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Abstract

In [1] it has been shown that neural networks exist that provide at least
as good results for adaptive mesh refinement in finite element methods as
current optimal mesh refinement strategies and that they are problem in-
dependent. This master thesis is dedicated to the experimental exploration
of these theoretical results. Additionally, the work includes a theoretical
overview of neural networks, also covering the ability of neural networks to
approximate splines and polynomials effectively, as well as an explanation
of the finite element method.

The primary objective of this work is the design and implementation
of a neural network suitable for adaptive mesh refinement. While the out-
comes are not entirely satisfactory, they suggest that with additional effort,
advancements could be achieved.

Another emphasis is placed on evaluating whether a neural network can
effectively learn the residual error estimator for the Poisson problem, a goal
that has been successfully realized.

The thesis also addresses the formulation of an optimization approach
for the neural network, tailored to mesh refinement. The outcomes of this
optimization endeavor are partially affirmative, indicating that a similar
approach might hold the potential to enhance mesh refinement procedures.

Overall, this master’s thesis contributes to expanding the comprehension
of neural network applications in numerical mathematics. The experimental
scrutiny of the presented methodologies and the partial successes attained in
the neural network’s development underscore the promise of further research
and optimization within this domain.



Chapter 1

Introduction

One method to solve partial differential equations (PDEs) numerically is
the so-called finite element method (FEM). In this method the domain on
which the PDE should be solved is discretized with elements, e.g. triangles
in two dimensional applications. Then the numerical solution is computed
as a linear combination of ansatzfunctions in a suitable approximating space.
For many problems it can be shown that the finer the discretization, i.e. the
smaller the elements, the more accurate is the numerical solution. (cf. [5])

But the finer the mesh gets the more expensive the calculation of the nu-
merical solution becomes. Hence, the best possible accuracy is determined
by the computing power. In order to make the most efficient use of the
available computing power, one utilizes adaptive mesh refinement. Unlike
the static grid structure of traditional FEM, the adaptive method allows grid
points to be added or removed at specific locations in the simulation domain
to produce more accurate results in areas of high variation or importance
while spending less effort on less important areas. The adaptive approach
allows to refine the grid where high gradients or strong changes occur in the
numerical solution and to use coarser grids where the changes are slower or
less relevant. This allows simulations to be performed with higher accuracy,
and often faster, by concentrating computational effort in the important
areas. This adaptive finite element method (AFEM) is particularly use-
ful when the solution to a differential equation has strong local variations
or discontinuities, as it allows the grid to be adapted to these conditions
without having to maintain unnecessarily high resolutions throughout the
whole domain. It can be shown that adaptive mesh refinement can achieve
optimality in regards to computational cost. (cf. [4])

Most AFEM algorithms share a common framework, employing a stan-
dard adaptive refinement procedure that iterates the steps:

1. Solve

2. Estimate
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3. Mark

4. Refine

In this process, a problem-specific error estimator is computed based on the
current solution and is subsequently utilized to refine specific elements of
the mesh. (cf. [4])

However, a significant issue arises when dealing with algorithms of this
nature. Generally, the error estimators are limited in their applicability to
a specific problem type and a particular numerical method.

This suggests the development of black-box mesh refinement algorithms.
These algorithms aim to be provably optimal for a wide range of prob-
lems and require minimal user intervention beyond the ability to compute
numerical approximations on a given mesh. In essence, the objective is to re-
place the Estimate andMarkmodules in the aforementioned adaptive loop
with a problem-independent black-box Adaptive. This black-box Adap-
tive serves as a module that takes the current numerical approximation as
input and provides guidance on how to refine the mesh in the most effective
manner, aiming to minimize the approximation error while considering the
computational work involved. The goal is to create a versatile method that
can be applied across various problems without requiring specific knowledge
about the problem or the need for custom implementation. By employing
this black-box approach, users can focus on generating numerical approxi-
mations while relying on Adaptive to handle the mesh refinement process
and optimize the overall computational performance. (cf. [1])

In [1] the theoretical framework is provided and it is shown that black-
box mesh refinement using recurrent neural networks is at least as good as
current optimal methods and is problem independent. It can even achieve
optimal results in areas not covered by existing adaptive mesh refinement
theory. The purpose of this work is to experimentally demonstrate some of
these results.

First, Chapter 2 describes neural networks and demonstrates the ca-
pability of neural networks to approximate both splines and polynomials.
Chapter 3 is a short introduction into finite element methods and a posteri-
ori error estimation. Chapter 4 examines whether a neural network can ef-
fectively learn the residual error estimator for the Poisson problem. Chapter
5 focuses on exploring optimization techniques for training a neural network
suitable for adaptive mesh refining and on an approach which uses machine
learning for AFEM.

All the code used in this thesis can be found in https://github.com/

benmoser-23/ML-in-AFEM. In the directory learn_err_est is the code
from Chapter 4, the code used in Section 5.2 is in the directory optimizer

and the code used in Section 5.3 is in AFEM_with_NN.
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Chapter 2

Neural network

Neural networks are a class of machine learning models inspired by the struc-
ture and functioning of the human brain’s neural networks. They are used
for various tasks, such as image and speech recognition, natural language
processing, and more.

At its core, a neural network consists of interconnected nodes, or ”neu-
rons”, organized in layers. These layers typically include an input layer,
one or more hidden layers, and an output layer. Each neuron in a layer is
connected to neurons in adjacent layers through weighted connections.

The process of training a neural network involves feeding it a large
dataset with input data and corresponding desired outputs. The network ad-
justs its internal weights through a process called ”backpropagation”, which
involves calculating the difference between the predicted outputs and the
actual outputs, and then updating the weights to minimize this difference,
thus improving the network’s ability to make accurate predictions.

Neural networks are powerful because they can automatically learn com-
plex patterns and representations from data, enabling them to generalize
and perform well on unseen examples. Deep neural networks, with multiple
hidden layers, are particularly skilled at capturing hierarchical and abstract
features from the input data, making them suitable for tackling complicated
tasks.

In recent years, advancements like convolutional neural networks (CNNs)
for image data and recurrent neural networks (RNNs) for sequential data
have further improved the performance of neural networks in specialized
domains. Overall, neural networks have become a foundational technology
in the realm of artificial intelligence, enabling machines to learn from data
and perform tasks that were previously challenging for traditional rule-based
approaches. (cf. [6], [9])

The first section of this chapter focuses on the the ability of neural
networks to approximate splines and polynomials. The purpose of this the-
oretical part is that if it is possible to efficiently approximate polynomials
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then it is possible to approximate a wide variety of functions with very few
degrees of freedom. And hence, it is plausible that neural networks can learn
an error estimator. We will experimentally examine this ability in Chapter
4.

In the second section we will quickly go through layers, activation func-
tions and optimizers used in machine learning with neural networks.

2.1 Approximating splines and polynomials with
neural networks

All the results of this section can be found in [11, Sections 2-4], [12, Section
2] or [16, Section 3].

2.1.1 Definitions

In accordance with common convention, we make a distinction between a
neural network (NN) in terms of its parameters and what is known as its
realization. The realization refers to the actual map realized by the network,
which is achieved by iteratively applying affine linear transformations, de-
termined by the parameters, along with an activation function. All following
definitions are according to [11, Section 2].

Definition 2.1. Let d, L ∈ N, N0 = d, N1, . . . , NL ∈ N. For + = 1, . . . , L
let W� ∈ RN	×N	−1 and b� ∈ RN	 . Then a neural network N with L Layers
and input dimension d is defined as

N = ((W1, b1) , . . . , (WL, bL)) (2.1)

We see that a neural network is just a sequence of tupels consisting of
a matrix and a vector. The matrices, denoted as W�, are referred to as the
weights, while the vectors, denoted as b�, are known as the biases of the +-th
layer of the neural network.

Definition 2.2. Let 4 : R → R be an activation function which acts
component-wise if its input is a vector, i.e. 4(x) := (4(x1), . . . , 4(xm)) if
x = (x1, . . . , xm) ∈ Rm. Let xL ∈ RNL be determined by

x0 := x,

x� := 4(W�x�−1 + b�) for + = 1, . . . , L− 1

xL := WLxL−1 + bL

(2.2)

Then the realization R of the neural network N is

R(N ) : Rd → RNL : x  → xL =: R(N )(x). (2.3)
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The realization applied to an input x can also be expressed as

R(N )(x) = WL4(WL−1 . . . 4(W24(W1x+ b1) + b2) · · ·+ bL−1) + bL. (2.4)

In this representation, we observe that each layer of the neural network
entails a matrix-vector multiplication, an addition operation and an evalu-
ation of the activation function.

In this section, we exclusively focus on a specific activation function:

Definition 2.3. The so-called standard rectified linear unit (ReLU) function
is defined as

4 : R → R : x  → max{0, x}. (2.5)

Several significant numbers play a crucial role within the neural network
framework. We collect them in the following Definition.

Definition 2.4. Let N be a neural network. Let d, L,N0, . . . , NL be as in
Definition 2.1. Let �A��0 := #{Ai,j $= 0} denote the number of non-zero
entries of a matrix A ∈ Rm×n and analogously �x��0 the number of non-zero
entries of a vector x ∈ Rm. Then we call

• N(N ) := d+
%L

j=1Nj the number of neurons,

• L(N ) := L the number of layers or depth

• Mj(N ) :=
%L

j=1(�Wj��0 + �bj��0) the number of weights in the +-th
layer and

• M(N ) :=
%L

j=1Mj(N ) the number of weights or size

of the neural network N .

2.1.2 Fundamental operations on neural networks

In this part, we examine some results regarding fundamental operations
within neural networks which we will need in the remainder of the section.

Lemma 2.5 (Emulation of identity, [12, Lemma 2.3, Remark 2.4]). Let
d, L ∈ N. Then there exists a neural network N id

d,L with L layers such that

R(N id
d,L) = Idd, (2.6)

where Idd is the identity on Rd.

Proof. For L ≥ 2 define

N id
d,L :=

���
Idd
−Idd

�
, 0

�
, (Id2d, 0), . . . , (Id2d, 0)� �� �

L−2 times

,
��
Idd −Idd

�
, 0
�! .
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Obviously, this network has L Layers. For x ∈ Rd and with the fact that
4 ◦ 4 = 4 there holds

R(N id
d,L)(x) =

�
Idd −Idd

�
4

�
. . . Id2d4

�
Id2d4

��
Idd
−Idd

�
x

��
. . .

�
=

�
Idd −Idd

�� 4(x)
−4(x)

�
= 4(x)− 4(−x) = x.

For L = 1, N id
d,1 := ((Idd, 0)) has the desired properties.

Lemma 2.6 (Concatenation, [12, Remark 2.6]). Let L1, L2 ∈ N. For two
neural networks N 1 = ((W 1

1 , b
1
1), . . . , (W

1
L1
, b1L1

)), N 2 = ((W 2
1 , b

2
1), . . . , (W

2
L2
, b2L2

))
where the input layer of N 1 has the same dimension as the output layer of
N 2 there exists a neural network N 1 • N 2 called the concatenation of N 1

and N 2 with L1 + L2 layers,

R(N 1 • N 2) = R(N 1) ◦R(N 2) (2.7)

and M(N 1 • N 2) ≤ 2M(N 1) + 2M(N 2). Furthermore, if N 1, . . . ,N n are
n ∈ N neural networks with suitable input and output dimensions then

M(N 1 • · · · • N n) ≤ 4n−1max{M(N 1), . . . ,M(N n)}. (2.8)

Proof. If we define

N 1 • N 2 :=

�
(W 2

1 , b
2
1), . . . , (W

2
L2−1, b

2
L2−1),

��
W 2

L−2

−W 2
L−2

�
,

�
b2L−2

−b2L−2

��
,

��
W 1

1 −W 1
1

�
,
�
b11 −b11

��
(W 1

2 , b
1
2), . . . , (W

1
L1
, b1L1

)

�
.

(2.7) can be verified directly. It is also easy to see that the estimate M(N 1 •
N 2) ≤ 2M(N 1) + 2M(N 2) holds is also easy to see and (2.8) follows from
induction and the fact that a+ b ≤ 2max{a, b}.
Remark 2.7. Let m ∈ N and N+

m := ((W+
1 , b+1 ), (W

+
2 , b+2 )) be a neural

network with

W+
1 :=

�
Idd · · · Idd
−Idd · · · −Idd

�
∈ R2d×md, b+1 := 0 ∈ R2d,

W+
2 :=

�
Idd −Idd

� ∈ Rd×2d, b+2 := 0 ∈ Rd,

where Idd ∈ Rd is the identity matrix. Then for x1, . . . xm ∈ Rd there holds

R(N+)

�
�x1

...
xm

!
! = 4

�
m$
k=1

xk

�
− 4

�
−

m$
k=1

xk

�
=

m$
k=1

xk (2.9)
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Indeed, we have built a neural network capable of performing vector addi-
tion.

