
Formal Methods in Computer-Aided Design 2023

Proofs for Incremental SAT with Inprocessing
Benjamin Kiesl-Reiter

Amazon Web Services
Munich, Germany

Email: benkiesl@amazon.com

Michael W. Whalen
Amazon Web Services and University of Minnesota

Minneapolis, MN, United States
Email: mww@amazon.com

Abstract—Incremental SAT solvers are automated-reasoning
tools that efficiently solve sequences of related logic problems,
making them a go-to tool for inherently incremental applications
such as model checking, planning, or test generation. Recent
advances in incremental solving using inprocessing have led
to substantial performance improvements, but it has remained
unclear how the resulting solvers could produce verifiable proofs
of unsatisfiability. Here we provide a simple approach that
enables inprocessing solvers to produce proofs for incremental
results. The approach extends the standard DRAT format with
clause restoration steps. These are later removed during post-
processing, yielding a standard DRAT proof. Our empirical
evaluation shows that our approach is sound and efficient. Proofs
can be generated much faster compared to re-solving a problem
non-incrementally, but the resulting proofs tend to be larger.
Nevertheless, even when taking proof checking into account,
our approach is still slightly faster on average. In addition, our
technique has the advantage of guaranteeing proof production
whereas the non-incremental approach can time out on hard
problems.

Index Terms—Automated reasoning, SAT solving, incremental
solving, proof.

I. INTRODUCTION

Incremental SAT solving is a key technique for the formal
analysis of software and hardware. Instead of solving each in-
put problem independently, an incremental SAT solver retains
state between solver calls, allowing it to rely on previously
learned information when faced with new problems. This reuse
of learned information can dramatically boost performance
for applications that produce sequences of closely related
SAT problems, such as automated planning [1], lazy SMT
solving [2], test-case generation [3], [4], and bounded model
checking [5]–[7].

In practice, a user of an incremental SAT solver initializes
the solver and provides it with an initial input formula.
After solving the formula, the user can then extend the
formula before sending another solve request to the solver.
The resulting extend-and-solve loop can be repeated arbitrarily
many times until eventually the user decides to release the
solver. While this incremental feature makes solvers efficient
and easy-to-use, the formula modifications performed between
solver calls add an additional layer of complexity that can
render several commonly-used reasoning techniques unsound.
In particular, many preprocessing and inprocessing techniques
that are crucial to the performance of non-incremental solvers
cannot be used straightforwardly in an incremental context.

This is a pity since inprocessing-based solvers have won the
top spots in the yearly SAT competitions since 2020 [8].

To harvest at least some of the performance gains offered
by inprocessing techniques, several ways of using them in a
restricted way have been suggested in the literature [6], [7],
[9]. In 2019, a breakthrough was made by Fazekas, Biere,
and Scholl [10], who introduced a calculus that allows the
unrestricted use of inprocessing techniques during incremental
solver runs, given that additional reasoning steps—so-called
clause restorations—are performed ahead of the runs. The
implementation of their approach on top of the award-winning
SAT solver CaDiCaL [11] has led to impressive performance
gains, showing that inprocessing and incremental solving can
coexist in practice.

One key capability of non-incremental solving, however,
has still failed to enter the picture—proof. While virtually all
modern non-incremental solvers can produce independently
verifiable proofs of unsatisfiability (usually in the DRAT
format [12] required by SAT competitions), it has remained
unclear how an incremental solver with unrestricted inpro-
cessing could produce such proofs. In this paper, we address
this issue by presenting a surprisingly simple approach for
extracting a verifiable DRAT proof from an incremental solver
relying on the calculus by Fazekas et al. [11]

Our approach requires a solver to augment its proof trace
with additional proof steps whenever it performs clause
restorations. Once the solver finishes, we transform the aug-
mented proof trace into a verifiable DRAT proof. The key idea
is to remove deletions from the proof corresponding to clauses
that need to be restored. To demonstrate the feasibility of our
approach in practice, we modified the solver CaDiCaL and
implemented our proof-transformation algorithm as a separate
tool. The resulting version of CaDiCaL is thus the first in-
cremental SAT solver that combines unrestricted inprocessing
with proof production.

Despite the theoretical simplicity of our approach, its actual
implementation required us to make several careful changes
to the solver, which we explain in detail. This should provide
solver developers with sufficient background to implement our
approach on top of other solvers. We performed an evaluation
with 300 benchmarks from the 2017 Hardware Model Check-
ing competition [13], demonstrating that the overhead of our
approach is small and that all resulting proofs can be verified
with the existing proof checker DRAT-trim [14].

The main contributions of this paper are as follows:

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_21 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-3522-3653
https://orcid.org/0000-0003-3824-1435
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_21
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_21
https://creativecommons.org/licenses/by/4.0/


• An approach for extracting verifiable DRAT proofs from
an incremental SAT solver that performs unrestricted
inprocessing.

• Implementation on top of the SAT solver CaDiCaL.
• Empirical evaluation on a comprehensive benchmark set,

demonstrating the feasibility of our approach.
The rest of this paper is structured as follows. In Section II,

we present the background required to understand the rest
of the paper. In Section III, we describe the general prob-
lem of producing proofs for incremental SAT solving with
inprocessing. In Section IV, we present our algorithm for
generating proofs and establish its soundness before discussing
implementation details in Section V. Finally, we present the
results of our empirical evaluation in Section VI and conclude
with a summary and an outlook for future work in Section VII.

II. BACKGROUND AND RELATED WORK

We first cover basics of SAT solving before giving a high-
level overview of the relationship between incremental SAT
solving and inprocessing.

A. SAT Solving Basics

The Boolean satisfiability problem (SAT) asks whether
a formula of propositional logic can be satisfied by some
assignment of truth values (true and false) to its variables.
An overview can be found in [15].

