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Kurzfassung

Maschinelles Lernen hat viele Aspekte moderner digitalisierter Unternehmen revolu-
tioniert, aber die mangelnde Transparenz und Interpretierbarkeit dieser Modelle stellt
eine Herausforderung dar. Wenn Entscheidungen auf der Grundlage von Modellen des
maschinellen Lernens getroffen werden, sind Erklärungen wichtig, um die Gründe für
die Ergebnisse zu verstehen. Diese Arbeit konzentriert sich auf Maßzahlen, die den
Beitrag jedes Merkmals einer Entität zu ihrem Klassifikationsergebnis oder jedes Tupels
in einer Datenbankreparatur messen, und untersucht insbesondere lokale Erklärungen,
die Änderungen identifizieren, die erforderlich sind, um ein gewünschtes Ergebnis zu
erzielen. Ziel ist es, die Undurchsichtigkeit von maschinell erlernten Modellen und Daten-
bankreparaturen zu beheben, indem Erklärungen auf der Grundlage genau definierter
Werte erstellt werden.

Der SHAP-Score, der sich von den Shapley-Werten in der Spieltheorie ableitet, ist ein
gut erforschter Score, der den Einfluss von Merkmalen auf das Ergebnis einer gege-
benen Entität quantifiziert. Seine Anwendbarkeit auf bool’sche Schaltkreise und seine
Berechnungskomplexität erfordern jedoch weitere Untersuchungen. Ein weiterer Score,
der RESP-Score, führt das Konzept der Resposibility und der Kontingenzmengen ein,
um die Verantwortung einzelner Merkmale zu bewerten. Die Komplexität dieses Scores
ist in der Regel schwieriger als die des SHAP-Scores, jedoch deuten empirische Belege
darauf hin, dass die Berechnung deutlich weniger Zeit in Anspruch nehmen kann. Um
dies jedoch zu belegen, fehlen eine Implementierung und ein experimenteller Vergleich.
Zudem konzentrieren sich diese Scores ausschließlich auf einzelne Merkmale, während der
kombinierte Einfluss mehrerer Merkmale auf das Ergebnis ebenfalls sehr aussagekräftig
ist.

Ziel dieser Arbeit ist es, die Definitionen der erklärenden Scores zu vereinheitlichen
und ihre Berechnungskomplexität zu untersuchen. Darüber hinaus werden die Scores
für Gruppen von Merkmalen erweitert. Um diese Ziele zu erreichen, wurde ein Python-
Framework zur einfachen und intuitiven Berechnung der erklärenden Scores entwickelt.
Die Beziehungen zwischen den Scores wurden analysiert und mögliche Erweiterungen
und zukünftige Forschungsrichtungen diskutiert.
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Abstract

Machine learning has revolutionized numerous aspects of modern digitalized businesses,
but the lack of transparency and interpretability of these models poses challenges.
When decisions are made based on machine learning models, explanations are crucial
to understand the reasoning behind the outcomes. This study focuses on numerical
scores that measure the contribution of each feature of an entity for its classification
outcome or of each tuple in a database-repair, specifically exploring local explanations
that identify changes required to achieve a desired outcome. The goal is to address the
opacity of machine-learned models and database-repairs, by providing explanations based
on well-defined scores.

The SHAP score, derived from Shapley values in game theory, is an extensively studied
score that quantifies the influence of features on a specific entity’s outcome. However,
its applicability to boolean circuits and its computational complexity require further
investigation. Another score, the RESP score, introduces the concept of responsibility
and contingency sets to assess the responsibility of individual features. The complexity
of this score is typically greater than that of the SHAP score, but empirical evidence
suggests that the computation time can be significantly reduced. However, in order
to demonstrate this, an implementation and an experimental comparison are currently
absent. Moreover, it should be noted that these scores primarily emphasize individual
features, whereas the combined impact of multiple features on the outcome is also highly
significant.

This thesis aims to unify the definitions of explanation scores and investigate their
computational complexity. Furthermore, the thesis extends the scores to handle sets of
features. To achieve these goals, a Python framework was developed to compute the
explanation scores in a simple and intuitive manner. Relationships between the scores
were analyzed, and potential extensions and future research directions were discussed.
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CHAPTER 1
Introduction

Machine learning has become an essential part of any digitalized business today. As a
result, it influences our daily lives in many different ways. But often the models used are
very intransparent and results are difficult to interpret.

Example 1.0.1. Consider a bank customer that wants to apply for a loan at her bank
and gives all her data to check the liquidity. The bank employee rejects the customer
because the learned model with the given data outputs a rejection.

Quite naturally, the question of ”why?” arises. In order to be able to counter this, an
answer is needed as to what changes the customer needs to make in order to get a loan
after all. In other words an explanation is needed. These explanations can be quite
different. In this work we want to focus on numerical scores, which measure how much
of the result each feature of the machine learning model contributes. If this score is 0, a
change in the data of this feature, would not entail any change for the result. On the
other hand, if this score for a feature is set to 1, changing the data of that feature alone
can achieve the desired result.

In the above example, the value ”10” for the feature ”age” would probably have a high
score, as the customer being very young is very likely a reason for the rejection of the
loan.

The desire is not to look at the totality of the data or to identify trends for the entire
population. These explanations are called global explanations and are mainly used to
explain the model to a developer or a manager. In this work, the focus is much more on
the result of a single dataset. These local explanations tell which values in this single
dataset have to be changed to get the desired result.

The problem is that the machine-learned model is often just a black box that cannot
be fully understood. It is easy to calculate an output for an input, but it is not easy to
find out how the model obtained the result. A very similar problem arises in the area of
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1. Introduction

databases: Given a database, a result to a query can be computed. But if someone asks
for the important parts of the data that are crucial for the outcome, the answer is more
difficult.
In practice, the mentioned scores can be useful when a database query produces an
unexpected result. The individual scores of the data tuples can be used to understand
whether this is a user mistake, an error in the data, or an inaccuracy in the query itself.
This not only improves the user experience, but also helps identify potential problems
with queries or data inconsistencies. Another practical application is in the area of
network fault diagnosis. In a network of interconnected servers, individual servers may
fail, resulting in a loss of connectivity. Using explanations, maintainers can effectively
diagnose these failures. By testing subsets of servers and determining explanation scores,
servers with high responsibility scores can be identified as potential culprits. This ranking
allows maintainers to prioritize diagnostic work, leading to efficient troubleshooting and
resolution of network problems.
In all of the highlighted examples, explanations provide valuable insight and transparency.
These applications demonstrate the practical importance of explanations in artificial
intelligence and database applications to improve decision making, problem solving, and
system maintenance.
The SHAP score, which has undergone extensive research, has demonstrated its utility
as a valuable tool in tackling the aforementioned problem areas. It is based on the
game-theoretical model of Shapley values, which were defined by Lloyd Shapley as early
as 1951. The Shapley value uses a wealth function to assign a score to each player based
on how much that player contributes to the win. In the field of machine learning, the
SHAP score can thus make a statement about an entity, how much one feature influences
the result for this entity. This scheme can also be found in the field of databases, where
the score determines how much influence certain data has on the final result of a query.
For several classes of boolean circuits, in particular, for decision trees, the SHAP score
can be computed in polynomial time [3, 4, 15] and has other useful properties such as
additivity or efficiency [5]. For other boolean circuits it has been investigated in [15]
and [3] that the computation of SHAP is #P-hard.
Quite differently, Bertossi et al. created a score starting from the definition of responsi-
bility [13, 22, 24, 44]. It tries to quantify the responsibility of an individual feature for
the outcome. First the COUNTER score and then the more mature RESP score was
defined. [9] These do not consider only a single or a group of features, like the SHAP score,
but work with the definition of causes and define contingency sets. [38] A contingency
set specifies all that is required to ultimately determine the responsibility of a single
feature. While there is a relationship between COUNTER and SHAP score, this is not yet
known between RESP and SHAP score. [9] Furthermore, the very useful properties of the
SHAP score, such as additivity and efficiency, have not yet been thoroughly investigated
for COUNTER and RESP scores. However, there are already approaches to limit the
complexity of the computation of the RESP score: in [9] a SQL-query was presented,
which can compute the RESP score efficiently with fixed size of the contingency set.
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In this thesis, our main aim is to unify the definitions of the mentioned explanation
scores. Furthermore, we want to explore the limits of the computational complexity of
these scores. This will lead us to extend the scores, such that they can also handle sets
of features. In addition to Bertossi’s implementation, we will implement our own Python
framework to compute all explained scores in an straightforward and self-explanatory
way. We will also discuss the relationships between the scores and their implementations,
and think about extensions and future work.

One of the key challenges of the thesis was that there is significant variation in the defini-
tion of the scores in the literature. Consequently, we sought to establish a standardized
and clearer description of these scores. Finally, by developing a common understanding
of key terms and concepts, we were able to effectively compare the scores. In addition, we
introduced two new scores by expanding the existing scores for sets of features. To facili-
tate a more comprehensive analysis of the scores, we implemented them, creating a new
Python framework1. The implementation process involved carefully selecting appropriate
data, training classifier models, and incorporating score functions that produce reasonable
and intelligible results. By evaluating the implemented scores and examining the feature
rankings, we gained valuable insight into the challenges associated with computing scores
for larger instances. This, in turn, helped us refine the framework and prepare it for
future research.

In Chapter 2, we explain the basics of machine learning and relational databases. After
that, Chapter 3 is dedicated to a detailed consideration of explanations. In Chapter 4, we
will look at causality from a philosophical perspective. In Chapters 5 and 6, scores and
their computational complexity are examined in more detail, followed by a comparison
and analysis of relationships between scores in Chapter 7. The definition of our newly
designed scores is presented in Chapter 8. The implementation of all scores is explained
in Chapter 9, while Chapters 10 summarizes all the findings and draws a conclusion.
Finally, Chapter 11 is devoted to examining future research directions and articulating
our perspectives on the potential avenues for achieving effective explanations.

1https://github.com/Florian-Lackner/score-based-explanations
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CHAPTER 2
Preliminaries

In this chapter, we will start by defining terms and introducing research areas, which
should help to better understand the following chapters. Furthermore, we want to point
out details that will become important later or help to understand more complex topics.