Another operation which will be helpful in the following is multiplying a
vector with a fixed scalar a ∈ Rn. To this end letN scalar

a := ((W a
1 , b

a
1), (W

a
2 , b

a
2))

be a neural network with

W a
1 :=

�
aIdd
−aIdd

�
∈ R2d×d, ba1 := 0 ∈ R2d,

W a
2 :=

�
Idd −Idd

� ∈ Rd×2d, ba2 := 0 ∈ Rd.

Then for x ∈ Rd there holds

R(N scalar
a )(x) = 4(ax)− 4(−ax) = ax. (2.10)

Lemma 2.8 (Parallelization, [12, Definition 2.7, Remark 2.8]). Let d ∈ N,
L1, . . . , Lm ∈ N and let N 1, . . . ,Nm be neural networks with input dimension
d and L1, . . . , Lm layers respectively. Then there exists a neural Network
N par(N 1, . . . ,Nm) such that

R(N par(N 1, . . . ,Nm)) =

�R(N 1)
...

R(Nm)

! ∈ Rmd (2.11)

Proof. LetN 1 = ((W 1
1 , b

1
1), . . . , (W

1
L1
, b1L1

)),N 2 = ((W 2
1 , b

2
1), . . . , (W

2
L2
, b2L2

))
be two neural networks with input dimension d and L1 = L2 = L layers.
Define &N par(N 1,N 2) := (('W1,&b1), . . . , ('WL,&bL)) with

'W1 :=

�
W 1

1

W 2
1

�
, &b1 := �

b11
b21

�
and

'W� :=

�
W 1

� 0
0 W 2

�

�
, &b� := �

b1�
b2�

�
for + = 2, . . . , L.

Then it follows directly that

R( &N par(N 1,N 2)) =

�
R(N 1)
R(N 2)

�
.

Now consider two networks N 1, N 2 with different sizes L1 < L2. Then we
define N par(N 1,N 2) := &N par(N 1 • N id

d,L2−L1
,N 2).

If we want the parallelization of three networks N 1,N 2,N 3 then we
define N par(N 1,N 2,N 3) := N par(N par(N 1,N 2),N 3). If we repeat this
process then we showed the claim of the lemma.
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Remark 2.9 (Linear combination of neural networks). Let m ∈ N, a =
(ak)k∈{1,...,m} ⊂ R and N = (N k)k∈{1,...,m} be a family of neural networks
with input dimension d ∈ N and output dimension n ∈ N. With the con-
catenation from Lemma 2.6, N+

m and N scalar
a from Remark 2.7 and N par

from Lemma 2.8 we define

N LC
a,N := N+

m • N par(N scalar
a1 • N 1, . . . ,N scalar

am • Nm).

Then with (2.7), (2.9), (2.10) and (2.11) there holds

R(N LC
a,N )(x) = R(N+

m • N par(N scalar
a1 • N 1, . . . ,N scalar

am • Nm))(x)

= R(N+
m) ◦R(N par(N scalar

a1 • N 1, . . . ,N scalar
am • Nm))(x)

= R(N+
m)(R(N par(N scalar

a1 • N 1, . . . ,N scalar
am • Nm))(x))

= R(N+
m)

�
�R(N scalar

a1 • N 1)(x)
...

R(N scalar
am • Nm)(x)

!
!

= R(N+
m)

�
�R(N scalar

a1 ) ◦R(N 1))(x)
...

R(N scalar
am ) ◦R(Nm))(x)

!
!

= R(N+
m)

�
�R(N scalar

a1 )(R(N 1)(x))
...

R(N scalar
am )(R(Nm)(x))

!
!

= R(N+
m)

�
� a1(R(N 1)(x))

...
am(R(Nm)(x))

!
!

=
m$
k=1

akR(N k).

2.1.3 Emulating affine splines with neural networks

First we define the right approximation spaces.

Definition 2.10. Let N ∈ N, 0 = x0 < x1 < · · · < xN−1 < xN = 1.
Then T := {(xi−1, xi) : i = 1, . . . , N} is called a partition of the interval
I := (0, 1) with elements Ii := (xi−1, xi) and element sizes hi := xi − xi−1

for i = 1, . . . , N .

On such a partition we can now define the space of continuous, piecewise
polynomial functions also known as splines.

Definition 2.11. Let T be a partition of I = (0, 1) with N ∈ N elements.
Let Pp be the space of polynomials with maximal degree p ∈ N. We define

Sp(I, T ) := {v ∈ C(I) : v|Ii ∈ Pp(Ii) for i = 1, . . . , N}. (2.12)
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In the following theorem we construct a network that accurately emulates
splines with polynomial degree 1 on a partition of I.

Theorem 2.12 ([11, Lemma 3.1]). Let T be a partition of I = (0, 1) with
N ∈ N elements and nodes 0 = x0 < x1 < · · · < xN−1 < xN = 1. Let
v ∈ S1(I, T ). Then there exists a neural network N v with

(i) R(N v) = v

(ii) L(N v) = 2

(iii) M(N v) ≤ 3N + 1

Proof. Let N v := ((W v
1 , b

v
1), (W

v
2 , b

v
2)) with the weights and biases

W v
1 :=

�1
...
1

! ∈ RN×1, bv1 :=

� −x0
...

−xN−1

! ∈ RN ,

W v
2 ∈ R1×N , bv2 := v(x0) ∈ R,

where the entries of W v
2 are given by

(W v
2 )1,i :=

������
v(xi)− v(xi−1)

xi − xi−1
if i = 1,

v(xi)− v(xi−1)

xi − xi−1
− v(xi−1)− v(xi−2)

xi−1 − xi−2
if i > 1.

Obviously, N v satisfies claim (ii). Since �W v
1 ��0 = N , �bv1��0 ≤ N ,

�W v
2 ��0 ≤ N and �bv2��0 ≤ 1, claim (iii) also follows directly.
To show claim (i) let x ∈ I. Then there exists i ∈ {1, . . . , N} such that

x ∈ (xi−1, xi]. The realization of N is given by

R(N )(x) = W v
2 4(W

v
1 x+ bv1) + bv2.

Since 4 is the standard ReLU activation function there holds

4(W v
1 x+ bv1) =

� 4(x− x0)
...

4(x− xN−1)

! =

��������

x− x0
...

x− xi−1

0
...
0

!!!!!!!!
If x ∈ (x0, x1] then

R(N )(x) = W v
2 4(W

v
1 x+ bv1) + bv2 =

v(x1)− v(x0)

x1 − x0
(x− x0) + v(x0).

9



If x ∈ (xi−1, xi], i ∈ {2, . . . , N} then

W v
2 4(W

v
1 x+ bv1) =

v(x1)− v(x0)

x1 − x0
(x− x0) + v(x0)+

i$
j=2

�
v(xj)− v(xj−1)

xj − xj−1
(x− xj−1)−

v(xj−1)− v(xj−2)

xj−1 − xj−2
(x− xj−1)

�
.

After a short calculation, one obtains

W v
2 4(W

v
1 x+ bv1) =

i−1$
j=1

�
v(xj)− v(xj−1)

�
+

v(xi)− v(xi−1)

xi − xi−1
(x− xi−1).

Since the first term is a telescoping sum, we get

W v
2 4(W

v
1 x+ bv1) = v(xi−1)− v(x0) +

v(xi)− v(xi−1)

xi − xi−1
(x− xi−1).

These considerations yield

R(N )(x) = v(xi−1) +
v(xi)− v(xi−1)

xi − xi−1
(x− xi−1).

Note that since v ∈ S1(I, T ), for x ∈ (xi−1, xi] there holds

v(x) =
v(xi)− v(xi−1)

xi − xi−1
(y − xi−1) + v(xi−1).

This observation concludes the proof.

2.1.4 Approximating polynomials with neural networks

The main result of this section is

Theorem 2.13 ([11, Proposition 4.2]). Let ε > 0, m ∈ N0 and p =%m
k=0 akx

k ∈ Pm([−1, 1]) be a polynomial of maximal degree m. Then there
exists a neural network N p

ε with input and output dimension 1 which satisfies

(i) max
x∈[−1,1]

|p(x)−R(N p
ε )(x)| < ε,

(ii) R(N p
ε )(0) = p(0),

(iii) M(N p
ε ) � m log2(C0/ε) +m log2(m) + (1+ log2(m))2 log2(C0/ε) +m,

where C0 :=
%m

k=2 �ak�.
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To prove this theorem we need some preparations. The first lemma
shows that there exists a neural network which can approximate the function
f(x) = x2.

Lemma 2.14 ([16, Proposition 2]). Let f(x) = x2. For all ε there exists a
neural network N sq

ε with

(i) maxx∈[0,1] |f(x)−R(N sq
ε )(x)| < ε,

(ii) M(N sq
ε ) = O(log2(1/ε))

Proof. First Step: In this step we show that f(x) = x2 can be approximated
by linear combinations of saw-tooth functions.

Let g : [0, 1]  → [0, 1] be the so-called ”tooth”-function given by

g(x) =

�
2x if x < 1

2 ,

2(1− x) if x ≥ 1
2 .

For s ∈ N consider the iterated function

gs(x) = g ◦ g ◦ · · · ◦ g� �� �
s

.

In [15] it is shown that this function satisfies

gs(x) =

������
2s

�
x− 2k

2s

�
if x ∈

�
2k

2s
,
2k + 1

2s

�
, k = 0, 1, . . . , 2s−1 − 1,

2s
�
2k

2s
− x

�
if x ∈

�
2k − 1

2s
,
2k

2s

�
, k = 1, 2, . . . , 2s−1 − 1.

Now we will show that f(x) = x2 can be approximated by linear combi-
nations of the functions gs. To this end, we show that the piecewise linear
interpolation fm of f(x) = x2 with nodes k

2m , k = 0, . . . , 2m satisfies

fm(x) = x−
m$
s=1

gs(x)

22s
. (2.13)

We show this by induction. Clearly, for m = 0 the claim (2.13) holds.

Now we suppose that fm−1(x) = x−%m−1
s=1

gs(x)
22s

. We will show that

fm−1(x)− fm(x) =
gm(x)

22m
(2.14)

then (2.13) follows immediately. To show (2.14) first note that

fm(x) =

�
k + 1

2m

�2

−
�

k

2m

�2

k + 1

2m
− k

2m

�
x− k

2m

�
+

�
k

2m

�2

for x ∈
�
k

2m
,
k + 1

2m

�
.

11



If x ∈ �
2k
2m , 2k+1

2m

�
for some k ∈ {0, 1, . . . , 2m−1−1}, then x ∈ �

k
2m−1 ,

k+1
2m−1

�
and with some calculations we see that

fm−1(x)− fm(x) =
x

2m
− 2k

22m
=

1

22m

�
2m

�
x− 2k

2m

��
=

gm(x)

22m
.

Analogously, we get that for x ∈ �
2k−1
2m , 2k

2m

�
for some k ∈ {1, 2, . . . , 2m−1}

there holds

fm−1(x)− fm(x) =
2k

22m
− x

2m
=

1

22m

�
2m

�
2k

2m
− x

��
=

gm(x)

22m
.

Thus we showed 2.14 and therefore also 2.13.
Second Step: We show that the interpolation error of fm is 2−2m−2. Let

x ∈ �
k
2m , k+1

2m

�
. Then after some calculations we obtain

fm(x)− f(x) = −k2 + k

22m
+

x(2k + 1)

2m
− x2.

The derivative of this expression is given by

d

dx
(fm(x)− f(x)) =

2k + 1

2m
− 2x,

the root of this derivative is x0 :=
2k+1
22m

. Hence,

max
x∈[ k

2m
, k+1
2m ]

|fm(x)− f(x)| = |fm(x0)− f(x0)| = 2−2m−2.

Since this maximum is independent of k, we also get that

max
x∈[0,1]

|fm(x)− f(x)| = 2−2m−2.

Third Step: In the last step we construct a neural network which emu-
lates fm. To this end we define the neural networkN g := ((W g

1 , b
g
1), (W

g
2 , b

g
2))

with

W g
1 :=

�
1
1

�
∈ R2×1, bg1 :=

�
0
−1

2

�
∈ R2,

W g
2 :=

�
2 −4

� ∈ R1×2, bg2 := 0 ∈ R.

It it is easy to check that this neural network satisfies R(N g) = g. Now we
set

N gs = N g • · · · • N g� �� �
s

.

Then Lemma 2.6 yields that R(N gs) = gs.
Let ε > 0. Choose m ∈ N such that 2−2m−2 < ε. Then we set N sq

ε :=
N LC

a,N from Remark 2.9 where a = (as)s∈{0,1,...,m} with a0 = 1, as = −22s

12



for s = 1, . . . ,m and N = (N s)s∈{0,1,...,m} with N 0 = N Id
1,1 from Lemma 2.5,

N s = N gs for s = 1, . . . ,m. Then

R(N sq
ε )(x) = R(N LC

a,N )(x) = x−
m$
s=1

gs(x)

22s
= fm(x).

Hence, we got that

max
x∈[0,1]

|f(x)−R(N sq
ε )(x)| = 2−2m−2 < ε

which concludes the proof of claim (i).
The proof of claim (ii) can be found in [16, Proposition 2].

