
Formal Methods in Computer-Aided Design 2023

Lift-off: Trustworthy ARMv8 semantics from
formal specifications

Kait Lam and Nicholas Coughlin
Defence Science and Technology Group, Australia

School of EECS, University of Queensland, Brisbane, Australia
{kait.lam, n.coughlin}@uq.edu.au

Abstract—Disassembly and lifting tools are essential in the ver-
ification of software binaries. However, existing tools are difficult
to validate and hence not suitable when high levels of assurance
are needed. We address this by deriving a trustworthy lifter for
ARMv8, named ASLp, based on ARM’s official machine-readable
architecture files. ASLp is capable of extracting usable semantics
for a large subset of ARMv8, covering almost all integer, control
flow, memory and vector instructions.

We demonstrate the utility of ASLp by integrating it with the
CMU Binary Analysis Platform. Furthermore, we translate the
lifter’s output into LLVM IR and compare the resulting semantics
with those from existing lifters Remill and RetDec, leveraging the
trustworthiness afforded by our lifter to find a number of major
and minor bugs in their outputs.

I. INTRODUCTION

Binary analysis techniques enable program verification over
executable machine code, in contrast to reasoning over the ab-
stract programming languages from which it may be derived.
These techniques are essential in high assurance domains
where software development toolchains represent a liability [1]
and may obfuscate hardware behaviours of critical concern [2],
[3], [4]. Due to the complexity of binary executables, multiple
tools have been developed to provide a foundation for further
analysis [5], [6], [7]. These tools disassemble binaries, identi-
fying contents such as its machine instructions and static data,
and then decompile them, lifting the behaviours of machine
instructions into machine-generic imperative code. This is
advantageous as domain-specific analyses can then be applied
to this generic, simplified representation.

To soundly perform this transformation, these foundational
tools require trustworthy semantic models of each architecture
they aim to support. For disassembly, the architecture’s instruc-
tion encoding logic [8] is required to identify instructions,
along with some limited understanding of the control flow
implications of instructions [7]. To then decompile them,
detailed knowledge of the architecture’s state and the effects
of instructions on this state is essential [9].

While the information required for disassembly is widely
available in the form of reusable decoding libraries [7], the task
of specifying detailed instruction semantics for decompilation
presents considerable difficulty. Modern architectures support
thousands of instructions, with frequent additions to address
performance and security issues [10], [11], [12]. Manually
encoding each instruction’s behaviour is a time consuming
and error-prone task [13]. There are limited alternatives to a

manual approach however, as instruction semantics are gener-
ally only specified as informal prose in large instructions set
architecture (ISA) manuals [14], [15]. Correctly interpreting
all behaviours described in these documents is a difficult
task [16], with some projects deferring to incomplete hardware
testing to derive semantics instead [17].

An additional concern is the fidelity of these semantic
models. Encodings are generally simplified and optimised for
a particular application given assumptions over the architec-
ture behaviour, such as ignoring privileged execution modes.
While this may benefit the implementation, it limits model
reuse between tools due to over-specialisation to an intended
purpose [18]. Furthermore, these implicit assumptions may not
be clearly documented, potentially invalidating the soundness
of any subsequent analysis. Evidently, these issues may negate
the high assurance benefits that motivate binary analysis.

Trustworthy architecture models are required in a variety
of other domains, such as compiler verification [19], [20],
hardware verification [21], [22], and emulation [23]. Given
this common motivation, multiple efforts have been made to
develop formal architecture models for use across verification
projects [24], [25], [18], [26]. While these models have seen
use in certain binary analysis applications [27], [28], they
have not been broadly used as a semantic underpinning for
decompilation tools. This can be attributed to the significant
semantic gap between these formal architecture models and the
semantic encodings expected by these tools. For instance, for-
mal models may exploit language features such as dependent
types, recursive functions and exceptions. Such specification
styles are not supported by decompilation tools, which instead
encode semantics in simple imperative languages [29], [30].

In this paper, we propose the application of partial evalu-
ation to bridge this semantic gap, specialising and translating
the formal architecture semantics for each instruction to an
encoding suitable for decompilation tools. In Section II, we
detail an implementation of partial evaluation for a formal
semantics of ARMv8 [25]. Following this, we describe two
distinct use cases of the partial evaluator. First, in Section III,
we demonstrate the feasibility of its direct use by integrating
it into the CMU Binary Analysis Platform [5] to obtain a full
binary analysis toolchain. Second, in Section IV, we compare
the instruction semantics from two decompilation tools [29],
[31] with those derived from the partial evaluator, leveraging
existing translation validation techniques to automate the com-

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 36 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0009-0001-2599-2259
https://orcid.org/0000-0001-8758-0666
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_36
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_36
https://creativecommons.org/licenses/by/4.0/


parison [32]. Finally, we explore related work and conclude
in Sections V and VI respectively.

II. APPROACH

The foundation of this work is the machine-readable ar-
chitecture (MRA) published by ARM [33]. This is the for-
mal specification of the ARM architecture, used internally
for verification and validation of their hardware. The MRA
specification is a comprehensive description of the architec-
ture’s intricacies and behaviours, describing registers, memory
behaviour (including faults and translation), interrupts, and
the behaviour of exceptions. For our purposes, we are most
interested in the opcode decoder and instruction semantics.
These are expressed within the MRA using ARM’s architec-
ture specification language (ASL).

ASL [34] is domain-specific imperative language for spec-
ification of instruction behaviours and architectural details.
Some notable features are its arbitrary-precision integer and
real types, dependently-sized bitvector types, pattern matching,
and exception handling.

We make use of ASLi, an open-source library for interacting
with ASL [35] which provides a lexer, parser, interpreter, and
AST transformer. We extend ASLi with a static transformation
process to extract instruction semantics and simplify them
using partial evaluation.

In doing so, we produce the semantics of individual instruc-
tions in a proper subset of ASL called reduced ASL. Reduced
ASL represents instruction semantics with restricted control
flow statements and a minimal set of primitive operations
based on SMT-LIB’s theory of bitvectors. This allows for easy
integration with other tools and straightforward translation into
other intermediate languages for binary analysis.

Our extension of ASLi with partial evaluation, which we
call ASLp, is introduced in Section II-B.

A. Machine-readable architecture example

The MRA specification provides a comprehensive descrip-
tion of the hardware’s behaviours. To detail these behaviours
concisely, the specification groups instructions into broad
classes based on their function and addressing mode. Specifi-
cally, a single __encoding in the specification handles several
mnemonics, disambiguating them by fields extracted from the
opcode. As an example, the encoding in Listing 1 describes
the semantics for add and sub with shifted operands. The
pseudocode contains considerable complexity with branches
and subroutines to handle flags, different data sizes, and
various bitshift options. Even more details are contained within
the function calls and overloaded array operations.

In the encoding, __field defines slices of the opcode,
the __decode section extracts information from fields, and
the __execute block gives the operational semantics of
the instruction. When lifting a single opcode, the __decode
block can be evaluated ahead of time and combined with the
__execute statements to produce a simplified summary of the
instruction’s behaviour. This is explained in the next section,
Section II-B.