2.1 Machine Learning
Nowadays, machine learning is used in many areas to solve complicated problems using
given data. Algorithms try to learn how the solutions of certain problems look like in
order to imitate them and to find solutions for similar problems. Mostly the algorithms
get the problems as input and try to predict a solution. At the beginning of the learning
phase this prediction is still bad, but over the training time, the algorithm ”learns” and
improves. The use cases can be divided into three large areas:

• supervised learning: The algorithm receives inputs, each of which is labelled with
a result. Through the results, the algorithm can check itself whether its own
prediction was right or wrong and adapt accordingly for new similar inputs. [37]

• unsupervised learning: There is no labelled data. The algorithm has specifications
and uses them to try to find out what a ”good” result looks like. [37]

• reinforcement learning: The algorithm is defined as an agent in a predefined world.
Initially, it acts with the world aimlessly and arbitrarily, but after each action it
receives feedback from the world through its sensors and learns through punishments
and reinforcements how it should best behave in order to achieve a concrete goal in
the world. [37]

Furthermore, the problems are divided into two groups. On the one hand, there is
classification. As the name suggests, a so-called classifier classifies the inputs into

5



2. Preliminaries

different groups. On the other hand, there are regression problems. These do not have a
class as an output, but a continuous value. [35, 37]

Example 2.1.1. The best way to categorize bank customers according to their cred-
itworthiness is to use a classifier. First, the classifier is given a lot of data about bank
customers who have already received a loan and for whom it is known whether it was
useful or not. The algorithm learns from the training data when a customer has been
correctly or incorrectly categorized, and can thus adjust its future assumptions. After the
long training period, the algorithm does not need to be adjusted and is able to correctly
predict the category of new bank customers even without supervision.

Example 2.1.2. However, if the task is to determine how creditworthy a bank customer
is, the solution is likely to be a percentage estimate rather than a category. A regression
model works in a similar way to the classifier with training data. However, instead of
adjusting the category, it adjusts internal values that lead to a higher or lower result in
future predictions.

In general, the explanations mostly deal with supervised learning algorithms for classifi-
cation results, so in this thesis we will mainly focus on this form of machine learning.
However, it should be noted that there are other algorithms besides classification. For
example, logistic regression and neural networks are widely used. These are rarely used
for classification problems and are sometimes more complicated to compute, making
them particularly difficult to explain. [35, 37]

2.1.1 Classification

Classifying entities can be done in many different ways. Entities e ∈ E are always the
input for the classifier C and a label C(e), an associated class of e, is the output. Thus, a
prediction is made as to which class the entity e belongs to. The features of an entity
are taken into account. Each feature f ∈ F is a function which is applied to an entity e
and assigns a value from its finite domain dom(f). Thus e = ⟨f1(e), f2(e), . . . , fn(e)⟩ is a
tuple of n values, which includes a value for each feature. [8]

A classifier C that returns one of only two possible labels for an entity e is called a binary
classifier, so C(e) ∈ {0, 1} holds. In the following we will often deal with binary classifiers,
since this is easier to understand, but many results can also be extended to arbitrary
classifiers. Also the classifier in Example 1.0.1 was binary: the client can either get the
credit or not. [8, 37]

An example for a classifier is a decision tree. It creates a tree from the training data,
which only needs to be processed during prediction. Each node in the tree represents a
query to the entity. The edges represent disjunctive answers for the queries. In order to
be able to make a prediction, one starts with the root of the tree and selects the edge,
which corresponds to the entity. In the reached leaf is then the class into which the
instance was classified. In Section 3.2 in Figure 3.2 a decision tree is shown. [35, 37]

6



2.2. Relational Databases

2.2 Relational Databases

A relational database is a data store with a relational schema R. This consists of a domain
of constants C and a finite set of predicates P. Furthermore, R creates a first-order
predicate logic language L(R) with an equality =. Besides constants, usually denoted by
a, b, c, . . . , there are also variables x, y, z, . . . and finite sequences of constants or variables
a⃗, b⃗, c⃗, . . . , x⃗, y⃗, z⃗, . . . . P ∈ P consists of n-ary atoms of the form P (t1, t2, . . . , tn), where
the terms t1, t2, . . . , tn can be both constants and variables. The term ground is used to
describe atoms that do not contain variables. A finite set of ground atoms is then called
database D for R. [6]

2.2.1 Queries

Queries are first-order formulas that retrieve data from a database. A Conjunctive Query
(CQ) Q is a query of the form Q(x⃗) = ∃y⃗(P1(x⃗1) ∧ · · · ∧ Pn(x⃗n)), where Pi ∈ P and
x⃗ = ( x⃗i) \ y⃗ are different free variables. We denote a query Q with n free variables,
which are replaced component-wise by c⃗, by Q[⃗c]. Such a sequence of constants, c⃗ ∈ Cn,
is a so-called answer to Q from a database D, if Q[⃗c] is true in D. The latter can also
be written formally as D |= Q[⃗c]. The set of all answers to Q from D is Q(D). If Q(D) is
not empty, then the query Q in the database D is said to hold. Furthermore, a Boolean
Conjunctive Query (BCQ), Q is a query without free variables with Q(D) = true}
exactly if true is in D. In addition, conjunctive queries can also be written as answer-set
program (ASP), which we explain in more detail in Section 2.5. [8]

2.2.2 Database Repairs

Many databases hold data from a particular domain, often accompanied by integrity
constraints, which in return should be satisfied by the database itself. These are usually
BCQs that prohibit certain pairs of tuples and are therefore called denial constraints,
DCs. If a database D does not follow its DCs, it is called inconsistent and must be
repaired by a so-called database-repair. These repaired databases D′ must have the
same schema as database D, must satisfy all DCs so that D′ |= DCs, and must differ
minimally from D. [8]

Example 2.2.1. Consider a database D and a set of denial constraints DCs, both seen
in Table 2.1. Because D does not satisfy the DCs, D is inconsistent. [8]

R A

a
b

S A B

a c

T A C

a d

DCs : ¬∃x∃y(R(x) ∧ S(x, y))
¬∃x∃y(R(x) ∧ T (x, y))

Table 2.1: An inconsistent Database. [8]

7



2. Preliminaries

To repair the database we have to delete tuples from the database D to prevent the
two joins in the DCs. Two other options would be to add or to modify tuples in D. If
we would add new tuples, the original tuples, which are responsible for the inconsistent
database, would continue to exist. Modifying tuples would be a way, but we do not deal
with that in this thesis, because it would lead too far. [8]

Deleting tuples can be done in two ways: On the one hand, a consistent database can
be built from tuples of the inconsistent database D until the database would be made
inconsistent by each additional tuple. On the other hand, one could use D and delete as
few tuples as possible from it to create a consistent database. It is important to avoid
deleting additional tuples that do not need to be deleted, in other words, to keep as many
tuples as possible from D so that the resulting database is still consistent. [8]

By both methods a so-called S-repairs is obtained. These are subset-maximal consistent
subinstances of D. Examples of such repaired databases for Example 2.2.1 are: D1 =
{R(b), S(a, c), T (a, d)} and D2 = {R(a), R(b)}. Any tuple from D that could be added
to these databases would make them inconsistent. Also note that D1 and D2 are the
only possible S-repairs, since each tuple from D occurs in at least one repair. [8]

Another repair which should be mentioned here is the C-repair. These are maximum-
cardinality consistent subinstances of D. So intuitively this is the largest subset of D
that is still consistent. The only C-repair for Example 2.2.1 is D1. Note that also with
C-repairs, it is not possible to add more tuples from the database without making the
repair inconsistent. If such addition were possible, there would exist a repair requiring
fewer tuples to be removed from the database, indicating that the original repair was not
a C-repair. Therefore, every C-repair is also an S-repair. However, as observed in D2,
the opposite does not hold. [8]

2.3 Probability Distributions
In the course of this work we will need some population distributions. These are important
for making assumptions about the given data, as they are often incomplete or very large.
Furthermore, the importance of an entity or tuple depends strongly on its frequency in
the data. Entities or tuples that occur very often are more important than those that
occur less often. The choice of algorithm also depends strongly on the data. If an input is
known to be common, the algorithm can be designed to work well with that data. [15, 7]

In the following, we will discuss three distributions commonly found in the literature,
along with their advantages and disadvantages. We will also discuss their explanatory
relevance, as this is crucial for their use in this thesis.

2.3.1 Uniform Distribution
Probably the most natural choice of distribution is the uniform distribution. In this
distribution, every tuple in the population E gets the same probability of 1

|E| . Since it
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2.3. Probability Distributions

does not take into account that combinations of feature values may be more common
than others, it can be argued that this is a rather poor choice for explanations. [7]

2.3.2 Fully-Factorized Distribution
Probably the most commonly used distribution for explanations is the fully-factorized
distribution. As we will see in Chapter 5, it has good properties for calculating the SHAP
score explained there.

Definition 2.3.1 (Fully-Factorized Distribution) [15, 7]. Let Pr be a fully-
factorized distribution over n discrete and independent random variables X1, . . . , Xn and
for every instance e = (f1(e), . . . , fn(e)) ∈ E we have

Pr(X1 = f1(e), . . . , Xn = fn(e)) =
n

i=1
Pr(Xi = fi(e)).

where Pr(Xi = fi(e)) = |{e′∈E|fi(e′)=fi(e)}|
|E| . If E is too large or not sufficiently defined, a

representative subset S ⊆ E can also be chosen to determine the probability of a value
for a feature: Pr(Xi = fi(e)) = |{e′∈S|fi(e′)=fi(e)}|

|S| .

The fully-factorized distribution assumes that all features are independent and thus gains
simplicity. This assumption is justified because classifiers often do not have enough infor-
mation about the data and it can be assumed that all features are treated independently.
Moreover, it has been shown several times that the full-factorized distribution is highly
tractable and therefore has good preconditions. [15]

On the other hand, this distribution only takes the real population into account to a
limited extent. Combinations of feature values, which occur more frequently together,
are not included, since each feature is considered in isolation. [7]

2.3.3 Empirical Distribution
Another distribution discussed in the literature is the empirical distribution. Here, special
attention is paid to the frequency of tuples in the empirically collected data. For this
purpose, a sample S ⊆ E is chosen from the entire population E , which is as representative
as possible for the distribution of the entire population. The probability of a tuple in the
distribution is set equal to the distribution in the sample S. If a tuple does not occur in
sample S, its probability is 0. [7]

Definition 2.3.2 (Empirical Distribution) [7]. Let Pr be a empirical distribution
over n discrete and independent random variables X1, . . . , Xn and for every instance
e = (f1(e), . . . , fn(e)) ∈ E we have

Pr(X1 = f1(e), . . . , Xn = fn(e)) = |{e′ ∈ E | f1(e′) = f1(e), . . . , fn(e′) = fn(e)|}
|E| .

