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Abstract

In recent years, new methods based on machine-learning techniques and neural-networks
have been developed to calculate the thermodynamic and spectroscopic properties of
various systems with high precision and low computational costs. However, most current
neural-network force fields have a significant limitation: they only take into account local,
short-range interactions between atoms and molecules, while largely ignoring the long-
range interactions that may strongly influence the properties of materials. This limitation
may have significant consequences for predicting the physical properties of materials that
are primarily determined by long-range interactions. This master thesis discusses the
extent to which long-range interactions are taken into account in the current neural-
network force field NeuralIL, and how this limitation affects the accuracy of predicted
density using molecular dynamics simulations for water as a case study. Moreover a
new implementation of the DFT-D3 method for calculating dispersion interactions using
the high-performance machine-learning framework JAX will be presented. Finally, the
suitability of vdW-DF exchange-correlation functionals to correct for those effects in
condensed-phase water systems will be analysed and compared to DFT calculations with
RPBE functional with and without the DFT-D3 dispersion correction.
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CHAPTER 1
Introduction

Van der Waals interactions (vdW) are non-bonded interactions that are pervasive in
nature, playing a critical role in the cohesion and structural properties of materials. These
interactions, governed by the quantum-mechanical behaviour of constantly fluctuating
electron clouds, exhibit nonadditive and long-range characteristics. At the nanoscale,
vdW interactions can extend up to distances of 10 nm or more [1]. In the field of
theoretical chemistry, various methods exist to calculate these interactions. Accurate
calculations can be performed using coupled-cluster methods such as CCSD(T), while
approximate approaches within the framework of density functional theory (DFT) include
specialised van der Waals density functionals [2] and DFT-D methods [3].
Until recently, theoretical chemistry predominantly relied on physics-based methods, such
as DFT. However, a groundbreaking development in theoretical chemistry and materials
science has emerged, introducing a novel methodology that leverages the power of big
data science. This innovative approach integrates machine-learning tools, particularly
neural-networks, into the field. The concept showcases the remarkable ability of large
datasets to generate highly accurate models, even with relatively simple underlying
algorithms such as linear regression. Neural-networks possess significant potential for
predicting the physical properties of diverse chemical compounds, offering a substantial
advantage over older, well-established techniques.
Neural-networks have emerged as a promising tool particularly in the context of molecular
dynamics (MD) simulations. MD simulations are widely used to investigate the physical
properties of compounds. These simulations involve solving Newton’s equations of
motion at each time step, enabling the system to evolve over time. To perform MD
simulations, it is crucial to calculate the forces of each configuration generated during
the simulation. Traditionally, two primary methods have been employed to calculate
the potential energy: ab initio methods, such as DFT, which accurately compute energy
using quantum mechanical principles, and classical force fields, which approximate the
potential energy surface (PES) using functional forms based on analytical results and a
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1. Introduction

limited set of parameters. While DFT calculations are known for their precision, they can
be computationally expensive. In contrast, classical force fields offer faster computations
but at the cost of reduced accuracy. The challenge lies in the large number of time
steps involved in an average MD simulation, often numbering in the millions. With each
time step, a new configurations is generated, necessitating the calculation of potential
energies and forces. Slow methods can significantly extend the simulation duration,
potentially taking years to complete. On the other hand, imprecise potential energy and
force calculations can lead to inaccuracies in the resulting physical properties.

Neural-network force fields (NNFFs) offer a solution to address these challenges. Rather
than directly calculating potential energies using computationally expensive methods
like DFT for millions of configurations during a simulation, a NNFF can be trained
using a set of several thousand structures. This dataset, comprised of high-quality data,
enables a NNFF to learn and approximate the potential energy surface (PES) with great
accuracy. As a result, the trained NNFF can efficiently calculate the potential energy of
any configuration within the same system, offering both high accuracy and significantly
reduced computational time compared to traditional methods like DFT. Until today
many NNFF have been developed and successfully used. For example the RuNNer NNFF
[4] developed by Prof. Behler and his coworkers was successfully used for example to
predict the relative stability of the hexagonal and cubic ice phases [5] or to calculate
reaction probabilities of nitrogen molecules on a Ru(001) surface with height accuracy
[6].

However, to achieve accurate predictions, it is crucial for the NNFF to effectively model
the interatomic interactions within the material of interest. This task becomes particularly
challenging when it comes to adequately representing vdW interactions. Modelling vdW
interactions with sufficient accuracy poses a considerable challenge, as they are inherently
non-local and long-range in nature. The ability of the NNFF to capture and reproduce
these interactions plays a crucial role in accurately predicting the physical properties of
the system under study.

Many NNFFs employed today utilise descriptors based on the assumption of chemical
locality, where an extensive property of a configuration is decomposed into contributions
from local atomic environments represented by descriptors. This approximation was
applied successfully to predict potential energies, forces and properties of ionic liquids
[7], water [5], [8] and many more compounds. This approach allows training the NNFF
on small fragments and using it to make predictions for larger systems composed of
these fragments [9]. However, when studying systems with dominant long-range and
nonadditive interactions like vdW interactions, the locality approximation often fails to
adequately describe their physical properties [10]. It has been shown, for instance, that
omitting vdW interactions from the training set of a NNFF used in molecular dynamics
simulations for bulk water leads to inaccurate predictions of water properties, such as
density [8]. This discrepancy arises because descriptors, typically with a radius of 4 to
6 Å, can only capture interactions between atoms within this radius. However, vdW
interactions, such as London dispersion interactions, persist between atoms at distances
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of 50 Å and even greater. These interactions can contribute significantly to the total
potential energy and possibly cannot be adequately captured by the local descriptors
commonly used.

Considering the limitations imposed by the locality approximation, I conducted an
analysis to assess the feasibility of modelling dispersion interactions and transferability in
water systems using NeuralIL, a neural-network force field developed by Prof. Madsen’s
group [7]. My analysis involved two datasets: one comprising bulk water configurations
and the other consisting of water clusters. The datasets and the findings of my analysis
are presented in Section 3.1.

In Section 3.2, I further investigated the impact of the locality approximation on the
accuracy of the predicted density of bulk water at a temperature 250 K and a pressure of
1 bar. To accomplish this, we employed two NeuralIL models trained on DFT forces with
and without the dispersion correction, computed using the DFT-D3 method, which are
analysed in detail in Section 3.1, and performed an MD simulation in a NPT ensemble
and using JAX-MD simulation package [11]. The resulting water densities were compared
with the density values given in a study carried out using another NNFF that was trained
on data with and without DFT-D3 correction [8]. The results of this investigation,
including their implications, are thoroughly discussed.

Lastly, in Section 3.4, I explore the potential of van-der-Waals density functionals to
create a more accurate water dataset, surpassing the limitations of previous research
methodologies. This investigation sheds light on the effectiveness of these density
functionals in capturing the intricate properties of bulk water.

During the course of this master’s thesis, a program for calculating the DFT-D3 correction
was developed. This program, which uses the Python library JAX, is based on the Torch-
dftd program [12], [3]. In Section 3.3, the program is thoroughly described, including a
comparison with the original Torch-dftd version and the persistent challenges encountered
during its development.

By addressing these key aspects, I aim to enhance the general understanding of the
modelling of dispersion interactions, improve the accuracy of predicted water properties,
and advance the development of more reliable and comprehensive approaches in theoretical
chemistry and molecular dynamics simulations.
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CHAPTER 2
Theoretical background

2.1 Van-der-Waals interactions in theoretical chemistry
The exact solution of the Schrödinger equation contains the vdW contribution to the
energy since it is contained in the exact formulation of the electron interaction energy.
However, the explicit solution can not be obtained easily especially in case of systems
containing many atoms. In theoretical chemistry the golden standard for modelling of
vdW interactions are the wave-function methods such as coupled-cluster [3]. However,
the most popular methods in condensed matter science nowadays are based on DFT
because the calculations can be carried out faster.
According to the Born-Oppenheimer approximation, the Hamilton operator, which deter-
mines the total energy, can be split into a nuclear Hamiltonian and another Hamiltonian
that contains the contribution of electrons to the total potential energy [13]. The latter
is given by :

E[Ψ] = Ekin[Ψ] + Eext[Ψ] + Eee[Ψ] (2.1)

where Ekin is the kinetic energy of the electrons, Eext is an external energy due to the
interaction of the electrons with the external (nuclear) field and Eee stands for the
electron-electron interaction energy. The electron-electron interaction energy can be split
into two parts, the first of which reflects the uncorrelated probability density and is called
Hartree energy [13]. The second one is given by the correlated pair-probability density
Πxc and reflects the correlated movement of electrons.

Eee[Ψ] = EH[n] + U [Πxc] (2.2)

Van-der-Waals interactions consist of three interactions : Keesom, Debye and London
dispersion interactions. The Keesom interactions result from the interactions between
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2. Theoretical background

molecules with permanent dipole moments and it can be either attractive or repulsive,
depending on the relative orientation of the molecules [14]. Debye interactions originate
from the polarisation of nonpolar molecules or atoms by an electric field produced by
a molecule having a permanent dipole moment and therefore they are attractive. On
the other hand, the dispersion interaction is created because the movements of electrons
are correlated, which results in a transient dipole moment on the atoms in a molecule or
solid that can induce dipole moments on other distant unpolar molecules or atoms [14].
The interaction energies from Keesom and Debye interactions result from the change of
the ground state electron density and therefore they are fully contained in the Hartree
energy [14]. However, the dispersion interaction is caused by a dynamic effect linked to
the correlated motion of electrons, thereby is contained only in U [Πxc]. The exaggerated
repulsion incorporated in EH[n] is compensated partly by the dispersion interaction,
which is also attractive.

Unfortunately calculating Πxc, and thereby U [Πxc], accurately is computationally in-
tractable for even intermediate size systems. Within DFT, this term is part of the
Kohn-Sham energy, which is a functional of the ground-state electron density n, and is
specifically included in the exchange-correlation energy Exc[n]:

EKS[n] = Ts + Eext[n] + EH[n] + Exc[n] (2.3)

The exchange-correlation energy can be approximated using various exchange-correlation
functionals. However, common functionals of the type LDA, GGA or more advanced
semilocal meta-GGA functionals fail to describe the long-range electron correlation energy
and therefore fail to describe the long-range part of dispersion interaction which is highly
nonlocal [15].

Yet the non-relativistic exchange and correlation energy of a system can be formulated
exactly on a top of a mean-field method framework like DFT using the adiabatic-
connection fluctuation-dissipation theorem [15]. The central quantity in this theorem is
the non-local, time-dependent density response function χ(r, r′,t,t′), which describes the
response of an electron density at position r and time t to a perturbation at position r′

at time t′ [15]. It is related to the nonlocal polarizability α by:

χ(r, r′, t, t′) = ∇r · ∇r′ · α(r, r′, t, t′) (2.4)

This fluctuation-dissipation theorem states that the correlation energy can be calcu-
lated for the stationary state using the time-independent, frequency-dependent dynamic
polarizability α(r, r′, ω) using this equation:

Ecorr = 1
2π

� ∞

0
dω

� 1

0
dλ

��
drdr′Tr{[αλ(r, r′, iω) − αλ=0(r, r′, iω)]T(r, r′)} (2.5)

6



2.1. Van-der-Waals interactions in theoretical chemistry

where r, r′ are the spatial coordinates, ω is the frequency, λ is a coupling strength that
connects the Kohn-Sham system of noninteracting electrons (λ = 0) to the real system
of fully interacting electrons (λ = 1), αλ=0 is the polarizability response of a Kohn-Sham
system, αλ is the polarizability of a system with interacting electrons and T(r, r′) stands
for a dipole potential related to the Coulomb potential v(r,r′) via [15]:

T(r, r′) = −∇r∇r′v(r, r′) (2.6)

All of the currently existing methods for calculating the dispersion interactions within
the DFT framework are based on calculating the long range part of the total correlation
energy given by Eq.(2.5) by mainly introducing various approximations to the two
central quantities : the nonlocal polarizability α(r, r′, ω) and the effective interaction
potential v(r, r′). Depending on the kind of approximations they can be classified into
several categories. Two of them that are relevant for this work are the fragment-based
pairwise vdW methods, to which the family of DFT-D methods belongs, and nonlocal
two-point density functional approximations such as the van-der-Waals density functionals
(vdW-DF) [15].

2.1.1 DFT-D3
DFT-D3 [3] is currently a widely adopted method for calculating dispersion energy in
conjunction with DFT. It belongs to the family of DFT-D methods. The total energy
is calculated as a sum of the Kohn-Sham energy and the dispersion energy, calculated
using the two-body and three-body energies according to the following equations:

Etotal = EKS + Edisp (2.7)

Edisp = −(E2-body + E3-body) (2.8)

E2-body =


AB



n=6,8

sn
CAB

n

rn
AB

fd,n(rAB) (2.9)

where the first sum runs over atomic pairs AB and the second one over different orders
of the averaged (isotropic) dispersion coefficient CAB

n (n = 6,8) for an atom pair AB,
rAB is their inter-nuclear distance, sn is a global scaling factor. For n > 6 the value of
sn depends on the density functional that has been used in the calculation of EKS while
for n = 6 sn is unity [3]. In order to ensure that the dispersion energy is well behaved
for small inter-atomic distances (especially to avoid singularities) a damping function
called damping function ”zero” of the following form is applied:

fd,n(rAB) = 1
1 + 6(rAB/(sr,nRAB

0 ))−αn
(2.10)
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2. Theoretical background

where sr,n is the order-dependent scaling factor of the cutoff radii RAB
0 and has to be

adjusted for each density functional. Another parameter that is adjusted manually is the
steepness parameter αn, in such a way that the dispersion correction amounts to less
than 1% of the maximal absolute value of the dispersion energy for typical covalent bond
distances [3].

Contrary to the older versions of DFT-D method (such as D2 or D1) in DFT-D3 the
dispersion coefficients are based on time-dependent (TD) DFT calculations. The reference
dispersion coefficients of atoms A and B are calculated using polarizability values for
some reference molecules of those atoms, which were chosen to be hydrides of those
atoms, and subtracting the contribution of the hydrogens:

CAB
6,ref = 3

π

� ∞

0
dω

1
m

[αAmHn(iω) − n

2 αH2(iω)] × 1
k

[αBkHl(iω) − l

2αH2(iω)] (2.11)

where αH2(iω) is the polarizability of the hydrogen molecule, m, n, k, l are the stochio-
metric factors and αAmHn(iω) is the polarizability of the reference molecule AmHn. The
use of polarizabilities of hydrides stems from the fact that, within a compound, the
polarizability of an atom tends to be lower compared to its free atom state. Since this
method is supposed to be used mainly in dense matter and almost every element in
the periodic table forms at least one stable hydride, they are appropriate to mimic this
behaviour of the polarizability [3]. The use of reference molecules could seem to be a
disadvantage at first sight because it leads to ambiguous coefficients. However, it opens
the door to the inclusion of some geometrical information about the molecule in form of
the coordination number CN.