As is common in practical SAT solving, we concern our-
selves with formulas in conjunctive normal form (CNF).
Formulas are built from literals, which are either variables
(x) or their negations (x̄). These are called positive literals
and negative literals respectively. We write var(l) to refer to
the variable of the literal l (var(x) = x and var(x̄) = x).
The complement l̄ of a literal l is defined as l̄ = x̄ if l = x
and as l̄ = x if l = x̄. A clause is a finite disjunction of
literals of the form (l1 ∨ l2 ∨ · · · ∨ ln). A formula is a finite
conjunction of clauses of the form C1 ∧ C2 ∧ ... ∧ Cm. For
example, (x̄ ∨ y ∨ z) ∧ (y ∨ z̄) ∧ (x) is a formula with three
clauses, where the last clause is called a unit clause because
it contains only one literal. Formulas can be viewed as sets of
clauses, which can be viewed as sets of literals.

A truth assignment (or assignment for short) is a function
from a set of variables to the truth values 1 (true) and 0 (false).
A literal is satisfied by an assignment α if l is positive and
α(var(l)) = 1 or if l is negative and α(var(l)) = 0. A literal
l is falsified by α if l̄ is satisfied by α. An assignment α can be
viewed as the set {l | l is satisfied by α} of literals. A clause
is satisfied by an assignment if the assignment satisfies at least
one of its literals. A formula is satisfied by an assignment if
the assignment satisfies all of its clauses.

A formula is satisfiable if there exists an assignment that
satisfies it, otherwise it is unsatisfiable. Two formulas are logi-
cally equivalent if they are satisfied by the same assignments;
they are equisatisfiable if they are either both satisfiable or
both unsatisfiable.

Incremental SAT. An incremental SAT problem is a se-
quence ⟨∆0, A0⟩, . . . , ⟨∆n, An⟩ of pairs, where each ∆i is

DIMACS

p cnf 4 8
1 -2 0

2 -4 0
1 2 4 0
-1 -3 0
1 -3 0
-1 3 0
1 3 -4 0
1 3 4 0

DRAT

-3 0
1 2 0
-1 0
-3 0
1 0

d 1 2 0
0

Fig. 1. DIMACS formula and corresponding proof in DRAT format.

a set of clauses and each Ai is a set of literals called
assumptions. In each solving phase i ∈ 0, . . . , n, the task
is to determine satisfiability of the union of the first i sets
of clauses under the single set Ai of assumptions, i.e., to
determine satisfiability of ∆0 ∪ · · · ∪∆i ∪ {(l) | l ∈ Ai}.

File Formats and Proofs. In non-incremental SAT, formulas
are typically specified in the DIMACS format. DIMACS
files feature a header of the form ‘p cnf #variables
#clauses’ followed by a list of clauses. Each clause is
represented by a list of integers, with a 0 denoting the end of
a clause. For example, the clause (x1∨ x̄2∨x3) is represented
as ‘1 -2 3 0’. An example formula in DIMACS format is
given in Fig. 1.

The current standard format for proofs is DRAT (short for
Deletion Resolution Asymmetric Tautology) [12]. A DRAT
file specifies a sequence of proof statements, which are
either clause additions or clause deletions. Formally, a
DRAT proof of a formula F can be seen as a sequence
⟨s1, C1⟩, . . . , ⟨sm , Cm⟩, where each si ∈ {a, d} and each Ci

is a clause. A proof of F gives rise to an accumulated formula
as follows (where F0 := F ):

Fi =

{︄
Fi−1 ∪ {Ci} if si = a

Fi−1 \ {Ci} if si = d

Each added clause Ci must have the RAT property [16] with
respect to Fi−1. RAT (short for Resolution Asymmetric Tautol-
ogy) is a non-monotonic syntactic property that is checkable
in polynomial time and that guarantees that the clause addition
preserves satisfiability. Further details of RAT are not essential
to our paper, we refer the interested reader to [16] for more
information.

Deletions can remove arbitrary clauses from the accumu-
lated formula; they clearly preserve satisfiability. A valid
DRAT proof of unsatisfiability ends with the addition of the
empty clause. Because the empty clause is trivially unsatis-
fiable (and since each proof step preserves satisfiability) the
unsatisfiability of the original formula F can be concluded.
DRAT has a plain-text format and a more compact binary
format. An example plain-text DRAT proof is given in Fig. 1
(note that deletions are preceded by a d symbol whereas
additions are not preceded by any symbol; a 0 marks the end
of a statement).

Example 1. The DRAT proof on the right of Fig. 1 is a proof of
the DIMACS file on the left. It derives all clauses from earlier

133



clauses via a RAT derivation step. For example, the first line
of the DRAT proof, clause -3, can be derived using resolution
(which satisfies RAT) from the fourth and fifth clauses of the
DIMCAS file: -1 -3 and 1 -3. Similarly, the next clause
1 2 can be derived via resolution from the second and third
clauses: 2 -4 and 1 2 4. The remaining clauses can be
derived via similar resolution steps. The deletion step d 1
2 removes the clause 1 2 from the accumulated formula,
reducing the proof search space. As the derivation ends with
the empty clause, unsatisfiability of the original formula is
proved.

B. Inprocessing in Incremental SAT Solving

Inprocessing in SAT relies on adding and deleting redun-
dant clauses both before and during solving. A clause C
is considered redundant with respect to a formula F if F
and F ∧ C are equisatisfiable. An overview of common
inprocessing techniques is given in [8]. In practice, solvers
often delete clauses that are not implied but still redundant.
When it comes to clause additions, however, they usually
only add clauses that are implied (clauses that are not im-
plied are only learned by special techniques like extended
resolution [17], blocked-clause addition [18], and satisfaction-
driven clause learning [19], which most solvers don’t use
by default). Fazekas et al. [10] have recently presented a
calculus to capture the inner workings of modern incremental
SAT solvers. Intuitively, a solver whose solving process can
be expressed by the calculus is guaranteed to return correct
results. We refer the interested reader to the paper for details.
Since our work builds on their results, we give a high-level
overview here.

The calculus consists of seven derivation rules that operate
over triples ⟨φ, ρ, σ⟩, where φ is called the set of irredundant
clauses, ρ is the set of redundant clauses, and σ is the so-
called reconstruction stack, which we describe in detail later.

