
Formal Methods in Computer-Aided Design 2023

Modelling and Verification of Security-Oriented
Resource Partitioning Schemes

Adwait Godbole∗ , Leiqi Ye† , Yatin A. Manerkar† , Sanjit A. Seshia∗
∗University of California Berkeley, Berkeley, USA

{adwait, sseshia}@berkeley.edu
†University of Michigan, Ann Arbor, USA

{yeleiqi, manerkar}@umich.edu

Abstract—Side channel attacks such as Spectre and Meltdown
exploit on-chip resources such as caches and buffers shared
between the victim and the attacker in order to leak secret
information from the victim. Previous works aim to mitigate
these attacks by partitioning these vulnerable resources and
allocating disjoint partitions to mutually untrusting process
domains. While disjoint allocation prevents the attacker from
gaining direct visibility of victim’s partitions, secret information
can also be leaked through the book-keeping state implementing
the replacement/allocation policy. Proofs of security must reason
about the partitions as well as the policy.

In this work, we develop an abstract formal model for a generic
security-oriented resource partitioning scheme, and formulate
a corresponding attacker model. We then develop conditional
equality-based relational invariants that enable unbounded proofs
of security of the partitioning scheme with respect to the attacker
model. These invariants allow us to reason about the state of
the partitioning policy, which, as we discuss, can be more chal-
lenging than reasoning about the partitions themselves. We use
our framework to model two resource partitioning approaches:
DAWG and COLORIS. We demonstrate that using our invariants
leads to verification performance improvements over other, more
automated, model-checking approaches such as BMC and PDR.

I. INTRODUCTION AND EXAMPLE

Transient execution attacks such as Spectre [1], Meltdown
[2], and the more recent MDS attacks [3], [4], [5], [6]
exploit microarchitectural features such as caches, buffers, and
functional units in order to leak secret data (e.g. cryptographic
private keys). These features form side channels that allow the
attacker to observe execution artefacts such as cache accesses,
execution time and power consumption. The attacker can infer
the secret data based on these observations. For instance,
cache-based side channels [7], are based on the fact that
victim’s accesses to specific cache lines are observable to the
attacker through a timing-based side channel [8]. Timing mea-
surements can then be used to reconstruct accessed memory
addresses, and consequentially, leak data that these addresses
depend on.

While the microarchitectural features exploited by these
attacks vary (e.g. caches [1], [2], [9], TLB [10], load, store
and line-fill buffers [3], [4], [5], [6]), the central theme is
exploiting a cache-like resource which is shared between the
attacker and victim. In order to mitigate these attacks, there
are approaches (e.g. [11], [12], [13], [14]) that partition these
shared resources, and enforce allocation of disjoint partitions

Fig. 1. Example illustrating a Prime+Probe style attack. The grey cloud
represents the policy state and rectangles represent the resource partitions
(cache lines). (A, B) indicate behaviours permitted by a partitioning scheme
which has allocated lines l0, l1 to the victim and line l2 to the attacker. (C,
textured) indicates a behaviour which is possible on a non-partitioned cache,
but is not possible on a partitioned cache with the above allocation.

to mutually distrusting processes. Disjoint partitions disallow
an attacker from affecting (modifying/observing) the victim’s
partitions, thus eliminating side channels formed by resource
entries (e.g. cache lines). However, data leakage may still be
possible through the state that implements the replacemen-
t/partitioning policy (e.g. [15] demonstrates an attack which
leaks data through the Least-Recently-Used replacement pol-
icy state). Hence, proofs of security for designs implementing
resource partitioning must reason over the partitioning policy
in addition to the partition contents themselves.

In this work, we develop an abstract formal model for
resource partitioning schemes, and a corresponding attacker
model, capturing cache-based timing side channels. With
the goal of proving the security of resource-partitioning ap-
proaches, we formulate conditional-equality invariants, which
are a form of relational invariants [16]. These invariants enable
unbounded proofs of the system against a non-interference-
based formulation of the attacker model.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 35 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0001-7704-304X
https://orcid.org/0009-0006-6026-4632
https://orcid.org/0000-0002-6954-2292
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_35
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_35
https://creativecommons.org/licenses/by/4.0/

Previous works (e.g. [17], [18]) use pure equality-based re-
lational invariants. While pure equality-based invariants suffice
for reasoning over partition contents, the policy state requires
more nuanced reasoning which is enabled by conditional
equality invariants. We now illustrate this in the context of
a Prime+Probe [8] attack (ref. Fig. 1).

