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Abstract—Conformance is defined as a measure of distance
between the behaviors of two dynamical systems. The notion
of conformance can accelerate system design when models of
varying fidelities are available on which analysis and control
design can be done more efficiently. Ultimately, conformance
can capture distance between design models and their real
implementations and thus aid in robust system design. In this
paper, we are interested in the conformance of stochastic dy-
namical systems. We argue that probabilistic reasoning over the
distribution of distances between model trajectories is a good
measure for stochastic conformance. Additionally, we propose
the non-conformance risk to reason about the risk of stochastic
systems not being conformant. We show that both notions have
the desirable transference property, meaning that conformant
systems satisfy similar system specifications, i.e., if the first model
satisfies a desirable specification, the second model will satisfy
(nearly) the same specification. Lastly, we propose how stochastic
conformance and the non-conformance risk can be estimated
from data using statistical tools such as conformal prediction. We
present empirical evaluations of our method on an F-16 aircraft,
an autonomous vehicle, a spacecraft, and Dubin’s vehicle.

I. INTRODUCTION

Cyber-physical systems (CPS) are usually designed using
a model-based design (MBD) paradigm. Here, the designer
models the physical parts and the operating environment of
the system and then designs the software used for perception,
planning, and low-level control. Such closed-loop systems are
then rigorously tested against various operating conditions,
where the quality of the designed software is evaluated against
model properties such as formal design specifications (or other
kinds of quantitative objectives). Examples of such property-
based analysis techniques include requirement falsification
[1]–[5], nondeterministic and statistical verification [6]–[13],
and risk analysis [14], [15].

MBD is a fundamentally iterative process in which the de-
signer continuously modifies the software to tune performance
or increase safety margins, or change plant models to perform
design space exploration [16], e.g., using model abstraction
or simplification [17]–[19], or to incorporate new data [20].
Any change to the system model, however, requires repeating
the property-based analyses as many times as the number of
system properties. The fundamental problem that we consider
in this paper is that of conformance [21]–[25]. The notion
of conformance is defined w.r.t. the input-output behavior of
a model. Typically, model inputs include exogenous distur-
bances or user-inputs to the model, user-controllable design
parameters, and initial operating conditions. For a given input
u, let y = S(u) denote the observable behavior of the model S.

Furthermore, let d(y1, y2) be a metric defined over the space
of the model behaviors. For deterministic models, two models
S1, S2 are said to be δ-conformant if for all inputs u it
holds that d(y1, y2) < δ where y1 = S1(u) and y2 = S2(u)
[22], [23], [25]. This notion of deterministic conformance is
useful to reason about worst-case differences between models.
However, most CPS applications use components that exhibit
stochastic behavior; for example, sensors have measurement
noise, actuators can have manufacturing variations, and most
physical phenomena are inherently stochastic. The central
question that this paper considers is: What is the notion of
conformance between two stochastic CPS models?

There are some challenges in comparing stochastic CPS
models; even if two models are repeatedly excited by the same
input, the pair of model behaviors that are observed may be
different for every such simulation. Thus, the observable be-
havior of a stochastic model is more accurately characterized
by a distribution over the space of trajectories. A possible way
to compare two stochastic models is to use measure-theoretic
techniques to compare the distance between the trajectory
distributions. A number of divergence measures such as the
f-divergences, e.g., the Kullback-Leibler divergence and the
total variation distance, or the Wasserstein distance may look
like candidate tools to compare the trajectory distributions.
However, we argue in this paper that a divergence is not the
right notion to use to compare stochastic CPS models. There
can be two stochastic models whose output trajectories are
very close using any trajectory space metric, but the divergence
between their trajectory distributions can be infinite. On the
other hand, there can be two trajectory distributions with zero
divergence for which the distance between trajectories can be
arbitrarily far apart.

This raises an interesting question: how do we then compare
two stochastic models? In this paper, we argue that probabilis-
tic bounds derived from the distribution of the distances be-
tween model trajectories (excited by the same input) gives us a
general definition of conformance that has several advantages,
as outlined below. We complement this probabilistic viewpoint
further and capture the risk that the distribution of the distancs
between model trajectories is large leveraging risk measures
[26].

First, we show that two stochastic systems that are confor-
mant under our definition inherit the property of transference
[22]. In simple terms, transference is the property that if the
first model has certain logical or quantitative properties, then
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the second model also satisfies the same (or nearly same)
properties. This property brings several benefits. Consider
the scenario where probabilistic guarantees that a model has
certain quantitative properties have been established after an
extensive and large number of simulations. Ordinarily, if
there were any changes made to the model, establishing such
probabilistic guarantees would require repeating the extensive
simulation-based procedure. However, transference allows us
to potentially sample from existing simulations for the first
model and sample a small number of simulations from the
modified model to establish stochastic conformance between
the models, thereby allowing us to establish probabilistic
guarantees on the second model. We demonstrate examples
of such transference w.r.t. quantitative properties arising from
quantitative semantics of temporal logic specifications and
control-theoretic cost functions.

Next, we show how we can efficiently compute these
probabilistic bounds using the notion of conformal prediction
[27], [28] from statistical learning theory. At a high-level,
conformal prediction involves computing quantiles of the em-
pirical distribution of non-conformity scores over a validation
dataset to obtain prediction intervals at a given confidence
threshold.

The contributions of this paper are summarized as follows:
• We define stochastic conformance as a probabilistic

bound over the distribution of distances between model
trajectories. We also define the non-conformance risk to
detect systems that are at risk of not being conformant.

• We show that both notions have the desirable transference
property, meaning that conformant systems satisfy similar
system specifications.

• We show how stochastic conformance and the non-
conformance risk can be estimated using statistical tools
from risk theory and conformal prediction.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the probability space (Ω,F , P ) where Ω is the
sample space, F is a σ-algebra1 of Ω, and P : F → [0, 1] is
a probability measure. In this paper, our goal is to quantify
conformance of stochastic systems, i.e., systems whose inputs
and outputs form a probability space with an appropriately
defined measure. Let the two stochastic systems be denoted by
S1 and S2. The inputs and outputs of stochastic systems are
signals, i.e., functions from a bounded interval of positive reals
known as the time domain T ⊆ R≥0 to a metric space, e.g.,
the standard Euclidean metric. Each stochastic system Si then
describes an input-output relation Si : U × Ω → Y where U
and Y denote the sets of all input and output signals. We allow
input signals2 to be stochastic, and we use the notation U :
T×Ω → Rm to denote a stochastic input signals.3 Modeling
stochastic systems this way provides great flexibility, and Si

1A σ-algebra on a set Ω is a nonempty collection of subsets of Ω closed
under complement, countable unions, and countable intersections.

2Probability spaces over signals are defined by standard notions of cylinder
sets [6].

3We will instead of the probability measure P , defined over (Ω,F),
use more generally the notation Prob to be independent of the underlying
probability space that we induce, e.g., as a result of transformations via U .

can e.g., describe the motion of stochastic hybrid systems,
Markov chains, and stochastic difference equations.