Most practical techniques in non-incremental SAT solving
without inprocessing are captured by four derivation rules
called LEARN−, STRENGTHEN, FORGET, and DROP.1 In-
tuitively, the calculus starts out with all input clauses in
the irredundant set φ and adds new implied clauses to the
redundant set ρ via the LEARN− rule. Clauses from the
redundant set ρ can be moved to the irredundant set φ via the
unconditional STRENGTHEN rule. The FORGET rule enables
the unconditional deletion of clauses from ρ, and the DROP
rule enables the deletion of clauses from φ if they are implied.

The calculus contains three more rules—WEAKEN+,
ADDCLAUSES, and RESTORE—that enable the sound com-
bination of inprocessing and incremental solving. These three
rules interact with the reconstruction stack σ, which in practice
is a crucial ingredient for solvers that perform non-trivial
preprocessing or inprocessing. Formally, the reconstruction
stack is a sequence (ω1 : C1), . . . , (ωn : Cn), where each Ci a
clause and each ωi is a set of literals (called the witness) such

1The minus symbol in the rule LEARN− and the plus symbol in the later
rule WEAKEN+ are used because the rules are modified versions of rules
LEARN and WEAKEN from an earlier calculus described in [16].

that Ci ∩ ωi ̸= ∅; (ωi : Ci) is also called a witness-labeled
clause.

Using the WEAKEN+ rule, clauses of the irredundant set φ
can be removed if they are determined to be equisatisfiability-
redundant. When such clauses are deleted during solving,
however, the solver might later find an assignment that satisfies
the resulting formula but not the deleted clauses. To efficiently
recover a satisfying assignment of the original formula, the
solver stores these clauses on the reconstruction stack to
later perform model reconstruction. When performing model
reconstruction, the solver starts with the assignment α and
iterates over the reconstruction stack in reverse order, checking
for each witness-labeled clause (ω : C) whether C is satisfied
by α. If C is satisfied, it can be skipped, otherwise α is
modified by making all literals in ω true (denoted by α ◦ ω).

Formally, the reconstruction function R, which maps an
assignment and a reconstruction stack to a new assignment, is
defined as follows (ϵ denotes the empty sequence; concatena-
tion of sequences σ and σ′ is denoted by σ · σ′):

R(α, ϵ) = α,

R(α, σ · (ω : C)) =

{︄
R(α, σ) if α(C) = 1

R(α ◦ ω, σ) otherwise

Since C ∩ ω ̸= ∅, making ω true also makes C true, but
the solver must ensure that making ω true does not falsify
any of the other clauses. For non-incremental SAT solving,
all state-of-the-art inprocessing techniques generate witness-
labeled clauses in such a way that this is guaranteed, and in
most cases (like bounded variable elimination [20], pure-literal
elimination, or blocked-clause elimination [21]), ω consists of
only a single literal.

When incremental solving comes into play, however, things
get tricky because the deletion of non-implied clauses can
weaken a formula. The naive addition of clauses later on
during incremental calls can then lead to unsound results.
This observation led Fazekas et al. to the introduction of the
rules ADDCLAUSES and RESTORE in their calculus. Before
explaining the two rules, we give an example to illustrate the
problem.

Example 2 (from [10]). Consider the Boolean formula F =
(a∨b)∧(ā∨b̄). This formula is clearly satisfiable, and there are
inprocessing techniques (e.g., blocked-clause elimination) that
would delete the clause (ā∨ b̄) to obtain F ′ = (a∨ b), which
is also satisfiable. Now, assume that at the next incremental
call, the unit clauses (a) and (b) are added. The formula F ∧
(a) ∧ (b) = (a ∨ b) ∧ (ā ∨ b̄) ∧ (a) ∧ (b) is then unsatisfiable
whereas F ′ ∧ (a) ∧ (b) = (a ∨ b) ∧ (a) ∧ (b) is satisfiable.
The deletion of (ā ∨ b̄) thus weakened the formula too much,
leading to unsound results.

The key insight for incremental solving from [10] is that
whenever a new set ∆i of clauses is added to the problem
at an incremental solver call, the solver can ensure soundness
by moving some of the previously-deleted clauses back from
the reconstruction stack σ to the set φ of irredundant clauses.

134



1: function RESTOREADDCLAUSES(∆: clauses, σ: stack)
2: (ω1 : C1), . . . , (ωn : Cn) := σ
3: for i from 1 to n do
4: if exists l ∈ ωi where l̄ occurs in ∆ then
5: ∆ := ∆ ∪ {Ci}, σ := σ \ (ωi : Ci)

6: return ⟨∆, σ⟩

Fig. 2. Algorithm RestoreAddClauses to restore clauses.

This process is called clause restoration, and it is based on
the notion of a clean clause.

Definition 1 (Clean Clause [10]). A clause C is clean with
respect to a sequence of witness-labeled clauses σ if for all
(ω : C ′) ∈ σ, we have that {l̄ | l ∈ C} ∩ ω = ∅.

A clause is thus clean with respect to σ if it does not contain
the negations of literals that serve as witnesses in σ. Cleanli-
ness of a clause ensures that whenever model reconstruction
takes place at the end of incremental solving, the truth of clean
clauses is not affected because making a witness ω true cannot
falsify clean clauses.

Given that satisfiability is preserved for clean clauses, when
we add a set ∆ of new clauses, we must ensure that they
are clean with respect to the current reconstruction stack. The
ADDCLAUSES rule thus has the precondition that only clean
clauses can be added. Taken at face value, this would seem to
make it very difficult to perform inprocessing with incremental
solving: what if we need to add clauses that are not clean?
This situation is where the RESTORE rule comes into play. The
RESTORE rule allows moving a clause from the reconstruction
stack back to the set of irredundant clauses as long as the
clause is clean with respect to the subsequent portion of the
reconstruction stack:

⟨φ, ρ, σ · (ω : C) · σ′⟩
RESTORE: (C is clean w.r.t. σ′)

⟨φ ∧ C, ρ, σ · σ′⟩
Thus, whenever we want to add unclean clauses at an

incremental solver call, we can turn them into clean clauses
by first restoring all labeled clauses of the reconstruction
stack that would make them unclean. This is achieved with
the algorithm RestoreAddClauses [10] shown in Fig. 2.
The algorithm iterates over the stack starting at the bottom,
continuously restoring clauses that would prevent cleanliness
of the new clauses. To make sure that the precondition of
the RESTORE rule (C is unclean w.r.t. σ′) is fulfilled, it also
restores clauses that would prevent cleanliness of previously
restored clauses.