Due to the fact that

xy =
1

2
((x+ y)2 − x2 − y2), (2.15)

we can now construct a neural network which is able to multiply two num-
bers.

Lemma 2.15 ([16, Proposition 3]). Let M > 0 and ε ∈ (0, 1), then there
exists a neural network N×

M,ε such that

(i)

))))xy −R(N×
M,ε)

��
x
y

��)))) < ε for x, y ∈ R with |x|, |y| < M ,

(ii) if x = 0 or y = 0, then R(N×
M,ε)

��
x
y

��
= 0,

(iii) M(N×
M,ε) ≤ C1 log2(1/ε) + C2, where C2 is an absolute constant and

C2 depends on M .

Proof. Let N sq
δ be the neural network from Lemma 2.14 for some δ > 0. We

13



define some neural networks:

N x :=
���

1 0
�
, 0
��

then R(N x)

��
x
y

��
= x,

N y :=
���

0 1
�
, 0
��

then R(N y)

��
x
y

��
= y,

N |·| :=
���

1
−1

�
, 0

�
,
��
1 1

�
, 0
��

then R(N |·|)(x) = 4(x) + 4(−x) = |x|,

N scalar
a as in Remark 2.7 with R(N scalar

a )(x) = ax,

N+ as in Remark 2.7 with R(N+)

��
x
y

��
= x+ y,

N 1 := N sq
δ • N scalar

1
2M

• N |·| • N+ then R(N 1)

��
x
y

��
= R(N sq

δ )

� |x+ y|
2M

�
,

N 2 := N sq
δ • N scalar

1
2M

• N |·| • N x then R(N 2)

��
x
y

��
= R(N sq

δ )

� |x|
2M

�
,

N 3 := N sq
δ • N scalar

1
2M

• N |·| • N y then R(N 3)

��
x
y

��
= R(N sq

δ )

� |y|
2M

�
.

LetN LC
a,N be the neural network from Remark 2.9, a = (2M2,−2M2,−2M2),

N = (N 1,N 2,N 3), δ := ε
6M2 and define N×

M,ε := N LC
a,N . Then there holds

R(N×
M,ε)

��
x
y

��
= 2M2

�
R(N sq

δ )

� |x+ y|
2M

�
−R(N sq

δ )

� |x|
2M

�
−R(N sq

δ )

� |y|
2M

��
With the expansion (2.15) and the triangle inequality we get that))))xy −R(N×

M,ε)

��
x
y

��)))) ≤ A1 +A2 +A3

where

A1 :=

))))2M2R(N sq
δ )

� |x+ y|
2M

�
− (x+ y)2

2

))))
A1 :=

))))2M2R(N sq
δ )

� |x|
2M

�
− x2

2

))))
A1 :=

))))2M2R(N sq
δ )

� |y|
2M

�
− y2

2

))))
Now we estimate A1. First note that

(x+ y)2

2
= 2M2

�
x+ y

2M

�2

,

14



therefore we get with Lemma 2.14 that

A1 = 2M2

)))))R(N sq
δ )

� |x+ y|
2M

�
−
�
x+ y

2M

�2
))))) < 2M2δ.

Analogously we obtain A2, A3 < 2M2δ. Since δ = ε
6M2 we have constructed

a neural network N×
M,ε such that))))xy −R(N×

M,ε)

��
x
y

��)))) < 6M2δ = ε.

It remains to show that (ii) holds. Since gs(0) = 0 for all s ∈ N, this
follows directly from the proof of Lemma 2.14.

Claim (iii) is shown in [16, Proposition 3].

Now we have gathered all the results we need to prove the main result
of this section Theorem 2.13.

Proof of Theorem 2.13. Let N 0 = ((0, 1)), N 1 = N Id
1,1 from Lemma 2.5 and

N k = N×
M,δ • N par(N k−1,N 1).

with N par from Lemma 2.8 and N×
M,δ from Lemma 2.15 for some δ > 0 and

M > 0. To make the following easier to read, we introduce some notations:

gk(x) := R(N k)(x) and

×(x, y) := R(N×
M,δ)

��
x
y

��
.

Let ε > 0, m ∈ N0 and p ∈ Pm([−1, 1]) with p(x) =
%m

k=0 akx
k. We define

N p
ε := N LC

a,N ,

fp(x) := R(N p
ε )(x)

with a = (ak)k∈{1,...,m}, N = (N k)k∈{1,...,m} and N LC
a,N from Remark 2.9.

Then

fp(x) =

m$
k=0

akg
k(x) and

gk(x) = ×(gk−1(x), x)

Now note that g0(x) = 1 and g1(x) = x. Therefore, if m ∈ {0, 1}, N p
ε

emulates p exactly.
If m ≥ 2, set

δ :=
2ε

max
k=2,...,m

|ak|(m− 1)m

15



and let M > 1 + (m− 2)δ. We will show that for x ∈ [0, 1] there holds

max
x∈[0,1]

|xk − gk(x)| < (k − 1)δ for all k ∈ {2, . . . ,m}. (2.16)

With Lemma 2.15 and since |x| ≤ 1 < M we obtain for k = 2

|x2 − g2(x)| = |x2 −×(x, x)| < δ.

Now suppose that (2.16) holds for some k ∈ {2, . . . ,m− 1}. Then |gk(x)| <
1 + (k − 1)δ < M and again Lemma 2.15 yields that)))xk+1 − gk+1(x)

))) = )))xk+1 −×(xk, x)
)))

=
)))xk+1 − gk(x)x+ gk(x)x−×(xk, x)

)))
≤ |x|

)))xk − gk(x)
)))+ )))gk(x)x−×(xk, x)

)))
< δ + (k − 1)δ

= kδ.

Hence, we showed (2.16) by induction. Now we look at the approximation
error of N p

ε :

|p(x)− fp(x)| =
)))))
m$
k=0

ak(xk − gk(x))

))))) =
)))))
m$
k=2

ak(xk − gk(x))

)))))
≤

m$
k=2

|ak||xk − gk(x)| <
m$
k=2

|ak|(k − 1)δ

≤ δ max
k∈{2,...,m}

|ak|
m$
k=2

(k − 1) = δ max
k∈{2,...,m}

|ak|(m− 1)m

2
= ε.

This shows (i) of the Theorem. Claim (ii) follows directly from Lemma 2.15
(ii).

For the proof of claim (iii) you can refer to [11, Proposition 4.2].

2.2 Neural networks in machine learning

2.2.1 Different layer types

The layers described in Section 2.1 are called fully connected layers or dense
layers. In this type of layer each neuron is connected to every neuron in the
previous and subsequent layer.

But there are also other types of layers, for example the convolutional
layer. Models which use these type of layers are called convolutional neural
networks and are often used for processing grid-like data, such as images.
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Mathematically, a two-dimensional convolutional layer can be described as
follows:
Let’s consider an input volume or tensor I of size Hin × Win × Din, where
Hin ∈ N is the height, Win ∈ N is the width, and Din ∈ N is the depth
(number of input channels).

Let K be a set of filters or kernels, each of size F ×F ×Din, where F ∈ N
is the filter size.

The output of the convolutional layer, which forms the next layer’s input,
can be denoted as O, with dimensions Hout ×Wout ×Dout, where

Hout = Hin − F + 1,

Wout = Win − F + 1,

and Dout is the number of filters or kernels used in the layer.
The mathematical operation of a single filter K being convolved with

the input I at a specific position (i, j) can be represented as follows:

Oi,j =
F−1$
m=0

F−1$
n=0

Din−1$
d=0

Km,n,dIi+m,j+n,d,

where Oi,j is the output value at position (i, j) in the output tensor,
Km,n,d is the weight (kernel value) at position (m,n) in the filter and depth
d, Ii+m,j+n,d is the input value at position (i+m, j + n) in the input tensor
and depth d. This operation is performed for each position (i, j) in the
output tensor and for each filter K. The resulting values are stacked along
the depth dimension to form the output tensor O.

It’s important to note that the output dimensions Hout and Wout are
reduced compared to the input dimensions Hin and Win. If you want to
retain the same output dimensions, you can use padding. Padding refers
to the addition of extra dimensions to the input tensor before applying the
convolutional operation.

The so called pooling layers are also used in convolutional neural net-
works to downsample input data by dividing it into small regions (e.g., 2x2)
and summarizing the information within each region through operations like
max or average pooling. This downsampling reduces computational load and
helps in abstracting essential features. Pooling maintains spatial invariance,
making the network more tolerant to variations in input position. It’s com-
monly applied after convolutional layers to reduce feature map dimensions
while preserving important patterns for subsequent processing.

A softmax layer is a component commonly used in neural networks,
particularly in classification tasks. It takes a vector z = (z1, . . . , zk) of
arbitrary real numbers (often referred to as logits) as input and transforms
them into a probability distribution over multiple classes. The output of
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the softmax layer assigns a probability P to each class, ensuring that the
probabilities sum up to 1. This is achieved by

P (zi) =
ezi%k
j=1 e

zj
.

The class with the highest probability after the softmax operation is often
chosen as the predicted class by the neural network. The softmax function
helps convert raw scores into a form that’s suitable for interpreting the
model’s confidence in various class predictions.

2.2.2 Different activation functions

In Definition 2.3 we already defined the ReLU activation function. One
potential issue of ReLU neurons is the so called dying ReLU problem: Oc-
casionally, neurons can be driven into states where they remain inactive for
virtually all input data. During this state, gradients do not flow backward
through the neuron, causing the neuron to become trapped in a permanent
inactive state. In certain instances, large numbers of neurons in a neural
network can get trapped in these non-functional states, effectively diminish-
ing the overall model capacity. This complication usually arises when the
learning rate is set excessively high.

One potential issue of ReLU neurons is the so called dying ReLU prob-
lem: This refers to a situation where a significant portion of the neurons in a
network using the ReLU activation function consistently output zero, effec-
tively becoming inactive. This can happen during training when the weights
of neurons are updated in such a way that they consistently produce nega-
tive values for their inputs, causing the ReLU to output zero and preventing
any further learning or gradient flow through those neurons. To describe
this problem mathematically consider a neural network layer (W�, b�) with
W� ∈ RN	×N	−1 , b� ∈ RN	 (cf. Definition 2.1) and the ReLU activation
function. Then, according to Definition 2.2 the output of the i-th neuron is
given by

xi� = max

�N	−1$
j=1

W i,j
� xi�−1 + bi�, 0

�
.

The dying ReLU problem occurs when the values of
%N	−1

j=1 W i,j
� xi�−1 + bi�

become consistently negative or zero. In this case, the ReLU activation func-
tion will always output zero, resulting in the gradient of the loss function
with respect to the weights (needed for weight updates during backpropa-
gation) also being zero. This effectively stops the neuron from learning, as
its weights are not updated.
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To address this, one approach is to use the leaky ReLU activation func-
tion, which introduces a slight positive slope for inputs less than zero:

4(x) =

�
x if x > 0,

0.01x otherwise.
= max{x, 0.01x} (2.17)

However, this adjustment may lead to a reduction in performance.
A very similar activation function is the parametric ReLU (PReLU). It

is given by

4(x) =

�
x if x > 0,

ax otherwise,
= max{x, ax} (2.18)

where a ∈ [0, 1] is a learnable parameter. This allows the network to learn
the slope that works best for a particular task.

We see that these ReLU functions are continuous but not continuously
differentiable. The following two activation functions are examples of smooth
activation functions. The first one is the sigmoid function:

4(x) =
1

1 + e−x
(2.19)

Because its outputs are between 0 and 1 the sigmoid function is useful for
binary classification problems, but it suffers from vanishing gradient prob-
lems during training, i.e. the gradients of the loss function with respect to
the network’s parameters become extremely small as they are propagated
backward through the network during the process of gradient descent opti-
mization. This can lead to slow or stalled learning and hinder the network’s
ability to effectively learn from the data.

The swish activation function is given by

4(x) =
x

1 + e−βx
, (2.20)

where β is a trainable parameter. It combines a linear behavior for pos-
itive inputs with a saturating behavior for negative inputs, thanks to the
sigmoid component. It has shown to perform well in certain neural net-
work architectures, often providing improvements in training convergence
and generalization compared to other activation functions like ReLU.

2.2.3 Stochastic gradient descent

An optimizer plays a crucial role in training neural networks by adjusting the
model’s parameters to minimize the difference between predicted and actual
outputs. One of the most prominent examples is the stochastic gradient
descent method or its variants like Adam or RMSprop. This section gives
a brief overview of the stochastic gradient descent and some of its variants.
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The content stated in this section and a lot more can be found in [2], [3],
[7], [8], [10], [13] and [14].

To minimize the difference between the predicted and the actual output
one has to quantify it. This is done by the so-called loss function. This is
a function mapping the weights of the neural network to a real value which
measures the quality of the predictions for a given training set. The goal of
training is now to find weights which minimize the loss function.