__encoding aarch64_integer_arith_add_sub_shiftedreg
__field Rd 0 +: 5
[...]
__decode
integer d = UInt(Rd); // destination operand
integer n = UInt(Rn); // first operand
integer m = UInt(Rm); // second operand
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1'); // add or sub
boolean setflags = (S == '1'); // set flags?

if shift == '11' then UNDEFINED;
if sf == '0' && imm6[5] == '1' then UNDEFINED;

// logical/arithmetic, left/right shift
ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

__execute
bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 =

ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1,
operand2, carry_in);

if setflags then
PSTATE.[N,Z,C,V] = nzcv;

X[d] = result;

Listing 1: ASL encoding of integer add/subtract with a shifted
register operand, from the arch_instrs.asl file.

To support a common specification across architecture
versions and optional extensions, instruction behaviours are
often guarded by feature flags denoting differences in their
behaviours across possible hardware implementations. This
is accomplished with stub functions, i.e. functions declared
without implementations, that are later overridden to select
the desired behaviour. Some examples of these are:
boolean HasArchVersion(ArchVersion version);
boolean HaveEL(bits(2) el); // exception levels
boolean HaveSVE(); // scalable vectors
boolean HaveBTIExt(); // branch target ident.
boolean HaveDITExt(); // data indep. timing

The feature flags offer substantial control over the specifi-
cation, permitting it to be tailored to the underlying hardware
as necessary. We leverage this functionality to make our
assumptions over the hardware precise and explicit, overriding
these feature flags as a form of configuration to our partial
evaluation process.

B. Partial evaluation implementation

The key to extracting useful semantics from the MRA
specification is partial evaluation, a program transformation
applicable in contexts where a subset of the program’s inputs
are known in advance. These known inputs are propagated
throughout the program body, permitting the early evaluation
of computations and simplification of language structures

275



X[1] = ZeroExtend(
(X[2][0 +: 32] + (X[3][0 +: 32] << 4)), 64);

Listing 2: Residual program for add w1, w2, w3, LSL 4

based on identified constraints. The residual program pro-
duced by this transform consumes any remaining unknown
inputs to generate a result equivalent to that of the original
program [36].

For example, Listing 2 is the residual program of
add w1, w2, w3, LSL 4, from the partial evaluation of
Listing 1. Since this specifies various inputs ahead of time
(e.g. register usage, bitvector widths and operation mode),
the program can be significantly simplified. This process
extends to function calls, such as AddWithCarry(), which
are inlined and simplified down to primitive operations (e.g.
ZeroExtend(), << and +). The final residual program suc-
cinctly represents the instruction’s effects in terms of unknown
inputs—here, values held in the register array X.

We implement our ASL partial evaluator (ASLp)1 by aug-
menting the existing ASLi [35] to perform online partial
evaluation [37]. This approach preserves the structure of the
existing interpreter but extends it to consider a symbolic state,
in which variables map to one of the following:

1) Known v: A known concrete value v
2) Expr e: The result of a simplified pure expression e
3) Unknown: An unknown value
Known encodes inputs and intermediary calculations that

are known ahead of time, with Unknown encoding the in-
verse. Expr encodes intermediary calculations over Unknown
variables and is used to identify simplifications.

Our partial evaluator aslp(prog, sym) produces a residual
program for the program prog given the symbolic state sym.
We define correctness of aslp in terms of the existing inter-
preter, eval, such that the residual program will produce an
equivalent final state as the original program given agreement
between sym and the initial concrete state, st:

∀prog, st, sym ·
(∀x, e · sym(x) = Expr e =⇒ st(x) = eval(e, st)) ∧
(∀x, v · sym(x) = Known v =⇒ st(x) = v) =⇒
eval(aslp(prog, sym), st) = eval(prog, st)

where eval(prog, st) returns the final state for program prog
and eval(e, st) returns the value of expression e.

The partial evaluator maintains the symbolic state through
a forward traversal of the program, evaluating language struc-
tures where possible and building the residual program other-
wise. We list some of the applied partial evaluation techniques:

1) Expression Simplification: Rewrite rules are applied
during the construction of Expr e terms. These transforms are
critical to matching the simplicity of existing lifter outputs as,
without them, the abstract nature of ASL introduces redundant
operations. For instance, bitvector calculations may include
redundant slicing, concatenation and extension operations due
to the use of shared code paths. These are aggressively

1Available at: https://github.com/UQ-PAC/aslp

rewritten, generally by distributing slicing operations over sub-
expressions to identify additional simplification opportunities.

2) Aggregate Values: ASL enables various aggregate val-
ues, such as tuples, records and arrays. We unpack these
structures into their individual components and transform
operations over them accordingly. As an example, consider
ASL’s syntax for a destructuring assignment to multiple fields
of a record in PSTATE.[N,Z,C,V] = nzcv. In this operation,
the 4 bits of the bitvector nzcv are extracted into the corre-
sponding fields (N,Z,C,V) of the PSTATE record. The partial
evaluation process lowers this operation into four assignments
to the individual fields of the appropriate slice of nzcv.

3) Function Inlining: ASL supports functions to imple-
ment common functionality. We inline all calls to ensure we
emit a single code sequence for an instruction, excluding
those to a configurable set of primitive functions. Inlining
is implemented by introducing a fresh variable to represent
the function result and stitching the callee and caller bodies
together appropriately. This stitching process is complicated
by the limited control flow expressible in ASL, demanding
transforms detailed later in Item II-B5.

The primitive function set enables the abstraction of com-
plex processor features. For instance, memory accesses in
the MRA specification are complex, including details such as
virtual address translation. As these complexities are generally
ignored during binary analysis, the inlining process is config-
ured to treat various memory operations as primitives. These
function calls are later translated into corresponding primitives
in binary analysis tools, as detailed in Sections III and IV. A
similar technique is applied to model floating-point operations.

4) Iteration: Loops are widely used in instruction speci-
fications, notably to encode operations over vector elements.
The bounds on these loops are generally known during partial
evaluation, permitting their elimination via unrolling. While
this increases program size, it significantly simplifies subse-
quent analysis. When loop bounds are unknown, all iterating
language structures are lowered into while loops and emitted
into the residual program.

5) Branching Control Flow: ASL supports various branch-
ing control flow structures, such as if statements, ternary
operators and pattern matching. Often, branch conditions can
be resolved during partial evaluation, eliminating the branch.
If not, these structures are lowered into if statements and all
possible branches are explored, merging their symbolic states
when control flow eventually rejoins.

As the state merge process can cause loss of analysis
precision, we may defer the control flow join by duplicating
the statements appearing after an if statement into both
branches. Moreover, this transform is necessary when inlining
a function with a return statement within a branch, as a
means to represent the execution of the inlined function’s body
after the conditional return.