Assume now that we apply the input signal U : T×Ω → Rm

to systems S1 and S2, and let the resulting output signals
be denoted by Y1 : T × Ω → Rn and Y2 : T × Ω → Rn,
respectively. We assume that the functions S1, S2, and U are
measurable so that the output signals Y1 and Y2 are well-
defined stochastic signals. One can hence think of Y1 and Y2

to be drawn from the distributions D1 and D2, respectively,
which are functions of the probability space (Ω,F , P ) as well
as the functions S1, S2, and U . In this paper, we make no
restricting assumptions on the functions S1, S2, and U , and
consequently we make no assumptions on the distributions D1

and D2.
Informal Problem Statement. Let Y1 and Y2 be stochastic

output signals of the stochastic systems S1 and S2, respec-
tively, under the stochastic input signal U . How can we
quantify closeness of the stochastic systems S1 and S2 under
U? To answer this question, we will explore different ways
of defining system “closeness” of Y1 and Y2, and we will
present algorithms to compute these stochastic notions of
closeness. A subsequent problem that we consider is related to
transference of properties from one system to another system.
Particularly, given a signal temporal logic specification, can
we infer guarantees about the satisfaction of the specification
of one system from another system if the systems are close
under a suitable definition of closeness?

A. Distance Metrics and Risk Measures

To define a general framework for quantifying closeness
of stochastic systems, we will use i) different signal metrics
to capture the distance between individual realizations y1 :=
Y1(·, ω) and y2 := Y2(·, ω) of the stochastic signals Y1 and
Y2 where ω ∈ Ω is a single outcome, and ii) probabilistic
reasoning and risk measures to capture stochastic conformance
and non-conformance, respectively, under these signal metrics.

We first equip the set of output signals Y with a function
d : Y × Y → R that quantifies distance between signals. A
natural choice of d is a signal metric that results in a metric
space (Y, d). We use general signal metrics such as the metric
induced by the Lp signal norm for p ≥ 1. Particularly, define

dp(y1, y2) :=
(︂ ∫︁

T ∥y1(t)−y2(t)∥pdt
)︂1/p

so that the L∞ norm
can also be expressed as d∞(y1, y2) := supt∈T ∥y1(t)−y2(t)∥.

It is now easy to see that a signal metric d(Y1, Y2) evaluated
over the stochastic signals Y1 and Y2 results in a distribution
over distances between realizations of Y1 and Y2. To reason
over properties of d(Y1, Y2), we will use probabilistic reason-
ing but we will also consider risk measures [26] as introduced
next.

A risk measure is a function R : F(Ω,R) → R that maps
the set of real-valued random variables F(Ω,R) to the real
numbers. Typically, the input of R indicates a cost. There exist
various risk measures that capture different characteristic of
the distribution of the cost random variable, such as the mean
or the variance. However, we are particularly interested in tail
risk measures that capture the right tail of the cost distribution,
i.e., the potentially rare but costly outcomes.
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In this paper, we particularly consider the value-at-risk
V aRβ and the conditional value-at-risk CV aRβ at risk level
β ∈ (0, 1). The V aRβ of a random variable Z : Ω → R is
defined as

V aRβ(Z) := inf{α ∈ R|Prob(Z ≤ α) ≥ β},

i.e., V aRβ(Z) captures the 1− β quantile of the distribution
of Z from the right. Note that there is an obvious connection
between value-at-risk and chance constraints, i.e., it holds that
Prob(Z ≤ α) ≥ β is equivalent to V aRβ(Z) ≤ α. The
CV aRβ of Z, on the other hand, is defined as

CV aRβ(Z) := inf
α∈R

(︁
α+ (1− β)−1E([Z − α]+)

)︁
where [Z − α]+ := max(Z − α, 0) and E(·) indicates the
expected value. When the function Prob(Z ≤ α) is continuous
(in α), it holds that CV aRβ(Z) = E(Z|Z ≥ V aRβ(Z)), i.e.,
CV aRβ(Z) is the expected value of Z conditioned on the
outcomes where Z is greater or equal than V aRβ(Z). Finally,
note that it holds that V aRβ(Z) ≤ CV aRβ(Z), i.e., CV aRβ

is more risk sensitive.
For our risk transference results that we present later, we

will require that R is monotone, positive homogeneous, and
subadditive:
• For two random variables Z,Z ′ ∈ F(Ω,R), the risk measure
R is monotone if Z(ω) ≤ Z ′(ω) for all ω ∈ Ω implies that
R(Z) ≤ R(Z ′).

• For a random variable Z ∈ F(Ω,R), the risk measure R is
positive homogeneous if, for any constant H ≥ 0, it holds
that R(HZ) = HR(Z).

• For two random variables Z,Z ′ ∈ F(Ω,R), the risk measure
R is subadditive if R(Z + Z ′) ≤ R(Z) +R(Z ′).

We remark that the V aRβ and the CV aRβ satisfies all three
properties [26].

B. System specifications

To express specifications, we use Signal Temporal Logic
(STL). Let y : T → Rn be a deterministic signal, e.g., a real-
ization of the stochastic signal Y . The atomic elements of STL
are predicates that are functions µ : Rn → {True,False}. For
convenience, the predicate µ is often defined via a predicate
function h : Rn → R as µ(y(t)) := True if h(y(t)) ≥ 0 and
µ(y(t)) := False otherwise. The syntax of STL is recursively
defined as

ϕ ::= True | µ | ¬ϕ′ | ϕ′ ∧ ϕ′′ | ϕ′UIϕ
′′ (1)

where ϕ′ and ϕ′′ are STL formulas. The Boolean operators
¬ and ∧ encode negations (“not”) and conjunctions (“and”),
respectively. The until operator ϕ′UIϕ

′′ encodes that ϕ′ has to
be true until ϕ′′ becomes true at some future time within the
time interval I ⊆ R≥0. We derive the operators for disjunction
(ϕ′ ∨ ϕ′′ := ¬(¬ϕ′ ∧ ¬ϕ′′)), eventually (FIϕ := ⊤UIϕ), and
always (GIϕ := ¬FI¬ϕ).

To determine if a signal y satisfies an STL formula ϕ
that is imposed at time t, we can define the semantics as a
relation |=, i.e., (y, t) |= ϕ means that ϕ is satisfied. While
the STL semantics are fairly standard [29], we recall them
in Appendix A in [30]. Additionally, we can define robust

semantics ρϕ(y, t) ∈ R that indicate how robustly the formula
ϕ is satisfied or violated [31], [32], see Appendix A in [30].
Larger and positive values of ρϕ(y, t) hence indicate that the
specification is satisfied more robustly. Importantly, it holds
that (y, t) |= ϕ if ρϕ(y, t) > 0.

