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Abstract
To meet today’s high industry standards, computer vision systems are increas-
ingly being integrated for quality control. These inspections must be carried out
very quickly in order to not to slow down the production process. To meet these
requirements, the Austrian Institute of Technology (AIT) has developed the
Inline Computational Imaging system (ICI). The ICI is a monocular, scalable
framework that is compatible with many industrial cameras. The system is
limited to the use with a synchronized linear stage that guarantees image
acquisition in a strict linear path and identical distance between images.
In this work, the ICI framework is extended for the use with a robotic arm.
This brings many advantages, for example scanning surfaces of large objects
that cannot be positioned on a linear stage. However, moving a camera with a
robotic arm involves vibrations and inaccuracies. Therefore, it is expected that
a direct application is not possible.
To achieve compatibility, the images must be transformed into the required
arrangement. Two approaches are followed: in the first approach, the pose
information is used to rectify the images. Since the position information of
the robotic arm do not meet the required accuracy, they are optimized based
on the image data using bound constrained bundle adjustment. In the second
method, a perspective transformation is applied between the newly acquired
image and the previous image to obtain the required arrangement. Feature
tracks are used to keep the disparity at a constant.
The evaluation of the rectification processes shows a clear improvement of the
vertical parallax via both approaches with a mean parallax in the subpixel
range. The evaluation of the reconstruction confirms the improvement. Both
approaches show a signification increase of quality of the resulting point clouds
compared to the original images. The reconstructions deviate significantly less
from the ground truth and show higher optical quality.
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Kurzzusammenfassung
Um den heute hohen Standards der Industrie gerecht zu werden, werden
vermehrt computergestütze Bildverarbeitungssysteme zur Qualitätskontrollen
integriert. Diese müssen sehr schnell erfolgen um den Fertigungsprozess nicht zu
verlangsamen. Um diesen Anforderungen gerecht zu werden hat das Austrian
Institute of Technology (AIT) das Inline Computational Imaging system (ICI)
entwickelt. Das ICI ist ein monokulares, skalierbares Framework das mit vielen
Industriekameras kompatibel ist. Das System ist jedoch auf den Einsatz mit
einer synchronisierten Linearbühne beschränkt welche die Bildaufnahme in
einem linearen Pfad und identen Aufnahmeabstand garantiert.
In dieser Arbeit wird der Einsatz des ICI auf die Anwendung mittels Roboter-
arme erweitert. Dies bringt viele Vorteile mit sich, beispielsweise das Scannen
von Oberflächen großer Objekte die nicht auf einer Linearbühne positioniert
werden können. Die Bewegung einer Kamera mittels Roboterarm ist jedoch
mit vielen Vibrationen und Ungenauigkeiten verbunden. Es ist zu vermuten,
dass ein direkter Einsatz nicht möglich ist.
Um die Kompatibilität zu bewerkstelligen müssen die Aufnahmen in die gefor-
derte Anordnung transformiert werden. Dazu werden zwei Ansätze verfolgt:
im ersten Ansatz werden die Poseninformation verwendet um die Bilder zu
rektifizieren. Da die Positionsinformation der Bilder des Roboterarms zu
ungenau sind, werden diese anhand der Bilddaten mittels grenzgebundener
Bündelausgleichung (Bound Constraint Bundle Adjustment) optimiert. In
der zweiten Methode wird eine perspektivische Transformation zwischen neu
aufgenommenen und vorigem Bild geschätzt um das neue Bild zu rektifiziert.
Um die Abstände konstant zu halten werden Merkmale auf mehreren Bildern
gefunden und zur Kompensation verwendet.
Die Evaluierung der Rektifierzungsprozesse zeigt eine deutliche Verbesserung
der vertikalen Parallaxe mit beiden Ansätzen mit einem Mittelwert im Subpi-
xelbereich. Die Evaluierung der Punktwolken bestätigen die Verbesserung, die
Rekonstruktionen weichen deutlich weniger vom Vergleichswert ab und zeigen
optisch eine höhere Qualität.
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1 Introduction
Reconstructing objects and surfaces in three-dimensions (3D) has applications
in many industries e.g. for surface quality inspection or error detection. When
thinking of industrial inspection systems, reliable, fast and high accurate vision
systems are required to not decelerate the production process. Most reconstruc-
tion algorithms are slow, taking minutes to several hours of computation time.
Hand consumer depth cameras, such as the Microsoft Kinect and Asus Xtion,
provide depth information in real-time. However, they do not provide sufficient
resolution e.g. the Kinect V2 has a resolution of only 512x424 pixel.
To meet the industrial demands, the Austrian Institute of Technology (AIT)
developed the Inline Computational Imaging system (ICI) [1]. The ICI is
an image acquisition system for simultaneous two-dimensional (2D) and 3D
inspection. It features a scalable framework which is compatible with a wide
range of industrial cameras. As its name suggests, the ICI is restricted to
the use with a linear transport stage. This limits the diversity of supported
objects for scanning. Figure 1.1 shows the basic setup of the ICI. The object
has to undergo a precise linear motion. The transport stage and the camera
are synchronized to guarantee a uniform distance between images over the hole
sequence.

Figure 1.1: Inline Computational Imaging system of the Austrian Institute of
Technology [1]. The system requires a linear transport stage for
almost perfect linear motion and constant disparity between images.

3
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Robotic arms combined with a vision system provide the possibility of scan-
ning objects of different size and shape. While commonly available in industrial
environments, they can be reprogrammed with low effort. The advantages of
flexibility comes at a price of positional uncertainties and vibrations making it
more difficult to robustly reconstruct. This work aims to combine best of both
worlds. The ICI is applied on an industrial robotic arm to take advantages of
both methods: a fast and precise reconstruction pipeline that can be applied
in a flexible way.

1.1 Problem Statement
Industrial inspection has high requirements in terms of accuracy and speed.
Depending on the task, these can surpass an acquisition speed of 100 mm/s
and depth resolutions in the lower micrometer range. Stated by the ETH3D
High-resolution multi-view benchmark, multi-view stereo algorithms to recover
3D information are slow and far away from real-time applicability [2]. For
instance, the fastest algorithm in the benchmark to recover the 3D structure
of the door dataset, including only 7 high-resolution images, took over 80
seconds. Pure stereo reconstruction with subsequential depth map fusion can
be applied in real-time, however these methods lack the benefits of multi-view
stereo using only the pixel values of two images to recover its depth. Double
the hardware is needed, increasing the mount on the robotic arm even more
and leading to additional noise when following a trajectory. The ICI of the
AIT features a flexible and scalable framework for fast and reliable recovery of
depth information using a single camera. Different to conventional stereo, the
ICI includes consistency checks using multiple images. However, the pipeline
is designed for linear stages transporting the objects in almost perfect linear
motion while the camera remains in a static position. This linear motion is
essential as the pipeline assumes pixel correspondences lie on the same pixel
row. When using a standard industrial robotic arm with several rotational
joints to move the camera in a linear way, significant deviations to the perfect
linear path occur. Robotic arms feature vibrations and inaccuracy depending
on the underlying robot model. Further planning and moving a linear path
with multiple rotational joints is also not straight forward and can lead to drift
of the trajectory.
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1.2 Aim of the Work
The main objective of this work is to extend the ICI to the use with a robotic
arm. For this purpose, the robotic arm is moving a mounted camera system to
scan the surface of an object. The robotic arm follows a given linear trajectory,
mimicing a linear transport stage. The quality of the resulting reconstruction
should not decrease using this form of acquisition. It is tested, if the positional
quality the robot is sufficient for a direct adaption. Therefore, raw positional
information retrieved from the robot model is inspected. The aim is to ensure
that the image sequence complies with the ICI specifications in the best possible
way.

1.3 Proposed Solution
To rectify the image sequence to fit the ICI requirements two methods are
introduced. The first approach uses the position of the cameras to transform
the images to an ideal camera arrangement. The robot model outputs the
positions of the cameras at time of acquisition. Since these positions are not
reliable, a constrained Bundle Adjustment (BA) is introduced. It is shown how
the standard SfM pipeline can be improved by the additional information.
The second approach utilizes the homography between two image planes to
project images into a common plane. The homography between images is
retrieved by matching image features. It is used to transform the subsequential
image onto the plane of the previous image. Therefore, the epipolar lines of the
images are on the same row. To keep the baseline between images constant,
feature tracks are used. Feature tracks are unique points found in multiple
successive images.
Both approaches are applied incrementally to reduce the slowdown of the ICI
pipeline. To assess the quality of the rectification, a comparison between a
rectified image sequence and a image sequence taken with a linear stage using
the ICI is performed. Figure 1.2 gives an overview of the proposed solutions.
First an image sequence is acquired using the camera mounted on a robotic
arm. Then, the images are transformed using two different approaches. Finally,
the image sequence is applied to the ICI to receive a 3D reconstruction.

1.4 Structure of the work
In Chapter 2, state-of-the-art research of related fields are discussed. Chapter
3 introduces camera models and presents the fundamentals of stereo vision
and Structure from Motion (SfM). Additionally, the incremental and global
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Figure 1.2: Graphical overview of the proposed solution.

approach of BA are introduced and methods for Multi-view Stereo (MVS) for
dense reconstruction are presented. Chapter 4 explains the proposed solution
in detail and how the positional prior is exploit for improved feature matching.
Chapter 5 gives insight of the experimental setup and the results. Finally, a
conclusion of the work is given and further improvements are discussed.



2 Related Work
This work aims to achieve a high-quality 3D reconstruction by utilizing the ICI
combined with images taken by an optical system attached to a robotic arm.
Therefore, the following chapter gives current approaches of robot-based 3D
reconstruction. Then, research related to the proposes solutions about SfM and
Simultaneous Localization and Mapping (SLAM) are presented and current
state-of-the-art variations are introduced. Finally, methods for rectification of
linear camera arrays are shown as the goal is similar to the aim of this work.