Note that this transform may result in an exponential
increase in code size, given a sequence of branches. Con-
sequently, it is not applied to branching structures derived
from an unrolled loop, as seen in various vector instructions

276

https://github.com/UQ-PAC/aslp


assumptions

hex encoding ASL reduced ASL reduced ASL · · ·

ARM MRA state state

decoder partial eval

eval

state comparison

transforms

eval

Fig. 1. Overview of ASLp’s partial evaluation pipeline. Dotted lines indicate some external input and dashed lines represent state comparison.

with conditional behaviours per vector element. It is applied
in a majority of cases however, as residual programs for
instructions generally contain at most a single branch.

C. Transforms

After partial evaluation, transformations are applied to the
output to further simplify its representation. This includes dead
code elimination and common sub-expression elimination to
remove unnecessary and duplicated calculations introduced
during partial evaluation.

Furthermore, the MRA specification makes extensive use
of arbitrary-precision integers, a feature rarely considered in
binary analysis frameworks. Consequently, we convert these
operations into bounded equivalents to successfully integrate
residual programs into these frameworks.

This is possible as the processor state is specified using
types of a bounded size, e.g. a 64-bit register’s value is
known to fit within 64 bits. Therefore, while instructions may
be specified with arbitrary-precision operations, only some
bounded component of their effects will ultimately interact
with the processor state. We determine these bounds using a
simple interval analysis over the residual program. Given these
intervals, we transform all integer variables and operations into
corresponding bitvector equivalents of the required size.

D. Testing

To validate the partial evaluator, we implement differential
testing [38] between the original ASL specification and its
reduced form (denoted by the “state comparison” dashed
arrow in Figure 1). Although this is not a formal proof of
correctness, it increases our confidence in the validity of our
implementation.

We perform this testing on a subset of the ARMv8 instruc-
tions, chosen to be a representative sample of application-level
opcodes with predictable behaviours. Specifically, we include:

• integer and arithmetic instructions,
• floating-point instructions,
• branch instructions,
• vector instructions,
• memory load/store instructions, and
• atomic instructions (sequential semantics only).
To implement differential testing, we leverage the existing

ASL interpreter to evaluate both the original specification
and the partial evaluator’s output for a particular instruction

encoding. We then compare the final states for the two
executions, with a mismatch indicating a potential bug in
the partial evaluator. For each ARMv8 mnemonic, we test
various combinations of register operands and flag values with
a randomly initialised machine state for the interpreter.

The partial evaluator passes these tests for almost all instruc-
tion families, with errors limited to uncommon ASL features
which we currently do not support. Notably, multiple bugs in
the existing ASL interpreter were identified during this testing,
which we detail in Appendix A.

III. BINARY ANALYSIS TOOLCHAIN

The CMU Binary Analysis Platform (BAP) is a toolkit and
library supporting the analysis of binary programs. Given a bi-
nary file, it provides disassembly, control flow reconstruction,
and instruction semantics in its BAP intermediate language
(BIL). Moreover, it is built with a modular plugin system,
enabling the development of additional analyses and lifters.

We develop a plugin to integrate our ARMv8 semantics
into BAP by translating ASLp’s reduced ASL into BIL and
interfacing with BAP’s knowledge base. With this, we are able
to leverage the existing BAP machinery and combine it with
our derived semantics, easily obtaining a full binary analysis
toolchain.

To demonstrate the viability of the resulting lifter, we com-
pare its output with that of an existing ARMv8 plugin2 across
a series of programs, summarised in Table I. The ASLp variant
of BAP successfully lifts a superset of instructions relative to
those supported by the existing plugin, capturing additional
memory and vector operations. Notably, the ASLp variant
successfully lifts all instructions in the example binaries except
for 2508 instructions implementing floating-point operations,
for which the conversion to BAP’s semantics is unclear.

To evaluate the complexity of the produced programs, we
compare the line counts of their outputs and average line
length. The ASLp variant consistently produced a shorter
representation with an average line length of 29.45 characters,
comparable to the 29.47 characters of the existing imple-
mentation. A manual inspection of the results attributes these
differences to alternative representations of flag calculations
and branching conditions. Moreover, multiple semantic errors
in the existing lifter were identified, such as incorrect operation

2We use the following, as it is the most comprehensive ARMv8 plugin
to our knowledge: https://github.com/BinaryAnalysisPlatform/bap/pull/1546

277

https://github.com/BinaryAnalysisPlatform/bap/pull/1546


TABLE I
BAP COMPARISON

Program Lifted Instructions Time (s) Size (lines)
BAP ASLp BAP ASLp BAP ASLp

bzip2 25254 25275 8.55 10.60 37658 35727
cntlm 15899 15908 7.59 8.64 34691 33064
gcc 152036 153673 63.88 77.43 391241 375623
gzip 17501 17554 6.82 8.00 35283 33682

oggenc 56227 56817 18.70 24.67 106448 101464

widths and memory address calculations. We do not consider
a detailed semantic comparison of the two outputs, instead
focusing such efforts on other lifters in Section IV.

The ASLp variant introduces additional overhead, increas-
ing lifting time by roughly 20%. This is unsurprising, due
to the additional analysis required to reduce and translate the
ASL specification into BAP’s representation. We believe this
is an acceptable trade-off, as the ASL implementation provides
greater coverage of the ARMv8 architecture with a stronger
argument for correctness. Moreover, these benefits extend
to any other architectures specified in ASL, avoiding the
substantial effort needed to manually encode such semantics
in BAP’s existing infrastructure.

IV. SEMANTIC COMPARISON OF LIFTERS

Ours is not the first project to provide semantics for the
ARMv8 architecture. Although we have trustworthy semantics
from the architecture model, there are many existing lifters
in active use with their own instruction semantics. Instead of
replacing these, we can validate their semantics by comparing
them with the ASL lifter. In this way, we can gain a level of
confidence in their instruction semantics over and above fuzz
testing or hardware testing.

The semantic comparison is done using the translation
validation tool from Alive2 [32] which verifies that a given
LLVM IR program refines a source program—that is, the target
program’s behaviours are a subset of the source program’s
behaviours. The tool was developed to verify compiler and
optimisation passes, but here it is used to test for equivalence
of the semantics from different lifters. Alive2 supports this by
performing its refinement checks bidirectionally.

To test the output of ASLp, which emits reduced ASL, we
developed a translator3 from reduced ASL to LLVM IR and
compare its result with other lifters that produce LLVM IR.
We choose RetDec and Remill to demonstrate this process.

Although these lifters share a common output language, the
representation of registers, memory, and other hardware-level
state differs in each. To compare them, we translate the lifter
outputs into a unified “dialect” of LLVM IR. This dialect needs
to be simple to aid Alive2’s reasoning while capturing enough
of the machine state to faithfully represent the semantics we
wish to compare.

