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Abstract—Clinical Best Practice Guidelines (BPGs) are sys-
tematically developed, evidence-based statements published by
medical institutions and associations that standardize diagnosis
and treatment for various clinical scenarios. When expressed
in an executable medium, BPGs can be utilized to build systems
that assist healthcare professionals (HCPs) with situation-specific
advice. Such systems, known as Guideline-based Clinical Decision
Support Systems (CDSSs), have been shown to improve patient
outcomes.

Several Domain-Specific Languages (DSLs) have been pro-
posed to facilitate expressing BPGs in a computer-interpretable
format that is easily comprehensible to HCPs. Given the safety-
critical nature of CDSSs, the need for such languages to have
complete formal semantics and an ecosystem of formal analysis
tools has been recognized. Moreover, since these languages evolve
over time to accommodate complexities in modeling BPGs, tools
for them must also be adaptable to changes. But, existing
languages lack complete formal semantics, or analysis tools
derived from them.

This work introduces MediK: a new DSL for expressing BPGs
with a complete executable formal semantics, and formal analysis
tools, including a model checker, symbolic execution engine,
and deductive verifier. As MediK’s tools are derived from its
semantics, any update to the language is automatically reflected
across all tools. To evaluate our approach, we collaborated with a
major pediatric hospital to develop a MediK-based CDSS for the
screening and management of Pediatric Sepsis and validated that
it satisfies desired safety properties. Our CDSS is Institutional
Review Board (IRB) approved and is slated to undergo clinical
simulations.

Index Terms—Semantics, Model checking

I. INTRODUCTION

Preventable Medical Errors (PMEs) characterized by incor-
rect intended treatment, or incorrect executions of intended
treatment present a significant challenge in Healthcare [1].
According to a seminal report on the subject [2], in 1997,
between 44,000 and 98,000 deaths were estimated to have
been caused by PMEs in the United States alone. A more
recent study analyzed data from the eight-year period between
2000 and 2008, and estimated that in 2013, the number of
deaths caused by PMEs was more than 250,000, making PMEs
the third-leading cause of death in the United States [3]. The
adverse effects of PMEs extend beyond patient outcomes. One
study estimated the financial burden of PMEs to the United
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States to be 19.5 billion dollars in 2008 [4]. According to
the authors of [1], PMEs caused psychological effects such
as anger and guilt in healthcare providers (HCPs), adversely
impacting their mental health.

One strategy to mitigate PMEs is to utilize evidence-based
statements published by hospital and medical associations
that codify recommended interventions for various clinical
scenarios called Best Practice Guidelines (BPGs) [5]. High
quality guidelines are routinely updated to account for results
from clinical trials and advances in medicine, and make
the latest diagnosis and treatment information accessible to
providers [6].

While BPGs have the potential to reduce medical errors,
their effectiveness hinges on the adherence of healthcare
providers to them. For example, consider Advanced Cardiac
Life Support (ACLS): a BPG published by the American
Heart Association (AHA) for management of a life threatening
condition called in-hospital cardiac arrest (IHCA) [7], [8].
Studies suggest that management of IHCA in 30% of adult,
and 17% of pediatric cases deviates from the AHA-prescribed
BPG, resulting in worse patient outcomes [9]–[13].

While BPG-adherence is difficult to achieve in practice [14],
[15], integrating BPGs with existing patient care-flow, and
making them readily-accessible when required can improve
adherence [16]. To this end, hospitals commission comput-
erized Decision Support Systems (CDSSs) that codify BPGs
and support HCPs with situation-specific advice. Such systems
have been shown to improve BPG-adherence [17], [18], and
evidence from multi-center clinical trials suggests that they
reduce PMEs [19], [20]. Thus, guideline-based CDSSs are
now considered imperative to the future of medical decision
making in general [21].

A guidelines-based CDSS usually consists of: (a) a trans-
lation of the guideline to an executable medium, called the
knowledge-base, (b) an interface for user-interaction, and,
(c) additional infrastructure that integrates with external data
sources such as sensors, health records [22]. Typically, to
develop a CDSS, domain experts in medicine collaborate with
computer scientists to develop requirements documentation
that presents the BPGs’s semantics in a manner amenable
to software development [23]. This documentation is then
utilized to develop the knowledge-base, which is subsequently
integrated with data sources (such as patient-parameter sensors
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and health records), and a User Interface (UI) to obtain
a complete system. Thus, the BPG serves as a functional
specification for the CDSS’s knowledge-base. But, the afore-
mentioned process has several limitations. First, the imple-
mentation, i.e., the knowledge-base may not concur with its
specification, i.e., the text-based BPG. BPGs are specified as
long, complex textual documents, where the exact meaning
of terms may not be explicitly stated, and recommendations
may be ambiguous [24]. Capturing and communicating these
complexities via requirements documentation is challenging,
and incorrect or incomplete documentation has resulted in
failed implementations [25]. Second, as BPGs evolve to reflect
new evidence or local adaptions, corresponding updates must
be made to the CDSS as well. However, due to the gap
between the BPG and the knowledge-base, effort must be
expended into bringing the knowledge-base to reflect said
updates.

To address above mentioned limitations, several Domain
Specific Languages (DSLs) for directly expressing knowledge-
base as Computer Interpretable Guidelines (CIGs) have been
introduced. By providing mechanisms to facilitate representa-
tion of medical knowledge, such DSLs allow the CIG to serve
as both the system specification, i.e. the BPG, and implemen-
tation, i.e. the knowledge-base. This ensures that there is no
gap between the BPG and its executable counterpart. Given
the safety-critical nature of CDSSs, the need for formally
verified execution engines and analysis tools has been recog-
nized. To this end, some existing DSLs have partially-defined
semantics and support for verification via model-checking.
However, as identified by the authors of [26], [27], existing
languages lack a complete formal and executable semantics,
interpreters or compilers with correctness guarantees, and a
comprehensive suite of accompanying tools such as model-
checkers, symbolic-execution engines, and deductive verifiers.
The difficulties of formal analysis are further compounded by
the fact that CDSSs are concurrent systems involving inter-
actions with heterogeneous external agents such as sensors
and HCPs, making their analysis challenging. We address
these by introducing MediK (pronounced Medi-kay), a DSL
for expressing a CDSS’s knowledge-base as concurrently-
executing state machines. MediK provides:

1) A complete executable formal semantics specified in the
K semantics framework.