Although the dynamical polarizability α has a nonlocal character there are some local
effects that influence it (and thus the dispersion coefficient). In fact, the contribution of an
atom to the total dispersion coefficient of a molecule depends on its chemical environment.
One of the most important local electronic effects is hybridization. It is induced by
covalent bond formation between atoms which drastically changes the electronic structure.
Fractionally occupied atomic orbitals mostly become doubly occupied, energetically lower-
lying molecular orbitals. Because this increases the electronic excitation energies the
resulting atomic polarizabilities and thus the C 6 coefficients are often much smaller in
molecules than in free atoms [3]. Grimme et al. showed that the effect of the hybridization
on the dispersion coefficient can be calculated surprisingly well using some information
about the local geometry incorporated in the fractional coordination number [3], which
is calculated for an atom A using the counting function:

CNA =
Nat


B ̸=A

1
1 + e−k1(RA,cov+RB,cov)/r−1

AB

(2.12)

where RA,cov and RB,cov stand for a scaled covalent and single-bond radius of atom A
and B, k1 and k2 are empirically derived scaling factors. The procedure for computing
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2.1. Van-der-Waals interactions in theoretical chemistry

the dispersion coefficients is as follows. The polarizability of each element in the molecule
is computed using Eq.( 2.11) for at least one reference hydride molecule. If an element
can be found in several hydrides with different chemical environments, all of them will
be taken as a reference. A typical example would be a carbon atom, which can occur for
example in isolation or as a part of C-H, ethene, ethyne or ethane. In those compounds
carbon has different chemical environments (the number of bound hydrogens changes)
which result in different coordination numbers of C (from 0 to 4). Next, the coordination
number of the element of interest in each of the reference compounds is calculated. The
dispersion coefficient for a pair of atoms A and B in their environment C AB

6,ref(CNA,
CNB) will be calculated using the Eq.( 2.11). These serve as points in an interpolation
procedure using which any C 6 coefficient with any combination of CNs can be calculated
[3]. The relationship between the actual C AB

6 coefficients and the reference coefficients is
as follows:

CAB
6 (CNA, CNB) = Z

W
(2.13)

Z =
NA


i

NB

j

CAB
6,ref(CNA

i , CNB
j )Lij (2.14)

W =
NA


i

NB

j

Lij (2.15)

Lij = e−k3[(CNA−CNA
i )2+(CNB−CNB

j )2] (2.16)

In those equations, NA and NB stand for the number of reference molecules for each
atomic element A and B, CNA and CNB are coordination numbers of the atoms A and B
in the system of interest (the actual molecules or solid) and CNA

i , CNB
j are coordination

numbers for those atoms in the reference molecules i and j.

The higher-order C8 coefficients are calculated based on the C6 coefficients recursively
via:

CAB
8 = 3CAB

6

�
QAQB (2.17)

with

QA = s42
√

ZA
⟨r4⟩A

⟨r2⟩A
(2.18)
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2. Theoretical background

where ⟨r4⟩ and ⟨r2⟩ are multipole-type expectation values derived from atomic densities
which are averaged geometrically, Z is the nuclear charge of atom A and s42 is a scaling
factor.

In DFT-D3 one can optionally also calculate the three-body term and add it on top of
the two-body one. While the two-body term describes the additive interaction between
two atoms in a compound, the three-body term describes the nonadditive interaction
between three atoms simultaneously. This kind of interaction is nonadditive because the
long range part of the interaction between three ground state atoms does not equal to the
sum of interactions taken in pairs. The three-body dispersion energy term is described
using the following equation:

E3-body =



ABC

fd,(3)(rABC)EABC (2.19)

where fd,(3) is the three-body damping function, analogous to the two body one, and
EABC is the three-body interaction energy given by the Axilrod-Teller-Muto equation :

EABC = CABC
9 (3 cos θa cos θb cos θc + 1)

(rABrBCrCA)3 (2.20)

The θ are internal angles of the triangle formed by rAB, rAC , rBC and C 9 is the triple-
dipole constant which is calculated approximately using the geometric mean of the
dispersion coefficients:

CABC
9 ≈ −

�
CAB

6 CAC
6 CBC

6 (2.21)

Towards the conclusion of this section, I aim to illustrate the methodology through
a straightforward example involving a water dimer configuration. By progressively
increasing the distance between the two water molecules and subsequently calculating the
corresponding dispersion interaction energy, I can derive what is referred to as the energy
dissociation curve, showcased in Figure 2.1. Given that the literature suggests a negligible
contribution from the three-body term to the overall dispersion energy in water [16],
the dissociation curves were established solely using the two-body term E2-body, along
with the zero-type damping function as defined by Eq.(2.10). Notably, some parameters
encapsulated in the method, which remain independent of the compound’s nature for
which dispersion energy is being determined, are outlined in Table 2.1. The parameters
sr,6 and s8 are dependent on the selected exchange-correlation functional utilised for
the DFT calculation. The other parameters listed in the table maintain a consistent
value, irrespective of the functional employed. Moving onto parameters associated with
the compound’s chemistry and its geometry, the dispersion coefficients CAB

6 and CAB
8

fall under this category. These coefficients contribute to the total dispersion energy (as
energies E6 and E8), as visualised in Figure 2.1.
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2.1. Van-der-Waals interactions in theoretical chemistry

Table 2.1: Some parameters of DFT-D3 which do not depend on the chemical nature or
geometry of the compound or material the dispersion energy of which should be calculated.
The values of sr,6 and s8 are determined by the choice of the exchange-correlation density
functional, which is in this case the Perdew-Burke-Ernzerhof density functional (PBE)
[17].

Parameters Values

s6 1.0
sr,6 1.217
s8 0.722
sr,8 1.0
α6 14.0
α8 16.0

The dissociation curve serves as a valuable tool to discern the evolution of dispersion
interaction and its constituent contributions E6 and E8 in correlation with the expanding
molecular distance. As illustrated in Figure 2.1, the dispersion energy reaches its
minimum at an intermolecular distance of around 3.0 Å, coinciding with the peak of E6
and E8 contributions. Furthermore, as the distance between the molecules contracts,
the dispersion energy experiences a sharp decline, attributed to the influence of the
damping function, which determines in which interatomic distance region the dispersion
energy is in absolute value reduced or vanishes completely. Conversely, a continuous
increase in the distance between water molecules prompts the dispersion interaction
to decrease slowly, predominantly due to the quickly diminishing E8 contribution. At
more extended distances, the dispersion energy is dominated entirely by the E6 energy
contribution, as visually evident in Figure 2.1. As distance expands, the dispersion energy
approaches a small, nonzero constant value in case of the water dimer, which is especially
evident in the logarithmic representation of the dissociation curve displayed in Figure 2.2.
By increasing the intermolecular distance, the intermolecular dispersion contributions
decrease to zero, however, the intramolecular dispersion contributions stay unchanged
and nonzero. Because of this, the dispersion energy converges for the water dimer to the
dispersion energy value that corresponds to the double value of the dispersion energy of
an isolated water molecule surrounded by vacuum.

As the distance between the molecules increases, the dispersion energy undergoes notable
changes. One contributing factor is the variance in the dispersion coefficients, CAB

6 and
CAB

8 , influenced by the calculated coordination number CN of atoms within the molecules,
which in turn hinges on the distance between the atoms. Using this dependency, the
authors of the method try to account for the hybridisation effect mentioned in this Section.
This phenomenon is effectively demonstrated by examining the CN of both oxygen atoms
and one hydrogen atom from each water molecule within the dimer, as showcased in
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2. Theoretical background

Figure 2.1: Dispersion energy as a function of the distance between the oxygen atoms in
two water molecules. The dispersion energies were calculated using the DFT-D3 method
with Perdew–Burke-Ernzerhof (PBE) exchange-correlation functional [17], zero damping
function and no three-body energy correction.

Figure 2.2: Logarithm of the dispersion energy as a function of the logarithm of distance
between the oxygen atoms in two water molecules. The dispersion energies were calculated
using the DFT-D3 method with PBE exchange-correlation functional, zero damping
function and no three-body energy correction.

Figure 2.3. Notably, at the smallest distance of 0.7 Å, the CNs register as relatively
high. In the case of oxygen atoms, CNs stand at 3 for O2 and 5 for O1, while hydrogen
atoms H2 and H4 possess CNs of 2 and 3 respectively. This behaviour can be rationalised
by examining the molecular arrangement at such a close proximity. At this distance,
the two molecules are so closely located to each other that the interatomic spacing falls
beneath the length of the covalent bond in a single water molecule’s O-H linkage, which
measures 0.97 Å. Consequently, the DFT-D3 method’s algorithm considers O1 to be
coordinated with five atoms, O2 with three, and H2 and H4 with three and two other
atoms, respectively. With the increase in intermolecular distance, the molecules gradually
separate, prompting a decrease in CNs. This shift in CNs leads to a simultaneous
elevation in CAB

6 and CAB
8 . This evolution is exemplified in the interaction between the
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2.1. Van-der-Waals interactions in theoretical chemistry

Figure 2.3: Coordination number CN of oxygen atoms O1, O2 and hydrogens H2 and H4
as a function of the interatomic distance between the oxygen atoms. The structures of
the water dimer are given for the interatomic distances of 0.7 and 2.95 Å.

Figure 2.4: The dispersion coefficient of the interaction between the two oxygen atoms
(COO

6 ) as a function of the interatomic distance between the oxygens and CN of O1.

two oxygen atoms, O1 and O2, as depicted in the right panel of Figure 2.4. As O1’s
CN diminishes, CAB

6 increases. In the same time, CAB
6 experiences an uptick as the

distance between O1 and O2 expands (as shown in the left panel of Figure 2.4) while
CNs of O1 and O2 decrease (Figure 2.3). This trend holds true for any combination
of intermolecular atomic pairs within the system. The CN decreases and CAB

6 , CAB
8

increase until the distance between the molecules gets large. Then their values reach a
constant value. It can be seen in the Figures 2.4 and 2.3 that their values do not change
anymore already beginning from approximately 3.0 Å.
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2. Theoretical background

2.1.2 van-der-Waals density functionals
Dispersion interactions can be included directly within DFT using non-local density
functionals. Among those there are also functionals from the vdW-DF family [2]. The
vdW-DF method splits the exchange-correlation energy into semilocal and nonlocal
contributions:

EvdW-DF
xc [n] = Esl

xc[n] + Enl
c [n] (2.22)

where Esl
xc[n] is the semilocal contribution of the exchange-correlation energy and Enl

c [n] is
the non-local correlation energy. Within the vdW-DF framework, the semi-local term is
built on the GGA such as the revised PBE functional (revPBE) to include the semi-local
exchange-correlation energy [15]. The non-local correlation term is characterised by its
two point dependency on the electron density via this equation:

Enl
c [n] = 1

2

� �
n(r)ϕ(r, r′)n(r′) drdr′ (2.23)

where ϕ is the so called non-local kernel which is an integral itself and which is constructed
to capture the long-range part of the correlation energy. Since the release of the very
first density functional of this kind, vdW-DF1 [2], which was universally applicable to all
sorts of geometries of various compounds, several versions have been developed, such as
vdW-DF2 [18], optPBE-vdW [19], optB88-vdW [20] or vdW-DF-cx [21].

2.2 Molecular dynamics
2.2.1 General concepts
Molecular dynamics is a powerful method that enables the prediction of measurable
quantities of various materials in a realistic manner. By linking the microscopic world,
which includes electronic structure and inter-atomic interactions, with the physical
properties of a material, one can calculate these properties by averaging over multiple
configurations that are frozen in time at finite temperature. This approach is analogous
to the way physical properties are measured during experimental measurements. Because
the ergodic hypothesis postulates, that the ensemble and time averages are equivalent,
one can, equivalently to the latter strategy, observe a time evolution of a single state over
a sufficiently long time and calculate the physical property of interest by computing the
temporal averages of the properties [22]. During the simulation a collection of systems
with the same kind of microscopic interactions and macroscopic properties (such as
volume, total energy ...) is created, which is called an ensemble [22]. This strategy is the
key concept of molecular dynamics.

In molecular dynamics the time evolution is performed in discrete time steps. At every
time step Newtons equations of motion are integrated:
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2.2. Molecular dynamics

ṗ = f (2.24)

with

ẋ = p
M

(2.25)

where ṗ is momentum of a particle, f is force acting on a particle, x are the atomic
positions and M the atomic or molecular mass of a particle in a simulation box. For this
purpose an integrator is used that makes them solvable on a computer using numerical
calculations. In this work a JAX implementation of molecular dynamics called JAX-MD
[11] with the Nosé-Hoover chain for an isobaric-isothermal ensemble [23] was used. We
chose JAX-MD because it is based on the same high-performance python library JAX as
the NNFF NeuralIL. The advantages of using JAX framework will be explained in detail
in the Section 2.3.1.

2.2.2 Isobaric ensemble

When calculating properties of materials such as density, free energy of formation, redox
potentials, or solubilities under constant temperature and pressure, the most suitable
ensemble is the NPT [24]. The NPT ensemble operates with a constant number of
particles, pressure and temperature. In this work, the temperature and pressure were
held on average constant using the Nosé-Hover chains [23] as a barostat and thermostat.
To maintain a fixed external pressure, the system’s volume must be allowed to fluctuate.
This concept can be visualised as an isobaric system coupled with an isotropic piston. The
piston compresses or expands the system uniformly in response to instantaneous internal
pressure fluctuations, ensuring that the average internal pressure matches the externally
applied pressure. In this ensemble, both isotropic and anisotropic volume fluctuations
are possible. [24] For the case of isotropic volume change, the internal pressure is defined
as the average of the instantaneous pressure, which represents the change in energy with
volume. It is given by [25]:

Pint = 1
3V

�
N


i=1

p2
i

mi
+

N

i=1

Rifi − 3V
∂U

∂V

�
(2.26)

where V is the volume of the cell, U stands for potential energy, pi, Ri and mi are the
momenta, position and mass of the ith particle and finally fi are the forces on the atom i.

In a NPT ensemble, the system is also coupled to an external thermal reservoir that
exchanges heat with the system in order to maintain the temperature constant on average.
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2. Theoretical background

2.3 Machine learning in theoretical chemistry
2.3.1 NeuralIL
In this work, a NNFF called NeuralIL [7], which was developed in the research group of
Prof. Madsen was used. Since the technology related to neural networks evolves very
fast, in this work I used two different versions of NeuralIL: the older version NeuralIL 0.5
and the newest NeuralIL+VeLO. Their differences are explained later in this chapter.

The neural network itself consists of several layers of neurons that communicate between
each other as depicted in Figure 2.5. The bottommost layer is called the input layer.
The other layers are the output layer (the topmost one) and the layers in between called
hidden layers. Each neuron in the hidden layer receives the output of each neuron in the
previous layer as input Ii and generates an output according to:

O = f(b +
N


i=1
αiIj) (2.27)

where αi is a set of weights, b the overall bias and f is an activation function, which has
been chosen to be Swish-1 [26] in NeuralIL. The set of weights and biases of each neuron
altogether represent the parameters of the neural network that have to be optimised
during the training.

Before a neural network can be trained, a dataset used as an input for the neural network
and the corresponding reference outputs have to be created. The typical input to NeuralIL
are atomic positions, forces and/or potential energies, cell parameters and atomic types.
In order for the neural network to effectively handle the atomic positions, which typically
come in the form of Cartesian coordinates, a transformation into a set of descriptors is
necessary. Descriptors possess a notable advantage as they encode the local environment
of each atom without relying on the selection of an absolute origin or orientation within
the coordinate system. This property grants them translation and rotational invariance,
unlike Cartesian coordinates [7].