III. CONFORMANCE FOR STOCHASTIC INPUT-OUTPUT
SYSTEMS

Our goal is now to quantify closeness of two stochastic
systems S1 and S2 under the input U . We present our
definitions for stochastic conformance and non-conformance
risk upfront, and provide motivation for these afterwards.

Definition 1. Let U : T × Ω → Rm be a stochastic input
signal, S1, S2 : U×Ω → Y be stochastic systems, and Y1, Y2 :
T×Ω → Rn be stochastic output signals with Y1 := S1(U, ·)
and Y2 := S2(U, ·). Further, let ϵ ∈ R be a conformance
threshold, δ ∈ (0, 1) be a failure probability, and d : Y×Y →
R be a signal metric. Then, we say that the systems S1 and
S2 under the input U are (ϵ, δ)-conformant if

Prob(d(Y1, Y2) ≤ ϵ) ≥ 1− δ. (2)

Additionally, let R : F(Ω,R) → R be a risk measure and
r ∈ R be a risk threshold. Then, S1 and S2 under the input
U are at risk of being r-non-conformant if

R(d(Y1, Y2)) > r. (3)

Eq. (2) is referred to as stochastic conformance and Eq. (3)
as non-conformance risk. Let us now motivate and discuss
these two definitions. While the definition of conformance in
equation (2) appears natural at first sight, there are at least two
competing ways of defining stochastic conformance. First, as
Y1 and Y2 are distributions, it would be possible to define
conformance as D(Y1, Y2) where D is a distance function
that measures the difference between two distributions, such
as a divergence (Kullback–Leibler or f -divergence). However,
our definition provides an intuitive interpretation in the signal
space where system specifications are typically defined, while
it is usually difficult to provide such an interpretation for di-
vergences between distributions. Additionally, the divergence
between Y1 and Y2 may be unbounded (or zero) even when
equation (2) holds (does not hold).

Proposition 1. There exist stochastic systems S1 and S2 and
distance metrics d where equation (2): i) is satisfied for ϵ > 0
and δ = 0, i.e., w.p. 1, but where the divergence between the
systems is unbounded, and ii) is not satisfied for any given
ϵ > 0 and δ ∈ (0, 1), but where the divergence between the
systems is zero.

Proof. Let us first prove i). For simplicity, consider systems
S1 and S2 where the stochastic input and output signals are
defined over the time domain T := {t0, . . . , tT }. Further,
for all t ∈ T let y1(t) := 0 and y2(t) := ϵ. Clearly,
equation (2) is satisfied, e.g., for d∞. The distributions D1

and D2 (joint distributions of Y1(t) and Y2(t), respectively)
are Dirac distributions centered at 0 and ϵ, respectively. The
Kullback–Leibler divergence between these two distributions
is ∞ [33].
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Let us now prove ii). Let T consist of a single time point
for simplicity so that Y1 and Y2 are random variables defined
over a sample space R. Let D1 and D2 be the same uniform
distribution over [0, a]. Clearly, the divergence between D1 and
D1 is zero. We know that the distribution of Y := Y1−Y2 has
support on [−a, a], and that the probability density function of
Y is p(y) := 1/a− |y|/a2. We can now compute Prob(|y| ≤
ϵ) = 2ϵ/a − ϵ2/a2. Given ϵ > 0 and δ ∈ (0, 1), we pick
an δ̄ ∈ (0, 1) such that δ̄ > δ. We then solve the quadratic
equation 2ϵ/a − ϵ2/a2 = 1 − δ̄ subject to the constraint that
ϵ ≤ a. Consequently, we find that a ≥ ϵ/(1−δ̄)(1+

√
δ̄) results

in Prob(|y| ≤ ϵ) < 1− δ so that (2) is not satisfied.

Another way of defining stochastic conformance was pre-
sented in [34] where the authors consider a task-specific defini-
tion of stochastic conformance where satisfaction probabilities
are required to be approximately equal. In other words, two
stochastic systems are called c-approximately probabilistically
conformant if |Prob((Y1, τ) |= ϕ) − Prob((Y2, τ) |= ϕ)| ≤ c.
In this definition, it may happen that two systems are c-
approximately probabilistically conformant for a small value
of c, while the systems produce completely different behaviors
and individual realizations y1 and y2 are vastly different.
Additionally to not being task specific, our definition covers
the risk of being r-non-conformant in equation (3).

Finally, we would like to remark that the definition of
conformance in equation (2) is related to the definition of
non-conformance risk in equation (3). In fact, when the risk
measure R is the value-at-risk V aRβ , then we know that

V aRβ(d(Y1, Y2)) > r ⇔ Prob(d(Y1, Y2) ≤ r) < β

since V aRβ(d(Y1, Y2)) ≤ r is equivalent to Prob(d(Y1, Y2) ≤
r) ≥ β according to Section II. Consequently, if β := 1−δ and
r := ϵ then V aRβ(d(Y1, Y2)) > r implies that the systems S1

and S2 under U are not (ϵ, δ)-conformant.
The notion of conformance in Definition 1 is useful when

the input U describes internal inputs such as system parameters
(an unknown mass), exogeneous disturbances from known
sources, or initial system conditions. In other words, the dis-
tribution U is known, making U a known unknown. However,
in case of external inputs that could be manipulated (e.g. user
inputs that represent rare malicious attacks), the input U may
be unknown, making U an unknown unknown. We therefore
provide an alternative definition of conformance.

Definition 2. Let U ∈ U be an unknown deterministic input
signal, S1, S2 : U×Ω → Y be stochastic systems, and Y1, Y2 :
T × Ω → R be stochastic output signals with Y1 := S1(U, ·)
and Y2 := S2(U, ·). Further, let ϵ ∈ R be a conformance
threshold, δ ∈ (0, 1) be a failure probability, and d : Y×Y →
R be a signal metric. Then, we say that the systems S1 and
S2 are (ϵ, δ)-conformant if

Prob
(︂
sup
U∈U

d(Y1, Y2) ≤ ϵ
)︂
≥ 1− δ. (4)

Additionally, let R : F(Ω,R) → R be a risk measure and
r ∈ R be a risk threshold. Then, we say that the systems

S1 and S2 under the input U are at risk of being r-non-
conformant if

R
(︂
sup
U∈U

d(Y1, Y2)
)︂
> r. (5)

Based on this definition, note that it will be inherently more
difficult to verify Definition 2 compared to Definition 1 due
to the sup-operator.

IV. TRANSFERENCE OF SYSTEM PROPERTIES UNDER
CONFORMANCE

We expect two systems S1 and S2 that are (ϵ, δ)-conformant
in the sense of Definitions 1 and 2 to have similar behaviors
with respect to satisfying a given system specification. There-
fore, we will define the notion of transference with respect to
a performance function C : Y → R that measures how well
a signal y ∈ Y satisfies this system specification. Towards
capturing similarity between S1 and S2 with respect to C, the
signal metric d has to be chosen carefully.

