
Formal Methods in Computer-Aided Design 2023

Modular System Synthesis
Kanghee Park Keith J.C. Johnson Loris D’Antoni Thomas Reps

University of Wisconsin–Madison
Madison, USA

{khpark, keithj, loris, reps}@cs.wisc.edu

Abstract—This paper describes a way to improve the scalability
of program synthesis by exploiting modularity: larger programs
are synthesized from smaller programs. The key issue is to
make each “larger-created-from-smaller” synthesis sub-problem
be of a similar nature, so that the kind of synthesis sub-
problem that needs to be solved—and the size of each search
space—has roughly the same character at each level. This work
holds promise for creating program-synthesis tools that have
far greater capabilities than currently available tools, and opens
new avenues for synthesis research: how synthesis tools should
support modular system design, and how synthesis applications
can best exploit such capabilities.

I. INTRODUCTION

In program synthesis, the goal is to automatically (or semi-
automatically) create programs that match high-level intents
provided by a user—e.g., logical specifications or input-output
examples. To date, however, synthesis tools cannot contend
with large programs because they require synthesizing (or at
least reasoning about) a program in its entirety.

The obvious direction is to try to exploit compositionality
and synthesize larger programs by having them invoke other
(already synthesized) programs. Consider for example the
problem of writing a program for a ticket-vendor applica-
tion that can, among other things, issue and reserve tickets.
Building such a system requires creating modules for various
data structures—perhaps a stack and queue—and using these
modules in a top-level module that processes ticket requests.
It is natural to ask whether such modules can be synthesized
separately—i.e., in a compositional fashion.

The fundamental question is

Can one address the scalability problem of program synthe-
sis by exploiting compositionality, so that (i) larger programs
are synthesized from smaller programs, and (ii) each “larger-
created-from-smaller” synthesis sub-problem is of a similar
nature, so that the essence of each sub-problem (and the size
of each search space) has roughly the same character?

A solution to this question is surprisingly tricky to envisage.
Most existing synthesis approaches require having a concrete
semantics or implementation in hand when reasoning about
modules, components, APIs, etc. [5], [18], [20], and such
synthesis tools end up reasoning about the entire program
all the way down to its lowest-level components. Not only
is this approach in fundamental opposition to the “similar-
nature/similar-size” principle articulated above, it makes syn-
thesis increasingly hard as more modules are considered.

Instead, when code is synthesized for some module M ,
all reasoning about lower-level modules {Mi} on which M
directly depends should be carried out in a way that is agnostic
about the implementations of {Mi}. This observation leads us
to pose two related challenges: (i) How can one carry out
program synthesis without having in hand details about the
implementations of lower-level modules? (ii) How can one
ensure that each synthesis problem results in code that is
independent of the implementations of lower-level modules?

In this paper, we present the case for the following thesis:

Program synthesis can scale using modular system design.

Modular system design is one of the most important concepts
in designing software. A system should be organized in a
layered fashion, where information hiding is used to hide
implementation choices [16]. The information-hiding principle
intuitively states that each module exports an interface that
does not reveal specific implementation choices used inside
the module, and changing the module’s implementation should
not force any changes to be made to other modules.

Programmers practice modular system design, or at least
aspire to it. In essence, our goal is to provide a level of
automation for what good programmers do manually. Of
course, we are not trying to automate everything. What is left
in the hands of the programmer are architectural decisions and
specifications of the intended behavior of individual modules.
The programmer is responsible for the overall organization of
the system’s design, and must decide such issues as: What are
the layers in the system? What are the implementation choices
in a given layer (such as choices about data structures and data
representations)? What operations are exposed in each layer,
and what is the intended behavior of each operation?

We identify two opportunities for providing automation for
each module and, as a key contribution of this paper, we
formally define these synthesis problems.
Module-Implementation Synthesis. Synthesis can be helpful
in creating the implementations of the various functions in
each module from some specifications. The key difference
from traditional synthesis problems is that implementation
details of “lower” modules are not available. Instead, one only
has access to implementation-agnostic specifications of the
semantics of such modules.
Module-Specification Synthesis. Because modules can only
expose their semantics to other modules in a way that does
not reveal their implementation details, it can be challenging

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 34 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0009-0005-7983-233X
https://orcid.org/0000-0002-3766-5204
https://orcid.org/0000-0001-9625-4037
https://orcid.org/0000-0002-5676-9949
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_34
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_34
https://creativecommons.org/licenses/by/4.0/

to come up with such semantic definitions. We propose to au-
tomate the creation of such implementation-agnostic semantic
definitions using synthesis, namely, synthesis of formulas.

Note the role of the second kind of synthesis problem: its
results provide part of the specification when one moves on
to the task of synthesizing the implementation of functions
in the next module. By analogy with the Paul Simon lyric
“one man’s ceiling is another man’s floor” [19], we have “one
module’s semantics is another module’s primitives.”

We call this approach modular system synthesis (MOSS).
The visibility restrictions of information hiding provide the
key for MOSS to achieve the objective of making synthesis
scalable via “similar-nature/similar-size” sub-problems: both
of our synthesis problems concern a single module of the
system, and a single module’s implementation only. By con-
cealing the implementation of lower-level modules, MOSS
ensures that the formula representing the semantics of these
layers remains independent of the size of the “accumulated”
system as we move to higher-level layers. Moreover, MOSS
retains the usual benefit of modular system design, namely, it
results in software that (usually) can be readily adapted—in
this context, re-synthesized—as requirements change.

This paper contributes both a framework and solidifying the
concept of contract-based design in the context of program
synthesis, which abstracts components or sub-systems based
on their interfaces. Notably, the study of interface compatibil-
ity and composition has not been extensively explored in the
context of program synthesis, opening up many opportunities
for future developments. Specifically, using the aforemen-
tioned ticket-vending application as an example (§II), it (i)
defines modular system synthesis (§III); (ii) defines the two
kinds of synthesis problems that arise in MOSS (§IV); and
(iii) describes a proof-of-concept system, called MOSSKIT,
that achieves these goals (§V).

MOSSKIT is based on two existing program-synthesis
techniques: JLIBSKETCH [14] a program-sketching tool that
supports algebraic specifications, and SPYRO [15] a tool for
synthesizing precise specifications from a given codebase. We
used MOSSKIT to carry out case studies based on two-layer
modular synthesis problems from Mariano et al. [14], which
demonstrated that concealing lower-level components can be
advantageous in reducing the complexity of the synthesis
problem. Expanding upon their work, our case study in §V-B
further explored scenarios involving multiple layers. MOSS
exhibits even better scalability compared to scenarios where
executable semantics for all lower layers are exposed. A
further case study based on Mariano et al. in §V-D also
highlights the challenges of writing correct specifications. Our
framework and the act of performing synthesis for both the
implementations and specifications of the modules unveiled
bugs in the modules synthesized by Mariano et al. and in the
module’s specifications, which they manually wrote.

§VI discusses related work. §VII concludes.

II. ILLUSTRATIVE EXAMPLE

We present an experiment that illustrates the various aspects
of MOSS. The problem to be solved is as follows: Syn-
thesize a simple ticket-vendor application that supports the
operations prepSales, resTicket, issueTicket, soldOut,
numTicketsRem, and numWaiting. (To simplify matters, we
assume it is not necessary to cancel a reservation.)