9
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A major advantage of the empirical distribution is its low overhead. Due to the relatively
small sample, there are many tuples with probability 0 that do not need to be considered
further. On the other hand, this can also be a disadvantage, as we will see in Chapter 9.
Unfortunately, it has been proved in [15] that computing the SHAP score with an
empirical distribution is #P-hard and therefore intractable. [15]

2.4 Complexity classes
In computer science, it is not only important that there are algorithms to solve problems,
but also that they are classified according to their efficiency. The classes into which we
divide algorithms are called complexity classes and describe how complex a problem is.
Besides problems that can be solved in polynomial time, which are in class P and are
also called tractable, there are other complexity classes. In this thesis, our primary focus
will be on the following complexity classes:

P: Problems which are solvable by a deterministic Turing machine in polynomial
time. [18]

NP: Problems which are solvable by a non-deterministic Turing machine in polynomial
time. [18]

#P: Problems which count how many solutions there are to a problem solvable by a
non-deterministic Turing machine in polynomial time. [42]

2.4.1 Polynomial Hierarchy
An oracle is an extension of a Turing machine. A Turing machine with an oracle for
the complexity class C can solve problems of C in only one computation step. The
so-called polynomial hierarchy arranges different complexity classes in a hierarchy with
so-called levels. The levels 0P, 1P, 2P, etc. are defined inductively in such a way
that problems of level i+1P can be solved by a deterministic polynomial-time Turing
machine with an oracle for a problem of level iP. The complexity classes described
above can also be placed in this hierarchy as 0P = P and 1P = NP. [41]

Furthermore, it is relevant how often this oracle is used. So we define the following
notation:

Definition 2.4.1 [36]. Let C be a complexity class, then the complexity class FP C[log n]

consists of all functions that can be computed by a polynomial-time Turing machine with
an oracle for a problem in C, asking a total of O(log|x|) queries for the input x.

2.4.2 Polynomial Time Reduction
In order not to start from scratch when estimating the complexity of a problem, researchers
like to use so-called reductions. Reduction is a method of theoretical computer science
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in which one problem is reduced to another. If there is an algorithm for the second
problem, the first one can also be solved by reduction. The reducibility is therefore a
relation on the set of problems, by which the complexity of two problems can be related
to each other. A polynomial-time reduction from a problem A to a problem B, denoted
by A ≤P B, is a polynomial-time algorithm that solves problem A with access to an
oracle for problem B. This kind of reductions is also called Cook reduction. Furthermore,
A ≡P B holds if A ≤P B and B ≤P A. [15, 18]

2.4.3 Completeness and Hardness
The concept of reductions serves as the basis for determining the difficulty of a problem
within a complexity class. A problem X is considered hard for a complexity class C if
every problem in C can be reduced to X in polynomial time. Consequently, no problem
in C can be more difficult than X, as an algorithm for X enables us to solve any problem
in C with only a polynomial slowdown. Notably, the collection of problems that are hard
for the complexity class NP is referred to as the set of NP-hard problems. [18]

If a problem X is both hard for a complexity class C and is a member of C, it is referred
to as being complete for C. In this context, X represents the most complex problem
within C, as it is at least as hard as the hardest problems in C. In particular, the class
of NP-complete problems is important because it contains the hardest problems in the
complexity class NP. Since every problem in NP can be reduced to an NP-complete
problem in polynomial time, the discovery of an NP-complete problem that can be solved
in polynomial time would imply the equivalence of complexity classes P and NP. [18]

Example 2.4.2. Consider again the well-known NP-complete problem SAT. The
questions of the associated problems of the mentioned complexity classes are:

P: For a given propositional formula, is Φ a satisfying variable assignment?

NP: Does a satisfying variable assignment exist for a given propositional formula?

#P: How many satisfying variable assignments exist for a given propositional formula?

2.5 Answer-Set Programming
ASPs Π are finite sets of rules of the form:

A1 ∨ · · · ∨ An ← B1, . . . , Bm, not C1, . . . , not Cl

where n, m, l ≥ 0 and Ai, Bj , Ck are atoms. These Atoms are of the form P (v⃗), where P
is a predicate of fixed arity and v⃗ a vector of variables and constants of the same arity.
A1 ∨ · · · ∨ An is called the head and B1, . . . , Bm, not C1, . . . , not Cl is called the body
of the rule, where B1, . . . , Bm are positive literals and not C1, . . . , not Cl are negative
literals. All variables appearing in A1, . . . , An, not C1, . . . , not Cl also have to be in
B1, . . . , Bm. [8]
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All constants of Π form the Herbrand universe H (Π). To obtain a ground rule from
a rule in Π, each variable has to be instantiated with all possible values in H (Π).
The ground version of Π gr(Π) is an ASP with only ground rules. Furthermore, the
Herbrand base HB(Π) consists of all these instantiated atoms with constants. A model
M of Π is a subset of HB(Π) which satisfies gr(Π) that means for every ground rule
A1 ∨ · · · ∨ An ← B1, . . . , Bm, not C1, . . . , not Cl of gr(Π), if {B1, . . . , Bm} ⊆ M and
{C1, . . . , Cl} ∩ M = ∅, then {A1, . . . , An} ∩ M ̸= ∅. Besides, M is a minimal model when
there is no other model M ′ with M ′ ⊂ M . The set of minimal models of Π is denoted by
MM (Π). Now for a subset S ⊆ HB(Π), the Gelfond-Lifschitz reduct can be constructed
as described in [19]. This involves deleting any rule from gr(Π) that contains negative
occurrences of atoms from S, as well as removing negative atoms from all remaining rules.
If S ∈ MM (GLS(gr(Π))), it is referred to as a stable model or answer-set. Furthermore,
every stable model is also a minimal model. [19]

There are stratified and unstratified ASPs, which differ in their complexity. Unstratified
ASPs have at least one cycle in the definition of predicates, which contains negation.
Thus, these programs cannot be evaluated iteratively, since first it must be checked
whether such a cycle exists and whether the individual atoms may exist at all. This is
different by stratified programs. Here one starts with the facts, rules without bodies,
where the arrow for generation can be omitted. By applying the remaining rules, new
atoms can then be created step by step. These steps are often represented as layers and
are also called strata. [8]

Example 2.5.1. The following program is unstratified, because a,b and c form a cycle
with negation:

a ← not b; b ← c; c ← a

Furthermore, the evaluation of an ASP is divided into two forms. On the one hand there
is the brave semantics, which includes all atoms, which are contained in at least one
model. On the other hand there is the skeptical (or cautious) semantics, which includes
only the ground atoms which are contained in all models. [8]

An example shows the difference between those:

Example 2.5.2. Consider the following ASP Π:

a ∨ b ← c, not e; c ← d; d

The two stable models of P are {a, c, d} and {b, c, d}, where each set includes only the
atoms which are true and exclude all atoms which are false. The brave semantics
would then output {a, b, c, d} and the skeptical semantics {c, d}.
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CHAPTER 3
Explanations

Our digital systems have become very complex these days. So complex, in fact, that we
are often no longer able to calculate exactly what is mathematically happening in the
process. In this chapter, we want to introduce two such problems. Both are about a
system that gets an input and returns an output. If the output has to be changed to a
specified value, one has to know which input is necessary for it. To find a clever way to
use the right input is a big problem in computer science in our time.

To explain, in the end, to a person why a certain part of the input was decisive for the
output, this must be calculated. The results are called explanations. Explanations are
more and more often given by score-based methods. These assign a score to each part of
the input to show which part contributed how much to the output. If the value is very
high, this part is essential for the outcome. If the value is very low, or even zero, it might
even be omitted and the result would remain the same. [7, 8]

These score-based methods for explanations often use so-called counterfactual interven-
tions to get their scores for each part of the input. Counterfactual interventions are small
changes in the initial state to get back a desired result. If the result really changes due
to a counterfactual intervention, the changed part of the input is called counterfactual
causes. If the input is changed only slightly, but the rest remains the same, it may still
be that the result changes. If it changes to the desired result, it is known that this part
of the input contributed to the original result. [8]

The information and the combination of these counterfactual interventions often have
great influence for the scores to extract explanations for the given input. If there were a
set of multiple values that would need to be changed to get the desired outcome it is
called a contingency set. Causes that require a contingency set to specifically change the
outcome are called actual causes. Note that an actual cause with an empty contingency
set is a counterfactual cause. This makes every counterfactual cause an actual cause. A
larger contingency set also means that each individual part of the input is less relevant and
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thus has a smaller score. However, a lower score also means that the resulting explanation
is worse, since the score quantifies the relevance for the result. Thus, following the types
of database repairs, there are two types of explanations that we distinguish. On the one
hand, there are s-explanations which contain only contingency sets whose proper subsets
would not cause a change in the result. There may also be several different contingency
sets of different sizes. On the other hand, there are c-explanations which minimise the
size of the contingency sets and thus have higher scores. So every c-explanation is also
an s-explanation and not necessarily unique. [7, 8]

3.1 Explanations for Classification

Consider a classifier C which reads in an entity with n features F = ⟨f1, f2, . . . , fn⟩. Often,
one does not know every detail about the classification of C, especially the mathematical
model inside, and most importantly, the data it was trained on. Thus such a classifier
can be seen as a black-box. One only has access to the input and the output and can
thus draw conclusions about how things work inside the classifier. In Figure 3.1 this
scheme is shown with C as black-box classifier. [6, 8]

F(e) C C(e)

Figure 3.1: A black-box Classifier.

If an explanation is required and the classifier would be a decision tree or a logistic
regression, it would perhaps make more sense to give the explanation on the basis of
the internals of the model. But without a decision tree, but with a very complicated
neural network, for example, it’s very hard to make inferences, even if the internals of
the classifier are known. To cover all cases, we assume the ”worst case”, where we do not
know which model is used and still have to give an explanation. [8]

Example 3.1.1. Consider a person who always rides a bike to work. However, she does
not ride when the weather is too extreme, that is, when it is too hot or when it is raining
and the wind is strong.

Example 3.1.1 shows well what kind of explanations score-based methods provide. Given
a weather situation, one either rides a bike or not. From an outsider’s perspective, one
does not know what weather condition would have to prevail for the bicycle to be used.
A decision tree, such as the one shown in Figure 3.2, can help. The set of features is
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F = {outlook, humidity, wind} and the possible values are

dom(outlook) = {sunny, cloudy, rain},

dom(humidity) = {high, normal},

dom(wind) = {strong, weak}.

Each weather condition is considered an entity and contains values for each of the three
features. The decision tree now indicates with ”yes” if it is a weather condition where it
is comfortable to ride a bike or with ”no” if it is not. For example, the label for weather
condition {sunny, normal, weak} is ”yes”. [8]

outlook

humidity yes wind

no yes no yes

sunny cloudy rain

high normal strong weak

Figure 3.2: A Decision Tree for Example 3.1.1. [8]

In order to give an explanation, one only has to search the leaves of the tree for the desired
result and form an entity from the path to the root. Without the information about
the decision tree, however, this task is more difficult and counterfactual interventions
must be used. By starting with the weather e = {rain, normal, strong}, we implement
counterfactual interventions into our Example 3.1.1 to determine the responsibility of
all parts of the weather. For the weather condition e the classifier outputs ”no”, so it is
not comfortable to ride a bike in this weather condition. However, if we hypothetically
intervene the value for outlook from ”rain” to ”sunny”, we get a counterfactual version
e′ = {sunny, normal, strong} of e. Using the classification of the decision tree for e′, it
returns ”yes”. So we know that the outlook alone is a reason why the bike is not used,
and thus we know that ”rain” was very relevant for the original classification of e. In
addition, the value for the wind could also be changed, as the desired result can then
be achieved without altering the outlook. Reconciling all these issues is the task of the
aforementioned explanatory scores. [6, 8]
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3.2 Explanations in Databases
The same questions about classifiers in the machine learning domain are also raised in
the field of databases. In the following section we will describe a similar problem for
databases.