2) A correct-by-construction interpreter, and analysis tools
such as a model-checker and deductive verifier.

3) A uniform way of modeling heterogeneous agents for
both execution and analysis.

To evaluate our approach, we worked with the Children’s
Hospital of Illinois at OSF St. Francis Medical Center (referred
to as OSF in the remainder of this work) to develop a
CDSS for their pediatric sepsis management guidelines. The
MediK-based system expresses the guideline succinctly, and
allows establishing desired safety properties. To the best of
our knowledge, ours is the first system for sepsis management
with a set of safety guarantees.

We briefly describe the organization of this paper. In section
II, we present a real-word BPG for management of sepsis,
and use it to illustrate requirements that a DSL for encoding
clinical guidelines must satisfy. In section III, we describe
the MediK DSL, and illustrate how it addresses aforemen-
tioned requirements. To evaluate our approach, we utilized
MediK to implement a real-world CDSS for pediatric sepsis
management, which we describe in Section IV. In section
V, we discuss how MediK builds on existing work, mention
directions for future work in VI, and conclude in section VII.

II. MOTIVATING EXAMPLE

In this section, we introduce a real world BPG for man-
agement of sepsis in pediatric cases to motivate the need for
Guidelines-based Clinical Decision Support Systems, and to
illustrate characteristics that are desired of a DSL for such
systems.

Sepsis is life-threatening condition caused by the body’s
extreme response to an infection [28], and is a major cause of
morbidity and mortality in children [29]. Adverse outcomes
can, however, be mitigated through timely identification and
prompt treatment with antibiotics and intravenous (IV) fluids
[30], [31]. BPGs for screening and management of sepsis in
pediatric Emergency Departments (EDs) have shown effective-
ness in screening and management of sepsis [29], leading to
their adoption in many pediatric EDs [32], [33].

In Fig. 1, we present a simplified version of the screening
section of OSF’s sepsis management guideline. In essence,
when a patient arrives at the ED with a fever or an infection,
the HCP is supposed to obtain (a) the patient’s age, (b) any
conditions, such as cancer, immunosuppresssion, etc, that
increase likelihood of sepsis, and (c) the patient’s vital signs,

Patient Presents with abnormal 
temperature/infection

Obtain Patient Age
and High-Risk

Conditions
Obtain Patient Weight

Sepsis Focused Assessments

The patient will be flagged as potentially septic due to an abnormal value in each of the
following buckets:

Bucket 1: heart rate, pulse quality, and/or blood pressure
Bucket 2: temperature
Bucket 3: mental status, capillary refill and/or high-risk conditions

Bucket 3

Altered Mental Status High Risk Conditions Impaired Perfusion

PEWS Behavior Irritable (2)
OR

PEWS Behavior Confused (3)

Splenectomy/Asplenia
Sickle Cell Disease

PICC/Central Venous Catheter
CSF Shunt

Tracheostomy
Indwelling Urinary Catheter

Cerebral Palsy
Developmental Palsy/Mental

Retardation
Cancer

Immunosuppresion
Petechial or Purpuric Rash
Obvious Source of Infection

PEWS Cardiovascular Gray/
Cap Refill 4 seconds (2)

OR
PEWS Cardiovascular Gray/Mottled/

Cap Refill 5 seconds (3)
OR

Flash Capillary Refill

Fig. 1: Pediatric sepsis screening BPG
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Age Heart Rate Systolic BP Temp
0d− 1m > 205 < 60 < 36 or > 38

≥ 1m− 3m > 205 < 70 < 36 or > 38
≥ 3m− 1y > 190 < 70 < 36 or > 38.5

. . . . . . . . . . . .
≥ 13y > 100 < 90 < 36 or > 38.5

TABLE I: Vital Signs Chart

such as heart rate, systolic blood pressure, respiratory rate, etc.

This information is then used to check for abnormalities in
clusters of linked information, called “buckets”. For instance,
if the patient’s heart rate is abnormal, then “bucket 1” is said
to have an abnormal value. Checking for such abnormalities
often involves the use of tables, such as TABLE I, that contain
normal ranges indexed by age. If the patient has at least one
abnormal value in every “bucket”, then he/she is flagged as
potentially septic.

The BPG-recommended treatment for sepsis involves multi-
ple concurrent workflows, such as screening for septic shock,
fluid resuscitation, and administering antibiotics. In Fig. 2, we
provide a version of the fluid resuscitation guideline used at
OSF. Briefly, if the patient is flagged as potentially septic,
the guideline suggests (i) obtaining any fluid-overload risks,
(ii) administering normal saline (typically over a period of
15 minutes), where the dosage is dictated by risks deter-
mined in previous step, (iii) assessing signs of fluid-overload,
(iv) evaluating patient responsiveness to normal saline upon
completion of the administering process, and, (v) determining
whether another fluid bolus should be administered based on
information from previous steps.

This real-world BPG exhibits characteristics common across

Obtain Fluid Overload Risks

15 minutes

Administer Fluid

Check Responsiveness

Check Fluid Overload Signs

Determine Dosage

Yes

Risks exist?

No

5-10 ml/kg
Normal Saline

20 ml/kg
Normal Saline

Determine Next Step

Stop fluid bolus;
Handle fluid overload

Maintenance fluid

Yes

Repeat fluid bolus

Stop fluid bolus;
Consider inotropic support

Signs of Fluid Overload?

Yes

Total dosage > 40 ml/kg?

No

Yes No

Positive responsiveness?

No

Repeat fluid bolus

Fig. 2: Fluid Resuscitation Guideline

Fig. 3: K Overview

many BPGs. Specifically BPGs typically:
• Involve concurrent workflows, such as administering

drugs, monitoring vitals, performing treatment, etc. There
may also be inter-workflow interactions. For instance,
a diagnosis of sepsis during the screening may require
modifications to an ongoing course antibiotics.

• Often specified in a flowchart-like notation. See [34] and
[35] for other flowchart-based BPGs for management of
cardiac arrest, and screening, risk-reduction, treatment
and survivorship in cancer care respectively.

• Require communication between heterogeneous agents
such as monitors and Electronic Health Records (EHRs).

• Often use tables indexed by parameters such as age,
weight, etc to present normal/abnormal ranges for mea-
surements, or recommended dosages for drugs.

