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’Misurate ciò che è misurabile e rendete misurabile ciò che non lo è’

Galileo Galilei1

1Translation: ’Measure what is measurable, and make measurable what is not.’ [1]
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Abstract

In this work we explore the phenomenology of various non-supersymmetric Two Higgs
Doublet Models (THDM) with real input parameters for a future Muon Collider. In
particular we study Type-I, Type-II, lepton-specific and flipped THDMs by investigating
resonances caused by the neutral Higgs bosons H0 and A0, taking h0 as the discovered
Higgs boson at LHC in 2012. In contrast to an e+e- collider, the large muon Yukawa
coupling enables an efficient s-channel neutral Higgs boson exchange. Therefore, we cal-
culate and study in detail the total cross section for the production processes μ-μ+ → t-t,
μ-μ+ → b-b, μ-μ+ → τ-τ+, and μ-μ+ → h0h0 as a function of the THDM input pa-
rameters mH0 ,mA0 ,mH± , tan β, sinα, λ5. We further calculate all H0 and A0 tree-level
decay widths in order to get the relevant branching ratios (BR) and also the total widths
necessary for the Breit-Wigner propagators of H0 and A0. In this study we consider
all theoretical bounds, e.g. unitarity, global minimum, vacuum stability and oblique pa-
rameters bounds, as well as all relevant experimental bounds. We derive the theoretical
bounds from first principles and then perform a systematic numerical scan to find allowed
parameter sets. With these sets we perform a detailed numerical study of the H0 and A0

resonances in the production processes μ-μ+ → t-t, b-b, τ-τ+, h0h0 and discuss the results.



Zusammenfassung

In dieser Arbeit untersuchen wir die Phänomenologie verschiedener nicht-supersym-
metrischer Two Higgs Doublet Models (THDM) mit reellen Eingabeparametern für einen
zukünftigen Müon-Beschleuniger. Insbesondere erforschen wir die Typ-I-, Typ-II-, lepto-
nenspezifischen und flipped THDMs, wobei wir annehmen, dass h0 das am LHC 2012 ent-
deckte Higgs Boson ist. Im Gegensatz zu einem e+e--Beschleuniger ermöglicht die große
Müon-Yukawakopplung einen effizienten S-Kanal Austausch von neutralen Higgs Boso-
nen. Daher berechnen und untersuchen wir im Detail den totalen Wirkungsquerschnitt
für die Produktionsprozesse μ-μ+ → t-t, μ-μ+ → b-b, μ-μ+ → τ-τ+ und μ-μ+ → h0h0

als Funktion der THDM Eingabeparameter mH0 ,mA0 ,mH± , tan β, sinα, λ5. Des Weiteren
berechnen wir alle H0- und A0-Zerfallsbreiten auf tree-level, um die relevanten branching
ratios (BR) sowie die für die Breit-Wigner Propagatoren von H0 und A0 erforderlichen
Gesamtbreiten zu erhalten. In unserer Studie berücksichtigen wir alle theoretischen Gren-
zen, wie Unitarität, globales Minimum, Vakuumstabilität und Oblique Parametergren-
zen, sowie alle relevanten experimentellen Grenzen. Wir leiten die theoretischen Grenzen
von Grund auf her und führen dann einen systematischen numerischen Scan durch, um
erlaubte Parameterpunkte zu finden. Mit diesen Parametern führen wir dann eine detail-
lierte numerische Untersuchung der H0- und A0-Resonanzen in den Produktionsprozessen
μ-μ+ → t-t, b-b, τ-τ+, h0h0 durch und diskutieren die erhaltenen Ergebnisse.
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LIST OF ABBREVIATIONS

SM Standard Model of particle physics

THDM Two Higgs Doublet Model

FCNC Flavor changing neutral currents

EV Eigenvalues

tβ = tan(β)

sβ = sin(β)

cβ = cos(β)

sβ-α = sin(β - α)

cβ-α = cos(β - α)

s2β = sin(2β)

c2β = cos(2β)

λijk = λi + λj + λk

λ±
ij = λi ± λj

sw = sin(θW ) (Weinberg angle)

cw = cos(θW ) (Weinberg angle)

-sw = sin(θW )(mZ0)

-cw = cos(θW )(mZ0)

-α = -g2 -sZ
2

4π

We note that in the literature multiple notations are used for the Higgs doublets. In
this work we use two different notations based on the notation used in the corresponding
literature. We identify: ϕ±

i ≡ ω±
i , ϕi ≡ hi and ai ≡ zi.
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Introduction

Muon colliders (MC) have emerged as a promising avenue in the quest for advancing
particle physics research. The exceptional properties of muons, such as their higher mass
and reduced synchrotron radiation, make them attractive candidates for constructing
a new generation of high-energy colliders [2–5]. This thesis delves into the intriguing
prospect of constructing a Muon Collider and its specific relevance in the context of
THDMs. As an extension of the Standard Model, THDMs introduce an additional Higgs
doublet, enriching the particle landscape with four additional scalar Higgs bosons H0, A0

and H±. With the potential to achieve higher energies and luminosities, a Muon Collider
becomes a powerful tool to study the properties and interactions of additional Higgs
bosons, providing crucial insights into the nature of particle masses and the electroweak
symmetry breaking mechanism. By exploring the unique capabilities of Muon Colliders in
the context of THDMs, this research contributes to the pursuit of new frontiers in particle
physics and potential avenues for discovering new physics phenomena.

Similar studies have been published on the resonant behavior of heavy Higgs bosons in
the context of a future Muon Collider. However, they are all in the context of supersym-
metric models. E.g. in [6] the pair production of stops, sbottoms, staus and tau-sneutrinos
at a MC is discussed. In particular, the authors investigate the sfermion production near√
S = mH0 and

√
S = mA0 , within the Minimal Supersymmetric Standard Model. Fur-

thermore, in [7] the authors show that a MC would be ideally suited for the study of
the heavy H0 and A0 Higgs bosons. They argue that this is because of the large muon
Yukawa coupling and a width-to-mass ratio far larger than the expected Muon Collider
beam-energy resolution. This study is within a representative Natural Supersymmetry
model. Even though, similarly to this work, these studies explore the resonant behavior
of the H0 and A0 Higgs bosons at a MC, no detailed study has been published on the
resonant behavior of the heavy neutral Higgs bosons within the THDM and more broadly
within the four specific THDMs that we consider.

In this work we explore the research potential of such a MC in the context of various
non-supersymmetric Two Higgs Doublet Models (THDM) with real input parameters. In
particular we study the Type-I, Type-II, lepton-specific and flipped THDMs. We do so
by investigating resonances caused by the H0 and A0 neutral Higgs bosons. Moreover,
throughout the work we assume that the h0 Higgs boson, is the Higgs boson discovered
at the LHC (CERN) in 2012. Differently to an e+e- collider, a Muon Collider enables an
efficient s-channel neutral Higgs boson exchange. This is due to the large muon Yukawa
coupling. Therefore, we study in detail the total cross section for the production processes
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μ-μ+ → t-t, μ-μ+ → b-b, μ-μ+ → τ-τ+, and μ-μ+ → h0h0 as a function of the THDM
input parameters mH0 ,mA0 ,mH± , tan β, sinα, λ5. We derive the matrix elements for the
various channels and then analytically integrate them with the help of Mathematica.
Moreover, we check the results with the FeynArts (FA) and FormCalc (FC) packages [8,
9]. We choose various production channels because the different parameter sets allowed
by all theoretical and experimental bounds, produce resonances which might only be
detectable in a specific channel. Moreover, the different models have different Yukawa
couplings to the Higgs bosons, and thus produce resonances which might only be observed
in a specific model for a certain parameter set.

Furthermore, we calculate all H0 and A0 tree-level decay widths in order to get the
relevant branching ratios (BR) and also the total widths necessary for the Breit-Wigner
propagators of H0 and A0, used to study resonances. We calculate the BRs and total
widths analytically and check the results with the help of the 2HDMC [10] and FA/FC
packages.

In this study we consider all theoretical bounds, e.g. unitarity, global minimum,
vacuum stability and oblique parameters bounds, as well as all relevant experimental
bounds. We derive the theoretical bounds from first principles, comparing them with
previous works (see e.g. [11–14]). Furthermore, with these theoretical bounds we perform
a numerical scan for finding allowed parameter sets. We then use these allowed sets to
perform an in depth numerical study of the H0 and A0 resonances in the production
processes μ-μ+ → t-t, b-b, τ-τ+, h0h0 and discuss the results.

The work is structured as follows: in Chapter 1 we introduce the relevant theoretical
background, with special focus on the various THDMs under investigation. In Chapter 2
we present the calculations of all H0 and A0 tree-level decay widths. Chapter 3 is dedicated
to the derivation of all theoretical bounds and the numerical scan we perform to find
the allowed parameter sets. In Chapter 4 we present the current experimental bounds,
mainly coming from the LHC searches for additional scalar particles. In Chapter 5 we
present the derivation of the formulas for the total cross sections, for the various channels
we investigate, as well as a general Breit-Wigner formula that can be used to calculate
the total cross section for a certain scattering channel with internal on-shell particles,
especially when they have small decay widths compared to their masses. Moreover, we
give the definition of the forward-backward asymmetry. In Chapter 6 we present a detailed
numerical analysis of the resonances for the H0 and A0 Higgs bosons in the four THD
models we investigate. We conclude the work by giving an outlook on further studies.
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Chapter 1

Theoretical background

In this Chapter we introduce the main theoretical concepts used and explored in this
work. It is by no means intended to be exhaustive, and we would therefore refer the
reader to [15],[11], [16], [17], [18] and [19] for further information and insights into the
topics discussed.

1.1 Higgs-Kibble mechanism
In this Section we introduce the general theoretical concepts underlying the Higgs Boson
mechanism. In particular we highlight the ideas of global and local symmetry breaking
as well as their physical consequences, i.e. the existence of massive particles in the SM.
We closely follow the lecture notes [20, 21].

1.1.1 Global symmetry breaking
The Higgs-Kibble mechanism relies on the idea of spontaneous symmetry breaking. The
main idea behind spontaneous symmetry breaking, is that a Lagrangian L is invariant
under a certain symmetry, but not its ground state. Consider e.g. a Lagrangian invariant
under U(1) symmetry and renormalizable. Its most general form would be

L = (∂μϕ) (∂μϕ*)- μ2ϕ*ϕ- λ (ϕϕ*)2 . (1.1)

All other terms of higher order in the field ϕ are either not renormalizable or not invariant.
In order to obtain the ground state of the system, we have to compute the minimum of
the Hamiltonian H = T - V

H = .ϕ* ∂L
∂ .ϕ* + .ϕ

∂L
∂ .ϕ

- L = .ϕ* .ϕ+
(
→∂ϕ*

)(
→∂ϕ

)
+ V (ϕ) . (1.2)

The first two terms are positive. Therefore the minimum has to lie in the potential V (ϕ).
Moreover, in order for the potential to be bounded from below, λ > 0 must always be

6
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(a) (b)

Figure 1.1: Higgs potential V (ϕ) for λ = 1, μ2 = 1 (a), and μ2 = -1 (b). The red point
shows the ϕ0 value of the minimum for the unbroken and broken symmetry scenario.

satisfied. The minimum of the potential V (ϕ) has two solutions depending on the sign of
the parameter μ2.

The first solution μ2 ≥ 0 has the minimum in the origin, ϕ0 = 0 (’vacuum’ state). The
second solution μ2 < 0, instead has an infinite number of ground states at a radius of

r =

√
-μ2

2λ
:=

v√
2
, (1.3)

where v is generally referred to as the vacuum expectation value (vev). Since the potential
is rotationally symmetric for both cases, the minimum in the second case is a circle.
However, in nature only one state is realized. We fix ϕ0 = r at the real axis. For this
state ϕ0, the symmetry is broken. To interpret the meaning of this symmetry breaking
and the phenomenology of the model, we make an expansion around the minimum

ϕ(x) =
1√
2
(v + ϕ,(x)) . (1.4)

Clearly, ϕ,(x) = 0 when ϕ(x) = ϕ0. ϕ,(x) is a complex field. We therefore can write its
real and imaginary part explicitly as ϕ,(x) = ψ(x) + iχ(x). It follows that

ϕ(x) =
1√
2
(v + ψ(x) + iχ(x)) . (1.5)

We can now substitute this expression for the field back into the Lagrangian L, and obtain

L(ϕ) = 1

2
(∂μψ)

2 +
1

2
(∂μχ)

2 - 1

2

(
2λv2

)
ψ2 - λvψ

(
ψ2 + χ2

)- λ

4

(
ψ2 + χ2

)2
. (1.6)

This Lagrangian describes two interacting particles with their masses mψ = 2λv2 and
mχ = 0. The appearance of massless particles due to spontaneous symmetry breaking is
summarised in the Goldstone Theorem.

7
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Goldstone theorem: Massless particles (called ”Goldstone particles”) appear when a
symmetry is spontaneously broken. The number of these particles is given by the number
of broken generators of the symmetry group.

1.1.2 Local symmetry breaking
Consider again the model described by the Lagrangian L. However, L should now be
invariant under a local U(1) symmetry group. From QED we know that the Lagrangian
is locally U(1) invariant, only after introducing the so-called covariant derivative ∂μ → Dμ

and the photon field Aμ. The Lagrangian then takes the form

L = -1

4
FμνF

μν + (Dμϕ)† (Dμϕ)- V
(
ϕ†ϕ

)
(1.7)

= -1

4
FμνF

μν + (∂μ + ieAμ)ϕ (∂μ - ieAμ)ϕ
* - μ2ϕϕ* - λ (ϕϕ*)2 , (1.8)

where L is invariant under

ϕ → eiθ(x)ϕ(x) , (1.9)

Aμ → Aμ(x)- 1

e
∂μθ(x) . (1.10)

As in the case of a global U(1) symmetry, λ > 0 must hold in order for the potential V (ϕ)
to be bounded from below, and the parameter μ2 can be either positive or negative. In
the case μ2 > 0, we obtain a Lagrangian that describes a charged scalar field, i.e. elec-
trodynamics, whereas in the case of μ2 < 0, we observe spontaneous symmetry breaking.
We can now use again the expansion around the minimum

ϕ(x) =
1√
2
(v + ψ(x) + iχ(x)) . (1.11)

By inserting this expression back into the Lagrangian, we obtain

L = -1

4
FμνF

μν +
1

2
(∂μψ)

2 +
1

2
(∂μχ)

2 +
1

2
e2v2AμA

μ +
√
2evAμ∂

μχ+ μ2ψ2 + ... (1.12)

This Lagrangian produces the mass spectrum

m2
ψ = -2μ2 , (1.13)

m2
χ = 0 , (1.14)

m2
A = e2v2 . (1.15)

However, the term a Aμ∂
μχ generates some issues. This can be easily seen by counting

the degrees of freedom before and after symmetry breaking. In particular, the Lagrangian

8
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(1.7) has 2 degrees of freedom from the massless photon field Aμ and two from the complex
field ϕ, whereas the Lagrangian (1.12) has two degrees of freedom due to the fields ψ and
χ as well as three coming from the now massive Aμ field. This in turn means that
spontaneous symmetry breaking generates an extra degree of freedom that is not realized
in nature (non-physical particle). In order to obtain the physical mass spectrum, we use
the gauge invariance (ϕ → eiθ(x)ϕ) of the Lagrangian L(ϕ, ϕ*, Aμ). More specifically, we
choose the so-called unitarity gauge

θ(x) = -χ(x)

v
. (1.16)

Moreover, we rewrite the complex field ϕ as

ϕ =
1√
2
(v + ψ) e

iχ
v . (1.17)

It follows that the U(1) transformation takes in this physical gauge the form

ϕ → ϕ, = Uϕ =
1√
2
(v + ψ) , (1.18)

where the Higgs ghost is rotated away and ψ denotes the physical Higgs field. Finally,
we arrive at the physical mass spectrum by inserting this expression for the field into the
Lagrangian (1.12)

L = -1

4
F ,

μνF
,μν +

1

2
(∂μψ) (∂

μψ) +
1

2
e2v2A,

μA
,μ +

√
2eA,2

μψ(2v + ψ) (1.19)

- 1

2
ψ2(3λv2 + μ2)- λvψ3 - 1

4
λψ4 .

We can now read off the mass spectrum to be

m2
ψ = 2λv2 , (1.20)

mA = ev . (1.21)

The field χ does not appear anymore. It was eliminated through the unitarity gauge
transformation. From this analysis we can infer that the Goldstone particle χ indeed does
not correspond to any physical particle. Moreover, in the unitarity gauge, no nonphysical
particles (often called ghosts) appear. The degree of freedom ”given away” by the field χ
is absorbed into the longitudinal component of the photon field Aμ. The ψ field instead,
is the famous Higgs boson h0

SM.

1.2 The Two Higgs Doublet Model
The Two Higgs Doublet Model (THDM) is a simple extension of the Standard Model
(SM). As the name suggests, in the THDM a second SU(2)L Higgs doublet is introduced.

9
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The model predicts the existence of three neutral Higgs bosons (h0
SM , H0 and A0) as well

as two simply charged Higgs bosons H±. This model can be both CP-violating and CP-
conserving. In the latter, the Higgs bosons can be classified into the CP-even (h0

SM , H0)
states and CP-odd state (A0).

Moreover, the introduction of a second Higgs doublet, leads in general to tree-level
flavour changing currents (FCNC). These are mediated by the neutral Higgs bosons.
However, by imposing a Z2 discrete symmetry, the FCNC disappear. The Z2 symmetry
can be introduced in several different forms. These are captured by a plethora of different
THDMs, such as Type-I THDM, Type-II THDM, flipped THDM, lepton-specific THDM
and inert THDM. Moreover, in the aligned THDM, where the Yukawa-coupling matrices
of the two Higgs doublets are assumed to be proportional to each other, the tree-level
FCNC is absent as well. Due a certain type of symmetry, in the Branco-Grimus-Lavoura
THDM [22], the FCNC is naturally suppressed by the off-diagonal elements of the CKM
matrix.

This simple extension of the SM provides a very rich phenomenology and is also
realized in the Minimal Supersymmetric Standard Model (MSSM) as Type-II, as well as
effectively in extensions of the MSSM. Various THDMs, such as the ones mentioned above,
have been investigated in great detail. E.g. the lepton-specific THDM is used to explain
the g-2 anomaly, whereas in the inert THDM, a dark matter (DM) candidate might be
realized as the lightest component of the inert Higgs doublet field. DM candidates are
also provided by other THDMs, provided that an additional field, protected by a new
symmetry, is added [11]. In these models the scalar fields provide a portal between the
SM and the DM sectors.

In the following part of the Section we closely follow the review paper by L. Wang et
al. [11].

1.2.1 General scalar potential
The general scalar potential of a THDM is given by

V = m2
11(ϕ

†
1ϕ1) +m2

22(ϕ
†
2ϕ2)-m2

12(ϕ
†
1ϕ2 + h.c.) +

λ1

2
(ϕ†

1ϕ1)
2 +

λ2

2
(ϕ†

2ϕ2)
2 (1.22)

+ λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1)

+

[
λ5

2
(ϕ†

1ϕ2)
2 + λ6(ϕ

†
1ϕ1)(ϕ

†
1ϕ2) + λ7(ϕ

†
2ϕ2)(ϕ

†
1ϕ2) + h.c.

]
,

where

ϕ1 =

(
ϕ+
1

v1 +
1√
2
(ϕ1 + ia1)

)
, (1.23)

ϕ2 =

(
ϕ+
2

v2 +
1√
2
(ϕ2 + ia2)

)
, (1.24)

10
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are the complex Higgs doublets, both with hypercharge Y = 1. In this work we restrict
ourselves to the CP-conserving models in which all parameters λi with i € [1, 7], m2

11, m2
22

and m2
12 are real, and the vacuum expectation values are real as well with v2 = v21 + v22 =

(246 GeV)2.

1.2.2 Type-I, Type-II, lepton-specific and flipped THDMs
By introducing a Z2 symmetry (ϕi → ±ϕi, with ϕi a scalar doublet) we effectively
eliminate FCNCs. In particular the parameters λ6 and λ7 are absent in (1.51), whereas
the soft breaking term m2

12 is still present. The Z2 charge assignments are shown in
Table 1.1.

Model ϕ2 ϕ1 ui
R diR eiR

Type I + - + + +
Type II + - + - -

Lepton-specific + - + + -
Flipped + - + - +

Table 1.1: The Z2 charge assignments for the four types of THDMs without FCNC. All
other fields not present in the Table are even under the imposed Z2 symmetry.