2.1 Inline Computational Imaging system
The Inline Computational Imaging system of the Austrian Institute of Technol-
ogy [1] is a fast, reliable way for inspection and 3D reconstruction in industrial
applications. The algorithms are flexible and can operate with most standard
industrial cameras under many different lighting conditions and image resolu-
tions. The setup consists of an industry grade camera and a transport stage
that moves an object in front of the camera. The system is also capable of
photometric stereo. The typical setup includes four high power LED light
sources, arranged in four different directions, that are strobed sequentially.
Compared to this work, where the robotic arm is moving the camera in a linear
way, in the original use, the object is moved on a linear transport stage and
the optical system is static.

The computational approach features four stages of processing: feature calcu-
lation and multi-view matching, fusion of the disparity maps, generation of the
3D model and final regularization and denoising. In the first step, m different
feature sizes are matched for a selected baseline in both directions, leading
to m disparity maps and confidence maps for each image. Taking the mean
of these confidence maps and a weighted mean over the disparities, including
some further consistency checks with different baselines, the disparity maps are
fused into a single disparity map per image. Then the single disparity maps are
integrated into a single scene. Finally, the 3D model is postprocessed using the
confidence values and an iterative Total Generalized Variation (TGV) solver
for denoising [1].

7
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Figure 2.1: Processing pipeline of the ICI[3].

Figure 2.1 shows the original hardware setup and the main steps of the pro-
cessing pipeline of the ICI.

2.2 Robot assistant 3D Reconstruction
Other works for 3D reconstruction utilizing a robotic arm mainly use different
sensors for reconstruction. Rossi and Savino [4] as well as Callieri et al. [5]
use laser scanners mounted to a robotic arm to scan objects. Huang et al. [6]
combined a robotic arm with an ultrasonic scanner for medical application and
Alenya et al. [7] created a eye-in-hand system by mounting a Time-of-Flight
camera. For monocular reconstruction, R2OBBIE-3D by Martins et al. [8]
features a robotic arm combining a high resolution camera and an illumination
basket to reconstruct biological objects. They connect photometric stereo
and Patch-based Multi-view Stereo (PMVS) for high quality reconstruction,
constraining the PMVS algorithm directly with the robot pose. Even if they
produced high accurate reconstruction results, the runtime is not even close
to real-time and took several hours. In the industrial field, Zambal et al. [9]
developed an inspection system for carbon fibre reinforced plastic. This method
does not directly 3D reconstruct the scene, but visualizes the fibre orientations.
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2.3 SfM and vSLAM
SfM is a technique to retrieve the 3D geometry. This process includes both
problems of estimating camera poses and reconstructing a scene in sparse
3D. Visual Simultaneous Localization and Mapping (vSLAM) is a comparable
problem introduced by the robotic research community while SfM was developed
in the computer vision community. Both feature similar pipelines using mainly
feature correspondences and either BA, or in vSLAM different filter-based
approaches to optimize over selected images. SfM was initially introduced
1981 in the seminal paper of Longuet-Higgins [10], reconstructing a scene from
two images and estimating the related camera rotation introducing the eight
point algorithm. The first filter-based approach, namely MonoSLAM [11],
was developed 2003 using Bayesian filtering. As the goals of the methods in
these communities are different, the evolution of SfM and vSLAM proceeded
differently. However, the introduction of incremental SfM, that is capable of
operating in real-time, brought the two methods back together [12]. The first
vSLAM system to reunite the two branches is known as Parallel Tracking and
Mapping (PTAM) [13].

SLAM
Today’s research in SLAM mainly tackles the problem of fusing information
of multiple different sensors for more robustness and more accurate results.
These are often referred to as visual-inertial SLAM systems. Most research
is done using an Inertial Measurement Unit (IMU) and a camera sensor e.g.
OKVIS [14], VINSMONO [15]. In the last years, many SLAM systems, utilizing
different approaches using different sensors, were developed. The following
section focuses only on pure monocular visual, classical SLAM systems using
graph-based optimization equal to BA. While these either use direct, semi-direct
or feature-based methods, all of following systems can lead to good or even very
good results according to [15]. Direct methods use pixel matches instead of
features. They work more robust on low-textured surfaces while also retrieving
a denser map of the environment. Their limitations, on the other hand, include
the assumption of a constant surface reflectance model and a limited baseline
in consequences of the photometric consistancy. Additionally, they are more
computationally heavy because pixel-base matching and the denser map [16].

ORB SLAM was initially developed by Mur-Artal et. al. [16]. The feature-
based system uses Oriented FAST and Rotated BRIEF (ORB) features to allow
real-time performance even without a GPU. Their extraction needs less time per
image then the popular Scale-invariant Feature Transform (SIFT) or Speeded
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up Robust Features (SURF) features. ORB also features good invariance to
viewpoints resulting in better matches when dealing with a wider baseline. The
main idea of ORB SLAM is to reuse features that are used for mapping and
tracking also for place recognition, for relocalization and loop detection. Each
of the tasks, tracking, mapping and loop closing are running on an own thread.
For tracking, a constant velocity model is used to get initial pose estimations
for new frames. A motion-only BA is used to optimize the position of new
frames. If the track is lost because of e.g. not enough matches the frame
is converted into a bag of words and searched for in the global map. The
map is projected into the frame for further features matches and it is decided
if new keyframes are added to the local map. ORB SLAM 2 [17], the first
follow up paper, added additional support for stereo and RGB-D cameras. Fur-
thermore, ORB SLAM 3 [15] extended the system to be able to use inertial data.

Semi-direct visual odometry (SVO) was one of the first visual odome-
try systems to discard the feature-based approach of monocular systems. To
estimate the camera motion, the pixel’s intensity values of an image are directly
used exploiting the information of the hole image. For an initial camera pose
estimation, direct motion estimation is utilized using small patches. The name
semi-direct comes from the fact that features are still used when adding new
3d points. The extension of SVO Slam, SVO Slam 2 [18], features additional
support for edgletes, IMU prior, wide angle cameras, multi-camera configura-
tions, and forward looking camera motion.

Figure 2.2 lists the most popular open-source software for SfM and their
provided algorithms for each pipeline stage. These include or can be easily
processed with MVS algorithms for dense 3D reconstruction.

Bundle Adjustment
The following section presents state-of-the-art work of the final BA stage. For
further reading, Ozyesil et al. [20] presents an methodical overview of the main
steps of camera location estimation and BA, also including early works.
The mathematical basics of BA are well understood and the Levenberg-
Marquardt algorithms has itself proven as the most successful method for
optimization. In the work of Chen et al.[21], the primary field of research are
presented. The main research areas are to increase efficiency, to reduce runtime
and memory usage, and the utilization of a GPU for parallel bundle adjustment.
For very large datasets, distributed approaches were developed [21].
Further works covering constraint BA, infuse additional knowledge. Irschara
et al. [22] use prior pose information from GPS and IMU sensors for view
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Figure 2.2: Algorithm comparison of open-source SfM software [19].

selection, but the information is not used to restrict the final optimization step.
Lhuiller [23] introduces two constraint BAs fusing GPS data to enforce an
upper bound on the reprojection error. Bound constrained Bundle Adjustment
(BCBA) by Gong et al. [24] gives a more general approach to constraining the
problem and is also utilized in this work. The work also mention, that previous
works for constraining the BA are not generally applicable and only restricted
to special motion or geometric constrains.

2.4 Rectification of Camera Arrays
The following section present research about rectification of linear camera
arrays and also image mosaicing. For uncalibrated cameras, Zhang et al. [25]
introduced a block-division feature extraction method for robust fundamental
matrix estimation and a projection shift method to transform all images to a
common plane. Finally, a disparity adjustment is applied to ensure constant
disparity between images. In the work of Zilly et al. [26] the trifocal tensor is
utilized for image rectification into a common baseline and further targeting
the horizontal alignment. For known intrinsic and extrinsic camera parameters,
Kang and Ho [27] present a multi-view image rectifying transform to reproject
the images into a ideal parallel multi-camera arrangement reducing geometrical
errors.
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For areal imaging, Zhu et al. [28] proposed an automatic method for im-
age mosaicing under constrained 6 Degrees of Freedom (DoF) motion using
GPS measurements. In Geng et al. [29] a real-time algorithm for epipolar
resampling of linear pushbroom images is introduced.



3 Background
The following section presents the basics that are required to reconstruct a scene
from multiple 2D images. Starting with the most essential tool in computer
vision, the camera, to record the scene, to further introducing the basics of
stereo vision to retrieve depth from two images. Afterwards, a generic pipeline
for SfM and the concept of MVS are presented. The main sources are Kaehler
and Bradski [30] for Section 3.1 and Section 3.2, Szeliski [31] for Section 3.3
and Fukurawa [32] for Section 3.4.

3.1 Camera Model and Projection
Retrieving 3D information from a set of images requires knowledge of the used
camera and optics. The camera model describes the relationship of 3D points
in the world and their projection onto the 2D image plane. The parameters
that present the camera model can be obtained by using a camera calibration
process. Optics introduce radial distortions due to the shape of the lens as well
as tangential distortions from the assembly process of the camera. These can
harm the quality of the reconstruction, but can be also be eliminated by more
complex camera models.

3.1.1 Pinhole Camera
The simplest form of a camera model is the pinhole camera model. The camera
aperture is only a single point, rather then a lens, just the size that light rays
are able to pass through. From each scene point, a single light ray is emitted
through the pinhole and projected onto the image plane. The image plane and
pinhole plane are parallel. The distance between these two planes is called the
focal length f while the distance from the scene point to the pinhole is it’s depth
Z. X is the distance of the scene point to the optical axis and x it’s projection
onto the image plane. The optical axis is the axis that goes through the pinhole
while being normal to both planes. Figure 3.1 displays the simple pinhole model.

The geometry of the model leads to similar triangles, both having the
projection line between X and x as hypotenuses. This can be transformed to

13
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Figure 3.1: Pinhole camera model [30]

equation (3.1) to describe the relation between the 3D coordinates and the 2D
image coordinates of a point. Consequently the projection of the scene will be
flipped on the image plane.