Definition 3. Let d : Y×Y be a signal metric and C : Y → R
be a performance function. Then, we say that C is Hölder
continuous w.r.t. d if there exists constants H, γ > 0 such
that, for any two signals y1, y1 : T → Rn, it holds that

|C(y1)− C(y2)| ≤ Hd(y1, y2)
γ (6)

A specific example of the performance function C is the
robust semantics ρϕ of an STL specification ϕ. In fact, the
robust semantics ρϕ are Hölder continuous w.r.t. the sup-norm
d∞ for constants H = 1 and γ = 1 [35, Lemma 2]. For the
convenience of the reader, we state the proof of [35, Lemma
2] with the notation used in this paper in Appendix B in [30].
The robust semantics are also Hölder continuous w.r.t. the
Skorokhod metric, see Appendix C in [30]. A commonly used
performance function in control is C(y) =

∫︁ T

0
y(t)⊤y(t)dt,

and we note that this choice of C is Hölder continuous w.r.t.
d1 as shown in Appendix D in [30]. Finally, note that the
Hölder continuity condition in equation (6) implies that, for
any constants c, ϵ ∈ R, it holds that(︁

C(y1) ≥ c ∧ d(y1, y2) ≤ ϵ
)︁

⇒ C(y2) ≥ c−Hϵγ .
(7)

A. Transference under stochastic conformance

With the definition of C being Hölder continuous w.r.t.
d, we can now derive a stochastic transference result under
stochastic conformance as per Definition 1.

Theorem 1. Let the premises in Definitions 1 and 3 hold.
Further, let the systems S1 and S2 under the input U be (ϵ, δ)-
conformant so that equation (2) holds and let C be Hölder
continuous w.r.t. d so that equation (6) holds. Then, it holds
that

Prob
(︁
C(Y1) ≥ c

)︁
≥ 1− δ̄ ⇒

Prob
(︁
C(Y2) ≥ c−Hϵγ

)︁
≥ 1− δ − δ̄.

Proof. By assumption, it holds that Prob(d(Y1, Y1) ≤ ϵ) ≥
1 − δ and Prob(C(Y1) ≥ c) ≥ 1 − δ̄ so that we know that
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Prob(d(Y1, Y1) > ϵ) ≤ δ and Prob(C(Y1) < c) ≤ δ̄. We can
now apply the union bound over these two events so that

Prob
(︁
d(Y1, Y1) > ϵ ∨ C(Y1) < c

)︁
≤ δ + δ̄.

From here, we can simply see that

Prob
(︁
d(Y1, Y1) ≤ ϵ ∧ C(Y1) ≥ c

)︁
≥ 1− δ − δ̄.

Since C is Hölder continuous w.r.t. d, which implies that
equation (7) holds, it is easy to conclude that Prob(C(Y2) ≥
c−Hϵγ) ≥ 1− δ − δ̄.

Theorem 1 tells us that i) (ϵ, δ)-conformance of systems S1

and S2 under U , and ii) Hölder continuity of the performance
function C w.r.t. the metric d enables us to derive a proba-
bilistic lower bound for the performance of system S2 w.r.t.
C from the performance of system S1.

We can derive a transference result similar to Theorem
1 when we assume that the systems S1 and S2 are (ϵ, δ)-
conformant in the sense of Definition 2 instead of Definition 1.

Theorem 2. Let the premises in Definitions 2 and 3 hold.
Further, let the systems S1 and S2 be (ϵ, δ)-conformant so
that equation (4) holds and let C be Hölder continuous w.r.t.
d so that equation (6) holds. Then, it holds that

Prob
(︁
inf
U∈U

C(Y1) ≥ c
)︁
≥ 1− δ̄ ⇒

Prob
(︁
inf
U∈U

C(Y2) ≥ c−Hϵγ
)︁
≥ 1− δ − δ̄

Proof. By assumption, it holds that Prob(supU∈U d(Y1, Y1) ≤
ϵ) ≥ 1 − δ and Prob(infU∈U C(Y1) ≥ c) ≥ 1 − δ̄ so
that we know that Prob(supU∈U d(Y1, Y1) > ϵ) ≤ δ and
Prob(infU∈U C(Y1) < c) ≤ δ̄. We can now apply the union
bound over these two events so that

Prob
(︁
sup
U∈U

d(Y1, Y1) > ϵ ∨ inf
U∈U

C(Y1) < c
)︁
≤ δ + δ̄.

From here, we can simply see that

Prob
(︁
sup
U∈U

d(Y1, Y1) ≤ ϵ ∧ inf
U∈U

C(Y1) ≥ c
)︁
≥ 1− δ − δ̄.

This equation tells us that, for each U ∈ U , we have

Prob
(︁
d(Y1, Y1) ≤ ϵ ∧ C(Y1) ≥ c

)︁
≥ 1− δ − δ̄.

Since C is Hölder continuous w.r.t. d, we know that equation
(6) holds for each U ∈ U . Consequently, we can conclude that
Prob(infU∈U C(Y2) ≥ c−Hϵγ) ≥ 1− δ − δ̄ .

B. Transference under non-conformance risk

On the other hand, by considering the notion of r-non-
conformance risk, we expect that two systems S1 and S2 that
are not at risk of being r-non-conformant have a similar risk of
violating a specification. Here, we define the risk of violating
a specifications by following ideas from [14] as R(−C(Y1))
and R(−C(Y2)).

Theorem 3. Let the premises in Definitions 1 and 3 hold.
Further, let the systems S1 and S2 under the input U not
be at risk of being r-non-conformant so that equation (3)
does not hold (i.e., R(d(Y1, Y2)) ≤ r) and let C be Hölder

continuous w.r.t. d with γ = 1 so that equation (6) holds. If
the risk measure R is monotone, positive homogeneous, and
subadditive, it holds that

R(−C(Y2)) ≤ R(−C(Y1)) +Hr.

Proof. We can derive the following chain of inequalities

R(−C(Y2))
(a)

≤ R(−C(Y1) +Hd(Y1, Y1))

(b)

≤ R(−C(Y1)) +R(Hd(Y1, Y1))

(c)
= R(−C(Y1)) +HR(d(Y1, Y1))

(d)

≤ R(−C(Y1)) +Hr

where (a) follows since C is Hölder continuous w.r.t. d and
since R is monotone, (b) follows since R is subadditive,
and (c) follows since R is positive homogeneous, while the
inequality (d) follows since S1 and S2 under U are not at risk
of being r-non-conformant, i.e., R(d(Y1, Y2)) ≤ r.

This result implies that the risk of system S2 w.r.t. the
performance function C is upper bounded by the risk of system
S1 w.r.t. C if the systems S1 and S2 are not at risk of being
r-non-conformant. We remark that a similar result appeared in
our prior work [35]. Here, we present these results in the more
general context of conformance and extend the result as we use
general performance functions C, which additionally requires
R to be positive homogeneous. Additionally, we derive a
transference result similar to Theorem 3 when we assume
that the systems S1 and S2 are not at risk of being r-non-
conformant in the sense of Definition 2 instead of Definition 1.

