
Approaching Emergent Patterns
with Kronecker Algebra in

Industrial Agents

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Patrick Denzler, MSc
Matrikelnummer 11743126

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Zweitbetreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Johann Blieberger

Diese Dissertation haben begutachtet:

Prof. Dr. Moris Behnam Prof. Dr. Bernd Burgstaller

Wien, 28. Juni 2023
Patrick Denzler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Approaching Emergent Patterns
with Kronecker Algebra in

Industrial Agents

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Patrick Denzler, MSc
Registration Number 11743126

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Second advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Johann Blieberger

The dissertation has been reviewed by:

Prof. Dr. Moris Behnam Prof. Dr. Bernd Burgstaller

Vienna, 28th June, 2023
Patrick Denzler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Patrick Denzler, MSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. Juni 2023
Patrick Denzler

v

Abstract

Cyber-physical systems (CPSs) integrate distributed physical components, software, and monitors.

Their behaviour results from the interactions between the parts and is not deducible from the

components. In schools of fish or ant colonies, nature knows similar phenomena and is commonly

summarised as self-organisation or emergent behaviour. A systematic literature review revealed

properties required in multi-agent systems (MASs) to show emergent pattern formations. The

dynamically interacting agents need to create, without external control, a robust pattern that is

novel w.r.t. the individual parts of the system over time. Nevertheless, there are limited methods to

identify such patterns. A potential solution is a formal language approach based on a cooperating

array grammar system and Kronecker Algebra.

Kronecker Algebra manipulates matrices, representing state machines capable of executing for-

mal language grammars. The new Kronecker Synthesise and Symmetric Skip operations enable

scenario synthesis to identify unexpected behaviour while ensuring consistency. Adding execution

priorities allow pinpointing priority inversions between agents sharing a common resource. More-

over, it enables worst-case execution time (WCET) analysis of processes executing on one central

processing unit (CPU).

Applying the operations to a publish-subscribe communication system model results in pattern

formations that individual agents cannot execute. Adding priorities affects the pattern formation

and the execution time of agent interactions. Experimentations with a time-predictable publish-

subscribe environment confirm the findings and the suitability of the proposed approach. Limiting

the results is the absence of multiple experiments. Future work includes extending Kronecker Algebra

to handle concurrent prioritised agent interactions and linear time model checking.

vii

viii

Zusammenfassung

Cyber-Physische Systeme (CPSs) integrieren, verteilte physische Komponenten, Software und Mon-

itore. Ihr Verhalten resultiert aus den Wechselwirkungen zwischen den einzelnen Teilen und ist

nicht aus den Komponenten ablesbar. Die Natur kennt ähnliche Phänomene in Fischschwärmen

oder Ameisenkolonien und welche gemeinhin als Selbstorganisation oder Emergenzverhalten zusam-

mengefasst werden. Eine systematische Literaturrecherche ergab Eigenschaften, die in Multiagen-

tensystemen (MASs) erforderlich sind, um solche Musterbildungen zu erzeugen. Die dynamisch

interagierenden Agenten müssen ohne externe Kontrolle ein robustes Muster erstellen, das in Bezug

auf die Funktionsweise und der einzelnen Teile des Systems im Laufe der Zeit neu ist. Dennoch

gibt es nur begrenzte Methoden, um solche Muster zu identifizieren. Eine mögliche Lösung ist ein

formaler Ansatz, der auf einem kooperierenden Array-Grammatiksystem und der Kronecker-Algebra

basiert.

Die Kronecker-Algebra manipuliert Matrizen, die Zustandsmaschinen darstellen, die in der Lage

sind, formale Sprachgrammatiken auszuführen. Die neuen Kronecker-Synthese- und Symmetric-

Skip Operationen ermöglichen die Szenariosynthese, um unerwartetes Verhalten zu identifizieren und

gleichzeitig Konsistenz sicherzustellen. Durch das Hinzufügen von Ausführungsprioritäten können

Prioritätsumkehrungen zwischen Agenten ermittelt werden, die sich eine gemeinsame Ressource

teilen. Darüber hinaus ermöglicht es die worst-case execution time (WCET) analysis von Prozessen,

die auf einem zentralen Prozessor ausgeführt werden.

Die Anwendung der Operationen auf ein Publish-Subscribe Kommunikationssystemmodell führt

zu Musterbildungen, die einzelne Agenten nicht ausführen können. Das Hinzufügen von Prioritäten

wirkt sich auf die Musterbildung und die Ausführungszeit von Agenteninteraktionen aus. Experi-

mente mit einer zeitvorhersehbaren Publish-Subscribe Umgebung bestätigen die Ergebnisse und die

Eignung des vorgeschlagenen Ansatzes. Die Ergebnisse werden durch das Fehlen mehrerer Exper-

imente eingeschränkt. Zukünftige Arbeiten umfassen die Erweiterung der Kronecker-Algebra, um

gleichzeitige priorisierte Agenteninteraktionen und die Überprüfung linearer Zeitmodelle zu verar-

beiten.

ix

x

Acknowledgements

This dissertation reflects five years of research education through my eyes. However, in addition to

my own world, it also represents the worlds of other interesting individuals I have had contact with.

First, I would like to express my gratitude to my two supervisors, Professor Wolfgang Kastner and

Professor Johann Blieberger. Wolfgang, thank you for these few years of continuous support and

optimism, “Alles wird gut”, should be in every supervisor’s vocabulary. Hans, thank you for all the

patience and the introduction to Kronecker Algebra. I would also like to especially thank Professor

Dr. Moris Behnam and Professor Dr. Bernd Burgstaller for the final reviews of this dissertation,

which have undoubtedly improved its quality.

A large portion of these five years was spent in the company of my colleagues at the Automation

Systems Group, to whom I am grateful. Your companionship, Thomas, Daniel, Jürgen, Dieter and

Philip, made this process much more enjoyable. Especially noted Dr. Thomas Frühwirth, co-author

and a formidable opponent of where to place commas. Not to forget Ruth Fochtner, our wizard

handling the depths of TU Wien’s bureaucracy.

I should also note my colleagues from the Marie Sk]lodowska-Curie Fellowship FORA. Especially

Cosmin and Basil for the many exciting discussions in a traditional Viennese coffee house. And my

dear friend Zeinab, thank you for continuous motivational aid when there was much frustration.

The people I met at Mälardalen University should not be forgotten, as they enabled this journey

in the first place. Dr. Anna Granlund, thank you for your outstanding help and care when things

turned difficult. Moreover, Christer, Philip, Mohammed, Gita, Leo, Inés and all the others, thank

you for the cheerful Fika’s and discussions.

Alongside this journey, I received much backing from my closest friends. Marco, Michéle, Mika,

Mahnaz, Farhad, Stefano, Martin, Nina and Sarah, I am sure I will be around more again. Gerhard

Storz, the work at COMACON AG, definitely shaped my understanding of computers. Moreover,

Dr. Michael Gnoth, thank you for all the valuable learnings during my time in Dubai.

Neda, thank you for all your support and patience during these years.

Finally, a note to my very first supporters, my parents: thank you for your unconditional love and

encouragement. Mam and Dad, you showed me that I can achieve my goals despite all the obsta-

cles in life. Without you, all this would have been impossible. Last but not least, to Manuel, I am

grateful to have you as my brother.

Patrick, Vienna, 28.06.2023

xi

xii

„Out beyond ideas of wrongdoing

and rightdoing, there is a field.

I'll meet you there.“

Rumi

CONTENTS

Contents

1 Introduction 1

1.1 Emergent Pattern . 3

1.2 Relation to Industrial Systems . 4

1.3 Formalisation and Kronecker Algebra . 4

1.4 Problem Statement and the Research Questions 5

1.5 Structure of the Dissertation . 5

1.6 Contributions within this Dissertation . 6

1.7 Publications . 6

1.8 Reference to FORA . 8

2 Complex Systems, Self-Organisation and Emergence 9

2.1 Complex Systems . 9

2.1.1 Measures of Complexity . 10

2.2 Self-Organisation . 12

2.2.1 A Bit of History about Self-Organisation 12

2.2.2 Defining Self-Organisation . 13

2.2.3 Characteristics of Self-Organisation . 13

2.2.4 Self-Organization From an Information Perspective 15

2.3 Emergence . 15

2.3.1 A Bit of History about Emergence . 15

2.3.2 Defining Emergence . 16

2.3.3 Where to find Emergence . 17

2.3.4 Characteristics of Emergence . 18

2.3.5 Classifications of Emergence . 20

2.3.6 The Design-observed Discrepancy . 21

2.3.7 The Information Dynamics of Emergence 21

2.3.8 Macro-Properties, Scope and Resolution 23

2.4 Differences Between Self-Organisation and Emergence 23

2.4.1 Similarities . 23

2.4.2 Differences . 24

2.4.3 Combining Emergence and Self-Organisation 25

2.5 Unwanted Emergent Behaviour . 25

2.5.1 Types of Methods to Detect Emergent Behaviour in Systems 26

2.5.2 How to confirm Emergent Behaviour . 27

2.5.3 How to Simulate and Model Emergent Behaviour 28

2.5.4 Influencing Emergent Behaviour . 30

2.5.5 Predicting Emergent Behaviour . 31

xv

CONTENTS

2.6 Summary . 32

3 Methodology 33

3.1 A Short Excursion in Testing vs. Proving Programs Correct 33

3.1.1 A Quest for Final Truths . 33

3.1.2 Formal Verification, the Only Solution . 34

3.1.3 The Two Debates Compared . 36

3.1.4 Conclusion . 37

3.2 Choosing Desing and Creation as Research Strategy 37

3.3 Systematic Literature Review . 38

3.3.1 The Guiding Research Questions . 39

3.3.2 Search Strings and Databases . 39

3.3.3 Acceptance/Rejection Criteria . 40

3.3.4 Data Extraction . 40

3.3.5 Results . 40

3.3.6 A Comment on the Conducted Literature Review 41

4 Emergent Behaviour in Industrial Systems 43

4.1 Seamless Communication in Industry . 43

4.2 Emergence in Industry 4.0, IIoT and Multi-Agent Systems 44

4.3 A Little bit Critique and Some Clarifications . 45

4.4 What Could Cause Emergent Behaviour in a Multi-Agent System? 46

4.4.1 Informal Definition of Basic Emergence and the Connection to Formal Lan-

guages . 47

4.5 A Formal Language Proposal . 48

4.5.1 Formal Languages . 48

4.5.2 Cooperating Grammar Systems . 48

4.5.3 Cooperating Array Grammar Systems . 49

4.5.4 Modifications on Cooperating Grammar System 51

4.5.5 Summing up the Agents Behaviour . 51

4.5.6 A Formal Definition of a Basic Emergence 51

4.5.7 Some Comments . 52

4.6 Finding a Suitable Tool . 52

4.7 Summary and Limitations . 54

5 Kronecker Algebra — A Matrix Calculus 55

5.1 A little History of Kronecker Algebra . 55

5.2 Finite State Machines and their Matrix Representation 56

5.2.1 Matrix Representation . 57

5.2.2 State Transitions (Finding Successors) 59

5.3 Definition of Kronecker Product . 60

5.3.1 Further Properties . 61

5.3.2 Our Semiring . 61

5.3.3 Applying Kronecker Product . 61

5.4 Verifying Programs with Kronecker Product . 62

5.4.1 Control Flow Graphs . 63

5.4.2 Usage Scenarios . 64

5.4.3 Applying Kronecker Product . 64

xvi

CONTENTS

5.4.4 Isomorphism . 64

5.5 Kronecker Skip . 65

5.6 Kronecker Sum . 66

5.7 Concurrent Programs and Semaphores . 67

5.8 Implementing Kronecker Algebra Operations (Lazy Algorithm) 68

5.8.1 Expression Trees . 68

5.8.2 Lazy Evaluation of Kronecker Expressions 68

5.9 Related work in the field of Kronecker Algebra . 70

5.10 Concluding Remarks . 70

6 Finding Implied Scenarios 71

6.1 The Idea Behind Implied Scenarios . 71

6.2 Message Sequence Charts . 71

6.2.1 Problem Formulation . 73

6.2.2 Limitations . 73

6.3 Finding Basic ’Emergence’ . 73

6.3.1 Scenario Collection . 74

6.3.2 Synthesizing message sequence charts (MSCs) to control-flow graphs (CFGs) 74

6.3.3 Combine all Scenarios and Create STotal 78

6.3.4 Analyze STotal with Kronecker Algebra . 79

6.3.5 Evaluate New Scenarios . 79

6.4 Evaluation Example . 79

6.4.1 Synthesising MSCs to CFGs . 81

6.4.2 Combine all Scenarios and Create STotal 81

6.4.3 Analysing the Graph with Kronecker Operations 82

6.4.4 Evaluate New Scenarios . 86

6.5 Discussion . 87

6.6 Related Work . 88

6.7 Concluding Remarks . 88

7 Consistency Checking 89

7.1 A Motivating Example . 89

7.1.1 Consistency Between an MSC and State Machines 90

7.1.2 A Desired and a Negative Scenario . 91

7.2 The Consistency Problem . 91

7.2.1 Defining the Problem . 91

7.2.2 Limitations . 91

7.3 Confirming Consistency . 92

7.3.1 Kronecker Symmetric Skip Operation . 92

7.3.2 Reusing Kronecker Synthesize Operation 93

7.3.3 Bringing it All Together . 93

7.4 Evaluation . 94

7.4.1 Preparation of the finite state machine (FSM) 94

7.4.2 A First Simple Example . 96

7.4.3 Focusing on the MSC Synthesis . 97

7.4.4 The Error Scenario . 97

7.5 Discussion . 98

7.6 Related Work . 99

xvii

CONTENTS

7.7 Concluding Remarks . 99

8 Priority 101

8.1 Process Prioritisation . 101

8.2 Bounded/Unbounded Priority Inversion . 102

8.3 Priority Ceiling and Inheritance Protocol . 103

8.4 Problem Definition . 104

8.5 Kronecker Priority . 105

8.5.1 Conditionals . 107

8.5.2 Branches (If and Else Statements) . 110

8.5.3 Sync Pattern . 111

8.6 Spotting Priority Inversion . 113

8.6.1 Introducing the Lock . 113

8.6.2 Introducing the Synchronisation . 113

8.6.3 Adjusting the Processes . 114

8.6.4 Apply Kronecker Algebra . 114

8.6.5 How to Spot Priority Inversion in the Graph? 117

8.6.6 Introduce the Priority Ceiling Protocol . 117

8.7 Identify Starvation . 118

8.8 Discussion . 120

8.9 Related Work . 120

8.10 Concluding Remarks . 120

9 Worst Case Execution Time Analysis 121

9.1 Introduction to timing analysis . 121

9.2 Problem Definition . 122

9.3 WCET Analysis of Shared Memory Concurrent Programs Running on a Multi-Core

Architecture . 123

9.3.1 Modelling All Interleavings . 124

9.3.2 Introduce Synchronisation . 125

9.3.3 WCET Analysis on RCPGs . 125

9.4 WCET Analysis with Priorities . 126

9.5 Discussion and Related Work . 128

9.6 Concluding Remarks . 128

10 Evaluation 129

10.1 Returning to the Blackboard . 129

10.2 Developing an Example . 130

10.2.1 Creating the Basic Structure . 130

10.2.2 Introducing Interaction . 131

10.2.3 A Pattern Emerges . 132

10.3 A Second Pattern . 135

10.3.1 Analysing the Paths . 136

10.3.2 Adding Another Subscriber . 137

10.4 Change the Basic Setup . 140

10.5 Apply Priorities to the First Example . 143

10.6 Adding Execution Time . 145

10.6.1 OPC Unified Architecture . 146

xviii

CONTENTS

10.6.2 End-to-end latency . 146

10.6.3 WCET Analysis Process . 147

10.6.4 Adjusting the OPC UA Publisher . 148

10.6.5 Adjusting the OPC UA Subscriber . 148

10.6.6 Evaluation Setup . 149

10.6.7 Execution Time Measurements . 149

10.6.8 End-to-End Latency Analysis . 152

10.6.9 Further Work . 154

10.6.10Connection to Kronecker Algebra . 154

10.7 Time Complexity of Kronecker Operations . 155

10.7.1 Optimisations of Kronecker Algebra . 156

10.8 Concluding Remarks . 156

11 Discussion 157

11.1 Research Question 1 . 157

11.2 Research Question 2 . 158

11.3 Research Question 3 . 159

11.4 Research Question 4 . 161

11.5 Limitations and Related Work . 162

11.6 Reliability, Reproducibility and Generalisation . 163

12 Conclusion 165

12.1 Future Work . 166

13 Bibliography 167

xix

CONTENTS

xx

Chapter 1

Introduction

The topic of this dissertation covers several subjects not obviously related at first sight. Nev-

ertheless, a good starting point is the behaviour of complex and distributed systems, specifically

cyber-physical systems (CPSs) [LS17]. Such systems usually combine physical components with

software controllers and observers, like in vehicles or robots. A specific characteristic of such sys-

tems is that their behaviour surfaces from the combination of all elements, which cannot be deduced

from the individual components alone. However, let us not dive overly deep into the technical abyss.

Instead, let us explore a specific behaviour of a fish, namely the male bluegill sunfish (Lepomis

Macrochirus). This fish species usually nests in a group of 150 individuals, and each builds a

polygonal formed nest on the sea floor [GM81]. Each bluegill constructs its territory in the soft

sand like a pit with rims around it to create borders to the adjoined nests. The individual fish acts

as a selfish-heard member, most likely evolved to prevent broad predators [Ham64]. By joining

the group and surrounding its nest with other nests, each member increases its protection against

predators. However, while the group building is intended, each fish fiercely protects its patch of

sand or borders against the other fish. This behaviour is also seen in other species of fish like the

Tilapia. The result of the nest building is a colony with a beautiful pattern showing a polygonal

array lined up, as shown in Figure 1.2. The pattern does not have any direct function; it is a product

of individually interacting agents (fish) following a simple set of rules: Do not come too close but

still be as close to protect against the enemy. In the literature, the described behaviour is either

classified as a natural self-organising or an emergent system [CDF+20].

The terms self-organisation and emergence describe behaviours of systems that cannot be easily

explained by the sum of the behaviour of the system elements [Sha01]. Both phenomena are

reoccurring research topics that have fascinated researchers repeatedly since the 1970s. While there

are strong connections to complex systems theory, the underlying concepts of self-organisation and

emergence found their way into different research fields such as robotics, swarm, biology, social

sciences or physics [For90, CM95, KMRF+03].

1Source: https://commons.wikimedia.org/wiki/File:Lepomis macrochirus.jpg.

Figure 1.1: The male bluegill sunfish (Lepomis Macrochirus)1

1

CHAPTER 1. INTRODUCTION

Figure 1.2: Several male bluegill sunfish (Lepomis Macrochirus) nests that form a polygonal array.

Self-organisation refers to a wide range of pattern-formation processes in physical and biological

systems [Sha01, CDF+20]. Examples are sand grains assembling into rippled dunes, fish joining

in schools, chemical reactants creating swirling spirals or cells assembling highly structured tissues.

One essential commonality of these systems is how they produce and hold their order and structure.

In such self-organising systems, the pattern formation process happens through internal interactions

without any external influences to provide direction or intervention. The author Haken [Hak77,

p.191] describes the formation process in an example: “Consider, for example, a group of workers.

We then speak of organization or, more exactly, of organized behavior if each worker acts in a well-

defined way on given external orders, i.e., by the boss. We would call the same process as being

self-organized if there are no external orders given but the workers work together by some kind of

mutual understanding.” In the example, the boss does not contribute to the pattern formation and

is therefore considered external, i.e., the boss is not part of the system.

The example illustrates why systems that do not have self-organising properties can produce

high-order patterns. The order is imposed on the system by instructions from a leader, directives

coming from blueprints or recipes or pre-existing patterns in the environment (templates) [CDF+20].

An example of an imposed pattern is a marching band forming big letters on a football field. The

band’s members are guided in their behaviour by a set of externally imposed instructions. Each

member gets specific movement instructions, so the final pattern emerges. While each musician

does not receive instructions and ignores the other members while marching, the steps and directions

are predefined and, therefore, not self-organised.

Camazine et al. [CDF+20, p.8] provide a well-formulated definition for self-organisation in the

context of pattern formation: “Self-organisation is a process in which a pattern at a global level

of a system emerges solely from numerous interactions among the lower-level components of the

system. Moreover, the rules specifying interactions among the system’s components are executed

using only local information without reference to the global pattern.” In other words, the pattern

itself is an emergent property of the system. Any external entity or influence does not impose

the pattern. The differences between self-organisation and emergent properties be defined in later

chapters. For now, it is enough to understand that emergent properties are system features that

arise unexpectedly from interactions among the system’s components. At the same time, such a

property cannot be deducted by simply examining the properties of the systems’ components in

isolation. As a side note, system components do not necessarily have to interact directly.

2

1.1. EMERGENT PATTERN

1.1 Emergent Pattern

The definition of Camazine et al. [CDF+20] contains the important term pattern. In this context, a

pattern is a distinct, organised arrangement of objects in space and time [Bal01]. Such patterns are

a school of fish, the synchronous flashing of fireflies, the complex architecture of a termite mound or

a raiding column of army ants, to continue with examples from biology. The pigmentation patterns

of shells, fish and mammals or lichen growth are not less spectacular [Mur88].

Comprehending the pattern formation process is essential for understanding self-organisation

and emergence. Staying in the biological context, the building blocks of patterns are sometimes

living units (fish, ants or nerve cells) or, in other cases, inanimate objects such as bits of dirt and

faecal cement that make up the termite mound. In both cases, a system of living cells or organisms

is the pattern formation source without any external directing influence, such as the environment

or a leader. The system’s entities interact to produce the pattern based on local, not global,

information [Hak77]. A simple example is a school of fish where each fish bases its behaviour on

the position and velocity of its nearest neighbours (cf. Figure 1.3 on the left). No fish knows the

global behaviour of the whole school [HW92], but all fish together can perform complex formations

such as avoiding predators (cf. Figure 1.3 on the right). Similarly, a detachment of army ants bases

its activity on local concentrations of pheromones by other ants. No “general” ant gives directions.

The literature combines self-organisation, emergent properties, complexity, dissipative struc-

tures, and chaos under the umbrella term nonlinear systems [Pri78]. The actual meanings of chaos

and dissipative structures highly differ between the scientific and everyday definitions. Let us start

with the term complex. The before exemplified organisms use relatively simple behavioural rules to

generate structures and patterns on the global system level. Those structures are more complex

than the components and processes they emerge [Pag88]. Therefore, systems are not complex be-

cause they involve many behavioural rules and large numbers of different components but because of

the complex structure and pattern that the system generates. The terms complexity and complex

systems describe systems build upon interacting units that create global properties not present at

the lower level [Sha01]. These systems usually have diverse responses, often sensitively dependent

on the system’s initial state and nonlinear interactions among its components. Moreover, those

nonlinear interactions involve amplification or cooperativity [Ode02a]. It becomes possible for com-

plex behaviours to emerge, although the system components are similar and follow simple rules. In

other words, complexity is not dependent on complicated components or rules [Sha01].

Figure 1.3: On the left, each fish orients itself on the position and velocity of its nearest neighbours.

On the right is a school of fish, showing self-organised pattern formation by avoiding a predator.

3

CHAPTER 1. INTRODUCTION

1.2 Relation to Industrial Systems

What do CPSs or industrial systems have in common with the self-organisation or emergent be-

haviour of a school of fish? That question was the starting point of this dissertation and was rooted

in the unexpected behaviour of an industrial communication system built for a research project. The

system consisted of several agents communicating and producing high-level interactions not intended

in the original design. Despite investigating the single agents, the root cause could only be found

by analysing the message pattern created during the system’s operation. To answer the above

question, CPSs or industrial systems can, like their biological counterparts, create patterns that

qualify as emergent properties. Such systems fulfil some basic requirements needed for emergent

patterns such as interacting parts [CDF+20], decentralised control [Ode02a], autonomy [Sha01],

adaptability or robustness w.r.t. changes [Gol99] and can create a micro-macro effect [Gol99].

Moreover, the possibility for systems to show emergent behaviour increased with the ongoing trend

to seamlessly interconnect systems over the Internet, as proposed by Kevin Ashton in 1999, when

he coined the term Internet of Things (IoT). The paradigms Industrial Internet of Things (IIoT)

and Industry 4.0 (I4.0) [LFK+14] apply the idea of IoT into the industrial context and therefore

inherit the same potential.

A large body of academic research focuses on agent systems, specifically self-organising robots or

other interacting agents. However, little is done to provide functional methods or tools in the context

of emergent pattern generation in such systems. The predominant tools are simulations, where the

agents show emergent patterns over time. Questions about why specific behaviour occurs often

remain unanswered or explained by elements of surprise, accompanied by limited examples. One

reason might be that multi-agent system (MAS) agents are sometimes capable of highly complex

tasks, and deducting the system’s behaviour backwards is almost impossible [LS17]. Based on the

experiences made with the research industrial communication system, this dissertation aims to find

a possibility or method to identify emergent patterns in MAS and industrial systems.

1.3 Formalisation and Kronecker Algebra

Parallel research activities on Kronecker Algebra raised the question of whether it is possible to

utilise this type of algebra to identify patterns in agent interactions. Johann Georg Zehfuss intro-

duced the primary operator by the symbol ⊗ in 1858 [Zeh58]. This operator manipulates matrices
and had, throughout history, various names, such as the Zehfuss product, the Hurwitz product,

the producttransformation, the conjunction, the tensor product, the direct product, or Kronecker

product [Gra18]. Other academics added further operations to Kronecker Algebra. For example,

Gerhard Küster [Küs91] proved that Kronecker Sum generates all interleavings of concurrently exe-

cuting automata and Mittermayr and Blieberger [MB11] applied operations (i.e., Kronecker product

and Kronecker Sum) to automata within the Kuich-Salomaa notation.

As indicated above, some research treats self-organisation and emergence rather informally,

while others provide formal approaches without appropriate tools. However, searching for methods

to identify emergent behaviour also yielded more tangible approaches. Kub́ı [Kub03] proposes using

formal languages to identify emergent behaviours in MAS. Each agent has its language; they

generate a new system language when interacting. If the system language differs from the sum of

the agent languages, the system may show basic emergent behaviour. The connecting elements

with Kronecker Algebra are finite state machines (FSMs). FSMs can represent formal languages

on the lower levels of the Chomsky hierarchy [Cho56]. By transforming the FSMs into their matrix

representations, we can use Kronecker operations to identify emergent patterns in MAS.

4

1.4. PROBLEM STATEMENT AND THE RESEARCH QUESTIONS

The following steps included extending Kronecker Algebra operations to be suitable for finding

emergent patterns. At the same time, the operations also contribute to other research issues and

represent standalone contributions.

1.4 Problem Statement and the Research Questions

The problem statement and aim of this dissertation narrowed down is as follows. The probability of

modern MAS and industrial systems showing emergent behaviours or patterns increases with their

steady interconnection to other systems. Research in self-organisation and emergent properties

focus on simulation and provide little to no alternative methods or tools to predict emergent pat-

terns. Therefore, this dissertation aims to explore the applicability of Kronecker Algebra to identify

emergent patterns in MAS or industrial systems. Moreover, it aims to extend Kronecker Algebra

with operators suitable for enabling system designers to predict or prevent unexpected emergent

behaviour.

The following research questions guided the research activities to fulfil the aim of this disserta-

tion.

RQ1: How are the various definitions of emergence and self-organisation in the different

research disciplines interconnected and express the critical characteristics of these phe-

nomena to identify emergent behaviour in the context of multi-agent systems (MASs)?

RQ2: How can interacting agents in a MAS be formally represented to enable the

detection of emergent patterns within the entire system while preserving the essential

characteristics for pattern formation?

RQ3: Can the combination of agent interactions (scenarios) with Kronecker Algebra

create a system representation retaining the information essential to detect emergent

patterns while ensuring consistency?

RQ4: How do factors such as interaction priorities between agents, message transmis-

sion times and execution times of the agents influence the emergent pattern formation

of a MAS?

Each chapter contributes the answers to the research questions. Moreover, there are some delimita-

tions. Firstly, the aim is not to identify the root causes for emergent behaviour or pattern formation

in MAS nor the classification, pattern recognition or proving that the found patterns are emergent.

Secondly, the aim is not to provide extensive experiments but instead to provide the foundation for

future research. Furthermore, the presented methods or implementations are research prototypes

and do not aim for any use in industry or professional settings.

1.5 Structure of the Dissertation

The structure of the dissertation aligns with the research questions for better guidance. Chapter 2

provides a broader overview of self-organisation and emergence based on the outcomes of a con-

ducted literature review. The focus lies on the connections between self-organisation and emergence

and presenting the critical characteristics of these phenomena and clear definitions. The following

Chapter 3 presents the reasons why a Design and Creation as Research Strategy was chosen and

5

CHAPTER 1. INTRODUCTION

how the systematic literature was conducted. Chapter 4 narrows the focus on self-organisation and

emergence in MAS and introduces the possibility of formally representing MAS and connecting it

to Kronecker Algebra. Chapter 5 introduces Kronecker Algebra operations and the lazy algorithm.

Chapters 6 and 7 show how Kronecker Algebra can find new scenarios in MAS and ensure consis-

tency between message sequence charts (MSCs) and FSMs. The following Chapter 8 introduces

the possibility of priorities in Kronecker operations, which are essential in the worst-case execution

time (WCET) analysis presented in Chapter 9. Chapter 10 contains the evaluation where the newly

introduced Kronecker operations are applied to an example, showing that it is possible to identify

patterns in MAS. Chapters 11 and 12 conclude the dissertation by answering the research questions

and presenting future work.

1.6 Contributions within this Dissertation

As described beforehand, the dissertation connects different research conducted over five years.

Each presented chapter contains contributions, while the entire dissertation provides the connecting

thread between the elements. The contributions are shortly summarised in the following:

• A systematic literature review aimed to provide insights into the different aspects of self-
organisation and emergence and provide the foundation for the dissertation.

• Identifying the possibility of connecting emergent behaviour in MAS and industrial systems
with Kronecker Algebra by utilising formal languages.

• Present a method to identify implied scenarios in MAS based on Kronecker Algebra. In
addition, introduce a new Kronecker operation called Kronecker Synthesize.

• Present a method to ensure consistency between state machines and given agent scenarios.
In addition, introduce a new Kronecker operation called Kronecker Symmetric Skip.

• Present a method to include priorities in Kronecker Algebra.

• Present a method to calculate the worst-case execution time (WCET) of prioritised processes
on a single-core central processing unit (CPU) based on Kronecker Algebra.

• Present first results of an especially build time-predictable real-time capable publish-subscribe
communication environment.

• Show that Kronecker Algebra can be utilised to identify pattern formations in MAS.

1.7 Publications

In the duration of this PhD, some publications were created, and the following contributed directly

to the dissertation:

• P. Denzler, J. Blieberger, and W. Kastner, “Utilising Kronecker Algebra to Detect Unexpected
Behaviour in Distributed Systems,” in 2022 IEEE 25th International Symposium On Real-Time

Distributed Computing (ISORC), pp. 1–8, 2022. [DBK22]

• P. Denzler, M. Ashjaei, T. Frühwirth, V. N. Ebirim, and W. Kastner, “Concurrent OPC
UA information model access, enabling real-time OPC UA PubSub,” in 2022 IEEE 27th

International Conference on Emerging Technologies and Factory Automation (ETFA), pp.

1–4, 2022. [DAF+22]

6

1.7. PUBLICATIONS

• P. Denzler, T. Frühwirth, D. Scheuchenstuhl, M. Schoeberl, and W. Kastner, “Timing Anal-
ysis of TSN- Enabled OPC UA PubSub,” in 2022 IEEE 18th International Conference on

Factory Communication Systems (WFCS), pp. 1–8, 2022. [DFS+22]

• P. Denzler, T. Frühwirth, A. Kirchberger, M. Schoeberl, and W. Kastner, Static Timing
Analysis of OPC UA PubSub,” in 2021 17th IEEE International Conference on Factory Com-

munication Systems (WFCS), pp. 167–174, 2021. [DFK+21b]

• P. Denzler, T. Frühwirth, A. Kirchberger, M. Schoeberl, and W. Kastner, “Experiences
from Adjusting Industrial Software for Worst-Case Execution Time Analysis,” in 2021 IEEE

24th International Symposium on Real-Time Distributed Computing (ISORC), pp. 62–70,

2021. [DFK+21a]

Other publications below are contributions to FORA or results of research collaborations:

• P. Denzler and W. Kastner, Reference Architectures for Closing the IT/OT Gap, pp. 95–123.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. [DK23]

• P. Denzler, D. Ramsauer, T. Preindl, W. Kastner, and A. Gschnitzer, “Comparing Different
Persistent Storage Approaches for Containerized Stateful Applications,” in 2022 IEEE 27th

International Conference on Emerging Technologies and Factory Automation (ETFA), pp.

1–8, 2022. [DRP+22]

• P. Denzler, D. Ramsauer, and W. Kastner, “Model-driven Engineering of Gateways for In-
dustrial Automation,” Automation, Robotics & Communications for Industry 4.0, p. 47,

2021. [DRK21a]

• P. Denzler, D. Scheuchenstuhl, D. Ramsauer, and W. Kastner, “Modelling protocol gateways
for cyber-physical systems using Architecture Analysis & Design Language,” Procedia CIRP,

vol. 104, pp. 1339– 1344, 2021. 54th CIRP CMS 2021 - Towards Digitalized Manufacturing

4.0. [DSRK21]

• P. Denzler, S. Hollerer, T. Frühwirth, and W. Kastner, “Identification of security threats,
safety hazards, and interdependencies in industrial edge computing,” in 2021 IEEE/ACM

Symposium on Edge Computing (SEC), pp. 397–402, 2021. [DHFK21]

• P. Denzler, D. Ramsauer, and W. Kastner, “Tunnelling and Mirroring Operational Technology
Data with IP-based Middlewares,” in 2021 22nd IEEE International Conference on Industrial

Technology (ICIT), vol. 1, pp. 1205–1210, 2021. [DRK21b]

• P. Denzler, D. Ramsauer, T. Preindl, and W. Kastner, “Communication and container recon-
figuration for cyber-physical production systems,” in 2021 26th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA), pp. 1–8, 2021. [DRPK21]

• P. Denzler, J. Ruh, M. Kadar, C. Avasalcai, and W. Kastner, “Towards Consolidating Indus-
trial Use Cases on a Common Fog Computing Platform,” in 2020 25th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 172–179,

2020. [DRK+20]

7

CHAPTER 1. INTRODUCTION

1.8 Reference to FORA

FORA—Fog Computing for Robotics and Industrial Automation was a European Training Net-

work (ETN), which funded and trained 15 PhD candidates in the area of Fog Computing, during

the period 2017-2021. Fog Computing, also sometimes called Edge Computing, brings the Cloud

“closer to the ground”, to the edge of the network. FORA was an interdisciplinary, international,

intersectoral network that trained the next generation of researchers in Fog Computing with ap-

plicability to industrial automation and manufacturing. The wider aim was to pave the way for

the a new industrial revolution, Industry 4.0, which will only become a reality through the con-

vergence of Operational and Information Technologies (OT & IT), and this convergence will be

achieved through Fog Computing. The funding came from European Union’s Marie Sk]lodowska-

Curie Actions (MSCA) European Training Networks (ETN) instrument part of the Horizon 2020

research program (Grant agreement No. 764785). The consortium was formed of 4 universities and

3 companies from Sweden, Denmark, Austria and Germany. Some outputs were a reference system

architecture for Fog Computing; resource management mechanisms and middleware for deploying

mixed-criticality applications in the Fog; safety and security assurance; service-oriented application

modelling and real-time machine learning. FORA’s researchers received integrated training across

key areas (computer science, electrical engineering, control engineering, industrial automation, ap-

plied mathematics and data science) necessary to fully realise the potential of Fog Computing for

Industry 4.0 and had moved between academic and industrial environments to promote interdisci-

plinary and intersectoral learning [BP23].

Figure 1.4: FORA: http://www.fora-etn.eu/

8

Chapter 2

Complex Systems, Self-Organisation
and Emergence

Within this chapter, we approach the challenge of presenting a coherent summary of the context of

self-organisation and emergence. Covering the entire spectrum is unattainable as both phenomena

have been recurrently a topic in academic research. Therefore the chapter builds upon the findings

of a systematic literature review. It follows the idea of presenting a broader perspective first and

later narrowing down on aspects of emergence relevant to this dissertation. Chapter 3 contains

more details about how the systematic literature review was conducted. We introduce complex

systems and their relation to self-organisation and emergence as a starting point, followed by a

broader introduction to self-organisation and emergence and their similarities and differences. The

rest of the chapter presents different aspects, viewpoints and research fields of emergence.

2.1 Complex Systems

Finding a universally agreed-upon definition of what constitutes a complex system is a rather

challenging endeavour. There is a wide range of definitions and research areas (e.g., cyber-

physical systems, system of systems [MRM17]) that focus on different types of complex sys-

tems [LLW13, TDM18]. However, there is a common conception among researchers in complex sys-

tems science that such a system should have the following features (see, for example [Hol98, BY97]):

• They consist of interacting entities, processes or agents.

• The interacting entities create high-level structures, patterns and behaviours. This particular
feature is often summarised as “emergence”.

• The higher-level behaviours are not simply predictable from the single entity’s behaviour alone.
There is also a stronger opinion that it should not be possible at all to predict high-level

behaviours based on the behaviour of the system components.

• The interactions between the entities cannot be trivial, as even minor differences in local or
initial conditions can create more significant system-wide effects. For example, linear changes

at the entity level can give rise to non-linear effects at the system level.

The literature often summarises those features under three key constructs: complexity, self-

organisation, and emergence [Mit13].

9

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

Actual System

Program
Code

Program
Code

Statistical Complexity
System Representation

Algorithmic Complexity
System Representation

Figure 2.1: Algorithmic complexity is the length of the minimal program that can generate the

actual system/object, whereas statistical complexity is the length of the minimal program that can

generate the statistically significant aspects of the system. Figure adjusted from [Cha03, SK14].

2.1.1 Measures of Complexity

The term complexity describes a vital construct in complex systems research to address the pre-

viously indicated possibility for a discrepancy (expressed as non-linearity) between the summarised

complexity of the entities and the complexity of the system. Measuring the complexity of a system

is another vast topic that created various attempts to define an accurate measure [SSH04]. In

essence, measuring complexity represents the idea that the more complex an entity is, the more

information is required to describe or reproduce it. For complex computational systems, two forms

of complexity measures are predominant:

1. Algorithmic complexity [Cha66, Cha74, Cha03], which is the length of the minimal Universal

Turing Machine program which can describe/reproduce the entity; and

2. Statistical complexity [BCFV02] is the length of the minimum program able to reproduce

the statistically significant features of an entity. It is calculated by reconstructing a minimal

model containing the collection of all situations with a similar specific probabilistic future and

measuring the probability distribution of the states (There are various algorithms for deter-

mining this for different numbers of dimensions, e.g., for one-dimensional time series [Sha03]

and two-dimensional time series [SK14]).

Other complexity measures, as presented in Table 2.1, include, for example, design or gram-

mar size and connectivity. Those measures could be interpreted as more specific algorithmic and

statistical complexity formulations.

Algorithmic and statistical complexity differ in how randomness is treated, i.e., algorithmic com-

plexity defines the information content of an individual sequence. In contrast, statistical complexity

refers to an ensemble of sequences generated by a particular source (cf. Figure 2.1). If the source

of a system’s states is random, even if it can display a more significant number of configurations,

their distinction is not statistically significant. Some definitions of emergence (cf. Section 2.3) use

a form of complexity definition; however, these seem to be more informal or abstract and, there-

fore, not classified. The authors Bonabeau and Dessalles [BD97] define complexity as the set of

detectors required to detect the entity and the tools that allow the description of the structures to

be computed. Transferring that definition into an algorithmic interpretation would mean that the

detectors can detect all features of the entity. From a statistical viewpoint, the same interpretation

would lead to the detectors only detecting the statistically significant features.

10

2.1. COMPLEX SYSTEMS

Table 2.1: System and design complexity measures.

Complexity measure Definition

Algorithmic Complexity Number of symbols of the shortest program

that produces an object. The algorithmic com-

plexity value is always an approximation since it

is impossible to determine with certainty what

the minimal program would be, e.g., [Cha66].

Statistical Complexity Number of symbols of the shortest program

that produces the statistically significant fea-

tures of an object. E.g., [Sha03, SK14].

Connectivity The number of edges that can be removed

before the graph representing the object is

split into two separate graphs. E.g., [TSE94,

Edm99].

System Structure and Organisation Function of the degree of connectivity be-

tween and within subsets of components.

E.g., [TSE94].

Design Size The length in symbols of the assembly proce-

dure for an object. E.g., [Hor07]

Logical Depth Computational complexity of an object’s as-

sembly procedure, i.e., the time it takes to com-

pute the assembly procedure. E.g., [Ben86]

Sophistication The number of control symbols in the program

that generates the object. E.g., [Kop87].

Grammar Size The number of production rules in the program

required to produce an object. E.g., [Edm99].

Design Structure and Organisation Function of the number of modules, the reuse

of these modules and the degree of nesting.

E.g., [Hor07].

11

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

2.2 Self-Organisation

The second construct of complex systems, self-organisation, comes as well with many possible

definitions. Therefore, understanding the origins of self-organisation might shed some light on it.

The following historical background does not aim to be complete; it is a summary of repeatedly

mentioned accounts in several papers and PhD theses. For a more detailed historical overview, the

interested reader is guided to Schalizi [SK14].

2.2.1 A Bit of History about Self-Organisation

Let us start with an often-quoted intuitive definition of self-organisation by Dempster: “Self-

organization refers to exactly what is suggested: systems that appear to organize themselves

without external direction, manipulation, or control.” [Dem98, p.41]. Organisation in this context

refers to an increase of structure or order of the system’s behaviour; the system grows in organisa-

tion [DWH05]. Possible examples of such self-organisation are agent networks that autonomously

build their structure because the entities can discover each other.

There is a broad agreement that the notion of spontaneous, dynamically produced organisation

has existed for centuries. However, the term “self-organisation” that describes the phenomenon

appeared much later. First accounts appeared in the aftermath of the Second World War [SK14],

when research areas such as cybernetics and computing machinery introduced the term in their

work [YC60, Ash62]. According to Schalizi [SK14], the author W. Ross Ashby [Ash47] coined the

term in 1947 in the publication “Principles of the Self-Organizing Dynamic System.” In this paper,

Ashby explained what “organisation” is: namely that the organisation of a system is the functional

dependence of its future state on its present state and its (if existing) external inputs. He pointed

out that for a system to be self-organising, the system itself changes its organisation, not under

the influence of an external entity.

Later, self-organisation was picked up and studied in other research areas such as physics,

computer science, and systems theory. Pattern formation [Bal01], spontaneous symmetry break-

ing [NP77], or cooperative phenomena [Hak78] are only a few examples that have been extensively

explored in physics since the 1970s. The intense growth of interest also led to disputes within

the community. According to Frisch [Fri95], there is a long-standing dispute about the view of

Klimontovich [Kli91], who claimed that the transition from lamellar to turbulent flow is an instance

of self-organisation. A central argument of the opponents of this viewpoint is that there is a

widespread misconception about “self-organisation”. Researchers in computer science focused, for

example, on adaptation [Hol75, FP86], “emergent” or distributed computation [For90, CM95] or

learning [Sel59, YC60]. In economics [Kru96], and ecology [Art90, CDF+20], self-organisation has

also become a trend, including new disputes about if specific processes are self-organising. Table 2.2

provides a brief overview of areas of self-organisation.

Later in 1980, self-organisation merged with other ideas, models and techniques to the “sciences

of complexity” [Pag88]. This combination opened the door to other sciences where researchers

adopted and applied the idea of self-organisation. The most relevant discipline for this dissertation

is multi-agent systems because they can be used to model self-organising systems. A wide range

of methods, such as cooperation [Ste90] and group formation [MRS02], can create more organised

multi-agent systems. Examples of self-organising applications are found in networks [FH03] and

robotics [KMRF+03] or communication between agents [Oud99].

12

2.2. SELF-ORGANISATION

Table 2.2: Areas of self-organisation found in the literature.

Area Relevant authors

Biology [DM11, Fel06]

Physics [Nic93]

Chemistry [NF06]

Computer Science [XWWW03, SJ02, HMS+20, Dut12, MZ06,

VM13, MG18, CBdSMP16]

Economics [Wit97, IMA+14]

Control Science [KZV95]

Manufacturing [BEL10]

2.2.2 Defining Self-Organisation

As indicated beforehand, there are many definitions of the concept of self-organisation. After

revisiting several proposed definitions, the one given by DeWolf and Holvoet [DWH05] is closest to

the one coined initially by W. Ross Ashby [Ash47]. The authors emphasised adding “autonomy”

and “increase in structure” to their definition to make a more apparent distinction to emergence.

“Self-organisation is a dynamical and adaptive process where systems acquire and main-

tain structure themselves, without external control.” [DWH05, p.7]

The authors mention that the “structure” part can be spatial, temporal or functional. In con-

trast, the “without external control” part refers to the absence of any external intervention such as

direction, manipulation, interference, pressures or involvement. Moreover, the authors stress that

their definition does not exclude inputs outside the system as long as they do not contain control

instructions. Another point the authors emphasise is the importance of “identifying” the system’s

“boundaries” when deciding if a system is self-organising. In addition, other authors specified several

characteristics of self-organising systems. Note: Some characteristics are similar to those presented

in Section 2.1 but explained in the context of self-organisation.

2.2.3 Characteristics of Self-Organisation

As mentioned by Dempster [Dem98], “organisation” is a vital part of the self-organisation concept.

In [CAL], the organisation is “the arrangement of selected parts to promote a specific function”.

Therefore, the system’s behaviour is restricted to a subset of its state space. [CAL] calls this subset

or region of the state space an attractor. In other words, organisation is an increase in the order of

the system’s behaviour that allows the system to have a spatial, temporal, or functional structure.

It has to be mentioned that not every increase in order is automatically self-organising; there is a

need for autonomy, as explained later on.

Shalizi [Sha01] formally approaches self-organisation. In his work, he uses statistical com-

plexity to define order. He postulates that an increase in statistical complexity is essential for

self-organisation. As described in Section 2.1 statistical complexity measures the average amount

of historical memory stored in the process. The information-theoretic perspective of Shalizi’s ap-

proach is presented later on, as it also covers several other definitions in the literature, e.g., “the

arrangement of selected parts” implies that the arrangement is a kind of historical memory of the

process that becomes bigger when more and more parts are arranged.

Another aspect of order increase is that it implies that a system can start from either a semi-

organised or completely random state (i.e., no historical memory) [KMRF+03]. This further im-

13

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

plies that systems can decrease in order (i.e., lose historical memory) while becoming less or-

dered. Through the possibility that a system can increase or decrease in order, the process of

self-organisation should follow the same notion.

There is more to address in the definition of [CAL], namely the part “as to promote a specific

function”. As a system without any order cannot exhibit a useful function, the same applies to

a system with too much order. The thought that entities organise themselves with such a high

complexity that no proper function can result from it is not that difficult. Expressed by the concept of

historical memory, there is too much of it. According to [Lan90, Kau93], systems need to be between

no order (chaos) and too much order to show proper self-organised behaviour. Other relevant

research about the order in systems is done by: [Hak98, Hey02, Hey89, FH03, VDPB01, VDPB04].

Further characteristics mentioned in the literature are:

• Autonomy: The characteristic of increased order is tempting to believe that every increase
of order equals self-organisation [Sha01, CDF+20, VDPB04, KMRF+03]. That is not the

case, as there is a need for the “self”, meaning the absence of external control. The system

needs to organise itself without the interference of outside entities [Hey02, Hey89].

As previously mentioned, outside control and autonomy do not exclude other types of in-

puts [Hak98, CAL, FH03]. A wide range of system inputs is possible as long they do not

contain any control instructions [DWH05]. The systems entities should autonomously decide

what to do next, i.e., how to process the input and what actions to take. A simplified example

could be onboarding a sensor node into a network without user intervention. However, defin-

ing the boundaries of the self-organising system becomes relevant, as only parts of systems

could be self-organising while others are not, e.g., some robots organise the transportation of

parts themselves while others only passively produce parts [DWH05].

• Adaptability or Robustness w.r.t. Changes: In the context of self-organising systems,
robustness and adaptability refer to the system’s ability to react to changes and disturbances.

The expectation is that a self-organising system can maintain its organisation autonomously

during a change [SK14]. Goldstein [Gol99] expresses this characteristic as a self-generated

adaptable behaviour while Foukia and Hassas [FH03] point out the usefulness of knowing past

system states. Other authors, such as Mostefaoui et al. [KMRF+03], elaborate on the effects

of environmental changes on the systems tasks while not affecting the internal entities.

An adaptable system, therefore, can or needs to exhibit many behaviours. The system or-

ganises itself towards a specific attractor in its state space to provide the respective be-

haviour. Attractors can provide either one behaviour, periodic behaviour or a wide variety

of behaviours [Hey02]. However, an attractor that provides too many possible behaviours

makes the system uncontrollable and chaotic, while a too low variety reduces the system’s

flexibility [Lan90, Kau93]. It is crucial to maintain a balanced adaptability [VDPB04].

• Dynamical, i.e. Far-From-Equilibrium: Another neglected aspect of a self-organising system
is that every system exists in time. The increase in order happens over time and not suddenly;

it needs to be dynamic as it requires time to adjust to the changes [Sha01, Gol99]. In other

words, the dynamic characteristic is required as changes permanently force the system to

maintain its structure [Hey89, Hey02]. Authors such as Prigogine [GP71] see a far-from-

equilibrium system as an essential requirement for self-organisation. Such a system’s state

makes it more dynamic and capable of reacting to changes, but also very fragile and sensitive.

14

2.3. EMERGENCE

2.2.4 Self-Organization From an Information Perspective

Before turning to emergence, the most crucial characteristic of self-organisation, “organisation” can

also be described formally. As shown by [Sha01, SSH04, SK14], organisation entails an increase in

statistical complexity. In self-organising systems, this is reflected through the information dynamics

themselves.

According to Shalizi [Sha01], the increase in complexity reflects an increase in the predictive

information Ipred(T, T
′) within the system. If P (xf uture) is a prior probability distribution for the

futures and P (xf uture |xpast), the average predictive information is:

Ipred(T, T
′) =

�
log2
P (xf uture |xpast)
P (xf uture)

�
(2.1)

where ⟨..⟩ denotes an average over the joint distribution of the past and future P (xf uture |xpast),
T is the length of the observed data stream in the past, and T ′ is the length of the data stream
that will be observed in the future. This quantifies the information that the past provides about

the future and captures the reduction in Shannon entropy:

Ipred(T, T
′) = H(T ′)−H(T |T ′) (2.2)

where H(T ′) is the entropy for the future and H(T |T ′) is the entropy for the future given the
past [SSH04]. An increase in predictive information can be interpreted as an increase in order since

it means that knowing how the system has behaved up to this point gives us a better idea of how

it will behave in the future, with absolute certainty as the upper limit [Sha01]. Granger [Gra69]

formulated similar measures using regression modelling.

The robustness of a self-organised system can be defined in terms of its sensitivity to perturba-

tions. A system is robust if it exhibits coordinated behaviour despite perturbations. In information-

theoretic terms, the robustness of a system can be measured by the range of perturbations for

which the increase in predictive information (reduction in Shannon entropy) holds.

2.3 Emergence

The third construct of complex systems, emergence, is commonly seen as a phenomenon where a

system’s global behaviour emerges from its entities’ interactions. That is about all most papers state

about the term emergence, usually followed by some examples like pheromone paths of ants or the

swarming movement of a school of fish [CDF+20]. Indeed not a good definition for a phenomenon

that involves many facets and sometimes produces astonishing and even beautiful results. As with

self-organisation, a look back on the history of emergence provides a good starting point. The

following overview is mainly a summary of accounts given in Goldstein [Gol99]. For more details,

we guide the interested reader to the mentioned paper.

2.3.1 A Bit of History about Emergence

As self-organisation, emergence is an old research topic [Gol99]. The first similar notions to emer-

gence are the “whole before its parts” concept (i.e., the global behaviour is more important than

explaining how the system works based on local behaviour) or Gestalt (i.e., a pattern of elements

unified as a whole that it cannot be described as the sum of its parts) and are as old as ancient

Greek philosophy [Gol99]. However, emergence is not a pre-given entity; it dynamically arises over

time. In late 1875, over 100 years ago, the English philosopher G.H. Lewes noted the difference

between ‘resultant’ and ‘emergent’ chemical compounds and the dynamics of the latter [Lew75].

15

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

“(...) although each effect is the resultant of its components, we cannot always trace

the steps of the process, so as to see in the product the mode of operation of each

factor. In the latter case, I propose to call the effect an emergent. It arises out of the

combined agencies, but in a form which does not display the agents in action (...).”

(italics added) [DWH04, p.2]

In the 1920s, emergence found ground in a movement known as emergent evolutionism [Gol99].

The movement used emergence as an argument against reductionism, which states that every sys-

tem can be reduced to the sum of its parts. Nevertheless, there was little understanding of the

required processes to transform lower-level inputs into higher-level outputs. A following movement,

commonly known as complexity theory [Gol99], addressed this apparent lack of understanding.

Emergence in complex systems has a long tradition and is found in several scientific and mathe-

matical disciplines such as cybernetics, solid state/condensed matter physics, evolutionary biology,

artificial intelligence or artificial life.1 DeWolf and Holvoet [DWH05] mention four central schools

of research in this context. Each school studies emergence from a different perspective:

• Complex adaptive systems theory, created at the Santa Fe Institute. Emergence is the un-
derlying process that creates macro-level patterns (see [Hol98, Kau95] and [Lan86]).

• Nonlinear dynamical systems theory and Chaos theory use attractors to describe the system’s
behaviour towards its evolves [New96].

• The synergetic school studies emergence in physical systems and represents the idea of an
order parameter to asses macro-level behaviour [Hak84].

• Far-from-equilibrium thermodynamics, created by Ilya Prigogine. Emergent phenomena are
the dissipative structures arising at far-from-equilibrium conditions [Nic93].

In all schools, the concept of emergence has two relevant characteristics: A global behaviour

that is intractable to its individual parts but still arises out of the interaction of even those parts.

2.3.2 Defining Emergence

In the literature, there is quite a joint agreement on defining emergence as such, compared to self-

organisation. Therefore, we resort to the definition proposed by DeWolf and Holvoet [DWH05]:

“A system exhibits emergence when there are coherent emergents at the macro-level

that dynamically arise from the interactions between the parts at the micro-level. Such

emergents are novel w.r.t. the individual parts of the system.” [DWH05, p.3]

DeWolf and Holvoet’s definition encompasses several aspects. First, emergence is the process

that creates the conceptual term “emergent”, which represents properties, behaviour structure or

patterns. The second is, as with self-organisation, the importance of micro-macro-levels. The

macro-level comprises the whole system, while the micro-level is the viewpoint of the individual

entities representing the system’s composition.

1The map of complexity sciences by Brien Castellani, provides an excellent overview and deep insights about

complexity.

16

2.3. EMERGENCE

2.3.3 Where to find Emergence

Before going into the characteristics of emergence, the following overview lists research activities

in the various scientific disciplines in which emergence occurs.

• Complexity sciences: As introduced before, complexity sciences are linked with emergence.
Some more specific accounts for research in complexity science concerning emergence are

found in systems thinking [Sta00, CF02]. According to Monat and Gannon [MG15], emer-

gence is essential for systems thinking. Referring to Stacey et al.[Sta00] systems thinking

is related to systems engineering and provides perspective, language and tools to describe

the relationships between entities of a system. Other accounts in systems thinking mention

the existence of emergent and self-organising behaviours in systems with multiple feedback

loops [MG15]. In the paper from Checkland [Che00b], the author uses emergent properties

in real-world situations when introducing a soft systems methodology.

• Nature and biology: Other prominent research fields are nature and biology. While not
going too deep into it, some phenomena in nature cannot be deduced by exploration [HW06]

and show emergent characteristics. Organisation presents itself in various forms and facets

in the natural world. For instance, we find organisational structures and processes in living

organisms that can be classified as emergence. That includes biological functions, such as

the ones of organs, that only function as part of the whole organism. It is challenging

to deduct the processes in one organ without knowing the environment [KC06]. Another

instance of emergence is Darwinian evolution, while the question of “what is life”, approached

by Schrödinger in 1944, points towards self-organising and emergent processes [NF06, Pro11].

Also, Pross [Pro11] mentions that the question of life can only be answered if one understands

the principles governing its emergence.

Protein folding is another example where self-organising and emergence properties appear.

Simplified proteins are the building blocks of organelles, cells, organs, and organisms. Those

linear strings of amino acids form folded three-dimensional structures. The interactions be-

tween acids lead to the emergence of these structures [NF06].

The book of Camazine et al. [CDF+20] presents several examples of emergent pattern for-

mation in non- and living biological systems. Camazine et al. mention that living biological

systems’ patterns arise without genetic coding but have developed through natural selection.

The authors bring up the example of the stripes of a zebra and present within the book several

groupings of natural systems, divided in:

– Non-living systems: Everything that does not involve life, such as Benard convection or

dune ripples.

