
Formal Methods in Computer-Aided Design 2023

Cycle and Commute: Rare-Event Probability
Verification for Chemical Reaction Networks

Landon Taylor
Utah State University
Logan, Utah, USA

landon.jeffrey.taylor@usu.edu

Bryant Israelsen
Utah State University
Logan, Utah, USA

bryant.israelsen@usu.edu

Zhen Zhang
Utah State University
Logan, Utah, USA

zhen.zhang@usu.edu

Abstract—In synthetic biological systems, rare events can cause
undesirable behavior leading to pathological effects. Due to
their low observability, rare events are challenging to analyze
using existing stochastic simulation methods. Chemical Reac-
tion Networks (CRNs) are a general-purpose formal language
for modeling chemical kinetics. This paper presents a fully
automated approach to efficiently construct a large number
of concurrent traces by expanding a sample of known traces.
These traces constitute a partial state space containing only
traces leading to a rare event of interest. This state space
is then used to compute a lower bound for the rare event’s
probability. We propose a novel approach for the analysis of
highly concurrent CRNs, including a CRN reaction independence
analysis and an algorithm that exploits CRN concurrency to
rapidly enumerate parallel traces. We then present a novel
algorithm to add cycles to a partial state space to further increase
the rare event’s probability lower bound to its actual value. The
resulting prototype tool, RAGTIMER, demonstrates improvement
over stochastic simulation and probabilistic model checking.

Index Terms—concurrency, rare events, chemical reaction
networks

I. INTRODUCTION

Chemical Reaction Networks (CRNs) are a general-purpose
language for modeling chemical kinetics in genetic regulatory
networks [1], molecular programming [2], and biochemical
reaction systems [3]. Probabilistic behavior is inherent to many
systems modeled in CRNs. For example, gene and protein
expressions include reactions that occur simultaneously with
distinct probabilities. Further, noisy biological systems can
easily introduce unexpected and erroneous behavior. In these
systems, rare events are often highly relevant, as they can
represent infrequent but undesirable behavior that may lead
to pathological consequences. Obtaining reliability guarantees
is thus essential for CRNs. Existing formal verification tech-
niques, such as probabilistic model checking (PMC), can pro-
vide provable guarantees to quantify a rare event’s probability
in CRNs. In practice, it is often necessary to generate a large
number of traces to guarantee an accurate lower bound for a
rare-event probability, as a single trace or a small number of
traces often yields an insufficient estimate. Existing PMC tools
are often unable to enumerate large or infinite state spaces to
gather traces and verify a rare event’s probability [4]. The
computation of a rare event’s probability can easily become
intractable in this case.

This paper presents a fully automated approach to exploit a
CRN model’s concurrency to rapidly expand a small sample of
traces into a partial state space that only includes traces leading
to a rare event of interest. This partial state space guarantees a
lower bound for the rare-event probability. We first propose an
independence relation analysis for CRN reactions. It enables
a novel parallel trace discovery algorithm that effectively
expands a small number of traces. Additionally, we present a
novel algorithm to detect and add productive cycles to explored
states. Together, the constructed partial state space is used to
compute the rare event’s probability lower bound.

In benchmarking tests, a prototype implementation, Cycle &
Commute expansion of the Random Assume Guarantee Test-
ing Induced Model Executions for Reachability (RAGTIMER)
tool [5], demonstrates encouraging results for several challeng-
ing CRN models. We believe that this unique combination
of parallel trace discovery and cycle addition has not been
proposed elsewhere and is a fully automated, effective, and
user-friendly alternative to existing rare-event simulation ap-
proaches for the analysis of CRN rare-event properties.

II. MOTIVATING EXAMPLE

The modified yeast polarization model [6] was modified
from the pheromone-induced G-protein cycle in Saccha-
romyces cerevisia [7] with a constant ligand population that
keeps it away from reaching equilibrium [8], as follows:

R1 : ∅ 0.0038−−−−→ R, R2 : R 4.00×10−4

−−−−−−−→ ∅,
R3 : L + R 0.042−−−→ RL + L, R4 : RL 0.010−−−→ R,
R5 : RL + G 0.011−−−→ Ga + Gbg, R6 : Ga

0.100−−−→ Gd,

R7 : Gd + Gbg
1.05×103−−−−−−→ G, R8 : ∅ 3.21−−→ RL.

This CRN has eight chemical reactions interacting with
the species vector [R,L,RL,G,Ga, Gbg, Gd]. All reaction
propensities are in molecules per second. The initial state s0 =
[50, 2, 0, 50, 0, 0, 0] represents the corresponding molecule
count. This model incurs a large state space due to its highly
concurrent nature, e.g., R1 and R8 are both independent of all
other reactions. Also, by inspection, one can see that at least
100 reactions must execute to reach a state where Gbg = 50.
As discussed in Section VIII, this model challenges several
cutting-edge probabilistic model checking tools.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 37 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0002-4071-3625
https://orcid.org/0000-0002-9537-2645
https://orcid.org/0000-0002-8269-9489
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_37
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_37
https://creativecommons.org/licenses/by/4.0/


III. PRELIMINARIES

1) Chemical Reaction Networks (CRNs): A CRN is a tuple
M composed of m chemical species X = {X0, . . . ,Xm−1},
n reactions R = {R0, . . . ,Rn−1}, an initial state s0 : Xm →
Z⩾0, and a vector of all species’ initial molecule count, where
m,n ∈ Z⩾0 and m,n < ∞. A CRN is represented as a
Vector Addition System (VAS) as follows, adapted from [9]. A
reaction tuple Ri = ⟨rvi,pvi, ki, θi⟩ includes the following:
a reactant vector rvi ∈ Zm

⩾0 representing the stoichiometry
of reactants, a product vector pvi ∈ Zm

⩾0 representing the
stoichiometry of products, a reaction rate coefficient ki ∈ R+,
and a propensity function θi : Zm

⩾0 → R+ representing the
probability that Ri occurs in a state. The state change vector,
λi = pvi−rvi, represents the molecule count update for each
species involved in Ri. In this work, all CRN models follow
the Stochastic Chemical Kinetic (SCK) assumption, which
requires that each reaction Ri occurs nearly instantaneously,
practically limiting elements of λi to the values of 0,±1,±2
and at most three reactants in one reaction [1].