Theorem 4. Let the premises in Definitions 2 and 3 hold.
Further, let the systems S1 and S2 not be at risk of being
r-non-conformant so that equation (5) does not hold (i.e.,
R(supU∈U d(Y1, Y2)) ≤ r) and let C be Hölder continuous
w.r.t. d with γ = 1 so that equation (6) holds. If the risk mea-
sure R is monotone, positive homogeneous, and subadditive,
it holds that

R(− inf
U∈U

C(Y2)) ≤ R(− inf
U∈U

C(Y1)) +Hr.

Proof. We can derive the following chain of inequalities

R(− inf
U∈U

C(Y2))
(a)

≤ R(− inf
U∈U

C(Y1) +H sup
U∈U

d(Y1, Y1))

(b)

≤ R(− inf
U∈U

C(Y1)) +R(H sup
U∈U

d(Y1, Y1))

(c)
= R(− inf

U∈U
C(Y1)) +HR(sup

U∈U
d(Y1, Y1))

(d)

≤ R(− inf
U∈U

C(Y1)) +Hr

where (a) follows since − infU∈U C(Y2) = supU∈U −C(Y2),
since C is Hölder continuous w.r.t. d, and since R is monotone,
(b) follows since R is subadditive, and (c) follows since R
is positive homogeneous. The inequality (d) follows since
S1 and S2 are not at risk of being r-non-conformant, i.e.,
supU∈U R(d(Y1, Y2)) ≤ r.
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V. STATISTICAL ESTIMATION OF STOCHASTIC
CONFORMANCE

We propose algorithms to compute stochastic conformance
and the non-conformance risk. In practice, note that one will
be limited to discrete-time stochastic systems to apply these
algorithms.

A. Estimating stochastic conformance

To estimate stochastic conformance, we use conformal
prediction which is a statistical tool introduced in [28], [36] to
obtain valid uncertainty regions for complex prediction models
without making assumptions on the underlying distribution or
the prediction model [27], [37]–[40]. Let Z,Z(1), . . . , Z(k)

be k + 1 independent and identically distributed random
variables modeling a quantity known as the nonconformity
score. Our goal is to obtain an uncertainty region for Z
based on Z(1), . . . , Z(k), i.e., the random variable Z should be
contained within the uncertainty region with high probability.
Formally, given a failure probability δ ∈ (0, 1), we want
to construct a valid uncertainty region over Z (defined in
terms of a value Z̄) that depends on Z(1), . . . , Z(k) such that
Prob(Z ≤ Z̄) ≥ 1− δ.

By a surprisingly simple quantile argument, see [27, Lemma
1], one can obtain Z̄ to be the (1 − δ)th quantile of the
empirical distribution of the values Z(1), . . . , Z(k) and ∞.
By assuming that Z(1), . . . , Z(k) are sorted in non-decreasing
order, and by adding Z(k+1) := ∞, we can equivalently obtain
Z̄ := Z(p) where p := ⌈(k + 1)(1 − δ)⌉ with ⌈·⌉ being the
ceiling function.

We can now use conformal prediction to estimate stochastic
conformance as defined in Definition 1 by setting Z :=
d(Y1, Y2). We therefore assume that we have access to a
calibration dataset Dcal that consists of realizations y

(i)
1 and

y
(i)
2 from the stochastic signals Y1 ∼ D1 and Y2 ∼ D2,

respectively.

Theorem 5. Let the premises of Definition 1 hold and Dcal

be a calibration dataset with datapoints (y
(i)
1 , y

(i)
2 ) drawn

from D1 × D2. Further, define Z(i) := d(y
(i)
1 , y

(i)
2 ) for all

i ∈ {1, . . . , |Dcal|} and Z(|Dcal|+1) := ∞, and assume that the
Z(i) are sorted in non-decreasing order. Then, it holds that
Prob(d(Y1, Y2) ≤ Z̄) ≥ 1 − δ with Z̄ defined as Z̄ := Z(p)

where p :=
⌈︁
(|Dcal| + 1)(1 − δ)

⌉︁
. Thus, the systems S1 and

S2 under the input U are (ϵ, δ)-conformant if Z̄ ≤ ϵ.

We see that checking stochastic conformance as defined in
Definition 1 is computationally simple when we have a calibra-
tion dataset Dcal. Checking stochastic conformance as defined
in Definition 2, however, is more difficult due to the existence
of the sup-operator. To compute this notion of conformance,
we make two assumptions: i) the set U is compact, and ii) for
every realization ω ∈ Ω, the function d(Y1(·, ω), Y2(·, ω)) is
Lipschitz continuous with Lipschitz constant L. While knowl-
edge of the Lipschitz constant L would presume knowledge
about the closeness of the systems S1 and S2, it would only
provide a conservative over-approximation. We will, however,
not need to know the Lipschitz constant L and estimate L
instead along with probabilistic guarantees.

Algorithm 1 Conformance Estimation as per Definition 2
Input: Failure probability δ ∈ (0, 1) and grid size κ > 0
Output: Z̄ such that Prob(supU∈U d(Y1, Y2) ≤ Z̄ +
Lκ) ≥ 1− δ

1: Construct κ-net Ū of U
2: for Ū ∈ Ū do
3: Obtain calibration set DŪ

cal consisting of realizations
(y

(i)
1 , y

(i)
2 ) under Ū

4: Compute Z̄Ū := Z(p) by applying Theorem 5 but
instead using dataset DŪ

cal

5: Z̄ := maxŪ∈Ū Z̄Ū

Our approach is summarized in Algorithms 1 and 2. Al-
gorithm 1 computes Z̄ such that Prob(supU∈U d(Y1, Y2) ≤
Z̄+Lκ) ≥ 1− δ when L is known and where κ is a gridding
parameter, while Algorithm 2 estimates the Lipschitz constant.
We present a description of these algorithms upfront and state
their theoretical guarantees afterwards.

In line 1 of Algorithm 1, we construct a κ-net Ū of U , i.e.,
we construct a finite set Ū so that for each U ∈ U there exists
a Ū ∈ Ū such that d̄(U, Ū) ≤ κ where d̄ : U × U → R
is a metric. For this purpose, simple gridding strategies can
be used as long as the set U has a convenient representation.
Alternatively, randomized algorithms can be used that sample
from U [41]. In lines 2-4, we apply Theorem 5 for each
element Ū ∈ Ū . Therefore, we obtain realizations (y

(i)
1 , y

(i)
2 )

from D1×D2 under Ū (line 3). We then compute Z̄Ū so that
Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤ Z̄Ū ) ≥ 1 − δ (line 4). Finally,
we set Z̄ := maxŪ∈Ū Z̄Ū (line 5).