In NeuralIL, the spherical Bessel descriptors are implemented, which are calculated by
projecting the density ρij(r) of each chemical element J around each atom i within a
sphere with a predefined cutoff radius rcut on a set of orthonormal basis functions Bnlm:

ρij(r) =


j∈J

Rij<rcut

j ̸=i

δ(r − Rij) (2.28)

Bnlm(r) = gn−l,l(r)Y m
l (r̂) (2.29)

In Eq. 2.29 n, l and m are index values, analogous to the quantum numbers of atomic
orbitals, that determine the number (nmax) of radial basis functions and the shape of the
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2.3. Machine learning in theoretical chemistry

Figure 2.5: Scheme of neural network NeuralIL. Adapted from [7] with permission of the
authors.
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2. Theoretical background

basis functions gn−l,l(r) (l index) and spherical harmonics Ym
l (l and m indices). Their

values lie between 0 ≤ n ≤ nmax, 0 ≤ l ≤ n and -l ≤ m ≤ l.

Increasing the value of nmax improves the resolution within the sphere, but it also leads
to longer computation times [7].

The training phase in NeuralIL starts by randomly splitting a dataset into a training set
and a validation set. While the training set is used for the parameter optimisation of the
neural network, the validation set is used to estimate how good the neural network is
at the current stage of training. The training set is divided randomly into several small
subsets called mini-batches. Those are, one after another, used as input for the hidden
layers.

The neural network computes the total potential energy of a configuration by utilising
a set of Bessel descriptors, denoted as pα. These descriptors are constructed using the
atomic positions, cell information, and types. Additionally, the network incorporates
embedding coefficients wβ. The total potential energy is determined by summing the
contributions of local atomic environments described by the descriptors, as expressed by
the following equation:

Epot(pα, wβ) =
natoms


i=1
Ω(pi, wi) =

natoms

i=1

ei (2.30)

where Ω is a very flexible function implemented by the neural network [7]. Atomic forces
are calculated as a gradient of the potential energy with respect to the atomic coordinates
ri:

fi = −∂Epot
∂ri

(2.31)

During the training we want to find the parameters of the function Ω so that the output of
NeuralIL (which can be for example the potential energy or atomic forces) approximates
the inputs from the validation set as much as possible. This can be evaluated using the
so called loss function which was in case of NeuralIL chosen to be of the log-cosh-type:

αlog-cosh = 1
Nbatch

Nbatch

i=1

β log

cosh


yi − ȳi

β


(2.32)

where Nbatch is the number of mini-batches, β is a scale parameter (in versions NeuralIL
0.5 and NeuralIL+VeLO it was chosen to be 0.1 eV/Å and 1.0 eV/Å respectively), yi

stands for the reference value of either the potential energy of atomic forces, ȳi is the
calculated energy or force by NeuralIL. The loss function itself is a smooth approximation
to the mean average error (MAE) [7].
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2.3. Machine learning in theoretical chemistry

During the training the value of the loss function is minimised with respect to the
parameters of the neural network. In the older version NeuralIL 0.5, the adaptive moment
estimation (ADAM) algorithm [27] was used, which makes use of running averages and
second momenta. In combination with ADAM, NeuralIL 0.5 implements a dynamic
learning rate strategy during each single training epoch. This strategy involves three
distinct phases with varying training rates. In the initial 45% of the training the training
rate is linearly increased to a predetermined value. Subsequently, for the following 45%
of the training, the rate is decreased back to the starting value. Finally, as the loss
function approaches its minimum, the rate is further reduced to reach the final value.
This adaptive learning rate approach substantially enhances the efficiency of the learning
process, resulting in significant improvements in learning time [7]. However, in the newest
version NeuralIL+VeLO ADAM and dynamic learning rate were replaced by the fully
nonlinear learned optimiser VeLO [28] which can reduce the training time even more
drastically, as will be also demonstrated in the Section 3.1.3.

When the training with all of the mini-batches is finished, we say that an epoch has been
completed.

The code of both versions of NeuralIL is built upon the high-performance machine learning
framework called JAX (and related libraries Flax and Optax) [29], specifically designed
for Python. JAX brings several advantages to the table. Firstly, it enables automatic
differentiation of Python and NumPy functions, supporting both reverse and forward
differentiations. This capability allows for swift calculations of Hessian and Jacobian
matrices of descriptors with respect to the Cartesian coordinates of the atomic positions
[7]. Another notable advantage of JAX is its incorporation of an accelerated linear algebra
compiler (XLA). This feature not only facilitates code execution on CPUs but also extends
compatibility to GPUs and TPUs without necessitating substantial modifications to the
existing code. Furthermore, JAX enables the just-in-time compilation of any suitably
coded Python function. This optimisation technique significantly enhances the execution
speed of functions, leading to substantial performance improvements [29].
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CHAPTER 3
Results and discussion

3.1 On the search for the best neural network model

3.1.1 The dataset

Since water is a very important compound with physical properties that are influenced
strongly by the long-range interactions, the dataset that was used for training of the
neural-network models consisted of 1593 condensed-phase structures of 64 water molecules.
The structures were created by Dr. Cheng et al. [5] and successfully used to train their
own NNFF to predict physical properties of water such as density. In the Dr. Cheng’s
dataset the last 593 structures were created using path integral molecular dynamics at
300 K and the first 1000 structures were chosen in such a way that they cover a large
configurational space [5]. The corresponding energies and forces were calculated using
DFT with the revPBE0 exchange-correlation functional. The dispersion correction was
calculated using DFT-D3 with zero damping function and no three-body term. One of
those structures is given in the Figure 3.1.

However, due to the focus of my research group on metal-water and metal-liquid interfaces,
we decided to recalculate the potential energies and forces of the structures using a different
density functional, namely the revised Perdew-Burke-Ernzerhof functional RPBE [30].
This choice was based on the successful utilisation of RPBE with DFT-D3 dispersion
correction with a zero damping function and no three body term for simulating the
physical properties of water/platinum electrode interfaces [31].

The energies and forces were calculated using the GPAW package [32], [33]. The wave
functions were expanded in plane waves using the projector-augmented-wave formalism
with an energy cutoff of 340 eV. Due to the rather large size of the cell (12×12×12 Å
on average), the reciprocal cell was sampled using 1 k point only. Finally the energies
and forces were corrected using the DFT-D3 method with zero-type damping function
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3. Results and discussion

Figure 3.1: One of 1593 bulk water structures from the datased created by Dr. Cheng et
al. [5]

without the three-body correction and taking a maximum interaction distance within
atomic pairs of 50 Å, as suggested in the literature [31].

The forces and energies calculated using RPBE and DFT-D3 were analysed separately
through histograms, as illustrated in Figures 3.2, 3.3, 3.4 and 3.5. It is evident that both
force sets exhibit a symmetric bell-shaped distribution centered around 0 eV/Å (with
mean values of 0.0001 eV/Å for RPBE and -5.0−19 eV/Å for DFT-D3 forces), which is
desirable. Notably, the dispersion forces display a narrower distribution compared to
the RPBE forces. The variance of the dispersion forces is 0.0009 eV/Å, with a standard
deviation of 0.031 Å, whereas the RPBE forces have a variance of 5.67 eV/Å and a
standard deviation of 2.38 eV/Å. Further analysis reveals that approximately 35% of the
dispersion forces are smaller than 10−3 eV/Å. Since the dispersion forces are so small in
this case, their addition to the RPBE forces barely changes the distribution of the RPBE
forces, as can be seen in the Figure 3.3. The resulting variance is 5.64 eV/Å and standard
deviation 2.38 eV/Å which are very similar to the variance and standard deviation of
the RPBE forces. The Figures 3.4 and 3.5 show, that also the energies calculated using
DFT-D3 are very small compared to the RPBE energies, since the DFT-D3 energies
correspond on average only to around 10.7 eV while the RPBE energies are around 617
eV. The DFT-D3 energies are so small that, when added to the RPBE potential energies,
they would constitute only between 1.15 - 2.6 % of the total potential energy of the bulk
water configurations.

3.1.2 Model optimisation
Before proceeding with the training, a crucial decision had to be made regarding the choice
of models. Our initial selection was the same NeuralIL model, that was employed by Prof.
Montaña et al. as a force field for ionic liquids [7] which corresponds now to NeuralIL
0.5. This model, trained on atomic forces only, proved successful in accurately capturing
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3.1. On the search for the best neural network model

Figure 3.2: Distribution of x, y and z components of atomic forces calculated using
RPBE functional (left) and using only DFT-D3 (right)

Figure 3.3: Distribution of x, y and z components of atomic forces consisting of forces
calculated using RPBE functional and DFT-D3 dispersion correction.

the intricate long-range interactions among the constituents of ionic liquids, despite the
absence of an explicit treatment of long-range interactions in this model. Motivated by
these encouraging results, I opted to employ the NeuralIL model on the water dataset to
evaluate its performance in that context. Although water differs from ionic liquids, it
also exhibits significant vdW interactions between its molecules. Therefore, we sought
to determine whether the NeuralIL model could effectively capture and represent the
behaviour of water, even without explicitly accounting for long-range interactions. This
NeuralIL model consists of 6 layers: one with 64 neurons, one with 32 neurons and
three layers with 16 neurons. The hyperparametrs were : size of embedding (set to two),
learning rates of 10−3, 10−2 and 10−5, rcut (set to 3.5 Å) and nmax (set to 4 Å).
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Figure 3.4: Potential energy distribution calculated using RPBE only for all configurations
in the bulk water dataset.

Figure 3.5: Distribution of dispersion energy calculated using DFT-D3 for all configura-
tions in the bulk water dataset.

The second model was derived from the initial one by increasing the rcut parameter and
searching for an optimal value of nmax. As discussed in the Background chapter, the
selection of the cutoff radius is a critical parameter for systems involving vdW interactions.
It determines the range at which atoms within a compound interact with each other.
Consequently, we sought to assess the performance of the NeuralIL model when trained
on forces and its ability to predict forces that include vdW contributions, as the cutoff
radius was increased.

In water systems, due to the long-range nature of vdW interactions, a typical cutoff
radius used in the literature is 6 Å [5], [34]. However, employing such a large cutoff
radius in the NeuralIL model would necessitate choosing a correspondingly large nmax

parameter to achieve a relatively low root mean square error value. This would lead
to a significantly longer training time, potentially spanning several days. In order to
avoid excessive training time, I decided to make a compromise between a smaller cutoff
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3.1. On the search for the best neural network model

Figure 3.6: Left: the convergence of RMSE for the models with rcut = 4.0 Å and nmax

= 3, 4, 5 and 6. Right: the evolution of the converged, minimal value of RMSE for the
models with nmax = 3, 4, 5 and 6.

radius of 3.5 Å and the larger 6 Å typically used, and selected a cutoff radius of 4 Å.
Subsequently, I aimed to determine the optimal value of nmax for this specific cutoff
radius.

In order to find it, I ran the training of NeuralIL for the same cutoff radius of 4 Å and
various nmax values (3,4,5 and 6). At the beginning of the training the configurations in
the dataset were split randomly into a training set (containing 80 % of the configurations)
and a validation set (containing 20 %). During a repeated random splitting of the dataset,
however, different configurations will land in the training set. Usually some configurations
in a training set help the model to learn faster and better than some others. Because of
this, the value of the RMSE can be in some cases smaller than in the others. Because of
this dependency of the RMSE on the distribution of the data, it was important to run all
of the training of the model with the same data distribution. The training was carried
out for 1000 epochs and 8 mini batches per epoch with 32 configurations per batch.

During the training the RMSE was evaluated and recorded. The evolution of RMSEs for
each nmax is depicted in the Figure 3.6 left. It can be seen that the worst performing
model had the value of nmax of three, because after the training finished the reached
RMSE value is large compared to the other models. On the other hand, the performance
of the three other models is very similar - they converge similarly quick to a similar
minimal RMSE. In order to see how exactly the minimal reached RMSE changed with
nmax, it is plotted in the Figure 3.6 right. It can be see again that the model with an
nmax of three was performing rather badly. Beginning with nmax = 4, the minimal RMSE
changes very little with increasing nmax value. However, the training time increases
drastically. Because nmax = 5 had reached a reasonably small RMSE relatively quickly
compared to nmax of 4 and 6 and it was not computationally too expensive, the decision
was made to take the model with this value of nmax.
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3.1.3 Training and validation
In order to test the influence of the presence of vdW interactions on the training
performance of a neural network, the two models, as described in the previous section,
were trained according to two different training scenarios:

1. Training solely on forces without considering dispersion contributions

2. Training on forces including the dispersion contributions

Initially, the training was conducted using the previous version of NeuralIL for a duration
of one thousand epochs. The evolution of the RMSE during the training process for
both models and training scenarios is illustrated in Figures 3.7 and 3.8. Notably, the two
models converged to different minimal and stable RMSE values. In the training scenario
without considering dispersion interactions, model 1 (Figure 3.7) achieved an RMSE
of approximately 0.141 eV/Å. Conversely, model 2 (Figure 3.8 right), under the same
training scenario, yielded a slightly higher RMSE value, around 0.144 eV/Å. Furthermore,
the two models exhibited differences in the speed of convergence. Model 2 required
approximately 1000 epochs to reach a relatively stable value, whereas model 1 had
already converged by around 700 epochs. Although model 2 theoretically possessed more
information about the atomic environment due to larger cutoff radius of descriptors and
a larger nmax parameter, it resulted in comparable or slightly larger errors in predicted
forces on atoms, along with significantly increased computational time. Consequently,
it appears that the larger parameter values in model 2 did not provide any notable
improvement at this stage.

Figures 3.7 and 3.8 also present the RMSE evolution for the second training scenario
of both models. It is evident that the RMSE values for both models and the second
training scenario exhibit a convergence pattern very similar to that observed in the first
training scenario. The convergence speed remains practically the same for both training
scenarios and models.

In the second training scenario, the achieved RMSE values for model 1 and model 2
are 0.139 eV/Å and 0.145 eV/Å, respectively, demonstrating their close performance.
Additionally, the variance of the training set, consisting of RPBE forces only, was 5.72
eV/Å, while the variance for the training set containing RPBE forces with DFT-D3
correction was 5.68 eV/Å. The attained RMSE values for both models and training
scenarios are significantly smaller than the variance of the forces in the training set,
indicating that the RMSEs are reasonably low, and the models are well trained. Moreover,
when compared to the RMSE obtained using the same structures but with energies
obtained using a different density functional for training Dr. Cheng’s neural network,
which was 120 meV/Å, the reached RMSEs appear to be similar to this value.

Once training was completed, the forces on atoms for the validation set were estimated
using the neural networks and compared to the original forces obtained from DFT
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Figure 3.7: The convergence of RMSE of model 1. The case that the training was
performed on RPBE forces without the DFT-D3 contribution corresponds to the red line,
the training with DFT-D3 corresponds to the green line.

Figure 3.8: The convergence of RMSE of model 2. The case that corresponds to the
training on RPBE forces without the DFT-D3 contribution is depicted by the blue line,
the training with DFT-D3 corresponds to the pink line.

calculations. Parity plots (Figures 3.9 and 3.10) were utilised to visualise the comparison.
Ideally, the reference and predicted forces should align perfectly, indicating that the neural
network accurately reproduces the forces with 100% fidelity. In such cases, a straight line
would be observed on the parity plot. Examining the parity plots for both models and
training scenarios, it becomes evident that the predicted forces closely match the reference
forces. The majority of the data points align, indicating a strong agreement between
the predicted and reference forces. This observation is consistent across both models
and training scenarios. The parity plots for both models confirm that there is minimal
difference between the two training scenarios concerning each model. Consequently, it can
be concluded that the inclusion of the dispersion contribution of forces in the training set
had negligible influence on the convergence speed of RMSE or the minimal error achieved
of predicted forces when the training was exclusively performed on forces. Interestingly,
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from the comparison between model 1 and 2 it emerges,that after a point, when more
information about the system is offered to the neural network using descriptors with
a larger radius, it does not seemingly help the neural network to learn better. On the
contrary, it seems that the learning process becomes harder.