Suppose we want to train a neural network N with input dimension d ∈
N, L ∈ N layers and output dimensionNL with the data X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , yn} where xi ∈ Rd, yi ∈ RNL for i = 1, . . . , n. We denote
the vector of learnable paramaters of N by

w =

���������

vec(W1)
b1

vec(W2)
b2
...

vec(WL)
bL

!!!!!!!!!
where vec(W ) denotes the vectorization of a matrix W . Then in many cases
the loss function L can be written as

L(w) = 1

n

n$
i=1

Li(w), (2.21)

where Li(w) is the value of the loss function at the i-th sample in the training
data. One example of such a loss function is the mean squared error given
by Li(w) = (R(N )(xi)− yi)

2 where R(N ) is the realization of N described
in Definition 2.2.

With such a loss function at hand, the learning of a neural network is
minimizing the loss function in regards of its weights. One way to minimize a
loss function given by (2.21) is the gradient descent method which performs
the following iterations:

w�+1 := w� − η∇L(w�) = w� − η

n

n$
i=1

∇Li(w�), (2.22)

where w0 is a randomly chosen starting guess and η is a step size often
referred to as learning rate.

Calculating the sum of all gradients could demand costly computa-
tions. This becomes especially inconvenient when dealing with vast training
datasets lacking straightforward formulas. The process of evaluating the
sum of gradients becomes highly expensive in such cases, as each gradient
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computation requires evaluating gradients for all individual functions be-
ing summed. To address this computational challenge iteratively, stochastic
gradient descent adopts a strategy of selecting a subset of these individual
functions to compute gradients for at each step. This approach proves highly
efficient for tackling large-scale machine learning problems.

Stochastic gradient descent involves approximating the true gradient of
the function L(w) by computing the gradient using a single sample. This
approximation is achieved through the following update:

w�+1 := w� − η∇Li(w�). (2.23)

During the execution of the algorithm, it iterates through the training set,
applying the above update for each individual training sample. This process
can be repeated multiple times over the training set until the algorithm
reaches convergence, these repetitions are often called epochs. To prevent
patterns from emerging, the data can be shuffled before each pass. To
enhance convergence, adaptive learning rates are often employed in practical
implementations.

The following theorem shows that under fairly mild assumptions and
with an appropriately decreasing learning rate η� stochastic gradient descent
converges almost surely to a point where the gradient is 0. In particular,
for strongly convex objective functions it converges to the global minimum.
The proof of this theorem is omitted but can be found in [2].

Theorem 2.16. Suppose that the objective function L is three times contin-
uously differentiable and bounded from below, the learning rate η� satisfies

∞$
�=1

η2� < ∞ and
∞$
�=1

η� = ∞.

Suppose there holds

1

n

n$
i=1

�Li(w)�2 ≤ A+B�w�2

for all w and some A,B ≥ 0. Furthermore, suppose there exist constants
E > D > 0 and K > 0 such that

inf
�w�2>D

w · ∇L(w) > 0

and
sup

�w�2<E

�∇Li(w)� ≤ K for all i ∈ {1, . . . , n}.

Then the gradient ∇L(w�) converges almost surely to 0 for + to ∞.
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Numerous enhancements to the fundamental stochastic gradient descent
technique have been suggested and applied. One of such a variant is the so-
called stochastic gradient descent with momentum. The idea of this method
is that the update Δw is remembered in each iteration and then the next
update to the weights is determined as a linear combination of the gradient
in this step and the previous update:

Δw�+1 := αΔw� − η∇Li(w�)

w�+1 := w� +Δw�+1.

Hence, the method is given by

w�+1 := w� − η∇Li(w�) + αΔw� (2.24)

where α ∈ [0, 1] is an exponential decay factor.
Another variant of the stochastic gradient descent method is the so called

RMSProp which stands for root mean square propagation. In this method
the learning rate is adapted for each of the parameters. This is done by
dividing the learning rate for a parameter by a running average of the mag-
nitudes of recent gradients for that parameter. This running average for the
+-th iteration is calculated by

v� := γv�−1 + (1− γ)(∇Li(w�))
2

where γ is a forgetting factor. The parameters are then updated by

w�+1 := w� − η√
v�
∇Li(w�) (2.25)

The combination of the stochastic gradient descent with momentum and
RMSProp is called Adam which is short for adaptive moment estimation.
The iteration for this method is given by

m�+1 = β1m� + (1− β1)∇L(w�)

v�+1 = β2v� + (1− β2)(∇L(w�))
2

�m =
m�+1

1− β1�v =
v�+1

1− β2

w�+1 = w� − η
�m√�v + ε

where + denotes the iteration, ε > 0 is small and used to prevent division by
0 and β1, β2 are forgetting factors.

All the mentioned methods are implemented in major machine learning
toolboxes such as TensorFlow or PyTorch.
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Chapter 3

Finite element method and a
posteriori error estimation

The finite element method (FEM) is a computational technique used to solve
partial differential equations. In this chapter, we present the fundamental
principles for elliptic problems based on the Riesz theorem. To illustrate
these concepts, we focus on the Poisson equation with homogeneous Dirichlet
boundary conditions as a standard example. This chapter follows the lecture
notes [5].

3.1 Notation

In this chapter we will use the following notations:

• D(Ω) := C∞
c (Ω) = {v ∈ C∞(Ω) | supp(v) is a compact subset of Ω}

• L1
loc(Ω) = {v : Ω → R measureable | ∀K ⊂ Ω compact : v ∈ L1(K)}

• Ck(Ω) = {v|Ω | v ∈ Ck(Rd)}
• Ck

0 (Ω) = {v ∈ Ck(Ω) | v|∂Ω = 0}
• H0(Ω) = L2(Ω), and for m ∈ N,
Hm(Ω) = {v ∈ L2(Ω) | u weakly differentiable, ∇v ∈ Hm−1(Ω)}
with the norms �u�Hm(Ω) := (�u�2L2(Ω) + �∇u�2Hm−1(Ω))

1/2

• H1
0 (Ω) = D(Ω)

�·�H1

3.2 Galerkin schemes

The finite element method is a specific type of Galerkin scheme. In this
section, we will outline the fundamental properties of Galerkin schemes. We
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use the following notations: H is a Hilbert space, ��·, ·�� is an equivalent scalar

product on H, i.e. its induced norm �v� := ��v, v��1/2 is an equivalent norm

α�v�H ≤ �v� ≤ β�v�H for all v ∈ H. (3.1)

A fundamental result for Galerkin schemes is the Riesz theorem which
reads as

Theorem 3.1 (Riesz). The mapping

IH : H → H∗ : v  → �v, ·�H (3.2)

is linear, isometric and bijective. Hence, for all F ∈ H∗ there exists a unique
u ∈ H with �u, v�H = F (v) for all v ∈ H and �u�H = �F�H∗.

This theorem proves the existence and uniqueness of a solution u ∈ H
of

��u, ·�� = F ∈ H∗ (3.3)

Now we replace H by a finite dimensional subspace Xh ⊂ H. Since Xh is
finite dimensional it is closed and thus also a Hilbert space. Because of this
the following definition makes sense.

Definition 3.2. We define the Galerkin projection Gh : H → Xh where
Ghu ∈ Xh solves

��Ghu, ·�� = ��u, ·�� ∈ X∗
h . (3.4)

We call uh := Ghu Galerkin solution and the property

��u−Ghu, vh�� = 0 for all vh ∈ Xh (3.5)

Galerkin orthogonality.

The following theorem shows that if the scalar product ��·, ·�� and the
right hand side F ∈ H∗ are known, the Galerkin solution Ghu ∈ Xh can be
computed by solving a linear system of equations, without knowing u.

Theorem 3.3. Let Xh ⊂ H be a finite dimensional subspace of H and
{φ1, . . . , φN} be a basis of Xh. Let A ∈ RN×N and b ∈ RN defined by

Ajk := ��φk, φj�� and bj := F (φj).

Then A is a symmetric, positive definite and, in particular, regular matrix.
Furthermore, the Galerkin solution is given by Ghu =

%N
j=1 xjφj where

x ∈ RN is the solution of Ax = b.
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Proof. Since ��·, ·�� is symmetric, the matrix A is symmetric as well. For
x ∈ RN \ {0} and vh :=

%N
j=1 xjφj there holds

xTAx =
N$
j=1

N$
k=1

xjxk��φj , φk�� = ��vh, vh�� = �vh�2 > 0.

This proves that A is positive definite and thus regular.
Let Ghu be the Galerkin solution, then there exists x ∈ Rn such that

Ghu =
%

j=1 xjφj . Since ��·, ·�� is linear (3.4) can be written as

bk = F (φk) = ��Ghu, φk�� =
N$
j=1

xj��φj , φk�� = (Ax)k for all k = 1, . . . , N.

Hence, x ∈ RN satisfies Ax = b.

Now, let’s move forward with the abstract analysis of Galerkin schemes.
In this context, we will examine two lemmas that reveal some fundamental
properties of the Galerkin projection. The purpose of the first lemma is to
demonstrate the stability of the method.

Lemma 3.4. The Galerkin projection Gh is a linear and continues projec-
tion onto Xh satisfying

�Ghu�H ≤ β

α
�u�H for all u ∈ H, (3.6)

with α, β > 0 from (3.1) and furthermore Gh is the orthogonal projection
onto Xh with respect to ��·, ·��.
Proof. Let uh ∈ XH then the Galerkin orthogonality (3.5) implies Ghuh =
uh. Thus, Gh is projection onto Xh. Now let u, v ∈ H, λ ∈ R then (3.5)
yields for wh ∈ Xh

��Gh(u+ λv)− (u+ λv), wh�� = ��Ghu− u,wh��+ λ��Ghv − v, wh��
= ��Ghu+ λGhv − u+ λv), wh��,

which shows the linearity of Gh.
Let u ∈ H, then with the Cauchy-Schwarz inequality we get that

�Ghu�2 = ��Ghu,Ghu�� = ��u,Ghu�� ≤ �u � �Ghu � .

Hence, �Ghu� ≤ �u� and therefore

α�Ghu�H ≤ �Ghu� ≤ �u� ≤ β�u�H .

This proves (3.6). The orthogonality follows immediately from the Galerkin
orthogonality.
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The following result is called Céa lemma and it yields that the Galerkin
error �u − Ghu�H is quasi-optimal, i.e. up to multiplicative constants it
behaves like the best approximation of u in Xh. These constants depend
solely on the continuous setting and not on the finite dimensional subspace
Xh.

Lemma 3.5 (Céa). For α, β > 0 from (3.1) and all u ∈ H there holds

�u−Ghu�H ≤ β

α
min

vh∈Xh

�u− vh�H , (3.7)

� u−Ghu� = min
vh∈Xh

�u− vh � . (3.8)

Proof. Let vh ∈ Xh, then (3.5) and the Cauchy-Schwarz inequality imply�u−Ghu�2 = ��u−Ghu, u− vh�� ≤ �u−Ghu � �u− vh � .

Now we can take the infimum over all vh ∈ Xh on the right hand side.
Obviously, this infimum is attained for vh = Ghu. This shows (3.8).

With the same arguments as in the last prove we get that

α�u−Ghu�H ≤ �u−Ghu� ≤ �u− vh� ≤ β�u− vh�H .

Again, we take the infimum over all vh ∈ Xh on the right hand side. If
Πh : H → Xh is the orthogonal projection onto Xh with respect to � · �H
then the minimum is attained for vh = Πhu. This concludes the proof.

The now following last result in this section states that if a dense sub-
space of X can be approximated well by finite dimensional subspaces then
the Galerkin method converges.

Proposition 3.6. Let D ⊂ H be a dense subspace of H. For all h > 0 let
Xh be a finite dimensional subspace of H. If

lim
h→0

min
vh∈Xh

�v − vh�H = 0 for all v ∈ D, (3.9)

then
lim
h→0

�u−Ghu�H = 0. (3.10)

Proof. First we state that for v ∈ D with (3.7) and the triangle inequalitiy
there holds

�u−Ghu�H ≤ β

α
min

vh∈Xh

�u− vh�H ≤ β

α

�
�u− v�H + min

vh∈Xh

�v − vh�H
�
.

Now let ε > 0 and define δ := αε
2β . Since D is dense in H, there exists

v ∈ D such that �u − v�H < δ. The approximation assumption (3.9)
yields that there exists an h0 > 0 such that for all h ∈ (0, h0) there holds
minvh∈Xh

�v − vh�H < δ. Altogether, we have that

∀ε > 0∃h0 > 0∀h ∈ (0, h0) : �u−Ghu�H > 0.

This proves the claim of the proposition.
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3.3 Finite element method for the Poisson equa-
tion

Let Ω ⊂ Rd be a Lipschitz domain, i.e. Ω is a bounded, open and connected
subset of Rd, Ω is locally on one side of the boundary Γ := ∂Ω and Γ can
locally be parametrized by Lipschitz continuous functions. For v ∈ C2(Ω)
we define the Laplace operator as

Δv(x) :=

d$
j=1

∂2u

∂x2j
(x).