Prime+Probe on a Resource Partitioned Cache:
As a warm-up, we begin by discussing how a Prime+Probe
attack operates on an unpartitioned cache. For simplicity,
consider a segment of the cache consisting of four cache lines:
{l0, · · · , l3}. These are illustrated at the top of Fig. 1. Initially
the attacker primes the cache by loading a value into a specific
line, say l2 (highlighted in orange in Fig. 1).

Following this, the victim performs a memory operation
leading to a cache access (victim tab in Fig. 1). We consider
three scenarios where the victim accesses either l0, l1 or l2
(denoted A, B, and C respectively). In cases (A, B) the victim
access (highlighted in green) does not evict the attacker primed
line l2 while in case (C) it does (highlighted in red).

Now, if the attacker accesses (probes) the cache on line
l2, there are two possible outcomes: in case (C) the access
results in a cache miss (since the victim evicted the attacker’s
primed data), while cases (A, B) result in a cache hit (since the
attacker’s data was untouched). This difference manifests in
the execution time of the attacker’s probing access and allows
the attacker to deduce the cache line accessed by the victim
earlier. Since the cache line is indexed by the memory address,
the attacker can infer this address, and as a consequence, any
potentially secret data that the address depend on.

Cache partitioning schemes avoid this by allocating disjoint
partitions to untrusting processes. In our example, a partition-
ing scheme can allocate l0, l1 to the victim process and l2 to
the attacker process. Since the victim is not allocated l2, (C)
is not a valid execution for the partitioned cache. Since both
remaining executions (A, B) have the same (hit) result on the
attacker’s probing access, it cannot distinguish between these,
and consequently, cannot infer the victim’s loaded address.

Leakage through the policy state: While disjointness
of victim and attacker partitions prevents a hit/miss timing
side-channel leakage for the first probing access, leakage may
still be possible through the replacement/allocation policy state
(cloud in Fig. 1). The possible victim accesses, (A, B), may
still lead to differing policy states (state0) and (state1). While
this difference is not visible on the first probing access, it could
potentially manifest after some number of attacker accesses.

Policy states need not be equal: In order to prove that
an arbitrary number of attacker accesses lead to the same
(hit/miss) outcome, relational model-checking [19], [16] based
approaches (e.g. [18], [17], [20]) develop invariants relating
possible resource states (A, B in Fig. 1). While the contents
of the attacker-observable partition (l2) itself must be equal,
(else the attacker observes different outcomes), for the policy
state, enforcing exact equality may be too strong. Policy states
which are not fully equivalent, but still related in some way
may be sufficient to ensure identical attacker access outcomes.
Our model allows us to formulate conditional equality-based

invariants, that are more nuanced than exact equality, and
hence support inductive proofs of non-interference.

Related work: We formulate the security of partitioning
schemes as a non-interference-based [21] hyperproperty [22].
Our verification approach is based on the well-known trans-
lation of non-interference to 2-safety [23], [24]. We verify
the resulting 2-safety property with symbolic model checking
[25], [26] (e.g. BMC, k-Induction [27], [28], PDR [29]).

There are several approaches that perform verification of
non-interference-based properties, both on RTL (e.g. [30],
[31]) and on abstract models (e.g. [32], [33], [34]). These
approaches focus on proving programs secure against specific
vulnerabilities by using techniques such as bounded model
checking (e.g. [32]) and fuzzing (e.g. [31]). Our focus, on the
other hand, is developing an abstract model specialized for re-
source partitioning schemes (implemented in either SW/HW)
and proving unbounded security through invariants.

Our work is closest to the approaches performing relational
symbolic execution/model checking (e.g. [18], [19], [17]).
These too verify security-based hyperproperties on the self-
composition of the model, by identifying relational invariants.
These works consider different models than ours (e.g. [18]
uses a simple programming language) or make use of different
(often simpler) relational invariants (e.g. [17] considers pure
equality-based invariants). Our focus is identifying specialized
invariants in the context of resource partitioning-based models
(for which pure equality-based invariants are inadequate).