– Biological systems: Patterns that occur primarily in animals, such as the stripes of the

zebra or leopard.

– Social systems (interactions): Patterns based on “social” interactions of animals such

as ants, bees or wasps and mammalians like humans.

– Social systems (movement): Patterns based on collective movements of animals such

as fish swarms, insects or birds.

17

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

• Sociology: The phenomenon of emergence is an essential element in sociology. In this con-
text, emergence encompasses the collective effects created by individuals that cannot be

traced back to the actions of the individuals [Saw01]. The relationship between individuals

and the community is called a micro-macro link, a fundamental element in sociology. Emer-

gence illustrates downward causation in communities in the context of computational sociol-

ogy [SG13]. The phenomenon only exists if the agents react and act on each other [Saw05]

and also depends on the agents’ communication language. Other authors report the effects

of emergence in human and natural societies interactions [Cor02].

• Economy: Similarly, as in sociology, emergence can be found in economic processes. Re-
search in this field mainly concerns the novelty aspect of emergence and proposes various

definitions of the phenomenon. One example is Harper and Lewis [HL12] that describe the

emergence of four groups of evolutionary economics. The authors see emerging skills, abili-

ties, companies, networks, or customer priorities over time that originate within the economic

system as examples of emergence [HE12].

• Cognitive sciences and psychology: Another closely related field is psychology. A central
element in the roots of psychology is the concept/theory of organicism. According to the

organicism theory, an organism differs from its components’ sum [Saw02]. There is a larger

body of research. Wundt [Wun12] presents one compelling thought; the author connects

creativity with emergence. The author explains that each created product does not equal the

sum of its elements separately; it also includes innovation and creativity [Saw02, Wun12].

• Physics and chemistry: Emergence appears in several sub-areas in physics and chemistry, as
almost everything has a molecular or chemical basis. There is research concerning life, as in

biology, with a different scope, such as investigating the role of RNA in Earth’s life [Szo09].

Other research focuses on near-equilibrium systems, like gases in a closed container, exhibiting

emergent properties not present in the components. Systems that are far from thermodynamic

equilibrium can also show elements of self-organisation. Such systems reach a quasi-stable or

meta-stable state and display a certain order level, resulting in structures like regular hexagonal

convection cells with emergent properties [HW06].

Furthermore, authors such as Fernández, Maldonado, and Gershenson [FMG14] argue that

emergence has a spatial or temporal scale, for example, the colour and flexibility of gold

that do not exist in single atoms [And72, GH05]. The examples continue that ammonia and

hydrogen chloride are gases, but the combination results in a solid structure, i.e., the resulting

material has a different feature. Sugar has a particular taste, but the building blocks, carbon,

hydrogen, and oxygen, undoubtedly not [Ash56].

2.3.4 Characteristics of Emergence

Some of the examples above already indicated some characteristics of emergence. Nevertheless,

the following characteristics are repeatedly mentioned and accepted in the literature.

• Micro-Macro effect: Certainly, the most mentioned characteristic of emergence is the Micro-
Macro effect. This effect describes the properties, behaviours, structures, or patterns only

present at a higher macro level that arises from the micro-level interactions of the system’s

entities [Gol99]. In the above definition, the term “emergent” represents those properties.

The macro-level effect is also known as the global behaviour of the system. The authors

in [Hol98, Cru94a, Cru94b, Hey89, Hey02, Ode02a, Ode02b, VDPB01, CDF+20, VDPBS01,

VDPB04, CAL, Luc97] describe the effect consistently.

18

2.3. EMERGENCE

• Radical Novelty: The characteristic of radical novelty is closely related to the previous one.
In essence, it describes the novelty of the global behaviour w.r.t. the individual behaviours at

the micro-level. This means that the micro-level entities do not explicitly represent the global

behaviour; by reductionist terms, the macro-level emergents are not reducible to the system’s

entities. Crutchfield [Cru94a, Cru94b] uses the formulation “not directly described by” or

Heylighen [Hey89] “can not be reduced to”. In contrast, Goldstein [Gol99] uses “neither

predictable nor deducible from” or the all-time favourite of most papers, “the whole is greater

than the sum of its parts” by Odell [Ode02a].

Nevertheless, according to BarYam [BY97], the idea that the behaviour of the parts cannot

capture emergents is misleading. Rather the emergence arises because there is no under-

standing of the collective behaviour of the parts. BarYam states that collective behaviour

is implicitly contained in the behaviour of the parts if studied in the context of the system.

Emergent properties cannot be studied by taking the system apart and examining the parts;

they have to be studied in the context of the system as a whole. Other relevant authors

are: [CDF+20, VDPB04, CAL, Luc97].

• Coherence: ‘Organisational closure’ or coherence refers to the logical and consistent corre-
lation of parts [Hey02]. Emergents are a new whole and, according to [BY97], maintain over

time their identity. In order words, emergents are persistent over time. Therefore the correla-

tions between components are needed to reach a coherent whole [Gol99, Ode02b, Ode02a].

• Interacting Parts: For emergence to exist, the parts must interact [Ode02a, CDF+20,
VDPBS01, Ode02b, Hey02].

• Dynamical: Emergents have a time component; they arise over time. Therefore, the system’s
behaviour changes to a new behaviour not right away. It is similar to dynamical systems where

new attractors appear, i.e., bifurcations [Gol99, Hey02, Hol98, Ode02a, Cru94b].

• Decentralised Control: Any control must be limited to local mechanisms to influence the
global behaviour of the system [Ode02a]. No centralised control unit (or a single entity)

influences the system’s macro-behaviour. It is only possible to control each unit but not the

system as a whole. Accordingly to Odell [Ode02a] and Heylighen [Hey02], the decentralised

control characteristic directly results from the previously described radical novelty.

• Two-Way Link: In essence, there is a need for the macro-level and the micro-level to in-
teract bidirectionally [Ode02a]. The micro-level parts create an emergent structure, and

the emergent structure influences its parts, i.e., the higher level has a downward causa-

tion [CAL, Luc97]. Camazine et al. [CDF+20] use the example of ant paths that influence

the ants while being an emergent structure.

• Robustness and Flexibility: As no single entity has an idea or plan for the emergent, it
cannot be a single point of failure. According to Odell [Ode02a], emergents are relatively

robust regarding errors. There is no sudden loss of function but rather a slight decrease in

performance and quality, correlating to the damage. That allows an emergent to remain even if

an entity fails or is replaced. For example, birds in a flock or cars in a traffic jam can be replaced

by other birds or cars, yet the flock and traffic jam phenomena remain [Ode02a, Hey02].

In summary, most researchers in the different disciplines accept those characteristics, which

allows the differentiation to self-organisation. A topic discussed in Section 2.4.

19

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

2.3.5 Classifications of Emergence

The previously given characteristics are relatively general and give room for interpretation. Un-

surprisingly, many have strived to introduce other means to measure or express an emergent phe-

nomenon’s size, extent or dimension. As a first delimitation, the following measures only include

suggestions that can be empirically studied and computable [Bed03]. This decision is necessary to

avoid getting trapped in discussions about emergence’s ontological or metaphysical status. Also,

we exclude emergent properties that involve substrate-specifics. They might be fascinating and can

be empirically studied, but they are out of scope.2 In addition, most of those phenomena cannot be

computationally modelled [BG07] by the conventional Turing model of computation [Tur50]. Most

of the metrics fit into one of the following two categories.

• Observer dependency:

– Design-subjective: The emergent property/phenomenon is judged solely by the observer

and his understanding of the design or set of rules underlying the system/phenomenon.

Ronald et al. [RSC99] accept the occurrence of emergence if: (a) the language of design

L1 and the language of observation L2 are distinct, and (b) the causal link between

the elementary interactions programmed in L1 and the behaviours observed in L2 is

nonobvious to the observer. Nevertheless, the elements L2 and the non-obviousness

to the observer are subjective. Further examples: Optimal means of prediction is a

simulation in [Car89, Dar94].

– Partial-analytical: The emergent property/phenomenon is judged relative to an obser-

vation or point of view, e.g., level, scale, scope, or resolution. The property is emergent

if the previously set specific criteria can be analytically determined. For example, the

flocking behaviour of Boids might be emergent because, by definition, it involves more

than one Boid. 3 Further examples: A “whole” language is not reducible to the “sum

of parts” of a language [Kub03] and deriving a macro-state from its micro-dynamic and

system’s external conditions but only by simulation [Bed03].

– Partial-empirical: The emergent property/phenomenon is judged relative to an obser-

vation or point of view, e.g., level, scale, scope, or resolution. The property is emergent

if the previously set specific criteria can be empirically determined at a particular resolu-

tion. For example, the flocking behaviour of Boids might be emergent because a single

Boid’s behaviour becomes easier to predict. Further examples: Redundancy of lower-level

detectors in [BD97] and greater predictive efficiency [Cru94b, SC01, SSH04].

• Quantifiability (Measures):

– Categorical: A property is either emergent or not. Examples: Redundancy of lower-level

detectors in [BD97], and a “whole” language is not reducible to the “sum of parts” of

a language [Kub03].

– Continuous-unquantifiable: Properties can exhibit different degrees of emergence, but

no established quantification method exists. Examples: Optimal means of prediction

is a simulation in [Car89, Dar94], deriving a macro-state from its micro-dynamic and

system’s external conditions but only by simulation [Bed03] and Language of design

L1 and language of observation L2 are distinct, and causal link between interactions

programmed in L1 and behaviours observed at L2 is nonobvious [RSC99].

2The reader will agree that it has nothing to do with the intended industrial context of this dissertation.
3Boids is an artificial life simulation initially developed by Craig Reynolds.

20

2.3. EMERGENCE

– Continuous-quantifiable: Properties can exhibit different degrees of emergence, and

there is an established method for quantification: Greater predictive efficiency (Informa-

tion Theory) [Cru94b, SC01, SSH04].

Other types of classifications sometimes overlap. For example, some authors classify how exten-

sive or complex the emergent phenomena is as simple, spooky, complex, positive, negative, static

dynamic, deterministic, stochastic, synchronic, diachronic and nominal emergence. It would go too

far to elaborate on each of them; the interested reader is guided to Kalantari et al. [KNM20, p.13]

for an overview of the various classifications with examples. The authors also include other classi-

fications, such as time dependency, certainty, reducibility or self-organisation-based. Chapter 4 will

introduce the classification of basic emergence as proposed by [Bed03].

2.3.6 The Design-observed Discrepancy

Section 2.3.5 introduced the characteristic of observer dependency, which needs further explana-

tion. As mentioned beforehand, a significant characteristic of emergents is their novelty. It is

possible to design the entities, but it is not easy to design emergent behaviour. To approach this

difficulty, researchers propose different measurements depending on the viewpoint. In [RSC99], the

components have a language L1 they use to interact, and the system designer uses this language

to design the system. An observer knows the design but uses a different L2 language to describe

the system’s behaviour. The two languages, L1 and L2, are distinct, and if there is a non-obvious

causal link between L1 and L2, Ronald et al. [RSC99] state that this is the proof for a behaviour

to be emergent. However, there is a catch. How does the observer assess whether or not there

is a non-obvious causal link between the L1 and L2 properties? Darley [Dar94] brings up a more

objective criterion for an emergent property. According to this author, the only way to deduce if

a behaviour is emergent is by stepping through the execution of the system that creates it. In

essence, simulation is the solution to predict the system’s behaviour.

Another possibility is to describe the discrepancy in terms of design complexity [MB89] and

system complexity [Kin10] (see Figure 2.2). The complexity of a system in traditional design and

engineering linearly reflects the complexity of the design. At the top of Figure 2.2 shows that the

system’s complexity can be established analytically from the design complexity. If Cdesign stands

for the design complexity, Csystem stands for the system complexity, and Csystem = f (Cdesign), it is

possible to define the function f based on the design.

In complex systems design that exploits emergent properties and behaviours, however, the con-

nection between design and system complexity is not that simple [Kin10]. It is not possible to

establish the relationship analytically from the design. In other words, f cannot be found based on

Cdesign. The reason is that the relationships and interactions between the components are dynamic

and changing in the way of the original design. The lower part of Figure 2.2 illustrates the dynamic

changes of the system over time.

2.3.7 The Information Dynamics of Emergence

The information-theoretic approaches look at the system with different resolutions to identify emer-

gence [PBR09]. It has been shown that emergence can occur when lower-resolution dynamics have

greater predictive efficiency than higher-resolution dynamics. According to [PBR09] that should

make it possible to predict the statistically significant features of the system’s future. Predictive

efficiency is defined as [CF03]:

21

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

System Design Actual System

System Design Actual System

t1 t2 t3

Figure 2.2: Design and system complexity.

ϵ =
E

Cµ
, (2.3)

where ϵ is the predictive efficiency, E the excess entropy and Cµ the statistical complexity. The

term excess entropy is a measure for the total apparent memory in a source [CF03]:

E =

∞�
L=1

(hµ(L)− hµ), (2.4)

where the average uncertainty about the Lth symbol hµ(L) , provided the (L−1) previous ones are
given is:

hµ(L) = H(L)−H(L− 1), L ≥ 1 (2.5)

for the entropy H(L) of length-L sequences, and

hµ = lim
h→∞

H(L)

L
(2.6)

is the source (per-symbol) entropy rate. [FC03] and [CF03] define the excess entropy E as the

mutual information between the source’s past and future. The excess entropy E is the amount of

information observed in the past to predict the future. Continuing this definition, the authors see

the best level of observation as the one that optimises (relative to the particular problem at hand)

the trade-off between:

• reducing E, but losing predictability and gaining simplicity, i.e., reducing Cµ; and

• increasing E and losing simplicity (increasing Cµ).

Therefore, the information dynamics of a system can differ depending on the resolution of the

observation. Each resolution has its own E, Cµ and ϵ. Returning to the statement of [PBR09]

that emergence occurs when lower resolution dynamics have a greater ϵ than higher resolution

dynamics. A system with a random behaviour, Cµ, directly proportional to E (ϵ is always constant)

cannot produce emergent behaviour. For emergence, the difference in Cµ between higher and lower

22

2.4. DIFFERENCES BETWEEN SELF-ORGANISATION AND
EMERGENCE

resolution levels of description shall not linearly relate to the differences in E. E is disproportionately

low relative to Cµ at low resolutions. Those interpretations of emergence and complexity lead to

the following implications: The statistical information-theoretic interpretations of emergence and

complexity have three important implications [CF03].

1. Emergence depends on both the observed system and the resolution of observation (A func-

tion).

2. The predictive efficiency ϵ can be determined for any two resolutions concerning the other.4

3. Theoretically, it is possible to quantify the degree of emergence by the value ϵ.

2.3.8 Macro-Properties, Scope and Resolution

Section 2.3.7 considers only one resolution and ignores the spatial dimension of the properties.

[Rya07] describes the scope of a system as the set of components within the boundary between

the associated system and its environment. Moreover, the author distinguishes between next to the

(physical) spatial and temporal dimensions. The temporal dimension is the set of moments over the

system resolution defined between two alternative system configurations. Therefore, it is possible to

distinguish between (physical) spatial and temporal resolutions. Spatial resolution defines the size or

distance between the system’s different locations, and temporal resolution defines the duration of a

moment in time. Using the Shannon entropy, a higher resolution can distinguish a more significant

number of possibilities, n and hence has a greater value for H. The spatial scope is the set of

location points occupied by the system.5

H = −
n�
i=n

pi log(pi) = log(n) (2.7)

2.4 Differences Between Self-Organisation and Emergence

Before discussing more details about methods proposed to identify emergent behaviours, it makes

sense to point out the differences and similarities between self-organisation and emergence. “Self-

organisation is an adaptable behaviour that autonomously acquires and maintains an increased order

(i.e., statistical complexity, structure, ...)”, while “emergence is the existence of a global behaviour

that is novel w.r.t. the constituent parts of the system” [DWH05, p.9].

2.4.1 Similarities

There are only a few similarities between self-organisation and emergence, as each focuses on

different aspects of the system’s behaviour. The main similarity is that both are dynamic processes

created over time. They both share the capability of robustness, while self-organisation is robust

w.r.t. change and the ability to maintain the increased order. On the other hand, emergence is

more robust w.r.t. flexibility of its parts [CF03]. A failure of one part will not cause the emergent

to disappear. Many authors explain the differences between the two concepts by combining them

as they complement each other quite well [DWH05].

4If possible to measure E and Cµ.
5Spatial scope is not explicitly defined by [Rya07].

23

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

Macro-level

Micro-level

Macro-level

Micro-level

a b c

System System System

Figure 2.3: Different systems with either (a) only self-organisation, (b) emergence without self-

organisation and (c) the combination of both. Adjusted from [DWH05].

2.4.2 Differences

This section first presents self-organisation without emergence and second, emergence without self-

organisation, as both concepts can exist in isolation. The combination of both is presented later.

There is a slight repetition from the previous sections; however, as there is always confusion about

the differences, the benefits overweight the redundancy.

• Self-Organisation without Emergence: As a single concept, self-organisation has no con-
trol outside the system’s boundaries or micro-macro effect. Figure 2.3 (a) represents this

circumstance using a curved arrow, as only internal interactions exist. As mentioned in Sec-

tion 2.3.4, there is a need for radical novelty, micro-macro effect, flexibility w.r.t. the entities,

and decentralised control for emergence to arise. However, those requirements are not needed

for self-organisation; thus, self-organisation can exist. Potential examples of such stand-alone

self-organising systems are “classical” multi-agent systems [VDPB04]. Those systems are

autonomous and increase their order through interactions. No novelty involved in such inter-

actions, especially if each agent has a model of the global behaviour, i.e., the properties are

present in the agents and not new.

Systems without decentralised control, e.g., one agent with a plan of global behaviour and

controls the interactions, cannot create any radical novelty either [DWH05]. Even the self-

organising system dynamically re-elects the leader agent. Due to failure or task changes,

the agent needs a plan; thus, no emergent property can arise. A leader agent, however,

represents a single point of failure and therefore violates the ability of emergent systems to

act in “graceful degradation” when an entity fails [DWH05]. One entity is not essential for

an emergent system.

• Emergence without Self-Organisation: A pure emergent system would require increased
order, no external control and adaptability [FH03]. Figure 2.3 (b) represents this circumstance

by two internal fields, the micro and the macro level. There is a micro-macro effect but no

self-organisation [DWH05].

Examples of emergence without self-organisation are rare. However, some examples in

physics and thermodynamics emerge from statistical mechanics in a stationary (and non-self-

organising) system [Sha01]. The stationary system arises out of a “time-translation invariant

process” without an increase in order [Sha01]. An often-presented example is a gas with a

specific volume in space. The volume is the emergent property resulting from the interactions

(i.e., attraction and repulsion) between the individual particles, but the gas itself is stationary.

Also, the statistical complexity remains the same over time [Sha01].

24

2.5. UNWANTED EMERGENT BEHAVIOUR

2.4.3 Combining Emergence and Self-Organisation

One of the reasons there is some confusion about whether a system is self-organising or emergent is

that most examples found in the literature are a combination of both. The multi-agent and adaptive

systems community primarily focuses on such systems that are, for example, highly distributed, open,

large, and situated in a dynamic context [VDPB04]. As for such systems, the single entity should be

relatively simple (scalability), and the aim is to combine emergence and self-organisation to obtain

a specific functionality. The reason is that self-organisation requires an increase in order to fulfil

a specific functionality [DWH05]. However, a single entity cannot control the complex system;

therefore, new global behaviour must emerge from the entities’ interactions.

There is also the other way around, where a multi-agent system must exhibit emergent behaviour,

but creating the necessary initial structure is impossible. In this case, the behaviour has to arise

and organise autonomously. Such an approach is auspicious for engineering a coherent behaviour

for complex (multi-agent) systems [DWH05].

If combined, Figure 2.3 (c) visualises the relations between self-organisation and emergence.

According to Parunak [VDPB01, p.1], “... self-organising behaviour occurs at the macro-level”. In

other words, there is an increase in order on the global level [VDPB04], i.e., the emergents become

increasingly organised. However, the author states that the system as a whole decreases its order.

A surprise, but apparently, the reason is that at the micro-level of emergent systems, the dynamics

are often very complicated and disordered. Also, Shalizi [Sha01, p.118] states that “... self-

organization increases [statistical] complexity, while emergence, generally speaking, reduces it ...”.

Many authors see emergence in complex systems as the result of a self-organising process [Hey89,

CDF+20, HVZ+04, Kau93]. Moreover, one more characteristic seems to appear when combining

self-organisation and emergence, namely “nonlinearity”.

Authors such as Glansdorff and Prigogine [GP71], Goldstein [Gol99] and Heylighen [Hey02] see

a requirement “small cause, large effect” for a system without a priori order and self-organised

emergence. This nonlinearity enables the secondary effects at the macro level (emergents) and

is achieved through positive feedback that amplifies an initial change. The initial change then

gets amplified again by the positive feedback of the previous amplification. This amplification will

not continue forever, as most entities will have “aligned” themselves with the initial configuration

created by the first change. The system has reached a point where no more resources are available,

and the newly created alignment of all entities is the new emergent property [CDF+20].

The mechanisms behind this nonlinear process are related to the properties of self-organisation.

Glansdorff and Prigogine [GP71] state that one of the components in the system must exhibit auto-

catalysis. Auto-catalysis describes the causal influence of one component with another to result in

its increase. It is positive feedback causing a nonlinear effect. An example is the pheromone rein-

forcements by ants [CDF+20]. Camazine et al. [CDF+20] consider positive and negative feedback

important for adaptive behaviour. This does not mean a negative feedback loop should complement

every positive feedback loop. Sometimes, positive feedback can be needed to fight a never-ending

leak that makes the structure disappear as soon as the positive feedback stops.

2.5 Unwanted Emergent Behaviour

Another critical issue is whether emergent behaviours in self-organising systems are desirable or

undesirable. Predicting and determining the type (desirable or undesirable) of emergent behaviours

in systems is essential as the positive effects can be harnessed, and undesirable outcomes can be

prevented. Johnson [Joh06] mentioned that emergent properties could be beneficial or harmful in

some contexts.

25

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

2.5.1 Types of Methods to Detect Emergent Behaviour in Systems

The methods proposed for identifying emergence seem to fall into three general groups: requirement

based, mathematical and statistical concepts, and artificial intelligence based. In most of them,

at least one external observer is necessary to identify emergence. In natural systems, the external

observer identifies emergents by specifying changes in the behaviour and structure of natural agents

(such as humans, insects, and birds) and swarms. Therefore, we also need measurements or

requirements for evaluating the system’s behaviour in artificial systems. Identifying emergence that

occurs over time is done by examining changes in these measurements or requirements.

• Requirement based: Early systems design is one area where preventing unexpected emergent
behaviour is crucial. Preventing unexpected emergent behaviour will reduce the effort in the

later development stages. A typical method is defining system requirements or scenarios that

can be checked while modelling the system. The developers identify and evaluate the system

requirements [CLW92].

The authors in Moshirpour et al. [MMBH10] focus in their paper on presenting an example

where they identify potential flaws in the system by using implied scenarios. A scenario repre-

sents one system’s behaviour, and several scenarios of the same system can create an implied

scenario, i.e., a scenario not foreseen by the designer. Such implied scenarios are a potential

cause for unwanted emergent behaviour. Another possibility to create implied scenarios is

during transforming scenarios into state machines [MMEF12]. The same authors propose an

algorithm that identifies emergent behaviour and prevents over-generalisation. However, they

do not provide any example that the implied scenario creates emergent behaviour.

Fard et al. [Hen13] follow a similar track and aim to identify emergent behaviours by storing

message labels into interaction matrices. The matrices contain the component name, the

sender, the receiver identifier (ID), and what are the time dependencies. The actual message

content is irrelevant to the proposed method. The authors use a Markov chain to model the

system’s behaviour and identify paths among components of the scenarios. If a path is absent

in the message sequence matrix, the system develops new behaviours through unwanted

transitions from one state to another.

• Mathematical: Other authors propose methods based on mathematical and statistical tech-
niques to identify systems’ emergence. A benefit of such methods is that they are replicable

but are limited to one specific set of emergent behaviour.

O’Toole, Nallur, and Clarke [ONC17] describe an algorithm to detect emergent events in

complex adaptive systems. They utilise a form of distributed consensus, where several agents

detect and decide whether a systems change is an emergent event. The same authors [ONC14]

analyse the behaviour of complex adaptive systems in a decentralised manner. Here is the

system feedback from the macro and micro levels of the components, the relevant measure

for determining emergent behaviour. In detail, the macro-level emergent behaviour affects

the micro-level by limiting the components’ behaviour or environment. Several variables are

recorded and statistically analysed for correlations using each agent’s local information. The

authors argue that emergence creates those statistical correlations as they are not observed

before.

Another approach proposes the use of Semi-Boolean algebra. In Haglich et al. [HRP10],

the authors use Semi-Boolean algebra to identify and predict emergent or self-organising

behaviours in extended social networks, such as money laundering or smuggling networks.

The authors argue that combining several social networks increases total complexity and the

26

2.5. UNWANTED EMERGENT BEHAVIOUR

potential for emergent behaviour to appear. In a later paper [HPR10], the authors present

an adjusted version for multi-sensory situations and mention that operational complement,

Partially Ordering Set (POSET), equivalent classes, and order axioms are methods suitable

to describe emergent behaviours.

Chen et al. [CCN10] propose a formal method approach to characterise and examine emergent

behaviours in complex agent-based simulations. The authors characterise various behaviours

according to different abstraction levels, which allows the examination of relations between

the levels, i.e., between higher-level behaviours and lower-level events. The relatively complex

framework utilises an X-machine similar to Petri nets, state diagrams, and sequence diagrams

to model higher-level emergent behaviours and the transitions of agent-level states.

The mathematical methods also encompass model checking and runtime verification. These

methods will be introduced in Chapter 7.

• AI based: The last group contains methods based on artificial intelligence techniques such as
clustering and machine learning. Clustering refers to methods focusing on visual or content-

based separation of emergent patterns. Pattern detection can either be a spatial, temporal or

content distribution. Machine learning makes it possible to find emergence based on previous

events or data. For example, Grossman et al. [GSG+09], a system called “Angle”, identifies

emergent behaviours in distributed Internet Protocol (IP) data packets. The system clusters

the data packages chronologically, and changes in the clusters indicate emergence. In addition,

the statistical analysis identifies new types of behaviours.

Other authors, such as Denzinger et al. [DK06], use evolutionary algorithms to identify un-

wanted emergent behaviours in multi-agent systems. In essence, the system contains attack

agents and test agents to create events in the system. The attack agents create sequential

activities that lead to a sequence of environmental states. The test agents then apply envi-

ronmental state conditions to find unwanted emergent behaviour. According to the authors,

the evolutionary algorithm represents a form of desired emergent behaviour. In Villani et

al. [VFB+13], the authors look for dynamic structures of emergence in dynamic networks.

Their method uses a cluster index measure to identify clusters in biological neural networks.

Gomez et al. [GSZ17] introduce a quantitative definition of emergence, where subsystems

of a complex system are observed. The proposed algorithm automatically detects emergent

properties using supervised machine learning techniques and learns about the dynamics of the

subsystems to detect emergent properties.

In summary, researchers propose several methods to detect emergent behaviour in systems.

However, some approaches fail to determine if the detected behaviour is emergent. A topic other

researchers have studied in detail.

2.5.2 How to confirm Emergent Behaviour

Several academic publications look into validating if emergence exists in natural and artificial sys-

tems [CDF+20, LSHL06, MG15, ZPK00] by considering the different viewpoints on emergence

(cf. Section 2.3.4). The following paragraphs extend the more general view on emergence.

Szabo and Teo [ST13] divide emergence verification into grammar-based, variable-based, and

event-based methods. The authors take the standpoint that system designers must know what type

of behaviour they can expect and which are emergent. There is a lack of knowledge among designers

or users unfamiliar with the principles of agent interactions on how to differentiate emergence from

other behaviour. The authors used a flock of birds model to evaluate the various methods.

27

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

An example of a grammar-based method is done by Kub́ı [Kub03]. The method compares

different languages, namely the language of the system and the sum of the component languages.

If there is a difference, emergence is validated. In a variable-based method, a variable describes

the emergence, and any change validates the presence of emergent features. Set [Set08] presents

the changes at the centre of a group of birds as an indicator of emergent behaviour. Event-based

methods analyse a series of events that change the state of a system or subsystem [CNC07]. Chen

et al. [CNC07] argue that those sequences are the emergent behaviour of the system if there is

no evident connection between the macro-level and interactions of the subsystem. The authors use

simulation to create the event sequences and the later validation of emergence.

Szabo and Teo [ST13] provided an objective-based method in their paper. The method uses

semantic validation to prove emergent behaviours. The authors describe a system in terms of goals

and objectives, and if behaviours occur that are not part of the goals and objectives, those have

the potential to be emergent behaviours. Similarly, Gore et al. [GRTB07, GR08] an explanation-

exploration method. Here the authors use a semi-automatic model adaptation and a random infer-

ence procedure that reveal interactions that lead to emergent behaviour. They also point out the

method’s suitability to detect unwanted emergent behaviour in the early design phase.

In robotics, validation plays an essential role in creating swarm behaviour. Rouff et al. [RVH+04b]

present a formal method to verify and validate group missions. The authors highlight the bene-

fit of formal methods to accurately and adequately prove whether group behaviour is emergent.

Other research applies model checking to prove the emergent behaviours of robot swarms [JV11,

DWF11]. Model checking is a formal alternative for testing [CJGK+18]. De Angelis and Seru-

gendo [DADMS15] utilise a logic language to verify graph-based topology-dependent emergent

properties at runtime. Their approach allows the decomposition of global behaviours into several

local properties. The interface operators verify the emergent behaviour.

As mentioned in Section 2.5.1, formal and mathematical methods strongly focus on identifying

and validating emergent behaviour. However, representing agents, their behaviour and interactions

must be exact. Therefore it is challenging to model complex and dynamic systems accurately.

Primarily representing the behavioural interactions of complex interactive systems in equations and

verifying the existence of emergence is sometimes challenging when not impossible.

2.5.3 How to Simulate and Model Emergent Behaviour

After looking into how to confirm emergent behaviour, another interesting question is how to create

or simulate emergent behaviour in systems. Epstein [Eps99] and Desalles [DP06] promote a clear

distinction between natural systems and philosophical discussions about emergence. Furthermore,

the authors point out that to simulate emergence; there must be a clear relationship between

the phenomenon and a model. The model needs to consist of elements and relations that allow

emergence to appear; therefore, emergence is epiphenomenal relative to that model. Epiphenomenal

describes a phenomenon that is not dependent on the underlying interactions.

Tolk [Tol19] promotes using computer simulations to study complex adaptive systems. Such

computer simulations can produce, discover and describe emergent properties. However, Tolk also

points out the limitations of simulation; namely, it is impossible to create ontological emergence.

Ontological emergence is knowledge independent and cannot be described by components and

their interactions and relations. In the literature, several simulation approaches follow a method

to create simulation models, for example, distributed systems [DWHS06]. The models include an

environment, the entities and the possibility of observing both. Each entity performs its tasks over

time, and the simulation provides a history of measurements related to the interactions [VDPSR98].

The following paragraphs present three types of modelling approaches found in the literature.

28

2.5. UNWANTED EMERGENT BEHAVIOUR

• Agent-based Modelling and Simulation: The first approach is agent-based modelling (ABM).
As with any other type of simulation, the aim is to understand why and how a system shows

emergent behaviour [MFT05]. The simulation environment continuously evaluates the sim-

ulated systems [RB95] and allows getting detailed information on phenomena and dynamic

relationships that are not explicitly present in the code. This capability leads most authors to

suggest that simulation is valuable for studying emergence [RB95].

In detail, a simulation model replaces the system in ABM. Each model consists of agents

that imitate the system’s entities’ behaviours. The entities either interact directly or indi-

rectly through the environment [VDPSR98]. Unsurprisingly, authors in self-organising sys-

tems research favour ABM as it allows a deeper understanding of the phenomena [MFT05].

Chan [Cha11] points out the flexibility in simulating the interaction of autonomous agents

and that ABM is an essential tool in finding emergent behaviours of complex systems. More-

over, De Wolf, Holvoet, and Samaey [DWHS06] state the simplicity of simulation compared

to other approaches. A one-to-one mapping between the system and the model allows high

degrees of localisation and distribution. Therefore the models can imitate self-organising

emergent systems.

Simulation also contributes to studies in complex systems [Bak10] as the fields are intercon-

nected [Bed03]. In the paper of Baker [Bak10], the authors use simulation to create emergent

features in a system. Similarly, in Mittal [Mit19], the authors focus on synthetic emergence

and use modelling and simulation to study emergence. The authors call synthetic emergence

emergent behaviour created in a controlled artificial environment. Moreover, a controlled

artificial environment helps control complex systems’ emergence. Other authors, such as

Madey [MFT05], consider agent-based modelling suitable for understanding self-organising

systems’ temporal dynamics and emergent features. Boschetti [BPMG05] emphasises simu-

lation’s usefulness in identifying and modelling emergence in communication networks.

Other authors such as Zeigler and Muzy [ZM16] utilise modelling methods such as Discrete

Event System Specification to find emergent behaviours. At the same time, Weyns and

Holvoet [WH02] present an approach based on coloured Petri nets to represent multi-agent

systems. Their focus is on the evolution of the agents and the environment, which allows the

modelling of social skills and coordinated social behaviours. Moncion et al. [MAH10] show that

particular circumstances allow agent-oriented simulations to show emergence. The authors

show that simulated actions and reactions among lower-level entities can create emergent

behaviour and be identified by simulation. Moreover, the authors use dynamic graphs to store

and analyse the interactions.

Chen, Nagl, and Clack [CNC07] present another method to simulate emergent behaviour in

agent systems. In their approach, the authors form complex events based on interrelated

events. The complex events surface at different spatial and temporal levels. The authors use

directed graphs with coloured vertices and edges to describe the complex events. The edges

represent the relationship types, and the coloured vertices the types of events. According to

the authors, it is possible to identify the type of complex events by analysing the subgraphs

in the main graph. Each event type that creates emergent behaviour is classified and stands

for one specific emergent behaviour. One interesting part of this approach is that higher-level

behaviours can be decomposed into lower-level events, which allows for predicting the effect

an agent change creates on other levels.

29

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

• Equation-based and Equation-free Modelling and Simulation: Another type of modelling
is equation-based modelling (EBM). The equations represent the relations between entities

or variables in EBM and, observed over time, show emergent behaviour [VDPSR98]. EBM

is, therefore, a standard tool in variable-based emergence verification (cf. Section 2.5.2).

Nevertheless, the creation of equation-based models is quite tricky and with the increasing

complexity of a system nearly impossible to formulate the mathematical models. The typ-

ical approach for solving this issue is simplification. However, even small changes to the

system entities can strongly affect the outcomes, e.g., if the system shows emergence or

not [DWHS06]. Chen [CNC07] points out that EBM is beneficial in terms of provability but

comes at the cost of high effort and the danger of oversimplification.

De Wolf et al. [DWSHR05] propose another type of modelling, namely equation-free macro-

scopic analysis techniques, to study system-level behaviours. In the eyes of the authors, such

techniques reduce the effort required for EBM. In addition, it is impossible to formulate the

macro equation from the model in some complex systems.

In summary, the modelling and simulation of natural and artificial systems for identifying self-

organisation and emergence phenomena have created a more comprehensive range of research

output. Nevertheless, creating models of dynamic and complex systems suitable for simulation

remains tedious. A lack of information on how the system’s entities interact can result in inaccurate

models and incorrect simulation results. Therefore, finding an optimal between details and effort

when modelling complex systems is crucial.

2.5.4 Influencing Emergent Behaviour

A question yet left open is if there are any methods to influence emergent behaviour. The answer

to this question is disputed; some authors support the claim that it is possible, others oppose it,

and another group sees it as problematic.

Li, Sim, and Low [LSHL06] argue for the latter. The main reason for their standpoint is that

users or designers usually do not know why emergent behaviours occur; therefore, influencing it is

impossible. However, if the designers know about the cause or at least can recognise emergent be-

haviour, the possibility for control increases. Nevertheless, the authors acknowledge the importance

of controlling emergent behaviour, as unexpected behaviour can have catastrophic outcomes.

Similarly, De Wolf et al. [DWHS06] and Müller [MS04] highlight the contradiction between the

typical top-down designing process when developing artificial systems and uncontrolled emergence.

Typically, development projects follow a top-down approach, such as the waterfall model. Such a

hierarchical and sequential model supports understanding each system component and their states.

Each step starts with a high-level description and is continually refined to models or executable

code. However, designing a self-organising emergent system would require an opposite method—the

macro systemic behaviour requires local autonomous interactions and activities of the entities. In

this case, the designers must design low-level interactions to create macro behaviour, which is more

challenging. When designing micro-level behaviour that creates and maintains the desired macro

behaviour, the involved uncertainty requires certain guarantees [DWHS06]. Those guarantees are

essential for industrial applications.

Unfortunately, there is a lack of research that presents solutions for controlling emergence.

Parunak and VanderBok et al. [VDPV97] provide one example. The authors studied emergent be-

haviour management in distributed control systems. They found that a population of asynchronous

running processes, without a top-down or centralised control, can create emergent behaviours at

the system level. In detail, their study on welding robots in an automotive body shop identified

30

2.5. UNWANTED EMERGENT BEHAVIOUR

the interactions of control elements as the cause and not random events or improper functioning

elements. Therefore, they proposed several methods to control undesirable emergent behaviours:

nonlinear systems and agent-based control theory.

In summary, research concerning the control of emergent behaviour in self-organising systems

received some academic attention but has not resulted in deep insights. The topic is closely related

to the emergence prediction as the higher the prediction success, the higher the chances to control

emergence.

2.5.5 Predicting Emergent Behaviour

The prediction of emergent behaviour is another issue without a consensus among researchers.

Some researchers argue that predicting emergent phenomena is possible, particularly in nature.

As an example of a predictable emergent phenomenon in nature, Bajec and Heppner [BH09]

see the organised flight of birds. Birds usually fly either in a line or in some cluster formation. Line

formations describe birds flying in single lines joined together like pearls. Such formations are more

typical with larger birds. Cluster formations, on the other hand, are more usual for smaller birds

like pigeons or blackbirds. Each bird flies irregularly, but they form a cluster as a group. Academic

research focuses primarily on how those clusters form or why certain birds fly in specific formations

(e.g., the V-shaped formation of geese). According to Bajec and Heppner, it is simple for an

external observer to predict emergent formations based on past observations. However, the birds

cannot understand and predict their group’s collective behaviour.

Now some researchers find the prediction of emergence as not reasonable, as the prediction

contradicts the needed novelty of emergence. In Ashby [Ash56], the author presents an example.

If several black boxes are connected based on a specific pattern through certain connections, it is

possible to predict all behaviours. Such a group of black boxes will not display any emergent features

because the components can predict all features. Therefore, if the knowledge about the components

is complete, the system is complete and cannot show any new emergent behaviour. However, if the

prediction is based on incomplete knowledge, there is a chance for new emergent features [Ash56].

Li, Sim, and Low [LSHL06] also do not consider predictable behaviour as emergent behaviour, as

it would allow the design of management tools to control emergence.

Another group of researchers thinks the prediction of emergence is possible but only with high

effort and complexity. Madey [MFT05] argues that describing local interaction rules of components

is simple, but predicting macro-level behaviours is challenging, at least. Chen et al. [CNC07]

support the same viewpoint as emergent behaviour is not simply and accurately predictable from

the behaviour of the single elements. Another reason is given by Berezhnoy et al. [Ber03]. The

prediction gets complicated if the agents carry out several activities and coordinate flexibly with

others. However, without the interactions, no emergence can occur. The behaviour of each agent

and its interactions with others and the environment create complex feedback loops, which makes

predicting high levels of emergent behaviour challenging.

The last group of authors state that prediction is impossible. As complex systems have such a

complex, dynamic, and uncertain nature, predicting or even proving emergent behaviour is impos-

sible [JTSP13]. In the following, we list a few methods that aim to predict emergent behaviour

similar to the ones that simulate emergence.

For example, Dogaru et al. [Dog08] present a method for forecasting emergent behaviour. The

authors use cellular automata to predict the global behaviour of the entire system. The method

assumes a state probability for the cell and a relationship between the emergent features and

predicts the evolution of neighbouring cells’ probabilities. In Zeigler and Muzy [ZM16], Markov

models predict emergence through behavioural observations. The authors extract a state transition

31

CHAPTER 2. COMPLEX SYSTEMS, SELF-ORGANISATION AND
EMERGENCE

matrix and a continuous time Markov model. By analysing the Markov model for differences in the

dynamic and variable structure, the authors can create probability statistics for emergent behaviour.

Other authors, such as Lancaster and Gustafson [LG13], propose to predict emergent behaviour

by observing population density in different parts of the environment. The authors use probability

graphs to estimate population density, the possibility of an agent’s movements, and their tenden-

cies to move in different directions. The authors examine Autonomous Nano Technology Swarms

in Rouff et al. [RVH+04a] with the help of formal methods such as Communicating Sequential

Process, Unity Logic, WSCCS, and X-Machine. All methods are compared and evaluated to de-

scribe the activities and predict emergent behaviours. The authors state that predicting emergent

behaviour is challenging due to constant changes, and the chosen method needs to be flexible

enough to continuously re-predict the emergent behaviour. Another type of prediction is found in

pattern recognition [HW08]. While a traditional top-down approach, the methods show quite a

high accuracy in predicting emergent features.

In summary, prediction emergence depends strongly on the complexity of the system observed.

The prediction is more plausible for natural systems with repeated patterns and behaviours over time

and artificial systems with specific agent interactions. The situation changes when the system’s

components (natural and artificial) show structures and behaviour without any time relation.

2.6 Summary

The previous sections and paragraphs provided a short but broad overview of the context of emer-

gence. Emergence, self-organisation and complex systems are closely related, and researchers have

offered several facts, facets, tools, and methods to define, measure, predict, and simulate those

phenomena. Despite the variety of research, grasping the true nature of emergence remains diffi-

cult. One apparent issue is that most authors do not present examples of emergent systems. The

high complexity of the systems in question might cause that.

On the other hand, instances found in nature are well-explored and documented. However,

most cannot be reproduced or only with the help of simulations and simplified models. Within this

dissertation, we narrow the focus to industrial systems and question whether such systems can

create emergent behaviour. Therefore, the next chapter presents how the research was conducted.

Chapter 4 presents further findings, a formal approach, and a potential tool for identifying emergence

in industrial systems.

32

Chapter 3

Methodology

The methodology chapter provides an excursion into finding truth in computer science. It provides

the reason why the scientific method design science was chosen in this dissertation. Moreover,

it introduces the chosen methods and gives insight into how the literature review was conducted,

which was essential for the context description and the narrowing down the research focus.

3.1 A Short Excursion in Testing vs. Proving Programs Correct

The historical process of forming computer science as an independent scientific discipline included

several severe debates among scientists and practitioners. One particular intense discussion, held

fiercely between the participants, was the ”verification debate”. Despite its early start during the

software crisis in the 1950s, this argument between the followers of software engineering and those

preferring logical verification lasted more than three decades [CFR12]. One side supported the

application of formal approaches as the only way to enhance software quality, whereas the opposing

party, firmly argued against it.

By taking a closer look at the whole debate retrospectively, some of the arguments in this

discussion resemble arguments already brought up during an earlier debate in the history of science.

Namely, the dispute between logical positivists and falsificationists in their quest for truth, shows

remarkable similarities, and raises the question: “Was it the same discussion?”.

3.1.1 A Quest for Final Truths

One of the most profound endeavours within the philosophical discourse is how to obtain knowledge

in science (empirically or rationally), and how to prove the underlying facts to be true [Cru06].

During history, several schools of thought have emerged, aiming at answering this question within

a widely accepted manner. Two very prominent proponents were the schools of logical positivism

and falsificationism.

Positivism is a paradigm that first appeared in linguistics, semiology and epistemology, at the end

of the nineteenth century. The paradigm relies on the stance that there is a one-to-one relationship

between a word and a thing/idea, i.e., a positive term. The positive term excludes opinion, critic,

and any trace of subjective thought [CN34]. It is, therefore, by definition, an entity that is absolutely

true, independently of the various aspects of human perception. As an example, Chalmers [Cha99]

mentions the case of colours. For instance, the word red, referring to the absolute perfect red,

denotes something that is above everyone’s approximation of the word. Positivists believe that by

33

CHAPTER 3. METHODOLOGY

following this paradigm, it is possible to acquire an objective model for representing information,

which is applicable to all sciences. Such a model should be used as a scientific method, in order to

explain phenomena in a causal manner, rather than according to intentions and goals [VW71].

Contrarily to positivism which supports that there should be strict criteria for characterising

scientific phenomena, falsificationism supports that scientific claims can be made based on the

lack of evidence to refute a hypothesis. Falsificationism was ignited by the observation that in

science, there may not be a way to prove a universal truth [Pop05]. For instance, considering the

claim that one’s novel algorithm produces correct results in all cases. The number of potential

cases needed to prove the algorithm correct, may be prohibitively large to allow verifying the claim

based on observations. For this reason, as an alternative, falsification proposes trying to find the

one observation that is enough to refute the claim, i.e., the one case for which the result of the

algorithm is wrong. Thus, in falsificationism, observations are used for proving that refuting the

claim can be extremely difficult.

Criticism of Positivism

Positivism’s strong perspective towards finding universal truths has been the spawn for various types

of criticism by the philosophy of science community. Since the views of positivists, propose using

a unified model of truths in all sciences, it soon became evident that empirical claims cannot be

universally true [SP05]. Thus, the universal truths were deemed as meaningless, and the original

ideas of positivism became the subject of modification. Karl Popper, among the critics of positivism,

noted that no number of successful empirical observations could prove a scientific hypothesis.

This insight led to a new scientific epistemology called the falsificationism. However, Popper’s

firm negative attitude against positivism was also criticised, quite extensively, by the community.

Bartley [Bar76] accused Popper of ruining the philosophical discussion and pointed out that if

Popper’s views on this subject, are on the right path, then the majority of the philosophers have

been wasting their careers. Others have described Popper’s ideas as not convincing [Cha15].

3.1.2 Formal Verification, the Only Solution

At an early stage of software development, specifically during the 1950s, the created software was

prone to be faulty, which resulted in severe accidents and high monetary cost in the industry. For

this reason, there was an urgent need for new methods for improving the code quality.

At the same time, the field of computing underwent significant scientific breakthroughs such as

automata and complexity theory, formal languages, and semantics [Cho56, Mah11]. These develop-

ments empowered scientists to propose a rigorous mathematical approach to program construction

for solving the problems in software development. Pioneers of computing such as Dijkstra, Floyd,

Mc-Carthy, Naur, and Wirth believed that the only way to improve software quality is to apply

strict formal approaches, sometimes referred to as formal verificationism or mathematical reduc-

tionism [Dij01]. C.A.R. Hoare promoted an even more extreme position. In his opinion, computing

should be reduced into a mathematical discipline, since it would allow proving the functioning of a

computer system correct [Hoa69].

Formal verification begins with the formal description of a program specification in some symbolic

logic. The actual proof follows then a proof system and confirms that the program meets the

foregoing formal specification. A sound proof implies that the program meets for all inputs the

specification and therefore confirms that a computer system/program works correctly.

34

3.1. A SHORT EXCURSION IN TESTING VS. PROVING PROGRAMS
CORRECT

On the contrary, the followers of software engineering believed that software testing is the most

suitable process for revealing program defects. Software testing, as described by Vyatkin [Vya13,

p.1243] is “the process of revealing software defects and evaluate software quality by executing

the software”. Or as Myers. et al. [MSB11] expresses it, checking if the computer code conforms

to what it is designed to do and, conversely, what is it not intended to do. Besides significant

advancements in testing methods [GM16], the field suffered limitations. One is proofing a program

correctly, might require exhaustive testing what is not always possible nor desirable. Further, testing

bears the potential that the testing process itself introduces faults.

Notably, this debate focused on code artefacts and how to ensure their correct functioning.

The spectrum of the discussion however, also involved other softer issues, such as practicability

for example. Nevertheless, everything boiled down to which approach, software testing or formal

verification is better suited to improve code quality. Although formal verification proved to be a

cumbersome endeavour, and was refused to a certain extent by software professionals in the industry,

it took more than two decades for the opponents to develop credible counter-arguments.

Criticism of Formal Verification

The sincere dedication of the verification movement making programming a rigorous mathematics-

like activity to overcome the lack of program quality made the debate for the opponents quite

challenging [Mac01]. However, precisely the obsession on the rigorous application of mathematics

turned out to be a significant point of critique exploited by the opponents.

During the 1970s, the first critiques pointed towards the complexity of proving programs correct,

as well as the relatively large effort required even for small algorithms. There is a high vulnerability

to errors within the verification process itself due to its complexity [Mac01, Lon70]. Following

arguments targeted the difference between the actual construction of proofs in mathematics and

program verification. Mathematical proofs are undergoing an extensive social process, reviewed by

peers of the same field, adjusted and republished. A very different process as the sometimes several

pages long formal proofs no one dared to read again [DMLP79].

Another issue with formal verification was that there are gaps between programs, specifications,

and their execution on computers in the physical world. One critique focused on the question

What a proof proves ”correct”?. In practice, a proof verifies that the program text corresponds

to the formal specification and in the best case shows that the constructed program is ”correct”.

Nevertheless, the opponents argued that program verification has no connection to the real world

and does not say anything if one constructed the right program. Therefore, if an application is valid

and useful is outside the scope of formal proofs and makes the whole idea of proofing programs

correct difficultly.

The second primary argument was that the physical world is uncertain compared to theoretical

constructions. It might be possible to prove in some cases in an abstract level that the program code

conforms to the specification: Though, specifications and programs are models and abstractions of

reality and therefore never 100% accurate [Fet99]. This particular argument was further extended

by Fetzer [Fet88] by pointing out the fundamental difference between algorithms and executed

program code on a computer. An algorithm is nothing more than a mathematical formula, whereby

a program running on physical machines moves very real electrons in circuits around.

At the end of 1980, the formal verification movement relinquished their firm standpoint and

started to adjust to the software engineering practices. C.A.R. Hoare wrote that it was a mis-

take to see formal verification and testing as opposites, as they both contribute to the quality of

programs [Hoa09].

35

CHAPTER 3. METHODOLOGY

3.1.3 The Two Debates Compared

At first glance, the two debates show several similarities. Both positivism and formal verification hold

an idealistic view of the world where proving scientific facts is possible by applying a unified model.

Similarly, testing and falsificationism follow a more realistic approach towards truth in science and

acknowledge the possibility that there are no universal truths. Nevertheless, comparing the finer

elements of each debate reveals distinct differences that refute the hypothesis that the discussions

are the same.

Non-Exclusiveness

Besides that, the followers of formal verification saw their approach as superior; no one ruled out

the usefulness of testing altogether. In computing, the situation exists that both methods would

work for a task, but the community considers one better suited. Sometimes testing and formal

verification are used complementary.

The field of digital design, for example, is concerned with converting human logic in electrical

logic based on flip-flops, arithmetical logical units, and other similar electronic circuits. In digital

design, hardware description languages (HDL’s) are used for describing the hardware itself, and not

logic directly as in C-like programming. For instance, a traditional addition (Var C=A+B), is in

HDL represented as registers, connected wires and other elements. The output of HDL is a static

electronic circuit that executes the intended logic.

Based on the digital design, the output is transformed into hardware, and the final product must

represent the exact intended logic. Testing is in that case, not sufficient to ensure the function-

ality, and therefore, the community prefers a formal approach. The verification involves additional

programming, and strict evaluation of all input and output values, nonetheless, the additional effort

is considered necessary.

A counterexample is distributed systems that span over larger geographical areas. Such systems

are used mainly for providing unified services to users of various locations (with similar quality of

service). Instead of hosting one service in one location (e.g., in a cloud data centre), multiple in-

stances of this service are hosted in various locations around the world. Presumably, these instances

communicate with each other (and with the users) through the Internet. Since the geographical

distance (over the Internet) among the instances is an integrated part of the system, verifying that

the system functions correctly is difficult. Modelling the Internet is not credible since it is a vast

network with many unknown influencing factors. Therefore, even though it is possible to follow a

verification approach, testing the system under real-world conditions is considered more trustworthy.

Both examples show that the community decided what method is better suited for the task

even besides both being applicable. Such a co-existence was no alternative in the debate between

positivism and falsificationism. The two schools of thought saw their views as absolute, especially

in how to define facts to be true and valuable for science. With such a narrowed viewpoint, it was

simply not possible that both could exist in parallel.

Pseudo Science

Hidden in the more profound nature of the debate between positivism and falsificationism there is

another difference to the formal verification discussion. Both paradigms show a harsh judgement if

knowledge or facts are scientifically useful or not. In the case of falsificationism, theories can only

be of scientific value when falsifiable. For illustration, a statement such as ”Strong typing reduces

run-time errors” [Sne98] are not clearly falsifiable. Although plausible, in a falsification manner,

36

3.2. CHOOSING DESING AND CREATION AS RESEARCH STRATEGY

such remarks would be classified pseudo-science without value for computer science research. The

same applies to positivism that considers only by the senses observable facts as worthy.

The proponents of formal verification partly followed such a rigorous mindset, yet their main

focus was on improving code quality, not the usefulness of the code. For example, a program that

produces faulty results in certain circumstances might be still useful for all the other inputs. Testing

and formal verification were always about improvement, and not about absolute terms.

3.1.4 Conclusion

The formal verification debate and the discourse between positivism and falsificationism show sig-

nificant similarities considering the used arguments. Driven by the ambition to provide universally

applicable methods in their respective field, all approaches suffered from weaknesses. Positivism,

as well as formal verification, saw universal truths and logic as the only way to achieve scientific

relevance and in turn, lost the connection to the real world by ignoring the relations between facts/-

code and reality. Similarly, falsificationism and testing suffered from the fact that sufficient testing

sometimes requires an unreasonable (or infinite) amount of observations. Additionally, the actual

testing process bears the possibility to introduce new flaws that, in the end, falsify the theory or

identify bugs.

Notwithstanding all the similarities, the discussions are not entirely the same. This claim rests

on the earlier described inconsistencies within debates that in summary are: (i) The impossible co-

existence of positivism and falsificationism compared to the common practise in testing and formal

verification to choose the best fit. (ii) Furthermore, that positivism and falsificationism treat

not ”correct” facts as non-valuable knowledge for science, whereby testing and formal verification

aims for improvement. Moreover, one might argue that the narrowed focus on code in the formal

verification debate, is not on the same level as the strive for an all-encompassing method applicable

in science. The pointed out differences are valid arguments to support the claim that the two

debates are indeed not the same.

Another insight is that there were many cases where positivism and falsificationism worked well,

but due to their strictness were not flexible enough to cover other situations. This inability to

adapt might have been one of the reasons that both paradigms disappeared in time besides having

a large number of followers. Testing and formal verification, however, moved on towards combined

approaches that further improved software quality and ensured each other’s continuation.

3.2 Choosing Desing and Creation as Research Strategy

While the above excursion is not directly applicable to the topic of this dissertation, it still points

towards an important question: “How to create knowledge in computer science?”. Based on the

above example, there is no universal truth, and only a variety of tools and methods create valuable

knowledge. Considering this finding, this dissertation follows a design and creation research strategy.

The design and creation research concept builds upon academic literature and relevant specifi-

cations [Oat05]. This strategy applied to computing research focuses on developing new products

called artefacts [MS95]. Such artefacts encompass constructs such as models, methods and in-

stantiations [Che00a]. However, most research in the field is a combination of several artefacts

that contribute to actual knowledge gain. As the artefacts are mostly related to computing, the

design and creation research strategy emphasises analysis, explanation, argument, justification, and

critical evaluation of the results to distinguish itself from traditional product development.

37

CHAPTER 3. METHODOLOGY

Artefact

Systematic
Literature Review

Refined
Research Focus Implementation

Design

Knowledge Gain

Research
QuestionsMotivation

Evaluation
Artefact
Artefact

Design and Creation Research

Figure 3.1: Outline of the research design and the relations between the single parts.

For this reason, the design and creation research approach focuses either on the artefact itself

(e.g., the computing application incorporates a new theory), the artefact as a vehicle to create

new knowledge (e.g. the IT application in use), or on the process to create an artefact to create

knowledge [HMPR04]. Depending on the focus point, different methods and tools are more suitable.

Figure 3.1 outlines the research design and how the parts are connected. The starting point is the

motivation and the resulting research questions. A systematic literature review (cf. Section 3.3)

created a solid foundation. The outcome provided the input for Chapter 2 but also refined the

research focus and allowed the specification of the artefacts in Chapter 4.

The first artefact is the interacting agents in an industrial setting that create emergent behaviour.

By analysing the interactions between the agents, new insights are created. However, for doing the

analysis, a suitable tool/method needs to be available. In our case, we identified a suitable formal

method (algebra) but had to extend it with new capabilities. Therefore, the method is also an

artefact; its extensions represent additional knowledge gain.

Design and creation research follows a problem-solving approach similar to the principles of

system development [HWH99]. For the artefacts, we adopted the typical five steps of the system

development process: awareness, suggestion, development, evaluation and conclusion. Nonetheless,

the steps are not executed in full depth, i.e., no finished product/system is developed, instead a

formal description that reaches the level of a prototype, which is tested.