A. A Modular TicketVendor Implementation

We decompose the system into three modules (Fig. 1):
Module 3: The TicketVendor module uses a Queue of
reservations to implement the aforementioned operations.
Module 2: The Queue module implements the operations
emptyQ, enq, front, deq, sizeQ, and isEmptyQ. In our
setting, a Queue is implemented using two stacks [12].1

Module 1: The Stack module implements the operations
emptyS, push, top, pop, sizeS, and isEmptyS. In our
setting, a Stack is implemented using linked-list primitives
of the programming language.

Moreover, the implementation of each module is to abide by
the principle of information hiding: (i) The TicketVendor
module can use operations exposed by Queue, but their actual
implementations are hidden in Module 2. (ii) The Queue
module can use operations exposed by Stack, but their actual
implementations are hidden in Module 1.

B. The Input of Modular TicketVendor Synthesis

A MOSSKIT user supplies the following information:
Architectural-design choices:
• The decomposition of the problem into TicketVendor,
Queue, and Stack modules (gray boxes in Fig. 1).

• Which operations are to be exposed by each module,
denoted by P[module]—e.g., in Fig. 1, the Queue module
exposes P[Queue], which contains enq and deq operations,
but not push and pop operations on the underlying stacks.

Data-structure/data-representation choices:
Module 3: TicketVendor uses a Queue.
Module 2: A Queue is implemented using two Stacks.
Module 1: A Stack is implemented using a linked list.
These choices are shown by the green boxes underneath each
module in Fig. 1. For example, the Queue module is built
on top of the Stack module. However, only the Stack
interface—i.e., the function symbols in P[Stack] and its
(potentially synthesized) implementation-agnostic specifica-
tion φStack

sem —is accessible by the Queue module.
Specifications of the module-specific synthesis problems:
Module 3: Specifications of the behaviors of prepSales,
resTicket, issueTicket, soldOut, numTicketsRem, and
numWaiting in terms of the exposed Queue operations
(and possibly other TicketVendor operations). For ex-
ample, the implementation-specific specifications for the

1The invariant is that the second Stack holds a prefix of the Queue’s front
elements, with the top element of the second Stack being the Queue’s front-
most element. The first Stack holds the Queue’s back elements—with the
top element of the first Stack being the Queue’s back-most element.

258

TicketVendor

φTicketVendor
imp

TicketVendor Implementation

Implementation Synthesis

Queue

P[Queue] φQueue
sem

φQueue
imp

Queue Implementation

Implementation Synthesis

Specification Synthesis

φQueue
imp

Queue Implementation

Stack

P[Stack] φStack
sem

φStack
imp

Stack Implementation

Implementation Synthesis

Specification Synthesis

φStack
imp

Stack Implementation

φList
semP[List]

Functions exposed in P[Queue]:
emptyQ, enq, deq, front, isEmptyQ,
sizeQ

Implementation-agnostic spec φQueue
sem :

front(enq(q, x)) =
ite(isEmptyQ(q), x, front(q))
deq(enq(q, x)) = 4

ite(isEmptyQ(q), emptyQ,
enq(deq(q), x))

sizeQ(enq(q, x)) = sizeQ(q) + 1
. . .

Queue Implementation:
Queue = (stin: Stack, stout: Stack)
enq(q : Queue, i : int) : Queue =

if isEmptyS(q.stout) 3

then (q.stin, push(q.stout, i))
else (push(q.stin, i), q.stout)

. . .

Implementation-specific spec. φQueue
imp :

isEmptyS(stout) → isEmptyS(stin)
front(enq(emptyQ, 1)) = 1
isEmptyQ(enq(emptyQ, 3)) = ⊥ 2

sizeQ(enq(emptyQ, x)) = 1
. . .

Functions exposed in P[Stack]:
emptyS, push, pop, top, sizeS,
isEmptyS

Implementation-agnostic spec φStack
sem :

isEmptyS(emptyS) = ⊤
isEmptyS(push(st, x)) = ⊥
top(push(st, x)) = x 1

pop(push(st, x)) = x
sizeS(emptyS) = 0
sizeS(push(st, x)) = sizeS(st) + 1

Fig. 1. Organization of the modular TicketVendor synthesis problem:
user-supplied inputs are shown in solid boxes; synthesized outputs are shown
in dashed boxes. On the right, the Queue module’s specifications and
implementation are expanded; the other modules would have similar details.

TicketVendor module, denoted by the yellow box labeled
φTicketVendor

imp in Fig. 1, might constrain issueTicket to
dequeue a buyer from the underlying Queue module, but only
if soldOut (a TicketVendor operation) is false.
Module 2: Specifications of the behaviors of the Queue oper-
ations in terms of the exposed Stack operations (and possibly
other Queue operations). For example, the implementation-
specific specification for the Queue module (φQueue

imp), shown
in Fig. 1, contains, among others, constraints that state that (i)
if the first stack stin is empty, so is the second stack stout,
(ii) enqueuing 1 on an empty queue and then retrieving the
front of the queue yields 1.
Module 1: Specifications of the behaviors of the Stack
operations in terms of the programming language’s linked-list
operations (and possibly other Stack operations). For exam-
ple, the implementation-specific specification of the Stack
module (φStack

imp) might specify that push adds an element on
the front of the stack’s underlying linked list.

A user must also specify a search space of possible imple-
mentations. In MOSSKIT, this is done using a SKETCH file.

C. The Output of Modular TicketVendor Synthesis

Using the MOSS framework, we synthesize three mod-
ule implementations: the TicketVendor module imple-
mentation, which satisfies φTicketVendor

imp (and uses Queue);

the Queue module implementation, which satisfies φQueue
imp

(and uses Stack); and the Stack module implementation,
which satisfies φStack

imp (and uses lists). However, to synthesize
the TicketVendor module implementation, we need an
implementation-agnostic specification of Queue, denoted by
φQueue

sem . The same can be said for the Queue module im-
plementation, for which we need an implementation-agnostic
specification of Stack, denoted by φStack

sem .2

The user could write φQueue
sem and φStack

sem manually, but it
is more convenient to synthesize these specifications from
the Queue and Stack module implementations, respectively.
The MOSS methodology is to start with the bottom-most
module and work upward, alternately applying two synthesis
procedures: first synthesizing the implementation of a module
M and then synthesizing M ’s implementation-agnostic spec-
ification φM

sem, which gets exposed to the next higher module.
For the modular TicketVendor-synthesis problem, we

start with Stack, the bottommost module, and synthe-
size a Stack module implementation—a set of P[List]
programs—that satisfies the implementation-specific speci-
fication φStack

imp . (In MOSSKIT, this step is done using
program sketching and the tool JLIBSKETCH [14].) This
step is depicted in Fig. 1 as the Implementation Synthe-
sis problem in the Stack module. We then switch to the
Specification Synthesis problem for Stack, and synthesize
φStack

sem , an implementation-agnostic specification of Stack.
(In MOSSKIT, this step is done by providing a grammar of
possible properties and by using the tool SPYRO [15].) For the
Stack module, the resultant φStack

sem is the conjunction of the
equalities shown at 1 in Fig. 1.