The mass parameters m2
11, m2

22, appearing in the potential (1.51), can be determined
by the potential minimization conditions at (v1, v2):

∂V

∂ϕ†
1

||||
ϕ1,0

= 0 , (1.25)

∂V

∂ϕ†
2

||||
ϕ2,0

= 0 , (1.26)

where we have defined

ϕ1,0 =
1√
2

(
0
v1

)
, (1.27)

ϕ2,0 =
1√
2

(
0
v2

)
, (1.28)

to be the fields evaluated at the minimum. The two equations with the derivatives (1.25)
and (1.26) can be rewritten in terms of the mass parameters m2

11 and m2
22 as a function

of the vacuum expectation values, m2
12 and the parameters λi:

m2
11 =

-λ1v
3
1 - λ3v1v

2
2 - λ4v1v

2
2 - λ5v1v

2
2 + 2m2

12v2
2v1

, (1.29)

m2
22 =

-λ2v
3
2 - λ3v

2
1v2 - λ4v

2
1v2 - λ5v

2
1v2 + 2m2

12v1
2v2

. (1.30)

11



Leonardo B. Giacomelli 1.2. THE TWO HIGGS DOUBLET MODEL

With the definitions and shorthand notations tan β = v2
v1

:= tβ, cos β := cβ, sin β := sβ,
λijk := λi + λj + λk and v21 + v22 = v2, we can simplify (1.29) and (1.30) to obtain

m2
11 = m2

12tβ -
1

2
v2

(
λ1c

2
β + λ345s

2
β

)
, (1.31)

m2
22 = m2

12

1

tβ
- 1

2
v2

(
λ2s

2
β + λ345c

2
β

)
. (1.32)

Moreover, from the potential (1.51), with λ6 = λ7 = 0, we obtain the mass matrices
of the Higgs fields

(
ϕ1 ϕ2

)( m2
12tβ + λ1v

2c2β -m2
12 +

λ345

2
v2s2β

-m2
12 +

λ345

2
v2s2β m2

12/tβ + λ2v
2s2β

)(
ϕ1

ϕ2

)
, (1.33)

(
a1 a2

) [
m2

12 -
1

2
λ5v

2s2β

](
tβ -1

-1 1/tβ

)(
a1
a2

)
, (1.34)

(
ϕ+
1 ϕ+

2

) [
m2

12 -
1

4
(λ4 + λ5)v

2s2β

](
tβ -1

-1 1/tβ

)(
ϕ-
1

ϕ-
2

)
. (1.35)

From the original fields we can obtain the mass eigenstates by the rotation matrices(
H0

h0

)
=

(
cosα sinα
- sinα cosα

)(
ϕ1

ϕ2

)
, (1.36)(

G0

A0

)
=

(
cos β sin β
- sin β cos β

)(
a1
a2

)
, (1.37)(

G±

H±

)
=

(
cos β sin β
- sin β cos β

)(
ϕ±
1

ϕ±
2

)
. (1.38)

Here G0 and G± are the Goldstone bosons which are absorbed by the W± and Z0 bosons
as their longitudinal components. In conclusion, five physical states remain: the two
CP-even states h0 and H0, the neutral pseudo-scalar A and a pair of simply charged
scalars H±. The masses of the bosons can be obtained by diagonalization of the mass
matrices (1.33),(1.34) and (1.35). The eigenvalues obtained from diagonalization are then
the masses of the bosons. The first matrix gives the masses of the CP-even states h0 and
H0. They are given by

m2
H0,h0 =

1

2

(
x2
11 + x2

22 ±
√
(x2

11 - x2
22)

2
+ 4 (x2

12)
2

)
, (1.39)

where xij are the entries of the matrix (1.33). For the second matrix (1.34), we find the
first eigenvalue to be equal to zero, i.e the Goldstone boson, and a second eigenvalue
which gives the mass of the CP-odd Boson A

m2
A0 =

m2
12

sβcβ
- λ5v

2 . (1.40)

12



Leonardo B. Giacomelli 1.2. THE TWO HIGGS DOUBLET MODEL

The third matrix (1.35) has the same structure as (1.34). It also has the first eigenvalue
equal to zero, i.e. the mass of the second Goldstone boson G±, and a second eigenvalue
which gives the mass of the simply charged H± boson

m2
H± =

m2
12

sβcβ
- 1

2
(λ4 + λ5) v

2 . (1.41)

The gauge-kinetic part of the Lagrangian L describing a THDM is given by

Lg = (Dμϕ1)
† (Dμϕ1) + (Dμϕ2)

† (Dμϕ2) . (1.42)

From this part of the Lagrangian L we can derive the couplings ({h0, H0, A0}V V ) of the
three neutral Higgs bosons to the gauge bosons V = Z0,W±

Lg - g2 + g,2

8
v2ZZ

(
1 + 2

h0

v
yVh0 + 2

H0

v
yVH0

)
(1.43)

+
g2

4
v2W+W-

(
1 + 2

h0

v
yVh0 + 2

H0

v
yVH0

)
,

where we use the definitions yVh = sin (β - α) := sβ-α and yVH = cos (β - α) := cβ-α.
According to the different charge assignments in Tab.1.1, there are four different models
with Yukawa interactions:

-L = Yu2 QL
~ϕ2 uR + Yd2 QL ϕ2 dR + Yl2 LL ϕ2 eR + h.c. (Type-I), (1.44)

-L = Yu2 QL
~ϕ2 uR + Yd1 QL ϕ1 dR + Yl1 LL ϕ1 eR + h.c. (Type-II), (1.45)

-L = Yu2 QL
~ϕ2 uR + Yd1 QL ϕ2 dR + Yl1 LL ϕ1 eR + h.c. (lepton-specific), (1.46)

-L = Yu2 QL
~ϕ2 uR + Yd1 QL ϕ1 dR + Yl1 LL ϕ2 eR + h.c. (flipped), (1.47)

where QT
L = (uL , dL), LT

L = (νL , lL), ~ϕ1,2 = iτ2ϕ
*
1,2, and Yu2, Yd1,2 and Yl1,2 are 3 x 3

matrices in family space. We derive the Yukawa couplings to the fermions from

-LY =
mf

v
yfh0 h0 -ff +

mf

v
yfH0 H0 -ff (1.48)

-i
mu

v
Ϗu A0-uγ5u+ i

md

v
Ϗd A0 -dγ5d+ i

ml

v
Ϗl A

0-lγ5l

+

(
H+ -u VCKM (

√
2md

v
ϏdPR -

√
2mu

v
ϏuPL)d+ h.c.

)

+

(√
2ml

v
ϏlH

+ -νPRe+ h.c.

)
,

where yfh = sin(β - α) + cos(β - α)Ϗf and yfH = cos(β - α) - sin(β - α)Ϗf . The values
of Ϗu, Ϗd and Ϗl for the four models are shown in Table 1.2.
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Type-I Type-II lepton-specific flipped
Ϗu 1/tβ 1/tβ 1/tβ 1/tβ
Ϗd 1/tβ -tβ 1/tβ -tβ
Ϗl 1/tβ -tβ -tβ 1/tβ

Table 1.2: The Ϗu, Ϗd, and Ϗl for the four types of THDMs.

1.2.3 Inert THDM
For completeness we also briefly discuss the inert THDM. In this model we impose an
exact Z2 symmetry and assume that it remains after the potential is minimized. We take
the SM fields to be even under this symmetry whereas the second doublet ϕ2 is taken to
be odd

ϕ1 =

(
G+

1√
2
(v + h+ iG)

)
, (1.49)

ϕ2 =

(
H+

1√
2
(H + iA)

)
, (1.50)

In this model the ϕ1 doublet has an expectation value v = 246 GeV and ϕ2 has no vacuum
expectation value. The scalar potential in (1.51) thus reduces to

V = m2
11(ϕ

†
1ϕ1) +m2

22(ϕ
†
2ϕ2) +

λ1

2
(ϕ†

1ϕ1)
2 +

λ2

2
(ϕ†

2ϕ2)
2 (1.51)

+ λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1)

+

[
λ5

2
(ϕ†

1ϕ2)
2 + h.c.

]
.

In analogy to Section 1.2.2, we obtain the mass parameter m2
11, by the potential mini-

mization conditions, to be
m2

11 = -1

2
λ1v

2 . (1.52)

We note that m2
22 is not fixed due to its vev equal to zero. Moreover, the fields A and H±

have mass eigenstates

m2
A = m2

H± +
1

2
(λ4 - λ5) v

2 , (1.53)

m2
H± = m2

22 +
λ3

2
v2 . (1.54)

In the inert THDM no mixing between the two CP-even states h and H is allowed, and
their masses are given by

m2
h = λ1v

2 := (125 GeV)2 , (1.55)
m2

H = m2
A + λ5v

2 . (1.56)
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The fermion masses can be derived from the Yukawa interaction terms in the Lagrangian
L. More specifically by their interactions with the doublet ϕ1

-L = yu -QL
~ϕ1uR + yd -QLϕ1dR + y1 -LLϕ1eR + h.c., (1.57)

where yu, yd and yl are 3x3 matrices in family space. The exact Z2 symmetry imposed,
causes the doublet ϕ2 to not have any Yukawa interactions with fermions. Moreover, the
lightest neutral field H or A, is stable and can thus be considered a dark matter (DM)
candidate. We also note that if right-handed neutrinos were introduced, the ϕ2 doublet
could interact with them, giving rise to the neutrino masses via one loop diagrams with
DM [23].

1.3 Breit-Wigner resonance
The propagator for a scalar particle is given in momentum space by

i

q2 -m2
. (1.58)

It is evident that when the center of mass energy
√
S (i.e. the transferred momentum q2

for s-channel scatterings) is equal to the mass of the boson mediating the scattering, the
term diverges to infinity. This is because the propagator does not account for the fact
that these bosons are unstable particles. There are multiple ways of deriving a propagator
that accounts for a decaying state. Here, we derive it from the time dependence of the
wave function for a decaying state [19]. If the particle were stable, the time dependence
in the rest frame of the particle would be given by

ψ a e-imt . (1.59)

In order to account for the instability, we introduce the total decay rate Γ = 1
τ
, such that

ψ a e-imte-Γ t
2 . (1.60)

The probability density then decays as

ψψ* = e-
t
τ . (1.61)

We can introduce this exponential decay by replacing

m → m- i
Γ

2
. (1.62)

Since Γ < m for the observed particles, the propagator reduces to

1

q2 -m2
i

→ 1

q2 -m2
i + imiΓi

, (1.63)
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with i being the boson flavour appearing in the respective matrix element. The squared
propagator appearing in the cross section σ then becomes

σ a |M |2 a
|||| 1

S -m2
i + imiΓi

||||2 = 1

(S -m2
i )

2 +m2
iΓ

2
i

. (1.64)

This form of the propagator is generally called the Breit-Wigner form and the dependence
on the center of mass energy S is referred to as Breit-Wigner resonance.

In the case of interference terms appearing in the matrix element of the studied scat-
tering process, only the real part of the interference matrix element must be taken. The
real part of the Breit-Wigner propagator can be obtained by simultaneously multiplying
and dividing by the conjugate of the propagator and then simplifying the expression

1

q2 -m2
i + imiΓi

(
1

q2-m2
i-imiΓi

1
q2-m2

i-imiΓi

)
= (1.65)

(q2 -m2
i - imiΓi)

(q2 -m2
i )

2 +m2
iΓ

2
i

.

The real part is then given by

(q2 -m2
i )

(q2 -m2
i )

2 +m2
iΓ

2
i

. (1.66)

In conclusion, we can compute the matrix elements for the studied scattering processes and
then substitute the propagators with (1.64) or (1.65). This allows us to study resonances
with finite cross sections σ for all

√
S.
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Chapter 2

Total decay widths Γ

In order to explore the H0 and A0 Higgs bosons resonances, we introduce the Breit-Wigner
form as presented in Section 1.3. Thus, we need to compute the total decay widths of the
H0 and A0 Higgs bosons. Moreover, we compute the partial decay widths, to compute the
branching ratios (BRs) of H0 and A0 decaying into the investigated production channels,
for each allowed parameter set. This enables us to quantify the possibility of seeing a
resonance at a future Muon Collider experiment for each parameter point.

All partial decay width formulas are checked analytically with [24] and FA/FC1 [8,
9], numerically with FA/FC and the 2HDMC package [10]. Furthermore, we make use of
the optical theorem [25]

Γ =
S(Σ(m2))

m
, (2.1)

where Σ(m2) is the self-energy of a scalar particle. We cross-checked this formula with
FA/FC and our own analytical results for the partial decay widths.

The general form for the decay width Γ is given by [20]

dΓ =
1

2m
|M |2dLips , (2.2)

where dLips is the Lorentz-invariant phase space. All the decay channels that we in-
vestigate in this study are two-body decays. Therefore, we insert the two-particle phase
space

dLips2 =
1

8π

√
λ(m2,m2

1,m
2
2)

m2
, (2.3)

to obtain the total decay width

Γ =

√
λ(m2,m2

1,m
2
2)

16πm3
|M |2 , (2.4)

1We enlarged the given FA/FC code from only considering the Type-II THDM to include all four
THDMs explored in this work.
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Leonardo B. Giacomelli 2.1. TOTAL DECAY WIDTH OF H0

where λ(m2,m2
1,m

2
2) denotes the Källén function, defined as

λ(x, y, z) = x2 + y2 + z2 - 2xy - 2xz - 2yz. (2.5)

Throughout the section we identify the up-type quarks with ui = {u, c, t}, the down-
type quarks with di = {d, s, b} and the three generations of charged leptons with li =
{e, μ, τ}.

2.1 Total decay width of H0

In this subsection we show the decay widths of the H0 Higgs boson. As an example we
show the derivation of the decay width ΓH0 → u-u explicitly and then list the remaining
results for the decay widths into the Higgs bosons, down quarks, leptons and gauge bosons.

2.1.1 ΓH0 → u-u

-
H0

p1

p2

-u

u

Figure 2.1: Feynman diagram of the decay H0 → u-u in the THDM. All momenta are in
time direction from left to right.

The couplings to the three up-type quark pairs differ only in their mass. Therefore,
we can compute the decay width for e.g. the top quark and then substitute the mass to
obtain the remaining up and charm quarks. Since the H0 Higgs boson is a scalar, the
matrix element is only given by the coupling to the up-type quarks and the spinors of the
outgoing quarks

Mt = -i
2mtsα

2mwswsβ
-u(p1)v(p2). (2.6)

Here we have introduced the notation sw := sin(θw) (we will use this notation throughout
the work). Momentum conservation is given by p = p1 + p2. We compute the matrix
element squared with the help of the trace technique [20]. In particular by using the
known formulas Σ

u-u = /p+m (2.7)Σ
v-v = /p-m (2.8)
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we obtain

|Mt|2 = c2
Σ
s

-u(p1)v(p2)-v(p2)u(p1) (2.9)

= c2Tr{(/p1 +mt)(/p2 -mt)} (2.10)
= c24

(
p1 . p2 -m2

t

)
, (2.11)

where we have defined
c2 :=

e2m2
t s

2
α

4m2
ws

2
ws

2
β

. (2.12)

From the definition of the Mandelstam variable S := (p1+p2)
2, we can derive an expression

for the inner product between the two outgoing momenta in (2.9)

S := (p1 + p2)
2 = 2m2

t + 2p1 . p2. (2.13)

Solving for the inner product of the momenta and setting the H0 Higgs boson on-shell,
we obtain

|Mt|2 = 2c2
(
m2

H0 - 4m2
t

)
. (2.14)

After inserting the expression for the matrix element squared (2.14) into the general
expression for the total decay width (2.4), we obtain

ΓH0→u-u =
mH0

(
1- 4m2

ui

m2
H0

)3/2 (
e2m2

ui
Ncs

2
α

)
(32π)

(
m2

ws
2
βs

2
w

) , (2.15)

where we have multiplied each width by Nc = 3 which accounts for the color charge of
the quarks and added the widths of all three quarks together.

2.1.2 List of all possible decay widths
Here we list all possible decay widths of the neutral H0 Higgs boson:

ΓH0→ui-ui
=

3Σ
i=1

mH0

(
1- 4m2

ui

m2
H0

)3/2 (
e2m2

ui
Ncs

2
α

)
(32π)

(
m2

ws
2
βs

2
w

) , (2.16)

ΓH0→di -di =
3Σ

i=1

1

32π
(1- 4

m2
di

m2
H0

)
3
2mH0

e2m2
di
c2αNc

m2
ws

2
wc

2
β

, (2.17)

ΓH0→l-i l+i
=

3Σ
i=1

1

32π
(1- 4

m2
li

m2
H0

)
3
2mH0

e2m2
li
c2α

m2
ws

2
wc

2
β

, (2.18)
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ΓH0→h0h0 =

c2β-αe
2mh0

√
1- 4m2

h0

m2
H0

(
s2α

(
2m2

h0 +m2
H0

)- λ5m2
ws2w(3s2α-s2β)

2πα

)2

128πmH0m2
ws

2
2βs

2
w

, (2.19)

ΓH0→A0A0 =

e2mA0

√
1- 4m2

A0

m2
H0

(
sα-β

(
2m2

H0-
λ5m

2
ws2w

πα

)
s2β

- cβ-α

(
m2

H0 - 2m2
A0

))2

128πmH0m2
ws

2
w

, (2.20)

ΓH0→Z0A0 =
g2s2β-α

64πm3
H0

λ
3
2 (m2

H0 ,m2
Z0 ,m2

A0)
1

m2
w

, (2.21)

ΓH0→Z0Z0 =
g2c2β-α

128πmH0m2
Zc

2
w

(
1- 4m2

Z0

m2
H0

) 1
2

(12m4
Z +m4

H0 - 4m2
H0m2

Z) , (2.22)

ΓH0→W±H± =
g2s2β-α

64πm2
wm

3
H0

λ
3
2 (m2

H0 ,m2
w,m

2
H±) , (2.23)

ΓH0→W+W- =
e2c2β-α

64πs2wm
2
wmH0

√
1- 4m2

w

m2
H0

(-4m2
H0m2

w +m4
H0 + 12m4

w

)
, (2.24)

ΓH0→H+H- =
1

16πmH0

(
1- 4

m2
H

m2
H0

) 1
2 e2

4m2
ws

2
w

(2.25)(
cβ-α(2m

2
H -m2

H0) +
sβ+α

s2β
(2m2

H0 - 4λ5m
2
ws

2
w

e2
)

)2

.

2.2 Total decay width A0

In this Subsection we show the decay widths for the CP-odd A0 Higgs boson. We show
as an example the derivation of the decay width ΓA0→Z0h0 explicitly and then list the
remaining results for the decay widths into the Higgs bosons, down quarks, leptons and
gauge bosons.

2.2.1 ΓA0→Zh0

The coupling for the vertex A0 → Zh0 is given by

C(A0, Z, h0) =
ecβ-α

2cwsw
:= c, (2.26)
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-
A0 p1

p2

h0

Z0

Figure 2.2: Feynman diagram of the decay A0 → Z0h0 in the THDM. All momenta are
in time direction from left to right.

and momentum conservation is given by p = p1 + p2. In this decay we have two scalars,
and therefore only the polarization vector εμ(p1) of the Z0 boson appears in the matrix
element,

MZ0h0 =
ecβ-α

2cwsw
εμ(p1)(p- p2)μ. (2.27)

Using Σ
λ=-1,0,1

εμ(p1, λ)ε
*ν(p1, λ) = -gμν +

pμpν

m2
V

, (2.28)

we now can compute the matrix element squared

|MZh0 |2 = c2εμ(p1)(p- p2)με
*ν(p1)(p- p2)ν (2.29)

= c2
(
pμ1p

ν
1

m2
Z

- gμν
)
(p- p2)μ(p- p2)ν (2.30)

= c2
λ(m2

A0 ,m2
Z ,m

2
h0)

m2
h0

. (2.31)

Now we can insert the matrix element squared in (2.4) and obtain

ΓA0→Z0h0 =
c2β-αg

2λ
(
m2

A0 ,m2
H0 ,m2

Z0

) 3
2

64πc2wm
3
A0m2

Z0

. (2.32)

2.2.2 List of all possible decay widths
Here we list all possible decay widths of the neutral A0 Higgs boson:

ΓA0→ui-ui
=

3Σ
i=1

g2mA0m2
ui
Nc

√
1- 4m2

ui

m2
A0

(8π) (4m2
w) t

2
β

, (2.33)
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ΓA0→di -di =
3Σ

i=1

g2mA0m2
di
NcY

2
3

√
1- 4m2

di

mA0

(8π) (4m2
w)

, (2.34)

ΓA0→l-i l+i
=

3Σ
i=1

mA0

(
1- 4m2

li

m2
A0

)2 (
2e2m2

A0m2
li
Y 2
3

)
(
16πm2

A0

)
(4m2

ws
2
w)

, (2.35)

ΓA0→Z0h0 =

(
c2β-αg

2
)
λ
(
m2

A0 ,m2
H0 ,m2

Z0

) 3
2

64πc2wm
3
A0m2

Z0

, (2.36)

ΓA0→Z0H0 =

(
g2s2β-α

)
λ
(
m2

A0 ,m2
H0 ,m2

Z0

) 3
2(

64πm3
H0

)
m2

w

, (2.37)

ΓA0→W±H± =
2g2λ

(
m2

A0 ,m2
H± ,m2

w

)3
64πm3

A0m2
w

. (2.38)
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Chapter 3

Theoretical bounds

In this chapter we derive the theoretical bounds which restrict the THDM parameter
space (mH0 ,mA0 ,mH± , tan β, sinα, λ5). In particular we derive from first principles the
bounds: vacuum stability, unitarity and oblique parameters (S,T,U). Moreover, we include
a bound which ensures that the vacuum we are in, is the vacuum corresponding to the
global minimum of the THDM potential (3.5)[26]. We then perform a numerical scan
over these bounds for random sets of input parameters and use the allowed sets in the
subsequent search for H0 and A0 resonances. For the numerical scan we have written a
python code with a performance of scanning 109 sets in approximately 4 hours (depending
on the performance of the computer used). Moreover, the code also enables to check single
points 1.