Our contributions are as follows: (1) Formal model for
security-oriented resource partitioning: We develop a formal
model for security-oriented resource partitioning schemes with
a corresponding attacker model that captures cache-based
timing side channels. (2) Conditional equality invariants: We
formulate relational invariants that are customized to this
model and which enable us to reason about the partitions
as well as the policy states. (3) Evaluation: We use our
approach to model two partitioning schemes, DAWG [11] and
COLORIS [13], and demonstrate that inductive proofs using
our invariants can have much better performance as compared
to bounded (BMC) and unbounded (PDR) techniques.

Outline: In §II we formulate the resource partitioning
model and the corresponding threat model. In §III we de-
velop our conditional-equality invariants that support inductive
proofs of security. In §IV we discuss our case studies and
experimental results, and §V concludes.

II. MODELLING RESOURCE PARTITIONING SCHEMES

A. Resource model

Our model captures an abstract shared resource (e.g. cache
lines, cache-ways, memory pages) that is being partitioned.
For simplicity, we assume that there is only a single resource,
but, this can easily be extended to multiple resources.

1) Resource: A resource is a collection of cells, each cell
representing one unit of the resource. In Fig. 1, each line (li)
is a cell. We assume that cells are indexed by an index set I,
and hold a value from the set V. The value ⊥ ∈ V represents

269

1 if (∃i. r(i) = α ∧ d = a(i)) {
2 // Is a hit, let i be the hit

index
3 p← fupdH(a, p, d, i)
4 } else {
5 // Not a hit
6 i← fevict(a, p, d)
7 r(i)← α
8 p← fupdM(a, p, d, i)
9 }

Fig. 2. Semantics of an access d : α, from configuration c = ⟨a, r, p⟩.

the NULL value. The map r defines the mapping from cell
indices to values that they contain, r : I→ V.

2) Domains: A set of protection domains, denoted by D,
share the resource. In Fig. 1, the victim and attacker processes
are domains. Each cell in the resource is allocated to a domain.
This allocation is specified by an allocation map, identifying
the domain that has access to a cell, a : I→ D. We denote the
set of possible allocations as A = I→ D. For allocation a, we
denote the set of all cell indices allocated to d by a↓d⊆ I.

3) Policies: We consider an abstract policy with states P.
Each policy state p ∈ P is an assignment to policy elements,
p : E→ Vp. In the Prime+Probe example of Fig. 1, the policy
elements E are the bits in the replacement/allocation state (e.g.
PLRU tree bits for a Tree-PLRU policy [35]).

Modelling the state as a collection of elements, E, as
opposed to monolithically, allows us to develop conditional
equality invariants in §III.

We identify three functions defining the policy behaviour:

fevict : A× P× D→ I
fupdM : A× P× D× I→ P

fupdH : A× P× D× I→ P

The function fevict, given the current allocation, policy state,
and the domain performing the access identifies the cell index
that is chosen for replacement by the policy. The function fupdM

identifies the new policy state that results when an access (by
a given domain) is a miss, while fupdH identifies the state when
the access is a hit (the hitting index is a function input).

4) Overall configuration: The overall configuration is a
tuple c = ⟨a, r, p⟩ of these components. We denote the set
of configurations as C. Initial configurations are of the form
⟨a, rinit, pinit⟩, where a is arbitrary, the resource is empty,
rinit = λi.⊥, and pinit ∈ P is the initial partitioning state.

5) Resource access semantics: At each step, a domain d ∈
D performs an access operation with argument α ∈ V, denoted
as d : α (e.g. in a cache resource, the address is the argument).
Fig. 2 provides the semantics of an operation d : α, which are
determined by the functions fevict, fupdM, fupdH.

In case of a hit (i.e some allocated cell contains the accessed
argument), the replacement state is updated according to fupdH

(line 3). On a miss, the replaced index i is determined (line
6), following which the cell at i, and the replacement state is
updated (lines 7, 8). We denote the transition relation (defined
in Fig. 2) as δacc : C×{d : α | d ∈ D, α ∈ V} → C, which for
a previous state and operation d : α, gives the resultant state.

6) Executions: A trace of the model is a sequence of con-
figurations, π = c0 · c1 · · · where c0 is an initial configuration
(§II-A4), and at each step j, some access operation (dj : αj) is
performed: δacc(cj , dj : αj) = cj+1. For a trace π, we denote
opπ[j] as the operation performed at step j. We denote the set
of executions of the model as Π.

