99–101, 151]. Further, chromatic aberrations as
shown in Fig. 5.6d are only present if the two labels are distinguished based on different emis-
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sion spectra. If another property is exploited for the discrimination, chromatic aberrations will
not be present.

In the presented version of the 2-CLASTA method, the test statistic for quantifying the corre-
lation is based on cross-nearest neighbor distances between localizations of the two color chan-
nels. As an alternative, other metrics may be employed (see Fig. 5.7), e.g. metrics based on the
first k-nearest neighbors with k > 1, Ripley’s covariate analysis [152] or pair cross-correlation
analysis [6, 155]. However, these statistics may again be confounded by overcounting, as only
the first localization of a different color definitely arises from a new molecule. In addition,
for faint clustering in combination with little overcounting the sensitivity will decrease if more
than the first nearest neighbor is taken into account. This can be understood by means of the
following example: For a dimer with a single localization per molecule, only the first nearest
localization of different color will be in close vicinity.

A few points have to be considered when applying the 2-CLASTA method: First, the null
hypothesis assumes a completely random distribution of biomolecules on the plasma mem-
brane, which is described by a two-dimensional surface parallel to the focal plane. A different
topography of the sample may affect the results. If molecules are distributed randomly on an
arbitrary two-dimensional manifold, the projection of this distribution onto a two-dimensional
plane may lead to virtual clustering. For example, membrane invaginations or elevations of
the membrane at the cell borders will lead to accumulation of localizations in the projection
of the 2D SMLM localization map [22,156]. These clusters caused by projection will lead to a
rejection of the null hypothesis even if the molecules are distributed randomly on the surface.
Consequently, the region of interest for the 2-CLASTA analysis should be selected carefully.
An appropriate region is central in the cell, avoiding the cell edges and any apparent vesicular
structures. In principle, the region of interest can be further restricted in order to investigate
specific subcellular structures (e.g. synapses). However, for small regions the number of im-
aged molecules is reduced, which in turn reduces the sensitivity of the test. Further, SMLM
experiments should be performed in fixed cells, as molecular diffusion during image acquisition
will lead to distortions of the localization map and also break potential correlations between
the two color channels.

The presented version of 2-CLASTA investigates clustering of one type of biomolecule on a
flat 2D plasma membrane. Several extensions of the 2-CLASTA method are feasible: The
method can easily be extended to 3D, i.e. biomolecules which are distributed within the cell
interior rather than in the plasma membrane. This requires the recording of 3D SMLM data
and the incorporation of the z-coordinate in the analysis. For this, the toroidal shift is simply
extended to a cuboid and distances are calculated as Euclidean distances in 3D space. Notably,
2-CLASTA can be adapted for other cases of interest. Biomolecular repulsion can be assessed
by determining the rank in ascending order instead of descending order. Moreover, not only
clustering or repulsion of the same type of molecule, but also co-localization or repulsion
between different types of molecules may be investigated. In this case, the two different labels
do not target the same molecule type, but each targets a different molecule type.

In conclusion, 2-CLASTA offers a parameter-free and versatile tool for qualitative assessment
of spatial biomolecular distributions, while being completely independent of blinking statistics
and cluster characteristics. The method can be readily applied to a single recorded SMLM
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localization map without the need for additional calibration or control experiments, thereby re-
ducing experimental efforts. 2-CLASTA allows for reliable detection of even faint biomolecular
clustering, while preventing the wrong interpretation of overcounting artifacts as true biomolec-
ular clusters. Thus, it is ideally suited as a first step in the assessment of clustering, before
other methods may be applied for quantitative characterization of cluster parameters [59,104].
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5.4. Methods

5.4.1. Simulations

Conceptually, simulations were performed as described previously [118]. All simulations were
carried out in MATLAB (R2019b, The MathWorks Inc., Natick, MA) on a standard personal
computer.

First, we simulated the underlying protein distributions for regions of 10 × 10µm2, reflecting
approximately the size of a typical cell. For all simulations we used 75 molecules per µm2, if
not mentioned otherwise.

Simulation of oligomers: We distributed oligomers randomly within the region of interest,
and assigned a number of s biomolecules to each oligomer position (s = 1 to 4). A random
distribution of biomolecules is naturally reflected by the case of s = 1.

Simulation of areas of enrichment or depletion of biomolecules: Circular domains with a ra-
dius of 20, 40, 60, 80, 100 or 150 nm were distributed randomly on the region of interest with
adjustable number of domains per µm2 (3, 5, 10, 15, 20 and 25). The number of biomolecules
per domain was calculated from the total number of simulated molecules (here 7500), the frac-
tion of molecules inside domains (20, 40, 60, 80, 100%), and the number of simulated domains,
assuming a Poisson distribution. Biomolecules were distributed randomly within the domains.
In case of overlapping domains, the density in the intersection area was adjusted to the density
of a single domain. The remaining molecules were distributed randomly in the areas outside
of the domains.

Second, two different types of labels, corresponding to the two colors, were assigned randomly
to the molecules according to the specified labeling ratio, assuming Binomial statistics.

Third, to simulate blinking, we assigned a certain number of detections to each label follow-
ing the blinking statistics determined for SNAP-AF488 and SNAP-AF647 (Fig. 5.4). For the
simulations shown in Fig. 5.5d-f and Fig. 5.11, we used blinking statistics of PS-CFP2 and
KT3-AF647 determined previously [118], or artificial blinking statistics following a log-normal
distribution. Localization errors were simulated by spreading these detections using a Gaussian
profile centered on the molecule position with a width of 30 nm, which corresponds to a typ-
ical localization precision achieved in SMLM experiments. We assumed identical localization
precision for the two color channels.

Fourth, to account for experimental errors in the realistic scenarios, we included unspecifically
bound labels with a mean density of 5 labels/µm2 for each color channel, assuming the blinking
statistics determined for SNAP-AF488 and SNAP-AF647. We finally considered also false
positive localizations by adding a background of 1 (2) signals/µm2 for the red (blue) color
channel, with experimentally determined blinking statistics obtained from unlabeled cells.

Fifth, to account for stage drift in Fig. 5.6c we assumed alternating laser excitation and hence
added a global drift vector =d to the localizations of both color channels obtained at time t
according to =x → =x+ =d · t.
Sixth, to account for residual chromatic aberrations in Fig. 5.6d, we displaced every localization
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of the red color channel by a vector which was characterized by the vector field (x�, y�) =
c · (x− x0, y − y0); we set x0 = y0 = 2.5 µm. The parameter c was varied between 0 and 0.06.
An illustration of the vector field is shown in Fig. 5.18.
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Figure 5.18: Displacement vector field for chromatic aberra-
tion. For the simulation of chromatic aberration, every localization
of the red color channel was displaced according to the vector field
described by (x�, y�) = c · (x− x0, y − y0). For the illustrated vector
field, the parameters were set to (x0, y0) = (2500, 2500) and c = 0.04.
Figure adapted from [149].

If not mentioned otherwise, we used the following set of parameters: 10 × 10µm2 region of
interest, 75 molecules per µm2, a balanced labeling ratio between the two color channels,
no stage drift, 30 nm localization precision, and the blinking statistics of SNAP-AF488 and
SNAP-AF647 for the two color channels. For the ideal scenario we simulated 100% labeling
efficiency, no unspecifically bound labels and no unspecific background signals. For the realistic
scenario we simulated 40% labeling efficiency, 5 unspecifically bound labels per µm2 and color
channel, and 1 or 2 unspecific background signals per µm2 in the red and blue color channel,
respectively.

5.4.2. Experiments

Quantitative analysis of single label blinking. We quantified single label blinking on HeLa
cells expressing GPI-anchored SNAP-monomers, using the identical illumination protocol as
for two-color dSTORM recordings. To assure sufficient separation between individual label
molecules, dSTORM experiments were performed at low labeling concentrations of either
SNAP-AF647 or SNAP-AF488. To statistically quantify the blinking of SNAP-AF647 and
SNAP-AF488, localizations from individual label molecules were grouped and quantified in
MATLAB (R2019b, The MathWorks Inc., Natick, MA). We determined the first frame of
appearance, the total number of detections per label (N) (Fig. 5.4), the time a label was
detectable in consecutive frames (ton) and the time a label was not detectable (toff).

Cell culture, DNA constructs, and reagents. All chemicals and cell culture supplies were
from Sigma if not noted otherwise. All reagents for molecular cloning were from New England
Biolabs. HeLa cells were purchased from DSMZ (ACC 57 Lot 23) and cultured in DMEM high
glucose medium (D6439) supplemented with 10% fetal bovine serum (F7524) and 1 kU/ml
Penicillin-Streptomycin (P4333). All cells were grown in a humidified atmosphere at 37 ◦C and
5% CO2.

For transient transfection of HeLa cells with GPI-anchored SNAP concatemers, we fused one or
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multiple copies of the SNAPf sequence to the N-terminus of the GPI-anchor signal of the human
folate receptor. To this end, we carried out PCR to amplify the SNAPN9183S sequence from
pSNAPf (N9183S) with > 15 nt overhangs complementary to adjacent regions of the following
SNAPf copy. We then used the Gibson assembly Master Mix (E2611) following the supplier’s
instructions to iteratively insert multiple consecutive copies of the SNAPf sequence in frame
with the GPI anchor. The resulting colonies were screened by site specific restriction digest
using HindIII (R3104) to verify the number of inserted copies.

SNAP-Surface Alexa Fluor 488 (SNAP-AF488) and SNAP-Surface Alexa Fluor 647 (SNAP-
AF647) were from New England BioLabs. Both labels were reconstituted in water-free DMSO
(276855) at 10mg/ml, aliquoted and stored at −20 ◦C until used. The dSTORM blinking
buffer consisted of PBS, 50mM β-Mercaptoethylamine (30070), 3% (v/v) OxyFluor (Oxyrase
Inc., Mansfield, Ohio, U.S.A.), and 20% (v/v) sodium DL-lactate (L1375) [74]. The pH was
adjusted to 8-8.5 using 1M NaOH.

Sample preparation. Cells were transfected by reverse transfection using Turbofect (Ther-
moFisher, R0531) according to the supplier’s instructions with Opti-MEM (Gibco, 31985062)
as serum-free growth medium. Briefly, cells were detached from tissue culture flasks using
Accutase (A6964). Subsequently, approximately 50 000 cells were mixed with Turbofect-DNA
complexes and seeded on fibronectin-coated (F1141) LabTek chambers (Nunc) and incubated
overnight. The following day, cells were labeled for 30-45min in the incubator with 50nM
SNAP-AF488 and 1 µM SNAP-AF647 diluted in cell culture medium. After labeling, cells
were extensively washed with HBSS, and fixed with 4% formaldehyde (Thermo Scientific,
R28908) and 0.2% glutaraldehyde (GA) for 30min at room temperature. After another series
of two washing steps, we added 450 µl freshly prepared dSTORM buffer immediately prior to
imaging.

Superresolution microscopy and image reconstruction. A Zeiss Axiovert 200 microscope
equipped with a 100x Plan-Apochromat (NA = 1.46) objective (Zeiss) was used for imaging
samples in objective-based total internal reflection (TIR) configuration. TIR illumination was
achieved by shifting the excitation beam parallel to the optical axis with a mirror mounted
on a motorized table. The setup was further equipped with a 640 nm diode laser (Obis640,
Coherent), a 405 nm diode laser (iBeam smart 405, Toptica) and a 488 nm diode laser (iBeam
smart 488, Toptica). Laser lines were overlaid with an OBIS Galaxy beam combiner (Coher-
ent). Laser intensity and timings were modulated using in-house developed LabVIEW software
(National Instruments). To separate emission from excitation light, we used a dichroic mirror
(Z488 647 RPC, Chroma). Images were split chromatically into two emission channels using
an Optosplit2 (Cairn Research) with a dichroic mirror (DD640-FDi01-25x36, Semrock) and
additional emission filters for each color channel (690/70H and FF01-550/88-25, Chroma). All
data was recorded on a back-illuminated EMCCD camera (Andor iXon DU897-DV).

Typically, we recorded sequences of 20 000 frames in alternating excitation mode. Samples were
illuminated repeatedly at 640 nm, 405 nm, and 488 nm with 2–3 kW/cm2 intensity (640 nm and
488 nm) and 3–5W/cm2 (405 nm); intensities were measured in epi-configuration. We selected
the illumination times in ranges of 3–10ms (640 nm), 3–30ms (488 nm), and 6ms (405 nm).
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Time delays between consecutive illuminations were below 6ms. The camera was read out after
the 640 nm and after the 488 nm illumination, yielding 10 000 frames in each color channel.
Thus, the total recording time for a full data set ranged from 3 to 7 minutes. Only data from
those frames were included in the analysis, in which well-separated single molecule signals were
observable.

We recorded calibration images of immobilized fluorescent beads after each experiment (Tetra-
Speck Fluorescent Microspheres, life technologies, T14792) and registered the images as de-
scribed previously [157]. Single molecule localization and image reconstruction was performed
using the open-source ThunderSTORM ImageJ plugin [89].

5.4.3. Calculation of p-value

Single experiment. We tested the null hypothesis of a random biomolecular distribution
against the alternative hypothesis of nanoclustering. As a summary statistic T for the data
we calculated the integral t =

� rmax

0 cdf(r) dr, where cdf(r) denotes the cumulative distribution
function of nearest neighbor distances from each red localization to the nearest blue localization.
If no value for rmax was explicitly chosen, rmax was set to the maximum occurring distance in
the analysis. For generating the randomized control data sets, a toroidal shift was applied to
the original localization data: The localizations from the red color channel were displaced by a
shift vector, i.e. (x̃red, ỹred) = (xred, yred)+ (xshift, yshift), with periodic boundary conditions set
by the region of interest. The shift vectors =vi = (xshift,i, yshift,i) with i = 1, ..., n were chosen
uniformly within the region of interest, where n denotes the number of generated control data
sets. The value of the test statistic T was calculated for the CDF of the original data, yielding
a value t0, as well as for all randomized controls, yielding a set of values ti with i = 1, ...n.
The p-value was calculated as p = rank(t0, T )/(n+ 1), where rank(t0, T ) denotes the rank of
t0 within the set T := {ti | i = 0, ...n} in descending order. If not stated otherwise, the level of
significance was set to α = 0.05.

Multiple experiments. The overall p-value p∗ for multiple experiments was calculated as
p∗ = 1 − %k−1

i=1

�
m
i

�
pi0(1 − p0)

m−i, where m is the number of performed experiments, k the
number of observed p-values smaller or equal to the threshold p0 and

�
m
i

�
denotes the Binomial

coefficient. If not stated otherwise, the level of significance for the joint analysis of p-values
was set to α∗ = 0.05.
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6. Introduction

Chapters 4 and 5 of this thesis dealt with the overall distribution of biomolecules of interest
in the cell, in particular the cellular plasma membrane. These chapters proposed methods in
order to distinguish a purely random distribution of biomolecules of interest from clustered
biomolecular distributions. In case that the distribution of molecules is indeed clustered, the
arrangement of the molecules may be further scrutinized. On the one hand, biomolecules may
form loosely arranged clusters of various spacial extent and occupation density. On the other
hand, a specific number of individual biomolecules can arrange into distinct spatial structures,
thus forming an oligomer.

The degree of oligomers and their spatial structure is typically determined via purification and
crystallization of proteins, and subsequent structure determination via X-ray crystallography
or, more recently, cryo-electron microscopy [158–161]. However, some proteins—especially
membrane proteins—are hard to crystallize [162]. Furthermore, the structure of the purified
protein may be altered during the purification and crystallization process, in particular in the
presence of detergents [163]. Therefore, it is of great interest to determine the arrangement of
proteins directly within the cellular plasma membrane. This possibility to study the protein
structure in their native environment is offered by SMLM techniques.

SMLM requires the recording of thousands of frames and thus, the image acquisition may
last minutes up to hours. Hence, thorough sample fixation is crucial. Conventional fixation
methods based on chemical fixatives may still allow for residual protein mobility, leading to
distortions of the obtained localization maps [9]. Moreover, they may affect the sample mor-
phology [10]. Preservation of the biological ultrastructure, however, is a crucial prerequisite
for performing structural biology at the nanoscale. Cryo-fixation currently represents the gold
standard for preserving the biological ultrastructure [11]. At the same time, it prevents any
residual mobility and is compatible with SMLM imaging approaches [75, 90, 164, 165]. In ad-
dition, the photostability of fluorophores is increased at cryogenic temperature. Thus, more
photons per individual fluorophore can be collected, which in turn improves the localization
precision [75,87].

Performing SMLM under cryogenic temperatures, however, is more complicated compared
to experiments performed at room temperature (compare section 2.3.4). First, the optical
setup requires a larger working distance due to the included vacuum chamber, thus, limiting
the possible numerical aperture to low values of typically 0.7–0.8. Secondly, the localization
procedure becomes more difficult. At room temperature, fluorophore dipoles can freely rotate
and the resulting PSF can be well approximated by a Gaussian function [41,55]. At cryogenic
temperature, however, fluorophore dipoles are fixed. A tilt of the PSF with respect to the
optical axis leads to a distorted PSF, which complicates the localization procedure as a simple
Gauss fit in general leads to biased estimates of the fluorophore position [12,13].

Notably, SMLM comes with several challenges, which hamper a direct determination of the
biological structure of a particle of interest from the obtained localization maps. These chal-
lenges include insufficient labeling efficiency and overcounting in combination with localization
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uncertainties. In order to overcome these challenges, hundreds to thousands of copies of the
same particle need to be imaged and averaged for reconstruction of the underlying particle
structure.

In the following part of this thesis, I will describe new methods for the determination of
oligomeric structures from SMLM experiments performed under cryogenic temperatures. This
part comprises two aspects: First, the bias-free localization of fixed dipole emitters, and second,
the reconstruction of the oligomer structure from thousands of identical copies of the same
particle. In the next two sections, I will give an overview of available methods concerning
these two topics.

6.1. PSF for fixed dipole emitters

The emission properties of a dye molecule can be well described by the model of an oscillating
electric dipole (Fig. 6.1a). If the fluorophore molecule can freely rotate in all dimensions, the
photon emission is isotropic. The resulting PSF—an Airy pattern—can be well approximated
by a Gaussian function. This is mainly due to the centrosymmetry of both the Gaussian
and Airy function. In addition, the side maxima of the Airy function are typically obscured
by noise. Thus, the Gaussian function yields excellent estimates for the lateral position of a
fluorophore: Fitting the PSF image of a freely rotating fluorophore by a Gaussian via maximum
likelihood estimation was shown to achieve theoretically optimum localization results while
at the same time being computationally very efficient [166]. If the rotational mobility of a
fluorophore molecule is restricted, however, the emission becomes anisotropic. In particular for
SMLM recordings under cryogenic temperatures, the orientation of each fluorophore’s dipole
transition moment is fixed. If the dipole orientation is tilted with respect to the optical
axis, the PSF becomes distorted (Fig. 6.1b,c), which easily leads to substantial deviations
between the estimated and actual fluorophore position when fitting with a simple Gaussian
function [41, 167].

Enderlein et al. studied the localization bias in the position estimate for in-focus, fixed flu-
orophores [12]. For objectives with a high numerical aperture of NA = 1.4, the intensity
maximum of the PSF may deviate by more than 100 nm from the actual position of the emit-
ter [12]. The center position of the fitted Gaussian shows smaller deviations, but a bias of up
to 10 nm may remain, especially for intermediate dipole orientation angles characterized by an
elevation angle between θ = π/6 and θ = π/3. For lower numerical aperture of NA = 1.2, this
bias reduces to less than 2.5 nm. It has to be kept in mind, though, that a lower NA reduces
the light collection efficiency and thus, negatively affects the achievable localization precision.
Stallinga et al. extended their analysis to fluorophores which are positioned out of the fo-
cal plane [41]. Crucially, they pointed out that the localization bias worsens with increasing
amount of defocus, also in the case of low NA. This was further demonstrated in experiments,
which yielded a bias of over 100 nm for out-of focus fluorophore molecules [13]. Of note, the
size and direction of the lateral shift in the PSF depends on the fluorophore dipole orientation
and the amount of defocus. Therefore, the shift is different for every observed fluorophore
molecule and thus, cannot easily be corrected, and even less so, if the dipole orientation and
defocus are unknown.
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Figure 6.1.: PSFs for fixed fluorophore dipole orientations. The emission characteristics of a
fluorophore molecule can be modeled by an ideal oscillating electric dipole (a). The fluorophore’s dipole
orientation is indicated by the green arrow. If the dipole orientation is tilted with respect to the optical
axis, the PSF becomes distorted. The resulting theoretical PSF for a dipole with azimuthal angle φ = 0
and elevation angle θ = π/2 imaged with a 0.7 NA/60x and 1.45 NA/100x objective is depicted in
panels b and c, respectively. In each panel, the left plot shows a cross-section of the PSF for varying
defocus; the plots on the right side show xy-sections of the PSF for defocus values of d = −500 nm to
500 nm in steps of 250 nm (as indicated by the horizontal white lines). The color indicates intensity
and was normalized to the maximum intensity occurring in each panel. The lateral shift of the PSF
increases with increasing amount of defocus.

In summary, in case of fixed fluorophore dipoles a simple Gaussian approximation of the PSF
leads to a substantial localization bias. In order to avoid this bias, more sophisticated imaging
and analysis approaches are required. An overview of current methods will be given in the
following section.

6.1.1. PSF modeling

Several approaches have been developed which rely on a more elaborate PSF model based on
the laws of optics in order to fit the experimentally recorded PSF. A full theoretical model of
the PSF as it is obtained from a single dipole emitter point source can be derived based on
vectorial diffraction theory [42,43].

Mortensen et al. fitted the PSF of in-focus, fixed dipole emitters via maximum likelihood esti-
mation (MLE) and thus, simultaneously obtained estimates for the lateral position, fluorophore
orientation, number of detected photons and background signal [85]. The maximum likelihood
method is an unbiased estimator which achieves the Cramér–Rao bound (CRB, see chapter
2.3.5) and thus, yields optimum precision [93, 96]; no other unbiased estimator will yield a
better precision. However, MLE fitting is computationally demanding, as time for generating
the PSF and calculating the log-likelihood is required in every iteration of the fit.

A computationally more efficient approach was proposed by Zhang et al. [168], who relied
on the same PSF model but generated simulated PSFs in order to train an artificial neural
network. Via this neural network they could not only estimate the position and orientation
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of a fluorophore, but also potential rotational mobility. In addition, this work extended the
analysis to out-of focus emitters. In case of defocus, the localization bias could be drastically
reduced, but a bias of up to 20 nm for ±300 nm defocus remained.