With this background, we can now state the problem we are
trying to solve.

III. PROBLEM STATEMENT

The work in [10] presents a sound calculus for solvers to
perform incremental solving with inprocessing, but it does not
define how a solver based on that calculus could efficiently
produce an independently-checkable proof. This is also the
reason why the SAT solver CaDiCaL, which in [10] was

augmented with the RestoreAddClauses algorithm, does
not produce valid proofs when using inprocessing during
incremental solving.

Our goal is to obtain a valid DRAT proof from a solver
based on the incremental inprocessing calculus in [10]. The
calculus requires that all clauses derived by a solver are
implied. Strictly speaking, this would allow the addition of
implied clauses that do not necessarily have the RAT property.
In practice, however, all state-of-the-art CDCL solvers derive
only clauses with the so-called RUP (short for Reverse Unit
Propagation) property—a simpler property guaranteeing that
the clauses are implied and have the RAT property (see [22],
[23] for details on RUP). Hence, we require that solvers derive
clauses with the RUP property, meaning that our approach
applies to virtually all existing solvers. RUP is monotonic: If
a clause has the RUP property with respect to a formula F , it
also has it with respect to each superset of F .

Proof checkers for DRAT require as input both a for-
mula and a corresponding proof. We produce proofs in
such a way that they can be checked against the formula
consisting of all incrementally added clauses, plus a unit
clause for each literal in the final assumption. More formally,
let ⟨∆0, A0⟩, . . . , ⟨∆n, An⟩ be an unsatisfiable incremental
problem. We then produce a DRAT proof of the formula
∆0 ∪ · · · ∪∆n ∪ {(l) | l ∈ An}.

The four derivation rules LEARN−, STRENGTHEN, FOR-
GET, and DROP can be accommodated in a straightforward
way in DRAT: LEARN− corresponds to a clause addition
(of the learned clause), STRENGTHEN is not reflected in the
proof (as DRAT does not distinguish between redundant and
irredundant clauses), and both FORGET and DROP correspond
to clause deletions in DRAT.

Applications of ADDCLAUSES don’t need to be represented
in the proof trace because we simply consider all clauses that
are added incrementally part of the initial formula. Thus, in
the DRAT proof trace, everything that was derived using these
clauses can still be derived because they are part of the proof’s
accumulated formula.

The problem is how to express applications of WEAKEN+

and corresponding applications of RESTORE. One option is
to represent WEAKEN+ by clause deletion. However, if we
then naively express RESTORE by clause addition, we run into
soundness problems. Specifically, a clause that had the RAT
property at the point of WEAKEN+/deletion (which is the case
for most clauses deleted during practical inprocessing) might
not have the RAT property at the point of restoration anymore.
This would render the clause addition in the proof invalid.
Intuitively, this is because the RAT property is influenced by
additions and deletions happening between a clause’s initial
deletion and its restoration. For readers familiar with the de-
tails of the RAT property, the following example demonstrates
this on a concrete formula:

Example 3. Consider the formula (x̄ ∨ y) ∧ (x ∨ z̄) ∧ (ȳ ∨
z) ∧ (x̄ ∨ z). The clause (ȳ ∨ z), which has the RAT property
(as an interested reader might convince themselves of ) can be

135



deleted and put on the reconstruction stack. The clause (x̄∨z)
can be subsequently deleted because it has the RAT property
with respect to the remaining clauses. We end up with the
formula (x̄∨y)∧ (x∨ z̄). Now assume that we want to restore
the clause (ȳ ∨ z), e.g., because we want to solve under the
assumption (y). If we tried to add the clause to a DRAT proof,
the proof would become invalid because (ȳ∨z) does not have
the RAT property with respect to the remaining formula—the
clause (x ∨ z̄) was crucial for establishing the RAT property,
but it has been deleted.

Because solvers can use restored clauses to derive further
clauses, the restored clauses need to enter the accumulated
formula of the proof, otherwise those derivations become
invalid. We thus need another way to express RESTORE in
a DRAT proof.

IV. ALGORITHM FOR PROOF PRODUCTION

To handle applications of RESTORE in DRAT proofs and
thus support proofs for incremental solving with inprocessing,
we propose the following approach:

• We first produce an augmented proof trace (which itself
is not a valid DRAT proof) where all applications of
WEAKEN+ are logged as deletions and all applications
of RESTORE are logged with a new dedicated proof rule.

• In a post-processing step, we then make use of the
restoration information to convert the augmented proof
trace into a valid DRAT proof.

The idea is surprisingly simple: Instead of trying to add
restored clauses to the proof via clause additions, we act as if
they hadn’t been deleted in the first place.

Specifically, whenever a solver applies the RESTORE rule to
restore a clause C from the reconstruction stack, we add to the
proof trace a novel statement of the form ⟨r, C⟩. The resulting
augmented proof trace is a sequence ⟨s1, C1⟩, . . . , ⟨sm, Cm⟩,
where each si ∈ {a, d, r} and each Ci is a clause. Similar to a
normal DRAT proof trace, we define an accumulated formula
as follows:

F0 = clauses in the original problem

Fi =

{︄
Fi−1 ∪ {Ci} if si ∈ {a, r}
Fi−1 \ {Ci} if si = d

Given that, as assumed earlier, all clauses derived by the
solver are RUP (and thus RAT) clauses with respect to the
accumulated formula, this holds for all clause additions in the
augmented proof as well. Only the clause restorations are not
justified, but we deal with them during post-processing.

The post-processing, which we describe in detail below, is
formalized via the post-processing function Φ, which takes

as arguments an augmented proof trace P together with an
(initially empty) set R of restored clauses.