Note that the aforementioned characteristics are not specific
to one guideline. According to a review paper on CIGs [24],
such DSLs should additionally (a) be formally defined, i.e,
have a formal syntax and semantics, and (b) have an execution
engine to provide decision support.

In the following sections, we describe how these character-
istics dictate the design philosophy behind MediK. We argue
that this philosophy makes MediK both intuitive to HCPs, and
suitable for expressing complex guidelines.

III. MEDIK

In this section, we introduce the MediK DSL for expressing
CIGs. MediK has designed to describe knowledge-base used
in safety-critical systems. Thus, it is vital that:

• The interpreter is correct w.r.t. the formal semantics.
• The language has a comprehensive suite of formal pro-

gram analysis tools.
• New features based on HCP feedback can be imple-

mented quickly, conveniently, and correctly.
We achieve this by defining MediK (i.e., its syntax and
semantics) in K. K is a rewriting-based framework for defining
executable semantics of languages, type systems and formal
analysis tools. It has been successfully used to define exe-
cutable semantics of many real world languages such as C
[36], Java [37], Javascript [38], and the Ethereum Virtual
Machine [39]. We will introduce K by need while discussing
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MediK. For more details on K, we refer the reader to [40]
[41].

The K ecosystem provides a suite of tools, such as an
interpreter, model-checker, and deductive verifier that are
parametric over the language’s semantics, as shown in Fig.
3. Thus, by defining the semantics of MediK in K, we
obtain aforementioned tools for it without any extra effort.
Additionally:

• The K-based interpreter for MediK essentially exe-
cutes the language’s semantics rules, it is correct-by-
construction.

• Incorporating changes to MediK only requires updating
the semantics. Since the tools are derived from the
semantics, they’re automatically updated.

The remainder of this section introduces MediK and de-
scribes how it’s designed around characteristics of BPGs from
Section II. Recall that BPGs typically involve concurrent
workflows, often expressed using a flowchart-like notation that
may involve inter-workflow interactions. To ensure MediK
programs are comprehensible to HCPs, they must be repre-
sentable in a flowchart-like notation that HCPs are already
comfortable with, and be capable of expressing inter-workflow
interactions succinctly. To address these diverse requirements,
we borrow from existing state-of-art languages for modeling
large concurrent systems, like P [42], but make adaptions to
make expressing and validating BPGs easier. We explore the
differences to existing techniques in section V. In MediK,
like in P, programs are expressed as concurrently executing
instances of state machines that communicate via passing
messages. Given a BPG where each workflow is expressed
as a flowchart, we express said flowcharts as State Machines
in MediK. Each flowchart node in the BPG is represented as
a state in a state machine, and edges are represented as state
transitions. During execution, instances of these machines are
created, which interact with each other by passing events. Note
the distinction between machine and its instance. A machine
is analogous to an Object Oriented Programming (OOP) class,
whereas its instance is analogous to an OOP object.

Next, we describe MediK using its K-framework definition.
The K definition of a language has two components. The first
is the language’s syntax, which is defined using a BNF-like
notation. K utilizes this grammar to generate a parser for
programs in the language. We describe MediK’s syntax in
depth in Section III-A. The second is the semantics, which
is defined using a K-configuration and rewrite rules. The K-
configuration organizes the program’s execution state. Rewrite
rules that operate over said configuration dictate the evolution
of program state during execution. We describe the semantics
in greater depth in Section III-B1

A. Syntax

We use the skeleton of a MediK machine, and use it
to describe the syntax. Note that we use [...] to denote

1The complete executable semantics is available at [43].

optional constructs, <...> for mandatory constructs, lowercase
for terminals, and uppercase for non-terminals.
1 [init] machine <IDENTIFIER>
2 receives <IDENTIFIER_LIST> {
3 vars <IDENTIFIER_LIST>;
4

5 [init] state <IDENTIFIER> {
6 entry [(IDENTIFIER_LIST)] {
7 <STMT> // entry block
8 }
9 on <IDENTIFIER> [(IDENTIFIER_LIST)] do {

10 <STMT> // event handler
11 }
12 }
13 }

A MediK program consists of a set of machine definitions.
A machine definition starts with the keyword machine, fol-
lowed by its name (line 1). On line 2, following the receives

keyword, is a comma-separated list of identifiers signifying the
events that the machine can receive from other machines. One
machine in a program can be prefixed with the init keyword.
This machine is referred to as the initial machine. On line 3,
following the keyword vars, another comma-separated list of
identifiers signifies the instance-variables. During execution,
each instance maintains a mapping from these variables to
values. Each machine defines a set of states, such as the one
in lines 5-11. A state has a name, an optional entry block
(lines 6-8), and a set of event handlers (lines 9-11). The entry
block begins with the keyword entry, and may contain a list
of variables that are bound to values when the state is entered
during execution. One state in the machine may be prefixed
with init, specifying the initial state. When execution begins,
an implicit instance of the initial machine is created, and the
entry block of its initial state is executed. When an instance
of a machine is dynamically created during runtime, the entry

block of its initial state is executed. Event handlers within a
state begin with on followed by the event name and an optional
list of variables. When the event handler is executed, data
from the received event’s payload is bound to aforementioned
variables which can be used in the code block that follows the
do keyword.

Within the entry and event handler code blocks, there may
be statements. Below, we give a simplified version of the
K-grammar for statements. In K, productions are defined
using the keyword syntax (lines 1, 7). Terminals are enclosed
in quotes (""), and non-terminals begin with an uppercase
character.
1 syntax Exp ::= Id | Val | "this"
2 | Exp "." Exp
3 | "obtainFrom" "(" Exp "," Exp ")"
4 | "interval" "(" Exp "," Exp ")"
5 | Exp "in" Exp
6

7 syntax Stmt ::= Exp "=" Exp ";"
8 | "if" "(" Exp ")" Block "else" Block
9 | "new" Id "(" Exps ")" ";"

10 | "createFromInterface" "(" Id "," String ")" ";"
11 | "sleep" "(" Exp ")" ";"
12 | "send" Exp "," Id "," "(" Exps ")" ";"
13 | "broadcast" Id "," "(" Exps ")" ";"
14 | "goto" Id "(" Exps ")" ";"
15 | Exp "in" "{" CaseDecl "}"

Lines 1-5 define the syntax of MediK expressions. Line 1
defines basic expressions such as identifiers (denoted by the
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builtin K production Id), values such as booleans, or rationals,
or “this”, which enables an instance to refer to itself. Line 2
defines the usual dot operator (.), which can be used to access
members of an instance. obtainFrom (line 3), interval (line
4) and in (line 5) are useful in context of defining BPGs,
and are described through an example in section IV. Apart
from these, MediK also supports common expressions such
as +, -. >, >= over rationals and &&, || over booleans.