3.3 Systematic Literature Review

The performed systematic literature follows the suggestions described in Pearl Brereton et al.

[BKB+07]. The first step was defining guiding research questions that would provide fundamental

and more specific answers. The following task was choosing data sources and the search strings,

followed by acceptance/rejection criteria that support selecting relevant publications and how to

extract data.

38

3.3. SYSTEMATIC LITERATURE REVIEW

3.3.1 The Guiding Research Questions

The intention of the guiding research questions is, on the one hand, to provide basic information

about the research area. In this dissertation, the research is about the emergence or emergent

behaviour, which includes self-organisation and complex systems. On the other hand, the questions

shall provide answers specifically supporting the main research questions of this dissertation. The

following list contains all guiding questions with some additional comments.

• G RQ1: “What is/are emergence, self-organisation and complex systems?”
A fundamental question to provide connections between the research fields. Moreover, it

provides the possibility to give generally accepted definitions.

• G RQ2: “What are the differences between emergence and self-organisation?”
This question points towards to common misinterpretation that emergence and self-organisation

are the same. In addition, the differences are essential for detecting emergence.

• G RQ3: “What are the characteristics of emergence? ”
A question that targets the different characteristics of emergence described in the literature.

• G RQ4: “What methods are used to identify emergence?”
This question aims to collect possible methods to identify emergence.

• G RQ5: “How to confirm emergence?”
Similar to the previous question, a focus is given if an emergent behaviour is truly emergent.

• G RQ6: “How to control emergence?”
A question to find tools to influence the occurring emergent behaviour.

• G RQ7: “How to model and simulate emergence?”
Mainly collect available tools and methods.

• G RQ8: “How to predict emergence?”
Or, in other words, is it possible to foresee emergent behaviour within a system based on

simple interactions or structural constellations?

• G RQ9: “What science disciplines emergence has been studied/found?”
Another general question that supports the next question.

• G RQ10: “Has emergence been found in industrial automation or multi-agent systems?”
A question specifically designed to narrow down the research focus.

Following the definition of the guiding research questions was creating search strings for the

databases.

3.3.2 Search Strings and Databases

Each of the guiding research questions provided the keywords for the search strings. For example,

for G RQ1 the string contained the words (emergence ∨ emergent ∨ spontaneous order) ∧ (be-
haviour ∨ pattern) ∧ (complex systems) ∧ (self-organisation ∨ self-assembly ∨ self-organising ∨
self-generating ∨ self-created ∨ self-ordering ∨ self-arranging). In Table 3.2, we present all used
search strings in the search. Note: We used both versions in cases where English terms like “be-

haviour” have American and British spelling. In addition and we used a synonym finder for each

keyword.

39

CHAPTER 3. METHODOLOGY

We used the databases IEEE Explore, SpringerLink and Science Direct for our search. At first,

we used Google Scholar as well, but the search yielded too many results and filter options are limited

on this platform. On the other platforms, we applied the following filters (if available):

• Publication date: 1950-2018

• Peer Reviewed

• Language English

• Search Fields: Title, Keywords, Abstract.

After the initial search, we examined the found documents according to the following criteria.

3.3.3 Acceptance/Rejection Criteria

The screening process was mainly conducted manually and had three stages. In the first stage, the

abstracts were read, and the following criteria decided if an article stayed in the set:

• Yes if: The presented research clearly relates to emergence (emergent behaviour), self-
organisation or complex systems (e.g., multi-agent systems).

• Yes if: The presented research should consider proper sciences (e.g., physics, biology, engi-
neering, chemical, natural or artificial).

• Yes if: The article type is either a conference publication, journal paper or a PhD dissertation.

• No if: There is no evidence of the published venue or less than three pages.

• No if: The paper is obviously out of scope (e.g., philosophical nature or pseudo-science).

In addition, some more practical exclusion criteria were: duplicates and articles not available as full

text (i.e., some databases provide an abstract, but the article is behind a paywall or is not online

accessible). This first stage resulted in 537 papers. The next stage focused on the main text and

included a first allocation to the relevant G RQ’s. Highly cited papers were given priority.

In the last stage, we used the papers with the highest citations counts and survey papers as a

source for further relevant papers. In systematic literature research, this step is called forward and

backward search. This step yielded some additional papers we had not found in the main search.

The result of this final stage is presented in Table 3.1 split up by type of publication.

3.3.4 Data Extraction

The final set of publications was read, and each paper was sorted according to its contribution to

the guiding research question. An article can either only contribute to one G RQ1 or several. The

examination dept varied as in some papers, only parts were relevant.

3.3.5 Results

Each guiding research question provided input for some of the subsections in the previous chapter.

Some outcomes were used in the following chapter to refine the research focus and formulate a

formal proposal on identifying emergent behaviour in industrial agent systems.

40

3.3. SYSTEMATIC LITERATURE REVIEW

3.3.6 A Comment on the Conducted Literature Review

When we conducted the literature review end of 2018 till the middle of 2020, a review paper by

Kalantari et al. [KNM20] was published that covered the same topic. As the overlap was significant,

we decided not to publish our findings as initially planned but to keep them inside this dissertation.

Nevertheless, we compared the findings, and the differences were the following. The authors in

Kalantari et al. [KNM20] included a smaller set of articles but provided an additional classification

on emergence [KNM20, p.13]. For better comparability, we introduced the same classification.

While their article set was smaller than ours, we identified four papers we had not found in our

search. In addition, the authors aimed for a broader overview, while ours was on the connection

between emergence, complex systems and self-organisation. Moreover, a specific interest of our

study, if emergence has been found in industrial agent systems, is also not covered by Kalantari et

al. [KNM20].

Table 3.1: Overview of the number of final documents of the final stage split by type.

Type of document Number of used documents Year of publication

Journal 134 1965-2020

Conference 62 1995-2018

Dissertation 6 1990-2016

Book 53 1920-2019

Technical reports and others 6 1875-2004

Total number: 261

41

CHAPTER 3. METHODOLOGY

Table 3.2: Search strings used in the literature review and their relation to the guiding research

questions.

Number Search String

G RQ1 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation ∨ self-assembly ∨ self-organising
∨ self-generating ∨ self-created ∨ self-ordering ∨ self-arranging)

G RQ2 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (differences)

G RQ3 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (characteristics ∨ properties ∨ features)

G RQ4 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (identify ∨ detect)

G RQ5 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (validation ∨ verification)

G RQ6 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (control)

G RQ7 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (simulation ∨ tools)

G RQ8 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (prediction ∨ forecast)

G RQ9 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (Computer Science ∨ Social Science
∨ Nature ∨ Biology ∨ Economics ∨ Physics ∨ Chemistry)

G RQ10 (emergence ∨ emergent ∨ spontaneous order) ∧ (behaviour ∨ pattern)
∧ (complex systems) ∧ (self-organisation) ∧ (IIoT ∨ IoT ∨ Multi-Agent Systems
∨ Internet of Things ∨ Cyber Physical Systems ∨ CPS)

42

Chapter 4

Emergent Behaviour in Industrial
Systems

This chapter brakes down and aligns the emergence and self-organisation phenomena to the in-

dustrial context. The focus, especially on multi-agent systems, allows for setting boundaries to

the phenomena and places some critique on past research. Based on a definition of a multi-agent

system (MAS) and the introduced boundaries, the chapter presents a formal language-based iden-

tification method for emergence. Moreover, using a formal language approach, linking Kronecker

Algebra as a possible tool to detect emergent pattern formation is possible.

4.1 Seamless Communication in Industry

In the industrial context, emergent pattern formation might appear in the shadow of Industry

4.0 (I4.0) and Industrial Internet of Things (IIoT). Factories are complex technical environments

built upon software and hardware agents from information technology (IT) and operational technol-

ogy (OT) domains. Since the 1970s, IT and OT in industrial automation have formed a hierarchical

automation pyramid [Wil94] with several layers, as shown in the left part of Figure 4.1. The lower

levels of the automation pyramid, close to the factory floor, represent OT devices such as pro-

grammable logic controllers (PLCs) with industrial communication systems, e.g., EtherCAT or

Profibus. OT representing complex control loops must fulfil strict real-time requirements to guar-

antee a timely processing of sensor values and a safe operation of actuators, valves, and electrical

motors [SKJ18]. On a higher level, the control loops are being monitored by employing Supervisory

Control and Data Acquisition (SCADA) systems and other industrial applications [WSJ17]. Appli-

cations in the third OT layer do not have to meet strict real-time requirements; instead, they focus

on high data throughput paired with computational power and internal connectivity. The two top

layers contain Manufacturing Execution System (MES), plant management, business, and Enter-

prise Resource Planning (ERP). They utilise commercial off-the-shelf (COTS) IT, such as servers

and desktop PCs that interconnect via standard IT communication systems (Ethernet) [HGB15].

In this hierarchical architecture, IT/OT are separated. As the communication systems in OT

are optimised for deterministic low latency, tight synchronisation, and low jitter [SKJ18], they

are difficult to bridge into a standard IT network commonly deployed as Ethernet infrastructures.

Similarly, the IT communication networks and systems cannot cope with the deterministic OT

requirements [HGB15]. Those differences result in device isolation on the factory floor from the

computational resources and the connectivity available in the IT levels of a factory. They, therefore,

hinder seamless vertical communication between all devices.

43

CHAPTER 4. EMERGENT BEHAVIOUR IN INDUSTRIAL SYSTEMS

S A S A S A

P/G P/G P/G P/G

P/G P/G P/G

P/G ERP

SCADA

PLC

P - Processing
G - Gateway
S - Sensor
A - Actuator P/G P/G MES

S A S A S A

N/P N/P N/P N/P

N N N

P
P - Processing
G - Gateway
S - Sensor
A - Actuator N P

Cloud

ERP
MES
SCADA
PLC

IP
 C

om
m

un
ic

at
io

n

IT
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

IP
 C

om
m

un
ic

at
io

n

O
T

O
pe

ra
tio

ns

Te
ch

no
lo

gy

IIo
T

Tr
an

sf
or

m
at

io
n

Figure 4.1: Automation pyramid transformation towards a flat IIoT architecture. Adjusted

from [SKJ18].

Closing this IT/OT gap is one of the aims of I4.0 and IIoT. The information can flow without

any hindrance by seamlessly connecting all factory elements and flattening the architecture to an

only IP-based environment, as visualised in the right part of Figure 4.1. The idea is not new and is

based on the IoT, a term coined by Kevin Ashton in 1999. In IoT, the seamless connection spans the

entire Internet and foresees intelligent devices interacting with each other [IA12]. While ubiquitous

computing has existed since the 1980s, the past few years have seen accelerated progress in various

domains, e.g., home and building automation, smart grids, and e-health applications [IA12].

While these changes might benefit data collection and process optimisation, they also introduce

more complexity to the systems. Before, the IT/OT gap created a barrier between agents; now,

they can interact directly. Most components will behave like agents interacting with each other

and their environment. Recalling the main characteristics of emergence in Section 2.3.4, such as

micro-macro effect, novelty, flexibility, decentralised control, interacting parts or coherence, the

reader might agree that in IIoT, emergent behaviour can appear.

4.2 Emergence in Industry 4.0, IIoT and Multi-Agent Systems

Based on the assumption that the emergent pattern formation exists in I4.0 and IIoT, the first

question was whether research covers that aspect. The guiding research questions 9 and 10 were

specifically formulated to answer this question.

A the time being, publications focusing on I4.0, IoT and IIoT and emergence were somewhat

limited. Some researchers focused on hierarchical emergent behaviours influencing an IoT system

to show a desired “emergent behaviour”. The idea is to apply lightweight local rules that define the

interactions between “things” and the environment and create a higher level of behaviour [RNN+16,

RMNV18]. A similar direction is proposed by Mihailescu et al. [MSHD18], where the users’ intention

is included in configuring a role-based approach to influence the IoT system. While the keywords

I4.0, IoT and IIoT did not produce relevant hits, research in MAS is more common.

MASs are closely related to I4.0, IoT and IIoT. However, including MAS brings up the problem

of differentiating between complex adaptive and multi-agent systems. As stated in Section 2.1, in

a complex system, complexity is created by the agent interactions and the creation of information

in the process [Ger12]. The components create the information by transforming old information

into new, therefore considered emergent. Those transformations are dynamic, static, active or

stigmergic [FMG14].

44

4.3. A LITTLE BIT CRITIQUE AND SOME CLARIFICATIONS

In addition, the interactions which are not centrally controlled lead to a higher macro behaviour

of the entire system. The macro behaviour is absent on the agent levels and has an increased

structure or order. Another requirement is that the macro behaviour is created in a self-organising

manner [MMS11]. This self-organised creation of emergence in complex systems is emphasised by

several authors [Gol99, DMSGK11]. Dessalles and Phan [DP06] mention that the macro behaviour

is visible to an external observer (weak emergence) or in strong emergence by the agents themselves.

Research in MAS defines emergence slightly differently. Similarly, according to Li, Sim, and

Low [LSHL06], the interacting agents create the behaviour collaboratively. The Santa Fe Approach

to Complexity (SFAC) is often mentioned within the context of multi-agent systems and emergence.

SFAC defines emergence as patterns, structures, and features as part of the entire system but not as

part of its components (agents). The agents do not have the knowledge or the capacity to predict

the macro behaviour of the system. Nevertheless, knowing about the nature of the interactions

between the agents increases the knowledge about emergent behaviour [DP06].

Multi-agent and complex adaptive systems overlap in the field of robotics. Robotic agents can

self-organise and interact among themselves (and humans), creating emergent behaviour [TNN+16].

Sturdivant and Chong [SC18] propose identifying robot emergence based on symbols.

Lastly, there is a relation to swarm intelligence. This multi-agent type is more common in

biological systems such as fish or ant colonies [Har18, LBT12]. In such systems, the intelligence

created by the entities is considered an emergent property [DSA93]. Collective intelligence is created

by several simple agents [BDTT99, LBT12].

In summary, whether academic research in I4.0, IoT and IIoT covers emergent pattern behaviour

needs to be answered with no. However, the work done in the context of MAS is more extensive

and is closely related.

4.3 A Little bit Critique and Some Clarifications

Before it is possible to go on, there is a need for some criticism of the previously described work.

The following list summarises a few points that are reoccurring issues:

• Some found articles treat emergence relatively as informal and intuitive. This issue goes so far
that emergence is explained without any theoretical foundation [BDG95a, BDG95b, Bro95]

or framework [Baa94, Bed03, RSC99].

• Similarly, some articles use too broad theories and therefore include un emergent phenomena.

• In some cases, the definitions are too narrow [Baa94]. It is impossible to differentiate different
types of emergence or identify the source of the emergent behaviour [Bed03, Car89, RSC99].

• Some authors introduce an aspect of “surprise” to emergence [RSC99, RS00].

• Little is written about modelling techniques that would allow the design and study of emergent
behaviour in multi-agent or complex systems. Note: There is work based on simulations but

with limited results (cf. Section 2.5.3).

It is essential to define boundaries for a formal definition to avoid similar issues. Therefore in the

following, the listed limitations shall apply.

• Firstly, despite a wide spectrum of related work and various definitions presented in the previous
sections, the focus is on a formal method. The aim is to build upon work from authors such

as Kub́ı, Aleš [Kub03], which propose formal definitions to find emergence.

45

CHAPTER 4. EMERGENT BEHAVIOUR IN INDUSTRIAL SYSTEMS

• Secondly, the formal method should allow the construction of examples formally and using a
tool. Most authors remain purely formal without evaluation.

• Thirdly, there is no surprise involved. Surprise is subjective and covers the fundamental
explanations for new system behaviour. An observer might be surprised by behaviour at first

and later gain knowledge about the system that removes the surprise. In addition, the system’s

creator might not be surprised as the behaviour was expected.

In summary, in the following formal proposal shall provide a comprehensible approach for iden-

tifying emergence in industrial systems.

4.4 What Could Cause Emergent Behaviour in a Multi-Agent

System?

Towards a formalised definition of emergence suitable for industrial and multi-agent systems, let

us have a closer look at the possible root causes. As we have learned, the primary indicator of

emergence is the macro-behaviour of the entire system. The interacting agents cause this macro-

behaviour with themselves and the environment.

Therefore we can assume that the agent’s properties, the environment’s influence on the agents,

the interactions between the agents or evolutionary changes could be the source of emergent

behaviour. The possible combinations of causes could lead to different levels of emergence, as

other authors have already indicated. Therefore, we propose the following cases:

1. In the first case, the agents are in a static environment; there is no feedback or input from the

environment towards the agents. Moreover, the properties of the agents remain the same.

2. The second case involves the environment, as it provides input to the agents and influences

their actions. However, both the agents and the environment keep their properties.

3. The third case is similar to the first one; only the agent properties can change over time, i.e.,

the behavioural rules can change or evolve.

4. Case four includes the environment, but only the agents can change their behaviour.

5. The last case allows the agents and the environment to evolve. That is the most complex

case.

The observant reader might have realised that those cases mirror different types of MASs.

From very simple to very complex systems, in some sense, a similar concept as the in Section 2.3.5

presented classification of emergence. Nevertheless, what is still missing is an understanding of

what an agent is.

An agent can be a program, a process, an organism or any entity that can perceive its environ-

ment with some sensors (senders) and produces changes or events with its actuators (receivers).

Moreover, such agents can act autonomously to fulfil their internal goals or programming. That

includes elementary agents that react (memory-free) or react based on a memory, up to agents

that apply reasoning and planning. The latter agent type would represent a social agent that can

negotiate with other agents, e.g., making a plan or solving a conflict. Some robots can already

show such agent behaviour.

A particular type of agent is the environment. The environment is a joint base or structure all

other agents act upon or interact. It can be an active participant or a passive one. In its active

46

4.4. WHAT COULD CAUSE EMERGENT BEHAVIOUR IN A
MULTI-AGENT SYSTEM?

Agent 1 Agent 2 Agent 3

Blackboard
aacc ggcc zztf kskf

oopp qzzt nodr aacc

Figure 4.2: A simple model to visualise three agents and a common blackboard (environment).

form, it influences all agents, for example, by imposing rules (e.g., laws in social agents). Based on

this understanding of a MAS, it is possible to represent cellular automata, neural networks, software

applications, organisms, ecosystems, or other social systems.

4.4.1 Informal Definition of Basic Emergence and the Connection to Formal

Languages

After getting an idea of categorising emergent behaviour in multi-agent systems, we can formulate

a first informal definition for emergence. This informal definition will provide the baseline for our

formal definition.

First, we limit our approach to an elementary form of emergence without self-organisation.

A type often called “Basic Emergence” where the agent interactions in a shared environment

clearly cause the phenomena. However, the emergent phenomenon is not just a summation of

the behaviours of individual agents in the environment. The agents and the environment are not

evolving during their interactions (i.e., an agent’s behavioural set stays the same during the time).

The environment is purely passive and does not influence the agents; however, it is changed by them.

Therefore, in our definition, only emergent phenomena that MAS of the first case can represent are

possible. Compared to the definition of DeWolf and Holvoet [DWH05] in Section 2.3.2, we exclude

dynamical aspects, but remain closely in line.

Focusing on basic emergence first makes it possible to formulate an approach based on for-

mal languages and grammar systems. In recent decades, research in distributed computing and

decentralised systems has brought up several grammar systems that allow a formal description and

modelling of multi-agent systems [CVDKP18]. The main advantage of a formal language approach

is that it provides a joint modelling base with a defined alphabet and rewriting rules for all the

system parts. The micro-structures (the agents’ alphabet and the rewriting rules) create directly

observable macro-patterns (the language of the system). There is no need for different languages

to describe the agents and the system, as the rewriting rules specify the agents’ actions that from

the system’s behaviour [Hol98].

Before diving into formal language definitions, let us establish a simple model. Figure 4.2 shows

three agents that communicate with each other via the environment (blackboard/tape). The agents

each have a language created by grammar and symbols. Those symbols are written on the tape

and form words. In the following, we introduce the basics of formal languages and how grammar

systems can help to create a formal language proposal to identify emergence in MAS.

47

CHAPTER 4. EMERGENT BEHAVIOUR IN INDUSTRIAL SYSTEMS

4.5 A Formal Language Proposal

Research about formal language theory examines formal language properties and their relation to

model computational devices, such as FSMs or Turing machines. The Chomsky hierarchy of formal

languages [Cho56] connects the various languages with different computational devices.

A central element of formal languages are grammars which define how to write symbols on a

tape guided by rewriting rules. As grammar creates a language, a significant research interest lies in

creating simple grammars to generate complex languages. In most cases, formal grammars define

nonterminal and terminal symbols. The nonterminal symbols can be rewritten, while the terminal

symbols are unchangeable. Strings that consist of terminal symbols produced by the grammar are

called words. Therefore, a language defined by grammar is a set of words and strings.

If more than one grammar is operating on one tape (or several tapes), then the system has

evolved into a grammar system. The different grammars interact via the tapes they write upon, i.e.,

each grammar is an individual computational device with a set of rules and symbols. It is possible

to model MAS with specific properties, with grammar systems. The single grammar represents

an agent that operates on the tape (environment) and creates events based on their behaviour

(rewriting rules) [CVDKP18]. Different grammars are available, each varying in communication

type, amount of tapes or component grammars. For further information, we guide the reader

to [Sal73, ST99].

4.5.1 Formal Languages

As mentioned before, most formal languages and grammar systems are based on Chomsky Gram-

mars [Cho56]. Within this dissertation, let us define A as a finite alphabet containing symbols or
letters. A∗ shall represent all strings ℓ that can be created of the symbols in A and the length of
a string ℓ ∈ A∗ (the number of symbols in string ℓ) we define as |ℓ|. An empty string is denoted
by κ . In a string, the number of times a symbol can occur H ⊆ A in ℓ ∈ A∗, shall be |ℓ|H. To
concatenate strings, we define u ⋄ v , where u, v ,∈ A∗, yet we often omit the symbol and write uv
instead. A Chomsky Grammar [Cho56] is defined as a quadruple:

G = (N, T, P, S), (4.1)

where N stands for a nonterminal and T for a terminal alphabet. P is a finite set of rewriting

rules (productions) which define operations in the form of y → x , with y , x ∈ A∗. S ∈ N is a
starting symbol. A direct derivation in G is =⇒ or =⇒G . Transitive and reflexive closures of the
relation =⇒ are =⇒+ and =⇒∗. A language L in A is a subset of A∗. Union, intersection, and
complementation are defined over languages, as usual. The language generated by G is a construct:

L(G) = {w | S =⇒∗G w,w ∈ T ∗} (4.2)

The formal language elements are called strings or words. Returning to Figure 4.2, each agent has

its specific language.

4.5.2 Cooperating Grammar Systems

Grammar systems are a combination of grammars (agents) that rewrite their symbols on a joint

tape [CVDKP18]. Each grammar rewrites a portion of the tape, as an agent would do in its

environment. Different cooperation strategies define how grammars can rewrite the symbols on the

tape and whether they communicate directly. Moreover, it is defined when the process of derivation

48

4.5. A FORMAL LANGUAGE PROPOSAL

ends. In some cases, the environment (tape) can have its own rewriting rules and therefore interfere

with the agents [CVKKP97]. The grammar system creates a new language, different from the

languages generated by individual grammars.

Formally a cooperating grammar system can be defined as:

Γ = (N, T, S, P1, P2, . . . , Pn) (4.3)

N is again a nonterminal and T a terminal alphabet, S ∈ N is the starting symbol. The
P1, P2, . . . , Pn stand for the finite sets of rewriting rules over N ∪ T . In a cooperating grammar
system, a basic derivation is defined as =⇒pi :

x =⇒pi y if holds that, x = x1ux2, y = x1vx2, x1, x2 ∈ (N ∪ T)∗, u → v ∈ Pi . (4.4)

It is also possible to define derivations of arbitrary length =⇒∗pi and for a specific amount of steps
h for h ≥ 1 we write =⇒hpi . For the maximal derivation, we write =⇒tpi . However, more interesting
is how a derivation of strings on the tape is coordinated when more than one agent operates on it.

Let us define: F = {∗, t}∪≤ h,= h,≥ h | h ≥ 1. Therefore a cooperating grammar system Γ with
n elements and f ∈ F , the language Γ creates in the mode f is:

Lf (Γ) = {x ∈ T ∗|S =⇒fpi1 x1 =⇒
f
pi2
x2 . . . =⇒fpim xm = x,

m ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ m}. (4.5)

Another question is how the derivation in a grammar system proceeds. The answer is either

parallel or sequential. If the agents write on the tape in parallel, synchronisation is required as

the tape is a shared resource. On a tape, two or more agents cannot rewrite the same symbol

simultaneously. The synchronisation prevents the agents from writing on the same symbol. In case

the agents write in sequence, no synchronisation is required as they get their turns to write without

disturbance. In Figure 4.2, one line on the blackboard represents the output of the cooperating

agents.

The next issue open to be solved is that so far we only considered a one-dimensional tape of

symbols. For our proposal, we need to be able to capture all symbols on the blackboard.

4.5.3 Cooperating Array Grammar Systems

One possibility for grammars to operate on a canvas or blackboard is introducing array grammars

that extend the one-dimensional tapes with a second dimension. This approach is successfully

used in pattern recognition or analysis of agent behaviour. The book of by P.S.P. Wang [Wan89],

provides an overview of possible applications of array grammars and cooperating array grammar

systems.

Array grammars are just regular two-dimensional arrays that allow the identification of each

symbol by its i , j index. Nevertheless, in array grammars, the extent of the board is limitless, i.e.,

there is no limit to the number of symbols that can be written. # symbols fill empty spaces. As

the one-dimensional grammars, array grammars are defined by their rewriting rules, just in this

case, the input and outputs can be arrays. We note we are using only a small portion of the

array grammars capabilities, and therefore we guide the reader for more details to [DFP95, FFH99,

Fre00]]. Especially, Dassow et al. [DFP95] provides interesting insights into the topic.1

1The following definitions are based on Dassow et al. [DFP95]. For better readability, we refrain from adding to

each line a reference.

49

CHAPTER 4. EMERGENT BEHAVIOUR IN INDUSTRIAL SYSTEMS

However, let us first define an array of symbols as a set of point coordinates i , j and a corre-

sponding symbol placed on the tape. Moreover, let Z be a set of integers and V again an alphabet.
An array A over V is A : Z2 → V ∪ {#}, where,

support(A) = {v ∈ Z|A(z) ̸= #} (4.6)

represents a set of coordinates without the blank symbol (# /∈ V). We can write

A = {(v , A(v)|v ∈ support(A)}. (4.7)

Next, we denote all two-dimensional nonempty arrays over V by V +2. Each subset of V +2

represents an array language, while the arrays are the languages’ words. Therefore we can define

that an array A ∈ V +2 and a finite pattern α of symbols over V ∪#, α is a subpattern of A if the
following holds:

• The superimposition of α on A needs to be possible so that all vectors of α with symbols
from V coincide with the corresponding symbols in A.

• In addition each # in α corresponds to a # in A.

According to Dassow et al. [DFP95] an array grammar is a construct

GAr = (N, T,#, P, {(v0, s)}), (4.8)

with the alphabets N, T containing nonterminal and terminal symbols. The symbol # is, as

above, a blank symbol. P is a finite set of rewriting rules α→ β. The array pattern α, β span over
N ∪T ∪{#}. {(v0, s)} defines a starting array, with an starting vector v0 ∈ Z2 and starting symbol
S ∈ N.
Applying the definitions above, we can now say that for an array grammar GAr = (N, T,#, P, {(v0, s)})

and two words A,B ∈ (N ∪ T)+2 the relation A =⇒ B holds if:
• a rule exists α→ β ∈ P such that α is a subpattern of A,
• and that B is created by replacing α in A by β.

In addition, =⇒∗ denotes the reflexive and transitive closure of =⇒. Following again Dassow et
al. [DFP95], an array grammar GAr generates a language with the following structure:

L(GAr) = {A ∈ T+2 |{(v0, S)} =⇒∗ A}. (4.9)

Therefore, based on the previous definitions, a cooperating array grammar system can be formally

defined as an (n + 4)-tuple:

GSAr = (N, T,#, {(v0, S)}, P1, P2, ..., P n), (4.10)

In summary, a cooperating array grammar system describes parallel rewriting operations on a

tape by various array grammars. Nevertheless, more than one production rule cannot rewrite a

symbol. Using the above definitions makes it possible to define subsets of array grammars. For

example, in a subset Sub1 = {Ai, 1 ≤ i ≤ n}, and two arrays D1, D2 ∈ V ∗2 ∪ {#}, the direct
derivation can be expressed as D1 =⇒S1 D2. This derivation requires array productions in the form
of pij ∈ Pi , 1 ≤ i ≤ n, 1 ≤ j ≤ li (jth rule of ith array grammar) pij = αij → βij . Those productions
need to apply for:

• Any array symbol ω1 with index vk , 0 ≤ k ≤ r × s − 1, r, s ∈ Z

50

4.5. A FORMAL LANGUAGE PROPOSAL

• that is a subpattern of β i j1, and not a subpattern of αij1 .

• Any array symbol ω2 with index vm, 0 ≤ m ≤ r × s − 1, r, s ∈ Z
• that is a subpattern of βij2 and is not a subpattern of αij2 .

• Plus all symbols are disjoint (k ̸= m).

With the above definitions, the agents in Figure 4.2 can rewrite a portion of an array tape in

one step. In each step, the array grammars (agents) apply their rewriting rules on the tape.

4.5.4 Modifications on Cooperating Grammar System

Now there is the possibility to capture the agents behaviours on the blackboard. However, there is

one limitation in Chomsky grammars. This type of grammar assumes that the derivations end at

some point, e.g., terminal symbols. As in agent systems, the interactions might go on endlessly, we

propose to soften this requirement, and use so called “pure” grammars. Another simplification, is

that all agent symbols shall be part of the alphabet VA and all environmental symbols in VE .

4.5.5 Summing up the Agents Behaviour

Returning to the informal definition of emergence in Section 4.4.1, there is a need to define the

sum of the agents’ behaviours in a MAS. One possibility is to sum up the languages of the agents if

they do not communicate. By doing so, we get a set of words that the agents can generate if here

is no interaction. In other words, the agents write on the tape as they are the only ones doing so.

By summing up these words, we get a candidate for all individual agent behaviours. Let us define

Lsum for n languages as Lsum = {L1 + L2 + . . . + Ln}. Each language contains words of symbols
∈ VA.

4.5.6 A Formal Definition of a Basic Emergence

After the short overview of formal languages and their application in cooperating grammar systems,

it is possible to define a proposal for a formal definition of emergence in MAS. First, let us represent

a MAS as a cooperating grammar system in the following way:

MAS = (VA, VE , A1, A2, A3, . . . , An, S). (4.11)

Where VA, as introduced before, is the alphabet of agent symbols and VE stands for the environ-

ment. The alphabet describing the entire MAS is V = VA ∪ VE . S is the initial starting point of the
environment, in most cases, an empty set. Each of the n agents is defined by A1, A2, A3, . . . , An;

they are a finite set. The agents itself we define as:

Ai = (Vi , Pi , Si) (4.12)

Similarly, as before, Vi ⊆ V is the alphabet of agent Ai . Si is the initial starting point, and Pi is
a set of rewriting rules. Utilising the definitions of the cooperating grammar system, an agent can

derive from u =⇒ v in case u, v ∈ V + there is a rule α→ β ∈ Pi such that α is a subpattern of A,
and B is obtained by replacing α in A by β. We denote the language of an Ai by

L(Ai) = {w ∈ V +|Si =⇒∗ w}. (4.13)

51

CHAPTER 4. EMERGENT BEHAVIOUR IN INDUSTRIAL SYSTEMS

The derivations are done either parallel or sequentially so that there is no interference between

the agents when writing on the environment. Note that it still applies that more than one agent

cannot rewrite a part of the environment/symbol at the time. As not all agents will write at the

same time and produce a w , we define a subset of agents:

Sub1MAS = {Ai | 1 ≤ i ≤ n}. (4.14)

Now the L(MAS) = {w ∈ V +|S =⇒ Sub1MASw1 =⇒ Sub2MASw2 . . . =⇒ SubnMASwn}
is the language generated by the MAS. If L(MAS), compared with the agent languages Lsum =
{L1+L2+ . . .+Ln | 1 ≤ i ≤ n} creates a situation where a w ∃ and is ∈ L(MAS) but is /∈ Lsum,
then the defined property of basic emergence is fulfilled. Simplified, the definition above states that

in case a MAS as a whole creates a language (behaviour) that cannot be found in the sum of the

agents’ languages (agent behaviours), the ground that the MAS shows basic emergence is fulfilled.

4.5.7 Some Comments

The above-presented definition is a simple approach to identifying basic emergence in MAS, fo-

cusing on agents’ interactions. While this focus is minimal, considering the variety of possible

causes of emergence, it represents a reasonable starting point. The approach can be extended in

future work, as there are possibilities to include different forms of communication [Kub01], adjust

the internal structure of the agents (stateful, reasoning), or incorporate the influence of the envi-

ronment [CVDKP18, CVKKP97]. Those extensions would cover all four MAS cases presented in

Section 4.4.

The next section, briefly elaborates on, how the tool was chosen to apply the above definition. We

note already, that the process was not linear rather evolved over time after several tryouts.

4.6 Finding a Suitable Tool

Let us have another look at Figure 4.2 and try to adjust it to visualise the previously presented

formal definition. Each agent writes its symbols on the tape and changes parts of the tape based

on the cooperating grammar rules. If we add several stacked “tapes”, we already get a good idea

of how it would look when the agents write the symbols over time. Figure 4.3 shows the three

agents writing their symbols on the tapes. If we see the different tapes as a sequence, the different

written symbols could also be state changes.

As introduced before, formal languages model computational devices. In our case, we use a

grammar (Type 3, regular grammar in the Chomsky Hierarchy [Cho56]) that can be executed by

finite state machines (FSMs). FSMs are finite automatons represented by states and directed

edges.2 The strings created by the state machine represent the language. Therefore, we can

represent the agent’s behaviours completely.

If we assume that FSMs can represent our agents, we need a tool or method that can operate

with FSMs. Additionally, to fulfil the idea of the entire system representation, it must be possible

to determine all possible states of an MAS in operation. In other words, the tool must provide all

recorded steps on the blackboard the agents issued. Let us summarise all basic requirements:

2A formal introduction will be given in Chapter 5.

52

4.6. FINDING A SUITABLE TOOL

Agent 1 Agent 2 Agent 3

Figure 4.3: The adjusted simple model of three agents cooperating on a common blackboard

(environment). The tapes are stacked to visualise the activities over time.

• The tool needs to individually represent the agents as FSMs.

• The FSMs need to be able to interact (synchronisation)

• All interactions and issued symbols must be available (the entire state space).

One possibility would be to apply a simulation environment, where the state machines execute the

steps and the communication symbols are recorded for later analysis. However, in simulation, there

is always the possibility that specific interactions never get recorded. Moreover, simulation tools

only represent the state machines but do not manipulate them. Another option is mathematical

tools such as Matlab or specific programming languages like LinguaFranka and Rebeca or model

checker like UPPAAL+, capable of representing MAS. Those tools would make a good choice,

especially LinguaFranka or Rebeca; however, their focus lies timing analysis to discover issues in

safety critical applications such as airplanes or cars.3

In our search, we identified a particular type of algebra, namely Kronecker Algebra, that fulfils

all the requirements and additionally inlines very well with our formal approach. Nevertheless, we

had to extend Kronecker Algebra with capabilities such as:

• Combining state machines to a large system representation.

• Be able to create state machines from message sequence charts (MSCs).

• Create the possibility to prioritise agents over others.

• Allow timing analysis of execution paths.

We elaborate on the reasons for the extensions in the following sections. Nevertheless, the

findings of the literature review support some extensions. So far, no research has been conducted

on the influence of priorities and timing of agent interactions. As mentioned in the methodology

chapter, we also created knowledge while extending Kronecker Algebra. Therefore, each chapter

is a single contribution. Each contribution is applicable to other problems, not only to our formal

approach.

3We plan to use LinguaFranka and Rebeca in future work.

53

CHAPTER 4. EMERGENT BEHAVIOUR IN INDUSTRIAL SYSTEMS

4.7 Summary and Limitations

Within this chapter, we elaborated on our definition of basic emergence. The definition is based on

the literature review results and aims to provide a formal definition. The use of different cases of

MAS as a framework and formal languages as guidance, the definition proposes a cooperating array

grammar system to identify basic emergence. In essence, the symbols issued by the cooperating

agents will give rise to a higher level of systems behaviour. If there is a difference between the total

system behaviour and the sum of the languages of the agents, emergence might be present. In this

way, it is possible to observe the micro-macro behaviour of the agents formally.

While only basic emergence is the target, the definition can be extended to more complex types

of emergence. Limitations are that no evolutionary processes of the agents nor the environment are

considered, as well as hierarchical interactions. Moreover, we consider the environment passive and

not influencing the agents’ behaviours. The presented definition follows ideas from Kub́ı [Kub03],

and Dassow et al. [DFP95]. Nevertheless, the differences are that Kub́ı [Kub03] focuses on the

superimposition of the cooperating agents’ languages while we use the summation of the agents’

languages. Moreover, we can provide a total system representation based on our chosen tool. The

work of Dassow et al. [DFP95] is different in the perspective that the authors used their cooperating

array grammars to identify patterns in images.

Based on the presented formal definition, we defined requirements a possible tool must fulfil for

the evaluation. Kronecker Algebra was chosen as an appropriate solution as it allows the contin-

uation of a formal treatment of basic emergence. Moreover, it represents a significant difference

to other research that mainly remained in the formal context or resorted to simulation to identify

basic emergence. The next chapter introduces the basics of Kronecker Algebra.

54

Chapter 5

Kronecker Algebra — A Matrix
Calculus

This chapter will mainly be concerned with introducing the basic concepts of Kronecker Algebra

and its applicability to verify software properties. In particular, we introduce methods to check

if a single-threaded software implementation complies with usage scenarios specified for parts of

the software. More accurately, if the software’s control-flow graphs (CFGs) comply with a usage

scenario in the form of an FSM. Thus we further introduce FSMs, their matrix representations and

how to manipulate them with Kronecker product operation—followed by Kronecker Sum and syn-

chronisation primitives such as semaphores. The chapter also explains how to implement Kronecker

operations efficiently and presents an overview of related work.

5.1 A little History of Kronecker Algebra

The history of Kronecker Algebra, has many facets and fascinated several researchers over centuries

that came up with ever new ideas how to apply it. Therefore, the following background is only a

mere scratch on the surface.

Johann Georg Zehfuss introduced the primary operand defined by the symbol ⊗ in 1858 [Zeh58].
Throughout history, this operand received various names, such as the Zehfuss product, the Hurwitz

product, the Producttransformation, the conjunction, the tensor product, the direct product, and

Kronecker product. Nowadays, the name Kronecker product is mainly used for the symbol and

operation, ⊗. Research conducted by Brigitte Plateau [Pla85] in the context of stochastic au-
tomata, provided the operation with wide attention from the community. In the following, Gerhard

Küster [Küs91] proved that Kronecker Sum generates all interleavings of concurrently executing

automata. Over the last decade, Kronecker Algebra was extended with other operations. For a

general overview, the interested reader might consider consulting the work of Graham [Gra18].

Applying Kronecker Algebra (i.e., Kronecker product and Kronecker Sum) to automata within the

Kuich-Salomaa notation was presented by Mittermayr and Blieberger [MB11].

55

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

1start 2
b

aa

Figure 5.1: A simple example of an FSM (M)

5.2 Finite State Machines and their Matrix Representation

The possibilities and tools for modelling software systems are close to endless. However, so-called

finite state machines are a basic recurring pattern differing only in naming in most modelling lan-

guages. Similar concepts are, for example, finite automata or flow graphs. In the course of this

dissertation, FSMs play an essential role.

Each FSM consists of a finite number of states, and there is generally only one initial state.

The FSM (M) depicted in Figure 5.1 has state 1 as its initial state, indicated by an arrow named

”start”. Each state can also be a final state, and there is no limitation on the number of final

states. FSM (M), has only one final state, state 2, marked with a double circle. The states can be

named arbitrarily; however, within this dissertation, the states will be numbered from 1 to n if an

FSM consists of n states.1

The connections between the states in an FSM are “directed edges”. Each edge has a direction

indicated by an arrow and indicates a state transition. Those transitions happen while a system

evolves, i.e., it changes its state via an edge.2 Usually, each edge has a label, and our FSM (M) in

Figure 5.1 has three:

• edge (1 → 1) labelled with “a”,
• edge (1 → 2) labelled with “b”, and
• edge (2 → 2) again labelled with “a”.

The edge labels can serve different purposes; however, for the moment, we define them as a set

of labels L. Later on, labels will play an essential role. While most readers might be familiar with
how a state machine evolves, the following explanation helps to understand the next section. The

system represented by the FSM (M) will start at state 1. From there, two options exist. Either via

the state transition 1 → 1, i.e., (M) stays in the same state but still issues label “a”. Alternatively,
it transits to state 2 via the edge (1 → 2) and produces the output “b”. In state 2, (M) has the
possibility again via the edge (2 → 2) to produce output “a”, or the system terminates as state 2
is a final state.

While the above example implies an activity, an FSM does not ”issue” an edge label; it is a

passive construct that reacts to the input string created by a program and does not create an

output. However, later chapters often suggest that an FSM issues a label/edge. The first reason

is that we sometimes use CFGs of programs as FSMs (cf. Section 5.4.1). As a program executes,

the activity is indicated by issuing a label. Another reason is the previous chapter, where we used

FSMs to represent MAS agents with “active” behaviour.

1In some cases, the node numbering will be different due to the applied operations.
2This is a deterministic process. Other state machines use different approaches, such as probabilities, when

changing a state. [HMU06]

56

5.2. FINITE STATE MACHINES AND THEIR MATRIX
REPRESENTATION

A formal definition of a deterministic FSM [HMU06], is a quintuple: (Q, ι,LA, T, F), with a
specific name M and a given alphabet

�
A, where:

• Q is a finite non-empty set of states,

• ι is an initial state (ι ∈ Q),
• F is the set of final states, a subset of Q,

• LA ⊆
�
A is the input alphabet, and

• T is the state transition function: T : Q× A→ Q.

The reader agrees that representing an FSM in a graphical form has advantages. The visualisation

of states and edges provides a better understanding of what is happening in which case. However,

that benefit only applies to human readers. For computers, it is unsuitable as it does not allow

further operations or manipulations.

5.2.1 Matrix Representation

An alternative representation for FSMs utilises matrices and vectors. But let us first introduce basic

matrix terminology that applies in the remainder of this dissertation.

A p-by-q matrix

M = (mi ,j) =

����
m1,1 m1,2 · · · m1,q
m2,1 m2,2

. . .
...

...
. . .

. . .
...

mp,1 mp,2 · · · mp,q

���� (5.1)

has p rows and q columns. It has therefore, p times q entries (mi ,j). The i and j in mi ,j denote

the row and column numbers within the matrix M. That allows us to define the set of matrices

M = {M = (mi ,j) | mi ,j ∈ L} and state that only matrices M ∈ M will be used in the remaining

parts of this work. Often we use a k-by-k matrix known as a square matrix of order k . Furthermore,

we introduce zero matrices Zn = (zi ,j), where ∀i , j : zi ,j = 0. For the zero matrices, we require
neutral elements, for which applies mi ,j · 1 = 1 · mi ,j = mi ,j and mi ,j + 0 = 0 + mi ,j = mi ,j and
we note that mi ,j · 0 = 0 · mi ,j = 0. The operation, written in infix notation “·”, simply denotes
the juxtaposition of its operands. For example let a and b denote two entries (edge labels), then

a · b, denotes their juxtaposition. In addition, we define it as a repetitive juxtaposition of identical
operands in the power notation, e.g., a · a · a = a3. The operation with, written in infix notation
“+”, denotes an operation of choice. For example let a and b denote two entries (edge labels), then

a + b, denotes that we are free to choose either a or b. In a program context, that is the same as

an if-statement. We further assume that a+b = b+ a, as the order of the then- and else-branches

of if statements, is not crucial for our case. The reason is we do not know the conditions of the

if statements and the exact order of the then- and else branches and their evaluation order as, for

example, in elif arms. Further, we assume that “+” is an idempotent operation, i.e., a+a = a. And

finally, we note that the operations obey distributive laws, i.e., a · (b + c) = a · b + a · c = ab + ac
and (a + b) · c = a · c + b · c = ac + bc .

57

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

As identity matrix In of order n, we introduce a matrix with ones at the main diagonal and zeros

elsewhere, i.e.,

In = (mi ,j), where mi ,j =

�
1 if i = j,

0 otherwise.

Another matrix that we often refer to is a so-called sparse matrix. Let M = (mi ,j) ∈ M and

the number of entries unequal to zero defined by ||M|| = |{mi ,j |mi ,j ̸= 0}|. Thus a sparse matrix is
an n-by-n matrix that fulfils ||M|| ≤ c ∗ n, where c is a constant independent from n.
After the above definitions, it is possible to create a correspondence between matrices and

FSMs. Let us define that any arbitrary FSM is also a directed labelled graph G⟨V,L, ne⟩, with a
set of labelled nodes V , a set of labelled directed edges L and an entry node ne . Therefore, the
correspondence between FSMs and matrices (referred to as adjacency matrices) is as follows. Each

graph node represents a positive integer, reflecting the row and column in the adjacency matrix. If

an entry mi ,j = a in an adjacency matrix exists, a directed edge exists from node i to node j with

label a in the directed graph. If there is no entry, (mi ,j = 0), there is no edge from node i to node

j .

Let us return to our example FSM (M). M has two states; therefore, a square matrix M is

created with the order of k = 2, i.e., a matrix with p = k rows and q = k columns. Each of the

edges of FSM (M) is now filled into M as described above, which leads to:

M =

a b

0 a

�
Note: places without an edge are filled with a “0”. However, as the matrices tend to grow fast,

we replace the 0 entries with “·”, to enhance readability. Therefore, the matrix M reads now:

M =

a b

· a
�

(5.2)

The initial and final states are the last FSM (M) elements that are still missing. We can

represent those states with the previously introduced neutral elements (e.g., a · 1 = 1 · a = a,
a + 0 = 0 + a = a and a · 0 = 0 · a = 0). With the neutral elements, we model:

1. The initial states by a line vector solely consisting of 0s and precisely one 1. In particular, if i

is the initial state, then the ith entry equals 1.

2. The final states by a column vector consisting of 0s and 1s. More precisely, if f is a final

state, then the f th entry equals 1. Thus, the final state vector has precisely as many entries

equal to 1 as there are final states in the FSM.

In our example FSM in Figure 5.1, the initial state vector is S = (1, 0) and the final state vector is

F =

0

1

�
.

While it is now possible to represent an FSM as a matrix, what benefit is gained? Especially as

the graphical representation (cf. Figure 5.1) is more intuitive and the matrix representation more

complex at first sight. Therefore, the following section explains how matrices are valuable tools for

modelling state transitions.

58

5.2. FINITE STATE MACHINES AND THEIR MATRIX
REPRESENTATION

5.2.2 State Transitions (Finding Successors)

To recapitulate, the matrix M of an FSM is a compact representation of all possible state transitions.

In case there is an interest in knowing in which state a system might evolve, based on current state i ,

the natural way might be to turn towards the graphical representation to find all possible successors

of node i , i.e., all connected nodes that are reachable via a directed edge starting from node i .

However, that can be done as well by looking at row i of matrix M, because all non-zero entries

are successors of node i . Alternatively, if the (i,j) (row i, column j) entry in matrix M is non-zero,

node j is a possible successor of i . If the system evolves along that edge, it will issue the label at

the matrix’s entry mi ,j .

In our example FSM in Figure 5.1, let us assume the system is in state 1. The state machine can

therefore evolve either:

• via edge (1 → 1) and issue the label a,
• or via edge (1 → 2) and issue the label b.

The reader will agree that the same information is immediately visible when looking at the

matrix M in Eq. (5.2) at row i = 1. At first sight, that might not be very impressive; however, if

the transition count is higher, it becomes more challenging to gain information from the graphical

representation of the FSM. The matrix representation is more suitable for automation purposes.

For example, it is possible to compute Mk ,i.e., the output of the FSM after k transitions. Let

us use matrix M again and calculate,

M2 = M ·M =

a b

0 a

�
·

a b

0 a

�
.3

We assume the reader is familiar with matrix multiplication; however, we apply the operations

introduced in Section 5.2.1 for multiplication “·” and summation “+”. For example, to calculate
entry (1, 1) of the above matrix product, we take row 1 from the left matrix (a, b) and the column

1 of the right matrix

a

0

�
. Thus we get

a · a + b · 0 = a2 + 0 = a2,
for our first entry. We calculate the remaining entries in the same way.

M2 = M ·M =

a2 ab + ba

0 a2

�
Now, the result can be interpreted again via the rows of the matrix. If the FSM was in state one,

we could see that it either stayed in state 1 (by performing two transitions via the edges 1 → 1→
1, with the outputs a · a = aa = a2) or it evolved to state 2. The latter can transition in two ways:

1 → 1→ 2 with the outputs a · b = ab or
1 → 2→ 2 with the outputs b · a = ba.

Which transitions will be performed at the end depends on the input. With some further mathe-

matical effort, we can define “all possible outputs of a state transition system”. By introducing a

Kleene star and an algorithm introduced by Ésik and Kuich, we can calculate M∗ [ÉK12, p.36]. M∗

represents the
�
k⩾0M

k (the sum of all Mk), and applied to our example would result in

3We use 0 instead of “·” for the mathematical representation.

59

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

M∗ =

a∗ a∗ba∗

0 a∗

�
.

By taking the initial S and final F state vectors into account, we obtain

S ·M∗ · F = (1 0) ·

a∗ a∗ba∗

0 a∗

�
·

0

1

�
= a∗ba∗.

This result can be understood that our FSM creates as an output an arbitrary number of “a”

followed by one single “b”, again followed by an arbitrary number of “a”. One would expect this

output when looking at the FSM in Figure 5.1. However, the same finding could be found straight-

forwardly and algebraically, which can be easily automated. In the following sections, we introduce

other well-known matrix operations allowing other interesting analyses of transition systems.

As a side note, the above definitions assume that there is always an end state; however, later in

this dissertation, state machines without end nodes, such as semaphores, will be used. Such state

machines are defined as Büchi Automata and are not explicitly introduced (the interested reader is

guided to [ÉK12] for a definition). The reason is that the following matrix operations allow handling

both types of state machines. Moreover, the two types will not be differentiated in the following

chapters for simplicity.

5.3 Definition of Kronecker Product

Kronecker product denoted with operand ⊗ is the product of two matrices AmA×nA ∈ RmA×nA and
BmB×nB ∈ RmB×nB , written as A⊗ B. This algebraic tensor operation is defined as:

A⊗ B =

���
a1,1B a1,2B . . . a1,nB

a2,1B a2,2B . . . a2,nB
...

...
. . .

...

am,1B am,2B . . . am,nB.

��� (5.3)

Whereby, each ai ,jB is a block of size mB × nB. E.g., if

A =

a1,1 a1,2
a2,1 a2,2

�
, B =

��
b1,1 b1,2
b2,1 b2,2
b3,1 b3,2
b4,1 b4,2

�� (5.4)

then A⊗ B =

����������

a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2
a1,1b3,1 a1,1b3,2 a1,2b3,1 a1,2b3,2
a1,1b4,1 a1,1b4,2 a1,2b4,1 a1,2b4,2
a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2
a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2
a2,1b3,1 a2,1b3,2 a2,2b3,1 a2,2b3,2
a2,1b4,1 a2,1b4,2 a2,2b4,1 a2,2b4,2

����������
. (5.5)

60

5.3. DEFINITION OF KRONECKER PRODUCT

5.3.1 Further Properties

Kronecker product has some further properties. Let A, B, C, and D be matrices. Kronecker product

is non-commutative because, in general, it applies

A⊗ B ̸= B ⊗ A.

However, it is permutation equivalent because there exist permutation matrices P and Q such that

A⊗B = P (B⊗A)Q (cf. [Wei62, Gra18]). Moreover, in the case that A and B are square matrices,
then A⊗ B and B ⊗ A are permutation similar (cf. [Gra18, Pla85]). It is associative as

A⊗ (B ⊗ C) = (A⊗ B)⊗ C. (5.6)

In addition, Kronecker product distributes over +, i.e.,

A⊗ (B + C) = A⊗ B + A⊗ C, (5.7)

(A+ B)⊗ C = A⊗ C + B ⊗ C. (5.8)

Other properties are for example, the connectedness of the corresponding undirected [Wei62]

and directed graphs [McA63, HT66]. Similarly, about the correctness of resulting graphs in [HIKer].

We guide the reader to [Bel97, Hur94] for additional properties and proofs.

5.3.2 Our Semiring

As indicated the Kronecker product found various applications suitable for natural and real numbers

(R) [Gra18]. Nevertheless, in the course of this dissertation, R is generalised to R, which denotes
a semiring (R,+, ·, 0, 1) where (R,+) is an idempotent monoid with identity element 0 (i.e., (a +
b) + c = a + (b + c), a + 0 = 0 + a = a, a + b = b + a, and idempotent means a + a = a for

a, b, c ∈ R). In addition, (R, ·) is a monoid with identity element 1 (i.e., (a · b) · c = a · (b · c),
a · 1 = 1 · a = a, but in general a · b ̸= b · a for a, b, c ∈ R), multiplication left and right distributes
over addition (i.e., a · (b + c) = a · b + a · c and (a+ b) · c = a · c + b · c), and multiplication by 0
nullifies R (i.e., a · 0 = 0 · a = 0 for a ∈ R).4 Furthermore, the semiring is equipped with the unary
star operation ∗. For each l ∈ L, l∗ is defined by: l∗ =�

j≥0 l
j , where l0 = 1 and l j+1 = l j · l = l · l j

for j ≥ 0.
The main application of Kronecker product within this dissertation is related to FSMs, as it

calculates the simultaneous executions of the input matrices. For this reason, we can use the

operation ⊗ to synchronise automata.

5.3.3 Applying Kronecker Product

As introduced in Section 5.2, state machines consist of states, edges, and labels. For using Kro-

necker product on FSMs, they have to be represented as matrices in the form introduced in Sec-

tion 5.2.1. For demonstration purposes, let us assume we have two FSMs, A and B (cf. Figure 5.2),

multiplied by Kronecker product as shown in Eq. (5.9) and considering the definitions given in the

semiring.

4The semiring follows up on the definitions presented in Section 5.2.1.

61

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

1start 2
b

a

1start 2
a

b

Figure 5.2: The two FSMs A and B

A⊗ B =

a b

· ·
�
⊗

 · a
· b

�
=

��
· a · a · b · a
· a · b · b · b
· · · ·
· · · ·

�� (5.9)

Additionally we compute with the initial and final states SA = (1, 0), SB = (1, 0), FA =

0

1

�
and

FA =

0

1

�
:

SA⊗B = (1, 0, 0, 0), FA⊗B =

��
0

0

0

1

�� (5.10)

this leads to the FSM depicted in Figure 5.3. The reader might find this at first sight not very

impressive. However, after a short reflection, it becomes evident that Kronecker product of A and

B issues all edge labels as A and B would perform in lockstep. In lockstep both FSMs issue their

labels at the same time, i.e., LA ∪ LB. Another intriguing effect, while the matrix in Eq. (5.9) has
size four, there are only three reachable states in Figure 5.3. State number three cannot be reached

from the initial state.

1start 2 4
aa

ba

bb

ab

Figure 5.3: The resulting FSM of A⊗ B

The described capability of Kronecker product can be used to verify computer programs.

5.4 Verifying Programs with Kronecker Product

This section will show how to use Kronecker product to check modular program blocks for their

conformity with specified usage scenarios. However, there is a need to introduce first a change to

the operation ”·”, which says that a · a = a and a · b = 0. Therefore, the new result of A ⊗ B of
the previous example is shown in Eq. (5.11).

62

5.4. VERIFYING PROGRAMS WITH KRONECKER PRODUCT

A⊗ B =

��
· a · 0
· 0 · b
· · · ·
· · · ·

�� (5.11)

Now, let us transform Eq. (5.11) back into an FSM. Looking at the FSM depicted in Figure 5.4,

the new FSM issues the same labels as the two state machines A and B would in synchronised

lockstep, i.e., the two FSM issue their intersections (LA∩LB). Nevertheless, this behaviour was also
present in Eq. (5.9) without focusing on synchronisation. The issued labels are the synchronisation

edges between the two initial FSMs [MB11].

1start 2 4
a b

Figure 5.4: The resulting FSM of A⊗B with a focus on the synchronisation edges, while executing
in lockstep.

5.4.1 Control Flow Graphs

As a next step, let us glimpse into compiler construction, where looking at programs not in the

machine or source code form, but rather in the form of a control-flow graph (CFG) is pretty

standard. A control-flow graph (CFG) is a directed labelled graph G⟨V,L, ne , Vf ⟩, with a set of
labelled nodes V , a set of labelled directed edges L ⊆ V × V , an entry point ne and a set of final
nodes Vf ⊆ V [ASU86]. A CFG has exactly one root node ne without any incoming edge. As with
FSMs, the final nodes have a double circle, and a CFG can have one or more final nodes. Those

nodes stand for the termination of the program. Moreover, each n ∈ V is reachable via a path
starting from ne .