B. Attacker Model and Security Property
We consider a timing-based attacker that can observe differ-

ences between the hit/miss outcomes of its accesses. Hence the
hit/miss outcomes should not depend on the arguments (αs) of
accesses by other domains. Otherwise, the attacker could infer
these arguments, constituting an information leak. Operation
(d : α) results in a hit if isHit(c, d : α) = ∃i. r(i) = α∧a(i) =
d. Configurations c1, c2 are (single-access) indistinguishable to
the attacker (with domain d#) if the following holds:

ϕindist(c1, c2) ≡ ∀α. isHit(c1, d# : α) ⇐⇒ isHit(c2, d
: α)

We formulate security as a non-interference property, where
the attacker allocations and accesses are public inputs and
the attacker hit/miss outcome is the public output. Non-
interference requires that for any two traces, if the public
inputs are equal, then so must be the public output. In our
setting, two traces π1, π2 have the same public inputs (denoted
π1 =L π2) if the attacker allocation is identical (a(π1[0])↓d#=
a(π2[0])↓d#) and attacker accesses are identical:

∀j. ∀α. opπ1
[j] = (d# : α) ⇐⇒ opπ2

[j] = (d# : α)

Finally, identical public outputs (hit/miss outcomes) are
captured by ϕindist. Hence, the overall non-interference-based
hyperproperty is formulated as:

Φsec ≡ ∀π1, π2 ∈ Π. π1 =L π2 =⇒ ∀j. ϕindist(π1[j], π2[j])

III. INVARIANTS FOR RESOURCE PARTITIONING SCHEMES

We aim to prove the hyperproperty Φsec using relational
model checking [16] by developing a relational invariant
ϕinv(c1, c2) (that relates states from the two traces π1, π2).

A. Conditions on ϕinv

We begin by listing conditions on ϕinv. As the base case,
we get (by π1 =L π2):

a1 ↓d#= a2 ↓d# =⇒ ϕinv(⟨a1, rinit, pinit⟩, ⟨a2, rinit, pinit⟩)
(base)

Next, we want ϕinv to be inductive, both w.r.t. attacker (Eq.
ind-d#) and non-attacker (Eq. ind-non-d#) accesses. For the
attacker accesses, the access argument should be identical.

∀α. ϕinv(c1, c2) =⇒
ϕinv(δacc(c1, d

: α), δacc(c2, d
: α)) (ind-d#)

∀d1, d2 ̸= d#. ∀α1, α2. ϕinv(c1, c2) =⇒
ϕinv(δacc(c1, d1 : α1), δacc(c2, d2 : α2)) (ind-non-d#)

270

Finally, we want the invariant to imply indistinguishability
for an attacker access (ϕindist):

∀c1, c2. ϕinv(c1, c2) =⇒ ϕindist(c1, c2) (indist)

It is straightforward to see that if some ϕinv satisfies Eqns.
base, ind-d#, ind-non-d#, indist, we get a proof of Φsec.

B. Shape of ϕinv invariants

In this section, we specialize the form of the invariant ϕinv

considered. We require that ϕinv enforce (a) that cells allocated
to d# are identical, and (b) that contents of the d#-allocated
cells are equal. Formally, we require ϕinv ⊇ ϕ1, where,

ϕ1 ≡ (a1 ↓d#= a2 ↓d#) ∧ (∀i. i ∈ a1 ↓d# =⇒ r1(i) = r2(i))

Note that ϕ1 =⇒ ϕindist. While ϕ1 constrains allocations
and their contents such that single-step indistinguishability is
guaranteed, different policy states (p1, p2) may lead to ϕ1 not
being inductive. Hence ϕinv additionally needs to relate the
policy states from the two traces. However, unlike the resource
contents (r1, r2), the policy states may not be fully equivalent,
and yet the scheme may be secure. Hence the invariant ϕinv

must be more nuanced when relating c1 with c2.
In order to develop more nuanced invariants we make use of

the fact that the policy state is composed of elements (§II-A3).
We constrain that p1, p2 must only agree on some elements
from E. The choice of these elements depends on the attacker-
allocated indices (a↓d#) and is identified by a filtering function
filter : 2I ↦→ 2E. The equality of p1, p2 is conditioned to only
the elements in filter(a↓d#). The invariant ϕinv is defined as:

ϕinv ≡ ϕ1 ∧ ∀e ∈ filter(a↓d#). p1(e) = p2(e)

The first term (ϕ1) enforces equivalence of the d#-allocated
cells and their contents while the second enforces equality of
the filter-identified elements of the policy state.