In lines 7-15, we define syntax for MediK statements.
Some of these, such as variable assignment (line 7), if-else
(line 8) and new Id(..); (line 9) are commonly found in
other languages, and have expected meanings. The remaining
statements (lines 10-15) have nuanced meanings in context
of state machines. We shall go over these while discussing
MediK’s semantics in section III-B.

B. Semantics

Semantics of a language defined in K has two components:
(1) description of program state via K-configurations, and
(2) K rules that dictate state evolution. Next we describe these
components in detail.

1) K-Configuration: K represents program execution state
using K-configurations. A K-configuration is an unordered
list of (potentially nested) cells, specified using an XML-like
notation. When declaring rules (as rewrites) over this state,
any subset of the cells present in the configuration can be
mentioned. This allows specifying only necessary parts of the
state for a given rule, letting K assume that the rest of the
configuration remains unchanged. The following configuration
defines the initial state for any MediK program:
1 configuration
2 <instance multiplicity="*" type="Map"> ...
3 <k> createMachineDefs($PGM)
4 ~> createInitInstances </k>
5 <genv> .Map </genv>
6 <env> .Map </env>
7 <inBuffer> .List </inBuffer>
8 <activeState> . </activeState>
9 </instance>

10 <machine multiplicity="*" type="Map"> ...
11 <machineName> . </machineName>
12 <states>
13 <state multiplicity="*" type="Map">
14 <stateName> . </stateName>
15 <entryBlock> . </entryBlock>
16 <eventHandlers> ... </eventHandlers>
17 </state>
18 </states>
19 </machine>

The keyword configuration (line 1) defines a K-
configuration, followed by xml-like notation for the K-cells.
For example <foo> ... </foo> corresponds to a K-cell with
the name foo. The <instance> cell (lines 2-9) contains state
of each MediK machine instance during execution. Each
instance manages its instance variables using a map in the
<genv> cell (line 5), a buffer of incoming events in the
<inBuffer> cell (line 7) and the currently executing code
in the <k> cell (lines 3-4).2 When a MediK program is
executed, K replaces $PGM (line 3) with the Abstract Syntax

2For brevity, we present a simplified version of the configuration. See [43]
for the entire configuration.

Tree (AST) of the program, obtained by parsing the program
using the syntax from section III-A. The createMachineDefs

constructs is defined (using rewrite rules) to traverse the
program AST and populate the configuration with information
related to each machine. The createInitInstances creates
an instance for the machine with the init keyword, leading
to execution of the initial machine’s entry block. Note that
~> symbol (line 3) is interpreted by K as “followed-by”,
i.e., execution of createMachineDefs is followed by execution
of createInitInstances. The attribute multiplicity="*" on
lines 2 and 10 signifies that multiple copies of the correspond-
ing cells, in this case <machine> and <instance> cells, can
exist in the configuration during execution. This allows, during
execution, for multiple machine definitions, each with multiple
instances, to exist. The <machine> cell (lines 10-19) holds
information relevant to a machine definition, such as the name
in the <machineName> cell (line 11) and states in the <states>

cell (lines 12-18). The <state> (lines 13-17) holds information
relevant to a state, such as the entry block in cell <entryBlock>
(line 15) and event handlers in cell <eventHandlers> (line 16).

2) K-Rules: K-rules operate over the configuration and
define the evolution of program state during execution. A K-
rule begins with the keyword rule, and is a statement of the
form φ ⇒ ψ, where φ and ψ are patterns over configuration
terms and K-variables. We say φ is the LHS and ψ is the
RHS of the rule. Let substitution θ be a map from K-variables
to terms. Say, for given pattern φ and substitution θ, φθ be
the term obtained by replacing each variable v in φ with
θ(v). During execution, if the current configuration C, i.e.
program execution state, matches φ with substitution θ, then
it is rewritten to ψθ. We say pattern φ matches configuration
C iff there exists a substition θ s.t. C = φθ. For example,
consider the following rule for updating the value of a local
program variable.

1 rule <k> I:Id = V:Val => V ... </k>
2 <env> (I |-> Loc) ... </env>
3 <store> Store => Store[Loc <- V] </store>

Here, I, V, Loc, and Store are K-variables. Note the distinction
between program variables and K-variables: while program
variables are simply identifiers, K-variables have logical mean-
ing. The ... is used to denote parts of the configuration not
relevant to the rule. Typically, the top of the k cell contains the
statement currently being executed. Suppose we’re executing
the statment i = 2;. In this case, the current configuration
will have a k cell of the form <k> i = 2 ... </k>, an
environment cell env where variable i maps to some pointer
p, and a store cell store containing a map M with some
value pointed-to by p. The LHS matches with substitution
θ = (I 7→ i, V 7→ 2, Loc 7→ p, Store 7→M), resulting in the
top of the k cell to be rewritten to the value 2, and pointer
p updated to point to 2 in M . Note if there exist multiple
rules that can match the current configuration, then one rule
is non-deterministically chosen and applied. An execution is
a sequence of rule applications that continues until no rule
matches the configuration.
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In the following sections we present several MediK con-
structs relevant to defining BPGs using their K-rules. We first
present the rule for sending and receiving messages.
1 rule
2 <instance>
3 <k> send instance(RecvId) , EventName:Id , ( Args )
4 => done ... </k> ...
5 </instance>
6 <instance>
7 <id> RecvId </id> ....
8 <inBuffer> ... (.List
9 => ListItem(

10 eventArgsPair(EventName | Args | Epoch + 1
11 )))
12 </inBuffer> ...
13 </instance>
14 <epoch> Epoch </epoch>

When the top of the k cell has send, the rule above (i) obtains
the id of the receiver instance, the event name and the event
arguments by matching the variables RecvId, EventName and
Args against the current configuration (line 3), (ii) rewrites the
top of the k cell (line 4) to done, marking the completion of
execution for the construct, (iii) adds the event and associated
arguments to the buffer of incoming events (lines 8-12) of the
instance with id RecvId (line 7). (iv) The epoch decides when
the machine can run, and is discussed in Section III-B2a.