2) CRN Semantics: The underlying model of a CRN is
a Continuous-time Markov Chain (CTMC), where state up-
dates occur in discrete amounts and the probability of state
change is a function of time. Formally, a CTMC is a tuple
C = ⟨S, s0,R,L⟩ where S is a finite state set called the state
space; s0 ∈ S is the initial state; R : S × S → R⩾0 is the
transition rate matrix; and L : S → 2AP is a state labeling
function with atomic proposition set AP . A reaction Ri is
enabled in state s if its propensity function θi(s) evaluates to a
positive value. The propensity function is the product of ki and
the number of possible combinations of reactant molecules:
θi(s) = ki

∏︁
Xj∈Reactanti

(s[j]). Reactanti ⊆ X is the set of
reactants for Ri: Reactanti = {Xα | rvi[α] > 0,∀0 ⩽ α <
m}. The propensity function is the transition rate R(s, s′)
from state s to s′ in the CTMC C induced by a CRN. The
probability that reaction Ri is selected to occur out of many
reactions is p(s, s′) = R(s,s′)

E(s) , where the exit rate E(s) =∑︁
s′∈post(s) R(s, s′) is the sum of all enabled reaction rates in

s. A CTMC has a non-zero probability of staying in a state.
The probability of exiting a state s in time interval [0, t] is
1−e−E(s)·t, where t ∈ R⩾0 represents real time. For example,
R3 is executed from the given initial state in the motivating
example to reach s1 = [49, 2, 1, 50, 0, 0, 0]. In this state, rv5

and pv5 for R5 are [0, 0, 1, 1, 0, 0, 0] and [0, 0, 0, 0, 1, 1, 0],
respectively; k5 is 0.011; and θ5(s1) = k5(s1[2])(s1[3]) =
0.011 · 1 · 50 = 0.55 > 0, indicating that R5 is enabled in s1.
The state change vector λ5 is [0, 0,−1,−1, 1, 1, 0]. Additional
enabled reactions and their propensities at this state are R1

(0.0038), R2 (0.0196), R3 (4.116), R4 (0.01), and R8 (3.21).
The exit rate E(s1) is 7.9094 and the probability that R5

executes is 0.55/7.9094 ≈ 0.0695.
3) Time-bounded Reachability Property and Target States:

In Continuous Stochastic Logic (CSL) [10], [11], the non-
nested time-bounded transient reachability probability is speci-
fied as P=?(♢[0,T ] Ψ). It represents the probability of reaching
rare-event Ψ -states within a time bound of T . In this work, a

target Ψ is an equality condition on exactly one species and
is not satisfied in s0. Formally, let condition Ψ be XΨ = CΨ ,
where CΨ ∈ Z⩾0 and s0(XΨ ) ̸= CΨ . A state si is a
target state sΨ if and only if si |= Ψ . This work provides
a guaranteed lower bound on the solution to P=?(♢[0,T ] Ψ).

4) Model Execution: Denote an execution of reaction Ri

from state sk as s′k = sk+λi. Denote “reaction Ri is enabled
to execute at state sk” as ∀0 ⩽ α < m, sk[α]+λi[α] ⩾ 0. Let
a run Ξ indicate a sequence of reactions. Reactions Ri and
Rj are adjacent if Rj immediately follows Ri in Ξ. Run Ξ
is a valid run from a state si (i.e., Valid(Ξ) holds for si) if no
reaction in Ξ is disabled when Ξ’s execution begins at state si.
A trace ρ indicates a valid run starting with s0 and terminating
at a target state sΨ . A seed trace is a trace used as an input for
the methods presented in this paper. Note that CRNs are often
provided without upper bounds on the species count, which
creates an infinite-state CTMC. However, because this work
explores only finite traces from s0 to Ψ -states, the partial state
space constructed from these traces is finite.

In this work, seed traces are generated using the trace gen-
eration feature in RAGTIMER. RAGTIMER uses compositional
testing with assume-guarantee reasoning to rapidly generate
many shortest traces.

IV. RELATED WORK

A CRN can be represented as a Vector Addition System
(VAS) [9], sometimes described as a Petri net [12]. Reacha-
bility analysis, cycle detection, and other properties make VAS
a convenient formalism to represent a CRN [13]–[16].

Rare-event properties often found in CRNs pose a challenge
to modern stochastic simulation and probabilistic verification
methods due to their extremely low observability. The ef-
fectiveness of the weighted Stochastic Simulation Algorithm
(wSSA) [17] heavily relies on a user-specified probability
biasing scheme to favor reactions leading to a rare event.
Extensions of wSSA (e.g., [18]–[20]) have substantially im-
proved its efficiency. As an alternative to wSSA, the weighted
ensemble (WE) technique [21], [22] has been used to sam-
ple CRN rare events [23], [24]. Existing statistical model
checking (SMC) techniques (e.g., [25], [26]) integrate rare-
event methods. Importance sampling [27], [28] weighs the
rare-event probability to bias simulation in order to increase
the likelihood of encountering rare events of interest. It then
compensates for the loss to yield an unbiased probability.
In importance splitting [29]–[31], an importance function,
potentially constructed manually, is used to reward or ter-
minate simulation traces to divide a model’s state space into
contiguous levels ordered by increasing likelihood of reaching
a rare event [32], [33]. Authors of [34] present an auto-
mated importance function derivation technique and recently
re-implemented the extended RESTART with the prolonged
retrials importance technique [35], [36] in the SMC engine
modes [34], [37], available in the MODEST TOOLSET [38].

The proposed method is fully automated and does not
require expert knowledge of the CRN model. It is less compu-
tationally intensive than other rare-event analysis methods, as

285



it neither requires rare-event biasing computations nor wastes
computational effort pursuing runs that do not lead to a rare
event. Lastly, it yields a probability lower-bound with provable
guarantees instead of a probability estimate.

V. CRN INDEPENDENCE AND COMMUTABILITY

CRNs are intrinsically highly concurrent. Consider the
motivating example in Section II. Reactions R1 and R8 are
always enabled, regardless of the current state of the CRN. By
leveraging properties of the VAS representation of a CRN, we
present a novel analysis of the independence relation among
CRN reactions, enabling effective state space exploration.

A. Independence Relation for CRN Reactions

The study of action independence can be traced back to the
work of Lipton [39] and Mazurkiewicz [40] on commuting
concurrent actions. Mazurkiewicz traces are equivalent classes
of action sequences. Action independence has also been the
foundation of partial order reduction techniques (e.g. [41]–
[43]) for verifying concurrent system correctness. We propose
an independence relation specific to reactions in a CRN.

Definition 1 (Independence of CRN Reactions): Two ad-
jacent reactions Ri and Rj (defined in Section III-4) are
independent and enabled at state sk if and only if:

1) Ri and Rj can execute in either order from sk:
(sk + λi) + λj = (sk + λj) + λi.

2) Rj is enabled after Ri executes at sk:
∀0 ⩽ α < m, (sk + λi)[α] + λj [α] ⩾ 0.

3) Ri is enabled after Rj executes at sk:
∀0 ⩽ α < m, (sk + λj)[α] + λi[α] ⩾ 0.

If Ri and Rj are not independent, they are dependent.
Because a VAS representation of a CRN reaction involves

only vector addition, condition (1) is true in every state for
which both conditions (2) and (3) hold. That is, because
vector addition is commutative and associative, firing a series
of enabled reactions from a designated state in any order
always results in the same final state. Conditions (2) and
(3) thus become sufficient and necessary conditions for the
independence of CRN reactions.