In Algorithm 2, we compute L̄ such that Prob(L ≤ L̄) ≥
1 − δL. We uniformly sample control inputs (U ′, U ′′) (line
2), obtain realizations (y′1, y

′
2) from D1 × D2 under U ′ and

realizations (y′′1 , y
′′
2 ) from D1 × D2 under U ′′ (line 3), and

compute the non-conformity score L(i) (line 4). In line 5, we
obtain an estimate L̄ of the Lipschitz constant L that holds
with a probability of 1 − δL over the randomness introduced
in Algorithm 1.

Theorem 6. Let the premises of Definition 2 hold. If the Lip-
schitz constant L of d(Y1(·, ω), Y2(·, ω)) is known uniformly
over ω ∈ Ω, then, for a gridding parameter κ > 0, the output
Z̄ of Algorithm 1 ensures that

Prob(sup
U∈U

d(Y1, Y2) ≤ Z̄ + Lκ) ≥ 1− δ

Thus, the systems S1 and S2 are (ϵ, δ)-conformant if Z̄+Lκ ≤
ϵ. Otherwise, let δL ∈ (0, 1) be a failure probability, then the
output L̄ of Algorithm 2 ensures that

Prob(sup
U∈U

d(Y1, Y2) ≤ Z̄ + L̄κ) ≥ 1− δ − δL

where Prob is defined over the randomness introduced in
Algorithm 2.

Proof. From line 4 of Algorithm 1 we know that
Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤ Z̄Ū ) ≥ 1 − δ for each Ū ∈ U .
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Algorithm 2 Lipschitz Constant Estimation of L
Input: Failure probabilities δL ∈ (0, 1), grid size κ > 0,
calibration size KL > 0
Output: L̄ such that Prob(supU∈U d(Y1, Y2) ≤ Z̄ +
L̄κ) ≥ 1− δ − δL

1: for i from 1 to KL do
2: Sample (U ′, U ′′) uniformly from U × U
3: Obtain realizations (y′1, y

′
2) under U ′ and (y′′1 , y

′′
2 ) under

U ′′

4: Compute L(i) := |d(y′1, y′2)− d(y′′1 , y
′′
2 )|/d̄(U ′, U ′′)

5: Compute L̄ := L(p) where p :=
⌈︁
(KL + 1)(1− δ′′)

⌉︁

Due to Lipschitz continuity, we can conclude that for each
U ∈ U that is such that d̄(U, Ū) ≤ κ it holds that

Prob(d(Y1, Y2) ≤ Z̄Ū + Lκ) ≥ 1− δ.

Since Ū is a κ-net of U , it follows that
Prob(supU∈U d(Y1, Y2) ≤ Z̄ + Lκ) ≥ 1− δ.

For the second part of the proof, note that from line 5 of
Algorithm 2 we know that Prob(L ≤ L̄) ≥ 1−δL. We can now
union bound over this event and Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤
Z̄Ū ) ≥ 1− δ so that

Prob(d(Y1(Ū , ·), Y2(Ū , ·)) ≤ Z̄Ū ∧ L ≤ L̄) ≥ 1− δ − δL.

The rest of the proof follows as in the first part.

B. Estimating non-conformance risk

We next briefly summarize how to estimate the value-at-
risk and the conditional value-at-risk following standard results
such as from [14], [42] and [43], respectively.

Proposition 2. Let the premises of Definition 1 hold and Dcal

be a calibration dataset with datapoints (y(i)1 , y
(i)
2 ) drawn from

D1 × D2. Let β ∈ (0, 1) be a risk level and γ ∈ (0, 1) be a
failure threshold. Define Z(i) := d(y

(i)
1 , y

(i)
2 ) for each i ∈

{1, . . . , |Dcal|} and assume that Prob(Z ≤ α) is continuous
in α. Then,

Prob
(︁
V aRβ ≤ V aRβ(d(Y1, Y2)) ≤ V aRβ

)︁
≥ 1− γ.

where we have V aRβ :=

inf
{︂
α ∈ R

⃓⃓⃓ ˆ︃Prob(Z ≤ α)−
√︂

ln(2/γ)
2|Dcal| ≥ β

}︂
and

V aRβ := inf
{︂
α ∈ R

⃓⃓⃓ ˆ︃Prob(Z ≤ α) +
√︂

ln(2/γ)
2|Dcal| ≥ β

}︂
with the empirical cumulative distribution functionˆ︃Prob(Z ≤ α) := 1

|Dcal|
∑︁|Dcal|

i=1 I(Z(i) ≤ α) and the
indicator function I.

For estimating CV aRβ(Z), we assume that the ran-
dom variable d(Y1, Y2) has bounded support, i.e., that
Prob(d(Y1, Y2) ∈ [a, b]) = 1. Note that d(Y1, Y2) is usually
bounded from below by a := 0 if d is a metric. To obtain an
upper bound, we assume that the distance function saturated
at b, e.g., by clipping values larger than b to b. In practice,
this means that realizations that are far apart already have a
large distance and are capped to b.

Proposition 3. Let the premises of Definition 1 hold and Dcal

be a calibration dataset with datapoints (y(i)1 , y
(i)
2 ) drawn from

D1 × D2. Let β ∈ (0, 1) be a risk level and γ ∈ (0, 1) be a
failure threshold. Define Z(i) := d(y

(i)
1 , y

(i)
2 ) for each i ∈

{1, . . . , |Dcal|} and assume that Prob(d(Y1, Y2) ∈ [a, b]) = 1.
Then, it holds that

Prob
(︁
CV aRβ ≤ CV aRβ(d(Y1, Y2)) ≤ CV aRβ

)︁
≥ 1− γ.

where CV aRβ := ˆ︂CV aRβ +
√︂

5 ln(3/γ)
|Dcal|(1−β) (b − a) and

CV aRβ := ˆ︂CV aRβ−
√︂

11 ln(3/γ)
|Dcal|(1−β) (b−a) where the empirical

estimate of CV aRβ(Z) is ˆ︂CV aRβ := infα∈R
(︁
α+(|Dcal|(1−

β))−1
∑︁|Dcal|

i=1 [Zi − α]+
)︁
.

As a consequence of these two lemmas, we know that with
a probability of 1− γ the systems S1 and S2 under the input
U are at risk of not being conformant if V aRβ ≥ α or
CV aRβ ≥ α based on the risk measure of choice.

VI. CASE STUDIES

We now demonstrate the practicality of stochastic confor-
mance and risk analysis through various case studies. For
validation, if we obtain the value Z̄ using a conformal pre-
diction procedure for a nonconformity score defined by the
random variable Z, i.e., such that Prob(Z ≤ Z̄) ≥ 1 − δ.
Then, given a test set Dtest, the validation score is defined as
V S(Z) := |{z ∈ Dtest | z ≤ Z̄}|/|Dtest|.