Figure 3.9: Predicted forces using model 1 versus reference forces. Left: model 1 trained
without DFT-D3 contribution. Right: model 1 trained with DFT-D3 contribution.

Figure 3.10: Predicted forces using model 2 versus reference forces. Left: model 2 trained
without DFT-D3 contribution. Right: model 2 trained with DFT-D3 contribution.

During the course of my master’s thesis, a newer version of NeuralIL was developed,
taking advantage of the rapidly evolving neural network technology. As discussed in
the Theoretical background chapter, this updated version introduced significant changes,
primarily in the algorithm employed to minimise the RMSE. The new version incorporates
a machine-learned optimiser called VeLO, which has proven to accelerate the training
process dramatically, reducing the required number of epochs. Given the advances in the
code, our intention was to utilise the latest version of NeuralIL for molecular dynamics
simulations. However, before proceeding, I aimed to evaluate the training performance of
the two models derived from the newer version. I specifically focused on comparing the
performance under the two training scenarios and assessing the improvement in training
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speed. Consequently, I trained the two models based on NeuralIL+VeLO for 1000 epochs
under the conditions of the two training scenarios. The evolution of the RMSEs as a
function of the number of epochs is presented in Figure 3.11.

Figure 3.11: Convergence of model 1 and model 2 derived from the new neural network
NeuralIL+VeLO. The red line represents the evolution of RMSE for model 1 trained
without DFT-D3 contributions, while the green line shows the evolution of RMSE for
model 1 trained with DFT-D3 contributions. Additionally, the blue line represents the
RMSE for model 2 trained without DFT-D3 contributions, and the pink line represents
the RMSE for model 2 trained with DFT-D3 contributions.

Observing the results, it is apparent that the achieved RMSEs for the two neural network
models derived from the newer version of NeuralIL were slightly lower compared to
the RMSEs obtained using the previous version. Interestingly, similar to the previous
observations, the inclusion of vdW forces in the training set did not have a significant
impact on the resulting RMSE values. However, the notable improvement lies in the
training speed facilitated by the new optimiser. With the utilisation of the VelO optimiser,
only approximately 150 and 180 epochs were required for model 1 and model 2 to converge,
respectively. This represents a significant speedup of approximately 5.3 times for model
1 and 5.6 times for model 2 compared to the previous version. The introduction of the
new optimiser has substantially reduced the training time while maintaining comparable
or even improved RMSE values.

3.1.4 Transferability of the neural network model

It has been shown in the previous section that the vdW forces can be computed relatively
correctly using both versions of NeuralIL. However it is questionable how transferable
this result is to systems also consisting only of water molecules but having different
chemical environments. To find this out I created a dataset containing 76 water clusters.

29



3. Results and discussion

It was made by taking the dataset of 38 water clusters from the Benchmark Energy and
Geometry Database (BEGDB) that contained clusters with 2 up to 10 water molecules per
cluster [35]. Some examples of structures from the BEGDB are given in the Figure 3.12.
The first step on creating the resulting 76 structures consisted in first minimising the
38 structures using DFT and RPBE functional implemented in GPAW. The chosen
convergence criterion was that the error in forces needed to be smaller than 0.001 eV/Å
and the chosen energy cutoff was 340 eV. Since it was desirable to train NeuralIL on
forces again, structures that would have nonzero forces on the atoms were needed. This
could be achieved by displacing the atoms in the structures little bit, so that they do
not correspond to the relaxed structures anymore. For this purpose the function "rattle",
which is part of the python library ASE, was used. The function rattle generates a set
of numbers that are normally distributed and are characterised by a certain standard
deviation value stdev. The function chooses randomly a set of numbers from those and
adds them to the atomic positions. The 76 configurations were created in such a way that
the relaxed structures were rattled twice using different values of the stdev parameter, in
order to make two sets à 38 structures each that would differ. The values of the stdev
parameter used were 0.001 and 0.05. Finally the clusters were put into a simulation
box of 13×13×13 Å and the potential energies were calculated using GPAW and RPBE
density functional with the DFT-D3 correction using the zero damping function, taking
340 eV for the energy cutoff value again.

Figure 3.12: An example of some clusters contained in the BEGBT water cluster dataset

Using this dataset, my main objective was to assess the accuracy of predicted forces for
water clusters when employing a neural network trained on condensed phase water. The
datasets involved multiple water molecules, but there were clear differences between them.
The bulk water dataset exclusively comprised water molecules surrounded by other water
molecules, while the cluster water dataset featured molecules exposed partly to vacuum
and partly to other water molecules. Through this analysis, our aim was to evaluate the
neural network’s ability to accurately predict forces for structures with novel chemical
environments, i.e., those not encountered during the training phase.

The two models, model 1 and model 2, both derived from NeuralIL 0.5, were trained
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using forces with and without the DFT-D3 contribution, following the methodology
described in Section 3.1.3. Subsequently, these trained models were used to predict forces
for the entire water cluster dataset. The predicted forces were then compared to the
reference forces in parity plots, depicted in Figures 3.13 and 3.14. Surprisingly, both
models achieved remarkably low RMSE values. Moreover, there was not a significant
difference in RMSE between the two training scenarios. For model 1, the RMSE was 0.078
eV/Å without dispersion interactions and 0.083 eV/Å with dispersion interactions, while
model 2 achieved 0.079 eV/Å and 0.101 eV/Å, respectively. Notably, the error in the
predicted forces was even smaller than the error obtained for the predicted forces of bulk
water configurations. This result was unexpected, as we initially assumed that the neural
network would struggle to accurately predict forces for unseen structures. However, it is
possible that the neural network, aided by the relatively small cutoff radius used in the
models, was able to recognise cluster-like structures within the bulk water, distinct from
the surrounding molecules. To confirm this hypothesis, a principal component analysis
of descriptors could be used.

Figure 3.13: Predicted forces for 76 water clusters using model 1 versus the reference
forces. Left: model 1 trained without DFT-D3 contribution. Right: model 1 trained on
data including DFT-D3 contribution.
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Figure 3.14: Predicted forces for 76 water clusters using model 2 versus the reference
forces. Left: model 2 trained without DFT-D3 contribution. Right: model 2 trained on
data including DFT-D3 contribution.

3.2 Molecular dynamics
After successfully training the four neural network models, our next objective was to
employ these models as force fields in MD simulations. As mentioned in the Introduction
section, the locality approximation can pose challenges when attempting to model materi-
als with significant dispersion interactions. Those systems may exhibit physical properties
that cannot be accurately calculated using molecular dynamics without accounting for
dispersion interactions. This concern is particularly relevant for bulk water, which is
a key focus of this work. In previous studies, such as in the work by Prof. Dellago
et al. [8], the density of water at various temperatures were calculated using neural
network force fields trained on RPBE energies and forces with DFT-D3 correction (zero
damping function with no three-body term, given its negligible effect in water [16]), as
well as RPBE forces and energies only, similar to our NeuralIL models. The resulting
densities were compared with experimental data, and the corresponding density curves
are illustrated in Figure 3.15.

The plot clearly demonstrates the impact of including dispersion interactions in the
training set data. When dispersion interactions are omitted, the resulting density values
deviate significantly from the experimental data, and the trend in the evolution of
density with increasing temperature is completely incorrect. However, when dispersion
interactions are included in the training, the density values exhibit improved agreement
with experimental data, and the overall trend of density evolution is captured more
accurately. This highlights the importance of considering dispersion interactions in
the training of neural network force fields to achieve accurate predictions of physical
properties.

Inspired by this study, my primary focus was to predict water densities at various
temperatures within the range depicted in Figure 3.15 and compare them with the
corresponding reference values from the study. However, the computationally intensive
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Figure 3.15: Density of water as a function of temperature. The blue circles depict the
densities calculated using the RPBE functional without the DFT-D3 correction, the
orange circles are densities from simulations with dispersion correction and finally, the
experimental values correspond to the violet diamonds. The red cross indicates the
density value obtained from from the NPT MD for model 1 + VeLO trained on dataset
with DFT-D3 correction, at 250 K and 1 bar and the blue cross indicates the density
value obtained from from the NPT MD for model 1 + VeLO trained on RPBE forces only,
at the same temperature and pressure. The experimental, RPBE and RPBE+DFT-D3
data were adapted from [8].

nature of MD simulations, involving millions of time steps, imposed considerable time
limitations on our research. Throughout the course of this master’s thesis, it became
apparent that each simulation of the bulk water system required approximately three
weeks and half to complete. Consequently, I was only able to conduct MD runs for model
1 trained with and without dispersion correction at a single temperature, which will be
the main focus of our analysis in this thesis.

3.2.1 Choosing parameters of the simulations

To accurately predict the density of water at specific temperatures, it was crucial to select
an appropriate ensemble for our MD simulations. The choice of ensemble determines the
conditions under which the simulation takes place and affects the behavior of the system.
Considering that density is influenced by changes in volume with temperature, I found
the NPT ensemble to be the most suited for this task. Another argument for the usage of
NPT ensemble was, that with a NVT or NVE ensemble one would need to do one whole
simulation per volume which would require a much larger amount of time. The NPT
ensemble maintains constant temperature, pressure, and the number of particles within
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the simulation box while the volume of the cell changes during the simulation. Typically
at the beginning of this kind of simulation the value of volume changes drastically, since
the system is in process of adjustment to the external simulation conditions. This phase is
known as equilibration period. After some time the volume begins oscillating around the
equilibrium value. Once the volume stabilises over a sufficient duration, the simulation
can be terminated, and the density can be calculated based on the average volume value
during the equilibrium period. Since we are interested in water density at equilibrium,
the calculated volumes during the unstable equilibration period of simulation are not
relevant, so they are discarded. The density is given by:

⟨ρ⟩ = NM

NA⟨V ⟩ (3.1)

where N is the number of water molecules in the simulation box, M stands for the molar
mass of the molecules, NA is the Avogadro number and ⟨V ⟩ the average volume.

Before a production MD simulation could be conducted, I first needed to determine
the paramaters of an NPT MD simulation for a chosen simulation temperature and
pressure. These are the equilibration times of thermostat (τT ) and barostat (τP ), the
time step of the simulation and whether the volume expansion should be isotropic or
anisotropic. Given the relative ease of conducting MD simulations at lower temperatures,
we selected 250 K as the temperature for our simulations. Additionally, since the density
curves presented in Figure 3.15 were computed at ambient pressure, we set the pressure
in our simulations to 1 bar to align with these conditions. The search for the optimal
parameters was conducted using model 1, which uses VeLO and was trained on forces
without DFT-D3 contributions. However, as we will demonstrate in the subsequent
chapters, these parameters can also be applied to the simulation using model 1, which
incorporates DFT-D3 forces.

So the first decision that I needed to make was, whether to allow isotropic or anisotropic
volume changes in the simulation. Considering that anisotropic volume changes are
typically recommended for solids and water is a solid at 250 K, we initially chose to
implement anisotropic volume changes. In this setup, we first used equilibration times
of τT = 50 fs for the thermostat and τP = 500 fs for the barostat. Next, we needed to
decide which time step of the simulation should be used. One of the rules of thumb of
MD is, that the time step should be 10 - 100 smaller than the period of oscillation of
the fastest normal mode vibration than one is interested in. The frequency of the fastest
vibration in solid water at 250 K can be approximated by taking the fastest vibration in
liquid water. In liquid water, the fastest degree of freedom corresponds to the asymmetric
stretching of O - H bonds which has the frequency of 3615 cm−1 in water IR spectra
[36]. The rule of thumb is fulfilled by the Nyquist-Shannon sampling theorem [37]. The
concept is the following: during molecular dynamics one is trying to sample continuous
vibrations using discrete time signals, produced by doing discrete time steps during the
simulation. In order to capture the full information about the vibrational movement,
the simulation has to be sampled using an appropriate sampling frequency. Its inverse
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corresponds to the sampling period which corresponds to the time step used in a MD
simulation. The Nyquist-Shannon theorem says, that the sufficient sampling period for
a range of signal with the highest frequency B is any period that is smaller than 1/2B.
This is formulated in the following equation:

1
2B

> τ (3.2)

Setting B equal to the asymmetric vibrational frequency of water, one comes to the
conclusion that the sampling period should be smaller than 4.63 fs. Using the rule of
thumb of MD, the time step that should be used than would be approximately 0.5 fs,
which fulfils the Nyquist theorem. Because of this, we decided to take this time step
value first.

The initial structure for the simulation was selected from the bulk water dataset. However,
we encountered an issue known as the ”flying-ice-cube” phenomenon, which is an artefact
of the molecular dynamics algorithm. During simulations affected by this phenomenon,
the system accumulates a non-zero total momentum, causing the energy to be primarily
allocated to translational or rotational motion of the molecules, while the other degrees
of freedom, such as vibrations, are effectively frozen [38]. This behavior was observed in
some of our initial simulations at 250 K. Figure 3.16 depicts the changes in the magnitude
and components of the total momentum vector during the simulation. Initially, the total
momentum vector had a magnitude of zero. However, after approximately 1 ns, the total
momentum began to increase and reached around 55 kg m s−1. The exponential growth
in the norm of the total momentum vector is attributed to the exponential increase in
the x and z components of the momentum vector. As shown in Figure 3.16, this resulted
in all water molecules gaining translational motion along the diagonal in the xz plane of
Cartesian coordinates. This behavior is highly unphysical and violates the theorem of
equipartition of energy, which dictates that energy must be equally distributed among
all degrees of freedom in thermal equilibrium.

In an attempt to address the flying-ice-cube phenomenon, we made adjustments to the
parameters of the thermostat. We extended the equilibration times to τT = 100 fs and
τP = 1000 fs, and τT = 250 fs combined with τP = 2500 fs. Also the time step was
modified to 0.3 fs. However, these modifications did not lead to any improvement. To
potentially overcome this problem, alternative solutions were considered. One possibility
was to utilise a stochastic thermostat instead of deterministic ones like the Nose-Hoover
chains since they have been known to mitigate the flying ice cube artefact [38]. Another
option was to explore the use of isotropic volume expansion instead of the anisotropic
one, as it might provide a more stable simulation environment.

We decided to try out the isotropic volume expansion first, since this required the smallest
changes in the simulation code.

Furthermore, an alternative initial configuration was employed to initiate the MD simu-
lation due to the instability observed with the first configuration from the bulk dataset,
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Figure 3.16: The evolution of the norm of the total momentum vector of the simulation
box (left) and of the x, y and z components of the momentum vector (right) monitored
during a NPT simulation at 250 K, 1 bar and with anisotropic volume expansion.

which resulted in volume explosions. To rectify this issue, the problematic configuration
underwent relaxation using the LBFGS optimizer implemented in the Python library
ASE [33]. Convergence was achieved when the forces reached a threshold of 0.1 eV/Å.
Subsequently, this relaxed structure served as the input configuration for an NVT simula-
tion, where the system was equilibrated at a constant temperature, volume, and number
of particles. The NVT simulation was conducted for a duration of 0.4 ns (with a time
step of 0.3 fs) at 250 K. The target volume was set to that of the original structure,
and the thermostat parameter τT was set to 250 fs. This procedure aimed to generate
a structure with a more reasonable distribution of molecular velocities. The resulting
configuration from the NVT simulation was then utilised as the initial configuration
for subsequent NPT simulation runs, employing τT = 100 and τP = 1000 fs, with the
previous time step of 0.5 fs. Through these steps, a stable and physically meaningful
molecular dynamics simulation was achieved.