B. Commutability of Reactions

Conditions (2) and (3) described above enable reaction inde-
pendence (and thus commutability) to be further categorized.
We propose three classes to represent commutability between
adjacent reactions: trivially, semi-trivially, and conditionally
commutable pairs. Adjacent reactionsRi andRj are a trivially
commutable pair iff ∀ 0 ⩽ α < m, λi[α], λj [α] ∈ Z⩾0.
That is, Ri and Rj are trivially commutable at all states if
they require no reactants to produce their products. Ri and
Rj are a semi-trivially commutable pair iff ∀ 0 ⩽ α <
m, rvi[α] = 0 ∨ rvj [α] = 0. That is, Ri and Rj are
semi-trivially commutable at sk if they share no reactants and
are both enabled at sk. Intuitively, reactions R2 and R4 in
the motivating example are semi-trivially independent because
they share no reactants. If a state sk provides sufficient R to
enable R2 and sufficient RL to enable R4, then it is always

the case that R2 and R4 are enabled to execute in any order
from sk. If Ri and Rj are neither trivially nor semi-trivially
commutable, they are conditionally commutable.

Trivially and semi-trivially commutable pairs do not require
explicitly checking conditions (2) or (3), enabling state ex-
ploration to bypass the need to simulate adjacent reactions
to determine commutability. In trivially commutable pairs, λi

and λj contain only non-negative integers, so it is always the
case that λi+λj contains only non-negative integers. In semi-
trivially commutable pairs, each element of λi + λj contains
at least the lowest negative value in reactants of either λi or
λj , because Ri and Rj do not share reactants. Thus, one
reaction in a semi-trivially commutable pair cannot disable
the other, so if Equation 1 holds, conditions (2) and (3) must
also hold. Checking Equation 1 removes the need to simulate
semi-trivially commutable reactions directly, conserving effort
while exploring the state space. Conditionally commutable
pairs require conditions (2) and (3) to be checked explicitly.

∀0 ⩽ α < m, (sk[α] + λi[α] ⩾ 0 ∧ sk[α] + λj [α] ⩾ 0) (1)

C. Sequences of Conditionally Commutable Reactions

Given a run consisting of a sequence of κ (potentially re-
peating) reactions Ξ = R0,R1, . . . ,Rκ−1, it may be desirable
to check that firing a sequence of reactions Ξ from s0 produces
a valid run (i.e. each reaction in Ξ is enabled when Ξ is
executed in order). If Ξ contains conditionally commutable
pairs of reactions, Equation 2 checks that Ξ is a valid run
from a state sx. In the motivating example, a valid run from
the initial state s0 is R8, R5; while an invalid run from s0 is
R5, R8 because R5 is not enabled from the initial state, but
firing R8 enables the execution of R5.

Valid(Ξ) := (∀j ⩽ κ, 0 ⩽ i < m, sx +

j∑︂
α=0

λα[i] ⩾ 0) (2)

VI. PARALLEL TRACES VIA COMMUTATION

Exploring the inherent concurrency in CRN models helps
to discover traces contributing to a rare event’s probability.
These traces may be obtained by various methods. Results
presented in this paper use traces generated by the prototype
tool RAGTIMER. CRN models often contain a large volume
of parallel traces (i.e., traces that differ by a small number
of reactions or arrive at the same state while passing through
alternative intermediate states).

To obtain a lower bound for the rare event’s probability, we
desire to accumulate probability from a large number of traces
to a rare event as efficiently as possible. We suggest parallel
traces are an efficient way to accumulate probability for rare
events. Algorithm 1 finds parallel traces using Equations 1
and 2 to discover pairs of independent, commutable reactions.
For example, interrupting a seed trace from the motivating
example by firing R1 at a random state forms a nearly-
identical trace and increases the overall probability lower
bound relative to the seed trace alone.

Figure 1 illustrates this principle on a small toy example. In
this example, the seed trace (blue) contains reactions R0, R1,

286



and R2. By interrupting this seed trace with a universally-
enabled reaction Ra, it is possible to obtain many parallel
traces and increase the lower-bound of the probability of reach-
ing a target state. This particular example shows two unique
target states with four additional traces, so the probability of
reaching a target is increased compared to the probability of
the seed trace alone. In some models, parallel traces arrive
at the same target state as the seed trace via an alternative
reaction sequence. Having two target states, as is the case
in Figure 1, is allowed but not required for parallel trace
exploration; only target state s′Ψ is required.

s0 s1 s2 sΨ

s'0 s'1 s'2 s'Ψ

Ra Ra Ra Ra

R0 R1 R2

R0 R1 R2

Fig. 1: Parallel trace construction via transition commutation.

A. Trace Commutation Algorithm

Algorithm 1 details the procedure for exploring parallel
traces contained in the “Traces” set, which contains seed traces
generated by RAGTIMER or a user’s method of choice. As the
main procedure, BUILDTRACES builds a partial state space for
each seed trace in “Traces”, then calls the recursive function
COMMUTE on each trace, which recursively explores traces
parallel to each seed trace and builds a partial state space
as it explores. Using commutability conditions presented in
Section V, Algorithm 1 attempts to find commutable reactions
along the entire length of a seed trace. To efficiently explore
traces leading to a rare event, it attempts to commute reactions
that are enabled from every state along the seed trace.

In Figure 1, for instance, line 2 of Algorithm 1 selects the
seed trace R0, R1, R2 as ρ. In lines 3 and 4, it builds a
partial state space for the seed trace, then discovers Ra ∈ E.
In COMMUTE, it executes the prefix (line 11), which is initially
empty but is extended during recursion to list the sequence of
commuted reactions to fire before firing the reactions from the
seed trace. In lines 12 and 13, states along the parallel trace
ρ′ (shown in yellow on the top of Figure 1) are discovered.
In lines 14 and 15, ρ′ is built from the commuted transition
Ra. Finally, in line 16, the function recursively attempts
to commute transitions along the parallel trace ρ′, which
now includes prefix Ra. This recursive process is shown in
Figure 2. The seed trace, shown in blue with s0, leads to
the discovery of three parallel traces shown in yellow. These
traces, with sb, sc, and sd, are then recursively analyzed. For
instance, it may lead to the discovery of two more parallel
traces, shown in green with states se and sf .

Algorithm 1 Commuting universally enabled transitions

Require: M = ⟨X,R, s0⟩, Ψ , Traces.
1: procedure BUILDTRACES
2: for Trace ρ in Traces do
3: Build the state space for states along ρ
4: E ← enabled reactions along ρ
5: COMMUTE(∅, ρ, E)
6: BUILDCYCLES ▷ Defined formally in Algorithm 2
7: Clean up the model to save time and memory
8: Export explicit state-transition matrices
9: procedure COMMUTE(Prefix, ρ, Enabled)

10: for Ra ∈ Enabled do
11: Execute Prefix.
12: Fire Ra from each state in ρ to find ρ′

13: E′ ← enabled reactions along ρ′.
14: Execute Ra from s0 of ρ to find s′0 in ρ′.
15: Execute reactions in ρ from s′0 to construct ρ′.
16: COMMUTE((Prefix.append(Ra)), ρ′, E′)

s
Ψs2s1se

s
Ψs2s1sc

s
Ψ

s'
Ψ

s2

s'2

s1

s'1

s0

sb

s
Ψs2s1sf

s
Ψs2s1sd

Fig. 2: Recursively-commuted partial state space.