− x = f ∗ X

Z
(3.1)

The simple pinhole model does not take into account that most practical
cameras have only discrete image coordinates. This means that the pinhole
camera model can only be used as a first order approximation of the mapping
from a 3D scene to a 2D image. In practice the small hole does not produce
bright enough images. It also ignores the effects of distortion that are introduced
by using a lens to capture more light.

Lens distortions

As already mentioned, compared to the pinhole model, cameras use optical
lenses to capture more light. The use of an aperture is necessary, but in practice
does not come without disadvantages. This comes from the fact that in prac-
tice, spherical lenses are used, as they are easier to produce, and the imperfect
mechanical alignment of the lens to the image sensor. Radial distortions are
the result of the shape of the lens, tangential distortions are introduced by the
faulty camera assembly process.

Radial distortions are mainly noticeable at the edges of an image, as the
effect increases with the distance from the optical axis. The distortions oc-
cur because the light rays further away form the optical axis are more bent
compared to rays closer to the optical axis. The fact that the lens is thicker
at the optical axis results in a "barrel" effect that can be seen in Figure 3.2.
Mathematically, the radial distortion can be approximated by the first few
terms of the Taylor series expansion around r=0. To correct the pixel values x,
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Figure 3.2: Lens distortions [30]

y the first three search terms k1, k2, k3 are used as in equations (3.2) [30].

xcorrected = x ∗ (1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y ∗ (1 + k1r
2 + k2r

4 + k3r
6)

(3.2)

Tangential distortion occurs when the image plane and the lens are not parallel
and can be expressed using two parameters p1 and p2. To correct the pixel
values, equations (3.3) are used [30].

xcorrected = x ∗ +(2 ∗ p1 ∗ x ∗ y + p2 ∗ (r2 + 2 ∗ x2))
ycorrected = y ∗ (p1 ∗ (r2 + 2 ∗ y2) + 2 ∗ p2 ∗ x ∗ y)

(3.3)

Camera Parameters

After undistorting the image and projecting a 3D scene point through the ideal
pinhole model onto our image plane, it still has to be transformed to resulting
pixel coordinates, as these start at the upper-left corner of the image. The
intrinsic parameters of a camera include all factors needed to project a 3D scene
point onto an image pixel. It includes the focal length (fx, fy), the optical center
(cx, cy), also known as the principal point, and a skew coefficient s between
the x and y axis. When using perspective transformations it is convenient to
work in homogeneous coordinates. Therefore, the camera parameters are often
expressed in matrices. (3.4) shows the camera intrinsics matrix K.

K =

fx s cx

0 fy cy

0 0 1

 (3.4)
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To retrieve the camera intrinsic parameters a calibration process has to be
performed. For this purpose, known calibration points are used, mainly in the
form of patterns e.g. of a checkerboard pattern with known spacing between
corners. A popular calibration algorithm is Zhang’s method [33].

The camera extrinsics matrix E encodes the camera’s position and orien-
tation in world coordinates. The origin of the camera’s coordinate system is
located at its optical center. It consists of a rotation matrix R and a translation
vector t as shown in (3.5).

E =
	
R t

�
=


r11 r12 r13 tx

r21 r22 r33 ty

r31 r32 r33 tz

0 0 0 1

 (3.5)

When using both, the camera intrinsics matrix and the camera extrinsics matrix,
we can fully describe how points of the world are projected to an image. These
two matrices can be combined to form the projection matrix P (or camera
matrix) that can be directly used for the transformation from world to pixel
coordinates.

P = K
	
R t

�
x = PX = K[Rt]X

(3.6)

Figure 3.3 displays the rigid transformations of world coordinates into camera
coordinates using the extrinsic parameters and the projective transformation,
from camera coordinates into pixel coordinates, using intrinsic parameters.

Figure 3.3: Transformation from world coordinates into pixel coordinates.
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3.2 Stereo vision
Inspired by the human binocular vision system, stereo vision is the extraction
of 3D information from two images observing the same scene from different
viewpoints. In comparison with the previous section, we go the other way to
get the depth of a scene point by using only 2D information and known camera
parameters. A single image cannot be used to regain the depth of a point, but
it projects possible solutions along a line. If another image displays the same
point, the depth of the scene point can be found at the intersection of the two
rays. By knowing the distance between the cameras, the depth information of
a point can be retrieved easily by triangulation. Figure 3.4 shows the principle
of stereo vision. The depth Z of the Point P is located at the intersection of
the two rays from the optical centers (Ol,Or) through the pixel locations of
the point (pl,pr). The distance between the cameras T has to be known to be
able to calculate the depth. As pixel values are discrete the depth can only be
calculated up to a certain accuracy.

Figure 3.4: Illustration of the concept of stereo vision [30].

Via the method of similar triangles the depth can be computed as in (3.7).
d is called the disparity and is the difference between the point’s P pixel
coordinate on the left image pl and the right image pr

Z = f ∗ T

d
= f ∗ T

pl − pr

(3.7)
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3.2.1 Epipolar geometry
There are many ways to find correspondences between images, mainly using
the local appearances. For each pixel on an image, each pixel of another image
could be a potential match, making the process slow and unreliable. In stereo
vision the additional information of the relative camera positions and the cam-
era intrinsics are exploit to reduce the 2D correspondence search to a 1D search.

Each camera center (Ol,Or) is projected into the other camera’s image plane at
e and e�, the so-called epipoles. The ray between the camera centers and the
two rays from the camera centers to the point P span the epipolar plane. The
connection between the image points (pl,pr) and the related epipole result in
the epipolar lines. The line is equivalent to the projection of the line between Ol

and P onto the right image plane and vice versa. Therefore, the corresponding
point on one image can be found on the epipolar line of the other image,
reducing the complexity from a 2D to a one-dimensional searching problem.
Figure 3.5 displays the concept of the epipolar geometry and shows the epipoles
and epipolar lines. In this case the images are tilted towards each other. In a
more simple case as seen in Figure 3.4, both camera pixel coordinate systems
are aligned and the cameras face into the same direction. The epipolar lines
are then parallel to the line between the camera centers, resulting in a search in
the same pixel row on the other image. Via a rectification process the images
can be transformed into this simple case.

Figure 3.5: Concept of the epipolar geometry [34].
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3.2.2 Essential Matrix
The essential matrix is a 3x3 matrix and encodes information about the geome-
try of the stereo configuration. The essential matrix E maps each point pl of
the plane of an image to another point pr on the plane of another image. As
shown in (3.8) it is defined as the cross product of the baseline vector between
the the cameras and their relative rotation. If the essential matrix is known,
these can be extracted e.g. by using Singular Value Decomposition (SVD). For
the baseline vector only the direction can be extracted, but not its length.

E = [t] × R (3.8)
(3.9) gives the epipolar constraint that has to hold for all corresponding points.
Hence, knowing the essential matrix simplifies the search for correspondences
as it leads to an equation for a line. This comes from the fact that it is a rank
deficient matrix of rank 2. If the essential matrix is unknown it can be derived
from given correspondences with e.g. the Five-Point Algorithm by [35] due to
it’s five DoF, three for rotation and two for the direction of translation.
The fundamental matrix is similar to the essential matrix, but additionally
includes information of the intrinsic camera parameters. Therefore, it relates
two points directly in pixel coordinates, compared to the essential matrix that
relates points in camera coordinates.

pT
l Epr = 0 (3.9)

3.2.3 Homography
A homography describes the relationship between two images viewing the same
planar surface. Its often used for image rectification, determining the motion
between two images and image mosaicing. The homography matrix can be used
to transform an image into the original image plane with correct perspective.
Equation (3.10) shows that the homography matrix is a 3x3 matrix to directly
transform 2D points. It has 8 DoF as it is estimated up to a scale [31].x�/λ

y�/λ
λ

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33 = 1


x

y
1

 (3.10)

To determine the homography matrix between two image planes via feature
correspondences, the Direct Linear Transform (DLT) algorithm by Hartley and
Zisserman [36] is used. When more correspondences are found than required,
the problem can be further described as a least-squared problem minimizing
the re-projection error for all correspondences i with the error function
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�
i

(x�
i − h11x + h12y + h13

h31x + h32y + h33
)2 + (y�

i − h21x + h22y + h23

h31x + h32y + h33
)2 (3.11)

where,
x�,y� = h11x + h12y + h13

h31x + h32y + h33
,
h21x + h22y + h23

h31x + h32y + h33
. (3.12)

is used to transform the pixel coordinates and warp the image afterwards.

3.3 Structure from Motion
The previous section shows how to extract depth of a scene from two images.
SfM is a method to derive 3D information of multiple 2D images. As the
process only takes 2D image data and potentially camera intrinsic parameters,
3D geometry (structure) and the camera poses (motion) are estimated simulta-
neously [31]. Figure Figure 3.6 shows a generic SfM pipeline that divides the
process into several sub tasks. First, distinct image features are extracted and
matched against each image. Given these feature correspondences, the relative
camera positions can be estimated and the depth of the scene can be extracted
via triangulation. As mentioned in section Section 3.2.2, the depth information
can only be retrieved up to a scale, since the length of the baseline vectors
are unknown. Finally, to more robustly reconstruct the scene, a non-linear
minimization method, called BA, is applied. The following subsections describe
each step of the pipeline in detail.

Figure 3.6: Generic Structure from Motion Pipeline
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3.3.1 Feature Extraction
Image features are distinct areas in an image consisting of a keypoint and
a descriptor including neighbourhood information. They are required to be
highly unique while being recognizable in other images. There are many popular
approaches to detect these unique points and to describe the neighbourhood
of these points of interest. A basic approach is to use corners as they are rich
on local information. Another, more complex, example are SIFT features by
Lowe [37], these are also robust to translation, rotation and scaling. The more
texture available in an area the more features can be extracted [31].

3.3.2 Feature Matching
After local features are detected in the images, corresponding point pairs are
found. To avoid NxN feature matching, coarse matching is done initially or
pose priors can be utilzed to find overlapping images. Then detailed matching
is performed only for these overlapping images. There are several approaches
to feature matching, the most basic idea is to compare each feature descriptor
of an image against each other feature descriptor of another image and simple
take the most similar feature as a match. This method is called brute-force
matching [30].