Importantly, the set of elements in filter(a↓d#) is not known
statically since a ↓d# can be arbitrary (we want to verify
security for arbitrary allocations). Hence conditional equality-
based invariants cannot be subsumed by pure equality based
relational invariants.

IV. EXPERIMENTAL EVALUATION

We evaluate our modelling and verification approach on
two case studies based on previously proposed partition-
ing schemes: (1) DAWG [11] and (2) COLORIS [13]. We
cast both of these into our formal model (§II-A). We then
formulate conditional equality-invariants by manually iden-
tifying the filter function (§III-B) and then perform ver-
ification w.r.t. the property Φsec (§II-B). We discuss de-
tails of modelling and verification in §IV-A and §IV-B re-
spectively. Our experimentation is performed on a server
machine running on an Intel i7-13700k processor at 5.2
GHz with 20GB of RAM. Our case study examples includ-
ing models, invariants, and proof scripts can be found at
https://github.com/lichye/sec_resource_pa
rtitioning.

TABLE I
DAWG VERIFICATION RUN TIMES

Policy Verification approach Runtime

PLRU

k-Ind (k = 10) 2.789s
BMC (d = 12) 42.6s
BMC (d = 20) 145m43s

PDR 24m10s

NRU

k-Ind (k = 10) 2.674s
BMC (d = 12) 1m12s
BMC (d = 20) 179m16s

PDR Timeout

A. Dynamically Allocated Way Guard (DAWG)

DAWG [11] proposes a technique for secure way partition-
ing of set associative structures, and develops an implementa-
tion of a way-partitioned cache. It allows privileged software to
allocate cache-ways to processes based on resource utilization,
and aims to provide isolation between cache-ways allocated to
mutually untrusting processes.

1) Eviction Policy: We implement both Pseudo-Least Re-
cently Used (PLRU) and Not Recently Used (NRU) eviction
policies in DAWG. Similar to standard PLRU or NRU policies,
DAWG’s PLRU and NRU policies include metadata that is
used to determine the victim way and to record the order in
which addresses are accessed. PLRU employs a pointer to a
metadata tree, while NRU uses access bits. The metadata tree
and access bits form the policy elements (E) in our model in
the case of PLRU and NRU respectively. In order to ensure
isolation, DAWG constrains updates to the metadata and the
identification of victim ways to the allocated partitions. Cor-
respondingly, the hardware implementation must ensure that
accesses performed by one domain do not modify metadata
visible to another domain, as this could alter the hit/miss
outcomes in other domains, potentially leading to timing-based
information leakage.

2) Formal Modelling and Verification: We consider an 8-
way DAWG cache design and implement Verilog modules
for PLRU and NRU policies. Since DAWG performs way-
partitioning, each way is a cell in our model, and hence, |I| = 8
for both cases. For the PLRU policy, the policy elements
contain the PLRU-tree bits, |EPLRU| = 7 and for NRU they
are the access bits |ENRU| = 8. We perform a self-composition
of this module and formulate Φsec as a safety property over
this self-composition. For this, we use the standard encoding
of 2-safety as a safety property [23]. We use the Yosys [36]
based SymbiYosys (SBY) [37] model checker with Boolector
[38] and ABC [29] as backend solvers to verify this property.

3) Result and Analysis: We apply three approaches: k-
induction and BMC (using SMTBMC), and PDR (using
ABC). For k-induction, we formulate invariants as discussed
in §III-B. In Table I, we present the proof runtimes observed
for the PLRU and the NRU policies. We observe that both
PDR proof runtimes and BMC runtimes (for larger depths)
are significantly higher than a k-inductive proof with our
invariants. Our approach shows a significant speedup of 15.2x
to 4022x in the runtime.

271

https://github.com/lichye/sec_resource_partitioning
https://github.com/lichye/sec_resource_partitioning

B. COLORIS

COLORIS [13] performs cache partitioning based on page
colouring. In COLORIS, the OS kernel assigns colours to each
memory page based on its address bits. Consequently, memory
pages with different colours map to different cache sets in
a physically indexed cache. By allocating different colours
to each process COLORIS aims to improve performance in
scenarios where cache contention occurs.