We design this unified state representation as follows. Reg-
isters are modelled as global integer variables of various sizes:

• 31 64-bit general purpose registers, x0 to x30,
• 32 128-bit vector registers, v0 to v31,

3Available at: https://github.com/UQ-PAC/llvm-translator

declare noundef i8 @load_8(i64 noundef)
inaccessiblememonly nounwind willreturn
readonly

declare noundef void @store_8(i64 noundef, i8)
inaccessiblememonly nounwind willreturn

Listing 3: Memory load/store functions. 8, 16, 32, and 64-bit
versions are defined.

• 4 1-bit flag registers, nf, zf, cf, and vf,
• a 64-bit pc register, and a 64-bit sp register.

Representing memory requires more careful consideration,
since many instructions can load/store memory at arbitrary
addresses. In LLVM, this is conventionally done with a
inttoptr (“integer to pointer”) cast, but Alive2 cannot reason
about these operations. Instead, we approximate these by
modelling memory as uninterpreted functions, as seen in
Listing 3. In order for two programs to verify as equivalent,
the source and target must have identical calls in the same
order. This is an overapproximation of memory behaviours
but is sufficient for verifying a single instruction’s semantics.

To reduce the overapproximation, LLVM attribute tags are
used on each declarations to constrain the effects of these
intrinsics on memory and global variables.

The inaccessiblememonly tag indicates the functions
only read from or write to memory not visible to the caller.
This is well-suited to representing the memory and its effects
(virtual address translation, alignment, etc.) and indicates that
the loads/stores are independent of register values but interacts
with other loads and stores. Load functions are additionally
tagged as readonly, indicating that the inaccessible memory
is not modified.

The willreturn tag indicates that these functions will
terminate (i.e. not loop forever). Combined with nounwind, it
means the function will terminate without raising an exception
(i.e. without jumping back up the call stack).

As a consequence of using Alive2 for validation, the seman-
tic comparison in this work is done with respect to the formal
semantics of LLVM IR [39]. However, LLVM IR is designed
for use within optimising compilers as a compilation target
of higher-level languages As such, it is intentionally under-
specified; some details are left as undefined behaviour (UB)
to allow for different implementations. Moreover, it introduces
“undefined” and “poison” values into each type so compilers
may exploit particular instances of undefined behaviour for
optimisation. These features are useful in compilation but less
suitable for our purposes.

Formal semantics of instruction-internal behaviours, includ-
ing the ARMv8 model we consider, should be precise and not
exhibit any undefined behaviour. Undefined and poison values
do not occur naturally within the architecture specification lan-
guage. To handle these, we annotate many LLVM operations
as noundef and nonnull to assert values are never unde-
fined/poison or null. These will invoke undefined behaviour
when their assumption is violated, which is acceptable since
two programs will verify as long as the UB occurs in the same
way in both cases.

278

https://github.com/UQ-PAC/llvm-translator


reduced ASL LLVM IR (ASL) LLVM IR •

hex encoding LLVM IR (RetDec) LLVM IR •

LLVM IR (Remill) LLVM IR •

ASLp

ASL→LLVM

RetDec

Remill

translator

translator

translator

opt tool

opt tool

opt tool

Alive2

Alive2

Fig. 2. Overview diagram of the lifter evaluation process. ASLp indicates the pipeline of Figure 1. Dashed lines indicate semantic comparison, and filled
dots are the same type as their predecessor.

TABLE II
EVALUATION RESULTS

RetDec Remill
Count Equivalent Mismatch Timeout Unsupported Equivalent Mismatch Timeout Unsupported

Branch 162 74 9 10 69 120 1 37 4
Integer 14442 10147 608 415 3272 12058 15 1238 1131
Memory 6414 3864 618 0 1932 5057 88 0 1269
Vector binary 19170 264 426 0 18480 2997 0 0 16173
Vector unary 1098 9 153 0 936 333 0 0 765
Total 41286 14358 1814 425 24689 20565 104 1275 19342

With the comparison framework set up as above, evaluation
of the lifters was conducted for each opcode, as outlined
in Figure 2. For each opcode of interest, we perform the
following:

1) Separately disassemble the instruction with each lifter.
The ASL lifter produces a reduced ASL program which
is translated to LLVM IR by a pattern-matching trans-
lator.

2) The LLVM IR from each lifter is transformed into
the unified state and memory representation described
above.

3) The LLVM optimiser opt is run on each output to
simplify the resulting structures and allow for easier
comparisons.

4) For each lifter under test, alive-tv checks for equiv-
alence between its output and ASLp’s LLVM IR.

5) If Alive2 can prove the equivalence, it reports the two
outputs are equivalent. Otherwise it reports a mismatch
or time out. A mismatch may be a difference in memory
states or undefined behaviour. Where lifters do not
match, Alive2 gives input values which cause the mis-
match and we investigate the discrepancies by manually
comparing the LLVM IR with the ARM ISA.

We used a subset of the integer, logical, branching and vector
instructions tested in Section II-D to evaluate the three lifters.
The results are summarised in Table II, organised by classes
of instructions. Both RetDec and Remill were compared with
the ASL lifter with a timeout of 20 seconds. The “Equiva-
lent” column indicates both are semantically equivalent, and
“Mismatch” indicates a difference in memory state or unde-
fined behaviours. The “Unsupported” instructions are those
supported by the ASL lifter but not the lifter under test.

A. RetDec

RetDec [31], developed by Avast Software, is a retargetable
decompiler with plugins for IDA Pro and radare2. Here, we
analyse its Capstone2LLVMIR component which provides its
instruction semantics in LLVM IR. The produced IR is similar
to our unified representation: registers are mutable global vari-
ables, memory operations used inttoptr instructions, and
intrinsic functions handle program flow and branching. Since
the goal of Capstone2LLVMIR is to lift to higher-level C/C++,
it “does not aim to fully translate (give meaning/semantics to)
all assembly instructions” [31].

Despite this, RetDec lifted a large fraction of the instructions
tested. However, it had some inaccuracies in key implementa-
tion details and shortcomings with vector instructions. These
are explained in more detail below.

Overflow flag computation: The overflow flag (vf) com-
putation is incorrect for instructions which incorporate the
carry flag (cf), e.g., adcs, sbcs. In these cases, vf is set
when adding the carry twice would result in an overflow, when
it should only be considered once. For example, this occurs
with adcs xzr, x0, xzr (bytecode 1f001fba) when cf
is set and x0 is 263−2. This computation would not overflow,
but RetDec’s semantics indicate vf would be set. This error
affects approximately 240 integer opcodes tested.

lshl/lshr/ashr poison: The LLVM instructions shl, lshr
and ashr for bitvector shifts are defined to return a poison
value when the shift amount is equal to or greater than the
register size. However, ARMv8 shift instructions, such as lsl,
lsr, asr and ror, are well defined in such scenarios, shifting
by the desired amount modulo the size. RetDec ignores this
difference, naively converting between the two.

For example, RetDec lifts lsr x1, x1, x0 (2124c09a)
to an LLVM snippet containing lshr i64, %X1, %X0. This

279



operation will return poison when %X0 exceeds 63, where the
ARMv8 specification would return 0. These inaccuracies make
up 72 mismatches of integer opcodes.