To handle interaction with heterogeneous external sources,
MediK models them as interfaces. An interface is a FSM
that has its transition system defined externally. For example,
certain measurements such as the heart rate are often obtained
from sensors. The following code shows the process of ob-
taining external measurements in MediK.
1 interface HeartRateSensor { }
2

3 machine TreatmentMachine { ...
4 var hrSensor = createFromInterface(HeartRateSensor,
5 "heartRateSensor");
6 var heartRate = obtainFrom(hrSensor, "heartRate");
7 }

Since we don’t have the transition system for the heart rate
sensor, we declare it as an interface (line 1). Next, instead
of using new to create an instance, we use a builtin MediK
construct createFromInterface, which takes as arguments
(a) the inteface name (lines 4), (b) a unique identifier string
used to identify the instance outside the MediK process. All
other MediK machines can interact with external sensor using
variable hrSensor. There is no need to make any distinction
between external, and MediK-based machines. To deal with
external interactions, input and output pipes are provided to the
MediK process at launch. When the send construct is used on
an external machine, MediK will write a JSON [44] message
with the event data, the identifier from line 5, and a unique
transaction id to the write-end of the output pipe. At the read-
end, we need to write external code (in any programming
language) to handle the JSON message. In the example above,
this involves reading from the external heart rate sensor. To
send data to MediK, a JSON message in a pre-specified format
needs to be written to the write-end of the input pipe.

Next, we desribe the rule for supporting tables in MediK.
Once a measurement, such as the heart rate has been obtained
from a sensor, we need to use a table, such as TABLE I

to check if the measurement is within a normal range. In
MediK, we can write a function that does the required check,
as shown in Fig. 4. In the code, if the age lies in any of the

1 fun isHeartRateNormal() {
2 days(age) in {
3 interval(days(0) , months(1)): return hr > 205;
4 interval(months(1), months(3)): return hr > 205;
5 // omitting other cases
6 default : return hr > 100;
7 }
8 }

Fig. 4: Checking abnormality using tables

intervals (closed on the left, open on the right) on lines 3-5,
the corresponding statement to the right of the colon (:) is
run. Otherwise line 6 is run. In MediK, the following rules
are responsible for assigning semantics to the in-interval

construct:
1 rule E in interval(L, U) => (E >= L) && (E < U)
2 [macro]
3 rule E in { interval(L, U): S:Stmt Cs:CaseDecl }
4 => if (E in interval(L, U)) {S} else {E in { Cs }}
5 [macro-rec]

Note the rules above are marked with the attributes
macro (line 2) or macro-rec (line 5). This specifies that
these constructs are not part of the language’s semantics,
but merely syntactic sugar. On line 1, we specify that
E in interval(L, R) desugars to checking the expression e

is between the lower and upper bound L and U respectively.
Similary we desugar each case statement to an if-else

statement. In lines 3-5, we say that if the expression E is in
interval with lower and upper bounds L and U respectively,
then execute S, otherwise check E against the remaining cases
Cs. Note the postfix -rec after macro specifies that the rule
applies recursively, to desugar the remaining case statements.

a) MediK Scheduling Semantics: Since the K-generated
interpreter is single-threaded, MediK employs interleaving-
semantics for concurrency, using a single executor thread
shared between machine instances. A machine instance that
is either at the start of an entry block, or has an event in
the input buffer that it can handle is said to be enabled, i.e.
one that can run once the executor becomes available. But, a
naive strategy that non-deterministically chooses one enabled
machine instance may lead to unfairness. Specifically, there
may be situations where a machine instance is enabled but is
never chosen for execution. Therefore, to ensure fairness, we
use a scheduling strategy based on a monotonically increasing
global counter called the epoch. We show this execution
strategy in Fig. 5

Recall from Section III-A that a MediK program consists
of a set of machines, of which one, prefixed with the key-
word init, is the initial machine. Each machine has one
state prefixed with init, referred to as the initial state. Let
P = {M0,M1, . . . ,Mn−1} be a program with n machines,
where M0 is prefixed with init. MediK allows instances of
a machine to be created dynamically at runtime. For machine
Mi ∈ P , let IMi,j−1 be its j-th instance.
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1 epoch← 0
2 scheduled←

{
I0M0,0

}
3 while scheduled ̸= ∅ do
4 IτMi,j

← choose (scheduled) s.t.
τ ≤ epoch ∧ enabled(IτMi,j

)
5 scheduled← scheduled \ IτMi,j

6 execute(IτMi,j
, scheduled)

7 if ̸ ∃i′, j′, τ ′ s.t. (Iτ ′

Mi′ ,j
′ ∈ scheduled)

∧(τ ′ ≤ epoch) ∧ (enabled(Iτ ′

Mi′ ,j
′)) then

8 epoch← epoch + 1
9 end if

10 end while

Fig. 5: MediK Scheduling Semantics

Execution begins in epoch zero with the implicit (first)
instance of the initial machine, denoted by I0M0,0

. We use
IτMi,j−1 to say that the j-th instance of machineMi is sched-
uled for execution in epoch τ . Recall that a state definition
may have an entry block, containing code that is executed
when the state is entered, or event handlers containing code
that is executed when an event is dequeued from the input
buffer. When execution begins, the entry block of the initial
state of the implicit instance of the initial machine IM0,0

becomes scheduled (line 2) at epoch 0. On line 4, an instance
IτMi,j

is non-deterministically chosen from all machines that
are both scheduled to run when τ ≤ epoch and enabled.
We use execute(IτMi,j

, scheduled) on line 5 to denote this
execution process. Execution of the entry or event handler
block is atomic, i.e., a context-switch can only occur at the
end of the block. Note that when a new instance of a machine
is created using the keyword new, the entry block of the initial
state of the target machine is executed synchronously before
control returns to the source machine, and the instance is added
to the multiset of scheduled machines. A context switch only
occurs in three cases: goto, sleep, and obtainFrom, which we
describe later.