Φ(ϵ, R) = ϵ

Φ(P · ⟨s, C⟩, R) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ(P,R) · ⟨a, C⟩ if s = a

Φ(P,R ∪ {C}) if s = r

Φ(P,R \ {C}) if s = d ∧ C ∈ R

Φ(P,R) · ⟨d, C⟩ if s = d ∧ C ̸∈ R

Intuitively, Φ traverses the augmented proof trace in reverse
order, statement by statement. When the algorithm encounters
a clause addition, it simply adds it to the new proof trace.
When it encounters a clause restoration, it adds the clause to
the set R but does not add anything to the new proof trace.
Finally, when it encounters a deletion, it checks whether the
deleted clause is contained in R, and if so, removes the deleted
clause from R without changing the proof trace, otherwise it
just adds the deletion to the new proof trace. The resulting
proof trace is a subsequence of the original proof P .

Example 4. Consider the augmented proof trace P = ⟨a, x∨
y⟩, ⟨d, y∨ z⟩, ⟨d, z̄ ∨u⟩, ⟨r, y∨ z⟩, ⟨a, x∨ ū⟩. At the beginning,
R := ∅. The post-processing function Φ traverses P in reverse
order, starting with ⟨a, x ∨ ū⟩, which it appends to the result
of the recursive call for the remainder of the list: Φ(⟨a, x ∨
y⟩, ⟨d, y∨z⟩, ⟨d, z̄∨u⟩, ⟨r, y∨z⟩, ∅)·⟨a, x∨ū⟩. It next encounters
the restoration ⟨r, y ∨ z⟩ and thus sets R := {y ∨ z} for the
recursive call. When it next encounters the deletion ⟨d, z̄∨u⟩,
it adds it to the processed proof because the clause is not in the
restore set R: Φ(⟨a, x∨y⟩, ⟨d, y∨z⟩, {y∨z})·⟨d, z̄∨u⟩, ⟨a, x∨
ū⟩. However, for the next deletion, ⟨d, y ∨ z⟩, the clause is
already in R. Thus the deletion is not added to the processed
proof but instead, the clause is removed from R. Finally, the
addition ⟨a, x∨y⟩ is also added to the processed proof, so we
end up with the proof ⟨a, x ∨ y⟩, ⟨d, z̄ ∨ u⟩, ⟨a, x ∨ ū⟩.

As we can see in Example 4, the clause (y ∨ z) was
restored during solving and thus ⟨r, y ∨ z⟩ was part of the
augmented proof trace. In the final proof trace, however, the
clause is never even deleted. Intuitively, the consequence for
the accumulated formula is that it always contains all the
clauses required to make further derivations. More specifically,
consider the augmented proof trace P and the processed
proof P ′, where the latter is a subsequence of the former.
If we compare the accumulated formulas of each proof after
any proof statement ⟨si, Ci⟩ contained in both P ′ and P ,
we observe that the accumulated formula with respect to P ′

contains all clauses of the accumulated formula with respect
to P .

Since we assume all added clauses are RUP (and thus RAT)
clauses, and since RUP is monotonic, we obtain a valid DRAT
proof in which all clause additions fulfill the RAT property.

V. IMPLEMENTATION

We implemented our approach on top of the incremental
inprocessing SAT solver CaDiCaL. In particular, we added

136



the capability to produce augmented proofs with restore state-
ments. As restorations only occur during incremental solving
with inprocessing, our changes to CaDiCaL do not impact
non-incremental solving. Additionally, we implemented proof
post-processing in a dedicated tool. The tool traverses a proof
backwards, printing all proof statements immediately (instead
of prepending them to an internal data structure) to keep the
memory requirements low. Since this leads to a reversed proof,
we reverse it again at the end to get a valid DRAT proof.
Our toolchain can produce DRAT proofs in both the plain-
text format and the binary format.

In order to obtain valid proofs, we made changes to CaD-
iCaL to maintain the invariant that each clause restoration is
preceded by a corresponding deletion. This invariant, which
we used when arguing about correctness of our approach, is
guaranteed to hold if a solver records all applications of the
WEAKEN+ rule as deletions in the proof. In practice, however,
there are additional subtleties that need to be taken care of to
make sure this is the case. We now explain the three most
important changes to CaDiCaL to provide solver developers
with guidance for implementing our approach on top of other
solvers.

A. Deletion of Binary Clauses

When CaDiCaL logically deletes a clause during solving,
it immediately marks the clause as deleted but only later,
during garbage collection, really removes it from memory.
For non-binary clauses, it logs a deletion statement to the
proof immediately after logical deletion. For binary clauses,
however, the deletion is only logged once the clause is really
removed during garbage collection. For binary clauses, this
could lead to the case where a clause is first marked deleted
and then restored, but the deletion is only logged in the
proof trace after restoration. The fix is simple: ensure garbage
collection is triggered before restoration; thus all deletions
occur in the proof before their corresponding restorations.

B. Proper Handling of Equivalent-Literal Substitution

CaDiCaL performs an inprocessing technique called
equivalent-literal substitution [24] (“decompose” in
CaDiCaL’s code). The technique identifies equivalent
literals in the binary implication graph of a formula and then
substitutes a single representative literal for each equivalence
class of literals. For example, if x and y are identified as
equivalent, CaDiCaL might replace all occurrences of y by x.
To later reconstruct a proper model for the removed literals,
CaDiCaL adds to the reconstruction stack an equivalence
(x̄ ∨ y) ∧ (x ∨ ȳ) for each removed y and representative x.
These clauses are never explicitly added or deleted and thus
they are not represented in the proof. However, as they are
on the reconstruction stack, CaDiCaL may restore them. To
deal with this situation, we add the equivalences to the proof
(which is allowed because they are trivially RUP) and then
immediately delete them again. This allows us to remove the
deletions during post-processing, ensuring proper derivation
of the equivalences in the proof.

C. Internal and External Representations of Literals

CaDiCaL maintains both an internal and an external rep-
resentation of literals, together with mappings between these
representations. This is because the solver sometimes removes
literals and then remaps the remaining ones to save mem-
ory (e.g., when performing equivalent-literal substitution as
above). This can lead to problems when restoring clauses. For
example, when a clause is restored and immediately simplified
(because some of its literals are falsified or satisfied at the
top level), the solver deletes the original clause and adds the
simplified clause to the proof. In particular, the solver first
maps the restored clause to an internal representation before
remapping it to an external representation when performing
the deletion—this “round trip” can lead to a different external
representation than the one originally deleted. In our imple-
mentation, we modified the corresponding code to ensure that
the deleted and restored clauses match in the proof.