3.1 Parameters
For this study it is more suitable to substitute the input parameters λi with i € [1, 4], for
the four physical masses of the Higgs bosons, the mixing angles α, β and the coupling
λ5. We use these 7 input parameters throughout the work as the free parameters of the
model. We thus need to express λ1,2,3,4 as a function of these 7 parameters. This was
done by inverting the expressions for the physical masses of the bosons (1.39),(1.40) and

1The code can be ordered from the author via email: leonardobellinato@gmail.com
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(1.41), with the help of Mathematica. We obtain for the parameters λi

λ1 =
1

v2c2β

(
c2αm

2
H0 + s2αm

2
h0 -m2

12

sβ
cβ

)
, (3.1)

λ2 =
1

v2s2β

(
s2αm

2
H0 + c2αm

2
h0 -m2

12

cβ
sβ

)
, (3.2)

λ3 = 2
m2

H±

v2
+

s2α(m
2
H0 -m2

h0)

v2s2β
- m2

12

v2sβcβ
, (3.3)

λ4 =
m2

A0 - 2m2
H±

v2
+

m2
12

v2sβcβ
. (3.4)

3.2 Vacuum stability
In order to guarantee a stable vacuum, the scalar potential V has to be positive for
arbitrarily large values of the fields ϕ1 and ϕ2 [11]. The Higgs potential (1.51) with a soft
Z2 symmetry breaking term, is given by

V = m2
11(ϕ

†
1ϕ1) +m2

22(ϕ
†
2ϕ2)-m2

12(ϕ
†
1ϕ2 + h.c.) +

λ1

2
(ϕ†

1ϕ1)
2 +

λ2

2
(ϕ†

2ϕ2)
2 (3.5)

+ λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1) +

[
λ5

2
(ϕ†

1ϕ2)
2 + h.c.

]
Note that due to the Z2 symmetry imposed, the λ6 and λ7 terms disappear. To simplify
the derivation of the vacuum stability conditions, we parameterize the fields as

ϕ†
1ϕ1 = X2

1 ,

ϕ†
2ϕ2 = X2

2 ,

ϕ†
1ϕ2 = X1X2ρe

iθ ,

with 0 ≤ ρ ≤ 1. Moreover, for large values of the fields ϕi, the quadratic terms can be
neglected. The remaining quartic terms are

V4 =
λ1

2
X4

1 +
λ2

2
X4

2 + λ3X
2
1X

2
2 + λ4X

2
1X

2
2ρ

2 + λ5X
2
1X

2
2ρ

2 cos 2θ . (3.6)

Since we are looking for minimum (lower bound on V ), we can stabilize θ at the minimum.
We obtain the θ-independent part of the potential V4

V4-θ-indep. =
λ1

2
X4

1 +
λ2

2
X4

2 + λ3X
2
1X

2
2 + λ4X

2
1X

2
2ρ

2 - |λ5|X2
1X

2
2ρ

2 . (3.7)

This potential has two solutions for the minimum, based on the sign of λ4 - |λ5|. In
particular if λ4 - |λ5| > 0, the potential has a minimum at ρ = 0:

V4-θ-indep. =
λ1

2
X4

1 +
λ2

2
X4

2 + λ3X
2
1X

2
2 . (3.8)
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The minimum is then given by the partial derivatives of the potential V4-θ-indep. with
respect to the parameterized fields X1 and X2:

∂V4-θ-indep.

∂X1

= 2λ1X
3
1 + 2λ3X1X

2
2 = 0 , (3.9)

∂V4-θ-indep.

∂X2

= 2λ2X
3
2 + 2λ3X2X

2
1 = 0 . (3.10)

The solution of this system of equations, gives three bounds for the parameter λ1, λ2 and
λ3

λ1 > 0 , (3.11)
λ2 > 0 , (3.12)
λ3 +

√
λ1λ2 > 0 . (3.13)

Inversely, if λ4 - |λ5| < 0, the potential has a minimum at ρ = 1:

V4-θ-indep. =
λ1

2
X4

1 +
λ2

2
X4

2 + λ3X
2
1X

2
2 + λ4X

2
1X

2
2 - |λ5|X2

1X
2
2 . (3.14)

Again we find the minimum by computing the partial derivatives with respect to the
fields:

∂V4-θ-indep.

∂X1

= 2λ1X
3
1 + 2λ3X1X

2
2 + 2(λ4 - |λ5|)X1X

2
2 = 0 , (3.15)

∂V4-θ-indep.

∂X2

= 2λ2X
3
2 + 2λ3X2X

2
1 + 2(λ4 - |λ5|)X2X

2
1 = 0 . (3.16)

The solution of this system of equations, gives a fourth bound

λ3 + λ4 - |λ5|+
√

λ1λ2 > 0 . (3.17)

3.3 Global minimum
In a THDM it is possible that the vacuum in which we reside is metastable [26, 27].
Differently from the SM the vacuum structure of a THDM is much richer and can even,
for certain parameter choices, have a vacuum which spontaneously breaks CP invariance.
Historically, this is also one of the main motivations behind Lee’s first proposal of this
family of models. In other regions of the parameter space it is possible for the vacuum to
break the electromagnetic U(1) gauge symmetry (to be avoided at all costs). Moreover,
for large regions of parameter values, the vacuum is ”normal”, i.e. it breaks electroweak
gauge invariance and preserves both the electromagnetic and CP symmetries. Lastly,
the THDM may in general present two such ”normal” minima. In this case, it could
be that we do not reside in the ”true” vacuum (global minimum), which in turn would
mean that there is a second minimum in which the masses of the particles are completely
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different from the known values. This would imply that we currently reside in a metastable
vacuum. In [26] the authors derive a bound on the THDM parameters that guarantees
the considered vacuum to be the global minimum, i.e. not a metastable vacuum. They
define the ”discriminant”

D = m2
12

(
m2

11 - k2m2
22

)
(tβ - k) , (3.18)

where k = (λ1/λ2)
1
4 , and show that if D > 0, then our vacuum is the global minimum

of the potential (3.5). Therefore, to ensure that we reside in the global minimum of the
potential, independent of the number of local minima, requiring D > 0 is a necessary and
sufficient condition.

3.4 Unitarity bounds
3.4.1 Partial wave decomposition
At high energies, the scalar-scattering S1S2 → S3S4 respects unitarity [13, 14, 28]. We
can write the amplitude M of a scattering S1S2 → S3S4, in terms of a partial wave
decomposition

M(s, t, u) = 16π
∞Σ
l=0

(2l + 1)Pl(cos θ)al(s) , (3.19)

with Pl the Legendre polynomials2 and t, u dependent on cos θ. Their orthogonality
relation reads ∫ 1

-1

Pm(x)Pn(x) dx =
2

2n+ 1
δnm , (3.20)

with x = cos(θ).
For a 2 → 2 scattering process the differential cross section is given by [20]

dσ

dΩ
=

1

64π2s
|M |2 . (3.21)

By using the fact that in our case of a two-particle final state∫
dΩ = 2π

∫
dcos θ , (3.22)

and inserting (3.19) in (3.21) we obtain

σ =
16π

s

∞Σ
l=0

(2l + 1)|al(s)|2 . (3.23)

2P0(x) = 1, P1(x) = x, P2(x) =
1
2 (3x

2 - 1), . . .
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By using the optical theorem for cross sections (given in Section 7.3 in [29])

2iS(M(k)) =
i

2

∫
d3p1
(2π)3

1

2E1

d3p2
(2π)3

1

2E2

(2π)4δ(4)(p1 + p2 - k), ,, ,
dLips2

|M(k)|2 , (3.24)

and the computed cross section we obtain

2iS(M(k)) =
i

2
2s σ (3.25)

=
i

2
2s

16π

s

∞Σ
l=0

(2l + 1)|al(s)|2 , (3.26)

where 2s is the flux factor. We insert (3.19) in S(M(k)) and obtain

|al|2 = R(al)2 + S(al)2 = S(al) . (3.27)

This is a so-called Argand circle. The equation is of the form

x2 + y2 = y . (3.28)

We can make the substitution y → y, + 1
2

and obtain

x2 + y,2 =
1

4
. (3.29)

This is the equation of a circle of radius 1
2

centered at y0 = 1
2
. Therefore, we obtain a

bound on the partial wave decomposition of the matrix element

|R(al)| < 1

2
for all l . (3.30)

The equation for the matrix element can be inverted to obtain the partial wave al(s). We
start from∫ 1

-1

∞Σ
l=0

Pl(cos θ)M(s, t, u) dcos θ =

∫ 1

-1

∞Σ
l=0

Pl(cos θ)16π
∞Σ
l,=0

(2l, + 1)Pl,(cos θ)al,(s) dcos θ ,

(3.31)
where we have inserted on the RHS (3.19). By exploiting the orthogonality relation (3.20)
the RHS is trivially integrated. We obtain the final result

al(s) =
1

32π

∫ 1

-1

dcos θPl(cos θ)M(s, t, u) . (3.32)

According to the equivalence theorem, in the case of high energies the longitudinal
components of the weak gauge boson states can be substituted with the corresponding
Nambu-Goldstone boson state ϕ±

i , hi and zi (i = 1, 2) [13, 30, 31]. Furthermore, it can be
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shown that the dominant contribution to the amplitude of the 2 → 2 scattering is the one
which is mediated by the quartic coupling. The contributions mediated by the trilinear
couplings are shown to be suppressed on dimensional grounds. This in turn implies that
if we restrict ourselves to the J = 0 case, the s-wave amplitude a0(s) takes the form

a0(s) =
1

16π
Q (3.33)

where Q is the four point vertex for S1S2 → S3S4. By direct insertion in (3.30), we obtain
a bound on the quartic couplings

|Q(S1S2S3S4)| ≤ 8π . (3.34)

The equivalence theorem states that in the high-energy limit, the amplitudes of a scatter-
ing process involving longitudinally polarized gauge bosons V are asymptotically equal to
the corresponding scalar amplitudes in which the gauge bosons are substituted by their
corresponding Goldstone bosons. This is up to a correction of order mV /

√
S. Therefore,

the S matrix expressed in terms of the mass eigenstate fields, can be transformed into an
S matrix for the non-physical fields ϕ±

i , hi and zi. Thus, the unitarity constraints (3.34),
can be computed by only considering scalar scatterings. All scalar scattering processes
S1S2 → S3S4, can be expressed as a (22x 22) S matrix. This matrix is in turn composed
of 4 submatrices, which do not couple to each other due to CP-invariance and charge
conjugation. The elements of these matrices are the quartic couplings which mediate the
scattering processes. The eigenvalues of the 4 submatrices are then the quartic couplings
Q, which must satisfy the bound (3.34).

Moreover, by imposing |λi| ≤ 4π, we assure the potential (3.5) to be perturbative [13,
14, 17, 18].

3.4.2 Feynman rules
To derive the quartic couplings in the THDM, we insert the Two Higgs Doublet fields, in
the notation used in [11] 3,

ϕi =

(
ω+
i

vi +
hi+izi√

2

)
, (3.35)

directly into the potential

V = m2
11(ϕ

†
1ϕ1) +m2

22(ϕ
†
2ϕ2)-m2

12(ϕ
†
1ϕ2 + h.c.) +

λ1

2
(ϕ†

1ϕ1)
2 +

λ2

2
(ϕ†

2ϕ2)
2 (3.36)

+ λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2) + λ4(ϕ

†
1ϕ2)(ϕ

†
2ϕ1)

+

[
λ5

2
(ϕ†

1ϕ2)
2 + λ6(ϕ

†
1ϕ1)(ϕ

†
2ϕ2) + λ7(ϕ

†
2ϕ2)(ϕ

†
1ϕ2) + h.c.

]
.

3We note that in the literature multiple notations are used for the Higgs doublets. In this work we use
two different notations based on the notation used in the corresponding literature. We identify: ϕ±

i ≡ ω±
i ,

ϕi ≡ hi and ai ≡ zi.
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Using the identities

R(z) = z + -z

2
and S(z) = z - -z

2i
, (3.37)

we obtain the sought after Feynman rules for the quartic couplings:

ω+
1 ω

-
1 ω

+
1 ω

-
1 =

λ1

2
ω-
1 ω

+
1 ω

-
2 ω

+
2 = λ3 + λ4 (3.38)

ω+
2 ω

-
2 ω

+
2 ω

-
2 =

λ2

2
h2h2h2h2 =

λ2

8

h1h1ω
-
1 ω

+
1 =

λ1

2
h1h2ω

+
1 ω

-
2 =

λ4 + λ5

2

h1h2ω
-
1 ω

+
2 =

λ4 + λ5

2
z2h1ω

+
1 ω

-
2 =

i

2
(λ4 - λ5)

ω+
1 ω

+
1 ω

-
2 ω

-
2 =

λ5

2
ω-
1 ω

-
1 ω

+
2 ω

+
2 =

λ5

2

h1h1h1h1 =
λ1

8
h1h1h2h2 =

1

4
(λ3 + λ4 + λ5)

h2h2ω
-
1 ω

+
1 =

λ3

2
h2h2ω

-
2 ω

+
2 =

λ2

2

h1h1ω
-
2 ω

+
2 =

λ3

2
z2z2ω

+
1 ω

-
1 =

λ3

2

z2h1ω
-
1 ω

+
2 = - i

2
(λ4 - λ5) z2z2h2h2 =

λ2

4

z1z1z1z1 =
λ1

8
z1z1h2h2 =

1

4
(λ3 + λ4 - λ5)

h1h1z2z2 =
1

4
(λ3 + λ4 - λ5) z1h2ω

-
1 ω

+
2 =

i

2
(λ4 - λ5)

z1z1ω
-
2 ω

+
2 =

λ3

2
z1z2ω

+
1 ω

-
2 =

1

2
(λ5 + λ4)

z2z2ω
+
2 ω

-
2 =

λ2

2
z2z2z2z2 =

λ2

8

z2z2z1z1 =
1

4
(λ3 + λ4 + λ5) h1h1z1z1 =

λ1

4

z1h2ω
+
1 ω

-
2 = - i

2
(λ4 - λ5) z1z1ω

+
1 ω

-
1 =

λ1

2

z1z2h1h2 = λ5 z1z2ω
-
1 ω

+
2 =

1

2
(λ5 + λ4)

3.4.3 S matrix
The first submatrix M1 contains all scattering processes whose initial and final states are
one of the following: (w+

1 w
-
2 ,w+

2 w
-
1 , h1z2, h2z1, z1z2, h1h2). Using the derived Feynman

rules (3.38) (multiplied by the appropriate symmetry factor) for the quartic couplings,
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one can see that by direct insertion

M1 =

(|||||||||(

λ+
34 2λ5

λ+
45

2
i
λ-
45

2
-i

λ-
45

2

λ+
45

2

2λ5 λ+
34

λ+
45

2
-i

λ-
45

2
i
λ-
45

2

λ+
45

2
λ+
45

2

λ+
45

2
λ3 + λ4 + λ5 0 0 λ5

-i
λ-
45

2
i
λ-
45

2
0 λ3 + λ4 - λ5 λ5 0

i
λ-
45

2
-i

λ-
45

2
0 λ5 λ3 + λ4 - λ5 0

λ+
45

2

λ+
45

2
λ5 0 0 λ3 + λ4 + λ5

)|||||||||)
,

(3.39)
where we have used the abbreviation λ±

ij = λi ± λj. With the help of Mathematica we
compute the eigenvalues (EV) of the M1 matrix:

a1 = λ3 + λ4 , (3.40)
a2 = λ3 - λ5 , (3.41)
a3 = λ3 + λ5 , (3.42)
a± = λ3 + 2λ4 ± 3λ5 . (3.43)

The second submatrix M2 corresponds to the scatterings with one of the following
initial and final state: (w+

1 w
-
1 , w+

2 w
-
2 , z1z1√

2
, z2z2√

2
, h1h1√

2
, h2h2√

2
). The factor 1√

2
accounts for

the statistics of identical particles. Again, by direct insertion of the quartic couplings, we
obtain

M2 =

(||||||||(

2λ1 λ+
34

λ1√
2

λ3√
2

λ1√
2

λ3√
2

λ+
34 2λ2

λ3√
2

λ2√
2

λ3√
2

λ2√
2

λ1√
2

λ3√
2

3λ1

2
1
2
(λ3 + λ4 + λ5)

λ1

2
1
2
(λ3 + λ4 - λ5)

λ3√
2

λ2√
2

1
2
(λ3 + λ4 + λ5)

3λ2

2
1
2
(λ3 + λ4 - λ5)

λ2

2
λ1√
2

λ3√
2

λ1

2
1
2
(λ3 + λ4 - λ5)

3λ1

2
1
2
(λ3 + λ4 + λ5)

λ3√
2

λ2√
2

1
2
(λ3 + λ4 - λ5)

λ2

2
1
2
(λ3 + λ4 + λ5)

3λ2

2

)||||||||)
.

(3.44)
The EV of M2 are

b1 =
1

2

(
3λ1 + 3λ2 +

√
9(λ1 - λ2)2 + 4(2λ3 + λ4)2

)
, (3.45)

b2 =
1

2

(
3λ1 + 3λ2 -

√
9(λ1 - λ2)2 + 4(2λ3 + λ4)2

)
, (3.46)

b± =
1

2

(
λ1 + λ2 ±

√
(λ1 - λ2)2 + 4λ2

4

)
, (3.47)

f± =
1

2

(
λ1 + λ2 ±

√
(λ1 - λ2)2 + 4λ2

5

)
. (3.48)

The third submatrix M3 corresponds to the scatterings with one of the following
initial and final state: (h1z1, h2z2). We obtain for the scattering matrix

M3 =

(
λ1 λ5

λ5 λ2

)
. (3.49)
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The two eigenvalues read
c± = f± . (3.50)

The fourth submatrix M4 corresponds to the scatterings with one of the following
initial and final state: (h1ω

+
1 , z1ω+

1 , h2ω
+
1 , z2ω+

1 , h1ω
+
2 , z1ω+

2 , h2ω
+
2 , z2ω+

2 ). The matrix
reads

M4 =

(||||||||||||||(

λ1 0 0 0 0 0
λ+
45

2
-i

λ-
45

2

0 λ1 0 0 0 0 i
λ-
45

2

λ+
45

2

0 0 λ3 0
λ+
45

2
i
λ-
45

2
0 0

0 0 0 λ3 -i
λ-
45

2

λ+
45

2
0 0

0 0
λ+
45

2
i
λ-
45

2
λ3 0 0 0

0 0 -i
λ-
45

2

λ+
45

2
0 λ3 0 0

λ+
45

2
-i

λ-
45

2
0 0 0 0 λ2 0

i
λ-
45

2

λ+
45

2
0 0 0 0 0 λ2

)||||||||||||||)
, (3.51)

The 8 eigenvalues for M4 are

d1 = a1 , (3.52)
d2 = a2 , (3.53)
d3 = a3 , (3.54)
d± = b± , (3.55)
g± = f± , (3.56)
d6 = λ3 - λ4 . (3.57)

The fifth and last submatrix M5 corresponds to the possible scatterings of of the
following initial and final states: (ω

+
1 ω+

1√
2

, ω+
2 ω+

2√
2

, ω+
1 ω

+
2 ). The matrix reads

M5 =

((λ1 λ5 0
λ5 λ2 0
0 0 λ+

34

)) , (3.58)

and has the following three eigenvalues

e1 = a1 , (3.59)
e± = f± . (3.60)

We can now insert the expressions for the parameters λ1,2,3,4 (3.1) into the eigenvalues
(EV) of the five submatrices and check the validity of the bound (3.34),

|EV | ≤ 8π . (3.61)
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3.5 Oblique parameters
The so-called oblique parameters have been introduced by Peskin and Takeuchi (1990)
[32], as a set of three measurable quantities S, T and U, that parameterize the new
physics contributions to electroweak radiative corrections in beyond SM models (BSM).
They are defined such that S = T = U = 0 corresponds to the SM. The parameter T is
closely related to the known ρ parameter4 in the electroweak theory by ρ = 1 + αT . For
further insight into the relations between the oblique parameters and SM observables, see
Eqs. 3.13 in [32]. The oblique parameters are defined in terms of the transverse part of
the gauge boson two-point functions,

-αT :=
πnew

WW (0)

m2
W

- πnew
ZZ (0)

m2
Z

, (3.62)

-α

4-s2Z-c
2
Z

S :=
πnew

ZZ (m2
Z)- πnew

ZZ (0)

m2
Z

-
(
-c2w - -s2w
-cw-sw

)
πnew

Zγ (m2
W )

m2
W

- πnew
γγ (m2

Z)

m2
Z

, (3.63)

-α

4-s2Z-c
2
Z

(S + U) :=
πnew

WW (m2
W )- πnew

WW (0)

m2
W

-
(
-c2w
-sw

)
πnew

Zγ (m2
W )

m2
W

- πnew
γγ

m2
W

, (3.64)

where we use the definitions -sW := sin θw(mZ), -cW := cos θw(mZ) and -α :=
-g2-s2Z
4π

defined
in the MS scheme evaluated at mZ . The πnew

VaVb
are the new contributions to the one

loop vacuum polarization functions. In this work the new contributions stems from the
additional Higgs bosons of the THDM. In the case that the new physics energy scale is
significantly larger than mZ , we can make a linear approximation of the new one loop
contributions [12]

πnew
ij (q2) ≈ Aij(0) + q2Fij(q

2) . (3.65)
Moreover, electromagnetic gauge invariance guarantees

Aγγ(0) = AZγ(0) = 0 . (3.66)