Using φStack
sem (1), together with the implementation-

specific specification φQueue
imp (2), we now synthesize the

Queue module implementation (3)—a set of P[Stack]
programs—and the implementation-agnostic specification
φQueue

sem (4) via the same two-step process.
Finally, using φQueue

sem and the implementation-specific spec-
ification φTicketVendor

imp , we synthesize the TicketVendor
module implementation. (If needed by a further client, we
would then synthesize the implementation-agnostic specifi-
cation φTicketVendor

sem .) Thus, the last output of the syn-
thesis procedure, shown in Fig. 1, consists of implemen-
tations of Stack, Queue, and TicketVendor, and the
implementation-agnostic specifications φStack

sem and φQueue
sem .

D. Benefits of Modular System Synthesis

At some point, we might want to decide to modify the im-
plementation of the Queue module to use directly the linked-
list primitives provided by the language (shown in Fig. 2).
Information hiding allows us to do so in a compartmentalized
way—i.e., by only changing the specific Queue module.
Importantly, the module’s interface, composed of the function

2Technically, List is part of the programming language; however, so that
all sub-problems have the same form, we assume—as shown in Fig. 1—that
we also have available an implementation-agnostic specification of List,
denoted by φList

sem . In our evaluation, we synthesize φList
sem automatically.

259

Queue

P[Queue] φQueue
sem

φQueue
imp

Queue Implementation

Implementation Synthesis

Specification Synthesis

φ
Queue(as List)
imp

Queue (as List) Implementation

φList
semP[List]

Queue (as List) Implementation:
Queue = (l: List)

enq(q : Queue, i : int) : Queue =
(snoc(q.l, i))

. . .

Implem.-specific spec. φQueue(as List)
imp :

isEmptyL(emptyQ.l)
front(q) = head(q.l)
front(enq(emptyQ, 1)) = 1 5

isEmptyQ(enq(emptyQ, 3)) = ⊥
sizeQ(enq(emptyQ, x)) = 1
. . .

Fig. 2. Alternative implementation of the Queue module using list primitives
instead of two stacks. P[Queue] and φQueue

sem are the same as in Fig. 1.

symbols in P[Queue] and its implementation-agnostic speci-
fication φQueue

sem , does not change when the implementation of
the Queue module changes. Because this interface is what
the TicketVendor module was synthesized with respect
to, changes to the Queue implementation are not visible to
TicketVendor.

III. MODULAR SYSTEM DESIGN

In this section, we formally define modular system design
and the corresponding specification mechanisms. A system is
organized in modules, and each module exports a module
interface MI and a specification φMI

sem of the semantics of
the module interface. Both MI and φMI

sem hide the module’s
implementation. A module’s implementation can also have a
set of private functions PF, which can only be used within
the module. A program is constructed by stacking layers of
such modules.3 For instance, the example in Fig. 1 has three
modules: Stack, Queue, and TicketVendor. (None of
those modules have private functions.)

In the following, we assume a programming language P
(e.g., C with its core libraries), and use P[MI] to denote P
extended with the functions exposed by module MI.

Definition 1 (Modular System Design): A system is imple-
mented modularly if it is partitioned into disjoint sets of func-
tions PF1,MI1,PF2,MI2, . . . ,PFn,MIn, such that for each
f ∈ PFi∪MIi, f is implemented using P[MIi−1∪PFi∪MIi]—
i.e., f only uses operations in P , and calls to functions in the
interface exported from layer i–1, to private functions of layer
i, and to functions in the interface exported from layer i.

To reduce notational clutter, we will ignore private func-
tions, and only discuss the functions in module interfaces.

As we saw in §II, we need to abide by the principle of
information hiding—i.e., changing the implementations of any
function in MIi−1 should not require changing the implemen-
tations of functions in MIi. With this principle in mind, we
now describe the different natures of the specification for the
module implementation at a given layer i (§III-A) and the
specification exposed to layer i+ 1 (§III-B).

3In general, the structure of the dependencies among layers can form a
directed acyclic graph. However, to reduce notational clutter, throughout the
paper we assume that the layers have a strict linear order.

A. Implementation-specific Specifications

When synthesizing specific implementations of the func-
tions MIi at layer i, the specifications are allowed to use
symbols in P[MIi−1∪MIi]—i.e., the specification can refer to
the functions we are specifying and to the ones in the interface
exported from the previous layer—as well as implementation-
specific details from layer i (e.g., data-structure declarations).

Definition 2: An implementation-specific specification for
a set of functions MIi at layer i is a predicate φMIi

imp that only
uses symbols in P[MIi−1 ∪ MIi].

Example 1: In the implementation-specific specification of
Queue from Fig. 1, where Queue is implemented using two
Stacks, one of the properties is as follows:

isEmptyQ(q) ⇐⇒ isEmptyS(q.stin) ∧ isEmptyS(q.stout).

For the version from Fig. 2, where Queue is implemented
using a List, the analogous property is

isEmptyQ(q) ⇐⇒ isEmptyL(q.l).

A specification might also contain a set of
examples, e.g., front(enq(emptyQ, 1)) = 1 and
front(enq(enq(emptyQ, 1), 2)) = 1.

B. Implementation-agnostic Specifications

While implementation-specific details are needed to con-
verge on an implementation with which the programmer
is happy, when exposing the specification of MIi at layer
i + 1, to abide to the principle of information hiding, one
cannot provide specifications that involve function symbols in
P[MIi−1 ∪ MIi], but only those in P[MIi].

Definition 3: An implementation-agnostic specification
for a set of functions MIi at layer i is a predicate φMIi

sem that
only uses symbols in P[MIi].

Example 2: Because of the vocabulary restrictions imposed
by Def. 3, it is natural for implementation-agnostic specifi-
cations to take the form of algebraic specifications [7], [9],
[10], [13], [23]. For instance, for the Queue module, the
conjunction of the following equalities is an implementation-
agnostic specification φQueue

sem for Queue:

isEmptyQ(emptyQ) = ⊤ isEmptyQ(enq(q, x)) = ⊥
sizeQ(emptyQ) = 0 sizeQ(enq(q, x)) = sizeQ(q) + 1
front(enq(q, x)) = ite(isEmptyQ(q), x, front(q))
deq(enq(q, x)) = ite(isEmptyQ(q), q, deq(enq(q), x))

(1)

Note that Eq. (1) serves as φQueue
sem both for the version of

Queue from Fig. 1, where Queue is implemented using two
Stacks, and for the version of Queue from Fig. 2, where
Queue is implemented using a List.

IV. SYNTHESIS IN MODULAR SYSTEM SYNTHESIS

In this section, we define the implementation-synthesis
(§IV-A) and specification-synthesis (§IV-B) problems that en-
able our scheme for modular system synthesis.

260

A. Synthesis of Implementations

The obvious place in which synthesis can be helpful is in
synthesizing the implementations of the various functions at
each layer from their implementation-specific specifications.
For example, in Fig. 1, an implementation of Queue (the
function enq is shown in the second box on the right) is
synthesized from the implementation-agnostic specification
φStack

sem of Stack, and an implementation-specific specifi-
cation φQueue

imp that is allowed to talk about how the two
Stacks used to implement a Queue are manipulated (e.g.,
isEmptyS(stout) → isEmptyS(stin)).