During execution, if an instance IMi,j sends an event
to another instance IMi′ ,j

′ , then the event is scheduled
to be handled by IMi′ ,j

′ in or after the next epoch, i.e.,
scheduled ← scheduled ∪ {Iepoch+1

Mi′ ,j
′ }. Similary, if a goto

statement is encoutered, the entry block of the target state
is scheduled for execution at epoch + 1. If no other machine
is both scheduled to run in the current epoch, and enabled,
then the epoch advances by one (line 8).

b) Timer Semantics: Next, we discuss how MediK han-
dles temporal aspects of BPGs. For instance, consider the Fluid
resuscitation guideline BPG from Section 2. After adminis-
tering fluids, the BPG recommends waiting for 15 minutes
before evaluating their effectiveness. This waiting behavior in
MediK is implemented using a sleep(duration) statement.
Formalizing the execution semantics of such a statement in K
presents a challenge as K does not provide builtin support for
timers. Therefore, in MediK, sleep(duration) is described
by the following rule:

1 rule <k> sleep(Duration:Int) ;
2 => jsonWrite( { "action" : "sleep"
3 , "duration" : Duration
4 , "tid" : TId }
5 , ... )
6 ~> releaseExecutor
7 ~> waitForSleepResponse(TId) ...
8 </k>
9 <tidCount> TId => TId +Int 1 </tidCount>

sleep results in a JSON message being sent to a remote
endpoint (lines 1-5) specified when the MediK process is
launched. This mimics sending an event to an external timer
machine, with the desired duration as the payload. At the
remote endpoint, code must be provided (in any programming
language) to parse the message, and respond with a JSON
message indicating the expiration of the timer once the desired
duration has passed. A unique transaction-id (lines 4, 7, 9),
which the code at the endpoint is expected to provide in
the response, uniquely identifies the machine instance being
responded to. sleep causes a context-switch to occur on line
6, releasing the executor lock to process other scheduled
machines.

When a message signifying the expiration of the timer is
sent to the MediK process, along with the transaction id
of source instance, the corresponding event signalling the
completion of the sleep statement is placed at the beginning
of the source machine instance’s input buffer, and the instance
is scheduled to resume execution in the next epoch. The
following rule handles the external response:
1 rule
2 <k> waitForSleepResponse(TId) => . ... </k>
3 <inBuffer>
4 (ListItem(event($SleepDone | TId | Tau ))
5 => .List) ...
6 </inBuffer>
7 <executorAvailable>
8 true => false
9 </executorAvailable>

10 <epoch> Epoch </epoch>
11 requires Tau <=Int Epoch

The waitForSleepResponse(TId) blocks execution until the
external response indicating the expiration of the sleep timer
is received in the input buffer (line 4). Once the response is
received, the machine instance resumes execution when (a) the
execution lock becomes available (indicated by true on line
8), and, (b) the epoch the instance was scheduled in (line 4)
is less than or equal to the current epoch (lines 10-11).

An obtainFrom statement also results in a context switch.
Just as in the case of sleep, a json message is sent to the remote
endpoint, while the machine instance release the execution
lock, and waits for a response. Once data for the requested
field is available, it’s communicated as an event to the MediK
process, and the machine resumes execution.

IV. EVALUATION

A. Sepsis Management CDSS
To evaluate our approach, we collaborated with the Chil-

dren’s Hospital of Illinois at OSF St. Francis Medical Center to
develop a MediK-based CDSS for screening and management
of Pediatric Sepsis 3.

3the entire CDSS for sepsis management is available at [45].
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1 machine SepsisScreening receives .. {
2 init state Start {
3 on StartScreening do {
4 goto ObtainAge;
5 }
6 }
7 state ObtainAge {
8 entry {
9 send tablet, Instruct, ("get age");

10 } on ConfirmAgeEntered do {
11 goto ObtainWeight;
12 }
13 }
14 state ObtainWeight { ... }
15 state ObtainHighRiskConditions { ... }
16 state CalculateScore {
17 var hrAbnormal = !isInNormalRange("HR", ...);
18 var bucket1 = hrAbnormal || ...
19 var bucket3 = mentalStatusAbnormal || ...
20

21 var sepsisSuspected
22 = bucket1 && bucket2 && bucket3;
23

24 send tablet, SepsisDiagnosis
25 , (sepsisSuspected);
26 }
27 }

Fig. 6: Sepsis Screening in MediK

Recall from Fig. 1 the guideline for sepsis screening. In
Fig. 6, we show MediK code corresponding to the sepsis
screening guideline. When modeled in MediK, a flowchart in
the guideline is represented using a MediK machine. Nodes in
the flowchart are represented as states in a MediK machine,
while flowchart edges as state-transitions. Note that we use
node to refer to constructs in the flowchart, and state to
refer to counterparts in MediK. Also, while it’s desirable
to represent each flowchart node as a state machine state,
the task in the flowchart node may warrant using multiple
state-machine states. For example, in Fig. 1, the step “Obtain
Patient Age, Weight, and High Risk Conditions” is translated
to states ObtainAge (lines 7-13), ObtainWeight (line 14), and
ObtainHighRiskConditions (line 15) in Fig. 6. Within each
of these states, the code permits communication with hetero-
geneous external agents for obtaining required parameters. For
instance, on line 9, an Instruct event is sent to an external
tablet machine with the payload "get age". The recipient
process runs on a tablet held by the Healthcare Provider,
and handles the event by prompting the provider to enter the
patient’s age. A ConfirmAgeEntered event, emitted once the
age is obtained, enables the screening machine to proceed to
the next step (lines 11-13). Once all appropriate measurements
have been obtained, they are checked for abnormality (lines
18-26) using tables shown in Fig. 4 to arrive upon a diagnosis.