Using this linear approximation we may rewrite (3.62),(3.63), (3.64) as

αT =
AWW (0)

m2
W

- AZZ(0)

m2
Z

, (3.67)

g2

16πc2w
S = FZZ(m

2
Z)- Fγγ(m

2
Z)-

(
c2w - s2w
swcw

)
FZγ(m

2
Z) , (3.68)

g2

16π
(S + U) = FWW (m2

W )- Fγγ(m
2
W )- cw

sw
FZγ(m

2
W ) . (3.69)

Here we have dropped the bars for convenience. To compute the oblique parameter in the
THDM we compute the one-loop gauge polarization functions in which the Higgs bosons
appear in the loop. We then subtract the contributions of the SM Higgs boson of mass

4ρ =
m2

W

m2
Z cos θw2
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mh0 = 125 GeV. By closely following [12], we calculate the THDM contributions to S, T
and U . The contributions to S are given by

S =
1

πm2
Z

{
3Σ

k=1

q2k1

[
B22(m

2
Z ;m

2
Z ,m

2
k)-m2

ZB0(m
2
Z ;m

2
Z ,m

2
k)
]

(3.70)

+ q211B22(m
2
Z ;m

2
2,m

2
3) + q221B22(m

2
Z ;m

2
1,m

2
3) + q231B22(m

2
Z ;m

2
1,m

2
2)

- B22(m
2
Z ;m

2
H± ,m2

H±)- B22(m
2
Z ;m

2
1,m

2
ϕ) +m2

ZB0(m
2
Z ;m

2
Z ,m

2
ϕ)

}
,

where

B22(q
2;m2

1,m
2
2) ≡ B22(q

2;m2
1,m

2
2)- B22(0;m

2
1,m

2
2) , (3.71)

B0(q
2;m2

1,m
2
2) ≡ B0(q

2;m2
1,m

2
2)- B0(0;m

2
1,m

2
2) . (3.72)

mk are the masses of the neutral Higgs bosons h0, H0 and A0. The two point loop integrals
are defined in [33]. We evaluate the integrals numerically in dimensional regularization
using

B22(q
2;m2

1,m
2
2) =

1

4
(Δ + 1)

[
m2

1 +m2
2 -

1

3
q2
]
- 1

2

∫ 1

0

dxX ln (X - iε) , (3.73)

B0(q
2;m2

1,m
2
2) = Δ-

∫ 1

0

dx ln (X - iε) , (3.74)

with

X ≡ m2
1x+m2

2(1- x)- q2x(1- x) , (3.75)

Δ ≡ 2

4- d
+ ln (4π)- γ , (3.76)

in d space-time dimensions. We note that the B0 and B22 functions are symmetric in the
second and third arguments

B22(q
2;m2

1,m
2
2) = B22(q

2;m2
2,m

2
1) , (3.77)

B0(q
2;m2

1,m
2
2) = B0(q

2;m2
2,m

2
1) . (3.78)

Moreover, we define the function F as

F(m2
1,m

2
2) ≡

1

2
(m2

1 +m2
2)-

m2
1m

2
2

m2
1 -m2

2

ln

(
m2

1

m2
2

)
, (3.79)

and

F(m2
1,m

2
2) = (m2

2,m
2
1) . (3.80)
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The THDM contributions to T and U are given by

T =
1

16πm2
W s2W

{
3Σ

k=1

|qk2|2F(m2
H± ,m2

k)- q211F(m2
2,m

2
3)- q221F(m2
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2
3) (3.81)

- q231F(m2
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2
2) +
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q2k1
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k)-F(m2

Z ,m
2
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2
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k) + 4m2
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2
Z ,m

2
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]

+ F(m2
Z ,m

2
ϕ)-F(m2

W ,m2
ϕ) + 4m2

WB0(0;m
2
W ,m2

ϕ)- 4m2
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2
Z ,m

2
ϕ)

}
,

U = -S +
1

πm2
W

{
-

3Σ
k=1

q2k1m
2
WB0(m

2
W ;m2

W ,m2
k) +m2

WB0(m
2
W ;m2

W ,m2
ϕ) (3.82)

- B22(m
2
W ;m2

W ,m2
ϕ) +

3Σ
k=1

[
q2k1B22(m

2
W ;m2

W ,m2
k) + |qk2|2B22(m

2
W ;m2

H± ,m2
k)
]

- 2B22(m
2
W ;m2

H± ,m2
H±)

}
.

In this study we focus on the CP-conserving THDMs. Therefore, we identify the
values of qk1 and qk2 and the corresponding neutral Higgs boson masses mk in the CP-
conserving limit [34]. Depending on the mass ordering of the Higgs bosons, three cases
can be identified [12]. However, the oblique parameters S, T and U do not depend on
which case is employed to compute the qkl. These factors are related to the angles α and
β as indicated in [12]. By inserting the values for the qkl parameters from any of the three
cases in (3.83), (3.71), (3.73), (3.75), (3.77), (3.79) and (3.81), we obtain for the oblique
parameters

S =
1

πm2
Z

{
- B22(m

2
Z ;m

2
H± ,m2

H±) + sin2 (β - α)B22(m
2
Z ;m

2
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A0) (3.83)

+ cos2 (β - α)
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2
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2
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2
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2
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2
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2
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2
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]}
,

T =
1

16πm2
W s2W

{
F(m2
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]
(3.84)

+ cos2 (β - α)
[
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,
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U = -S +
1

πm2
W

{
B22(m

2
W ;m2

H± ,m2
A0)- 2B22(m

2
W ;m2

H± ,m2
H±) + sin2 (β - α) (3.85)

B22(m
2
W ;m2

H± ,m2
H0) + cos2 (β - α)

[
B22(m

2
W ;m2

h0 ,m2
H±) + B22(m

2
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W ,m2
H0)

- B22(m
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W ,m2
h0)-m2

WB0(m
2
W ;m2
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H0)-m2

WB0(m
2
W ;m2

W ,m2
h0)

]}
.

We numerically calculate the oblique parameters and compare them with the experimental
global fit values

S = 0.02± 0.10 , T = 0.07± 0.12 and U = 0.00± 0.09 . (3.86)

We note that due to the absence of fermions in the THDM contributions to the oblique
parameters, these results hold for all THD models.
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3.5.1 Examples of one-loop polarization functions
We present two explicit derivations of the one-loop polarization functions W+ → h0H± →
W+ and γ → H+H- → γ contributing to AWW (0) and πγγ(m

2
Z0) respectively. A complete

derivation is presented in [12].

Loop integrals

We define the loop integrals following the convention given in [35]∫
d4k

(2π)4
1

k2 -m2
=

i

16π2
A0(m

2) , (3.87)∫
d4k

(2π)4
1

(k2 -m2
1)[(k + q)2 -m2

2]
=

i

16π2
B0(q

2;m2
1,m

2
2) , (3.88)∫

d4k

(2π)4
kμkν

(k2 -m2
1)[(k + q)2 -m2

2]
=

i

16π2
gμνB22(q

2;m2
1,m

2
2) , (3.89)

and make use of the following relations and definitions

B0(0;m
2
1,m

2
2) =

A0(m
2
1)- A0(m

2
2)

m2
1 -m2

2

, (3.90)

4B22(0;m
2
1,m

2
2) = F(m2

1,m
2
2) + A0(m

2
1) + A0(m

2
2) , (3.91)

F(m2
1,m

2
2) :=

1

2
(m2

1 +m2
2)-

m2
1m

2
2

m2
1 -m2

2

ln

(
m2

1

m2
2

)
. (3.92)

We follow the definition of the self-energy coefficients of the vector particles given in
[36].

Example of one-loop contribution to AWW (0): W+ → h0H± → W+

-
h0

H-

W+ W+

Figure 3.1: Feynman diagram for the W+ → h0H± → W+ channel one-loop contribution
to W+, in the THDM. All momenta are in time direction from left to right.
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We evaluate the matrix element for W+ → h0H± → W+ by using the Feynman rule
[12]

C(W+, H±, h0) = -1

2
igq12(p1 + p2)

μ , (3.93)

where p1 is the momentum of the Higgs boson H± and p2 of h0. Therefore, the one-loop
contribution is given by

M = -
∫

d4q

(2π)4

(
q212
4
g2(p1 + p2)μ(p1 + p2)νε

*μ(k)εν(k)
)

1

(p21 -m2
H+)(p22 -m2

h0)
. (3.94)

We define the momenta in the loop as p1 = k + q and p2 = q. After inserting these
definitions and using ε(k)μkμ = 0 we obtain

M = -
∫

d4q

(2π)4

(
q212
4
g2
)
ε*μ(k)εν(k)

qμqν
[(k + q)2 -m2

H± ][q2 -m2
h0 ]

. (3.95)

With the loop integral definitions (3.87) we can rewrite (3.95) as

M = -gμν
i

16π2
g2|q12|2B22(0;m

2
H± ,m2

h0)ε*μ(k)εν(k) . (3.96)

By comparison of the coefficients, see [36] Section 3.2, we get

πWW (k2) =
1

16π2
g2|q12|2B22(0;m

2
H± ,m2

h0) , (3.97)

for the loop with h0 and H-.

Example of one-loop contribution to πγγ(m
2
Z0): γ → H+H- → γ

-
H+

H+

γ γ

Figure 3.2: Feynman diagram for the γ → H+H- → γ channel one-loop contribution to
γ, in the THDM. All momenta are in time direction from left to right.

37



Leonardo B. Giacomelli 3.5. OBLIQUE PARAMETERS

Similarly to the first example, we evaluate the matrix element for γ → H+H- → γ
by using the Feynman rule for the coupling [12],

C(γ,H±, H±) = igsW (p1 + p2)
μ , (3.98)

where p1 and p2 are the momenta of the two Higgs bosons H±. Therefore, the one-loop
contribution is given by

M = -
∫

d4q

(2π)4
1

(p21 -m2
H±)(p22 -m2

H±)
g2s2W εμ(k)(p1 + p2)με

*ν(k)(p1 + p2)ν . (3.99)

We define the momenta in the loop as p1 = k + q and p2 = q. After inserting these
definitions and using ε(k)μkμ = 0 we obtain

M = -
∫

d4q

(2π)4
(
4g2s2W

) qμqν
[(k + q)2 -m2

H± ][q2 -m2
h0 ]

εμ(k)ε*ν(k) . (3.100)

With the loop integral definitions (3.87) we can rewrite (3.100) as

M = -gμν
i

4π2
g2s2WB22(m

2
Z0 ;m2

H± ,m2
H±)εμ(k)ε*ν(k) , (3.101)

where we have evaluated the expression at q2 = m2
Z0 . By comparison of the coefficients,

see [36] Section 3.2, we get

πγγ(k
2) =

1

4π2
g2s2WB22(m

2
Z0 ;m2

H± ,m2
H±) , (3.102)

for the loop with h0 and H-.
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(a) (b)

Figure 3.3: Scatter plots of mA0 [GeV] and mH0 [GeV] satisfying the constraints of vacuum
stability, unitarity, perturbativity, and the oblique parameters for 100 GeV ≤ mH± ≤
2000 GeV (a), and -1 ≤ sβ-α ≤ 1 (b).

3.6 Numerical analysis
In this section we present the numerical results obtained for the vacuum stability, global
minimum, unitarity and oblique parameters bounds5. Due to the complex nature of
the obtained bounds on the 7 parameters of the model, we perform a numerical study
of the parameter sets allowed by the considered theoretical bounds. We perform the
scan using a self-developed python code. We scanned ≈ 25 . 109 points of which 270759
points respected all theoretical bounds. We impose a range for the input parameters
(sα, tβ,mH0 ,mA0 ,mH± , λ5), randomly pick a combination of these parameters and then
numerically check whether the selected set of parameters respects all bounds. The mixing
angles α and β can range respectively between sα € [-1.0, 1.0] and tβ € [0.1, 40.0]. Per-
turbativity constraints the range of the parameter λ5 to λ5 € [-4π, 4π]. In the literature
the perturbativity bound on the parameters λi is often relaxed to λi € [-8π, 8π] [13, 14].
We perform two parameter scans for both perturbativity constraints. We observe no sub-
stantial difference. However, we choose the more theoretically grounded and conservative
4π bound. For the masses of the neutral Higgs bosons H0 and A0 we impose an upper
limit of 3 TeV.

In Fig. 3.3a we observe that the neutral Higgs bosons H0 and A0 cannot simultane-
ously take values below ≈ 500 GeV for mH± > 550 GeV. The highest density of allowed
parameter sets is in the region where 100 < mA0 < 700 GeV and 100 < mH0 < 700 GeV.

5Historically the oblique parameter bounds are counted as theoretical bounds, even though they
depend on experimental measurements.
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(a) (b)

Figure 3.4: Scatter plots of mA0 [GeV] and mH0 [GeV] satisfying the constraints of vacuum
stability, unitarity, perturbativity, and the oblique parameters for 0 ≤ tβ ≤ 40 (a) and
-1.0 ≤ sα ≤ 1.0 (b).

Furthermore, we observe an almost linear dependence between the masses of the A0 and
H0 Higgs bosons for mA0 > 700 GeV and mH0 > 700 GeV, mA0 ~ mH0 , as well as a
continuous grow of the H+ Higgs boson mass for growing mH0 and mA0 . Fig. 3.3b shows
that for mA0 > 700 GeV and mH0 > 700, sβ-α is close to 1 for the vast majority of
parameter sets [37]. This in turn implies that these sets are close to the alignment limit
sβ-α = 1. The parameter sets with 100 < mA0 < 700 GeV and 100 < mH0 < 700 GeV
show a significant deviation from the alignment limit. Some parameter sets even show
values for sβ-α close to 0.5. Moreover, for growing mH0 and mA0 we observe a diminishing
density of allowed points. Above masses of 2000 GeV for any of the Higgs bosons we do
not find any allowed sets. However, we note that it could be possible to observe exotic
points in this region of the parameter space. At the same time, the parameter tβ shows
almost uniformly distributed values between 0.1 and 10.0 for all Higgs boson masses mH0

and mA0 , see Fig. 3.4a. For 100 < mA0 < 700 GeV and 100 < mH0 < 700 GeV, we
observe that the parameter sα, takes values approx. between 0. and 1.0, whereas for the
other allowed regions sα is for the majority of the allowed points between 0 and -0.7, see
Fig. 3.4b. This means that for growing A0 and H0 Higgs boson masses, the mixing angle
sα changes sign for the majority of allowed parameter sets.

When plotting tβ and sα as a function of λ5 we observe a sharp peak around sα = 0,
see Fig. 3.5a, for all tβ values that we scan. The parameter λ5 takes values approximately
between -5 and 5. Moreover, the scan shows a high density of points for tβ < 10 for all
sα, that diminishes for growing tβ, see Fig. 3.5a. The same plot, but with sα substi-
tuted by sβ-α, shows that the vast majority of allowed points have sβ-α ≈ 1 (as seen in
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(a) (b)

Figure 3.5: Scatter plots of the parameter sets satisfying the constraints of vacuum sta-
bility, global minimum, unitarity, perturbativity, and the oblique parameters. Fig. (a)
shows a scatter plot of tβ as a function of sα, with -4π ≤ λ5 ≤ 4π. In Fig. (b) we show
a scatter plot of tβ as a function of sβ-α for -4π ≤ λ5 ≤ 4π.

Fig. 3.3b) and λ5 approximately between -5 and 5. Moreover, all sets with sβ-α < 0 have
corresponding tβ below 5. Above sβ-α ≈ 0 we observe allowed points also for greater
values of tβ. However, the density of allowed points sharply decreases with growing tβ,
except for sβ-α ≈ 1, where the density of allowed sets is almost uniformly distributed for
0 < tβ < 40, see Fig. 3.5b.

In conclusion, we note that the obtained sets are allowed for all THDMs and that
with our code we obtain an average of 1400 allowed points per 1 billion points scanned
(computation time is approx. 4h depending on the specifics of the used computer), in the
parameter space regions explored (it strongly depends on the specific parameter region
explored). We point out that further scans in regions with mH0 and mA0 above 2 TeV
might find allowed ’exotic’ points. However, this numerical study clearly shows that there
is a strong dependency between the masses of the Higgs bosons, the mixing angles α and
β, and the parameter λ5, which generate sharp bounds on the allowed parameter sets.
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Chapter 4

Experimental bounds

In this chapter we present an overview of the current experimental bounds on the THDMs
coming e.g. from the LHC at CERN and the LEP experiment. We closely follow [11], [18]
and [17]. Furthermore, we present the experimental bounds that we consider throughout
the study and emphasize the need for a centralized data bank that stores all experimentally
excluded parameter sets. We note that all current experimental bounds can be considered
with the help of the HiggsBounds-5 package [38].

4.1 The 125 GeV Higgs boson
In the four types of Two Higgs Doublet Models (THDMs) explored in this work, the
neutral Higgs boson Yukawa couplings to fermions (normalized to the SM) can be written
as:

yfih = [sin(β - α) + cos(β - α)Ϗf ] , (4.1)
yfiH = [cos(β - α)- sin(β - α)Ϗf ] , (4.2)
yfiA = -iϏf (for up-type quarks) , (4.3)
yfiA = -iϏf (for down-type quarks and leptons) . (4.4)

The couplings to the gauge bosons (normalized to the SM) are given by:

yVh = sin(β - α) , (4.5)
yVH = cos(β - α) , (4.6)

where V = W±, Z0. The analyses performed by the ATLAS and CMS collaborations
demonstrate a notable agreement between the coupling strengths of the observed 125 GeV
boson and the Higgs boson predicted by the Standard Model (SM). However, direct
measurement of the coupling signs remains elusive since they cannot be measured directly.
Assuming that the lightest neutral Higgs boson h0 is the discovered 125 GeV Higgs boson,
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its couplings have two different cases. In the first case, known as ’SM-like couplings’, we
have:

yfih x yVh > 0 . (4.7)
In the second case, known as ”wrong-sign Yukawa couplings,” we have:

yfih x yVh < 0 . (4.8)
In the first case, the couplings of the 125 GeV h0 Higgs boson are very close to the

couplings in the SM, which has an alignment limit. In the alignment limit, the scalar field
responsible for electroweak symmetry breaking aligns with the discovered Higgs boson,
leading to specific predictions for its properties. In this limit, the coupling strengths of the
Higgs boson to fermions and gauge bosons become proportional to their corresponding
Standard Model values, effectively mimicking the behavior of the SM Higgs boson. This
alignment occurs when the mixing angle between the two Higgs doublets approaches a
specific value known as the alignment angle. In the exact alignment [39, 40], namely when
cos(β-α) = 0, we see from (4.1) and (4.5) that h0 has the same couplings to fermions and
gauge bosons as in the SM. The heavier and CP-even Higgs boson H0 has not couplings
to the gauge bosons in this limit.

The analyses of the 125 GeV h0 Higgs boson data obtained at the LHC, show that the
absolute values of the couplings yfih and yVh must be close to 1.0. As shown in [11], this
implies that

Ϗf < -1 , (4.9)
for sin(β - α) > 0 and cos(β - α) > 0, and

Ϗf > 1 , (4.10)
for sin(β - α) < 0 and cos(β - α) > 0, with Ϗf defined in Tab. 1.2. In all four types of
THDMs we investigate, the measurement of the branching ratio of the process b → sγ
favors tan β > 1. This in turn implies that for sin(β-α) > 0 and cos(β-α) > 0, there may
exist wrong-sign Yukawa couplings for the leptons and down-type quarks in the Type-II
THDM, for the leptons in the lepton-specific THDM and for the down-type quarks in
the flipped THDM. This can be inferred from the definitions of the Ϗf parameters shown
in Table 1.2. L. Wang et al [11] show that in the Type-II THDM the LHC signal data
allows sin(β-α) to deviate more significantly from 1 in the wrong-sign Yukawa couplings
case compared to the SM-like couplings scenario. Furthermore, in the wrong-sign Yukawa
couplings case, for given sin(β - α), tan β has a stringent upper and lower bound.