Alternatively, the image formation of a fixed dipole emitter can be reformulated: The diffrac-
tion pattern can be modeled as a linear combination of six template patterns (Fig. 6.2), as
shown by Aguet et al. [169]. The weighting coefficients can be expressed as trigonometric
functions which depend on the dipole orientation. Thus, an estimate for the position and
orientation of a fluorophore is obtained.

Figure 6.2.: Template basis patterns. A simplified model of the PSF describes the PSF as a linear
combination of six basic template patterns. The coefficients of the linear combination are directly linked
to fluorophore orientation. Figure adapted from [169].

In theory, the full PSF model based on diffraction theory describes the obtained PSF of a single
emitter best. In practice, however, the full theoretical model is computationally expensive.
Furthermore, more delicate shape characteristics of the PSF are often obscured by various
sources of noise. Therefore, Stallinga et al. developed a simplified model, which still captures all
relevant shape characteristics required for correct estimation of the fluorophore position, while
being computationally efficient [170]. For this, the emission was split into four polarization
channels and the images were fit by a modified Gaussian function, which was multiplied by a
weighted combination of Hermite polynomials. This approach allowed to reduce the localization
bias both for in- and off-focus emitters to less than 5 nm.

Another point to take into account are imperfections of the optical system leading to aberra-
tions of the PSF. Common aberration errors include spherical aberrations, coma, and astig-
matism. Although optical systems are typically corrected for (undesired) aberrations, slight
imperfections may be left, which may vary over the field of view. These aberrations will have
an impact on the achieved localization precision and accuracy if disregarded by the localization
procedure [171]. Coma, in particular, produces asymmetries in the PSF which lead to biased
position estimates. Of note, model-based localization procedures can in principle account for
residual aberrations by including a calibrated aberration map in the PSF model [172].

6.1.2. Back focal plane manipulation

Further approaches trying to reduce the localization bias in case of fixed dipole emitters rely on
manipulation of the back focal plane (BFP). Backlund et al. used a phase mask for engineering a
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double-helix PSF (Fig. 6.3a) and split the emission into orthogonal polarization channels [173].
Fitting the two lobes of the obtained PSFs with a sum of two Gaussian functions allows to
determine the z-position as well as the linear dichroism and lobe asymmetry. Comparing the
obtained images together with the estimated parameters to simulations yields an estimate for
the dipole orientation. Subsequently, the characteristic bias for a set of parameters can be
determined from simulations. Finally, this bias can be subtracted from the apparent lateral
position obtained from the simple Gauss fit.

A conceptually similar method was used by Zhang et al., but with a Tri-spot phase mask [174].
The Tri-spot PSF (Fig. 6.3b) together with polarization information allows to estimate a
fluorophore’s orientation. Subsequently, the localization bias for the standard PSF is obtained
from this orientation estimate based on simulations. Finally, the bias is subtracted from the
localizations obtained from the standard PSF. Thus, the bias was shown to be reduced to
around 7 nm for a defocus range within ±200 nm.

A different approach is based on azimuthal polarization filtering in the back focal plane
(Fig. 6.3c). This approach was first conceived theoretically by Lew et al. [175] and later
demonstrated experimentally by Backlund et al. [176]. Simulations showed that in principle,
this strategy allows to completely abolish the localization bias for any dipole orientation and
amount of defocus. In practice, however, the implementation of this phase mask is experi-
mentally challenging and a slight bias of around 5 nm remained for defocus values of ±200 nm.
Moreover, the phase mask reduces the photon collection efficiency, leading to a reduction of
localization precision of 30–75% depending on the specific dipole orientation [175].

Figure 6.3.: Manipulation of the back focal plane. The localization bias for fixed dipole emitters
can be greatly reduced by altering the electric field in the back focal plane via a phase mask. (a)
Double-helix PSF. The parallel and perpendicular polarization channel are shown in red and blue
color, respectively. Scale bars: 1µm. (b) Tri-spot PSF. Scale bar: 1µm. (c) Azimuthal filtering of
the back focal plane. The top panel shows the electric field at the BFP with arrows indicating the
azimuthal filtering. The bottom panel shows the resulting PSF. Scale bar: 200 nm. Figures adapted
from [173,174,176].

6.1.3. Polarization

A different approach recently suggested by Nevskyi et al. is based on polarization filtering in
the emission path [177]: Two images with orthogonal polarization are recorded simultaneously
(Fig. 6.4). Interestingly, the x-polarized image does not seem to show any bias with regard to
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the y-coordinate and vice versa. Thus, a simple Gaussian fit of the x- and y-polarized images
yields a virtually bias-free estimate of the y and x position, respectively. It has to be noted,
though, that a slight bias for larger defocus values remains, which is also dependent on the
dipole orientation; in particular for specific dipole orientations and large defocus the bias is
substantial. Although the method does not discard any emission light, the emission is split
into two channels and thus, not all obtained photons are used for estimating each of the two
lateral directions. Of note, depending on the dipole orientation, the splitting may be rather
unbalanced and one of the channels may appear dark, leading to unsatisfactory localization
precision for the respective coordinate.

Figure 6.4.: Polarization splitting approach. The emission light is split into an x- and y-polarized
channel, shown in the first two images. The true emitter position at (0, 0) is indicated by the yellow
cross. The x-polarized image shows no bias in the y-coordinate of the emitter, while the y-polarized
image shows no bias in the x-coordinate. Therefore, a simple Gaussian fit can be employed for each
of the two images in order to determine the y- and x-coordinate, respectively. For comparison, the
unpolarized image is shown in the third image. Fitting this PSF with a Gaussian function would lead
to a considerable bias in the position estimate. Figure adapted from [177].
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6.2. Particle averaging

An SMLM experiment yields a list of localization coordinates. A direct inference of the bio-
logical ultrastructure of a particle of interest, however, is hampered by two aspects inherent
to SMLM [178]: On the one hand, insufficient labeling efficiency leads to undercounting. This
problem is further increased by insufficient detection efficiency; fluorophores may bleach be-
fore they are detected or rest in the dark state during the whole image acquisition. On the
other hand, multiple detections of individual molecules results in overcounting. While multi-
ple detections in consecutive frames or close spatial and temporal proximity may be corrected
for [5], complex blinking behavior of fluorophores or the presence of multiple dye molecules per
biomolecule of interest impede such a correction. In consequence, the imaged particle appears
distorted; some parts of the bimolecular structure may not be visible at all, while others are
heavily overrepresented as depicted in Fig. 6.5.

Particle structure Localizationsa b

Figure 6.5.: Effect of under- and overcounting. The structure of the particle of interest (a),
and an illustrative corresponding localization map (b) are shown. Due to insufficient labeling and/or
detection efficiency some parts of the structure are not visible, while multiple detections of the same
molecule lead to overrepresentation of other parts.

As under- and overcounting are based on stochastic processes, each individual imaged particle
will yield a slightly different localization map. Particle averaging approaches combine the
information obtained from thousands of identical copies of a particle, thus aiming to circumvent
statistical noise present in single observations [104,179]. In the following sections, I will give a
short overview of currently existing methods for particle averaging.

6.2.1. Sum images

In a pioneering study, Szymborska et al. performed particle averaging on recorded data of the
nuclear pore complex (NPC) [44]. For this, SMLM images obtained from individual NPC par-
ticles were aligned and summed up (Fig. 6.6a). Assuming a circular arrangement of molecules
in the NPC, the resulting image subsequently was rotationally averaged. A fit of the radial pro-
file (Fig. 6.6b) yielded an estimate for the NPC radius with a precision of 0.1 nm. By labeling
different sites of the NPC and estimating the corresponding radius for each site, the orientation
of the Y-shaped Nup107-160 subunit within the NPC could be determined (Fig. 6.6c).
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a

b c

Figure 6.6.: Radius determination from sum images. Images obtained from individual particles
are aligned, summed up and rotationally averaged (a). Fitting of the resulting radial profile (indicated
by the red line in panel a) yields an estimate for the particle radius (b, dashed line). Labeling various
sites on the Nup107-160 subunit, its orientation within the NPC can be derived (c). Figure adapted
from [44].

6.2.2. Adapted EM-algorithms

The concept of particle averaging is well-known and established in the field of cryo-electron
microscopy (EM) [160]. Several studies hence tried to adapt algorithms developed for cryo-
EM data for the use with SMLM data [90,180]. For this, the localization maps obtained from
SMLM first need to be converted to pixel-based images since EM-algorithms expect intensity
distributions rather than a list of coordinates. Previously, this was performed by either cal-
culating the probability density of localizations [180], or by representing each localization as
a Gaussian with a width corresponding to the respective localization uncertainty [90]. Salas
et al. [180] demonstrated successful 3D reconstruction of larger particles of around 100 nm to
200 nm in size (Fig. 6.7a). Weisenburger et al. [90] performed SMLM imaging under cryogenic
temperatures and thereby could reconstruct the GtCitA PASc domain dimer and the strepta-
vidin homo-tetramer with a remarkable resolution at the Ångström scale (Fig. 6.7a). Moreover,
Sieben et al. presented an analysis approach which allows for multicolor 3D reconstruction of
several particles simultaneously [181].
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Figure 6.7.: Particle reconstruction based on EM-algorithms. 3D reconstruction from two-
dimensional SMLM projection images are possible with algorithms adapted from cryo-EM. (a) Recon-
struction of a virus (T4 bacteriophage) by Salas et al. The left image shows the 3D localization map
obtained from SMLM recordings, the middle image shows projection images based on localization densi-
ties. The right image depicts the resulting reconstructed model of the virus. Figure adapted from [180].
(b) Reconstruction of the streptavidin homo-tetramer by Weisenburger et al. with imaging performed
under cryogenic temperatures. On the left, obtained localizations from individual particles are shown.
The corresponding images were created with Gaussian functions centered at the localization position
with a width corresponding to the localization precision. In the image on the right, the reconstructed
positions of the ATTO 647N dye molecules are illustrated in red, the crystal structure is shown in
brown. Figure adapted from [90].

6.2.3. Coordinate-based reconstruction methods

One has to be aware that the imaging modalities of EM and SMLM differ quite substantially
and thus, reconstruction algorithms adapted from EM will not fully account for the specific
characteristics of SMLM imaging. Most evidently, the SMLM data consists of a list of localiza-
tion coordinates, which is fundamentally different from the continuous intensity data obtained
in EM. Therefore, various approaches have been developed which directly use the localiza-
tion coordinates for particle reconstruction and address issues specific to SMLM, including
localization precision and overcounting.

Registration methods

The localization point clouds obtained from individual particles, e.g. oligomeric protein com-
plexes, may be registered and superimposed in order to yield a single super -particle. Meth-
ods for registration can roughly be distinguished into template and template-free registration
methods. Using template-based as well as template-free registration methods various studies
successfully reconstructed the structure of the nuclear pore complex and revealed its structural
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details [109,182–184].

For template registration [182], the localizations of each individual recorded particle are reg-
istered onto a predefined template structure (Fig. 6.8a). This a priori knowledge about the
structure can be retrieved from EM studies or inferred from the localization maps. If no
prior knowledge about the particle structure is available, template-free registration methods
have to be employed. In pyramid registration, particles are registered pairwise to each other
and merged in consecutive steps [182], until only one super -particle is left (Fig. 6.8b). In the
all-to-all registration approach [183,184], all particles are registered to all other particles simul-
taneously (Fig. 6.8b). Also in case of template-free registration, any knowledge or assumption
on the particle structure, in particular particle symmetry, may be included in order to increase
the quality of the reconstruction [183,184].

a b c

Figure 6.8.: Particle registration methods. (a) Template registration. For each individual particle
shown on the left side, the localizations are registered to a predefined template depicted on the right. (b)
Pyramid registration. The scheme shows the registration procedure from bottom to top. In each step,
particles are registered pairwise to each other and subsequently combined. For each layer of the pyramid
scheme, the procedure is repeated until a single super -particle is left. (c) All-to-all registration. All
particles are registered pairwise to each other simultaneously. The light, dotted lines depict redundant
registrations.

The registration procedure aims at minimizing the distances between localizations of the par-
ticles supposed to be registered. As the distance measure, the Bhattacharyya distance can be
applied, yielding the following cost function [182,183]:
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where =xt, =xm are the coordinate positions of the registered particles, nt, nm the corresponding
number of localizations for each particle, R the rotation matrix and =s the translation vector.
The covariance matrices Σt,Σm reflect the localization uncertainties in different directions
and are given as Σ = diag(σ2

x, σ
2
y , σ

2
z). Via the covariance matrices, anisotropic localization

precision in the different directions can be accounted for. In addition, the distance measure
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penalizes large distances, leading to proper registration results also in case of missing labels.
Further, the registration process can be adapted in order to allow for deformations of the
particles [185], which may occur for example due to a 2D-projection of the structure.

Regarding the runtime, template-based registration methods are most efficient, as each particle
is registered to the template individually and thus, the runtime scales linearly with the number
of particles. In comparison, pyramid and all-to-all registration scale quadratically with the
number of particles [182, 183]: For n recorded particles, a number of n(n − 1)/2 pairwise
registrations have to be performed.

Reconstruction from relative positions

Curd et al. recently proposed an approach termed PERPL (pattern extraction from relative
positions of localizations) for extracting the underlying structure of a particle from the dis-
tribution of the distances between its localizations [186]. For this, an experimental relative
position distribution (RPD) is obtained by calculating all relative distances between localiza-
tions. As a next step, several candidate models for the structure are chosen based on prior
knowledge or structural details discernible from the localization map. For each model, the
relative distances between its position coordinates are calculated (Fig. 6.9a). Next, based on
these discrete distances a distribution of distances is determined according to the localization
precision (Fig. 6.9b). In addition, a term accounting for distances between localizations arising
from the same molecule of interest (solid black line) as well as a background term (dashed
black line) are included. Combining all the contributions yields a total model RPD (red line).
This model RPD can be compared to the experimental RPD (Fig. 6.9c). Finally, the model
which represents the experimental RPD best is selected.

Figure 6.9.: Pattern extraction from relative positions of localizations (PERPL). The
PERPL approach determines the underlying particle structure from the distribution of relative distances
between all obtained localizations of a particle. For a chosen model, all relative distances between its
positions are calculated (a). These discrete distances are then converted into distance distributions
based on the localization precision (b). In addition, a term accounting for multiple detections of the
same molecule (solid black line) and a background term (dashed black line) are included. Combining
all contributions yields the total model RPD (red line). Finally, the obtained model RPD (red line) is
compared to the experimental RPD represented by the histogram shown in gray (c). Figure adapted
from [186].
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This chapter contains data and figures from the following preprint:

F. Hinterer*, M. C. Schneider*, S. Hubmer, M. López-Martinez, P. Zelger, A. Jesacher,
R. Ramlau, G. J. Schütz. Robust and bias-free localization of individual fixed dipole emitters
achieving the Cramér Rao bound. arXiv, 2021.

arXiv-ID: 2104.02449

Aim

The fixed orientation of fluorophore dipoles in cryo-SMLM leads to complex and asymmetric
PSF shapes. Simple fitting of the obtained PSF images with a Gaussian function may cause a
considerable localization bias, in particular for tilted dipoles and imperfect focusing. Here, we
aimed at developing a bias-free localization procedure for fixed dipole emitters under low NA
conditions as given for the considered cryo-SMLM setup.

Contribution

This study was performed in cooperation with Fabian Hinterer, Simon Hubmer and Ronny
Ramlau from the Johannes Kepler Universität (JKU) Linz and the Johann Radon Institute
(RICAM) Linz, as well as Philipp Zelger and Alexander Jesacher from the Medical University
of Innsbruck. I conceived the method for localization analysis in cooperation with Fabian
Hinterer and Gerhard Schütz. Together with Philipp Zelger, Alexander Jesacher and Fabian
Hinterer, I developed a software package for simulation and analysis of PSF images for fixed
dipole emitters.

Outcome

We established an approach for precise and accurate localization of fixed dipole emitters under
a low NA setting. The method is based on maximum-likelihood estimation of the emitter
position using the complete theoretical point-spread function model. A straightforward astig-
matic imaging approach encodes additional information about the axial position of the emitter.
Based on simulations of PSF images we showed that this approach allows for unbiased local-
ization estimates even under defocused imaging conditions, while achieving the best possible
localization precision at the Cramér–Rao bound.
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7.1. Introduction

Cryogenic temperatures promise superior fixation for SMLM applications, as the sample’s
ultrastructure is conserved and residual diffusion of molecules is minimized [9, 11]. However,
performing SMLM imaging at cryogenic temperatures leads to fixed dipole orientations of
dye molecules characterized by the azimuthal angle φ and elevation angle θ (Fig. 7.1). In
consequence, if the fluorophore is not positioned exactly in the focal plane the peak of the
PSF will be shifted laterally. Therefore, a simple Gaussian fit of the PSF image or centroid
calculation leads to a bias in the position estimate [12,13]. In chapter 6, I presented an overview
of methods which allow to circumvent this issue and yield virtually bias-free localizations. In
many of the previous studies, imaging with a high-NA objective was assumed [85, 175–177].
Here, we consider a setup for performing SMLM at cryogenic temperatures (compare section
2.3.4). Due to the vacuum chamber required for thermal isolation of the sample, a large
working distance is required and one is typically restricted to an air-objective with a limited
NA of 0.7–0.8 [75].

x
y

z

φ

θ

d=−500 nm d=0 nm d=500 nma b

Figure 7.1.: Coordinate system and fluorophore dipole orientation. Panel a depicts an illus-
trative dipole orientation (green arrow) characterized by its elevation angle θ and azimuthal angle φ.
The optical axis is assumed to be parallel to the z-axis. Panel b shows normalized xy-cross sections
of the PSF for an emitter with dipole orientation (θ, φ) = (π/4, 0) for defocus values of d = −500 nm
(left), d = 0nm (middle) and d = 500 nm (right). Each plot shows a quadratic region of interest with
0.81µm side length. The red cross indicates the true position of the emitter. Although the shapes of
the PSF cross sections are virtually identical, a vertical shift of the PSF along the x-axis is discernible.

For low-NA objectives, the PSF of a defocused fixed dipole can, in practice, hardly be dis-
tinguished from a defocused PSF arising from a dipole with a laterally shifted true position
(Fig. 7.1b). Hence, obtaining unbiased position estimates is challenging even when applying
a maximum-likelihood fit with the full vectorial PSF model for fixed dipole emitters. The
assumed PSF model is described in detail in the Methods, section 7.4.1. Fig. 7.2 shows a
quantification of the localization errors for simulated PSF images, assuming fixed dipole emit-
ters with elevation angles θ = 0, π/6, π/3, π/2 and azimuthal angle φ = π/4. We assumed an
emission wavelength of λ = 680 nm. The number of detected photons was set to N = 5 · 105
with a background noise of b = 100 (Fig. 7.2a) and b = 300 (Fig. 7.2b), corresponding to
a signal-to-noise ratio of 5000 and 1666, respectively, and a signal-to-background ratio of 50
and 5.55, respectively. Indeed, values above 106 for the number of obtained photons per fluo-
rophore were reported previously for experiments performed under cryogenic conditions with
decelerated photophysics [75, 87]. A comparison of representative PSF images with and with-
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out background noise is shown in Fig. 7.3. The theoretical PSF model (see Methods, section
7.4.1) was fitted to each simulated PSF image via maximum likelihood estimation (MLE) (see
Methods, section 7.4.4), yielding parameter estimates (x̂, ŷ, d̂) for the lateral position of the
emitter and the amount of defocus. In principle, a maximum likelihood fit of the PSF using
the exact PSF model should yield bias-free results. However, the presence of background noise
hampers the fitting procedure as faint differences in the shape of the PSF are obscured by
background fluctuations and the fit algorithm may be trapped in local minima. Thus, the fit
results become unstable and strongly depend on the choice of the starting values.
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Figure 7.2.: Localization errors for fixed dipole emitters. Simulations of the PSFs were per-
formed assuming a standard optical setup and cryogenic imaging conditions. We simulated PSFs for
different dipole orientations with elevation angle θ = 0, π/6, π/3, π/2. The azimuthal angle was set to
φ = π/4. For each simulated PSF image, we fitted the position and defocus (x, y, d) with the full vecto-
rial PSF model via maximum-likelihood estimation, while the dipole orientation (θ, φ) was assumed to
be known exactly. Shown are the resulting bias µx, µd (dashed lines) and localization precision σx, σd

(solid lines) for the x-position (green) and defocus values d (blue), respectively. Note that for symmetry
reasons, the bias and localization precision for the x- and y-position are identical. The CRB for the
localization precision of the x-coordinate is indicated by the dotted green line. The number of photons
was set to N = 5 · 105, the background noise to b= 100 (a) and b= 300 (b). The amount of defocus
was varied from −500 nm to 500 nm in steps of 100 nm. Each data point represents 1000 simulations.
Figure adapted from [187].

For the lower noise level of b = 100 (Fig. 7.2a), we still obtained satisfactory results for the
lateral position estimate in case of slight defocus within 200 nm of the focal plane. For larger
amounts of defocus, however, the localization bias increased up to 50 nm. For an elevated noise
level of b = 300 (Fig. 7.2b), the fitting results became increasingly unstable and it was virtually
impossible to estimate the correct fluorophore position. For d = 0, i.e. perfect focusing, the
localization bias seemingly vanished. This can be explained by the starting values chosen
for the fitting procedure, which were distributed symmetrically in this case; thus, positive
and negative errors could compensate. Nevertheless, these errors still affected the obtained
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b=0 b=100 b=300

Figure 7.3.: Comparison of PSF images for different noise levels. The plots depict simulated
PSF images for a fluorophore with elevation angle θ = π/2. A signal of N = 5 · 105 photons was
simulated with background noise of b = 0 (left), b = 100 (middle) and b = 300 (right), assuming a
perfect focus (d = 0). Each plot shows a 17× 17 pixel region with a pixel size of 108 nm.

localization precision, which could not attain the CRB (dotted line).

Interestingly, the main difficulty was to extract the correct defocus value from the PSF images
(Fig. 7.2, blue lines), which in turn affected the estimation of the lateral fluorophore position,
especially for low signal-to-noise ratios. Notably, the PSFs for θ = 0 and θ = π/2 are always
symmetric, also in the case of defocusing (see Fig. 7.4). On the one hand, this symmetry
impeded a correct estimation of the defocus, which consistently exhibited a substantial bias
(Fig. 7.2, dashed blue lines). On the other hand, for θ = 0 and θ = π/2 the PSF is not tilted
and thus, no localization bias in the estimation of the lateral position (x, y) could be observed,
even for large defocus values (Fig. 7.2, dashed green lines).