Recall from Section II that once a sepsis diagnosis has been
arrived upon, one of the guideline suggested actions include
administering fluids as shown in Fig. 2. In Fig. 7, we show
the corresponding MediK code for administering fluids. The
process starts when an external StartFluidTherapy event,
corresponding to a button press by the HCP is received (line
6). The next steps include (a) obtaining any risks associated
with administering fluids (lines 11-13), (b) suggesting an

appropriate dose to administer based on the risks, if any
(lines 15-17), and, (c) waiting for the HCP to confirm that
the suggested dose was administered (line 21). Once the dose
is administered, the machine waits for the for 15 minutes as
specified by the guideline (line 22), before prompting the HCP
to evaluate the patient’s responsiveness to the administered
fluid dose (lines 27-38), and check for any signs of fluid

1 machine FluidTherapy
2 receives StartFluidTherapy, ... {
3

4

5 init state Start {
6 on StartFluidTherapy do {
7 goto ObtainRisks;
8 }
9 }

10

11 state ObtainRisks {
12 // Obtain fluid overload related risks
13 }
14

15 state SuggestFluidDosage {
16 // Suggest a dosage based on risks
17 }
18

19 state WaitForAdministerFluidConfirmation {
20 // Handler for Normal Saline Administration
21 on ConfirmNormalSalineAdministered do {
22 sleep(900);
23 goto EvaluateResponsiveness;
24 }
25 }
26

27 state EvaluateResponsiveness {
28 entry {
29 send tablet
30 , Instruct
31 , ("get responsiveness to fluids");
32 }
33

34 on FluidResponsivenessEntered(responsiveness) do {
35 isResponsiveToFluids = responsiveness;
36 goto ObtainFluidOverloadSigns;
37 }
38 }
39 state ObtainFluidOverloadSigns {
40 // Obtain signs of fluid overload
41 }
42

43 state AskNextStep {
44 entry {
45 var recommendation;
46 if (this.fluidOverload) {
47 recommendation = "handle fluid overload";
48 } else {
49 // obtain total saline dose
50 if ((totalSalineDose >
51 measurementBounds.salineDosageUpperBound) {
52 if (isResponseiveToFluids) {
53 recommendation = "maintainence fluids"
54 } else {
55 recommendation = "consider inotropic support";
56 broadcast ConsiderInotropicSupport;
57 }
58 } else {
59 recommendation = "repeat fluid bolus";
60 }
61 }
62 // Send recommendation to tablet
63 // Wait for HCP response
64 }
65 }
66 }

Fig. 7: Fluid Resuscitation in MediK
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overload (lines 39-41). If the patient exhibits any signs of fluid
overload, then a recommendation to handle the overload is
made (line 47). Otherwise, the total dose of administered fluid
is obtained from an external source (line 50). If the total dose
is above the maximum allowed dose, then a recommendation
based on the patient’s responsiveness to administered fluids
is made to either (a) reduce the fluid flow to maintenance
levels (line 53), or, (b) switch to inotropic support to address
circulatory issues is made (lines 52-58). If the total dose of
administered fluids is less than the maximum allowed limit,
then a recommendation to administer one more fluid bolus is
made (lines 58-60).

Note that both the SepsisScreening and FluidTherapy ma-
chines structurally resemble their paper based counterparts in
Fig. 1 and Fig. 2 respectively, making it easier for Healthcare
Providers to comprehend and validate the code.

B. Formal Analysis using MediK
During execution of a MediK program, a machine may be

considered stuck if an event at the head of its input buffer does
not have an associated handler, rendering said machine non-
responsive. For this reason, languages for modeling large con-
current systems, such as P [42] raise an exception for unhan-
dled events. To mitigate such exceptions, we can enforce every
machine to define event handlers for all possible events in all
states, and use static analysis to detect possible violations. But,
for MediK programs, we found that for complex CDSSs, such
as the one for screening and management of sepsis: (a) it’s
tedious and error prone to define handlers for every event in
every state, and, (b) it reduces the comprehensibility of the
program, as many spurious event handlers that may never fire
during execution have to be specified.

Thus, for MediK, we employ a weaker notion of respon-
siveness. We verify that every event that a state may possibly
receive during execution must have a handler defined for it.
This presents a challenge for reactive systems, or systems
involve interactions with the external world, such as MediK-
based CDSSs, as exploring the system’s state space requires
modeling the external components. In MediK, we address
this by specifying external components as ghost machines -
a technique also used by other state machine formalisms such
as P [42]. For program analysis, ghost machines substitute
external agents, permitting exploration of the state space.
During execution, ghosts are discarded and replaced by actual
external agents. Due to this, ghosts machines may have state-
ments to express non-determinism in processes. Consider, for
instance, on a positive sepsis diagnosis, a HCP may chose to
either administer fluids first, followed by antibiotics, or vice-
versa. MediK supports such non-determinism using either-or

statements as follows:
either {
broadcast StartFluidTherapy;
broadcast StartAntibioticTherapy;

} or {
broadcast StartAntibioticTherapy;
broadcast StartFluidTherapy;

}

When writing ghosts, values of measurements need to
be abstract, to encompass all possible values that may be
encountered during execution. For instance, when modeling
entering a parameter such as the Heart Rate, we need to use
an abstract value, representing all possible concrete values. To
this end, we allow using an abstract value #nondet in ghost
machines, with the following abstract semantics:

1 rule #nondet + _:Val => #nondet
2 rule _:Val <= #nondet => #nondet
3 rule #nondet && _ => #nondet
4 rule if (#nondet) Block => Block
5 rule if (#nondet) _ => .

The use of abstract encodings leads to a reduction of
the state space. Recall from Section II that we needed to:
(1) utilize patient’s basic information such as age and weight
to calculate normal ranges for clinical measurements such
as blood pressure and heart rate, and, (2) calculate abnor-
mality in clinical measurements using aforementioned ranges.
For example, determining whether the patient’s heart rate is
abnormal is performed using the in-interval construct as
show in Fig. 4. Recall that the in-interval construct is
merely syntatic sugar for nested if-else statements. When
using ghost machines for model checking, since the actual
measurement is an abstract value, we know the final result
of this abnormality checking operation is an abstract boolean
value. Thus, instead of exploring each branch of if-else

statements corresponding to in-interval constructs in Fig. 4,
we replace the entire checking process with an final abstract
boolean value. This reduces the state space but still allows
us to explore all treatment options for both the normal and
abnormal cases.

C. Model Checking the Sepsis CDSS

To verify responsiveness of the Sepsis CDSS, we imple-
mented ghost machines for the external components using
support for non-determinism and abstract values. We then
added the following rule to the semantics, that takes a machine
in an active state with an unhandled event at the head of the
input buffer to a terminal stuck state.