Definition 4 (Implementation synthesis): For module inter-
face MIi, the implementation-synthesis problem is a triple
(Si, φ

MIi−1
sem , φMIi

imp), where

• Si is the set of possible implementations we can use for MIi
(every program in Si uses only symbols in P[MIi−1∪MIi]).

• φ
MIi−1
sem is an implementation-agnostic specification of the

module-interface functions in MIi−1.
• φMIi

imp is an implementation-specific specification that uses
only symbols in P[MIi−1 ∪ MIi].

A solution to the implementation-synthesis problem is an
implementation of MIi in Si that satisfies φMIi

imp .
This particular form of synthesis where one draws a pro-

gram from a search space to match a specification is fairly
standard in the literature. However, we observe that a partic-
ular aspect of modular system design makes most synthesis
approaches inadequate—i.e., the specification φ

MIi−1
sem can talk

about functions in MIi−1 only in an implementation-agnostic
way. For example, when synthesizing functions in Queue, we
do not have direct access to a stack implementation—i.e., we
cannot actually execute the implementation. Instead, we have
access to the semantics of Stack through implementation-
agnostic properties such as isEmptyS(push(st, x)) = ⊥.

We are aware of only one tool, JLIBSKETCH, that can
perform synthesis with algebraic specifications [14], and we
use it in our evaluation. In JLIBSKETCH, one provides Si as
a program sketch (i.e., a program with integer holes that need
to be synthesized), φMIi−1

sem as a set of rewrite rules over the
functions in MIi−1, and φMIi

imp as a set of assertions.

B. Synthesis of Implementation-agnostic Specifications

Because the implementation of layer i-1 is hidden when
performing synthesis at layer i, the user has to somehow
come up with implementation-agnostic specifications like the
ones shown in Fig. 1. Our next observation is that such
specifications can also be synthesized! With this observation,
modular system design becomes a fairly automatic business
where the programmer mostly has to decide how to structure
modules and provide implementation-specific specifications
and search spaces (typically as regular-tree grammars [3]).

In Fig. 1, the implementation-agnostic specification φQueue
sem

of Queue is synthesized from the Queue implementation.
(The same φQueue

sem , or one equivalent to it, is synthesized from
the alternative Queue implementation of Fig. 2.)

Definition 5 (Specification synthesis): For module interface
MIi, a specification-synthesis problem is a pair (Fi,Φi)
where
• Fi is a set of programs, written in P[MIi−1 ∪ MIi], that is

a concrete implementation of MIi.
• Φi is the set of possible properties we can use for φMIi

sem
(every property in Φi uses only symbols in P[MIi]). (Typi-
cally, Φi is given as a regular-tree grammar for a fragment
of logic in which terms can only use symbols in P[MIi].)

A solution to the specification-synthesis problem is a set of
properties φMIi

sem ⊆ Φi such that for every α ∈ φMIi
sem :

Soundness: The implementation Fi satisfies α.
Precision: There is no property α′ ∈ Φi that implies α and

such that the implementation Fi satisfies α′.
In general, there might not be just one answer to this

synthesis problem because there could be multiple ways to
build the set of properties φMIi

sem . Furthermore, it can be the
case that there are infinitely many properties in Φi that are
sound, precise, and mutually incomparable. While in this paper
we do not worry about these details, the tool we use in our
evaluation SPYRO is always guaranteed to find a maximal set
of properties in Φi whenever such a set is finite (SPYRO uses a
regular-tree grammar to describe the set of possible properties
Φi, but requires such a set to be finite.) In practice, even when
the set is infinite, one can build tools that find a “good” set of
properties and stop without trying to find an exhaustive set.

Discussion. When the goal is to build a system structured in
a modular fashion, modular system synthesis enables defining
“small” synthesis problems of similar nature that concern only
a single module’s implementation.

While implementation-agnostic specifications can be syn-
thesized via the synthesis problem defined in Def. 5, one
should be aware that there is additional flexibility to be gained
if one is willing to write implementation-agnostic specifica-
tions manually. In particular, if all of the implementation-
agnostic specifications are synthesized, then it is necessary
to create the system bottom-up, synthesizing the module
implementations in the order MI1, MI2, . . ., MIn (interleaved
with the synthesis of φMI1

sem , φMI2
sem , . . ., φMIn

sem). In contrast, when
the user is willing to write the implementation-agnostic speci-
fications manually (in addition to the implementation-specific
specifications {φMIi

imp}), then the module implementations for
MI1, MI2, . . ., MIn can be synthesized in any order.

V. IMPLEMENTATION AND CASE-STUDY EVALUATION

We carried out case studies of MOSS for the simple three-
layer system that has been used as a running example and
for some of the modular-synthesis problems presented in the
paper that introduced JLIBSKETCH [14].

A. Implementation

Our implementation, called MOSSKIT, uses JLIBSKETCH
[14] to synthesize the implementation code for each layer k
(from the implementation-specific specification for layer k)

261

1 void snoc(list l, int val, ref list ret_list) {
2 boolean is_empty_ret;
3

4 ret_list = new list();
5 is_empty(l, is_empty_ret);
6 if (is_empty_ret) {
7 ret_list.hd = val;
8 nil(ret.tl);
9 } else {

10 ret_list.hd = l.hd;
11 snoc(l.tl, val, ret.tl);
12 }
13 }

Fig. 3. Implementation of snoc supplied to SPYRO. Returning a value from
a function is done by storing the value into a reference parameter of the
function.

and SPYRO [15] to synthesize the implementation-agnostic
specification for use at layer k + 1.

JLIBSKETCH is a program-synthesis tool for Java that
allows libraries to be described with collections of alge-
braic specifications. Similar to its popular C counterpart
SKETCH [22], JLIBSKETCH allows one to write programs with
holes and assertions, and then tries to find integer values for
the holes that cause all assertions to hold. Each specification
is a rewrite rule of the form pattern ⇒ result. For instance,
one of the rewrite rules in the specification of a stack could
be pop(push(st, k)) ⇒ st. To prevent infinite rewrite loops,
a set of rewrite rules provided to JLIBSKETCH must not form
a cycle. For instance, the rule a + b ⇒ b + a is not allowed.
The synthesis problem that JLIBSKETCH addresses is to find
a program that is correct for any program input, for any library
implementation that satisfies the algebraic specifications.

SPYRO addresses the problem of synthesizing specifications
automatically, given an implementation. SPYRO takes as in-
put (i) a set of function definitions Σ, and (ii) a domain-
specific language L—in the form of a grammar—in which
the extracted properties are to be expressed. Properties that
are expressible in L are called L-properties. SPYRO outputs
a set of L-properties {φi} that describe the behavior of Σ.
Moreover, each of the φi is a best L-property for Σ: there is
no other L-property for Σ that is strictly more precise than φi.
Furthermore, the set {φi} is exhaustive: no more L-properties
can be added to it to make the conjunction

⋀︁
i φi more precise.

SPYRO uses SKETCH as the underlying program synthesizer—
i.e., it generates a number of synthesis problems in the form
of SKETCH files and uses SKETCH to solve such problems.