VI. EVALUATION

To evaluate our approach in practice, we plugged our
proof-producing version of CaDiCaL into CaMiCaL [10],
a SAT-based bounded model checker that runs on AIGER
models [25] used in the hardware model checking competition
(HWMCC) [13]. Following the experiment in [10], we ran
CaMiCaL on the 300 models of the single safety property
track of HWMCC’17 [13], up to bound 1000 with a time
limit of 3600 seconds per model. In [10], it was shown that
on these models, enabling inprocessing with clause restoration
leads to a significant performance improvement compared to
disabling inprocessing or running it only in a restricted way,
e.g., by freezing [6] certain variables.

We ran our experiments on an Amazon EC2 m5d.metal
instance, which has an AWS-custom Intel Xeon Scalable
(Skylake) processor with 96 vCPUs, 384 GiB memory, and
four 900 GB SSDs, running Amazon Linux 2. We ran 24
benchmark processes in parallel.

Our primary goal was to demonstrate that our approach pro-
duces valid DRAT proofs. For each model of the benchmark
set, we performed a CaMiCaL run and generated a DRAT
proof for the highest unsatisifiable bound solved by CaMiCaL
within the time limit. This means that for unsatisfiable prob-
lems, we took the highest solved bound whereas for satisfiable
problems, we took the second highest solved bound (as it
yields an UNSAT result). There were four problems that were
satisfiable at the first bound and another two problems for
which CaMiCaL timed out while attempting to solve the first
bound, leaving 294 problems with an UNSAT result.2

To check the correctness of the resulting DRAT proof for
each problem, we extracted from CaMiCaL a DIMACS file in-
cluding all clauses that were added incrementally to CaDiCaL
during solving as well as unit clauses for the assumptions
of the final unsatisfiable call (i.e., one unit clause per as-
sumption). We then passed the DIMACS file together with

2The problems satisfiable at the first bound are 6s389b02.aig, bob-
miterbm1or.aig, bobsynth13.aig, and bobtuint24.aig; the problems for which
CaMiCaL timed out at the first bound are 6s128.aig and 6s398b09.aig.

137



0 1000 2000 3000 4000 5000 6000 7000
Size of Unprocessed Proof Trace (MB)

0

100

200

300

400

500

600

Pr
oo

f R
ec

on
st

ru
ct

io
n 

Ti
m

e 
(s

)

Fig. 3. Proof Reconstruction Time vs. Size of Proof Trace.

0 500 1000 1500 2000 2500 3000 3500
Total Solving Time (s)

0

100

200

300

400

500

600

Pr
oo

f R
ec

on
st

ru
ct

io
n 

Ti
m

e 
(s

)

Fig. 4. Proof Reconstruction Time vs. Total Solving Time.

the corresponding DRAT proof—obtained by post-processing
the original proof trace with our tool—to the proof checker
DRAT-trim [12]. For all 294 problems, DRAT-trim confirmed
that the proofs were correct.

To get an idea of the overhead introduced by our post-
processing approach, we measured the time spent on post-
processing as compared to solving. On average, the overhead
of post-processing was 5.3% of the actual solving time (i.e.,
the time spent inside the SAT solver, not the whole time spent
by the model checker). The time to post-process is linear in the
size of the proof trace, as shown in Fig. 3. The figure shows
that our implementation takes a little more than a minute to
post-process 1 GB of proof. While fast, the overhead varies
considerably between problems, as the proof size is not a
function of the solving time, i.e., two solver runs that take
the same time might produce proofs of different sizes, as is
illustrated in Fig. 4.

Next, we present performance measurements from our ex-
periments to give an indication of the performance of our
approach as compared to an alternate approach to generating
a proof by solving the corresponding bound with CaDiCaL
monolithically from scratch using non-incremental solving

1000 2000 3000 4000 5000 6000 7000
Proof Reconstruction Time (s)

1000

2000

3000

4000

5000

6000

7000

Si
ng

le
-S

ho
t S

ol
vi

ng
 T

im
e 

(s
)

Fig. 5. Proof Reconstruction vs. Single-Shot Solving.

with proof generation enabled. For example, if CaMiCaL was
able to solve n bounds of an incremental problem, we take the
propositional formula corresponding to bound n and solve it
non-incrementally with a new CaDiCaL instance that produces
a proof. We then compare the time it takes CaDiCaL to
produce that proof with the time it takes to post-process the
incremental proof with our approach, to see which approach is
more efficient. In this experiment, we gave the non-incremental
CaDiCaL a timeout of 7200 seconds, i.e., twice the CaMiCaL
timeout. While we believe these numbers are informative, we
note that they are not representative for general incremental
SAT solving as they only apply to our restricted benchmark
set (which we chose primarily to demonstrate soundness, as it
triggers many clause restorations).

Fig. 5 compares the two approaches. Clearly, post-
processing an incremental proof trace is much more efficient
than re-solving a formula from scratch. In particular, there
were 13 instances for which CaDiCaL timed out when trying
to solve them in a single shot. This is not a surprise: there
is no guarantee that a problem that is solvable incrementally
can also be solved in a single shot, whereas post-processing a
proof takes a small overhead that can be estimated based on
the size of the unprocessed proof trace.

The results are less clear when we consider the sum of time
spent on post-processing/single-shot solving and on checking
the resulting proofs. For this comparison, we excluded the
13 instances for which CaDiCaL timed out when solving
them in a single shot; Fig. 6 shows the results. Although our
approach is 13% faster on average, there are several problems
where the monolithic approach is faster. One reason for this
is that incremental proofs are usually larger than the ones
produced by single-shot solving, as illustrated in Fig. 7. To
summarize, on the models of the single safety property track
of HWMCC’17, post-processing incremental proofs is faster
than producing proofs from scratch in a single shot, with the
latter carrying the risk of timeouts. On the flip side, if single-
shot solving succeeds, it tends to produce shorter proofs, which
can in turn be checked faster.