A. Dubin’s car.

Dubin’s car models the motion of a point mass vehicle.
The state variables are the x and y position, θ denotes the
steering angle and v the longitudinal velocity. While both θ
and v are typically assumed to be control inputs, we adapt
the case study from [44] where the angular velocity ω(t) at
each time t is assumed to be given so that θ(t) := Tsπ +∑︁t

i=1 ω(i)Ts where Ts := 0.1s. In this example, we assume
that ω(i) := π

50Ts
for i ∈ [1, 25], and ω(i) := − π

50Ts
for i ∈

[26, 50]. The velocity v(t) is provided by a feedback controller.
The dynamics are assumed to have additive white Gaussian
noise ηx(t), ηy(t) ∼ N (0, 0.005). The dynamical equations
of motion are as described below:

x(t+1) = x(t)+Tsv(t) cos(θ(t)) + ηx(t)

y(t+1) = y(t)+Tsv(t) sin(θ(t)) + ηy(t)

The two systems that we compare have two different feed-
back controllers. The first feedback controller uses the method
from [44], [45] and the second controller uses the method from
[46]. We plot a set of sampled trajectories in Fig. 1a. This fig-
ure also shows the set of initial states I := [−1, 0]× [−1, 0].
The controller aims to ensure that the system trajectory stays
within a series of sets T1 through T50, the corresponding
STL specification is ϕdubin :=

⋀︁50
i=1 F[i−1,i] ([xi yi] ∈ Ti).

For the experiments that follow, we uniformly sampled initial
states from I and noise ηx, ηy from the described Gaussian
distribution.
Effect of calibration set size. In the first experiment, we wish
to benchmark the effect of the size of the calibration set Dcal
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(a) Targets in Du-
bin’s car

(b) CARLA: Cross-track error sig-
nals for S1, S2

(c) F16: altitude signals for S1, S2 (d) Spacecraft Trajectories

Fig. 1: The solid lines refer to Y1 and the dashed lines refer to Y2; in each of the displayed plots, the initial condition for each
pair of realizations is the same.

(a) Trajectory distance on validation set (b) Robustness on validation set con-
troller 1

(c) Robustness on validation set con-
troller 2

Fig. 2: Distance and robustness histogram for Dubin’s car with δ = δ̄ = 0.05. We use CV aR(d) to denote CV aR(d(Y1, Y2)).
The c1 and ϵ are the values of conformal prediction on the calibration set of ρϕdubin(Y1) and d∞(Y1, Y2).

for various distance metrics. The results are shown in Table I.
The table shows that with smaller sizes of the calibration set,
we get a more conservative ϵ for d∞ (which translates into
a higher validation score). The V aR is almost identical to
the value of ϵ at larger Dcal sizes. We note that the CV aR
values change with the value of V aR. A similar trend can be
observed the Skorokhod distance and the L2-metric.
Empirical evaluation of transference. We empirically demon-
strate that Theorem 1 holds. We use C(Y ) = ρϕdubin(Y ),
i.e., the robust semantics w.r.t. the property ϕdubin, and the
L∞ signal metric d∞. The results are shown in Table II. We
can see that the predicted upper bound for the robustness of
realizations of Y2 w.r.t. ϕdubin is negative (c1− ϵ), so it is not
possible to conclude that the second system satisfies ϕdubin

with probability greater than 1 − δ − δ̄. However, we note
that c2 is indeed greater than the bound (c1 − ϵ). Similarly,
we show that Theorem 3 is also empirically validated by
computing the CV aR values for the first system and the risk
measure on d∞(Y1, Y2). We show the empirical distributions
of d∞(Y1, Y2), and ρϕdubin(Yi) for i = 1, 2 in Figure 2.
Empirical evaluation of Theorem 2. We next apply Algo-
rithms 1 and 2 to this case study. We grid the initial set of
states evenly into 25 cells with a grid size of κ = 0.02. We
sample 650 trajectories on each cell to obtain their calibration
sets. Algorithm 2 gives Z̄ = 0.7562 and Lκ = 0.0687, giving
Z̄+Lκ = 0.8249. We then evaluate on two test sets of unseen
initial conditions with |Dtest| = 1000, 2500. The success rate

on the test sets are 0.9996 and 1.0, with the goal success rate
being 0.9. The experiments demonstrate the effectiveness of
Theorem 6.

B. F-16 aircraft.

The F-16 aicraft control system from [47] uses a 13-
dimensional non-linear plant model based on a 6 d.o.f. airplane
model, and its dynamics describe force equations, moments,
kinematics, and engine behavior. We alter the original system
S1 from [47] to a modified version S2 by changing the
controller gains. We evaluate the performance of the two
systems on the ground collision avoidance scenario with the
specification ϕgcas := G[0,T ](h ≥ 1000) where T is the
mission time and h is the altitude. For data collection, we
perform uniform sampling of the initial states. We assume
that the x-center of gravity (xcg) of the aircraft is a stochastic
parameter with uniform distribution on [0, 0.8]. We obtain a
calibration set Dcal of size 1000 by uniform sampling of the
initial states and the xcg parameter. We separately sample 3000
signals for Dtest. The results of transference and risk estimates
are shown in Table III.

C. Autonomous Driving using the CARLA simulator.

CARLA is a high-fidelity simulator for testing of au-
tonomous driving systems [48]. We consider two learning-
based lane-keeping controllers from [14], one being an im-
itation learning controller (S1) and another being a learned
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Distance |Dcal| ϵ d(Y1, Y2)

Metric V S(d(Y1, Y2)) V aR(d(Y1, Y2)) CV aR(d(Y1, Y2))

d∞

50 0.7825 0.987 0.7183 0.7947
1000 0.7163 0.956 0.7148 0.7647
2000 0.7122 0.952 0.712 0.7814
3000 0.7118 0.952 0.7117 0.7862

dsk
(Skorokhod
Distance)

50 0.6723 0.953 0.6517 0.7181
1000 0.6722 0.972 0.6711 0.7156
2000 0.6645 0.96 0.6639 0.7106
3000 0.6619 0.952 0.6613 0.7079

d2

50 2.6086 0.937 2.503 2.612
1000 2.7339 0.96 2.732 3.048
2000 2.7071 0.944 2.706 3.044
3000 2.7238 0.955 2.722 3.0929

TABLE I: Effect of calibration set size on the validation score and risk measures. The size of the test set, i.e., |Dtest|, is 1000.
We use the conformal prediction procedure from Section V to obtain ϵ as defined in Definition 1 for δ = 0.05.

|Dcal| c1 ϵ V S(ρ1) V S(d∞) c2 Thm 1 CV aR Thm.3

valid? −d∞ −ρ1 −ρ2 valid?