Example 3.2.1. Consider a database D, with relations R : {R(a, b), R(b, b), R(c, d)}
and S : {S(a), S(b), S(c)} and a BCQs Q : ∃x∃y(S(x), S(y), R(x, y)) as seen in Table 3.1,
then D |= Q holds. If we assign values from the database to the variables of Q and see
if these relations exist in the database, we quickly find at least one cause for D |= Q:
{S(a), S(b), R(a, b)}. [8]

R A B

a b
b b
c d

S C

a
b
c

Q : ∃x∃y(S(x), S(y), R(x, y))

Table 3.1: A Database and a BCQ. [8]

Just as before, the question is how responsible are these tuples and which other tuples in
the database are responsible for D |= Q to hold? Here, counterfactual causes are tuples
why a query is true or false. A tuple τ ∈ D is a counterfactual cause for a query Q if
D |= Q and D \ {τ} ̸|= Q holds. In Example 3.2.1, S(b) is a counterfactual cause for Q
because Q would no longer be true if S(b) is removed from the database. [8]

If removing a single tuple is not enough to change the result of a query, perhaps multiple
tuples will do it. If there is a tuple τ ∈ D and a contingency set Γ ⊆ D such that τ is a
counterfactual cause for Q in D \ Γ, then τ is an actual cause. In Example 3.2.1, R(a, b)
is an actual cause for Q with the contingency set {R(b, b)}. Q would still be true if
R(a, b) or R(b, b) were removed from the database, but not both. Furthermore, R(a, b)
becomes a counterfactual cause for Q if the contingency set, {R(b, b)} is removed from
the database. [8]

3.2.1 Database Repairs
Very closely related to counterfactual causes in databases are database repairs. The
question that arises is: What are the consistent answers of a query Q to a database D
that does not satisfy a given set of denial constraints DCs? The answer to this can be
found in the following example, which shows that causes and database repairs have a lot
of similarity:

Example 3.2.2. Consider a BCQ

Q : ∃x⃗(P1(x⃗1) ∧ · · · ∧ Pm(x⃗m)),

and a database D for which D |= Q holds. Now it is possible to find out the reason for
D |= Q and the contingency set by database repairs.
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By negating Q a denial constraint DC can be created:

DC : ¬∃x⃗(P1(x⃗1) ∧ · · · ∧ Pm(x⃗m)).

Thus, if D |= DC holds, then D is inconsistent. Now, to get the cause for D |= Q with
minimal contingency sets, one only needs to do an S-repair for D and DC. If there is
a restriction to the cause for D |= Q to find a cause with minimum contingency sets,
and maximum responsibilities, then a C-repair for D and DC helps. This is because if a
tuple is responsible for an inconsistent database, then deleting it is a way to make the
database consistent again.
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CHAPTER 4
Causality

We have dealt a lot with causes and responsibilities so far, but what these two terms
really mean has not yet been clearly defined. Therefore, in this chapter we will deal
with them and show that these definitions can only be expressed very vaguely. Since
these two terms come from the intersection of computer science and philosophy, we will
refer specifically to [24], [22] and [44], the results of the work of Judea Pearl and Joseph
Halpern.

4.1 Causal Dependence
In 1973 Lewis described causality in [29] very intuitively and used the following notation:
If two events happen in our actual world, we call them cause C and event E, where E
depends on C, hence C > E holds. So if C happens, then E also happens. Consequently,
he arrived at a definition of causality:

Definition 4.1.1 (Causal Dependence) [44]. Event E is causally dependent on C if
and only if C > E and ¬C > ¬E holds.

Example 4.1.2. An example of this is a lightning striking a forest and starting a
devastating fire. The first event is the strike of the lightning, which causes a second
event, the forest fire. If the lightning did not strike the forest, the fire would not occur.
Therefore, the fire is causally dependent on the lightning. [29]

Lewis himself understood that this condition is only sufficient, but not necessary, because
overdetermination shows that there must be more than that.

4.2 Overdetermination
Example 4.2.1. Consider a lightning striking a forest and an arsonist setting a fire in
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the same forest at the same time by dropping a match. Both events together and each
individually lead to the ensuing forest fire. [44]

Overdetermination means that there are several events leading to the same situation.
In Example 4.2.1, the forest would still catch fire if there had been no lightning due to
the arsonist’s match. According to Lewis’ definition, this would mean that the lightning
strike would not have been a cause of the forest fire. Conversely, if the arsonist did not
set the fire, the forest fire would also be caused by the lightning, so the match of the
arsonist could not have been a cause either. Nevertheless, the lightning and the arsonist
each are causes of the forest fire. Lewisian causal dependency is therefore not necessary
for actual causality. [44]

4.3 Definition of Halpern and Pearl

Halpern and Pearl further developed Lewis’ definition of causal dependence to become
probably the most widely used definition of actual causes because it solves the problem of
overdetermination. It was originally proposed in [24] and later updated in [22]. However,
as we will see in the next section, this definition fails in another place, namely the problem
of isomorphism. [44]

For their definition, Halpern and Pearl tried to better model the world in which events
happen and first introduced causal models:

Definition 4.3.1 (Causal Model) [44]. A causal model is a 4-tuple M = (U , V, R, E),
where

1. U is a set of exogenous variables;

2. V is a set of endogenous variables;

3. R is a set of functions assigning a set of possible values R(X) to each variable X
in U or V;

4. E is a set of structural equations, where E associates each endogenous variable
X ∈ V with a function fX , such that

fX : (×U∈UR(U)) × (×V ∈V−{X}R(V )) → R(X)

Exogenous variables describe the context of the world. In Example 4.2.1 the context
would include all factors that influence the actual events, but are not mentioned because
the reader takes them for granted. For example, an exogenous variable could be the
oxygen in the air, which is necessary for a forest fire, or the intention of the arsonist. [44]
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Endogenous variables, on the other hand, represent all events that are the origins or
consequences in a causal scenario. So in Example 4.2.1 these would be

L : 1 if the lightning strikes, 0 if not
M : 1 if the arsonist drops a match, 0 if not

FF : 1 if there is a forest fire, 0 if not

Each of these events can either occur or not and therefore they get either the value
1 or 0 respectively. A possible world is an assignment of values to all variables in V.
So in Example 4.2.1 a possible world would be the actual world {L = 1, M = 1 and
FF = 1}. [44]

Since it often happens that a cause consists of several events, from now on we will
abbreviate conjunctions of multiple primitive events X1 = x1 ∧ X2 = x2 ∧ · · · ∧ Xn = xn

by X⃗ = x⃗. Here X⃗ is the vector of variables (X1, X2, . . . , Xn) and x⃗ is the vector of
values (x1, x2, . . . , xn).

Furthermore, structural equations exist exclusively for endogenous variables. Thus, the
exogenous variables are taken as given. The structural equation from Example 4.2.1 is
FF = L ∨ M . This expresses that both events, the lightning strike and the falling match,
individually and together lead to the forest fire. Only if both events do not happen, the
forest will not catch fire. Moreover, these structural equations are not cyclic by definition,
otherwise an event could be its own cause. [44]

A causal setting (M, u⃗) is a model M with a value assignment for all exogenous variables
U . The relation (M, u⃗) |= φ, where M is a model and φ is any boolean combination of
primitive events, is then called satisfaction relation. This satisfaction relation holds if and
only if φ holds after the exogenous variables U are set to the values in u⃗. In Example 4.1.2,
first the context is set in which the lightning can strike, then the assignment of the
endogenous variables begins through the structural equations E in M .

Moreover, we define interventionist counterfactuals X⃗ = x⃗ in (M, u⃗) |= [X⃗ = x⃗]φ, which
holds exactly if and only if (MX⃗=x⃗, u⃗) |= φ holds, where MX⃗=x⃗ means M with additional
structural equations X⃗ = x⃗. To do this, the structural equations for the variables from
X⃗ must be deleted beforehand and then X⃗ = x⃗ must be added. [44]

For instance, in Example 4.1.2 this would be if we wanted to do a thought experiment by
asking what would have happened if the lightning did not strike the forest. Formally:

(M, u⃗) |= [L = 0](FF = 0)
(ML=0, u⃗) |= (FF = 0)

These two satisfaction relations are equivalent because L can be set to a value either
already in the model by a structural equation or only in the assignment of the endogenous
variables to create a possible world. They also hold because the forest fire does not start
without the lightning.
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It is possible to transfer the Lewisian Causal Dependence into a causal model:

Definition 4.3.2 (Lewisian Causal Dependence) [44]. Event E = e is causally
dependent on cause C = c in (M, u⃗), if and only if (M, u⃗) |= [C = c](E = e) and there
are c′ and e′, with c′ ̸= c and e′ ̸= e such that (M, u⃗) |= [C = c′](E = e′).

However, as already described, Lewisian Causal Dependence is not necessary for causality,
so we are interested in the definition of Halpern and Pearl:

Definition 4.3.3 (Actual Cause) [24]. Let M be a causal model and let u⃗ be a value
combination for the exogenous variables U . Then X⃗ = x⃗ is an actual cause of φ in the
causal setting (M, u⃗) if the following three conditions hold:

AC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= φ

AC2. There exists a partition (Z⃗, W⃗ ) of V with X⃗ ⊆ Z⃗ and some setting (x⃗′, w⃗′) ̸= (x⃗, w⃗)
of the variables in the subpartition (X⃗, W⃗ ) such that (M, u⃗) |= (Z⃗ ′ = z⃗) and

(a) (MW⃗ =w⃗′ , u⃗) |= [X⃗ = x⃗′]¬φ

(b) (MW⃗ =w⃗′ , u⃗) |= [X⃗ = x⃗, Z⃗ ′ = z⃗]φ for all Z⃗ ′ ⊆ Z⃗.