3.3.3 Geometric Verification
To assure that the found 2D corresponding points of the previous step share
the same 3D point and to exclude outliers, a geometric verification step is
performed. Therefore, a geometric transformation between two images is found
for a sufficient number of points. This geometric transformation is expressed
by the essential matrix for calibrated cameras or the fundamental matrix for
uncalibrated cameras. These can be determined by the epipolar constraint that
has to hold for every corresponding point pair (see Section 3.2.2). To eliminate
outliers, a Random Sample Consensus (RANSAC) algorithm is used to obtain
a more accurate essential/fundamental matrix [22].
The output of the geometric verification and the foundation of the following
geometric estimation stage is a Scene graph (or Epipolar graph). The Scene
graph’s nodes represent images, the edges between these nodes show the
geometrically verified 2-view matches. Therefore, the Scene graph defines a
sequential order for geometric processing [19], [38].
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3.3.4 Geometric Estimation
The Geometric Estimation step is the final step of the SfM Pipeline. It takes the
Scene graph as an input and outputs optimized pose estimates of the registered
images and the reconstructed scene represented by a set of 3D points. If the
hole Scene graph is considered at a time, the process is referred to as global SfM,
in contrast to the incremental approach that takes new images one at a time
to grow the reconstruction. When using the incremental method, some steps
have to be repeated when adding a new image. Consequently, the global SfM
approaches are, in general, faster. Studies show that global SfM also produce
more accurate results than incremental SfM for small data-sets, but takes a
significant larger amount of memory [39]. Figure 3.7 shows a incremental SfM
pipeline and the repeating steps for each added image.

Figure 3.7: Incremental SfM Pipeline [19]

Initialization Initialization is crucial for good reconstruction as the later
applied optimizing process, called bundle adjustment, needs a solid starting
point. Therefore, a geometric verified image pair of a dense region of the Scene
graph is chosen. The matching points of this image pair are used for the first
reconstruction and to calculate the initial two camera positions. Via Image
Registration, Triangulation and BA, additional images are added [19], [38].

Image Registration When adding an image to the reconstruction, the pose
of its camera has to be calculated. This is done by using the correspondences of
the already reconstructed 3D points and 2D features of the image to solve the
Perspective-n-Point (PnP) problem. One example to do so is the P3P algorithm,
which uses the least amount of information needed [31]. Once again, a RANSAC
algorithm is used to eliminate outliers of the 2D-3D correspondences. A newly
added image has to observe existing points of the reconstructed scene [19], [38].
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Triangulation After calculating the camera pose of the newly added image,
we now want to append the image information to the 3D reconstruction and
extend the set of 3D points. However, when adding a point to the reconstruction
it has to be observed by at least one registered image. Then, a triangulation
process is used to calculate the coordinate of the new 3D point. There is also
the case that many images have scene point in common. This problem is called
multi-view triangulation [38]. Because of inaccuracies of the previous pose
estimation stage, the point position does not intersect correctly resulting in a
reprojection error (see Figure 3.8)[19].

Figure 3.8: Principle concept of the reprojection error. Rays from the camera
centers through the 2D point on the image do not coincide at the
same 3D point. The shift in pixels between the 2D point uij and the
re-projected 3D point Xi onto the image plane u

�
ij is its re-projection

error. The sum of all these errors for all 3D points visible from each
image is the reprojection error [40].

3.3.5 Bundle Adjustment
The name "Bundle Adjustment" refers to bundles of rays arise from the camera
centers to the 3D points and the adjustment of camera parameters to minimize
the reprojection error [31]. It is the final refinement step that is taken before
the dense 3D reconstruction to optimize the sparse 3D points retrieved from
the triangulation stage as well as the camera parameters.
The previous steps of estimating the camera pose and triangulation include
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errors resulting in inaccuracies in the reconstruction. When reprojecting the 3D
points from the triangulation step back to the 2D image plane using the camera
parameter, it often does not align with the same pixel as it presents. To reduce
the accumulated error, the BA, a non-linear optimization, is performed. BA
minimizes the reprojection error and can results in optimal camera parameters
and 3D point locations.

min
n�

i=1

m�
j=1

(uij − π(Cj,Xi)) (3.13)

Equation (3.13) mathematically represents the reprojection error. uij represent
a set of observed points on pixel level which present the ith 3D point Xi

observed by the jth camera Cj. π(Cj,Xi) is the projection function of 3D
points Xi using the camera parameters of Cj.
The current state-of-the-art method to solve the BA problem is the Levenberg-
Marquardt algorihm, also known as damped least squares method. The im-
plementation is fairly easy while it is robust to a wide range of initialization.
Chapter 4 includes a more detailed look into solving the bundle adjustment
problem.

Incremental SfM has to repeat the BA process for every newly added im-
age, taking every other already included image and corresponding point into
account. This can lead to high computational cost with long processing times.
To reduce the processing, local BA can be used. It only considers a small
number of images, usually the most connected images or in a image sequence
the latest images added. These approaches can also be combined: local BA is
executed for newly added images and after the reconstructed point cloud has
grown a certain size, global BA is performed.

3.3.6 Visual SLAM
vSLAM is a similar problem as SfM introduced by the robotics community.
Due to the fact that robots often have to localize themselves in an environment,
the camera pose is more relevant compared to SfM were its only used for
reconstruction purposes. Technically there is no difference between the two
techniques, expect that vSLAM is meant to run in real-time, however there are
also online SfM methods available. Main differences are that vSLAM systems
are split into three threads: tracking, mapping and loop closing. SLAM system
can also include further sensor measurements, e.g. Inertial Measurement Unit
(IMU), to increase the localization performance and get scale information.
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Additionally, to the Graph-based approach equal to SfM, two other paradigms
for SLAM exist: the extended Kalman Filter and the Particle Filter.

3.4 Multi-view Stereo
The following section gives a limited insight into the enormous amount of
approaches to MVS, as this work does only use existing pipelines and does not
contribute to this topic. However, knowledge of these methods are required
since the parameters of those pipelines have to be chosen manually. While
SfM is used to estimate camera positions, camera parameters and a sparse
presentation of the scene, MVS takes this information to produce a dense 3D
point cloud of the scene. As improvement to the stereo vision algorithms,
multi-view stereo recovers dense structure from multiple viewpoints. Initially
using the same principle as stereo algorithms, today’s MVS algorithms are very
different. The fact of varying viewpoints and often large image sets lead to
significant changes in the algorithms. Known camera positions and parameters
making the recovery of 3D structure equivalent to the correspondence problem
for multiple views. Finding pixels in other images requires two main elements:
efficiently finding potential pixel matches and a quality measure to assess these
matches. As illustrated in Section 3.2, finding these matches only requires to
search on the epipolar lines. The assessment measure, to evaluate the quality
of pixel matches, is called photo-consistency measure [32].

3.4.1 Photo-consistency
Given a 3D point P , its photo-consistency C can be defined for each image
pair i,j that visualize P as

Cij(P ) = ρ(Ii(Ω(πi(P ))),Ij(Ω(πi(P ))), (3.14)

where ρ is a similarity measure, that compares the two projections of P onto
the according image i,j. These projections are defined by the functions (πi,πj),
Ω describes its surrounding area. Ii, Ij denotes the intensity values. Equal to
matching features, as introduced in Section 3.2, the region of an image pixel
is used to recognize it on other images, ignoring changes in illumination and
viewpoint. The choice of the region size is a critical factor for the reconstruction
and not easy to achieve. This is due to the fact that uniqueness and invariance
are counteractive. A larger area leads to a more unique appearance, while with
an increasing size it gets harder to keep the illumination and viewpoint effects
low. The simplest way to define Ω is to use a square grid with constant size
[32]. Figure 3.9 shows the concept of area function ω of the photo-consistency
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measure. In this example, the area of an image pixel is described by the 3x3
grid.

Figure 3.9: Concept of pixel matching. The surrounding area of a pixel and its
intensity values are used to find pixel correspondences [41].

The definition above only holds if for each scene point, the viewing images
are known. There are many different photo-consistency measures. In this
work, two representatives are introduced, the Normalized Cross Correlation
(NCC) and the Sum of Squared Differences (SSD). For easier representation,
the photo-consistency function is simplified as a comparative function of two
signals f,g. The NCC is a common choice and is mainly used in when a wide
range of illuminations and materials appear, as it is invariant to changes in
gain and bias. While leading to high accuracy, lack of texture is its main failing
mode. SSD is the L2 squared distance between the input signals.

NCC : ρNCC(f,g) = (f − f̄) ∗ (g − ḡ)
σfσg

SSD : ρSSD(f,g) = ||f − g||2
(3.15)

Equation (3.15) shows the mathematical definitions of the NCC and SSD.
σf , σg are the standard deviation of the input signals. Figure 3.10 displays the
resulting functions for SSD and NCC measurement using a 3x3 kernel. On the
left image a lot of texture is available near the red pixel. The right image is
almost textureless. The correct depth is close to 0.5 depth units. Therefore,
the function responses along the epipolar lines show that texture is the key
factor when searching for pixel correspondences.
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Figure 3.10: Function responses of SSD and NCC along the epipolar lines of a
textured (left) and textureless (right) image using a 3x3 squared
region [32].

The photo-consistency functions are transformed, to normalize the different
values to the same range, and filtered, as the function response is often noisy.
The photo-consistency is a volumetic quantity. It can be either stored in a
discretized 3D volume or list of pairs of photo-consistencies and positions.