Typically CFGs consist of basic blocks and relations to model the control flow [ASU86]. Because

Kronecker Algebra operates on the edges, the basic blocks need to be moved to the missing edges.5

The edges represent the transfer of control between the basic blocks, and each edge is assigned

a basic block. Figure 5.5 depicts two CFGs, based on the same program code. Figure 5.5 (a)

shows the CFG with the basic blocks on the nodes, while Figure 5.5 (b) shows the basic blocks

at the edges. The operations on the basic blocks are · and +, as defined in Section 5.3.2. Those
operations model the consecutive program parts, conditionals, and loops. As a final note to control-

flow graphs (CFGs), there are several possibilities to create CFGs from the source code.

astart b

c

d

1start 2 3 4
a b

c

d

Figure 5.5: The figure depicts on the left a CFG with the basic blocks at the nodes (a), while the

CFG on the right, the basic blocks are on the edges (b).

5We decided to use the incoming edges.

63

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

5.4.2 Usage Scenarios

Not only programs can be represented as a CFG, the same applies to so called usage scenarios. A

usage scenario defines a task, pattern or steps a program is required to correctly execute. If this is

not the case the program is faulty. Modelling languages such as Unified Modeling Language (UML),

use state machines to express and specify usage scenarios of classifiers, interfaces, and ports. The

UML state machines can be represented in the same fashion as the previously introduced FSMs.

However, they need to be deterministic, i.e., all outgoing edges of a node have different edge labels.

Let us use an example for better understanding. While handling files on a system they can be

opened and closed. Open files can be used to read data. We use the shorthands “o” for open, “c”

for close, and “r” for read. Figure 5.6 shows an example for such file usage scenario (F).

1start 2

o(pen)

c(lose)

r(ead)

Figure 5.6: Graphical Representation of File Usage Scenario F

A piece of software or system that want to use a file, has therefore to comply with the usage

scenario F. Figure 5.7, depicts such a system A, that performs two read operations, and then closes

the file.

1start 2 3 4 5
o r r c

Figure 5.7: Graphical Representation of File Usage System A

5.4.3 Applying Kronecker Product

As introduced before both program A and usage scenario F are CFGs which can be represented

by FSMs. Executing both in lockstep should terminate the program if it complies with the usage

scenario. Therefore let us apply Kronecker product to the two CFGs, as introduced in Section 5.3.3.

Figure 5.8 shows the resulting graph of A⊗ F .

1start 4 6 8 9
o r r c

Figure 5.8: Graphical Representation of A⊗ F

The reader agrees that Figure 5.8 and Figure 5.7 are identical, except the node IDs differ. In graph

theory, such a similarity is called an isomorphism of graphs.

5.4.4 Isomorphism

Kronecker product of the program and the usage scenario will result in a new FSM. In case the

resulting FSM and the program CFG are isomorphic, the implementation is correct (at least in this

64

5.5. KRONECKER SKIP

concern). Recalling, graph theory, an isomorphism of graphs G and H is a bijection f between the

node sets of G and H such that any two nodes u and v of G are adjacent in G if and only if f (u)

and f (v) are adjacent in H. The graphs are called isomorphic, written G ≃ H, if an isomorphism
exists between two graphs. Moreover, to compare CFGs, there is a need to check if the root node

r of G is the root node f (r) in H. All final nodes s of G have to be final nodes f (s) in H and all

final nodes t in H need to be final nodes f −1(s) in G. If this comparison fails there is no guarantee
that program terminates. For further details on the isomorphism problem and how to automate it,

the reader is directed to [MB11].

In summary, Kronecker product can be used to verify programs if they comply with a usage

scenario. However, so far, that only works for programs consisting entirely of operations defined in

the usage scenario.

5.5 Kronecker Skip

For dealing with additional statements in a program, a Kronecker operation is required that allows

for “skipping” statements not of interest to the analysis. An additional statement or an operation

in a program are actions that are not part of the usage scenario.

Using the same example as above, the usage scenario F remains the same (cf. Figure 5.6), but

Figure 5.9 shows a new file usage system K with additional statements. K consists of the file

operations plus some additional statements a and b. If we would apply Kronecker product to the

program K and the usage scenario F would result in a graph not isomorphic to K. The analysis

would indicate the program is incorrect, despite the file usage is correctly implemented. One reason

lies in the fact that both FSMs need to execute in lockstep, if an operation needs to be executed

not existing in the usage scenario the system would stop. In the example, the system would not

get over the statement a. Therefore, it is necessary to be able to skip operations not existing in

the usage scenario.

1start 2 3 4

5

a o
b

r

c

Figure 5.9: Graphical Representation of File Usage System K with additional statements.

The solution for skipping is relatively simple, adding self-loops to all nodes of the usage scenario,

where each loop edge label consists of the additional statements. More formally, let S be a set of
synchronising operations of a usage scenario U, plus V represents a set of additional statements
used in program A such that V ∩ S = ∅ and let L = V ∪ S be the set of all operations in A.
Moreover, let Mn(L) be the set of all matrices of size n with entries ∈ L. The identity matrix
of size m is denoted by Im ∈ Mm and the zero matrix of size n by Zn ∈ Mn. Let A ∈ Mn(L)
and U ∈ Mm(S). Furthermore AV + AS = A, AV ∈ Mn(V) and AS ∈ Mn(S). The “modified”
Kronecker product (Skip operation) shall be introduced as ⊙, with the conditions a · a = a and
a · b = 0 shall apply for all a, b ∈ S, as only the synchronisation edges are of relevance. From
the matrix point of view, self-loops can be added by multiplying an identity matrix with the scalar�
x∈V x . Eq. (5.12) depicts the skip operation.

65

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

A⊙ U = A⊗
�
U +

��
x∈V
x

�
· Im

�
(5.12)

Eq. (5.13) can easily be derived from Eq. (5.12).

A⊙ U = AV ⊗ Im + AS ⊗ U (5.13)

With the skip operation, a program A can be checked whether it complies with usage scenario

U. For the problem at hand in this dissertation, the skip operation is an essential part of another

Kronecker operation.

5.6 Kronecker Sum

Another required Kronecker operation is called Kronecker Sum, denoted with symbol ⊕. This
operation allows the identification of all interleavings between programs A and B. One condition

is that program A, in whatever state, must accept arbitrary transitions of B, and B must do the

same for A. Let A ∈ Mn(A) and B ∈ Mm(B) such that A ∩ B = ∅. In and Im are the respective
identity matrices with the size of the square matrices A and B. Again, the given condition for A

and B requires self-loops in A and B as applied in Eq. (5.14).

B ⊕ A = A⊗
�
B +

��
x∈A
x

�
Im

�
+

�
A+

��
y∈B
y

�
In

�
⊗ B (5.14)

This leads to the ordinary sum of Kronecker products

A⊕ B = A⊗ Im + In ⊗ B. (5.15)

For demonstration purposes, let A and B be represented by the FSMs shown in Figure 5.10.

1start 2 3
a b

1start 2 3
c d

Figure 5.10: The two FSMs A and B

Calculating A⊕ B results in the FSM depicted in Figure 5.11.

1start 2 3

4 5 6

7 8 9

a b

a b

a b

c

d

c

d

c

d

Figure 5.11: The resulting FSM of A⊕ B

The reader will agree that A⊕B represents the concurrent execution of the FSMs corresponding
to A and B, i.e., it models all interleavings.

66

5.7. CONCURRENT PROGRAMS AND SEMAPHORES

1start 2

p

v

Figure 5.12: A simple Binary Semaphore.

5.7 Concurrent Programs and Semaphores

By identifying all interleaving between two programs, Kronecker Sum is a valuable tool to analyse

concurrently executing program threads. Especially with the advent of multi-core processors, verify-

ing multi-threaded applications is challenging. One reason is that the number of thread interleavings

grows exponentially, causing a state explosion.

As introduced above, Kronecker Sum provides the means to analyse interleavings. However, a

concurrent program with completely independent threads rarely exists in a practical setting. Threads

usually communicate or synchronise with each other through accessing shared resources. One way

to model synchronisation is to use synchronisation primitives, e.g., semaphores.

Semaphores [Dijna, Sta12, Dij02] are a well-known tool for process synchronisation and, there-

fore, efficiently implemented in modern operating systems (OSs). In its simplest and most restricted

form, a semaphore (a so-called binary semaphore6) consists of two operations, p and v ; Operation

p acquires the resource while v releases it.

For example, if a thread already acquired (p) a semaphore, the following calling thread will

be blocked and sent into the semaphore’s first-in, first-out (FIFO) queue. After the first thread

releases (v) the resource, the subsequent thread in the queue resumes its execution (p). To ensure

that there is no way to manipulate the semaphore while locked, the operations p and v need to be

atomic operations. Semaphores should not be mixed up with mutexes, as those have an ”owner”.

That implies that a mutex can only be unlocked by the thread that locked the mutex.

Figure 5.12 shows a simple representation of a binary semaphore that will be used during the

dissertation to synchronise different threads. As Kronecker Algebra does not involve time, queues

and other implementation details are irrelevant.

To utilise semaphores with Kronecker Sum, we assume that A ∈ Mn(A), B ∈ Mm(B) and
A ∩ B ⊆ S, with S representing the synchronisation operations. By using the same idea as in
Kronecker Skip, adding loops on both sides, we start from the same Eq. (5.14) above. However,

this time only the synchronisation operations are relevant. Therefore, we can model a system with

two concurrent threads and one semaphore by adding a semaphore via the skip ⊙ operation in the
following way:

(A⊕ B)⊙ S = (A⊗ Im + In ⊗ B)⊙ S (5.16)

This result is generalisable for a finite number of threads and semaphores. Let Ti for i = 1,. . ., n

concurrently executing threads and Sj for j = 1,. . ., k be semaphores. Then the program consisting

of Ti and Sj can be modelled by:

n�
i=1

Ti ⊙
k�
j=1

Sj (5.17)

6There are other types such as counting semaphores or initially un/locked semaphores. Within this dissertation,

only binary semaphores are of importance.

67

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

A C
C

Im BInA

Figure 5.13: Expression tree examples: On the left A ⊗ C and on the right (A ⊕ B) ⊗ C =
(A⊗ In + Im ⊗ b)⊗ C.

The use of semaphores also allows the detection of deadlocks in programs. A famous concurrent

programming example is the Dining Philosophers problem, introduced by Dijkstra in 1971 [Dij71].

5.8 Implementing Kronecker Algebra Operations (Lazy Algo-

rithm)

One of the significant problems of Kronecker Algebra is the size of the resulting matrices. Consid-

ering two CFGs of m and n nodes, Kronecker ⊗ produces an adjacency matrix of m-by-n nodes.
Although most matrices are sparse, (i.e., they contain only a few non-zero elements), even standard

memory saving methods are insufficient. Therefore, the implementation used in this dissertation

utilises lazy evaluation [HM76]. Lazy evaluation of Kronecker operations delays all computations

until required, i.e., in the end, only reachable nodes are analysed.

5.8.1 Expression Trees

Thus, a Kronecker expression is converted to an expression tree, followed by lazy evaluation of

the tree’s operations. Sparse matrices represent the (input) CFGs and form the leaves of the

expression tree, while the inner nodes of the tree represent Kronecker ⊗ and standard + matrix
operations. There is no computation necessary until the resulting graph is required. Figure 5.13

depicts on the left the expression tree for A ⊗ C and on the right a more complex operation
(A ⊕ B) ⊗ C = (A ⊗ In + Im ⊗ b) ⊗ C. Note, it is only necessary to handle ⊗ and +, because ⊕
and ⊙ are defined via ⊗ and +.

5.8.2 Lazy Evaluation of Kronecker Expressions

For the lazy evaluation it is essential to identifying successors in order to determine the entries of

the resulting matrix. For a better understanding, the simplest case is two matrices A ⊗ B, that
result in M. Let the size of matrix A be denoted by m, that of B by n. In this case, the expression

tree has only two leaves A and B connected by ⊗. Now, the task is to find the non-zero entries of
row i , in M. We can achieve this by finding the entries as,t , and bu,v (successors) in A and B that

create the entries of row i . The first step requires the relevant rows s and u in A and B. For as,t ,

this can be done by s = ((i − 1)÷ n) + 1 (÷ = integer division), as M is built up by blocks of the
size n. In the case of bu,v , the operation u = (i mod n) (the remainder of the division of i by n),

returns the relevant row. If u turns out to be 0 by the above computation, we set u = n. We can

68

5.8. IMPLEMENTING KRONECKER ALGEBRA OPERATIONS (LAZY
ALGORITHM)

1 list succ(Matrix M, node i) n = M.getBMatSize;

2 s = ((i -1) ÷ n) + 1;
3 u = (i % n);

4 if u=0 then

5 u=n

6 sua = succ(M.A, s);

7 sub = succ(M.B, u);

8 switch M.getOperation do

9 case ” + ” do

10 Si = sua ∪ sub;
11 case ”⊗ ” do
12 Si = ∅;
13 foreach l ∈ sua do
14 t= getEdgeLabel(M.A, s, l);

15 foreach r ∈ sub do
16 z= getEdgeLabel(M.B, u, r);

17 if t=z then

18 v=(sua[l]× n) + sub[r];
19 Si := Si ∪ {v} ;
20 end

21 end

22 end

23 end

24 return Si
Algorithm 1: Lazy Evaluation of Kronecker Expressions (Successor Search)

now identify the successors of node (row) s in A and u in B. Since both matrices are sparse, this

can be done in a simple way.

By constructing the semantics of ⊗, the successors retrieved from A and B can now be used
to construct the successors of node (row) i in M = A ⊗ B. After initializing Si (set of successors
of i) to ∅, two loops take a closer look at the successor lists sua and sub. The first loop retrieves
the edge label t = A(l , s) for l ∈ sua. Then another loop retrieves the edge label l = B(r, u) for
r ∈ sub. If t = l , the successor index v is calculated as v = (sua[l]× n) + sub[r] and added to Si .
In the end, Si contains the set of successors of node i . Similarly, the label entry M(i , j) (row i and
column j) can be determined.

Algorithm 1 shows the above-described lazy evaluation. The algorithm constructs parent nodes

in a bottom-up fashion, and newly found successors are evaluated later. Moreover, the algorithm

returns a list of successors and provides a case condition that considers simple ”+” plus additions

that are not based on ” ⊗ ”. In such a case, the list of successors is the unification of the two
successor lists retrieved from the lower operations/matrices in the tree.

As a concluding remark, all algorithms are implemented in Ada. Currently, there is no user

interface, and every example is a stand-alone program requiring compilation and execution in the

terminal. The matrices of the FSMs and CFGs are stored in text files, and the resulting graphs

are saved in the Dot language. In future work, we plan to reimplement part of the code and add a

repository with examples for Kronecker operation applications.

69

CHAPTER 5. KRONECKER ALGEBRA — A MATRIX CALCULUS

5.9 Related work in the field of Kronecker Algebra

It is commonly claimed that research can only contribute to knowledge if we are ”standing on the

shoulders of giants”. 7 This metaphor also applies to this dissertation, without the contributions of

Blieberger, Mittermayr and Burgstaller, in the areas of deadlock and WCET analysis in concurrent

programs [MB21], static analysis of barriers [MB16b] and protected objects [BB14] in Ada pro-

grams with Kronecker Algebra, or their work in showing further applications, for example in train

scheduling [SSB18], this work would not be possible.

While not entirely aligned with this dissertation, other works are related to creating graph models

for concurrent programs. The work of Buchholz and Kemper [BK02] focuses on generating reach-

ability sets in composed automata. They use the plain Kronecker product to describe networks

of synchronised automata. The difference to this dissertation is that they use Boolean matrices

(one matrix for each label) compared to our matrix entries based on the defined semiring. Another

difference is that our approach can use semaphores for synchronisation. In addition, our implemen-

tation of Kronecker operation utilises lazy calculation for better performance. The output CFGs of

our operation can be analysed with different techniques (e.g. [RP86, RP88, KU76]) and symbolic

analysis (e.g. [BSB12])

As mentioned before, though not closely related, is the work of Plateau in the field of stochastic

automata networks [Pla85] or the work of Ciardo and Miner about generalised stochastic Petri

nets [CM99]. Petri nets [Pet62, Rei12] are a standard tool to model concurrent systems. However,

they present a rather monolithic global system view, not on the individual threads. This focus on the

global system was a reason not to use Petri nets, as the more interesting interactions between the

components would get lost. Another aspect was that Petri nets could not be generated from the

source code. Compared to our approach, we can model independent components, such as thread

and synchronisation primitives, in the form of CFGs. After Kronecker operations, the resulting

CFGs represent a global system view (including all interleavings and synchronisations) and can be

automatically generated.

5.10 Concluding Remarks

All Kronecker operations introduced in this chapter are, in one way or another, used in the following

chapters. We will extend some operations and add new ones. In some rare cases, we change some

definitions, but that will be pointed out explicitly. Moreover, each of the following chapters will

contain related work specific to the topic.

7The phrase ”standing on the shoulders of giants” is a metaphor which means ”using the understanding gained by

major thinkers who have gone before in order to make intellectual progress”. While not clearly attributed to someone,

the phrase was used in a letter by Isaac Newton to Robert Hooke. [Tur59]

70

Chapter 6

Finding Implied Scenarios

Building on the insights in Chapter 4, this chapter looks into identifying basic emergence caused

by implicit scenarios in agent systems. Therefore, we introduce the basic idea behind implicit

scenarios and their relation to emergent behaviour, followed by a definition of message sequence

charts (MSCs). The MSCs play an essential role in the presented method since they can be

synthesised into CFGs using a new Kronecker operation. After presenting each step of the method,

we apply and evaluate it on a simple example and discuss it compared to related work.

6.1 The Idea Behind Implied Scenarios

While the novelty aspect of emergence is widely accepted, its identification remains controversial.

One difficulty is the rapidly increasing complexity of systems that exhibit emergence. Researchers

introduced categories that describe how a system exhibits emergent behaviour to address this prob-

lem [DWH04]. The basic category of emergence is closely related to computational emergence

because there is still the possibility of identifying the causes of unexpected behaviour.

One root cause for basic emergence is that unintended agent interactions cause the new be-

haviour. Such implicit scenarios are the result of the synthesis of several intended agent scenarios.

Usually, the unexpected system behaviour only occurs at runtime and only partially satisfies the

novelty requirement. Some approaches focus on the component or system level to identify implied

scenarios at the design stage [BGMK07]. Component-level synthesis typically misses interactions

between components [MMBH10] that are inherent in system-level approaches [HK02]. Both ap-

proaches have in common that the scenarios are often captured in MSCs and the system states in

state machines.

Figure 6.1 depicts the idea of system-level synthesis by synthesizing different scenarios depicted

as MSCs. The result of the synthesis represents all scenarios executable by the system, including

implied scenarios. Higher levels of emergence cannot be found in this representation, as the agent’s

interactions are still deterministic.

6.2 Message Sequence Charts

In general, message sequence charts (MSCs) are diagrams used in software engineering to illustrate

the order of messages exchanged between two or more objects [Boo94]. MSCs can document

both synchronous and asynchronous messaging systems [KGSB99]. They are commonly used in

71

CHAPTER 6. FINDING IMPLIED SCENARIOS

A1 A2 A3A1 A2 A3

Figure 6.1: The principle of scenario synthesis

conjunction with state diagrams, which show the states that each object can assume, and activity

diagrams, which show the flow of control between objects. The main elements of an MSC are

lifelines and messages, defined as follows.

A lifeline represents an instance of a state machine, distinguished by its name. Different in-

stances of the same state machine may exist in an MSC. Therefore, given a setM of state machines

and the alphabet
�
L, a lifeline is a pair L = (l ,M

∗) where l ∈�
L is the name of the lifeline and

M∗ ∈ M is an instance of a state machine. For later definitions, let sm(L) represent M of a lifeline.

Messages are the communication elements between lifelines. Considering an alphabet
�
A and

a set L of lifelines, a message can be defined as a triple (σ, a, ρ) where

• σ ∈ L is the sending lifeline,
• a ∈�

A is the message symbol, and

• ρ ∈ L\{σ} is the receiving lifeline.

In this dissertation, the sender σ and receiver ρ lifeline are FSMs.

A message sequence chart (MSC), therefore, can be formally defined as a pair (L, µ) where

• L is a set of lifelines over M and �L

• with pairwise distinct names and

• µ = [m1, ..., mn] is a message sequence where for each (σ, a, ρ) ∈ µ must hold σ, ρ ∈ L and
a ∈�

A.

Next we introduce further limited semantic definitions of an MSC. In this chapter, we do

not need all of them, but in Chapter 7, they will be relevant. We specify the interactions via

messages between the lifelines by a Global State ŝ with a set of L = L1, ..., Ll lifelines, where
sm(Li) = (Si , ιi , Ai , Ti) is the state machine of the lifeline Li , for 1 ≤ i ≤ l . The global state ŝ
is a tuple (s1, ..., sl) ∈ S1 × · · · × Sl . Each global state contains sets of messages to be sent and
received. After sending or receiving an admissible message, the global state ŝ, changes to a global

successor state ŝ
′
= (s1, . . . , s

′
s , . . . , s

′
r . . . , sl)∈ S1 × · · · × Sl . That brings up how to decide if a

message is admissible.

A message m = (Ls , a, Lr) with Ls ∈ L, Lr ∈ L, Ls ̸= Lr , and a ∈
�
A is admissible in a global

state ŝ under the following circumstance. The states of the sender Ls and receiving lifeline Lr need

to accept a transition label equal to message a, i.e., (ss , ev , a, s
′
s) ∈ TS, and (sr , a, ev , s

′
r) ∈ Tr .

72

6.3. FINDING BASIC ’EMERGENCE’

Messages in the set of admissible messages in a global state may be independent subsets. Such

messages have no sender or receiver in common and can therefore be executed in parallel, in the

form of a transaction.

A transaction represents a nonempty set m = {m1, . . . , mt} of messages, and each message
must be pairwise distinct in the following way. Let i , j ∈ {1, . . . , t}, mi = (σi , ai , ρi), and mj =
(σj , aj , ρj). A message set is pairwise distinct if it holds that all σi , σj , ρi , and ρj are pairwise distinct.

An admissible transaction applies all of the transaction’s messages to the global state. Therefore

all messages must be admissible. Moreover, there is no rule that a transaction must contain more

than one message, i.e., a transaction can be a singleton. Such a viewpoint represents a sequence

of messages, as depicted in an MSC, as a sequence of singleton transactions.

A sequence of transactions is, therefore, a path µ that connects a global state ŝ0 to a global

state ŝk . Such a path can be defined as a sequence µ = [m1, . . . , mk] of transactions such that

there exists a sequence [ŝ0, . . . , ŝk] of global states where all 1 ≤ i ≤ k , mi are admissable in the
state ŝi−1 and leads to ŝi . Moreover, ŝi needs to be the global successor state of ŝi−1 after applying
mi .

6.2.1 Problem Formulation

After we introduced MSCs, we can define the problem of implied scenarios more precisely. The

possibility of implied scenarios exists if the combination of several system scenarios (i.e., agent

interactions depicted in MSCs) creates sequences of messages (paths µ) that connect some global

state ŝi and the global initial state ŝ0 not foreseen in the system scenarios.

Therefore, the problem of implied scenarios can be defined as:

A combination of MSCs can contain implied scenarios if there is a sequence of messages µ present

that connect the global state ŝ = (ι1, . . . , ιl) with any other global states ŝ
′
or ŝ

′′
, not defined in

the single MSCs. Given an MSC = (L, µ), with L{L1, . . . , Ll} and sm(Li) = (Si , ιi , Ai , Ti) for
1 ≤ i ≤ l and the alphabets �A and

�
L.

6.2.2 Limitations

Readers familiar with UML or other modelling languages might recognize that the given definitions

for the MSCs are limited. Advanced control flow structures such as hierarchical or history states

in state machines or “alt”,“loops”, fragments in sequence charts, or exception handling are out of

scope. The reason is that some structures create indeterministic behaviour. Therefore, the scope

of this chapter is limited to control flow structures that simple FSMs can represent.

6.3 Finding Basic ’Emergence’

Based on the problem formulation, the goal is to provide a method to combine different MSCs into

a large system representation and to identify new paths that are not present in the individual MSCs.

We use the previously described Kronecker operations (cf. Chapter 5) to solve this problem. Below

we present the steps included in our proposed method, including:

• Scenario collection

• Synthesize the different MSCs to CFGs

73

CHAPTER 6. FINDING IMPLIED SCENARIOS

a
σstart ρ

a

m =

 · a
· ·

�
(6.1)

Figure 6.2: A message “m” with label “a” depicted as a single statement and its matrix represen-

tation.

• Combine all CFGs to one system representation FSM (STotal)

• Analyze STotal with Kronecker Algebra

• Evaluate new scenarios

6.3.1 Scenario Collection

The first step focuses on collecting all possible scenarios of the system in question. We assume

that some representations of the various scenarios in MSCs are available. As MSCs have gained

wide acceptance for scenario-based specifications of component and system behaviour and are

present in modern modelling languages such as UML, SysML, or AutomationML [Boo94], this is

a reasonable assumption. Currently, the following synthesis process supports only the fundamental

sequential interactions between agents. More complex constructs, such as parallel composition,

choice, repetition, and hierarchic decomposition [KGSB99], could be handled by Kronecker Algebra

but are out of scope. Moreover, if not all scenarios are available, the presented method might

not discover some unintended behaviour of the system. However, it is impossible to predict which

scenario combinations create a new behaviour until synthesised.

6.3.2 Synthesizing MSCs to CFGs

An essential step to identify implied scenarios is that all intended scenarios must be combined into

one total system representation. However, the scenarios are contained in various MSCs, unsuitable

for such a synthesis. Therefore, the question is how to transform an MSC into a matrix representa-

tion applicable to our Kronecker operations while reflecting the underlying semantics of the MSC.

For this reason, we introduce Kronecker Synthesize operation.

Let us first look at a single message m. As defined before, a message in an MSC is a triple

m = (σ, a, ρ), a sender, a label and a destination, as depicted in Figure 6.2. The reader will agree

that a message, m, can also be seen as a transaction or a program statement (e.g., set a value to

a variable). Such a program statement in a CFG has one initial and final node and one edge with

a label. Therefore, we can transform a message m into a CFG as in Figure 6.2, depicted in the

middle and the respective matrix representation on the right.

For generalisation, let Si be a single statement and αi the respective label, representing a

message m with a label “a”, as shown in Eq. (6.2).

Si =

 · αi
· ·

�
(6.2)

74

6.3. FINDING BASIC ’EMERGENCE’

A1 A2 A3

a
b

c

S1 =

 · a
· ·

�
, S2 =

 · b
· ·

�
, S3 =

 · c
· ·

�
(6.4)

Figure 6.3: An example MSC “Z” with three messages “a”,“b”,“c”, and their matrix representa-

tions S1, S2, S3.

1

2

 a

4

 b

3

 c

6

 b

5

 c a

7

 c

8

 c

 a b

 b a

R0 =

����������

· a c b · · · ·
· · · · c b · ·
· · · · a · b ·
· · · · · a c ·
· · · · · · · b
· · · · · · · c
· · · · · · · a
· · · · · · · ·

����������
(6.5)

Figure 6.4: The resulting graph of R0 = S1 ⊕ S2 ⊕ S3 on the left, and on the right the matrix
representation.

Usually, an MSC contains a number of (n) messages that create a scenario together. As defined

above, Si stands for one message; therefore, the combination of all n statements should represent

the scenario depicted in an MSC. For creating a combined CFG R0, we can use Kronecker Sum, as

shown in Eq. (6.3). As described in Section 5.6, Kronecker Sum will model all possible interleavings.

R0 = S1 ⊕ S2 ⊕ . . .⊕ Sn =
�
n�
i=1

Si

�
, for 1 ⩽ i ⩽ n (6.3)

Nevertheless, let us first introduce a simple example. Figure 6.3 depicts an MSC (Z) with three

agents interacting with three messages. Based on the definition above, Eq. (6.4) shows the Si ’s

for the messages a, b and c .

The next step is to apply Kronecker Sum on S1, S2 and S3 as defined in Eq. (6.3). Figure 6.4

shows this calculation’s resulting CFG. R0 represents all possible interleavings or, in our case,

message orders, how the messages could appear. However, that is not the correct representation

for our example MSC, as the messages have dependencies. Defining those dependencies strongly

depends on the applied semantics of the MSC and may vary from case to case.

Let L be the set of all operations in a program E. L is a given set of operations, with the
condition Lsync ⊆ L and Lnsync are the remaining operations of E, i.e., L\Lsync = Lnsync . Now
we need to introduce a way to specify the dependencies between a message pair αk ∈ Lsync and
αl ∈ Lsync , in a flexible way. This problem can be solved again with a CFG. This time we use
a CFG with three states. The order of the edge labels in the CFG defines the dependency of the

message pair αk and αl , (i.e., αk ≺ αl).

75

CHAPTER 6. FINDING IMPLIED SCENARIOS

Therefore, the matrix representation of a dependency between a message pair αk and αl is:

Di(αk , αl) =

 · αk ·
· · αl
· · ·

 (6.6)

For our example, we only have one dependency, namely a ≺ b. We only know that message a
precedes b; the other dependencies are not given as we do not know in which order the messages

will arrive. However, that is one possible interpretation (semantic). Therefore we get the following:

D1 =

 · a ·
· · b
· · ·

 (6.7)

Those dependencies (D1, . . . , Ds) must be applied to R0. This requires two new matrix operators

(O and W). The first operation O restricts the matrix entries to those specified in the dependency
matrix Di . These labels are considered synchronised labels, and the O operation removes the other
entries; these are the non-synchronised labels. On the other hand, W restricts the matrix entries
to those not specified in the dependency matrix Di , thus retaining the non-synchronised labels.

Let Mn(L) be the set of all matrices of size n with entries ∈ L, and set E = ei j ∈ Mn(L).
Let, Q, T ⊆ L. Therefore, O(Q)[E] = (Oi j) is a matrix of the same size as E that contains entries
∈ Q, and W(T)[E] = (Wi j) is a matrix of the same size as E that contains entries /∈ T . In more
detail,

• if ei j ∈ Q, then Oi j = ei j , otherwise Oi j = 0,

• and if ei j /∈ T , then Wi j = ei j , otherwise Wi j = 0.

After having defined O andW, we can use Kronecker product on R0, as shown in Eq. (6.8). The
equation is applied iteratively, and each step enforces a dependency Di(αk , αl) on Ri for 0 ⩽ i ⩽ s.
Note that the order of applying the dependencies (Ds) is irrelevant, i.e., it does not matter which

dependency is first or last.

Ri = O({αk , αl})[Ri−1]⊗Di(αk , αl) +W({αk , αl})[Ri−1]⊗ I|Di (αk ,αl)| (6.8)

The resulting matrix Rs then represents a CFG with some behaviour like the original MSC. We

only need one iteration for our example as there is only one dependency pair Ds . Therefore R1 is

calculated

R1 = O({a, b})[R0]⊗D1(a, b) +W({a, b})[R0]⊗ I|D1(a,b)|, (6.9)

with the operand,

O({αk , αl})[Ri−1] = O({a, b})[R0] =

����������

· a · b · · · ·
· · · · · b · ·
· · · · a · b ·
· · · · · a · ·
· · · · · · · b
· · · · · · · ·
· · · · · · · a
· · · · · · · ·

����������
, (6.10)

76

6.3. FINDING BASIC ’EMERGENCE’

the operand

W({αk , αl})[Ri−1] =W({a, b})[R0] =

����������

· · c · · · · ·
· · · · c · · ·
· · · · · · · ·
· · · · · · c ·
· · · · · · · ·
· · · · · · · c
· · · · · · · ·
· · · · · · · ·

����������
(6.11)

and the identity matrix In (with n = 3, as the size of Di(αk , αl) is 3 × 3.)

I|Di (αk ,αl)| = I3 =

 1 · ·
· 1 ·
· · 1

 . (6.12)

After executing all calculations, we obtain for R1 the following matrix Eq. (6.13). The matrix

has a size of 24×24, yet the reader will realise that the matrix is sparse, as introduced in Sec-
tion 5.2. This matrix is a perfect example of why the lazy algorithm (cf. Section 5.8) decreases the

computation effort. Only the actual entries’ successors are computed.

R1 =

��

· · · · a · c · · · · · · · · · · · · · · · · ·
· · · · · · · c · · · b · · · · · · · · · · · ·
· · · · · · · · c · · · · · · · · · · · · · · ·
· · · · · · · · · · · · c · · · · · · · · · · ·
· · · · · · · · · · · · · c · · · b · · · · · ·
· · · · · · · · · · · · · · c · · · · · · · · ·
· · · · · · · · · · · · · a · · · · · · · · · ·
· b · · ·
· ·
· · · · · · · · · · · · · · · · a · c · · · · ·
· · · · · · · · · · · · · · · · · · · c · · · ·
· c · · ·
· ·
· b
· ·
· c · ·
· c ·
· c
· a ·
· ·
· ·
· ·
· ·
· ·

��
(6.13)

77

CHAPTER 6. FINDING IMPLIED SCENARIOS

1

5

 a

7

 c

18

 b

14

 c a

24

 c b

Figure 6.5: The resulting graph of matrix Eq. (6.5) depicting R1.

The next step is to compute the start and final nodes, resulting in S = 1 and F = 24. Afterwards,

the resulting graph can be constructed by starting from row 1 and finding the successors of each

edge. We marked the reachable entries in red; the other entries cannot be reached and are irrelevant

to the resulting graph. The reader will agree that Figure 6.5 shows the graph representing R1.

Let us look closer at R1. No edge label b is issued in each path before a. Thus, dependency

a ≺ b is fulfilled. All other possible message orders are intact; no path is lost. Another interesting
fact is that the node count is much smaller than the entries in matrix 6.13. As mentioned before,

not all edges are reachable, creating no path in the graph. The node numbers do not play a role,

as they are a mere “position” in the matrix.

In summary, Kronecker Synthesize operation shown in Eq. (6.8) can convert an MSC into a CFG,

with the dependencies reflecting the semantics used in the MSC. Therefore, the semantics are not

specified explicitly but only reflected in the dependencies Di . We will use Kronecker Synthesize later

in an example in Section 6.4.

6.3.3 Combine all Scenarios and Create STotal
As a next step, we combine all previously synthesised CFGs. We again use Kronecker Sum for this

task. However, there are some conditions. Kronecker Sum works only with disjoint edge labels,

i.e., the state transition labels must be different. In case of the labels are not disjoint, the resulting

labels will not be distinguishable. It is self-explaining that all CFGs need to be transformed into

their matrix representation, as described in Section 5.2.1. The resulting matrix STotal Eq. (6.14)
represents the entire system, including all possible interleavings. We introduce m as the number of

CFGs.

STotal = R1 ⊕ R2 ⊕ . . .⊕ Rm =
�
m�
i=1

Ri

�
for 1 ⩽ i ⩽ m (6.14)

78

6.4. EVALUATION EXAMPLE

6.3.4 Analyze STotal with Kronecker Algebra
This step might not always be executed in the same way as it depends on the system designer’s

aim. Several of the previously introduced Kronecker operations can be used to analyze STotal. In
the simplest case, the system designer visually analyses STotal, identifies new paths, and evaluates if
they create unintended behaviour. However, in most cases, STotal will be rather large, which makes
a visual check impossible. In this section, we propose the following Kronecker operations:

• Kronecker product to check if a forbidden path exists.1

• Utilise Kronecker Skip to find a sequence of messages (that can be interrupted by other labels)
in STotal,

• and introduce semaphores to simulate shared resources in the system to reduce STotal further.

In Section 6.4 each of the operations will be applied to an example and explained further. In

summary, this step aims to support the designer in identifying new paths or scenarios that need to

be evaluated.

6.3.5 Evaluate New Scenarios

Based on the potentially discovered new scenarios, the system designer must decide whether they

represent unintended behaviour. If the new scenario is malicious, the designer can use it to recon-

struct an MSC and identify the root cause. While this last step seems straightforward, it requires

in-debt knowledge of the intended system behaviour. Therefore, the suggested process is only a

support tool for the final decision. Nevertheless, all Kronecker operations can be automated, and

the state explosion problem handled.

6.4 Evaluation Example

This section presents an example to illustrate the proposed steps and provide a better understanding.

The greatly simplified example represents a centralised car locking mechanism.

Three agents, a controller and two motors steer two locks in the car doors. A driver can lock

and unlock the car with a key or a button from the inside. In both cases, the controller will receive

either a trigger signal lck = lock or unlck = unlock . After receiving the triggers, the control unit

will send two signals to the two motors, RM (Right Motor) and LM (Left Motor). Both motors are

in the state OFF and change to DD (Drive-Down). As the two motors might not have the same

speed to close the respective lock, control waits for an acknowledgement of both motors before

changing to the state locked LCKD. After sending their acknowledgements, the motors change

back to state OFF . To open the car, the control unit sends two unlock signals to the motors,

which will again send two acknowledgements back after completing their state DU (Drive-Up). The

control unit then changes to state unlocked UNLD and the motors to the state OFF .

Figure 6.6 depicts the MSCs for the scenarios locking/unlocking. Both MSCs follow the defini-

tions given in Section 6.2, with one exception. The rounded boxes represent the states of the agents

to indicate the state changes the agents are going through. Table 6.1 summarises the message

labels and the triggers.

1We acknowledge that a designer might not know all forbidden paths. A typical solution for this issue is to find

counterexamples of intended paths, a method used in model-checking. However, this is out of scope and part of

future work.

79

CHAPTER 6. FINDING IMPLIED SCENARIOS

MSC lock

Control

UNLD

lck

LM

d

c

DD

OFF

OFF

RM

DD

OFF

OFF

a

b

LCKD

MSC unlock

Control

LCKD

unlck

LM

h

g

DU

OFF

OFF

RM

DU

OFF

OFF

e

f

UNLD

Figure 6.6: The two MSCs for the scenarios locking/unlocking in the car locking mechanism exam-

ple.

Table 6.1: Triggers and messages (labels)

Trigger Labels Trigger Labels

Lock lck Unlock ulck

Messages Messages

Left lock (DD) a Left unlock (DU) e

Right lock (DD) b Right unlock (DU) f

Left ready c Left ready g

Right ready d Right ready h

80

6.4. EVALUATION EXAMPLE

6.4.1 Synthesising MSCs to CFGs

As described in the previous sections, each of the MSCs needs to be transformed into CFGs by

utilising Kronecker Synthesize operation (cf. Section 6.3.2) before combining them. Synthesising

the MSC lock in Figure 6.6 into the CFG RiLock , requires creating R0 = S1⊕S2⊕. . .⊕Sn. Eq. (6.15),
shows the four matrix message label representations. On a side note, as Kronecker Sum ⊕ is an
associative operation, the order of the matrices is unimportant.

R0 =

 · a
· ·

�
⊕

 · b
· ·

�
⊕

 · c
· ·

�
⊕

 · d
· ·

�
(6.15)

The following matrices in Eq. (6.16), are the dependencies between the message labels (i.e.,

the order of message sending/receiving on a lifeline). As there is no synchronisation between the

agents, we assume the messages c and d can arrive in a different order. At the same time, there

are explicit dependencies between the message pairs a→ b, a→ c and b → d .

D1 =

 · a ·
· · b
· · ·

 , D2 =

 · a ·
· · c
· · ·

 , D3 =

 · b ·
· · d
· · ·

 (6.16)

To get RiLock , in this case, i = 3; since there are three dependencies, Eq. (6.8) must be applied

iteratively i times. The operations cannot be displayed since the matrices reach a size of 432×432,
despite being mostly empty (sparse). Figure 6.7 depicts the resulting CFG RiLock .

1start 2 3

4

5

6

7
a b

c

b

d

b d c

c

Figure 6.7: The CFG RiLock of MSCLock

The second MSC is synthesised in the same way and results in the CFG shown in Figure 6.8.

As both MSCs have the same order of messages, just with different labels, the CFG RiUnlock is

isomorphic. However, that depends entirely on the chosen dependencies. For the shown example,

we made this choice deliberately.

1start 2 3

4

5

6

7
e f

g

f

h

f h g

g

Figure 6.8: The CFG RiUnlock of MSCUnlock

6.4.2 Combine all Scenarios and Create STotal
As described in Section 6.3.3, it is necessary to combine all synthesised CFGs. For this step, we

utilise Kronecker Sum Eq. (6.14) on RLock and RUnlock , as shown below. Note: we omit the i in

the following to improve readability.

81

CHAPTER 6. FINDING IMPLIED SCENARIOS

RLock ⊕ RUnlock = RLock ⊗ IRUnlock + IRLock ⊗ RUnlock (6.17)

Figure 6.10 depicts the combined CFG STotal. The CFG shows all interleavings between RLock
and RUnlock when executed concurrently. In other words, STotal represents the synthesis of both
MSCs considering the dependencies between the messages. As a side note, the beauty of Kronecker

Synthesize operation is the possibility to apply further dependencies on STotal, i.e., dependencies
between messages only occurring in separate MSCs. However, this possibility should be used with

caution as it might remove the very paths that are most interesting.

6.4.3 Analysing the Graph with Kronecker Operations

After synthesising the MSCs into STotal, it is, to a certain extent, the developer’s job to evaluate the
paths. Nevertheless, analysing a large graph by “hand” is not feasible. Therefore, further Kronecker

Algebra operations can be used to reduce the graph or search for forbidden paths.

Let us assume the developer wants to search for a path that leaves the two locks of the car in

different states, a situation that might be unfavourable for a car-locking system. One possibility for

such a situation is when the car owner closes the car and immediately changes his mind. However, a

change of mind is not enough; additionally, the system must issue the message labels in a particular

order. Essential is that the system issues the messages a and c followed by an e (when the owner

opens the car again) and the other labels in the following order f , g, h, b and d . The left motor

LM would change its state first into locked and then unlocked, while the right motor RM first into

unlocked and locked, leaving one side of the car open and the other closed.

For the above situation, we know the sequence of labels that should not be present in STotal.
Therefore, the labels can be transformed into a CFG UForbidden, as shown in Figure 6.9. As a next

step, we can apply Kronecker product STotal ⊗ UForbidden to determine if this path exists in STotal.
If the resulting CFG is isomorph to UForbidden, the developer knows that the possibility exists, and

preventive measures must be implemented. In the example, the path exists and is also highlighted

in red in Figure 6.10.

1 2 3 4 5 6

789

a c e g f

h

bd

Figure 6.9: The CFG UForbidden

One might argue that usually only a part of a forbidden path is known, e.g., only a sequence of

specific labels interrupted by other labels that are not relevant. For that case, we use Kronecker

Skip operation introduced in Section 5.5. The skip operation allows comparing CFGs with larger

systems. It cuts away all paths that do not conform to the given sequence and reduces STotal. The
resulting CFG is empty if the sequence is not present.

In the example, we know that the message labels a, e, h, and d need to occur in this order to

create the problem, while the other labels are irrelevant. Let us call this sequence UF2 and apply

Kronecker Skip as shown in Eq. (6.18).

STotal ⊙ UF2 = STotalV ⊗ Im + STotalS ⊗ UF2 (6.18)

82

6.4. EVALUATION EXAMPLE

 a e

 e b c a f g

 f b g c d c e b e a h g a f

 h b g c c e d e d c f g a g b c f h a b g f

 e b c g c f g .a d f g h c g d c f d b f h b c

 f g

 h b g

 d c g b g b c

 c g d g

.h d g

 h g c d f

 d f

 g h

 h c d b h

 d h

 h c g

 b

 d c

 c h

 c f

Figure 6.10: The combined CFG STotal

83

CHAPTER 6. FINDING IMPLIED SCENARIOS

Eq. (6.19) depicts UF2, a 5 × 5 matrix representing the required label order. Im is the identity
matrix of the same size as UF2. STotalV represents the matrix of STotal without the labels contained
in UF2 and STotalS , the matrix of STotal with the same labels as in UF2.

UF2 =

����
· a · · ·
· · e · ·
· · · h ·
· · · · d
· · · · ·

���� (6.19)

Figure 6.11 shows the resulting graph of Eq. (6.18). The red path, is again the same, as in Figure 6.9

as it fulfils the requirements. All other visible paths are possibilities where UF2 can appear.

Another functional ability of Kronecker Algebra is that it allows the introduction of semaphores.

A semaphore is typically used to block a shared resource between concurrently executing programs.

In this example, the different MSCs act like concurrent programs, while the controller is a shared

resource between the other two agents. Let us assume locking the car issues label a, and the

controller does not accept an unlock order until label d has arrived, and the same applies to unlocking

with e and h. To ensure this controller behaviour, we need to introduce a semaphore that accepts

a or e as an entry and d or h, as an exit edge label. The semaphore SE shown in its matrix form

in Eq. (6.20) fulfils these requirements.

SE =

��
· a e ·
· · · d
· · · h
· · · ·

�� (6.20)

As previously, we can apply Kronecker Skip operation Eq. (6.21) to remove all paths from STotal
that do not conform to the semaphore SE .

STotal ⊙ SE = STotalV ⊗ Im + STotalS ⊗ SE (6.21)

Figure 6.12 depicts the resulting graph. There are now only two paths left; one where label

a is issued first and another where label e takes precedence. The effect of the semaphore in this

example was expectable. However, introducing semaphores can create valuable insights, such as

potential deadlocks in examples with several shared resources. To summarise, Kronecker Algebra

provides a designer with several possibilities to analyse CFGs, of which we only present a few. The

analysis results can be used to evaluate their potential effect on the system.

84

6.4. EVALUATION EXAMPLE

.a

 e b c

 c b f g c e e b

 b f g e c f g

 f g b g h b f c g h

 c b g h

 c f

 c b f

 g h f h b

 b h

 c b h

 g d

 d

 c h

 g

 g b c

 c b

 c d

 c g d g b

 c g

 c

Figure 6.11: The resulting CFG of STotal ⊙ UF2

85

CHAPTER 6. FINDING IMPLIED SCENARIOS

 a e

 b

 c

 d

 e

 f

 g

 h

 f

 g

 h

 a

 b

 c

 d

Figure 6.12: The resulting CFG of STotal ⊙ SE

6.4.4 Evaluate New Scenarios

The previous section demonstrated the possibilities of analyzing the system graph with Kronecker

Algebra operations. As the last step, the systems designer needs to evaluate the effects of the

identified paths. For example, another new path that has been found in STotal is depicted in
Figure 6.13. Transforming this path into an MSC, as shown in Figure 6.14, allows the designer

to assess the possibility of unexpected behaviour. At first sight, it becomes clear that the ready

message c of LM arrives before Control sends message b to RM. If the programmer ensured that

the standard interrupt service in Control starts before sending message a, that would not cause any

issues. If, however, the service is started after sending b, the service will miss c , and the agent

control will never reach state LCKD. As for now, the assessment of each path remains a manual

task performed by the systems designer.

1 2 3 4 5
a c b d

Figure 6.13: The CFG of a new path in STotal

86

6.5. DISCUSSION

MSC lock 2

Control

UNLD

lck

LM

d

c
DD

OFF

OFF

RM

DD

OFF

OFF

a

b

LCKD

Figure 6.14: The MSC depicting the CFG in Figure 6.13

6.5 Discussion

Within this chapter, we presented a method to identify unintended systems behaviour. Further

motivation is that the introduced operations will provide the basis for identifying emergent behaviour

in MASs. As for now, the latter could not be confirmed as emergent behaviour strongly depends

on the relationship between the micro-and macro-state of the system. Nevertheless, the proposed

process and the involved operations allow the identification of implied scenarios which some authors

consider as the first step toward identifying emergent systems behaviour [Ash47, DWH04].

The newly introduced Kronecker Algebra Synthesise operation enables transforming MSCs to

CFGs while retaining the semantics of the MSC. A particular benefit compared to other ap-

proaches is that this model transformation can be automated similarly to all other Kronecker Al-

gebra operations. Therefore, the process might be suitable for system changes or reconfigurations

of cyber-physical production systems (CPPSs) at runtime. A limitation, however, is whether a new

scenario is desired or harmful, and the resulting root cause search will remain the responsibility of

the systems designer. A problem other researchers also point out in their solutions, e.g., Uchitel et

al. [UK01, Uch09]. As Moshirpour et al. [MMEF12] reported for their solution, over-generalisation

is not present in our process, as we include all intermediate states. A limitation, however, is related

to the problem of state explosion.

While we implemented our Kronecker Algebra operation quite efficiently (cf. Section 5.8), there

are limits to the number of agents and the involved messages that can be processed. Introducing

reduction and filter techniques will be necessary to minimise the state space. Moreover, identifying

and removing agents that will not cause new behaviour is a potential solution. Another option is to

create subgroups where the boundaries depend on the number of interactions, i.e., agents heavily

interacting will be grouped and analysed separately. Each group will be reduced to a new agent

interacting with another group. Similar promising research has been conducted by Plateau [Pla85].

A side contribution of this work is that the process would allow a designer to check if an

implemented system fulfils the desired scenarios. This type of problem often occurs in model-

checking [AY01] and has been approached by researchers such as Kaufmann et al. [KKP+15,

KKP+14] and Graaf and Van Deursen [GvD07]. Nevertheless, most of those approaches utilise

87

CHAPTER 6. FINDING IMPLIED SCENARIOS

satisfiability problem of propositional logic (SAT)-solvers, which require previous manual interven-

tion, normalisation, and transformation. This topic we will partly follow up on in the next chapter.

In summary, the proposed process provides the means to identify implied scenarios, which can

exist if the combination of several system scenarios (i.e., agent interactions depicted in MSCs)

creates sequences of messages (paths µ) that connect some global state ŝi and the global initial

state ŝ0 not foreseen in the system scenarios. Therefore, our proposed method solves the problem

formulated in Section 6.2.1. Each involved step is exemplified in Section 6.4, based on established

tools and algebraic operations.

6.6 Related Work

A large body of knowledge is available for detecting unexpected system behaviour (e.g., faults,

implied scenarios, or emergent behaviour). Most relevant to the idea presented in this section

are approaches that utilise scenario synthesis methods, including components and interaction mes-

sages [Boo94, Mau97] and focus on the early system design phase.

The authors Harel and Kugler [HK02] and Kruger [KGSB99] synthesise state machines from the

scenarios representing each agent’s behaviour. Moshirpour et al. [MMBH10] show that emergent

behaviours can be identified by merging different state machines of a single component. Moreover,

they further mention that not all equal states found in the state machines may lead to emergent

behaviour. The authors propose first filtering and then selecting only a relevant subset of states

for further investigation. Other approaches like the ones from Uchitel et al. [UK01, Uch09] do not

consider the message content while synthesising the behaviour model. In the paper of Alur and

Yannakakis [AY01], a verification process is presented that connects MSCs using message sequence

graphs (MSGs). Nevertheless, it poses the risk of unclear interpretations as the order of connecting

the MSCs is undefined.

The authors Puneet et al. [BGMK07, MKS00] propose a technique for detecting implied sce-

narios using message sequence graphs and FSMs, while the authors’ Song et al. [SJHB11, SJB09]

use UML and MSGs instead. The results indicate that these methods can effectively find implied

scenarios by comparing proposed graphs. However, the designer still must decide if an identified

system behaviour is unintended.

Research in model-checking is a large field and is concerned indirectly with finding unintended

behaviour [AY01]. By limiting the focus on consistency checking, several proposals are built upon

languages such as Promela and the famous model checker Spin [BEG+12a, IMP01, KW07, PIM09,

SKM01].

6.7 Concluding Remarks

In the context of the research aim, the presented method is part of identifying basic emergence

in distributed systems. Kronecker Synthesise operation can be used in other contexts, as we will

demonstrate in the next Chapter. Moreover, while developing the process, the question appeared on

verifying if a MSC and a FSM are consistent. Despite a topic naturally located in model checking,

solving such a problem is essential.

88

Chapter 7

Consistency Checking

This chapter continues the goal of the dissertation and solves a significant problem discovered in

the last chapter. Namely, how can it be checked whether an MSC and an FSM are consistent?

This conformance is an essential criterion for identifying implied scenarios, since in some cases,

after scenarios have been laid out in MSCs, the implemented FSMs may no longer conform to the

scenarios, therefore, may produce unexpected behaviour. Based on this insight, the chapter begins

with a motivating example that provides the basis for the problem definition. Introducing Kronecker

Symmetric Skip operation offers an opportunity to solve the problem. As the last step, we apply

our solution to simple examples, evaluate them and discuss them in comparison to related works.

7.1 A Motivating Example

This section provides a motivating example to lay the foundation for the following sections1. More-

over, the example will be reused in Section 7.4 to demonstrate the proposed approach.

Figure 7.1 depicts three state machines that describe the behaviours of a PhD student, a coffee

machine, and a maintenance unit for the coffee machine. For better readability, we used the UML

notation. Later in the paper, an FSM notation will represent the state machines.

1The model has been introduced by Kaufmann et al. [KKP+14] and reused in agreement to allow better compa-

rability between the two approaches. We only had to make a few minor changes.

PhD Student

Working

Desperate

Waiting

wantCoffee

coffeeDone

error repaired

Coffee Machine (CM)

Maintenance Error

PreparingIdle

wantCoffee

coffeeDone

error

repair
Restored

done

repaired

Maintenance

Idle

Repairing

repair done

Figure 7.1: The state machines modelling the PhD Student (PhD), a coffee machine (CM), and

a maintenance unit (m) of the coffee example.

89

CHAPTER 7. CONSISTENCY CHECKING

Alice:PhD cm:CM m:Maintenance

repair

done

wantCoffee

CoffeeDone

Bob:PhD

wantCoffee

wantCoffee

CoffeeDone

error

Alice:PhD cm:CM Bob:PhD

wantCoffee

wantCoffee

CoffeeDone

error

Figure 7.2: Two message sequence charts (MSCs) depicting a desired scenario on the left and a

forbidden scenario on the right.

The rounded rectangles present states which are connected by transitions (arrows). Each arrow

has a label representing an event that causes a state change. In UML, the initial state is indicated

by an incoming arrow/arc from a black dot. The state machines communicate with each other

through message passing. A state change occurs according to a received or sent message. It is

currently irrelevant whether the event is created externally or by another state. The state machines

ignore events if they are irrelevant to the current state, i.e., the transition does not accept the

event.

Figure 7.2 shows a set of sequence diagrams, or MSCs, containing communication scenarios

between instances of the described state machines. As a reminder, in an MSC, a state machine

is instantiated by a lifeline. A lifeline starts with a rectangular box with a dashed vertical line

underneath it. Each line has a name inside the box, the name after the “:” indicates the original

state machine. In the example, we have shortened these names to save space. Along each lifeline,

several message exchanges happen. Each message corresponds to an arrow from the sender lifeline

to the receiver lifeline. The labels of the arrows represent the symbol being transferred.

7.1.1 Consistency Between an MSC and State Machines

For an MSC to be consistent with the state machines, the sequence of messages in the diagram

must be executable in some global state of the lifelines. A global state is a tuple of the state

machine states instantiated by the lifelines. In other words, in the global state, it must be possible

for each message to be an event in the sending lifeline and on the receiving lifeline.

Therefore, checking state machines and a sequence diagram for consistency can have two set-

tings: (1) The MSC depicts the desired scenario. If the MSC is consistent with the state machines,

then there is certainty that the state machines can execute the scenario. In case there is no con-

sistency, the traces and the global state will indicate where the execution fails and helps, therefore,

to identify erroneous or missing transitions. (2) An unwanted scenario is depicted. If the MSC is

consistent with the state machines, the state machines are wrongly implemented. Nevertheless,

the traces will provide a counter-example, namely a sequence of message labels and states that will

support discovering the problem.

90

7.2. THE CONSISTENCY PROBLEM

7.1.2 A Desired and a Negative Scenario

Returning to Figure 7.2, the two depicted MSCs show each setting. The MSC on the left shows

the desired scenario, while the MSC on the right is a negative scenario. Nevertheless, the desired

scenario is inconsistent. The PhD student instance “Alice” changes into the state “desperate” af-

ter receiving an “error” from the coffee machine. This state can only be changed when “repaired”

is received. Looking at the MSC, however, the coffee machine never sends this message. This

means the coffee machine never returns to the state “idle” and would never receive the “want-

Coffee” from the second PhD student instantiation. Following the message trace of the MSC, it

becomes apparent that it can only be executed until and including the fourth message, “done”,

from “m:Maintenance” to “cm:CM.” How the presented approach helps to identify the issue will

be shown later in Section 7.4. Fixing this scenario requires removing the state “desperate” from

the PhD student and connecting the “state waiting” with the error message directly to the state

“working.” In the adverse scenario, the coffee machine can prepare coffee while in an error state.

This situation is not implemented in the state machine and cannot be executed. The resulting

message trace would stop after the first error.

7.2 The Consistency Problem

The problem in the motivating example is a Multiview Sequence Consistency Problem [KKP+14].

The MSCP raises the question of whether the communication sequence modelled in the MSC is

executable by the given FSMs. If this is the case, the two diagrams or views are consistent. In other

words, a desired positive scenario in a sequence diagram will be consistent with the state machine

view, i.e., the state machines can execute the scenario. For the negative scenario in a sequence

diagram, the outcome should be inconsistent with the state machine view. That means the state

machines cannot execute the desired trace.

The common elements in state machines, sequence diagrams, and their interactions are the

symbols in the alphabets
�
A and

�
L. In

�
A are all message labels of the sequence diagrams

executed by the state machines. The alphabet
�
L represents the names of the instantiated state

machines and the lifelines in the MSCs.