B. Termination Conditions on Algorithm 1

Algorithm 1 does not necessarily terminate. Thus, we
propose two methods for determining when to terminate
commutation recursion:

1) The user can specify a maximum recursion depth. This
is a naive approach, but it guarantees termination and
gives flexibility to advanced users; or

2) The algorithm can terminate based on the time bound
T from the model’s CSL property P=?(♢[0,T ] Ψ).
The mean state residence time for si is provided by
MRT(si) = 1/E(si). The sum of mean state residence
times along a trace provides the average duration for that
trace. If the average trace duration exceeds or approaches
the property time bound, it is likely not worth exploring
further as traces will become increasingly unlikely. This
approach requires less understanding of the model and
algorithm, so it provides less flexibility but a more
streamlined user experience.

Algorithm 1 is implemented as an extension of the RAG-
TIMER tool. In this implementation, a user can specify if they
prefer to terminate by recursion depth or by analyzing average
trace durations. Approach (1) terminates trivially. Termination
of approach (2) is justified because each reaction adds a

287



positive amount of time to the total average trace duration.
The algorithm will thus either explore the entire available
state space or the average duration will eventually increase to
meet the termination threshold. It is our experience that a very
small time or depth bound is sufficient to obtain a significant
probability boost in the seed traces.

C. Exporting Explicit Models

After exploring parallel traces, each unexplored enabled
reaction at any state is replaced by an absorbing reaction (i.e.,
a new reaction transitioning to an absorbing state) with an
equivalent probability. Formally, let En(si) represent the set
of all reactions enabled in state si. Let Disc(si) represent
the set of all reactions added to the explicit state space, such
that Disc(si) ⊆ En(si). Let Undisc(si) represent the set
reactions in En(si) but not included in the explicit state space,
such that Undisc(si) = En(si)−Disc(si).

Let A(si), defined in Equation 3, indicate the sum of
transition rates directed from state si to an abstract absorbing
state. The absorbing state preserves probability correctness by
consuming any probability that would have been directed to an
unexplored portion of the state space. To obtain a probabilistic
lower-bound, it is assumed that the absorbing state does not
satisfy Ψ . An explicit state space can then be exported for
model checking in a tool such as PRISM [44] or Storm [45].

A(si) =
∑︂

Rj∈Undisc(si)

θ(sj) (3)

D. Lower-Bound Probability Guarantee

Because the presented method explicitly enumerates traces,
the probability obtained by performing probabilistic model
checking on the explicit state graph is guaranteed to be a
lower bound. The seed trace is known to reach a target state,
so finding parallel traces through commutation also produces
traces leading to the same target state. This method is efficient
because every state and reaction (except the absorbing state)
is guaranteed to contribute to a rare event’s probability.

VII. CYCLES FOR PROBABILITY RECAPTURE

CRN models often contain cyclic behavior. Including cycles
in a state space is an effective way to increase the total number
of explored traces without greatly increasing the total number
of states explored. In many models, the exploration of cycles
can increase the probability lower bound by redirecting some
of the probability that would otherwise be redirected to an
absorbing state (see Section VI-C) to a target state.

While a number of cycle exploration methods have been
explored (in [13], for instance), we found a simple combina-
torial analysis of reactions sufficient to efficiently generate a
large number of cycles for the purposes of this work. This
approach involves testing multisets of reactions up to a user-
specified bound and selecting multisets of reactions such that
the sum of state change vectors corresponding to reactions
within each multiset is equal to the zero vector.

Formally, a cycle ci is a κ-multiset containing κ reactions
such that the sum of all reaction state change vectors in

ci is the zero vector. Let “CycleList” be a set of known
cycles. Algorithm 2 presents an approach to augmenting the
probability lower bound by adding cycles into a partial state
space. Let ω(ci) represent a permutation of reactions in ci,
with Ω(ci) defined as the set of all possible ω(ci). Define
min(ω(ci)) as a vector of length m (i.e., a vector with one
element per species) such that ∀0 ≤ α < m, min(ω(ci))[α] =
minRj∈ω(ci)

∑︁j
k=0 λk[α]. In Line 4 of Algorithm 2, this is

achieved via a vector copy operation. Intuitively, the min-
imal value of species α in ω(ci) is either non-negative,
indicating species α is never consumed, or it is negative. If
min(ω(ci))[α] = −γ, at some point, ω(ci) has consumed and
has not replenished γ molecules of species l. In Algorithm 2,
min(ω(ci)) determines which states are candidates for the
addition of ω(ci). If a state si does not provide enough of
a given reactant to execute ω(ci), i.e. if Valid(ω(ci)) does
not hold at state si, cycle ω(ci) cannot be added to si. By
finding the minimal value for a molecule count during a cycle,
it becomes unnecessary to simulate a cycle from every state
to determine if it is possible to add the cycle to the state. This
saves computational effort while enabling cycles to be added to
every allowable state. Maximum cycle lengths are specified by
users, and all allowable cycles up to the user-specified length
are added to the state space.

In the motivating example, executing R2 followed by R1

constitutes a permutation ω(c) of the cycle with length two,
i.e., c = {R1,R2}. Because this cycle causes a degradation
of R followed by a generation of R, min(ω(c))[0] = −1. That
is, ω(c) can only be added to state si if si[0] ⩾ 1.

Algorithm 2 Adding cycles to a partial state space

Require: M = ⟨X,R, s0⟩, CycleList.
1: procedure BUILDCYCLES
2: for Cycle ci in CycleList do
3: for Cycle permutation ω(ci) in Ω(ci) do
4: min(ω(ci))← minRj∈ω(ci)

∑︁j
k=0 λk

5: for State sx in discovered state space do
6: for α ∈ [0,m) do
7: if sx[α] + min(ω(ci))[α] ≥ 0 then
8: Add ω(ci) to sx

Adding even one cycle to a trace can increase the probability
of that trace. Because Algorithm 1 produces an explicit state
space, the task of evaluating the overall probability impact of
cycles is given to a probabilistic model checker. This enables
only a few additional states in the explicit state space to
influence the probability of the model by providing a larger
number of traces. For example, Figure 3 shows the partial state
space from Figure 1. An arbitrary cycle (represented by three
green states) is enabled to be executed from five states, so
rather than direct reactions from those states to an absorbing
state, the cycles redirect part of the probability back into the
trace leading to the target rare-event state. Note that in this
example, the cycle is not added to state s1. In a realistic model,
this happens when s1 does not provide sufficient reactants to

288



enable the full execution of the cycle.

s0 s1 s2 s
Ψ

s'0 s'1 s'2 s'
Ψ

Ra Ra Ra Ra

R0 R1 R2

R0 R1 R2

Fig. 3: Cycles added to five states in a partial state space.