Let f : Ω → R, then the strong form of the Poisson equation with ho-
mogeneous Dirichlet boundary conditions reads as: Find u ∈ C2(Ω) such
that

−Δu = f in Ω,

u = 0 on ∂Ω.
(3.11)

If u ∈ C2(Ω) solves (3.11) then we call u a strong solution of (3.11).
First we look at the so-called Friedrichs inequality.

Proposition 3.7 (Friedrichs inequality). For all v ∈ H1
0 (Ω) it holds that

�v�L2(Ω) < CF �∇v�L2(Ω), (3.12)

where CF > 0, solely depends on the Ω.

Proof. We assume that there is no CF such that (3.12) holds. Then there
exists a sequence (vn) ⊂ H1

0 (Ω) such that for n ∈ N

1

n
�vn�L2(Ω) > �∇vn�L2(Ω).

We define wn = vn/�vn�L2(Ω). Then we obtain a sequence (wn) ⊂ H1
0 (Ω)

with �vn�L2(Ω) = 1 and �∇wn�L2(Ω) < 1/n. Since (wn) is bounded and
H1

0 (Ω) is reflexive the Banach-Alaoglou theorem gives existence of a weakly
convergent subsequence. Hence, we may assume wn � w ∈ H1

0 (Ω). Since
�∇v�L2(Ω) ≤ �v�H1(Ω) for all v ∈ H1

0 (Ω), the mapping v  → �∇v�L2(Ω) is
continuous and therefore there holds

�w�L2(Ω) ≤ lim inf
n→∞ �∇wn�L2(Ω).

This implies that w is constant and thus w = 0.
However, the Rellich theorem yields that wn → w ∈ L2(Ω). Hence,

�w�L2(Ω) = limn→∞ �wn�L2(Ω) = 1. So our assumption leads to a contradic-
tion. This proves the proposition.
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The following proposition provides the weak form of the boundary value
problem which is uniquely solvable and, in some sense, equivalent to the
strong form.

Proposition 3.8. (i) Let u ∈ C2(Ω) be strong solution of (3.11) with a
given source term f ∈ C(Ω). Then u ∈ H1

0 (Ω) and

�∇u,∇v�L2(Ω) = �f, v�L2(Ω) for all v ∈ H1
0 (Ω). (3.13)

(ii) Let f ∈ L2(Ω) then the weak form (3.13) has a unique solution u ∈
H1

0 (Ω) and it holds that

�u�H1(Ω) ≤ C sup
v∈H1

0 (Ω)\{0}

�f, v�L2(Ω)

�v�H1(Ω)
≤ C�f�L2(Ω). (3.14)

(iii) Let f ∈ C(Ω) and u ∈ H1
0 (Ω) be the weak solution of (3.13). If

u ∈ C2(Ω) then u solves the strong form (3.11).

Proof. ad (i): First note that u ∈ C2(Ω) and u|Γ = 0 of course implies that
u ∈ H1

0 (Ω). First we will show that (3.13) holds for v ∈ C1
0 (Ω) and then use

density arguments to show the claim. To this end, let u ∈ C2(Ω) be a strong
solution of (3.11) and v ∈ C1

0 (Ω). We multiply −Δu = f by v, integrate
over Ω and use integration by parts. We obtain�

Ω
fvdx = −

�
Ω
(Δu)vdx =

�
Ω
∇u · ∇vdx−

�
Γ

∂u

∂n
vds.

Since v|Γ = 0, we see that

�∇u,∇v�L2(Ω) = �f, v�L2(Ω) for all v ∈ C1
0 (Ω).

Now let v ∈ H1
0 (Ω). Since C1

0 (Ω) is dense in H1
0 (Ω), there exists a sequence

(vn) ⊂ C1
0 (Ω) with vn

H1−−→ v. Therefore, vn
L2−→ v, ∇vn

L2−→ ∇v and

�∇u,∇v�L2(Ω) = lim
n→∞�∇u,∇vn�L2(Ω) = lim

n→∞�f, vn�L2(Ω) = �f, v�L2(Ω).

ad (ii:) With the Friedrichs inequality, �v�H1(Ω) ≤ CF �∇v�L2(Ω) for all
v ∈ H1

0 (Ω), it holds that

�∇v�2L2(Ω) ≤ �v�2H1(Ω) ≤ (1 + C2
F )�∇v�2L2(Ω) for all v ∈ H1

0 (Ω).

Hence, �∇u,∇v�L2(Ω) defines an equivalent scalar product on H1
0 (Ω). Thus,

the Riesz theorem yields the existence of a unique solution u ∈ H1
0 (Ω) of

(3.13). If one plugs in v = u ∈ H1
0 (Ω) into (3.13) then

(1 + C2
F )

−1�u�2H1(Ω) ≤ �∇u�2L2(Ω) = �f, u�L2(Ω) =
�f, u�L2(Ω)

�u�H1(Ω)
�u�H1(Ω)

≤ sup
v∈H1

0 (Ω)\{0}

�f, v�L2(Ω)

�v�H1(Ω)
�u�H1(Ω)
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which proves the first estimate of (3.14). The second one is a consequence
of the Cauchy inequality

�f, v�L2(Ω) ≤ �f�L2(Ω)�v�L2(Ω) ≤ �f�L2(Ω)�v�H1(Ω).

ad (iii): Since we assume that the weak solution u is in C2(Ω), integra-
tion by parts yields

�f +Δu, v�L2(Ω) = 0 for all v ∈ H1
0 (Ω).

Since D(Ω) ⊂ H1
0 (Ω), the Fundamental Theorem of Calculus of Variations

yields that f +Δu = 0. And u ∈ H1
0 (Ω) ∩ C2(Ω) implies u|Γ = 0.

This weak form fits into the framework of Section 3.2. For u, v ∈ H1
0 (Ω)

we define a(u, v) := �∇u,∇v�L2(Ω) and F (v) := �f, v�L2(Ω) for f ∈ L2(Ω).
Then (3.13) is equivalent to: Find u ∈ H1

0 (Ω) such that:

a(u, ·) = F ∈ H1
0 (Ω)

∗.

To apply the results of Section 3.2 it is left to show that a(·, ·) is an equiv-
alent scalar product on H1

0 (Ω) and we need to construct finite dimensional
subspaces with an approximation property at least on smooth functions.

Remark 3.9. The Friedrichs inequality yields that a(v, v)1/2 = �∇v�L2(Ω)

is an equivalent norm on H1
0 (Ω):

C−1
F �v�H1(Ω) ≤ �∇v�L2(Ω) ≤ �v�H1(Ω).

In the following we discuss one example of finite dimensional subspaces
Xh ⊂ H1

0 (Ω) with an approximation property similar to (3.9). First we
define a mesh on the domain Ω.

Definition 3.10. We call T a triangulation of Ω if

• T is finite set of non-degenerate triangles,

• Ω =
(

T∈T T and

• for all T, T � ∈ T with T $= T �, it holds that the overlap T ∩ T � is a set
of measure zero.

For T = conv({xT , yT , zT }) ∈ T we denote by KT := {xT , yT , zT } the
set of nodes of the triangle T , by ET := {conv({xT , yT }), conv({yT , zT }),
conv({xT , zT })} the set of edges of the triangle T and by hT := diam(T ) :=
max{|x− y| : x, y ∈ T} the diameter of the triangle T .

Furthermore, we denote by K :=
(

T∈T KT the set of nodes of the tri-
angulation T , by E :=

(
T∈T ET the set of edges of the triangulation T , by

EΓ := {E ∈ E | E ⊂ Γ} the set of boundary edges of the triangulation T and
by EΩ = E \ EΓ the set of interior edges of the triangulation T .

A triangulation T is called a conforming or regular triangulation if for
T, T � ∈ T with T $= T � the intersection T ∩ T � is either empty (T ∩ T � = ∅),
a joint node (T ∩ T � ∈ KT ∩ KT �) or a joint edge (T ∩ T � ∈ ET ∩ ET �).
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Definition 3.11. Let T be a conforming triangulation of Ω then we define
the discrete space of all T -piecewise affine and globally continuous functions
by

S1(T ) := {vh ∈ C(Ω) | ∀T ∈ T : vh|T affine}.
Moreover, we define

S1
0 (T ) := {vh ∈ S1(T ) | ∀z ∈ K ∩ Γ : vh(z) = 0}.

Proposition 3.12. Let T be a conforming triangulation of Ω and N = #K.
Then

(i) S1(T ) is an N -dimensional subspace of H1(Ω).

(ii) For each node z ∈ K, there exists a unique hat function ζz ∈ S1(T )
with ζz(z

�) = δzz�.

(iii) The set B := {ζz | z ∈ K} is a basis of S1(T ). We call B the nodal
basis.

Proof. For T ∈ T an affine function vh : T → R is uniquely defined by
the nodal values vh(z), z ∈ KT . Hence, for z ∈ K the T -piecewise affine
function ζz : Ω → R is uniquely defined by ζz(z

�) = δzz� . It is left to show
that ζz ∈ C(Ω). To this end, we have to show that ζz is continuous on
the interior edges. Since T is conforming, for two triangles T, T � ∈ T there
holds that either T = T �, T ∩ T � = {z�} is a joint point or T ∩ T � = E
is a joint edge. If the last case occurs, then trE(ζz|T ) and trE(ζz|T �) are
uniquely defined by ζz(xE) and ζz(yE), where E = conv({xE , yE}). Hence,
trE(ζz|T ) = trE(ζz|T �) and thus ζz ∈ C(Ω). This shows (ii) and (iii).

(iii) implies that dim(S1(T )) = #K. It remains to show that S1(T ) ⊂
H1(Ω). Let vh ∈ S1(T ). Since vh ∈ C(Ω) and Ω is bounded, vh ∈ L2(Ω).
Moreover, vh|T is smooth for T ∈ T which implies that ∇(vh|T ) exists in
the classical sense. For vh to be weakly differentiable, it has to hold that for
all j = 1, . . . , d there exists ∂jvh such that for all w ∈ D(Ω) there holds�

Ω
vh(∂jw)dx =

�
Ω
(∂jvh)wdx.

Let’s denote the jump of a function v across an edge E by �v�E . Then since
vh ∈ C(Ω), there holds that �vh�E = 0 for all E ∈ EΩ. We define ∂jvh by
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(∂jvh)|T = ∂j(vh|T ) then ∇vh ∈ L2(Ω) and with integration by parts�
Ω
(∂jvh)wdx =

$
T∈T

�
T
(∂jvh)wdx

=
$
T∈T

�
−
�
T
vh(∂jw)dx+

�
∂T

vhwnjds

�
= −

�
Ω
vh(∂jw)dx+

$
E∈E

��
E
�vh�Ewds�

= −
�
Ω
vh(∂jw)dx

Hence, vh ∈ H1(Ω) and thus S1(T ) ⊂ H1(Ω).

Corollary 3.13. Let T be a conforming triangulation of Ω then S1
0 (T ) is a

finite dimensional subspace of H1
0 (Ω) of dimension #{z ∈ K | z /∈ Γ}.

Proof. We need to show that for vh ∈ S1
0 (T ) there holds vh|Γ = 0. Let x ∈ Γ.

Since T is conforming, there exists an edge E = conv({xE , yE}) ∈ EΓ such
that x ∈ E. The trace vh|E is affine and therefore, it is uniquely determined
by the nodal values vh(xE) = vh(yE) = 0. That implies that vh|E = 0 for
all vh ∈ S1

0 (T ).

Now it is left to show functions can be approximated by T -piecewise
affine functions. The following theorem states this approximation property.
But first we need some definitions.

Definition 3.14. Let T be a triangulation of Ω. We denote by δT the
height over the longest side of the triangle T ∈ T . Then, we define the local
mesh-width functions h, δ ∈ L∞(Ω) by

h|T := hT = diam(T ) and δ|T := δT for all T ∈ T .

Moreover, we define the shape regularity constant σ of an triangle T ∈ T
respectively the triangulation T by

σ(T ) :=
hT
δT

and σ(T ) := �h/δ�L∞(Ω) = max
T∈T

hT
δT

≥ 1.

We say that a conforming triangulation T is γ-shape regular if there
exists γ < ∞ such that σ(T ) ≤ γ.

Definition 3.15. For u ∈ H2(Ω) and a conforming triangulation T we
define the nodal interpolant as

Ihu :=
$
z∈K

u(z)ζz ∈ S1(T ), (3.15)

where ζz are the hat functions defined in Proposition 3.12.
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Due to the Sobolev theorem, which states the continuous inclusionHm(Ω) ⊂
C(Ω), if Ω is a Lipschitz domain in Rd and m > d/2, each function u ∈
H2(Ω) is continuous for d = 2, 3. Hence, the above definition makes sense.

Theorem 3.16 (Approximation Theorem). Let u ∈ H2(Ω). Then, for each
T ∈ T there holds

�u− Ihu�L2(T ) ≤ C�h2D2u�L2(T ), (3.16)

�∇(u− Ihu)�L2(T ) ≤ Cσ(T )�hD2u�L2(T ), (3.17)

where the generic constant C > 0 does not depend on u, T and Ω. In
particular, there holds

�hαu− Ihu�L2(T ) ≤ C�h2+αD2u�L2(Ω), (3.18)

�hα∇(u− Ihu)�L2(T ) ≤ Cσ(T )�h1+αD2u�L2(T ), (3.19)

for all α ∈ R.