However, the intended simulation time was at least of 15 ns, which was also used by
Dellago and coworkers to create the density curves in Figure 3.15. Choosing the time
step of 0.5 fs effectively means that during the total duration of the simulation of 15
000 000 fs, 30 million calculations would need to be carried out. It is clear that the
smaller the time step, the longer the simulation takes. The dynamics of hydrogen atoms
is strongly influenced by quantum-mechanical effects and therefore can not be modelled
well using the classical mechanics approach. Therefore, as is common in the literature
[39], the mass of hydrogen atoms can be adjusted in case of calculation of an observable,
that is independent on mass, in order to reach a more convenient calculation duration.
By increasing them one can reduce the value of the highest frequency of the vibrations
of those which allows one to increase the time step of the simulation. Because of that,
the atomic masses of hydrogens were increased in case of simulations with both neural
networks from 1 a.u. to 8 a.u. By doing so, the frequency of the antisymetric vibrations
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in water could be decreased to approximately 1518.7 cm−1. By setting B in the Nyquist
theorem equal to this new frequency value, one founds out that the time step could be
increased to around 1.1 fs. Because the simulation can be carried out faster using the
time step of 1.0 fs, I decided to use it in case of both simulations, described in detail in
the following sections.

3.2.2 Molecular dynamics using NeuralIL+VeLO trained on forces
with DFT-D3 correction

Since the system needed a relatively large amount of time to get into the equilibrated
state (approximately 6 ns), I decided to run the simulation for 17.6 ns instead of only
15 ns. This way I could gain more data from the equilibrated part of the simulation
and thus to get more accurate density prediction. The evolution of the pressure and
temperature of water with respect to the average values over the course of the simulation,
is shown in the Figures 3.17. It is evident from these plots that the average temperature
closely approached the target value, with a deviation of only 0.47 K. However, the
average pressure exhibited a larger deviation from the desired value. Instead of the
intended 1 bar, the average pressure was measured at 13.54 bar, indicating a slightly
larger deviation. In fact, the deviation of the average pressure value correlates with the
intensity of the pressure fluctuations throughout the simulation, which correlate with the
size of simulation box via the following equation, for the case of an isotropic fluid:

σp =

	
ρc2kBT

V
(3.3)

where c it the speed of sound, ρ is density, T is a temperature, kB is the Boltzmann
constant and V is the volume of the simulation box. It follows from this equation, that
the smaller the simulation box, the smaller is also its volume and so the larger is the
variance of the pressure σp. The consequence of larger fluctuations is, that it becomes
more probable that the average value of the pressure will differ from the intended value.
This correlation could be clearly observed also in case of this simulation. By looking
at the evolution of the volume of the simulation box in the Figure 3.20 left and the
evolution of the pressure in the Figure 3.17 right, one can see that the fluctuations of
the pressure are the larges between 1 - 6 ns of the simulation, when also the smallest
volume was observed. On the other hand, in time intervals of 0 - 1 and 8 - 11 ns the
fluctuations of pressure were the smallest while the reached average volume values seem
to be the largest of the whole simulation. The effect of the size of the fluctuations on the
average pressure calculated every 0.25 ns can be seen in the Figure 3.18. Between 1 - 6
ns, where the fluctuations are the larges, the average pressure value fluctuates the most,
while between 8 - 11 ns the average value lies closer to the intended value of 1 bar.

Another possible reason for the large mean pressure fluctuation could be, that stress (being
defined in context of isotropic volume expansion as the change of potential energy with
respect to the volume) in the Eq.(2.26) is calculated inaccurately during the simulation.
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Stress plays a crucial role in calculating the pressure within the simulation box, thus if it is
calculated inaccurately, it might have a consequence on the capability of barostat to keep
the average pressure close to the intended value. The possible inaccuracy of the calculated
stress could originate from the fact that the used NeuralIL model was trained solely on
atomic forces, which, contrary to the potential energy, do not incorporate information
about stress. By training the neural network models on both forces and energies, the
stress contribution to the energy can be captured better, because the predicted energies
could be more accurate. Because of this reason, the accuracy of stress calculated using
NeuralIL trained solely on atomic forces should be investigated.

Nonetheless, this deviation of the pressure is considered acceptable, as the density
evolution shown in Figure 3.20 (right) demonstrates reasonable values throughout the
simulation in relation to the reference density value at 250 K from Figure 3.15.

Figure 3.17: The fluctuations and mean values of temperature (left) and pressure (right)
during a NPT simulation using using model 1 + VeLO trained on DFT-D3 forces. The
simulation was performed at 250 K, 1 bar and using the isotropic barostat.

Figure 3.18: The evolution of the average pressure calculated every 0.25 ns (pink) with
respect to the intended pressure value of 1 bar (green).

The behavior of the total momentum components of the simulation box was analysed
prior to calculating the average equilibrium density to assess the occurrence of the flying-
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Figure 3.19: The evolution of the x, y and z component of the total momentum vector
of the simulation box during NPT MD with model 1 + VeLO, trained on DFT-D3 at
250 K, 1 bar.

ice-cube artefact. Figure 3.19 illustrates the evolution of all three components of the total
momentum. It is observed that the values of these components oscillate symmetrically
between negative and positive values, resulting in an average total momentum close to
zero. This indicates that the flying ice cube phenomenon did not occur in this simulation,
which is a positive outcome.

The average equilibrium density of bulk water at 250 K and 1 bar was calculated by
determining the period in which there was no significant trend in the volume evolution.
The density was calculated with an accuracy of approximately 10−3 g/cm3, which was
deemed reasonable considering that the density values can not be obtained with higher
accuracy from the reference plot in Figure 3.15. Since a high level of accuracy was not
required for the density calculation, the volumes used for the calculation did not need to
be perfectly converged. Therefore, the time interval, during which the volume change was
constant on two decimal places and thus was chosen to calculate the average density, was
6 - 16.7 ns. By calculating the average volume during this period and using Equation 3.1,
the equilibrium density was determined to be 0.83 g/cm3. Comparing this value, depicted
in the Figure 3.15 as a red cross, with the predictions of Dellago’s neural network trained
on their own dataset using RPBE+DFT-D3, it was found to be approximately 0.06
g/cm3 lower. Furthermore, the equilibrium density was approximately 0.16 g/cm3 lower
than the experimentally measured value.

However, a closer analysis of the total energy of the system revealed an issue during
the simulation. In an NPT ensemble with the Nosé-Hoover chains, the total energy,
comprising the potential energy calculated by the neural network, kinetic energy, and
energy contributions from the Nosé-Hoover chains, should remain on average constant
throughout the simulation. However, as shown in Figure 3.21, this quantity increased
continuously throughout the simulation, starting from negative values and progressing to
positive ones. Further examination indicated that while the potential energy and kinetic
energy remained relatively constant on average, this undesired behaviour occurred. It
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suggests the possibility of a bug in the simulation program. Our suspicion is that the
simulation program uses scaled units for atomic positions to calculate atomic forces,
while NeuralIL employs Cartesian coordinates for force calculations. We have informed
the authors of JAX-MD about this issue and are currently awaiting their response. As a
result, the presented results should not be considered definitive due to this problem.

Figure 3.20: The fluctuations of volume and density values during the MD simulation
(the blue and green curves) and their mean values calculated each one ns (the orange
and pink curves).

Figure 3.21: The evolution of the total energy of the system over the course of NPT MD
at 150 K and 1 bar using model 1 with DFT-D3 forces

3.2.3 Molecular dynamics using NeuralIL+VeLO trained on forces
without DFT-D3 correction

Since also in case of this simulation the equilibration period was relatively long, it was
carried out for 17.6 ns in order to get statistically more significant result. The evolution
of temperature and pressure using model 1 trained on DFT forces only is shown in
Figure 3.22 (left and right), along with the average temperature and pressure values
achieved during the simulation. As observed, the average temperature closely corresponds
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to the desired simulation temperature of 250 K, similar to the simulation with model 1
trained on DFT-D3. However, the average pressure deviates by 11.6 bar from the target
pressure of 1 bar, as seen in the plot. This deviation could be rationalised in the same
way as in the previous section. Nevertheless, this deviation can be considered acceptable
since the volume and density of the system (depicted in Figure 3.24) fluctuated around
the reference density value at this temperature, which is approximately 0.71 g/cm3.

Figure 3.22: The fluctuations and mean values of temperature (left) and pressure (right)
during a NPT simulation using using model 1 + VeLo trained on RPBE forces only. The
simulation was performed at 250 K, 1 bar and with the isotropic volume expansion.

Similar to NeuralIL trained on DFT-D3, the components of the total momentum were
analysed to detect any signs of the flying ice cube artefact. The components of the total
momentum are displayed in Figure 3.23. As observed, they oscillated symmetrically
around 0 kg m/s, indicating the absence of the flying ice cube artefact. This finding is
favourable, as it suggests that the simulation maintained a stable behaviour.

Figure 3.23: The evolution of the x, y and z component of the total momentum vector
of the simulation box during the NPT MD simulation at 250 K, 1 bar and model 1 +
VeLO trained on RPBE forces only.

After ensuring the absence of the flying-ice-cube artefact, a closer analysis of the volume
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and density evolution was conducted. The plots in Figure 3.24 illustrate the evolution of
volume and density throughout the simulation. It can be observed that the volume did
not converge as well as in the simulation with model 1 trained on DFT-D3 in the training
set. Notable abrupt and drastic volume changes, reminiscent of a phase transition, were
observed during the initial 10 ns of the simulation. However, after the 10 ns mark, the
average volume and density appeared to stabilise. The volume and density converged
to the desired level of precision, up to two decimal places. As the system demonstrated
relative equilibration during the 10-16.7 ns interval, the equilibrium density could be
calculated using the volume values from this interval.

Figure 3.24: The fluctuations of volume and density values during the NPT MD simulation
(the blue and green curves) and their mean values calculated each one ns (the orange
and pink curves).

The resulting equilibrium density was found to be 0.73 g/cm3, which is in close proximity to
the reference water density value of approximately 0.71 g/cm3, as depicted in Figure 3.15.
The deviation of only around 0.02 g/cm3 from the reference density is smaller compared
to the deviation observed in the case of NeuralIL trained with DFT-D3 in the training
set. This indicates that at 250 K, our NeuralIL model trained solely on RPBE forces
and the neural network model developed by Dellago’s group, which was trained on a
different and larger dataset consisting of RPBE data only, exhibit comparable performance.
Furthermore, similar to the previous section, the total energy of the system was plotted
and examined in this case as well. Unfortunately, as observed with model 1 trained
on DFT-D3, the total energy, which should remain constant on average, exhibited an
increasing trend. This detected problem with JAX-MD casts the results into doubt.
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Figure 3.25: The evolution of the total energy of the system over the course of NPT MD
using model 1 +VeLO trained purely on RPBE forces.

3.3 DFTD3-JAX

Since a NNFF based on the locality principle, such as NeuralIL, excels in reproducing
energies and forces derived from local interactions, we were intrigued to explore the
scenario where NeuralIL models are solely trained on DFT forces, with long-range
dispersion interactions added subsequently to the predicted forces and energies within
the neural network model. Our objective was to assess whether this approach, which
treats forces resulting from short and long-range interactions separately, yields more
accurate reproduction of the reference forces and more precise density values for water.

To achieve compatibility with NeuralIL, I develeoped a DFT-D3 implementation of using
the JAX framework. For this purpose, I used an existing Python program called Torch-
dftd [12] as a reference implementation of DFT-D3 method using the PyTorch library [40].
The first step involved modifying the program by replacing all PyTorch functions with
their JAX-Numpy equivalents. However, not all PyTorch functions and methods have
direct counterparts in JAX-Numpy, so I had to implement some of them from scratch.
For example, I needed to create an equivalent function for Tensor.scatter_add(dim, index,
src). This function adds values from the src tensor into the self tensor at the indices
specified in the index tensor. The index mapping is determined by the indices in src for
dimensions other than dim, while the corresponding values in the index tensor are used for
dimension = dim. I programmed a similar function called scatter_add_jax(ndarray, ind,
src) in JAX, which takes an n-dimensional jax.numpy array as input and performs the
same operation. The modified version of DFT-D3, named Dftd3-jax, with the necessary
functions implemented in JAX, is stored on the TUW GitLab.

Once Dftd3-jax was implemented, it was necessary to assess its performance and verify
the correctness of the results. To accomplish this, a series of test cases were conducted.
The tests aimed to evaluate the accuracy and consistency of Dftd3-jax compared to the
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Table 3.1: Parameters of DFT-D3 which do not depend on the chemical nature or geometry
of the compound or material the dispersion energy of which should be calculated. The
values of sr,6 and s8 are determined by the choice of the exchange-correlation density
functional, which is in this case RPBE.

Parameters Values

s6 1.0
sr,6 0.872
s8 0.514
sr,8 1.0
α6 14.0
α8 16.0

original Torch-dftd program. The test cases included the following structures: bulk water,
a water dimer, and a single water molecule. Each structure served a specific purpose in
the evaluation process. The bulk water structure was used to examine the dispersion
interactions in a true bulk material and involved applying periodic boundary conditions in
all directions. On the other hand, the water cluster structure represented a small assembly
of water molecules in a vacuum, where no periodic boundary conditions were necessary.
Additionally, the water dimer was utilised to compare dissociation curves obtained using
Dftd3-jax and Torch-dftd using the RPBE functional, ensuring their consistency. The test
code, written using the Pytest library [41], compared the values calculated by Dftd3-jax
with the corresponding values obtained from Torch-dftd in DFT-D3 mode. The test
was considered successful if the Dftd3-jax values matched the Torch-dftd values with a
precision of at least 10−4 eV for energies and 10−6 for forces. All of the test cases were
sucessfully passed by the Dftd3-jax program.

As evidence of the successful dissociation curve test case, Figure 3.26 illustrates the
dispersion energies of two water molecules at varying distances calculated using both
Torch-dftd and Dftd3-jax. The compound nonspecific DFT-D3 parameters and their
values for this calculations are given in the Table 3.1. The values of sr,6 and sr,8 are
smaller compared to those of the PBE functional, used in Section 2.1.1 which results in
larger absolute value of the dispersion energy. The plot clearly shows that the dispersion
energy values obtained from both programs are practically identical, further confirming
the accuracy and reliability of Dftd3-jax.

However, although the mentioned tests were all passed successfully, it turned out that at
this point Dftd3-jax can not be used in a NeuralIL model. There are several reasons for
this. First, in order to account in case of periodic boundary conditions for interactions at
up to 50 Å, which is a default distance value, the program adds to each side of the cell
several copies of the cell so that those distances of up to 50 Å could be modelled. Moreover
the indexes of atoms that interact pairwise with each other (the so called neighbour list)
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Figure 3.26: Dispersion energy dissotiation curves calculated using Torch-dftd (violet
curve) and Dftd3-jax (orange curve) for RPBE functional, zero damping and no tree-body
interactions

need to be determined. For this purpose, a Pymatgen’s [42] implementation of neighbour
list or the primitive_neighbor_list function from ASE python package [33] are used in
both Torch-dftd and Dftd3-jax. However, when the Dftd3-jax was used inside a NeuralIL
model, it turned out that Pymatgen is incompatible with it and that the ASE function
is too slow. So it would be necessary to use some other function, ideally in JAX that
would be compatible with NeuralIL and would be quick. In the JAX-MD package there
are some functions that could be used for this purpose. However, during an NPT MD
simulation the volume of the cell changes and so also the number of pairwise interacting
atoms at a distance up to 50 Å changes too. This could lead to different sizes of neighbour
list array which would make the calculation slower, since the Dftd3-jax would need to be
recompiled at every time step. This is something that needs to be solved too.

Another significant issue with the current implementation of Dftd3-jax is its non-jittable
nature, which prevents effective utilisation of the high-performance XLA compiler. Conse-
quently, the program is not performing as fast as it has the potential to be. JAX imposes
strict limitations on jitability, particularly for functions that contain conditionals (if-else
structures) and accept JAX-incompatible types like strings. Unfortunately, the Dftd3-jax
program heavily relies on if-else structures due to the DFT-D3 method’s parameter
dependence, with certain parameter values being calculated on the fly based on other
parameters. To enhance the program’s speed, efficiency, and usability within NeuralIL,
it would be necessary to reprogram it in a way that makes it jittable. This involves
addressing the if-else structures and ensuring compatibility with JAX’s requirements
for jitability. This effort to reprogram Dftd3-jax to enable jitability will be a crucial
objective for future work. By making the program jittable, it can unlock its full potential
for accelerated performance and effective integration with NeuralIL.
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3.4 New Dataset with vdW-DF
The DFT-D3 method offers numerous benefits, such as being highly efficient and concep-
tual simplicity [3]. However, it does involve rather drastic approximations. For instance,
the non-additive many-body dispersion interaction is approximated by a pairwise in-
teraction between atomic pairs. Additionally, the dispersion coefficient is not directly
dependent on the electron density, which renders this method unsuitable for systems
with charge transfer, such as in the case of redox reactions [3], [15].

On the other hand, vdW density functionals in DFT are more grounded in physics and
incorporate electron density-dependent dispersion energy. Research has demonstrated the
successful application of vdW functionals, such as vdW-DF-cx, in accurately calculating
the total potential energy, including dispersion energy, for both bulk metal surfaces and
charge transfer systems [43]. Unlike DFT-D3, vdW functionals can provide a more robust
approach for capturing dispersion interactions on metallic surfaces [43], [44].

Given the research focus of my group on modeling liquid-solid and solid-solid interfaces,
I have been exploring vdW-DF as an alternative method to the vdW-D3 approach,
which may not be the most suitable for our purposes. Consequently, I am interested
in investigating whether a bulk water dataset, where energies and forces are calculated
using a vdW-DF functional, would provide superior quality data for training a neural
network compared to RPBE corrected with DFT-D3. Since vdW-DF functionals are
more rooted in physics, the calculated energies and forces may contain more physically
accurate information about the interactions between molecules. This, in turn, could
potentially facilitate and expedite the training process of the neural network and improve
the neural network’s ability to predict dispersion interaction forces despite the used
locality approximation, beeing a handicap in this regard.

During my two-week stay in Norway, I had the opportunity to join Dr. Berland’s team.
Dr. Berland is one of the foremost experts in vdW density functionals and has played
a crucial role in the development of several notable functionals, including vdW-DF-cx
and vdW-DF3-mc, among others. Currently affiliated with the Norwegian University
of Life Sciences (NMBU) in Ås, Dr. Berland provided valuable guidance and expertise
throughout the analysis described in the following sections.

3.4.1 Choosing the best energy cutoff for plane waves
The question at hand was which vdW density functional is best suited for the bulk water
dataset, specifically in accurately modelling the interactions between water molecules. To
address this, we compared the vdW-DF functionals with the exact calculations obtained
from the coupled cluster method CCSD(T) using the BEGDB. Two datasets from BEGDB
were particularly relevant for our analysis: the S66x8 water dimer dissociation curve
dataset [45] and the dataset comprising the potential energies of 38 water clusters [35].

For calculating the potential energies using vdW density functionals in Quantum Espresso
[46], which employs the plane wave formalism and utilises pseudopotentials to treat elec-
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trons, we opted for the Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotential.
This pseudopotential, recommended and provided by the research group of Dr. Berland,
was deemed suitable for our purposes. To determine the energy cutoff for the plane
waves, we sought an optimal value specifically tailored for water compounds. The desired
cutoff should be large enough to ensure that the calculated potential energy per water
molecule remains relatively stable within a range of values around the chosen cutoff. At
the same time, it should be small enough to avoid unnecessary computational overhead
and expedite the calculations.

To determine the ideal cutoff, we selected two water clusters: a water dimer and a
cluster comprising five water molecules. Each cluster was placed in a simulation box
with dimensions of 10×10×10 Å for the water dimer and 13×13×13 Å for the five-water
molecule cluster. For both cases, a 1×1×1 k-point grid was employed to cover the first
Brillouin zone. Additional parameters used during the calculations can be found in the
Table 3.2.

Table 3.2: The parameters used for all the calculations carried out using Quantum
Espresso program.

Keyword Option
occupations smearing

degauss 0.05
smearing gaussian
conv_tr 1e−6

diagonalization cg

The potential energy of the water dimer was computed using the vdW-DF1 functional for
various energy cutoffs, namely 544.4, 680.5, 816.6, 952.7, 1088.8, 1224.9, 1361, 1497.1, and
1633.2 eV. The change in potential energy as a function of the energy cutoff is depicted
in Figure 3.27. It was evident that the potential energy reached a constant value only
when using a cutoff of 1088.8 eV. Therefore, it was deemed unnecessary to evaluate the
other water cluster at a small cutoff such as 544.4 eV. Consequently, the analysis of the
potential energy as a function of the energy cutoff for the second cluster started at the
value of 816.6 eV. The evolution of the potential energy for this cluster is illustrated in
Figure 3.28.

In the Figure, it is evident that for the second water cluster, the potential energy reaches
a constant value at a larger cutoff compared to the dimer. Specifically, the potential
energy becomes constant starting from a cutoff of 1224.9 eV. This indicates that a higher
cutoff is necessary to accurately capture the potential energy behavior for the larger
water cluster.

Next, in order to assess the difference in potential energy per water molecule between
the dimer and the other cluster, the calculated potential energies at various cutoff were
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Figure 3.27: Potential energy of a water dimer as a function of the energy cutoff used for
plane waves.

Figure 3.28: Potential energy of a water cluster comprising five water molecules as a
function of the energy cutoff used for plane waves.

divided by the respective number of molecules in each cluster. Then, the energy of the
dimer was subtracted from the energy of the other cluster using the following equation:

Ediff =
Edimer

pot
2 − E5mer

pot
5 (3.4)

Finally, the accuracy of the potential energy calculation around the selected energy
cutoff values was determined by calculating the differences in potential energy differences,
denoted as ∆. Using lowercase letters a, b, c, and so on to represent the potential
energy differences at specific cutoff energy values in the Figure 3.29, the delta values
were calculated according to the following scheme:
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∆1 = a − b (3.5)
∆2 = b − c (3.6)

... (3.7)

The changes in ∆ are illustrated in Figure 3.29 (b). It follows from the figure that the
smallest ∆, indicating the highest accuracy, was achieved for the intervals 2, 3, and
6, which correspond to the energy cutoff ranges of 952.7-1088.8, 1088.8-1224.9, and
1497.1-1633.2 eV.

Figure 3.29: The differencies of potential energies per water molecules of water dimer
and water pentamer (left) and the differences of those (∆) (right)

The accuracy criterion for choosing the energy cutoff was set at a precision of at least
10−3 eV/Å, considering that approximately one third of the dispersion forces in the bulk
water dataset fall within this range as we found out in the Section 3.1.1. The accuracy
achieved in the interval of 952.7-1224.9 eV was found to be −3.6 · 10−4 and 4.0 · 10−4 eV,
satisfying the criterion. However, as the energy cutoff was further increased, the accuracy
initially decreased and then increased again in the range of 1497.1-1633.2 eV, reaching
8.0 · 10−4 eV. Due to the observed accuracy drop and the indication that accuracy was
not yet converged at that point, the energy cutoff radius of 1497.1 eV was chosen as it is
more likely to have higher convergence of accuracy.

3.4.2 Water dimer dissociation curves
Once the decision about the cutoff energy was made, I was able to proceed to calculate
the dissociation curves of a water dimer. The dissociation curve was calculated using
water dimer structures from the BEGDB database, that consisted of two water molecules
at different distances between 1.81 Å to 4.02 Å. Those were reached by multiplying the
closest intermolecular distance between the molecules by scaling factors of 0.9, 1.0, 1.05,

49



3. Results and discussion

Figure 3.30: The water dimer structure which corresponds to distance scaling of 0.90

1.1, 1.25, 1.5 and 2.0. The water dimers were put into a box of constant size of 10×10×10
Å and used again 1×1×1 k-point. The first dimer configuration from the dissociation
curve that corresponds to the scaling factor of 0.9 is depicted in the Figure 3.30.

In this case, the potential energy of the configurations was calculated using several
kinds of vdW density functionals. The chosen functionals are vdW-DF1, vdW-DF2,
vdW-DF-cx, vdW-DF-opt and vdW-DF-opt2. Since for calculating energies and forces of
the bulk water dataset described in previous section were used RPBE and RPBE with the
D3 correction, we wanted to analyse them too and see how good they can actually model
the interactions between the water molecules compared to vdW-DF and CCSD(T). The
calculations were carried out using the same parameters for the Quantum Espresso as in
the previous section. The potential energies calculated via various density functionals for
water molecules at different distances are depicted in the Figure 3.31.

One can see that various vdW density functionals approximate the CCSD(T) potential
energy curve differently good at various distances of the water molecules. At rather small
scalings of 0.9-1.15 it turns out that the density functional that approximates CCSD(T)
the best is vdW-DF-cx. However in case of larger scalings than 1.15 the vdW-DF-cx, just
like all chosen vdW and GGA density functionals, overestimates the potential energy. In
this region, all the vdW density functionals performed simillarly well. However, the values
obtained using the vdW-DF-opt seemd to be the closes to the CCSD(T) values in this
region. Interesstingly, the RPBE functional showed a large tendency to underestimate the
potential energy around its minimum. However, the inclusion of the dispersion correction
appeared to correct RPBE potential energies, since they deviate less from the CCSD(T)
energies.
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Figure 3.31: Dissociation curves of a water dimer calculated using various density
functionals compared to the reference CCSD(T) values

3.4.3 Potential energy of water clusters

In the next step, the 38 water cluster structures from the BEGDB database [35], ranging
from clusters consisting of 2 to 10 water molecules, were enclosed within a box measuring
13×13×13 Å. Some examples of the structures contained in the database are depicted in
the Figure 3.12. The reciprocal space was once again sampled using a 1×1×1 k-point
grid. The calculations were performed using Quantum Espresso, employing the same
parameters as in the previous steps. The resulting potential energies, both calculated
and reference values, are presented in Figure 3.32 and Figure 3.33. The potential energies
are plotted as a function of the cluster names.

From Figures 3.32 and 3.33, it is evident that the density functionals that provide the
closest reproduction of the potential energies are once again vdW-DF-cx, RPBE+D3
and, notably, vdW-DF2. It is worth noting that RPBE, on the other hand, tends
to underestimate the potential energies, as evidenced by the calculated values being
higher than those obtained from CCSD(T). However, a notable observation is that the
addition of the DFT-D3 correction helps bring the calculated potential energies closer
to the reference CCSD(T) values, just like it could be observed in case of water dimer
dissociation curves in the Figure 3.31.

Based on the analysis of the water clusters and water dissociation curves, it was determined
that the vdW-DF functional capable of reproducing the CCSD(T) data was vdW-DF-cx.
Consequently, it was chosen to calculate the potential energies and forces of the bulk
water dataset. However, it is important to note that the analysis of the new dataset will
be part of future work and is not included in this master’s thesis due to the significant
computation time required (of several months).
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Figure 3.32: Potential energies of water dimer, trimers, tetramers, pentamers and
hexamers calculated using various density functionals compared to the reference CCSD(T)
values.

Figure 3.33: Potential energies of water heptamers, octamers, nonamers and decamers
calculated using various density functionals compared to the reference CCSD(T) values.

3.4.4 Volume expansion
Additionally, an investigation was conducted to examine how the potential energy,
including the dispersion interaction energy, of a water system changes as the volume
of the unit cell is expanded. This analysis aimed to understand the sensitivity of the
system’s potential energy, specifically with regard to increasing intermolecular distances
resulting from the expansion of the cell. To begin, we opted to test this phenomenon on a
large water cluster. The selected cluster, named 10-PP1 in the BEGDB database’s water
cluster dataset, was chosen due to its high number of water molecules, making it suitable
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for our purposes. Since there was no existing Python package available for expanding
the cell’s volume without enlarging the interatomic distances within the molecules, I
developed a custom Python script to accomplish this task.

The central step in my Python program involved extracting individual molecules as
separate objects from the entire configuration. To accomplish this, I utilised a function
called "decompose" from the Moltools module, generously provided by Dr. Berland and
his team. Once the molecules were successfully split into separate objects, the calculation
of their respective center of mass and the overall structure’s centre of mass followed.

Figure 3.34: Sketch of the concept of the volume expanding program: directional vectors
(turquois arrows a) that point away from the center of mass of the whole cluster (orange
star) to the centers of masses of the individual molecules (black stars). By multiplying
those vectors by a scale factor N (in this case N=0.5, 1.0, ...) and adding them to the
initial positions of the molecular centers of masses, a new vector V can be calculated.
By subtracting the directional vectors from the new vectors V, the actual shift vector u
is obtained, that is added to the positional coordinates of the atoms in molecules, by
which the molecules are shifted.

The subsequent task was to determine the direction vector that would govern the positional
changes of individual molecules during the volume expansion. This vector was defined
as originating from the global center of mass of the structure and pointing towards the
centers of mass of the individual molecules. By multiplying these directional vectors
appropriately, the positions of the molecules could be translated. This involved adding
the product of the directional vector’s coordinates to the coordinates of the molecular
centers of mass. Consequently, the difference in coordinates between the new and old
centers of masses was computed. This difference was then added to the coordinates
of the atoms in the molecules, effectively moving the molecules away from the global
center of mass. This procedure is also illustrated using a water trimer in Figure 3.34.
To ensure that the long-range interactions between structure images were negligible, the
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Figure 3.35: The change in the volume of the cell and distances between water molecules
in the 10-PP1 cluster for the scale factors of translational vector of 0.5, 3.0, and 4.0.

cell’s volume was modified to include a 4 Å vacuum region on each side. This adjustment
guaranteed minimal interaction between the structure’s images.

For the cluster 10-PP1 a series of seven structures were generated by progressively
expanding the cell. These shift values were set at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0.
This expansion resulted in an increase in the distances between water molecules, ranging
from around 2.0 Å in the original structure to around 13 Å in the structure with a shift
of 4.0. The expansion of the cell containing the 10-PP1 cluster is also illustrated in the
Figure 3.35.

Subsequently, the potential energy of each structure was computed using the Quantum
Espresso software package, employing the RPBE and vdW-DF-cx density functionals,
vdW density functional being the most accurate as shown in the two previous sections,
with the same parameters as described earlier. Additionally, for the RPBE functional the
dispersion correction was calculated using the DFT-D3 method. To facilitate comparisons,
the potential energies were adjusted by subtracting the highest values within the potential
energy dataset of the same structure for each density functional. These modified potential
energies were then plotted. Figure 3.36 depicts the potential energies for RPBE, vdW-
DF-cx, and RPBE+DFT-D3 as a function of scale factor of translational vector. Notably,
it can be observed that for all density functionals, the potential energy steadily increased
until the scale factor of translational vector reached 3.5, which corresponds to the distance
between the molecules of around 12 Å. Beyond this point, there was no further change
in the potential energy, which remained constant.

Upon comparing the two different types of functionals, RPBE and vdW-DF-cx, a slight
difference can be observed in the shape of the potential energy curves. However, an
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interesting observation arises when the RPBE energies are corrected using DFT-D3. In
this case, the difference in the shape of the curves between the two functionals becomes
almost negligible.

To sum up, it seems that during an isotropic expansion of the volume of a larger, symmetric
water cluster, the vdW-DF-cx functional and dispersion corrected RPBE+DFT-D3 tend
to behave very similarly. However, it would be also interesting to investigate, if this result
could be reproduced in case of any water configuration out of the bulk water dataset.
This will be researched more in the future work.

Figure 3.36: Potential energy of the 10-PP1 cluster at various degees of cell expansion
(various scale factor of translation vector values) calculated using vdW-DF-cx and RPBE
with and without the DFT-D3 correction.
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CHAPTER 4
Conclusions

The analysis conducted in Section 3.1.1 revealed that the dispersion interactions in the
bulk water dataset were found to be very small. Approximately 35% of the dispersion
forces in this dataset were smaller than 10−3 eV/Å, indicating their relatively limited
contribution compared to the forces calculated using DFT with the RPBE functional.
Next, in case of model 1 and model 2, the inclusion of dispersion interactions using the
DFT-D3 correction had a very small influence on the resulting RMSE in predicted forces
and the quality of the training. In case of model 1, the inclusion of DFT-D3 correction
lead to smaller RMSE by 0.002 ev/Å and in case of model 2 to larger RMSE by 0.001
eV/Å compared to the training on forces without DFT-D3. There were also some tiny
differences in performance between the two models. Model 2, having larger radius of
descriptors, was not able to reach as small RMSE during the training than model 1
having smaller radius of descriptors. Because of larger descriptors, model 2 should be
able to capture more information about the interactions as model 1, however it seems
that this extra piece of information did not help the model to get trained better. From
the comparison of the older version of NeuralIL model with the newest NeuralIL+VeLO
results, that using NeuralIL+VeLO it was possible to reach a clear improvement in the
speed of the training (speed up of 5.3 to 5.6 reached for model 1 and 2 compared to the
older version) and even the differences in the RMSE between the two training scenarios
seemingly disappeared. Finally by testing the predictions of the two neural network
models trained on bulk water on the water cluster dataset, I could show that they were
able to predict the forces for those correctly, even though they were trained on a dataset,
where the water molecules had a different local chemical environment. The reached
RMSE for the water cluster dataset were very small, for model 1 it was 0.0778 and 0.0789
ev/Å and for model 2 it was 0.0831 and 0.101 ev/Å. So the two NeuralIL models showed
a good transferability in case of condensed phase water datasets.

The molecular dynamics simulations described in Section 3.2 highlighted the importance
of parameter selection and the time-consuming nature of finding the right parameters
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for a simulation. From the results presented in Sections 3.2.2 and 3.2.3, it was observed
that utilising model 1 trained on forces with the dispersion correction yielded a density
value at 250 K and 1 bar that was closer to the experimental value compared to the
neural network without DFT-D3 training. This suggests that incorporating information
about long-range interactions in the training set can alleviate the shortsightedness of
NeuralIL to some extent. However, it should be noted that even with the inclusion of
DFT-D3 contributions in the training set for model 1, the interatomic interactions were
still not accurately modelled in NeuralIL. As a result of this, the density value deviated
by 0.16 g/cm3 from the experimental value, which was larger than the deviation obtained
by another neural network developed by Dellago’s group, which was approximately 0.1
g/cm3. Additionally, the observed lack of invariance in the total energy of the simulation
box indicated a potential issue with the simulation settings or the simulation program
itself. As a result, the obtained results from these simulations should be interpreted
with caution, and further investigation is needed to resolve the underlying error before
drawing definitive conclusions.

The JAX version of the Torch-dftd program for calculating the dispersion interactions in
condensed matter using the DFT-D3 scheme is capable to calculate correctly the energies
and forces in bulk and molecular water and is able to reproduce correctly the dissociation
curve of a water dimer. However because of the issues described in the Section 3.3, it is
still not possible to use it directly inside a NNFF.

In Section 3.4, it was demonstrated that vdW-DF-cx, vdW-DF2 and RPBE+DFT-
D3 functionals perform better in modelling the interactions between water molecules
compared to the RPBE. This conclusion was supported by comparing the potential
energies of water clusters and water dimer dissociation curves with the exact energies
obtained from CCSD(T) calculations. RPBE showed limitations in accurately reproducing
the interactions between water molecules, but the inclusion of the dispersion correction
DFT-D3 to the RPBE energies led to a significant improvement in the potential energy
values, bringing them closer to the CCSD(T) values. The sensitivity of dispersion
interactions to changes in volume and intermolecular distances is an interesting finding.
This information is particularly relevant in the context of molecular dynamics simulations
utilising an NPT ensemble, where the pressure is determined by calculating the stress,
which corresponds to the change in potential energy associated with changes in the
cell size. Understanding the influence of dispersion interactions on the overall system
behaviour can provide valuable insights for accurately simulating and characterising
molecular systems.
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Outlook

In the future, it would be worthwhile to consider training NeuralIL with a descriptor
cutoff value of 6 Å, as commonly done in the literature. This investigation could provide
insights into whether using this cutoff value improves the training performance or not,
and compare it to what was observed for model 2. Furthermore, the hypothesis proposed
in Section 3.1.4, regarding the neural network’s ability to recognise cluster-like structures
within bulk water with the assistance of the relatively small cutoff radius used in the
models, could be explored further. This could involve conducting principal component
analysis of the descriptors to gain a deeper understanding of the network’s recognition
capabilities.
Moving forward, it is crucial to identify and rectify the errors in the simulation program
used for MD. Once resolved, the MD simulations should be repeated to obtain accurate
and reliable results. Similarly, the same type of simulation should be conducted for
model 2 to investigate whether the larger size of descriptors improves the predicted
water density. In addition to the existing four models, two additional models should be
developed. Those will be similar to model 1 and model 2 but trained solely on local forces.
However, during force and energy predictions, the DFT-D3 correction will be calculated
using Dftd3-jax program that will be integrated directly into the neural network models.
Using these six NeuralIL models, the densities of water should be calculated at various
temperatures and compared to the reference density curves [8]. This analysis will provide
insights into the performance and accuracy of the different models in reproducing water
density.
Furthermore, it is of interest to explore the performance of the models in predicting
water densities when trained on both forces and energies simultaneously. Currently,
the NeuralIL models were trained solely on atomic forces, which do not incorporate
information about stress. As was explained in the Section 3.2.2, in MD simulations, stress
plays a crucial role in calculating the pressure within the simulation box. Inaccurately
calculated stress might influence negatively the barostat’s capability to keep the average
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pressure close to the intended value. By training the neural network models on both forces
and energies, the stress contribution to the energy can be captured, possibly ensuring
more accurate predictions of energies. To investigate the impact of training on both
forces and energies, MD simulations using the NeuralIL models trained on a combination
of forces and energies should be performed. The resulting water densities should be
analysed to assess any improvements in the accuracy of the predicted values compared
to the models trained solely on forces. Additionally, the error in stress predicted by the
models trained only on forces should be evaluated and compared to the models trained on
both forces and energies to determine the significance of incorporating energy information
in stress calculation.

In order to further enhance the modelling capabilities, a new bulk water dataset will
be constructed, incorporating energies and forces calculated using the vdW-DF-cx and
vdW-DF2 density functionals. This new dataset will be derived from the structures in
the previous bulk water dataset. The neural network models will then be trained using
this updated dataset. The training process will be analysed once again, as described in
Section 3.1.3, to assess the performance and effectiveness of the models. Additionally, it
will be investigated whether the utilisation of this new dataset, which better captures
the intermolecular interactions in water, leads to more accurate results during MD
simulations. Furthermore, it should be noted that the energies and forces in the original
bulk water dataset, calculated using the RPBE functional, were based on a relatively
small energy cutoff of the plane waves, resulting in lower precision compared to the
vdW-DF-cx bulk water dataset. To address this discrepancy, it is advisable to recalculate
the energies and forces using an energy cutoff that provides comparable accuracy to the
vdW-DF-cx dataset. This will enable a more meaningful comparison between the RPBE
and vdW-DF-cx functional in terms of their performance and predictive capabilities.
By employing the more accurate data, a comprehensive assessment of the RPBE and
vdW-DF-cx functionals can be conducted, shedding light on their respective strengths
and weaknesses in modelling water systems.

In order to gain a deeper understanding of the role of dispersion interactions in the
NeuralIL models, it is valuable to analyse how much of the total dispersion interaction can
be described within the descriptors of radius 3.5 - 4.0 Å, as utilised in model 1 and model
2. A comparison will be made with the scenario where a selected water molecule interacts
with all neighbouring molecules within a distance of 50 Å, as defined in the DFT-D3
method. By assessing the differences in the calculated dispersion interactions between
these two approaches, valuable insights can be gained regarding the effectiveness of the
local interaction description employed by NeuralIL in capturing long-range dispersion
interactions in the bulk water system. This analysis will provide a comprehensive
understanding of the interplay between the local and long-range dispersion interactions,
elucidating why NeuralIL, despite its focus on local interactions, has exhibited relative
success in modelling the long-range dispersion interactions in the bulk water system.

60



List of Figures

2.1 Dispersion energy as a function of the distance between the oxygen atoms
in two water molecules. The dispersion energies were calculated using the
DFT-D3 method with Perdew–Burke-Ernzerhof (PBE) exchange-correlation
functional [17], zero damping function and no three-body energy correction. 12

2.2 Logarithm of the dispersion energy as a function of the logarithm of distance
between the oxygen atoms in two water molecules. The dispersion energies
were calculated using the DFT-D3 method with PBE exchange-correlation
functional, zero damping function and no three-body energy correction. . 12

2.3 Coordination number CN of oxygen atoms O1, O2 and hydrogens H2 and
H4 as a function of the interatomic distance between the oxygen atoms. The
structures of the water dimer are given for the interatomic distances of 0.7
and 2.95 Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 The dispersion coefficient of the interaction between the two oxygen atoms
(COO

6 ) as a function of the interatomic distance between the oxygens and CN
of O1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Scheme of neural network NeuralIL. Adapted from [7] with permission of the
authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 One of 1593 bulk water structures from the datased created by Dr. Cheng et
al. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Distribution of x, y and z components of atomic forces calculated using RPBE
functional (left) and using only DFT-D3 (right) . . . . . . . . . . . . . . . 23

3.3 Distribution of x, y and z components of atomic forces consisting of forces
calculated using RPBE functional and DFT-D3 dispersion correction. . . 23

3.4 Potential energy distribution calculated using RPBE only for all configurations
in the bulk water dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Distribution of dispersion energy calculated using DFT-D3 for all configura-
tions in the bulk water dataset. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Left: the convergence of RMSE for the models with rcut = 4.0 Å and nmax =
3, 4, 5 and 6. Right: the evolution of the converged, minimal value of RMSE
for the models with nmax = 3, 4, 5 and 6. . . . . . . . . . . . . . . . . . . 25

3.7 The convergence of RMSE of model 1. The case that the training was
performed on RPBE forces without the DFT-D3 contribution corresponds to
the red line, the training with DFT-D3 corresponds to the green line. . . 27

61



3.8 The convergence of RMSE of model 2. The case that corresponds to the
training on RPBE forces without the DFT-D3 contribution is depicted by the
blue line, the training with DFT-D3 corresponds to the pink line. . . . . . 27

3.9 Predicted forces using model 1 versus reference forces. Left: model 1 trained
without DFT-D3 contribution. Right: model 1 trained with DFT-D3 contri-
bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.10 Predicted forces using model 2 versus reference forces. Left: model 2 trained
without DFT-D3 contribution. Right: model 2 trained with DFT-D3 contri-
bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11 Convergence of model 1 and model 2 derived from the new neural network
NeuralIL+VeLO. The red line represents the evolution of RMSE for model 1
trained without DFT-D3 contributions, while the green line shows the evolu-
tion of RMSE for model 1 trained with DFT-D3 contributions. Additionally,
the blue line represents the RMSE for model 2 trained without DFT-D3
contributions, and the pink line represents the RMSE for model 2 trained
with DFT-D3 contributions. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 An example of some clusters contained in the BEGBT water cluster dataset 30
3.13 Predicted forces for 76 water clusters using model 1 versus the reference forces.

Left: model 1 trained without DFT-D3 contribution. Right: model 1 trained
on data including DFT-D3 contribution. . . . . . . . . . . . . . . . . . . . 31

3.14 Predicted forces for 76 water clusters using model 2 versus the reference forces.
Left: model 2 trained without DFT-D3 contribution. Right: model 2 trained
on data including DFT-D3 contribution. . . . . . . . . . . . . . . . . . . . 32

3.15 Density of water as a function of temperature. The blue circles depict the
densities calculated using the RPBE functional without the DFT-D3 correction,
the orange circles are densities from simulations with dispersion correction
and finally, the experimental values correspond to the violet diamonds. The
red cross indicates the density value obtained from from the NPT MD for
model 1 + VeLO trained on dataset with DFT-D3 correction, at 250 K and
1 bar and the blue cross indicates the density value obtained from from the
NPT MD for model 1 + VeLO trained on RPBE forces only, at the same
temperature and pressure. The experimental, RPBE and RPBE+DFT-D3
data were adapted from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.16 The evolution of the norm of the total momentum vector of the simulation
box (left) and of the x, y and z components of the momentum vector (right)
monitored during a NPT simulation at 250 K, 1 bar and with anisotropic
volume expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.17 The fluctuations and mean values of temperature (left) and pressure (right)
during a NPT simulation using using model 1 + VeLO trained on DFT-D3
forces. The simulation was performed at 250 K, 1 bar and using the isotropic
barostat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.18 The evolution of the average pressure calculated every 0.25 ns (pink) with
respect to the intended pressure value of 1 bar (green). . . . . . . . . . . . 38

62



3.19 The evolution of the x, y and z component of the total momentum vector
of the simulation box during NPT MD with model 1 + VeLO, trained on
DFT-D3 at 250 K, 1 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.20 The fluctuations of volume and density values during the MD simulation (the
blue and green curves) and their mean values calculated each one ns (the
orange and pink curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.21 The evolution of the total energy of the system over the course of NPT MD
at 150 K and 1 bar using model 1 with DFT-D3 forces . . . . . . . . . . . 40

3.22 The fluctuations and mean values of temperature (left) and pressure (right)
during a NPT simulation using using model 1 + VeLo trained on RPBE forces
only. The simulation was performed at 250 K, 1 bar and with the isotropic
volume expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.23 The evolution of the x, y and z component of the total momentum vector
of the simulation box during the NPT MD simulation at 250 K, 1 bar and
model 1 + VeLO trained on RPBE forces only. . . . . . . . . . . . . . . . 41

3.24 The fluctuations of volume and density values during the NPT MD simulation
(the blue and green curves) and their mean values calculated each one ns (the
orange and pink curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.25 The evolution of the total energy of the system over the course of NPT MD
using model 1 +VeLO trained purely on RPBE forces. . . . . . . . . . . . 43

3.26 Dispersion energy dissotiation curves calculated using Torch-dftd (violet curve)
and Dftd3-jax (orange curve) for RPBE functional, zero damping and no
tree-body interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.27 Potential energy of a water dimer as a function of the energy cutoff used for
plane waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.28 Potential energy of a water cluster comprising five water molecules as a
function of the energy cutoff used for plane waves. . . . . . . . . . . . . . 48

3.29 The differencies of potential energies per water molecules of water dimer and
water pentamer (left) and the differences of those (∆) (right) . . . . . . . 49

3.30 The water dimer structure which corresponds to distance scaling of 0.90 . 50
3.31 Dissociation curves of a water dimer calculated using various density func-

tionals compared to the reference CCSD(T) values . . . . . . . . . . . . . 51
3.32 Potential energies of water dimer, trimers, tetramers, pentamers and hexam-

ers calculated using various density functionals compared to the reference
CCSD(T) values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.33 Potential energies of water heptamers, octamers, nonamers and decamers cal-
culated using various density functionals compared to the reference CCSD(T)
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

63



3.34 Sketch of the concept of the volume expanding program: directional vectors
(turquois arrows a) that point away from the center of mass of the whole
cluster (orange star) to the centers of masses of the individual molecules (black
stars). By multiplying those vectors by a scale factor N (in this case N=0.5,
1.0, ...) and adding them to the initial positions of the molecular centers of
masses, a new vector V can be calculated. By subtracting the directional
vectors from the new vectors V, the actual shift vector u is obtained, that is
added to the positional coordinates of the atoms in molecules, by which the
molecules are shifted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.35 The change in the volume of the cell and distances between water molecules
in the 10-PP1 cluster for the scale factors of translational vector of 0.5, 3.0,
and 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.36 Potential energy of the 10-PP1 cluster at various degees of cell expansion
(various scale factor of translation vector values) calculated using vdW-DF-cx
and RPBE with and without the DFT-D3 correction. . . . . . . . . . . . 55

64



List of Tables

2.1 Some parameters of DFT-D3 which do not depend on the chemical nature or
geometry of the compound or material the dispersion energy of which should
be calculated. The values of sr,6 and s8 are determined by the choice of the
exchange-correlation density functional, which is in this case the Perdew-
Burke-Ernzerhof density functional (PBE) [17]. . . . . . . . . . . . . . . . 11

3.1 Parameters of DFT-D3 which do not depend on the chemical nature or
geometry of the compound or material the dispersion energy of which should
be calculated. The values of sr,6 and s8 are determined by the choice of the
exchange-correlation density functional, which is in this case RPBE. . . . 44

3.2 The parameters used for all the calculations carried out using Quantum
Espresso program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

65





Bibliography

[1] Alberto Ambrosetti et al. “Wavelike charge density fluctuations and van der Waals
interactions at the nanoscale”. In: Science 351.6278 (2016), pp. 1171–1176. doi:
10.1126/science.aae0509.

[2] M. Dion et al. “Van der Waals Density Functional for General Geometries”. In:
Phys. Rev. Lett. 92 (24 June 2004), p. 246401. doi: 10.1103/PhysRevLett.92.
246401.

[3] Stefan Grimme et al. “A consistent and accurate ab initio parametrization of
density functional dispersion correction (DFT-D) for the 94 elements H-Pu”. In:
The Journal of Chemical Physics 132.15 (Apr. 2010), p. 154104. issn: 0021-9606.
doi: 10.1063/1.3382344.

[4] Jörg Behler. “First Principles Neural Network Potentials for Reactive Simulations
of Large Molecular and Condensed Systems”. In: Angewandte Chemie International
Edition 56.42 (2017), pp. 12828–12840. doi: https://doi.org/10.1002/
anie.201703114.

[5] Bingqing Cheng et al. “Ab initio thermodynamics of liquid and solid water”. In:
Proceedings of the National Academy of Sciences 116.4 (2019), pp. 1110–1115. doi:
10.1073/pnas.1815117116.

[6] Khosrow Shakouri et al. “Accurate Neural Network Description of Surface Phonons
in Reactive Gas–Surface Dynamics: N2 + Ru(0001)”. In: The Journal of Physical
Chemistry Letters 8.10 (2017), pp. 2131–2136. doi: 10.1021/acs.jpclett.
7b00784.

[7] Hadrián Montes-Campos et al. “A Differentiable Neural-Network Force Field for
Ionic Liquids”. In: Journal of Chemical Information and Modeling 62.1 (2022),
pp. 88–101. doi: 10.1021/acs.jcim.1c01380.

[8] Tobias Morawietz et al. “How van der Waals interactions determine the unique
properties of water”. In: Proceedings of the National Academy of Sciences 113.30
(2016), pp. 8368–8373. doi: 10.1073/pnas.1602375113.

[9] Kevin Maik Jablonka et al. “Big-Data Science in Porous Materials: Materials
Genomics and Machine Learning”. In: Chemical Reviews 120.16 (2020), pp. 8066–
8129. doi: 10.1021/acs.chemrev.0c00004.

67

https://doi.org/10.1126/science.aae0509
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1063/1.3382344
https://doi.org/https://doi.org/10.1002/anie.201703114
https://doi.org/https://doi.org/10.1002/anie.201703114
https://doi.org/10.1073/pnas.1815117116
https://doi.org/10.1021/acs.jpclett.7b00784
https://doi.org/10.1021/acs.jpclett.7b00784
https://doi.org/10.1021/acs.jcim.1c01380
https://doi.org/10.1073/pnas.1602375113
https://doi.org/10.1021/acs.chemrev.0c00004


[10] Andrea Grisafi and Michele Ceriotti. “Incorporating long-range physics in atomic-
scale machine learning”. In: The Journal of Chemical Physics 151.20 (Nov. 2019),
p. 204105. issn: 0021-9606. doi: 10.1063/1.5128375.

[11] Schoenholz et al. “JAX M.D. A Framework for Differentiable Physics”. In: Advances
in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020.
url: https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-
Paper.pdf.

[12] So Takamoto et al. PFP: Universal Neural Network Potential for Material Discovery.
2021. arXiv: 2106.14583 [cond-mat.mtrl-sci].

[13] G. K. H. Madsen. “Introduction to Electronic Structure”. In: (2021), pp. 22–23.
[14] János Ángyán. London dispersion forces in molecules, solids and nano-structures :

an introduction to physical models and computational methods / by János Ángyán,
John Dobson, Georg Jansen and Tim Gould. eng. Theoretical and computational
chemistry ; 16. Croydon: Royal Society of Chemistry, 2020. isbn: 9781782620457.

[15] Jan Hermann, Robert A. Jr. DiStasio, and Alexandre Tkatchenko. “First-Principles
Models for van der Waals Interactions in Molecules and Materials: Concepts,
Theory, and Applications”. In: Chemical Reviews 117.6 (2017), pp. 4714–4758. doi:
10.1021/acs.chemrev.6b00446.

[16] Romain Jonchiere et al. “Van der Waals effects in ab initio water at ambient and
supercritical conditions”. In: The Journal of Chemical Physics 135.15 (Oct. 2011),
p. 154503. issn: 0021-9606. doi: 10.1063/1.3651474.

[17] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized Gradient
Approximation Made Simple”. In: Phys. Rev. Lett. 77 (18 1996), pp. 3865–3868.

[18] Kyuho Lee et al. “Higher-accuracy van der Waals density functional”. In: Phys.
Rev. B 82 (8 Aug. 2010), p. 081101. doi: 10.1103/PhysRevB.82.081101.

[19] Jiří Klimeš, David R Bowler, and Angelos Michaelides. “Chemical accuracy for
the van der Waals density functional”. In: Journal of Physics: Condensed Matter
22.2 (Dec. 2009), p. 022201. doi: 10.1088/0953-8984/22/2/022201. url:
https://dx.doi.org/10.1088/0953-8984/22/2/022201.

[20] Jiří Klimeš, David R Bowler, and Angelos Michaelides. “Chemical accuracy for
the van der Waals density functional”. In: Journal of Physics: Condensed Matter
22.2 (Dec. 2009), p. 022201. doi: 10.1088/0953-8984/22/2/022201. url:
https://dx.doi.org/10.1088/0953-8984/22/2/022201.

[21] Kristian Berland and Per Hyldgaard. “Exchange functional that tests the robustness
of the plasmon description of the van der Waals density functional”. In: Phys. Rev.
B 89 (3 Jan. 2014), p. 035412. doi: 10.1103/PhysRevB.89.035412.

[22] Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation.
Oxford: Oxford university press, 2010, pp. 61–63.

68

https://doi.org/10.1063/1.5128375
https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf
https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf
https://arxiv.org/abs/2106.14583
https://doi.org/10.1021/acs.chemrev.6b00446
https://doi.org/10.1063/1.3651474
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1088/0953-8984/22/2/022201
https://dx.doi.org/10.1088/0953-8984/22/2/022201
https://doi.org/10.1088/0953-8984/22/2/022201
https://dx.doi.org/10.1088/0953-8984/22/2/022201
https://doi.org/10.1103/PhysRevB.89.035412


[23] Mark E. Tuckerman et al. “A Liouville-operator derived measure-preserving inte-
grator for molecular dynamics simulations in the isothermal isobaric ensemble”. In:
Journal of Physics A Mathematical General 39.19 (May 2006), pp. 5629–5651. doi:
10.1088/0305-4470/39/19/S18.

[24] Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation.
Oxford: Oxford university press, 2010, pp. 214–216.

[25] Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein. “Constant pressure
molecular dynamics algorithms”. In: The Journal of Chemical Physics 101.5 (Sept.
1994), pp. 4177–4189. issn: 0021-9606. doi: 10.1063/1.467468.

[26] P. Ramachandran, B. Zoph, and Q. V. Le. “Searching for Activation Functions”.
In: arXiv:1710.05941 [cs.NE] (2017). url: https://arxiv.org/abs/1710.
05941.

[27] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1412.6980.

[28] L. Metz et al. “VeLO: Training Versatile Learned Optimizers by Scaling Up”. In:
arXiv preprint arXiv:2211.09760 (2022). url: velo-code.github.io.

[29] James Bradbury et al. JAX: composable transformations of Python+NumPy pro-
grams. Version 0.3.13. 2018. url: http://github.com/google/jax.

[30] B. Hammer, L. B. Hansen, and J. K. Nørskov. “Improved adsorption energetics
within density-functional theory using revised Perdew-Burke-Ernzerhof functionals”.
In: Phys. Rev. B 59 (11 Mar. 1999), pp. 7413–7421. doi: 10.1103/PhysRevB.
59.7413.

[31] Sung Sakong, Katrin Forster-Tonigold, and Axel Groß. “The structure of water at a
Pt(111) electrode and the potential of zero charge studied from first principles”. In:
The Journal of Chemical Physics 144.19 (May 2016), p. 194701. issn: 0021-9606.
doi: 10.1063/1.4948638.

[32] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. “Real-space grid implementation
of the projector augmented wave method”. In: Phys. Rev. B 71.3 (2005), p. 035109.
doi: 10.1103/PhysRevB.71.035109.

[33] Ask Hjorth Larsen et al. “The atomic simulation environment—a Python library
for working with atoms”. In: Journal of Physics: Condensed Matter 29.27 (2017),
p. 273002. url: http://stacks.iop.org/0953-8984/29/i=27/a=
273002.

[34] Shuwen Yue et al. “When do short-range atomistic machine-learning models fall
short?” In: The Journal of Chemical Physics 154.3 (Jan. 2021), p. 034111. issn:
0021-9606. doi: 10.1063/5.0031215.

69

https://doi.org/10.1088/0305-4470/39/19/S18
https://doi.org/10.1063/1.467468
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1412.6980
velo-code.github.io
http://github.com/google/jax
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1063/1.4948638
https://doi.org/10.1103/PhysRevB.71.035109
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002
https://doi.org/10.1063/5.0031215


[35] Berhane Temelso, Kaye A. Archer, and George C. Shields. “Benchmark Structures
and Binding Energies of Small Water Clusters with Anharmonicity Corrections”.
In: The Journal of Physical Chemistry A 115.43 (2011), pp. 12034–12046. doi:
10.1021/jp2069489.

[36] Kazuo Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination
Compounds. Part A: Theory and Applications in Inorganic Chemistry; Part B:
Application in Coordination, Organometallic, and Bioinorganic Chemistry, 5th
Edition. Wiley-Interscience, 1997, p. 170.

[37] Claude E. Shannon. “Communication in the Presence of Noise”. In: Proceedings of
the Institute of Radio Engineers 37 (1949), pp. 10–21.

[38] Efrem Braun, Seyed Mohamad Moosavi, and Berend Smit. “Anomalous Effects
of Velocity Rescaling Algorithms: The Flying Ice Cube Effect Revisited”. In:
Journal of Chemical Theory and Computation 14.10 (2018), pp. 5262–5272. doi:
10.1021/acs.jctc.8b00446.

[39] Jonathan Lahnsteiner et al. “Room-temperature dynamic correlation between
methylammonium molecules in lead-iodine based perovskites: An ab initio molecular
dynamics perspective”. In: Phys. Rev. B 94 (21 Dec. 2016), p. 214114. doi: 10.
1103/PhysRevB.94.214114.

[40] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: NIPS-W. 2017.
[41] Holger Krekel et al. pytest 7.4. 2004. url: https://github.com/pytest-

dev/pytest.
[42] Shyue Ping Ong et al. “Python Materials Genomics (pymatgen) : A Robust, Open-

Source Python Library for Materials Analysis”. In: Computational Materials Science
68 (2013), pp. 314–319.

[43] Kristian Berland et al. “van der Waals density functionals built upon the electron-
gas tradition: Facing the challenge of competing interactions”. In: The Journal of
Chemical Physics 140.18 (Apr. 2014), 18A539. issn: 0021-9606. doi: 10.1063/1.
4871731.

[44] Michele Cutini, Lorenzo Maschio, and Piero Ugliengo. “Exfoliation Energy of
Layered Materials by DFT-D: Beware of Dispersion!” In: Journal of Chemical
Theory and Computation 16.8 (2020), pp. 5244–5252. doi: 10.1021/acs.jctc.
0c00149.

[45] Jan Řezáč, Kevin E. Riley, and Pavel Hobza. “S66: A Well-balanced Database of
Benchmark Interaction Energies Relevant to Biomolecular Structures”. In: Journal
of Chemical Theory and Computation 7.8 (2011), pp. 2427–2438. doi: 10.1021/
ct2002946.

[46] Paolo Giannozzi et al. “QUANTUM ESPRESSO: a modular and open-source
software project for quantum simulations of materials”. In: Journal of Physics:
Condensed Matter 21.39 (Sept. 2009), p. 395502. doi: 10.1088/0953-8984/21/
39/395502.

70

https://doi.org/10.1021/jp2069489
https://doi.org/10.1021/acs.jctc.8b00446
https://doi.org/10.1103/PhysRevB.94.214114
https://doi.org/10.1103/PhysRevB.94.214114
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://doi.org/10.1063/1.4871731
https://doi.org/10.1063/1.4871731
https://doi.org/10.1021/acs.jctc.0c00149
https://doi.org/10.1021/acs.jctc.0c00149
https://doi.org/10.1021/ct2002946
https://doi.org/10.1021/ct2002946
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502

	Abstract
	Contents
	Introduction
	Theoretical background
	Van-der-Waals interactions in theoretical chemistry
	Molecular dynamics
	Machine learning in theoretical chemistry

	Results and discussion
	On the search for the best neural network model
	Molecular dynamics
	DFTD3-JAX
	New Dataset with vdW-DF

	Conclusions
	Outlook
	List of Figures
	List of Tables
	Bibliography