Although SPYRO is built on top of SKETCH (instead
of JLIBSKETCH), in our case study we manually imple-
mented the term-rewriting approach used by the JLIBSKETCH
solver in the SKETCH files used by SPYRO to synthesize
implementation-agnostic specifications that only depend on
algebraic specifications of lower layers. That is, we replace
every function call f appearing in a SKETCH file with a
function normalize(f), where normalize is a procedure that
applies the rewrite rules from the algebraic specification.

MOSSKIT inherits the limitations of JLIBSKETCH and

1 var {
2 int v1;
3 int v2;
4 list l;
5 list cons_out;
6 list snoc_out;
7 }
8 relation {
9 cons(v1, l, cons_out);

10 snoc(cons_out, v2, snoc_out);
11 }
12 generator {
13 boolean AP -> !GUARD || RHS;
14 boolean GUARD -> true
15 | is_empty(l) | !is_empty(l);
16 boolean RHS -> equal_list(snoc_out, L);
17 int I -> v1 | v2;
18 list L -> l | nil()
19 | snoc(l, I) | cons(I, L);
20 }

Fig. 4. Grammar for the domain-specific language in which SPYRO is
to express an extracted List property. The relation definition in lines
8-11 specifies that the variables snoc_out l, v1 and v2 are related by
snoc_out = snoc(cons(l,v1),v2). From the grammar (“generator”)
in lines 12-20, SPYRO synthesizes best implementation-agnostic proper-
ties of form GUARD → snoc_out = L (implicitly conjoined with
snoc_out = snoc(cons(v1,l),v2)). In this case, the only expression
for GUARD that succeeds is ⊤, and the property synthesized is snoc_out =
cons(v1, snoc(l,v2)) (with the additional implicit conjunct snoc_out =
snoc(cons(v1,l),v2)).

SPYRO—i.e., the synthesized implementations and specifica-
tions are sound up to a bound. Despite this limitation, the
authors of JLIBSKETCH and SPYRO have shown that these
tools typically do not return unsound results in practice. §V-E
provides a detailed discussion of the limitations of MOSS and
MOSSKIT.

B. Ticket-vendor Case Study

Our first benchmark is the ticket-vending application de-
scribed throughout the paper. Our goal is to synthesize the
four module implementations in Fig. 1 (except the bottom
one), as well as the specification of each module that needs
to be exposed to a higher-level module.

When synthesizing specifications, due to the scalability
limitations of SPYRO, we called SPYRO multiple times with
different smaller grammars instead of providing one big gram-
mar of all possible properties of each module. In each call to
SPYRO, we provided a grammar in which we fixed a left-hand-
side expression of an equality predicate, and asked SPYRO to
search for a right-hand-side expression for the equality. We
allowed the right-hand-side expression to contain a conditional
where the guard can be selected from the outputs of Boolean
operators in the module, their negation, or constants. For
instance, Figures 3 and 4 illustrate two inputs provided to
SPYRO to solve the specification-synthesis problem for List:
(i) a program describing the implementation of List (Fig. 3),
and (ii) a grammar describing the set of possible properties
(Fig. 4).

Because we wanted to use the synthesized equalities as
input to JLIBSKETCH when synthesizing the implementation

262

1 public void enq(int x) {
2 Stack st_in = this.st_in;
3 Stack st_out = this.st_out;
4

5 assume !st_out.isEmpty() || st_in.isEmpty();
6

7 if (genGuard(st_in, st_out)) {
8 st_in = genStack2(st_in, st_out, x);
9 st_out = genStack2(st_in, st_out, x);

10 } else {
11 st_in = genStack2(st_in, st_out, x);
12 st_out = genStack2(st_in, st_out, x);
13 }
14

15 assert !st_out.isEmpty() || st_in.isEmpty();
16

17 this.st_in = st_in;
18 this.st_out = st_out;
19 }

Fig. 5. JLIBSKETCH sketch of enq. Lines 5 and 15 assert the implementation-
specific property isEmptyS(stout) → isEmptyS(stin). JLIBSKETCH gen-
erates an expression to fill in each occurrence of the generators, genStack2
and genGuard—the reader can think of each of these generators as being
grammars from which JLIBSKETCH can pick an expression. For these
generators, expressions can be variables or single function calls to functions
of the appropriate type—e.g., genStack2 can generate expressions such as
st_in, st_out, st_in.pop(), st_out.pop(), etc.

of the next higher-level module, we provided grammars of
equalities that avoided generating cyclic rewrite rules. We
addressed this issue by limiting the search space for the right-
hand-side expression. The function symbols permitted in the
right-hand-side expression are one of the functions in the left-
hand-side expression, functions used in the implementation of
a function in the left-hand-side expression, or constants. Also,
the outermost function symbol of the left-hand side can only
be applied to a strictly smaller term.

To illustrate some of the properties synthesized by
MOSSKIT (that are not shown in Fig. 1) the complete set of
equalities in the implementation-agnostic specification φList

sem
synthesized by SPYRO is the following:

head(cons(hd, tl)) = tl isEmptyL(nil) = ⊤
tail(cons(hd, tl)) = hd isEmptyL(cons(hd, tl)) = ⊥
sizeL(nil) = 0 snoc(nil, x) = cons(x, nil)
sizeL(cons(hd, tl)) = sizeL(tl) + 1
snoc(cons(hd, tl), x) = cons(hd, snoc(tl, x))

When considering the cumulative time taken to synthesize
the algebraic specification of each module, SPYRO took 41
seconds for φList

sem (longest-taking property 7 seconds), 34
seconds for φStack

sem (longest-taking property 7 seconds), and
44 seconds for φQueue

sem (longest-taking property 13 seconds).
We used JLIBSKETCH to synthesize implementations of the

modules. In addition to the implementation-agnostic specifi-
cation of the module below the one we were trying to syn-
thesize, we provided an implementation-specific specification
of the module to be synthesized. For example, the φStack

imp
specification involved JLIBSKETCH code with 17 assertions,
and the following examples are an excerpt from the φStack

imp
specification (x, y, and z are universally quantified integers

that are allowed to be in the range 0 to 10):

top(push(emptyS, x)) = x top(push(push(emptyS, x), y)) = y
sizeS(emptyS) = 0 sizeS(push(emptyS, x)) = 1

Besides the assertions, we provided JLIBSKETCH with a
fairly complete sketch of the structure of the implementation:
we provided loops and branching structures, and only asked
JLIBSKETCH to synthesize basic statements and expressions.
For example, the sketch provided for the operation enq of
module Queue = (stin : Stack, stout : Stack) is shown
in Fig. 5. This sketch of enq of module Queue uses two
Stacks: stin, which stores elements in the rear part of the
queue, and stout, which stores elements in the front part of
the queue. Stack stin holds the rearmost element on top, and
Stack stout stores the frontmost element on top. To make
the front operation more efficient, we decided to make sure
that the frontmost element is always at the top of stout. This
implementation decision is expressed as assertions in lines 5
and 15, constituting an implementation-specific specification
φQueue

imp , shown as 2 in Fig. 1.
Afterward, based on the implementation synthesized by