7.2.1 Defining the Problem

Based on the definitions for MSCs (cf. Section 6.2), FSMs (cf. Section 5.2), we can formulate the

problem introduced above Multiview Sequence Consistency more precisely. The relevant question

is if there is a path between some global state ŝi and the global initial state ŝ0, representing the

sequence of messages described in the MSC. Therefore we define the Multiview Sequence Consis-

tency Problem as:

An MSC and a set of state machines are consistent if there is a path, starting from a global

state ŝ = (ι1, . . . , ιl) between two global states ŝ
′
and ŝ

′′
, by applying the sequence of messages

µ. Given a MSC = (L, µ), with L{L1, . . . , Ll} and sm(Li) = (Si , ιi , Ai , Ti) for 1 ≤ i ≤ l and the
alphabets

�
A and

�
L.

7.2.2 Limitations

Readers familiar with UML or other modelling languages might recognise that the given definitions

are limited. Advanced control flow structures such as hierarchical or history states in state machines

91

CHAPTER 7. CONSISTENCY CHECKING

or “alt,” “loops,” fragments in sequence charts, or exception handling are out of scope. The reason

is that some structures create indeterministic behaviour. Therefore, the scope of this section is

limited to control flow structures that simple FSMs can represent. In the case of MSCs, only the

message sequencing (i.e., the order of message sending/receiving on a lifeline) is of concern but

can be adjusted as needed.

7.3 Confirming Consistency

It is obvious that Kronecker operations introduced so far are insufficient to solve the consistency

problem. An MSC must be consistent with a “set of state machines”. In other words, the MSC must

be consistent with the overall behaviour of a system composed of multiple CFGs/FSMs. Kronecker

Skip operation is a candidate for modelling the overall behaviour of multiple CFGs/FSMs. However,

the operation does not consider additional edge labels of different CFGs/FSMs. We, therefore,

introduce Kronecker Symmetric Skip operation in the following.

7.3.1 Kronecker Symmetric Skip Operation

Let LA and LB be the set of all operations in programs A and B, and L = LA ∪ LB all operations
combined. Moreover, S denotes a set of common synchronising operations, i.e., S = LA ∩ LB.
Similarly, let VA and VB be additional statements used in the programs A and B, i.e., VA ⊆ LA\LB
and VB = LB\LA.
Then let Mn(LA) be the set of all matrices of size n with entries ∈ LA and Mm(LB) be the

set of all matrices of size m with entries ∈ LB. Let A ∈ Mn(LA) and B ∈ Mm(LB), followed by
AS ∈ Mn(S), BS ∈ Mm(S), AVA ∈ Mn(VA) and BVB ∈ Mm(VB), such that A = AVA + AS and
B = BVB +BS. In addition, the identity matrix of size n is again denoted by In ∈Mn, and the zero

matrix of size n by Zn ∈ Mn. Similarly, Im ∈ Mm and Zm ∈ Mm. Applying the same idea as in

Kronecker Skip by adding self-loops on both sides, results in the following equation:

A ⊙̄ B =
�
A+

��
x∈VB
x

�
· In

�
⊗

B +
�
y∈VA
y

 · Im
 (7.1)

This can be simplified as follows

=

�
AVA + As +

��
x∈VB
x

�
· In

�
⊗

BVB + BS +
�
y∈VA
y

 · Im


� �� �
ξ

(7.2)

= AVA ⊗ ξ + As ⊗ ξ� �� �
ν

+

��
x∈VB
x

�
· In ⊗ ξ� �� �

ρ

(7.3)

= AVA ⊗ BVB� �� �
Zm·n

+AVA ⊗ BS� �� �
Zm·n

+AVA ⊗
�
y∈VA
y

 · Im� �� �
AVA⊗Im

+ν + ρ (7.4)

92

7.3. CONFIRMING CONSISTENCY

= AVA ⊗ Im + AS ⊗ BVB� �� �
Zm·n

+AS ⊗ BS + AS ⊗
�
y∈VA
y

 · Im� �� �
Zm·n

+ρ (7.5)

= AVA ⊗ Im + AS ⊗ BS + ρ (7.6)

= AVA ⊗ Im + AS ⊗ BS +
��
x∈VB
x

�
· In ⊗ ξ (7.7)

= AVA⊗ Im+AS⊗BS+
��
x∈VB
x

�
· In⊗BVB+

��
x∈VB
x

�
· In ⊗ BS� �� �

Zm·n

+

��
x∈VB
x

�
· In ⊗

�
y∈VA
y

 · Im� �� �
Zm·n

(7.8)

hence Kronecker Symmetric Skip operation ⊙̄ can be given as:

A ⊙̄ B = AVA ⊗ Im + AS ⊗ BS + In ⊗ BVB . (7.9)

Compared to Kronecker Skip operation, the Symmetric Skip (⊙̄) operation combines two FSMs
into one, in such a way that all synchronisation operations are respected. Therefore, the sym-

metric skip operation can be used to build the overall behaviour of a system consisting of several

CFGs/FSMs. An example follows in Section 7.4, where running ⊙̄ iteratively over several FSMs
leads to an FSM, capable of representing the global states ŝ defined in Section 6.2.

7.3.2 Reusing Kronecker Synthesize Operation

A remaining issue to solve the consistency problem is comparing an MSC with the entire system’s

behaviour. The problem statement mentions, “if there is a path, starting from a global state

ŝ = (ι1, . . . , ιl) between two global states ŝ
′
and ŝ

′′
, by applying the sequence of messages µ.” In

other words, a set of instructions µ that lead from global state ŝ to a new state ŝ
′
. Therefore, we

again face the question how to transform an MSC into a CFG, reflecting the underlying semantics

of the MSC and the messages in µ. However, this time we already know the answer: our Kronecker

Synthesize operation introduced in Section 6.3.2, that creates Ri .

7.3.3 Bringing it All Together

Now all parts are available to solve the Multiview Sequence Consistency Problem defined in Sec-

tion 7.2.1. A scenario given by an MSC can be transformed with Kronecker Synthesize operation

into an FSM (Ri). The resulting FSM represents the path µ in the MSC that creates the desired

global state change from ŝ
′
and ŝ

′′
. For the instantiated state machines, Kronecker Symmetric Skip

operation ⊙̄, creates an FSM (STotal), representing the entire system’s global behaviour. At last
Kronecker Skip operation ⊙, ensures that the MSC complies with STotal. If the resulting graph Re
is isomorphic to Ri , it is possible to execute the given scenario. Figure 7.3 depicts our approach.

93

CHAPTER 7. CONSISTENCY CHECKING

Kronecker
symmetric

skip

Kronecker
skip

Kronecker
synthesize

FSMsMSC

Figure 7.3: Interplay of the different Kronecker operations

7.4 Evaluation

This section demonstrates and evaluates the previously presented Kronecker operations applied to

the motivating example in Section 7.1.

7.4.1 Preparation of the FSM

As a first step, the given state machines are transformed into deterministic FSMs. Plain numbers

replace the state names, and for readability, the edge labels are replaced with short letters, as

follows:

• a = wantCoffee

• b = coffeeDone

• c = error

• d = repaired

• e = repair

• f = done

Figures 7.4 – 7.6 show the three transformed state machines with their matrix representation. All

state machines do not have a final node because they have to execute continuously.

94

7.4. EVALUATION

1start 2

3

a

b

c

d PhD =

 · a ·
b · c
d · ·

 (7.10)

Figure 7.4: The FSM and matrix of the PhD Student (PhD)

1start 2

45 3

a

b c

ef

d
CM =

����
· a · · ·
b · c · ·
· · · e ·
· · · · f
d · · · ·

���� (7.11)

Figure 7.5: The FSM and matrix of the Coffee Machine (CM)

1start 2

e

f

m =

 · e
f ·

�
(7.12)

Figure 7.6: The FSM and matrix of Maintenance (m)

Alice:PhD cm:CM

a

b

Alice:PhD cm:CM m:Maintenance

e

f

a

d

c

Alice:PhD cm:CM m:Maintenance

a

b

Bob:PhD

a

c

(a) (b) (c)

Figure 7.7: Three MSCs for the evaluation

95

CHAPTER 7. CONSISTENCY CHECKING

7.4.2 A First Simple Example

The first example (a), shown in Figure 7.7, is about a PhD student who wants a coffee and gets

it. Therefore the required FSMs are PhD and CM, and as a first step, Kronecker Symmetric Skip

⊙̄ is applied to get STotal. Eq. (7.13) shows the elements needed, while Eq. (7.14) and Eq. (7.15)
show the matrix representations. In and Im are the identity matrices.

Calculating PhDVPhD ⊗ Im results in Zn since PhDVPhD has no entries. PhDS⊗CMS is displayed
in Eq. (7.16), and In ⊗ CMVCM in Eq. (7.17). Since the matrices reach a size of 15x15, only the
indices of the entries are given. STotal is the addition of (Zn + T1) + T2.
Creating a FSM from STotal shows that it is isomorphic to CM. Therefore, STotal ≃ CM applies,

and Figure 7.5 equally represents STotal.

PhD ⊙̄ CM = PhDVPhD ⊗ Im + PhDS ⊗ CMS + In ⊗ CMVCM (7.13)

PhDVPhD + PhDS =

 · · ·
· · ·
· · ·

+
 · a ·
b · c
d · ·

 (7.14)

CMVCM + CMS =

����
· · · · ·
· · · · ·
· · · e ·
· · · · f
· · · · ·

����+
����
· a · · ·
b · c · ·
· · · · ·
· · · · ·
d · · · ·

���� (7.15)

PhDS ⊗ CMS =

������

· · · · a1,8 · · · ·
...

...
...

...
...

b8,1 · · · · · · c8,13 ·
...

...
...

...
...

d15,1 · · · · · · · · · ·

������ = T1 (7.16)

In ⊗ CMVCM =

������

· · · · · · · · · · ·
... e3,4; f4,5

...
...

...

· · · · · · e8,9; f9,10 · · · ·
...

...
... e13,14; f14,15

...

· · · · · · · · · · ·

������ = T2 (7.17)

The next step is synthesising the MSC in Figure 7.7 (a) into the usage scenario Ri . However,

since there are only two messages a and b, and their dependency is a before b, the resulting CFG

Ri can only have three states and two labels in the specified order. Figure 7.8 on the left shows the

CFG of usage scenario Ri . The final step is to apply Kronecker skip ⊙ in a similar way to Kronecker
symmetric skip ⊙̄ , i.e. STotal ⊙ Ri = STotalV ⊗ Im + STotal S ⊗ Ri . The resulting FSM is shown in
Figure 7.8 on the right and shows that Ri can be executed in STotal.

96

7.4. EVALUATION

1start 2 3
a b

1start 2 3
a b

Figure 7.8: Representation of the CFG Ri (left) and the resulting FMS of STotal ⊙ Ri (right) for
MSC (a) in Figure 7.7.

7.4.3 Focusing on the MSC Synthesis

The second example (b) in Figure 7.7 contains the interaction between PhD, CM, and m. As

beforehand, the first step is to find STotal. However, PhD ⊙̄ CM is already done, and adding m
would mean calculating the ⊙̄ of the previous STotal and m. The new STotal is again ≃ CM.
Synthesising the MSC in Figure 7.7 (a) into the usage scenario Ri , requires creating R0 =

S1 ⊕S2 ⊕ . . .⊕Sn. The first three message label representations are shown in Eq. (7.18) – (7.20)
together with the dependencies.

R0 =

 · a
· ·

�
⊕

 · b
· ·

�
⊕

 · c
· ·

�
⊕ . . . (7.18)

D1 =

 · a ·
· · c
· · ·

 , D2 =

 · c ·
· · e
· · ·

 , (7.19)

D3 =

 · e ·
· · f
· · ·

 , D4 =

 · f ·
· · d
· · ·

 (7.20)

To get Ri , in this case, i = 4, since there are four dependencies, Eq. (6.8) must be applied iteratively

i times. The operations cannot be displayed since the matrices reach a size of 2592×2592, but the
resulting CFG Ri is shown in Figure 7.9. After calculating STotal⊙R4 = STotalV ⊗ Im+STotalS ⊗R4,
the resulting graph is ≃ CM, which shows that Ri can be run in STotal.

1start 2 3 4 5 6
a c e f d

Figure 7.9: The CFG Ri of MSC (b) in Figure 7.7.

7.4.4 The Error Scenario

The last example (c) in Figure 7.7 contains two PhDs, one CM and one m. This scenario should

not work in STotal. Compared to the previous examples, STotal is not ≃ CM because there is another
PhD instance. For visualisation purposes, the labels have indices to indicate their affiliation. These

indices are not necessary for the implementation. Figure 7.10 shows STotal resulting from Kronecker
Symmetric Skip operation. While Figure 7.11 shows the resulting CFG Ri after the synthesis of the

MSC in Figure 7.7 (c).

97

CHAPTER 7. CONSISTENCY CHECKING

1

start

2 3 4 5

6

78

9

a1

b1 b2

a2
c1e1

f1

c2 e2

f2

d2d1

Figure 7.10: STotal for MSC (c) in Figure 7.7.

1start 2

345

a

c

ab

1start

2

3 4

5
a1

a2

c2

c1

Figure 7.11: Representation of the CFG Ri (left) and the resulting FMS of STotal ⊙ Ri (right) for
MSC (c) in Figure 7.7.

To check if Ri is part of STotal we calculate, STotal⊙Ri = STotalV ⊗ Im+STotalS ⊗Ri . The result
Figure 7.11 shows the resulting FSM on the right. In this case Ri cannot be executed in STotal.
The system either takes the path from PhD1 and hangs after outputting c or does the same with

PhD2. A programmer can quickly determine whether the system is implemented incorrectly or the

scenario is forbidden and should not be run.

7.5 Discussion

This chapter continues the goal of the dissertation and solves a significant problem discovered in

the last chapter, namely, ensuring consistency between MSCs and FSMs. This conformance is an

essential criterion for identifying implied scenarios since, in some cases, after scenarios have been

laid out in MSCs, the implemented FSMs may no longer conform to the scenarios, therefore, may

produce unexpected behaviour. The presented approach solves this problem using three Kronecker

operations to provide a consistency check.

The novel Kronecker Symmetric Skip operation ⊙̄ allows combining multiple state machines
into one FSM that represents the entire system behaviour. Kronecker Synthesize from the previous

chapter creates a CFG based on a given MSC and allows the underlying semantics to be adopted. In

the last step, Kronecker Skip ⊙ compares the previous results for consistency. The resulting graph
either confirms consistency or provides valuable insight to a programmer when tracing where the

problems are occurring. We have shown the applicability of each of the above steps in the example

provided at the beginning of the chapter. Compared to the work of Graaf and Van Deursen [GvD07],

Kronecker approach requires no manual intervention and can be automated.

A current limitation is that only simple FSMs and MSCs are supported without advanced mod-

elling capabilities that exist in UML. For example, constructs such as hierarchical or history states in

state machines or “alt” and “loop” fragments in MSCs require further research. However, Kronecker

Algebra has been used to handle alternatives and loops in worst-case execution time analysis [MB21].

Therefore, we expect these constructs to be integrated smoothly into our approach.

98

7.6. RELATED WORK

7.6 Related Work

As indicated beforehand, the problem approached in this paper is a model-checking issue. Therefore,

many proposals are available that build upon languages such as Promela and the famous model

checker Spin [BEG+12a, KW07, PIM09]. Nevertheless, due to semantic differences between state

machines and Promela, an equivalence-preserving translation of all language elements seems to

be the main challenge. The authors in Brosch et al. [BEG+12b, BEG+12a] point out that their

solution based on Spin can ensure that given traces do not occur during the execution of a set

of state machines but cannot guarantee that a given message sequence is possible. To solve

that problem, the same research group exchanged Spin with SAT solvers [KKP+15, KKP+14]. In

Matsumoto et al. [MYA+19], the use of the FDR model checker shows similar issues and cannot

be applied further to analyse the difference between sequence diagrams. The ideas in Kaufmann

et al. [KKP+15] have inspired Küster and Caminati [KC20] to combine the Isabelle/HOL theorem

prover with an SMT solver.

Other authors propose formal approaches. Nevertheless, most implementations are either un-

available, have become obsolete, or have not been maintained. A few approaches are listed in

the following, but for a more detailed overview, the interested reader is guided to specific surveys

like [LMT09]. An example of an algebraic approach based on π-calculus comes from Lam and

Vitus [LP05]. Unfortunately, there is no discussion on realisability. The potential use of description

logic to formally describe the consistency between sequence diagrams, class diagrams, and state

machines is described in Van der Straeten et al. [VDSMSJ03]. Description logic is more expressive

than SAT, but their satisfiability checking problem also involves higher complexity classes than NP.

In Bernardi et al. [BDM02], Petri nets are used to check the consistency between diagrams.

Engels et al. [EHHS02] decide on consistency based on constraints represented in the form of

collaborations and provide an interpreter. Similarly, Egyed [Egy06] uses rules formulated in OCL

for instant consistency validation. The author shows that the approach is very efficient on large

models. In Feng and Vangheluwe [FV03], a simulation-based approach is presented.

Other research does not solely focus on consistency checking between state machines and se-

quence diagrams. The focus is on consistency checking between class, collaboration, and activity

diagrams. For example, in Stephan and Cordy [SC13], the authors compare two sequence dia-

grams to detect the longest standard message passings [LMZS06]. In Odamura et al. [OOO20],

their method focuses on identifying differences in PlantUML sequence diagrams. In Triandini et

al. [TFSR19], vectors are compared that correspond to an MSC. The vectors hold the MSC

objects and messages. Other work that looks specifically into UML diagram comparisons can

be found in Matsumoto et al. [MYA+19, MYA+20], while some surveys covered that topic more

broadly [GBS13, UNKC08].

The approach closest to our approach, next to Kaufmann et al. [KKP+15, KKP+14], is proposed

by Graaf and Van Deursen [GvD07]. In their work, the authors synthesise a state machine from the

given sequence diagram as previously done in [WS00] and compare the generated state machine

to the given state machine. In essence, the approach includes normalisation, transformation, and

comparison. However, the comparison requires manual intervention.

7.7 Concluding Remarks

In the context of the research goal, this chapter’s procedure extends the previous chapter’s method.

However, it is not a sole extension as it solves a real-world problem and is applicable as a stand-alone

method. In particular, the newly introduced Kronecker Symmetric Skip operation ⊙̄, contributes to
ongoing research based on Kronecker Algebra.

99

CHAPTER 7. CONSISTENCY CHECKING

100

Chapter 8

Priority

This chapter examines another possible cause of emergent behaviour, namely priorities. Priorities

are a common element in operating systems to schedule processes according to their importance.

First, a short introduction is given, followed by a prominent example that can occur in prioritised

processes. Second, we show how we adapt our successor search algorithm to incorporate priorities

into our Kronecker algebra, followed by more corner cases. Finding priority inversion in the presented

example with Kronecker serves as an evaluation case, and we discuss the results compared to related

work. In addition, this chapter forms the basis for the next chapter, which deals with execution

times.

8.1 Process Prioritisation

Process prioritisation is a concept present in every current operating system. The operating system

uses process priority to decide how much time each process is allowed on the CPU. While not going

into too much detail here, processes are assigned different categories and priorities, values that

enable process scheduling. For example, the priority of a process could depend on time limits and

memory requirements, or it could be statically or dynamically set. Based on the priorities, the OS

scheduling algorithm takes care of tracking processes and their de- and assignment on the CPU.1

Naturally, higher-priority execute before lower-priority processes.

Scheduling predominantly follows one of two strategies (algorithms); Non-Preemptive and Pre-

emptive [LS86]. With non-preemptive scheduling, a currently running process is not disturbed even

though a process with a higher priority arrives. However, the scheduler schedules the newly arrived

process to run versus other processes waiting in the queue. In the case of a high-priority process,

once the current process is finished, it is allowed to run on the CPU. Preemptive scheduling, on

the other hand, stops and saves the currently running process when a high-priority process arrives.

After the high-priority process finishes, the previous one resumes execution. Priority scheduling has

disadvantages; For example, lower priority processes may never get access to the CPU and starve,

or other more advanced issues like priority inversion.

1Scheduling and priorities in network traffic is another large research area, but is at the moment out of scope.

101

CHAPTER 8. PRIORITY

3

2

1

0

Time

Process L Process L

Process
H

Critical Section

Critical Section Process
H

L takes

lock

H is blocked

 trying to take lock

L releases

lock

Priority

Figure 8.1: An example of a bounded priority inversion with a lower-priority process executing before

(or blocking) a high-priority process.

8.2 Bounded/Unbounded Priority Inversion

Priority inversion is a system error that can occur when a lower-priority process indirectly blocks

a higher-priority process [LSR+88]. A typical example is that the lower priority process holds a

mutex that the higher priority process needs to continue execution and therefore has to wait.

Figure 8.1 shows a simple case where, the high-priority process H is blocked while the low-priority

process (process L) holds the lock. This particular situation is known as “bounded priority inversion”

because the duration of the inversion depends solely on how long the lower priority process is in the

critical section or, in this case holding the lock. The critical section in Figure 8.1 represents the

time duration process H is blocked until process L releases the lock. Therefore, the priority of the

processes is “inverted” since process L now executes before process H [LSR+88].

Another type of priority inversion is called unbounded priority inversion [LSR+88]. In this case, a

medium-priority process (process M) interrupts process L, which is holding the lock. Compared to

the previous example, process M blocks H for an “unbounded” time by preempting L. The reason

is that L needs to wait for M to finish before releasing the lock for H. Another issue is that the

scheduler prioritises any other process with a higher priority than L. Therefore, the time until H

receives the lock is nearly impossible to determine. In other words, the priority inversion stays for

an indefinite time. Figure 8.2 visualises the interaction between the different processes.

A prominent and widely published example is how a priority inversion bug nearly ended the Mars

Pathfinder mission in 1997.2 After deploying the rover, the lander would randomly reset every

few days due to an intermittent priority inversion bug that caused the watchdog timer to trigger

a complete system restart.3 The team at NASA could fix the bug via a remote update after a

long and challenging search for the cause of the reset. Nevertheless, there are solutions to prevent

unbounded priority inversion. Two more frequently cited methods are priority ceiling protocol and

priority inheritance [SRL90].

2Not to be mixed up with the Mars rover incident, that landed in a crevice due to improper use of Howard

Wolowitz.
3http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

102

8.3. PRIORITY CEILING AND INHERITANCE PROTOCOL

3

2

1

0

Time

Process L L

Process
H Critical Section Process

H

L takes

lock

H is blocked

 trying to take lock

L releases

lock

Priority

Critical

 Section

Process
Mn

H is now blocked

by M

Figure 8.2: An example of an unbounded priority inversion with a mid-priority process blocking a

high-priority process for an indefinite time.

8.3 Priority Ceiling and Inheritance Protocol

The priority ceiling protocol introduces a so-called “priority ceiling level” to each lock or shared

resource [GS88]. If a process acquires a resource/lock, its priority is automatically increased to the

priority ceiling level linked to the specific resource/look. The ceiling priority depends on the highest

process priority that accesses the resource or lock. As shown in Figure 8.3, the highest priority is

3 (process H); when process L takes the lock, its priority is increased to 3, equal to process H.

The priority boost prevents process M from interrupting L and M. Later in this chapter, we use the

priority ceiling protocol in combination with our Kronecker Algebra.

Another method, known as “priority inheritance,” follows the idea of giving the process holding

the lock the same priority as any other process (of higher priority) that tries to get a hold of the

lock. As exemplified in Figure 8.4, process L again takes the lock. If process H attempts to take

the lock, L will inherit the priority of H. Therefore, unlike the unbounded example, another process

cannot interrupt L until L and H finish their critical sections. It is essential to mention that in both

methods, the priority of process L is returned to its original value after it releases the lock. Moreover,

those methods can only prevent unbounded priority inversion; it is still possible for bounded priority

inversion [SRL90].

In general, bounded priority inversion can only be avoided or mitigated by following certain program-

ming practices:

3

2

1

0

Time

Process
L L

Process
H

L

Critical Section H

L takes

lock

L executes at

H's priority

L releases

lock

Priority

Process
Mn

H

Critical Section H

Figure 8.3: Priority ceiling protocol.

3

2

1

0

Process
L

Process
H

 L

Critical Section H

L takes

lock

H is blocked

 trying to take lock

L releases

lock

Priority

 H

Critical Section

L takes

H's priority

Time

L

Process
Mn

H

Figure 8.4: Priority inheritance.

103

CHAPTER 8. PRIORITY

A1

L

a

b

A1

M

c

d

L

Mc d

a b

Time

A1

t1 t2

Figure 8.5: The agent A1 receiving and sending two different message pairs.

• The simplest solution is to avoid critical sections or locks that can block a high-priority task,
e.g., by using wait-free (non-blocking) algorithms.

• If required, the sections should be as short as possible to reduce the blocking time.

• Or the introduction of a control task of the shared resource to avoid the need to create locks
to protect it

An example of the last option could be a service task that sends and receives messages from a

serial port through queues.

8.4 Problem Definition

Now let us return to agent systems and their message interactions from the previous chapters.

Figure 8.5 depicts agent A1 receiving and sending two different message pairs on the left. Usually,

an action is triggered when an agent receives a message, e.g., a calculation, relaying a message or

determining to ignore a message. The coloured rectangles in the figure represent such actions. As

discussed in Chapter 6, messages can arrive at any time and might have different priorities, or the

actions they trigger have different importance. This circumstance is best visible on the right side

of Figure 8.5. The arrival times t1 and t2 are unknown to the agent, as well as the priorities of the

activities.4 Therefore, the agent needs to decide how to process the messages and if there is not

only a first in, first out queue, process prioritisation becomes relevant. In other words, an agent is a

processing unit facing the same issues as an OS when scheduling processes that require resources.

In the context of basic emergence, the different possible variations of how an agent reacts to

incoming messages and process priorities could be the source of unexpected behaviour. Therefore,

the problem definition is to extend Kronecker Algebra to handle edges with priorities while consid-

ering the required resources. In addition, it should be possible to identify priority inversion that can

occur in multi-threaded applications that share resources.

4The processing times of the activities also play a role. Those are the topic of the next chapter.

104

8.5. KRONECKER PRIORITY

3

2

1

Time

Process C

Priority

Process B

Process A
Process C

Process A

Process B

Scheduling

Processes waiting

for the CPU

Figure 8.6: Three processes with different priorities scheduled on one CPU

8.5 Kronecker Priority

As a starting point, we assume three processes (A,B, C) running concurrently, that require a CPU,

and each has a different priority. If only one CPU is available, the processes execute according to

their priority (cf. Figure 8.6); as process C gets the CPU first, the others must wait in line. The

relevant parts in this example are the processes P , their priorities p, and the number of shared

resources #RC. Currently, processing times are irrelevant, and no external scheduling is involved

(i.e., a scheduler that actively changes a process’s priority).

Processes like message transactions in Chapter 6 can be represented in Kronecker Algebra as a

two by two matrix, i.e., in the form of one directed edge label. For the current example, Eq. (8.1)

shows the three matrix representations.

PA =

 · a[p:1]
· ·

�
, PB =

 · b[p:2]
· ·

�
, PC =

 · c[p:3]
· ·

�
(8.1)

Applying Kronecker Sum to the matrices will result in all possible interleavings between the

processes (cf. Eq. (8.2)). However, the resulting P Total does not yet consider any priorities.

P Total = PA ⊕ PB ⊕ PC (8.2)

For this reason, it is necessary to allocate a priority to each label. In the matrices shown in

Eq. (8.1), this is indicated by [p : n], for n ∈ N. The priority will, however, only piggyback while
applying Kronecker Sum to the single processes; the solution to our problem lies in identifying a

node’s successors. As described in Section 5.8, the lazy implementation (cf. Algorithm 1) provides

a list Si of the successors of node i in the resulting matrix. Based on Si the entries of the resulting

matrix are calculated. With the entries of Si having an allocated priority, it is possible to sort

the successors accordingly. Based on this order, it is now possible to allow edges (successors) to

continue from node i starting with the highest priority until all resources are utilised.

In a formalised way, we define the following:

• Si is a list of successor edges of node i ordered by the priorities of e(i , j),

• while e(i , j) is the directed edge from i → j and
• p(i , j) the priority of edge e(i , j).

• Moreover |Si | is the length of the list Si and

105

CHAPTER 8. PRIORITY

1

2

C.c [prio: 3]

4

B.b [prio: 2]

8

A.a [prio: 1]

Figure 8.7: P Total with one CPU available.

1

2

C.c [prio: 3]

3

B.b [prio: 2]

4

B.b [prio: 2]

6

A.a [prio: 1] C.c [prio: 3]

7

A.a [prio: 1]

8

A.a [prio: 1]B.b [prio: 2] C.c [prio: 3]

Figure 8.8: P Total with two CPUs available.

• Si ,k is the set of the first k edges of Si .

• #RC shall represent the number of available resources (e.g., CPU).

• SN is a set of edges that are the successors of node i .

Nevertheless, it is not straightforward to compute SN , without considering two border cases.

The first one is if more resources are available as required by the processes. In this case, SN , can

be returned directly, as each successor can be executed. The second one comprises that there are

not enough resources available, and therefore only a few successors can continue. If there is a

clear priority order, only the first #RC successors continue. However, if there are several equally

prioritised successors, those must also be included. The reason is that all the same priority processes

have the same probability of getting a resource, and it is impossible to determine which one.

The following equation defines the two cases.

SN =

�
Si ,|Si |, if |Si | < #RC,
{e(i , k) | e(i , k) ∈ Si ,#RC} ∪ {e(i , l) | l > #RC ∧ p(i , l) = p(i ,#RC)}, if |Si | ≥ #RC

(8.3)

Now let us return to the three process examples. If only one CPU is available, P Total is reduced

to the graph shown in Figure 8.7. The highest priority will take the resource, and releases it for the

following priority task to take it.

The graph will change if two CPUs are available, as depicted in Figure 8.8. The successors of

node 1 are the edges c and b due to their higher priorities. On the next level (nodes 2 and 3), one

might expect only a to execute. However, that is not how Kronecker Sum operates; it shows all

possible successors of a node without synchronisation. While this seems counterintuitive, it reflects

reality in one path as only the past executions are known. Therefore for each node, all remaining

edges are possible successors that can use all available resources.

106

8.5. KRONECKER PRIORITY

Time Time Time

Y

X

Time

c

CPU

b a

1 3 7 8

Y

X c

CPU

1 2 6 8

b

a

Y

X c

CPU

b

a

1 2 4 8

Y

X c

CPU

b a

1 3 4 8

Figure 8.9: Interpretation of the paths in P Total with two CPUs available.

1

2

C.c [prio: 3]

3

B.b [prio: 2]

5

A.a [prio: 1]

4

B.b [prio: 2]

6

A.a [prio: 1] C.c [prio: 3]

7

A.a [prio: 1]C.c [prio: 3] B.b [prio: 2]

8

A.a [prio: 1]B.b [prio: 2] C.c [prio: 3]

Figure 8.10: P Total with three CPUs available.

Keeping that in mind and that there is no time involved, let us look at one path, e.g., 1→ 2
→ 6 → 8. This path yields the labels in order c, a, b. As already mentioned, starting from node
1 label c is on the first CPU and b on the second. Arriving at node 2, the possible successors are

a and b. We can interpret this as that b is still running on the second core, and a is now on the

first. Node 4 only has one successor (b), again because b is still running on the second core. Figure

8.9 illustrates the above interpretation and the other paths. Some bars have several endings, as it

is impossible to determine when those processes end. Only the ones that have a direct successor

have finished their execution. Similarly, we can interpret Figure 8.10, which depicts the result with

three available CPUs.

8.5.1 Conditionals

After being able to handle processes with different priorities and the number of available resources,

other aspects need to be considered. So far, we have only considered a process as a simple path,

without any loops or if/else statements. Let us start with an example containing loops. Figure 8.11

107

CHAPTER 8. PRIORITY

1

A

2 3A.a.[2]

A.c.[1]
A.b.[2] 1

B

2 3B.d.[1]

B.f .[1]
B.e.[1]

Figure 8.11: State machines A and B with loops

1

A

2 A.a.[2]

A.b.[2]

Figure 8.12: Result of A⊕ B without adjustments and one CPU.

depicts two state machines, A and B. State machine A on the left has a loop based on two edges

with priority 2, while the last edge has priority 1. The second state machine on the right (B) is

identical, but all edges have priority 1. If we compute A ⊕ B, use the conditions given in Eq. 8.3
and set #RC = 1, the resulting graph looks like the one in Figure 8.12. The reader will agree

that state machine B never gets the CPU because the two high-priority labels keep it in the loop.

However, that does not reflect reality; at one point, the loop will exit, and either edge c will get

the CPU or one of the edges of state machine B.

To incorporate loops, the previous Eq. (8.3) needs some adjustments. The idea is to add to

the possible successors all edges with a lower priority that belong to the state machine holding the

resource, i.e., the sorted list Si needs to be searched for other successor edges of the highest priority

task belonging to the same process.

For doing so, we have to define additionally:

• h(i , j) which is the name of the process the edge e(i , j) belongs to.

With this addition, we can extend the second option of Eq. (8.4) with all lower-priority edges that

belong to the same process that holds the resource #RC.

SN =


Si ,|Si |, if |Si | < #RC,
{e(i , k) | e(i , k) ∈ Si ,#RC} ∪ {e(i , l) | l > #RC ∧ p(i , l) = p(i ,#RC)}
∪ {e(i , q) | ∃k(h(i , q) = h(i , k) ∈ Si ,#RC)}, if |Si | ≥ #RC

(8.4)

Figure 8.13 shows the result of A ⊕ B (with one CPU) after the adjustment. Now, the graph
shows an exit of the loop by edge c , which allows B to execute later. However, the result is not

complete either. There should be two more edges (d, f) from node 1, as they have the same

priority as c . However, we cannot implement this possibility; otherwise, Kronecker Sum would find

successors that would not be allowed due to their priorities and order. Therefore, we limit our

approach to exclude edges with the same priority but do not belong to the same state machine as

successors. Figure 8.14 shows the result of A⊕ B (with two CPUs) after the adjustment.

108

8.5. KRONECKER PRIORITY

1

4

A.a [prio: 2]

7

A.c [prio: 1]A.b [prio: 2]

8

B.d [prio: 1]

9

B.f [prio: 1]B.e [prio: 1]

Figure 8.13: Result of A⊕ B with adjustments and one CPU.

1

4

A.a [prio: 2]

2

B.d [prio: 1]

7

A.c [prio: 1]

3

B.f [prio: 1]

A.b [prio: 2]

5

B.d [prio: 1]

6

B.f [prio: 1]B.e [prio: 1]

A.b [prio: 2]

B.3 [prio: 1]

A.a [prio: 2]

8

A.c [prio: 1]

B.e [prio: 1] B.d [prio: 1]

9

B.f [prio: 1]

A.b [prio: 2]

A.c [prio: 1]

A.a [prio: 2]

Figure 8.14: Result of A⊕ B with adjustments and two CPUs.

109

CHAPTER 8. PRIORITY

8.5.2 Branches (If and Else Statements)

The changes made in Eq. (8.4) include another capability. It is now also possible to introduce a

branch where the priorities determine the execution of the edges, a feature that will be useful in the

next chapter. Figure 8.15 presents two state machines, A and B, with A containing a branch (if/else

condition). By calculating A⊕B, we get the result shown in Figure 8.16. The result clearly shows
two possible paths, whereby the execution of edge e depends on its priority compared to the other

edges in the path. It is interesting to observe that simple constructs can influence the paths in the

desired way. Another requirement for spotting priority inversion is to create dependencies between

concurrently executing processes. As introduced in Section 5.7, one possibility that synchronises

state machines are semaphores. Within the next section, we use semaphores to create a sync

pattern that ensures given dependencies.

1A

2

3

4

A.a.[3]

A.c.[1]

A.b.[3]

A.d.[1]

1

B

2

B.e.[2]

Figure 8.15: State machines A and B, with a A containing a branch (if/else condition).

1

3

A.a [prio: 3]

5

A.c [prio: 1]

7

A.b [prio: 3]

6

B.e [prio: 2]

8

B.e [prio: 2] A.d [prio: 1]

Figure 8.16: The two resulting paths of A⊕ B with one CPU.

110

8.5. KRONECKER PRIORITY

8.5.3 Sync Pattern

The above-presented approach is insufficient in detecting priority inversion, as there are no explicit

dependencies between the processes. Therefore, introducing a mechanism that ensures that edges

are executed in a specific order is imperative. Let us assume that we have two processes, A and B,

each issuing two labels, a, b, and c, d , that must fulfil the relations given in Eq. (8.5).

a ≺ b

c ≺ d

a ≺ d

c ≺ b

(8.5)

These relations explicitly allow that a either precedes or succeeds c , and the same applies to the

pair b and d . For implementing a synchronisation in Kronecker Algebra between the edges, we

utilise semaphores as previously introduced in Section 5.7. In this case, two semaphores are enough

to ensure the label relations.

1start 2

p1

v1

1start 2

p2

v2

Figure 8.17: The two semaphores S1 and S2 for synchronising the two processes A and B.

As a next step, processes A and B require adjustment. The order of labels in the processes sets

the first two relations in Eq. (8.5). For implementing the last two relations, we use the semaphores

S1 and S2, as shown in Figure 8.17. The idea is that process A locks S1 and is blocked until

B releases S1. Letting B lock S2 and A release S2 afterwards ensures that the relations hold.

Therefore, process A needs to include p1 ≺ v2 and process B v1 ≺ p2. Figures 8.18 and 8.19
show the adjusted processes and their matrix representations. We introduced colours to visualise

the relations between the parts. The relation patterns p1 ≺ v2 and v1 ≺ p2 are interchangeable
between A and B.

1start 2 3 4 5
a p1 v2 b

A =

����
· a · · ·
· · p1 · ·
· · · v2 ·
· · · · b

· · · · ·

���� (8.6)

Figure 8.18: Process A including the required edges to access the semaphores S1 and S2.

After the adjustments, we utilise Kronecker Sum to combine A and B and Kronecker Skip for

synchronisation with the semaphores. Eq. 8.8 shows the single elements, while I5 and I2 are the

identity matrixes with the respective sizes.

(A⊕ B)⊙ (S1 ⊕ S2) = (A⊗ I5 + I5 ⊗ B)⊙ (S1 ⊗ I2 + I2 ⊗ S2) (8.8)

111

CHAPTER 8. PRIORITY

1start 2 3 4 5
c v1 p2 d

B =

����
· c · · ·
· · v1 · ·
· · · p2 ·
· · · · d

· · · · ·

���� (8.7)

Figure 8.19: Process B including the required edges to access the semaphores S1 and S2.

Figure 8.20 shows the result of Eq. (8.8). It is visible that in the beginning, there are different

paths possible between the two processes. However, the synchronisation starts when A gets hold

of the semaphore S1. The reader will agree that the result fulfils all relations defined in Eq. (8.5).

As a side comment, processes A and B can have further edges on both sides, as the semaphores

act like a “tunnel” between the parts before and after. Therefore, it is essential not to create

edges that would allow bypassing the semaphores; otherwise, the relations will not hold any longer.

Continuative, the sync pattern can be used in different places of a more extended graph; however,

with each “tunnel”, a new pair of semaphores is added.

1

21

A.a

5

B.c

43

A.p1

25

B.c A.a

47

B.c A.p1

49

B.v1

54

B.p2

73

A.v2

58

B.d

77

B.d

93

A.b B.v2

97

A.bB.d

Figure 8.20: Graphical representation of (A⊕ B)⊙ (S1 ⊕ S2)

112

8.6. SPOTTING PRIORITY INVERSION

8.6 Spotting Priority Inversion

After addressing the synchronisation issues, all elements are available to simulate and detect priority

inversion, as introduced in Section 8.2. Let us assume three processes T1, T2, T3 with different

priorities and edges. T1 and T3 share the same critical section d , as shown in Figure 8.21.

1

start

2 3 4
a d e

1

start

2
c

1

start

2
d

Figure 8.21: The three processes T1, T2, T3, with T1 and T3 sharing a critical section d .

8.6.1 Introducing the Lock

First, we must introduce the lock around the critical section d with a semaphore S1 (cf. Figure 8.22).

Figure 8.23 shows the labels p1 and v1, added into T1 and T3 to create a lock around d . We

added the coloured nodes to show where we added the semaphore.

1start 2

p1

v1

Figure 8.22: The semaphore S1 that creates a lock around the shared resource d .

1start 2 3 4

56

a p1 d

v1

e

1start 2 3 4
p1 d v1

Figure 8.23: The processes T1, and T3 with S1 integrated.

8.6.2 Introducing the Synchronisation

The second step is introducing synchronisation between the processes. In our example, we need to

address the following relations between the edges:

a ≺ d

a ≺ e

a ≺ c

(8.9)

The relation a ≺ c requires synchronisation between T1 and T2. Therefore we introduce our
first semaphore pair (S2, S4), as shown in Figure 8.24. Another semaphore pair (S3, S5) is required

113

CHAPTER 8. PRIORITY

1start 2

p2

v2

1start 2

p4

v4

Figure 8.24: The semaphores S2 and S4 to synchronise T1 and T2.

1start 2

p3

v3

1start 2

p5

v5

Figure 8.25: The semaphores S3 and S5 to synchronize T1 and T3.

(cf. Figure 8.25) to ensure a ≺ d between T1 and T3. The last relation a ≺ e, is part of T1 and
does not require synchronisation. Note that each semaphore pair requires specific edge labels;

otherwise, the synchronisation will not work. In the following, we integrate the semaphores into

the processes as described in the previous section. The colours represent the respective elements

coded where they are placed in the processes.

8.6.3 Adjusting the Processes

The changes in process T1 (cf. Figure 8.26) include two synchronisations. S1 needs to remain the

first action after edge a in this process, as we want T3 to take the lock before any synchronisation

happens. The order of the semaphore pairs after the lock is interchangeable and does not affect the

synchronisation between the processes. However, they must happen before the critical section d , as

we otherwise violate the relation a ≺ d . For T2, we added the semaphore before c (cf. Figure 8.27).
Process T3 also needs to fulfil a ≺ d , but that includes the lock. Therefore, in this case, the
semaphore pair is placed before S1 and d (cf. Figure 8.28). In addition, each label received a

priority level. The semaphore priorities, take the priority of the process with the highest priority it

synchronises.

Currently, the adjustments of the processes have to be done manually. In future works, if the

dependencies are specified, there might be a solution to add the sync pattern automatically.

8.6.4 Apply Kronecker Algebra

As the last step, we have to compute all elements with Kronecker Algebra according to Eq. (8.13).

For priority inversion to happen, we allocate one CPU.

(T1⊕ T2⊕ T3)⊙ (S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5) (8.13)

Figure 8.29 shows the graphical representation of the result of Eq. (8.13). The graph contains

all synchronisation edges, making interpretation difficult at first sight. However, the reader will agree

that the relevant process edges will form the behaviour as shown in Figure 8.32. The sequence of

edges represents an unbound priority inversion, as the middle priority process, T2, interrupts the

execution of T1 that holds the lock. Therefore, the high-priority process, T3, has to wait. The

automatic creation of the timing diagram, is an open task for future work on the topic.

114

8.6. SPOTTING PRIORITY INVERSION

1start 2 3 4

5

6

78910

a[p:1] p1[p:3] v3[p:3]

p5[p:3]

v2[p:3]

p4[p:3]

d[p:3]v1[p:3]e[p:1]

T1 =

��������������

· a · · · · · · · ·
· · p1 · · · · · · ·
· · · v3 · · · · · ·
· · · · p5 · · · · ·
· · · · · v2 · · · ·
· · · · · · p4 · · ·
· · · · · · · d · ·
· · · · · · · · v1 ·
· · · · · · · · · e

· · · · · · · · · ·

��������������
(8.10)

Figure 8.26: Process T1 adjusted with all semaphores and with priority 1.

1start 2 3 4
p2[p:2] v4[p:2] c[p:2]

T2 =

��
· p2 · ·
· · v4 ·
· · · c

· · · ·

�� (8.11)

Figure 8.27: Process T2 adjusted with all semaphores and with priority 2.

1start 2 3 4

5

6

p3[p:3] v5[p:3] p1[p:3]

d[p:3]

v1[p:3]

T3 =

������

· p3 · · · ·
· · v5 · · ·
· · · p1 · ·
· · · · d ·
· · · · · v1
· · · · · ·

������
(8.12)

Figure 8.28: Process T3 adjusted with all semaphores and with priority 3.

115

CHAPTER 8. PRIORITY

1

37

T3.p3 [prio: 3]

237

T2.p2 [prio: 2]

1005

T1.a [prio: 1]

1789

T1.p1 [prio: 1]

2553

T1.v3 [prio: 1]

3322

T1.p5 [prio: 1]

3353

T3.v5 [prio: 3]

4113

T1.v2 [prio: 1]

4883

T1.p4 [prio: 1]

5073

T2.v4 [prio: 2]

5265

T2.c [prio: 2]

6033

T1.d [prio: 1]

6785

T1.v1 [prio: 1]

6833

T3.p1 [prio: 3]

6865

T3.d [prio: 3]

6881

T3.v1 [prio: 3]

7649

T1.e [prio: 1]

Figure 8.29: Graphical representation of

Eq. (8.13) with normal priorities (Priority In-

version)

1

37

T3.p3 [prio: 3]

237

T2.p2 [prio: 2]

1005

T1.a [prio: 1]

1789

T1.p1 [prio: 3]

2553

T1.v3 [prio: 3]

3322

T1.p5 [prio: 3]

4082

T1.v2 [prio: 3]

3353

T3.v5 [prio: 3]

4852

T1.p4 [prio: 3]

4113

T3.v5 [prio: 3] T1.v2 [prio: 3]

4883

T3.v5 [prio: 3]

5620

T1.d [prio: 3] T1.p4 [prio: 3]

5651

T1.d [prio: 3]T3.v5 [prio: 3]

6372

T1.v1 [prio: 3]

6403

T1.v1 [prio: 3]

6451

T3.p1 [prio: 3]

T3.v5 [prio: 3]

6483

T3.d [prio: 3]

6499

T3.v1 [prio: 3]

6689

T2.v4 [prio: 2]

6881

T2.c [prio: 2]

7649

T1.e [prio: 1]

Figure 8.30: Graphical representation of

Eq. (8.13) with adjusted priorities. (Prior-

ity Ceiling)

116

8.6. SPOTTING PRIORITY INVERSION

8.6.5 How to Spot Priority Inversion in the Graph?

One question that remains is how to spot priority inversion automatically. The answer lies in the

order of the issued labels in the resulting graph. Let us define that all process labels are represented

by e. The semaphores that protect the critical sections we call Sc and their labels pc , vc while c is

the number of the critical semaphore. In addition, we summarise all synchronisation semaphores as

SN and their labels as sl . The priorities we define with l = low, m = middle and h = high priority.
5

For priority inversion to happen, a low priority (l) takes the lock pc and blocks a high priority

(h) process from executing. Therefore, we need to find a specific label sequence to spot priority

inversion in the resulting graph. Figure 8.31 shows the pattern in the form of a CFG. The first state

change happens by a process taking a critical lock; after that, an arbitrary number of synchronisation

and process labels can appear. The next critical step is when at least one middle-priority process

(m) issues a label. This state change can also be accompanied by synchronisation and process

labels. The last two state changes represent the lower process releasing the lock and the higher

priority process taking the lock.

Clearly we can utilise Kronecker Skip to find such a sequence in the final graph. If the sequence

is not present, Kronecker Skip will produce an empty graph. The checking would need to be

done for all critical semaphores and process combinations. Nevertheless, in the worst case, the

process remains polynomial, while certain combinations are not required to be checked, e.g., check

low-priority processes against each other.

In Figure 8.32, we coloured the relevant states and labels. The reader will agree that the

sequence conforms to the CFG in Figure 8.31, and Kronecker Skip would create a positive result.

1start 2 3 4 5
l .pc

l .
�{e}{sl} h.�{e}{sl}

m.
�{e}{sl}
l .
�{e}{sl} h.�{e}{sl}

l .vc h.pc

Figure 8.31: Critical label sequence for spotting priority inversion in the resulting graph.

8.6.6 Introduce the Priority Ceiling Protocol

As described, one mechanism to prevent priority inversion is the priority ceiling. In our example,

changing the priority of label d in T1 to 3 creates such an effect, as it makes it impossible for

T2 to interrupt T1, and T3 can access the lock after T1 is finished. Figure 8.30 shows the

graphical representation of Eq. (8.13), but this time with adjusted priorities. In the final graph,

the different synchronisation paths are visible between the processes, which leads up to ensuring

the dependencies. After removing the synchronisation edges, Figure 8.33 shows how the processes

execute.

If we Kronecker Skip the previously introduced label sequence on the new resulting graph, the

result would be an empty graph as the sequence is not present. Implementing priority inheritance

is impossible as it would require an adjustment of the priorities during execution.

5For better readability, can be extended or replaced with the priority number

117

CHAPTER 8. PRIORITY

3

2

1

0

Time

T1.a T.1v1

Task T3

takes

lock

T1.p1

T3 is blocked

 trying to take lock

releases

lock

Priority

T1.d

T2.c

T1.e

T3.p1 T3.d T3.v1

Figure 8.32: Priority Inversion Problem

3

2

1

0

Time

T1.a

T1.v1T1.p1

Priority

T1.d

T2.c

T1.e

T3.p1 T3.d T3.v1

Figure 8.33: Priority Ceiling

8.7 Identify Starvation

Kronecker priority implementation can be used to show how a process can starve if never given

access to the critical section. For this simple example, we use two processes T1 and T2 as shown

in Figures 8.34 and 8.35. T1 is given priority two and T2 priority one. Each requests a semaphore

S1 with two edges v and p.

(T1⊕ T2)⊙ S1 (8.14)

By calculating Eq. (8.14) and providing only one CPU, Figure 8.36 shows the resulting graph.

The graph only contains the edges of T1, in other words T2 never gets hold of the semaphore. If

given two CPUs, the resulting graph shown in Figure 8.37, looks quite different. With two CPUs

available, both processes can execute anytime. For this reason, several paths are visible in the

graph, representing that behaviour.

1start 2 3 4
a[p:2] p[p:2] b[p:2]

v[p:2]

T1 =

��
· a · ·
· · p ·
· · · b
v · · ·

�� (8.15)

Figure 8.34: Process T1 with priority 2

1start 2 3 4
c[p:1] p[p:1] d[p:1]

v[p:1]

T2 =

��
· c · ·
· · p ·
· · · d
v · · ·

�� (8.16)

Figure 8.35: Process T2 with priority 1

118

8.7. IDENTIFY STARVATION

1

9

T1.a [prio: 2]

18

T1.p [prio: 2]

26

T1.b [prio: 2]

T1.v [prio: 2]

Figure 8.36: The graph of (T1 ⊕ T2) ⊙ S1 and one CPU. Processes T1 is executing while T2
starves.

1

9

T1.a [prio: 2]

3

T2.c [prio: 1]

18

T1.p [prio: 2]

11

T2.c [prio: 1]

T1.a [prio: 2]

6

T2.p [prio: 1]

26

T1.b [prio: 2]

20

T2.c [prio: 1]

T1.p [prio: 2]

14

T2.p [prio: 1] T1.a [prio: 2]

8

T2.d [prio: 1]

T1.v [prio: 2]

28

T2.c [prio: 1]

T1.b [prio: 2]

16

T2.d [prio: 1]

T1.v [prio: 2]

T2.v [prio: 1]

T1.a [prio: 2]

T2.v [prio: 1]

Figure 8.37: The graph of (T1⊕ T2)⊙ S1 and two CPUs. Processes T1 and T2 are executing.

119

CHAPTER 8. PRIORITY

8.8 Discussion

This chapter discusses process priorities and the effect of priority inversion. We have adapted the

existing lazy algorithm for identifying successor nodes to consider the edges’ priorities. In addition,

the adjustments allow a change in the available resources, which affects processes running in parallel.

It could be shown that the changes can handle branching (if/else statements) and loops.

A synchronisation pattern that introduces dependencies between the edges of concurrently ex-

ecuting processes allowed us to identify priority inversion as described in [SRL90]. By altering the

priorities of the edges involved, the priority inversion could be avoided, just as the priority ceiling

protocol [GS88]. Implementing priority inheritance is impossible as Kronecker operations cannot

display dynamic changes of an edge, i.e., an edge cannot change its priority within a graph.

Other restrictions are that processes containing loops must have edges of the same priority.

Different priorities can be set; however, the algorithm will prioritise the first process to take the

resource even though another process has a higher priority edge. This limitation could not be fixed

as it would introduce indeterministic behaviour.

In summary, the adjustments described solve the problems mentioned in the problem definition

in Section 8.4. As a side contribution, it could be shown that it is possible to identify process

starvation when a process never gets access to a resource. An open task is to answer an interesting

question, whether it would be possible to introduce a scheduler that controls the resources.

8.9 Related Work

Priority assignment-related work (for real-time systems) spans more than four decades [DCGBB16].

That includes real-time scheduling of complex models and schedulability analysis techniques devel-

oped to represent and analyse true-to-life systems, e.g., mixed-criticality systems, systems with de-

ferred pre-emption, and probabilistic real-time systems with worst-case execution times. Moreover,

topics such as pre-emptive and non-pre-emptive scheduling, single- and multi-processor systems,

and networks are part of the activities. While this chapter provides solutions for handling priorities,

the main intention was to contribute operations to Kronecker Algebra. In further activities, we

intend to compare and explore the applicability of our approach in this research field. However, that

is out of the scope of this dissertation. Therefore, we guide the interested reader to the survey by

Davis et al. [DCGBB16], which provides an overview of the past and ongoing research activities.

Related work that includes priorities in the context of Kronecker Algebra is unknown to us.

Closest is the research presented by Mittermayr and Blieberger [MB12, MB16a]. The authors use

Kronecker operations to determine the worst-case execution time (WCET) of concurrently executing

threads. There is a limited relation to Plateau’s work in stochastic automata networks [Pla85].

8.10 Concluding Remarks

In the context of the research aim, the contribution of this chapter provides an essential mechanism

for the next chapter. Nevertheless, the presented adaptation of the algorithm is not a sole extension;

it enables further research ideas in the field of Kronecker operations.

120

Chapter 9

Worst Case Execution Time Analysis

Within this chapter, we add another element in the search for unexpected system behaviour: the

execution time of a process. As the execution time of a process is not constant, often the worst-

case execution time (WCET) is assumed. The idea for this chapter builds upon Mittermayr and

Blieberger [MB12, MB16a] and their work utilising Kronecker Algebra for WCET analysis of multi-

core concurrent applications. First, we introduce the basics of WCET analysis, followed by explaining

how the process of Mittermayr and Blieberger [MB12, MB16a, MB21] is affected by process pri-

orities, and it is possible to calculate the WCET of a message path. An example of two processes

synchronising over one semaphore acts as an evaluation case. We discuss the results compared to

related work at the end of the chapter.

9.1 Introduction to timing analysis

While WCET analysis for sequential programs is widely considered as a solved issue [WEE+08],

the scientific and industrial interest has shifted towards analysis and verification of multi-threaded

applications. Nevertheless, the primary aim of timing analysis is to characterise the timing behaviour

of programs or systems and provide guarantees on upper timing bounds [WEE+08]. Widely used

time bounds are WCET- and best-case execution times (BCETs). WCET and BCET refer to the

longest and shortest execution time of a program or task, respectively (cf. Figure 9.1). Worst case

guarantees for programs or systems are larger than the WCET value. There are two main methods,

static analysis and measurement-based, to obtain timing bounds [WEE+08].

In industry, a frequently used method for program timing analysis is by measurements [LGZ+09].

Numerous test-runs measure a program’s execution time while varying the input parameters (cf. Fig-

ure 9.1). This kind of method provides an average timing behaviour or an approximate WCET value.

However, there is a limitation of this type of analysis. Each run only follows one program path, i.e.,

if there are too many execution paths, this method is not suitable because the measurements under-

estimate the WCET. This method requires adding safety margins to ensure that the WCET value

is not too low. These margins carry the risk of over- or under-provisioning of computing resources

or cause scheduleability issues. Measurement equipment includes oscilloscopes, logic analysers, and

in-circuit emulators on the hardware to measure execution times.

The static WCET analysis technique is more suitable for programs with multiple execution paths

and stricter timing boundaries. This type of method does not execute the program but statically

analyses the timing properties [PK89]. Static WCET tools tend to give larger WCET estimates

(upper bounds) than the actual execution time without the need for additional margins. Simplified, a

121

CHAPTER 9. WORST CASE EXECUTION TIME ANALYSIS

D
is

tr
ib

ut
io

n
of

 ti
m

es

 Time

WCET
BCET

measured execution times

Lower
timing
bound

Upper
timing
bound

possible execution times

0

worst-case guarantee

Figure 9.1: Basic notions of timing analysis [WEE+08].

WCET analysis consists of three parts: a flow analysis to distinguish the possible program execution

paths, a low-level analysis to approximate times for atomic parts of the code (e.g., instructions,

basic code blocks), and the calculation part to combine the two previous phases into a WCET

approximation.