In this chapter, I show how additional information on the defocus can improve the stability of
the localization procedure for non-rotating single dipole emitters. Information on the defocus
can directly be encoded in the PSF by inserting a weak cylindrical lens into the optical path.
This induces astigmatism, which leads to elliptical distortions of the PSF above and below the
focal plane, as can be seen in Fig. 7.4b,d. Astigmatism-based imaging is a well-established
method, which has previously been applied for estimating the z-position of isotropic emitters
[188–191]. For the localization procedure, we fitted the PSF image with the full vectorial PSF
model via the maximum likelihood method, yielding an estimate for the lateral position (x, y) of
a fluorophore as well as the amount of defocus d. We extensively investigated the performance
of the method based on simulations, which allowed to directly compare the obtained fitting
results to the ground truth fluorophore positions. Our method provided bias-free localization
results for fixed dipole emitters. In addition, the obtained precision attained the Cramér–Rao
bound (CRB) (see Methods, section 7.4.3). The proposed approach is directly applicable to
SMLM recordings under cryogenic conditions.
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Figure 7.4.: Point spread functions for different dipole orientations. Simulated PSF intensity
patterns in the case of no astigmatism (a,c) and 75 nm RMS vertical astigmatism (b,d). The elevation
angle was set to θ = 0, π/6, π/3, π/2, the azimuthal angle was set to φ = 0 (a,b) or φ = π/4 (c,d). Each
PSF plot depicts a 25 × 25 pixelated image with a pixel size of 108 nm. The red crosses indicate the
actual position of the dipole emitter in the center of the image. Figure adapted from [187].
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7.2. Results

In order to encode information about the defocus in the PSF image, we considered an astigmatic
imaging approach. For this, we assumed a weak astigmatism with 75 nm RMS vertical astig-
matism, corresponding to a shift between the x- and y-focal plane of approximately 1.4 µm. We
simulated PSF images for various dipole orientations and defocus values ranging from −500 nm
to 500 nm. A comparison of the obtained PSF shapes with and without astigmatic distortions
is depicted in Fig. 7.4. Simulated PSF images were fitted with a maximum likelihood approach,
yielding estimates for the lateral position (x, y) and the amount of defocus d.

First, we were interested whether the introduced astigmatism offers enough information in order
to not only estimate (x, y, d), but to leave the dipole orientation (θ, φ) as a free parameter of
the fit as well (Fig. 7.5a). While the obtained results for both the lateral position and the
defocus showed no substantial bias, the fit nevertheless was unstable and yielded poor values
for the localization precision up to 40 nm for (x, y) and 100 nm for d. In order to increase the
stability of the fit, we assumed the azimuthal angle φ to be known and left only the elevation
angle θ as a free parameter of the fit (Fig. 7.5b). Indeed, the estimation of the lateral position
(x, y) could be improved. Nevertheless, the obtained localization precision of around 20 nm is
still insufficient for resolving structures at the nanometer scale. In addition, the localization
precision for the defocus hardly improved. Hence, we concluded that a simultaneous fitting and
estimation of the lateral position (x, y), defocus d and dipole orientation (θ, φ) is not feasible
in order to achieve satisfactory results.
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Figure 7.5.: Fitting the dipole orientation in the presence of astigmatism. PSF images with
N=5 · 105 photons and background noise b = 0 were simulated. For each simulation, the ground truth
dipole orientation was chosen randomly. We fitted the lateral position (x, y), defocus d and dipole
orientation in the presence of astigmatism with the full vectorial PSF model via MLE. In panel a we
fitted both the elevation and azimuthal angles (θ, φ). In panel b we assumed the azimuthal angle φ
to be known and fitted the elevation angle θ only. Shown are the resulting bias µx, µy, µd (dashed
lines) and localization precision σx, σy, σd (solid lines) for the x-position (green), y-position (orange)
and defocus values d (blue), respectively. Each data point represents 5000 simulations. A list of all
simulation parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

Consequently, in the following we assumed that knowledge about the dipole orientation is avail-
able. This assumption is justified, as various approaches for determining the dipole orientation
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of a fluorophore are available, which are also applicable for low-NA objectives as considered
here [192–196]. Henceforth, we left only the lateral position and defocus as free parameters of
the fit (Fig. 7.6). Here, we simulated PSF images for four different dipole orientations with
θ = 0, π/6, π/3, π/2 and φ = π/4. The number of photons per PSF was set to N = 5 · 105
while background noise was not considered (b = 0), i.e. the only noise source was assumed to
be photon shot noise. Fig. 7.6 shows the obtained values for the bias (dashed lines) and the
localization precision (solid lines) for the estimation of x, y and d. For comparison, the CRB
for x and y is indicated as dotted lines. As expected, our method yielded bias-free results.
Moreover, including knowledge about the dipole orientation greatly enhanced the localization
precision, which achieved the CRB over the whole range of defocusing values. The introduced
astigmatism causes a shift of the focal planes for the x- and y-direction and thus, the x- and
y-localization precision show opposing trends for negative and positive values of the defocus.
Per definition, a defocus value of 0 corresponds to the position in the middle of the x- and
y-focal planes.
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Figure 7.6.: Localization errors in the presence of astigmatism. PSFs were simulated for
different dipole orientations with elevation angle θ = 0, π/6, π/3, π/2 and azimuthal angle φ = π/4.
The number of photons was set to N = 5 · 105 and the background noise to b = 0. We fitted the
full vectorial PSF model via MLE to obtain estimates for the position and defocus (x, y, d); the dipole
orientation (θ, φ) was assumed to be known exactly. Shown are the resulting bias µx, µy, µd (dashed
lines) and localization precision σx, σy, σd (solid lines) for the x-position (green), y-position (orange)
and defocus values d (blue), respectively. The CRB for the estimation of the x- and y-position are
indicated by the dotted lines. Each data point represents 1000 simulations. A list of all simulation
parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

As can be seen in Fig. 7.4, the position of the intensity maximum of the PSF depends on
the azimuthal angle φ. Therefore, we repeated the simulations from the previous figure, but
changed the azimuthal angle from φ = π/4 to φ = 0. Changing the azimuthal angle yielded
similar results both for the bias and localization precision (Fig. 7.7). As the influence of the
azimuthal angle on the obtained results was found to be negligible, we kept the azimuthal angle
at φ = π/4 for all following simulations. Next, we reduced the simulated number of photons
obtained for each PSF (Fig. 7.8). As expected, the localization errors increased for a reduced
number of photons. Importantly, the method still did not exhibit any bias; the trends for the
localization precision remained the same. In addition, we were interested in the influence of the
camera pixel size. For this, we increased the pixel size by two, i.e. we simulated PSF images
with a pixel size of 216 nm. The increase in the pixel size hardly affected the obtained results
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Figure 7.7.: Influence of the azimuthal angle. All simulation parameters and the fitting procedure
were identical to Fig. 7.6, except for the azimuthal angle, which was set to φ = 0. A list of all simulation
parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].
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Figure 7.8.: Influence of number of photons. All simulation parameters and the fitting procedure
were identical to Fig. 7.6, except for the photon number, which was reduced to N = 5 · 104. A list of
all simulation parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

for the bias and localization precision (Fig. 7.9).

In an SMLM experiment, the obtained signal is impaired by background noise arising among
others from camera noise, other emitters in the same field of view, or scattering. In order to
consider noise sources in our simulations, we added homogeneous Poisson-distributed back-
ground noise to each pixel. We simulated background noise with a magnitude of both b = 100
(Fig. 7.10a) and b = 300 (Fig. 7.10b). In all scenarios, the obtained localization precision for
the x- and y-position (solid lines) followed the CRB (dotted lines) extremely well. Overall, the
localization precision for the x and y-position was below 2 nm and 5 nm for background noise
with b = 100 and b = 300, respectively. Of note, the precision for the estimation of the defocus
was worse, with σd up to 7 nm and 20 nm for b = 100 and b = 300, respectively.

Further, we investigated the influence of the number of pixels which were taken into account
for the fitting procedure. For this, we varied the size of the analyzed region of interest (ROI)
from 3 × 3 pixels up to 41 × 41 pixels (Fig. 7.11). For small ROIs below 10 × 10 pixels the
calculated CRB increased rapidly, as large parts of the signal are cut off, leading to loss of
information. As expected, the localization precision was poor for small ROIs. In this regime,
the obtained localization precision deviated from the CRB. This can be explained by the fact
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Figure 7.9.: Influence of pixel size. All simulation parameters and the fitting procedure were
identical to Fig. 7.6, except for the simulated pixel size, which was set to 216 nm. A list of all simulation
parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

−1

0

1

2

3

nm

θ = 0

−500 0 500

0

5

Defocus [nm]

nm

−1

0

1

2

3

θ = π/6

−500 0 500

0

5

Defocus [nm]

−1

0

1

2

3

θ = π/3

−500 0 500

0

5

Defocus [nm]

−1

0

1

2

3

θ = π/2

µx
σx

CRBx
µy
σy

CRBy

−500 0 500

0

5

Defocus [nm]

µd
σd

0

2

4

6

nm

−500 0 500

0

20

Defocus [nm]

nm

0

2

4

6

−500 0 500

0

20

Defocus [nm]

0

2

4

6

−500 0 500

0

20

Defocus [nm]

0

2

4

6
µx
σx

CRBx
µy
σy

CRBy

−500 0 500

0

20

Defocus [nm]

µd
σd

a

b

b
=

10
0

b
=

30
0

Figure 7.10.: Influence of background noise. Simulations and fitting procedure were analogous
to Fig. 7.6, except for adding background noise, which was set to b = 100 (a) and b = 300 (b). A list
of all simulation parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

that the ground truth position of the emitter was varied for the simulations, while the CRB was
calculated for the center position; for very small ROIs the fitting procedure was exceedingly
sensitive to slight changes in the subpixel position of the emitter. For ROIs larger than 10×10
pixels, the obtained values for the localization precision were almost constant. Without any
background noise, a larger ROI always led to improved results. In the presence of background
noise, however, the localization precision showed a minimum at around 13 × 13 pixels. The
obtained results confirm our choice of a fitting region of 17×17 pixels, yielding good localization
precision and high fitting stability.
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Figure 7.11.: Influence of the size of the fitted region. Localization precision (solid lines) and
the CRB (dotted lines) are shown for fitted regions of interest ranging from 3×3 pixels to 41×41 pixels.
For all simulations, the fluorophore dipole orientation was chosen as (θ, φ) = (π/6, π/4). Three different
defocus values were simulated: d = −500 nm (a), d = 0nm (b), d = 500 nm (c). The background noise
was set to b = 0 (gray lines) and b = 300 (black lines). Each data point represents 1000 simulations. A
list of all simulation parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

In practice, the fluorophore dipole orientation has to be estimated and thus, perfect knowledge
about the orientation is unrealistic [192–196]. Therefore, we investigated the influence of errors
in the assumed dipole orientation on the localization procedure. For this, we added errors to the
dipole orientation, following two different distributions: (i) Errors were distributed normally
with a mean of 0 and a standard deviation of 2◦ for both the elevation angle θ and azimuthal
angle φ. (ii) Errors were distributed normally with a mean of 0 and a standard deviation of
4◦ and 2◦ for θ and φ, respectively. The increased standard deviation for θ was selected to
represent the higher difficulty in the estimation of the elevation angle. Of note, the chosen
values correspond to standard deviations in the angle estimation reported previously [167]. The
results for case (i) and (ii) are shown in Fig. 7.12a,b and Fig. 7.12c,d, respectively. Imperfect
knowledge about the fluorophore dipole orientation did not lead to any bias in the estimation
of the lateral position or the defocus (dashed lines). Regarding the precision, similar trends
as for the previous simulations with exact knowledge about the dipole orientation (Fig. 7.6)
could be observed. Overall, uncertainties in the dipole orientation deteriorated the localization
precision. Notably, the results for θ = π/6 and θ = π/3 were affected more strongly—in
particular for large defocusing—as for these angles the shape of the PSF is more sensitive to
slight changes in the dipole orientation.

In all previous simulations, we assumed an equal number of photons for each fluorophore,
which was subjected to photon shot noise only. In practice, however, the photon yield is
directly dependent on the fluorophore dipole orientation: The excitation probability for a
fluorophore is proportional to cos2(β), where β is the angle between the fluorophore dipole
orientation and the electric field vector of the excitation light. Assuming circularly polarized
excitation light, the number of obtained photons can be calculated as Neff = N cos2(θ), where
θ is the elevation angle of the dipole orientation of the emitter. Thus, the photon yield is
reduced for dipoles which are not parallel to the focal plane, but tilted with respect to the
focal plane. Notably, the photon yield of fluorophores with a dipole orientation almost parallel
to the optical axis will be close to zero. In Fig. 7.13 we examined the influence of reduced
excitation on the localization precision for tilted dipoles. The simulations and fitting procedure
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Figure 7.12.: Influence of uncertainties in dipole orientation. Simulations and fitting procedure
were analogous to Fig. 7.6, except that the dipole orientation was not assumed to be known exactly, but
determined with errors. The errors for the dipole orientation were distributed normally with standard
deviation of 2◦ for both θ and φ (a,b), or standard deviation of 4◦ in θ and 2◦ in φ (c,d). Background
noise was set to b = 100 (a,c) and b = 300 (b,d). A list of all simulation parameters is given in Table 7.1
in the Appendix. Figure adapted from [187].

were carried out analogously as for Fig. 7.6 (in particular, exact knowledge about the dipole
orientation was assumed), except that the obtained number of photons was adjusted according
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to the fluorophore dipole orientation. Note that for a fluorophore with an elevation angle of
θ = π/2, i.e. an orientation parallel to the optical axis, the excitation probability is always zero;
therefore, this case was omitted in the figure. As expected, the results for θ = 0 were identical
to those from Fig. 7.6, as the dipole orientation is parallel to the focal plane in this case and
thus, Neff = N . For the tilted dipoles characterized by θ = π/6 and θ = π/3, however, the
number of photons was reduced and thus, the localization precision deteriorated. Remarkably,
in all cases the obtained localization precision could still attain the CRB (dotted lines).
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Figure 7.13.: Influence of reduced excitation probability for tilted dipoles. The photon yield
for each simulated fluorophore was adjusted according to its dipole orientation, with a maximum photon
number of N = 5 · 105. The effective number of photons Neff = N cos2(θ) is indicated at the top of
each plot. The remaining parameters and fitting procedure are identical to Fig. 7.6, of note background
noise was set to b = 0 and exact knowledge about the dipole orientation was assumed. A list of all
simulation parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].
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Figure 7.14.: Combined effect of reduced excitation probability for tilted dipoles and un-
certainties in dipole orientation. The figure shows the results for localization bias and precision
when including both a reduced excitation probability for tilted dipoles, as well as errors in the deter-
mination of the dipole orientation. Again, we assumed the errors in the dipole orientation to follow a
normal distribution with a standard deviation of 2◦ for both θ and φ, as in Fig. 7.12a,b. A list of all
simulation parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

124



7.3. Discussion

Finally, Fig. 7.14 shows the combined effect of the reduced excitation for tilted dipoles and
imperfect knowledge about the dipole orientation. Here, we assumed the errors in the dipole
orientation to be distributed normally with a standard deviation of 2◦ for both θ and φ, as in
Fig. 7.12a,b. Again, for θ = 0 the number of obtained photons was not reduced and the best
localization precision could be achieved. For tilted fluorophores with θ = π/6 and θ = π/3,
the obtained localization precision deteriorated as the errors due to both the reduced photon
numbers and the uncertainty in the dipole orientation accumulated.

7.3. Discussion

Precise and accurate localization of emitters in SMLM is prerequisite for resolving biomolecular
structures at the nanoscale. At cryogenic temperature, the reduced photobleaching leads to
high photon yields per fluorophore—average values of more than 106 photons were reported
in previous experiments [75, 87]. Thus, a localization with a remarkable precision below one
nanometer can be achieved [75,87,90].

One challenge of cryo-SMLM is the anisotropic emission of fixed dipole emitters, causing a bias
in the estimation of the fluorophore position for standard localization procedures that rely on
Gaussian fitting or centroid calculation [12, 13]. The presence of localization biases of tens of
nanometers thwarts the gain in localization precision for cryo-SMLM. Several methods aim at
avoiding a localization bias in case of fixed dipole emitters [85, 172, 175–177]. Notably, these
studies assumed high-NA conditions; in this case high angular components of the emission
are captured, leading to more distinct PSF shapes than in a low-NA setting as given for
the considered cryo-setup. An interesting approach to collect high angular components in
combination with large working distances is the implementation of a super-hemispherical solid
immersion lens [76]. For a low-NA setting, in contrast, the problem of localization biases
is inherently less severe, in particular for perfect focusing [12]. In case of defocus, however,
a tilt of the PSF still leads to considerable lateral shifts of the intensity peak [41]. The
presented astigmatic imaging approach considers cryo-SMLM with low NA and yields bias-
free localization results over a large range of defocus values of ±500 nm. Additionally, the
introduced astigmatism allows for an estimate of the axial position, albeit with smaller precision
compared to the lateral precision.

For achieving stable fit results, knowledge of the dipole orientation of fluorophores is required
(compare Fig. 7.5 and Fig. 7.6). Various approaches exist for estimating the orientation of the
dipole: Methods based on spot shape analysis deduce the dipole orientation directly from the
PSF shape [167]. However, they require the use of a high-NA objective in order to capture
faint differences in the PSF. For a low-NA setting, other methods may be employed, which rely
on polarization effects in the absorption or emission of fluorophores; the number of obtained
photons for different polarization angles allows to infer the fluorophore’s dipole orientation
[192,196]. In practice, this can be achieved, for example, by alternating excitation with linearly
polarized light of two orthogonal polarization directions, yielding two different intensity values.
The azimuthal angle φ can be inferred from the ratio of the obtained intensity values; the
elevation angle θ can be inferred from the sum of the intensities relative to the maximum
occurring single molecule intensity. Alternatively, the fluorophore emission can be used to
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7. Localization of fixed dipole emitters

determine the dipole orientation by splitting the emitted photons in different polarization
channels [193–195]. Further, the method assumes a priori knowledge on the amount of spatially
homogeneous background noise. An estimate for the background noise can be obtained from
regions in the field of view which are devoid of any specific signal. Notably, a recent preprint
presented an approach for simultaneous estimation of emitter position, number of photons,
background counts, and dipole orientation based on a Vortex PSF [172], assuming a high NA
of 1.49—whether the method performance is transferable to a low-NA setting remains to be
investigated.

The following aspects should be considered in order to obtain optimal results for our localization
method and to interpret the resulting data correctly:

• Each fitted signal should arise from a single dye emitter only. In its current form, the
method does not support multi-emitter fitting. Of note, under cryogenic temperatures
the photophysics of fluorophores are decelerated [75, 197], resulting in the presence of
overlapping signals. This issue can be circumvented by scrutinizing the intensity traces of
a signal and selecting only those frames in which the signal is of single-emitter origin [90].

• In our simulations, we considered spatially homogeneous background only. In reality,
spatially varying background may arise due to other fluorophores in close proximity,
unspecific background signal or cellular autofluorescence. Contributions from other flu-
orophores can be avoided by analyzing only those frames in which all perturbing fluo-
rophores are in the dark state. In general, other background signal typically shows less
fluctuations in time and thus, can be subtracted, e.g. by filtering the signal in the time
domain [198,199].

• The analyzed pixel region should be large enough in order to contain the whole signal.
As confirmed by Fig. 7.11, a rather small region of 13 × 13 pixels is sufficient, which
corresponds to a side length of the region of approximately 2λ. However, the true fluo-
rophore position is unknown a priori ; selecting a ROI which is not centered at the true
fluorophore position may lead to additional fitting instabilities, which can be avoided by
selecting a slightly larger pixel region for the analysis. A choice of larger fitting regions
requires a larger separation between fluorophores in the bright state, i.e. a lower density
of active emitters. In addition, the presence of background signal may degrade the fit for
very large ROIs.

• For the fitting procedure, the amount of astigmatism is assumed to be known. In addi-
tion, not only astigmatic distortion may affect the signal, but other aberrations due to
imperfections in the optical setup may be present as well. Wavefront aberrations present
in the optical system can be assessed by determining the 3D PSF of an isotropic single
molecule emitter, either by recording the PSF of a freely rotating emitter at room temper-
ature or merging the signals from multiple fixed emitters of different dipole orientations.
Subsequently, Zernike polynomials can be fitted to the obtained PSF (Eq. (7.2) in Meth-
ods, section 7.4.1), yielding the astigmatism and any potential additional aberrations
present in a particular setup. In principle, the possibility to include custom aberration
maps is an advantage of any localization procedure which is based on fitting of an exact
PSF model.
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7.3. Discussion

• Notably, fluorophore molecules with a dipole orientation close to the optical axis can-
not be detected in case of usual excitation schemes, as their excitation probability is
almost zero. This slightly reduces the detection efficiency in cryo-SMLM and should be
considered when further analyzing and interpreting the obtained localization maps.

Taken together, a simple astigmatic imaging approach in combination with knowledge about
the fluorophore dipole orientation allows to avoid localization biases in low-NA microscopy
over a wide range of defocusing. In addition, the approach was shown to achieve optimal
precision in the estimation of the lateral position as it attains the CRB. A precise and accurate
localization of fluorophores provides the basis for reconstructing oligomeric structures of a few
nanometers in size, as will be discussed in chapter 8 of this thesis.
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7. Localization of fixed dipole emitters

7.4. Methods

7.4.1. Point spread function model

The PSF model used in this work is the full vectorial PSF model as described previously
[43, 85, 169]. It comprises the electric field originating from a dipole emitter, the propagation
through the layers of the optical system and the resulting intensity distribution at the image
plane. We additionally introduced vertical astigmatism into the optical system, which breaks
the symmetry of the PSF above and below the focal plane and thus, allows to estimate the
amount of defocus.

We assumed a standard optical setup consisting of a sample layer with refractive index n1 =
1.33 and an immersion layer with refractive index n2 = 1, reflecting the situation of an air-
objective corrected for the presence of a cryostat window. We chose a coordinate system in
the canonic way, i.e. such that the z-axis coincides with the optical axis and the xy-plane
coincides with the focal plane. A fluorophore situated in the focal plane can be described by
a dipole point source with lateral position (x, y) and orientation (θ, φ), where θ and φ denote
the elevation and azimuthal angle, respectively (see Fig. 7.1a).