AC3. X⃗ is minimal; no proper subset of X⃗ satisfies conditions AC1 and AC2

AC1 in words describes that both the cause and the consequences must have happened.
Without one of the two, there is no cause or no effect on an event, so there can be no
causal connection. AC3 states that the cause is minimal. If a subset of the cause would
satisfy condition AC1 and AC2, then this alone is the cause and further events are
not necessary to determine the causal relationship. However, AC2 brings up a new
idea. What was called a contingency set in Chapter 3 is now all events in W⃗ = w⃗. In
other words, AC2(a) defines that to prevent the consequence φ both X⃗ and W⃗ must
be assigned different values (x⃗′, w⃗′) than their original values (x⃗, w⃗). But in addition, as
AC2(b) describes, X⃗ = x⃗ is the actual cause for φ, even if W⃗ gets different values w⃗′ and
no matter which subset Z⃗ ′ ⊆ Z⃗ were assigned to their values of the actual world. [13, 44]

Example 4.3.4. Let us consider Example 4.2.1 with the definition of Halpern and Pearl.
We recall the three endogenous variables V = {L, M, FF}, which stood for the lightning
strike, the dropping of the arsonist’s match, and the forest fire. We want to check if the
lightning strike L = 1 was an actual cause for the forest fire FF = 1. Thus, in our model
AC1 is true because both (M, u⃗) |= (L = 1) and (M, u⃗) |= (FF = 1) are true. To look
at AC2 we need a partition (Z⃗, W⃗ ) of V. For this we choose W⃗ = {M} as contingency
set with w⃗′ = 0, leaving Z = {L, FF}. By choosing this contingency set, AC2(a) is
satisfied, since (MM=0, u⃗) |= [L = 0](FF ̸= 1). No matter which subset Z⃗ ′ ⊆ Z⃗ is taken,
AC2(b): (MM=0, u⃗) |= [L = 1, Z⃗ ′ = z⃗](FF = 1) is always true. Because AC1 and
AC2 are false for all proper subsets of the actual cause L = 1, AC3 is true. Thus all
conditions are satisfied, so the lightning strike is an actual cause of the forest fire. [44]
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4.4 Problem of Isomorphism
The problem with Halpern and Pearl’s definition is that by creating the causal model,
information about the actual scenario is lost. As a result, two similar scenarios with
the same model can never get different causal judgments. This is called the problem of
isomorphism. An example of such an isomorphism is the bogus prevention, which will be
discussed in the following section. [44]

4.4.1 Bogus Prevention
Example 4.4.1. Consider a pedestrian who wants to cross a street. Because he is
distracted, he does not see an approaching car. Worried about the pedestrian, a witness
pulls him back onto the sidewalk in time, thus saving his life. Fortunately, however, the
car is able to stop quickly enough and would never have hit the pedestrian. Intuitively,
the witness did not save the pedestrian from death because the witness was just too
cautious and the car could in fact stop in time.

The causal model for Example 4.4.1 looks like this:

H : 1 if the car hits the pedestrian, 0 if not
W : 1 if the witness pulls back the pedestrian, 0 if not

PS : 1 if the pedestrian survives, 0 if not
E : PS = ¬H ∨ W

actual World : {H = 0, W = 1, PS = 1}

Since the models of Example 4.2.1 and Example 4.4.1 can be transformed into each other,
they are isomorphic. We can replace W , ¬H and PS from Example 4.4.1 with L, M
and FF from Example 4.2.1 respectively. Both the causal setting and the structural
equations are identical and, using Halpern and Pearl’s definition, lead to the same causal
judgment. With the contingency set {H = 1}, W = 1 is a cause of PS = 1, just as
L = 1 was a cause of FF = 1 in Example 4.2.1 when {M = 0} was the contingency set.
This is counterintuitive, however, because the witness simply misjudged the situation
and the pedestrian would have survived even without his intervention. That the witness’
bogus prevention was the cause of the pedestrian’s survival is an indication that the
Halpern and Pearl definition establishes causal relationships in some cases that do not
hold. Therefore, it was necessary to extend the definition of the causal model to include
this. [44]

4.4.2 Normality of Witness Worlds
Halpern and Hitchcock addressed the issue of bogus prevention in [23] by believing that
for every causal inference there is a counterfactual world of contingency W⃗ = w⃗′ which
witnesses the actual causality. However, this counterfactual world should be "at least as
normal as the actual world" [23]. They defined normality ⪰ as an order of all possible
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worlds that can arise from V and R from Definition 4.3.1, and thus came up with the
following definition. [44]

Definition 4.4.2 (Extended Causal Model) [23]. An extended causal model is a
5-tuple EM = (U , V, R, E , ⪰), where

1. U is a set of exogenous variables;

2. V is a set of endogenous variables;

3. R is a set of functions assigning a set of possible values R(X) to each variable X
in U or V;

4. E is a set of structural equations, where E associates each endogenous variable
X ∈ V with a function fX , such that

fX : (×U∈UR(U)) × (×V ∈V−{X}R(V )) → R(X)

5. ⪰ is a normality partial order on all possible worlds generated by V and R.

Hitchcock and Knob noted in [25] that people’s intuitions about causal inference are
often influenced by statistical and moral norms. Thus, whether one world is more normal
than another Halpern and Hitchcock described in [23] lies in their events. Events are
more normal than others if they occur statistically more often or if they are more moral.
For example, it is not very common for arsonists to set fire to a forest, as this behavior is
morally incorrect and also does not occur very often. Therefore, we can assume that the
world {L = 1, M = 0, FF = 1} is more normal than the world {L = 1, M = 1, FF = 1}.
Furthermore, there are events which are not comparable, resulting in incomparable worlds.
Therefore, the normality order is a partial order and not a total order. [44]

We define s as the world which is characterized by the causal setting (EM, u⃗) and sW⃗ =w⃗′
as the world which is characterized by (EMW⃗ =w⃗′ , u⃗). The difference between s and
sW⃗ =w⃗′ is that the latter has the redefined structural equations W⃗ = w⃗′ in its extended
model EM . Thus, it is now possible to define actual causes also with extended causal
models. [44]

Definition 4.4.3 (Actual Cause with Extended Causal Model) [23]. Let EM be
an extended causal model and let u⃗ be a value combination for the exogenous variables
U . Then X⃗ = x⃗ is an actual cause of φ in the causal setting (EM, u⃗) if the following
three conditions hold:

AC1EM. (EM, u⃗) |= (X⃗ = x⃗) and (EM, u⃗) |= φ

AC2EM. There exists a partition (Z⃗, W⃗ ) of V with X⃗ ⊆ Z⃗ and some setting (x⃗′, w⃗′) ̸=
(x⃗, w⃗) of the variables in the subpartition (X⃗, W⃗ ) such that (EM, u⃗) |= (Z⃗ ′ = z⃗)
and
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(a) (EMW⃗ =w⃗′ , u⃗) |= [X⃗ = x⃗′]¬φ and sX⃗=x⃗′,W⃗ =w⃗′ ⪰ s, where s is the actual world
characterized by (EM, u⃗)

(b) (EMW⃗ =w⃗′ , u⃗) |= [X⃗ = x⃗, Z⃗ ′ = z⃗]φ for all Z⃗ ′ ⊆ Z⃗.

AC3EM. X⃗ is minimal; no proper subset of X⃗ satisfies conditions AC1EM and AC2EM

The difference to the definition of actual causality is in AC2EM(a). The condition
restricts the possibilities for the contingency set such that the resulting world must be at
least equally normal to the actual world. [23]

Example 4.4.4. Following Halpern and Pearl’s first definition of actual causes in
[24], we concluded for Example 4.4.1 that, given their contingency sets, both the car
and the witness were actual causes that led to the pedestrian’s survival. For both
H = 0, and W = 1, the witness world is {H = 1, W = 0, PS = 0}. If we now assume
that drivers do not normally speed and that this behavior is fundamentally immoral,
we can say that {H = 0, W = 0, PS = 1} is more normal than the actual world
(H = 0, W = 1, PS = 1}. What we cannot say about, however, is whether the witness
world {H = 1, W = 0, PS = 0} or the actual world (H = 0, W = 1, PS = 1} is more
normal. To describe this, unlike Halpern’s definition in [21], the normality order is not
a total order but a partial order. These two worlds are incomparable and thus do not
satisfy the condition AC2EM(a). Thus, according to the definition of Halpern and
Hitchcock [23], one can say that in any case W = 1 was not an actual cause of the
survival of the pedestrian, since there is no witness world more normal than the actual
world. This is very intuitive, since in retrospect there was no life-threatening reason at
all for the pedestrian to retreat, and thus the witness could not have been the cause.

As mentioned above, H = 0 also has only the same witness world {H = 1, W = 0, PS = 0}.
Therefore also H = 0 is not a cause for PS = 1 because this witness world is not
comparable with the actual world. In other words, according to AC2EM(a), the car
is not an actual cause for the survival of the pedestrian either. However, this result
is not counterintuitive to Halpern and Hitchcock, probably because the car could not
have hit the pedestrian in the actual world, since the pedestrian was pulled back by the
witness. [23]

On the one hand, this result now leads to a partial solution for the problem of isomorphism,
however, there is another similar problem to Bogus Prevention, namely Bogus Permission
and this cannot be solved by the definition of actual cause with extended causal models.
In the following section we will discuss the problem of Bogus Permission in more detail
and explain where the definition of Halpern and Hitchcock fails. [44]

4.4.3 Bogus Permission
Example 4.4.5. Suppose the pedestrian from Example 4.4.1 has got serious injuries
due to the unnecessary help of the witness and has to be taken to the hospital. There
are two doctors Andrew and Bryan. Andrew gets the task to put the patient on the
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drip immediately. Bryan, on the other hand, should perform a plasma exchange. Bryan
doesn’t know that the plasma exchange has a negative effect on the patient’s health,
especially if Andrew does his task before. Unfortunately, Andrew does not put his patient
on the drip and Bryan unwittingly does what he was told to do. [44]

The causal model for Example 4.4.5 is as follows:

A : 1 if Andrew puts the patient on the drip, 0 if not
B : 1 if Bryan performs a plasma exchange, 0 if not

PD : 1 if the patient dies, 0 if not
E : PD = ¬A ∨ B

actual World : {A = 0, B = 1, PD = 1}

By the time Bryan performs a plasma exchange on the patient, the patient’s death is
already certain, so B = 1 should not be the cause of the patient’s death, since Bryan
was given a bogus permission, since the decisions prior to his decision were already
determinant. A = 1 should be the cause, since Andrew’s inaction has reduced the
patient’s chances of living to 0. Unfortunately, AC2EM cannot represent this fact.
If we take the same idea from Halpern and Hitchcock and apply it to this example,
{A = 1, B = 0, PD = 0}, the only witness world for both A = 0 and B = 1, is not
comparable to the actual world {A = 0, B = 1, PD = 1}. Thus, we come to the same
conclusion as with the bogus prevention, that both A = 0 and B = 1 cannot be the
cause, since they have the same witness world and it is not comparable to the actual
world. This result is counterintuitive since Andrew obviously did not do his job and he
should be the cause of the consequence. [44]

In the next section, we explain Zhu’s definition which can handle the problem of isomor-
phism and therefore solve bogus prevention and bogus permission. [44]

4.5 New Definition of Actual Causes appealing to the
Default World

Zhu’s new definition uses Menzies’s definition in [34] of default worlds. Default worlds
are worlds from a set of worlds defined by their models. Their exogenous variables are
set to the default values they would have naturally, if nothing would influence them. [44]

Definition 4.5.1 (Default World by Menzies) [34]. A causal model M = (U , V, R, E)
creates default worlds D such that the following conditions hold for d ∈ D:

(a) The exogenous variables U of d are set to default values.