3.4.2 3D Reconstruction
Based on various factors e.g. the photo-consistency measure or visibility
computation, multiple algorithms were invented. These can be classified by the
output scene representation they produce. The representation highly depends
on the visualization application. Two major scene representations are discussed:
depth maps and point clouds.
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Depth map reconstruction

Depth map reconstruction is a simple, but scalable way of representing a 3D
scene. For each input image, a depth map is reconstructed. A depth map is a 2D
array while its field value contain information about the distance between the
viewpoint and the scene point. Figure 3.11 shows an example of a depth map of
an input image. Depth maps can be easily computed considering neighbouring
images and a reasonable photo-consistency measure and is even simpler then
stereo-construction due to redundancies. Uniform depth sampling is crucial
to achieve a high quality reconstruction and merging multiple depth maps
into a global 3D model is the main problem of this representation. Therefore,
this method is used for small baselines between camera locations [32]. Many
depth map reconstruction algorithms have been proposed. [32] presents a
good overview of existing methods. The Winner-Takes-All strategy is a simple
approach that will be discussed below.

Figure 3.11: Disparity map example. Original image (left) and its disparity
image (right)[42].

Winner-Takes-All This simple depth map reconstruction algorithms utilizes
the photo-consistency function for each pixel of a reference image. As the name
proposes, for each pixel only the maximum photo-consistency score determines
the depth of the pixel. Additionally, a confidence measure is calculated from the
photo-consistency function to further filter out low-confident depth values or
to help in the merging process. Typically, the accuracy of depth map estimates
is inversely proportional to the distance of the surface.

Point cloud reconstruction

A point cloud is a single 3D model consisting of a set of points in space, were
each point has a X,Y and Z coordinate. Figure 3.12 displays the example of
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a point cloud representation of an object. The main difference in the recon-
struction, compared to depth maps, is the consideration of spatial consistency
assumptions as the region grows around single points. Consequently, reconstruc-
tion algorithms producing point clouds are often more complex and take more
time and processing power. One famous technique are patch-based algorithms.
In short, via the use of patches, the photo-consistency function is extended to
the use of the surface normal besides the position of a pixel [32].

Figure 3.12: Point cloud example [43].



4 Methodological approach
The focus of this work is to make 3D inspection systems via an robotic arm
applicable. For robust and fast reconstruct, the ICI of the AIT is utilized as
introduced in Chapter 2. As already mentioned in the introduction, only perfect
linear acquisition paths are supported by the framework. This guaranties pixel
correspondences in the same pixel row in all images. Another condition is the
uniform baseline between taken images. Through these requirements, the image
path is similar to an ideal linear camera arrangement. The robots movement
includes many vibrations and positional uncertainties due to an imperfect robot
model. These inaccuracies include translations and rotations in the acquired
images, harming the result of 3D reconstruction. Therefore, the acquired image
sequence has to be transformed to fit the requirements of the ICI. Figure 4.1
shows a schematic of how the images taken via the robot system, seen on the
upper image arrangement, have to be transformed to the uniformly aligned
arrangement seen on the bottom.

Figure 4.1: The inconsistent arrangement seen on top has to be transformed
into a uniform arrangement to meet the requirements of the ICI
[27].

30
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To transform the acquired sequence to the ideal path, two different ap-
proaches are tested and evaluated. The first approach uses the camera position
to transform each image. As the derived robot position is expected to not
be accurate enough, the camera positions are optimized using image features.
Since many MVS algorithms use the images and the camera position as input,
it is presented, how the generic SfM pipeline can be improved in terms of
robustness and speed via the additional data from the robot. The second
approach calculates the homography via image features to sequentially map
the images onto the initial image plane. Then feature tracks are used to keep a
constant baseline between images. In conclusion, this work presents solutions
to answer following research questions.

Research Questions

1. How to rectify an image sequence with provided inaccurate pose
information into an ideal arranged linear array?

• Is the provided robot pose information sufficient to transform
the image sequence?

• Is an iterative method sufficient or is an optimization-based
approach required?

• How does the image transformations influence the outcome of
the ICI.

2. How can the generic SfM pipeline be improved by the provided
information of a robotic arm?

In the following section the two approaches are elucidated. The improved
SfM pipeline is present in detail. Both methods are then tested on datasets
recorded with a custom optical setups mounted on a robotic arm. In chapter 5,
the results are evaluated regarding parallax and the final 3D reconstruction.

4.1 Rectification via camera position
The first method aims to rectify the image sequence by using refined camera
positions. Therefore, the approach utilizes the SfM pipeline. Through the
setup, prior, inaccurate information about the camera position of the images is
available. These are used to advance the general SfM pipeline seen in Figure 3.6.
The advanced pipeline, seen in Figure 4.2, includes following steps: For each
image, features are extracted and matched with previous images as described
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in Section 4.1.1. Then the feature correspondences are triangulated to form
a Scene graph. Finally, a constrained BA is applied to optimize the camera
locations and orientations. Next, the single steps of the pipeline are explained
in detail.

Figure 4.2: Improved SfM pipeline

4.1.1 Feature Extraction and Matching
In both approaches of this work, image features are extracted and matched
against each other. Due to the fact that the viewpoint of neighbouring images
changes are marginally and mainly occur in the single reference direction, the
selection criteria is restricted to speed of computation. Hence, Oriented FAST
and Rotated BRIEF (ORB) are the best choice of feature detector-descriptor
for this work since they outperform other state-of-the-art methods according to
Tareen and Saleem [44]. ORB features are also used in the popular ORB-SLAM
that was introduced in Section 3. Tareen and Saleem [44] provide an in-depth
comparison of multiple image features. They also conclude that ORB is one of
the most efficient choices.
For feature matching the positional prior of the robotic system is combined
with chosen maximum deviations to limit the search space for potential feature
matches. Thus, the optical parameters have to be known. In an optimal camera
arrangement a image pixel can be found on the same pixel row and a shift in
the reference direction, called disparity. The disparity depends on the baseline
and the points depth (see (3.7)). However, the depth of the pixel is unknown,
as our goal is to reconstruct its depth, but it can be constrained with the
parameters of the optical system. As all objects are expected to be in focus,
the pixel depth is expected to lie between the near and far depth of field limit
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(DN ,DF ). Therefore, the maximum and minimum disparity dmin,dmax can be
calculated as

dmin = Bx · f

DF

dmax = Bx · f

DN

.

(4.1)

Bx is the baseline in the reference direction x and can be computed from the
two camera locations provided by the robotic system. Nevertheless, the camera
arrangement is not optimal and the constrained disparity has to be extended
with limitation of the positional accuracy. The maximum error is taken to be
equal for all translational and equal for all rotational degrees of freedom and
labelled as �t[m], �r[deg]. These maximum error values are expected to hold for
all image pairs. To acquire the final search area for a feature location (xp,yp),
the search boundaries in pixel coordinates are calculated by

[xmin, xmax] = [xp − dmin + E(�t, �r), xp − dmax − E(�t, �r)]
[ymin, ymax] = [yp − E(�t, �r), yp + E(�t, �r)],

(4.2)

with the x-axis as the reference direction. The function E outputs the error
in pixel, taking the constant maximum positional errors of the translation and
rotation as input. E is defined as

E(�t,�r) = �t

PRES

+ tan(�r · π/180) · DF

PRES

, (4.3)

were PRES is the pixel resolution. The error function ignores the rotation and
translation around the z-axis. Their values are expected to be negligible. For
the translation, this is due to the fact that the distance of the camera to the
object is much larger then the occurring error. The small baseline between
images shrinks the rotation error around the z-axis to a minimum.
If there are several potential correspondences in the search area, the best match
is chosen. For a more robust feature matching result, the correspondences are
further filtered by applying a distance threshold and a RANSAC algorithm.

4.1.2 Geometric Verification and Triangulation
To further include outliers, the standard RANSAC algorithm is used. The
image registration step is eliminated and the relative camera pose estimation is
replaced by taking the positional information of the robotic arm. If the positions
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of the images are unknown, the relative poses are received by estimating the
essential matrix. As the essential matrix has a rank deficiency of rank 2, this
works only up to a scale. Feature tracks are found for the overlapping images
and multiview triangulation is performed using the DLT algorithm by Hartley
and Zisserman [36].

4.1.3 Bound Constrained Bundle Adjustment
The main idea of utilizing the position information of the robotic arm with a
SfM pipeline is still not sufficient as the conventional BA process is not scale de-
pendant. Conventional BA sets parameters either as fixed or as unknown. This
can lead to certain camera positions possibly undergo an excessive shift when
converging into global or local minimum. Consequently, Bound constrained
Bundle Adjustment (BCBA) is applied. As briefly mentioned in Section 2.3,
BCBA by Gong et al. [24] is the first constrained BA for general use. Previous
works were limited to geometric constrains, assuming perfect shapes, for special
applications. Here we cannot use shape constrains as the scene is unknown. The
camera locations and potentially other parameters are bounded by estimated
maximum errors. Although the method was tested on medical application, the
author proposes his work for general use, even mentioning industrial robots.
In the following part, conventional BA algorithm is presented, since it was only
introduced briefly in Section 3. Then, the BCBA algorithm is summarised. For
further details see the original paper by Gong et al. [24].