The starting point for our model is the electric field vector EBFP (in Cartesian coordinates) in
the back focal plane given by Eq. (18) in [43]. The electric field vector Ef in the image plane
is then given by the Fourier transform (Eq. (5-14) in [42])

Ef(xf, yf) =
1

iλf
e
i π
λf

(x2
f +y2f )

��
EBFP(x, y)e

i 2π
λ
W (x,y)e

−i 2π
λf

(xfx+yfy)dxdy, (7.1)

where f denotes the focal length of the tube lens, λ the emission wavelength, and integration
happens over the circular pupil area. The aberration term W (x, y) introduces wavefront aber-
rations (Eq. (6-33) in [42]), which can be expanded into a linear combination of orthonormal
Zernike polynomials

W (x, y) =
$

wiZi(x, y) , (7.2)

where Zi denotes the i-th Zernike polynomial (using Noll’s indices) and wi is the correspond-
ing Zernike coefficient. For the calculation of the Zernike polynomials we used [200]. The
normalized intensity distribution is then given by

I(xf, yf) = |Ef(xf, yf)|2 ·
���

|Ef(xf, yf)|2dxfdyf
�−1

. (7.3)

7.4.2. Simulations

Simulations were carried out in MATLAB using implementations of the above equations on a
discrete grid. For a given dipole emitter with position (x, y) and orientation (θ, φ) we calculated
the intensity distribution (Eq. (7.3)) within a region of interest (ROI) of size 17 × 17 pixels.
Calculating the intensity values only at the discrete positions of the camera pixels may lead to
inaccuracies. We therefore computed the values on a finer grid. The values of the smaller pixels
were summed up to obtain the model value for each camera pixel. For the PSF simulations,
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we chose an oversampling factor of 9. Further refinement of the discretization did not yield
any measurable improvements (Fig. 7.15).
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Figure 7.15.: Discretization of the PSF. The plot shows the localization bias arising from the
choice of the oversampling factor in the calculation of the PSF. The x-axis shows the oversampling
factor used for the simulation of the PSF. An oversampling factor of 1 corresponds to the PSF being
evaluated at the discrete positions of the camera pixels. For larger oversampling factors, the PSF was
evaluated on a finer grid, and resulting subpixel values were subsequently summed up. For the fitting,
we used a PSF model calculated with an oversampling factor of n (n = 1 open symbols, n = 3 filled
symbols). The defocus was set to d = −500 nm. Each data point represents 1500 simulations. A list of
the remaining simulation parameters is given in Table 7.1 in the Appendix. Figure adapted from [187].

For each simulation the position (x, y) was chosen randomly in an area of 216×216 nm, typically
corresponding to 2× 2 pixels, in the center of the ROI.

In Eq. (7.2), we only considered nonzero coefficients w4 and w6 corresponding to defocus and
vertical astigmatism, respectively. For the coefficient w6, we chose a value of w6 = 0.11λ,
corresponding to a RMS wavefront error of approximately 75 nm.

Unless specified otherwise, for our simulations we assumed the air-objective (n2 = 1) LUC-
PLFLN60X (Olympus), which has a magnification of 60x, a numerical aperture NA = 0.7 and
a focal length of 3mm. The focal length of the tube lens was set to f = 180mm. For the
sample we assumed dyes with an emission in the red region of the spectrum (λ = 680 nm) for
staining the biological sample. For the sample, a refractive index of water (n1 = 1.33) was
assumed. As detector we assumed a sCMOS camera with a pixel size of 6.5 µm, corresponding
to 108 nm in the object space.

Simulations were performed for defocus values ranging from −500 nm to 500 nm in steps of
100 nm. For the dipole orientation, we considered combinations of the values φ ∈ {0, π4 } and
θ ∈ {0, π6 , π3 , π2 }. If not mentioned otherwise, a number of N = 5 · 105 photons was assumed
for each fluorophore. In practice, the absorption probability of a fluorophore depends on its
dipole orientation. Thus, for Fig. 7.13 and 7.14, the obtained numbers of emitted photons Neff

was reduced accordingly and calculated as

Neff = N cos2(θ), (7.4)
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7. Localization of fixed dipole emitters

where θ is the elevation angle of the fluorophore dipole orientation. For all simulations, the
obtained photon numbers for each pixel were subjected to Poissonian shot noise. Additionally,
for some simulations a Poissonian background noise with standard deviation b was considered.

7.4.3. Cramér–Rao bound

The Cramér–Rao Bound (CRB) represents a lower bound on the variance of any unbiased
estimator ξ̂ for a parameter vector ξ [201]. The variance of the estimator ξ̂ is bounded by

Var(ξ̂k) ≥
�I−1(ξ)

�
kk

, (7.5)

where
�I−1(ξ)

�
kk

are the diagonal elements of the inverse of the Fisher information matrix
I(ξ) of the underlying stochastic process defined by

I(ξ) := E
�� ∂

∂ξ
ln fξ(z)

�T� ∂

∂ξ
ln fξ(z)

��
, (7.6)

with fξ being the probability distribution function of the data generation process. Note that
ξ is assumed to be given as row vector. An estimator which attains the CRB is said to be
efficient, i.e. it fully utilizes the information which is contained in the data and its precision
cannot be further improved. The maximum likelihood estimator can attain the CRB and thus,
is efficient [96]; no other estimator will yield a better precision.

If not stated otherwise, the parameter vector ξ which we estimated is given by the lateral
position (x, y) of the dye molecule and the defocus value d, i.e. ξ := (x, y, d). In order to
calculate the CRB, one first needs to choose an appropriate model which describes the image
data. A Poissonian model has been demonstrated to be a reasonable approximation for photon
shot noise [202]. The photon count zk in the kth pixel is modeled as the realization of a
Poissonian random variable with mean νξ,k and the probability distribution

fξ,k(zk) =
νzkξ,ke

−νξ,k

zk!
. (7.7)

The probability distribution fξ for the whole image is then given by the product

fξ(z) =
K�
k=1

fξ,k(zk) . (7.8)

Combining Eq. (7.7) and (7.8) yields

ln fξ(z) =
K$
k=1

�
zk ln(νξ,k)− νξ,k − ln(zk!)

�
. (7.9)

The resulting Fisher information matrix is then given by

I(ξ) =
K$
k=1

�∂νξ,k
∂ξ

�T�∂νξ,k
∂ξ

� 1

νξ,k
, (7.10)
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where we refer to [202] for a detailed calculation. Finally, the CRB is obtained by taking
the inverse of the Fisher information matrix I(ξ). Since analytical computation of the par-
tial derivatives in Eq. (7.10) is infeasible, we approximated them by numerically computing
difference quotients.

7.4.4. Fitting procedure

First, as an a priori estimate for the mean background signal b2 we calculated the mean signal of
an image without fluorophore signal. Next, we determined an estimate for the total number of
detected photons Ntotal per molecule by summing over all noise-corrected pixels. If not stated
otherwise, we estimated the free parameters ξ := (x, y, d). For this, we used a maximum
likelihood estimator, since in this case the localization precision can attain the CRB [96].
Fitting was performed on normalized images. If not mentioned otherwise, the whole 17 × 17
region of interest was used for fitting. The log-likelihood function is identical to Eq. (7.9); here
zk denotes the photon number of the kth pixel of the normalized image. For the fit function νξ,k,
we first determined the normalized PSF via Eq. (7.3): The PSF model for fitting was calculated
on a discrete grid using an oversampling factor of 3, representing a good compromise between
accuracy and computational speed of the fitting procedure (compare Fig. 7.15). Further, the
obtained PSF was multiplied by Ntotal, and the mean of the background signal b2 was added
to each pixel. Finally, this function was normalized by the total sum of detected photons. The
negative log-likelihood function was then minimized using the MATLAB function fminunc,
yielding an estimate ξ̂ := (x̂, ŷ, d̂). It turned out to be important to select appropriate starting
values, in order to avoid that the maximum likelihood estimator is trapped in local minima.
Hence, we implemented a non-linear least squares fit, the outcome of which was used as the
starting value for the maximum likelihood fit. The (x, y) starting values for the non-linear least
squares fit were chosen randomly within a 2 × 2 pixel region around the center of the image.
The starting value for the defocus d was chosen randomly between −500 nm and 500 nm.

In case of astigmatic imaging, we assumed the astigmatism to be known for the fitting pro-
cedure. If not stated otherwise, we also assumed that an estimate (θ̂, φ̂) is available for the
fluorophore dipole orientation. We considered three different cases for the errors θ̂ − θ and
φ̂ − φ: (i) no errors, (ii) both errors in θ and φ are distributed normally with mean 0 and
variance 2◦, (iii) the errors in θ and φ are distributed normally with mean 0 and variance 4◦

or 2◦, respectively.

For each parameter set, we simulated n = 1000 individual PSF images. The accuracy, i.e.
the bias of the localization procedure, was calculated as µx = x̄ − x0 with x̄ = 1

n

%n
i=1 x̂i

and n = 1000, where x̂i denotes the estimate for the x-position obtained from image i. In
addition, we calculated the precision σx of the fitting procedure as the standard deviation,

i.e. σx =
�

1
n−1

%n
i=1(x̂i − x̄)2 with n = 1000. The corresponding biases µy, µd and precisions

σy, σd for the y-position and defocus, respectively, were calculated analogously.
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7.5. Appendix

Fig. φ Astigm. N Red. exc. b Err. θ Err. φ Pixel size ROI

7.2a π/4 no 5 · 105 no 100 0◦ 0◦ 108 nm 17× 17

7.2b π/4 no 5 · 105 no 300 0◦ 0◦ 108 nm 17× 17

7.4a,b 0 no 5 · 105 no 0 — — 108 nm 25× 25

7.4c,d π/4 no 5 · 105 no 0 — — 108 nm 25× 25

7.5 random yes 5 · 105 no 100 — — 108 nm 17× 17

7.6 π/4 yes 5 · 105 no 0 0◦ 0◦ 108 nm 17× 17

7.7 0 yes 5 · 105 no 0 0◦ 0◦ 108 nm 17× 17

7.8 π/4 yes 5 · 104 no 0 0◦ 0◦ 108 nm 17× 17

7.9 π/4 yes 5 · 105 no 0 0◦ 0◦ 216 nm 17× 17

7.10a π/4 yes 5 · 105 no 100 0◦ 0◦ 108 nm 17× 17

7.10b π/4 yes 5 · 105 no 300 0◦ 0◦ 108 nm 17× 17

7.11 π/4 yes 5 · 105 no 0, 300 0◦ 0◦ 108 nm various

7.12a π/4 yes 5 · 105 no 100 2◦ 2◦ 108 nm 17× 17

7.12b π/4 yes 5 · 105 no 300 2◦ 2◦ 108 nm 17× 17

7.12c π/4 yes 5 · 105 no 100 4◦ 2◦ 108 nm 17× 17

7.12d π/4 yes 5 · 105 no 300 4◦ 2◦ 108 nm 17× 17

7.13 π/4 yes 5 · 105 yes 0 0◦ 0◦ 108 nm 17× 17

7.14 π/4 yes 5 · 105 yes 100 2◦ 2◦ 108 nm 17× 17

7.15 π/4 yes 5 · 105 no 0 0◦ 0◦ 108 nm 17× 17

Table 7.1.: Table of simulation parameters. If not mentioned otherwise, the elevation angle was set
to θ = 0, π/6, π/3, π/2 and 1000 simulations per data point were performed. Columns: Figure number,
azimuthal angle (φ), astigmatism, number of photons (N), reduced excitation, background noise (b),
standard deviation of estimation of θ, standard deviation of estimation of φ, pixel size, region of interest
(ROI) in pixel.
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This chapter contains content from the following publication:

M. C. Schneider*, R. Telschow*, G. Mercier, M. López-Martinez, O. Scherzer, G. J. Schütz.
A workflow for sizing oligomeric biomolecules based on cryo single molecule localization mi-
croscopy. PLoS One, 16(1), 2021.

doi: 10.1371/journal.pone.0245693

Aim

Protein function is often tightly connected to its arrangement within oligomeric complexes.
A localization precision of around 10 nm achieved at room temperature is sufficient to resolve
and reconstruct larger structures such as the nuclear pore complex with a diameter of around
100 nm; other proteins, including ion channels in the plasma membrane, have a size of a few
nanometers only and thus, cannot be resolved with conventional SMLM techniques. Here,
we aimed to develop a workflow for sizing oligomeric structures at the nanoscale tailored for
SMLM performed at cryogenic temperatures.

Contribution

This work was performed in collaboration with Roger Telschow, Gwenael Mercier and Otmar
Scherzer from the Faculty of Mathematics of the University of Vienna. Together with all
co-authors, I designed the workflow and conceived the analysis method. Further, I developed
code for the simulation of SMLM localization maps of oligomeric structures assuming cryogenic
conditions. In addition, I implemented code for the analysis of localization maps together with
Roger Telschow and Gwenael Mercier. I performed simulations, analyzed and interpreted the
resulting data.

Outcome

We developed a workflow for precise sizing of regular oligomeric structures under cryogenic
conditions. The fixed orientation of fluorophores in cryo-SMLM was used as additional in-
formation in the analysis in order to assign localizations to individual fluorophores with high
reliability. The performance of our method for sizing oligomeric structures was extensively
characterized based on simulations of SMLM localization maps. Oligomer side lengths could
be determined with a relative error of less than 1% for tetramers with a nominal side length of
5 nm, even if the assumed localization precision for an individual signal was more than 2 nm.
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8.1. Introduction

The exact structural arrangement of proteins is crucial for their function. As a common feature
in biology, the function of proteins is often established and affected by the association of several
polypeptide chains into an oligomer. In particular, an oligomer is a protein composed of several
subunits; if all structural subunits are identical, the protein complex is a homo-oligomer,
otherwise a hetero-oligomer. A structural subunit of an oligomer—composed either of a single
or multiple polypeptide chains—is referred to as protomer. Oligomers can be comprised of
different numbers of subunits; for example, a dimer, trimer or tetramer is an assembly of
two, three or four subunits, respectively. The number of subunits is also referred to as the
degree of oligomerization. Most oligomers in the human proteome form dimers (two subunits)
to hexamers (six subunits) and exhibit a symmetric structure [203]. Common examples for
oligomers in the plasma membrane are ion channels [24], which regulate the transport of ions
across the plasma membrane and are highly selective. Typically, they have a size of 2–10 nm
with pore diameters below 1 nm. As example, the tetrameric structure of the potassium/sodium
channel HCN1 is depicted in Fig. 8.1.

Figure 8.1.: Oligomer structure. The figure depicts the structure of the voltage-gated potas-
sium/sodium channel HCN1 in an en face view [204]. This ion channel is a homo-tetrameric protein
composed of four identical subunits, referred to as protomers. Scale bar: 1 nm. Figure adapted from [24].

Although many protein structures have been determined via cryo-EM, their exact size and
arrangement in the plasma membrane often remains unknown. While larger protein complexes
such as the NPC can be imaged in their native environment via SMLM, the resolution of
conventional SMLM techniques is not sufficient to resolve small oligomers of less than 5 nm
in size. The problem is illustrated in Fig. 8.2: Overcounting in combination with insufficient
localization precision compared to oligomer size hampers a correct identification of the oligomer
structure; apparently, there is no realistic chance to identify any structural organization of the
oligomer. In addition, the oligomer size is substantially overestimated by a circle fit of the
localizations (dashed lines).

SMLM performed at cryogenic temperature promises to yield superior localization preci-
sion [75, 90, 164, 165]. First, cryo-fixation approaches offer supreme fixation by prohibiting
residual diffusion and conserving the sample’s ultrastructure [11]. Second, due to the deceler-
ated photobleaching rates of fluorophores at cryogenic temperatures, a higher photon yield per
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Figure 8.2.: SMLM imaging of small oligomeric structures. (a) Protein structure of the ion
channel HCN1 [204]. Red crosses illustrate the assumed positions of dye molecules for SMLM imaging.
Figure adapted from [24]. (b) SMLM localization map. The actual positions of the dye molecules—
arranged in a square with a side length of 5 nm—are shown as red crosses. The gray dots represent the
obtained localization map from a simulated SMLM experiment. The mean localization precision was
1.8 nm. Performing a circle fit of the localizations substantially overestimated the oligomer size (dashed
line). Scale bars: 1 nm.

fluorophore can be achieved [75, 87]. Still, a direct interpretation of SMLM localization maps
is impeded by two factors: Due to inefficient labeling or detection efficiency, some parts of a
biomolecular structure may not be visible at all, while others may be heavily overrepresented
due to overcounting. Particle averaging approaches aim to circumvent this issue by combining
the information obtained from thousands of identical copies of a particle [44, 182–184].

In the following, we assumed a tetrameric protein within the plasma membrane with a side
length of 5 nm (as in Fig. 8.2). We simulated corresponding localization maps for SMLM
performed under cryogenic conditions. Each protomer was assumed to be labeled with one dye
molecule only, which can be achieved experimentally for example via protein tags or unnatural
amino acids [69, 205]. For simulating fluorophore blinking, we used a log-normal distribution
for the number of localizations per molecule (see Methods, section 8.4.1). Of note, at cryogenic
temperature fluorophore dipole orientations are fixed; therefore, a random dipole orientation
was assigned to each fluorophore and the number of photons for each signal was calculated
dependent on this orientation. The maximum photon number that can be obtained for a dipole
orientation parallel to the excitation polarization is denoted as Nmax in the following.

First, we analyzed the simulated localization data obtained for a set of 1000 simulated tetramers
with a template-free approach published by Heydarian et al. [183], which allows to reconstruct
oligomers of unknown structures. For high single molecule localization precision achieved with
Nmax = 105 photons, the method indeed yielded satisfactory results and clearly revealed the
tetrameric arrangement of the individual dye molecules (Fig. 8.3d). However, a decrease in the
photon number leads to increased localization errors and the analysis of the localization maps
becomes more difficult. Eventually, for Nmax = 104 photons per dye molecule no oligomeric
substructure could be identified (Fig. 8.3a). Notably, the possibility to reliably assign local-
izations to individual biomolecules of interest would greatly facilitate and improve particle
reconstruction.
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8. Sizing of oligomers via cryo-SMLM

Figure 8.3.: Reconstruction with a template-free method. Localization maps of tetramers
recorded under cryogenic conditions were simulated and analyzed via a template-free all-to-all registra-
tion method published by Heydarian et al. [183]. For each panel, 1000 tetramers with a side length of
5 nm were simulated, assuming Nmax = 104 (a), Nmax = 3 · 104 (b), Nmax = 5 · 104 (c) and Nmax = 105

photons (d). Scale bars: 5 nm. Figure from [206].

In this chapter, I present a new workflow for the analysis of SMLM localization maps ob-
tained from oligomeric protein complexes recorded under cryogenic conditions. The presented
approach is template-based and aims at the precise determination of oligomer size via as-
signment of localizations to individual dye molecules. Particularly, in cryo-SMLM rotational
diffusion of the fluorophores’ dipole orientation is prevented at least over the time scale of
hours [90]. The dipole orientation, fixed at the time point of freezing, constitutes a unique
characteristic for each dye molecule, which can be exploited in order to distinguish localizations
arising from different fluorophores. This can be achieved via exciting the sample alternately
with linearly polarized light of orthogonal polarization direction. The assignment of localiza-
tions to individual molecules substantially improved oligomer reconstruction. The performance
of the proposed approach was validated and characterized by determining the size of regular
oligomeric structures in 2D based on the analysis of simulated SMLM localizations obtained
from thousands of oligomers.

8.2. Results

8.2.1. Sizing oligomers assuming cryogenic imaging conditions

In the following, we assumed a tetrameric protein structure with a side length of 5 nm as in
Fig. 8.2 and Fig. 8.3. In order to facilitate the analysis of oligomeric structures, one may opt for
a template-based approach and include prior knowledge. Here, we assumed that the oligomer
can be represented by a regular polygonal structure, i.e. a square in the case of a tetramer.
Each protomer was assumed to be labeled with exactly one dye molecule. Hence, the dyes
representing the protomers were assumed to lie on the perimeter of a circle. As illustrative
example, we considered a tetramer which yields the same localization map as depicted in
Fig. 8.2b, but assumed cryogenic imaging conditions (Fig. 8.4).

A key feature of the proposed method is the grouping of localizations belonging to the same
dye molecule. At cryogenic temperatures, rotational diffusion of the dye molecules is severely
restricted and thus, the fluorophores’ dipole orientations appear virtually fixed over time-scales
of hours [90]. Fig. 8.4a shows the assumed fluorophore dipole orientations for our representative
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Figure 8.4.: Schematic representation of the method. We assumed a tetramer being labeled
with four dye molecules, i.e. each protomer was assumed to carry exactly one fluorophore. A random
but fixed dipole orientation was assigned to each fluorophore as indicated by the colored arrows in panel
a. The optical axis was assumed to be parallel to the z-axis; the dipole orientations were defined by the
azimuthal angle φ and the elevation angle θ. Subsequently, the fluorophores were assumed to be excited
alternately with linearly polarized light of polarization direction along the x- and y-axis, respectively.
The obtained signal brightness values Nx and Ny for x- and y-polarized excitation light, respectively,
are shown in panel b. The color code corresponds to panel a and indicates the fluorophore from which
each localization was obtained. Annotated numbers indicate the respective dipole orientation (θ, φ) of
the fluorophore in degrees. Nmax was set to 2 · 104 photons. Based on the intensity values Nx, Ny, the
localizations could be divided easily into four groups. This grouping of localizations was applied to the
localization map obtained from the oligomer (c). The average position of each localization group is
plotted as open dot. These positions were used to estimate the oligomer size via a circle fit. The dashed
and solid lines show the uncorrected and bias-corrected fitting results. Figure modified from [206].

simulated tetramer. If a fixed fluorophore is excited with linearly polarized light, the absorption
probability directly depends on the scalar product between the fluorophore’s dipole orientation
and the vector describing the polarization of the excitation light. The dipole orientation of
a fluorophore can be described by the vector (θ, φ), where θ is the elevation angle and φ
the azimuthal angle (Fig. 8.4a). For our method, we assumed the fluorophores to be excited
consecutively with light of orthogonal polarization directions =p1 and =p2, which are parallel
to the imaging plane and orthogonal to each other. Without loss of generality, we set the
Cartesian coordinate system such that the z-axis corresponds to the optical axis, and the x, y-
axes are aligned with =p1 and =p2, respectively. Then, the obtained effective number of photons
Nx and Ny for excitation with =p1- and =p2-polarized light, respectively, can be calculated as

Nx = Nmax cos2(θ) cos2(φ) , (8.1)

Ny = Nmax cos2(θ) sin2(φ) . (8.2)

where Nmax denotes the maximum number of photons per single molecule signal obtained in
case that the fluorophore’s dipole orientation is parallel to the excitation polarization. The
obtained brightness values for the dipole orientations from Fig. 8.4a are shown in panel b.
Provided that the dipole orientations are distributed randomly in space, the values (Nx, Ny)
can in principle cover the whole region confined by Nx > 0, Ny > 0 and Nx+Ny < Nmax, with
a slightly reduced probability density in the center of the region (Fig. 8.5a).