(b) The endogenous variables V of d changed according to the structural equations E
without any actor changing anything about them.
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The proximity to Halpern and Hitchcock’s normality order is easy to see. Thus, Zhu
defined default worlds with extended causal models:

Definition 4.5.2 (Default World by Extended Model) [44]. An extended causal
model EM = (U , V, R, E , ⪰) creates default worlds D such that d ⪰ s holds for d ∈ D
and any world s created by EM .

In other words, this means that a default world must be at least as normal as all other
worlds.

With the definition of default worlds by extended models, Zhu then defined actual
causality with default worlds in [44]:

Definition 4.5.3 (Actual Cause appealing to the Default World) [44]. Let
EM be an extended causal model and let u⃗ be a value combination for the exogenous
variables U . Further, we define u⃗d, the context of the default world in which all exogenous
variables are set to their default values. Then X⃗ = x⃗ is an actual cause of φ in the
extended causal setting (EM, u⃗) if the following three conditions hold:

AC1def. (EM, u⃗) |= (X⃗ = x⃗) and (EM, u⃗) |= φ

AC2def. There exists a partition (Z⃗, W⃗ ) of V with X⃗ ⊆ Z⃗ and some setting (x⃗′, w⃗′) ̸=
(x⃗, w⃗) of the variables in the subpartition (X⃗, W⃗ ) such that (EM, u⃗d) |= (W⃗ = w⃗′)
or (EM, u⃗) |= (W⃗ = w⃗′) and (EM, u⃗d) ̸|= (X⃗ = x⃗) and (M, u⃗) |= (Z⃗ ′ = z⃗) and

(a) (EMW⃗ =w⃗′ , u⃗d) |= [X⃗ = x⃗′]¬φ

(b) (EMW⃗ =w⃗′ , u⃗d) |= [X⃗ = x⃗, Z⃗ ′ = z⃗]φ for all Z⃗ ′ ⊆ Z⃗.

AC3def. X⃗ is minimal; no proper subset of X⃗ satisfies conditions AC1def and AC2def

Again, AC1def and AC3def remain unchanged and only AC2def is improved compared
to AC3EM. The contingency set is further restricted so that it may only consist of
events that have either actually happened or would naturally happen in the default world.
Furthermore, the latter also applies to the actual cause, since otherwise there would be a
naturally occurring cause C⃗ = c⃗ that triggers the actual cause X⃗ = x⃗ and would thus
itself become the actual cause for φ.

If we look again at Examples 4.2.1, 4.4.1 and 4.4.5, we can see why Definition 4.5.3, is
superior to the previous ones:

Example 4.5.4. In Example 4.2.1, we wanted both the lightning and the arsonist’s match
to be actual causes of the forest fire. Given the default world {L = 0, M = 0, FF = 0}
and the contingency set {M = 0}, the condition AC2def(a), (EMM=0, u⃗d) |= [L =
0]¬(FF = 1) and the condition AC2def(b), (EMM=0, u⃗d) |= [L = 1](FF = 1) are
satisfied. Also the conditions AC1def and AC3def are true, these can be taken from
Example 4.2.1. Thus, the lightning is an actual cause of the forest fire in any case. For
the match of the arsonist this is also true if we choose {L = 0} as contingency set.
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Example 4.5.5. In Example 4.4.1 the witness was actually not an actual cause for
the survival of the pedestrian. To show this we use the default world {H = 0, W =
0, PS = 1} and every possible contingency set. The two possible contingency sets are
{H = 0} and {}. If we test the contingency set {H = 0} we see that AC2def(a),
(EMH=0, u⃗d) |= [W = 0]¬(PS = 1) does not hold. The contingency set {} does not
change the result either, since AC2def(a), (EM∅=∅, u⃗d) |= [W = 0]¬(PS = 1) is not
true either. Therefore, there is no partition (Z⃗, W⃗ ), such that AC2def holds and thus
W = 1 is not an actual cause.

Conversely, the stopping of the car H = 0 remains an actual cause for the survival of the
pedestrian. This is proved by finding the appropriate contingency set. With {W = 0},
both AC2def(a), (EMW =0, u⃗d) |= [H = 1]¬(PS = 1) and the condition AC2def(b),
(EMW =0, u⃗d) |= [H = 0](PS = 1) are satisfied. AC1def and AC3def are also satisfied
and so the stopping of the car is solely responsible for the survival of the pedestrian.

Example 4.5.6. Regarding the last Example 4.4.5, Bryan, the doctor who could not
prevent the death of the patient, after the misbehavior of his colleague Andrew, should
not be an actual cause. Since the two Examples 4.4.1 and 4.4.5 are isomorphic we come
to the same conclusion here as in the example before: Bryan is not the actual cause.

The same is true for Andrew, of course. By the contingency set {B = 0} for which
(EM, u⃗d) |= (B = 0) holds, A = 0 is the actual cause of the death of the patient.

4.6 Degree of Responsibility
So far, we have only discussed causality. It was about whether an event is a cause for
another event. It is not distinguished whether it is only a subsidiary cause or the main
cause. The degree of responsibility, in short the responsibility, is about measuring causes
in order to be able to say how much an event is a cause for another event.

Definition 4.6.1 (Degree of Responsibility) [13]. Consider an actual cause X⃗ = x⃗
for φ in the causal setting (EM, u⃗). It follows from the definition of actual causes that
there also exists a partition (Z⃗, W⃗ ) with a setting (x⃗′, w⃗′) such that AC2def holds. Under
the following conditions

(a) each variable in W⃗ has a different value in w⃗′ than it has in the actual world

(b) there is no other partition (Z⃗ ′, W⃗ ′) and setting (z⃗′′, w⃗′′) satisfying AC2def such
that |W⃗ ′| < |W⃗ | and each variable in W⃗ ′ still has a different value in w⃗′′ than it
has in the actual world

the degree of responsibility ρ of the cause X⃗ = x⃗ is

ρ((EM, u⃗), (X⃗ = x⃗), φ) = 1
|W⃗ | + 1
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On the other hand, ρ((EM, u⃗), (X⃗ = x⃗), φ) = 0 if X⃗ = x⃗ is not a cause for φ.

Example 4.6.2. Consider 11 voters in an election, which have to choose between
candidate A or candidate B. If all 11 voters choose candidate A, the individual voters are
less responsible for candidate A’s electoral victory than if only 6 voters chose candidate
A in the election. In both cases, all voters who chose candidate A are actual causes of
candidate A’s electoral victory. However, their degree of responsibility differs depending
on how many voters choose candidate A. In the first case, individual voters may even
change their minds and would make no difference in the election outcome. In the second
case, however, every vote counts and a single voter could turn the election result. [33]

In [13], Chockler and Halpern further defined the notion of the degree of blame, in short
blame. In addition to the degree of responsibility, the issue here is the degree to which one
can blame someone else for one’s actions.Intuitively, an action of a person who did not
know the consequences of the action cannot be blamed, even if the action was responsible
for the outcome. However, since this would go too far, we will not discuss it further in
this paper. [13]

4.7 Complexity
The complexity of computing the degree of responsibility depends strongly on the
complexity of causality. In [16] and [17], Eiter and Lukasiewicz showed that the problem
of deciding whether X⃗ = x⃗ is an actual cause of ϕ is generally 2P-complete for general
recursive models. If a binary model is used, that is, a model where each variable can
take exactly two values, it is NP-complete [17]. The same gap occurs in the complexity
of the degree of responsibility: Chockler et al. showed in [14] that computing the degree
of responsibility for binary models is FP NP[log n]-complete. Then, in [13], Chockler and
Halpern presented results for general recursive models and proved that the computation
of the degree of responsibility is FP 2P[log n]-complete. [13]
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CHAPTER 5
Score-based Explanations based

on Shapley Values

In order to be able to give the explanations mentioned in Chapter 3, a measure is needed
with which the responsibility can be measured. Scores are well suited for this purpose.
In this and the next chapter, we will look more closely at scores for explanations, discuss
definitions, and examine their complexity.
Using the Shapley Values, Lundberg and Lee [32] defined SHAP (SHapley Additive
exPlanations) – an explanatory value that, in the field of machine learning, provides
explanations for the results of classification models. In the area of data management,
SHAP measures the contribution of tuples in a query answer. To do this, they didn’t use
the definitions of causality and responsibility, but the cooperative game theory of L. S.
Shapley from 1953 [40]. [9]

5.1 Definition of Shapley Values
Let us consider a cooperative game played by players P. The players are divided into
teams of variable size, so each possible team is an element of the powerset of players
P (P). Now, one can measure how well each team plays. The Game function or wealth
function G : P (P) → R assigns a real value to each team of players according to their
game play. Shapley [40] wanted to know how much an individual player contributes to
the game and thus defined the Shapley values. [31]
Definition 5.1.1 (Shapley Values) [40]. Let p be a player from a set of players P
in a cooperative game with wealth function G. The contribution of p to G can then be
computed as follows:

ShapleyG(P, p) =
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T ))
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Note that by selecting a player p, a team T can be represented as a permutation π of all
players P . By the fixed total order of π, player p determines an index in π. A team then
consists of all players that come before the player p in the order of π. For example the
permutation [C, B, A] and the observed player B, π<B describes the team {C} and π≤B

describes the team {C, B}.

In Definition 5.1.1 |T |!(|P|−|T |−1)!
|P|! is used to determine the ratio of teams in which p

plays, to all possible teams. To put it differently, the numerator contains the number
of all possible permutations of players from T multiplied by the number of all possible
permutations from the remaining players without player p and the denominator contains
the number of all possible permutations from all players P . This is obvious since we want
to see the difference of G that arises when we consider each team T in any order once
with and once without player p. The rest of the players P − T − 1 is only important to
us, because there are also different orders and we include every possible permutation
in the denominator. (G(T ∪ {p}) − G(T )) calculates how much wealth player p adds to
team T . The sum adds up these individual contributions and thus calculates a total
contribution of the player p over all possible teams. In other words, how much does G
change if only the team up to and excluding player p and the team up to and including
player p are chosen, when an arbitrary order is used to sort all players? [8, 9, 31]

Example 5.1.2. Consider a cooperative computer game G that can be played as a team
with any number of players and interpreted as a function G : T → v where team T , a
subset of all players P , scores v points. Aaron, Bailey and Carlo play this game together
and score 100 points. Now Bailey wants to know how much she contributed to the 100
points and lets play any combination of the three friends:

G(∅) = 0 G({A}) = 80
G({B}) = 100
G({C}) = 50

G({A, B}) = 180
G({B, C}) = 150
G({A, C}) = 0

G({A, B, C}) = 100

However, Bailey notices that whenever Aaron and Carlo play, the two men do not
cooperate with each other, and hinder each other from scoring more points. Therefore,
Bailey wants to know for sure and puts the results into the formula for Shapley values
and notices that she is responsible for the full 100 points:

ShapleyG({A, B, C}, B) =
0!2!
3! (100 − 0) + 1!1!