Moreover, RetDec generates invalid shifts in various other
cases, such as extr mnemonics and instructions with register
operand rotations. These cases contain shifts that will always
return poison, e.g., shl i32 %3, 32. This affects 162 op-
codes, such as and x0, x0, xzr, ror #0 (0000df8a).

clz poison: clz counts the number of zero bits before the
first one bit in a bitvector, starting at the most significant bit.
RetDec uses LLVM’s @llvm.ctlz.* intrinsic functions to
implement this behaviour. However, these calls are configured
such that they will return poison when the bitvector is zero,
instead of returning its width. For example, when x0 is
zero clz x0, x0 (0010c0da) should set x0 to 64, but the
RetDec result will produce poison.

uxtx/sxtx truncating to 32-bit: Various ARMv8 mnemonics
accept register extension modes to specify how registers of
different widths should be extended prior to applying an opera-
tion. For instance, uxtw specifies a zero-extension from 32-bit
to 64-bit and sxtw specifies a signed-extension from 32-bit to
64-bit. Due to encoding quirks, it is possible to encode various
modes that are effectively no-ops, such as uxtx for a zero-
extension from 64-bit to 64-bit. However, RetDec lifts such
cases incorrectly, truncating 64-bit registers down to 32-bit and
then extending back to the original size. This error affects 220
opcodes, such as add x0, x1, x0, uxtx (2060208b).

Shifted uxtw/sxtw truncation: ARMv8 allows for the specifi-
cation of shifted 32-bit offsets in memory address calculations.
For instance, str w0, [x0, w0, uxtw #2] (005820b8),
will perform a store to x0+ (ZeroExtend(w0, 64) << 2).
where w0 is a 32-bit register. However, RetDec lifts these
address calculations such that the shift is applied before the
appropriate sign- or zero-extension. This results in the loss of
w0’s upper two bits and, subsequently, an incorrect address
calculation. This affects 360 opcodes with sxtw operands,
and 126 with uxtw.

sxtw extension: When specifying a memory access with a
32-bit offset, ARMv8 permits the application of either a zero-
or a sign-extension to pad the value to 64-bit. RetDec always
produces a zero-extension however, leading to incorrect ad-
dresses for sxtw. For example, str w0, [x1, w0, sxtw]

(20c820b8) exhibits this behaviour. This error affects the
same 360 sxtw opcodes as above.

udiv/sdiv by zero: LLVM’s udiv and sdiv integer division
instructions trigger undefined behaviour when the denominator
is zero, instead of a zero result as defined in the ARMv8
specification. RetDec fails to account for this mismatch, for ex-
ample, lifting udiv x0, x0, x0 (0008c09a) to an LLVM
snippet that triggers undefined behaviour when x0 is zero.

Pre-increment address: Load/store pair instructions load or
store two words at adjacent locations in memory, given the
address of the first word and an increment. With pre-increment
addressing, the address register should be incremented by
the given offset prior to the memory access. However, the
increment is added to the address of the second word in-

stead of the first, leading to incorrect values in the updated
address register. For example, stp xzr, xzr, [x0, #16]!

(1f7c81a9) increments x0 by 24 instead of 16. This affects
102 variants of stp. Other paired memory operations appear
to lift correctly.

SIMD instructions: For the majority of vector instructions,
RetDec returns incorrect semantics; it treats the operands as
ordinary registers and does not vectorise operations. For ex-
ample, add v0.8b, v1.8b, v1.8 (2084210e) produces:
%0 = load i128, i128* @v1
%1 = load i128, i128* @v1
%2 = add i128 %0, %1
store i128 %2, i128* @v0

whereas the correct operation would consider v1 as 8 separate
bytes, adding each byte elementwise. The same deficiency
affects all vector instructions, leading to mismatches for all
such opcodes. There are 579 such opcodes across the binary
and unary vector instructions. The few ‘equivalent’ results for
vector instructions occur when this discrepancy does not affect
correctness, e.g. bitwise logical operations and subtraction of
a register from itself.

B. Remill

Remill [29], developed by Trail of Bits, is a library provid-
ing LLVM IR instruction semantics for various architectures.
As it “focuses on accurately lifting instructions” [29], it has
seen wide adoption both individually and as part of the
McSema binary decompiler [40]. Remill was found to have
much fewer discrepancies than RetDec when compared with
the ASL semantics.

sdiv overflow: When performing signed division over n-
bit two’s complement integers, the calculation (−2n−1)/(−1)
will overflow, as 2n−1 is not representable in n-bit two’s com-
plement. Under ARMv8, this is defined as returning −2n−1,
i.e. the truncation of 2n−1. However, Remill lifts this operation
to LLVM’s sdiv instruction, which treats an overflow as
undefined behaviour. For example, this error manifests in
sdiv x1, x0, x1 (010cc19a).

ldp/strb with writeback: ARMv8’s memory addressing
modes support incrementing an address register before or after
memory is accessed, in a process called writeback. When the
data and address registers of these operations overlap, the
implementation is permitted to select one of several acceptable
behaviours. For instance, loads with overlapping registers may:
skip the writeback operation, writeback an unknown value,
treat the operation as a no-op or consider the instruction
undefined. For stores with overlaps, it may: store the original
value of the overlapping register (before writeback), store an
unknown value, or act as a no-op or undefined opcode.

As an example, ldp x1, x0, [x1], #-8 (2180ffa8)
accesses a pair of words at memory address x1 then decre-
ments x1 by 8. However, this overlaps with the use of
x1 as a data register, holding the first loaded value. The
ASL lifter is explicitly configured to skip the writeback, i.e.,
the decrement, keeping the loaded value. Remill does the
opposite, overwriting the loaded value with the decremented

280



address. The correct outcome here is ultimately dependent
on the hardware implementation, potentially leading to either
interpretation being correct. However, the ASLp approach
makes such configuration explicit, whereas the behaviour is
silently assumed by Remill.
strb w0, [x0], #-1 (00f41f38) is a more concerning

example, featuring an overlapping post-indexed store. The
ASL lifter stores the original value of w0 to the memory
address x0, and then decrements x0 by 1. Remill, however,
performs the store and skips the writeback operation. Ac-
cording to the specification, this is not an allowed behaviour,
indicating an invalid lifting.

These inconsistencies affect overlapping ldp, ldpsw,
strb, and strh opcodes. These make up the 88 mismatching
memory instructions. Other variants, notably ldr and str,
did not have these discrepancies.

smaddl: When lifting fused multiply-add instructions,
Remill includes “no signed wrap” annotations on the cor-
responding LLVM operations, returning poison in the case
of signed overflow. However, this is unnecessary, as these
ARMv8 instructions are specified to implement standard trun-
cation behaviour in such scenarios. This accounts for all 15
of Remill’s mismatched integer instructions.

br xzr: The e0031fd6 opcode should disassemble to
br xzr, semantically a jump to address 0. However, the
semantics produced by Remill jump to the value held in sp
instead. This is the only mismatch on branch instructions.