JLIBSKETCH, SPYRO was able to solve each Queue
specification-synthesis problem within 40 seconds, yielding
the following implementation-agnostic specification φQueue

sem :

isEmptyS(emptyQ) = ⊤ isEmptyQ(enq(q, i)) = ⊥
sizeQ(emptyQ) = 0
sizeQ(enq(q, i)) = sizeQ(q) + 1
isEmptyQ(q) → front(enq(q, i)) = i
¬isEmptyQ(q) → front(enq(q, i)) = front(q)
isEmptyQ(q) → deq(enq(q, i)) = q
¬isEmptyQ(q) → deq(enq(q, i)) = enq(deq(q), i)

A TicketVendor is implemented using a Queue, which
stores the id numbers of clients who have reserved tick-
ets. Each issued ticket contains the id of the buyer. The
implementation-specific specification φTicketVendor

imp consisted
of JLIBSKETCH code with 24 assertions, and contains multiple
examples, such as the following (again, x and y are universally
quantified integers that are allowed to be in the range 0 to 10):

numTicketsRem(prepSales(2)) = 2
numWaiting(prepSales(2)) = 0
numWaiting(resTicket(prepSales(2), x)) = 1
issueTicket(resTicket(prepSales(2), x)).owner = x

Again, we provided JLIBSKETCH with a fairly com-
plete sketch of the program structure, and JLIBSKETCH
was able to synthesize the implementations of all the
TicketVendor functions within 10 seconds. For example,
the function prepSales for TicketVendor = (numticket :
int, qwaiting : Queue) was synthesized as prepSales(n :
int) := (n, emptyQ).

We compared the time needed to synthesize each module
from the algebraic specification of the previous module to
the time needed to synthesize using the implementation of
all previous modules. Synthesizing Stack from the spec-
ification φList

sem took 3 seconds instead of the 2 seconds
needed when the implementation of List was provided.
Synthesizing Queue from the specification φStack

sem took 188

263

seconds instead of the 799 seconds needed when the con-
crete implementations of Stack and List were provided.
Synthesizing TicketVendor from the specification φQueue

sem
took 7 seconds, but JLIBSKETCH crashed when the concrete
implementations of Queue, Stack and List were provided.

Key finding: This experiment shows that modular synthesis
takes 1-5 minutes per module, whereas the time taken to
synthesize a module from the underlying module implementa-
tions grows with the number of modules—to the point where
synthesis is unsuccessful with existing tools.

As discussed in §II-D, we also synthesized an implementa-
tion of Queue that uses List instead of two Stacks. The
List holds the oldest element of the Queue at its head. The
implementation-specific specification φ

Queue (as List)
imp con-

sisted of JLIBSKETCH code with 19 assertions, including
examples similar to those shown at 5 in Fig. 2. We used
JLIBSKETCH to verify whether the specification φQueue

sem still
held true for the new implementation. Because it did (confir-
mation took <1 second), TicketVendor does not need to
be changed to use the Queue (as List) implementation.

C. Case Studies from Mariano et al. [14]

Our second set of benchmarks is collected from the pa-
per that introduced synthesis from algebraic specifications
via JLIBSKETCH [14]. In that work, Mariano et al. used a
number of benchmarks that involve two modules—e.g., syn-
thesizing a backend cryptographic component for a tool that
brings NuCypher to Apache Kafka, using ArrayList and
HashMap as underlying modules. The goal of their paper was
to show that in JLIBSKETCH it was easier/faster to synthesize
the module at layer 1 when the module of layer 0 was exposed
through an algebraic specification (rather than a concrete
implementation). The current implementation of MOSSKIT
does not support strings, so we used only the benchmarks for
which the algebraic specifications for the layer-0 module (i)
did not use string operations, and (ii) did not use auxiliary
functions that were not in the signature of the module. In total,
we considered four layer-0 modules: ArrayList, TreeSet,
HashSet, and HashMap. Each JLIBSKETCH benchmark
consisted of (i) an algebraic specification of the layer-0 module
(written by hand), (ii) a SKETCH-like specification of the
layer-1 module, and (iii) a mock implementation of the layer-
0 module—i.e., a simplified implementation that mimics the
module’s intended behavior (e.g., HashSet is implemented
using an array). The mock is not needed by JLIBSKETCH, but
allowed Mariano et al. to compare synthesis-from-algebraic-
specifications against synthesis-from-mocks [14, §5].

We used these items in a different manner from the JLIBS-
KETCH experiments. From just the mock implementation of
layer 0, we asked MOSSKIT to synthesize a most-precise
algebraic specification, which we compared with the algebraic
specification manually written by Mariano et al. From that
algebraic specification and the SKETCH-like specification of
the layer-1 module, we asked MOSSKIT to synthesize the im-
plementation of layer 1. (The second step essentially replicated
the algebraic-synthesis part of the JLIBSKETCH experiments.)

For the layer-0 synthesis step of each benchmark, we
synthesized algebraic specifications using grammars similar
to the ones used in §V-B.

When considering the time taken to synthesize the entire al-
gebraic specification of each module, SPYRO took 626 seconds
for φArrayList

sem , 54 seconds for φHashSet
sem , and 1,732 seconds

for φHashMap
sem . Because mock implementations are simplified

versions of actual implementations, the mock implementa-
tion of TreeSet is identical to the mock implementation
of HashSet—i.e., they both represent sets as arrays. Fur-
thermore, the two implementations have the same algebraic
specifications—i.e., φHashSet

sem = φTreeSet
sem —which can thus be

synthesized in the same amount of time.
Key finding: For all but two benchmarks, the L-

conjunctions synthesized by MOSSKIT were equivalent to
the algebraic properties manually written by Mariano et al.
For the mock implementation of HashMap and ArrayList
provided in JLIBSKETCH, for specific grammars, MOSSKIT
synthesized empty L-conjunctions (i.e., the predicate true)
instead of the algebraic specifications provided by Mariano et
al.—i.e., k1 = k2 ⇒ get(put(m, k1, v), k2) = v and i = j ⇒
get(set(l, i, v), j) = v, for HashMap and ArrayList, re-
spectively. Upon further inspection, we discovered that JLIB-
SKETCH’s mock implementation of HashMap was incorrect,
and did not satisfy the specification that Mariano et al. gave,
due to an incorrect handling of hash collision! After fixing
the bug in the mock implementation of HashMap, we were
able to synthesize the expected algebraic specification. How-
ever, when inspecting the implementation of ArrayList,
we found that for this benchmark the implementation was
correct but the algebraic specification provided by Mariano
et al. was incorrect! After modifying the grammar, we could
synthesize the correct algebraic specification (i = j) ∧ (0 ≤
i)∧ (i ≤ sizeL(l)) ⇒ get(set(l, i, v), j) = v. However, this
modification revealed a bug in one of the implementations of
HashMap that Mariano et al. had synthesized from the earlier
erroneous specification! We discuss this finding further in the
next section.

This finding illustrates how modular system synthesis can
help to identify and avoid bugs in module implementations.