1) Formal Modelling and Verification: While COLORIS
performs colour-based partitioning, it does allow colours to be
shared between processes under certain scenarios. Hence, in
full generality, it may allocate non-disjoint partitions to mutu-
ally untrusting processes, which puts it at risk of security leaks.
However, in our experiments, we assume that the allocated
colours are in fact disjoint, making the scheme secure.

We develop a model for a 4-way associative cache with
a page allocation scheme, implemented in UCLID5 [39].
UCLID5 allows us to develop a model that partially abstracts
the replacement policy by using uninterpreted functions to
model policy functions (§II-A3), while constraining the policy
to enforce disjointness of allocations. This abstraction allows
us to verify an arbitrary policy that enforces disjointness.

2) Result and Analysis: We use both BMC and induction-
based approaches to verify the model in UCLID5. For the
proof by induction, we formulate Eqns. base, ind-d#, ind-
non-d#, and indist as separate proofs using UCLID5. The
cumulative runtime of the inductive proof (summing individual
proof runtimes) is 16m33s. On the other hand, a BMC proof
of security does not terminate even for a depth of three.

V. CONCLUSION

In this work, we develop a formal model for resource parti-
tioning schemes and a corresponding attacker model that cap-
tures information leakage through timing-based side-channel
attacks. We develop conditional equality-based relational in-
variants that enforce equality of state elements conditioned on
some dynamic preconditions, and are more expressive than
pure equality-based invariants. These invariants can support
inductive proofs of security for resource partitioning schemes
against a non-interference-based characterization of the at-
tacker model. We model two partitioning schemes using our
approach and demonstrate that conditional equality invariant-
based proofs, while requiring manual specification of the
invariants, can be much faster than other model-checking
approaches. For future work, it would be interesting to develop
an algorithm for automated synthesis of these invariants by
utilizing their structure. Abstract models and invariants, such
as the one we propose, that are specialized to design features,
can provide scalable and trustworthy security guarantees.

ACKNOWLEDGEMENTS

This work was supported in part by Intel under the Scalable
Assurance program, DARPA contract FA8750-20-C0156 and
NSF grant 1837132.

REFERENCES

[1] Paul C. Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Michael
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. 2019 IEEE Symposium on Security and Privacy (SP), pages
1–19, 2019.

[2] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul C. Kocher, Daniel
Genkin, Yuval Yarom, and Michael Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security Symposium, 2018.

[3] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue In-Flight Data Load. 2019 IEEE Symposium on Security
and Privacy (SP), pages 88–105, 2019.

[4] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking Data on Intel CPUs via Cache
Evictions. 2021 IEEE Symposium on Security and Privacy (SP), pages
339–354, 2021.

[5] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019.

[6] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019.

[7] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, 8:1–27, 2016.

[8] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. 2015 IEEE
Symposium on Security and Privacy, pages 605–622, 2015.

[9] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. Net-
Spectre: Read Arbitrary Memory over Network. ArXiv, abs/1807.10535,
2019.

[10] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks. In USENIX Security Symposium, 2018.

[11] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas
Devadas, and Joel S. Emer. DAWG: A Defense Against Cache
Timing Attacks in Speculative Execution Processors. 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 974–987, 2018.

[12] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. Chunked-Cache: On-Demand and Scal-
able Cache Isolation for Security Architectures. ArXiv, abs/2110.08139,
2021.

[13] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: A
dynamic cache partitioning system using page coloring. 2014 23rd
International Conference on Parallel Architecture and Compilation
(PACT), pages 381–392, 2014.

[14] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers,
and G. Edward Suh. SecDCP: Secure dynamic cache partitioning for
efficient timing channel protection. 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6, 2016.

[15] Wenjie Xiong and Jakub Szefer. Leaking Information Through Cache
LRU States. 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 139–152, 2020.

[16] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational
Verification Using Product Programs. In World Congress on Formal
Methods, 2011.

[17] Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta, and
Sharad Malik. Lazy Self-composition for Security Verification. In
International Conference on Computer Aided Verification, 2018.

[18] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/Rel:
Efficient Relational Symbolic Execution for Constant-Time at Binary-
Level. 2020 IEEE Symposium on Security and Privacy (SP), pages
1021–1038, 2019.