138



1000 2000 3000 4000 5000 6000 7000
Proof Reconstruction + Proof Checking (s)

1000

2000

3000

4000

5000

6000

7000
Si

ng
le

-S
ho

t S
ol

vi
ng

 +
 P

ro
of

 C
he

ck
in

g 
(s

)

Fig. 6. Proof Reconstruction vs. Single-Shot Solving (incl. Checking).

10 2 10 1 100 101 102 103 104

Size of Incremental Proof (MB)

10 2

10 1

100

101

102

103

104

Si
ze

 o
f S

in
gl

e-
Sh

ot
 P

ro
of

 (M
B)

Fig. 7. Proof Size: Incremental vs. Single-Shot Solving (log scale).

VII. CONCLUSION AND FUTURE WORK

We have presented an efficient approach to generate proofs
for inprocessing incremental solvers based on the calculus
from [10]. We augment the DRAT [12] proof format by
adding restore steps to the proof. These steps can be effi-
ciently removed during post-processing, yielding a standard
DRAT proof. We implemented the approach on top of the
CaDiCaL [26] solver and demonstrated its soundness and
efficiency against the benchmark suite from HWMCC’17 [13].
For these benchmarks, proof generation adds 2.9% average
overhead to solving. Post-processing adds 5.3% average over-
head.

We compared our approach to a monolithic one in which
we solved the final formula in a single shot and generated
proofs during this step. If solving times are compared, our
approach is faster, as it does not require a “from scratch” solve
of the entire problem. As our incremental proofs are larger
than the DRAT proofs generated by the monolithic solve, the
picture including proof-checking times is mixed. Although our
approach is faster on average when measuring the sum of
solving plus proof checking times, there are examples where
the situation is reversed.

There are two important advantages of our approach vs. re-
solving the final problem monolithically. First, it always yields
a solution, whereas the monolithic approach sometimes times
out on our benchmark set. Second, it provides a foundation
that can be adapted in future work towards efficiency and
robustness improvements for inprocessing incremental solvers
as discussed in the following.

When the LRAT support for CaDiCaL described in a future
paper [27] is integrated into the main repository, we will con-
vert the augmented DRAT format to LRAT (the deletions and
restorations are the same). In the results in [27], converting,
trimming, and checking proofs is approximately 5.5x faster
than for DRAT; this will lower the overhead for proof checking
in our approach relative to the solving time for the monolithic
problem. We also plan to examine how to use augmented
proof traces to migrate state of incremental solvers, extending
the work from [28] to support incremental use-cases. By
combining the migration approach with our proof approach,
we can migrate solver state between multiple platforms and
later combine the resulting incremental proof fragments. This
support allows us to better utilize cloud resources and build
solvers that can be restarted after machine failures. Finally, we
can adapt our approach for use in distributed incremental solv-
ing, as was earlier demonstrated for monolithic solving [29].

REFERENCES

[1] S. Gocht and T. Balyo, “Accelerating SAT based planning with
incremental SAT solving,” in Proceedings of the Twenty-Seventh
International Conference on Automated Planning and Scheduling,
ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017,
L. Barbulescu, J. Frank, Mausam, and S. F. Smith, Eds. AAAI Press,
2017, pp. 135–139. [Online]. Available: https://aaai.org/ocs/index.php/
ICAPS/ICAPS17/paper/view/15580

[2] R. Sebastiani, “Lazy satisability modulo theories,” J. Satisf. Boolean
Model. Comput., vol. 3, no. 3-4, pp. 141–224, 2007. [Online].
Available: https://doi.org/10.3233/sat190034

[3] P. Mishra and M. Chen, “Efficient techniques for directed test
generation using incremental satisfiability,” in Proceedings of the 2009
22nd International Conference on VLSI Design, ser. VLSID ’09.
USA: IEEE Computer Society, 2009, p. 65–70. [Online]. Available:
https://doi.org/10.1109/VLSI.Design.2009.72

[4] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental sat solving,” in
2015 IEEE 8th International Conference on Software Testing, Verifica-
tion and Validation (ICST), 2015, pp. 1–10.

[5] A. Biere, “Bounded model checking,” in Handbook of Satisfiability
- Second Edition, ser. Frontiers in Artificial Intelligence and
Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds. IOS Press, 2021, vol. 336, pp. 739–764. [Online]. Available:
https://doi.org/10.3233/FAIA201002

[6] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electron. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–
560, 2003. [Online]. Available: https://doi.org/10.1016/S1571-0661(05)
82542-3

[7] S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker, “Incremental
preprocessing methods for use in BMC,” Formal Methods Syst.
Des., vol. 39, no. 2, pp. 185–204, 2011. [Online]. Available:
https://doi.org/10.1007/s10703-011-0122-4

[8] A. Biere, M. Järvisalo, and B. Kiesl, “Preprocessing in SAT solving,”
Handbook of Satisfiability, vol. 336, pp. 391–435, 2021.

[9] A. Nadel, V. Ryvchin, and O. Strichman, “Preprocessing in incremental
SAT,” in Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-20, 2012.
Proceedings, ser. Lecture Notes in Computer Science, A. Cimatti and
R. Sebastiani, Eds., vol. 7317. Springer, 2012, pp. 256–269. [Online].
Available: https://doi.org/10.1007/978-3-642-31612-8_20

139

https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15580
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15580
https://doi.org/10.3233/sat190034
https://doi.org/10.1109/VLSI.Design.2009.72
https://doi.org/10.3233/FAIA201002
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1007/s10703-011-0122-4
https://doi.org/10.1007/978-3-642-31612-8_20


[10] K. Fazekas, A. Biere, and C. Scholl, “Incremental inprocessing in SAT
solving,” in Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal,
July 9-12, 2019, Proceedings, ser. Lecture Notes in Computer Science,
M. Janota and I. Lynce, Eds., vol. 11628. Springer, 2019, pp. 136–154.
[Online]. Available: https://doi.org/10.1007/978-3-030-24258-9_9

[11] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[12] M. J. H. Heule, “The DRAT format and drat-trim checker,” CoRR, vol.
abs/1610.06229, 2016. [Online]. Available: http://arxiv.org/abs/1610.
06229