BA is a non-linear, least square problem, minimizing the reprojection er-
ror between 3D points and their reprojection, using the projection matrix, onto
an image. In equation (3.13) this if formulated using a mapping function π.
This projection function π can be expressed as the projection matrix, or the
camera intrinsic and extrinsic matrix. Therefore, the reprojection of a 3D point
Pij = [Xij, Yij, Zij]T , where i is the index of the point in an 3D point set and j
denote the image, can be calculated by

ω

xij

yij

1

 = K
	
Rij tij

� 

Pij

1

�
, (4.4)

where ω = Zij. The error function is then defined as the least squares problem
with the objective to

minimize f(s) = 1
2r(s)T r(s), (4.5)
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where r(s) is the distance between measured and reprojected points, the
reprojection error. It depends on the input vector s that is composing 3n
feature points, 6m camera locations and 4 camera intrinsic parameters.
To optimize our non-linear function f , the function can locally be approximated
around our vector s by the quadratic Taylor series

f(s + δ) = f(s) + g(s)T δ + 1
2δT H(s)δ, (4.6)

where g(s) = df
ds

(s) is the gradient vector and H(s) = d2f
ds2 (s) the Hessian

matrix of f(s). This approximation has a quadratic form with a unique global
minimum that can be calculated.
The δ that minimizes our approximation can be found by setting the derivative
equal to zero and rearrangement to form a system of linear equations

g(s) + H(s)δ = 0 −→ H(s)δ = −g(s) (4.7)
This iterative process to find local minima is called Newton’s method. The
computation of the Hessian matrix is computationally demanding, therefore,
in the Gauss-Newton method, the Hessian matrix is approximated by

H̄(s) = J(s)T J(s) (4.8)

The Schur complement method is then used to reduce the size of the linear
systems, splitting the linear equations into two smaller linear systems.
In the method of Gauss-Newton the rate of convergence is not controlled. If
the second order approximation does not correspond well with the shape of the
function, the step δ of an iteration could be too large, leading to an overshoot
and potentially worse results. The Levenberg-Marquart algorithm deals with
this problem by effectively adapting the step size, making it the state-of-the-art
solution to solve the BA problem. Additionally to the Gauss-Newton method,
a damping factor λ is introduced which controls the step size and the direction.
The damping factor is adjusted in every iteration. If it is low the method
is close to the Gauss-Newton method, if λ is high the method is similar to
method of gradient decent. Thus, the best of both methods are exploit, the
fast convergence of the Gauss-Newton method and the slow, but guaranteed,
convergence of the gradient decent.

Compared to the traditional BA problem, the BCBA problem can be defined
as

minimize f(s) = 1
2r(s)T r(s)

subject to li ≤ si ≤ ui.
(4.9)
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BCBA modifies the traditional approach in the following way to use bounds on
the parameters. The parameter vector is projected onto a feasible set as

proj(s) = min(max(l,s),u), (4.10)

with [l,u] as lower and upper bounds and an active set A(s) is defined as

A(s) =

��
si = li and gi < 0

i or
si = li and gi < 0

�� . (4.11)

The complementary set of A(s) is called the inactive set I(s). Then the gradient
projection method is used to solve the constrained optimization problem. The
projected gradient ĝi is the either gi if i ∈ I(s), or is 0 to keep the parameters
at their bounds.

ĝi =
�

gi, i ∈ I(s)
0, otherwise (4.12)

The second modification is done at the approximation of the Hessian matrix
H̄(s). As the projected gradient of the parameters of the active set A(s) are
zero, all corresponding rows and columns can also be set to zero forming the
reduced Hessian matrix Ĥ that is defined as

Ĥij =

��
H̄ij , if i ∈ I(s)and j ∈ I(s)
H̄ii, if i ∈ A(s)
0, otherwise

(4.13)

The final BCBA is then descripted

B̂δ = −ĝ(s), with B̂ = Ĥ(s) + λD̂ (4.14)

,where D̂ is the diagonal matrix of Ĥ(s). To calculate δ, the Schur complement
is used and updates are only excepted if it the error function f(s)is reduced.

In this work, the camera intrinsic parameters are fixed. This is due to the
fact that the ICI pipeline includes an preceding, enhanced camera calibration
do determine the camera parameters. Only the inaccurate camera extrinsic
parameters, obtained from the robotic arm, are bounded. The determination
of the boundaries is discussed in Section 4.1.5.

4.1.4 SfM utilization and image rectification
Two strategies are tested for the presented SfM pipeline. The first approach
is to use the global method. All, images run through the reduced pipeline as
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in Figure 4.2. After all images are registered, BCBA is applied for refinement.
The second approach is to utilize an incremental method with local BCBA.
This means only the last N registered images are refined in the BCBA step.
This comes with the advantage that the refined images can immediately be
transformed and forwarded into the ICI pipeline. Consequently, the ICI does
not get slowed down by the image processing.

After the refinement of the camera positions, the images are rectified into
a common image plane. The common image plane is equivalent to the first
cameras image plane. Therefore, all images IN are transformed onto the plane
of image I1 by retrieving the homography by the corresponding camera dis-
placement. The homography Hk−→1 between the first image I1 and an image
Ik can be retrieved from their camera location by

Hk−→1 = Rk−→1 − tk−→1 · nT

d
, (4.15)

where n is the plane normal vector of camera Ik, that is computed using the
rotation matrix Rk and the distance to the image plane d. d can be retrieved
by the dot product between the plane normal vector and a point on the plane.
The camera displacement components, Rk−→1 and tk−→1 from camera position
of image Ik to the ideal camera position of the first image I1, can be calculated
by

Rk−→1 = R1 · RT
k

tk−→1 = R1 · (−RT
k · tk) + t1−>k.

(4.16)

Here, t1−>k presents the ideal position of camera k by adding the intended
displacement to the reference direction. The final projective homography Gk−→1
is then computed via the camera intrinsic matrix

Gk−→1 = K · Hk−→1 · K−1. (4.17)

Using the homography, image pixel are finally transformed via (3.12). For the
global approach, the mean image plane is used instead of the plane of the initial
image.

4.1.5 Boundary determination and mounting effects
Determining the boundaries is similar to Section 4.1.1, but considered over
multiple images. Restricting the camera locations decreases the chance of
getting stuck in local minima in the optimization process. This prevents over-
optimization by stopping the process at the boundaries. Additionally, this
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reduces the runtime of the bundle adjustment. Furthermore, setting reasonable
boundaries avoids heavily deviating camera locations.

To finding well suiting boundaries for the camera locations, several factors have
to be taken in mind:

• The robots accuracy

• The mounting of the camera

• The type of bundle adjustment

Figure 4.3: Schematic influence of different factors on the boundaries.

Figure 4.3 displays the different error types and how they influence the tolerance
range. The red areas show the tolerance areas in which the cameras are located.
Manufacturers often list the repeatable accuracy of the robotic arm, rather
then the actual accuracy. The real accuracy depends on many factors and
changes over time. Therefore, it is almost impossible to accessed precise values.
However, it is possible to restrict the positional error to a tolerance range. The
restricted area is constant for each position the robot is navigation to.

Mounting the camera to the robot is error prone. The main error that occurs
is a tilt of the camera. Moving a tilted camera leads to a vertical shift in the



4 Methodological approach 4.2 Rectification via perspective transform 39

images, influencing the bounds in the x-y direction. This problem is also faced
in original application with a fixed camera on the ICI setup. In the static case,
this can be compensate by a custom calibration process [45]. Here, a constant
transport vector is determined which reflects the camera tilt. The vector is
then feed forward to the pixel matcher. A single transport vector would not be
sufficient for a setup including a robotic arm. Due to other error effects, the
transport vector deviates between images.
The error of the camera tilt can simply be calculated via trigonometry using
the distance in the main direction of movement and a fixed maximum error
angle.

The type of SfM defines how these errors are utilized to set boundaries for
each image. In the global process, the boundaries have to be set beforehand.
The robot accuracy stays constant for each image, but the influence of camera
tilt increases with distance to the initial image. At some distance, the camera
tilt error extends the error of the robot. In the local SfM the initial camera
locations are reset to the last refined location in all degrees of freedom expect
the main direction of movement. If the refinement size is small enough, the
camera tilt has no influence on the boundaries.

4.2 Rectification via perspective transform
A very intuitive solution to the problem of image sequence rectification is to
sequentially estimate a perspective transformation between images and apply
these transformation to rectify the images into a common image plane. The
epipolar lines will then be parallel and on the same pixel row. Unfortunately, the
disparity will still vary as movement in the reference direction is not constant.
Therefore, features are tracked over multiple consecutive images to keep the
shift between images constant. Figure 4.4 shows the processing steps that are
applied for incoming images. First features are extracted and matched against
the previous transformed image. Feature tracks are created if the feature of
the previous image was matched before. Then a homography is estimated and
used to transform the image. Finally, the feature tracks are used to transform
the image again to insure a constant disparity between images.

4.2.1 Homography estimation
As introduced in Section 3.2.3, a homography matrix describes the relationship
between two images viewing a planar surface. Using a homographic transform
possibly leads to a sufficient result, as the scanned structures have a very low
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Figure 4.4: Processing steps for an incoming image Ik.

depth compared to the working distance of the optical system. Additionally,
the scene is often planar, e.g. small objects are placed on a ground plane, and
even through the motion has 6 DoF, all, expect the reference direction, has
low deviation. The homography matrix is extracted using the DLT algorithm
and the images are then transformed using (3.12). To exclude the shift in the
reference coordinate that occurs because of the baseline, the last column of the
according axis h13 or h23 is set to zero.

4.2.2 Feature Tracking and Disparity Correction
To track features over multiple images, the features of image Ik that matched
with feature of image Ik−1 are associated with matched features of image Ik−1
and Ik−2. When matching with the transformed image Ik−1 the features loca-
tions are transformed as well, but the feature descriptors do not get recalculated.
These transformed feature locations are used to estimate the homography be-
tween the newly added image Ik and the previous transformed image Ik−1.

The feature tracks are then used to keep the same disparity of features over
multiple images. Therefore, the image is shifted in the reference direction to
reduce the total disparity difference between all features tracks T that includes
matches of the preceding two images Ik−2,Ik−1 and the current images Ik−1,Ik.
Mathematically, the error function is defined as
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f(T ) =
�

t∈T racks(Ik−2,Ik−1,Ik)
d(tk−2,k−1) − d(tk−1,k), (4.18)

where d is the disparity of a track t between two images. The minimizing value
is then used to shift the image to the same disparity and the feature locations
are updated again. Figure 4.5 shows the feature tracks over multiple images.

Figure 4.5: Feature tracks [46].



5 Experiments
To evaluate the introduced approaches of the previous chapter, an experimen-
tal setup was build to capture image sequences and associated camera pose
information using a robotic arm. The purpose of the experiments is, on the
one hand, to identify issues when operating an eye-in-hand system to move
a straight trajectory. On the other hand, to characterize the strengths and
weaknesses of the methods for rectification and reconstruction. First, the
improved SfM pipeline is tested. The camera positions from the robot and the
refined positions are compared to captured positions via an Optitrack system.
Then, the quality of the rectification process is evaluated to see if corresponding
images pixel lie on the same row. Finally, the 3D reconstruction of the ICI
using the rectified images is compared to records taken from a linear stage.