For our method, we assumed the following experimental procedure: The sample is excited
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8. Sizing of oligomers via cryo-SMLM

consecutively with =p1- and =p2-polarized light, leading to signals of brightness (Nx, Ny) according
to Eq. (8.1) and (8.2), which are imaged on the same region of the camera chip. Subsequently,
the two images are added up, yielding a total number of photons Ntotal = Nx+Ny for a single
molecule signal. The localization procedure is performed on the sum image. Considering fixed
dipole moments, a certain fraction of the fluorophores will show dipoles with an elevation angle
close to 90◦, i.e. almost parallel to the optical axis. These fluorophores will yield rather faint
signals characterized by high localization errors. Consequently, a rather broad distribution of
localization errors can be expected. If faint signals are taken into account, this will also cause
a lot of undesired background localizations in an experiment. We hence restricted the analysis
to sufficiently bright signals with Nx +Ny > Nmin (Fig. 8.5b). Signals with Nx +Ny < Nmin

were rejected, corresponding to a threshold for the localization precision σ∗
loc set to 10 nm.
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Figure 8.5.: Probability density for brightness values. Fluorophore dipole orientations were
assumed to be distributed uniformly on a sphere. Naturally, the brightness values (Nx, Ny) are confined
to the region defined byNx > 0, Ny > 0 andNx+Ny < Nmax. (a) Full probability distribution according
to Eq. (8.6) from the Methods, section 8.4.1. (b) Truncated distribution, which accounts for the user-
defined detection threshold Nmin. For the calculation of panel b we assumed Nmax = 104 photons,
background noise b = 300, and a threshold for the localization precision σ∗

loc = 10nm, corresponding to
Nmin = 2960. Figure adapted from [206].

In Fig. 8.4b each data point represents one localization. In this representation of the data it
is straightforward to group all the localizations into four groups. The localizations of each
group belong to one of the four simulated fluorophore molecules; the grouping is indicated by
color. Note that for the simulations the obtained numbers of photons (Nx, Ny) for each single
molecule signal was subjected to photon shot noise. Hence, the point clouds corresponding to
each fluorophore can be elliptically distorted according to different amounts of Poisson noise
for Nx and Ny.

The assignment of localizations to individual fluorophores substantially improved the oligomer
analysis as can be seen in Fig. 8.4c. In this case, all localizations assigned to the same dye
molecule—as indicated by the color code—were averaged (open dots). Performing a circle fit
of these averaged positions yielded a resulting circle (dashed line) which was fairly close to the
ground truth (dotted line). Interestingly, a circle fit exhibits an inherent bias towards larger
circle radii [207]. This can be intuitively understood as on average more data points lie outside
the circle, which thus contribute with overall higher statistical weight. Correcting for this bias
yielded an improved fit result, as shown by the solid line in Fig. 8.4c. The formula for the bias
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and the details of the bias correction can be found in the Methods (section 8.4.2, Eq. (8.14)
and (8.19)).

In order to obtain a robust estimation of the oligomer size, a large number of identical oligomers
can be recorded and analyzed. For this, we assumed the oligomers to be sufficiently separated
from each other so that localizations belonging to individual oligomers can be reliably grouped
by a standard 2D clustering method [59, 116]. If not mentioned otherwise, we assumed that
every protomer was labeled with exactly one dye molecule. For each oligomer, the corre-
sponding localizations were further subdivided into localization groups representing individual
fluorophores. This assignment was based on the detected intensities (Nx, Ny) for each local-
ization. Next, all oligomers yielding n distinct groups of localizations were regarded as eligible
and taken for further analysis, where n corresponds to the assumed oligomer degree. In par-
ticular, this eligibility criterion rejects scenarios in which groups of localizations overlap and
thus, would be interpreted as one spurious position at the average of these localizations.

All oligomers which qualified as eligible were further analyzed as described above. In short, for
each oligomer the individual localization groups were averaged and a circle fit was performed
while accounting for the bias. Of note, each oligomer was analyzed separately. The obtained
radii estimates R̂ were transformed into side length estimates via l̂ = 2R̂ sin(π/n), where n
denotes the oligomer degree. Fig. 8.6 shows a histogram of the resulting estimated side lengths
for 5 · 105 simulated tetramers with a nominal side length of 5 nm. In order to obtain a single
overall value as side length estimate for the underlying oligomer structure, a summary statistic
of all estimated side lengths can be calculated, e.g. the mean (blue line) or the median (green
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Figure 8.6.: Estimating oligomer side length from a set of oligomers. The histogram shows
the estimated tetramer side length for a data set of 5 · 105 tetramers with nominal side length of 5 nm.
After localization assignment to individual dye molecules, a total number of approximately 3.67 · 105
tetramers were eligible for further analysis. For the side length estimation, a circle fit was performed
for each oligomer by minimizing the term from Eq. (8.10) while accounting for the bias according to
Eq. (8.19) from the Methods (section 8.4.2). Analysis of the histogram yields a mean of 5.1959 nm (blue
line) and a median of 5.0256 nm (green line). Values larger than 9 nm were cut off for display only.
Figure adapted from [206].
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line). Note that the histogram in Fig. 8.6 shows a distribution which exhibits a slight positive
skew. As expected, the median of the simulation results shown in the histogram was closer to
the ground truth value of 5 nm than the mean, and hence, was taken in the following as an
overall estimator for the oligomer size.

8.2.2. Characterization of the method

We investigated the performance of the proposed method via extensive simulations. Fig. 8.7
shows a characterization of the localization assignment process (gray solid line) and the re-
sulting eligibility of oligomers (black solid line) for varying levels of single molecule brightness
Nmax. The fraction of tetramers for which all localizations were assigned to individual fluo-
rophores correctly increases for higher number of photons and approaches a value of 1. This
can be explained by the fact that the relative spread of the point clouds (Nx, Ny) representing
the localizations of a single fluorophore shrinks with increasing Nmax. Hence, the results of the
applied clustering algorithm improved. The improved assignment of localizations in turn in-
creased the number of eligible oligomers and thus, the curve for the fraction of eligible oligomers
followed a similar trend. However, this fraction was slightly lower because fluorophores with
a dipole orientation almost parallel to the optical axis could not be detected. Therefore, some
oligomers yielded less than n localization groups and thus, did not qualify as eligible. For very
high values of Nmax an increased number of fluorophores exceeded the detection threshold and
its impact decreased. The dashed line in Fig. 8.7 shows the fraction of eligible oligomers with
incorrectly assigned localizations, the contribution of which was found to be negligible.
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Figure 8.7.: Assignment of localizations and eligibility of oligomers. The maximum number
of photons Nmax emitted from a fluorophore was varied from 104 to 105. The gray line indicates the
fraction of tetramers, for which all localizations were assigned to the correct dye molecule. A tetramer
was considered eligible for further analysis, if its localizations were assigned to n=4 groups. The black
line shows the fraction of eligible tetramers. The fraction of oligomers which contained incorrectly
assigned localizations, but were regarded as eligible was negligible (gray dashed line). For each data
point a set of 5 · 105 tetramers with a side length 5 nm was simulated. Figure adapted from [206].

In the following, we characterized the performance of the method regarding the estimation of
oligomer side length. For this, we determined the relative error εl of the side length estimate
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as

εl =
l̂ − l

l
, (8.3)

where l̂ and l denote the estimated and ground truth side length, respectively. First, we
analyzed the dependence of εl on the obtained number of photons by varying Nmax from 104

to 105 (Fig. 8.8a). Note that the plot shows a symmetric logarithmic y-axis. Positive and
negative values on the y-axis correspond to positive and negative relative errors, respectively.
Relative errors with absolute values |εl| smaller than 10−3 are shown on a linear scale. The
plot shows results both for taking the mean (filled symbols) and median (open symbols) of all
individual estimated side lengths as a summary statistics for the whole data set of oligomers.
The comparison revealed a superior performance of the median, which was hence used for
all subsequent figures. For all considered values of Nmax, the median yielded highly precise
results with εl below 0.5%, corresponding to 0.025 nm. For Nmax above 2 · 104 photons the
side length was slightly underestimated. Notably, the average localization precision σloc was
given by 2.30 nm and 0.78 nm for Nmax = 104 and Nmax = 105, respectively, which exceeded
the achieved precision of the side length estimate by several orders of magnitude.
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Figure 8.8.: Influence of signal brightness and noise. Relative errors εl for the estimation of
tetramer side length are shown for varying number of photons Nmax (a) and background noise (b). In
both panels we compared the performance of the mean (full symbols) and median (open symbols) as a
summary statistic. For a, we assumed zero background noise b. For panel b, we considered Nmax = 104

photons (gray lines) and Nmax = 105 (black lines). Panel c shows the influence of signal brightness
for different levels of background noise including b = 0 (solid line), b = 100 (dashed line) and b = 300
(dotted line). Note that the data for b = 0 is identical to the data for the median from panel a. All panels
show symmetric logarithmic plots, where positive and negative relative errors represent overestimation
and underestimation, respectively. For each data point 5 · 105 tetramers with a side length of 5 nm were
simulated. Error bars indicate the 95% confidence intervals. Figure adapted from [206].

In the previous simulations, we did not consider any background noise, which inevitably occurs
in a real experiment. Contributions to this noise may arise both from camera noise and sample
background. The main consequence of background noise in the simulations is an increase
in the localization errors. In Fig. 8.8b we explored the impact of background noise on the
estimation of oligomer side length by increasing the standard deviation of simulated background
counts per pixel up to b = 300; this corresponds to a signal-to-noise ratio of 33 and 333 for
Nmax = 104 photons and Nmax = 105 photons, respectively, in the best case of fluorophore
dipole orientations being parallel to the focal plane. Results are shown both for photon numbers
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Nmax = 104 and 105. For low photon numbers with Nmax = 104, the relative contribution of
background noise was higher and the side length estimation slightly deteriorated with increasing
background noise. For high photon numbers, the influence of background noise was found to be
negligible. Fig. 8.8c shows a combined plot of the influence of photon numbers and background
noise. In case that photon numbers were high relative to the background noise, the method
yielded highly precise estimation of the oligomer side length.

Further, we were interested in the number of recorded oligomers required for achieving a
reliable estimation of oligomer side length. Fig. 8.9a shows the resulting relative errors for
both Nmax = 104 (gray) and Nmax = 105 (black) photons. Our method yielded robust results,
which were independent of the number of analyzed oligomers. For Nmax = 104 and 105 photons
a marginal bias towards over- and underestimation of oligomer size, respectively, was observed.
As expected, the relative standard error of the median decreased with the number of oligomers
available for the analysis (Fig. 8.9b). In all further simulations, we assumed a total number of
Noligo = 5 · 105 oligomers.
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Figure 8.9.: Influence of the number of available oligomers. The panels show the effect of
varying numbers of simulated tetramers Noligo on the relative error εl (a) and its standard error (b),
both for a maximum photon number Nmax = 104 (gray) and Nmax = 105 (black). Positive and negative
relative errors in panel a represent overestimation and underestimation, respectively. Error bars indicate

the 95% confidence intervals. The dashed lines in panel b are shown as a reference and depict N−1/2
oligo .

Figure adapted from [206].

An important aspect in fluorescence microscopy is labeling efficiency. In an SMLM experi-
ment, a certain fraction of protomers will never be detected. This may be due to incomplete
maturation of fluorescent proteins or prebleaching of dye molecules, for example. In Fig. 8.10
we investigated the impact of incomplete labeling on our method. The probability that an
individual oligomer is labeled with exactly n dye molecules is given by ηn, where η denotes
the labeling efficiency. For example, with n=4 and η=0.3, the probability that a tetramer is
fully labeled calculates to 0.0081. Of note, this probability further reduces when considering
that fluorophores with a dipole orientation close to the optical axis cannot be detected. As
expected, the fraction of eligible tetramers decreased drastically with decreasing labeling effi-
ciency (Fig. 8.10a). In general, incomplete labeling impairs the results of oligomer reconstruc-
tion. For our method, however, the effect of decreased labeling efficiency was only marginal
as can be seen in Fig. 8.10b. This can be explained by the fact that data was filtered accord-
ing to the eligibility criterion: Any oligomers which yielded less than n localization groups
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and thus would have distorted the analysis were rejected. Of note, this approach requires an
assumption about the oligomer degree. The effect of decreased labeling efficiency (Fig. 8.10)
was comparable with the influence of a lower number of recorded oligomers. In both cases, the
number of eligible tetramers for further analysis reduced (Fig. 8.10a). While correct side length
estimation was hardly impeded, the standard error of the estimates increased for decreasing
labeling efficiency (Fig. 8.10b,c).
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Figure 8.10.: Influence of labeling efficiency. (a) Fraction of eligible tetramers for varying labeling
efficiency. (b) Relative error εl of the side length estimation. Positive and negative relative errors
represent overestimation and underestimation, respectively. Error bars indicate the 95% confidence
intervals. (c) Relative standard error of the median for varying labeling efficiency. For each data point
5 · 105 tetramers with a side length of 5 nm were simulated. Assumed photon numbers were Nmax = 104

(gray) and 105 (black). Figure adapted from [206].

Next, we investigated the performance of the method for extremely small oligomers. For this,
we simulated oligomers with side lengths of 10 nm down to 1 nm (Fig. 8.11). The resulting
relative errors were found to be negligible for side lengths above 5 nm and 2 nm for Nmax = 104

and 105 photons, respectively. For even shorter side lengths, relative errors strongly increased
and an overestimation of oligomer side length up to a factor of 2 could be observed. This
can be explained by increasingly unstable fit results in case that localization errors are high
compared to the oligomer side length. Overall, relative errors in side length estimation of less
than 1% could be achieved if the ratio of the average localization precision σloc and the ground
truth side length l was smaller than 0.5.

Further, we were interested in the performance of our method for different oligomer degrees. For
this, we applied the method to simulations of tri-, tetra-, penta- and hexamers, i.e. oligomers
consisting of n = 3, 4, 5, 6 protomers (Fig. 8.12). The shape of each oligomer type was as-
sumed to be a regular polygon with n vertices and a circumradius of 4 nm. Note that this
yielded a different ground truth side length l for each oligomer type, as indicated in Fig. 8.12.
With an increasing number n of protomers, the fraction of eligible oligomers decreased slightly
(Fig. 8.12a). This can be explained by the increased probability of at least one protomer car-
rying a fluorophore with a dipole orientation close to the optical axis, thus falling below the
detection threshold. In addition, for a higher number of protomers per oligomer the localiza-
tion assignment becomes increasingly difficult; wrong assignments further reduce the number of
eligible oligomers. The relative errors in side length estimation obtained for different oligomer
degrees are shown in Fig. 8.12b. For both Nmax = 104 and 105 photons we observed a slightly
better performance of our method for higher oligomer degrees. This can be explained by the
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8. Sizing of oligomers via cryo-SMLM

increased number of localizations available for higher oligomer degrees n, which enhances the
quality of the circle fit. Importantly, for all simulated scenarios the resulting relative errors
were well below 1%.

In an experiment, it can be difficult to ensure that the orientation of oligomers is exactly
parallel to the focal plane. Hence, the localizations arising from an oligomer with a shape of
a regular polygon may appear slightly elliptically distorted. Therefore, we were interested to
what extent a tilt out of the focal plane influences the results (Fig. 8.13). Evidently, a decrease

1 2 3 4 5 6 7 8 9 10

−10−3
0

10−3

10−2

10−1

100

Side length l [nm]

Re
lat

ive
er

ro
rε

l

Nmax = 104

Nmax = 105

Figure 8.11.: Influence of oligomer side length. The relative error εl for the estimation of
tetramer side length upon variation of the nominal side length l is shown both for a maximum number
of photons Nmax = 104 (gray) and 105 (black), corresponding to an average localization precision of
σloc = 2.3 nm and 0.78 nm, respectively. Positive and negative relative errors represent overestimation
and underestimation, respectively. For each data point a set of 5 · 105 tetramers was simulated. Error
bars indicate the 95% confidence intervals. Figure adapted from [206].
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Figure 8.12.: Degree of oligomerization. Oligomers consisting of n = 3, 4, 5, 6 protomers were
simulated, representing tri-, tetra-, penta- and hexamers. The radius of the circumscribed circle of each
oligomer was set to 4 nm, yielding a side length of l = 6.93 nm, 5.66 nm, 4.70 nm and 4.00 nm for the
respective oligomer types. (a) Percentage of eligible oligomers for varying degree of oligomerization. (b)
Relative error εl for varying degree of oligomerization shown in a symmetric logarithmic plot. Positive
and negative relative errors represent overestimation and underestimation, respectively. Error bars
indicate the 95% confidence intervals. Assumed photon numbers were Nmax = 104 (gray) and 105

(black). For each data point 5 · 105 oligomers were simulated. Figure adapted from [206].
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in the tilt angle led to shorter side length estimates. For tilts below a value of 10 degrees, the
relative errors for side length estimation remained below 1%. Surprisingly, even for substantial
tilts up to 40 degrees, relative errors below 10% could be achieved.
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Figure 8.13.: Influence of a tilt of oligomers. The relative error εl is shown for varying degrees
of tilt of the oligomers with respect to the focal plane. Overestimation of oligomer sizes is indicated by
positive relative errors, underestimation by negative relative errors. The assumed maximum number of
photons was set to Nmax = 104 (gray) and 105 (black). For each data point 5 · 105 tetramers with a
side length of 5 nm were simulated. Error bars indicate the 95% confidence intervals. Figure from [206].

Finally, we were interested in the performance of our method regarding runtime. Fig. 8.14
shows the runtime for the analysis of data sets containing varying numbers of simulated
tetramers. The input for the analysis were the localization coordinates for each simulated
oligomer. The given runtime comprises the localization assignment to individual fluorophores
and the circle fit. The runtime of our analysis for a set of 5 · 105 tetramers, as used in all previ-
ous figures, amounted to approximately 3min. As each oligomer was analyzed separately, the
runtime scaled linearly with the number of oligomers Noligo. Notably, linear time complexity
is a great advantage especially for the analysis of large data sets.
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Figure 8.14.: Runtime scaling. Analysis of runtime for varying numberNoligo of simulated tetramers,
assuming Nmax = 105 photons. The dashed line is shown as a reference and indicates linear complexity.
Figure from adapted from [206].
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8.3. Discussion

The presented approach provides quantitative analysis of regular oligomeric structures via
cryo-SMLM, yielding precise size estimates. Cryo-fixation preserves the sample’s ultrastruc-
ture [11] and prohibits residual diffusion of molecules during image acquisition, thus allowing to
resolve structures at the nanometer length scale. Moreover, fluorophore dipole orientations are
virtually fixed under cryogenic temperatures. This feature can be exploited by polarized exci-
tation: Based on characteristic brightness changes, localizations can be assigned to individual
fluorophores, which substantially improves the further analysis.

For optimal application of the approach, a few considerations have to be taken into account.
First, the method is template-based: The structure of the analyzed oligomers is assumed to
be known and to follow a regular polygon. In particular, the number of protomers which
constitute a single oligomer needs to be known. For many proteins in the cellular plasma
membrane, a template is provided by their crystal structure obtained from EM experiments.
If the degree of oligomerization is unknown, the number of protomers n may be obtained from
the maximum number of localization groups which occurs during the localization assignment.
Of note, for some oligomers errors may occur in the grouping of the localizations and thus, the
maximum number of groups may be higher than the number of protomers n. Importantly, the
investigated sample should be homogeneous. Reconstructing a sample containing oligomers
of different oligomerization degrees or structures is challenging for any particle averaging ap-
proach. Applying our method to a mixed sample would yield a size estimate for the highest
oligomerization degree, while rejecting all other oligomers as non-eligible during the analysis.

Concerning the labeling procedure, the size of the labels and particularly the linkage error
should be small compared to the size of the oligomer structure of interest. In addition, each
target site must be labeled with one dye molecule only. Of note, antibodies do not fulfill these
requirements. Appropriate alternative labeling strategies include small tags [69] and unnat-
ural amino acids [205]. The labeling efficiency typically is a crucial parameter for achieving
valid reconstruction results as incompletely labeled oligomers distort the results. Notably, our
method is not severely affected by low labeling efficiencies: Oligomers which are not fully la-
beled are rejected for further analysis by the eligibility criterion and thus, a possible bias in
the size estimation is prevented. Ideally, the labeling efficiency should be close to one in order
to ensure that a large fraction of imaged oligomers is eligible for the analysis. However, a lower
labeling efficiency can be compensated by recording a larger number of oligomers.

Ideally, the fluorophore dipole orientations should be distributed randomly in space. Other-
wise, the assignment of localizations to individual dye molecules may become complicated: If
fluorophores had the same or a similar dipole orientation, their localizations would be grouped
into one cluster; averaging of these localizations would lead to a spurious localization. Al-
though the eligibility criterion avoids these cases, the analysis would be impeded if no eligible
oligomers are left.

A few requirements regarding the imaging procedure need to be fulfilled for appropriate appli-
cation of the method:

• The distance between individual oligomers should be large enough in order to ensure that
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localizations belonging to different oligomers do not overlap. In particular, the mutual
distance d between oligomers should exceed the oligomer radius while accounting for the
localization errors, i.e. d � R+ σloc. This ensures that localizations from each oligomer
can be analyzed separately. If necessary, this can be achieved by reducing the protein
expression levels of the cell.

• The oligomers should be aligned parallel to the focal plane. If the plasma membrane
is not perfectly flat, the oligomers may be tilted. In this case, the recorded 2D image
will be a projection of the actual structure and the localizations will be distorted. For
tilt angles below 10 degrees, our method yields satisfactory results with relative errors
below 1 nm (Fig. 8.13). For higher tilt angles, the analysis should be adapted in order
to achieve optimal results. For example, oligomers with localizations that highly deviate
from a regular polygon structure may be discarded. Further, including a deformation
matrix in the model would allow to account for slightly distorted structures [185]. For
molecules within the cell interior, oligomerization may not only occur in two but also
in three dimensions. In its current form, our method does not incorporate these cases.
Alternatives for reconstruction in 3D are provided by tomographic approaches [90].