Run I and II at the LHC have measured the 125 GeV h0 Higgs bosons signal strength
via different production channels. In [41] this data is combined to give a 95% confidence
limit (C.L.) on the mixing angles α and β in the Type-I and Type-II THDMs. In par-
ticular, they observe that the alignment limit β - α = π/2 is favoured by the global fit.
Moreover, for the Type-I THDM and tan β > 2, they find that | cos(β-α)| is bounded to
be less than 0.4. This limit is envisioned to be further constrained to 0.2 with the high-
luminosity LHC runs [42]. In the Type-II THDM, the region around tan β = 1 allows for
the largest deviations from the alignment limit. In [41] the LHC runs-I and II are said to
constrain cos(β - α) approximately in the range (-0.01, 0.08), with tan β = 1.
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4.2 Search for additional scalar particles
The ATLAS and CMS collaborations have conducted extensive searches for an extra
scalar particle by examining its decay into various channels of the Standard Model (SM)
or through its exotic decays [43–46]. Due to the potential enhancement of Yukawa cou-
plings for down-type quarks and leptons by a factor of tan β, the Type-II THDM can
face stronger constraints compared to the other three types of models through flavor
observables and the additional Higgs searches carried out at the LHC. The gluon-gluon
fusion, generated by the exchange of a top quark and a b quark in the loops, is the main
production mechanism for the heavy and neutral H0 and A0 Higgs bosons. The loop
contributions of the top and bottom quarks may also destructively interfere. Various
analyses have been carried out (e.g. using the 2HDMC and SusHi packages to calculate
cross sections and branching ratios [47, 48]). E.g. in [49, 50] large numbers of CMS and
ATLAS (LHC experiments) analyses at 8 TeV and 13 TeV, have been used to constrain
the Type-II THDM. As shown in [11] the couplings C(A0, h0, Z0) and C(A0, H0, Z0) are
respectively proportional to cos(β-α) and sin(β-α). In the SM - like coupling scenario,
| sin(β - α)| is very close to 1. This implies that the channel A0 → h0Z0 does not con-
strain the parameter space, whereas the channel A0 → H0Z0 is able to exclude a large
number of points in the region with mH0 < 360 GeV. Furthermore, the H0/A0 → τ+τ-

channels give an upper bound on tan β, and a range on the mass of heavy Higgs boson
mH0 between 150 and 800 GeV for appropriate sin(β - α) and tan β. In the case of the
wrong-sign Yukawa type couplings, the LHC data for the 125 GeV Higgs boson requires
that tan β > 5 and sin(β - α) > 0.94. This implies that the cross sections of the H0

and A0 gluon fusion production mechanisms are considerably suppressed. This in turn
means that only the b-b → A0 → τ+τ- and A0 → h0Z0 channels can bound the parameter
space. Various ranges for the neutral A0 Higgs boson are allowed for appropriate tan β
and sin(β - α) (see [11] for a detailed discussion).

Differently from the Type-II THDM, in the Type-I THDM all the Yukawa couplings of
H0, A0 and H± can be suppressed by a large tan β. This in turn implies that the searches
for additional scalar particles at the LHC and measurements of the flavour observables are
easily satisfied. Therefore, the additional Higgs bosons are allowed to have broad mass
ranges.

In the Type-I THDM, the LHC searches for additional Higgs bosons have excluded
the heavy Higgs boson mass ranges of 250 GeV < mH < 350 GeV. These limits are
much smaller for the Type-II THDM in the theoretically allowed regions. Moreover, the
branching ratio of b → sγ imposes a lower bound on the mass of the charged H± Higgs
boson, mH± > 570 GeV [51, 52], for the Type-II THDM. This lower bound is relaxed for
the Type-I THDM to as low as 100 - 200 GeV with tan β > 2. Additionally, a recent
analysis shows that tan β > 2.5 must be satisfied [53].
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Figure 4.1: Scatter plot of the parameter sets satisfying the constraints of vacuum stability,
global minimum, unitarity, perturbativity, and the oblique parameters, with the addition
of the experimental bound mH± > 570 GeV for the Type-II THDM.

4.3 General discussion
Due to the fact that the THDM has 7 parameters it is very difficult to have sharp ex-
perimental bounds for all parameters. Therefore, in our study we initially only consider
the main experimental bounds. We do so by developing a python code that has as input
all theoretically allowed parameter sets and as output the sets which are also allowed by
the current experimental constraints that we consider. The code offers the possibility
to choose the specific THDM (Type-I, Type-II, lepton-specific or flipped), since the ex-
perimental bounds are model dependent. Moreover, we aim at developing this code to
include as many experimental bounds as possible. However, this currently resides outside
the scope of this work.

For all THDMs the experimental bounds which we consider are

mH± > 100 GeV mA0 > 100 GeV mH0 > 100 GeV . (4.11)

For the Type-I THDM we also exclude the heavy Higgs region 250 GeV < mH < 350 GeV.
Furthermore, for the Type-II THDM we impose the lower bound mH± > 570 GeV. In
Fig. 4.1 we show the full data set of theoretically allowed parameter points which also
considers this experimental bound on mH± for the Type-II THDM, see Fig. 3.3a for
comparison.

In conclusion, the large amount of experimental data and the lack of a centralized
data bank that stores all experimentally excluded parameter sets, does not allow for a
comprehensive implementation of all experimental bounds in this work. However, we note
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that with the help of the HiggsBounds-5 package [38], all experimental bounds can be
implemented. Even though this currently resides outside the scope of this work, it is of
interest for future extensions of the current study.
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Chapter 5

Total cross sections

In this Chapter, we derive the total cross sections for the production channels μ-μ+ → t-t,
μ-μ+ → h0h0, μ-μ+ → b-b, and μ-μ+ → τ-τ+. Furthermore, we develop a Breit-Wigner
formula applicable to any scattering process of the form μ-μ+ → H0/h0 → X. This
formula allows us to investigate the H0 and A0 resonant behavior and analyze the cor-
responding scattering processes in detail. Additionally, we introduce a forward-backward
asymmetry formula, which serves as a visualization tool for studying the resonances in
angle-dependent cross sections. By utilizing this asymmetry formula, we gain further in-
sights into the characteristics and behavior of the scattering processes under investigation
and it should enhance the effect of the resonances.

5.1 μ-μ+ → t-t - channel
5.1.1 Matrix element
In this Section we derive the matrix elements for the μ-μ+ → t-t scattering and derive an
analytical expression for the total cross section. The Feynman graphs for this process are
all s-channel scatterings of the form μ-μ+ → Y → t-t, with Y = h0, H0, A0, γ and Z0.

With help of the Mandelstam variables we can describe the kinematics of the system
in the center of mass frame (CMS)

S = (p1 + p2)
2 = (p3 + p4)

2 , (5.1)

T = (p1 - p3)
2 = (p4 - p2)

2 , (5.2)
U = (p1 - p4)

2 = (p3 - p2)
2 . (5.3)

We evaluate the binomials and solve for the inner products of the momenta pi and ki. We
also have at our disposal one more equation relating the three Mandelstam variables with
which we can eliminate U from the computation:

S + T + U = 2m2
t . (5.4)
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-p1 k2

p2 h0, H0, A0 k1

μ-

μ+

-t

t

-p1 k2

p2 γ, Z0 k1

μ-

μ+

-t

t

Figure 5.1: μ-μ+ → t-t Feynman diagrams in the THDM. All momenta are in time
direction from left to right.

The resulting inner products as a function of the Mandelstam variables S and T are:

p1 . k1 = p2 . k2 = m2
t - T

2
, (5.5)

k1 . p2 = p1 . k2 = -m2
t + S + T

2
. (5.6)

Momentum conservation is given by: p1 + p2 = k1 + k2. By using the Feynman rules
and trace technique in [8, 9, 20, 21] we compute the matrix elements squared for this
scattering processes

Mh0M †
h0 = -3 cosα2e4m2

tm
2
μ(4m

2
t - S)SY 2

1

4m4
w(m

2
h0 - S)2 sin β2 sin θw

4 , (5.7)

MγM
†
γ =

32e4(2m4
t + S2 - 4m2

tT + 2ST + 2T 2)

3S2
, (5.8)

MZ0M †
Z0 =

1

12 cos θw
2(m2

Z - S)2 sin θw
2 e

4[S2(9- 60 sin θw
2 (5.9)

+ 148 sin θw
4 - 160 sin θw

6 + 128 sin θw
8)

+m4
t (9- 60 sin θw

2 + 200 sin θw
4 - 320 sin θw

6 + 256 sin θw
8)

+ 2S(9- 60 sin θw
2 + 148 sin θw

4 - 160 sin θw
6 + 128 sin θw

8)T

+ (9- 60 sin θw
2 + 200 sin θw

4 - 320 sin θw
6 + 256 sin θw

8)T 2

-m2
t (S(27- 180 sin θw

2 + 496 sin θw
4 - 640 sin θw

6 + 512 sin θw
8)

+ 2(9- 60 sin θw
2 + 200 sin θw

4 - 320 sin θw
6) + 256 sin θw

8)T )] ,

MH0M †
H0 = -3Y 2

2 e
4m2

μm
2
t (4m

2
t - S)S sinα2

4m4
w(m

2
H0 - S)2 sin β2 sin θw

4 , (5.10)

MA0M †
A0 = - 3e4m2

μm
2
tS

2Y 2
3

4t2βm
4
w(m

2
A0 - S)2 sin θw

4 , (5.11)
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Mh0M †
H0 = - 3 cosαe4m2

μm
2
t (4m

2
t - S)S sinαY1Y2

4m4
w(S -m2

h0)(S -m2
H0) sin β2 sin θw

4 , (5.12)

MγM
†
Z0 =

2e4

3 cos θw
2S(S -m2

Z) sin θw
2 [S

2 (5.13)

(3- 10 sin θw
2 + 16 sin θw

4)+

m4
t (3- 20 sin θw

2 + 32 sin θw
4)+

2S(3- 10 sin θw
2 + 16 sin θw

4)T+

(3- 20 sin θw
2 + 32 sin θw

4)T 2-
m2

t (3S + 2(3- 20 sin θw
2 + 32 sin θw

4)T )] .

We checked the matrix elements with the help of FA/FC [8, 9].

5.1.2 Total cross section
For a 2 → 2 scattering1 with incoming μ-μ+, the differential cross section is given by [20]

dσ =
1

4

1

2S
|Mtot|2dLips2(k1, k2) , (5.14)

where

dLips2 =
1

(4π)2
pcm√
S
dcos θ dφ (5.15)

=
1

32π2S

√
λ(S,m2

t ,m
2
t ) dcos θ dφ ,

with the Källén function
λ(a, b, c) = (a- b- c)2 - 4bc . (5.16)

The total cross section is thus given by

σtot[fb] =
(
3.89 * 108) 1

128πS

(
1- 4m2

t

S

) 1
2
∫ 1

-1

dcos θ|Mtot|2 , (5.17)

with 3.89 * 108 being the transformation factor from GeV-2 to fbarn. We obtain the total
cross section σtot,t-t by analytically integrating the sum of the matrix elements squared

1A head-to-head collision of two massless particles.
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(5.7),(5.8), (5.9), (5.10), (5.11), (5.12) and (5.13),

σtot,t-t =
1

S
53742.4

√
1- 4m2

t

S

(
768π2α2m4

t

S2
+

768π2α2m2
t

S
+ 256π2α2+

8παe2 (12m2
tSs

2
w (8s2w - 5) +m4

t (96s
4
w - 60s2w + 9) + S2 (32s4w - 20s2w + 3))

c2wSs
2
w (S -m2

Z)
+

27e4m2
μm

2
tS

2Y 2
3l

m4
W s4wt

2
β

(
Γ2
A0m2

A0 +
(
m2

A0 - S
)2) +

54cαe
4m2

μm
2
tSsαY1lY2l

(
S -m2

H0

)
(4m2

t - S)

m4
W s2βs

4
w

(
S -m2

h0

) (
Γ2
H0m2

H0 +
(
m2

H0 - S
)2)-

27e4m2
μm

2
tSs

2
αY

2
2l (4m

2
t - S)

m4
W s2βs

4
w

(
Γ2
H0m2

H0 +
(
m2

H0 - S
)2) - 27c2αe

4m2
μm

2
tSY

2
1l (4m

2
t - S)

m4
W s2βs

4
w

(
m2

h0 - S
)2 +

1

c4ws
4
w (m2

Z - S)
2

(
e4

(
3m2

tS
(
256s8w - 320s6w + 32s4w + 36s2w - 9

)
+

3m4
t

(
256s8w - 320s6w + 200s4w - 60s2w + 9

)
+ S2

(
256s8w - 320s6w + 200s4w - 60s2w + 9

))))
.

(5.18)

We verify the total cross section analytically and numerically with FA/FC [8, 9].

5.2 μ-μ+ → h0h0 - channel
5.2.1 Matrix element
In a manner similar to the μ-μ+ → t-t channel, we proceed to derive the matrix element
for the μ-μ+ → h0h0 and obtain an analytical expression for the total cross section.
In this particular process, we encounter two s-channel interactions, as well as one t-
channel and one u-channel scattering processes. However, the contributions from the t-
and u-channels are significantly suppressed compared to the s-channel, rendering them
negligible and allowing us to disregard them in our analysis. This is because in the t-
and u-channels the muon Yukawa coupling enters quadratically due to the two vertices
μ-μ+ → h0. Additionally, it is important to note that the neutral A0 Higgs boson does not
exhibit any coupling to the SM Higgs boson h0 due to its CP-odd nature. Consequently,
we are left with only two permissible Feynman diagrams, namely μ-μ+ → X → h0h0,
where X can represent either h0 or H0.

The matrix element of this process is determined by the vertex couplings involving
μ-μ+ → h0/H0 and h0/H0 → h0h0, in addition to the Higgs boson propagator. In this
Chapter, we provide a comprehensive derivation of the matrix elements for the sake of
instructive purposes, aiming to offer a detailed example of how to derive such matrix
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-p1
p2 h0, H0

k1

k2

μ-

μ+

h0

h0

Figure 5.2: s-channel μ-μ+ → h0h0 Feynman diagrams in the THDM. All momenta are
in time direction from left to right.

elements. The same techniques apply to all other Feynman diagrams. The Feynman rules
read [8, 9]

C(μ-, μ+, h0) = -i
emμY1

2mw sin θw
, (5.19)

C(μ-, μ+, H0) = -i
emμY2

2mw sin θw
, (5.20)

C(h0, h0, h0) = - 3ie

2mw sin θw sin 2β
((2 cosα + β + sin 2α sin β - α)m2

h0-
4λ5 cos β - α2m2

w sin θw
2

e2
) , (5.21)

C(h0, h0, H0) = - ie cos β - α

2mw sin θw sin 2β
(sin 2α(2m2

h0 +m2
H0)- (5.22)

2λ5(3 sin 2α- sin 2β)m2
w sin θw

2

e2
) ,

Δ =
1

q2 -m2
h0/H0

, (5.23)

where Δ is the Higgs boson propagator and q2 = (p1+p2)
2, i.e. the transferred momentum.

We obtain for the matrix elements

Mh0 = -v(p2)C(μ-, μ+, h0)u(p1)Δmh0
C(h0, h0, h0) , (5.24)

and
MH0 = -v(p2)C(μ-, μ+, H0)u(p1)ΔmH0C(h0, h0, H0) . (5.25)

By identifying all constants with

ch0/H0 := C(μ-, μ+, h0/H0)Δmh0/H0C(h0, h0, h0/H0) , (5.26)

we can rewrite the matrix element as

Mh0/H0 = icT , (5.27)
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with T = -v(p2)v(p1). The matrix elements squared are then given by

(MM †)h0/H0 = c2h0/H0(-v(p2)u(p1))(-u(p1)v(p2)) (5.28)
= c2h0/H0Tr(/p2/p1)
= 4c2h0/H0(p2 . p1)
= 4c2h0/H0

1

2
(S - 2m2

μ) ,

where we have used the definition of the Mandelstam variables of sec.5.1.1.

5.2.2 Total cross section
As in Section 5.1.2 the total cross section is again given by

σtot[fb] =
(
3.89 * 108) 1

256πS

(
1- 4m2

h0

S

) 1
2
∫ 1

-1

dcos θ|Mtot|2 (5.29)

We note that an extra factor 1/2 is multiplied, in order to account for the fact that the
outgoing particles are identical. We analytically integrate the matrix elements squared
and obtain for the total cross section

σtot,h0h0 =
967364.0

S

√
1- 4m2

h0

S
(5.30)(

c2β-αe
4m2

μSY
2
2l

(
s2α

(
2m2

h0 +m2
H0

)- 2λ5m2
W s2w(3s2α-s2β)

e2

)2

8m4
W s22βs

4
w

(
Γ2
H0m2

H0 +
(
S -m2

H0

)2) +

9e4m2
μSY

2
1l

(
m2

h0(2cβ+α + s2αsβ-α)- 4c2β-αcβ+αλ5m2
W s2w

e2

)2

8m4
W s22βs

4
w

(
S -m2

h0

)2
)
.

5.3 μ-μ+ → b-b - channel
5.3.1 Matrix element
The matrix element for the μ-μ+ → b-b channel is analogous to the μ-μ+ → t-t chan-
nel, except for the mass of the quark and the coupling constants. However, the general
structure of the matrix elements remains the same. In particular, we have 6 s-channel
scattering processes for the h0, H0, A0, γ and Z0 bosons, two of which are the interference
terms between γ and Z0, and h0 and H0.

As in Sec.5.1.1 we work in the center of mass system and describe the kinematics of
the system with the Mandelstam variables defined in Eqs. (5.1), (5.2) and (5.3). We
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-p1 k2

p2 h0, H0, A0 k1

μ-

μ+

-b

b

-p1 k2

p2 γ, Z k1

μ-

μ+

-b

b

Figure 5.3: s-channel μ-μ+ → b-b Feynman diagrams in the THDM. All momenta are in
time direction from left to right.

evaluate the binomials and solve for the inner products of the momenta pi and ki. We
also have at our disposal one more equation relating the three Mandelstam variables with
which we can eliminate U from the computation:

S + T + U = 2m2
b . (5.31)

The resulting inner products as a function of the Mandelstam variables S and T are:

p1 . k1 = p2 . k2 = m2
b - T

2
, (5.32)

k1 . p2 = p1 . k2 = -m2
b + S + T

2
. (5.33)

Momentum conservation is again given by: p1+p2 = k1+k2. The matrix elements squared
for this scattering process are

Mh0M †
h0 = - 3e4m2

bm
2
μ(4m

2
b - S)SY 4

1

4m4
w(m

2
h0 - S)2 sin β2 sin θw

4 , (5.34)

MγM
†
γ =

8α2π2(2m4
b + S2 - 4m2

bT + 2ST + 2T 2)

3S2
, (5.35)

MZ0M †
Z0 =

1

192 sin θw
4 sin θw

4 (m2
Z - S)

2

(
e4

(-2m2
b

(
S
(
60 sin θw

4 - 42 sin θw
2 + 9

)
(5.36)

+
(
64 sin θw

8 - 128 sin θw
6 + 128 sin θw

4 - 48 sin θw
2 + 9

)
T
)
+

m4
b

(
64 sin θw

8 - 128 sin θw
6 + 128 sin θw

4 - 48 sin θw
2 + 9

)
+

S2
(
32 sin θw

8 - 64 sin θw
6 + 88 sin θw

4 - 48 sin θw
2 + 9

)
+

2S
(
32 sin θw

8 - 64 sin θw
6 + 88 sin θw

4 - 48 sin θw
2 + 9

)
T+(

64 sin θw
8 - 128 sin θw

6 + 128 sin θw
4 - 48 sin θw

2 + 9
)
T 2

))
,
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MH0M †
H0 = -3Y 2

2 e
4m2

μm
2
b(4m

2
b - S)SY 2

2

4m4
w(m

2
H0 - S)2 sin θw

4 , (5.37)

MA0M †
A0 =

3e4m2
μm

2
bS

2Y 4
3

4m4
w(m

2
A0 - S)2 sin θw

4 , (5.38)

Mh0M †
H0 = - 3e4m2

μm
2
b(4m

2
b - S)SY 2

1 Y
2
2

4m4
w(S -m2

h0)(S -m2
H0) sin θw

4 , (5.39)

MγM
†
Z0 =

1

6 cos θw
2S sin θw

2 (S -m2
Z)

(
παe2

(-m2
b

(
3S + 2

(
16 sin θw

4 - 16 sin θw
2 + 3

)
T
)

(5.40)
+ m4

b

(
16 sin θw

4 - 16 sin θw
2 + 3

)
+ S2

(
8 sin θw

4 - 8 sin θw
2 + 3

)
+

2S
(
8 sin θw

4 - 8 sin θw
2 + 3

)
T +

(
16 sin θw

4 - 16 sin θw
2 + 3

)
T 2

))
,

where we use the Feynman rules defined in [8, 9] and the trace technique presented in [20,
21].

5.3.2 Total cross section
The total cross section is again given by (as in 5.1.2)

σtot[fb] =
(
3.89 * 108) 1

128πS

(
1- 4m2

b

S

) 1
2
∫ 1

-1

dcos θ|Mtot|2 . (5.41)

We analytically integrate the matrix elements squared and obtain for the total cross
section

σtot,b-b =
53742.4

S

√
1- 4m2

b

S

(
192π2α2m4

b

S2
+

192π2α2m2
b

S
+ 64π2α2+ (5.42)

64παe2 (48m2
bSs

2
w (s2w - 1) +m4

b (48s
4
w - 48s2w + 9) + S2 (16s4w - 16s2w + 3))

c2wSs
2
w (S -m2

Z)
+

27e4m2
bm

2
μS

2Y 2
3dY

2
3l

m4
W s4w

(
Γ2
A0m2

A0 +
(
m2

A0 - S
)2) +

54e4m2
bm

2
μSY1dY1lY2dY2l (4m

2
b - S)

(
S -m2

H0

)
m4

W s4w
(
S -m2

h0

) (
Γ2
H0m2

H0 +
(
m2

H0 - S
)2) -

27e4m2
bm

2
μSY

2
2dY

2
2l (4m

2
b - S)

m4
W s4w

(
Γ2
H0m2

H0 +
(
m2

H0 - S
)2) - 27e4m2

bm
2
μSY

2
1dY

2
1l (4m

2
b - S)

m4
W s4W

(
m2

h0 - S
)2 +

e4
3m2

bS (64s8w - 128s6w + 8s4w + 36s2w - 9) + 3m4
b (64s

8
w - 128s6w + 128s4w - 48s2w + 9)

c4ws
4
w (m2

Z - S)
2 +

e4
S2 (64s8w - 128s6w + 128s4w - 48s2w + 9)

c4ws
4
w (m2

Z - S)
2

)
.
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5.4 μ-μ+ → τ+τ- - channel
5.4.1 Matrix element
Similarly to the top and bottom quark channels, for the μ-μ+ → τ+τ- channel, we have
6 s-channel scattering processes for the h0, H0, A0, γ and Z0 bosons, two of which are the
interference terms between γ and Z0, and h0 and H0.