Flow analysis is about defining maximum loop bounds [GESL06] because the number of loop

iterations affects the WCET estimates. Advanced tools include methods to determine loop bounds

automatically; however, the manual annotation of loop bounds is still required in most cases. An-

other characteristic of the flow analysis is the possibility of recognising infeasible paths, i.e., paths

that are feasible in the CFG, but inaccessible when studying the input data values and the semantics

of the program [GESL06].

The low-level analysis considers that modern hardware features pipelines, caches, and out-of-

order execution influence the timing behaviour of the program [SAA+15]. A technique to deal with

these issues is using models, e.g., simulators, to enable the analysis without the actual hardware.

Nevertheless, creating accurate models of a processor and hardware is complicated and sometimes

introduces additional complexity into the analysis. Safe and straightforward processor models, on

the other hand, lead to higher WCET bounds. The combination of flow and low-level analysis allows

the calculation of the WCET. For more detailed information, readers are encouraged to consider

reading the detailed survey about available methods and technological advances in determining

timing guarantees by Wilhelm et al. [WEE+08].

With the increasing complexity of current software and hardware, there is a broad spectrum

of research activities. The topics span from integer linear programming [Lis03], model check-

ing [LGG+08], and tree-based calculation, [GESL06]. Other researchers investigate code conversion

to WCET-analysable single-path code [PHP15] or specialized programming languages [LLK+08].

On the tooling side, there are a few commercial products available such as aiT [Abs21] from Ab-

sInt or RapiTime [Rap21] from Rapita Systems, and academic open-source prototypes, such as

T-CREST [SPH+18] or SWEET [GESL06].

9.2 Problem Definition

Now let us return to agent systems and their message interactions from the previous chapters.

Figure 9.2 depicts agent A1 receiving and sending two different message pairs on the left. In the

simplest case, the time a message path requires is to add up the different sections, e.g., a+b+ c .1

1We ignore for now the fact that the execution time and the message transmission time can vary.

122

9.3. WCET ANALYSIS OF SHARED MEMORY CONCURRENT
PROGRAMS RUNNING ON A MULTI-CORE ARCHITECTURE

A1

b

a

c

A1

f

e

g

Time

t1
t2

A1

f

e

g
a

b
c

t3

Figure 9.2: The agent A1 receiving and sending two different message pairs.

However, as discussed in Chapter 6, messages can arrive at any time and might have different

priorities, or the actions they trigger have different importance. Therefore, while a message might

have arrived, the triggered action needs to wait before being executed. That, in turn, makes the

message path time dependent on the other actions executed on the agent, e.g., a + b + ∆t + c ,

while ∆t = t3 − t2 is the time the process needs to wait for others to finish. In other words, the
agent has become a critical section as in a multi-threaded application. This circumstance is best

visible on the right side of Figure 9.2.

If the agents have only a first in, first out queue, the possible combinations will add up to a

WCET, considering the most prolonged delay possible. If we add the priorities of the previous

chapter, a process can be interrupted or scheduled before another process arrives earlier. However,

the interactions between agents show the same effects as in multi-threaded concurrent software.

In the context of basic emergence, the effects of variations in execution time and message

passing times have not been explored. Therefore, the problem definition is to extend Kronecker

Algebra with the ability to determine the WCET of a message path while considering different

priorities of the edges and available resources.

9.3 WCET Analysis of Shared Memory Concurrent Programs

Running on a Multi-Core Architecture

Compared to the above-described sequential program analysis, the WCET analysis of multi-threaded

concurrent software is more challenging. The main reason is that processes have connection points

(communication) in the form of synchronisation, e.g., via shared memory accesses protected by

critical sections. Other approaches assume little to no synchronisation except forking and join-

ing [ORS13].

As mentioned at the beginning of the chapter, Mittermayr and Blieberger [MB12, MB16a,

MB21] approach these difficulties using Kronecker Algebra. The author’s approach is based on

a concurrent program graph (CPG) data structure, which describes all possible interleavings and

incorporates synchronisation while preserving completeness. In more detail, the approach uses

reachable CPGs (RCPGs), a form of CPGs that only contains reachable nodes. RCPGs represent

concurrent and parallel programs similar to control flow graphs (CFGs) for sequential programs.

Based on the RCPGs, it is possible to create dataflow equations for the timing analysis [Bli02].

Each RCPG node is represented by a data flow equation, which can then be solved with a dataflow-

solver. The authors show that their approach can handle critical sections, loops, stalling times

123

CHAPTER 9. WORST CASE EXECUTION TIME ANALYSIS

1start 2 3

4

p a

b

v

1start 2 3 4 5
c p d v

Figure 9.3: The two processes A and B with synchronisation labels p and v .

1

start

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

b

A.p

c

c

b

B.p

A.p

B.p

a
c

c

A.v

B.p

a

A.v

B.p

db

d

A.p

d
a

A.v

d

B.vb

B.v

A.p

B.v
a

A.v

B.v

b

A.p

a

A.v

Figure 9.4: Result of (A⊕ B)

(e.g., caused by lock contention), forking and joining. In the following, we utilise the same ideas to

determine the WCET of prioritised processes and point out the differences.

9.3.1 Modelling All Interleavings

As in the previous chapters, we resort to the fact that Kronecker Sum calculates all possible

interleavings of two concurrently executing FSMs or general CFGs, including conditionals and loops

[Küs91, Dav81, Gra18]. Figure 9.3 depicts two processes, A and B (both including semaphore

calls), and Figure 9.4 depicts the result of (A ⊕ B). As expected, the resulting graph represents
all interleavings between the two processes. However, it is interesting to note that the loop in A is

copied five times which is the number of nodes present in B. As both threads have the same labels,

p and v , we define that X.(l) indicates that label l belongs to process X. Otherwise, the process

that is calling the synchronisation label is unknown.

124

9.3. WCET ANALYSIS OF SHARED MEMORY CONCURRENT
PROGRAMS RUNNING ON A MULTI-CORE ARCHITECTURE

1start 2

p

v

Figure 9.5: The binary semaphore S that is responsible for the synchronisation between the processes

A and B.

9.3.2 Introduce Synchronisation

For creating a correct concurrent program’s representation, it is required to introduce a synchroni-

sation primitive. The reason is that Kronecker Sum produces interleavings containing all possible

paths, even those containing semantically wrong uses of the semaphore operations. Therefore, a

semaphore must be introduced by applying Kronecker Skip, as shown in Eq. (9.1). For this example,

we use a binary semaphore S as shown in Figure 9.1. The skip operator synchronises only labels

identical in the two input matrices. Therefore, the number of possible paths are limited so that the

p- and v-operations are present in correct p-v-pairs (cf. Chapter 5.7).

(A⊕ B)⊙ S = (A⊗ Im + In ⊗ B)⊙ S (9.1)

Figure 9.6 depicts the result of Eq. (9.1). The loop in A is now only copied three times. As

a side note, not only semaphores can be synchronisation primitives [MB12, MB11]. Burgstaller

and Blieberger [BB14] use Ada’s protected objects, and Mittermayr and Blieberger [MB16b] use

barriers as synchronisation primitives. In addition, the later publication also shows that it is possible

to model initially locked and unlocked semaphores in Kronecker Algebra.

9.3.3 WCET Analysis on RCPGs

Several additional steps are required to calculate the WCET of a concurrent program, which we

summarise for completeness as we only need one of the steps below. For more details, we refer the

reader to [MB21].

• The first step is determining the execution counts e(k → n) of each edge in the RCPGs. In
other words, how often is edge k → n taken compared to the other outgoing edges of node
k? The execution frequency is a rational number with a value 0 ≤ e(k → n) ≤ 1.

• The second step involves defining the number of loop iterations of each loop, loop iteration,
and loop exit constraints. These numbers and constraints must be specified or calculated

during the later maximisation process.

• As a third step, the authors define the synchronising nodes since they can create blocking
situations.

• Based on the previous steps, each node of the RCPGs is assigned a data flow variable, and a
data flow equation is set up. A vector represents the data flow variable, and each component

of the vector reflects a processor (single thread) and is used to calculate the WCET of the

corresponding thread. The final equations are solved by applying an algorithm presented

in [HT66].

125

CHAPTER 9. WORST CASE EXECUTION TIME ANALYSIS

1

start

4

5

8

2

3 6

7

10

9 12

11 16

13

14

15

b

A.p

c

c

b

B.p

A.p

B.p

a
c

c

A.vc

a
A.vc

db

d B.vb

B.v b

A.p

a

A.vc

Figure 9.6: Result of (A⊕ B)⊙ S

• Sometimes, the vp synchronising nodes have at least one outgoing loop entry edge. If so, the
corresponding loop must be partially unrolled to be statically present in the RCPGs equations.

• The solution is differentiated in the last step, and the missing values are calculated in a
maximisation process.

In summary, the presented approach allows determining an exact WCET analysis of shared mem-

ory concurrent programs running on a multi-core architecture. We utilise our priority functionalities

in the following to calculate the WCET of two processes on a single-core CPU.

9.4 WCET Analysis with Priorities

Now, let us return to the example presented in Section 9.2 and align it with the two processes,

A and B. The simplest way to calculate the WCET of a sequential process is to count all parts

together. However, as introduced before, even in sequential programs, that can become difficult if

loops or other constructs are involved.

In our example, process A contains one loop. The only way to deal with that is to introduce

a variable that tells us how many times a loop is executed. Let N0 be a set of natural numbers,
including zero (i.e., N0 = 0,1, 2, . . .). We use from now on the variable li ∈ N0 as the counter
for the number of loop iterations. We assume that this number is constant and statically known.

For example, if the loop in A is only once executed li = 1, therefore we can calculate a simplified

WCET of A by summing up the times given to the edge labels. The WCETA would be WCETA =

1 ∗ (Ap + a + A.v) + b.

126

9.4. WCET ANALYSIS WITH PRIORITIES

1

start

4

8

2

3

10

12

16

b

A.p

c

B.p

a

A.vc

d

B.v

Figure 9.7: Result of (A⊕ B)⊙ S with A having the higher priority than B.

Now let us look at the graph in Figure 9.6. The reader will agree that starting node 1 is crucial

as it decides which one of the two processes will get hold of the semaphore first. Under the premis,

we only have one CPU available. If both processes have the same priority, the choice depends on

the chance or time the process arrives in a waiting queue.

If we prioritise process A, the graph will change to the one Figure 9.7 depicts. Process A gets

the semaphore first, and B has to wait until A finishes. That affects the execution times of both

processes. For WCETA, it remains the same as before if we still consider li = 1; for B, however,

the execution time extends about the “waiting time”, i.e., WCETB = c+B.p+d+Bv +WCETA.

The situation changes if we switch priorities. Figure 9.8 shows the changed execution order of the

two processes. In this case, the execution time changes for B to WCETB = c +B.p+ d +Bv and

for A to WCETA = li ∗ (Ap + a + A.v) + b +WCETB.

1

start

5

9

11 16

13

14

15

c

B.p

d

B.v b

A.p

a

A.vc

Figure 9.8: Result of (A⊕ B)⊙ S with B having the higher priority than A.

127

CHAPTER 9. WORST CASE EXECUTION TIME ANALYSIS

9.5 Discussion and Related Work

Within this chapter, we added priorities to the work presented by Mittermayr and Blieberger [MB21].

By adding the priorities and limiting the available shared resource to one CPU, the concurrently

executing FSMs must wait until the resource is free. Depending on which FSM has the higher

priority, the system graph gets reduced, and the WCET is a simple summation of the single-edge

execution times. Automating the WCET calculation is possible by simply linking the times to the

edge labels used for Kronecker operations.

The next step is adding more FSMs than available CPUs, and the FSMs have different priorities.

However, for this step, a dataflow analysis like in Mittermayr and Blieberger [MB21] is required,

which is out of the scope of this dissertation and part of future work. Moreover, other issues, such

as barriers or protected elements, must be included. Chapter 10 shows that this limited approach

can already impact the system’s behaviour. Moreover, we show the first steps of building a test

setup to verify the calculated WCETs with measured values.

Related work is limited to the publication of Mittermayr and Blieberger [MB21]; other work fo-

cuses on traditional WCET analysis not involving several CPUs and concurrently executing threads.

Comparing our approach with standard WCET, analysis tools would go too far. Tools such as

aiT [Abs21] from AbsInt or RapiTime [Rap21] from Rapita Systems can handle more sophisticated

program constructs. The academic research covers many aspects unrelated to our aim when in-

troducing priorities. For more detailed information about WCET analysis, readers are encouraged

to consider the detailed survey about available methods and technological advances in determining

timing guarantees by Wilhelm et al. [WEE+08].

9.6 Concluding Remarks

The contribution of this chapter is limited. Nevertheless, the results shown will be essential in the

next chapter and are essentially an extension of the previous chapter. Moreover, the topic has

the most significant potential for further research and will play an essential role in additional ideas

related to Kronecker Algebra.

128

Chapter 10

Evaluation

This chapter presents example setups inspired by existing industrial communication systems. With

the help of the previously introduced Kronecker operations, we can show that those systems can

form simple patterns. Moreover, we present the work done on a time-predictable real-time commu-

nication platform. This platform will be essential for further research in WCET analysis supported

by Kronecker operations. Lastly, we show the time complexity of all newly presented Kronecker

operations in this dissertation.

10.1 Returning to the Blackboard

First, let us recapitulate the idea presented in Section 4.5. The basis of the idea is that interacting

agents write their execution labels on the “environment” blackboard. Moreover, the chance for basic

emergence exists if the sum of the agent languages differs from the systems language. Figure 10.1

shows the interacting agents writing on the blackboard. The connection to Kronecker Algebra is

that FSMs can represent formal languages and be manipulated with all Kronecker operations intro-

duced in the previous sections. However, the resulting graphs of Kronecker operations represent all

possible execution paths of the agents over time. There is no time information like in a simulation

which recodes the agent interactions step-by-step. That might appear as a negative aspect, yet

with Kronecker operations, we get all execution paths, while in simulations, that might not be the

case. The following presents how to utilise Kronecker Algebra to find patterns in interacting agent

systems.

Agent 1 Agent 2 Agent 3

Figure 10.1: Three agents cooperating on a common blackboard (environment).

129

CHAPTER 10. EVALUATION

Subscriber 2

c

Publisher 1

a

Subscriber 1

c

b

b
b

Subscriber 3

c

Figure 10.2: A simplified depiction of a publisher sending the same message to different subscribers.

10.2 Developing an Example

As a first step, we assume the agents communicate using a middleware that supports a publish

and subscribe communication pattern. In publish and subscribe, the publisher sends a message

into the network without waiting for an acknowledgement from the receiver. Only subscribers that

subscribe to a topic will wait for a specific type of message and process it further, while the others

will drop it. Figure 10.2 depicts a publisher sending the same message to different subscribers and

the processing of it. PubSub strongly contrasts the client-server communication pattern, where the

sender establishes a connection with the receiver before sending a message.

10.2.1 Creating the Basic Structure

To create the base for the further steps, we construct a publish-subscribe message exchange with

FSMs. As we cannot forge the broadcasting of messages, we use as a publisher a binary semaphore

P that allows repeatedly ”sending” of a message to the subscribers (cf. Figure 10.3). Note that

we omit the actual message to the subscribers as taking p of the semaphore has the same effect.

The subscribers receive p and will execute an action, in our case, issue a label m. To not block the

publisher, each subscriber needs to rerelease the semaphore with an edge v . There is no priority nor

limiting amount of CPUs, as each entity is a compute node. Figure 10.4 shows the first subscriber,

while further subscribers only differ in the labels they issue.

1start 2

p

v

Figure 10.3: The binary semaphore P that represents the publisher.

1start 2 3
p m1

v

Figure 10.4: Subscriber 1

130

10.2. DEVELOPING AN EXAMPLE

1

start

2 34 5

p p

m1 m2

v v

Figure 10.5: The resulting graph of Eq. (10.1)

Now, let us create a system with two subscribers. To crate a system representation, we can

resort back to Kronecker Sum as in previous examples. Eq. (10.1) shows how to combine the

subscribers SB1 and SB2 with the publisher semaphore P .

(SB1 ⊕ SB2)⊙ P (10.1)

Figure 10.5 shows the graph representing the entire system. The edge p is either taken by

one or the other subscriber that issues their message labels and returns over the edge v . While

not entirely representing a publish-subscribe environment, the structure is sufficient for further

steps. Moreover, the design is easily scalable (i.e., adding more subscribers), a feature we use in

Section 10.7 to demonstrate the scalability of the lazy algorithm.

10.2.2 Introducing Interaction

In the basic structure above, the subscribers do not interact. As interacting agents are necessary

for emergence to appear (cf. Section 2.3.4), we adjust the subscribers to interact indirectly as a

next step.

The agents can interact again via a shared resource, as we used in Section 10.2.1. Let us

assume a simple CFG takes the shared resource p, issues a label and finishes with v . The second

CFG does the same. If we apply the same Eq. (10.1) on those two CFGs, only one CFG will execute

first, followed by the other. The graph has, therefore, two paths, like in a condition.

However, that is not what we seek; the subscribers must react on each others actions. Additional

semaphores between the subscribers can achieve such a connection. By adding a second semaphore

into the subscribers, we get subscribers as shown in Figure 10.6. Note: In this way we can add

several subscribers together, by simply adding semaphores between them. Now as we have two

semaphores we need to adjust our equation as follows:

(SB1 ⊕ SB2)⊙ (SEM1 ⊕ SEM2) (10.2)

Figure 10.7 depicts the result of Eq. (10.2). The two subscribers execute now only in one order,

depending on how the second semaphore is placed. By adding semaphores, it is possible to create

interesting interactions between the single CFGs or FSMs. A circumstance that we will use in the

next subsection to create a first pattern.

1start 2 3 4 5
p1 m1 v1 p2

1start 2 3 4 5
v2 p1 m2 v1

Figure 10.6: The two subscribers SB1 and SB2

131

CHAPTER 10. EVALUATION

1start 2 3 4 5 6 7 8 9
p1 m1 v1 p2 v2 p1 m2 v1

Figure 10.7: The resulting graph of (SB1 ⊕ SB2)⊙ (SEM1 ⊕ SEM2)

10.2.3 A Pattern Emerges

Now let us return to our publish-subscribe model and introduce semaphores as described before.

Figure 10.8 shows the first subscriber; here, we added another label a, as a starting point, and

edge b provides a better distinction where the subscriber ends. The second semaphore we add as

a possible exit at node two p2. As we learned, the second semaphore creates an order between the

subscribers. Therefore the second subscriber (cf. Figure 10.9) waits until the first subscriber issues

p2. As a side note, the position of the second semaphore is flexible depending on the desired effect.

The second semaphore creates the graph displayed in Figure 10.10 after applying Eq. (10.2).

1start 2 3 4 5

6

a p1 m1 b

p2 v1

Figure 10.8: Subscriber 1 (SB1)

1start 2 3 4 5
v2 p1 m2 b

v1

Figure 10.9: Subscriber 2 (SB2)

The graph shows the expected behaviour that SB2 can only execute when SB1 issues the label p2.

Adding other agents, in the same way, can create different patterns. For example, the graph would

extend to the left side by adding another semaphore exit on node two at SB2 and adding another

subscriber. There is also the possibility to add back paths in the subscribers; however, that will

increase the amount of paths in the resulting graph which is not the aim of this simple example.

Another interesting pattern created by Eq. (10.2) is visible in the output matrix. Figure 10.11

shows the terminal output representing all entries created by Kronecker Operations. However,

as mentioned before, not all labels contribute to the final graph, as only a handful of edges are

reachable. We marked the relevant edges and added some lines for better visibility. The triangles

that appear represent the “loops” within SB1 and SB2. We do not know how often the loops will be

executed; therefore, the total system could generate a repetitive pattern. While not that impressive

initially, the reader might agree that despite the applied restrictions (semaphores) between the

agents, the system already shows a behaviour the single agents cannot perform. For example, the

word (a, p1, m1, v1, p2) is part of SB1’s, and the word (v2, p1, m2, b) of SB2’s language. However,

the subscribers cannot execute the word (a, p1, m1, v1, p2, v2, p1, m2, b), which is only executable in

the total system.

132

10.2. DEVELOPING AN EXAMPLE

For an observer, the system’s behaviour cannot be determined by the agents’ actions alone.

This condition partly fulfils the idea in Section 4.5, where the entire systems language differs from

the sum of the agent languages.

This example also fulfils some other basic requirements for emergent patterns to appear. The

reader will agree that the two agents are interacting [CDF+20] via the common semaphore. If

there is no interaction, the two agents will execute in parallel, but no pattern will arise that cannot

be deducted to one of the agent’s languages. Another requirement is the absence of centralised

control [Ode02a] that tells the agents what to do. While we designed the agents to behave that

way, there is no control during the execution. We will see that more clearly in the following example.

Moreover, if we consider the loop patterns in the matrix as a higher-level system behaviour, the

possibility exists that the system shows a micro-macro effect [Gol99]. Nevertheless, if the system

fulfils the requirement of autonomy [Sha01] and adaptability or robustness w.r.t. changes [Gol99]

cannot be confirmed. The reason is that the example only contains two agents; if one fails, the

other will not continue to interact. Another issue here, as Kronecker Algebra provides us with all

possible paths at once, it is impossible to remove an agent during execution.

1start

2

3 6

4

5

7

8

9

10

a

p1

m1

b

v1

p2

v2

p1

m2

b

v1

Figure 10.10: The resulting graph of (SB1 ⊕ SB2)⊙ (SEM1 ⊕ SEM2)

133

CHAPTER 10. EVALUATION

,,,,,,,,,,,,,,,,,,,,a,,,
,,,,v1,,,,,,,,,,,,,,,,,a,,
,,,,,,,,,,,,,,,,,,,,,,a,,,
,,,,,,v1,,,,,,,,,,,,,,,,,a,,
,,,,,,,,,,p,,,,,,,,,,,,,,a,,,
,,,,,,,,,,,p,,,,,,,,,,,,,,a,,
,,,,,,,,,,,,,,,,,,,,,,,,,,a,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,a,,
,,,,,,,,,,,,m2,,,,,,,,,,,,,,,,a,,,
,,,,,,,,,,,,,m2,,,,,,,,,,,,,,,,a,,
,,,,,,,,,,,,,,m2,,,,,,,,,,,,,,,,a,,,
,,,,,,,,,,,,,,,m2,,,,,,,,,,,,,,,,a,,
,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,a,,,
,,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,a,,
,,,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,a,,,
,,,,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,a,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a,,
,,p,,,p1,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,v1,,,,,,,,,,,,,,,,,,,p,,
,,,p1,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,v1,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,p,,,,,,,,,,,,,,,,p,,,p1,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,p,,,,,,,,,,,,,,,,p,,
,,,p1,,,,,,,,,,,,
,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,m2,,,,,,,,,,,,,,,,,,p,,,p1,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,m2,,,,,,,,,,,,,,,,,,p,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,m2,,,p1,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,m2,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,p,,,p1,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,p,,
,,,,,,,,,,,,,,,,,,,,,,,,v,,,,,,,,,,,,,,b,,,p1,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,v,,,,,,,,,,,,,,b,,
,,p,,,p1,,
,,,p,,
,,,p1
,,,
,,m1,,,
,,v1,,,,,,,,,,,,,,,,,m1,,
,,m1,,,
,,v1,,,,,,,,,,,,,,,,,m1,,
,,p,,,,,,,,,,,,,,m1,,,
,,,p,,,,,,,,,,,,,,m1,,
,,m1,,,
,,,m1,,
,,m2,,,,,,,,,,,,,,,,m1,,,
,,,m2,,,,,,,,,,,,,,,,m1,,
,,m2,,,,,,,,,,,,,,,,m1,,,
,,,m2,,,,,,,,,,,,,,,,m1,,
,,b,,,,,,,,,,,,,,,,m1,,,
,,,b,,,,,,,,,,,,,,,,m1,,
,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,m1,,,
,,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,m1,,
,,m1,,,
,,,m1,,
,,m1,,,
,,,m1,,
,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,v1,,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,v,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,v,,,v1,,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,p,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,p,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,v,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,v,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,m2,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,m2,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,m2,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,m2,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,b,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,b,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,,,,
,,b,,,,,,,,,,,,,,,,,,,,,,,
,,,b,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,b,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,v,,b,,,,,,,,,,,,,,,,,,,,
,,,
,,v1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,
,,v1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,p,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,p,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,
,,,
,,m2,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,m2,,,,,,,,,,,,,,,,,,,,,,,,,,
,,m2,,,,,,,,,,,,,,,,,,,,,,,,,
,,,m2,,,,,,,,,,,,,,,,,,,,,,,,
,,b,,,,,,,,,,,,,,,,,,,,,,,
,,,b,,,,,,,,,,,,,,,,,,,,,,
,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,,
,,,v,,,,,,,,,,,,,,b,,,,,,,,,,,,,,,,,,,,
,,,
,,,
,,,
,,,
,,,
,,v1,,,,,,,,,,,,,,,
,,,
,,v1,,,,,,,,,,,,,
,,p,,,,,,,,,
,,,p,,,,,,,,
,,,
,,,
,,m2,,,,,,,
,,,m2,,,,,,
,,m2,,,,,
,,,m2,,,,
,,b,,,
,,,b,,
,,v,,,,,,,,,,,,,,b,
,,,v,,,,,,,,,,,,,,b
,,,
,,,
,,,
,,,

Figure 10.11: Terminal output of (SB1 ⊕ SB2)⊙ (SEM1 ⊕ SEM2)

134

10.3. A SECOND PATTERN

10.3 A Second Pattern

After showing that the previous simple setup can show patterns, let us now adjust the publish-

subscribe environment. The idea is to increase the possibilities for the agents to interact while still

keeping it simple enough to fit into these pages. First, we adjust our publisher semaphore to a

self-loop read-write state machine.1 As follows, we want to adjust the concept of how the message

passing between the agents happens. The publisher shall write (w) a value into a memory bank

(the semaphore) and creates a new value to publish (n). After seizing the value (r), the subscriber

executes a task (m1) and is ready to read another value. In the most straightforward case, the

subscriber can read the value as many times as possible until the publisher blocks the memory again.

The same applies to the publisher. Therefore, the semaphore must accept an arbitrary number of

read and write access from the publisher or the subscriber. Figure 10.12 shows all three FSMs.

Without any precautions, which we now explicitly leave out of consideration, we get the graph

shown in Figure 10.13 after applying (P ⊕ S1)⊙ S.

1start 2

w

n

1start 2

r

m1
1start 2

r

w r

w

Figure 10.12: On the left the publisher P in the middle a subscriber S1 and on the right the adjusted

semaphore S

1

5

P.w

4

S1.r

.n

8

S1.r

7

P.w

2

.m1

.n

6

.m1 .m1

3

.n

P.w

S1.r

.m1

P.w

P.r

.n

Figure 10.13: Resulting graph of (P ⊕ S1)⊙ S.

1The same behaviour could be achieved with one node and self-loops; however, our implementation requires at

least two nodes

135

CHAPTER 10. EVALUATION

10.3.1 Analysing the Paths

The resulting graph in Figure 10.13 shows some differences from the previous example. First, there

is no final node, i.e., the total system will never stop executing, a behaviour well suited to create

patterns. Another quite visible difference is the loops between some nodes, which are also visible in

the matrix output shown in Listing 10.1. In the following, we listed the four node pairs that have

loops:

1 ▷ 5 ▷ 1 | 2 ▷ 4 ▷ 2 | 3 ▷ 7 ▷ 3 | 6 ▷ 8 ▷ 6
If we now follow the different execution paths in the total system graph, we receive several possi-

bilities. We ignored the possibilities of a return loop between the nodes above and only considered

edges “moving” forward. In total, we found nine paths starting from node one and returning. We

also added to each path the edge labels the system would issue.

• 1 ▷ 4 ▷ 7 ▷ 5 ▷ 1 = rwm1n

• 1 ▷ 4 ▷ 2 ▷ 5 ▷ 1 = rm1wn

• 1 ▷ 4 ▷ 7 ▷ 3 ▷ 1 = rwnm1

• 1 ▷ 5 ▷ 8 ▷ 4 ▷ 2 ▷ 5 ▷ 1 = wrnm1wn

• 1 ▷ 5 ▷ 8 ▷ 4 ▷ 7 ▷ 5 ▷ 1 = wrnwm1n

• 1 ▷ 5 ▷ 8 ▷ 4 ▷ 7 ▷ 3 ▷ 1 = wrnwnm1

• 1 ▷ 5 ▷ 8 ▷ 6 ▷ 2 ▷ 5 ▷ 1 = wrm1nwn

• 1 ▷ 5 ▷ 8 ▷ 6 ▷ 2 ▷ 4 ▷ 7 ▷ 5 ▷ 1 = wrm1nrwm1n

• 1 ▷ 5 ▷ 8 ▷ 6 ▷ 2 ▷ 4 ▷ 7 ▷ 3 ▷ 1 = wrm1nrwnm1

As mentioned, the system does not have final nodes and, therefore, can execute endlessly and, in

this case, always returns to the start node. In search for patterns, we transformed the last path

into a graph and removed edges not taken in this case. Figure 10.14 shows that this path forms

a ring interrupted by return loops. If the system, due to an unknown reason, follows this path in

the same manner, it would produce a message pattern that represents a higher level of information.

The word produced this way could only be executed by the total system and not by the agents

alone. In addition, the created pattern is equal to an increase of information indicating an emergent

pattern and, therefore, the system shows a micro-macro effect [Gol99]. Like the previous example,

the system fulfils some basic requirements for emergent patterns to appear, e.g., interaction and

no centralised control.

Listing 10.1: Terminal output of (P ⊕ S1)⊙ S
, , , r ,w , , ,

, , , r ,w , , ,

m1, , , , , ,w ,

,m1 , , , , ,w ,

n , , , , , , , r

, n , , , , , , r

, , n , ,m1 , , ,

, , , n , ,m1 , ,

136

10.3. A SECOND PATTERN

1start 5

3 8

7 6

4 2

w

n r

nw

m1r

r

m1

n w

m1

Figure 10.14: The resulting graph of the last execution path

10.3.2 Adding Another Subscriber

Let us now add another subscriber S2 which will access the same memory block of the publisher.

After calculating (P ⊕S1⊕S2)⊙S, we get the graph in Figure 10.15. The resulting graph contains
more node pairs with loops in between, which are:

1 ▷ 9 ▷ 1 | 2 ▷ 6 ▷ 2 | 3 ▷ 11 ▷ 3 | 6 ▷ 8 ▷ 6 | 5 ▷ 13 ▷ 5 | 7 ▷ 15 ▷ 7

14 ▷ 16 ▷ 14 | 10 ▷ 14 ▷ 10 | 10 ▷ 12 ▷ 10 | 16 ▷ 12 ▷ 16 | 2 ▷ 4 ▷ 2 | 4 ▷ 8 ▷ 4

By identifying again paths that start and end by the final node, we get this time different types

of paths that are interrupted by the return loops. In the following a few example paths, with a ▷

indicating the position of a return loop.

• Paths with one loop (▷):

– 1 ▷ 6 ▷ 13 ▷ 9 ▷ 1 = r1wm1n

– 1 ▷ 4 ▷ 11 ▷ 9 ▷ 1 = r2wm1n

• Paths with two loops ▷:

– 1 ▷ 4 ▷ 2 ▷ 9 ▷ 1 = r2m2wn

– 1 ▷ 6 ▷ 2 ▷ 9 ▷ 1 = r1m1wn

• Paths with three loops ▷

– 1 ▷ 6 ▷ 2 ▷ 4 ▷ 11 ▷ 3 ▷ 1 = r1m1r2wnw

– 1 ▷ 6 ▷ 8 ▷ 4 ▷ 11 ▷ 3 ▷ 1 = r1rm1wnw

– 1 ▷ 4 ▷ 2 ▷ 6 ▷ 13 ▷ 5 ▷ 1 = r2m2r1wnm1

– 1 ▷ 4 ▷ 8 ▷ 6 ▷ 13 ▷ 5 ▷ 1 = r2r1m2wnm1

• Paths start and end in the same loop ▷:

137

CHAPTER 10. EVALUATION

1

9

.w

6

1.r

4

2.r

.n

14

1.r

12

2.r

13

.w

8

2.r

2

.m1

1.r

11

w

.m2

.m1

16

2.r

5

.n.n

2.r

10

.m1

.m2

.m1

15

.w

.m2

1.r

3

.n

.n

1.r

.m2.w

1.r

2.r

.m2

.n

.m1

.m1

.w

2.r .m2.m1

7

.n

1.r

2.r

.n

.m2

1.r

.w .m2

.w

.m1

Figure 10.15: Resulting graph of (P ⊕ S1 ⊕ S2)⊙ S.

138

10.3. A SECOND PATTERN

– 1 ▷ 9 ▷ 12 ▷ 10 ▷ 2 ▷ 9 ▷ 1 = wr2m2nww

– 1 ▷ 9 ▷ 14 ▷ 6 ▷ 13 ▷ 9 ▷ 1 = wr1nwm1w

– 1 ▷ 9 ▷ 12 ▷ 4 ▷ 11 ▷ 9 ▷ 1 = wr2nwm2n

• Paths with four return loops ▷ and one straight edge in between:

→ 1 ▷ 9 ▷ 12 ▷ 16 ▷ 8 ▷ 4 ▷ 11 ▷ 3 ▷ 1 = wr2r1nm1wm2w

– 1 ▷ 9 ▷ 14 ▷ 16 ▷ 8 ▷ 6 ▷ 13 ▷ 5 ▷ 1 = wr1r2nm2wnm1

– 1 ▷ 9 ▷ 12 ▷ 10 ▷ 2 ▷ 4 ▷ 11 ▷ 3 ▷ 1 = wr2m2nr2wnm2

– 1 ▷ 9 ▷ 14 ▷ 10 ▷ 2 ▷ 6 ▷ 13 ▷ 5 ▷ 1 = wr1m1nr1wnm1

– 1 ▷ 6 ▷ 8 ▷ 15 ▷ 7 ▷ 3 ▷ 11 ▷ 9 ▷ 1 = r1r2wnm1wm2n

→ 1 ▷ 6 ▷ 8 ▷ 15 ▷ 7 ▷ 5 ▷ 13 ▷ 9 ▷ 1 = r1r2wnm2wm1n

When drawing some of the paths, namely the ones indicated by an →, we receive in the first case
Figure 10.16. Despite having a second subscriber, the circle shape is identical to the previous one

with different edge labels. Looking at the second path shown in Figure 10.17, we find a similar circle

that starts instead with a loop with a straight edge. In addition, due to nodes such as the number

nine or eight, the system could create shapes like eight or several loops in a row. For example, if

the system chooses every second time to choose either edge r2 or n, the created path looks like an

eight.

While also in this example, the created patterns are not as exciting as those of shells, fish and

mammals or lichen growth, it already shows some simple patterns. One fascinating factor is that

only three agents interact with each other and barely have any rules on how to do that. That aligns

with organisms that use relatively simple behavioural rules to generate structures and patterns on

the global system level. Those structures are more complex than the components and processes

they emerge [Pag88]. Nevertheless, despite how interesting it is to identify patterns, it is not the

primary aim of this dissertation. Therefore, let us explore what happens if we change the system

by adding a condition.

1start 9

3 12

11 16

4 8

w

n
r2

nw

r1m1

m1

r1

w n

m2

Figure 10.16: The resulting graph of the first

path with four loops and straight edge in be-

tween.

1

start

6

9 8

13 15

5 7

r1
r2

m2

n

w

w

n

w

m2

m1

n

w

Figure 10.17: The resulting graph of the last

path with four loops and straight edge in be-

tween.

139

CHAPTER 10. EVALUATION

10.4 Change the Basic Setup

In this setup we add another publisher to the system and remove one subscriber. The idea is to

demonstrate how the systems behaviour changes when introducing new elements and conditions.

The new subscriber contains a condition, i.e., the subscriber can only read the value of one publisher

and issues a specific label before another value can be read. Figure 10.18 shows the new agent

configurations. As there are now two publishers we also need to introduce a second semaphore

where the messages can be read by the subscriber. The new operation to get a systems graph

changes accordingly to (P1 ⊕ P2 ⊕ SU1)⊙ (S1 ⊕ S2).

1start 2

w1

n1

1

start

23
r1

m2

r2

m1
1start 2

r1

w1 r1

w1

Figure 10.18: On the left the publisher P1 in the middle a subscriber SU1 and on the right the

adjusted semaphore S1

The result shown in Figure 10.21 is, at first sight, not as admirable as the previous one. A fact

that is visible is that no apparent loops can be used to find patterns. However, as the graph does

not have end nodes, the chance is that a repetitive pattern is hidden in the paths. The reader will

agree that following each path and writing down the labels would get out of hand. Nevertheless, we

can again use the strength of Kronecker Skip Operation to search for a pattern in the graph. We

have learned in the previous example that a specific sequence of edge labels forms a loop. Therefore

we can check if the sequence r2, w2, n2, m2 exists in the large graph. We need to consider that the

sequence needs to be in a loop; otherwise, we will block other loops in the graph. Figure 10.19

shows the label sequence L1 and Figure 10.22 the result of STotal ⊙ L1.

1start 2

34

r2

w2

n2

m2

Figure 10.19: The label sequence L1

1start

23456

7

r2

w2n2r1m1

w1
n1 m2

Figure 10.20: The label sequence L2

140

10.4. CHANGE THE BASIC SETUP

1

7

c.r1

10

c.r2

29

a.w1

3

.m1

21

b.w2

2

.m2

5

.n1

25

.m1

13

.m2

9

.n2

a.w1

12

c.r2

b.w2

8

c.r1

.m1

.n1

34

c.r2

31

c.r1

a.w1

23

b.w2

4

.m2

.n2

19

c.r1

22

c.r2

.m1

b.w2

30

a.w1

.n1

45

b.w2

26

.m2

a.w1

15

.m2

11

.n2

a.w1

b.w2

.n2

41

a.w1

.m1

.n1

33

.n2

37

.m2

.n2

14

.m2

.n1

b.w2

32

c.r1

.m2

.m1

b.w2

6

.n1

.n2

.m1

17

.n1

.n2

a.w1

24

c.r2

.m2

.n1

.n1

27

.m1

.m1

b.w2

.n2

.n1

43

c.r1

46

c.r2

.m2

a.w1

.n2

.m1

.n2

20

c.r1

.n2

16

.m1

42

a.w1

.n1

.n2

39

.m1

.n2

a.w1

.m2

.n2

.n1

38

.m2

.n1

b.w2

28

.m1

.n2

a.w1

.n1

36

c.r2

.n2

.n1

44

c.r1

.n1

b.w2

.n2

.m1

18

.n1

.n1

.m2

47

b.w2 .n1

.n2

48

c.r2

.n2

.m1

.n1

.n2

40

.m2

.n1

.m2

35

.n2

.n1

.n2

.m1

.n1

.m2

.n1

.n2

Figure 10.21: Resulting graph of STotal = (P ⊕ S1 ⊕ S2)⊙ S.

141

CHAPTER 10. EVALUATION

1

47

Su.r2

31

.r1

103

P2.w2

141

.w1

11

.m1

44

.n2

21

.n1

121

.m1

57

Su.r2

.w1

.m2

.m1

113

P2.w2

167

.w1

.n1

Su.r2

151

.r1

223

.w1

54

.n2.n1 P2.w2

.n1

131

.m1

.n1

164

.n2

.m2

.w1

.n1

177

Su.r2

.n1

.m2.n1

233

P2.w2

.n1

174

.n2

.n1

.m2

Figure 10.22: Resulting graph of STotal ⊙ L1

142

10.5. APPLY PRIORITIES TO THE FIRST EXAMPLE

The reduced graph shows four loops in STotal have the given label sequence. We know now

that the system can produce such a pattern in certain circumstances. We can dissect the graph for

other patterns if we apply different sequences. Figure 10.20 shows another sequence L2, creating

a loop between the two publishers, a behaviour expected to happen in such a setup. As we assume

L2 to be present in STotal we apply this time Kronecker product STotal ⊙ L2. The resulting graph
is ≃ L2 which shows that L2 can be executed by STotal .
Besides discovering some limited patterns in this setup, there is another indirect finding. While

the STotal is relatively large and allows various execution paths, repetitive patterns are limited. One

reason could be the introduced condition in the subscriber, as it limits the interleavings between

the paths. It would require further research to determine what type of structures within the agents

create specific patterns. Next, we will see if priorities between the agents influence the pattern

formation.

10.5 Apply Priorities to the First Example

In the following, we reuse the setup in Section 10.3 with two subscribers. The idea is to give

the subscribers different priorities and observe the effects on pattern formation. Moreover, the

possibility to adjust the number of CPUs influences the environment the agents “live” in. In other

words, the agents cannot write to the blackboard whenever they want; they need to wait until

they get the resource. Adjusting the priorities of each edge or label of an agent opens up many

variations.

The reader will agree that one CPU and each agent having the same priority will lead to the

same outcome as in Figure 10.15. Giving the agents three different priorities and one CPUs will only

allow the highest priority agent to execute. This happens because the publisher and the subscribers

have loops and if both edges have the same higher priority the loop will be executed constantly.

Let us now adjust the priorities in the following way. The publisher gets a higher priority than

the two subscribers, plus we restrict the available CPUs to two, to see some effects. Figure 10.23

shows a different graph as in the previous section. A first visible difference is that in the graph the

number of loops is decremented by one, despite having the same amount of nodes.

The loops can be found between:

1 ▷ 9 ▷ 1 | 2 ▷ 4 ▷ 2 | 3 ▷ 11 ▷ 3 | 4 ▷ 8 ▷ 4 | 5 ▷ 13 ▷ 5 | 6 ▷ 8 ▷ 6

7 ▷ 15 ▷ 7 | 10 ▷ 14 ▷ 10 | 10 ▷ 12 ▷ 10 | 12 ▷ 16 ▷ 12 | 14 ▷ 16 ▷ 14
As most of the loops have not changed, we checked again for similar paths we found in the

previous section. Interestingly, there are longer paths in the graph than before. Figure 10.24 shows

the marked “→” path, and there is now one additional double loop. However, considering the
existence of similar paths in this priority-adjusted example indicates that the pattern formation of

the system still exists.

→ 1 ▷ 9 ▷ 14 ▷ 16 ▷ 8 ▷ 6 ▷ 2 ▷ 4 ▷ 11 ▷ 3 ▷ 1 = wr1r2nm2m1r2wnm2

• 1 ▷ 9 ▷ 14 ▷ 10 ▷ 2 ▷ 4 ▷ 11 ▷ 3 ▷ 1 = wr1m1nr2wm2m1n

• 1 ▷ 6 ▷ 8 ▷ 15 ▷ 7 ▷ 3 ▷ 11 ▷ 9 ▷ 1 = r1r2wnm1wm2n

• 1 ▷ 6 ▷ 8 ▷ 15 ▷ 7 ▷ 5 ▷ 13 ▷ 9 ▷ 1 = r1r2wnm2wm1n

143

CHAPTER 10. EVALUATION

1

9

P.w [prio: 3]

4

S2.r [prio: 1]

6

S1.r [prio: 1]

P.n [prio: 3]

12

S2.r [prio: 1]

14

S1.r [prio: 1]

8

S1.r [prio: 1]

11

P.w [prio: 3]

2

S2.m2 [prio: 1]

13

P.w [prio: 3]

S2.r [prio: 1]

S1.m1 [prio: 1]

S1.m1 [prio: 1]

5

P.n [prio: 3]

16

S2.r [prio: 1]

S1.m1 [prio: 1]

S2.m2 [prio: 1]

15

P.w [prio: 3]

S2.m2 [prio: 1]

S1.r [prio: 1]

3

P.n [prio: 3]

P.w [prio: 3]

S2.r [prio: 1]

S1.r [prio: 1]

P.n [prio: 3]

S1.r [prio: 1]

10

S2.m2 [prio: 1]

P.n [prio: 3]

S2.r [prio: 1]

S1.m1 [prio: 1] S1.m1 [prio: 1]

P.w [prio: 3]

S2.r [prio: 1]

P.n [prio: 3]S1.m1 [prio: 1]

S2.m2 [prio: 1]

S2.m2 [prio: 1]

S1.r [prio: 1]

P.w [prio: 3]

P.n [prio: 3]

S2.r [prio: 1]

S1.r [prio: 1]

S2.m2 [prio: 1]

S1.m1 [prio: 1]

7

P.n [prio: 3]

S2.m2 [prio: 1]S1.m1 [prio: 1]

P.w [prio: 3]

Figure 10.23: Resulting graph of (P ⊕ S1 ⊕ S2)⊙ S with adjusted priorities.

1start 9

3 14

11 6

4 2

16

8

w

n
r1

m1w

n

m2

r2

r2

m2

r2

m2

n w

m2

Figure 10.24: The resulting graph of the first path with five loops and straight edge in between.

144

10.6. ADDING EXECUTION TIME

Another possibility to adjust the priorities is to focus on particular edges. For example, the edges

w and r get a higher priority, and we reduce the available resource to one CPU. Figure 10.25 shows

the new graph. By changing the edge priorities and not the priorities of an entire agent, there is no

starvation of the agents, as another can claim the resource next. However, as the agents cannot

freely interact, the possible interactions are severely reduced, as visible in the now smaller graph.

Some paths still show patterns but not with several loops between the nodes. In addition, no path

leads back to the starting node; i.e., the remaining loops are between fewer nodes not connected

to the starting node. The system requires a few executions until it reaches a state that creates a

stable pattern.

In the case of increasing the resources to two CPUs, the system shows a similar behaviour,

requiring a few executions to reach a state space where patterns can form. The respective graph is

not shown as there is no more information to gain. Further experiments are required to investigate

the effects of various prioritised edges.

1

4

S2.r [prio: 2]

6

S1.r [prio: 2]

9

P.w [prio: 2]

8

S1.r [prio: 2]

11

P.w [prio: 2]

S2.r [prio: 2]

13

P.w [prio: 2]

12

S2.r [prio: 2]

14

S1.r [prio: 2]

15

P.w [prio: 2]

16

S1.r [prio: 2] S2.r [prio: 2]

S1.r [prio: 2]S2.r [prio: 2]

S1.m1 [prio: 1] S2.m2 [prio: 1]

7

P.n [prio: 1]P.n [prio: 1]

S1.m1 [prio: 1]S2.m2 [prio: 1]

P.w [prio: 2]

Figure 10.25: Resulting graph of (P ⊕ S1 ⊕ S2)⊙ S, with specific edge priorities.

10.6 Adding Execution Time

The last open issue is how the execution time of the edge labels affects the pattern formation in such

a system. As indicated in Section 9, the complexity increases after considering parallel execution

paths. We already defined this issue as out of the scope of this dissertation. Nevertheless, there

are first findings that provide the base for future research. A significant effort has been put into

building an evaluation setup representing a time-predictable publish-subscribe environment. This

setup aims to verify Kronecker Algebra obtained theoretical results. We used widespread industrial

middleware (OPC Unified Architecture (OPC UA)) for the publish-subscribe environment and the

open-source T-CREST project as a time-predictable platform. Building the testing setup led to

several publications, the bases for the following condensed overview.

145

CHAPTER 10. EVALUATION

Signal
change

Encode

UdpSend

EthSend

Task
Scheduling

Delay

OPC UA
Stack

Network
Stack

Media
Access

Network NetworkDelay

EthRec

UdpRec

Decode

Perform
action

End-to-End Latency

Sending end system
(Publisher)

Receiving end system
(Subscriber)Network

Figure 10.26: OPC UA PubSub end-to-end latency diagram

10.6.1 OPC Unified Architecture

OPC UA is the successor of the Open Platform Communications (OPC) protocol and regarded

as one pathfinder to homogenise communication in the industrial domain. A typical view of the

OPC UA architecture is one of two pillars [MLD09]. The first represents the Meta Model that

enables information modelling. In contrast, the second pillar describes the Transport Mechanisms

responsible for encoding data and exchanging messages between devices. OPC UA’s primary com-

munication paradigm is Client-Server but it also offers support for Publish-Subscribe (OPC UA

PubSub) communication patterns. The Client-Server mechanism can invoke complex services like

browsing the information model and calling methods. The newer OPC UA PubSub part minimises

the communication overhead and is primarily intended for exchanging process data.

There are several OPC UA software stacks available in a variety of programming languages.

A widely used and well-maintained open-source stack is the open62541 project. The open62541

supports most of the OPC UA features, implements the OPC UA PubSub specification, and allows

easy porting to other hardware platforms. The stack is implemented in C, which is well-supported

by the T-CREST project and other WCET analysis tools.

10.6.2 End-to-end latency

The exchange of an input signal from one device to another via OPC UA PubSub involves numerous

delays at the sending end system (i.e., the publisher), the receiving end system (i.e., the subscriber),

and the network connection. These delays are illustrated in Figure 10.26 and have to be analysed

to obtain a guaranteed upper limit for the end-to-end latency of transmissions.

The analysis starts at the publisher with the change of a signal representing some operational

data relevant for another device. In most real-time systems, software tasks are executed at pre-

defined points in time rather than triggered by external events. This concept avoids unpredictable

behaviour in high-load scenarios, e.g., if the input signal changes very rapidly. However, it intro-

duces the TaskSchedulingDelay, which is the time elapsing between a change of the signal and

the subsequent execution of the publisher task. The TaskSchedulingDelay is limited by the task’s

period, i.e., the time between two consecutive activations. It can be reduced close to zero if the

signal represents some internal data value or if changes to the input signal can be synchronised to

146

10.6. ADDING EXECUTION TIME

Port application
to new platform

Generate call
graph and control

flow graph

Apply
annotations[else]

[WCET can
be calculated]

Apply
transformations[else]

[All annotation
rules applied]

Figure 10.27: Process for adjusting existing software for WCET analysis [DFK+21a]

the publisher task.

Next, during Encode, the OPC UA publisher encodes the signal in a message, following the

structure defined in Part 6 and Part 14 [OPC18] of the specification. The message is then handed

from the OPC UA stack to the network stack, which adds additional information like the UDP, IP,

and Ethernet datagram headers (UdpSend). All operations performed during Encode and UdpSend

are implemented in software. Therefore, upper limits for their execution times can be determined

by applying WCET analysis.

The Ethernet frame is then processed and sent over the network by the Ethernet controller,

typically implemented in hardware. Therefore, the delay introduced in this step (EthSend) is pre-

dictable, as long as the Ethernet controller is not occupied with the processing of other messages.

This behaviour has already been analysed in other studies [FSS15]. The next timing to be con-

sidered is the NetworkDelay. If the message shall be transmitted with bounded delays, a real-time

Ethernet protocol (e.g., time-sensitive networking (TSN)) is mandatory.

The delays occurring at the subscriber are analogous to the ones introduced at the publisher.

They are caused by the EthRec, UdpRec, and Decode functions, whereby only the latter two are

implemented in software and need to be analysed for WCET.

10.6.3 WCET Analysis Process

Although existing WCET analysis tools like Absint aiT or the T-CREST platform offer significant

support, determining the WCET cannot be fully automated. In practice, static WCET analysis of

existing code that has not been written for real-time applications often requires additional manual

work to calculate the WCET. Furthermore, finding reasonable tight bounds to make the code

applicable in real-time applications may require considerable effort.

Figure 10.27 illustrates the essential steps to prepare existing program code for WCET analysis in

a simple process derived from modern WCET analysis tools. The process is intended to serve as an

abstract guide and a helpful starting point for static WCET analysis. It consists of four main steps,

which are presented in detail in [DFK+21a]: (A) porting the existing code to a time-predictable

platform, (B) examining the code structure via the call graph and the control-flow graph (CFG),

(C) applying code annotations, and (D) code transformations.

Most importantly, the process steps cover annotation rules to define upper bounds and enable

WCET analysis of while loops, do-while loops, for loops, and direct recursions. Furthermore, code

transformation rules suggest how to adjust indirect recursions, jump tables, callback functions, and

other non-analyzable code for WCET analysis. Applying this process to an OPC UA publisher and

subscriber allows determining the WCET for sending and receiving PubSub messages.

147

CHAPTER 10. EVALUATION

Table 10.1: Programming constructs and number of occurrences for the OPC UA Publisher and

Subscriber

Programming Number of occurrences

construct Publisher Subscriber

While loop 1 0

Do-While loop 0 0

For loop 1 11

Indirect recursion 1 3

Jumptable 1 1

Other, non-WCET-analyzable code 6 7

10.6.4 Adjusting the OPC UA Publisher

The OPC UA publisher receives information from the application, encodes the information in an

OPC UA PubSub network message, and transmits/publishes the message via a network interface.

Thereby, the OPC UA Specification Part 14: PubSub [OPC18] defines the message format. The

specification limits the number of data fields in a PubSub message and each data field’s length to

2,147,483,647 (max Int32). This value is not suitable for static WCET analysis, and a trade-off

between the software stack’s flexibility and the desire for a tight WCET bound has to be made.

Therefore, appropriate changes to the open62541 stack were necessary, reducing the maximum

number of supported data fields per message. The modified version of the software supports a

maximum of two data fields per message with a limited selection of data types. In addition, the

application needs to set the open62541 UA PUBSUB RT FIXED SIZE flag, which defines that

the message structure does not change. Furthermore, only data types of fixed size like Boolean,

Integer, and Float may be used, but support for variable-length data types like String and Bytestring

is removed. These limitations are considered acceptable because additional data values can easily

be transmitted in separate messages and real-time-critical data, e.g., sensor values, typically are of

fixed size.

The WCET analysis process presented in Section 10.6.3 was applied to the publisher of the

open62541 [F. 23] OPC UA stack. Table 10.1 summarises how often each annotation and trans-

formation rule was used. The analysis was conducted with the tools provided by the T-CREST

project and yielded a WCET of 18,632 processor cycles. This value corresponds to about 232.9 µs
for a processor operating at 80MHz. A detailed discussion of the evaluation results is presented

in [DFK+21a] and the code is available under [DLFS22].

10.6.5 Adjusting the OPC UA Subscriber

The OPC UA subscriber receives PubSub messages, decodes their contents, and hands the data

values over to the application. The application can then act upon the received data values, e.g.,

by performing calculations and setting outputs. The same considerations regarding the number of

data fields in a message and the supported data types mentioned for the publisher also apply for

the subscriber.

However, the subscriber included in the open62541 stack uses dynamic memory allocation for

each received frame and each data field. The standard library implementations that handle memory

allocation in C (malloc, free, and related functions) fall in the category of non-WCET-analysable

148

10.6. ADDING EXECUTION TIME

code. Therefore, these functions had to be re-implemented. The new, WCET-analysable imple-

mentation of malloc provides only a fixed number of 32 memory blocks with 512 bytes each. Calling

malloc returns a pointer to the next free memory block and marks it as in use. If no free memory

block is available, malloc causes an out-of-memory error (ENOMEM), which the caller needs to

handle. Furthermore, calling free releases the memory block corresponding to the address that is

passed as a parameter. The new functions share the same method signature with the standard C

library and require no additional changes to the remaining code.

Table 10.1 summarises how often each annotation and transformation rule had to be applied

for the open62541 subscriber to obtain a WCET analysable implementation. The analysis yielded

a WCET of 443,543 processor cycles, corresponding to about 5544.29 µs for a processor operating
at 80MHz.

10.6.6 Evaluation Setup

Figure 10.28 illustrates the evaluation setup. PublishCallback and SubscribeCallback handle pub-

lishing and receiving OPC UA PubSub messages via the open62541 stack. Note that the Publish-

Callback, in addition to Encode and UdpSend, performs some pre-processing and post-processing

of its internal data structures. Likewise, the SubscribeCallback requires some extra operations in

addition to UdpRec and Decode. The setup includes two Altera DE2-115 development boards

featuring Cyclon IV FPGAs. A Patmos time-predictable processor, which is part of the T-CREST

project, is instantiated on each FPGA and operating at a frequency of 80MHz. The OPC UA

publisher and subscriber are executed on these platforms. Furthermore, the two FPGA boards are

directly connected with a 100Mbit point-to-point Ethernet connection of 2m in length. The pub-

lisher and subscriber set and reset general purpose input/output (GPIO) pins at relevant positions

in their program flow. A Saleae Logic Pro 8 logic analyser logs these events on the GPIOs for the

subsequent timing analysis. The evaluation setup exchanges a single Int32 counter value that is

incremented every time before publishing a new message.

10.6.7 Execution Time Measurements

The histograms depicted in Figure 10.29 show the distributions of the execution times measured for

PublishCallback, SubscribeCallback, encoding (Encode), sending (UdpSend), receiving (UdpRec),

and decoding (Decode) 1000 PubSub messages. As the publisher handles encoding and sending

messages, the added execution times of Encode and UdpSend must be lower than the theoretical

WCET obtained in Section 10.6.4. The longest execution time for Encode + UdpSend recorded by

the logic analyzer is 136.852 µs. Therefore, the WCET bound is approximately 70% higher than
the execution time obtained by the measurements.

Similarly, the subscriber receives and decodes messages via the UdpRec and Decode functions,

respectively. Again, the combined execution time of these two functions is below the theoretical

upper bound obtained via the WCET analysis in Section 10.6.5. The longest execution time mea-

sured is 513.08 µs. Therefore, the WCET bound is approximately 980% higher than the execution
time obtained by the measurements. The over-estimation in the case of the subscriber is worse

than for the publisher because of its higher complexity, particularly regarding the challenges arising

from dynamic memory allocation.2

2This issue is addressed in [LDFK23].