5.1 Data Acquisition
For the acquisition of test data for the rectification process and the subsequent
dense 3D reconstruction via the ICI, an eye-in-hand system was implemented.
For the robotic arm, a Kuka LBR iiwa was used. It features seven rotational
joints with a precision of ± 0.1 mm and a maximum loading capacity of 14
kg with the included control unit provided by the manufacturer. As camera,
the Basler acA2440-75um was used. It contains a Sony IMX250 CMOS sensor
with an resolution of 2448x2048 pixel (5 MP) at maximum 75 frames per
second. For image acquisition, it supports both triggering over software or
hardware and it features a global shutter. These specifications make it very
suitable for experiments including motion. Compared to rolling shutter, global
shutter exposes and captures every pixel at the same time, eliminating the
effect of rolling shutter in dynamic scenes, e.g. wobble, skew and aliasing.
The hardware trigger is necessary to run on the AIT’s ICI operating on a
linear stage while the software trigger is used when running on the robotic arm
setup. For illumination, an YK-B144T ring lamp including 144 LEDs with a
power of 4.5W with adjustable light intensity was utilized. Both components
were mounted to the robotic arm using a custom designed, 3D printed part.
Figure 5.1 shows the experimental setup. Three different objects were scanned
(see Table 5.1). The first object features a flat surface with a random pattern

42
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Figure 5.1: Full experimental setup.

printed on it. It provides very good texture over the hole area making it easy
to find correspondences between images. The Cornflakes object increases the
difficulty by having low textured areas, but it keeps the property of an almost
flat surface. The hardest difficulty presents the board object. It features a
lot of detailed structures, like coins and a printed circuit board which lead to
several levels of depth and texture.

5.1.1 Robot Control
For each object, a datasets in two different modes was acquired, namely "Step
Mode" and "Velocity Mode" (see Table 5.2). When recording in "Step Mode",
the robot was navigating to discrete positions in a linear path. The robot
stopped at these positions and an image and the positional information of the
robots model was saved. Three procedures with the distances of 3mm, 1.5mm
and 1mm between images were performed, leading to sets of 101, 201, and 301
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Recorded Objects

Random Pattern

Cornflakes

Board

Table 5.1: The recorded objects, each featuring a different level of difficulty.

images with positional information of the robot model. The path between the
discrete positions in the linear path were precalculated using the robot model
to get movement with minimal motion of the seven axis of the robotic arm.
The "Velocity Mode" drives a linear path with constant velocity. It uses part-
wise linearization to move in a linear motion with a speed of 40, 60 and 120
mm/s. Images were recorded constantly at 40 frames per second. The position
information from the robot and the image frames were synchronized using
timestamps of the Robot Operating System (ROS). Through testing on a setup
using a linear stage, only the larges datasets of both modes are used in the
evaluation, as they produce higher quality outputs.

For comparison, the pose was additionally recorded via an external Opti-
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Track motion capture system. The OptiTrack motion capture systems works by
triangulating positions of spheres between multiple cameras. The spheres are
illuminated using infrared light for better segmentation. They were mounted
via custom 3D print on the robotic arm. The OptiTrack did record the positions
with a mean error smaller then 0.4mm.

Record settings
Step Mode Velocity Mode

Step distance [mm] Number of Images Velocity [mm/s] Number of Images
1 301 40 ∼ 300

1.5 201 60 ∼ 200
3 101 120 ∼ 100

Table 5.2: Record settings

TwinCat and OptiTracks Motion capture software were both running on the
same PC. However, all information were redirected to a Linux PC via Ethernet
running ROS. The camera was directly connect via an extended USB 3.0 cable
and the images were accessed by the ROS node provided by Basler. To control
and read data from the robot, a custom ROS node was utilized. Figure 5.2
provides an overview how the different data were redirected and collected. All
the information was then exported into a rosbag file for further computation.
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Figure 5.2: Block diagram of the KUKA LBR iiwas system.

5.1.2 Optical settings

Figure 5.3: Optical system

A lens by Schneider-Kreuznach with a
focal length of 12 mm was mounted via
C-mount to the Basler camera. At a lens
aperture of approximately 5.6 and a sam-
pling object space of 0.05 mm/pixel the
working distance of about 185 mm was
calculate. Further the range was calculate
to be about 38 mm and the lateral resolu-
tion 109 µm. The read out of the camera
was done via USB 3.0 connection. The
additional USB expansion cable reduced
the read-out performance from max 75 to
max 40 frames per second in bayer_rggb8
mode. The illumination YK-B144T was
set to minimum power. To obtain the
camera intrinsic parameters, a calibration
with the camera_calibration node that
comes with ROS was performed using a
chessboard pattern [47]. The rectification
and reconstruction process were performed on a generic Notebook with an
i5-8365U CPU running Ubuntu 18.04 LTS, reinforced with an external graphics
card Nvidia 1080 TI.
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5.2 Inspection of the trajectory
The main approach of this work is to transform the acquired images via its pose
information into a perfect linear camera arrangement. In this section we take
a closer look at this information. On the one hand we want to observe, how
the robot classifies his own movement and, on the other hand, how the global
optimization processes changes the image poses to reduce the reprojection error.
To compare the different trajectories, an Optitrack system was running along
acquiring the dataset. Even though, the positional data of the Optitrack System
is still uncertain, the accuracy can be narrowed down to 0.4 mm according to
the calibration process. For synchronising the pose information, timestamps of
the ROS are used.

Figure 5.4: Pose information scanning the object Random Pattern in Step Mode
(1mm).

Figure 5.4 show the different axis and angles in contrast to the main axis
of movement X. When inspecting the robot pose of the robot model (Robot)
it can be seen that it deviates from an ideal arrangement only in the range
of micrometres. According to the robot model, the robotic arm moves highly
accurate. However, when comparing the pose information to the Optitrack
system, is shows a systematic shift in the Y -direction. The further away the
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image is taken form the origin, the more shift of the pose is introduced.

The global SfM approach presents, how the image data changes the image
poses. It introduces an increased shift in the Y direction that can be explained
by a rotation in the camera mount described in Section 4.1.5. It also features a
shift in the Z direction. A possible reason could be a tilted ground plane.

Figure 5.5: Pose information scanning the object Random Pattern in Velocity
Mode (40mm/s)

The pose information in the Velocity Mode gives an similar outcome. As seen
in Figure 5.5 the same effects in the global SfM approach occur. Main difference
be that the robot model does not assume a perfect path. Even though, it is
still off up to 2 mm, compared to the Optitrack system.

5.2.1 Local Bundle Adjustment Approach
Although, popular vSLAM systems do not support the input of pose priors,
we tested several SLAM systems on our dataset. Unfortunately, the resulting
trajectories were unusable or the SLAM system would not accept our image
sequence e.g in the case of ORB-SLAM.
When inspecting the trajectory processed with out local SfM pipeline, multiple
issues occur. As seen in Figure 5.6 several window sizes are tested on the Object
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Random Pattern in Step mode. The window size refers to the amount of last
camera poses that get optimized in a single processing step. Three different
window sizes were tested: 3 (red), 11 (turquoise) and 21 (gray). Compared
to the trajectory of the global SfM, consecutive poses deviate tremendously
leading to an inconsistent zigzag pattern. This effect increase with the distance
to the origin.

Figure 5.6: Pose information of local SfM approch using differnt window sizes.

As the resulting trajectory is corrupted, the approach is discarded and not
further included in the evaluation.

5.3 Rectification Evaluation
To use the acquired images with the ICI, corresponding pixel are required to
appear on the same pixel row. Therefore, the images are transformed using
different approaches introduced in Chapter 4. To evaluate the quality of the
rectification process, SIFT feature are utilized. The features are extracted for all
images and matched using the matching approach introduced in Section 4.1.1.
Then, features tracks are found over multiple subsequent images. Only tracks
that are found in over 8 successive images are considered. Figure 5.7 shows
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an example of the found feature tracks of a dataset. Feature tracks should
appear as straight lines and the spacing between single feature points should be
uniform. To evaluate the rectification, the change of location of SIFT features
is used. First, the mean parallax of all features pixel locations between two
successive images is calculated. This is done in vertical and horizontal direction.
Also, the variance of these values are calculated to evaluate the rectification.
The mean parallax and variance between two images are then averaged over all
image pairs and used as quality measure.

Figure 5.7: Synthetic image with found feature tracks longer than 20 subsequent
images. Ideally, feature tracks appear straight with uniform spacing
between single feature points.

The results of the rectification evaluation are shown in Table 5.3. The differ-
ent approaches, using the homography and the rectification via the globally
refined pose information were tested against the three datasets in both modes.
For comparison, images acquired using a linear stage were also evaluated. As
expected, the linear stage performs best with the lowest vertical and horizontal
parallax. The linear stage reaches sub-pixel accuracy in both cases with values
under 0.07 in vertical and under 0.13 in the horizontal direction. Our ap-
proaches reduced the vertical parallax in all cases. The homography approach
even reduced the vertical variance of the parallax down to similar values as the
linear stage, under 0.1 in all cases. The horizontal parallax was significantly
increased in the Homography approach.



5 Experiments 5.3 Rectification Evaluation 51

Variance: vertical[px2]/ horizontal[px2]
Step Mode, 1mm Linear stage Original Homography Global
Random Pattern 0.03 / 0.10 0.94 / 1.10 0.01/5.15 0.32 / 0.90
Cornflakes 0.07 / 0.12 1.24 / 1.41 0.09 / 6.43 0.90 / 0.94
Board 0.03 / 0.13 1.25 / 1.34 0.05 / 5.82 0.58 / 2.83
Velocity Mode, 40 mm/s Linear stage Original Homography Global
Random Pattern 0.03 / 0.10 2.21 / 0.53 0.01 / 2.23 1.53 / 2.55
Cornflakes 0.07 / 0.12 1.96 / 0.62 0.09 / 1.35 1.79 / 0.70
Board 0.03 / 0.13 2.46 / 0.53 0.05 / 1.39 1.82 / 2.27

Table 5.3: Results of the evaluation processes. SIFT feature tracks are found,
and their mean change in location are calculated. Then the variance
is used to evaluate the rectification process vertically and horizontally.