D. Additional Case Studies Based on Mariano et al. [14]

We noticed that the JLIBSKETCH benchmarks provided
an opportunity to build a more complicated benchmark that
involved 3 modules (instead of 2). In particular, two of the
benchmarks involved synthesizing the implementation of a
(layer-1) HashMap module from a (layer-0) algebraic spec-
ification of ArrayList. (The two benchmarks synthesized
different implementations that handled collisions differently
and we refer to the corresponding modules as HashMap1
and HashMap2.) The third benchmark involved synthesizing
the implementation of a (layer-2) Kafka from a (layer-1) al-
gebraic specification of HashMap. Thus, we built two 3-layer
benchmarks in which the goal was to synthesize Kafka using
an implementation of HashMap that used an implementation
of ArrayList. For us, each 3-layer benchmark involved four

264

synthesis problems: (1) the algebraic specification φArrayList
sem

of ArrayList (from the mock); (2) the implementation of
either HashMap1 or HashMap2; (3) the algebraic specifica-
tion of HashMap; and (4) the implementation of Kafka (this
part was already synthesized in [14]).

As discussed in the previous section, we identified a bug in
the specification φArrayList

sem manually provided by Mariano et
al., and were able to use to MOSSKIT to synthesize a correct
algebraic specification—i.e., step (1). For step (2), the imple-
mentation synthesized by Mariano et al. for HashMap2 was
still correct, and we could also use MOSSKIT to synthesize
it from the corrected specification φArrayList

sem . However, the
implementation of HashMap1 synthesized by JLIBSKETCH
was incorrect because it depended on the original, erroneous
specification φArrayList

sem for ArrayList—(1) put could
store values to negative indices; and (2) get could search key
from incorrect index after rehashing. We manually changed
the implementation of the rehashing function in the sketch of
HashMap1 to fix the bug, but the change was large enough
that we did not attempt to rewrite the program sketch needed
to synthesize this specification (i.e., we manually wrote the
implementation of HashMap1 instead of synthesizing it).
Synthesis problem (3) is at the heart of handling a multi-
module system in a modular fashion: we used MOSSKIT
to synthesize algebraic specifications of HashMap1 and
HashMap2—in each case, giving MOSSKIT access to the
(correct) implementations of HashMap1 and HashMap2 and
the (correct) algebraic specification of ArrayList (but not
an implementation of ArrayList).

Key finding: MOSSKIT failed to synthesize the same
algebraic specification we had obtained for HashMap in §V-C
when attempting to synthesize a specification for HashMap1
and HashMap2. When inspecting the synthesized properties,
we realized that the algebraic specification φArrayList

sem exposed
by ArrayList still had a problem! In particular, φArrayList

sem
was too weak to prove the algebraic specifications needed
by HashMap1 and HashMap2—i.e., φArrayList

sem did not
characterize properties that were needed by HashMap1 and
HashMap2 to satisfy the algebraic specification φHashMap

sem . We
used Sketch itself to produce a violation of the algebraic speci-
fication φHashMap

sem for HashMap1 under the weaker assumption
that ArrayList only satisfied the specification φArrayList

sem ,
and used the violations generated by SKETCH to identify what
properties we needed to add to strengthen φArrayList

sem . In
particular, sizeL(ensureCapacity(l, n)) = sizeL(l) and
get(ensureCapacity(l, n), i) = get(l, i) were added to
describe the behavior of ensureCapacity. We were then able
to modify the grammar used to synthesize algebraic specifi-
cations for φArrayList

sem and synthesize the missing property.
After obtaining φArrayList

sem , we successfully synthesized the
full algebraic specification for HashMap2 (i.e., φHashMap

sem) and
most of the algebraic specification for HashMap1. Because
the corrected implementation of HashMap1 was particularly
complicated—e.g., each call to put requires rehashing when
the load factor is greater than a predefined value—MOSSKIT
timed out while synthesizing every property, with the excep-

tion of the property get(emptyMap, k) = err.
This finding illustrates how modular system synthesis can

help identify when module specifications are not strong
enough to characterize the behavior of other modules.

E. Limitations of MOSSKIT

JLIBSKETCH and SPYRO represent the algebraic specifi-
cations of modules as rewrite rules for algebraic datatypes
(ADTs). Reasoning about ADTs is a challenging problem,
and to the best of our knowledge, SKETCH and JLIBSKETCH
are only frameworks capable of handling problems involving
ADTs effectively. Therefore, MOSSKIT uses them as the
underlying solver and inherits limitations of SKETCH.

The primary limitation of MOSSKIT is its bounded sound-
ness guarantee. SKETCH ensures soundness only for a bounded
number of loop/recursion unrollings, and bounded input sizes.
Verifying the unbounded correctness of the synthesized pro-
grams poses a significant challenge, as semantics of lower-
level modules are represented as rewrite rules on ADTs. As a
future direction, we plan to integrate MOSSKIT with verifiers
such as Dafny to perform full verification, as was done in [15]
for the properties synthesized by SPYRO. However, it is worth
noting that MOSSKIT has already been useful in finding bugs
in existing implementations: specification synthesis has helped
find implementation errors in the case studies of Mariano et
al. [14], as demonstrated in §V-C and §V-D.

Although the case studies in §V-B and reference [14]
show satisfactory performance of SKETCH for most problems,
scalability issues persist. In particular, unrolling nested loops
significantly increases the number of holes of the SKETCH
problem, which increases the problem’s difficulty.

Besides the limitations inherited from SKETCH, MOSS has
a specific requirement for the system’s modular structure,
which should be a directed acyclic graph (DAG)—i.e., the
implementation-agnostic specifications of all dependent mod-
ules must be provided to synthesize a particular module.
MOSS addresses the challenges in writing accurate specifica-
tions by using the synthesis of implementation-agnostic spec-
ifications. However, in this approach one needs to synthesize
all dependent modules and their specifications before attempt-
ing to synthesize a new module. Alternatively, to synthesize
higher-level modules without the lower-level implementations,
the user can manually supply the implementation-agnostic
specifications of the lower-level modules.

VI. RELATED WORK

A problem related to ours is that of component-based
synthesis (CBS), where the goal is assembling pre-existing
components/APIs to generate more complex programs. Many
existing approaches for solving CBS problems scale reason-
ably well [5], [18], [20], but require the individual components
to be executable. In our setting, this approach is not possible
because the details of lower-level components (e.g., how a
Stack is implemented) need not be observable.

A few tools have abstracted components and modules using
specifications. JLIBSKETCH [14] uses algebraic properties to

265

represent the semantics of modules and is a key component
of our implementation. (CL)S [2] and APIphany [8] use types
to represent the behavior of components and can be used
in tandem with specialized type-directed synthesizers. The
key differences between our work and these tools is that
MOSS provides two well-defined synthesis primitives that
support composing multiple modules, rather than synthesizing
just one implementation for one module. Furthermore, the
aforementioned types are limited in how they can represent
relations between multiple components in an implementation-
agnostic way, thus making us opt for algebraic specifications.

Many synthesis tools perform some kind of “composi-
tional” synthesis by breaking an input specification into sub-
specifications that are used to separately synthesize sub-
components of a target program [1], [17]. This notion of
“compositionality” is orthogonal to ours, and is more of a
divide-and-conquer approach to solving individual synthesis
problems. MOSS can make use of such a divide-and-conquer
approach when synthesizing a module’s implementation.