3! (180 − 80) + 1!1!
3! (150 − 50) + 2!0!

3! (100 − 0) =
2
6100 + 1

6100 + 1
6100 + 2

6100 = 100

If we calculate the contribution of the other two players, we quickly see that the combi-
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nation of Aaron and Carlo is not good and together they do not add any wealth:

ShapleyG({A, B, C}, A) =
0!2!
3! (80 − 0) + 1!1!

3! (180 − 100) + 1!1!
3! (0 − 50) + 2!0!

3! (100 − 150) =
2
680 + 1

680 − 1
650 − 2

650 = 15

ShapleyG({A, B, C}, C) =
0!2!
3! (50 − 0) + 1!1!

3! (0 − 80) + 1!1!
3! (150 − 100) + 2!0!

3! (100 − 180) =
2
650 − 1

680 + 1
650 − 2

680 = −15

5.2 Properties of Shapley Values
Consider a player p and a team T from the set of remaining players P − {p}. The number
of all permutations of P with the following three conditions

• the players from T are in the first |T | positions

• the player p is at position |T | + 1

• the remaining players are in the last |P| − |T | − 1 positions

is equal to the number of permutations of players |T | multiplied by the number of all
permutations of the remaining players (|P| − |T | − 1). If we now vary the players in team
T , but leave the size of the team the same, we get all combinations of players P with p
at position |T | + 1. If we now also vary the size of the team, we get all permutations of
P, since now the player p can also be at any position of the permutation.

Formally this means:

T ⊆P\{p}
|T |!(|P| − |T | − 1)! = |P|!

therefore also

T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! = 1

holds. The latter can be seen in particular in Example 5.1.2. The coefficients of the
players’ individual contributions 2

6 , 1
6 , 1

6 and 2
6 sum to 1.

In addition, the Shapley values have some more properties as well:
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• Efficiency: The sum of the contributions of all players is the same as the difference
between the value of the wealth function of all players and no players:

p∈P
ShapleyG(P, p) = G(P) − G(∅) (5.1)

Proof 5.2.1 [5]:

p∈P
ShapleyG(P, p) =

=
p∈P T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T ))

=
p∈P T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! G(T ∪ {p}) − |T |!(|P| − |T | − 1)!

|P|! G(T )

Let X be an arbitrary subset of players from all players P, X ̸= ∅ and X ̸= P.
To determine the coefficients |T |!(|P|−|T |−1)!

|P|! of G(X) in the above sum, we make a
case distinction: either X = T ∪ {p} or X = T holds. This gives us the following
coefficients:

p ∈ X : (|X| − 1)!(|P| − |X|)!
|P|! G(X)

p /∈ X : −|X|!(|P| − |X| − 1)!
|P|! G(X)

Summing over all players P , the former coefficient appears exactly |X| times, since
p can be exactly |X| different players. For the other coefficient p ∈ P \ X holds, so
it appears |P | − |X| times. Therefore we conclude:

|X|(|X| − 1)!(|P| − |X|)!
|P|! G(X) − (|P| − |X|) |X|!(|P| − |X| − 1)!

|P|! G(X)

|X|!(|P| − |X|)!
|P|! G(X) − |X|!(|P| − |X|)!

|P|! G(X) = 0

So all terms, except those for X = ∅ and X = P cancel each other out. Since
the coefficient for G(∅) exists only if T = ∅ and for G(P) only if T = P \ {p}, we
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conclude:

p∈P
ShapleyG(P, p) =

p∈P T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T ))

=
p∈P

|(P \ {p})|!(|P| − |(P \ {p})| − 1)!
|P|! G(P)

−
p∈P

|∅|!(|P| − |∅| − 1)!
|P|! G(∅)

=|P|(|P| − 1)!
|P|! (G(P) − G(∅))

=G(P) − G(∅)

■

• Symmetry: If two players p, q ∈ P contribute the same wealth to any possible team,
then they should have the same Shapley value:

G(T ∪ {p}) = G(T ∪ {q}) for all T ⊆ P \ {p, q} ⇒ ShapleyG(P, p) = ShapleyG(P, q)

Proof 5.2.2:

ShapleyG(P, p) =
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T ))

We make a case distinction for the two cases q ∈ T and q /∈ T :

q ∈ T : |T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T )) =

= |T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {q} ∪ {p}) − G(T ∪ {q})) =

= |T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p} ∪ {q}) − G(T ∪ {p}))

q /∈ T : |T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T )) =

= |T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {q}) − G(T ))

Since p cannot be a part of T , we can unify both cases back into one:

T ⊆P\{q}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {q}) − G(T ))
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5. Score-based Explanations based on Shapley Values

It should be noted that all cases are covered. The first case deals with all teams
containing p and the second with all teams not containing p. We draw the following
conclusion:

ShapleyG(P, p) =
T ⊆P\{q}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪{q})−G(T )) = ShapleyG(P, q)

■

• Dummy: The contribution and therefore the Shapley value of a player p ∈ P , which
does not add any wealth to any team, is 0.

G(T ) = G(T ∪ {p}) for all T ⊆ P \ {p} ⇒ ShapleyG(P, p) = 0

Proof 5.2.3 [5]:

ShapleyG(P, p) =
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T ))

Using G(T ) = G(T ∪ {p}) for all T ⊆ P \ {p}, we can follow:

ShapleyG(P, p) =
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T ∪ {p}))

=
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! 0

= 0

■

• Additivity: The contribution of a player p ∈ P to the tournament T consisting of 2
games G and H, shall be equal to the sum of the contributions to the individual
games:

ShapleyT (P, p) = ShapleyG(P, p) + ShapleyH(P, p)
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Proof 5.2.4 [5]:

ShapleyT (P, p) =

=
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (T (T ∪ {p}) − T (T ))

=
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! ((G(T ∪ {p}) + H(T ∪ {p})) − (G(T ) + H(T )))

=
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) + H(T ∪ {p}) − G(T ) − H(T ))

=
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (G(T ∪ {p}) − G(T ))

+
T ⊆P\{p}

|T |!(|P| − |T | − 1)!
|P|! (H(T ∪ {p}) − H(T ))

= ShapleyG(P, p) + ShapleyH(P, p)

■

To be able to give explanations in arbitrary domains, such as machine learning or
databases, all that is missing is the definition of the function G. In the following two
sections, we want to show how the function G is defined for the mentioned domains and
how the Shapley Values can be used to give explanations.

5.3 Shapley Values in Machine Learning
Lundberg and Lee [32] defined SHAP, a score in the area of machine learning to explain
how much individual features contribute to the outcome of an entity. For this purpose
they used the Shapley values. The players of the Shapley values are an analogy to the
features of the input entities of the machine learning classifier C. In this way, the only
thing missing is a matching wealth function to calculate the contribution of each feature
f of all features F . But exactly here lies the problem, because a game, which is played
by only a real subset of the players, makes no sense with features. A classifier can only
use whole entities as input. For a partial entity, the classifier cannot return an outcome.
Therefore SHAP uses a probability distribution Pr. [15]

We define an expected value for SHAP as follows:

Definition 5.3.1 (Expected Value) [15]. The expected classification outcome of
a classifier C for a complete instance e ∈ E and distribution Pr is EP r[C|{e}] = C(e).
Furthermore, we define a set of entities eF in respect to entity e and features F ⊆ F :

eF = {e ∈ E | f(e) = f(e) if f ∈ F}
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5. Score-based Explanations based on Shapley Values

It follows, that e∅ = E and eF = {e}. The expected value for a partial entity πe is
determined by its corresponding set of entities eF , and is therefore

EP r[C|{πe}] = EP r[C|eF ] =
e∈E

C(e)Pr(e|eF ) (5.2)

That is why the wealth function G for the SHAP score is defined as follows:

G(F ) = EP r[C|eF ] (5.3)

From this, using the Shapley values, the SHAP score for a single feature is obtained by
calculating the contribution each time in a different context of features:

Definition 5.3.2 (SHAP) [15]. Let C be a classifier and Pr be a data distribution, then
the SHAP score of a feature f ∈ F of an entity e ∈ E is:

SHAPC,P r(e, f) =
F ⊆F\{f}

|F |!(|F| − |F | − 1)!
|F|! (EP r[C|eF ∪{f}] − EP r[C|eF ])

One can check that the properties described in Section 5.2 also apply to SHAP.

5.3.1 Complexity
The interesting aspect of the SHAP score is that it is solvable in polynomial time under
certain conditions. In this section we want to take a closer look at the complexity of
the SHAP score and establish conditions which lead to the fact that the SHAP score is
tractable. To prove this, we first define the following problem:

Functional SHAP problem [15]: Given a data distribution Pr and a function C. The
functional SHAP problem, denoted F-SHAP(C, P r) is to compute

SHAPC,P r(e, f1), . . . , SHAPC,P r(e, fn).

SHAP over Fully-Factorized Distributions

The SHAP score is all about the expected value, which arises from the used distribution
Pr. In the following, we will look specifically at SHAP explanations under fully-factorized
distributions. Since the function C in Definition 5.3.2 often arises from supervised learning,
we can assume that the data is fully-factorized, which also simplifies the estimation.
Furthermore, a fully-factorized distribution helps because computing SHAP explanations
can be tractable for several popular classifiers.

Fully-Factorized Expectation Problem [15]: Given a fully-factorized probability
distribution Pr and a function C : E → R. The fully-factorized expectation problem,
denoted EP r(C), is to calculate EP r[C|E ].

Now we want to show that there is a connection between the calculation of expectations
and the calculation of SHAP explanations:
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Proof 5.3.3 [15]: We can adopt Equation 5.1, the efficiency of Shapley values, for
SHAP

f∈F
SHAPC,P r(e, f) = EP r[C|eF ] − EP r[C|e∅}] = C(e) − EP r[C|E ],

It follows immediately, that EP r(C) ≤P F-SHAP(C, P r) holds, since

EP r[C|E ] = C(e) −
f∈F

SHAPC,P r(e, f).