[13] A. Biere, T. van Dijk, and K. Heljanko, “Hardware model checking
competition 2017,” in 2017 Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, D. Stewart
and G. Weissenbacher, Eds. IEEE, 2017, p. 9. [Online]. Available:
https://doi.org/10.23919/FMCAD.2017.8102233

[14] N. Wetzler, M. J. Heule, and W. A. H. Jr., “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Theory
and Applications of Satisfiability Testing - SAT 2014 - 17th
International Conference, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
ser. Lecture Notes in Computer Science, C. Sinz and U. Egly,
Eds., vol. 8561. Springer, 2014, pp. 422–429. [Online]. Available:
https://doi.org/10.1007/978-3-319-09284-3_31

[15] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds.,
Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009, vol. 185. [Online]. Available:
http://dblp.uni-trier.de/db/series/faia/faia185.html

[16] M. Järvisalo, M. J. Heule, and A. Biere, “Inprocessing rules,” in
Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings, ser. Lecture
Notes in Computer Science, B. Gramlich, D. Miller, and U. Sattler,
Eds., vol. 7364. Springer, 2012, pp. 355–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-31365-3_28

[17] G. Audemard, G. Katsirelos, and L. Simon, “A restriction of
extended resolution for clause learning SAT solvers,” in Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, M. Fox
and D. Poole, Eds. AAAI Press, 2010. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1811

[18] O. Kullmann, “On a generalization of extended resolution,” Discret.
Appl. Math., vol. 96-97, pp. 149–176, 1999. [Online]. Available:
https://doi.org/10.1016/S0166-218X(99)00037-2

[19] M. J. H. Heule, B. Kiesl, M. Seidl, and A. Biere, “Pruning
through satisfaction,” in Hardware and Software: Verification and
Testing - 13th International Haifa Verification Conference, HVC
2017, Haifa, Israel, November 13-15, 2017, Proceedings, ser. Lecture
Notes in Computer Science, O. Strichman and R. Tzoref-Brill,
Eds., vol. 10629. Springer, 2017, pp. 179–194. [Online]. Available:
https://doi.org/10.1007/978-3-319-70389-3_12

[20] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.
[Online]. Available: https://doi.org/10.1007/11499107_5

[21] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,” in
Tools and Algorithms for the Construction and Analysis of Systems,
16th International Conference, TACAS 2010, Held as Part of the
Joint European Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, ser.
Lecture Notes in Computer Science, J. Esparza and R. Majumdar,
Eds., vol. 6015. Springer, 2010, pp. 129–144. [Online]. Available:
https://doi.org/10.1007/978-3-642-12002-2_10

[22] E. I. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability
for CNF formulas,” in 2003 Design, Automation and Test in
Europe Conference and Exposition (DATE 2003), 3-7 March 2003,
Munich, Germany. IEEE Computer Society, 2003, pp. 10 886–10 891.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/DATE.
2003.10008

[23] A. V. Gelder, “Verifying RUP proofs of propositional
unsatisfiability,” in International Symposium on Artificial
Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale,
Florida, USA, January 2-4, 2008, 2008. [Online]. Avail-
able: http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_
0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf

[24] M. Heule, M. Järvisalo, and A. Biere, “Efficient CNF simplification
based on binary implication graphs,” in Theory and Applications of
Satisfiability Testing - SAT 2011 - 14th International Conference,
SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, ser.
Lecture Notes in Computer Science, K. A. Sakallah and L. Simon,
Eds., vol. 6695. Springer, 2011, pp. 201–215. [Online]. Available:
https://doi.org/10.1007/978-3-642-21581-0_17

[25] A. Biere, T. van Dijk, and K. Heljanko, “Aiger 1.9 and beyond,” In-
stitute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstrasse 69, 4040 Linz, Austria, FMV Reports Series, 2011.

[26] A. Biere, “CaDiCaL at the SAT Race 2019,” in Proc. of SAT Race 2019
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, M. Heule, M. Järvisalo, and M. Suda,
Eds., vol. B-2019-1. University of Helsinki, 2019, pp. 8–9.

[27] F. Pollitt, M. Fleury, and A. Biere, “Efficient proof checking with lrat in
cadical (work in progress),” in 26th GMM/ITG/GI Workshop on Methods
and Description Languages for Modelling and Verification of Circuits
and Systems, MBMV 2023, Freiburg, Germany, March 23-23, 2023,
A. Biere and D. GroÃŸe, Eds. VDE, 2023, pp. 64–67, accepted.

[28] A. Biere, M. S. Chowdhury, M. J. Heule, B. Kiesl-Reiter, and
M. Whalen, “Migrating solver state,” in SAT 2022, 2022. [Online]. Avail-
able: https://www.amazon.science/publications/migrating-solver-state

[29] D. Michaelson, D. Schreiber, M. J. Heule, B. Kiesl-
Reiter, and M. Whalen, “Unsatisfiability proofs for dis-
tributed clause-sharing sat solvers,” in TACAS 2023,
2023. [Online]. Available: https://www.amazon.science/publications/
unsatisfiability-proofs-for-distributed-clause-sharing-sat-solvers

140

https://doi.org/10.1007/978-3-030-24258-9_9
http://arxiv.org/abs/1610.06229
http://arxiv.org/abs/1610.06229
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.1007/978-3-319-09284-3_31
http://dblp.uni-trier.de/db/series/faia/faia185.html
https://doi.org/10.1007/978-3-642-31365-3_28
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1811
https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.1007/978-3-319-70389-3_12
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008
https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://doi.org/10.1007/978-3-642-21581-0_17
https://www.amazon.science/publications/migrating-solver-state
https://www.amazon.science/publications/unsatisfiability-proofs-for-distributed-clause-sharing-sat-solvers
https://www.amazon.science/publications/unsatisfiability-proofs-for-distributed-clause-sharing-sat-solvers

	Introduction
	Background and Related Work
	SAT Solving Basics
	Inprocessing in Incremental SAT Solving

	Problem Statement
	Algorithm for Proof Production
	Implementation
	Deletion of Binary Clauses
	Proper Handling of Equivalent-Literal Substitution
	Internal and External Representations of Literals

	Evaluation
	Conclusion and Future Work
	References