[19] Gian Pietro Farina, Stephen Chong, and Marco Gaboardi. Relational
Symbolic Execution. Proceedings of the 21st International Symposium
on Principles and Practice of Declarative Programming, 2017.

272

[20] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. Shadow of
a Doubt: Testing for Divergences between Software Versions. 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 1181–1192, 2016.

[21] Joseph A. Goguen and José Meseguer. Unwinding and Inference
Control. 1984 IEEE Symposium on Security and Privacy, pages 75–
75, 1984.

[22] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. 2008 21st
IEEE Computer Security Foundations Symposium, pages 51–65, 2008.

[23] Tachio Terauchi and Alexander Aiken. Secure Information Flow as a
Safety Problem. In Sensors Applications Symposium, 2005.

[24] Gilles Barthe, P. D’Argenio, and Tamara Rezk. Secure information
flow by self-composition. Proceedings. 17th IEEE Computer Security
Foundations Workshop, 2004., pages 100–114, 2004.

[25] Kenneth L. McMillan. Symbolic model checking. In International
Conference on Computer Aided Verification, 1993.

[26] Edmund M. Clarke and David E. Long. Model checking, abstraction,
and compositional verification. 1993.

[27] Per Bjesse and Koen Claessen. SAT-Based Verification without State
Space Traversal. In Formal Methods in Computer-Aided Design, 2000.

[28] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking Safety
Properties Using Induction and a SAT-Solver. In Formal Methods in
Computer-Aided Design, 2000.

[29] Alan Mischenko et al. Berkeley ABC tool. https://github.com/
berkeley-abc/abc, 2022.

[30] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark W. Barrett,
Subhasish Mitra, and Wolfgang Kunz. Processor Hardware Security Vul-
nerabilities and their Detection by Unique Program Execution Checking.
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 994–999, 2018.

[31] Jaewon Hur, Suhwan Song, Dongup Kwon, Eun-Tae Baek, Jangwoo
Kim, and Byoungyoung Lee. DifuzzRTL: Differential Fuzz Testing to
Find CPU Bugs. 2021 IEEE Symposium on Security and Privacy (SP),
pages 1286–1303, 2021.

[32] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod
Subramanyan. A Formal Approach to Secure Speculation. 2019 IEEE
32nd Computer Security Foundations Symposium (CSF), pages 288–
28815, 2019.

[33] Marco Guarnieri, Boris Köpf, José Francisco Morales, Jan Reineke,
and Andrés Sánchez. Spectector: Principled Detection of Speculative
Information Flows. 2020 IEEE Symposium on Security and Privacy
(SP), pages 1–19, 2020.

[34] Musard Balliu, Mads Dam, and Roberto Guanciale. InSpectre: Break-
ing and Fixing Microarchitectural Vulnerabilities by Formal Analysis.
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020.

[35] David A. Patterson and John L. Hennessy. Computer Organization and
Design, Fifth Edition: The Hardware/Software Interface. 2013.

[36] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-A Free
Verilog Synthesis Suite. https://github.com/YosysHQ/yosys, 2013.

[37] Claire Wolf, et. al. Symbiyosys. https://github.com/YosysHQ/sby, 2022.
[38] Robert Brummayer and Armin Biere. Boolector: An Efficient SMT

Solver for Bit-Vectors and Arrays. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems, 2009.

[39] Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait God-
bole, Kevin Laeufer, Shaokai Lin, Yatin A. Manerkar, Federico Mora,
and Sanjit A. Seshia. UCLID5: Multi-modal Formal Modeling, Verifi-
cation, and Synthesis. In 34th International Conference on Computer
Aided Verification (CAV), volume 13371 of Lecture Notes in Computer
Science, pages 538–551. Springer, 2022.

273

https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/sby

	Introduction and Example
	Modelling resource partitioning schemes
	Resource model
	Resource
	Domains
	Policies
	Overall configuration
	Resource access semantics
	Executions

	Attacker Model and Security Property

	Invariants for resource partitioning schemes
	Conditions on φinv
	Shape of φinv invariants

	Experimental Evaluation
	Dynamically Allocated Way Guard (DAWG)
	Eviction Policy
	Formal Modelling and Verification
	Result and Analysis

	COLORIS
	Formal Modelling and Verification
	Result and Analysis

	Conclusion
	References