It is occasionally the case that cycles add states and tran-
sitions (and thus computation time and memory for proba-
bilistic model checking) to a state space without contributing
significantly to the rare event’s probability bound. This is
largely the case when one or more states along a cycle has
a large absorbing rate relative to its other outgoing rates (i.e.,
when it is more likely that starting a cycle will lead to an
absorbing state than return to the original trace). If enough
of the probability that flows into the cycle does not flow back
toward the target state, the cycle is not sufficiently valuable and
need not be added. Given a desirable threshold T (in our tests,
a high threshold of around 0.98) of the ratio A(si)/E(si),
Lines 7-8 of Algorithm 2 may be adapted to include a cycle
addition benefit heuristic as shown in Equation 4. The ratio
A(si)/E(si) intuitively represents how much probability is
directed to an absorbing state versus into a trace.

if sx[y] +min(ω(ci))[y] ≥ 0 ∧A(si)/E(si) < T
then Add ω(ci) to sx (4)

VIII. RESULTS AND DISCUSSION

The parallel trace exploration and cycle addition methods
presented in this paper are implemented as part of a prototype
tool, RAGTIMER, which interfaces with the PRISM API [44].
Prototype versions of RAGTIMER and its Cycle & Commute
expansion are freely available1. This tool quickly generates
many seed traces. The benchmarking results presented in this
paper were obtained on an AMD Ryzen Threadripper 12-Core
3.5 GHz Processor and 132 GB of RAM, running Ubuntu
22.04 LTS. We allocated one CPU and 16 GB of RAM to
test our approach on all four challenging case studies and
compared our method’s results to those of other probabilis-
tic verification tools. In each case study, “Default Cycle &
Commute” indicates that the default settings for RAGTIMER
are used. The default settings include generating 100 shortest

1RAGTIMER v0.0 (trace generation) and v0.1 (Cycle & Commute) are
available as releases at https://github.com/fluentverification/ragtimer/tags.

traces, using a fixed recursion bound of 20 (i.e., limit the
number of calls to the COMMUTE function in Algorithm 1
to 20), and adding cycles of two reactions after state space
construction. These default settings give users an acceptable
result for most models, while “Optimized Cycle & Commute”
indicates custom settings for each model.

1) Single Species Production-Degradation Model: The
model describes a production-degradation interaction between
two species [17]: R1 : S1

1.0−−→ S1+S2,R2 : S2
0.025−−−→ ∅. The

initial state for the species vector [S1, S2] is s0 = [1, 40],
while the desired CSL property is P=?(♢[0,100] S2 = 80).
Figure 4a shows an increase in the lower bound of the
model’s probability as the parallel trace exploration recursion
bound increases during exploration of a single seed trace. The
probability bound asymptotically approaches the actual rare-
event probability, which is 3.0631 × 10−7 [17]. Figure 4b
shows that while the probability increases exponentially, the
number of states increases linearly. Thus, we argue this method
explores a productive part of the state space. Partial state space
exploration required less than 4 seconds at any recursion depth.

0 5 10 15 20 25 30
Recursion Bound

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Pr
ob

ab
ili

ty

1e 7

(a)

0 5 10 15 20 25 30
Recursion Bound

50

60

70

80

90

100

St
at

e 
Co

un
t

(b)

Fig. 4: Single Species Production-Degradation Model.

It is interesting to compare the methods presented in this
paper to simple trace generation, which RAGTIMER is already
capable of. In our benchmarks, RAGTIMER generated a single
seed trace for this model with a probability of 1.03 × 10−16

in 13.26 seconds. It then generated 43 additional traces,
increasing the state space’s probability to 1.34×10−16 in 31.35
seconds. By expanding the seed trace using methods presented
in this paper, however, RAGTIMER achieved a probability
bound of 2.99×10−7 in 21.21 seconds, including the duration
of trace generation, commuting, and model checking. This
is a reasonable lower bound to the true probability of the
model (3.0631 × 10−7). Table I summarizes these results. In
all result tables, “Default Commuting Options” indicates that
the default options implemented in RAGTIMER are selected;
“Optimized Commuting Options” indicates that configurations
were modified to produce an improved result. In this model,
the default settings produced the best probability bound.

2) Enzymatic Futile Cycle Model: A futile cycle interaction
is modeled in this CRN with six species reacting through six
reactions [17]:

R1 : S1 + S2
1.0−−→ S3, R2 : S3

1.0−−→ S1 + S2,

R3 : S3
0.1−−→ S1 + S5, R4 : S4 + S5

1.0−−→ S6,

R5 : S6
1.0−−→ S4 + S5, R6 : S6

0.1−−→ S4 + S2.

289

https://github.com/fluentverification/ragtimer/tags


TABLE I: Single-Species Production-Degradation Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 1.03× 10−16 13.26
Generate 44 Traces ⩾ 1.34× 10−16 31.35
Default Cycle & Commute ⩾ 2.99× 10−7 23.21
Optimized Cycle & Commute ⩾ 2.99× 10−7 23.21

The initial molecule count for species vector
[S1, S2, S3, S4, S5, S6] forms the initial state:
s0 = [1, 50, 0, 1, 50, 0] and the rare-event property of
interest is P=?(♢[0,100] S5 = 25). Figure 5 shows the
probability and state count for this model’s partial state space
as the recursion depth increases for a single seed trace. The
probability bound sharply increases while the state space
grows linearly, illustrating that for this model, states that are
considered in the partial state space contribute significantly
to the probability bound. State space construction required
less than four seconds for all recursion depths for this
model. RAGTIMER generated one shortest seed trace for this

0 5 10 15 20 25 30
Recursion Bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ili

ty

1e 26

0 5 10 15 20 25 30
Recursion Bound

80

100

120

140

160

St
at

e 
Co

un
t

Fig. 5: Enzymatic Futile Cycle Model.

model with a probability of 1.73 × 10−78 in 15.52 seconds.
Generating 99 more traces increased the probability bound to
2.71× 10−64 in 41.1 seconds. By expanding 100 seed traces
using methods presented in this paper, RAGTIMER achieved
a probability bound of 4.32 × 10−18 in 31.69 seconds,
including time for trace generation, commuting, and model
checking. This is an improvement of 60 orders of magnitude
that requires less runtime than generating a small sample
of additional traces. Table II summarizes these results. This
model’s results appear to be influenced by the quality of
the seed traces used to generate the partial state space. Its
optimized settings involve asking RAGTIMER to generate a
set of short but unique seed traces. After generating 42 unique
traces, it explored a recursion depth of 10 and added all
possible cycles of length two to the state space. Further, cycle

TABLE II: Enzymatic Futile Cycle Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 1.73× 10−78 15.52
Generate 100 Traces ⩾ 2.71× 10−64 41.10
Default Cycle & Commute ⩾ 1.45× 10−26 27.92
Optimized Cycle & Commute ⩾ 4.32× 10−18 31.69

addition boosts the probability of this model without requiring
significant additional time. We ran 36 tests to account for
this method’s stochastic nature and found that adding only
cycles of length two to the model as described in Section VII

increased the average discovered lower probability bound by
two orders of magnitude (from 2.28×10−21 to 4.92×10−19)
while increasing the average total runtime by less than one
second (from 25.6 to 26.4 seconds).