We will not go through the proof of this theorem because the proof needs
some preparation and this would exceed the scope of this thesis. The proof
can be found in [5]. With this Theorem we can prove the following corollary
which states convergence of FEM with T -piecewise affine functions.

Corollary 3.17. If u ∈ H2(Ω) ∩H1
0 (Ω), then Ihu ∈ S1

0 (T ) and

min
vh∈S1

0 (T )
�u− vh�H1(Ω) ≤ �u− Ihu�H1(Ω) ≤ Cσ(T )�hD2u�L2(Ω), (3.20)

where C > 0 depends only on Ω.

Proof. Let u ∈ H2(Ω) ∩ H1
0 (Ω). Then u(z) = 0 for all z ∈ Γ and thus

Ihu ∈ S1
0 (T ). With Capx being the constant from Theorem 3.16 and CF

from Proposition 3.7 there holds

�u− Ihu�2H1(Ω) = �u− Ihu�2L2(Ω) + �∇(u− Ihu)�2L2(Ω)

≤ (C2
F + 1)�∇(u− Ihu)�2L2(Ω)

≤ C2
apxσ(T )2(C2

F + 1)�hD2u�L2(Ω)

and therefore

min
vh∈S1

0 (T )
�u−vh�H1(Ω) ≤ �u−Ihu�H1(Ω) ≤ Capxσ(T )(C2

F+1)1/2�hD2u�L2(Ω).

For exact solutions u ∈ H2(Ω) this corollary shows that FEM with T -
piecewise affine functions leads to convergence order O(h). Since C∞

0 (Ω)
is dense in H1

0 (Ω), Proposition 3.6 also provides convergence of FEM with
T -piecewise affine functions without any regularity assumptions on u.
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3.4 A posteriori error estimation

In most applications one does not know the exact solution u of the PDE
one wants to solve. Hence, one can not compute the error �u − uh�H1(Ω)

of the numerical solution. But for a lot of problems there exist numerically
computable bounds η = η(uh, f, T ) for the error which may depend on the
numerical solution uh, the triangulation T and the right hand side f . We
call such a bound η an error estimator. One important property of an error
estimator is reliability: There exists Crel > 0 such that

�u− uh�H1(Ω) ≤ Crelη. (3.21)

This estimate ensures that one can make conclusions on the accuracy of the
numerical solution with the value of the error estimator. However, it may
occur that the numerical solutions uh converge to u but η does not tend
to zero. To avoid this one wants an error estimator which is also efficient:
There exists Ceff > 0 such that

Ceffη ≤ �u− uh�H1(Ω). (3.22)

In this section we consider a more general FEM space, namely

Sp
0 (T ) := {vh ∈ C(Ω) | ∀T ∈ T : vh|T ∈ Pp(Ω) and vh|Γ = 0}. (3.23)

One error estimator for the Poisson problem 3.11 which is reliable and
efficient is the so called residual error estimator. Let T be a conforming
triangulation of Ω. For an interior facet E of T , i.e. E = T ∩ T �, T, T � ∈ T
let nE and n�

E be the outward pointing normal vectors on E with regard to
∂T and ∂T � respectively. The jump of the normal derivative for a smooth
function v across E is defined as �∂nv�|E = ∇v|T · nE +∇v|T � · n�

E .
Then the residual error estimator for the Dirichlet - Poisson problem

(3.11) is defined by

ηh(T )
2 = h2T �f +Δuh�2L2(T ) + hT ��∂nuh��2L2(∂T∩Ω) ,

ηh =

�$
T∈T

ηh(T )
2

�1/2

.
(3.24)

The following two propositions state the reliability and the efficiency of
the residual error estimator.

Proposition 3.18 (Reliability). Let T be a conforming and γ-shape regular
triangulation. Then there exists Crel depending only on Ω and γ such that

�u− uh�H1(Ω) ≤ Crelηh. (3.25)

To proof this we need two lemmas. We will omit the proofs of them.
They can be found in [5].
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Lemma 3.19 (Clement-type operator). Let T be a conforming and γ-shape
regular triangulation. We define Jh by

Jhv :=
$

z∈K\Γ

�
1

|Ω[z]|
�
Ω[z]

vdx

�
ζz for v ∈ H1

0 (Ω), (3.26)

where ζz are the hat functions from Proposition 3.12 and the patch Ω[z] of
a node z ∈ K is defined by Ω[z] :=

(
{T∈T |z∈T} T .

Then Jh : H1
0 (Ω) → S1

0 (T ) and for all v ∈ H1
0 (Ω) and T ∈ T there holds

�v − Jhv�L2(T ) ≤ ChT �∇v�L2(Ω[T ]), (3.27)

�∇(v − Jhv)�L2(T ) ≤ C�∇v�L2(Ω[T ]), (3.28)

where C > 0 only depends on γ and the patch Ω[T ] of an element T ∈ T is
defined by Ω[T ] :=

(
{T �∈T |T �∩T �=∅} T

�.

Lemma 3.20 (Trace inequality). Let T be a conforming and γ-shape regular
triangulation. For T ∈ T and v ∈ H1(T ) there holds

�v�2L2(∂T ) ≤ C
�
h−1
T �v�2L2(T ) + �v�L2(T )�∇v�L2(T )

�
, (3.29)

where C > 0 only depends on γ.

Proof of Proposition 3.18. With the Friedrichs inequality 3.12 we get that

�u− uh�H1(Ω) ≤ (C2
F + 1)1/2�∇(u− uh)�L2(Ω)

= (C2
F + 1)1/2

a(u− uh, u− uh)

�∇(u− uh)�L2(Ω)

≤ (C2
F + 1)1/2 sup

v∈H1
0 (Ω)\{0}

a(u− uh, v)

�∇v�L2(Ω)

Let v ∈ H1
0 (Ω) \ {0} and vh ∈ Sp

0 (T ) then the Galerkin orthogonality 3.5
yields a(u − uh, v) = a(u − uh, v − vh). Now we show a(u − uh, v − vh) ≤
ηh�∇v�L2(Ω) for an appropriate vh. To abbreviate the notation we define
w := v− vh. With integration by parts, the Cauchy-Schwarz inequality and
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since u is a solution of (3.13) we get that

a(u− uh, w) = �f, w�L2(Ω) − a(uh, w)

=

�
Ω
fwdx−

$
T∈T

�
T
∇uh · ∇wdx

=

�
Ω
fwdx−

$
T∈T

�
−
�
T
Δuhwdx+

�
∂T

∂nuhwds

�
=

$
T∈T

�
T
(f +Δuh)wdx+

$
T∈T

�
∂T∩Ω

∂nuhwds

=
$
T∈T

�
T
(f +Δuh)wdx+

1

2

$
T∈T

�
∂T∩Ω

�∂nuh�wds
=

$
T∈T

�
�f +Δuh, w�L2(T ) +

1

2
��∂nuh�, w�L2(∂T∩Ω)

�
≤

$
T∈T

�
hT �f +Δuh�L2(T )h

−1
T �w�L2(T )

+ h
1/2
T ��∂nuh��L2(∂T∩Ω))

h
−1/2
T

2
�w�L2(∂T∩Ω))

�
≤ ηh

� $
T∈T

�
h−2
T �w�2L2(T ) +

h−1
T

4
�w�2L2(∂T∩Ω))

��1/2

With Jh from Lemma 3.19 choose vh = Jhv then

�w�L2(T ) = �v − Jhv�L2(T ) ≤ ChT �∇v�L2(Ω[T ]).

And with the trace inequality (3.29) there holds

�w�2L2(∂T∩Ω) ≤ C
�
h−1
T �v − Jhv�2L2(T ) + �v − Jhv�L2(T )�∇(v − Jhv)�L2(T )

�
≤ ChT �∇v�2L2(Ω[T ]).

In both previous estimates C is a generic constant which only depends on γ
and these estimates yield$
T∈T

�
h−2
T �w�2L2(T )+

h−1
T

4
�w�2L2(∂T∩Ω))

�
≤ C

$
T∈T

�∇v�2L2(Ω[T ]) ≤ C�∇v�2L2(Ω).

Here, we used that for a conforming triangulation the overlap of different
element patches is finite. This last estimate concludes the proof.

Proposition 3.21 (Efficiency). Let T be a conforming and γ-shape regular
triangulation. Define osch := (

%
T∈T osc(T )2)1/2 where

osch(T )
2 = h2T min

fT∈Pp−1(T )
�f − fT �2L2(T ).
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Then there exists a constant Ceff depending only on γ and the polynomial
degree p such that

ηh ≤ Ceff

��u− uh�2H1(Ω) + osc2h
�1/2

. (3.30)

Remark 3.22. This proposition shows efficiency for the residual error es-
timator but with oscillations. However, if f is sufficiently smooth the oscil-
lations will decay faster than the error if the mesh size hT tends to zero.

We will need the following lemma to prove the efficiency. We omit the
proof of this lemma. It can be found in [5].

Lemma 3.23 (Inverse estimate). For all m, k, r ∈ N with k > r exists a
constant C > 0 such that for all vh ∈ Pm(T ) := {vh : Ω → R | ∀T ∈ T :
vh|T ∈ Pm(T )} and for all T ∈ T there holds

�Dkvh�L2(T ) ≤ Cσ(T )hr−k
T �Drvh�L2(T ). (3.31)

Proof of Proposition 3.21. If constants appear in any estimates in this proof
we will omit them and use the symbol � instead of ≤. Note that any hidden
constants in this proof at most depend on γ and the polynomial degree p.

First step: For T ∈ T we define the element bubble function

bT :=
#

z∈KT

ζz ∈ H1
0 (Ω) ∩ P3(T ).

With a scaling argument one gets that �v�L2(T ) ) �vb1/2T �L2(T ) are equiva-
lent norms on Pq(T ), q ∈ N0 with constants depending only on q and the
reference element. Now let q ≥ p − 2 and ΠT be defined by ΠT f ∈ Pq(T )
such that

�f −ΠT f�L2(T ) = min
gT∈Pq(T )

�f − gT �L2(T ) for all f ∈ L2(T ),

i.e. ΠT : L2(T ) → Pq(T ) is the orthogonal projection.
Now set fT := ΠT (f + Δuh). We note that since Δuh ∈ Pp−2(T ) ⊂

Pq(T ), there holds ΠTΔuh = Δuh and thus

fT − (f +Δuh) = f −ΠT f. (3.32)

The equivalence �v�L2(T ) ) �vb1/2T �L2(T ) on Pq(T ) yields

�fT �2L2(T ) � �fT b1/2T �2L2(T )

= �fT , fT bT �L2(Ω)

=
��fT − (f +Δuh), fT bT �L2(Ω)

+ �(f +Δuh), fT bT �L2(Ω)

�
.

(3.33)
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With u ∈ H1
0 (Ω) being the solution of the weak form (3.13), with integration

by parts, the Cauchy-Schwarz inequality and the inverse estimate (3.31)
there holds

�f +Δuh, fT bT �L2(Ω) = �∇u,∇(fT bT )�L2(Ω) + �Δu, fT bT �L2(Ω)

= �∇(u− uh),∇(fT bT )�L2(Ω)

≤ �∇(u− uh)�L2(T )�∇(fT bT )�L2(T )

� h−1
T �∇(u− uh)�L2(T )�fT bT �L2(T )

≤ h−1
T �∇(u− uh)�L2(T )�fT �L2(T ).

(3.34)

Moreover, the Cauchy-Schwarz inequality and (3.32) yield

�fT − (f +Δuh), fT bT �L2(Ω) ≤ �fT − (f +Δuh)�L2(Ω)�fT bT �L2(Ω)

= �f −ΠT f�L2(Ω)�fT bT �L2(Ω)

≤ �f −ΠT f�L2(Ω)�fT �L2(Ω)

(3.35)

Plugging (3.34) and (3.35) into (3.33) yields

�fT �L2(T ) � C
�
h−1
T �∇(u− uh)�L2(T ) + �f −ΠT f�L2(T )

�
, (3.36)

With (3.32) and (3.33) there holds

hT �f +Δuh�L2(T ) ≤ hT �fT �L2(T ) + hT �f +Δuh − fT �L2(T )

= hT �fT �L2(T ) + hT �f −ΠT f�L2(T )

�
��∇(u− uh)�L2(T ) + hT �f −ΠT f�L2(T )

�
.

(3.37)

Second step: Let T ∈ T and E an edge of T . Consider the reference ele-
ment Tref = {(0, 0), (1, 0), (0, 1)} and Eref = {(0, 0), (0, 1)}. For r ∈ Pq(Tref),
define �r ∈ Pq(Tref) by �r(s, t) = r(s, 0), then �r|Eref

= r|Eref
.

Since Pq(Tref) is finite dimensional, �r�L2(Eref) ) �r� := ��r�L2(Tref) are
equivalent norms on Pq(Tref).

Let ΦT : Tref → T be an affine diffeomorphism such that ΦT (Eref) = E.