149

CHAPTER 10. EVALUATION

Saleae Logic Pro 8
(8-Channel Logic Analyzer)

Altera DE2-115 (Publisher)
(FPGA Development Board)

Encode
Reset
GPIO

Encode
Set GPIO
Encode

GPIO
Encode

Program flow for PublishCallback

GPIO
UdpSend

EthSend
Reset
GPIO

UdpSend
Set GPIO
UdpSend

Point-to-Point
Ethernet

Connection

Altera DE2-115 (Subscriber)
(FPGA Development Board)

EthReceive
Reset
GPIO

UdpRec
Set GPIO
UdpRec

GPIO
UdpRec

Program flow for SubscribeCallback

GPIO
Decode

Decode
Reset
GPIO

Decode
Set GPIO
Decode

Probe 2

Probe 3

Probe 5

Probe 6

0

1

0

1

0

1

0

1

Execution Time:
UdpSend

Execution Time:
Encode

Execution Time:
UdpRec

Execution Time:
Decode

Message n Message n+1

Probe 2 Probe 3 Probe 5 Probe 6

0

1
End-to-End

Latency

Set GPIO
Publish

Reset
GPIO

Publish

GPIO
Publish

Set GPIO
Subscribe

Reset
GPIO

Subscribe

GPIO
Subscribe

Probe 4Probe 1

Probe 4
1

Execution Time:
SubscribeCallb.

Probe 1
1

Execution Time:
PublishCallback

0

0

Figure 10.28: Evaluation Setup

150

10.6. ADDING EXECUTION TIME

0

100

200

300

400

136.65 136.70 136.75 136.80

Sa

m
pl

es

Execution Time: PublishCallback [μs]

0

200

400

600

800

45.60 45.65 45.70 45.75

Sa

m
pl

es

Execution Time: Encode [μs]

0

100

200

300

81.55 81.60 81.65 81.70

Sa

m
pl

es

Execution Time: UdpSend [μs]

0

20

40

60

513.00 513.05 513.10 513.15

Sa

m
pl

es

Execution Time: SubscribeCallback [μs]

0

200

400

600

800

17.20 17.25 17.30 17.35

Sa

m
pl

es

Execution Time: UdpRec [μs]

0

100

200

300

400

500

387.15 387.20 387.25 387.30

Sa

m
pl

es

Execution Time: Decode [μs]

Figure 10.29: Histograms of measured execution times for PublishCallback, Encode, UdpSend,

SubscribeCallback, UdpReceive and Decode.

151

CHAPTER 10. EVALUATION

Table 10.2: Comparison of highest timing measurement results and theoretical upper bounds

SW/HW component Upper bound Measurement result

TaskSchedulingDelay not relevant not relevant

PublishCallback 232.9 µs 136.85 µs
▷ Encode ▷ - ▷ 45.67 µs
▷ UdpSend ▷ - ▷ 81.69 µs
▷ Pre- and postprocessing ▷ - ▷ 9.49 µs
EthSend +

NetworkDelay + HW-

dependent

15.4 µs

EthRec

SubscribeCallback 5544.29 µs 513.08 µs
▷ UdpRec ▷ - ▷ 17.29 µs
▷ Decode ▷ - ▷ 387.22 µs
▷ Pre- and postprocessing ▷ - ▷ 108.57 µs
End-To-End 5777.19 µs +

642.32 µs
Latency NetworkDelay

10.6.8 End-to-End Latency Analysis

The measurements presented so far only verify the results of the two WCET analyses. However,

as shown in Section 10.6.2, the OPC UA publisher and subscriber cause only a part of the end-

to-end latency. Therefore, Table 10.2 sums up all the involved software and hardware delays. The

first value TaskSchedulingDelay is not included in this analysis because the counter value used as

a payload is only incremented right before triggering the Encode task (cf. Figure 10.26). The

next entries in the table represent the theoretical WCET bounds and the longest execution times

measured for Encode, UdpSend, UdpRec, and Decode, which have already been discussed. The

remaining entries EthSend, NetworkDelay, and EthRec are specific to the evaluation platform and

are briefly discussed in the following.

Sending an Ethernet frame using the Altera DE2-115 evaluation platform involves two distinct

hardware components: Ethernet MAC and Ethernet PHY [PTLB15]. The Ethernet MAC function-

ality is implemented in the FPGA, while the Ethernet PHY uses a dedicated chip (Marvell 88E1111).

The total delay caused by these components for transmitting a frame is subsumed as EthSend. At

the subscriber, the time required for receiving an Ethernet frame is subsumed as EthRec. Further-

more, the NetworkDelay of the point-to-point Ethernet connection is in the order of nanoseconds

and, therefore, neglectable. The longest total duration of EthSend + NetworkDelay + EthRe-

ceive was measured at 15.4 µs. As all of these components are implemented in hardware, the jitter
observed is minimal, and the theoretical limit for this delay is set equal to the measurement result.

With an assumed NetworkDelay of ≤20 µs, the guaranteed upper bound for publishing, trans-
mitting, and receiving a signal via OPC UA PubSub results in 5797.19 µs. The longest observed
end-to-end latency is 642.32 µs and, therefore, within the expected bound. The measurement re-
sults for the end-to-end latency and the NetworkDelay are depicted in Figures 10.30 and 10.31,

respectively.

152

10.6. ADDING EXECUTION TIME

0

2

4

6

8

638 639 640 641 642 643 644

Sa

m
pl

es

Execution Time: End-to-end Latency [μs]

Figure 10.30: Histogram of measured end-to-end latency

0

2

4

6

8

10 11 12 13 14 15 16 17 18

Sa

m
pl

es

Execution Time: EthSend + NetworkDelay + EthRec [μs]

Figure 10.31: Histogram of measured NetworkDelay including hardware delays

153

CHAPTER 10. EVALUATION

10.6.9 Further Work

Aside from the basic adjustments of the publisher and subscriber of the OPC stack and collecting

WCET and measurement timings, we added additional functionalities. The stack was adjusted

in [DFS+22] to support TSN, and the effect of different message payloads was explored. In the

paper, [LDFK23], we introduced a worst-case time predictable buffer management into the Patmos

Platform. At the same time, we evaluated concurrent information model data access methods

in [DAF+22]. Further activities include integrating a TCP/IP stack to test the publish-subscribe

environment in a not isolated setting.

10.6.10 Connection to Kronecker Algebra

In Chapter 9, we presented the effects of priorities on the concurrently executing state machines

and a simple way, to sum up, the timings to receive a WCET value of the entire execution path.

If we apply the same simple approach to the previous examples, we can add to each label a value

and calculate the execution time. For example, let us add the obtained WCET values to the simple

setup from Section 10.3. For edge n, we use the time required to encode the message w ; we use

the times the publisher requires to publish the value to the network. In edge r , we include the

time until the message reaches the subscriber and m1 the message decoding. Figure 10.32, shows

the allocations. For this reason, an entire cycle equals the end-to-end latency of the measurement

setup. As each label can carry some additional information, we can easily calculate the different

timings of the paths.

1start 2 3 4 5
n=Encode w= EthSend r=EthRec+Network m1= Decode

Figure 10.32: End-to-end latency of the simple setup from Section 10.3 with one publisher and one

subscriber

However, being able to calculate the execution time of a path alone will not influence the

pattern formation. Let us do the following thought experiment. We have two processes A and B

(cf. Figure 10.33), both execute first a label (a,b) and then try to catch a shared resource p/v before

issuing another label. It is evident that if the execution time of label a is shorter than b, process

A will get the shared resource first. Such a time constraint would act similarly to the introduced

priorities and face the same issues in a concurrently executing agent system. Nevertheless, there

is another issue with execution times; as we saw, they are not constant and fluctuate. (Note:

If we use WCET values, we can argue that we focus on finding the longest path). Therefore, a

slight time variability in label a can make a difference to if process A or B gets the shared resource

and influences the pattern formation processes. In research languages, LinguaFranka and Rebeca

the analysis of timing effects on distributed systems is an essential part and a future interest in

extending into Kronecker operations.

Another issue that execution time brings up is whether a process or task might be ready to

execute. When introducing the priorities, we assumed the processes are ready to execute and

must wait for the CPU to become available. However, a different scenario cannot be handled with

Kronecker as it produces all execution possibilities. For this reason, another future extension has

to introduce path probabilities where each edge has a probability. Based on that probability, a path

can become more feasible than others and contribute to identifying the likelyhood of a pattern

formation. The execution time will be essential when assigning such a probability to an edge label.

154

10.7. TIME COMPLEXITY OF KRONECKER OPERATIONS

1start 2 3 4 5
a p m1 v

1start 2 3 4 5
b p m2 v

Figure 10.33: The two processes A and B

10.7 Time Complexity of Kronecker Operations

Before heading over to discuss the findings of this Chapter in relation to the research questions

in Chapter 1, there is a need to shortly indicate how performant Kronecker operations are. As

performance measures strongly depend on the used hardware, the time complexity is more suit-

able. In addition, Kronecker operations can be further optimised, affecting the performance results.

Other researchers have applied Kronecker operations to significant scheduling problems (i.e., train

systems [Vol14]) or adjusted them for GPU usage [SMP+17].

Lazy evaluation reduces the time complexity O(m2n2) to successor search. In a Kronecker
operation that produces a matrix of size m-by-n, a successor search is now O(pq), where the left

child’s matrix has p ≤ m successors and the right child’s matrix has q ≤ n successors. The overall
complexity is, therefore, O(rpq), with r ≤ mn reachable nodes. In practice, the memory requirement
is reduced to the number of reachable nodes and memory occupied by queued, unprocessed nodes.

As all Kronecker operations in this dissertation can be reduced to ⊗ and +, it is possible to
perform a time complexity estimation. Each operation was examined to identify the operations and

variables that affect the execution time of each algorithm. Table 10.3 provides an overview of the

time complexities of each operation. A commonality for all operations is that the node IDs of the

resulting graphs need to be stored. One ID is represented by l bits; therefore, l = |G| whereby |G| is
the size of the resulting matrix. As handling integers ≤ 64bit can be done with machine arithmetic,
l becomes relevant at ≥ 64bit (big integers). Therefore, Table 10.3 shows the time complexity for
≤ 64bit and ≥ 64bit.

Table 10.3: Time complexity of Kronecker operations

Operation ≤ 64bit ≥ 64bit
Skip (⊙) Successor O(|Ae |) O(l2|Ae |)

Labels O(|Ae |) O(l2|Ae |)
Sym. Skip (⊙̄) Successor O(n|Fe |) O(nl2|Fe |)

Labels O(n|Fe |) O(nl2|Fe |)
Synthesize Successor O(|Me |+m) O(l2|Me |+m)

Labels O(|Me |+m) O(l2|Me |+m)

155

CHAPTER 10. EVALUATION

The elements relevant to each of the operations are the following: For Kronecker skip ⊙,
|Ae | represents the number of edges present in the program/FSM A. In the operation Kronecker
Symmetric Skip ⊙̄, n = {1, . . . , i} stands for the amount of the to be combined FSMsi . While, |Fe |
is the number of edges in the final FSM. For Kronecker Synthesize operation, |Me | is the number
of edges present in the FSM representation of the MSC. In addition, m is the set of dependency

matrices Di . In summary, it can be argued that the time complexity of all Kronecker operations

involved is polynomial. The findings have already been verified in Mittermayr [MB16b]. Moreover,

Kronecker operations have been used for train simulations with up to 300 000 000 nodes [Vol14].

10.7.1 Optimisations of Kronecker Algebra

As indicated beforehand, it is possible to optimise Kronecker operations. For the presented approach,

it is possible to parallelise the successor search. This parallelisation is achievable because the

successor identification has a dependency between a node and its successors. For this reason, a

worker thread can process per node instead of per successor. Hash tables avoid duplication of

work. Further optimisations are attainable based on specific Kronecker operations and matrix sizes.

Interested readers are guided to Mittermayr [MB16b] for more optimisation options plus how the

state explosion problem is reduced.

10.8 Concluding Remarks

This chapter focused on finding patterns in an MAS respectively an industrial publish-subscribe

setup. The simplified publish-subscribe communication allowed the modelling of simple agents

that interact with each other. By utilising Kronecker operations previously introduced, we could

find simple pattern formations in the presented examples. The next chapter will discuss if those

patterns qualify as emergent patterns. Nevertheless, the work done in building a time-predictable

publish-subscribe environment based on OPC UA and T-CREST contributed twofold. First, the en-

vironment can be used to validate the theoretical findings built upon by Kronecker Algebra. Second,

we contributed directly to ongoing research in industrial communication by providing insights into

how to build real-time capable machine-to-machine communication based on publish and subscribe.

156

Chapter 11

Discussion

The discussion chapter uses the research questions stated in Chapter 1 as guidance to discuss the

findings of this dissertation. As each chapter contains a discussion specific to the related topic,

this chapter focuses on the overall aim of the dissertation, namely self-organisation and emergent

pattern formation in multi-agent system (MAS) and industrial systems.

11.1 Research Question 1

RQ1: How are the various definitions of emergence and self-organisation in the different

research disciplines interconnected and express the critical characteristics of these phe-

nomena to identify emergent behaviour in the context of multi-agent systems (MASs)?

The question was answered in detail in Chapters 2 and 4 by the results of the systematic literature

review. However, the following is a condensed summary of the findings as they provide the basis

for the subsequent questions. The terms self-organisation and emergence describe behaviours of

systems that cannot be easily explained by the sum of the behaviour of the system elements [Sha01].

Both phenomena are reoccurring research topics that have fascinated researchers repeatedly since

the 1970s. While there are strong connections to complex systems theory [Mit13], the underlying

concepts of self-organisation and emergence found their way into different research fields such as

robotics, swarm, biology, social sciences or physics [For90, CM95, KMRF+03].

Essentially, both emergence and self-organisation appear in systems that contain several agents

or components that interact. The interaction of the agents on the lower entity level creates a

high-level system behaviour that shows an information gain or a pattern formation not deduced

from the single entities. Good examples of pattern formations are found in biological systems,

where simple agents like fish form complex patterns based on very simplistic rules [CDF+20]. While

self-organisation and emergence are two phenomena that can exist alone, they are often found

in combination [DWH04]. Self-organisation is an enabler for high-level emergent behaviour, while

emergence stabilises the systems and makes them more resilient to changes.

The definition of De Wolf describes self-organisation quite well:

“Self-organisation is a dynamical and adaptive process where systems acquire and main-

tain structure themselves, without external control.” [DWH04, p.7]

157

CHAPTER 11. DISCUSSION

The definition contains the required system’s characteristics and qualities for self-organisation

to appear [Hey02]. One characteristic is that the system needs to be autonomous without external

control. That does not exclude other types of inputs as long they do not contain any control in-

structions [Hak98]. Adaptability or robustness w.r.t. changes are referred to the system’s ability to

react to changes and disturbances. The expectation is that a self-organising system can maintain

its organisation autonomously during a change [Gol99]. Another neglected aspect is that every

system exists in time. Therefore, the increase in order happens over time and not suddenly; it needs

to be dynamic as it requires time to adjust to the changes [Sha01].

The definition of emergence points in a similar direction

“A system exhibits emergence when there are coherent emergents at the macro-level

that dynamically arise from the interactions between the parts at the micro-level. Such

emergents are novel w.r.t. the individual parts of the system.” [DWH04, p.3]

De Wolf’s definition encompasses several aspects. First, emergence is the process that creates

the conceptual term “emergent”, which represents properties, behaviour structure or patterns. The

second is, as with self-organisation, the importance of micro-macro-levels [Hol98]. The macro-

level comprises the whole system, while the micro-level is the viewpoint of the individual entities

representing the system’s composition. Another characteristic of radical novelty is closely related

to the previous one. In essence, it describes the novelty of the global behaviour w.r.t. the individual

behaviours at the micro-level [Cru94a, Cru94b]. This means that the micro-level entities do not

explicitly represent the global behaviour; by reductionist terms, the macro-level emergents are not

reducible to the system’s entities. Moreover, emergents have a time component; they arise over

time [Gol99] and are relatively robust regarding errors [Ode02a]. The involved agents must actively

interact [Ode02a, CDF+20] without any external control that influences the global behaviour of

the system [Ode02a]. Other system characteristics encompass “organisational closure” [Hey02], or

“coherence” that refers to the parts logical and consistent correlation.

The required characteristics for self-organisation and emergence in MAS and industrial systems

do not change. However, not all such systems can show all types of emergence. Depending on how

the agents interact with each other and the environment, being either static or evolving over time,

a specific type of emergence can appear. For basic emergence, the agents remain static, and the

environment does not influence the agents’ behaviour. Basic emergence still requires the above-

mentioned system’s characteristics, yet not all to the same extent. For example, basic emergence

focuses more on pattern formation. Therefore characteristics of robustness or radical novelty cannot

be applied in the same way as to a system that produces a higher form of emergence.

11.2 Research Question 2

RQ2: How can interacting agents in a MAS be formally represented to enable the

detection of emergent patterns within the entire system while preserving the essential

characteristics for pattern formation?

One outcome of the systematic literature review was that limited methods and tools could find,

predict and assess emergent behaviour in MAS. Moreover, there are no good examples where

emergent behaviour conclusively exists. Most of the tools build upon simulation, where the agent

interactions are simulated based on given rules [Eps99]. There are methods available such as

requirement [CLW92], mathematical [ONC17] or AI based [GSG+09]. Nevertheless, none of the

methods ensures the formal criterion and the preservation of the emergent characteristics.

158

11.3. RESEARCH QUESTION 3

Most promising are formal languages to model MAS and emergent behaviour [Kub03]. Formal

language theory examines formal language properties and their relation to model computational

devices, such as finite state machines (FSMs) or Turing machines. The Chomsky hierarchy of

formal languages [Cho56] connects the various languages with different computational devices. A

central element of formal languages are grammars which define how to write symbols on a tape

guided by rewriting rules. One grammar creates a language and includes nonterminal and terminal

symbols. Strings that consist of terminal symbols produced by grammar are called words. Therefore,

a language defined by grammar is a set of words and strings.

Combinations of different grammars evolve into a grammar system [Sal73]. The various gram-

mars interact via the tapes they write upon, i.e., each grammar is an individual computational

device with a set of rules and symbols [Sal73]. In this way, it is possible to model MAS with specific

properties, with grammar systems. The single grammar represents an agent that operates on the

tape (environment) and creates events based on their behaviour (rewriting rules) [CVDKP18]. Dif-

ferent grammars are available, each varying in communication type, amount of tapes or component

grammars [ST99].

Using different cases of MAS as a framework and formal languages as guidance, we propose as

an answer to RQ2 a cooperating array grammar system [DFP95] to identify basic emergence. The

idea is that the symbols issued by the cooperating agents (automata) allow the identification of

emergence in a MAS while preserving the essential system characteristics required for emergence.

If there is a difference between the total system behaviour (written overtime on a blackboard) and

the sum of the languages of the agents, basic emergence might be present. In this way, it is possible

to observe the micro-macro behaviour of the agents formally. We can extend this idea to more

complex types of emergence.

Limitations are that neither evolutionary processes of the agents nor the environment are con-

sidered, as well as hierarchical interactions. Moreover, we consider the environment passive and

not influencing the agents’ behaviours. The presented definition follows ideas from Kub́ı [Kub03],

and Dassow et al. [DFP95]. Nevertheless, the differences are that Kub́ı [Kub03] focuses on the

superimposition of the cooperating agents’ languages while we use the summation of the agents’

languages. Moreover, we can provide a total system representation by using Kronecker Algebra to

compute all agent labels. The work of Dassow et al. [DFP95] is different in the perspective that the

authors used their cooperating array grammars to identify patterns in images. Kronecker Algebra as

a tool allows the continuation of a formal treatment of basic emergence based on formal languages.

Moreover, it represents a significant difference from other research that mainly remained in the

formal context or resorted to simulation to identify basic emergence.

11.3 Research Question 3

RQ3: Can the combination of agent interactions (scenarios) with Kronecker Algebra

create a system representation retaining the information essential to detect emergent

patterns while ensuring consistency?

In Chapter 6, we presented a process that allows the identification of implied scenarios which

some authors consider the first step toward identifying emergent systems behaviour [Ash47, DWH04].

An implied scenario results from several agent scenarios (i.e., agent interactions depicted in message

sequence charts (MSCs)) combined, creating unexpected behaviour in the total system.

159

CHAPTER 11. DISCUSSION

The newly introduced Kronecker Algebra Synthesize operation enables transforming MSCs to

control-flow graphs (CFGs) while retaining the semantics of the MSC. A particular benefit compared

to other approaches is that this model transformation can be automated similarly to all other

Kronecker Algebra operations. Therefore, the process might be suitable for other applications, such

as system changes or reconfigurations of cyber-physical production systems (CPPSs) at runtime.

A limitation, however, is whether a new scenario is desired or harmful, and the resulting root cause

search will remain the responsibility of the systems designer. A problem other researchers also point

out in their solutions, e.g., Uchitel et al. [UK01, Uch09]. As Moshirpour et al. [MMEF12] reported

for their solution, over-generalisation is not present in our process, as we include all intermediate

states. A limitation, however, is related to the problem of state explosion.

While we implemented our Kronecker Algebra operation quite efficiently (cf. Section 5.8), there

are limits to the number of agents and the involved messages that can be processed. Introducing

reduction and filter techniques will be necessary to minimise the state space. Moreover, identifying

and removing agents that will not cause new behaviour is a potential solution. Another option is to

create subgroups where the boundaries depend on the number of interactions, i.e., agents heavily

interacting will be grouped and analysed separately. Each group will be reduced to a new agent

interacting with another group. Plateau [Pla85] conducted similar research.

A side contribution is that the process would allow a designer to check if an implemented sys-

tem fulfils the desired scenarios. This type of problem often occurs in model-checking [AY01]

and has been approached by researchers such as Kaufmann et al. [KKP+15, KKP+14] and Graaf

and Van Deursen [GvD07]. Nevertheless, most of those approaches utilise satisfiability problem of

propositional logic (SAT)-solvers, which require previous manual intervention, normalisation, and

transformation. Another issue Moshirpour et al. [MMBH10] reported was the danger of introduc-

ing new scenarios during transformation activities. This conformance is an essential criterion for

identifying implied scenarios since, in some cases, after scenarios have been laid out in MSCs, the

implemented FSMs may no longer conform to the scenarios, therefore, may produce unexpected

behaviour.

Chapter 7 presents an approach that ensures consistency between MSCs and FSMs. The novel

Kronecker Symmetric Skip operation ⊙̄ allows combining multiple state machines into one FSM
representing the entire system behaviour. Kronecker Synthesize creates a CFG based on a given

MSC and allows adopting the underlying semantics. In the last step, Kronecker Skip ⊙ compares
the previous results for consistency. The resulting graph either confirms consistency or provides

valuable insight to a programmer when tracing where the problems are occurring. Compared to the

work of Graaf and Van Deursen [GvD07], the Kronecker approach requires no manual intervention

and can be automated.

A current limitation is that only simple FSMs and MSCs are supported without advanced mod-

elling capabilities that exist in Unified Modeling Language (UML). For example, constructs such

as hierarchical or history states in state machines or “alt” and “loop” fragments in MSCs require

further research. However, Kronecker Algebra has been used to handle alternatives and loops in

worst-case execution time analysis [MB21].

In summary, we can answer RQ3 that the proposed process provides the means to identify

implied scenarios, a potential root cause for emergent behaviour and pattern formation in MAS.

Moreover, the introduced Kronecker operations ensure that all information essential to detect emer-

gent patterns remains in the created system representation while ensuring consistency.

160

11.4. RESEARCH QUESTION 4

11.4 Research Question 4

RQ4: How do factors such as interaction priorities between agents, message transmis-

sion times and execution times of the agents influence the emergent pattern formation

of a MAS?

The Chapters 8 and 9 provided the foundation for answering RQ4. In Chapters 8, we introduced

the possibility of prioritising edge labels into Kronecker Algebra by adjusting our implementation.

The changes allow each agent to receive a priority level, and the number of resources central

processing unit (CPU) can be defined. In other words, the agents will execute either on one CPUs

according to their priorities or in parallel on several CPUs. With additional constructs, such as

synchronisation between the agents and conditions, it was possible to identify priority inversion

between the three processes. In Chapter 9, we used the priorities to calculate the worst-case

execution time (WCET) of two agents concurrently executing on one CPU.

The results in Chapter 10 provided further information. We showed that it is possible to utilise

Kronecker Algebra to identify pattern formations in simple interacting agents. The used models

represent an actual industrial publish-subscribe communication environment. As Kronecker Opera-

tions create all possible execution paths of the interacting agents, we could identify new paths that

form patterns. The found paths are not part of the sum of languages of the single agents. This

condition partly fulfils the idea in Section 4.5, where the entire systems language differs from the

sum of the agent languages. For an observer, the system’s behaviour cannot be determined by the

agents’ actions alone. Moreover, the gained system representation fulfils most of the requirements

for emergence.

The first is that the agents are interacting [CDF+20]. If there is no interaction, the agents will

execute in parallel, but no pattern will arise that cannot be reduced to one of the agent’s languages.

Another requirement is the absence of centralised control [Ode02a] that tells the agents what to

do. While we designed the agents to behave that way, there is no control during the execution.

Moreover, if we consider the found patterns in the matrix as a higher-level system behaviour, the

possibility exists that the system shows a micro-macro effect [Gol99]. Nevertheless, if the system

representation fulfils the requirement of autonomy [Sha01] and adaptability or robustness w.r.t.

changes [Gol99] cannot be confirmed. The reason is that the examples only contain a maximum of

two agents; if one fails, the other will not continue to interact. As Kronecker Algebra provides us

with all possible paths at once, it is impossible to remove an agent during execution.

One fascinating factor is that only a limited amount of agents interact with each other and

barely have any rules on how to do that. That aligns with organisms that use relatively simple

behavioural rules to generate structures and patterns on the global system level. Those structures

are more complex than the components and processes they emerge [Pag88].

When applying priorities to the examples, the effects can be either reducing all interactions to

zero or creating a new system representation with fewer paths and different patterns. We did not

execute a series of experiments; therefore, we cannot indicate how agent priorities affect the pattern

formation process. However, a first tendency is that the priorities reduce the number of paths but

simultaneously extend the remaining ones. The pattern remains in some cases, while in others, they

change form. Future work needs to include different systems that show patterns and examine the

effects of priorities.

The effects of execution time on pattern formation are similar. It was possible to calculate the

execution times of paths in the system graph but only very rudimentary. We obtained the times from

a real-time predictable publish-subscribe environment. The first indicators show that the execution

time of an edge will influence the pattern formation process, especially when conditions are involved.

161

CHAPTER 11. DISCUSSION

In other words, if an execution time determines which path is executed next. We plan to continue

this course further in combination with edge probabilities.

In summary, we can answer RQ4 only inconclusively. The first results show that Kronecker

operations can be utilised to find patterns in interacting agent systems. However, to which extent

priorities, execution and message transmission times between the agents affect the formation process

cannot be decided, yet. First indications show that those factors influence the formation process,

but to what extent would require further research.

11.5 Limitations and Related Work

The presented work in this dissertation has limitations, some already discussed in the individual

chapters (e.g., scenario synthesis methods and model checking). An overall limitation and a positive

aspect is the absence of time in Kronecker operations. The possibility of creating a representation of

all possible execution paths between interacting agents sets this approach apart from other research.

Especially methods involving simulation cannot guarantee that all paths are found. Moreover, our

approach requires modelling the system in state machines. Therefore, it is impossible to analyse

“code”, like in some model checkers. In addition, our approach can only find patterns, but deciding

if those patterns are emergent was out of scope and requires further research.

The authors in Moshirpour et al. [MMBH10] present an approach to find implied scenarios but

suffer from over-generalisation, which requires an additional algorithm to prevent it [MMEF12].

Compared to our approach, we benefit from higher efficiency in handling everything in Kronecker

Algebra. Fard et al. [Hen13] builds upon the findings of Moshirpour et al. by storing message

labels into interaction matrices. The matrices contain the component name, the sender, and the

receiver identifier (ID) and what are the time dependencies. In some sense, similar to our matrices,

however, the authors use a Markov chain to model the system’s behaviour and identify paths among

components of the scenarios. Time dependencies benefit their approach, but it misses the simplicity

scalability of Kronecker operations. Research in model-checking is a large field concerned indirectly

with finding unintended behaviour [AY01]; we discussed the differences in Chapter 6.

Comparing methods based on mathematical and statistical techniques to identify systems’ emer-

gence is more complicated. The main reason is that such methods focus on one specific set of

emergent behaviour. On the one hand, what makes them very accurate, replicable and able to

handle complex forms or emergence, yet very limited. O’Toole, Nallur, and Clarke [ONC17] utilise

a form of distributed consensus, where several agents detect and decide whether a systems change

is an emergent event. In another paper, the same authors [ONC14] use the system feedback from

the macro and micro levels of the components to determine emergent behaviour. Both approaches

collect several variables that are later statistically analysed for correlations. The main difference

to our work is that those specific methods can identify higher levels of emergence. This benefit,

however, limits their applicability and requires more effort when changes are required.

Another approach proposes the use of Semi-Boolean algebra. In Haglich et al. [HRP10, HPR10],

the authors use Semi-Boolean algebra to identify and predict emergent or self-organising behaviours

in extended social networks, such as money laundering or smuggling networks. The authors claim

to be able to handle large social networks, which is a benefit, yet we have not explored the full

capabilities of Kronecker Algebra. Similarly, Chen et al. [CCN10] propose a formal approach to

characterise and examine emergent behaviours in complex agent-based simulations. The authors

characterise various behaviours according to different abstraction levels, which allows the examina-

tion of relations between the levels, i.e., between higher-level behaviours and lower-level events. A

clear benefit here is the possibility to introduce abstraction levels, which is currently not possible

162

11.6. RELIABILITY, REPRODUCIBILITY AND GENERALISATION

in our approach. The advantage of our approach is simplicity, as we do not require a complex

framework that uses an X-machine similar to Petri nets and state diagrams.

So far, approaches based on artificial intelligence techniques have only focused on techniques

such as clustering and machine learning. Those approaches observe and analyse the system and find

interaction patterns, a completely different idea from our Kronecker Algebra approach. Examples

are: Grossman et al. [GSG+09], analyses Internet Protocol (IP) data packets or Denzinger et

al. [DK06], which use evolutionary algorithms to identify unwanted emergent behaviours in multi-

agent systems. In Villani et al. [VFB+13], the authors look for dynamic structures of emergence in

dynamic networks, or Gomez et al. [GSZ17] introduce a quantitative definition of emergence, where

subsystems of a complex system are observed. We see the potential to use artificial intelligence

techniques to identify patterns in large graphs produced by our operations. A task that so far lies

in the hand of the system designer.

11.6 Reliability, Reproducibility and Generalisation

The reliability of the presented results in this dissertation is supported by the chosen research design

presented in Chapter 3. Each chapter contributes knowledge that is individually evaluated, discussed,

and in some cases, peer-reviewed in contributing publications. In addition, the chapters contribute to

the overall evaluation, which provides the knowledge required for answering the research questions

and fulfilling the aim of the dissertation. The theoretical background is built upon a systematic

literature review which further strengthens the reliability of the results.

Regarding the reproducibility of the results, all newly introduced Kronecker operations are ex-

plained and derived from existing operations. All evaluations are explained in detail and can be

redone by other researchers. In the case of the time-predicable publish-subscribe environment, the

necessary code is available open source in a git repository. The same applies to the systematic

literature review, as Chapter 3 explains.

The generalisation of the results is limited, mainly because the focus of this dissertation was to

evaluate if Kronecker Algebra can be used to identify patterns in MAS. We did not execute large

sets of experiments to determine the causes for the described patterns nor what agent interactions

cause those. The absence of more extensive experiments is because the current implementation

requires programming each example by hand and is, therefore, unsuitable to run extensive test runs

as in simulations. Another issue is that systems develop large state spaces quickly, and the patterns

are more difficult to identify without other tools, which would enter a field of pattern recognition

far beyond this work’s scope.

163

CHAPTER 11. DISCUSSION

164

Chapter 12

Conclusion

This dissertation presents findings that modern multi-agent system (MAS) and industrial systems

can show emergent behaviours or patterns of a higher information level not reducible to the single

components or agents. A systematic literature review led to the identification of system properties

required for emergent behaviour or pattern formation. The relevant characteristics are dynamically

interacting agents that, without external control, create a robust behaviour or pattern that is

novel w.r.t. the individual parts of the system over time. Furthermore, the review results revealed

inadequate tools and methods to identify such patterns in MASs. Using different MAS types as a

framework and a cooperating array grammar system based on formal languages made it possible to

build a bridge between pattern formation in MAS and Kronecker Algebra.

Kronecker Algebra manipulates matrices, representing state machines capable of executing for-

mal language grammars. In addition, two newly introduced Kronecker operations, Kronecker Syn-

thesise and Kronecker Symmetric Skip, enable agent scenario synthesis to identify implied scenarios

in an overall system representation while ensuring consistency during transformation. Furthermore,

by introducing execution priorities into Kronecker operations, it was possible to identify priority in-

versions between executing processes that share a common resource. The priority functionality was

further used to calculate the worst-case execution time (WCET) of two state machines executing

on a single-core central processing unit (CPU).

All newly introduced Kronecker operations were applied to a model representing an industrial

publish-subscribe communication system. The resulting system representation shows pattern for-

mations that individual agents cannot execute and fulfil the system properties required for emergent

behaviour. Moreover, using priorities in agent interactions affects the pattern formation within the

total system. Similar effects are visible when looking at the execution time of agent interactions.

First experiments with a specific built time-predictable real-time capable publish-subscribe commu-

nication environment confirm the findings.

The overall results fulfil the aim of this dissertation to explore the applicability of Kronecker

Algebra to identify emergent patterns in MAS or industrial communication systems. Moreover,

it confirms the suitability of Kronecker Algebra to identify pattern formations in MASs or indus-

trial communication systems. Limitations are that no extensive experiments were carried out, and

the identified patterns are not checked to determine whether they can generate emergent system

behaviour.

165

CHAPTER 12. CONCLUSION

12.1 Future Work

Future work will focus on extending Kronecker Algebra operations. The first step is realising a

WCET analysis of concurrently executing state machines with different priorities on a multi-core

CPU. The findings will support the implementation of probabilities, which path is more likely to be

executed in a system graph.

Another extension includes hierarchical abstraction and clustering of state-machine interactions

in larger systems. Moreover, we plan to check the relation between Kronecker Algebra and linear

time model checking.

The implementation of the lazy algorithm will be renewed to include large integers and other

optimisations to increase the overall efficiency. Further activities are to search for new application

fields for Kronecker Algebra, such as production processes or robot route planning.

166

Chapter 13

Bibliography

[Abs21] AbsInt, ait, Available at https://www.absint.com/ait/, 2021.

[And72] Philip W. Anderson, More Is Different: Broken symmetry and the nature of the

hierarchical structure of science., Science 177 (1972), no. 4047, 393–396.

[Art90] Wallace Arthur, Green Machine: Ecology and the Balance of Nature, 1 ed., Blackwell

Pub, Oxford, 1990.

[Ash47] W. Ross Ashby, Principles of the Self-Organizing Dynamic System, The Journal of

General Psychology 37 (1947), no. 2, 125–128, PMID: 20270223.

[Ash56] , An Introduction to Cybernetics, 2 ed., Chapman & Hall, London, 1956.

[Ash62] , Principles of the self-organizing system, Principles of Self-Organization:

Transactions of the University of Illinois Symposium (H. Von Foerster and G. W. Zopf

Jr, eds.), Pergamon Press, London, 1962, pp. 255–278.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles, Techniques,

and Tools, Addison-Wesley Publishing Co., 1986.

[AY01] Rajeev Alur and Mihalis Yannakakis, Model Checking of Hierarchical State Machines,

ACM Trans. Program. Lang. Syst. 23 (2001), no. 3, 273–303.

[Baa94] Nils A. Baas, Emergence, Hierarchies, and Hyperstructures, Artificial Life III, Santa

Fe Studies in the Sciences of Complexity, Proc. (Redwood City, Calif) (C. G. Langton,

ed.), vol. XVII, Addison-Wesley, 1994, pp. 515–537.

[Bak10] Alan Baker, Simulation-Based Definitions of Emergence, Journal of Artificial Soci-

eties and Social Simulation 13 (JASSS) 13 (2010), no. 1, 9.

[Bal01] Philip Ball, The Self-Made Tapestry: Pattern Formation in Nature, Oxford University

Press, 2001.

[Bar76] William W. Bartley, The Philosophy of Karl Popper, Philosophia 6 (1976), no. 3,

463–494.

[BB14] Bernd Burgstaller and Johann Blieberger, Kronecker Algebra for Static Analysis of

Ada Programs with Protected Objects, Reliable Software Technologies – Ada-Europe

167

CHAPTER 13. BIBLIOGRAPHY

2014 (Cham) (Laurent George and Tullio Vardanega, eds.), Springer International

Publishing, 2014, pp. 27–42.

[BCFV02] Guido Boffetta, Massimo Cencini, Massimo Falcioni, and Angelo Vulpiani, Pre-

dictability: a way to characterize complexity, Physics Reports 356 (2002), no. 6,

367–474.

[BD97] Eric Bonabeau and Jean-Louis Dessalles, Detection and emergence, La revue de

l’Association pour la Recherche sur les sciences de la Cognition (ARCo) 2 (1997),

no. 25, 85–94.

[BDG95a] Eric Bonabeau, Jean-Louis Dessalles, and Alain Grumbach, Characterizing emergent

phenomena (1): A critical review, Revue Internationale de Systémique 9 (1995),

327–346.

[BDG95b] , Characterizing emergent phenomena (2): A critical review, Revue Interna-

tionale de Systémique 9 (1995), 347–371.

[BDM02] Simona Bernardi, Susanna Donatelli, and José Merseguer, From UML Sequence

Diagrams and Statecharts to Analysable Petri Net Models, Proceedings of the 3rd

International Workshop on Software and Performance (New York, NY, USA), WOSP

’02, Association for Computing Machinery, 2002, pp. 35–45.

[BDTT99] Eric Bonabeau, Marco Dorigo, Guy Theraulaz, and Guy Theraulaz, Swarm Intelli-

gence: From Natural to Artificial Systems, no. 1, Oxford University Press, 1999.

[Bed03] Mark Bedau, DOWNWARD CAUSATION AND THE AUTONOMY OF WEAK

EMERGENCE, Principia 6 (2003), no. 1, 5–50.

[BEG+12a] Petra Brosch, Uwe Egly, Sebastian Gabmeyer, Gerti Kappel, Martina Seidl, Hans

Tompits, Magdalena Widl, and Manuel Wimmer, Towards Scenario-Based Testing

of UML Diagrams, Tests and Proofs (Berlin, Heidelberg) (Achim D. Brucker and

Jacques Julliand, eds.), Springer Berlin Heidelberg, 2012, pp. 149–155.

[BEG+12b] , Towards Semantics-Aware Merge Support in Optimistic Model Versioning,

Models in Software Engineering (Berlin, Heidelberg) (Jörg Kienzle, ed.), Springer

Berlin Heidelberg, 2012, pp. 246–256.

[Bel97] Richard Bellman, Introduction to matrix analysis, 2nd ed., Classics in Applied Math-

ematics., Society for Industrial and Applied Mathematics (SIAM), 1997.

[BEL10] John J. Bartholdi, Donald D. Eisenstein, and Yun Fong Lim, Self-organizing logistics

systems, Annual Reviews in Control 34 (2010), no. 1, 111–117.

[Ben86] Charles H. Bennett, On The Nature And Origin of Complexity in Discrete, Ho-

mogeneous, Locally-Interacting Systems, Foundations of Physics 16 (1986), no. 6,

585–592.

[Ber03] Alexander U. Berezhnoy, Emergent Behavior in Multiagent Systems, Proceedings

of the 3rd Winona Computer Science Undergraduate Research Symposium, vol. 4,

2003, pp. 50–55.

[BG07] Fabio Boschetti and Randall Gray, Emergence and computability, Emergence: Com-

plexity and Organization (E:CO) 9 (2007), no. 1, 120–130, ISCE Publishing 2007;.

168

[BGMK07] Puneet Bhateja, Paul Gastin, Madhavan Mukund, and K. Narayan Kumar, Local Test-

ing of Message Sequence Charts Is Difficult, Fundamentals of Computation Theory

(Berlin, Heidelberg) (Erzsébet Csuhaj-Varjú and Zoltán Ésik, eds.), Springer Berlin

Heidelberg, 2007, pp. 76–87.

[BH09] Iztok Lebar Bajec and Frank H. Heppner, Organized flight in birds, Animal Behaviour

78 (2009), no. 4, 777–789.

[BK02] Peter Buchholz and Peter Kemper, Efficient Computation and Representation of

Large Reachability Sets for Composed Automata, Discrete Event Dynamic Systems

12 (2002), no. 3, 265–286.

[BKB+07] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed

Khalil, Lessons from applying the systematic literature review process within the

software engineering domain, Journal of Systems and Software 80 (2007), no. 4,

571–583, Software Performance.

[Bli02] Johann Blieberger, Data-Flow Frameworks for Worst-Case Execution Time Analysis,

Real-Time Systems 22 (2002), no. 3, 183–227.

[Boo94] Grady Booch, OBJECT-ORIENTED ANALYSIS AND DESIGN With applications,

2nd ed., Addison-Wesley Longman Publishing Co., Inc., 1994.

[BP23] Mohammadreza Barzegaran and Paul Pop, The fora european training network on

fog computing for robotics and industrial automation, 2023 Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2023, pp. 1–6.

[BPMG05] Fabio Boschetti, Mikhail Prokopenko, Ian Macreadie, and Anne-Marie Grisogono,

Defining and detecting emergence in complex networks, Knowledge-Based Intelligent

Information and Engineering Systems (Berlin, Heidelberg) (Rajiv Khosla, Robert J.

Howlett, and Lakhmi C. Jain, eds.), Springer Berlin Heidelberg, 2005, pp. 573–580.

[Bro95] Rodney A Brooks, Intelligence Without Reason, The Artificial Life Route to Artificial

Intelligence, Routledge, 1 ed., 1995, pp. 25–81.

[BSB12] Bernd Burgstaller, Bernhard Scholz, and Johann Blieberger, A symbolic analysis

framework for static analysis of imperative programming languages, Journal of Sys-

tems and Software 85 (2012), no. 6, 1418–1439, Special Issue: Agile Development.

[BY97] Yaneer Bar-Yam, Dynamics Of Complex Systems, 1 ed., Addison-Wesley, 1997.

[CAL] CALResCo Group, The Complexity & Artificial Life Research Concept.

[Car89] Peter Anthony Cariani, ON THE DESIGN OF DEVICES WITH EMERGENT SE-

MANTIC FUNCTIONS, Ph.D. thesis, State University of New York Binghamton,

NY, 1989.

[CBdSMP16] Luiz Fernando Carvalho, Sylvio Barbon, Leonardo de Souza Mendes, and

Mario Lemes Proença, Unsupervised learning clustering and self-organized agents

applied to help network management, Expert Systems with Applications 54 (2016),

29–47.

169

CHAPTER 13. BIBLIOGRAPHY

[CCN10] Chih-Chun Chen, Christopher D. Clack, and Sylvia B. Nagl, Identifying Multi-Level

Emergent Behaviors in Agent-Directed Simulations using Complex Event Type Spec-

ifications, SIMULATION 86 (2010), no. 1, 41–51.

[CDF+20] Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd, Guy Ther-

aula, and Eric Bonabeau, Self-Organization in Biological Systems, Princeton Univer-

sity Press, 2020.

[CF02] Markus Christen and Laura Rebecca Franklin, The Concept of Emergence in Com-

plexity Science: Finding Coherence between Theory and Practice, Proceedings of the

Complex Systems Summer School 4, 2002, pp. 1–15.

[CF03] James P. Crutchfield and David P. Feldman, Regularities unseen, randomness ob-

served: Levels of entropy convergence, Chaos: An Interdisciplinary Journal of Non-

linear Science 13 (2003), no. 1, 25–54.

[CFR12] Timothy R. Colburn, James H. Fetzer, and Terry L. Rankin (eds.), PROGRAM VER-

IFICATION: Fundamental Issues in Computer Science, vol. 14, Studies in Cognitive

Systems, no. 1, Springer Science & Business Media, 2012.

[Cha66] Gregory J. Chaitin, On the Length of Programs for Computing Finite Binary Se-

quences, J. ACM 13 (1966), no. 4, 547–569.

[Cha74] , Information-Theoretic Limitations of Formal Systems, J. ACM 21 (1974),

no. 3, 403–424.

[Cha99] Matthew Chalmers, Comparing Information Access Approaches, Journal of the Amer-

ican Society for Information Science 50 (1999), no. 12, 1108–1118.

[Cha03] Gregory J. Chaitin, The LIMITS of MATHEMATICS: A Course on Information The-

ory and the Limits of Formal Reasoning, [4th print.]. ed., Springer Series in Discrete

Mathematics and Theoretical Computer Science, Springer, London, 2003.

[Cha11] Wai Kin Victor Chan, INTERACTION METRIC OF EMERGENT BEHAVIORS

IN AGENT-BASED SIMULATION, Proceedings - Winter Simulation Conference

(S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.), 2011, pp. 357–

368.

[Cha15] Rafe Champion, Reason and Imagination: Some thoughts of Karl Popper and William

W Bartley, 2 ed., CreateSpace Independent Publishing Platform, 2015.

[Che00a] Peter Checkland, Soft Systems Methodology: A Thirty Year Retrospective, Systems

Research and Behavioral Science 17 (2000), S11–S58.

[Che00b] , The Emergent Properties of SSM in Use: A Symposium by Reflective

Practitioners, Systemic Practice and Action Research 13 (2000), no. 6, 799–823.

[Cho56] Noam Chomsky, THREE MODELS FOR THE DESCRIPTION OF LANGUAGE, IRE

Transactions on Information Theory 2 (1956), no. 3, 113–124.

[CJGK+18] Edmund M. Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut

Veith, Model Checking, 2 ed., Cyber Physical Systems Series, The MIT Press, 2018.

170

[CLW92] Minder Chen, Yihwa Irene Liou, and E. Sue Weber, Developing intelligent organi-

zations: A context-based approach to individual and organizational effectiveness,

Journal of Organizational Computing 2 (1992), no. 2, 181–202.

[CM95] James P. Crutchfield and Mitchell Melanie, The evolution of emergent computation,

Proceedings of the National Academy of Sciences 92 (1995), no. 23, 10742–10746.

[CM99] Gianfranco Ciardo and Andrew S. Miner, A data structure for the efficient Kronecker

solution of GSPNs, Proceedings 8th International Workshop on Petri Nets and Per-

formance Models (Cat. No.PR00331), 1999, pp. 22–31.

[CN34] Morris R. Cohen and Ernest Nagel, An Introduction To Logic And Scientific Method,

Harcourt, Brace And Company, New York, NY, USA, 1934.

[CNC07] Chih-Chun Chen, Sylvia B. Nagl, and Christopher D. Clack, Specifying, Detecting

and Analysing Emergent Behaviours in Multi-Level Agent-Based Simulations, Sum-

mer Computer Simulation Conference 2007, SCSC’07, Part of the 2007 Summer

Simulation Multiconference, SummerSim’07, vol. 2, ACM: Association for Comput-

ing Machinery, 2007, pp. 969–976.

[Cor02] Peter A. Corning, The Re-emergence of “Emergence”: A Venerable Concept in

Search of a Theory, Complexity 7 (2002), no. 6, 18–30.

[Cru94a] James P. Crutchfield, Is Anything Ever New? Considering Emergence, Complex-

ity: Metaphors, Models, and Reality (Redwood City) (G. Cowan, D. Pines, and

D. Melzner, eds.), SFI Series in the Sciences of Complexity XIX, Addison-Wesley,

1994, pp. 479–497.

[Cru94b] , The calculi of emergence: computation, dynamics and induction, Physica

D: Nonlinear Phenomena 75 (1994), no. 1, 11–54.

[Cru06] Joseph Cruz, Epistemology, ch. Epistemology, p. 7, John Wiley & Sons, Ltd, 2006.

[CVDKP18] Erzsébet Csuhaj-Varjú, Jürgen Dassow, Jozef Kelemen, and Gheorghe Păun, Gram-

mar systems: A grammatical approach to distribution and cooperation, Routledge,

2018.

[CVKKP97] Erzsébet Csuhaj-Varjú, Jozef Kelemen, Alica Kelemenová, and Gheorghe Păun, Eco-

Grammar Systems: A Grammatical Framework for Studying Lifelike Interactions,

Artificial Life 3 (1997), no. 1, 1–28.

[DADMS15] Francesco Luca De Angelis and Giovanna Di Marzo Serugendo, A logic language

for run time assessment of spatial properties in self-organizing systems, Proceed-

ings - 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing

Systems Workshops, SASOW 2015, 2015, pp. 86–91.

[DAF+22] Patrick Denzler, Mohammad Ashjaei, Thomas Frühwirth, Victor Nicholas Ebirim,

and Wolfgang Kastner, Concurrent OPC UA information model access, enabling

real-time OPC UA PubSub, 2022 IEEE 27th International Conference on Emerging

Technologies and Factory Automation (ETFA), 2022, pp. 1–4.

[Dar94] Vince Darley, Emergent Phenomena and Complexity, Arificial Life 4 (1994.), 411–

416.

171

CHAPTER 13. BIBLIOGRAPHY

[Dav81] Marc Davio, Kronecker Products and Shuffle Algebra, IEEE Transactions on Com-

puters C-30 (1981), no. 2, 116–125.

[DBK22] Patrick Denzler, Johann Blieberger, and Wolfgang Kastner, Utilising Kronecker Alge-

bra to Detect Unexpected Behaviour in Distributed Systems, 2022 IEEE 25th Inter-

national Symposium On Real-Time Distributed Computing (ISORC), 2022, pp. 1–8.

[DCGBB16] Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns, A review of

priority assignment in real-time systems, Journal of Systems Architecture 65 (2016),

64–82.

[Dem98] Mary Beth Linda Dempster, A Self-organizing Systems Perspective on Planning for

Sustainability, Master’s thesis, University of Waterloo, 1998.

[DFK+21a] Patrick Denzler, Thomas Frühwirth, Andreas Kirchberger, Martin Schoeberl, and

Wolfgang Kastner, Experiences from Adjusting Industrial Software for Worst-Case

Execution Time Analysis, 2021 IEEE 24th International Symposium on Real-Time

Distributed Computing (ISORC), 2021, pp. 62–70.

[DFK+21b] , Static Timing Analysis of OPC UA PubSub, 2021 17th IEEE International

Conference on Factory Communication Systems (WFCS), 2021, pp. 167–174.

[DFP95] Jürgen Dassow, Rudolf Freund, and Gheorghe Păun, COOPERATING ARRAY

GRAMMAR SYSTEMS, International Journal of Pattern Recognition and Artificial

Intelligence 09 (1995), no. 06, 1029–1053.

[DFS+22] Patrick Denzler, Thomas Frühwirth, Daniel Scheuchenstuhl, Martin Schoeberl, and

Wolfgang Kastner, Timing Analysis of TSN-Enabled OPC UA PubSub, 2022 IEEE

18th International Conference on Factory Communication Systems (WFCS), 2022,

pp. 1–8.

[DHFK21] Patrick Denzler, Siegfried Hollerer, Thomas Frühwirth, and Wolfgang Kastner, Iden-

tification of security threats, safety hazards, and interdependencies in industrial edge

computing, 2021 IEEE/ACM Symposium on Edge Computing (SEC), 2021, pp. 397–

402.

[Dij71] Edsger W. Dijkstra, Hierarchical ordering of sequential processes, Acta Informatica

1 (1971), no. 2, 115–138.

[Dij01] , Under the spell of Leibniz’s dream, Information Processing Letters 77

(2001), no. 2-4, 53–61, In honor of Edsger W. Dijkstra.

[Dij02] , Cooperating Sequential Processes, The Origin of Concurrent Programming:

From Semaphores to Remote Procedure Calls (New York, NY) (Per Brinch Hansen,

ed.), Springer New York, 2002, pp. 65–138.

[Dijna] Edsger W. Dijkstra, Over de sequentialiteit van procesbeschrijvingen., Circulated

privately (n/a.), n/a.

[DK06] Jörg Denzinger and Jordan Kidney, Evaluating Different Genetic Operators in the

Testing for Unwanted Emergent Behavior Using Evolutionary Learning of Behavior,

2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,

2006, pp. 23–29.

172

[DK23] Patrick Denzler and Wolfgang Kastner, Reference Architectures for Closing the

IT/OT Gap, Digital Transformation: Core Technologies and Emerging Topics from

a Computer Science Perspective (Birgit Vogel-Heuser and Manuel Wimmer, eds.),

Springer Berlin Heidelberg, Berlin, Heidelberg, 2023, pp. 95–123.

[DLFS22] Patrick Denzler, Christoph Lehr, Thomas Frühwirth, and Martin Schoeberl, Source

code OPC UA, T-CREST, https://git.auto.tuwien.ac.at/rt-ua/ (2022), 1.

[DM11] Ralf Der and Georg Martius, Self-Organization in Nature and Machines, In: The Play-

ful Machine. Cognitive Systems Monographs, vol. 15, Springer, Berlin, Heidelberg,

2011, pp. 9–21.

[DMLP79] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis, Social Processes and

Proofs of Theorems and Programs, Communications of the ACM 22 (1979), no. 5,

271–280.

[DMSGK11] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos, Self-

organising Systems, Self-organising Software: From Natural to Artificial Adaptation

(Berlin, Heidelberg) (Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and An-

thony Karageorgos, eds.), Springer Berlin Heidelberg, 2011, pp. 7–32.

[Dog08] Radu Dogaru, Emergence, Locating and Measuring It, vol. 95, ch. 4, pp. 47–75,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[DP06] Jean-Louis Dessalles and Denis Phan, Emergence in Multi-Agent Systems: Cogni-

tive Hierarchy, Detection, and Complexity Reduction part I: Methodological Issues,

Artificial Economics (Berlin, Heidelberg) (M. Beckmann, H. P. Künzi, G. Fandel,

W. Trockel, A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kürsten, U. Schit-

tko, Philippe Mathieu, Bruno Beaufils, and Olivier Brandouy, eds.), Springer Berlin

Heidelberg, 2006, pp. 147–159.

[DRK+20] Patrick Denzler, Jan Ruh, Marine Kadar, Cosmin Avasalcai, and Wolfgang Kastner,

Towards Consolidating Industrial Use Cases on a Common Fog Computing Platform,

2020 25th IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA), vol. 1, 2020, pp. 172–179.

[DRK21a] Patrick Denzler, Daniel Ramsauer, and Wolfgang Kastner, Model-driven Engineering

of Gateways for Industrial Automation, Automation, Robotics & Communications

for Industry 4.0 (2021), 47.

[DRK21b] , Tunnelling and Mirroring Operational Technology Data with IP-based Mid-

dlewares, 2021 22nd IEEE International Conference on Industrial Technology (ICIT),

vol. 1, 2021, pp. 1205–1210.

[DRP+22] Patrick Denzler, Daniel Ramsauer, Thomas Preindl, Wolfgang Kastner, and Alexan-

der Gschnitzer, Comparing Different Persistent Storage Approaches for Containerized

Stateful Applications, 2022 IEEE 27th International Conference on Emerging Tech-

nologies and Factory Automation (ETFA), 2022, pp. 1–8.

[DRPK21] Patrick Denzler, Daniel Ramsauer, Thomas Preindl, and Wolfgang Kastner, Commu-

nication and container reconfiguration for cyber-physical production systems, 2021

26th IEEE International Conference on Emerging Technologies and Factory Automa-

tion (ETFA), 2021, pp. 1–8.

173

CHAPTER 13. BIBLIOGRAPHY

[DSA93] Paolo Dario, Giulio Sandini, and Patrick Aebischer (eds.), Swarm Intelligence in Cel-

lular Robotic Systems, Berlin, Heidelberg, Springer Berlin Heidelberg, 1993.

[DSRK21] Patrick Denzler, Daniel Scheuchenstuhl, Daniel Ramsauer, and Wolfgang Kastner,

Modelling protocol gateways for cyber-physical systems using Architecture Analysis

& Design Language, Procedia CIRP 104 (2021), 1339–1344, 54th CIRP CMS 2021

- Towards Digitalized Manufacturing 4.0.

[Dut12] Alain Dutech, Self-organizing Developmental Reinforcement Learning, From Animals

to Animats 12. SAB 2012. Lecture Notes in Computer Science, (Berlin, Heidelberg.)

(Hallam J. (eds) Ziemke T., Balkenius C., ed.), vol. 7426, Springer, 2012.

[DWF11] Clare Dixon, Alan Winfield, and Michael Fisher, Towards Temporal Verification of

Emergent Behaviours in Swarm Robotic Systems, Towards Autonomous Robotic

Systems (Berlin, Heidelberg) (Roderich Groß, Lyuba Alboul, Chris Melhuish, Mark

Witkowski, Tony J. Prescott, and Jacques Penders, eds.), Springer Berlin Heidelberg,

2011, pp. 336–347.

[DWH04] Tom De Wolf and Tom Holvoet, Emergence and Self-Organisation: a statement of

similarities and differences, Proceedings of the International Workshop on Engineering

Self-Organising Applications 2004, 2004, pp. 96–110.