• Imaging under cryogenic temperatures leads to fixed dipole orientations of fluorophores.
If a fluorophore is shifted from the focal plane, the peak of its point spread function will
shift laterally. This issue has to be considered in the localization process since simple
fitting of a Gaussian function will lead to a bias [167]. Possible solutions are provided by
azimuthal filtering [175, 176], polarization-resolved imaging [177] or astigmatic imaging
[187] as proposed in chapter 7.

• The signals of individual fluorophores are required to be non-overlapping. For this,
individual fluorophores need to be mutually independent. Chromophores in close prox-
imity of a few nanometers may exhibit coupling via singlet-triplet energy transfers [208],
affecting the dyes’ blinking behavior. Of note, these effects were not observed in a pre-
vious study by Weisenburger et al. in which oligomeric structures at the nanometer
scale were reconstructed under cryogenic conditions [90]. Further, cryogenic tempera-
tures slow down fluorophore photophysics. On the one hand, reduced photobleaching
kinetics lead to a higher number of localizations per molecule and thus to even more
precise estimates of oligomer size. On the other hand, signals of different fluorophores
are likely to partially overlap in case of low blinking rates, which impedes the analysis.
Nevertheless, frames with overlapping signals could be detected based on the obtained
brightness values (Nx, Ny) and filtered out.

The proposed method consists of two main parts: First, the assignment of localizations to
individual fluorophores via excitation with polarized light and second, the determination of
oligomer size via a circle fit. In principle, the localization assignment may be used in com-
bination with any other particle averaging approach in order to improve the reconstruction
results [182, 183]. The estimation of side lengths can be applied to investigate the exact ar-
rangement of proteins and the orientation of protomers within an oligomeric structure. For
this, specific sites within a protein can be targeted by the chosen label. Similar approaches
were applied successfully for the analysis of larger structures, including endocytic sites [209]
and nuclear pore complexes [44]. In conclusion, the presented approach takes advantage of the
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8. Sizing of oligomers via cryo-SMLM

specific conditions of SMLM under cryogenic temperatures and thus allows to substantially
improve the analysis of oligomers in order to answer questions of structural biology.
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8.4. Methods

8.4.1. Simulations

First, we simulated the positions of the protomers. For this, n protomers were assigned to each
n-mer (n = 3, 4, 5, 6). Individual protomers belonging to one oligomer were arranged around
the oligomer’s center position in the shape of a regular polygon with fixed side length, but
random in-plane orientation. If not specified otherwise, we simulated Noligo = 5 · 105 oligomers
for each analyzed data set.

Second, each protomer was assumed to be labeled with exactly one dye molecule. For Fig. 8.10
the labeling efficiency was adjusted accordingly. In order to account for recordings at cryogenic
conditions, a random but fixed dipole orientation was assigned to each dye molecule. The
inherent brightness Nmax was considered to be the same for all dye molecules.

To simulate blinking, we assigned a random number of detections to each dye molecule, which
was drawn from an artificial blinking statistics following a log-normal distribution. The mean
of the log-normal distribution was set to 6.4 localizations and the standard deviation to 5
localizations. These values correspond to previously reported blinking characteristics of fluo-
rescent probes under realistic experimental conditions, albeit recorded at room temperature
(compare [118]).

Fluorophores were simulated to be excited alternately with polarized excitation light of po-
larization directions =p1, =p2, which are orthogonal to each other as well as orthogonal to the
optical axis. The xy-axes of the coordinate system were chosen to be aligned with the polar-
ization directions =p1, =p2, and the z-axis with the optical axis. The absorption probability of
a fluorophore depends on the angle between its dipole orientation and the polarization of the
excitation light. Hence, without loss of generality, the effective number of photons (Nx, Ny)
for the two polarizations of excitation light can be calculated as

Nx = Nmax cos2(θ) cos2(φ) , (8.4)

Ny = Nmax cos2(θ) sin2(φ) , (8.5)

where θ and φ are the elevation and azimuthal angle of the fluorophore’s dipole orientation
relative to the x-axis, respectively (see Fig. 8.4a), and Nmax the number of photons emitted if
the dipole orientation is parallel to the excitation polarization. For all simulations, we assumed
random distributions of θ and φ on a sphere. The resulting probability density for detecting
(Nx, Ny) photons is given by (see Appendix, section 8.5, for a derivation)

ρphot.(Nx, Ny) =

������
1
2π

�
NmaxNxNy(Nmax −Nx −Ny)

�− 1
2

for Nx, Ny ≥ 0,

Nx +Ny ≤ Nmax,

0 otherwise.

(8.6)

Photon shot noise was included by drawing the observed number of photons from Poisson
distributions with mean Nx and Ny, respectively.
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The error in the intensity estimation was distributed according to a normal distribution with
mean 0 and variance (ΔN)2. The variance (ΔN)2 was set to [97]:

�(ΔN)2� = N

�
1 + 4τ +

 
τ

14 (1 + 2τ)

�
, with τ =

2πb
�
σ2

PSF + a2/12
�

Na2
, (8.7)

where a is the pixel size, b the background noise, N the signal photon count (i.e. Nx, Ny) and
σPSF the standard deviation of the PSF. If not mentioned otherwise, the background noise was
set to b = 0. We assumed a pixel size of 100 nm and a standard deviation of the PSF of 160 nm.

Determination of the single molecule positions was assumed to be performed based on the
combined images acquired by excitation with differently polarized light. The total intensity
was calculated as Ntotal = Nx +Ny = Nmax cos

2(θ). Hence, the uncertainty of the localization
procedure was set to [97]

σ2
loc =

σ2
PSF + a2/12

Ntotal

�
1 + 4τ +

 
2τ

1 + 4τ

�
. (8.8)

As the background noise of the two individual frames combines, b was replaced by
√
2 b in the

calculation of τ for Eq. 8.8. Localization coordinates were displaced from the true protomer
position by adding a random localization error according to the localization precision σloc.
Any detections with a localization precision below 10 nm were discarded. Together with given
values of background noise b, pixel size a and the standard deviation of the PSF σPSF this
defines a minimum number of required photons to detect a single molecule signal Nmin. In
order to simulate tilted tetramers, without loss of generality we assumed a tilt around the x-
axis. To this end, we transformed the y-coordinates of the single molecule positions according
to y� = y · cos(α), where α denotes the tilt angle of the oligomerization plane with respect to
the focal plane.

8.4.2. Mathematical analysis

Identification of individual oligomeric structures

For our method, we assumed that the individual oligomers as well as the corresponding local-
izations are well separated from each other. In that case, the localizations can be clustered
spatially in order to group localizations belonging to individual oligomers. This can be done
effectively with standard two dimensional clustering techniques [59, 116]. For the simulations,
we used ground truth in order to analyze each oligomer separately.

Assignment of localizations to individual fluorophores

The localizations of an oligomer are assigned to individual fluorophores based on their dipole
orientation. The fluorophores are excited consecutively with light of orthogonal polarization
directions, yielding characteristic intensities Nx and Ny. Given that the dipole orientations
of all fluorophores within an oligomer are sufficiently distinct, we can cluster the localizations
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based on the intensity valuesNx andNy (see Fig. 8.4b). For clustering, we grouped localizations
based on differences in both Nx and Ny values according to a specified threshold δp. Clusters
of a single localization only were discarded. Empirical tests suggest δp = 300+Nmax/100 to be
a feasible choice in order to separate localizations from individual fluorophores. We considered
an oligomer eligible for further analysis, if the corresponding localizations were clustered into
exactly n groups.

Estimation of distance between single protomers

Given the localization data of one individual oligomer, we were interested in the distance
l between the individual protomers. We assumed the oligomeric structure to be a regular
polygon. Hence, the structure is equilateral. The radius R and the side length l, i.e. the
distance between adjacent protomers, are directly related via l = 2R sin(π/n), where n is the
number of polygon vertices.

In order to find an estimation l̂ for the side length, we used a geometric circle fit. For a
simple circle fit of all localizations, one can minimize the mean square distance between the
localizations and the fitted circle:

min
a,b∈R
R≥0

n$
i=1

mi$
j=1

��
(x(i)

j − a)2 + (y(i)

j − b)2 −R

�2

, (8.9)

where (a, b) are the coordinates of the circle center, R the circle radius, and (x
(i)
j , y

(i)
j ) with

j = 1, ...,mi the localizations belonging to oligomer i. However, this approach overestimates
the true oligomer size, as shown in Fig. 8.2b.

We can improve the circle fit by assigning the localizations to individual fluorophores as de-
scribed above. The assignment of localizations to individual fluorophores allows to average all
localizations that arise from the same fluorophore and thus, obtain a more precise estimate of
the fluorophore’s position. For the circle fit, we hence minimize the term

min
a,b∈R
R≥0

n$
i=1

��
(x̄i − a)2 + (ȳi − b)2 −R

�2
, (8.10)

where (x̄i, ȳi) denote the mean x- and y-position of all localizations belonging to the fluorophore
bound to protomer i, which are given by

x̄i =
1

mi

mi$
j=1

x(i)

j , ȳi =
1

mi

mi$
j=1

y(i)

j , i = 1, . . . , n , (8.11)

where mi denotes the number of localizations belonging to protomer i. The assignment of the
localizations to their respective fluorophores improves both the estimation of the circle center
as well as the estimation of the radius, as can be seen in Fig. 8.4c.

We minimized the terms in (8.9) and (8.10) based on the Levenberg-Marquardt algorithm, a
robust iterative optimization algorithm for solving non-linear least square problems [210,211].
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As start parameters we used the average position of all fitted coordinates for the center (a0, b0),
and a value R0 for the radius, which was sufficiently small such that R0 < Rtruth. Of note, the
resulting estimate for the circle radius R shows a certain bias (compare [207,212,213]), which
will be determined in the following section.

Identification of the bias

Suppose that the localizations belonging to a single protomer are identically and independently
distributed normal random variables with mean zero (i.e. centered around the true protomer
position) and constant variance σ2, where σ corresponds to the localization precision. Fitting
a circle to all localizations arising from an oligomer by minimizing the term in (8.10) yields an
estimate r̂ of the true oligomer radius R. As described in [207], the bias of this estimator is
essentially given by

E (r̂ −R) � σ2

2R
. (8.12)

Under cryogenic conditions, however, the fluorophores’ dipole orientations are fixed and the
number of emitted photons is determined by the angle between the dipole orientation and the
polarization direction of the excitation light. Hence, the localization precision is not constant
but a different localization precision σi will be observed for each protomer i = 1, ..., n.

For each localization j of protomer i we denote by s(i)

j with j = 1, ...,mi a given estimate of
its localization precision in x as well as in y-direction. Hence, the localization precision after
merging all the localizations belonging to protomer i can be estimated by

ẑi =
1

m

"##! mi$
j=1

�
s(i)

j

�2
, i = 1, . . . , n . (8.13)

Due to the fact that the merged localization precision is different for every protomer, the bias
cannot simply be calculated by Eq. (8.12). In this case, the bias is given by

E (r̂ −R) =
1

R

�
1

2

%n
i=1 ẑ

2
i

n
+

1

n

%n
i=1 ẑ

2
i

n

�
=

1

R

�
1

2n

n$
i=1

ẑ2i +
1

n2

n$
i=1

ẑ2i

�
. (8.14)

For a detailed derivation of this equation, refer to [206]. Note that the used notation slightly
differs from [206]. If the merged localization precision ẑi is the same for every protomer, i.e
ẑi = z for all i = 1, ..., n, Eq. (8.14) reduces again to

E (r̂ −R) =
1

R

�
nz2

2n
+

nz2

n2

�
=

z2

2R
+

z2

Rn
, (8.15)

which is consistent with Eq. (8.12). Note that the second summand was neglected in Eq. (8.12)
since it vanishes asymptotically for n tending to infinity. The first summand, which does not
depend on n, is the so-called essential bias. In our case, however, the second summand in
Eq. (8.14) and (8.15) must not be neglected since n is small for the considered oligomers
(n = 3, 4, 5, 6). Importantly, the merged localization precision ẑi in Eq. (8.14) becomes smaller
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the higher the number mi of localizations that are available for each protomer i. The entire
bias tends to zero for mi tending to infinity.

Considering E(r̂−R) = E(r̂)−R in Eq. (8.14), the bias E(r̂) of the estimator r̂ can be calculated
as

E (r̂) = R+

%n
i=1 ẑ

2
i

R

�
1

2n
+

1

n2

�
. (8.16)

The true radius R can hence be deduced from

R1,2 =
E (r̂)

2
±

"##!�
E (r̂)

2

�2

−
�
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2n
+

1

n2

� n$
i=1

ẑ2i . (8.17)

In case of R >
�n

i=1 ẑi
R

�
1
2n + 1

n2

�
, the correct solution is given by

R =
E (r̂)

2
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−
�
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2n
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1
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� n$
i=1

ẑ2i . (8.18)

Since E (r̂) is experimentally not accessible, we can replace it by the random variable r̂. Hence,
the bias-corrected estimator r̂corr for the oligomer radius is given by

r̂corr =
r̂

2
+

"##!�
r̂

2

�2

−
�

1

2n
+

1

n2

� n$
i=1

ẑ2i . (8.19)

An estimator of the radius based on the analysis of a set of oligomers is obtain via R̂ = E (r̂corr)
or R̂ = median (r̂corr), respectively. If not indicated otherwise, the median was taken in the
analysis.

Calculation of error bars

All error bars were calculated based on 1000 bootstrap samples, which were drawn from the
individual data sets. The error bars represent the 95% confidence intervals of the mean (or
median).

Runtime analysis

The runtime shown in Fig. 8.14 was determined on a standard personal computer model XPS
15 9570 with an Intel Core i7-8750H processor.
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8.5. Appendix

Probability density of (Nx, Ny)

In the following, the probability density for detecting (Nx, Ny) photons is calculated. The
fluorophore dipole moments are assumed to be distributed randomly on a sphere. In order to
ensure a bijective functional relationship between (Nx, Ny) and (θ, φ) as specified by Eq. (8.4)
and (8.5) in the Methods (section 8.4.1), the analysis is confined to the octant defined by (θ, φ)
in the intervals [0, π2 ]× [0, π2 ]. The probability densities for θ and φ are given by

ρaz.(θ) =

�
cos(θ) for θ ∈ [0, π2 ],

0 otherwise,

ρel.(φ) =

�
2
π for φ ∈ [0, π2 ],

0 otherwise.

The joint probability density for (θ, φ) is given by

ρdipole(θ, φ) =

�
2
π cos(θ) for θ ∈ [0, π2 ], φ ∈ [0, π2 ],

0 otherwise.

Inverting Eq. (8.4) and (8.5) from the Methods (section 8.4.1) yields

θ = arccos

� 
Nx +Ny
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�
, φ = arccos

��
Nx

Nx +Ny

�
and for the joint probability density of the detected number of photons

ρphot.(Nx, Ny) = ρdipole
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The Jacobian yields

&&&& ∂(θ, φ)
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Inserting this into Eq. (8.20) finally yields

ρphot.(Nx, Ny) =

��
1
2π

�
NmaxNxNy(Nmax −Nx −Ny)

�− 1
2

for Nx, Ny ≥ 0, Nx +Ny ≤ Nmax,

0 otherwise.
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The structural arrangement of proteins in the cell plasma membrane is directly connected
to their function. Clustering and oligomerization of membrane proteins are crucial to many
biological mechanisms: As important examples, T-cell receptor clustering is key in T-cell
activation [214], and defined oligomerization states are a prerequisite for correct pore formation
and, thus, the selectivity of ion channels [24]. In contrast, changes in oligomerization states
have been associated with many diseases, including Parkinson’s disease [32] and cancer [33].
Taken together, knowledge about subcellular organization, in particular the plasma membrane,
is key to understanding biological processes as well as identifying the causes of disease.

Single molecule localization microscopy has offered the possibility to circumvent the diffraction
limit and enabled the visualization of cellular structures within their native environment at a
level of detail which has previously been thought to be beyond reach [16]. However, SMLM
techniques are sensitive to experimental imperfections, including incomplete labeling or back-
ground localizations, and prone to artifacts [133]. Most remarkably, overcounting artifacts
led to the notion of protein nanoclustering being a prevalent feature of plasma membrane
organization [1].

For a meaningful analysis of localization maps, it is important to realize that it is the dis-
tribution of the underlying biomolecules of interest which is of biological relevance, not the
mere distribution of localizations themselves. First of all, a localization map should be as-
sessed globally before studying local features in greater detail: Due to random chance alone,
some biomolecules in a small local environment will show alleged clustering, even in the case
of complete spatial randomness. In addition, stochastic effects in the blinking behavior lead
to statistical variations in overcounting and thus obscure the reliability of a local analysis.
Notably, any factors possibly distorting the localization map, such as membrane undulations
or vesicles, should be avoided for a correct assessment of biomolecular distributions in the
plasma membrane. In this thesis, I present two methods to overcome the issue of overcount-
ing artifacts in a global analysis: (i) 2-CLASTA allows to distinguish overcounting clusters
from true biomolecular nanoclustering; remarkably, it is the first method which achieves this
completely independent of any knowledge or assumption about blinking behavior. (ii) Monte
Carlo simulations based on a reliable characterization of blinking statistics offer a comprehen-
sive tool for comparing experimental data to various spatial distributions. Both methods are
compatible with any current labeling and SMLM technique. Moreover, both methods allow for
the calculation of a p-value, which provides a good indication whether an observed distribution
of localizations might be due to pure random chance or whether it supports the alternative
hypothesis of true biomolecular clustering. Performing multiple experiments increases the
amount of available data, thus increasing the sensitivity of the analysis; here, I present an ap-
proach which prevents the problem of fishing for p-values in this case. Nevertheless, a scientific
conclusion should never be drawn on the sole basis of a single p-value without any other scien-
tific reasoning. In the case of protein clusters in the cell plasma membrane, for example, one
should rather pose additional questions: What are the forces that keep the molecules together?
Is there any functional purpose of this arrangement of molecules? Complementary methods
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may be employed in order to answer these questions and gain a comprehensive understanding
of biological processes.

With SMLM, only structures at a scale above the localization precision can be resolved di-
rectly; for smaller structures, advanced analysis methods are required in order to circumvent
overcounting artifacts. In turn, however, overcounting issues would become negligible if the
localization precision would reach a scale below the size of a single biomolecule of interest. Cryo-
SMLM promises to push the spatial resolution of SMLM even further, ultimately approaching
the size of single molecules themselves at the Ångström scale. Cryo-fixation preserves the sam-
ple’s ultrastructure [11], and prohibits any residual diffusion. Thin cell sections of interest can
be sliced by ion beam milling [77], thus removing any perturbing background. Notably, not
only single cells adhering to a coverslip might be processed this way, but also investigating the
interface between cell complexes—in particular, cell synapses—or even thin sections of tissue
becomes feasible. Thus, cryo-SMLM paves the way for studying cellular behavior within the
cell’s native environment in nanoscopic detail. One feature of SMLM performed at cryogenic
temperature is the fixed orientation of fluorophore dipoles. In this thesis, I suggest an astig-
matic imaging approach which allows to avoid localization bias for fixed dipole emitters in a
low-NA setting. Interestingly, cryo-SMLM offers a direct way of circumventing the problem of
overcounting: As presented in this thesis, the fixed orientations of fluorophore dipoles provide
valuable information for assigning localizations to individual molecules. Thus, the results of
particle averaging and reconstruction approaches can be greatly improved which makes cryo-
SMLM an ideal tool for detailed local analysis, particularly for a determination of the exact
structure of oligomers. Temporal information about cellular processes can be recovered in
cryo-SMLM by fixing cells at different time points [209].

Ultimately, the automatization of data acquisition will lead to huge amounts of data which
cannot be processed manually anymore. Hence, the development of algorithms and analysis
approaches specific to the needs of SMLM are indispensable. The synergy of complementary
imaging and analysis methods allows for a comprehensive characterization and validation of
biomolecular structures in their native environment and, hence, a better understanding of
cellular processes in the plasma membrane.
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[56] G. J. Schütz and M. C. Schneider, “Single molecule localization microscopy (SMLM)”,
In: Imaging modalities for biological and preclinical research: A compendium, IOP Pub-
lishing, 2021. doi:10.1088/978-0-7503-3059-6ch18.

[57] S. van de Linde, et al. “Live-cell super-resolution imaging with synthetic fluorophores”.
Annu Rev Phys Chem, 63:519–40, 2012, doi:10.1146/annurev-physchem-032811-112012.

[58] A. Fürstenberg and M. Heilemann. “Single-molecule localization microscopy — near-
molecular spatial resolution in light microscopy with photoswitchable fluorophores”. Phys
Chem Chem Phys, 15(36):14919–30, 2013, doi:10.1039/c3cp52289j.

[59] F. Baumgart, et al. “What we talk about when we talk about nanoclusters”. Methods
Appl Fluoresc, 7(1):013001, 2018, doi:10.1088/2050-6120/aaed0f.

[60] G. Giannone, et al. “Dynamic superresolution imaging of endogenous pro-
teins on living cells at ultra-high density”. Biophys J, 99(4):1303–10, 2010,
doi:10.1016/j.bpj.2010.06.005.

[61] J. Schnitzbauer, et al. “Super-resolution microscopy with DNA-PAINT”. Nat Protoc,
12(6):1198–1228, 2017, doi:10.1038/nprot.2017.024.

[62] R. Diekmann, et al. “Optimizing imaging speed and excitation intensity
for single-molecule localization microscopy”. Nat Methods, 17(9):909–912, 2020,
doi:10.1038/s41592-020-0918-5.

[63] R. Platzer, et al. “Unscrambling fluorophore blinking for comprehensive cluster de-
tection via photoactivated localization microscopy”. Nat Commun, 11(1):4993, 2020,
doi:10.1038/s41467-020-18726-9.

[64] K. M. Dean and A. E. Palmer. “Advances in fluorescence labeling strategies for dynamic
cellular imaging”. Nat Chem Biol, 10(7):512–23, 2014, doi:10.1038/nchembio.1556.

[65] M. Sauer. “Localization microscopy coming of age: From concepts to biological impact”.
J Cell Sci, 126(16):3505–13, 2013, doi:10.1242/jcs.123612.

[66] “Alexa dyes.” URL: https://www.atdbio.com/content/34/Alexa-dyes. (Last ac-
cessed: June 2021).

[67] O. Shimomura, et al. “Extraction, purification and properties of aequorin, a biolumi-
nescent protein from the luminous hydromedusan, Aequorea”. Journal of cellular and
comparative physiology, 59(3), 1962.

[68] A. Gautier, et al. “An engineered protein tag for multiprotein labeling in living cells”.
Chem Biol, 15(2):128–36, 2008, doi:10.1016/j.chembiol.2008.01.007.