For r ∈ Pq(T ), choose �r := �r ◦ ΦT ◦ Φ−1
T . Clearly, r|E = �r|E and with the

Transformation theorem we get

��r�2L2(T ) = ��r ◦ ΦT ◦ Φ−1
T �2L2(T )

= |det(DΦT )|��r ◦ ΦT �2L2(Tref)

=
|T |
|Tref|�r ◦ ΦT �2

and
�r�2L2(E) = |E|�r ◦ ΦT �2L2(Eref)

) |E|�r ◦ ΦT �2
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This yields

��r�2L2(T ) )
|T |

|E||Tref|�r�
2
L2(E) ) hT �r�2L2(E).

Third step: Let E = T ∩ T � be an interior edge, T, T � ∈ T . We define
the edge bubble function

bE :=
#

z∈KT∩KT �

ζz ∈ H1
0 (T ∪ T �) ∩ P2({T, T �})

A scaling argument shows that �v�L2(E) ) �vb1/2E �L2(E) are equivalent norms
on Pp−1(E) where the constants only depend on γ and the reference element.

Define r := �∂nuh�|E ∈ Pp−1(E). Then, according to step 2 there exists�r ∈ Pp−1(T, T �) with �r|E = r and

��r�L2(T ) ) h
1/2
T �r�L2(E),

��r�L2(T �) ) h
1/2
T � �r�L2(E).

(3.38)

Moreover, �r is continuous and hence �rbE ∈ H1
0 (T ∪ T �) ∩ Pp+1({T, T �}).

With the previous norm equivalence, integration by parts, the weak form
(3.13), the Cauchy-Schwarz inequality, the inverse estimate (3.31) and (3.38)
we get that

��∂nuh��2L2(E) � ��rb1/2E �L2(E)

= ��∂nuh�, �rbE�L2(E)

= �∂nuh, �rbE�L2(∂T ) + �∂nuh, �rbE�L2(∂T �)

= �∇uh,∇(�rbE)�L2(T ) + �Δuh, �rbE�L2(T )+

�∇uh,∇(�rbE)�L2(T ) + �Δuh, �rbE�L2(T )

= �∇(uh − u),∇(�rbE)�L2(Ω) + �f +Δuh, �rbE�L2(Ω)

≤ �∇(uh − u)�L2(T∪T �)�∇(�rbE)�L2(T∪T �)+

�f +Δuh�L2(T∪T �)��rbE�L2(T∪T �)

� �∇(uh − u)�L2(T∪T �)h
−1
T ��rbE�L2(T∪T �)+

�f +Δuh�L2(T∪T �)��rbE�L2(T∪T �)

≤ ��r�L2(T∪T �)
�
h−1
T �∇(uh − u)�L2(T∪T �)+

�f +Δuh�L2(T∪T �)
�

� h
1/2
T �∂nuh��L2(E)

�
h−1
T �∇(uh − u)�L2(T∪T �)+

�f +Δuh�L2(T∪T �)
�
.

This estimate implies

��∂nuh��L2(E) � �∇(uh − u)�L2(T∪T �) + hT �∇(uh − u)�L2(T )+

hT ��∇(uh − u)�L2(T �)
(3.39)
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Fourth step: We combine the first and the third step. For T ∈ T there
holds

ηh(T )
2 = h2T �f +Δuh�2L2(T ) + hT ��∂nuh��2L2(∂T∩Ω)

= h2T �f +Δuh�2L2(T ) +
$

E∈ET∩EΩ
hT ��∂nuh��2L2(E)

� h2T �f +Δuh�2L2(T ) +
$

T �∈T \{T}
T �∩T �=∅

�
�∇(u− uh)�2L2(T∪T �)+

h2T �f +Δuh�2L2(T )+

h2T � �f +Δuh�2L2(T �)

�
�

$
T �∈T

T �∩T �=∅

�∇(u− uh)�2L2(T �) + h2T ��f +Δuh�2L2(T �)

�
$
T �∈T

T �∩T �=∅

�∇(u− uh)�2L2(T �) + h2T ��f −ΠT �f�2L2(T �).

Since T is conforming, #{T � ∈ T | T � ∩ T $= ∅} is finite and thus

η2h =
$
T∈T

ηh(T )
2 � �u− uh�2H1(Ω) + osc2h.
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Chapter 4

Error estimation with neural
networks

The first experiment in this thesis is to check whether a machine learning
algorithm can learn to predict the error estimator for the numerical solu-
tion on a given mesh. To this end we make some numerical experiments.
The idea is to generate a set of random meshes on which a PDE is solved
numerically and the error of this approximate solution is estimated. This
is done with a standard Galerkin finite element method and the so called
residual error estimator. With data of this type we train a neural network
and then compare the error estimates which are predicted by the trained
neural network with the error estimates determined by the residual error
estimator to assess the performance of the machine learning model.

4.1 Setting

4.1.1 Meshes

To train the neural network one needs training data. For us this means
different meshes. The idea to generate these different meshes is to refine a
given initial mesh in different ways. To this end we refine the initial mesh 2,
3, 4 or 5 times. For each mesh this number of refinements is chosen randomly.
Which elements are refined in each refinement step is also chosen randomly.
The only restriction for this meshes is that the number of elements is less
than or equal to 1,000.

In the numerical experiments we use two different kind of domains. The
first domain is an L-shape domain. In Figure 4.1 one can see the initial
mesh on this domain and one example of these random generated meshes.

The second type of domain is a somewhat random domain. We consider 8
points: (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2), (0, 1). The convex hull
of these points is, of course, a square. Now we add a different perturbation
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(a) (b)

Figure 4.1: Initial and randomly refined mesh on L-shape geometry

vector p = (p1, p2) to each point. The entries p1 and p2 are uniformly
distributed in (−0.5, 0.5). With this procedure one obtains random domains.
One example of such a domain with the initial mesh and an example of a
random mesh is pictured in Figure 4.2.

4.1.2 Neural network

We use a neural network with four dense layers and the ReLU activation
function. The output dimension of the first layer is 1,000, of the second
layer 100, of the third layer 10 and of the last layer 1.

The input varies in the different numerical experiments. There are four
cases. The first case is that only the coordinates of the vertices of the
elements are given to the neural network. If the mesh has 1,000 elements
the input dimension is 6,000 because there are three vertices per element
and two coordinates per vertex. If the mesh has less than 1,000 elements
the missing entries to reach an input dimension of 6,000 are filled up with
zeros. In the second case the input also contains the value of the right hand
side f at every vertex. Whereas in the third case the input also contains
the value of the discrete solution uT at every vertex. The fourth case is
the combination of the second and the third case. Hence, in the second and
third case the dimension of the input is 9,000 and in the last case it is 12,000.
Let xi = (xi,1, xi,2)

T ,yi = (yi,1, yi,2)
T , zi = (zi,1, zi,2)

T be the coordinates of
the vertices of the i-th element and k the index of the last element. Then
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(a) (b)

Figure 4.2: Initial and randomly refined mesh on random geometry

the four different input vectors look like this:

6 000

case 1� �� ���������������������������������

����������������

x1

y1

z1
...
xk

yk

zk

0
...
0

!!!!!!!!!!!!!!!!
, 9 000

case 2� �� �����������������������������������������������������������

�����������������������������

x1

f(x1)
y1

f(y1)
z1

f(z1)
...
xk

f(xk)
yk

f(yk)
zk

f(zk)
0
...
0

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

,

case 3� �� ������������������������������

x1

uh(x1)
y1

uh(y1)
z1

uh(z1)
...
xk

uh(xk)
yk

uh(yk)
zk

uh(zk)
0
...
0

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

,

case 4� �� ������������������������������������������

x1

f(x1)
uh(x1)
y1

f(y1)
uh(y1)
z1

f(z1)
uh(z1)

...
xk

f(xk)
uh(xk)
yk

f(yk)
uh(yk)
zk

f(zk)
uh(zk)

0
...
0

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

����������������������������������������������������������������������������������

12 000
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To train the neural network we use 4,000 different meshes which are
generated as described in 4.1.1. Then the neural network is tested with
another 1,000 of these meshes.

As loss function we use the mean squared relative error

1

n

n$
i=0

�
ηi − η∗i

ηi

�2

(4.1)

where n is the number of meshes, ηi is the residual error estimator of mesh Ti
and η∗i is the corresponding error estimator predicted by the neural network.

The optimizer used is the Adam optimizer from 2.2.3 and it gets 10
epochs to train the neural network. An epoch in machine learning refers to
a complete iteration through the entire training dataset.

4.2 Results

For the numerical experiments we use two different right hand sides f . The
first one is f(x, y) = x and the second one is a random discrete function
defined on the nodes of the mesh. The values are uniformly distributed
between 0 and 1.

For each of the above described settings we build 20 independent neural
networks and train them with the same 4,000 training meshes. Then we
determine the accuracy of the predictions of these neural networks using the
1,000 test meshes by calculating the mean squared relative error as stated
in (4.1). Then we compare the mean accuracy of each of these settings.

Since the training of one such neural network takes approximately 30
seconds for the smallest input and 70 seconds for the largest input we only
trained 20 networks for each scenario. Therefore the sample size is rather
low and consequently the calculated mean accuracy is not very reliable but
it shows some tendencies.

In the Tables 4.1, 4.2, 4.3 and 4.4 we can see the accuracies for the
four different inputs described in 4.1.2 and 20 independently trained neural
networks. The corresponding histograms are pictured in Figures 4.3, 4.4,
4.5 and 4.6.

4.2.1 L-shape domain, fixed right hand side

For the L-shape domain and the right hand side f(x, y) = x the accuracies
are almost the same for all four inputs and on average the discrepancy
between the predicted error estimates and the actual ones is within one
percent of the value of the actual error estimates (see Table 4.1 and Figure
4.3). This might be explained by the network learning only the fixed vector
of error estimates.
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Figure 4.3: Histogram of accuracies for L-shape domain and fixed right hand
side for the four different inputs.

4.2.2 L-shape domain, random right hand side

For a random right hand side (see Table 4.2 and Figure 4.4) the neural
networks which only got the coordinates as input perform worse than the
others and overall the predictions are more inaccurate than with the fixed
right hand side. The deviation between the predicted estimate and the
actual ones is in the scale of three percent.

4.2.3 Random domain, fixed right hand side

If the domain is random the performance for all inputs decrease (see Table
4.3 and Figure 4.5). This is not surprising, because it seems easier to learn
the error estimator for a domain which stays the same than for changing
domains. And we see that the neural networks with inputs including the
numerical solution outperform the networks with the other two inputs.

4.2.4 Random domain, random right hand side

The case where not only the domain is random but also the right hand side f
shows a similar behaviour as with the fixed right hand side. And in the best
case which is the input including the numerical solution the error between
predicted error estimates and actual ones is in the scale of 5 percent. This
can be seen in Table 4.4 and Figure 4.6.
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input accuracies mean accuracies

coordinates of

elements

0.00551 0.00615 0.00511 0.00534

0.00586
0.00533 0.00445 0.00500 0.00678

0.00694 0.00556 0.00602 0.00592

0.00492 0.00485 0.00527 0.00760

0.00904 0.00507 0.00585 0.00659

coordinates of

elements + RHS

0.00625 0.00458 0.00464 0.00628

0.00701
0.00656 0.00943 0.00537 0.00835

0.00537 0.00651 0.00538 0.00652

0.00507 0.01946 0.00632 0.00938

0.00896 0.00516 0.00549 0.00510

coordinates of
elements +
numerical solution

0.00388 0.00844 0.01170 0.00362

0.00508
0.00401 0.00455 0.00517 0.00358

0.00670 0.00389 0.00421 0.00559

0.00481 0.00331 0.00399 0.00461

0.00459 0.00403 0.00541 0.00546

coordinates of
elements + RHS and
numerical solution

0.00540 0.01431 0.00605 0.01331

0.00654
0.00472 0.00476 0.00500 0.00641

0.00531 0.00447 0.00508 0.00494

0.00421 0.00476 0.00587 0.00565

0.00727 0.00925 0.00890 0.00518

Table 4.1: Accuracies for L-shape domain and fixed right hand side.