C. Bugs found

We reported the above inconsistencies to the relevant
projects. Additionally, we identified bugs in Alive2:

• There was a soundness issue caused by an incorrect
peephole optimisation in an integer comparison operation.

• Type punning in LLVM (loading from a pointer that
stores a different type) is defined to return poison, but
this was not implemented by Alive’s semantics due to an
incorrect optimisation.

These Alive2 bugs were reported and fixed by its maintainers
during the course of our work.

V. RELATED WORK

The field of binary decompilation and analysis is vast and
represents decades of ongoing research. Similar to this work,
standalone hardware architecture models have been developed
for use in decompilation tools. Notable examples of this
include Remill and GHIDRA’s sleigh library [30]. While these
libraries are immediately applicable to many decompilation
tasks and support multiple ISAs, they lack a formal foundation.
For instance, the formal semantics of their output language is
unclear [41], [42] and the derivation of their models is rarely
documented.

Various approaches to decompilation have been proposed
that build on trustworthy architecture models. For instance,
Decompilation into Logic [27] leverages architecture encod-
ings specified within the HOL4 theorem prover [43]. These

specifications are simplified, using the theorem prover’s rewrit-
ing engines, to derive concise semantics for individual instruc-
tions. Similar techniques have been applied in other theorem
provers [44], [45], [28], potentially leveraging symbolic ex-
ecution to further improve the rewriting process [46]. The
produced representations are suitable for reasoning within
theorem provers, but cannot be easily integrated into decompi-
lation tools, due to the use of abstract logic constructs in their
results. An exception to this is HolBA [47], which successfully
coverts these logic constructs into an imperative language, at
the expense of significantly slower lifting times.

Existing work has explored the application of partial eval-
uation to decompilation. For instance, Gómez-Zamalloa et
al. [48] develop a lifter from Java bytecode to Prolog via the
partial evaluation of an interpreter for the former written in the
latter. While their approach features similar implementation
details to ours, such as careful inlining configuration, they
consider a wholistic perspective, partially evaluating whole
programs with the intention to directly validate the residual
Prolog representation.

In recent years, attention has turned to the validation of
decompilers. The concept of differential testing for lifted IRs
was first explored by Kim et al. [13] with the MeanDiff tool. In
this work, three unproven x86 lifters (PyVEX [49], BAP [5],
and BINSEC [50]) were compared to each other using an
equivalent approach to Section IV. While similar to our work,
we benefit from a trustworthy ISA semantics for ARMv8,
providing a higher level of assurance and greater instruction
coverage.

Dasgupta et al. [26] apply a similar technique to validate
instruction semantics derived from Remill with respect to
their own model of x86-64, written in K [51]. The validated
Remill instruction semantics are subsequently concatenated to
decompile the entire program. It is unclear whether instruction
semantics could be directly derived from their trusted model,
as done in Section III.

VI. CONCLUSION

This work documents the wide-reaching benefits and ap-
plications of a canonical, accurate, and comprehensive ISA
specification. With architecture specifications provided by
ARM, we can provide a solid, trustworthy foundation for
binary disassembly and lifting. Partial evaluation allows us to
summarise these semantics into a minimal IR, for easy inte-
gration with other analysis tools, with our BAP ARMv8 plugin
as an example. Moreover, we demonstrate that the produced
representation is no more complex than that of existing, man-
ually encoded lifters. We also show the effectiveness of formal
semantics for validating the results of established binary lifters
using existing LLVM analysis and reasoning tools. The amount
of errors we found, in some cases central to whole families of
opcodes, demonstrates the importance of a reference semantics
that can be instrumented for automated checkers. Altogether,
this leads to more trustworthy binary lifting with promising
future applications, providing trustworthiness in a field which
demands high levels of assurance.

281



Acknowledgements: We would like to thank James Paterson
and Andrew Brown, who both contributed to the implementa-
tion of this work.

REFERENCES

[1] K. Thompson, “Reflections on trusting trust,” Commun. ACM,
vol. 27, no. 8, pp. 761–763, 1984. [Online]. Available: https:
//doi.org/10.1145/358198.358210

[2] V. D’Silva, M. Payer, and D. X. Song, “The correctness-security
gap in compiler optimization,” in 2015 IEEE Symposium on Security
and Privacy Workshops, SPW 2015, San Jose, CA, USA, May 21-22,
2015. IEEE Computer Society, 2015, pp. 73–87. [Online]. Available:
https://doi.org/10.1109/SPW.2015.33

[3] G. Barthe, S. Blazy, R. Hutin, and D. Pichardie, “Secure compilation
of constant-resource programs,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-
25, 2021. IEEE, 2021, pp. 1–12. [Online]. Available: https:
//doi.org/10.1109/CSF51468.2021.00020

[4] G. Balakrishnan and T. W. Reps, “WYSINWYX: What You
See Is Not What You eXecute,” ACM Trans. Program. Lang.
Syst., vol. 32, no. 6, pp. 23:1–23:84, 2010. [Online]. Available:
https://doi.org/10.1145/1749608.1749612

[5] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Computer Aided Verification, G. Gopalakrishnan
and S. Qadeer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 463–469.

[6] F. Wang and Y. Shoshitaishvili, “Angr - the next generation of
binary analysis,” in IEEE Cybersecurity Development, SecDev 2017,
Cambridge, MA, USA, September 24-26, 2017. IEEE Computer
Society, 2017, pp. 8–9. [Online]. Available: https://doi.org/10.1109/
SecDev.2017.14

[7] A. Flores-Montoya and E. M. Schulte, “Datalog disassembly,” in 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, S. Capkun and F. Roesner, Eds. USENIX Association, 2020,
pp. 1075–1092. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/flores-montoya

[8] N. Ramsey and M. F. Fernandez, “Specifying representations of machine
instructions,” ACM Trans. Program. Lang. Syst., vol. 19, no. 3, pp. 492–
524, 1997. [Online]. Available: https://doi.org/10.1145/256167.256225

[9] C. Cifuentes and S. Sendall, “Specifying the semantics of machine
instructions,” in 6th International Workshop on Program Comprehension
(IWPC ’98), June 24-26, 1998, Ischia, Italy. IEEE Computer Society,
1998, pp. 126–133. [Online]. Available: https://doi.org/10.1109/WPC.
1998.693332

[10] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN: attacking
ARM pointer authentication with speculative execution,” in ISCA ’22:
The 49th Annual International Symposium on Computer Architecture,
New York, New York, USA, June 18 - 22, 2022, V. Salapura, M. Zahran,
F. Chong, and L. Tang, Eds. ACM, 2022, pp. 685–698. [Online].
Available: https://doi.org/10.1145/3470496.3527429

[11] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka,
B. Laurie, S. J. Murdoch, R. M. Norton, M. Roe, S. D. Son,
and M. Vadera, “CHERI: A hybrid capability-system architecture for
scalable software compartmentalization,” in 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. IEEE Computer Society, 2015, pp. 20–37. [Online]. Available:
https://doi.org/10.1109/SP.2015.9

[12] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Prémillieu, A. Reid,
A. Rico, and P. Walker, “The ARM scalable vector extension,”
IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017. [Online]. Available:
https://doi.org/10.1109/MM.2017.35

[13] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing intermediate representations for binary analysis,” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. IEEE Press, 2017, p. 353–364.