In other words, given a function C : E → R and an oracle to calculate SHAPC,P r(e, f) for
each f ∈ F , we can calculate the expected value EP r[C|E ]. In the following we will show
that also the converse, that is F-SHAP(C, P r) ≤P EP r(C), holds. It then follows:

Theorem 5.3.4 [15]. For any function C : {0, 1}n → R, F-SHAP(C, P r) ≡P EP r(C)
holds.

This means that the complexity of computing an expected value EP r[C|E ] of a fully-
factorized distribution Pr is equal to the complexity of computing SHAP scores for each
feature of an entity.

W.l.o.g., we choose an n+1-dimensional binary entity e ∈ E , for which we want to explain
the outcome C(e) in the following. Further, we define the fully-factorized distribution
Pr as n + 1 rational numbers pi = Pr(Xi = 1) for all i ∈ {0, . . . , n}. This gives
Pr(Xi = 0) = 1 − pi. It follows

SHAPC,P r(e, f) =
n

k=0

k!(n − k)!
(n + 1)! Dk, (5.4)

where
Dk =

F ∈{F ′⊆F||F ′|=k}
(EP r[C|eF ∪{0}] − EP r[C|eF ])

Now we want to simplify Dk further. To do this, we split the function in C in n + 1
binary features, into two functions C0 and C1 in n binary features each:

C(e) = C0(e) if f0(e) = 0
C1(e) if f0(e) = 1

Thus we can conclude that

EP r[C|eF ∪{0}] = EP r[C1|eF ]
EP r[C|eF ] = EP r[C0|eF ] ∗ (1 − p0) + EP r[C1|eF ] ∗ p0

and therefore Dk can also be defined as

Dk = (1 − p0)
F ⊆F ,|F |=k

(EP r[C1|eF ] − EP r[C0|eF ])
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5. Score-based Explanations based on Shapley Values

Any oracle for EP r(C) is also an oracle for EP r(C0) and EP r(C1), since only p0 = 0 or
p0 = 1 has to be set respectively. Thus it is only necessary to show that

F ⊆{0,...,n},|F |=k

EP r[C|eF ]

can be computed for all k ∈ 1, . . . , n with only n + 1 calls to the oracle EP r(C). This
would proof, that all Dk can be computed in polynomial time and thus by Equation 5.4
would also prove Theorem 5.3.4.

Consider a real number z > 0 and the distribution Prz(Xi) = pi+z
1+z , for all i ∈ {1, . . . , n}.

Because of independence, the probabilities for instance e are:

Pr(e) =
i∈{1,...,n},Xi=1

pi ·
i∈{1,...,n},Xi=0

1 − pi

Prz(e) =
i∈{1,...,n},Xi=1

pi + z

1 + z
·

i∈{1,...,n},Xi=0
1 − pi + z

1 + z

This yields the following equality:

Pr(e) =
i∈{1,...,n},Xi=1

pi ·
i∈{1,...,n},Xi=0

1 − pi

Pr(e)
i∈{1,...,n},Xi=1

(1 + z

pi
) =

i∈{1,...,n},Xi=1
pi + z ·

i∈{1,...,n},Xi=0
1 − pi

Pr(e)
i∈{1,...,n},Xi=1

(1 + z

pi
) = (1 + z)n

i∈{1,...,n},Xi=1

pi + z

1 + z
·

i∈{1,...,n},Xi=0

1 + z − pi − z

1 + z

Pr(e)
i∈{1,...,n},Xi=1

(1 + z

pi
) = (1 + z)n

i∈{1,...,n},Xi=1

pi + z

1 + z
·

i∈{1,...,n},Xi=0
1 − pi + z

1 + z

Pr(e)
i∈{1,...,n},Xi=1

(1 + z

pi
) = (1 + z)nPrz(e) (5.5)

Moreover, because of Equation 5.2 and the conditional probability Pr(A|B) = P r(A∩B)
P r(B) :

EP r[C|eF ] =
e∈E

C(e)Pr(e ∩ eF )
Pr(eF )

EP r[C|eF ] =
e∈eF

C(e) Pr(e)
Pr(eF )

EP r[C|eF ] = 1
Pr(eF ) e∈eF

C(e)Pr(e)

and since Pr(eF ) = i∈F pi holds, it follows that

EP r[C|eF ] = 1
i∈F pi e∈eF

C(e)Pr(e). (5.6)
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By Equation 5.6, the exchange of two sums, the identity S⊆A i∈S ui = i∈A(1 + ui)
and Equation 5.5, we conclude.

n

k=0
zk

F ⊆{0,...,n},|F |=k

EP r[C|eF ] =
F ⊆{0,...,n},|F |=k

z|F |EP r[C|eF ]

=
F ⊆{0,...,n},|F |=k

z|F |

i∈F pi e∈eF

C(e)Pr(e)

=
e∈E

C(e)Pr(e)
e∈eF

z|eF |

i∈e pi

=
e∈E

C(e)Pr(e)
i∈{1,...,n},Xi=1

(1 + z

pi
)

= (1 + z)n

e∈E
C(e)Prz(e)

= (1 + z)nEz
P r(C)

By this equality, we can form a linear system of equations with n + 1 different values
for z. Note that we thereby form a non-singular Vandermonde matrix, which has a
unique solution that can be solved in polynomial time. Thus we proved that it takes
only n + 1 calls to the oracle Ez

P r(C) to compute F-SHAP(C, P r) and thereby proved
Theorem 5.3.4. ■

5.4 Shapley Values in Databases
Also in the area of databases Shapley values can be used to determine the contribution
of single tuples for boolean query results. It also follows that one can determine which
tuples in particular change the query answer of a database. [8]

Again, the players are an analogy to the tuple τ in the database D. The boolean query
Q becomes the wealth function Q which is defined as follows:

Let T ⊆ D,

Q(T ) = 1 if T |= Q

0 if T ̸|= Q

With this we can calculate the Shapley value of a database tuple:

Definition 5.4.1 (Shapley Values for Database Tuples) [8]. Consider a database
D and a wealth function Q defined by a boolean query Q, then the Shapley value for
tuple τ ∈ D is:

ShapleyQ(D, τ) =
T ⊆D\{τ}

|T |!(|D| − |T | − 1)!
|D|! (Q(T ∪ {τ}) − Q(T ))
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5. Score-based Explanations based on Shapley Values

Livshits et al. investigated in [30] the complexity of computing Shapley values for
database tuples. They proved that Shapley values for BCQs without self-joins can be
computed in polynomial time if and only if they are hierarchical. Hierarchical in this
context means that for every two existential variables x and y

Atoms(x) ⊆ Atoms(y) ∨ Atoms(y) ⊆ Atoms(x) ∨ Atoms(x) ∩ Atoms(y) = ∅

holds. For example, Q : ∃x∃y∃z(R(x, y) ∧ S(x, z)) is hierarchical because Atoms(x) =
{R(x, y), S(x, z)} and Atoms(y) = {R(x, y)} and Atoms(z) = {S(x, z)}. On the other
hand, Q : ∃x∃y(R(x) ∧ S(x, y) ∧ T (y)) is not hierarchical because Atoms(x) = {R(x) ∧
S(x, y)} and Atoms(y) = {S(x, y) ∧ T (y)}. Even though the proof is different, the
criteria used for this tractability are the same ones used for the evaluation of BCQs over
probabilistic databases. Furthermore, one can extend the results to summation over
CQs using the same criteria, since the expected value applied in Shapley value is linear.
However, aggregations, such as max, min, and avg, over non-hierarchical queries are
harder. Livshits et al. provide an approximate result for this in [30]. [8]

5.4.1 Banzhaf Power Index
Another score for database tuples,is the Banzhaf power index. This one is also hard to
compute after [30] and provably #P-hard in general. In addition, it does not have the
same previously discussed properties of Shapley values, but is defined very similarly to
them:

Definition 5.4.2 (Banzhaf Power Index) [8]. Consider a database D and a wealth
function Q defined by a boolean query Q, then the Banzhaf Power Index for tuple τ ∈ D
is:

BPIQ(D, τ) = 1
2|D|−1

T ⊆D\{τ}
(Q(T ∪ {τ}) − Q(T ))

The individual contributions a player gives to the various teams are not weighted by the
number of permutations of the teams as in Shapley values, but by the combinations of
the teams. In [30] it is proven that the Banzhaf Power Index matches the causal effect
score, which will be mentioned in Section 6.2. [8]
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CHAPTER 6
Score-based Explanations based
on Causality and Responsibility

Also with causality from Chapter 4 scores for explanations can be defined. In this chapter,
we will discuss these in more detail.

6.1 Counterfactual Interventions in Machine Learning
Recall counterfactual interventions from Section 3.1, which are changes to the initial
state to achieve the desired result. Formally, we define a counterfactual intervention
for a particular entity e ∈ E as a pair (f, v) if changing the feature f ∈ F to the value
v ∈ dom(f) alone yields the desired change in classification outcome C(e). [9]

To explain how important a single feature f is for the classification outcome, one could
ask how large the expected value is that f with a random value v ∈ dom(f) forms a
counterfactual intervention. One can immediately see that a feature that changes the
classification outcome by any change in value is very likely to be the cause of the outcome,
and a feature with which the classification outcome cannot be changed, cannot be a
cause. [9] This principle is defined by the COUNTER score:

Definition 6.1.1 (COUNTER) [9]. Let C be a classifier and Pr be a data distribution,
then the COUNTER score for feature f ∈ F and entity e ∈ E is:

COUNTERC,P r(e, f) = C(e) − EP r[C|eF\{f}]

Thus, the COUNTER score gives the expected value for a change in the classification
outcome due to a change in the single feature f . [9] In the following example, we calculate
the COUNTER score for a specific instance:
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Example 6.1.2. Consider a data distribution Pr and a classifier C for entities with two
features A and B resulting in the following labelling:

A
B 0 1 2 3

0 C(⟨00⟩) = 1 C(⟨01⟩) = 0 C(⟨02⟩) = 1 C(⟨03⟩) = 1
1 C(⟨10⟩) = 1 C(⟨11⟩) = 1 C(⟨12⟩) = 1 C(⟨13⟩) = 0
2 C(⟨20⟩) = 1 C(⟨21⟩) = 1 C(⟨22⟩) = 1 C(⟨23⟩) = 0
3 C(⟨30⟩) = 1 C(⟨31⟩) = 1 C(⟨32⟩) = 1 C(⟨33⟩) = 0

Let us further find out from which of the two features A and B the classification outcome
C(⟨00⟩) ̸= 0 depends more. For this we calculate the COUNTER score for both features:

COUNTERC,P r(⟨00⟩, A) = C(⟨00⟩) − EP r[C|{⟨00⟩, ⟨10⟩, ⟨20⟩, ