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Abstract—The NASA DAIDALUS library provides formal
definitions for Detect-and-Avoid avionics concepts such as when
an aircraft is well-clear with respect to the surrounding air
traffic, i.e., it does not operate in such proximity to create a
collision hazard. While several properties are proven correct
for DAIDALUS assuming ideal real number arithmetic, an
actual implementation that uses floating-point numbers may
behave unexpectedly because of round-off errors and run-time
exceptions. This paper presents an experience report on the
application of a formal methods toolchain to extract and verify
floating-point C code from a real-valued specification of the well-
clear module of DAIDALUS. This toolchain comprises the PVS
theorem prover, the PRECiSA floating-point analyzer and code
generator, and the Frama-C analysis suite. The generated code
is automatically instrumented to detect when the control flow
of the floating-point program may diverge from the ideal real
number specification, and it is annotated with contracts that
state the maximum accumulated round-off error. The absence
of overflows is also formally verified for the generated code. In
order to apply the toolchain to an industrial case study such
as DAIDALUS, a formally verified pre-processing of the input
specification is performed, which includes a program slicing and
several semantic-preserving simplifications.

Index Terms—Program Verification, Floating-Point, PVS,
Detect-and-Avoid

I. INTRODUCTION

Midair conflicts are one of the most dangerous situations
that may occur in the airspace domain. The USA Federal
Aviation Administration (FAA) reported that over forty midair
collisions occurred from January 2009 through December
2013 [1]. The primary mitigation to such situations is the
longstanding principle of See and Avoid. In short, it states
that a person operating an aircraft has the responsibility to
remain vigilant to see and avoid nearby traffic [2]. The advent
of Unmanned Aerial Systems (UAS) and their incorporation
into the airspace introduced the need to restate this concept in
terms suitable for aircraft with no crew onboard. The Detect
and Avoid (DAA) concept emerged then as an effort to support
the integration of UAVs into civil airspace. A DAA system is
required to provide alerting and guidance to avoid potential
conflicts.

Diverse industrial and governmental actors proposed al-
gorithmic DAA solutions. Among them, NASA developed

the Detect and Avoid Alerting Logic for Unmanned Systems
library (DAIDALUS1) [3]. DAIDALUS provides prototypical
open-source implementations in Java and C++, which were
included as reference implementations of the DAA functional
requirements described in RTCA’s Minimum Operational Per-
formance Standards (MOPS) DO-365 [4]. One distinguishing
characteristic of DAIDALUS is that it also provides formal
specifications of the algorithms along with proofs for cor-
rectness and safety properties on them, mechanically checked
within the Prototype Verification System (PVS) [5]. These
proofs assume ideal real number arithmetic. However, when
implemented using floating-point numbers, the properties may
no longer hold because of round-off errors and runtime excep-
tions. The adherence of the implementations to the behavior
modeled by the formal specifications was checked using a
testing-based approach [6]. While such an approach is usually
enough for non-critical applications, the correctness of DAA
implementations calls for a higher level of assurance. Given
the numerical nature of several functions in DAIDALUS, it is
important to provide formal guarantees on the finite-precision
implementation concerning the expected behavior specified
using real-numbers arithmetic.

In the past, an integrated toolchain has been proposed to
automatically extract and verify floating-point C code from
real-valued specifications [7]. This toolchain consists of the
PVS theorem prover, the PRECiSA floating-point analyzer and
code generator ([8], [9]), and the Frama-C tool suite [10].
In a nutshell, PRECiSA automatically generates a floating-
point C implementation from a PVS real number specification.
The extracted C code contains program contracts that relate
the floating-point computations with their ideal counterpart
by the maximum round-off error that may occur. These
contracts enable the use of the Frama-C analysis suite which
automatically generates a set of verification conditions that
can be proven correct with the help of diverse backends. The
toolchain proposed in [7] included a customization on Frama-
C that allowed it to generate the verification conditions in
the language of PVS and connect them with the NASA PVS

1DAIDALUS is available at https://github.com/nasa/daidalus.
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library (NASALib).
In [7], this technique was applied to one of the core

functions of DAIDALUS. This paper describes the application
and adaptation of this technique to one of the main modules
in DAIDALUS which is devoted to the definition of well-clear
concepts. Two aircraft are considered to be well clear of each
other if appropriate distance and time variables determined by
the relative aircraft states remain outside a set of predefined
threshold values. Remaining outside of these threshold values
guarantees they have adequate separation in relation to the sur-
rounding traffic; therefore, midair collisions are not expected.

The toolchain presented in [7] could not be applied directly
to the DAIDALUS specification because the code generation
capability of PRECiSA, at its current stage, does not support
some of the features of the PVS language used to formally
define Well-Clear, such as abstract data types and higher-order
functions. In addition, the complexity of the target module,
given by the number and nature of the interactions between
the functions composing it and the wide ramification of the
control flow graph of the whole library, impacts the efficiency
of the analysis performed by PRECiSA and the legibility of
the results of this analysis. In order to make the DAIDALUS
specification manageable by the toolchain, this paper proposes
to apply a semantic-preserving program slicing on a simplifica-
tion from higher-order to first-order declarations. This program
rewriting improved the performance of the generation and
verification of the C code significantly. The obtained program
is formally proven equivalent to the original specification
within the PVS theorem prover. In addition, a new PVS
floating-point formalization is used. This formalization extends
the one used in [7] with explicit handling for special values
such as NaNs and infinities. This change positively impacted
the analysis by enabling the verification of the absence of these
values. It also significantly improved the performance of the
type-checking in PVS. However, it resulted in many of the
proof strategies developed in the past being unusable. Part of
the work presented in this paper focuses on fixing and adapting
the proofs generated by PRECiSA to this new formalization.
More information about the PRECiSA project and the files
related to the work presented in this paper can be found at
https://shemesh.larc.nasa.gov/fm/PRECiSA/.

The paper is organized as follows. Section II describes
DAIDALUS and explains the well-clear concept. An overview
of the verification approach is presented in Section III. The
application of the slicing technique to the original specification
is detailed in Section IV. Then, Section V explains the code
extraction and the program instrumentation and verification.
Finally, Section VI provides a brief discussion of the most
relevant outcomes of this work, Section VII discusses the
related work, and Section VIII concludes the paper.

II. THE DAIDALUS LIBRARY

DAIDALUS is a software library developed at NASA that
implements a Detect-and-Avoid alerting logic for unmanned
systems. In DAIDALUS, the condition of Well-Clear is defined
in the context of an encounter between two aircraft, usually

called the ownship and the intruder. These conditions are
stated in an intruder-centric manner, meaning that the informa-
tion describing the encounter is expressed relative to the state
of the intruder. In particular, DAIDALUS includes definitions
determining when the aircraft are in a situation of violation
of well-clear. This violation occurs when (a) the two aircraft
are already close enough, or (b) they will be close enough
if they keep the same orientation and velocity. This notion is
expressed in terms of horizontal (1) and vertical (2) well-clear
violation.

This section presents a high-level description of the well-
clear concepts defined in [11]. For details and further expla-
nation, the reader is referred to that work. In the following,
s and v denote vectors of dimension 3 and the subindices
x, y, and z are used to indicate their first, second, and third
component respectively. Two-dimensional vectors are used to
describe the horizontal position (sh

def
= (sx, sy)) and velocity

(vh
def
= (vx, vy)) of the ownship with respect to the intruder.

Additionally, ∥ ⋅ ∥ denotes the Euclidean norm.

WCVH(sh,vh)
def
= ∥sh∥ ≤ δd ∨ (0 ≤ τmod(sh,vh) ≤ δt∧

dcpa(sh,vh) ≤ δhmd)
(1)

The values δd, δt, and δhmd are parameters of the model,
used as thresholds for distance and time. The function τmod,
defined below, is an approximation for the time of closest point
of approach, i.e., the instant in which both aircraft would be
closer to each other than in any other moment. Below, and in
the rest of this paper, the dot product between two vectors (for
example, a and b) is denoted by their juxtaposition (ab).

τmod(sh,vh)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

δ2d−s
2
h

shvh
if shvh < 0

−1 otherwise
(2)

The function dcpa calculates the projected horizontal distance
between the aircraft at their closest point of approach, assum-
ing the velocity and orientation remain constant. The definition
of dcpa relies on the actual calculation of the time of closest
point of approach (tcpa). Both notions are formally stated
below.

dcpa(sh,vh)
def
= ∥sh + tcpa(sh,vh)vh∥ (3)

tcpa(sh,vh)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

sh⋅vh

v2
h

if ∥vh∥ > 0

0 otherwise
(4)

The violation of vertical well clear is defined analogously
to its horizontal counterpart; using the scalars vertical position
sz and velocity vz , and the time to co-altitude (tcoa) instead
of the time to the closest point of approach.

WCVV(sz, vz)
def
= ∣sz ∣ ≤ δz ∨ 0 ≤ tcoa(sz, vz) ≤ δtcoa (5)

tcoa(sz, vz)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

−sz
vz

if szvz < 0
−1 otherwise

(6)

Given their relative position and velocity, two aircraft are
considered to be in well-clear violation when both horizontal
and vertical violations occur.

WCV(s,v) ⇐⇒ WCVV(sz, vz) ∧ WCVH(sh,vh) (7)
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The DAIDALUS library also provides conflict detection
algorithms whose purpose is to check whether the well-clear
condition is predicted to be violated within a given timeframe.
The function WCVintV computes a time interval, included in a
given lookahead interval t = [b, t] ⊂ R, in which vertical well-
clear is violated at every moment. If no such interval exists,
the empty set is returned.

WCVintV(t, sz, vz)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t if vz = 0 ∧ ∣sz ∣ ≤ δz
∅ if vz = 0 ∧ ∣sz ∣ > δz
[max(b, c0),min(t, cF )] if vz ≠ 0 ∧ b ≤ c0, cF ≤ t

∅ otherwise

(8)

where c0
def
=
−sign(vz)max(δz,δtcoa∣vz ∣)−sz

vz
and cF

def
=
−sign(vz)δz−sz

vz
.

Definitions such as c0 and cF , for which no equation numbers
are provided, should be understood as syntactic abbreviations
used to improve the presentation.

Similarly, the function WCVintH returns a time interval
included in [0, t] in which the condition of horizontal well-
clear is violated at every moment, if such interval exists.

WCVintH(t, sh,vh)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, t] if a = 0 ∧ s2h ≤ δ
2
D

[0,min(t,Θ+sh,vh
)] if a ≠ 0 ∧ s2h ≤ δ

2
D

∅ if s2h > δ
2
D ∧ (shvh ≥ 0 ∨∆a,b,c < 0)

[max(0, r−a,b,c),min(t,Θ+sh,vh
)]

if s2h > δ
2
D ∧ shvh < 0 ∧∆a,b,c ≥ 0∧

∆R×R
sh,vh

≥ 0 ∧ r−a,b,c ≤ t

∅ otherwise

(9)

where
● a

def
= v2

h,
● b

def
= 2 shvh + δtv

2
h,

● c
def
= s2h + δtshvh − δ2D,

● ∆a,b,c
def
= b2 − 4ac,

● r−a,b,c
def
= 1

2a
(−b −

√
b2 − 4ac),

● Θ+sh,vh

def
= 1

v2
h

(−shvh +
√
(shvh)

2 − 4v2
h(s

2
h − δ2D)), and

● ∆R×R
sh,vh

def
= δ2Dv2

h − (shvh
�)2.

The two functions defined above can be used to calculate
a time interval of well-clear violation. In the following,
V def
= WCVintV(t, sz, vz), and H def

= WCVintH(tend − tbegin, sh +
lb(V)vh,vh) where [tbegin, tend] = t.

WCVint(t, s,v)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if V = ∅
V if lb(V) = ub(V) ∧ WCVH(sh + lb(V)vh,vh)

∅ if lb(V) = ub(V) ∧ ¬WCVH(sh + lb(V)vh,vh)

∅ if ub(V) − lb(V) > 0 ∧H = ∅
[lb(H) + lb(V), ub(H) + lb(V)] otherwise

(10)

where lb and ub return the lower and upper end-point of a
given non-empty closed interval, respectively.

The predicate WCV? determines if there is a subinterval of
t where a violation of well-clear occurs.

WCV?(t, s,v) ⇐⇒ WCVint(t, s,v) ≠ ∅ (11)

The equations in this Section are a simplified version of the
definitions originally presented in [12] where properties and
additional definitions can be found.

III. VERIFICATION APPROACH

The verification approach used in this paper relies on the
integrated toolchain presented in [7] which is composed of
several formal methods tools:
● PRECiSA [8], [9], a static analyzer for floating-point

programs,2

● the global optimizer Kodiak [13],3

● Frama-C [10], a collaborative tool suite for the analysis
of C code, and

● the Prototype Verification System (PVS) [14], a verifica-
tion environment consisting of a specification language,
a large number of predefined theories, and an interactive
theorem prover.

PRECiSA is a static analyzer for floating-point programs
that computes sound and accurate round-off error estimations
and provides support for a large variety of mathematical
operators and programming language constructs. Given a
floating-point program, PRECiSA generates a symbolic error
expression modeling an over-approximation of the round-off
error that may occur in the program. This error expression is a
function of the input variables of the program and their asso-
ciated rounding error. Given input ranges for these variables,
PRECiSA uses the Kodiak global optimizer to maximize the
round-off error expressions. Additionally, PRECiSA generates
formal certificates ensuring that these bounds are correct with
respect to the IEEE Standard for Floating-Point Arithmetic
(IEEE 754). These certificates are output in the language of
PVS, which can be used to mechanically check their validity.
Even though proofs in PVS are expected to be carried out
following user guidance in general, this process is automatic
thanks to an available collection of proof strategies targeted to
this particular application.

One of the more recent extensions of PRECiSA [7], in-
cludes the addition of a code-extraction capability that auto-
matically generates a floating-point C implementation from
a real-number function expressed in the language of PVS.
The generated C code is instrumented to detect whether the
floating-point computational flow diverges from its ideal real
number counterpart, and it is automatically annotated with
program contracts stating the formal relationship between real
and floating-point computations. These contracts are written
in the ANSI/ISO C Specification Language (ACSL) which
can be processed by Frama-C. Frama-C is a collaborative
modular platform for the analysis of C programs. In this work,
the Frama-C weakest precondition (WP) plug-in is used to

2PRECiSA is available at https://github.com/nasa/PRECiSA.
3Kodiak is available at https://shemesh.larc.nasa.gov/fm/Kodiak/.

239

https://github.com/nasa/PRECiSA
https://shemesh.larc.nasa.gov/fm/Kodiak/


generate verification conditions in the language of PVS and
it is customized to integrate the PVS certificates generated by
PRECiSA into the proof of such verification conditions.

An overview of the verification approach applied to the
well-clear calculations in DAIDALUS is depicted in Fig. 1.
First, the PVS higher-order specification of DAIDALUS is
manually rewritten using only first-order constructs. This is
achieved by replacing each higher-order argument with a
specific function instantiation. For instance, the original defi-
nition for the violation of vertical well-clear is parametric on
the technique used to approximate the time of closest point
of approach. Such parameter was replaced by a particular
concrete calculation of this time, resulting in the definition
shown in (5). While this kind of simplification cannot be
performed in general by preserving the semantics of the
program, the nature of the higher-order parameters used in
DAIDALUS allowed to simplify the definitions even though
this change resulted in a less general specification. The first-
order specification is mechanically proved equivalent to the
higher-order one within PVS. The higher-order specification
is instantiated with the specific functions used in the first-
order one as parameters. This simplification was necessary
since PRECiSA does not yet provide support for the use of
higher-order arguments in the input program.

Then, a program slicing technique is applied to the first-
order specification to obtain a set of simpler descriptions. This
program slicing is proved to be semantically equivalent to the
original specification. The next section provides more details
on the slicing process and the resulting fragmentation of the
specification.

Each specification slice is input to PRECiSA which auto-
matically extracts the corresponding annotated floating-point
C code and generates the corresponding PVS proof certificates
ensuring the correctness of the round-off error estimations
used in the code extraction and instrumentation. Since the
extracted C code implements each of the slices of the original
specification, it is necessary to develop a top-level module in
C providing the same functionality as the involved functions in
DAIDALUS. Basically, this top-level function selects the proper
slice given an unrestricted input and calls the corresponding
C function. The top-level function was manually developed
and annotated with specific program contracts to ensure its
compliance with the original specification. The details about
this function are explained in Sect. V.

Frama-C was used to analyze both the automatically gen-
erated C functions from each slice and the top-level function.
Finally, the verification conditions output by Frama-C were
proved in the PVS theorem prover. While these proofs were
made interactively for this particular application of the tech-
nique, they can be automated since they rely heavily on the
structure of the program. The automation of the proofs is left
as future work.

IV. SPECIFICATION SLICING

Program Slicing [15], [16] is a technique generally applied
on source code to analyze particular behaviors of software.

DAIDALUS
PVS Higher-order
Real Specification

PVS First-order
Real Specification

PVS sliced
Specification

PVS sliced
Specification

PVS sliced
Specification PRECiSA

Kodiak

PVS round-off errors
certificates

PVS

Instrumented
ACSL/C program

Frama-C

Verification
Conditions

Fig. 1. Workflow of the verification approach.

TABLE I
NAME OF THE MAIN PREDICATE ON EACH SLICE.

horizontal vertical decrease maintain increase
separation separation vz < 0 vz = 0 vz > 0

alter vx ≠ 0 ∨ vy ≠ 0 WCV?↔↓ WCV?↔⋅ WCV?↔↑
maintain vx = 0 ∧ vy = 0 WCV?↓

⋅ WCV?⋅
⋅ WCV?↑

⋅

However, in this work, it was applied to the specification of
the definitions presented in Section II as a way to address
scalability issues in the PRECiSA code extraction. The slicing
approach used in this work was first introduced by Canfora et
al. [17] and Ning et al. [18] and it is known as Conditioned
Slicing [19]. Essentially, it proposes the decomposition of a
program into independent simpler parts, called slices, accord-
ing to its control flow graph as defined by the guards in the
branching instructions appearing in the program. Each slice
runs under the assumption of specific restrictions on the inputs,
determining the execution of a particular path in the control
flow graph of the original program.

For this case study, the criterion used to select the restriction
on the inputs producing the slices was focused on the different
cases determined by the possible relative velocities of the
aircraft, as given in the branches of the source code. Three
possible situations regarding relative vertical velocity were
considered: maintaining separation (null relative vertical veloc-
ity), increasing separation (positive relative vertical velocity),
and decreasing separation (negative relative vertical velocity).
In terms of horizontal relative velocity, only the cases altering
separation or maintaining separation were considered. Hence,
a total of six slices were defined by applying this criterion
on the predicate presented in (11) which is the topmost
declaration in the Well-Clear module. Table I shows the name
of the topmost predicate in each slice.

To exemplify how the slices are actually defined, Equa-
tion (12) shows the entry point for the slice describing a situa-
tion of maintaining vertical separation and altering horizontal
separation, given by the conditions vz = 0 and vx ≠ 0∨vy ≠ 0.

WCV?↔⋅(t, s,v) ⇐⇒ (∣sz ∣ ≤ δz ∧

WCVH?↔⋅(tF − t0, sx + t0vx, sy + t0vy,vx,vy)) (12)

where WCVH?↔⋅ is a predicate checking whether the WCVintH
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function from (9) returns a non-empty interval when the
conditions defining the slice hold.

WCVH?↔⋅(t, sh,vh) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r+a,2shvh,s2h−δ
2
D
≥ 0 if s2h ≤ δ

2
D

(0 ≤ r−a,b,c ≤ t ∧ r−a,b,c ≤ r
+

a,2shvh,s2h−δ
2
D
)∨

(r−a,b,c < 0 ∧ r+a,2shvh,s2h−δ
2
D
≥ 0)

if s2h > δ
2
D ∧ shvh < 0 ∧∆a,b,c ≥ 0∧

∆R×R
sh,vh

≥ 0 ∧ r−a,b,c ≤ t

false otherwise

(13)

Above, a, b, c, ∆a,b,c, r−a,b,c, and ∆R×R
sh,vh

are as in (9), and

r+a,b,c
def
=
−b+
√

∆a,b,c

2a
. The following theorem validates that

the decomposition proposed by the slicing process correctly
captures the semantics of the original specification.

Theorem 1: [Slicing Correctness] For all time interval
t ⊂ R and all pair of three-dimensional vectors s,v ∈ R3,
WCV?(t, s,v) holds if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WCV?↔↓(t, s,v) when vz < 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?↓
⋅
(t, s,v) when vz < 0 ∧ (vx = 0 ∧ vy = 0)

WCV?↔↑(t, s,v) when vz > 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?↑
⋅
(t, s,v) when vz > 0 ∧ (vx = 0 ∧ vy = 0)

WCV?↔⋅(t, s,v) when vz = 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?⋅
⋅
(t, s,v) when vz = 0 ∧ (vx = 0 ∧ vy = 0)

As one of the contributions of the present work, the def-
inition of the predicates in Table I and the theorem above,
along with all the ad-hoc lemmas needed in its proof, were
mechanically checked using the PVS theorem prover.

V. CODE EXTRACTION AND VERIFICATION

The round-off error occurring in the guards of conditionals
can provoke the floating-point control flow to diverge with
respect to its ideal real-numbers counterpart. The guards in
a program where such a phenomenon can occur are called
unstable conditions. As another of its features, the code
extracted by PRECiSA is instrumented to emit a warning when
such conditions may occur. This instrumentation is based on
the program transformation presented in [20]. In the rest of
this section, the code extraction procedure is outlined. As part
of the verification presented in this paper, this procedure was
applied to each of the slices of the specification described in
the previous section.

A. Processing the slices

Given the specification of a real-valued program, understood
as a collection of functions collaborating to compute a deter-
mined result, and the desired floating-point format (single or
double precision), PRECiSA replaces each real arithmetic op-
erator with its floating-point counterpart. Then, it modifies all
the conditional statements. Each guard is replaced by a more
restrictive one that takes into account the round-off error that
may occur. This round-off error is computed with PRECiSA.

Additionally, a warning is emitted when the original guard may
be evaluated differently in real and floating-point arithmetic.
This warning is denoted by a distinguished value disjoint
from the floating-point domain. Getting such a warning as the
result of a computation implies that, for the inputs provided, it
cannot be guaranteed that the floating-point execution follows
the same control flow as its real-valued counterpart. This
divergence could provoke a much bigger error in the numerical
final result than the accumulated round-off error that occurred
in the evaluation of an arithmetic expression. It is worth
noting that, since the round-off error estimation computed by
PRECiSA is a sound over-approximation of the error that may
occur, false warnings may arise. However, it is guaranteed that
all the instabilities are detected.

For instance, the floating-point function depicted below is
the result of applying this instrumentation on the function
τmod, defined by (2), whose goal is to approximate the time
of closest point of approach of two aircraft. Here and in the
rest of this paper, the tilde over a variable, an operator, or a
function denotes the fact that it belongs to the floating-point
domain.

τ̃ ′mod(s̃x, ṽx, s̃y, ṽy, ϵ) (14)
= if s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy < −ϵ

then (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy)

elsif s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ≥ ϵ̃ then −1

else ω

When the evaluation of s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy lies in the interval
[−ϵ, ϵ) the function above signals a warning by returning the
value ω. The new argument of the function, ϵ, is expected
to be an over-approximation of the round-off error that may
occur when computing s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy .

Listing 1 shows the C code and the ACSL annotations
generated by PRECiSA for the function τmod. The C function
taumod fp mimics the definition of τ̃ ′mod, while the annota-
tions express the contracts enforcing the properties explained
above. The type double′ is the implementation of a union
type consisting of the double datatype and the ω warning
value4. In ACSL, the keywords requires and ensures are used
to describe preconditions and postconditions of a function,
respectively. The main precondition of taumod fp (line 9)
restricts ϵ to be a non-negative representable numeric value,
i.e., it cannot be an infinite or a NaN. The postcondition on
line 10 ensures that when the result is not ω, it is the same
as the one computed by the floating point version of τmod

(before the instrumentation). The following postcondition (line
11) states that, if additionally to the result not being ω, the
argument ϵ is a sound approximation of the round-off error
of the guard, then no unstable conditions occur, meaning that
the guard has the same value under both floating-point and
real-valued arithmetic. This latter condition is expressed by
the predicate stable pathsτm defined on lines 5-7.

4For ease of reading no explicit projection of the values in the union type
are used.
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1 / *@
2 double taumodfp ( double s̃x , ṽx , s̃y , ṽy ) = /let g̃ = s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ;
3 g̃ < 0 ? (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ g̃ : −1.0 ;
4
5 predicate stable pathsτm ( r e a lvx ,vy ,sx ,sy , double ṽx , ṽy , s̃x , s̃y )=
6 /let g̃ = s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ; /let g = sx ∗ vx + sy ∗ vy ;
7 (g < 0 ∧ g̃ < 0 )∨ (g ≥ 0 ∧ g̃ ≥ 0 ) ;
8
9 requires : /is finite? (ϵ )∧ ϵ ≥ 0 ;

10 ensures : /result ≠ ω⇒ /result = taumodfp(s̃x, ṽx, s̃y, ṽy)
11 ensures : ∀ r e a l vx, vy, sx, sy ;
12 /result ≠ ω ∧ ∣(s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) − (sx ∗ vx + sy ∗ vy)∣ ≤ ϵ
13 ⇒ stable pathsτm (vx ,vy ,sx ,sy , ṽx , ṽy , s̃x , s̃y ) ;
14 * /
15 double′ taumod fp ( double s̃x , ṽx , s̃y , ṽy , ϵ̃){
16 i f ( s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy < −ϵ̃ )
17 re turn (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) ;
18 e l s e i f ( s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ≥ ϵ̃ )
19 re turn − 1 . 0 ;
20 e l s e
21 re turn ω ;
22 }

Listing 1. C function and annotations generated by PRECiSA for τmod. Some
syntactic simplifications were applied to the code in this listing for ease of
reading, e.g., the use of the infix version of some operators and avoiding the
repetition of the type of the function parameters, among others.

As already mentioned, PRECiSA is able to compute con-
crete error bounds for the guards when the user provides
specific ranges for the arguments. For instance, let’s assume
that the ranges for the input variables are the following:
sx ∈ [1,185200] meters, sy ∈ [1,15240] meters, vx ∈ [1,720]
meters per second, and vy ∈ [2,720] meters per second. If
double precision floating-point precision is selected, PRECiSA
computes the round-off error bound ϵ = 4.58 × 10−8 for the
expression s̃x ∗̃ṽx +̃s̃y ∗̃ṽy . Notably, PRECiSA also generates a
formal certificate of the validity of this bound, which consists
in a theorem that can be mechanically checked in the PVS
theorem prover. For the τmod example, such a theorem can be
expressed as it is shown below.

Theorem 2 (Error bound for the guard in τmod): For all real
values vx, vy, sx, sy and floating-point numbers ṽx, ṽy, s̃x, s̃y ,
if sx ∈ [1,185200], sy ∈ [1,15240], vx ∈ [1,720], vy ∈
[2,720], and each float is the rounding of the respective real,
then

∣(s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) − (sx ∗ vx + sy ∗ vy)∣ ≤ 4.58 × 10−8 .

This theorem can be used to prove that one of the hypothe-
ses of the ensures clause in lines 11-13 of Listing 1 holds
when velocities and positions are in the specified ranges and
ϵ is instantiated with the value from the theorem. Then, under
these assumptions, such ensures guarantees that float and real
flows do not diverge. Furthermore, the accumulated round-
off error in the final result of taumod fp is the maximum
between the accumulated round-off errors in the expressions of
each branch of the if-then-else that does not return a warning
(ω). Again, PRECiSA is used to calculate a bound for such
an error for every one of these expressions under the same
assumption on the input values. In the case of τmod, these
bounds are 6.62 × 10−2 for the first branch and 0 for the
second, since −1 is a value that can be exactly representable
in floating points. This kind of deduction can be repeated for

1 / *@
2 r e a l τmod ( r e a l sx, vx, sy, vy ) = /let g = sx ∗ vx + sy ∗ vy ;
3 g < 0 ? (δd ∗ δd −̃ sx ∗ sx + sy ∗ sy)/g : −1 ;
4
5 ensures : ∀ r e a l vx, vy, sx, sy ;
6 1 ≤ vx ≤ 720 ∧ 2 ≤ vy ≤ 720 ∧ 1 ≤ sx ≤ 185200 ∧ 1 ≤ sy ≤ 15240 ∧

7 ∣ ṽx −vx∣ ≤
ulp(vx)

2 ∧ ∣ ṽy −vy ∣ ≤
ulp(vy)

2 ∧

8 ∣ s̃x −sx∣ ≤
ulp(sx)

2 ∧ ∣ s̃y −sy ∣ ≤
ulp(sy)

2 ∧

9 /result ≠ ω

10 ⇒ ∣/result − τmod(sx, vx, sy, vy)∣ ≤ 6.62 × 10−2 ;
11 * /
12 double′ taumod num ( double s̃x , ṽx , s̃y , ṽy ){
13 re turn taumod fp ( s̃x , ṽx , s̃y , ṽy , 0x1.897f000000001p − 25 ) ;
14 }

Listing 2. Concrete C function generated by PRECiSA for τmod.

each collection of input ranges provided by the user. PRECiSA
summarizes it in a new annotated C function. This kind of
function is called concrete or numerical in the context of this
work and it only consists of a call to the function in Listing 1
instantiated with the error estimation computed by PRECiSA
(0x1.897f000000001p − 25 is the hexadecimal representation
of the value 4.58×10−8); the latter function, for contraposition,
is called generic.

Listing 2 shows the concrete function and its associated
annotations for τmod under the assumptions on the inputs
described above. The formula on line 6 enforces the restriction
on the inputs. Lines 7-8 states the relation between the real and
the corresponding floating-point values, as in the hypothesis in
Theorem 2. The program contract finishes ensuring that under
the mentioned conditions, the difference between the result of
the C function and its real-valued specification is at most the
estimation computed by PRECiSA.

While Listings 1 and 2 serve as a useful hint to picture
the implementation and contracts of more complex functions
returning numeric values, the application of the code extraction
process to the predicates in the sliced DAIDALUS specification,
e.g., WCV?↔↓, WCV?↓

⋅ , etc., deserves a closer look. For each
predicate in the input specification, PRECiSA generates two
pairs of C functions. Each of these pairs, as in the case of the
functions with numeric return values, consists of a generic
and a concrete C function. One of the pairs describes the
cases in which the original predicate returns an affirmative
answer (true) while the other characterizes the inputs for
which a negative answer (false) is obtained. For instance,
Listing 3 shows a fragment of the program contracts for
the C functions extracted from the predicate WCV?↑

⋅ . Actual
definitions are omitted because of space limitations. The pred-
icate wcv inc mtn (line 2) is the real number counterpart of
WCV?↑

⋅ , while wcv inc mtn fp (line 3) is the ACSL floating-
point version of WCV?↑

⋅ . The predicate WCVint inc mtn plus
is a new predicate such that if it is satisfied then both
wcv inc mtn and wcv inc mtn fp are satisfied. This means
that both real and floating-point evaluations of the predicate
WCV?↑

⋅ are true. Conversely, WCVint inc mtn minus is a new
predicate such that if it is satisfied then neither wcv inc mtn
nor wcv inc mtn fp are satisfied. This means that both real
and floating-point evaluations of the predicate WCV?↑

⋅ are false.
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1 / *@
2 p r e d i c a t e wcv inc mtn ( r e a l b, t, vx, vy, vz, sx, sy, sz) = ⋯ ;
3 p r e d i c a t e wcv inc mtn fp ( double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz) = ⋯ ;
4 ⋯
5 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
6 /result ≠ ω ∧ /result
7 ⇒ (wcv inc mtn(b, t, vx, vy, vz, sx, sy, sz) ∧

8 wcv inc mtn fp(̃b, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz)) ;
9 * /

10 bool′ WCVint inc mtn plus ( double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz ){⋯}
11
12 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
13 /result ≠ ω ∧ /result
14 ⇒ (!wcv inc mtn(b, t, vx, vy, vz, sx, sy, sz) ∧

15 !wcv inc mtn fp(̃b, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz)) ;
16 * /
17 bool′ WCVint inc mtn minus ( double b̃, t̃, s̃x, s̃y, s̃z ,̃ vx, ṽy, ṽz ){⋯}

Listing 3. Excerpt from the program contracts in the generic function
generated by PRECiSA for the WCV?↑

⋅ predicate.

The return type of these C functions (bool′) represents the
implementation of the union type between the bool datatype
and the ω value. Hence, in lines 6 and 13, if the result is not a
warning, it means that no instability occurred in the functions
called by the predicate.

Once each slice of the specification was input to PRECiSA
to obtain the corresponding annotated C code, Frama-C was
used to verify that this implementation actually fulfills the con-
tracts stated by the annotations. As explained in the paragraphs
above, the validity of these contracts is mainly supported by
the error-bound certificates generated by PRECiSA, which are
output in PVS language and depend on the definitions and
properties declared in the axiomatic floating-point formaliza-
tion from NASALib. For this reason, a particular customization
was applied to Frama-C in order to generate the verification
conditions in the language of PVS and use the aforementioned
floating-point formalization.

B. The top-level function

The process described above generates code for each slice
of the specification and verifies its compliance to the cor-
responding predicate from Table I. Nevertheless, in order to
generate code with the same applicability as the original target,
i.e., the predicate WCV? from (11), an additional layer of C
code is needed. This layer is responsible for selecting the
slice activated by the inputs and invoking the corresponding
function.

Listing 4 shows an excerpt from the generic top-level
function. The postcondition states that if the computation does
not raise a warning and the ϵ parameters actually denote
bounds for the errors in the conditionals defining the control
flow graph of the whole program, then the result is equivalent
to the original Well-Clear predicate WCV? defined in (11).
The proof of the verification condition generated from this
contract relies on the contracts of the invoked functions,
e.g., WCVint inc mtn plus and WCVint inc mtn minus in
the excerpt, and the Slicing Correctness Theorem 1. As in
the lower layers, accompanying concrete C functions were
defined, where the error-bound parameters ϵ are instantiated

1 / *@
2 p r e d i c a t e wcv in range ( r e a l b, t, vx, vy, vz, sx, sy, sz ) =
3 // WCV? ((b, t), (vx, vy, vz), (sx, sy, sz)) from Eq. (11)
4 ⋯
5 r e q u i r e s : /is finite(ϵ̃0) ∧ ϵ̃0 ≥ 0 ∧⋯ ∧ /is finite(ϵ̃3) ∧ ϵ̃3 ≥ 0 ;
6 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
7 ∣(δ̃z −̃ ṽz ∗̃ δ̃tcoa) − (δz − vz ∗ δtcoa)∣ ≤ ϵ̃0 ∧
8 ∣(t̃ −̃ coalt t inc vz fp(s̃z, ṽz)) − (t − coalt t inc vz(sz, vz))∣ ≤ ϵ̃1 ∧

9 ∣(coalt b inc vz fp(s̃z, ṽz) −̃ b̃) − (coalt b inc vz(sz, vz) − b)∣ ≤ ϵ̃2 ∧
10 ⋯

11 /result ≠ ω
12 ⇒ (/result⇔ wcv in range(b, t, vx, vy, vz, sx, sy, sz)) ;
13 * /
14 bool′ WCV interval ( double b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ϵ̃0 , ϵ̃1 , ϵ̃2 , ϵ̃3 ,⋯){
15 bool′ r e s ;
16 i f ( ṽz > 0 . 0 ) // increasing vertical separation
17 i f ( ṽx == 0 . 0 && ṽy == 0 . 0 ){ // maintaining horizontal separation
18 r e s = WCVint inc mtn plus ( b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ϵ̃0 , ϵ̃1 , ϵ̃2 , ϵ̃3 ) ;
19 i f ( r e s == ω | | r e s ) re turn r e s ;
20 r e s = WCVint inc mtn minus ( b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ϵ̃0 , ϵ̃1 , ϵ̃2 , ϵ̃3 ) ;
21 i f ( r e s == ω ) re turn ω ;
22 i f ( r e s ) re turn f a l s e ;
23 re turn ω ;
24 } e l s e {
25 ⋯

26 }
27 e l s e {
28 ⋯

29 }
30 }

Listing 4. Excerpt from the generic top-level function.

with concrete values computed by PRECiSA, given user-
provided ranges for the rest of the inputs.

One may wonder if the top-level function implementation
is subject to conditional instability. However, it can be noticed
that the guards used to select the program slice are sign
checks on input values that come from an external sensor or
data. In these cases, the rounding error corresponds to the
representation error on this value which does not affect its
sign.

The top-level functions and the accompanying annotations
were developed by hand for this case study. Nevertheless,
once the criteria to be used to define the slicing is selected,
the development of these functions and their annotations is
almost mechanic, at least for applications like this one, where
quite simple slicing conditions are used. The automation of
this stage of the technique is one of the possible extensions to
this work.

VI. DISCUSSION

The goal of the work presented in this paper is the extraction
and verification of a floating-point C implementation from
a proven correct real-valued specification of an algorithmic
solution for a safety- and mission-critical problem. When
trying to apply the toolchain presented in [7] several practical
issues were addressed and new improvements were proposed.
This section provides a brief summary of the most significant
of them.

The first impediment that prevented the existent toolchain
to be applied as in the past was the presence of higher-order
elements in the input specification. This issue was addressed
by restating several of the declarations into a more concrete
form, avoiding the use of higher-order parameters. The level

243



of effort involved in the application of this simplification
could be seen as non-trivial since there were changes in
many of the lines of the original specification. Nevertheless,
in the majority of the cases, each change was simple and
it could be applied in a mechanical way. For this concrete
case study, the transformation to first order is a process that
could have been performed automatically. In fact, part of the
future lines of research is devoted to the development of an
automatic procedure to simplify higher-order features from a
PVS specification.

After simplifying the original declarations, the resulting
first-order specification was fed to PRECiSA. Nevertheless, the
process had to be aborted after reaching a time-out of three
hours without a response. This impact on the performance
could possibly be explained by the number of different flows
starting at the top-level function WCVint, presented in (10),
which provokes the generation of huge error expressions. The
manipulation of such expressions deemed the code-generation
process to be impractical. The step that allowed pushing
PRECiSA beyond its scalability limit was the application of
a slicing-based simplification on the first-order specification.
The automatic generation of code performed by PRECiSA
took less than 15 minutes to finish for the whole collection
of slices on the same machine. This improvement is related to
the fact that in the DAIDALUS specification some checks on the
velocities and positions are repeated along the same branch in
the control flow tree. In addition, this phenomenon is repeated
in several different branches. The slicing of the specification
lifted to the top-level several of these checks, reducing the
complexity of each individual slice. While the selection of the
slicing criteria would depend on human insight in the general
case, once it is decided, the automation of most of the tasks
related to the process and integration of the slices into the final
analysis is expected to be feasible, at least in examples with
a complexity similar to the one presented in this paper.

Another distinguishing feature of this work is the use of a
new formalization for floating-point numbers5. This formaliza-
tion is different from the one used in previous works in several
aspects. Mainly, it is defined in an axiomatic way, which
has a significant impact on the type-checking time of PVS,
improving it by a factor of six. Since the verification conditions
output by Frama-C are expressed in terms of floating-point
and real-valued operations, the PVS libraries where these
arithmetic domains are defined need to be type checked. The
reduction in the time spent in type-checking improved not
only the flow of the work while the proofs for the verification
conditions were developed, but also decreased the time needed
to rerun such proofs once they were done.

Additionally, this new formalization follows the IEEE-754
standard more closely, including representations for special
values such as Not-a-Numbers (NaN) and infinities. While
the use of a more detailed model usually complicates its
interaction with the rest of the specification, in this work
it was possible to reduce such impact to a minimum. For

5Available at https://github.com/nasa/pvslib/tree/master/float/axm bnd.

instance, the only place where a restriction about finiteness
of the floating-point representations is explicitly used is for
predefined constants and error-bound parameters, as can be
seen in the requires of all the listings above.

On the bright side, the gain of using this more detailed
formalization is at the semantic stance. It is not uncommon to
simplify some aspects of the models when a formalization is
designed. For the case of floating-point numbers, usually, some
aspects of the IEEE-754 standard, such as the special values,
are left aside because they complicate the formalization by
introducing the need to handle a nontrivial number of special
cases. Nevertheless, since the special values are supported by
the C language, working with a conceptual model that does
not support them could introduce space for flaws undetectable
by the analysis.

It is important to note that the almost seamless integration
with this new formalization was possible because the check
for finiteness was encapsulated in the error-bound certificates
generated by PRECiSA. As part of the automatic proof for
certificates as the one expressed by Theorem 2, the numeric
expressions (including subexpressions) appearing in them are
checked to remain in the floating-point representable domain,
therefore no infinite values or overflows occur. This check
is done by using a branch-and-bound optimization algorithm
implemented in the logic of PVS itself [21]. Notably, this
process provides hints on overflow detection since if the solver
cannot decide whether the numeric expressions remain in the
representable range for the inputs provided by the user, the
proof of the certificate cannot be completed. In other words,
if PVS cannot automatically prove the error certificate using
the PRECiSA proof strategies, the user is directed to look for
a possible overflow condition in their program.