Figure 5.8: Mean vertical parallax between image pairs of the dataset board in
mode Step.

Figure 5.8 and Figure 5.9 display the mean parallax between each image
pair. The outer lines show the minimum and maximum parallax of a feature
correspondence. In the vertical case, it can be seen that every method has
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outliers of over 2.5 pixel. The mean value of the linear stage and homography
is more consistent than the original sequence and global approach.
The horizontal parallax reveals major problems of our approaches at the
starting section, were only a low a mount of features is found and feature of
the background influence the result. It is further visible, that the linear stage
did use another setup with a different disparity.

Figure 5.9: Mean horizontal parallax between image pairs of the dataset board
in mode Step.

Although, these values give an overall presentation of the parallax, they do
not display global shifts as they only compare image pairs. These phenomenons
can be seen in Figure 5.10. While the variance of the vertical parallax of the
original images were higher compared to the Global approach, the difference
is barely visible in the previous Figure 5.8. Following a feature track, it is
clearly visible that, on the original images, the feature is not evenly distributed.
The feature point is constantly shifting downwards, the more the further away
from the origin. The other methods did not show this behaviors, they have a
uniform distribution around the starting value of the track.
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(a)

(b)
(c)
(d)

Figure 5.10: (a) Linear Stage (b) Original (c) Homography (d) Global
Synthetic image of a single feature trace of the dataset board.

5.4 Reconstruction Evaluation
In the following section, the 3D reconstructions are compared. Therefore, the
rectified image sequences of the different approaches are processed with the ICI.
The reconstructions are present as point clouds (.ply). To have an external
comparison, the reconstruction from the open-source software Meshroom is
added to the evaluation. The standard Meshroom pipeline was feed with the
original images, retrieving the unfiltered point cloud. The resulting point clouds
are then compared to ground truth. As ground truth serves a reconstruction
acquired at a test setup in the laboratories of the AIT. The test setup uses a
linear stage with four illuminations (see Figure 1.1). It features a resolution of
50 µm, a large increase to our tested setup, to get an improved reconstruction.
This comes with the advantage that the outcome is directly comparable with the
initial setup of the ICI. The coloured point clouds are displayed in Figure 5.11.
For evaluation, the 3D point processing software CloudCompare is utilized.
First, the background is cut out of the point clouds and the object is trimmed
manually to the same field of view as the ground truth. Then, the point clouds
are scaled and aligned manually using point pairs. Further, the Iterative Closest
Point (ICP) algorithm is used to finely register the point clouds. Finally, the
distance and standard deviation between the entities is calculated. Due to the
scaling both quality measures are without unit. Additionally, the amount of
points are compared to relate the denseness of the reconstructions.
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(a) Random Pattern (b) Cornflakes

(c) Board

Figure 5.11: Ground truth of evaluated objects.

Accuracy [Mean distance / Std deviation]
Step Mode, 1mm Original Homography Global Meshroom
Random Pattern 0.38 / 0.31 0.19 / 0.14 0.50 / 0.14 1.24 / 1.02
Cornflakes 0.54 / 0.58 4.13 / 3.34 0.17 / 0.17 0.48 / 0.47
Board 0.65 / 0.68 0.53 / 0.82 0.59 / 0.57 0.91 / 0.91
Velocity Mode, 40 mm/s Original Homography Global Meshroom
Random Pattern 0.41 /0.34 0.19 / 0.14 0.38 / 0.23 1.01 / 0.86
Cornflakes 0.75 / 1.16 1.75 / 2.87 0.22 / 0.18 0.44 / 0.41
Board 0.82 / 0.77 0.65 / 0.66 0.46 / 0.51 0.94 / 0.94

Coverage [Points]
Step Mode, 1mm Original Homography Global Meshroom
Random Pattern 2.737.605 2.739.937 2.726.209 260.424
Cornflakes 3.687.538 3.314982 3.686.828 251.371
Board 2.855.022 3.082.777 2.907.219 439.163
Velocity Mode, 40 mm/s Original Homography Global Pose Meshroom
Random Pattern 2.737.235 2.738.275 2.528.660 252.020
Cornflakes 3.688.412 3.498.901 3.602.965 232.303
Board 2.717.000 2.745.679 2.912.540 362.773

Table 5.4: Accuracy and Coverage of the different approaches.
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The resulting mean distance and standard deviation of the different point
clouds produced by the ICI are displayed in Table 5.4. The results show signifi-
cant improvements, feeding the processed image sequences of our approaches,
on all datasets in all modes over the original images. The homography approach
seems to fail on the dataset Cornflakes as features of the background are found
which increase the depth of the scene. With almost 10 times the amount of
points, the ICI produces denser point clouds compared to Meshroom.

(a) (b)

(c) (d)

Figure 5.12: (a) Original (b) Homography (c) Global (d) GT
Top view of the reconstruction of dataset board in Step mode.

Figure 5.12 shows a top view of the Board reconstructions. Our approaches
appear much cleaner on smooth surfaces while details are better preserved. The
reconstruction via the original images have a overall bumpy look introducing
wavy regions e.g on the edges of the coins. Both approaches did struggle to
reconstruct the metal housings of the connectors on the PCB. Also, the pen
was hardly reconstructed, even by the Ground Truth, as it barely features
any texture. A more detailed view is presented in Figure 5.13. While the
ICI produces an unsatisfying result with the original images, our approaches
show a clean reconstruction with visible details. Although, the Ground Truth
features a denser reconstruction, missing details are only due to restrictions in
resolution. Resulting point clouds can be seen in Section 7.



5 Experiments 5.4 Reconstruction Evaluation 56

(a) (b)

(c) (d)

Figure 5.13: (a) Original (b) Homography (c) Global (d) GT
In detail comparison of the key and coins on the object board.

Comparison Step Mode vs Velocity Mode

The Velocity mode is a fast method for image acquisition. Therefore, it is
preferred over the Step mode. According to the mean distance and standard
deviation, the approaches showed similar results for both recording modes. The
original images are slightly worse in case of the Velocity mode. Arguable, this
is due to even more drift in the trajectory. Figure 5.14 shows the reconstructed
cornflakes with the global approach via both recording modes. Both results
show a similar optical quality.
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(a) Step Mode (b) Velocity Mode

Figure 5.14: Comparison of the Cornflakes dataset in both acquisition modes
using the Global approach.



6 Conclusion and Future Work
This final chapter summarizes the taken approaches and the subsequent evalu-
ation of the rectification and reconstruction. The most important findings are
mentioned and further improvements of the approaches are discussed.

6.1 Conclusion
The aim of this thesis is to apply the ICI on a robotic arm to form a flexible
and fast 3D reconstruction method. Due to the requirements of the ICI, the
acquired image sequence has to be taken in a linear motion, as pixel corre-
spondences are expected to lie in the same row, with equal disparity between
images. As expected, utilizing the acquired image sequence combined with the
raw positional information of the robots leads to an unsatisfying result. To
align the epipolar lines for the acquire image sequences, two approaches are in-
troduced. The first approach features a simplified SfM pipeline to optimize the
pose information. The optimized image poses are then used to rectify the im-
ages. The second approach directly determines a homography between images.
It transforms the images sequentially including a disparity correction procedure.

Even though, the outcome always depends on several factors, like the quality
of the robot model, this work shows a significant improvement when applying
the ICI on a robotic arm. First the resulting rectification was evaluated using
SIFT feature tracks. A clear improvement regarding the vertical parallax was
noticed. The Homography approach reached similar values comparable to a
linear stage. However, the horizontal parallax was increased. Both methods
managed to remove global inconsistencies, like a global drift visible in the
original image sequence. Finally, the reconstruction were evaluated utilizing
the ground truth recorded via a linear stage with higher resolution. While the
quality of the Homography approach is decreasing with the level of depth on
the object, the Global approach produced consistent results in all cases. Again,
both approaches show a clear improvement compared to the original images.
It can also be concluded that acquisition mode barely effects the outcome of
the approaches and final reconstructions. The velocity mode is preferable, as it
leads to less acquisition times.
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6.2 Future Work
The proposed approaches show a significant improvement in the reconstruction.
Still, there are many potential enhancements that can be applied. The recti-
fication evaluation shows an increase of varying disparity. A more advanced
approach could be take to address this problem in both approaches. In the case
of the optimization based approach, the BA process could be supported by fixed
keypoints on the objects to further stabilize the outcome of the optimization
process. To reduce the impact of surface texture, a optical flow based approach
could lead to improved results on low textured objects.
Even though, the computational speed was not part of this work, implementing
the approaches efficiently by utilizing CUDA on a additional GPU, that is
unused by the ICI, could lead to processing times in the range of seconds. Com-
paring this to Meshroom or other state-of-the-art reconstruction tools which
take several hours, the system could be applied for fast, industrial inspection.
Furthermore, a main feature of the ICI is not utilized in this work, photometric
stereo. Using multiple light sources alternately could lead to further increase
of quality of the reconstruction.
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7.1 Point clouds

(a) Original (b) Meshroom

(c) Homography (d) Global

Figure 7.1: Object Random Pattern, Step Mode, 1mm
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(a) Original (b) Meshroom

(c) Homography (d) Global

Figure 7.2: Object Random Pattern, Velocity Mode, 40 mm/s

(a) Original (b) Meshroom

(c) Homography (d) Global

Figure 7.3: Object Cornflakes, Step Mode, 1mm
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(a) Original (b) Meshroom

(c) Homography (d) Global

Figure 7.4: Object Cornflakes, Velocity Mode, 40 mm/s

(a) Original (b) Meshroom

(c) Homography (d) Global

Figure 7.5: Object Board, Step Mode, 1mm
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(a) Original (b) Meshroom

(c) Homography (d) Global

Figure 7.6: Object Board, Velocity Mode, 40 mm/s
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