[69] R. S. Erdmann, et al. “Labeling strategies matter for super-resolution microscopy: A
comparison between HaloTags and SNAP-tags”. Cell Chem Biol, 26(4):584–592, 2019,
doi:10.1016/j.chembiol.2019.01.003.

[70] K. Horisawa. “Specific and quantitative labeling of biomolecules using click chemistry”.
Front Physiol, 5:457, 2014, doi:10.3389/fphys.2014.00457.

[71] P. Laxman, et al. “The benefits of unnatural amino acid incorporation as pro-

160

http://dx.doi.org/10.1038/nmeth.2843
http://dx.doi.org/10.1088/978-0-7503-3059-6ch18
http://dx.doi.org/10.1146/annurev-physchem-032811-112012
http://dx.doi.org/10.1039/c3cp52289j
http://dx.doi.org/10.1088/2050-6120/aaed0f
http://dx.doi.org/10.1016/j.bpj.2010.06.005
http://dx.doi.org/10.1038/nprot.2017.024
http://dx.doi.org/10.1038/s41592-020-0918-5
http://dx.doi.org/10.1038/s41467-020-18726-9
http://dx.doi.org/10.1038/nchembio.1556
http://dx.doi.org/10.1242/jcs.123612
https://www.atdbio.com/content/34/Alexa-dyes
http://dx.doi.org/10.1016/j.chembiol.2008.01.007
http://dx.doi.org/10.1016/j.chembiol.2019.01.003
http://dx.doi.org/10.3389/fphys.2014.00457


References

tein labels for single molecule localization microscopy”. Front Chem, 9:641355, 2021,
doi:10.3389/fchem.2021.641355.

[72] S. van de Linde, et al. “Direct stochastic optical reconstruction microscopy with standard
fluorescent probes”. Nat Protoc, 6(7):991–1009, 2011, doi:10.1038/nprot.2011.336.

[73] F. Schueder, et al. “An order of magnitude faster DNA-PAINT imaging by optimized
sequence design and buffer conditions”. Nat Methods, 2019, doi:10.1038/s41592-019-
0584-7.

[74] L. Nahidiazar, et al. “Optimizing imaging conditions for demanding multi-
color super resolution localization microscopy”. PLoS One, 11(7):e0158884, 2016,
doi:10.1371/journal.pone.0158884.

[75] W. Li, et al. “Ultra-stable and versatile widefield cryo-fluorescence microscope for single-
molecule localization with sub-nanometer accuracy”. Opt Express, 23(3):3770–83, 2015,
doi:10.1364/OE.23.003770.

[76] L. Wang, et al. “Solid immersion microscopy images cells under cryogenic conditions
with 12 nm resolution”. Commun Biol, 2:74, 2019, doi:10.1038/s42003-019-0317-6.

[77] E. Villa, et al. “Opening windows into the cell: Focused-ion-beam milling
for cryo-electron tomography”. Curr Opin Struct Biol, 23(5):771–7, 2013,
doi:10.1016/j.sbi.2013.08.006.

[78] “APON100XHOTIRF, Olypmus.” URL: https://www.olympus-lifescience.com/de/
objectives/tirf-hr/. (Last accessed: August 2021).

[79] H. Toprak, Erdal Balci, et al. “Three-dimensional particle tracking via bifocal imaging”.
Nano Lett, 7(7):2043–2045, 2007.

[80] G. Shtengel, et al. “Interferometric fluorescent super-resolution microscopy re-
solves 3D cellular ultrastructure”. Proc Natl Acad Sci USA, 106(9):3125–30, 2009,
doi:10.1073/pnas.0813131106.

[81] D. Aquino, et al. “Two-color nanoscopy of three-dimensional volumes by 4Pi de-
tection of stochastically switched fluorophores”. Nat Methods, 8(4):353–9, 2011,
doi:10.1038/nmeth.1583.

[82] N. Bourg, et al. “Direct optical nanoscopy with axially localized detection”. Nat Photon,
9(9):587–593, 2015, doi:10.1038/nphoton.2015.132.

[83] M. Siemons, et al. “Comparing strategies for deep astigmatism-based single-
molecule localization microscopy”. Biomed Opt Express, 11(2):735–751, 2020,
doi:10.1364/BOE.382023.

[84] S. R. P. Pavania, et al. “Three-dimensional, single-molecule fluorescence imaging beyond
the diffraction limit by using a double-helix point spread function”. PNAS, 2009.

[85] K. I. Mortensen, et al. “Optimized localization analysis for single-molecule tracking and
superresolution microscopy”. Nat Methods, 2010.

[86] Y. Li, et al. “Real-time 3D single-molecule localization using experimental point spread
functions”. Nat Methods, 15(5):367–369, 2018, doi:10.1038/nmeth.4661.

[87] S. Weisenburger, et al., “Cryogenic localization of single molecules with Angstrom pre-

161

http://dx.doi.org/10.3389/fchem.2021.641355
http://dx.doi.org/10.1038/nprot.2011.336
http://dx.doi.org/10.1038/s41592-019-0584-7
http://dx.doi.org/10.1038/s41592-019-0584-7
http://dx.doi.org/10.1371/journal.pone.0158884
http://dx.doi.org/10.1364/OE.23.003770
http://dx.doi.org/10.1038/s42003-019-0317-6
http://dx.doi.org/10.1016/j.sbi.2013.08.006
https://www.olympus-lifescience.com/de/objectives/tirf-hr/
https://www.olympus-lifescience.com/de/objectives/tirf-hr/
http://dx.doi.org/10.1073/pnas.0813131106
http://dx.doi.org/10.1038/nmeth.1583
http://dx.doi.org/10.1038/nphoton.2015.132
http://dx.doi.org/10.1364/BOE.382023
http://dx.doi.org/10.1038/nmeth.4661


References

cision” In: Nanoimaging and Nanospectroscopy, 8815:88150D, International Society for
Optics and Photonics, 2013.

[88] H. Babcock, et al. “A high-density 3D localization algorithm for stochastic optical re-
construction microscopy”. Opt Nanoscopy, 1:1–10, 2012.

[89] M. Ovesny, et al. “ThunderSTORM: A comprehensive ImageJ plug-in for PALM and
STORM data analysis and super-resolution imaging”. Bioinformatics, 30(16):2389–90,
2014, doi:10.1093/bioinformatics/btu202.

[90] S. Weisenburger, et al. “Cryogenic optical localization provides 3D protein structure data
with Angstrom resolution”. Nat Methods, 14(2):141–144, 2017, doi:10.1038/nmeth.4141.

[91] D. Sage, et al. “Quantitative evaluation of software packages for single-molecule local-
ization microscopy”. Nat Methods, 12(8):717–24, 2015, doi:10.1038/nmeth.3442.

[92] D. Sage, et al. “Super-resolution fight club: Assessment of 2D and 3D single-molecule lo-
calization microscopy software”. Nat Methods, 16(5):387–395, 2019, doi:10.1038/s41592-
019-0364-4.

[93] C. R. Rao, “Linear statistical inference and its applications”, vol. 2. Wiley New York,
1973.

[94] R. J. Ober, et al. “Localization accuracy in single-molecule microscopy”. Biophys J,
86:1185–1200, 2004.

[95] A. V. Abraham, et al. “Quantitative study of single molecule location estimation tech-
niques”. Opt Express, 17:23352 – 23373, 2009.

[96] H. E. Daniels, “The asymptotic efficiency of a maximum likelihood estimator.” In: Fourth
Berkeley Symposium on Mathematical Statistics and Probability, 1:151–163, University
of California Press Berkeley, 1961.

[97] B. Rieger and S. Stallinga. “The lateral and axial localization uncer-
tainty in super-resolution light microscopy”. Chemphyschem, 15(4):664–70, 2014,
doi:10.1002/cphc.201300711.

[98] R. Thompson, et al. “Precise nanometer localization analysis for individual fluorescent
probes”. Biophys J, 82:2775–2783, 2002.

[99] S. H. Lee, et al. “Using fixed fiduciary markers for stage drift correction”. Opt Express,
20(11):12177–12183, 2012.

[100] W. Colomb, et al. “Estimation of microscope drift using fluorescent nanodiamonds as
fiducial markers”. J Microsc, 266(3):298–306, 2017, doi:10.1111/jmi.12539.

[101] Y. Wang, et al. “Localization events-based sample drift correction for localization mi-
croscopy with redundant cross-correlation algorithm”. Opt Express, 22(13):15982–91,
2014, doi:10.1364/OE.22.015982.

[102] M. Erdelyi, et al. “Correcting chromatic offset in multicolor super-resolution localization
microscopy”. Opt Express, 21(9):10978–88, 2013, doi:10.1364/OE.21.010978.

[103] N. Durisic, et al. “Quantitative super-resolution microscopy: Pitfalls and strategies for
image analysis”. Curr Opin Chem Biol, 20:22–8, 2014, doi:10.1016/j.cbpa.2014.04.005.

[104] Y. L. Wu, et al. “Quantitative data analysis in single-molecule localization microscopy”.
Trends Cell Biol, 30(11):837–851, 2020, doi:10.1016/j.tcb.2020.07.005.

162

http://dx.doi.org/10.1093/bioinformatics/btu202
http://dx.doi.org/10.1038/nmeth.4141
http://dx.doi.org/10.1038/nmeth.3442
http://dx.doi.org/10.1038/s41592-019-0364-4
http://dx.doi.org/10.1038/s41592-019-0364-4
http://dx.doi.org/10.1002/cphc.201300711
http://dx.doi.org/10.1111/jmi.12539
http://dx.doi.org/10.1364/OE.22.015982
http://dx.doi.org/10.1364/OE.21.010978
http://dx.doi.org/10.1016/j.cbpa.2014.04.005
http://dx.doi.org/10.1016/j.tcb.2020.07.005


References

[105] R. P. Nieuwenhuizen, et al. “Measuring image resolution in optical nanoscopy”. Nat
Methods, 10(6):557–62, 2013, doi:10.1038/nmeth.2448.

[106] R. Jungmann, et al. “Multiplexed 3D cellular super-resolution imaging with DNA-PAINT
and Exchange-PAINT”. Nat Methods, 11(3):313–8, 2014, doi:10.1038/nmeth.2835.

[107] O. K. Wade, et al. “124-color super-resolution imaging by engineering DNA-PAINT
blinking kinetics”. Nano Lett, 2019, doi:10.1021/acs.nanolett.9b00508.

[108] P. R. Nicovich, et al. “Turning single-molecule localization microscopy into a quantitative
bioanalytical tool”. Nat Protoc, 12(3):453–460, 2017, doi:10.1038/nprot.2016.166.

[109] J. V. Thevathasan, et al. “Nuclear pores as versatile reference standards for quantitative
superresolution microscopy”. Nat Methods, 16(10):1045–1053, 2019, doi:10.1038/s41592-
019-0574-9.

[110] J. Vogelsang, et al. “A reducing and oxidizing system minimizes photobleaching
and blinking of fluorescent dyes”. Angew Chem Int Ed Engl, 47(29):5465–9, 2008,
doi:10.1002/anie.200801518.

[111] J. Widengren, et al. “Strategies to improve photostabilities in ultrasensitive fluorescence
spectroscopy”. J Phys Chem A, 111:429–440, 2007.

[112] E. Yeow, et al. “Characterizing the fluorescence intermittency and photobleaching ki-
netics of dye molecules immobilized on a glass surface”. J Phys Chem A, 110(5), 2006.

[113] M. Mund and J. Ries. “How good are my data? Reference standards in superresolution
microscopy”. Mol Biol Cell, 31(19):2093–2096, 2020, doi:10.1091/mbc.E19-04-0189.

[114] J. J. Schmied, et al. “Fluorescence and super-resolution standards based on DNA
origami”. Nat Methods, 9(12):1133–4, 2012, doi:10.1038/nmeth.2254.

[115] S. Dey, et al. “DNA origami”. Nat Rev Methods Primers, 1(1), 2021, doi:10.1038/s43586-
020-00009-8.

[116] I. M. Khater, et al. “A review of super-resolution single-molecule localization
microscopy cluster analysis and quantification methods”. Patterns, 1(3), 2020,
doi:10.1016/j.patter.2020.100038.

[117] D. J. Nieves and D. M. Owen. “Analysis methods for interrogating spatial organisation
of single molecule localisation microscopy data”. Int J Biochem Cell Biol, 123:105749,
2020, doi:10.1016/j.biocel.2020.105749.

[118] B. Rossboth, et al. “TCRs are randomly distributed on the plasma membrane of resting
antigen-experienced T cells”. Nat Immunol, 19(8):821–827, 2018, doi:10.1038/s41590-
018-0162-7.

[119] M. A. Thompson, et al. “Extending microscopic resolution with single-molecule imaging
and active control”. Annu Rev Biophys, 41:321–42, 2012, doi:10.1146/annurev-biophys-
050511-102250.

[120] Illian, “Statistical analysis and modelling of spatial point patterns”. John Wiley & Sons
Ltd, 2008.

[121] A. E. Gelfand, et al., “Handbook of spatial statistics”. Chapman & Hall CRC, 2010.

[122] D. Baddeley and J. Bewersdorf. “Biological insight from super-resolution microscopy:

163

http://dx.doi.org/10.1038/nmeth.2448
http://dx.doi.org/10.1038/nmeth.2835
http://dx.doi.org/10.1021/acs.nanolett.9b00508
http://dx.doi.org/10.1038/nprot.2016.166
http://dx.doi.org/10.1038/s41592-019-0574-9
http://dx.doi.org/10.1038/s41592-019-0574-9
http://dx.doi.org/10.1002/anie.200801518
http://dx.doi.org/10.1091/mbc.E19-04-0189
http://dx.doi.org/10.1038/nmeth.2254
http://dx.doi.org/10.1038/s43586-020-00009-8
http://dx.doi.org/10.1038/s43586-020-00009-8
http://dx.doi.org/10.1016/j.patter.2020.100038
http://dx.doi.org/10.1016/j.biocel.2020.105749
http://dx.doi.org/10.1038/s41590-018-0162-7
http://dx.doi.org/10.1038/s41590-018-0162-7
http://dx.doi.org/10.1146/annurev-biophys-050511-102250
http://dx.doi.org/10.1146/annurev-biophys-050511-102250


References

What we can learn from localization-based images”. Annu Rev Biochem, 87:965–989,
2018, doi:10.1146/annurev-biochem-060815-014801.

[123] B. Ripley. “Modelling spatial patterns”. J R Stat Soc Series B Stat Methodol, 39(2):172–
212, 1977.

[124] T. Wiegand and K. A. Moloney, “Handbook of spatial point-pattern analysis in ecology”.
CRC Press, Taylor & Francis Group, 2014.

[125] M. Ester, et al. “A density-based algorithm for discovering clusters in large spatial
databases with noise”. Kdd, pages 226–231, 1996.

[126] A. Mazouchi and J. N. Milstein. “Fast optimized cluster algorithm for localizations
(FOCAL): A spatial cluster analysis for super-resolved microscopy”. Bioinformatics,
32(5):747–54, 2016, doi:10.1093/bioinformatics/btv630.

[127] D. F. Nino, et al. “FOCAL3D: A 3-dimensional clustering package for single-
molecule localization microscopy”. PLoS Comput Biol, 16(12):e1008479, 2020,
doi:10.1371/journal.pcbi.1008479.

[128] P. Rubin-Delanchy, et al. “Bayesian cluster identification in single-molecule localization
microscopy data”. Nat Methods, 12(11):1072–6, 2015, doi:10.1038/nmeth.3612.

[129] J. Griffie, et al. “A Bayesian cluster analysis method for single-molecule localization
microscopy data”. Nat Protoc, 11(12):2499–2514, 2016, doi:10.1038/nprot.2016.149.

[130] J. Griffie, et al. “3D Bayesian cluster analysis of super-resolution data reveals LAT
recruitment to the T cell synapse”. Sci Rep, 7(1):4077, 2017, doi:10.1038/s41598-017-
04450-w.

[131] J. M. Scurll, et al. “StormGraph: A graph-based algorithm for quantitative cluster-
ing analysis of diverse single-molecule localization microscopy data”. bioRxiv, 2020,
doi:10.1101/515627.

[132] D. J. Williamson, et al. “Machine learning for cluster analysis of localization microscopy
data”. Nat Commun, 11(1):1493, 2020, doi:10.1038/s41467-020-15293-x.

[133] A. Burgert, et al. “Artifacts in single-molecule localization microscopy”. Histochem Cell
Biol, 144(2):123–31, 2015, doi:10.1007/s00418-015-1340-4.

[134] F. Baumgart, et al. “How T cells do the “search for the needle in the haystack””. Front
Phys, 7, 2019, doi:10.3389/fphy.2019.00011.

[135] C. H. Bohrer, et al. “A pairwise distance distribution correction (DDC) algorithm to
eliminate blinking-caused artifacts in SMLM”. Nat Methods, 2021, doi:10.1038/s41592-
021-01154-y.

[136] R. Jungmann, et al. “Quantitative super-resolution imaging with qPAINT”. Nat Meth-
ods, 13(5):439–42, 2016, doi:10.1038/nmeth.3804.

[137] G. Hummer, et al. “Model-independent counting of molecules in single-molecule localiza-
tion microscopy”. Mol Biol Cell, 27(22):3637–3644, 2016, doi:10.1091/mbc.E16-07-0525.

[138] F. Fricke, et al. “One, two or three? Probing the stoichiometry of membrane proteins by
single-molecule localization microscopy”. Sci Rep, 5:14072, 2015, doi:10.1038/srep14072.

[139] R. L. Wasserstein and N. A. Lazar. “The ASA statement on p-values: Con-

164

http://dx.doi.org/10.1146/annurev-biochem-060815-014801
http://dx.doi.org/10.1093/bioinformatics/btv630
http://dx.doi.org/10.1371/journal.pcbi.1008479
http://dx.doi.org/10.1038/nmeth.3612
http://dx.doi.org/10.1038/nprot.2016.149
http://dx.doi.org/10.1038/s41598-017-04450-w
http://dx.doi.org/10.1038/s41598-017-04450-w
http://dx.doi.org/10.1101/515627
http://dx.doi.org/10.1038/s41467-020-15293-x
http://dx.doi.org/10.1007/s00418-015-1340-4
http://dx.doi.org/10.3389/fphy.2019.00011
http://dx.doi.org/10.1038/s41592-021-01154-y
http://dx.doi.org/10.1038/s41592-021-01154-y
http://dx.doi.org/10.1038/nmeth.3804
http://dx.doi.org/10.1091/mbc.E16-07-0525
http://dx.doi.org/10.1038/srep14072


References

text, process, and purpose”. The American Statistician, 70(2):129–133, 2016,
doi:10.1080/00031305.2016.1154108.

[140] P. J. Diggle, “Statistical analysis of spatial and spatio-temporal point patterns”. CRC
Press, Taylor & Francis Group, 2013.

[141] P. J. Diggle and A. G. Chetwynd. “Second-order analysis of spatial clustering for inho-
mogeneous populations”. Biometrics, 47(3):1155–1163, 1991.

[142] P. J. Diggle, et al. “Second-order analysis of inhomogeneous spatial point processes using
case-control data”. Biometrics, 63(2):550–7, 2007, doi:10.1111/j.1541-0420.2006.00683.x.

[143] J. Goyette, et al. “How does T cell receptor clustering impact on signal transduction?”.
J Cell Sci, 132(4), 2019, doi:10.1242/jcs.226423.

[144] B. L. Walling and M. Kim. “LFA-1 in T cell migration and differentiation”. Front
Immunol, 9:952, 2018, doi:10.3389/fimmu.2018.00952.

[145] M. Brameshuber, et al. “Monomeric TCRs drive T cell antigen recognition”. Nat Im-
munol, 19(5):487–496, 2018, doi:10.1038/s41590-018-0092-4.

[146] P. Annibale, et al. “Photoactivatable fluorescent protein mEos2 displays repeated pho-
toactivation after a long-lived dark state in the red photoconverted form”. The Journal
of Physical Chemistry Letters, 1(9):1506–1510, 2010, doi:10.1021/jz1003523.

[147] S. Wang, et al. “Characterization and development of photoactivatable fluorescent
proteins for single-molecule-based superresolution imaging”. Proc Natl Acad Sci USA,
111(23):8452–7, 2014, doi:10.1073/pnas.1406593111.

[148] M. Schneider, “Overcoming blinking artifacts in nanocluster detection using two-color
single-molecule microscopy”. Diploma thesis, TU Wien, 2018.

[149] A. M. Arnold, et al. “Verifying molecular clusters by 2-color localization microscopy and
significance testing”. Sci Rep, 10(1):4230, 2020, doi:10.1038/s41598-020-60976-6.

[150] H. Lotwick and B. Silverman. “Methods for analysing spatial processes of several types
of points”. J R Stat Soc Series B Stat Methodol, 44(3):406–413, 1982.

[151] M. J. Mlodzianoski, et al. “Sample drift correction in 3D fluorescence photoactivation
localization microscopy”. Opt Express, 19(16), 2011.

[152] J. Rossy, et al. “Method for co-cluster analysis in multichannel single-molecule localisa-
tion data”. Histochem Cell Biol, 141(6):605–12, 2014, doi:10.1007/s00418-014-1208-z.

[153] S. Wieser, et al. “Versatile analysis of single-molecule tracking data by comprehen-
sive testing against Monte Carlo simulations”. Biophys J, 95(12):5988–6001, 2008,
doi:10.1529/biophysj.108.141655.

[154] D. A. Helmerich, et al. “Photoblueing of organic dyes can cause artifacts in super-
resolution microscopy”. Nat Methods, 18(3):253–257, 2021, doi:10.1038/s41592-021-
01061-2.

[155] J. Schnitzbauer, et al. “Correlation analysis framework for localization-based su-
perresolution microscopy”. Proc Natl Acad Sci USA, 115(13):3219–3224, 2018,
doi:10.1073/pnas.1711314115.

[156] J. Adler, et al. “Plasma membrane topography and interpretation of single-particle
tracks”. Nat Methods, 7(3):170–1, 2010, doi:10.1038/nmeth0310-170.

165

http://dx.doi.org/10.1080/00031305.2016.1154108
http://dx.doi.org/10.1111/j.1541-0420.2006.00683.x
http://dx.doi.org/10.1242/jcs.226423
http://dx.doi.org/10.3389/fimmu.2018.00952
http://dx.doi.org/10.1038/s41590-018-0092-4
http://dx.doi.org/10.1021/jz1003523
http://dx.doi.org/10.1073/pnas.1406593111
http://dx.doi.org/10.1038/s41598-020-60976-6
http://dx.doi.org/10.1007/s00418-014-1208-z
http://dx.doi.org/10.1529/biophysj.108.141655
http://dx.doi.org/10.1038/s41592-021-01061-2
http://dx.doi.org/10.1038/s41592-021-01061-2
http://dx.doi.org/10.1073/pnas.1711314115
http://dx.doi.org/10.1038/nmeth0310-170


References

[157] V. Ruprecht, et al. “Two-color single molecule tracking combined with photobleaching
for the detection of rare molecular interactions in fluid biomembranes”. Soft Matter,
6(3):568–581, 2010, doi:10.1039/b916734j.