δ = 0.2, 100 0.31 0.59 0.95 0.76 0.21 Y 0.90 -0.28 0.00 Y
δ̄ = 0.05 3K 0.30 0.60 0.95 0.79 0.20 Y 0.93 -0.27 0.03 Y

δ = 0.1, 1K 0.30 0.67 0.96 0.92 0.15 Y 0.79 -0.27 0.02 Y
δ̄ = 0.05 3K 0.30 0.66 0.95 0.91 0.15 Y 0.81 -0.27 0.03 Y

δ = 0.05, 2K 0.31 0.71 0.94 0.95 0.11 Y 0.78 -0.27 0.02 Y
δ̄ = 0.05 3K 0.30 0.71 0.95 0.95 0.11 Y 0.79 -0.27 0.03 Y

TABLE II: Empirical evaluation of transference. Let ρi be short-hand for ρφdubin(Yi) for i = 1, 2, and d∞ be short-hand
for d∞(Y1, Y2). Using Theorem 5, we show Prob(ρ1 ≥ c1) > 1 − δ̄, and Prob(d∞ ≤ ϵ) > 1 − δ. The validity scores
for each guarantee on a test set Dtest with 1000 samples are shown. The value c2 is obtained using Theorem 5 on ρ2
and observe that it exceeds c1 − ϵ, validating Theorem 1. Similarly, we report the CV aR values for −ρ1 and d∞, and
CV aR(−ρ1) + CV aR(d∞) ≥ CV aR(−ρ2) for all cases, validating Theorem 3.

Case Study Spec |Dcal| |Dtest| V S(ρ1) V S(d∞) ϵ V aR(d∞)

F-16 ϕgcas 1K 3K 0.95 0.98 200 200
CARLA ϕcte 700 300 0.94 0.96 1.88 1.87
Satellite ϕsat 7K 3K 0.96 0.97 0.18 0.18

TABLE III: Transference results for various case studies. We use δ = 0.05 and δ̄ = 0.05. As before, ρ1 is used as short-hand
for ρϕ(Y1) for each spec, and d∞ is used as short-hand for d∞(Y1, Y2).

barrier function controller (S2). We obtain 1000 trajectories
from each controller during a 180 degree left turn, and we
use 700 of them for calibration and 300 for testing. In this
data, the initial states (ce, θe) are drawn uniformly from
[−1, 1]× [−0.4, 0.4] where ce is the deviation from the center
of the lane center (cross track error) and θe is the orientation
error. The STL specification ϕcte := G(|ce| ≤ 2.25) restricts
|ce| to be bounded by 2.25. The results are shown in Table III.

D. Spacecraft Rendezvous

Next, we consider a spacecraft rendezvous problem from
[49]. Here, a deputy spacecraft is to rendezvous with a
master spacecraft while staying within a line-of-sight cone.
The system is a 4D model s = [x, y, vx, vy]

⊤ where
x, y ∈ R are the relative horizontal and vertical distances
between the two spacecrafts and vx, vy ∈ R are the relative
vertical and horizontal velocities. There are two different
feedback controllers, using the same control algorithms
we used in Dubin’s car example (i.e., the controllers from
[44], [45] and [46]). The STL specification is a reach-
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Case Study Spec |Dcal| |Dtest| δ CV aR

d∞ −ρ1 −ρ2

F-16 ϕgcas 1K 3K 0.01 200.3 -62.3 -62.3
CARLA ϕquad 7K 3K 0.01 2.04 -0.31 0.88
Satellite ϕsat 7K 3K 0.01 0.19 0.0 0.08

TABLE IV: Empirical validation of risk transference for all case studies. As before, ρi is short-hand for ρϕ(Yi), and d∞ is
short-hand for d∞(Y1, Y2). Here, we set the risk level β = δ in each case.

avoid specification (visually depicted in Fig. 1d), which
requires the system to always stay in the yellow region
and eventually reach the target rectangle T shown: ϕsat :=
G[1,5] (y, |y|, |vx|, |vy| ≤ −|x|, ymax, vx,max, vy,max) ∧
F[1,5]s ∈ T . The set of initial states is I =
[−0.1, 0.1] × [−0.1, 0.1]. The system is assumed
to have additive Gaussian process noise with zero
mean and a diagonal covariance matrix with variances
10−4, 10−4, 5 × 10−8, 5 × 10−8. We uniformly sample 100
different initial states from I and 100 noise values sampled
from the noise distribution. We divide the dataset into Dcal

and Dtest with sizes 7K and 3K respectively. The results are
shown in Table III.
Discussion on results for Transference across case studies.
We omit the column for Table III that shows the proportion
of Dtest of the realizations of Y2 for which the bound c1 − ϵ
exceeds c2, where the ci’s are the conformal bounds on ρi’s.
For all case studies this ratio was either 1.0 or close to
1.0, establishing the empirical validity of Theorem 1. We
also observe that above results show that it is feasible to
use stochastic conformance in a control improvization loop,
where we want to change a system controller (perhaps for
optimizing a performance objective) while allowing only some
degradation on probabilistic safety guarantees.

VII. RELATED WORK

Conformance has found applications in cyber-physical sys-
tem design [50], [51] as well as in drug testing and other
applications [52]–[54]. Our work is inspired by existing works
for conformance of deterministic systems by which we mean
that systems are non-stochastic, see [21], [55] for surveys. The
authors in [23]–[25] considered conformance testing between
hybrid system. To capture distance between hybrid system
trajectories that may exhibit discontinuities, signal metrics
were considered that simultaneously quantify distance in space
and time, resembling notions of system closeness in the
hybrid systems literature [56], [57]. For instance, [23] proposes
(T, J, (τ, ϵ))-closeness where τ and ϵ capture both timing
distortions and state value mismatches, respectively, and where
T and J quantify limits on the total time and number of
discontinuities, respectively. A stronger notion compared to
(T, J, (τ, ϵ))-closeness was proposed in [22] by using the
Skoroghod metric. The benefit of [22] over the other notion is
that it preserves the timing structure. All these works derive
transference results with respect to timed linear temporal logic
or metric interval temporal logic specifications.

Conformance of stochastic systems has been less studied.
The authors in [58] propose precision and recall conformance
measures based on the notion of entropy of stochastic au-
tomata. The authors in [59] use the Wasserstein distance
to quantify distance between two stochastic systems, which
is fundamentally different from our approach. (Bi)simulation
relations for stochastic systems were studied in [60]–[62].
Such techniques can define behavioral relations for systems
[63], [64], and they can be used to transfer verification results
between systems [65]. The authors in [66] utilize such behav-
ioral relations to verify RL policies between a concrete and an
abstract system. We remark that bisimulations are difficult to
compute, see e.g., [67], unlike our approach. Probably closest
to our work is [34]. However, in this paper conformance
is task specific which allows two systems to be conformant
w.r.t. a system specification even when the systems produce
completely different trajectories. Additionally, we consider a
worst-case notion of conformance where no information about
the input that excites both stochastic systems is available.

VIII. CONCLUSION

We studied conformance of stochastic dynamical systems.
Particularly, we defined conformance between two stochastic
systems as probabilistic bounds over the distribution of dis-
tances between model trajectories. Additionally, we proposed
the non-conformance risk to reason about the risk of stochastic
systems not being conformant. We showed that both notions
have the transference property, meaning that conformant sys-
tems satisfy similar system specifications. Lastly, we showed
how stochastic conformance and the non-conformance risk can
be estimated from data using statistical tools such as conformal
prediction.
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