[14] ARM, “ARM Architecture Reference Manual for A-profile architecture,”
2023.

[15] Intel Corporation, “Intel A64 and IA-32 Architectures Software Devel-
oper’s manual,” 2023.

[16] A. Reid, “Who guards the guards? Formal validation of the
Arm v8-M architecture specification,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, pp. 88:1–88:24, 2017. [Online]. Available:
https://doi.org/10.1145/3133912

[17] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, “Stratified synthesis:
automatically learning the x86-64 instruction set,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, C. Krintz and E. D. Berger, Eds. ACM, 2016, pp. 237–250.
[Online]. Available: https://doi.org/10.1145/2908080.2908121

[18] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for ARMv8-a,
RISC-V, and CHERI-MIPS,” Proc. ACM Program. Lang., vol. 3, no.
POPL, jan 2019. [Online]. Available: https://doi.org/10.1145/3290384

[19] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: a
verified implementation of ML,” in The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, S. Jagannathan
and P. Sewell, Eds. ACM, 2014, pp. 179–192. [Online]. Available:
https://doi.org/10.1145/2535838.2535841

[20] X. Leroy, “A formally verified compiler back-end,” J. Autom.
Reason., vol. 43, no. 4, pp. 363–446, 2009. [Online]. Available:
https://doi.org/10.1007/s10817-009-9155-4

[21] K. Nienhuis, A. Joannou, T. Bauereiss, A. C. J. Fox, M. Roe,
B. Campbell, M. Naylor, R. M. Norton, S. W. Moore, P. G. Neumann,
I. Stark, R. N. M. Watson, and P. Sewell, “Rigorous engineering
for hardware security: Formal modelling and proof in the CHERI
design and implementation process,” in 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 2020, pp. 1003–1020. [Online]. Available:
https://doi.org/10.1109/SP40000.2020.00055

[22] T. Bauereiss, B. Campbell, T. Sewell, A. Armstrong, L. Esswood,
I. Stark, G. Barnes, R. N. M. Watson, and P. Sewell, “Verified security
for the Morello capability-enhanced prototype Arm architecture,” in
Programming Languages and Systems - 31st European Symposium
on Programming, ESOP 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, ser. Lecture Notes in Computer
Science, I. Sergey, Ed., vol. 13240. Springer, 2022, pp. 174–203.
[Online]. Available: https://doi.org/10.1007/978-3-030-99336-8 7

[23] D. Lockhart, B. Ilbeyi, and C. Batten, “Pydgin: generating fast
instruction set simulators from simple architecture descriptions
with meta-tracing JIT compilers,” in 2015 IEEE International
Symposium on Performance Analysis of Systems and Software,
ISPASS 2015, Philadelphia, PA, USA, March 29-31, 2015. IEEE
Computer Society, 2015, pp. 256–267. [Online]. Available: https:
//doi.org/10.1109/ISPASS.2015.7095811

[24] A. C. J. Fox, “Formal specification and verification of ARM6,”
in Theorem Proving in Higher Order Logics, 16th International
Conference, TPHOLs 2003, Rom, Italy, September 8-12, 2003,
Proceedings, ser. Lecture Notes in Computer Science, D. A. Basin
and B. Wolff, Eds., vol. 2758. Springer, 2003, pp. 25–40. [Online].
Available: https://doi.org/10.1007/10930755 2

[25] A. Reid, “Trustworthy specifications of ARM® v8-A and v8-M system
level architecture,” in Proceedings of the 16th Conference on Formal
Methods in Computer-Aided Design, ser. FMCAD ’16. Austin, Texas:
FMCAD Inc, 2016, p. 161–168.

[26] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu,
“A complete formal semantics of x86-64 user-level instruction set
architecture,” in Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2019.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 1133–1148. [Online]. Available: https://doi.org/10.1145/3314221.
3314601

[27] M. O. Myreen, M. J. C. Gordon, and K. Slind, “Decompilation into
logic - Improved,” in Formal Methods in Computer-Aided Design,
FMCAD 2012, Cambridge, UK, October 22-25, 2012, G. Cabodi
and S. Singh, Eds. IEEE, 2012, pp. 78–81. [Online]. Available:
https://ieeexplore.ieee.org/document/6462558/

[28] M. Sammler, A. Hammond, R. Lepigre, B. Campbell, J. Pichon-
Pharabod, D. Dreyer, D. Garg, and P. Sewell, “Islaris: Verification of
machine code against authoritative ISA semantics,” in Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming

282

https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1109/CSF51468.2021.00020
https://doi.org/10.1109/CSF51468.2021.00020
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SecDev.2017.14
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://doi.org/10.1145/256167.256225
https://doi.org/10.1109/WPC.1998.693332
https://doi.org/10.1109/WPC.1998.693332
https://doi.org/10.1145/3470496.3527429
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1145/3133912
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/3290384
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1109/ISPASS.2015.7095811
https://doi.org/10.1109/ISPASS.2015.7095811
https://doi.org/10.1007/10930755_2
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://ieeexplore.ieee.org/document/6462558/


Language Design and Implementation, ser. PLDI 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 825–840.
[Online]. Available: https://doi.org/10.1145/3519939.3523434

[29] Trail of Bits, “lifting-bits/remill: Library for lifting machine code to
LLVM bitcode,” https://github.com/lifting-bits/remill, 2022.

[30] National Security Agency, “Sleigh,” https://github.com/
NationalSecurityAgency/ghidra, 2022.

[31] Avast Software, “avast/retdec: RetDec is a retargetable machine-code
decompiler based on LLVM.” https://github.com/avast/retdec, 2022.

[32] N. P. Lopes, J. Lee, C. Hur, Z. Liu, and J. Regehr, “Alive2: bounded
translation validation for LLVM,” in PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, S. N. Freund
and E. Yahav, Eds. ACM, 2021, pp. 65–79. [Online]. Available:
https://doi.org/10.1145/3453483.3454030

[33] ARM, “ARM developer exploration tools,” 2023.
[34] A. Reid, “ARM’s architecture specification language,” Aug 2016. [On-

line]. Available: https://alastairreid.github.io/specification languages/
[35] ——, “Using ASLi with Arm’s V8.6-A ISA specification,” Jan 2020.