1 rule
2 <k> handleEvents ~> _ => stuck </k>
3 <activeState> ActiveState </activeState>
4 <class> MachineName </class>
5 <inBuffer>
6 ListItem(event(InputEvent | _ | _ )) ...
7 </inBuffer> ...
8 </k>

We utilize the semantics-generated bounded model checker
to search the state space to a depth of 300,000 for a stuck

pattern, i.e., a machine that’s no longer responsive. This depth
we used was adequate for a complete run of the both the fluid
and antibiotics machines simultaneously. The search command
was executed on a machine with 64 GB of memory, and took
roughly 90 minutes, and reported no such state was possible.
To the best of our knowledge, this makes ours the first system
for screening and management of sepsis with some formal
safety guarantees.
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V. RELATED WORKS

We broadly classify existing work into two categories:
(a) languages/DSLs specifically developed to express BPGs
in executable format, and, (b) languages/DSLs with a more
general focus on expressing asynchronous event driven sys-
tems. We first focus on category (a). The Arden Syntax [46]
is a widely used medium for expressing CIGs. Guidelines
are described using Medical Logic Modules that contains
information related to guideline’s purpose, maintenance, and
medical knowledge. But, Arden Syntax is focused on de-
scribing simple, modular, and independent guidelines (such
as reminders), and not on guidelines with complex logic
(such as treatment protocols) [47]. Arden Syntax’s limitation
in modeling complexity is addressed by GLIF [48]: a lan-
guage that uses flowcharts to express guidelines. A multi-level
approach is employed to manage complexity: at the top is
the conceptual level, where only high-level details relevant
for human-comprehension are present. In the middle is a
computable-level, where details of guideline execution flow
and patient data elements are specified. At the bottom is
the implementable level, where institution-specific details and
mappings into patient data are specified. Both Arden Syntax
and GLIF eliminate the gap between the BPG, i.e. the spec-
ification, and the CIG, i.e. implementation as they’re meant
to be either directly used by clinicians (or in collaboration
with computer scientists) to express BPGs in an executable
medium. CIGs expressed in them are meant to be shared across
hospitals, and are thus modular. However, neither formalism
has complete formal semantics, or a comprehensive suite of
formal analysis tools.

The need for formal analysis is identified by Asbru: a
formalism with formally defined syntax and semantics [27].
In Asbru, a guideline is modeled as a plan that contains:
(i) intentions that define aims, (ii) conditions that specify when
the plan is applicable, (iii) effects that define expected behavior
during execution, and, (iv) a body containing other subplans.
Apart from an execution engine, the Asbru ecosystem also
contains other tools, such as a model checker for verification
[49]. However, the formal semantics of Asbru have been only
partially defined, and is insufficient to implement tools for the
language [26]. The importance of a complete formal-semantics
is identified and addressed by PROforma [26], another formal-
ism that uses plans to model guidelines. A PROforma plan is
made of a sequence of tasks. The plan defines constraints on
their enactment, and circumstances for termination (for ex-
ample, exceptions) [26]. But, despite having complete formal
semantics, PROforma’s semantics is not executable. Therefore,
an interpreter and analysis tools have to be implemented in an
ad-hoc manner. Our work builds on these existing languages,
and addresses their shortcomings by utilizing a semantics-first
approach to build a DSL for expressing CIGs. This provides
MediK with a complete, executable semantics, and a suite
of correct-by-construction tools derived from it, such as an
interpreter, model checker and deductive verifier.

Next we look at existing work for defining large concurrent

systems as State Machines. The closest project to this work, is
probably the P language [42]. While P was considered for this
project, it was given up for the lack of an executable semantics
that would allow the language to quickly evolve to incorporate
physician feedback. Moreover, until recently, P didn’t even
have a symbolic execution, or executable semantics based
tools that can be derived automatically from the executable
semantics, features that we plan to use in future work.

VI. FUTURE WORK

In this work, we introduced MediK, the first step to-
wards building safe CDSSs. While MediK has been used
to implement and analyze a real system, we’re aware of
many challenges that need addressing. Specifically (a) ghost
machines may provide the ideal scenario for behavior of
external agents, and may not take factors such as uncertainties
into account, (b) the need to move beyond bounded model
checking, and using deductive verification capabilities of K,
(c) using symbolic execution to precisely trim unnecessary
interleavings, and, (d) using semantics based compilation to
extract inform, such as HCP-friendly diagrams from the code
itself.

VII. CONCLUSION

Guideline-based Clinical Decision Support Systems
(CDSSs) are now considered vital to the future of Medical
Decision making in general, But, to find widespread adoption,
guideline-based CDSSs must be held to the highest standards
for safety-critical systems. While several advances have
been made to CDSS over the years, several limitations
have also been identified. This work fixed said limitations
by introducing MediK - a new DSL for expressing BPGs
that uses a semantics-first approach to build CDSS. MediK
programs consist of concurrently executing instances of
State Machine. MediK models external agents as machines
with transition systems external to the program called
interfaces, allowing for a uniform way of dealing with
heterogeneous external agents. For program analysis, MediK
allows modeling external agents via ghost machines that
support non-determinism, enabling model-checking CDSSs
for responsiveness. We collaborated with the Children’s
Hospital of Illinois at OSF St. Francis Medical Center to
develop a system for screening and management of pediatric
sepsis using MediK, and demonstrated it satisfies desired
safety properties. To the best of our knowledge, our is the
first system for sepsis management with any formal safety
guarantees.
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[38] D. Park, A. Stefănescu, and G. Roşu, “Kjs: A complete formal semantics
of javascript,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
346–356.

316

http://europepmc.org/books/NBK499956
https://www.bmj.com/content/353/bmj.i2139
https://cpr.heart.org/en/resuscitation-science/cpr-and-ecc-guidelines/algorithms
https://cpr.heart.org/en/resuscitation-science/cpr-and-ecc-guidelines/algorithms
https://www.mdanderson.org/for-physicians/clinical-tools-resources/clinical-practice-algorithms.html
https://www.mdanderson.org/for-physicians/clinical-tools-resources/clinical-practice-algorithms.html


[39] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, “KEVM: A
complete formal semantics of the Ethereum Virtual Machine,” in 2018
IEEE 31st Computer Security Foundations Symposium (CSF), 2018, pp.
204–217.
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G. Roşu, “The K primer (version 3.3),” Electronic Notes in Theoretical
Computer Science, vol. 304, pp. 57–80, 2014, proceedings of the Second
International Workshop on the K Framework and its Applications (K
2011).
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