4.2.5 Conclusion

Summing up, we see that for a fixed domain there is only little difference
between the inputs. If the domain is random the neural networks with inputs
including the numerical solution outperform the others. In the last, most
interesting case the neural networks with the coordinates and the numerical
solution as input were able to predict the error estimates best. The deviation
in this case is about 5 percent of the actual estimate.
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Figure 4.4: Histogram of accuracies for L-shape domain and a random right
hand side for the four different inputs.

input accuracies mean accuracies

coordinates of

elements

0.03098 0.13516 0.02785 0.03612

0.03557
0.02928 0.03771 0.03112 0.02846

0.02918 0.02839 0.02878 0.03081

0.03064 0.03059 0.02897 0.02786

0.02685 0.02848 0.03386 0.03029

coordinates of

elements + RHS

0.02603 0.13515 0.00867 0.13515

0.02647
0.01304 0.01420 0.01500 0.00753

0.00831 0.01011 0.01620 0.01995

0.00962 0.03114 0.00888 0.00854

0.01164 0.01101 0.02500 0.01416

coordinates of
elements +
numerical solution

0.02879 0.02086 0.02039 0.03433

0.02847
0.01969 0.02018 0.01980 0.03091

0.02448 0.02199 0.11304 0.02156

0.02259 0.02029 0.02175 0.02901

0.02576 0.02172 0.02894 0.02334

coordinates of
elements + RHS and
numerical solution

0.02108 0.01136 0.00785 0.01020

0.02431
0.00940 0.01229 0.13517 0.01986

0.01389 0.00904 0.00800 0.00999

0.13514 0.01087 0.01020 0.01539

0.01384 0.00904 0.00922 0.01438

Table 4.2: Accuracies for L-shape domain and random right hand side.
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Figure 4.5: Histogram of accuracies for a random domain and fixed right
hand side for the four different inputs.

input accuracies mean accuracies

coordinates of

elements

0.08465 0.07705 0.15690 0.07965

0.08849
0.06955 0.07601 0.09266 0.07790

0.07177 0.07158 0.07842 0.08013

0.07357 0.07596 0.07120 0.07647

0.07851 0.08786 0.20293 0.08696

coordinates of

elements + RHS

0.07713 0.22418 0.22080 0.07166

0.10963
0.18212 0.07910 0.08017 0.10320

0.09427 0.07220 0.08853 0.07513

0.19977 0.08237 0.09370 0.11119

0.09092 0.07805 0.08975 0.07833

coordinates of
elements +
numerical solution

0.04630 0.04198 0.07403 0.04116

0.06261
0.04336 0.05442 0.04385 0.04640

0.06140 0.04491 0.09272 0.04442

0.23123 0.05223 0.04424 0.04323

0.08870 0.05448 0.04918 0.05400

coordinates of
elements + RHS and
numerical solution

0.05795 0.04677 0.04476 0.05636

0.06569
0.09167 0.04902 0.04519 0.04721

0.06967 0.04757 0.04575 0.11555

0.05457 0.05346 0.04714 0.12041

0.04123 0.04826 0.18346 0.04777

Table 4.3: Accuracies for random domain and fixed right hand side.
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Figure 4.6: Histogram of accuracies for a random domain and a random
right hand side for the four different inputs.

input accuracies mean accuracies

coordinates of

elements

0.05582 0.06871 0.06474 0.96866

0.12873
0.06387 0.07371 0.06346 0.08016

0.17318 0.06858 0.09838 0.08261

0.17425 0.13993 0.06321 0.05825

0.09951 0.05839 0.06128 0.05800

coordinates of

elements + RHS

0.05708 0.17868 0.04399 0.04344

0.10043
0.19151 0.17322 0.17561 0.05561

0.04497 0.07048 0.04175 0.17599

0.04283 0.04795 0.17318 0.17314

0.04504 0.04435 0.06803 0.16173

coordinates of
elements +
numerical solution

0.17362 0.03639 0.02767 0.03412

0.05815
0.03180 0.07107 0.18508 0.03713

0.04753 0.04186 0.07590 0.08415

0.02827 0.05760 0.03384 0.03383

0.04002 0.03774 0.04970 0.03565

coordinates of
elements + RHS and
numerical solution

0.03125 0.17360 0.02895 0.02958

0.07596
0.02504 0.02386 0.04882 0.09483

0.02361 0.03651 0.04327 0.17649

0.04503 0.05392 0.09379 0.03567

0.03500 0.17315 0.17327 0.17355

Table 4.4: Accuracies for random domain and random right hand side.
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Chapter 5

AFEM with NN

The objective of AFEM with machine learning is to utilize a neural network
to process a given mesh, denoted as T , and the corresponding numerical
solution uT on this mesh, in order to obtain a set of marked elements M .
Let’s denote such a neural network as A. The output is then determined by
M = A(w, T , uh), where w represents the vector of learnable parameters as
in Section 2.2.3.

To evaluate the quality of the obtained marking set, it is necessary to
define a loss function L that takes a marking set as input and calculates
a numerical value, L(M), representing the quality of the set of marked
elements. The goal is to minimize this loss function by adjusting the weights
w of the neural network. In formal terms, we aim to minimize the mapping
w → L(A(w, T , uh)).

The output of the neural network has only two values for each element
of the mesh: either an element is marked for refinement or not. Only
slight changes in the weights can lead to a different set of marked ele-
ments. So the mapping w → A(w, T , uh) is not continuous and therefore
w → L(A(w, T , uh)) is not continuous either. And thus traditional learning
methods as stated in Section 2.2.3 are not suitable for optimizing this type of
neural network. In the following, we will attempt to develop an approach to
minimize the loss function and evaluate its performance through numerical
experiments.

5.1 Loss function

Let T be a mesh and M ⊂ T be a marking set. Let Tuniform and TM be the
uniformly refined mesh and the mesh refined according to M , respectively.
Furthermore, let uTuniform ∈ S1

0 (Tuniform) and uTM ∈ S1
0 (TM ) be the numerical

solutions on these meshes. Then, we define the loss function L of a set of
marked elements M by

L(M) := �∇ (uTuniform − uTM )�L2(Ω) . (5.1)
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5.2 Optimizer

To optimize the weights we consider two approaches. These two are a ran-
dom search and a method similar to gradient descent but with an approxi-
mated gradient.

5.2.1 Random search

The idea of the random search is that one adds a random perturbation to
the weights and then checks whether the neural network with the modified
weights performs better. This is done iteratively:

Algorithm 1 Random Search

Require: neural network model A, loss function L, initial weights w, mesh
T , numerical solution uT
Lmin ← L(A(w, T , uT ))
for i = 0 to N do

wtmp ← w
for j = 0 to M do

wnew ← wtmp + random vector
Lnew = L(A(wnew, T , uT ))
if Lnew < Lmin then

w ← wnew

Lmin ← Lnew

end if
end for

end for

To validate this method we perform some numerical experiments. We
consider the Poisson equation (3.11) with right hand side f(x, y) = xy on
an L-shape domain with a given mesh T (see Figure 5.1) and we use the
Algorithm 1 to minimize the loss on that mesh. As number of iterations we
use N = 40 and as number of directions M = 30. We use a neural network
with two layers. As input we use the third case from Section 4.1.2, i.e. the
input contains the coordinates of the nodes of the elements and the values
of the numerical solution at these nodes. Hence, the input dimension is
nine times the number of elements. The first layer is a dense layer with the
ReLU activation function and the output dimension is 1.5 times the number
of elements. The second layer is a dense layer with the softmax activation
function. The output of this layer is a probability distribution with one
value for each element. Then the set of marked elements consists of the
#T /3 elements with the highest value. This restriction is necessary since
the optimal refinement in regards to the accuracy of the numerical solution
would be to refine all elements.
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Figure 5.1: Initial mesh for assessment of optimizers

(a) (b)

(c) (d)

Figure 5.2: Refined meshes determined with random search
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In Figure 5.2 we see the meshes which are refined according to the mark-
ing set provided by 4 independently optimized neural networks. One can
see that mostly the elements on the boundary are refined which is not really
what we would expect because a strong refinement towards the reentrant
corner would be expected.

5.2.2 Gradient descent with approximated gradient

If one supposes that the loss function L and the neural network A are
continuous, then with Taylor expansion one gets

L(A(w + δ, T , uT )) ≈ L(A(w, T , uT )) +∇wL(A(w, T , uT )) · δ (5.2)

for w, δ ∈ RM(A). Let’s denote ∇wL(A(w, T , uT )) ∈ RM(A) with X and
let δ1, δ2, . . . , δn ∈ RM(A) be random vectors. Then with (5.2) one gets the
following system of equations

L(A(w + δ1, T , uT )) = L(A(w, T , uT )) +X · δ1
L(A(w + δ2, T , uT )) = L(A(w, T , uT )) +X · δ2

...

L(A(w + δn, T , uT )) = L(A(w, T , uT )) +X · δn

(5.3)

With

B =

���
L(A(w + δ1, T , uT ))− L(A(w, T , uT ))
L(A(w + δ2, T , uT ))− L(A(w, T , uT ))

...
L(A(w + δn, T , uT ))− L(A(w, T , uT ))

!!! ∈ Rn (5.4)

and

D =

���
δT1
δT2
...
δTn

!!! ∈ Rn×M(A) (5.5)

(5.3) can be rewritten as
DX = B. (5.6)

It can be assumed that M(A) > n and hence, there does not exist a unique
solution of (5.6) but one solution is given by X = DTY with Y being the
solution of

DDTY = B. (5.7)

This can be verified if we insert X = DT (DDT )−1B in (5.6):

DDT (DDT )−1B = B (5.8)

This leads to
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(a) (b)

(c) (d)

Figure 5.3: Refined meshes determined with approximated gradient descent

Algorithm 2 Random Search

Require: neural network model A, loss function L, initial weights w
for i = 0 to N do

D ←

���
δT1
δT2
...
δTn

!!! 9 for i = 1, . . . , n: δi ∈ RM(A) random vector

B ←

���
L(A(w + δ1, T , uT ))− L(A(w, T , uT ))
L(A(w + δ2, T , uT ))− L(A(w, T , uT ))

...
L(A(w + δn, T , uT ))− L(A(w, T , uT ))

!!!
Y ← (DDT )−1B
X ← DTY
w ← w − 1

�X�X
end for

To assess the quality of this algorithm we make the same experiments
as in 5.2.1. In figure 5.3 we see that the results are also not ideal and more
research is required. Different network architectures and more training time
might lead to better results.

53



Figure 5.4: Partition of a random mesh with nmax = 100

5.3 AFEM on arbitrary meshes

In the previous section we assessed the performance of the optimizers for
one given mesh. But as described in the introduction the goal of including
machine learning into AFEM is that one finds a neural network model which
is able to determine the right elements to refine for arbitrary meshes and
PDEs. In this section we will discuss one approach to tackle this problem.

The idea of this approach is that we partition a mesh into submeshes
with a given maximal number of elements. One each of these submeshes
a neural network determines the elements which should be refined. The
reason for this partitioning is that we only need one neural network with a
fixed number of inputs. If the mesh gets finer and therefore the number of
elements increase the number of partitions also increase but we can use the
same neural network for each of this partition.

Let Ω be domain, T a triangulation on this domain and nmax ∈ N the
maximum number of elements in one partition. To partition such a mesh
we first check if the number of elements #T is less than or equal to nmax.
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If this is the case then we are done. Otherwise, we determine the bounding
rectangle of Ω and split it in into four rectangles of the same size. This
yields 4 regions of the domain, let’s denote them with Ω1, . . . ,Ω4. Now we
go through all the elements of T and assign them to the submeshes T1, . . . , T4
if the element is in the corresponding subdomain. Note that one element can
be assigned to more than one submesh. Now we continue iteratively: for each
of the submeshes we do the same as for the original mesh. This procedure
terminates once we partitioned the mesh such that in every submesh there
are less than nmax elements. (cf. Figure 5.4)

We use the same neural network as described in 5.2.1 but with input
dimension 9nmax and output dimension nmax. This neural network is used
on each of the parts in the partitioned mesh. If an element is in more than
one submesh then the mean values of the predictions are used. With these
predictions again the T /3 elements with the highest predicted value are put
in the marking set. With this marking set one can calculate the loss function
from Section 5.1.

To create the training data data we use the same approach as in Section
4.1.1. We create nmeshes random domains, refine them randomly and then
calculate the numerical solution of the Poisson problem on these meshes.
This yields a set of random meshes and their solutions. We denote this set
of meshes with T = {T1, . . . , Tnmeshes

} and the corresponding set of numerical
solutions with U = {u1, . . . , unmeshes

}.
The loss function for such a set of meshes is now given by

L :=
1

n

nmeshes$
k=1

Lk

where Lk is the loss given in Section 5.1 for the k-th mesh.
To test if this approach works we train a neural network as described

above with 30 training meshes and the random search from Section 5.2.1
with 20 iterations and 30 directions. The reason why the number of meshes
is rather small is that the computation of the loss is pretty expensive. Even
for only 30 meshes one calculation of the loss takes about 7 seconds. And
therefore the training altogether takes approximately 70 minutes.

Eventually, we use this trained neural network in an adaptive algorithm
which follows the steps described in the Introduction but uses the neural
network to determine the elements which should be refined. This process is
iterated until the number of degrees of freedoms of the mesh exceed 3,000.

Two examples of such refined meshes are pictured in Figures 5.5 and 5.6.
In Figure 5.5 we see that the refinement looks kind of random. Figure 5.6
shows some refinement towards reentrant corners which would be expected
but the overall result is not ideal either. Therefore, we see that this approach
does not work well. Maybe tuning of the neural network, a larger training set
or more training iterations might improve the performance of the network.
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This is not done here because of the lack of computational power.
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(a)

(b)

Figure 5.5: Initial and adaptively refined mesh 1
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(a)

(b)

Figure 5.6: Initial and adaptively refined mesh 2
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