3) Modified Yeast Polarization Model: The rare event of
interest for our motivating example is the rapid build-up of
Gbg . This is described by the probability of the molecule
count of Gbg increasing from 0 to 50 within 20 seconds:
P=?(♢[0,20] Gbg = 50). When this model is simulated using
the standard stochastic simulation algorithm (SSA) imple-
mented in the PRISM probabilistic model checking tool, the
total probability for over 500, 000 traces is rounded to 0 due to
floating-point precision limitations, indicating that SSA alone
produced a probability lower than 4.9 × 10−324. However,
when two seed traces are expanded, the probability is found
to be greater than 5.8 × 10−72 after a recursion depth of
6 and with a state space consisting of about 3500 states,
produced in less than 10 seconds, as can be seen in Figure 6.
Because of this model’s infinite state space, the state count

0 1 2 3 4 5 6
Recursion Bound

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
Pr

ob
ab

ili
ty

1e 72

0 1 2 3 4 5 6
Recursion Bound

500

1000

1500

2000

2500

3000

3500

St
at

e 
Co

un
t

Fig. 6: Modified Yeast Polarization Model.

and probability both appear to increase nearly-linearly with
recursion depth. Therefore, the states in this model’s partial
state space contribute significantly to its probability bound.

RAGTIMER generated 100 seed traces for which PRISM
is unable to compute a nonzero probability (due to floating-
point constraints). By expanding these seed traces using meth-
ods presented in this paper, however, RAGTIMER achieved
a probability of 5.26 × 10−26 in 125.64 seconds, including
trace generation, commuting, and model checking time. These
results are summarized in Table III. Optimized settings for this
model are identical to default settings, but the optimal test used
a set of 100 higher-probability seed traces due to the stochastic
nature of RAGTIMER trace generation.

TABLE III: Modified Yeast Polarization Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 0.0 23.34
Generate 100 Traces ⩾ 0.0 66.78
Default Cycle & Commute ⩾ 1.01× 10−32 167.11
Optimized Cycle & Commute ⩾ 5.26× 10−26 125.64

4) Simplified motility regulation model: This model con-
sists of nine species reacting through twelve reactions and
represents the genetic mechanism which regulates flagella

290



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Recursion Bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Pr

ob
ab

ili
ty

1e 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Recursion Bound

0

500

1000

1500

2000

2500

St
at

e 
Co

un
t

Fig. 7: Simplified Motility Regulation Model.

formation in Bacillus subtilis [46]:

R1 : codY 0.1−−→ codY + CodY,

R2 : CodY 0.0002−−−−→ ∅,
R3 : flache 1.0−−→ flache + SigD,

R4 : SigD 0.0002−−−−→ ∅,
R5 : SigD hag 1.0−−→ SigD + hag + Hag,
R6 : Hag 0.0002−−−−→ ∅,
R7 : SigD + hag 0.01−−→ SigD hag,
R8 : SigD hag 0.1−−→ SigD + hag,
R9 : CodY + flache 0.02−−→ CodY flache,
R10 : CodY flache 0.1−−→ CodY + flache,
R11 : CodY + hag 0.01−−→ CodY hag,
R12 : CodY hag 0.1−−→ CodY + hag.

The initial molecule count for species vector [codY, flache,
SigD hag, CodY, CodY flache, hag,CodY hag, SigD, Hag]
forms the initial state s0 = [1, 1, 1, 10, 1, 1, 1, 10, 10]. The rare
event property is P=?(♢[0,10] CodY = 20). Figure 7 shows
that while a single seed trace’s probability is found to be zero,
expanding a single seed trace quickly increases the probability
bound to 1.45 × 10−10. Because the probability and state
count growth both appear to grow exponentially relative to
the recursion bound, it suggests the states explored by this
method contribute efficiently to the rare event probability.

Similarly to the Modified Yeast Reaction Model, generating
100 seed traces produced a low probability bound that was
rounded to zero. By expanding the seed trace using meth-
ods presented in this paper, however, RAGTIMER achieved a
probability of 1.42 × 10−9 in 34.67 seconds, including trace
generation, commuting, and model checking time. Results
from this model are summarized in Table IV. Due to this
model’s complexity, its default recursion depth is 2. Increasing
the recursion depth to 10 results in the optimized probability.

5) Comparison to modes rare-event simulation engine:
The modes statistical model checking tool in the MOD-
EST TOOLSET was able to compute rare-event probabilities
efficiently for the presented case studies, and the reported
probabilities closely match those reported in [17] and [23].
However, modes requires a compositional importance func-
tion for rare-event simulation, which limits the use of global
variables shared between multiple components. While manual
modifications to the model’s importance function can be made

to circumvent this, it requires user intervention and an in-depth
understanding of the CRN model and MODEST language.

TABLE IV: Simplified Motility Regulation Model.

Method Probability Runtime (s)
Generate 1 Trace ⩾ 0.0 13.39
Generate 100 Traces ⩾ 0.0 17.16
Default Cycle & Commute ⩾ 1.77× 10−11 28.05
Optimized Cycle & Commute ⩾ 1.42× 10−9 34.67

6) Comparison to probabilistic model checking tools: We
attempted to verify the modified yeast polarization model’s
rare event property with all species’ molecule counts bounded
by the reasonably large range of [0, 150] in the probabilistic
model checker Storm with the SYLVAN library [47]. Although
Storm completed symbolic state space construction quickly,
it failed to complete the CTMC analysis of the model within
30 days due to the task of converting a symbolic state space
to a sparse matrix representation for time-bounded transient
analysis. In another test, the state-truncation probabilistic
model checker STAMINA [48] produced a probability bound
of [1.64×10−6, 23.01×10−6] on the same model after 2 days.

7) Discussion: We claim that our method can compete
effectively against these tools because it requires no in-depth
understanding of a CRN model, a formal modeling language,
or a verification tool. Rather, it requires only a single trace
(obtainable from the implemented functionality in RAGTIMER
or another user-selected method). We argue that our method is
effective because increasing the recursion bound and number
of cycles in our benchmarks reliably provides an improved
probability bound, demonstrating this method explores an
effective region of a state space. This method can also be
used to gain insights to guide model synthesis, as it can report
information about which reactions and cycles cause a rare
event to be more likely. We firmly believe that this model
analysis is a useful tool to guide design decisions and reveal
design flaws, and that in many cases, it is more useful to a
user than a probability report alone.