[DWH05] , Emergence Versus Self-Organisation: Different Concepts but Promising

When Combined, Engineering Self-Organising Systems (Berlin, Heidelberg) (Sven A.

Brueckner, Giovanna Di Marzo Serugendo, Anthony Karageorgos, and Radhika Nag-

pal, eds.), Springer Berlin Heidelberg, 2005, pp. 1–15.

[DWHS06] Tom De Wolf, Tom Holvoet, and Giovanni Samaey, Development of Self-

organising Emergent Applications with Simulation-Based Numerical Analysis, Engi-

neering Self-Organising Systems (Berlin, Heidelberg) (Sven A. Brueckner, Giovanna

Di Marzo Serugendo, David Hales, and Franco Zambonelli, eds.), Springer Berlin

Heidelberg, 2006, pp. 138–152.

[DWSHR05] Tom De Wolf, Giovanni Samaey, Tom Holvoet, and Dirk Roose, Decentralised

Autonomic Computing: Analysing Self-Organising Emergent Behaviour using Ad-

vanced Numerical Methods, Second International Conference on Autonomic Com-

puting (ICAC’05), 2005, pp. 52–63.

[Edm99] Bruce Edmonds, Syntactic Measures of Complexity., Ph.D. thesis, University of

Manchester, Manchester, UK., 1999.

[Egy06] Alexander Egyed, Instant Consistency Checking for the UML, Proceedings of the

28th International Conference on Software Engineering (New York, NY, USA), ICSE

’06, Association for Computing Machinery, 2006, pp. 381–390.

[EHHS02] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer, TESTING

THE CONSISTENCY OF DYNAMIC UML DIAGRAMS, Integrated Design and Pro-

cess Technology, IDPT-2002 (Printed in the United States of America), Society for

Design and Process Science, 06 2002.

[ÉK12] Zoltán Ésik and Werner Kuich,Modern Automata Theory, E104 - Institut für Diskrete

Mathematik und Geometrie, 2012, http://hdl.handle.net/20.500.12708/20717.

174

[Eps99] Joshua M. Epstein, Agent-Based Computational Models and Generative Social Sci-

ence, Complexity 4 (1999), no. 5, 41–60.

[F. 23] F. Palm et al., open62541, Available at https://github.com/open62541 (2023), 1.

[FC03] David P. Feldman and James P. Crutchfield, Structural information in two-

dimensional patterns: Entropy convergence and excess entropy, Phys. Rev. E 67

(2003), 051104.

[Fel06] Bernard Feltz, Self-Organization, Selection and Emergence in the Theories of Evo-

lution, SELF-ORGANIZATION AND EMERGENCE IN LIFE SCIENCES (GOUJON

P. (eds) FELTZ B., CROMMELINCK M., ed.), Springer, Dordrecht, 2006, pp. 341–

360.

[Fet88] James H. Fetzer, Program verification: the very idea, Communications of the ACM

31 (1988), no. 9, 1048–1063.

[Fet99] , THE ROLE OF MODELS IN COMPUTER SCIENCE, The Monist 82

(1999), no. 1, 20–36.

[FFH99] Henning Fernau, Rudolf Freund, and Markus Holzer, REGULATED ARRAY GRAM-

MARS OF FINITE INDEX - Part I: Theoretical Investigations, Grammatical Models

of Multi-Agent Systems, 1999, pp. 284–296.

[FH03] Noria Foukia and Salima Hassas, Towards self-organizing computer networks: A com-

plex system perspective, in: G. Di Marzo-Serugendo, A.Karageorgos, O.F. Rana and

F. Zambonellini (Eds), proceeding of AAMAS’2003 Workshop on Engineering Self-

Organizing Applications, 15 July 2003, Melbourne, Australia. pp 77-83. (Melbourne,

Australia), 7 2003.

[FMG14] Nelson Fernández, Carlos Maldonado, and Carlos Gershenson, Information Measures

of Complexity, Emergence, Self-organization, Homeostasis, and Autopoiesis, Guided

Self-Organization: Inception (Berlin, Heidelberg) (Mikhail Prokopenko, ed.), Springer

Berlin Heidelberg, 2014, pp. 19–51.

[For90] Stephanie Forrest, Emergent computation: Self-organizing, collective, and cooper-

ative phenomena in natural and artificial computing networks: Introduction to the

proceedings of the ninth annual CNLS conference, Physica D: Nonlinear Phenomena

42 (1990), no. 1, 1–11.

[FP86] J. Doyne Farmer and Norman H. Packard, Evolution, games, and learning: Models

for adaptation in machines and nature. An introduction to the Proceedings of the

CNLS Conference, Los Alamos, May 1985, Physica D: Nonlinear Phenomena 22

(1986), no. 1, vii–xii, Proceedings of the Fifth Annual International Conference.

[Fre00] Rudolf Freund, ARRAY GRAMMAR SYSTEMS, Journal of Automata, Languages

and Combinatorics 5 (2000), no. 1, 13–29.

[Fri95] Uriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University

Press, 1995.

[FSS15] Thomas Frühwirth, Wilfried Steiner, and Bernhard Stangl, TTEthernet SW-based

End System for AUTOSAR, Proceedings of the 10th IEEE International Symposium

on Industrial Embedded Systems (SIES) (Siegen, Germany), 6 2015, pp. 1–8.

175

CHAPTER 13. BIBLIOGRAPHY

[FV03] Thomas Huining Feng and Hans Vangheluwe, Case study: Consistency problems in

a UML model of a chat room, Workshop on Consistency Problems in UML-based

Software Development, 2003, p. 18.

[GBS13] Sebastian Gabmeyer, Petra Brosch, and Martina Seidl, A Classification of Model

Checking-Based Verification Approaches for Software Models, Second Workshop on

Verification Of Model Transformations, VOLT, 2013, pp. 1–7.

[Ger12] Carlos Gershenson, The World as Evolving Information, Unifying Themes in Complex

Systems VII (Berlin, Heidelberg) (Ali A. Minai, Dan Braha, and Yaneer Bar-Yam,

eds.), Springer Berlin Heidelberg, 2012, pp. 100–115.

[GESL06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper, Automatic

Derivation of Loop Bounds and Infeasible Paths for WCET Analysis Using Abstract

Execution, 2006 27th IEEE International Real-Time Systems Symposium (RTSS’06),

2006, pp. 57–66.

[GH05] Carlos Gershenson and Francis Heylighen, How can we think the complex, Managing

organizational complexity: philosophy, theory and application, vol. 3, Information Age

Publishing Greenwich, CT, USA, 2005, pp. 47–62.

[GM81] Mart R. Gross and Anne M. MacMillan, Predation and the evolution of colonial nest-

ing in bluegill sunfish (Lepomis macrochirus), Behavioral Ecology and Sociobiology 8

(1981), no. 3, 163–174.

[GM16] Vahid Garousi and Mika V. Mäntylä, A systematic literature review of literature

reviews in software testing, Information and Software Technology 80 (2016), 195 –

216.

[Gol99] Jeffrey Goldstein, Emergence as a Construct: History and Issues, Emergence, A

Journal of Complexity Issues in Organizations and Management, vol. 1, The New

England Complex Systems Institute, 1999, pp. 49–72.

[GP71] Paul Glansdorff and Ilya Prigogine, Thermodynamic Theory of Structure, Stability and

Fluctuations, Journal of Fluid Mechanics, vol. 53, J. Willey & Sons, 1971, p. 400.

[GR08] Ross Gore and Paul F. Reynolds Jr., Applying Causal Inference to Understand Emer-

gent Behavior, Proceedings of the 40th Conference on Winter Simulation, WSC ’08,

Winter Simulation Conference, 2008, pp. 712–721.

[Gra69] Sir Clive William John Granger, Investigating Causal Relations by Econometric Mod-

els and Cross-spectral Methods, Econometrica 37 (1969), no. 3, 424–438.

[Gra18] Alexander Graham, Kronecker Products and Matrix Calculus with Applications, dover

edition ed., Courier Dover Publications, New York, 2018.

[GRTB07] Ross Gore, Paul F. Reynolds Jr., Lingjia Tang, and David C. Brogan, Explanation

Exploration: Exploring Emergent Behavior, 21st International Workshop on Principles

of Advanced and Distributed Simulation (PADS’07), 2007, pp. 113–122.

[GS88] John B. Goodenough and Lui R. Sha, The Priority Ceiling Protocol: A Method for

Minimizing the Blocking of High Priority Ada Tasks, Ada Lett. VIII (1988), no. 7,

20–31.

176

[GSG+09] Robert L. Grossman, Michael Sabala, Yunhong Gu, Anushka Anand, Matt Handley,

Rajmonda Sulo, and Lee Wilkinson, Discovering Emergent Behavior From Network

Packet Data: Lessons From The Angle Project, Next Generation of Data Mining

(2009), pp. 243–260.

[GSZ17] Sergio Gómez, Eugene Santos, and Yan Zhao, Automatic Emergence Detection in

Complex Systems, Complexity 2017 (2017), 3460919.

[GvD07] Bas Graaf and Arie van Deursen, Model-Driven Consistency Checking of Behavioural

Specifications, Fourth International Workshop on Model-Based Methodologies for

Pervasive and Embedded Software (MOMPES’07), 2007, pp. 115–126.

[Hak77] Hermann Haken, Synergetics: An Introduction. Nonequilibrium Phase Transitions

and Self-Organization in Physics, Chemistry and Biology, 1 ed., New York: Springer-

Verlag, 1977.

[Hak78] , An Introduction Nonequilibrium Phase Transitions and Self-Organization in

Physics, Chemistry and Biology (Second Enlarged Edition), Springer-Verlag, New

York, 1978.

[Hak84] , The Science of Structure: Synergetics, Van Nostrand Reinhold Company,

1984.

[Hak98] , Information and Self-Organisation: A Macroscopic Approach to Complex

Systems, Springer Series in Synergetics (SSSYN), Springer Science & Business Me-

dia, 1998.

[Ham64] William D. Hamilton, The genetical evolution of social behaviour. I, II, Journal of

Theoretical Biology 7 (1964), no. 1, 1–52.

[Har18] John Harvey, The Blessing and Curse of Emergence in Swarm Intelligence Systems,

Foundations of Trusted Autonomy (Cham) (Hussein A. Abbass, Jason Scholz, and

Darryn J. Reid, eds.), Springer International Publishing, 2018, pp. 117–124.

[HE12] David A. Harper and Anthony M. Endres, The anatomy of emergence, with a focus

upon capital formation, Journal of Economic Behavior & Organization 82 (2012),

no. 2, 352–367, Emergence in Economics.

[Hen13] Fatemeh Hendijani Fard, Detecting and fixing emergent behaviors in Distributed Soft-

ware Systems using a message content independent method, 2013 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 11 2013,

pp. 746–749.

[Hey89] Francis Heylighen, Self-organization, Emergence and the Architecture of Complexity,

Proceedings of the 1st European Conference on System Science (Paris: AFCET),

vol. 18, 1989, pp. 23–32.

[Hey02] Francis Heylighen, THE SCIENCE OF SELF-ORGANIZATION AND ADAPTIVITY,

Knowledge Management, Organizational Intelligence and Learning, and Complexity:

(L. D. Kiel, ed.), The Encyclopedia of Life Support Systems, vol. 1, EOLSS Publishers

Co Ltd [http://www.eolss.net], Oxford, 2002, pp. 1–26.

177

CHAPTER 13. BIBLIOGRAPHY

[HGB15] Derek R. Harp and Bengt Gregory-Brown, IT / OT Convergence Bridging the Divide,

Tech. report, NexDefense, 2015.

[HIKer] Richard Hammack, Wilfried Imrich, and Sandi Klavžar, Handbook of Product Graphs,

2nd, ed., DISCRETE MATHEMATICS AND ITS APPLICATIONS, CRC Press, Boca

Raton, FL, 2011. With a foreword by Peter Winkler.

[HK02] David Harel and Hillel Kugler, SYNTHESIZING STATE-BASED OBJECT SYS-

TEMS FROM LSC SPECIFICATIONS, International Journal of Foundations of Com-

puter Science 13 (2002), no. 01, 5–51.

[HL12] David A. Harper and Paul Lewis, New perspectives on emergence in economics,

Journal of Economic Behavior & Organization 82 (2012), no. 2, 329–337, Emergence

in Economics.

[HM76] Peter Henderson and James H. Morris, Jr., A Lazy Evaluator, 3rd ACM Symposium

on Principles of Programming Languages, POPL ’76, January 1976, pp. 95–103.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram, Design Science

in Information Systems Research, MIS Quarterly 28 (2004), no. 1, 75–105.

[HMS+20] Ke Huang, Xin Ma, Rui Song, Xuewen Rong, Xincheng Tian, and Yibin Li, A self-

organizing developmental cognitive architecture with interactive reinforcement learn-

ing, Neurocomputing 377 (2020), 269–285.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to Automata

Theory, Languages, and Computation (3rd Edition), Addison-Wesley Longman Pub-

lishing Co., Inc., USA, 2006.

[Hoa69] Charles A. R. Hoare, An Axiomatic Basis for Computer Programming, Communica-

tions of the ACM 12 (1969), no. 10, 576–580.

[Hoa09] , Viewpoint Retrospective: An Axiomatic Basis for Computer Programming,

Communications of the ACM 52 (2009), no. 10, 30–32.

[Hol75] John Henry Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence., 2 ed., MIT

Press, Cambridge, Massachusetts, 1992 (First edition in 1975).

[Hol98] , EMERGENCE: From Chaos to Order, Oxford University Press, 1998.

[Hor07] Gregory S. Hornby, Modularity, reuse, and hierarchy: Measuring complexity by mea-

suring structure and organization, Complexity 13 (2007), no. 2, 50–61.

[HPR10] Peter Haglich, Laura Pullum, and Christopher Rouff, Detecting Emergent Behaviors

with Semi-Boolean Algebra, AIAA Infotech at Aerospace 2010, 2010.

[HRP10] Peter Haglich, Christopher Rouff, and Laura Pullum, Detecting Emergence in Social

Networks, 2010 IEEE Second International Conference on Social Computing, 2010,

pp. 693–696.

[HT66] Frank Harary and Charles A. Trauth, Jr., Connectedness of Products of Two Directed

Graphs, SIAM Journal on Applied Mathematics 14 (1966), no. 2, 250–254.

178

[Hur94] Adolf Hurwitz, Zur Invariantentheorie, Mathemathische Annalen 45 (1894), 381–

404.

[HVZ+04] Karuna Hadeli, Paul Valckenaers, Constantin Zamfirescu, Hendrik Van Brussel,

Bart Saint Germain, Tom Hoelvoet, and Elke Steegmans, Self-organising in multi-

agent coordination and control using stigmergy, Engineering Self-Organising Systems

(Berlin, Heidelberg) (Giovanna Di Marzo Serugendo, Anthony Karageorgos, Omer F.

Rana, and Franco Zambonelli, eds.), Springer Berlin Heidelberg, 2004, pp. 105–123.

[HW92] Andreas Huth and Christian Wissel, The simulation of the movement of fish schools,

Journal of Theoretical Biology 156 (1992), no. 3, 365–385.

[HW06] Julianne D. Halley and David A. Winkler, Classification of Self-Organization and

Emergence in Chemical and Biological Systems, Australian Journal of Chemistry 59

(2006), no. 12, 849–853.

[HW08] Julianne. D. Halley and David A. Winkler, Classification of Emergence and Its Relation

to Self-Organization, Complexity 13 (2008), no. 5, 10–15.

[HWH99] Jim Hughes and Trevor Wood-Harper, Systems development as a research act, Jour-

nal of Information Technology 14 (1999), no. 1, 83–94.

[IA12] IoT-A, IoT-A Internet of Things Architecture. http://www-iot-a.eu/, VDI/VDE IN-

NOVATION + TECHNIK GMBH (2012), 1.

[IMA+14] Kiyohiro Ikeda, Kazuo Murota, Takashi Akamatsu, Tatsuhito Kono, and Yuki

Takayama, Self-organization of hexagonal agglomeration patterns in new economic

geography models, Journal of Economic Behavior & Organization 99 (2014), 32–52.

[IMP01] Paola Inverardi, Henry Muccini, and Patrizio Pelliccione, Automated check of ar-

chitectural models consistency using SPIN, Proceedings 16th Annual International

Conference on Automated Software Engineering (ASE 2001), 2001, pp. 346–349.

[Joh06] Christopher W. Johnson, What are emergent properties and how do they affect the

engineering of complex systems?, Reliability Engineering & System Safety 91 (2006),

no. 12, 1475–1481, Complexity in Design and Engineering.

[JTSP13] John J. Johnson, Andreas Tolk, and Andres Sousa-Poza, A Theory of Emergence

and Entropy in Systems of Systems, Procedia Computer Science 20 (2013), 283 –

289, Complex Adaptive Systems.

[JV11] Silver Juurik and Jüri Vain, Model checking of emergent behaviour properties of robot

swarms, Proceedings of the Estonian Academy of Sciences 60 (2011), no. 1, 48–54.

[Kau93] Stuart A Kauffman, The Origins of Order: Self-Organization and Selection in Evo-

lution., Oxford University Press, USA, 1993.

[Kau95] Stuart Kauffman, At Home in the Universe: the Search for the Laws of Self- Orga-

nization and Complexity., Oxford University Press, USA, 1995.

[KC06] Stuart Kauffman and Philip Clayton, On emergence, agency, and organization, Biol-

ogy and Philosophy 21 (2006), no. 4, 501–521.

179

CHAPTER 13. BIBLIOGRAPHY

[KC20] Juliana Küster Filipe Bowles and Marco B. Caminati, Correct composition in the

presence of behavioural conflicts and dephasing, Science of Computer Programming

185 (2020), 102323.

[KGSB99] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy, From MSCS to State-

charts, Distributed and Parallel Embedded Systems: IFIP WG10.3/WG10.5 Interna-

tional Workshop on Distributed and Parallel Embedded Systems (DIPES’98) Octo-

ber 5–6, 1998, Schloss Eringerfeld, Germany (Boston, MA) (Franz J. Rammig, ed.),

Springer US, 1999, pp. 61–71.

[Kin10] Witold Kinsner, System Complexity and Its Measures: How Complex Is Complex,

Advances in Cognitive Informatics and Cognitive Computing (Berlin, Heidelberg)

(Yingxu Wang, Du Zhang, and Witold Kinsner, eds.), Springer Berlin Heidelberg,

2010, pp. 265–295.

[KKP+14] Petra Kaufmann, Martin Kronegger, Andreas Pfandler, Martina Seidl, and Magdalena

Widl, A SAT-Based Debugging Tool for State Machines and Sequence Diagrams,

Software Language Engineering (Cham) (Benôıt Combemale, David J. Pearce, Olivier

Barais, and Jurgen J. Vinju, eds.), Springer International Publishing, 2014, pp. 21–40.

[KKP+15] Petra Kaufmann, Martin Kronegger, Andreas Pfandler, Martina Seidl, and Magdalena

Widl, Intra- and interdiagram consistency checking of behavioral multiview models,

Computer Languages, Systems & Structures 44 (2015), 72–88, Special issue on the

6th and 7th International Conference on Software Language Engineering (SLE 2013

and SLE 2014).

[Kli91] Yu.L. Klimontovich, Turbulent Motion and the Structure of Chaos: A New Approach

to the Statistical Theory of Open Systems, 1 ed., Fundamental Theories of Physics,

no. 42, Springer Netherlands, 1991.

[KMRF+03] Soraya Kouadri Mostefaoui, Omer F. Rana, Noria Foukia, Salima Hassas, Giovanna

Di Marzo-Serugendo, Chris Van Aart, and Anthony Karageorgos, Self-Organising

Applications: A Survey, AAMAS’2003 Workshop on Engineering Self-Organizing

Applications, 15 July 2003, Melbourne, Australia. pp 62-69. (Melbourne, Australia)

(G. Di Marzo-Serugendo, A.Karageorgos, O.F. Rana, and F. Zambonellini, eds.),

Springer Verlag, 7 2003.

[KNM20] Somayeh Kalantari, Eslam Nazemi, and Behrooz Masoumi, Emergence phenomena in

self-organizing systems: a systematic literature review of concepts, researches, and

future prospects, Journal of Organizational Computing and Electronic Commerce

(2020), 1 – 42.

[Kop87] Moshe Koppel, Complexity, Depth, and Sophistication, Complex Systems 1 (1987),

no. 6, 1087–1091.

[Kru96] Paul Krugman, The self organizing economy, John Wiley & Sons, 1996.

[KU76] John B. Kam and Jeffrey D. Ullman, Global Data Flow Analysis and Iterative Algo-

rithms, J. ACM 23 (1976), no. 1, 158–171.

[Kub01] Aleš Kub́ı, On Emergence in Evolutionary Multiagent Systems, Advances in Arti-

ficial Life. Proceedings of the 6th European Conference on Artificial Life (Berlin,

180

Heidelberg) (Jozef Kelemen and Petr Sośık, eds.), Springer Berlin Heidelberg, 2001,

pp. 326–337.

[Kub03] , Toward a Formalization of Emergence, Artificial Life 9 (2003), no. 1, 41–65.

[Küs91] Gerhard Küster, On the Hurwitz product of formal power series and automata, The-

oretical Computer Science 83 (1991), no. 2, 261–273.

[KW07] Alexander Knapp and Jochen Wuttke, Model Checking of UML 2.0 Interactions,

Models in Software Engineering (Berlin, Heidelberg) (Thomas Kühne, ed.), Springer

Berlin Heidelberg, 2007, pp. 42–51.

[KZV95] Taek Mu Kwon, Michael E. Zervakis, and Anastasios N. Venetsanopoulos, Design

and analysis of a class of self-organizing and trainable fuzzy controllers, Journal of

Intelligent and Robotic Systems 12 (1995), no. 3, 301–315.

[Lan86] Christopher G Langton, Studying artificial life with cellular automata, Physica D:

Nonlinear Phenomena 22 (1986), no. 1, 120–149, Proceedings of the Fifth Annual

International Conference.

[Lan90] , Computation at the edge of chaos: Phase transitions and emergent com-

putation, Physica D: Nonlinear Phenomena 42 (1990), no. 1, 12–37.

[LBT12] Paulo Leitão, José Barbosa, and Damien Trentesaux, Bio-inspired multi-agent sys-

tems for reconfigurable manufacturing systems, Engineering Applications of Artificial

Intelligence 25 (2012), no. 5, 934–944.

[LDFK23] Christoph Lehr, Patrick Denzler, Thomas Frühwirth, and Wolfgang Kastner, Buffer

management for tsn-enabled end stations, 2023 IEEE 19th International Conference

on Factory Communication Systems (WFCS), 2023, pp. 1–8.

[Lew75] George Henry Lewes, Problems of Life and Mind, vol. 2, Trübner & Company, 1875.

[LFK+14] Heiner Lasi, Peter Fettke, Hans Georg Kemper, Thomas Feld, and Michael Hoffmann,

Industry 4.0, Business and Information Systems Engineering 6 (2014), no. 4, 239–

242.

[LG13] Joseph P. Lancaster and David A. Gustafson, Predicting the Behavior of Robotic

Swarms in Search and Tag Tasks, Procedia Computer Science 20 (2013), 77 – 82,

Complex Adaptive Systems.

[LGG+08] Mingsong Lv, Zonghua Gu, Nan Guan, Qingxu Deng, and Ge Yu, Performance Com-

parison of Techniques on Static Path Analysis of WCET, 2008 IEEE/IFIP Interna-

tional Conference on Embedded and Ubiquitous Computing, vol. 1, 2008, pp. 104–

111.

[LGZ+09] Mingsong Lv, Nan Guan, Yi Zhang, Qingxu Deng, Ge Yu, and Jianming Zhang,

A Survey of WCET Analysis of Real-Time Operating Systems, 2009 International

Conference on Embedded Software and Systems, 2009, pp. 65–72.

[Lis03] Björn Lisper, Fully Automatic, Parametric Worst-Case Execution Time Analysis.,

WCET 3 (2003), 77–80.

181

CHAPTER 13. BIBLIOGRAPHY

[LLK+08] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Ed-

ward A. Lee, Predictable Programming on a Precision Timed Architecture, Proceed-

ings of the 2008 International Conference on Compilers, Architectures and Synthesis

for Embedded Systems (New York, USA), Association for Computing Machinery,

2008, pp. 137–146.

[LLW13] James Ladyman, James Lambert, and Karoline Wiesner,What is a complex system?,

European Journal for Philosophy of Science 3 (2013), no. 1, 33–67.

[LMT09] Francisco J. Lucas, Fernando Molina, and Ambrosio Toval, A systematic review

of UML model consistency management, Information and Software Technology 51

(2009), no. 12, 1631–1645, Quality of UML Models.

[LMZS06] Hui Liu, Zhiyi Ma, Lu Zhang, and Weizhong Shao, Detecting Duplications in Se-

quence Diagrams Based on Suffix Trees, 2006 13th Asia Pacific Software Engineering

Conference (APSEC’06), 2006, pp. 269–276.

[Lon70] Ralph L. London, Computer Programs can be Proved Correct, Theoretical Ap-

proaches to Non-Numerical Problem Solving (R.B. Banerji and M.D. Mesarovic,

eds.), Lecture Notes in Operations Research and Mathematical Systems, vol. 28,

Springer, Berlin, Heidelberg, 1970, pp. 281–302.

[LP05] Vitus S. W. Lam and Julian Padget, Consistency Checking of Sequence Diagrams

and Statechart Diagrams Using the π-Calculus, Integrated Formal Methods (Berlin,

Heidelberg) (Judi Romijn, Graeme Smith, and Jaco van de Pol, eds.), Springer Berlin

Heidelberg, 2005, pp. 347–365.

[LS86] John P. Lehoczky and Lui Sha, Performance of Real-Time Bus Scheduling Algorithms,

SIGMETRICS Perform. Eval. Rev. 14 (1986), no. 1, 44–53.

[LS17] Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded Systems, A Cyber-

Physical Systems Approach, MIT Press, 2017.

[LSHL06] Zhengping Li, Cheng Hwee Sim, and Malcolm Yoke Hean Low, A Survey of Emer-

gent Behavior and Its Impacts in Agent-based Systems, 2006 4th IEEE International

Conference on Industrial Informatics, 2006, pp. 1295–1300.

[LSR+88] Douglass Locke, Lui Sha, Ragunathan Rajikumar, John Lehoczky, and Greg Burns,

Priority Inversion and Its Control: An Experimental Investigation, Ada Lett. VIII

(1988), no. 7, 39–42.

[Luc97] Chris Lucas, Emergence and Evolution - Constraints on Form,

http://www.calresco.org/emerge.htm, 1997.

[Mac01] Donald A. MacKenzie, Mechanizing Proof: Computing, Risk, and Trust (inside tech-

nology), MIT Press, Cambridge, Massachusetts, 2001.

[MAH10] Thomas Moncion, Patrick Amar, and Guillaume Hutzler, Automatic characteriza-

tion of emergent phenomena in complex systems, Journal of Biological Physics and

Chemistry 10 (2010), 16–23.

[Mah11] Michael S. Mahoney, Histories of Computing, 1 ed., Harvard University Press, 2011.

182

[Mau97] S. Mauw, ITU-TS Recommendation Z.120: Message Sequence Chart (MSC), ITU-

TS, 1997 (English).

[MB89] Thomas J. McCabe and Charles W. Butler, Design Complexity Measurement and

Testing, Commun. ACM 32 (1989), no. 12, 1415–1425.

[MB11] Robert Mittermayr and Johann Blieberger, Shared Memory Concurrent System Ver-

ification using Kronecker Algebra, Tech. report, Automation Systems Group, TU

Vienna, 2011.

[MB12] Robert Mittermayr and Johann Blieberger, Timing Analysis of Concurrent Programs,

12th International Workshop on Worst-Case Execution Time Analysis (Dagstuhl, Ger-

many) (Tullio Vardanega, ed.), OpenAccess Series in Informatics (OASIcs), vol. 23,

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012, pp. 59–68.

[MB16a] , A Generic Graph Model for WCET Analysis of Multi-Core Concurrent Ap-

plications, Journal of Software Engineering and Applications 9 (2016), no. 5, 17.

[MB16b] Robert Mittermayr and Johann Blieberger, Kronecker Algebra for Static Analysis of

Barriers in Ada, Reliable Software Technologies – Ada-Europe 2016 (Cham) (Marko

Bertogna, Luis Miguel Pinho, and Eduardo Quiñones, eds.), Springer International

Publishing, 2016, pp. 145–159.

[MB21] Robert Mittermayr and Johann Blieberger, Deadlock and WCET analysis of barrier-

synchronized concurrent programs, Computing.Archives for Informatics and Numer-

ical Computation 103 (2021), no. 5, 749–770.

[McA63] MH McAndrew, On The Product of Directed Graphs, Proceedings of the American

Mathematical Society 14 (1963), no. 4, 600–606.

[MFT05] Gregory Madey, Vincent Freeh, and Renee Tynan, Modeling the Free/Open Source

Software Community: A Quantitative Investigation, Free/Open Source Software De-

velopment (Stefan Koch, ed.), IGI Global, 2005, pp. 203–221.

[MG15] Jamie P. Monat and Thomas F. Gannon, What is systems thinking? A review of

selected literature plus recommendations, American Journal of Systems Science 4

(2015), no. 1, 11–26.

[MG18] Jessica Moysen and Lorenza Giupponi, From 4G to 5G: Self-organized network man-

agement meets machine learning, Computer Communications 129 (2018), 248–268.

[Mit13] Saurabh Mittal, Emergence in stigmergic and complex adaptive systems: A formal

discrete event systems perspective, Cognitive Systems Research 21 (2013), 22 – 39.

[Mit19] Saurabh Mittal, New Frontiers in Modeling and Simulation in Complex Systems En-

gineering: The Case of Synthetic Emergence, Summer of Simulation: 50 Years of

Seminal Computer Simulation Research (Cham) (John Sokolowski, Umut Durak,

Navonil Mustafee, and Andreas Tolk, eds.), Springer International Publishing, 2019,

pp. 173–194.

[MKS00] Madhavan Mukund, K. Narayan Kumar, and Milind Sohoni, Synthesizing Distributed

Finite-State Systems from MSCs, CONCUR 2000 —Concurrency Theory (Berlin,

Heidelberg) (Catuscia Palamidessi, ed.), Springer Berlin Heidelberg, 2000, pp. 521–

535.

183

CHAPTER 13. BIBLIOGRAPHY

[MLD09] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm, OPC Unified Ar-

chitecture, Springer Science & Business Media, 2009.

[MMBH10] Mohammad Moshirpour, Abdolmajid Mousavi, and Far Behrouz H., A Technique and

a Tool to Detect Emergent Behavior of Distributed Systems Using Scenario-Based

Specifications, 2010 22nd IEEE International Conference on Tools with Artificial

Intelligence, vol. 1, Oct 2010, pp. 153–159.

[MMEF12] Mohammad Moshirpour, Seyedehmerhnaz Mireslami, Armin Eberlein, and Behrouz H.

Far, A method to detect and remove emergent behavior caused by overgeneraliza-

tion, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC),

2012, pp. 2469–2474.

[MMS11] Moez Mnif and Christian Müller-Schloer, Quantitative emergence, Organic Com-

puting —A Paradigm Shift for Complex Systems (Basel) (Christian Müller-Schloer,

Hartmut Schmeck, and Theo Ungerer, eds.), Springer Basel, 2011, pp. 39–52.

[MRM17] Saurabh Mittal and José L. Risco-Mart́ın, Simulation-Based Complex Adaptive Sys-

tems, Guide to Simulation-Based Disciplines: Advancing Our Computational Future

(Cham) (Saurabh Mittal, Umut Durak, and Tuncer Ören, eds.), Springer Interna-

tional Publishing, 2017, pp. 127–150.

[MRS02] Philippe Mathieu, Jean-Christophe Routier, and Yann Secq, Principles for Dynamic

Multi-agent Organizations, Intelligent Agents and Multi-Agent Systems (Berlin, Hei-

delberg) (Kazuhiro Kuwabara and Jaeho Lee, eds.), Springer Berlin Heidelberg, 2002,

pp. 109–122.

[MS95] Salvatore T. March and Gerald F. Smith, Design and natural science research on

information technology, Decision Support Systems 15 (1995), no. 4, 251–266.

[MS04] Christian Müller-Schloer, Organic Computing: On the Feasibility of Controlled Emer-

gence, Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis (New York, NY, USA), CODES+ISSS

’04, Association for Computing Machinery, 2004, pp. 2–5.

[MSB11] Glenford J. Myers, Corey Sandler, and Tom Badgett, THE ART OF SOFTWARE

TESTING, 3rd ed., John Wiley & Sons Ltd., 2011.

[MSHD18] Radu-Casian Mihailescu, Romina Spalazzese, Clint Heyer, and Paul Davidsson, A

Role-Based Approach for Orchestrating Emergent Configurations in the Internet of

Things, 2018.

[Mur88] James D. Murray, How the Leopard Gets Its Spots, Scientific American 258 (1988),

no. 3, 80–87.

[MYA+19] Akira Matsumoto, Tomoyuki Yokogawa, Sousuke Amasaki, Hirohisa Aman, and

Kazutami Arimoto, Consistency Verification of UML Sequence Diagrams Modeling

Wireless Sensor Networks, 2019 8th International Congress on Advanced Applied

Informatics (IIAI-AAI), 2019, pp. 458–461.

[MYA+20] , Synthesis and Consistency Verification of UML Sequence Diagrams with

Hierarchical Structure, Information Engineering Express 6 (2020), no. 2, 1–19.

184

[MZ06] Marco Mamei and Franco Zambonelli, Self-organizing Approaches for Large-Scale

Spray Multiagent Systems, Software Engineering for Multi-Agent Systems IV (Berlin,

Heidelberg) (Alessandro Garcia, Ricardo Choren, Carlos Lucena, Paolo Giorgini, Tom

Holvoet, and Alexander Romanovsky, eds.), Springer Berlin Heidelberg, 2006, pp. 53–

70.

[New96] David V. Newman, Emergence and Strange Attractors, Philosophy of Science 63

(1996), no. 2, 245–261.

[NF06] David Newth and John Finnigan, Emergence and Self-Organization in Chemistry and

Biology, Australian Journal of Chemistry 59 (2006), no. 12, 841–848.

[Nic93] Gregoire Nicolis, Physics of far-from-equilibrium systems and self-organization, Flam-

marion, France, 1993.

[NP77] Gregoire Nicolis and Ilya Prigogine, Self-Organization in Nonequilibrium Systems:

From Dissipative Structures to Order through Fluctuations, Wiley, New York, NY,

USA, 1977.

[Oat05] Briony J Oates, Researching Information Systems and Computing, 2012 ed., SAGE

Publications, Ltd., 2005.

[Ode02a] James Odell, Agents and Complex Systems, Journal of Object Technology 1 (2002),

no. 2, 35–45.

[Ode02b] , Objects and Agents Compared, Journal of Object Technology 1 (2002),

no. 1, 41–53.

[ONC14] Eamonn O’Toole, Vivek Nallur, and Siobhán Clarke, Towards Decentralised Detec-

tion of Emergence in Complex Adaptive Systems, 2014 IEEE Eighth International

Conference on Self-Adaptive and Self-Organizing Systems, 9 2014, pp. 60 – 69.

[ONC17] , Decentralised Detection of Emergence in Complex Adaptive Systems, ACM

Trans. Auton. Adapt. Syst. 12 (2017), no. 1, 1 – 31.

[OOO20] Toshitaka Odamura, Takayuki Omori, and Atsushi Ohnishi, Supporting Change Man-

agement of Sequence Diagrams, Knowledge-Based Software Engineering: 2020

(Cham) (Maria Virvou, Hiroyuki Nakagawa, and Lakhmi C. Jain, eds.), Springer

International Publishing, 2020, pp. 35–46.

[OPC18] OPC Foundation, OPC Unified Architecture Specification Part 14: PubSub, Release

1.04, 2018.

[ORS13] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat, Automatic WCET Analysis

of Real-Time Parallel Applications, 13th International Workshop on Worst-Case Ex-

ecution Time Analysis (Dagstuhl, Germany) (Claire Maiza, ed.), OpenAccess Series

in Informatics (OASIcs), vol. 30, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2013, pp. 11–20.

[Oud99] Pierre-Yves Oudeyer, Self-Organization of a Lexicon in a Structured Society of

Agents., Advances in Artificial Life. ECAL 1999. Lecture Notes in Computer Sci-

ence (Berlin, Heidelberg) (D. Floreano, J.D. Nicoud, and F. Mondada, eds.), vol.

1674, Springer, 1999, pp. 725–729.

185

CHAPTER 13. BIBLIOGRAPHY

[Pag88] Heinz R. Pagels, The Dreams of Reason: The Computer and the Rise of the Sciences

of Complexity, Simon & Schuster, New York, NY, USA, 1988.

[PBR09] Mikhail Prokopenko, Fabio Boschetti, and Alex J. Ryan, An Information-Theoretic

Primer on Complexity, Self-Organization, and Emergence, Complexity 15 (2009),

no. 1, 11–28.

[Pet62] Carl Adam Petri., Kommunikation mit Automaten., Ph.D. thesis, Schriften des In-

stitutes für Instrumentelle Mathematik, Bonn, 1962.

[PHP15] Daniel Prokesch, Stefan Hepp, and Peter Puschner, A Generator for Time-

Predictable Code, 2015 IEEE 18th International Symposium on Real-Time Dis-

tributed Computing, 2015, pp. 27–34.

[PIM09] Patrizio Pelliccione, Paola Inverardi, and Henry Muccini, CHARMY: A Framework for

Designing and Verifying Architectural Specifications, IEEE Transactions on Software

Engineering 35 (2009), no. 3, 325–346.

[PK89] Peter Puschner and Christian Koza, Calculating the Maximum Execution Time of

Real-Time Programs, Real-Time Syst. 1 (1989), no. 2, 159–176.

[Pla85] Brigitte Plateau, On the Stochastic Structure of Parallelism and Synchronization

Models for Distributed Algorithms, SIGMETRICS Perform. Eval. Rev. 13 (1985),

no. 2, 147–154.

[Pop05] Karl Popper, The Logic of Scientific Discovery, 2 ed., Routledge, 2005.

[Pri78] Ilya Prigogine, Time, Structure, and Fluctuations, Science 201 (1978), no. 4358,

777–785.

[Pro11] Addy Pross, Toward a general theory of evolution: Extending Darwinian theory to

inanimate matter, Journal of Systems Chemistry 2 (2011), no. 1, 1.

[PTLB15] Luca Pezzarossa, Jakob Kenn Toft, Jesper Lœnbæk, and Russell Barnes, Imple-

mentation of an Ethernet-Based Communication Channel for the Patmos Processor,

Tech. Report No. 2, Technical University of Denmark. DTU Compute, 2015.

[Rap21] Rapita Systems, Rapitime, Available at https://www.rapitasystems.com/products/rapitime,

2021.

[RB95] Steen Rasmussen and Christopher L. Barrett, Elements of a Theory of Simulation,

Advances in Artificial Life (Berlin, Heidelberg) (Federico Morán, Alvaro Moreno,

Juan Julián Merelo, and Pablo Chacón, eds.), Springer Berlin Heidelberg, 1995,

pp. 515–529.

[Rei12] Wolfgang Reisig, Petri Nets: An Introduction, Monographs in Theoretical Computer

Science. An EATCS Series (EATCS, volume 4), vol. 4, Springer, Berlin, Heidelberg,

2012.

[RMNV18] Damian Roca, Rodolfo Milito, Mario Nemirovsky, and Mateo Valero, Tackling IoT

Ultra Large Scale Systems: Fog Computing in Support of Hierarchical Emergent

Behaviors, Fog Computing in the Internet of Things: Intelligence at the Edge (Cham)

(Amir M. Rahmani, Pasi Liljeberg, Jürgo-Sören Preden, and Axel Jantsch, eds.),

Springer International Publishing, 2018, pp. 33–48.

186

[RNN+16] Damian Roca, Daniel Nemirovsky, Mario Nemirovsky, Rodolfo Milito, and Mateo

Valero, Emergent Behaviors in the Internet of Things: The Ultimate Ultra-Large-

Scale System, IEEE Micro 36 (2016), no. 6, 36–44.

[RP86] Barbara G. Ryder and Marvin C. Paull, Elimination Algorithms for Data Flow Analysis,

ACM Comput. Surv. 18 (1986), no. 3, 277–316.

[RP88] , Incremental Data-Flow Analysis Algorithms, ACM Trans. Program. Lang.

Syst. 10 (1988), no. 1, 1–50.

[RS00] Edmund M. A. Ronald and Moshe Sipper, Engineering, Emergent Engineering, and

Artificial Life: Unsurprise, Unsurprising Surprise, and Surprising Surprise, Artificial

Life VII: Proceedings of the Seventh International Conference on Artificial Life (Cam-

bridge) (Mark A. Bedau, John S. McCaskill, Norman H. Packard, and Steen Ras-

mussen, eds.), The MIT Press, 2000, pp. 523–528.

[RSC99] Edmund M. A. Ronald, Moshe Sipper, and Mathieu S. Capcarrère, Design, Observa-

tion, Surprise! A Test of Emergence, Artificial Life 5 (1999), no. 3, 225–239.

[RVH+04a] Christopher Rouff, Amy Vanderbilt, Mike Hinchey, Walt Truszkowski, and James

Rash, Properties of a Formal Method for Prediction of Emergent Behaviors in Swarm-

Based Systems, Proceedings of the Second International Conference on Software

Engineering and Formal Methods, 2004. SEFM 2004., 2004, pp. 24–33.

[RVH+04b] , Verification of Emergent Behaviors in Swarm-Based Systems, Proceedings.

11th IEEE International Conference and Workshop on the Engineering of Computer-

Based Systems, 2004., 2004, pp. 443–448.

[Rya07] Alex J. Ryan, Emergence is Coupled to Scope, Not Level, Complexity 13 (2007),

no. 2, 67–77.

[SAA+15] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso,

Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann,

Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop,

Yonghui Li, Daniel Prokesch, and et al., T-CREST: Time-predictable multi-core ar-

chitecture for embedded eystems, Journal of Systems Architecture 61 (2015), no. 9,

449–471.

[Sal73] Arto Salomaa, Formal Languages, 1 ed., Academic Press Professional, Inc., San

Diego, CA, 1973.

[Saw01] R. Keith Sawyer, Emergence in Sociology: Contemporary Philosophy of Mind and

Some Implications for Sociological Theory, American Journal of Sociology 107

(2001), no. 3, 551–585.

[Saw02] , Emergence in Psychology: Lessons from the History of Non-Reductionist

Science, Human Development 45 (2002), no. 1, 2–28.

[Saw05] , Social Emergence: Societies As Complex Systems, Cambridge University

Press, 2005.

[SC01] Cosma Rohilla Shalizi and James P. Crutchfield, Computational Mechanics: Pattern

and Prediction, Structure and Simplicity, Journal of Statistical Physics 104 (2001),

no. 3, 817–879.

187

CHAPTER 13. BIBLIOGRAPHY

[SC13] Matthew Stephan and James R. Cordy, A Survey of Model Comparison Approaches

and Applications, Proceedings of the 1st International Conference on Model-Driven

Engineering and Software Development - Volume 1: MODELSWARD,, INSTICC,

SciTePress, 2013, pp. 265–277.

[SC18] Rick L. Sturdivant and Edwin K. P. Chong, The Necessary and Sufficient Conditions

for Emergence in Systems Applied to Symbol Emergence in Robots, IEEE Transac-

tions on Cognitive and Developmental Systems 10 (2018), no. 4, 1035–1042.

[Sel59] Oliver G Selfridge, Pandemonium: A Paradigm For Learning, The Mechanisation of

Thought Processes. (D. Blake and A. Uttley, eds.), National Physical Laboratory

Symposia, Her Majesty’s Stationary Office, London, 1959, pp. 511–529.

[Set08] Anil K Seth, Measuring emergence via nonlinear Granger causality, Artificial Life XI:

Proceedings of the 11th International Conference on the Simulation and Synthesis

of Living Systems, ALIFE 2008, 2008, pp. 545–552.

[SG13] Mauricio Salgado and Nigel Gilbert, Emergence and Communication in Computa-

tional Sociology, Journal for the Theory of Social Behaviour 43 (2013), no. 1, 87–

110.

[Sha01] Cosma Rohilla Shalizi, Causal Architecture, Complexity and Self-Organization in

Time Series and Cellular Automata., Ph.D. thesis, University of Michigan, 2001.

[Sha03] , Optimal Nonlinear Prediction Of Random Fields On Networks, arXiv preprint

math/0305160 (2003), 1–20.

[SJ02] Udo Seiffert and Lakhmi C. Jain (eds.), Self-organizing Neural Networks: Recent

Advances and Applications: Studies in Fuzziness and Soft Computing; hardbound,

vol. 78, Physica-Verlag, Heidelberg, 2002.

[SJB09] In-Gwon Song, Sang-Uk Jeon, and Doo-Hwan Bae, A Graph Based Approach to

Detecting Causes of Implied Scenarios under the Asynchronous and Synchronous

Communication Styles, 2009 16th Asia-Pacific Software Engineering Conference,

2009, pp. 53–60.

[SJHB11] In-Gwon Song, Sang-Uk Jeon, Ah-Rim Han, and Doo-Hwan Bae, An approach to

identifying causes of implied scenarios using unenforceable orders, Information and

Software Technology 53 (2011), no. 6, 666–681, Special Section: Best papers from

the APSEC.

[SK14] Cosma Rohilla Shalizi and Kristina Lisa Klinkner, Blind construction of optimal nonlin-

ear recursive predictors for discrete sequences, arXiv preprint arXiv:1408.2025 (2014),

504–511.

[SKJ18] Sebastian Schriegel, Thomas Kobzan, and Jürgen Jasperneite, Investigation on a

distributed SDN control plane architecture for heterogeneous time sensitive net-

works, 2018 14th IEEE International Workshop on Factory Communication Systems

(WFCS), 6 2018, pp. 1–10.

[SKM01] Timm Schäfer, Alexander Knapp, and Stephan Merz, Model Checking UML State

Machines and Collaborations, Electronic Notes in Theoretical Computer Science 55

(2001), no. 3, 357–369, Workshop on Software Model Checking (in connection with

CAV ’01).

188

[SMP+17] Wasuwee Sodsong, Robert Mittermayr, Yoojin Park, Bernd Burgstaller, and Johann

Blieberger, Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multi-

cores, Euro-Par 2017: Parallel Processing (Cham) (Francisco F. Rivera, Tomás F.

Pena, and José C. Cabaleiro, eds.), Springer International Publishing, 2017, pp. 538–

552.

[Sne98] Gregor Snelting, Paul Feyerabend and software technology, International Journal on

Software Tools for Technology Transfer 2 (1998), no. 1, 1–5.

[SP05] Sahotra Sarkar and Jessica Pfeifer, The Philosophy of Science 2-Volume Set: An

Encyclopedia, Routledge, 2005.

[SPH+18] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel

Prokesch, Patmos: A Time-Predictable Microprocessor, Real-Time Systems 54

(2018), no. 2, 389–423.

[SRL90] Lui. Sha, Ragunathan Rajkumar, and John P. Lehoczky, Priority Inheritance Proto-

cols: An Approach to Real-Time Synchronization, IEEE Trans. Comput. 39 (1990),

no. 9, 1175–1185.

[SSB18] Andreas Schöbel, Christian Schöbel, and Johann Blieberger, Kronecker Algebra for

Managing Rail Capacity, ISEP2018–26th International Symposium on Electronics in

Transport, ISEP2018, 2018.

[SSH04] Cosma Rohilla Shalizi, Kristina Lisa Shalizi, and Robert Haslinger, Quantifying Self-

Organization With Optimal Predictors, Physical review letters 93 (2004), no. 11,

118701.

[ST99] Dan A Simovici and Richard L Tenney, THEORY OF FORMAL LANGUAGES WITH

APPLICATIONS, World Scientific Publishing Company, Signapore, 1999.

[ST13] Claudia Szabo and Yong Meng Teo, Semantic Validation of Emergent Properties

in Component-Based Simulation Models, Ontology, Epistemology, and Teleology for

Modeling and Simulation: Philosophical Foundations for Intelligent M&S Applications

(Berlin, Heidelberg) (Andreas Tolk, ed.), Springer Berlin Heidelberg, 2013, pp. 319–

333.

[Sta00] Ralph Stacey, The Emergence of Knowledge in Organization, Emergence 2 (2000),

no. 4, 23–39.

[Sta12] William Stallings, OPERATING SYSTEMS: Internals and Design Principles, 9th ed.,

Person, 2012.

[Ste90] Luc Steels, Cooperation between distributed agents through self-organisation, EEE

International Workshop on Intelligent Robots and Systems, Towards a New Frontier

of Applications, 1990, pp. 8–14.

[Szo09] Jack W. Szostak, Systems chemistry on early Earth, Nature 459 (2009), no. 7244,

171–172.

[TDM18] Andreas Tolk, Saikou Diallo, and Saurabh Mittal, COMPLEX SYSTEMS ENGI-

NEERING AND THE CHALLENGE OF EMERGENCE, ch. 5, pp. 78–97, John Wiley

& Sons, Ltd, 2018.

189

CHAPTER 13. BIBLIOGRAPHY

[TFSR19] Evi Triandini, Reza Fauzan, Daniel O Siahaan, and Siti Rochimah, Sequence Dia-

gram Similarity Measurement: A Different Approach, 2019 16th International Joint

Conference on Computer Science and Software Engineering (JCSSE), 2019, pp. 348–

351.

[TNN+16] Tadahiro Taniguchi, Takayuki Nagai, Tomoaki Nakamura, Naoto Iwahashi, Tetsuya

Ogata, and Hideki Asoh, Symbol emergence in robotics: a survey, Advanced Robotics

30 (2016), no. 11-12, 706–728.

[Tol19] Andreas Tolk, Limitations and Usefulness of Computer Simulations for Complex

Adaptive Systems Research, Summer of Simulation: 50 Years of Seminal Computer

Simulation Research (Cham) (John Sokolowski, Umut Durak, Navonil Mustafee, and

Andreas Tolk, eds.), Springer International Publishing, 2019, pp. 77–96.

[TSE94] Giulio Tononi, Olaf Sporns, and Gerald M. Edelman, A measure for brain complexity:

Relating functional segregation and integration in the nervous system, Proceedings

of the National Academy of Sciences 91 (1994), no. 11, 5033–5037.

[Tur50] A. Turing, Computing machinery and intelligence, Mind (1950), 433–460.

[Tur59] Herbert Westren Turnbull, The Correspondence of Isaac Newton: 1661–1675, vol. 1,

p. 416, Published for the Royal Society at the University Press., London, UK, 1959.

[Uch09] Sebastian Uchitel, Partial Behaviour Modelling: Foundations for Incremental and

Iterative Model-Based Software Engineering, Formal Methods: Foundations and Ap-

plications (Berlin, Heidelberg) (Marcel Vińıcius Medeiros Oliveira and Jim Woodcock,

eds.), Springer Berlin Heidelberg, 2009, pp. 17–22.

[UK01] Sebastian Uchitel and Jeff Kramer, A workbench for synthesising behaviour mod-

els from scenarios, Proceedings of the 23rd International Conference on Software

Engineering. ICSE 2001, 2001, pp. 188–197.

[UNKC08] Muhammad Usman, Aamer Nadeem, Tai-hoon Kim, and Eun-suk Cho, A Survey of

Consistency Checking Techniques for UML Models, 2008 Advanced Software Engi-

neering and Its Applications, 2008, pp. 57–62.

[VDPB01] H. Van Dyke Parunak and Sven Brueckner, Entropy and Self-Organization in Multi-

Agent Systems, Proceedings of the Fifth International Conference on Autonomous

Agents (New York, NY, USA), AGENTS ’01, Association for Computing Machinery,

2001, pp. 124–130.

[VDPB04] H. Van Dyke Parunak and Sven A. Brueckner, Engineering Swarming Systems,

Methodologies and Software Engineering for Agent Systems: The Agent-Oriented

Software Engineering Handbook (Boston, MA) (Federico Bergenti, Marie-Pierre

Gleizes, and Franco Zambonelli, eds.), Springer US, 2004, pp. 341–376.

[VDPBS01] H. Van Dyke Parunak, Sven Brueckner, and John Sauter, ERIM’s Approach to Fine-

Grained Agents., NASA/JPLWorkshop on Radical Agent Concepts, Greenbelt (MD),

9 2001, pp. 19–21.

[VDPSR98] H. Van Dyke Parunak, Robert Savit, and Rick L. Riolo, Agent-Based Modeling vs.

Equation-Based Modeling: A Case Study and Users’ Guide, Multi-Agent Systems

and Agent-Based Simulation (Berlin, Heidelberg) (Jaime Simão Sichman, Rosaria

Conte, and Nigel Gilbert, eds.), Springer Berlin Heidelberg, 1998, pp. 10–25.

190

[VDPV97] H. Van Dyke Parunak and Raymond S. VanderBok, Managing Emergent Behavior in

Distributed Control Systems, Presented at ISA-Tech ’97 (1997), 1–9.

[VDSMSJ03] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jonckers,

Using Description Logic to Maintain Consistency between UML Models, UML 2003

- The Unified Modeling Language. Modeling Languages and Applications (Berlin,

Heidelberg) (Perdita Stevens, Jon Whittle, and Grady Booch, eds.), Springer Berlin

Heidelberg, 2003, pp. 326–340.

[VFB+13] Marco Villani, Alessandro Filisetti, Stefano Benedettini, Andrea Roli, David Lane, and

Roberto Serra, The detection of intermediate-level emergent structures and patterns,

Artificial Life Conference Proceedings 13, MIT Press, 2013, pp. 372–378.

[VM13] Andrew Vande Moere, A Model for Self-Organizing Data Visualization Using Decen-

tralized Multi-Agent Systems, Advances in Applied Self-Organizing Systems (Lon-

don) (Mikhail Prokopenko, ed.), Springer London, 2013, pp. 343–377.

[Vol14] Mark Volcic, Energy-efficient optimization of railway operation : an algorithm based

on Kronecker algebra, Ph.D. thesis, TU Wien, 2014.

[VW71] Georg H. Von Wright, Explanation and Understanding, Cornell University Press, New

York, 1971.

[Vya13] Valeri Vyatkin, Software Engineering in Industrial Automation: State-of-the-Art Re-

view, IEEE Transactions on Industrial Informatics 9 (2013), no. 3, 1234–1249.

[Wan89] Patrick Shen Pei Wang, ARRAY GRAMMARS, PATTERNS AND RECOGNIZERS,

Series in Computer Sciene, vol. 18, World Scientific Publishing Company, Signapore,

1989.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,

Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and

Per Stenström, The Worst-Case Execution-Time Problem—Overview of Methods

and Survey of Tools, ACM Trans. Embed. Comput. Syst. 7 (2008), no. 3, 1–53.

[Wei62] Paul M. Weichsel, The Kronecker Product of Graphs., Proceedings of the American

Mathematical Society 13 (1962), no. 1, 47–52.

[WH02] Danny Weyns and Tom Holvoet, A Colored Petri-Net for A Multi-Agent Application,

Proceedings of MOCA’02 561 (2002), 121–141.

[Wil94] Theodore J. Williams, The Purdue enterprise reference architecture, Computers in

Industry 24 (1994), no. 2, 141–158.

[Wit97] Ulrich Witt, Self-organization and economics—what is new?, Structural Change and

Economic Dynamics 8 (1997), no. 4, 489–507.

[WS00] Jon Whittle and Johann Schumann, Generating Statechart Designs from Scenarios,

Proceedings of the 22nd International Conference on Software Engineering (New

York, NY, USA), ICSE ’00, Association for Computing Machinery, 2000, pp. 314–

323.

191

CHAPTER 13. BIBLIOGRAPHY

[WSJ17] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite, The Future of Industrial

Communication: Automation Networks in the Era of the Internet of Things and

Industry 4.0, IEEE Industrial Electronics Magazine 11 (2017), no. 1, 17–27.

[Wun12] Wilhelm Wundt, An introduction to psychology, (R. Pintner, Trans.) MacMillan Co.,

1912.

[XWWW03] Wei Xu, Shi-Gang Wang, An-Lin Wang, and Guo-Bao Wang, Towards an Efficient

Self-organizing Reconfiguration Method for Self-reconfigurable Robots, Journal of

Intelligent and Robotic Systems 37 (2003), no. 4, 415–425.

[YC60] Marshall C. Yovits and Scott Cameron (eds.), SELF-ORGANIZING SYSTEMS: Pro-

ceedings of an interdisciplinary conference, 5 and 6 May., 1 ed., Pergamon Press,

New York, 1960.

[Zeh58] Johann Georg Zehfuss, Über eine gewise Determinante, Zeitschrift für Mathematik

und Physik 3 (1858), 298–301.

[ZM16] Bernard P. Zeigler and Alexandre Muzy, Some Modeling & Simulation Perspec-

tives on Emergence in System-of-Systems, Spring Simulation Multi-conference

(SpringSim’16) (Pasadena, CA, United States), April 2016.

[ZPK00] Bernard P. Zeigler, Herbert Prähofer, and Tag Gon Kim, Theory of Modeling and

Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems,

Second ed., Academic Press, London, UK, 2000.

192