VII. RELATED WORK

Different tools have been proposed to reason about the
numerical aspects of C programs. In this work, a combination
of PRECiSA, PVS, and Frama-C [10] is used. Support for
floating-point round-off error analysis in Frama-C is also
provided by the integration with the tool Gappa [22]. However,
the applicability of Gappa is limited to straight-line programs
without conditionals, and it often requires providing additional
ACSL intermediate assertions and hints through annotation
that may be unfeasible to generate automatically. The in-
teractive theorem prover Coq can also be applied to prove
verification conditions on floating-point numbers thanks to the
formalization defined in [23]. Nevertheless, Coq [24] tactics
are not available to automatize the verification process.

Several approaches have been proposed for the verification
of numerical C code by using Frama-C in combination with
Gappa and/or Coq [25]–[30].

In [31], a preliminary version of the technique presented in
this paper is used to verify a specific case study of a point-
in-polygon containment algorithm. In [7], the verification
approach is presented and applied to a small fragment of
DAIDALUS. Note, in both [31] and [7] overflow detection
is not performed.
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Besides Frama-C, other formal methods tools are available
to analyze the numerical properties of C code. Fluctuat [32]
is a static analyzer that, given a C program with annotations
about input bounds and uncertainties on its arguments, pro-
duces an estimation of the round-off error of the program.
Fluctuat detects the presence of possible unstable guards in
the analyzed program, as explained in [33], but does not
instrument the program to emit a warning in these cases. The
static analyzer Astrée [34] detects the presence of run-time
exceptions such as division by zero and under and over-flows
employing sound floating-point abstract domains. In contrast
to the approach presented here, neither Fluctuat nor Astrée
emits proof certificates that an external prover can externally
check.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a formal approach is applied to generate
and verify a floating-point implementation of the DAIDALUS
well-clear specification. This implementation is obtained by
manually simplifying and slicing the original specification and
then utilizing each slice as input to the PRECiSA code genera-
tor. PRECiSA automatically generates a floating-point version
of each slice in C syntax enriched with ACSL contracts stating
the relationship between the ideal real number specification
and the floating-point implementation. In addition, PRECiSA
instruments the code to detect control flow divergences due to
rounding errors.

The generated C implementation of each slice is analyzed
within the Frama-C analyzer. In particular, the WP plugin is
used to compute a set of verification conditions that are proved
within the PVS theorem prover. These verification conditions
ensure that the accumulated rounding error is bounded, all
flow divergences are detected, and no overflow occurs.

The verification of the DAIDALUS well-clear C imple-
mentation relies on three different tools: the PVS interactive
prover, the Frama-C analyzer, and PRECiSA. All of these
tools are based on rigorous mathematical foundations and have
been used in the verification of industrial and safety-critical
systems. The C floating-point transformed program, the PVS
verification conditions, and the round-off error bounds are
automatically generated. However, a certain level of expertise
is needed for proving the PVS verification conditions gen-
erated by Frama-C and for proving the equivalence between
the original DAIDALUS specification and the simplified and
sliced one.

In the future, the authors plan to improve the automation
degree of the slicing and top-layer function generation. Static
analysis techniques may be used since the slices are built
according to the program branches. The authors also plan
to simplify the structure of the ACSL contracts generated
by PRECiSA to facilitate human inspection and to produce
simpler verification conditions. Automatic strategies are al-
ready available in PRECiSA to discharge the PVS certificates
ensuring the correctness of the rounding error bounds and
to prove certain verification conditions generated by the WP
analysis. However, additional work needs to be done to fully

automatize this process because of the new extended floating-
point formalization used in this paper.

Another line of future research is motivated by the eval-
uation of the impact of the process of generation of a safer
program on its final performance with respect to existing im-
plementations. For instance, the reference implementation for
DAIDALUS is expected to outperform the code generated by
PRECiSA since some overhead is introduced by checking the
stability of every guard. Nevertheless, in aerospace software
such as the DAIDALUS library in which no iterative statements
are allowed, this kind of overhead could result to be negligible
or at least acceptable in real-world deployments, weighting
the higher level of safety provided by the code generated by
PRECiSA.
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[13] A. P. Smith, C. Muñoz, A. J. Narkawicz, and M. Markevicius, “A
rigorous generic branch and bound solver for nonlinear problems,” in
Proceedings of the 17th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2015, 2015, pp.
71–78.

[14] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype verification sys-
tem,” in Proceedings of the 11th International Conference on Automated
Deduction (CADE). Springer, 1992, pp. 748–752.

245

https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://easychair.org/publications/paper/g1Rs


[15] M. D. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, San Diego, California, USA,
March 9-12, 1981. IEEE Computer Society, 1981, pp. 439–449.

[16] ——, “Program slicing,” IEEE Trans. Software Eng., vol. 10, no. 4, pp.
352–357, 1984.

[17] G. Canfora, A. Cimitile, A. D. Lucia, and G. A. D. Lucca, “Software
salvaging based on conditions,” in Proceedings of the International Con-
ference on Software Maintenance, ICSM 1994, Victoria, BC, Canada,
September 1994, H. A. Müller and M. Georges, Eds. IEEE Computer
Society, 1994, pp. 424–433.

[18] J. Q. Ning, A. Engberts, and W. Kozaczynski, “Automated support for
legacy code understanding,” Commun. ACM, vol. 37, no. 5, pp. 50–57,
1994.

[19] J. Silva, “A vocabulary of program slicing-based techniques,” ACM
Comput. Surv., vol. 44, no. 3, pp. 12:1–12:41, 2012.
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[30] L. Titolo, M. Moscato, C. Muñoz, A. Dutle, and F. Bobot, “A formally
verified floating-point implementation of the compact position reporting
algorithm,” in Proceedings of the 22nd International Symposium on
Formal Methods (FM 2018), ser. LNCS, vol. 10951. Springer, 2018,
pp. 364–381.

[31] M. Moscato, L. Titolo, M. Feliú, and C. Muñoz, “Provably correct
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