IX. CONCLUSION

This paper presents a fully-automated approach to expand
a small sample of traces and build a partial state space
containing only states and transitions leading to a rare event
of interest in a CRN model. We propose CRN-specific inde-
pendence conditions accompanied by an algorithmic method
to effectively discover parallel traces that are guaranteed to
reach the rare event of interest. This increases the lower
bound for the rare event’s probability. Adding cycles to a
partial state space further increases the rare-event probability
lower bound. The promising results from the prototype tool
RAGTIMER demonstrate it as an effective and user-friendly
method for CRN model analysis. Future work may include
further investigation of the properties of cycles in CRN explicit
state spaces, integration with other existing probabilistic model
checking tools, and improvement on seed trace generation.

291



Acknowledgment: We thank Arnd Hartmanns (U. Twente)
for helping with MODEST TOOLSET; Chris Winstead (Utah
State U.), Chris Myers (U. Colorado Boulder), and Hao Zheng
(U. South Florida) for their feedback. This work was supported
by the National Science Foundation under Grant No. 1856733.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] C. J. Myers, Engineering Genetic Circuits, 1st ed., ser. Chapman &
Hall/CRC Mathematical and Computational Biology. Chapman &
Hall/CRC, July 2009.

[2] D. Soloveichik, G. Seelig, and E. Winfree, “Dna as a universal
substrate for chemical kinetics,” Proceedings of the National Academy
of Sciences, vol. 107, no. 12, pp. 5393–5398, 2010. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.0909380107

[3] V. Chellaboina, S. P. Bhat, W. M. Haddad, and D. S. Bernstein,
“Modeling and analysis of mass-action kinetics,” IEEE Control Systems
Magazine, vol. 29, no. 4, pp. 60–78, 2009.

[4] L. Buecherl, R. Roberts, P. Fontanarrosa, P. J. Thomas, J. Mante,
Z. Zhang, and C. J. Myers, “Stochastic hazard analysis of genetic
circuits in iBioSim and STAMINA,” ACS Synthetic Biology, vol. 10,
no. 10, pp. 2532–2540, 2021, pMID: 34606710. [Online]. Available:
https://doi.org/10.1021/acssynbio.1c00159

[5] B. Israelsen, L. Taylor, and Z. Zhang, “Efficient trace generation for rare-
event analysis in chemical reaction networks,” in Model Checking
Software, G. Caltais and C. Schilling, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 83–102.

[6] B. J. Daigle, M. K. Roh, D. T. Gillespie, and L. R. Petzold, “Automated
estimation of rare event probabilities in biochemical systems,” The
Journal of Chemical Physics, vol. 134, no. 4, p. 044110, Jan. 2011.

[7] B. Drawert, M. J. Lawson, L. Petzold, and M. Khammash, “The
diffusive finite state projection algorithm for efficient simulation of the
stochastic reaction-diffusion master equation,” The Journal of Chemical
Physics, vol. 132, no. 7, p. 074101, 2010. [Online]. Available:
https://doi.org/10.1063/1.3310809

[8] M. K. Roh, D. T. Gillespie, and L. R. Petzold, “State-dependent biasing
method for importance sampling in the weighted stochastic simulation
algorithm,” The Journal of Chemical Physics, vol. 133, no. 17, p.
174106, Nov. 2010.

[9] M. Češka and J. Křetı́nský, “Semi-quantitative abstraction and analysis
of chemical reaction networks,” in Computer Aided Verification, I. Dillig
and S. Tasiran, Eds. Cham: Springer International Publishing, 2019,
pp. 475–496.

[10] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking
continuous-time Markov chains,” ACM Transactions on Computational
Logic, vol. 1, no. 1, pp. 162–170, Jul. 2000.

[11] M. Kwiatkowska, G. Norman, and D. Parker, Stochastic Model Check-
ing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 220–270.

[12] I. Koch, “Petri Nets – A Mathematical Formalism to Analyze Chemical
Reaction Networks,” Molecular Informatics, vol. 29, no. 12, pp. 838–
843, 2010.

[13] J. Leroux, “Polynomial Vector Addition Systems With States,” in 45th
International Colloquium on Automata, Languages, and Programming
(ICALP 2018), July 9-13, 2018, Prague, Czech Republic, ser. LIPIcs,
I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella, Eds., vol.
107. Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Jul. 2018, pp. 134:1–134:13. [Online]. Available:
https://hal.science/hal-01711089

[14] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets,” ACM SIGMETRICS
Performance Evaluation Review, vol. 26, no. 2, p. 2, Aug. 1998.

[15] D. Angeli, P. De Leenheer, and E. D. Sontag, “A Petri net approach to
the study of persistence in chemical reaction networks,” Dec. 2007.

[16] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki,
“Reachability in fixed dimension vector addition systems with states,”
May 2020.

[17] H. Kuwahara and I. Mura, “An efficient and exact stochastic simulation
method to analyze rare events in biochemical systems,” The Journal of
Chemical Physics, vol. 129, no. 16, p. 165101, Oct. 2008.

[18] C. Jegourel, A. Legay, and S. Sedwards, “Cross-entropy optimisation
of importance sampling parameters for statistical model checking,” in
Proceedings of the 24th international conference on Computer Aided
Verification, ser. CAV’12. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 327–342.

[19] M. Roh, B. J. J. Daigle, D. T. Gillespie, and L. R. Petzold, “State-
dependent doubly weighted stochastic simulation algorithm for auto-
matic characterization of stochastic biochemical rare events,” in Journal
of Chemical Physics, vol. 135. American Institute of Physics, 2011.

[20] M. K. Roh and B. J. Daigle, “Sparse++: improved event-based stochastic
parameter search,” BMC Systems Biology, vol. 10, no. 1, p. 109, 2016.
[Online]. Available: https://doi.org/10.1186/s12918-016-0367-z

[21] B. W. Zhang, D. Jasnow, and D. M. Zuckerman, “Efficient and verified
simulation of a path ensemble for conformational change in a united-
residue model of calmodulin,” Proceedings of the National Academy
of Sciences, vol. 104, no. 46, pp. 18 043–18 048, 2007. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.0706349104

[22] J. L. Adelman and M. Grabe, “Simulating rare events using a
weighted ensemble-based string method,” The Journal of Chemical
Physics, vol. 138, no. 4, p. 044105, 2013. [Online]. Available:
https://doi.org/10.1063/1.4773892

[23] R. M. Donovan, A. J. Sedgewick, J. R. Faeder, and D. M. Zuckerman,
“Efficient stochastic simulation of chemical kinetics networks using a
weighted ensemble of trajectories,” The Journal of Chemical Physics,
vol. 139, no. 11, p. 115105, Sep. 2013.

[24] D. M. Zuckerman and L. T. Chong, “Weighted ensemble simulation:
Review of methodology, applications, and software.” Annu Rev Biophys,
vol. 46, pp. 43–57, May 2017.