[158] M. C. Wiener. “A pedestrian guide to membrane protein crystallization”. Methods,
34(3):364–72, 2004, doi:10.1016/j.ymeth.2004.03.025.

[159] A. Ishchenko, et al., “Crystallization of membrane proteins: An overview”, In: Methods
mol biol, 1607:117–141, 2017. doi:10.1007/978-1-4939-7000-1 5.

[160] Y. Cheng, et al. “A primer to single-particle cryo-electron microscopy”. Cell, 161(3):438–
449, 2015, doi:10.1016/j.cell.2015.03.050.

[161] L. A. Abriata and M. Dal Peraro. “Will cryo-electron microscopy shift the
current paradigm in protein structure prediction?”. J Chem Inf Model, 2020,
doi:10.1021/acs.jcim.0c00177.

[162] R. M. Garavito, et al. “Strategies for crystallizing membrane proteins”. J Bioenerg
Biomembr, 28:13–27, 1996.

[163] Y. Guo. “Be cautious with crystal structures of membrane proteins or complexes prepared
in detergents”. Crystals, 10(2), 2020, doi:10.3390/cryst10020086.

[164] R. Kaufmann, et al. “Super-resolution microscopy using standard fluorescent
proteins in intact cells under cryo-conditions”. Nano Lett, 14(7):4171–5, 2014,
doi:10.1021/nl501870p.

[165] M. W. Tuijtel, et al. “Correlative cryo super-resolution light and electron mi-
croscopy on mammalian cells using fluorescent proteins”. Sci Rep, 9(1):1369, 2019,
doi:10.1038/s41598-018-37728-8.

[166] C. S. Smith, et al. “Fast, single-molecule localization that achieves theoretically minimum
uncertainty”. Nat Methods, 7(5):373–5, 2010, doi:10.1038/nmeth.1449.

[167] M. P. Backlund, et al. “The role of molecular dipole orientation in single-molecule
fluorescence microscopy and implications for super-resolution imaging”. Chemphyschem,
15(4):587–99, 2014, doi:10.1002/cphc.201300880.

[168] Y. Zhang, et al. “Ultrafast, accurate, and robust localization of anisotropic dipoles”.
Protein Cell, 4(8):598–606, 2013, doi:10.1007/s13238-013-3904-1.

[169] F. Aguet, et al. “Super-resolution orientation estimation and localization of fluorescent
dipoles using 3-D steerable filters”. Opt Express, 17(8), 2009.

[170] S. Stallinga and B. Rieger. “Position and orientation estimation of fixed dipole emitters
using an effective hermite point spread function model”. Opt Express, 20(6), 2012.

[171] B. C. Coles, et al. “Characterisation of the effects of optical aberrations in single molecule
techniques”. Biomed Opt Express, 7(5):1755–67, 2016, doi:10.1364/BOE.7.001755.

[172] C. N. Hulleman, et al. “Simultaneous orientation and 3D localization microscopy with a
Vortex point spread function”. bioRxiv, 2020, doi:10.1101/2020.10.01.322834.

[173] M. P. Backlund, et al. “Simultaneous, accurate measurement of the 3D position and
orientation of single molecules”. Proc Natl Acad Sci USA, 109(47):19087–92, 2012,
doi:10.1073/pnas.1216687109.

166

http://dx.doi.org/10.1039/b916734j
http://dx.doi.org/10.1016/j.ymeth.2004.03.025
http://dx.doi.org/10.1007/978-1-4939-7000-1_5
http://dx.doi.org/10.1016/j.cell.2015.03.050
http://dx.doi.org/10.1021/acs.jcim.0c00177
http://dx.doi.org/10.3390/cryst10020086
http://dx.doi.org/10.1021/nl501870p
http://dx.doi.org/10.1038/s41598-018-37728-8
http://dx.doi.org/10.1038/nmeth.1449
http://dx.doi.org/10.1002/cphc.201300880
http://dx.doi.org/10.1007/s13238-013-3904-1
http://dx.doi.org/10.1364/BOE.7.001755
http://dx.doi.org/10.1101/2020.10.01.322834
http://dx.doi.org/10.1073/pnas.1216687109


References

[174] O. Zhang, et al. “Imaging the three-dimensional orientation and rotational mobil-
ity of fluorescent emitters using the Tri-spot point spread function”. Appl Phys Lett,
113(3):031103, 2018, doi:10.1063/1.5031759.

[175] M. D. Lew and W. E. Moerner. “Azimuthal polarization filtering for accurate, precise,
and robust single-molecule localization microscopy”. Nano Lett, 14(11):6407–13, 2014,
doi:10.1021/nl502914k.

[176] M. P. Backlund, et al. “Removing orientation-induced localization biases in single-
molecule microscopy using a broadband metasurface mask”. Nat Photonics, 10:459–462,
2016, doi:10.1038/nphoton.2016.93.

[177] O. Nevskyi, et al. “Fluorescence polarization filtering for accurate single molecule local-
ization”. APL Photonics, 5(6), 2020, doi:10.1063/5.0009904.

[178] H. Deschout, et al. “Progress in quantitative single-molecule localization microscopy”.
Histochem Cell Biol, 142(1):5–17, 2014, doi:10.1007/s00418-014-1217-y.

[179] C. Sieben, et al. “Super-resolution microscopy to decipher multi-molecular assemblies”.
Curr Opin Struct Biol, 49:169–176, 2018, doi:10.1016/j.sbi.2018.03.017.

[180] D. Salas, et al. “Angular reconstitution-based 3D reconstructions of nanomolecular
structures from superresolution light-microscopy images”. Proc Natl Acad Sci USA,
114(35):9273–9278, 2017, doi:10.1073/pnas.1704908114.

[181] C. Sieben, et al. “Multicolor single-particle reconstruction of protein complexes”. Nat
Methods, 15(10):777–780, 2018, doi:10.1038/s41592-018-0140-x.

[182] J. Broeken, et al. “Resolution improvement by 3D particle averaging in local-
ization microscopy”. Methods Appl Fluoresc, 3(1):014003, 2015, doi:10.1088/2050-
6120/3/1/014003.

[183] H. Heydarian, et al. “Template-free 2D particle fusion in localization microscopy”. Nat
Methods, 15(10):781–784, 2018, doi:10.1038/s41592-018-0136-6.

[184] H. Heydarian, et al. “3D particle averaging and detection of macromolecular symmetry
in localization microscopy”. Nat Commun, 12(1), 2021, doi:10.1038/s41467-021-22006-5.

[185] X. Shi, et al. “Deformed alignment of super-resolution images for semi-flexible struc-
tures”. PLoS One, 14(3):e0212735, 2019, doi:10.1371/journal.pone.0212735.

[186] A. P. Curd, et al. “Nanoscale pattern extraction from relative positions of sparse 3D
localizations”. Nano Lett, 21(3):1213–1220, 2021, doi:10.1021/acs.nanolett.0c03332.

[187] F. Hinterer, et al. “Robust and bias-free localization of individual fixed dipole emitters
achieving the Cramér Rao bound”. arXiv, 2021. arXiv-ID:2104.02449v1.

[188] H. P. Kao and A. S. Verkman. “Tracking of single fluorescent particles in three dimen-
sions: Use of cylindrical optics to encode particle position”. Biophys J, 67, 1994.

[189] B. Huang and e. al. “Three-dimensional super-resolution imaging by stochastic optical
reconstruction microscopy”. Science, 2008.

[190] B. Hajj, et al. “Accessing the third dimension in localization-based super-resolution
microscopy”. Phys Chem Chem Phys, 16(31):16340–8, 2014, doi:10.1039/c4cp01380h.

[191] P. Zelger, et al. “Three-dimensional single molecule localization close to the coverslip:

167

http://dx.doi.org/10.1063/1.5031759
http://dx.doi.org/10.1021/nl502914k
http://dx.doi.org/10.1038/nphoton.2016.93
http://dx.doi.org/10.1063/5.0009904
http://dx.doi.org/10.1007/s00418-014-1217-y
http://dx.doi.org/10.1016/j.sbi.2018.03.017
http://dx.doi.org/10.1073/pnas.1704908114
http://dx.doi.org/10.1038/s41592-018-0140-x
http://dx.doi.org/10.1088/2050-6120/3/1/014003
http://dx.doi.org/10.1088/2050-6120/3/1/014003
http://dx.doi.org/10.1038/s41592-018-0136-6
http://dx.doi.org/10.1038/s41467-021-22006-5
http://dx.doi.org/10.1371/journal.pone.0212735
http://dx.doi.org/10.1021/acs.nanolett.0c03332
http://dx.doi.org/10.1039/c4cp01380h


References

A comparison of methods exploiting supercritical angle fluorescence”. Biomedical Optics
Express, 12(2), 2021, doi:10.1364/boe.413018.

[192] G. J. Schütz, et al. “Imaging single-molecule dichroism”. Optics Letters, 22(9), 1997.

[193] G. S. Harms, et al. “Single-molecule anisotropy imaging”. Biophys J, 77:2864–2870,
1999.

[194] J. T. Fourkas. “Rapid determination of the three-dimensional orientation of single
molecules”. Optics Letters, 26(4), 2001.

[195] C. Lethiec, et al. “Measurement of three-dimensional dipole orientation of a single fluo-
rescent nanoemitter by emission polarization analysis”. Physical Review X, 4(2), 2014,
doi:10.1103/PhysRevX.4.021037.

[196] K. Zhanghao, et al. “Super-resolution dipole orientation mapping via polarization de-
modulation”. Light Sci Appl, 5(10):e16166, 2016, doi:10.1038/lsa.2016.166.

[197] C. Schwartz, et al. “Cryo-fluorescence microscopy facilitates correlations between light
and cryo-electron microscopy and reduces the rate of photobleaching”. J Microsc,
227:98–109, 2007.

[198] E. Hoogendoorn, et al. “The fidelity of stochastic single-molecule super-resolution re-
constructions critically depends upon robust background estimation”. Sci Rep, 4:3854,
2014, doi:10.1038/srep03854.

[199] A. Reismann, et al. “Temporal filtering to improve single molecule identification in high
background samples”. Molecules, 23(12), 2018, doi:10.3390/molecules23123338.

[200] R. Gray, “Zernikecalc.” URL: https://www.mathworks.com/matlabcentral/

fileexchange/33330-zernikecalc, 2013.

[201] S. M. Kay, “Fundamentals of statistical signal processing”. Prentice Hall PTR, 1993.

[202] J. Chao, et al. “Fisher information theory for parameter estimation in single molecule
microscopy: Tutorial”. J Opt Soc Am A Opt Image Sci Vis, 33(7):B36–57, 2016,
doi:10.1364/JOSAA.33.000B36.

[203] L. Danielli, et al. “Quantifying the distribution of protein oligomerization degree re-
flects cellular information capacity”. Sci Rep, 10(1):17689, 2020, doi:10.1038/s41598-
020-74811-5.

[204] C. H. Lee and R. MacKinnon. “Structures of the human HCN1 hyperpolarization-
activated channel”. Cell, 168(1-2):111–120, 2017, doi:10.1016/j.cell.2016.12.023.

[205] L. Jakob, et al. “Evaluation and optimisation of unnatural amino acid incorporation and
bioorthogonal bioconjugation for site-specific fluorescent labelling of proteins expressed in
mammalian cells”. Biochem Biophys Rep, 17:1–9, 2019, doi:10.1016/j.bbrep.2018.10.011.

[206] M. C. Schneider, et al. “A workflow for sizing oligomeric biomolecules based on
cryo single molecule localization microscopy”. PLoS One, 16(1):e0245693, 2021,
doi:10.1371/journal.pone.0245693.

[207] A. Al-Sharadqah and N. Chernov. “Error analysis for circle fitting algorithms”. Electronic
Journal of Statistics, 3:886–911, 2009, doi:10.1214/09-ejs419.

[208] P. Tinnefeld, et al. “Direct observation of collective blinking and energy transfer in a
bichromophoric system”. J Phys Chem A, 107(3), 2003.

168

http://dx.doi.org/10.1364/boe.413018
http://dx.doi.org/10.1103/PhysRevX.4.021037
http://dx.doi.org/10.1038/lsa.2016.166
http://dx.doi.org/10.1038/srep03854
http://dx.doi.org/10.3390/molecules23123338
https://www.mathworks.com/matlabcentral/fileexchange/33330-zernikecalc
https://www.mathworks.com/matlabcentral/fileexchange/33330-zernikecalc
http://dx.doi.org/10.1364/JOSAA.33.000B36
http://dx.doi.org/10.1038/s41598-020-74811-5
http://dx.doi.org/10.1038/s41598-020-74811-5
http://dx.doi.org/10.1016/j.cell.2016.12.023
http://dx.doi.org/10.1016/j.bbrep.2018.10.011
http://dx.doi.org/10.1371/journal.pone.0245693
http://dx.doi.org/10.1214/09-ejs419


References

[209] M. Mund, et al. “Systematic nanoscale analysis of endocytosis links efficient vesicle
formation to patterned actin nucleation”. Cell, 2018, doi:10.1016/j.cell.2018.06.032.

[210] K. Levenberg. “A method for the solution of certain non-linear problems in least squares”.
Quart Appl Math, 2:164–168, 1944, doi:10.1090/qam/10666.

[211] D. W. Marquardt. “An algorithm for least-squares estimation of nonlinear parameters”.
SIAM Journal on Applied Mathematics, 11(2):431–441, 1963, doi:10.1137/0111030.

[212] N. Chernov and C. Lesort. “Statistical efficiency of curve fitting algorithms”. Comput
Stat Data Anal, 47(4):713–728, 2004, doi:10.1016/j.csda.2003.11.008.

[213] K. Kanatani, “Statistical optimization of geometric computation: Theory and practice”.
Courier Corporation, 2005.

[214] T. Yokosuka, et al. “Newly generated T cell receptor microclusters initiate and sustain
T cell activation by recruitment of Zap70 and SLP-76”. Nat Immunol, 6(12):1253–62,
2005, doi:10.1038/ni1272.

169

http://dx.doi.org/10.1016/j.cell.2018.06.032
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1016/j.csda.2003.11.008
http://dx.doi.org/10.1038/ni1272




List of Figures

2.1 The cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Cellular plasma membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Protein structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Airy pattern and resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Principle of single molecule localization microscopy (SMLM) . . . . . . . . . . 16
2.8 Methods for separating fluorescence signals in time . . . . . . . . . . . . . . . . 17
2.9 Structure and size of various labels . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Schematic outline of microscope setups . . . . . . . . . . . . . . . . . . . . . . . 22
2.11 Localization precision versus accuracy . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Reasons for overcounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.13 Possible distortions of localization maps . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Spatial distributions of point patterns . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Ripley’s function and pair-correlation analysis . . . . . . . . . . . . . . . . . . . 38
3.3 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 FOCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Image tesselation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Merging of localizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Pair correlation analysis accounting for overcounting . . . . . . . . . . . . . . . 44
3.8 Label titration method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Random spatial point pattern analyzed by DBSCAN . . . . . . . . . . . . . . . 47
3.10 Population, sample and sampling distribution . . . . . . . . . . . . . . . . . . . 49
3.11 The p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Platform design for recording of blinking statistics . . . . . . . . . . . . . . . . 57
4.2 Grouping of localizations and colocalization with platform data . . . . . . . . . 58
4.3 Representative intensity traces of PS-CFP2 molecules . . . . . . . . . . . . . . 59
4.4 Blinking statistic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Experimentally recorded blinking statistics . . . . . . . . . . . . . . . . . . . . 60
4.6 Cluster analysis via Ripley’s H function in the presence of overcounting . . . . 62
4.7 Monte Carlo simulations and simulation envelopes . . . . . . . . . . . . . . . . 63
4.8 Analysis of TCR-CDζ and LFA-1 distributions in the T-cell . . . . . . . . . . . 64

5.1 Analysis of localization maps with 2-CLASTA . . . . . . . . . . . . . . . . . . . 72
5.2 Principle of a toroidal shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

171



List of Figures

5.3 Distribution of the p-value under the null hypothesis . . . . . . . . . . . . . . . 74
5.4 Single molecule blinking statistics for SNAP-labels . . . . . . . . . . . . . . . . 75
5.5 Robustness of 2-CLASTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Influence of experimental errors on the sensitivity . . . . . . . . . . . . . . . . . 78
5.7 Influence of different summary statistics on 2-CLASTA sensitivity . . . . . . . 79
5.8 Influence of rmax on 2-CLASTA sensitivity . . . . . . . . . . . . . . . . . . . . . 80
5.9 Examples of simulated nanodomains . . . . . . . . . . . . . . . . . . . . . . . . 81
5.10 Sensitivity of 2-CLASTA to detect spatially extended clusters . . . . . . . . . . 82
5.11 Sensitivity results for different fluorescent labels . . . . . . . . . . . . . . . . . . 83
5.12 Influence of localization precision on the sensitivity of 2-CLASTA for spatially

extended clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.13 Influence of cluster shape on the sensitivity of 2-CLASTA . . . . . . . . . . . . 84
5.14 2-CLASTA analysis of experimental data . . . . . . . . . . . . . . . . . . . . . 85
5.15 Obtained p-value versus number of analyzed localizations . . . . . . . . . . . . 86
5.16 Sensitivity for joint analysis of multiple experiments . . . . . . . . . . . . . . . 89
5.17 Overall p-value for multiple experiments . . . . . . . . . . . . . . . . . . . . . . 89
5.18 Displacement vector field for chromatic aberration . . . . . . . . . . . . . . . . 95

6.1 PSFs for fixed fluorophore dipole orientations . . . . . . . . . . . . . . . . . . . 103
6.2 Template basis patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Manipulation of the back focal plane . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 Polarization splitting approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Effect of under- and overcounting . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.6 Radius determination from sum images . . . . . . . . . . . . . . . . . . . . . . 108
6.7 Particle reconstruction based on EM-algorithms . . . . . . . . . . . . . . . . . . 109
6.8 Particle registration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.9 Pattern extraction from relative positions of localizations (PERPL) . . . . . . . 111

7.1 Coordinate system and fluorophore dipole orientation . . . . . . . . . . . . . . 114
7.2 Localization errors for fixed dipole emitters . . . . . . . . . . . . . . . . . . . . 115
7.3 Comparison of PSF images for different noise levels . . . . . . . . . . . . . . . . 116
7.4 Point spread functions for different dipole orientations . . . . . . . . . . . . . . 117
7.5 Fitting the dipole orientation in the presence of astigmatism . . . . . . . . . . . 118
7.6 Localization errors in the presence of astigmatism . . . . . . . . . . . . . . . . . 119
7.7 Influence of the azimuthal angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.8 Influence of number of photons . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.9 Influence of pixel size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.10 Influence of background noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.11 Influence of the size of the fitted region . . . . . . . . . . . . . . . . . . . . . . 122
7.12 Influence of uncertainties in dipole orientation . . . . . . . . . . . . . . . . . . . 123
7.13 Influence of reduced excitation probability for tilted dipoles . . . . . . . . . . . 124
7.14 Combined effect of reduced excitation probability for tilted dipoles and uncer-

tainties in dipole orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.15 Discretization of the PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

172



List of Figures

8.1 Oligomer structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2 SMLM imaging of small oligomeric structures . . . . . . . . . . . . . . . . . . . 135
8.3 Reconstruction with a template-free method . . . . . . . . . . . . . . . . . . . . 136
8.4 Schematic representation of the method . . . . . . . . . . . . . . . . . . . . . . 137
8.5 Probability density for brightness values . . . . . . . . . . . . . . . . . . . . . . 138
8.6 Estimating oligomer side length from a set of oligomers . . . . . . . . . . . . . 139
8.7 Assignment of localizations and eligibility of oligomers . . . . . . . . . . . . . . 140
8.8 Influence of signal brightness and noise . . . . . . . . . . . . . . . . . . . . . . . 141
8.9 Influence of the number of available oligomers . . . . . . . . . . . . . . . . . . . 142
8.10 Influence of labeling efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.11 Influence of oligomer side length . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.12 Degree of oligomerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.13 Influence of a tilt of oligomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.14 Runtime scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

173





Curriculum Vitae

DI Magdalena Schneider, BSc

Date of birth: November 23, 1993
Citizenship: Austria
E-mail: schneider@iap.tuwien.ac.at
ORCID: 0000-0002-3771-8353

Education

05/2018 – Present PhD studies in Technical Physics
TU Wien, Austria

10/2015 – 04/2018 MSc in Biomedical Engineering (with distinction)
Focus on Mathematical and Computational Biology
TU Wien, Austria

02/2017 – 07/2017 Swiss-European Mobility Programme (SEMP)
ETH Zurich, Switzerland

10/2012 – 09/2015 BSc in Technical Mathematics (with distinction)
TU Wien, Austria

Research experience

05/2018 – Present Project Assistant
Institute of Applied Physics, Biophysics
TU Wien, Austria

09/2016 – 11/2016 Research Assistant (FEMtech Internship)
Austrian Institute of Technology (AIT)
Center for Health & Bioresources, research field Cardiovascular Diagnostics

Teaching experience

Summer 2016 &
Summer 2018

Teaching assistant (TU Wien)
Mathematics for Technical Chemistry II, Exercises

Winter 2015 &
Winter 2017

Teaching assistant (TU Wien)
Mathematics for Technical Chemistry I, Exercises

Winter 2017 Teaching assistant (TU Wien)
Mathematics for Geodesy and Geoinformation I, Exercises



Scholarships and Awards

2020 Christiana Hörbiger Award

2020 BPS Travel Award (Biophysical Society)

2019 Students’ Award of the OePG (Austrian Physical Society)
Award for outstanding Master thesis in the field of physics.

2018 Best Student Talk Award (10th ÖGMBT Annual Meeting)
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In: Time-dependent Problems in Imaging and Parameter Identification. Springer Interna-
tional Publishing, doi: 10.1007/978-3-030-57784-1.

2020 Unscrambling Fluorophore Blinking for Comprehensive Cluster Detection via
PALM. R. Platzer*, B. K. Rossboth*, M. C. Schneider, E. Sevcsik, F. Baumgart, H.
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