-p1 k2

p2 h0, H0, A0 k1

μ-

μ+

τ+

τ-

-p1 k2

p2 γ, Z k1

μ-

μ+

τ+

τ-

Figure 5.4: s-channel μ-μ+ → τ-τ+ Feynman diagrams in the THDM. All momenta are
in time direction from left to right.

As in Sec. 5.1.1 we work in the center of mass system and describe the kinematics
of the system with the Mandelstam variables defined in Eqs. (5.1), (5.2) and (5.3). We
evaluate the binomials and solve for the inner products of the momenta pi and ki. We
also have at our disposal one more equation relating the three Mandelstam variables with
which we can eliminate U from the computation:

S + T + U = 2m2
τ . (5.43)

The resulting inner products as a function of the Mandelstam variables S and T are:

p1 . k1 = p2 . k2 = m2
τ - T

2
, (5.44)

k1 . p2 = p1 . k2 = -m2
τ + S + T

2
. (5.45)

Momentum conservation is again given by: p1+p2 = k1+k2. The matrix elements squared
for this scattering process are

MM †
γ =

8π2α2 (-4m2
τ (S + T )- 4m2

τ (m
2
τ - S) + 4m4

τ + 2m4
τ + S2 + 2ST + 2T 2)

16S2
,

(5.46)

Mh0M †
h0 =

π2α2m2
τm

2
μSY

2
1lY

2
1l (S - 4m2

τ )

4m4
W s4w

(
m2

h0 - S
)2 , (5.47)
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MZ0M †
Z0 =

π2α2

4c4ws
4
w (m2

Z - S)
2

(
- 4m2

τ

(
32s8w - 32s6w + 24s4w - 8s2w + 1

)
(S + T )+ (5.48)

2m2
τ

(
1- 4m2

τ

)2 (
4Ss4w - 2Ss2w + S + T

)
+m4

τ

(
8s4w - 4s2w + 1

)2
+

4m4
τ

(
32s8w - 32s6w + 24s4w - 8s2w + 1

)- 4m2
τm

2
τ

(
32s8w - 32s6w + 24s4w - 8s2w + 1

)
+

32S2s8w - 32S2s6w + 24S2s4w - 8S2s2w + S2 + 64Ss8wT - 64Ss6wT + 48Ss4wT-

16Ss2wT + 2ST + 64s8wT
2 - 64s6wT

2 + 32s4wT
2 - 8s2wT

2 + T 2

)
,

MH0M †
H0 =

π2α2m2
τm

2
μSY

2
2lY

2
2l (S - 4m2

τ )

4m4
W

(
s4w

(
Γ2
H0m2

H0 +
(
m2

H0 - S
)2)) , (5.49)

MA0M †
A0 =

π2α2m2
τm

2
μS

2Y 2
3lY

2
3l

4m4
W s4w

(
Γ2
A0m2

A0 +
(
m2

A0 - S
)2) , (5.50)

Mh0M †
H0 = -

(
S -m2

H0

) (
π2α2m2

τm
2
μS (4m2

τ - S) (Y 2
1lY

2
2l + Y 2

1lY
2
2l)
)

4m4
W s4w

(
S -m2

h0

) (
Γ2
H0m2

H0 +
(
S -m2

H0

)2) , (5.51)

MγMZ0 =
π2α2

c2wSs
2
w (S -m2

Z)

(
- 4m2

τ

(
8s4w - 4s2w + 1

)
(S + T )+ (5.52)

m2
τ

(-4m2
τ

(
8s4w - 4s2w + 1

)
+ S

(
32s4w - 16s2w + 3

)
+ 2T

)
+m4

τ

(
1- 4s2w

)2
+

4m4
τ

(
8s4w - 4s2w + 1

)
+ 8S2s4w - 4S2s2w + S2 + 16Ss4wT - 8Ss2wT + 2ST+

16s4wT
2 - 8s2wT

2 + T 2

)
,

where we use the Feynman rules defined in [8, 9] and the trace technique presented in [20,
21].

5.4.2 Total cross section
The total cross section is again given by (as in 5.1.2)

σtot[fb] =
(
3.89 * 108) 1

128πS

(
1- 4m2

τ

S

) 1
2
∫ 1

-1

dcos θ|Mtot|2 . (5.53)
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With the help of Mathematica we analytically integrate the matrix elements squared and
obtain for the total cross section

σtot,τ+τ- =
1.59125x 106α2

√
1- 4m2

τ

S

S

(
3m2

τm
2
μS

2Y 4
3l

m4
W s4w

(
Γ2
A0m2

A0 +
(
m2

A0 - S
)2)+ (5.54)

12m2
τm

2
μSY

2
1lY

2
2l

(
S -m2

H0

)
(4m2

τ - S)

m4
W s4w

(
m2

h0 - S
) (

Γ2
H0m2

H0 +
(
m2

H0 - S
)2) +

3m2
τm

2
μSY

4
1l (S - 4m2

τ )

m4
W s4w

(
m2

h0 - S
)2 +

3m2
τS (64s8w - 64s6w + 8s4w + 4s2w - 1) + 3m4

τ (8s
4
w - 4s2w + 1)

2
+ S2 (8s4w - 4s2w + 1)

2

c4ws
4
w (m2

Z - S)
2 +

8
(
24m2

τSs
2
w (2s2w - 1) + 3m4

τ (1- 4s2w)
2
+ S2 (1- 4s2w)

2
)

c2wSs
2
w (S -m2

Z)
+

12m4
τ

S2
+

12m2
τ

S
+ 4

)
.
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5.5 Breit - Wigner formula
In all of the studied scattering processes we have the general structure A+B → I → C+D.
The incoming particles A + B collide to create an unstable intermediate state I, which
subsequently decays into the final states C+D. In the case that the process A+B → C+D
can only occur via the intermediate state I, and that the width of the intermediate state
is sufficiently small (Γ << E0), the total cross section for the scattering process is given
by the Breit-Wigner formula in the narrow-width approximation Γ/m → 0

σA+B→I→C+D =
π2

k2

ΓA+BΓC+D

(E - E0)2 + Γ2/4
, (5.55)

where ΓA+B and ΓC+D are the partial widths, Γ is the full width of the resonance, E0 is
the rest mass energy of the resonant state, E the center of mass energy of the system and
k = |→k| is the momentum of the incoming particles in the center of mass system. The
resulting cross section has a sharp peak for energies E close to the rest mass energy E0

of the intermediate particle. The sharpness of the peak directly depends on the width Γ.
We emphasize that this formula is only valid for one channel and does not allow for

interference terms in the matrix elements. This in turn means that we cannot use this
formula to derive the total cross section of the scattering processes we are studying, but
we can use it to verify the single scattering channels. The Breit-Wigner formula for the
processes we investigate reads

σ(μ-μ → Y → X) =
4πΓ2

YBr*(Y → μ-μ)Br*(Y → X)

(S -m2
Y )

2 +m2
Y Γ

2
Y

(5.56)

where Y = {h0, H0, A0} and Br* are the corresponding branching ratios, with (*) meaning
that the decay widths must be computed with the intermediate particle Y off-shell (i.e.
with m2

Y → S).

5.5.1 Derivation of the narrow-widths approximation
The narrow-widths approximation (NWA) is a method used to simplify the calculation
of complicated cross sections with unstable particles. The general idea is to treat the
unstable particle as a stable one with an infinitely sharp resonance. In this Section we
aim to provide a comprehensive derivation of this formula and more broadly of the total
cross section in the narrow-widths approximation (we closely follow [54]). The NWA is
valid only if the following conditions are satisfied:

• In order for off-shell effects to be negligible, the unstable particle must have a narrow
mass peak.

• The propagator must be separable from the matrix element.

• All sub-processes must be kinematically allowed.
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• The decay channel must be kinematically allowed and sufficiently large.

To note is that also this approximation does not allow for interference terms. Thus, we
have to consider them separately. However, an extension to include interference terms is
shown in [54].

Phase space and matrix element
We can write the general Lorentz-invariant phase space ( dϕn ≡ dLipsn), characterised
by the number n of particles in the final state as

dϕn = (2π)4δ(4)

(
P -

nΣ
f=1

pf

)
πn

f=1

d3pf
(2π)32Ef

. (5.57)

The NWA only works if the phase space and the matrix element are factorisable into
separate sub-processes. By using this, we can rewrite the phase space element ϕn as a
product of the phase space ϕk (k < n) and ϕn-k+1 ,

dϕn = dϕk
dq2

2π
dϕn-k+1 , (5.58)

where q is the momentum of the resonant particle. In our specific case of the Higgs
Strahlung, q is the momentum of the Z0 boson that decays into the muon-neutrino pair
νμ -νμ. In (5.58) we can interpret dϕk as the production phase space and dϕn-k+1 as the
phase space of the decay.

Similarly, we can write the matrix element for this process as a product of the pro-
duction (P) and decay (D) part of the process. We obtain

M = MP
1

q2 -m2 + imΓ
MD . (5.59)

The amplitude squared is then

|M |2 = |MP |2 1

(q2 -m2)2 +m2Γ2
|MD|2 . (5.60)

Cross section
To calculate the cross section in the NWA, we note that different flux factors must be
considered for the production and decay processes. In particular for the production pro-
cess of the form 1 + 2 → X we use F = 2λ1/2(s,m2

1,m
2
2), where λ is the Källén function

(5.16), and F = 2m1 for the decay process of the form 1 → 2 + 3 + .... The total cross
section is then given by

σ =
1

F

∫
dϕ|M |2 . (5.61)
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By inserting (5.58) and (5.60) in (5.61), we obtain for the total cross section

σ =
1

F

∫
dq2

2π

(∫
dϕP |MP |2

)
1

(q2 -m2)2 +m2Γ2

(∫
dϕD|MD|2

)
. (5.62)

We can now substitute in this equation the off-shell production cross section

σP (q
2) =

1

F

∫
dϕP |MP (q

2)|2 , (5.63)

and the decay width
ΓD(q

2) =
1

FD

∫
dϕD|MD(q

2)|2 , (5.64)

with FD = 2
√
q2, and obtain

σ =

∫
dq2

2π
σP (q

2)
2
√
q2

(q2 -m2)2 +m2Γ2
ΓD(q

2) . (5.65)

By using the identity
1

π
lim
ε→0

ε

η2 + ε2
= δ(η) , (5.66)

and identifying ε = mΓ, we can simplify the total cross section in the NWA, i.e. for
mΓ → 0

σ =

∫ ∞

-∞

dq2

2π
σP (q

2)2
√
q2δ(q2 -m2)

π

mΓ
ΓD(q

2) . (5.67)

We have shifted the bounds of integration to ±∞ in order to integrate over the δ-function.
This is allowed because we expect the contributions from outside the narrow resonance
region to be small. After integrating (5.67) we obtain the final expression

σ = σP (m
2)
ΓD(m

2)

Γ
= σP . BR . (5.68)

5.6 Forward-Backward asymmetry
The forward-backward asymmetry (FBA) in particle physics is a powerful tool to study
resonances in cross sections. It reveals how particles preferentially emit in the forward or
backward directions during high-energy collisions, providing valuable insights into reso-
nance properties and underlying physics processes. Its study helps identify and understand
complex interactions, offering a gateway to explore fundamental forces and particles at
the subatomic level. In our particular case, the FBA might enhance the effect of a reso-
nance for a specific set of model parameters. This in turn means that through the FBA
we might be able to observe resonances which might not be otherwise accessible.
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Here we give a general formula for the FBA which we use for the cross sections of all
allowed parameter sets

AFB =
σf - σb

σf + σb

, (5.69)

where σf is the total cross section integrated for cos(θ) € [0, 1], i.e. the forward hemi-
sphere, and σb is the total cross section integrated for cos(θ) € [-1, 0], i.e. the backward
hemisphere.
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Chapter 6

H0 and A0 resonances

In this chapter, we delve into a comprehensive analysis of the resonant behavior exhib-
ited by the two neutral Higgs bosons, H0 and A0, within the context of the THDM. In
particular we investigate the Type-I, Type-II, lepton-specific and flipped THDMs. We
thoroughly investigate the scattering channels presented in Chapter 5 for each of the four
investigated THDMs, recognizing that not all of them may yield observable resonances in
a future Muon Collider for a particular model.

Despite this, we emphasize that exploring non-resonant channels still provides valuable
insights into the nature of the particle causing the resonance. For instance, if a resonant
peak is observed in the experiment for both H0 and A0 Higgs bosons, but it is supposed
to be visible only in a specific THDM, for that specific set of parameters, it could indicate
the potential validity of that model. In contrast, if the resonance appears across multiple
models, it would suggest that further investigation is required to determine which specific
model best aligns with nature’s reality. Moreover, we make use of the forward-backward
asymmetry AFB to enhance the resonance peak in the case of a preferred scattering
direction.

In order to numerically investigate the resonances, we make use of the branching ratios
(BR) and the ratio of mass of the Higgs boson to its total width (MR)

BR =
ΓH0/A0→XY

Γtot
, MR =

mH0/A0

Γtot
. (6.1)

This is in order to discern which parameter sets may yield an observable resonance in the
experiment. Furthermore, we observe that the BRs and MRs needed in order to observe
a resonant peak, strongly depend on the specific THDM and scattering channel. This
directly depends on the Yukawa couplings, see (1.48), of each specific THDM and the
masses of the Higgs bosons for the investigated parameter set.

For readability, throughout the chapter we write the parameter sets in the following
order {sα, tβ,mh0 ,mH0 ,mA0 ,mH± , λ5}. Furthermore, we define as ’single’ cross section,
the cross section that stems from the contribution of only one specific Feynman diagram
of the process.

In this analysis we have taken: me = 5.10998928x10-4 GeV, mμ = 0.1057 GeV, mτ =
1.7768 GeV, mt = 173.21 GeV, mb = 4.66 GeV, ms = 9.5 x 10-2 GeV, mc = 1.275 GeV,
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mu = 7.3559 x 10-2 GeV, md = 7.3559 x 10-2 GeV, mW = 80.3850 GeV, mZ = 91.1876
GeV, mh0 = 125.0 GeV, s2w = 0.2229 and α = 1/137.036.

6.1 Type-I THDM
In this Section, we present the numerical results for the H0 and A0 Higgs boson resonant
production, within the Type-I THDM and the four channels we investigate (μ-μ+ → t-t,
μ-μ+ → b-b, μ-μ+ → h0h0, μ-μ+ → τ-τ+).

To illustrate the overall resonance picture in the Type-I THDM, we compare specific
benchmark scenarios. Figs. 6.1a, 6.1b, 6.2a and 6.2b show a comparison of the cross
sections for resonant H0 and A0 Higgs bosons in the μ-μ+ → t-t channel. Notably, all four
parameter sets (see captions for the exact parameter sets) do not exhibit any resonance
at the respective H0 and A0 Higgs boson masses. This is due to the significantly larger
cross sections of the μ-μ+ → Z0/γ → t-t process compared to the H0 and A0 mediated
channels (see Fig. 6.5 and Chapter 5).

However, when studying the forward-backward asymmetry for the parameter set in
Fig. 6.2a, we observe a tiny peak caused by the resonant A0 Higgs boson, while the second
peak caused by the H0 Higgs boson remains invisible. Despite the observability of the
A0 resonance peak, the difference in AFB on and off the resonance is only a few percent,
making the resonance effectively indiscernible in the experiment. This pattern holds for
all other points, indicating that no resonance is visible for the other parameter sets as
well. Moreover, this qualitative pattern is sustained by the fact that these benchmark
examples all have high BRs and MRs compared to all other allowed parameter sets.
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μ-μ+ → t-t, Type-I
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Figure 6.1:
Cross section σtot,t-t as a function of

√
S in the Type-I THDM. The pa-

rameters in Fig. (a) are {-0.152, 5.631, 125., 609.155, 639.426, 620.667,-0.766}
with λ1,2,3,4 = {6.84387, 0.210296, 1.58432,-0.0135054}, whereas in Fig. (b)
they are {-0.065, 15.112, 125., 1639.33, 1643.11, 1684.58,-0.202} with λ1,2,3,4 =
{2.5923, 0.242968, 5.70064,-4.59506}. The BRs are respectively 0.862 and 0.992,
and the MRs are 1134.31 and 4386.82 respectively. Here the BR and MR have been
calculated for mH0 , i.e. we have looked for a point which maximizes the H0 resonance.

μ-μ+ → t-t, Type-I
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Figure 6.2:
Cross section σtot,t-t as a function of

√
S in the Type-I THDM. The pa-

rameters in Fig. (a) are {-0.367, 2.268, 125., 601.355, 680.113, 712.633,-1.938}
with λ1,2,3,4 = {2.90419, 0.128477, 5.64911,-3.37982}, whereas in Fig. (b)
they are {-0.07, 14.537, 125., 581.538, 659.398, 662.054,-1.547} with λ1,2,3,4 =
{1.96678, 0.249727, 3.34316,-1.65873}. The BRs are respectively 0.979 and 0.998,
and the MRs are 90.854 and 3835.62 respectively. Here the BR and MR have been
calculated for mH0 , i.e. we have looked for a point which maximizes the A0 resonance.
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μ-μ+ → t-t, Type-I
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Figure 6.3:
Forward-backward asymmetry AFB as a function of

√
S in the Type-I THDM. The pa-

rameters in Fig. (a) are {-0.367, 2.268, 125., 601.355, 680.113, 712.633,-1.938} whereas
in Fig. (b) they are {-0.07, 14.537, 125., 581.538, 659.398, 662.054,-1.547}. The BRs are
respectively 0.979 and 0.998, and the MRs are 90.854 and 3835.62 respectively.

Similarly, in the μ-μ+ → b-b channel, the resonant peaks are not visible, as shown in
Fig. 6.4a. Even in the forward-backward asymmetry, no peak is observable. By studying
the cross sections of the single Feynman diagrams contributing to this process, we observe
that the resonant peaks are not visible due to the much larger cross sections of the γ and
Z0 channels (see Fig. 6.5 and Chapter 5 for the corresponding Feynman diagrams).

Given these findings, we explore the μ-μ+ → h0h0 channel, featuring only two Feyn-
man diagrams (see Chapter 5): one mediated by the discovered h0 Higgs boson and
another by the sought-after H0 Higgs boson. In this case, the A0 Higgs boson and the
gauge bosons do not couple to h0, leading to significantly larger resonance peaks for H0.
However, this implies that we cannot observe the A0 Higgs boson in this channel for any
of the four THDMs. Moreover, due to all particles involved being scalar, there is no
preferred scattering direction. Therefore, AFB = 0 for all parameter sets. Indeed, as
expected, the resonances in the μ-μ+ → h0h0 channel are much larger (see Fig. 6.6a and
6.6b). Various parameter sets exhibit different resonance widths and total cross section
magnitudes. However, we observe resonant peaks for a large number of parameter sets,
with large enough BR and MR. Furthermore, this channel enables the unequivocal iden-
tification of the H0 Higgs boson and the mass ordering of the neutral Higgs bosons in the
THDM. The fourth channel μ-μ+ → τ-τ+ does not show resonances for any parameter
set explored. In this production channel the interference terms are very large relative to
the contributions to the total cross sections coming from the μ-μ+ → H0/A0 → τ-τ+

s-channel processes. This in turn means that the resonances are not visible.
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μ-μ+ → b-b, Type-I
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Figure 6.4:
Fig. (a): total cross section as a function of

√
S for the channel μ-μ+ → b-b in

the Type-I THDM. Fig (b): forward-backward asymmetry AFB as a function of
√
S.

The parameters are {0.971, 4.067, 125., 106.697, 603.485, 597.127,-5.601}, with λ1,2,3,4 =
{1.0548, 0.184407, 11.0873,-5.35799}, and BR = 0.743 and MR = 18204.6. Here the BR
and MR have been calculated for mH0 , i.e. we have looked for a point which maximizes
the H0 resonance.

μ-μ+ → t-t, Type-I

500 550 600 650 700 750

0.000

0.001

0.002

0.003

0.004

0.005

0.006

S [GeV ]

σ
[f

b
]

A
0

H
0

Figure 6.5:
Single cross sections for the channels μ-μ+ → H0/A0 → t-t in the Type-I THDM. The
parameters are {-0.07, 14.537, 125., 581.538, 659.398, 662.054,-1.547} and the BR and
MR are 0.98807 and 6803.85 respectively.
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μ-μ+ → h0h0, Type-I
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Figure 6.6:
Cross section σtot,h0h0 as a function of

√
S in the Type-I THDM. The

parameters in Fig. (a) are {-0.762, 1.798, 125., 475.473, 545.115, 570.972,-4.586}
with λ1,2,3,4 = {6.53395, 2.82781, 6.34312,-5.50468}, whereas in Fig. (b) they
are {-0.360237, 2.80087, 125., 974.729, 1050.57, 1050.38,-3.20274}, with λ1,2,3,4 =
{3.9957, 0.625551, 4.97306,-3.19003}. The BRs are respectively 0.711374 and 0.0307972,
and the MRs are 10.8161 and 136.5 respectively.