[25] M. Okamoto, “Some inequalities relating to the partial sum
of binomial probabilities,” Annals of the Institute of Statistical
Mathematics, vol. 10, no. 1, pp. 29–35, 1959. [Online]. Available:
https://doi.org/10.1007/BF02883985

[26] A. Wald, “Sequential tests of statistical hypotheses,” The Annals of
Mathematical Statistics, vol. 16, no. 2, pp. 117–186, 1945. [Online].
Available: http://www.jstor.org/stable/2235829

[27] H. Kahn, “Random sampling (monte carlo) techniques in neutron
attenuation problems–I.” Nucleonics, vol. 6, no. 5, p. 27; passim, May
1950.

[28] H. Kahn and A. W. Marshall, “Methods of reducing sample size in
monte carlo computations,” Journal of the Operations Research Society
of America, vol. 1, no. 5, pp. 263–278, 1953. [Online]. Available:
https://doi.org/10.1287/opre.1.5.263

[29] H. Kahn and T. E. Harris, “Estimation of particle transmission by
random sampling,” National Bureau of Standards applied mathematics
series, vol. 12, pp. 27–30, 1951.

[30] M. N. Rosenbluth and A. W. Rosenbluth, “Monte carlo calculation of
the average extension of molecular chains,” The Journal of Chemical
Physics, vol. 23, no. 2, pp. 356–359, 1955. [Online]. Available:
https://doi.org/10.1063/1.1741967

[31] M. Villen-Altamirano, J. Villen-Altamirano et al., “Restart: a method for
accelerating rare event simulations,” Queueing, Performance and Control
in ATM (ITC-13), pp. 71–76, 1991.

[32] P. L’Ecuyer, F. Le Gland, P. Lezaud, and B. Tuffin, “Splitting Tech-
niques,” in Rare Event Simulation Using Monte Carlo Methods. John
Wiley & Sons, Ltd, 2009, ch. 3, pp. 39–61.

[33] M. Villén-Altamirano and J. Villén-Altamirano, The Rare Event Sim-
ulation Method RESTART: Efficiency Analysis and Guidelines for Its
Application. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
509–547.

[34] C. E. Budde, P. R. D’Argenio, and A. Hartmanns, “Automated compo-
sitional importance splitting,” Science of Computer Programming, vol.
174, pp. 90–108, Apr. 2019.

[35] J. Villén-Altamirano, “Restart vs splitting: A comparative study,” Perfor-
mance Evaluation, vol. 121-122, pp. 38–47, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166531616300839

[36] ——, “An improved variant of the rare event simulation method restart
using prolonged retrials,” Operations Research Perspectives, vol. 6, pp.
1–9, 2019. [Online]. Available: http://hdl.handle.net/10419/246387

[37] C. E. Budde and A. Hartmanns, “Replicating RESTART with prolonged
retrials: An experimental report,” in Tools and Algorithms for the
Construction and Analysis of Systems - 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, ser.

292

https://www.pnas.org/doi/abs/10.1073/pnas.0909380107
https://doi.org/10.1021/acssynbio.1c00159
https://doi.org/10.1063/1.3310809
https://hal.science/hal-01711089
https://doi.org/10.1186/s12918-016-0367-z
https://www.pnas.org/doi/abs/10.1073/pnas.0706349104
https://doi.org/10.1063/1.4773892
https://doi.org/10.1007/BF02883985
http://www.jstor.org/stable/2235829
https://doi.org/10.1287/opre.1.5.263
https://doi.org/10.1063/1.1741967
https://www.sciencedirect.com/science/article/pii/S0166531616300839
http://hdl.handle.net/10419/246387


Lecture Notes in Computer Science, J. F. Groote and K. G. Larsen,
Eds., vol. 12652. Springer, 2021, pp. 373–380. [Online]. Available:
https://doi.org/10.1007/978-3-030-72013-1 21

[38] A. Hartmanns and H. Hermanns, “The Modest Toolset: An integrated
environment for quantitative modelling and verification,” in TACAS, ser.
LNCS, E. Ábrahám and K. Havelund, Eds., vol. 8413. Springer, 2014,
pp. 593–598.

[39] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Commun. ACM, vol. 18, no. 12, pp. 717–721, dec 1975.
[Online]. Available: https://doi.org/10.1145/361227.361234

[40] A. Mazurkiewicz, “Trace theory,” in Petri Nets: Applications and Rela-
tionships to Other Models of Concurrency, W. Brauer, W. Reisig, and
G. Rozenberg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1987, pp. 278–324.

[41] D. Peled, “All from one, one for all: on model checking using represen-
tatives,” in Computer Aided Verification, C. Courcoubetis, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 409–423.

[42] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in Computer-Aided Verification, E. M. Clarke and R. P.
Kurshan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991,
pp. 176–185.

[43] A. Valmari, “Stubborn sets for reduced state space generation,” in
Advances in Petri Nets 1990, G. Rozenberg, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, pp. 491–515.

[44] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in Proceedings of the 23rd International
Conference on Computer Aided Verification, ser. CAV’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 585–591.

[45] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker Storm,” International Journal on Software
Tools for Technology Transfer, vol. 24, no. 4, pp. 589–610, Aug. 2022.

[46] D. B. Kearns and R. Losick, “Cell population heterogeneity during
growth of bacillus subtilis.” Genes & development, vol. 19 24, pp. 3083–
94, 2005.

[47] T. Dijk and J. Pol, “Sylvan: Multi-core framework for decision
diagrams,” Int. J. Softw. Tools Technol. Transf., vol. 19, no. 6,
pp. 675–696, nov 2017. [Online]. Available: https://doi.org/10.1007/
s10009-016-0433-2

[48] R. Roberts, T. Neupane, L. Buecherl, C. J. Myers, and Z. Zhang,
“STAMINA 2.0: Improving scalability of infinite-state stochastic model
checking,” in Verification, Model Checking, and Abstract Interpretation,
B. Finkbeiner and T. Wies, Eds. Cham: Springer International Publish-
ing, 2022, pp. 319–331.

293

https://doi.org/10.1007/978-3-030-72013-1_21
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/s10009-016-0433-2

	Introduction
	Motivating Example
	Preliminaries
	Chemical Reaction Networks (CRNs)
	CRN Semantics
	Time-bounded Reachability Property and Target States
	Model Execution


	Related Work
	CRN Independence and Commutability
	Independence Relation for CRN Reactions
	Commutability of Reactions
	Sequences of Conditionally Commutable Reactions

	Parallel Traces via Commutation
	Trace Commutation Algorithm
	Termination Conditions on Algorithm 1
	Exporting Explicit Models
	Lower-Bound Probability Guarantee

	Cycles for Probability Recapture
	Results and Discussion
	Single Species Production-Degradation Model
	Enzymatic Futile Cycle Model
	Modified Yeast Polarization Model
	Simplified motility regulation model
	Comparison to modes rare-event simulation engine
	Comparison to probabilistic model checking tools
	Discussion


	Conclusion
	References