[Online]. Available: https://alastairreid.github.io/using-asli/
[36] Y. Futamura, “Partial computation of programs,” in RIMS Symposia on

Software Science and Engineering. Springer Berlin Heidelberg, 1983,
pp. 1–35. [Online]. Available: https://doi.org/10.1007/3-540-11980-9
13

[37] E. Sumii and N. Kobayashi, “A hybrid approach to online and
offline partial evaluation,” High. Order Symb. Comput., vol. 14, no.
2-3, pp. 101–142, 2001. [Online]. Available: https://doi.org/10.1023/A:
1012984529382

[38] W. M. McKeeman, “Differential testing for software,” Digit. Tech.
J., vol. 10, no. 1, pp. 100–107, 1998. [Online]. Available: https:
//www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[39] LLVM Project, “LLVM language reference manual,” https://llvm.org/
docs/LangRef.html, 2022.

[40] Trail of Bits, “lifting-bits/mcsema: Framework for lifting x86, amd64,
aarch64, sparc32, and sparc64 program binaries to LLVM bitcode,”
https://github.com/lifting-bits/mcsema, 2022.

[41] N. Naus, F. Verbeek, D. Walker, and B. Ravindran, “A formal semantics
for P-Code,” in Verified Software. Theories, Tools and Experiments - 14th
International Conference, VSTTE 2022, Trento, Italy, October 17-18,
2022, Revised Selected Papers, ser. Lecture Notes in Computer Science,
A. Lal and S. Tonetta, Eds., vol. 13800. Springer, 2022, pp. 111–128.
[Online]. Available: https://doi.org/10.1007/978-3-031-25803-9 7

[42] L. Li and E. L. Gunter, “K-LLVM: A relatively complete semantics
of LLVM IR,” in 34th European Conference on Object-Oriented
Programming, ECOOP 2020, November 15-17, 2020, Berlin, Germany
(Virtual Conference), ser. LIPIcs, R. Hirschfeld and T. Pape, Eds., vol.
166. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 7:1–
7:29. [Online]. Available: https://doi.org/10.4230/LIPIcs.ECOOP.2020.7

[43] K. Slind and M. Norrish, “A brief overview of HOL4,” in Theorem
Proving in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings,
ser. Lecture Notes in Computer Science, O. A. Mohamed, C. A.
Muñoz, and S. Tahar, Eds., vol. 5170. Springer, 2008, pp. 28–32.
[Online]. Available: https://doi.org/10.1007/978-3-540-71067-7 6

[44] I. Roessle, F. Verbeek, and B. Ravindran, “Formally verified big step
semantics out of x86-64 binaries,” in Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2019, Cascais, Portugal, January 14-15, 2019, A. Mahboubi and
M. O. Myreen, Eds. ACM, 2019, pp. 181–195. [Online]. Available:
https://doi.org/10.1145/3293880.3294102

[45] F. Verbeek, P. Olivier, and B. Ravindran, “Sound C code decompilation
for a subset of x86-64 binaries,” in Software Engineering and Formal
Methods - 18th International Conference, SEFM 2020, Amsterdam,
The Netherlands, September 14-18, 2020, Proceedings, ser. Lecture
Notes in Computer Science, F. S. de Boer and A. Cerone, Eds.,
vol. 12310. Springer, 2020, pp. 247–264. [Online]. Available:
https://doi.org/10.1007/978-3-030-58768-0 14

[46] A. Armstrong, B. Campbell, B. Simner, C. Pulte, and P. Sewell, “Isla:
Integrating full-scale ISA semantics and axiomatic concurrency models,”
in Computer Aided Verification - 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, ser.
Lecture Notes in Computer Science, A. Silva and K. R. M. Leino,
Eds., vol. 12759. Springer, 2021, pp. 303–316. [Online]. Available:
https://doi.org/10.1007/978-3-030-81685-8 14

[47] A. Lindner, R. Guanciale, and R. Metere, “TrABin: Trustworthy
analyses of binaries,” Sci. Comput. Program., vol. 174, pp. 72–89,
2019. [Online]. Available: https://doi.org/10.1016/j.scico.2019.01.001

[48] M. Gómez-Zamalloa, E. Albert, and G. Puebla, “Modular decompilation
of low-level code by partial evaluation,” in Eighth IEEE International
Working Conference on Source Code Analysis and Manipulation
(SCAM 2008), 28-29 September 2008, Beijing, China. IEEE
Computer Society, 2008, pp. 239–248. [Online]. Available: https:
//doi.org/10.1109/SCAM.2008.35

[49] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” 2015.

[50] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The BINCOA framework for binary code analysis,” in Computer
Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, ser. Lecture
Notes in Computer Science, G. Gopalakrishnan and S. Qadeer,
Eds., vol. 6806. Springer, 2011, pp. 165–170. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1 13

[51] G. Rosu and T. Serbanuta, “An overview of the K semantic framework,”
J. Log. Algebraic Methods Program., vol. 79, no. 6, pp. 397–434,
2010. [Online]. Available: https://doi.org/10.1016/j.jlap.2010.03.012

APPENDIX

A. ASL Interpreter Bugs

We identified multiple bugs in the existing ASL interpreter
in the process of testing our partial evaluator. Note that
the ASL interpreter, as open-sourced by ARM, offered no
guarantee of correctness. We fixed these issues in our partial
evaluation fork1.

• Simultaneous assignments to multiple record fields
were evaluated in the wrong order. For example,
PSTATE.[N,Z,C,V] = nzcv should assign bit 0 of
nzcv to the V field, bit 1 to C and so on. Instead, the
reverse order was used, e.g. bit 0 was incorrectly assigned
to N.

• ASL defines reference parameters which allow functions
to modify their arguments directly. This was implemented
in the parser but its semantics were not handled in
the evaluation code, instead treating them as regular
parameters.

• The interpreter’s evaluation function would become stuck
after breaking from a ‘while’ loop, due to a parsing
ambiguity.

283

https://doi.org/10.1145/3519939.3523434
https://github.com/lifting-bits/remill
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/avast/retdec
https://doi.org/10.1145/3453483.3454030
https://alastairreid.github.io/specification_languages/
https://alastairreid.github.io/using-asli/
https://doi.org/10.1007/3-540-11980-9_13
https://doi.org/10.1007/3-540-11980-9_13
https://doi.org/10.1023/A:1012984529382
https://doi.org/10.1023/A:1012984529382
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://github.com/lifting-bits/mcsema
https://doi.org/10.1007/978-3-031-25803-9_7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1007/978-3-030-58768-0_14
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1016/j.scico.2019.01.001
https://doi.org/10.1109/SCAM.2008.35
https://doi.org/10.1109/SCAM.2008.35
https://doi.org/10.1007/978-3-642-22110-1_13
https://doi.org/10.1016/j.jlap.2010.03.012

	Introduction
	Approach
	Machine-readable architecture example
	Partial evaluation implementation
	Expression Simplification
	Aggregate Values
	Function Inlining
	Iteration
	Branching Control Flow

	Transforms
	Testing

	Binary Analysis Toolchain
	Semantic comparison of lifters
	RetDec
	Remill
	Bugs found

	Related Work
	Conclusion
	References
	Appendix
	ASL Interpreter Bugs