6.2 Type-II THDM
Similarly to Section 6.1, we present the numerical results for the H0 and A0 Higgs boson
resonant production, within the Type-II THDM and the four channels we investigate
(μ-μ+ → t-t, μ-μ+ → b-b, μ-μ+ → h0h0, μ-μ+ → τ-τ+).

To illustrate the overall resonance picture in the Type-II THDM, we compare specific
benchmark scenarios. In Figs. 6.7a,6.7b and 6.8b we show the total cross sections for
the channel μ-μ+ → t-t, in the context of a Type-II THDM. Differently from the Type-I
THDM (see Section 6.1), we observe large resonances, which would certainly be observable
in a future Muon Collider (see Fig. 6.7a and 6.7b). Moreover, both the H0 and A0

resonances are clearly visible. However, we note that the BR and MR for the specific
parameter set must be large enough. This is clearly visible when comparing these factors
for the three benchmark examples shown. In particular, the set presented in Fig. 6.8b
does not show any resonance. This is due to the fact, that even though the BR is very
large (≈ 99.9%), the MR is small (≈ 12.7) compared to the other two parameter sets. In
Fig. 6.8b we show the single cross sections for the the channels μ-μ+ → H0/A0 → t-t. The
order of magnitude of the single cross sections is much smaller than the order of magnitude
of the total cross section. This resonant peak is also not visible in the forward-backward
asymmetry AFB.

In the μ-μ+ → b-b channel, the resonant peaks are also visible, as shown in Figs. 6.9a
and 6.10a. The parameter set in Fig. 6.9a shows two clearly distinct peaks corresponding
to the H0 and A0 resonance peaks. Moreover, by observing the single cross sections for the
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μ-μ+ → t-t, Type-II
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Figure 6.7:
Cross section σtot,t-t as a function of

√
S in the Type-II THDM. The pa-

rameters in Fig. (a) are {-0.458, 2.142, 125., 794.981, 710.24, 809.274, 0.119}
with λ1,2,3,4 = {7.32857, 1.03347, 2.27999,-4.67149}, whereas in Fig. (b)
they are {-0.296, 3.261, 125., 1248.15, 1267.03, 1282.89,-1.288} with λ1,2,3,4 =
{5.43307, 0.343379, 3.36632,-2.57542}. The BRs are respectively 0.931 and 0.912,
and the MRs are 87.753 and 188.452 respectively.

μ-μ+ → t-t, Type-II
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Figure 6.8:
Fig. (a): cross section σtot,t-t as a function of

√
S in the Type-II THDM.

Fig. (b): single cross sections for the channels μ-μ+ → H0/A0 → t-t. The
parameters are {-0.769, 0.832, 125., 1943.7, 1911.72, 1915.85,-3.460}, with λ1,2,3,4 =
{3.95945, 8.14403, 2.25897,-3.96322}, and BR = 0.999 and MR = 12.735.
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μ-μ+ → b-b, Type-II
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Figure 6.9:
Fig. (a): cross section σtot,b-b as a function of

√
S in the Type-II THDM. Fig. (b): total

cross section and single cross sections for the channels μ-μ+ → H0/A0 → b-b. The
parameters are {-0.074, 11.846, 125., 1878.06, 1925.02, 1887.22,-2.765}, with λ1,2,3,4 =
{1.98774, 0.158098, 7.95201, 1.82236}, and BR = 0.877 and MR = 151.229.

channels μ-μ+ → H0/A0 → t-t we note how the contributions from the γ and Z0 mediated
Feynman diagrams do not prevail over the Higgs boson mediated channels, thus making
the H0 and A0 resonances observable. Furthermore, the distance between the two peaks is
large enough to guarantee the observability of the two distinct resonances. This is not the
case for the second parameter set we present (see Fig. 6.10a). Here the two peaks are not
clearly distinguishable from one another. This is due to the fact that the mass splitting
between the H0 and A0 Higgs bosons is only ≈ 4 GeV. However, the odd shape of the
peak does show the presence of a double resonance. In Fig. 6.10b we show the total cross
section and the single cross sections for the the channels μ-μ+ → H0/A0 → b-b, from
which we infer that the contributions from the γ and Z0 mediated Feynman diagrams
are larger relative to the parameter set in Fig. 6.9a. Both parameter sets have a large
BR > 87% and a MR > 100. This ensures the visibility of the resonances. Moreover, if
a parameter set has a large BR but MR below 100, the resonance peaks are no longer
visible.

Similarly to Section 6.1, the μ-μ+ → h0h0 channel shows resonant peaks for the H0

Higgs boson. Also in this case we make use of the BR and the MR to numerically verify if
a resonance can be observed. Depending on the BR and MR we observe different resonant
peak widths and heights. In Figs. 6.11a and 6.11b we show the total cross section for
the μ-μ+ → h0h0 production process. Similarly to the Type-I and Type-II THDMs,
we observe large resonances with different widths and relative heights depending on the
corresponding BR and MR.

Furthermore, in the Type-II THDM we observe resonances also in the μ-μ+ → τ-τ+

production channels (see Figs. 6.12a and 6.12b). We note that even though the branching
ratios are small (≈ 4%) the MRs enable the observability of the resonances.
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μ-μ+ → b-b, Type-II
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Figure 6.10:
Fig. (a): cross section σtot,b-b as a function of

√
S in the Type-II THDM. Fig. (b): total

cross section and single cross sections for the channels μ-μ+ → H0/A0 → b-b. The
parameters are {-0.049, 12.118, 125., 872.292, 876.359, 813.363,-0.108} with λ1,2,3,4 =
{7.13693, 0.196562, 1.86059, 3.28059}, and BR = 0.878 and MR = 144.326.

μ-μ+ → h0h0, Type-II
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Figure 6.11:
Cross section σtot,h0h0 as a function of

√
S in the Type-II THDM. The pa-

rameters in Fig. (a) are {-0.631, 1.270, 125., 579.379, 392.601, 575.231,-0.710}
with λ1,2,3,4 = {5.84898, 2.60794, 3.65952,-6.33681}, whereas in Fig. (b)
they are {-0.691, 1.103, 125., 779.018, 635.06, 756.278,-0.127} with λ1,2,3,4 =
{3.79576, 3.46804, 2.46882,-5.49596}. The BRs are respectively 0.995 and 0.996819,
and the MRs are 88.337 and 31.118 respectively.
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μ-μ+ → τ-τ+, Type-II
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Figure 6.12:
Cross section σtot,τ-τ+ as a function of

√
S in the Type-II THDM. The pa-

rameters in Fig. (a) are {-0.0242, 38.805, 125., 611.191, 667.244, 675.062,-1.142}
with λ1,2,3,4 = {3.0057, 0.248259, 3.21046,-1.47607}, whereas in Fig. (b)
they are {-0.073, 12.098, 125., 1319.86, 1279.2, 1358.73, 1.672} with λ1,2,3,4 =
{7.62303, 0.20846, 6.68343,-5.00659}. The BRs are respectively 0.046 and 0.0437,
and the MRs are 15.339 and 149.21 respectively.

6.3 Lepton-specific THDM
Here we present the numerical results for the H0 and A0 Higgs boson resonant produc-
tion, within the lepton-specific THDM and the four channels we investigate (μ-μ+ → t-t,
μ-μ+ → b-b, μ-μ+ → h0h0, μ-μ+ → τ-τ+).

To illustrate the overall resonance picture in the lepton-specific THDM, we compare
specific benchmark scenarios. Fig. 6.13a and 6.13b show the total cross section in the
lepton-specific THDM for the μ-μ+ → t-t channel. We observe two resonances for the H0

and A0 Higgs bosons. Moreover, we note how numerical instabilities cause artifacts at
the tails of the two resonant peaks (see Fig. 6.13a). These can be alleviated by increasing
the accuracy of integration when calculating the total cross section σtot,t-t. In Fig. 6.13b
there are no visible artifacts due to the tenfold increase in the integration accuracy.

Differently from the μ-μ+ → t-t production channel, the μ-μ+ → b-b channel does not
show visible resonances. They are suppressed by the Yukawa couplings for bottom-type
quarks. These resonant peaks are also not visible in the forward-backward asymmetry.

In Fig. 6.15a we show the total cross section for the μ-μ+ → h0h0 channel. We
observe a large resonant peak for the H0 Higgs boson. In Fig. 6.15b we show the single
cross sections for the μ-μ+ → h0/H0 → h0h0 channels. We see how the H0 contribution
to the total cross section is much larger than the contribution from the SM-like h0 Higgs
boson, thus making the H0 resonance clearly visible.

Similarly to the t-t- channel, in the μ-μ+ → τ-τ+ production channel we observe large
resonant peaks for both the H0 and A0 neutral Higgs bosons.
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μ-μ+ → t-t, lepton-specific
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Figure 6.13:
Cross section σtot,t-t as a function of

√
S in the lepton-specific THDM. The pa-

rameters in Fig. (a) are {-0.176, 5.933, 125., 588.64, 623.004, 628.328,-0.737}
with λ1,2,3,4 = {2.2238, 0.268968, 1.55975,-0.94908}, whereas in Fig. (b)
they are {-0.313, 3.211, 125., 668.15, 657.037, 667.835,-0.468} with λ1,2,3,4 =
{6.74976, 0.388707, 0.614593,-0.923415}. The BRs are respectively 0.909 and 0.973,
and the MRs are 948.694 and 254.197 respectively.

μ-μ+ → b-b, lepton-specific
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Figure 6.14:
Cross section σtot,b-b as a function of

√
S in the lepton-specific THDM. The pa-

rameters in Fig. (a) are {-0.085, 10.403, 125., 670.556, 748.066, 664.854,-1.749}
with λ1,2,3,4 = {1.57651, 0.235231, 0.770578, 1.99378}, whereas in Fig. (b)
they are {-0.07, 11.381, 125., 615.889, 595.479, 599.964, 0.393} with λ1,2,3,4 =
{2.40405, 0.232599, 0.785706, 0.22232}. The BRs are respectively 0.832 and 0.981,
and the MRs are 1936.8 and 2086.17 respectively.
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μ-μ+ → h0h0, lepton-specific
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Figure 6.15:
Fig. (a): cross section σtot,h0h0 as a function of

√
S in the lepton-specific THDM. Fig. (b):

total cross section and single cross sections for the channels μ-μ+ → H0/A0 → h0h0.
The parameters are {-0.772, 1.884, 125., 487.205, 594.273, 585.347,-4.929} with λ1,2,3,4 =
{5.16173, 2.81989, 6.03283,-4.5938}, and BR = 0.733 and MR = 8.278.

μ-μ+ → τ-τ+, lepton-specific
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Figure 6.16:
Figs. (a) and (b): total cross sections σtot,τ-τ+ as a function of√
S in the lepton-specific THDM. The parameters are respectively

{-0.0242, 38.805, 125., 611.191, 667.244, 675.062,-1.142} with λ1,2,3,4 =
{3.0057, 0.248259, 3.21046,-1.47607}, and with BR = 0.99 and MR =
328.858, and {-0.049, 18.612, 125., 1660.42, 1712., 1655.95,-2.751} with λi =
{1.33711, 0.227757, 3.53244, 3.25841} (i = 1, ..., 4), and with BR = 0.893 and
MR = 1162.06.
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μ-μ+ → t-t, flipped
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Figure 6.17:
Figs. (a) and (b): total cross sections σtot,t-t as a function of

√
S in the flipped THDM.

The parameters are respectively {-0.725, 1.934, 125., 490.519, 577.862, 575.914,-4.454}
with λ1,2,3,4 = {6.00369, 2.47272, 5.31535,-4.38277}, and with BR = 0.71 and
MR = 11.9823, and {-0.842, 1.999, 125., 466.549, 638.314, 656.784,-5.858} with λ1,2,3,4 =
{3.40234, 3.00647, 9.45549,-6.61916}, and with BR = 0.599 and MR = 3.112.

6.4 Flipped THDM
In this Section we present the numerical results for the H0 and A0 Higgs boson resonant
production, within the flipped THDM and the four channels we investigate (μ-μ+ → t-t,
μ-μ+ → b-b, μ-μ+ → h0h0, μ-μ+ → τ-τ+).

We illustrate the resonant behavior of the H0 and A0 Higgs bosons in the flipped
THDM, by comparing specific benchmark scenarios. In Figs. 6.17a and 6.17b we show
the total cross section for the production channel μ-μ+ → t-t. Similarly to the Type-I
THDM we do not have large and thus observable resonant peaks. This is also the case
for the production processes μ-μ+ → b-b and μ-μ+ → τ-τ+. However, as is the case for
all the explored THDMs, the production process μ-μ+ → h0h0 shows large resonances in
the flipped THDM (see Figs. 6.18a and 6.18b).
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μ-μ+ → h0h0, flipped
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Figure 6.18:
Figs. (a) and (b): total cross sections σtot,h0h0 as a function of

√
S in the flipped THDM.

The parameters are respectively {-0.0242, 38.805, 125., 611.191, 667.244, 675.062,-1.142}
with λ1,2,3,4 = {3.0057, 0.248259, 3.21046,-1.47607}, and with BR = 0.99 and
MR = 328.858, and {-0.049, 18.612, 125., 1660.42, 1712., 1655.95,-2.751} with λ1,2,3,4 =
{1.33711, 0.227757, 3.53244, 3.25841}, with BR = 0.893 and MR = 1162.06.

6.5 Discussion
In this Section we discuss the results obtained for the resonances in the four channels
explored μ-μ+ → t-t, b-b, τ-τ+, h0h0 and the four THDMs (Type-I, Type-II, lepton-specific
and flipped). We show for two different parameter sets the total cross sections for all
production channels and THDMs (see Tabs. 6.1 and 6.2).

For the first scenario we pick the parameter set {-0.458, 2.142, 125., 794.981, 710.24,
809.274, 0.119}. As can be seen in Tab. 6.1, the production channel μ-μ+ → t-t shows
resonant peaks for the H0 and A0 Higgs bosons in the Type-II and lepton-specific THDMs,
whereas the μ-μ+ → b-b does not show any resonant peak for all four THDMs. As expected
from the previous sections, the μ-μ+ → h0h0 channel shows a resonant peak for the H0

Higgs boson in all four THDMs. Similarly to the μ-μ+ → b-b channel, the μ-μ+ → τ-τ+

production channel does not show resonant peak for any of the explored THDMs. In
conclusion we note that for this specific benchmark scenario, resonant peaks for both the
H0 and A0 Higgs bosons could be observed in a future Muon Collider for the Type-II and
lepton-specific THDMs. However, only a resonant peak for the H0 Higgs boson could be
observed in the Type-I and flipped THDMs.

For the second benchmark case we pick the parameter set {-0.074, 11.846, 125., 1878.06,
1925.02, 1887.22,-2.765} (see Tab. 6.2). Similarly to the first case, the μ-μ+ → t-t pro-
duction channel presents two resonant peaks for the H0 and A0 Higgs bosons in the
Type-II and lepton-specific THDMs. However, for the Type-I and flipped THDMs we do
not observe any resonant peak for this specific parameter set. However, differently from
the first benchmark scenario, the μ-μ+ → b-b production channel does show a ”double
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peak” for the H0 and A0 Higgs bosons in the Type-II THDM. In the remaining Type-I,
lepton-specific and flipped THDMs we do not observe any resonant peak. As expected,
also in this case the μ-μ+ → h0h0 channel shows a resonant peak for the H0 Higgs bo-
son in all four THDMs. However, here they vary significantly in width depending on
the specific THDM. Differently from the first scenario, the μ-μ+ → τ-τ+ production
channel shows resonant peaks for both the H0 and A0 Higgs bosons in the Type-II and
lepton-specific THDMs.

All results presented in this work are thoroughly checked with various means. In
particular, we have extended the FormCalc and FeynArts packages [8, 9] to include not
only the Type-I and Type-II THDMs, but also the lepton-specific and flipped THDMs.
We do so by deriving the Yukawa couplings in the same form as used by FormCalc for
the already implemented THDMs. This enables us to extend the package to four THDMs
(for a copy of the package please contact the authors). Furthermore, we make use of the
2HDMC package [10] to verify single total cross section values for a specific THDM and
parameter set. Furthermore, we have developed a python code that is able to compute
the total cross section for the explored processes in any of the four investigated THDMs,
and then compute the relative height of the resonant peaks. As input the code takes
the theoretically and experimentally allowed parameter sets as well as the relative height
deemed necessary to observe a resonant peak in an experiment, in percentage. The code
enables one to calculate the percentage of parameter sets that show large enough resonant
peaks in any of the four channels and THDMs considered in this study. This in turn gives
a quantitative estimate of the parameter space that can be covered in a future Muon
Collider, with the aim of proving or disproving the THDM. Furthermore, it gives a direct
measure on the research potential of a future Muon Collider in the context of a THDM
and more specifically in the search for the additional neutral H0 and A0 Higgs bosons
predicted by the THDM. Moreover, due to the fact that the BRs and MRs needed to
observe a resonant peak are model and production process dependent, this code also
gives the possibility to quantitatively compare production processes for the investigated
THDMs. This code can be easily extended to include further production processes and
THDMs. E.g. the inert THDM, which can also provide a dark matter candidate.

In conclusion, we argue that the large Yukawa coupling of the muon and the specific
structure of the THDM, would enable a future Muon Collider to effectively search for
additional scalar and neutral Higgs bosons in the form of resonant peaks in the total cross
section of the investigated production channels. Furthermore, the model specific Yukawa
couplings suppress or enhance the resonant peaks in the different THDMs for a specific
production process. We argue that this would give further insight into the exact nature
of the potentially discovered additional Higgs bosons. In particular it would restrict the
number of viable THDMs, since e.g. a specific resonant peak should only be observable
in the Type-II THDM and not in the remaining three THDMs.
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Chapter 7

Conclusions and outlook

In this work, we have studied the phenomenology of various non-supersymmetric Two
Higgs Doublet Models (THDMs) with real parameters for a future Muon Collider. Specif-
ically, we have explored the Type-I, Type-II, lepton-specific, and flipped THDMs by
studying the resonant behavior of the predicted neutral H0 and A0 Higgs bosons in the
scattering processes: μ-μ+ → t-t, μ-μ+ → b-b, μ-μ+ → h0h0, and μ-μ+ → τ-τ+. We
have derived the decay widths of the H0 and A0 Higgs bosons at the tree level to determine
their corresponding branching ratios (BRs) and Breit-Wigner propagators.

Furthermore, we have derived from first principles all theoretical bounds, e.g., uni-
tarity, global minimum, vacuum stability, and oblique parameters (S, T, U), as well as
explored the relevant experimental bounds. We then performed a comprehensive numer-
ical study of the theoretical bounds by developing a Python code, with which we have
calculated the allowed THDM parameter sets: {sα, tβ,mh0 ,mH0 ,mA0 ,mH± , λ5}. In par-
ticular, we have performed a parameter scan of more than 20 billion randomly selected
parameter sets and found over 200000 allowed sets.

Using these sets, we have performed a detailed numerical study of the resonant be-
havior of the H0 and A0 Higgs bosons in the production processes μ-μ+ → t-t, b-b, h0h0,
and τ-τ+. We have checked the correctness of our calculations by extending the FA/FC
packages [8, 9] to include all four investigated THDMs and by verifying all decay widths
for specific parameter sets and center of mass energies using the 2HDMC package [10].

In the Type-I THDM, we find that only the μ-μ+ → h0h0 production channel produces
H0 resonances that could be observed at a future Muon Collider. However, due to A0 being
CP-odd, no A0 Higgs boson s-channel production channel is present in μ-μ+ → h0h0. All
other channels do not show any resonances for the H0 and A0 Higgs bosons. This is
due to the large contributions from the γ and Z0 mediated s-channel processes, which
do not appear in the μ-μ+ → h0h0 production channel. Moreover, in this model all
channels are suppressed by the fermion Yukawa couplings Yu,d,l ~ 1/tβ (see Tab. 1.2),
which enter quadratically for the channels μ-μ+ → t-t, b-b and τ-τ+, and linearly for the
μ-μ+ → h0h0 production channel. In contrast, the Type-II THDM shows both H0 and
A0 resonances in the channels μ-μ+ → t-t, b-b and τ-τ+. This is due to the different
Yukawa couplings which enhance the resonant peaks and thus alleviate the suppression
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due to the γ and Z0 mediated s-channel processes. In particular, the channel μ-μ+ → t-t
is not suppressed by tβ and the μ-μ+ → b-b, τ-τ+ production channels are quadratically
enhanced with t2β (see Tab. 1.2). In contrast to the Type-I and Type-II THDMs, the
lepton-specific THDM shows large resonant peaks for both the H0 and A0 Higgs bosons
for the production processes μ-μ+ → t-t, h0h0 and τ-τ+ (note that in the μ-μ+ → h0h0

channel only the H0 Higgs boson can be observed). In this model the μ-μ+ → t-t, b-b
processes are not enhanced by tβ. However, due to the large top-quark mass, resonant
peaks are visible in the μ-μ+ → t-t channel. Furthermore, the μ-μ+ → τ-τ+ process
is quadratically enhanced with t2β (see Tab. 1.2), and thus shows large resonant peaks.
Similarly to the Type-I THDM the flipped THDM only shows resonant peaks for the
μ-μ+ → h0h0 production channel. This is due to the fact that also in this case the
μ-μ+ → t-t, τ-τ+ production processes are quadratically suppressed by tβ, whereas the
μ-μ+ → b-b process is not enhanced by tβ and the mass of the bottom-quark is not large
enough.