For the task of synthesizing an algebraic specification,
MOSSKIT uses SPYRO. Besides SPYRO, there are a number
of works about discovering specifications from code, based on
both static techniques [6], [21] and dynamic techniques [4],
[11]. The static approaches mostly target predicates involving
individual functions (instead of algebraic properties and equal-
ities involving multiple functions). The dynamic techniques
are flexible and can identify algebraic specifications (e.g., for
Java container classes [11]), but require some “bootstrapping”
inputs, and only guarantee soundness with respect to behaviors
that are covered by the tests that the inputs exercise.

VII. CONCLUSION

Conceptual contributions. At the conceptual level, this pa-
per contributes both a framework and a new way to think
about program synthesis that opens many research directions.
Specifically, the paper introduces MOSS, a framework for
using synthesis to perform modular system synthesis. The
main contribution of this paper is not an immediate solution
to the modular-synthesis problem, but rather the identification
of two key synthesis primitives that are required to realize
MOSS in practice: 1) synthesis from an implementation-
agnostic specification, and 2) synthesis of an implementation-
agnostic specification. While our tool implements both of
these primitives using tools based on SKETCH (thus inheriting
its limitations), an interesting research directions is whether
other synthesis approaches (enumeration, CEGIS, etc.) can
be extended to handle our synthesis problems, perhaps by
leveraging the popular egg framework [24] which allows one
to reason about equivalence of terms with respect to a term-
rewriting system—i.e., our algebraic specifications.

Experimental Contributions. We created MOSSKIT, a proof-
of-concept implementation of MOSS based on two exist-
ing program-synthesis tools: JLIBSKETCH [14], a program-
sketching tool that supports algebraic specifications, and
SPYRO [15], a tool for synthesizing precise specifications

from code. The case studies carried out with MOSSKIT show
that (i) modular synthesis is faster than monolithic synthesis,
and (ii) performing synthesis for both implementations and
specifications of the modules can prevent subtle bugs.

ACKNOWLEDGEMENT

Supported, in part, by a Microsoft Faculty Fellowship,
a gift from Rajiv and Ritu Batra; by ONR under grant
N00014-17-1-2889; and by NSF under grants CCF-
{1750965,1763871,1918211,2023222,2211968,2212558}.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors, and do
not necessarily reflect the views of the sponsoring entities.

REFERENCES

[1] R. Alur, P. Cerný, and A. Radhakrishna. Synthesis through unification. In
D. Kroening and C. S. Pasareanu, editors, Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes
in Computer Science, pages 163–179. Springer, 2015.

[2] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof.
Combinatory logic synthesizer. In T. Margaria and B. Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change - 6th International Symposium,
ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings,
Part I, volume 8802 of Lecture Notes in Computer Science, pages 26–40.
Springer, 2014.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,
C. Löding, S. Tison, and M. Tommasi. Tree Automata Techniques and
Applications. 2008.

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[5] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. Component-
based synthesis for complex APIs. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 599–612, 2017.

[6] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In J. N. Oliveira and P. Zave, editors, FME 2001: Formal
Methods for Increasing Software Productivity, International Symposium
of Formal Methods Europe, Berlin, Germany, March 12-16, 2001,
Proceedings, volume 2021 of Lecture Notes in Computer Science, pages
500–517. Springer, 2001.

[7] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Abstract data-
types as initial algebras and correctness of data representations. In
Proceedings Conference on Computer Graphics, Pattern Recognition
and Data Structure, May 1975.

[8] Z. Guo, D. Cao, D. Tjong, J. Yang, C. Schlesinger, and N. Polikarpova.
Type-directed program synthesis for restful apis. In R. Jhala and I. Dillig,
editors, PLDI ’22: 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, pages 122–136. ACM, 2022.

[9] J. V. Guttag. The Specification and Application to Programming of
Abstract Data Types. PhD thesis, Computer Systems Research Group,
Univ. of Toronto, Toronto, Canada, Sept. 1975.

[10] J. V. Guttag and J. J. Horning. The algebraic specification of abstract
data types. Acta Informatica, 10:27–52, 1978.

[11] J. Henkel, C. Reichenbach, and A. Diwan. Discovering documentation
for Java container classes. IEEE Trans. Software Eng., 33(8):526–543,
2007.

[12] R. Hood and R. Melville. Real-time queue operation in pure LISP. Inf.
Process. Lett., 13(2):50–54, 1981.

[13] B. H. Liskov and S. N. Zilles. Specification techniques for data
abstractions. IEEE Trans. Software Eng., 1(1):7–19, 1975.

[14] B. Mariano, J. Reese, S. Xu, T. Nguyen, X. Qiu, J. S. Foster, and
A. Solar-Lezama. Program synthesis with algebraic library specifica-
tions. Proc. ACM Program. Lang., 3(OOPSLA):132:1–132:25, 2019.

[15] K. Park, L. D’Antoni, and T. Reps. Synthesizing specifications. CoRR,
abs/2301.11117, 2023.

266

[16] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Comm. ACM, 15(12):1053–1058, 1972.

[17] M. Raza, S. Gulwani, and N. Milic-Frayling. Compositional program
synthesis from natural language and examples. In Proceedings of the
24th International Conference on Artificial Intelligence, IJCAI’15, page
792–800. AAAI Press, 2015.

[18] K. Shi, J. Steinhardt, and P. Liang. FrAngel: Component-based synthesis
with control structures. Proc. ACM Program. Lang., 3(POPL):73:1–
73:29, 2019.

[19] P. Simon. One man’s ceiling is another man’s floor, May 1973. T-
700.050.850-1 BMI, ISWC, JASRAC.

[20] R. Singh, R. Singh, Z. Xu, R. Krosnick, and A. Solar-Lezama. Modular
synthesis of sketches using models. In K. L. McMillan and X. Rival,
editors, Verification, Model Checking, and Abstract Interpretation - 15th
International Conference, VMCAI 2014, San Diego, CA, USA, January
19-21, 2014, Proceedings, volume 8318 of Lecture Notes in Computer
Science, pages 395–414. Springer, 2014.

[21] J. L. Singleton, G. T. Leavens, H. Rajan, and D. R. Cok. Inferring
concise specifications of APIs. CoRR, abs/1905.06847, 2019.

[22] A. Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol.
Transf., 15(5-6):475–495, 2013.

[23] J. M. Spitzen and B. Wegbreit. The verification and synthesis of data
structures. Acta Informatica, 4:127–144, 1974.

[24] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha.
egg: Fast and extensible equality saturation. Proc. ACM Program. Lang.,
5(POPL):1–29, 2021.

267

	Introduction
	Illustrative Example
	A Modular TicketVendor Implementation
	The Input of Modular TicketVendor Synthesis
	The Output of Modular TicketVendor Synthesis
	Benefits of Modular System Synthesis

	Modular System Design
	Implementation-specific Specifications
	Implementation-agnostic Specifications

	Synthesis in Modular System Synthesis
	Synthesis of Implementations
	Synthesis of Implementation-agnostic Specifications

	Implementation and Case-Study Evaluation
	Implementation
	Ticket-vendor Case Study
	Case Studies from Mariano et al. DBLP:journals/pacmpl/MarianoRXNQFS19
	Additional Case Studies Based on Mariano et al. DBLP:journals/pacmpl/MarianoRXNQFS19
	Limitations of MoSSKit

	Related Work
	Conclusion
	References