In conclusion, we argue that H0 and A0 Higgs boson resonances can be observed for
a large number of allowed parameter sets at a future Muon Collider for various THDMs.
Moreover, due to the different Yukawa couplings, resonances may be observed in a specific
s-channel only in certain THDMs. Even though this could be perceived as a limit, we
argue that it actually provides further information on the true nature of the potentially
discovered scalar particles. In particular, if a future Muon Collider observes a resonance
for a parameter set whose resonance we argue should only be visible e.g. in the Type-I
THDM, then we have a strong hint that this model could be the one realized in nature.
Its worth to note that even in the case that H0 is already observed in a direct production
channel, with the technique discussed in this work, we possibly can measure the total
width of H0. Similar arguments hold for A0. Thus, we propose to consider

√
S-scans at

a future MC.

This study is only a first step in the exploration of the rich phenomenology offered by
various THDMs in the context of such resonances at a future Muon Collider. In particu-
lar, unlike an e+e- collider, the large muon Yukawa coupling enables an efficient s-channel
neutral Higgs boson exchange, making the search for H0 and A0 Higgs boson resonances
particularly enticing. Future works could consider an extension to complex as well as
supersymmetric THDMs, which is of particular interest since the THDM is not only a
natural extension of the SM but also a prerequisite for supersymmetric models (SUSY)
(see e.g. [6] for similar work). Furthermore, the less strict theoretical and experimental
bounds for a supersymmetric THDM allow the search for H0 and A0 Higgs boson reso-
nances well above 1 TeV. Considering the proposed Muon Collider at CERN operating at
around 3 and 10 TeV, this scenario could become particularly interesting.

Moreover, the python code we have developed could be expanded to include the current
experimental bounds, providing the possibility to perform an up-to-date comprehensive
parameter scan of the allowed parameter sets considering both theoretical and experimen-
tal bounds.

80



Acknowledgements

I am deeply honored to express my heartfelt gratitude to my esteemed thesis advisor, Dr.
Helmut Eberl. His unwavering guidance and invaluable insights have illuminated my path
throughout the entire research process. His mentorship, marked by constructive feedback
and relentless dedication, has played an indisputable role in not only shaping the direction
of this work but also in enhancing its caliber.

I extend my utmost and sincere appreciation to the distinguished members of my
thesis committee: Prof. Jochen Schieck, Prof. Florian Libisch, and Prof. Josef Pradler.
Their erudite contributions and rigorous examination have not only elevated my research
but have also fortified its academic integrity. Their thoughtful comments and insightful
suggestions have resonated deeply, enriching the depth of my study.

To my treasured colleagues and friends — Malek, Simon, and Tarun — I am profoundly
grateful for the stimulating discussions and unwavering support they’ve provided on this
journey. Their collaboration has been a beacon of intellectual camaraderie that has driven
this work forward.

My sincere appreciation extends to my dear friends, Gaspare and Francesca, whose
unwavering presence has been a constant source of solace and encouragement. Their
unwavering belief in my abilities has been a wellspring of strength.

In this endeavor, my family and my extended family have been my bedrock. Their
unswerving love and support have not only uplifted me but have also fortified my belief
in my capabilities. I wish to extend special recognition to my parents, my sister, and my
uncle for being the cornerstones of my journey. Their unwavering support has been the
foundation upon which I’ve been able to pursue my dreams and become the physicist I
aspired to be.

In the closing chapter of this phase, I am profoundly appreciative of every person who
has played a role, no matter how big or small, in my academic odyssey. Your contributions
have been the brushstrokes that have painted this portrait of achievement.

From the depth of my heart, I express my sincere gratitude.

Grazie

81



Bibliography

1. Galilei, G. Il Saggiatore (Giacomo Mascardi, Rome, Italy, 1623).
2. Schulte, D. et al. Muon Collider. A Path to the Future? in Proceedings of European

Physical Society Conference on High Energy Physics PoS(EPS-HEP2019) (2020).
3. Biagini, M. E. & Lucchesi, D. Muon Collider: a window to the future. IL NUOVO

SAGGIATORE BOLLETTINO DELLA SOCIETÀ ITALIANA DI FISICA (2021).
4. Manuela Boscolo, J.-P. D. & Palmer, M. The Future Prospects of Muon Colliders

and Neutrino Factories. Reviews of Accelerator Science and Technology, 189–214
(2019).

5. Aime, C. et al. Muon Collider Physics Summary. arXiv: 2203.07256 [hep-ph] (Mar.
2022).

6. Bartl, A., Eberl, H., Kraml, S., Majerotto, W. & Porod, W. Sfermion pair production
at mu+ mu- colliders. Phys. Rev. D 58, 115002. arXiv: hep-ph/9805248 (1998).

7. Eichten, E. & Martin, A. The Muon Collider as a H/A Factory. Phys. Lett. B 728,
125–130. arXiv: 1306.2609 [hep-ph] (2014).

8. Hahn, T. & Pérez-Victoria, M. Automated one-loop calculations in four and D di-
mensions. Computer Physics Communications 118, 153–165. issn: 0010-4655. https:
//www.sciencedirect.com/science/article/pii/S0010465598001738 (1999).

9. Hahn, T. Generating Feynman diagrams and amplitudes with FeynArts 3. Com-
puter Physics Communications 140, 418–431. issn: 0010-4655. https : / / www .
sciencedirect.com/science/article/pii/S0010465501002909 (2001).

10. Eriksson, D., Rathsman, J. & Stal, O. 2HDMC: Two-Higgs-Doublet Model Calcula-
tor Physics and Manual. Comput. Phys. Commun. 181, 189–205. arXiv: 0902.0851
[hep-ph] (2010).

11. Wang, L., Yang, J. M. & Zhang, Y. Two-Higgs-doublet models in light of current
experiments: a brief review. Communications in Theoretical Physics 74, 097202.
https://dx.doi.org/10.1088/1572-9494/ac7fe9 (Aug. 2022).

12. Haber, H. E. & O’Neil, D. Basis-independent methods for the two-Higgs-doublet
model III: The CP-conserving limit, custodial symmetry, and the oblique parameters
S, T, U. Phys. Rev. D 83, 055017. arXiv: 1011.6188 [hep-ph] (2011).

82

https://arxiv.org/abs/2203.07256
https://arxiv.org/abs/hep-ph/9805248
https://arxiv.org/abs/1306.2609
https://www.sciencedirect.com/science/article/pii/S0010465598001738
https://www.sciencedirect.com/science/article/pii/S0010465598001738
https://www.sciencedirect.com/science/article/pii/S0010465501002909
https://www.sciencedirect.com/science/article/pii/S0010465501002909
https://arxiv.org/abs/0902.0851
https://arxiv.org/abs/0902.0851
https://dx.doi.org/10.1088/1572-9494/ac7fe9
https://arxiv.org/abs/1011.6188


Leonardo B. Giacomelli BIBLIOGRAPHY

13. Arhrib, A. Unitarity constraints on scalar parameters of the standard and two Higgs
doublets model in Workshop on Noncommutative Geometry, Superstrings and Par-
ticle Physics (Dec. 2000). arXiv: hep-ph/0012353.

14. Arhrib, A., Benbrik, R., El Kacimi, M., Rahili, L. & Semlali, S. Extended Higgs
sector of 2HDM with real singlet facing LHC data. Eur. Phys. J. C 80, 13. arXiv:
1811.12431 [hep-ph] (2020).

15. Branco, G. et al. Theory and phenomenology of two-Higgs-doublet models. Physics
Reports 516. Theory and phenomenology of two-Higgs-doublet models, 1–102. issn:
0370-1573. https://www.sciencedirect.com/science/article/pii/S0370157312000695
(2012).

16. Heinemeyer, S. Future perspectives for Higgs physics. PoS ICHEP2022, 017. arXiv:
2211.12208 [hep-ph] (2022).

17. Celis, A., Ilisie, V. & Pich, A. LHC constraints on two-Higgs doublet models. JHEP
07, 053. arXiv: 1302.4022 [hep-ph] (2013).

18. Celis, A. LHC phenomenology of two-Higgs-doublet models in the LHC era PhD
thesis (Valencia U., 2014).

19. Thomson, M. in. 1st ed. Chap. 6 (CAMBRIDGE University Press, 2013).
20. Eberl, H. Introduction to the Models of Elementary Particle Physics I - 141.B00

(TU Wien). https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=
2399&dsrid=31&courseNr=141B00&semester=2022W (2021).

21. Eberl, H. Introduction to the Models of Elementary Particle Physics II - 141.B02
(TU Wien). https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=
2399&dsrid=57&courseNr=141B02&semester=2023S (2022).

22. Branco, G., Grimus, W. & Lavoura, L. Relating the scalar flavour-changing neutral
couplings to the CKM matrix. Physics Letters B 380, 119–126. issn: 0370-2693.
https://www.sciencedirect.com/science/article/pii/0370269396004947
(1996).

23. Ma, E. Verifiable radiative seesaw mechanism of neutrino mass and dark matter.
Phys. Rev. D 73, 077301. https://link.aps.org/doi/10.1103/PhysRevD.73.
077301 (7 Apr. 2006).

24. Eberl, H. Strahlungskorrekturen im minimalen supersymmetrischen Standardmodell
PhD thesis (Vienna University of Technology, 1998).

25. Srednicki, M. Quantum Field Theory (Cambridge University Press, 2007).
26. Barroso, A., Ferreira, P. M., Ivanov, I. P. & Santos, R. Metastability bounds on the

two Higgs doublet model. JHEP 06, 045. arXiv: 1303.5098 [hep-ph] (2013).
27. Chen, N., Du, C., Wu, Y. & Xu, X.-J. Further study of the global minimum constraint

on the two-Higgs-doublet models: LHC searches for heavy Higgs bosons. Phys. Rev.
D 99, 035011. arXiv: 1810.04689 [hep-ph] (2019).

83

https://arxiv.org/abs/hep-ph/0012353
https://arxiv.org/abs/1811.12431
https://www.sciencedirect.com/science/article/pii/S0370157312000695
https://arxiv.org/abs/2211.12208
https://arxiv.org/abs/1302.4022
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2399&dsrid=31&courseNr=141B00&semester=2022W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2399&dsrid=31&courseNr=141B00&semester=2022W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2399&dsrid=57&courseNr=141B02&semester=2023S
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2399&dsrid=57&courseNr=141B02&semester=2023S
https://www.sciencedirect.com/science/article/pii/0370269396004947
https://link.aps.org/doi/10.1103/PhysRevD.73.077301
https://link.aps.org/doi/10.1103/PhysRevD.73.077301
https://arxiv.org/abs/1303.5098
https://arxiv.org/abs/1810.04689


Leonardo B. Giacomelli BIBLIOGRAPHY

28. Kanemura, S., Kubota, T. & Takasugi, E. Lee-Quigg-Thacker bounds for Higgs
boson masses in a two doublet model. Phys. Lett. B 313, 155–160. arXiv: hep-
ph/9303263 (1993).

29. Peskin, M. E. & Schroeder, D. V. An Introduction to Quantum Field Theory Reading,
USA: Addison-Wesley (1995) 842 p (Westview Press, 1995).

30. Valencia, G. & Willenbrock, S. The Goldstone Boson Equivalence Theorem and the
Higgs Resonance. Phys. Rev. D 42, 853–859 (1990).

31. Delahaye, J. P. et al. Muon Colliders. arXiv: 1901.06150 [physics.acc-ph] (Jan.
2019).

32. Peskin, M. E. & Takeuchi, T. Estimation of oblique electroweak corrections. Phys.
Rev. D 46, 381–409. https://link.aps.org/doi/10.1103/PhysRevD.46.381 (1
July 1992).

33. Passarino, G. & Veltman, M. One-loop corrections for e+e− annihilation into  + −
in the Weinberg model. Nuclear Physics B 160, 151–207. issn: 0550-3213. https:
//www.sciencedirect.com/science/article/pii/0550321379902347 (1979).

34. Haber, H. E. & O’Neil, D. Basis-independent methods for the two-Higgs-doublet
model. II. The significance of tanβ. Phys. Rev. D 74, 015018. https://link.aps.
org/doi/10.1103/PhysRevD.74.015018 (1 July 2006).

35. Langacker, P. Precision Tests of the Standard Electroweak Model eprint: https://
www.worldscientific.com/doi/pdf/10.1142/1927. https://www.worldscientific.
com/doi/abs/10.1142/1927 (WORLD SCIENTIFIC, 1995).

36. Denner, A. Techniques for calculation of electroweak radiative corrections at the one
loop level and results for W physics at LEP-200. Fortsch. Phys. 41, 307–420. arXiv:
0709.1075 [hep-ph] (1993).

37. Han, X.-F. & Wang, H.-X. Revisiting wrong sign Yukawa coupling of type II two-
Higgs-doublet model in light of recent LHC data. Chin. Phys. C 44, 073101. arXiv:
2003.06170 [hep-ph] (2020).

38. Bechtle, P. et al. HiggsBounds-5: testing Higgs sectors in the LHC 13 TeV Era. The
European Physical Journal C 80, 1211. issn: 1434-6052. https://doi.org/10.
1140/epjc/s10052-020-08557-9 (Dec. 29, 2020).

39. Bhupal Dev, P. S. & Pilaftsis, A. Maximally symmetric two Higgs doublet model
with natural standard model alignment. Journal of High Energy Physics 2014, 24.
issn: 1029-8479. https://doi.org/10.1007/JHEP12(2014)024 (2014).

40. Bernon, J., Gunion, J. F., Haber, H. E., Jiang, Y. & Kraml, S. Scrutinizing the
alignment limit in two-Higgs-doublet models: mh = 125 GeV. Phys. Rev. D 92,
075004. https://link.aps.org/doi/10.1103/PhysRevD.92.075004 (7 Oct.
2015).

84

https://arxiv.org/abs/hep-ph/9303263
https://arxiv.org/abs/hep-ph/9303263
https://arxiv.org/abs/1901.06150
https://link.aps.org/doi/10.1103/PhysRevD.46.381
https://www.sciencedirect.com/science/article/pii/0550321379902347
https://www.sciencedirect.com/science/article/pii/0550321379902347
https://link.aps.org/doi/10.1103/PhysRevD.74.015018
https://link.aps.org/doi/10.1103/PhysRevD.74.015018
https://www.worldscientific.com/doi/pdf/10.1142/1927
https://www.worldscientific.com/doi/pdf/10.1142/1927
https://www.worldscientific.com/doi/abs/10.1142/1927
https://www.worldscientific.com/doi/abs/10.1142/1927
https://arxiv.org/abs/0709.1075
https://arxiv.org/abs/2003.06170
https://doi.org/10.1140/epjc/s10052-020-08557-9
https://doi.org/10.1140/epjc/s10052-020-08557-9
https://doi.org/10.1007/JHEP12(2014)024
https://link.aps.org/doi/10.1103/PhysRevD.92.075004


Leonardo B. Giacomelli BIBLIOGRAPHY

41. Chen, N., Du, C., Wu, Y. & Xu, X.-J. Further study of the global minimum constraint
on the two-Higgs-doublet models: LHC searches for heavy Higgs bosons. Phys. Rev.
D 99, 035011. https://link.aps.org/doi/10.1103/PhysRevD.99.035011 (3
Feb. 2019).

42. Gu, J., Li, H., Liu, Z., Su, S. & Su, W. Learning from Higgs physics at future
Higgs factories. Journal of High Energy Physics 2017, 153. issn: 1029-8479. https:
//doi.org/10.1007/JHEP12(2017)153 (2017).

43. Palacino, G. Direct searches for additional scalar Higgs at ATLAS and CMS. http:
//cds.cern.ch/record/2679590 (2019).

44. Grippo, M. Searches for additional Higgs bosons at CMS. Nuclear and Particle
Physics Proceedings 300-302. QCD 18 is the 21st International Conference on Quan-
tum Chromodynamics, 61–66. issn: 2405-6014. https://www.sciencedirect.com/
science/article/pii/S2405601418301949 (2018).

45. Kundu, A., Le Yaouanc, A., Mondal, P. & Richard, F. Searches for scalars at LHC
and interpretation of the findings in 2022 ECFA Workshop on e+e- Higgs/EW/Top
factories (Nov. 2022). arXiv: 2211.11723 [hep-ph].

46. Andrean, S. Y. Search for New Scalar Particles with ATLAS PhD dissertation
(Stockholm University, 2023). https : / / urn . kb . se / resolve ? urn = urn : nbn :
se:su:diva-214743.

47. Harlander, R. V., Liebler, S. & Mantler, H. SusHi: A program for the calculation
of Higgs production in gluon fusion and bottom-quark annihilation in the Stan-
dard Model and the MSSM. Computer Physics Communications 184, 1605–1617.
issn: 0010-4655. https : / / www . sciencedirect . com / science / article / pii /
S0010465513000507 (2013).

48. Eriksson, D., Rathsman, J. & Stål, O. 2HDMC – two-Higgs-doublet model calculator.
Computer Physics Communications 181, 189–205. issn: 0010-4655. https://www.
sciencedirect.com/science/article/pii/S0010465509003014 (2010).

49. Han, X.-F., Wang, L. & Zhang, Y. Dark matter, electroweak phase transition, and
gravitational waves in the type II two-Higgs-doublet model with a singlet scalar field.
Phys. Rev. D 103, 035012. https://link.aps.org/doi/10.1103/PhysRevD.103.
035012 (3 Feb. 2021).

50. Wang, L., Wang, H.-X. & Han, X.-F. Revisiting wrong sign Yukawa coupling of type
II two-Higgs-doublet model in light of recent LHC data *. Chinese Physics C 44,
073101. https://dx.doi.org/10.1088/1674-1137/44/7/073101 (July 2020).

51. Abdesselam, A. et al. Measurement of the inclusive B → Xs+dγ branching fraction,
photon energy spectrum and HQE parameters in 38th International Conference on
High Energy Physics (Aug. 2016). arXiv: 1608.02344 [hep-ex].

52. Misiak, M. & Steinhauser, M. Weak radiative decays of the B meson and bounds on
MH± in the Two-Higgs-Doublet Model. Eur. Phys. J. C 77, 201. arXiv: 1702.04571
[hep-ph] (2017).

85

https://link.aps.org/doi/10.1103/PhysRevD.99.035011
https://doi.org/10.1007/JHEP12(2017)153
https://doi.org/10.1007/JHEP12(2017)153
http://cds.cern.ch/record/2679590
http://cds.cern.ch/record/2679590
https://www.sciencedirect.com/science/article/pii/S2405601418301949
https://www.sciencedirect.com/science/article/pii/S2405601418301949
https://arxiv.org/abs/2211.11723
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-214743
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-214743
https://www.sciencedirect.com/science/article/pii/S0010465513000507
https://www.sciencedirect.com/science/article/pii/S0010465513000507
https://www.sciencedirect.com/science/article/pii/S0010465509003014
https://www.sciencedirect.com/science/article/pii/S0010465509003014
https://link.aps.org/doi/10.1103/PhysRevD.103.035012
https://link.aps.org/doi/10.1103/PhysRevD.103.035012
https://dx.doi.org/10.1088/1674-1137/44/7/073101
https://arxiv.org/abs/1608.02344
https://arxiv.org/abs/1702.04571
https://arxiv.org/abs/1702.04571


Leonardo B. Giacomelli BIBLIOGRAPHY

53. Haller, J. et al. Update of the global electroweak fit and constraints on two-Higgs-
doublet models. The European Physical Journal C 78, 675. issn: 1434-6052. https:
//doi.org/10.1140/epjc/s10052-018-6131-3 (2018).

54. Fuchs, E., Thewes, S. & Weiglein, G. Interference effects in BSM processes with a
generalised narrow-width approximation. The European Physical Journal C 75, 254.
issn: 1434-6052. https://doi.org/10.1140/epjc/s10052-015-3472-z (June 9,
2015).

86

https://doi.org/10.1140/epjc/s10052-018-6131-3
https://doi.org/10.1140/epjc/s10052-018-6131-3
https://doi.org/10.1140/epjc/s10052-015-3472-z

	Abbreviations
	Introduction
	Theoretical background
	Higgs-Kibble mechanism
	Global symmetry breaking
	Local symmetry breaking

	The Two Higgs Doublet Model
	General scalar potential
	Type-I, Type-II, lepton-specific and flipped THDMs
	Inert THDM

	Breit-Wigner resonance

	Total decay widths 
	Total decay width of H0
	H0 u 
	List of all possible decay widths

	Total decay width A0
	A0 Z h0
	List of all possible decay widths


	Theoretical bounds
	Parameters
	Vacuum stability
	Global minimum
	Unitarity bounds
	Partial wave decomposition
	Feynman rules
	S matrix

	Oblique parameters
	Examples of one-loop polarization functions

	Numerical analysis

	Experimental bounds
	The 125 GeV Higgs boson
	Search for additional scalar particles
	General discussion

	Total cross sections
	- + t  - channel
	Matrix element
	Total cross section

	- + h0 h0 - channel
	Matrix element
	Total cross section

	- + b  - channel
	Matrix element
	Total cross section

	- + + - - channel
	Matrix element
	Total cross section

	Breit - Wigner formula
	Derivation of the narrow-widths approximation

	Forward-Backward asymmetry

	H0 and A0 resonances
	Type-I THDM
	Type-II THDM
	Lepton-specific THDM
	Flipped THDM
	Discussion

	Conclusions and outlook

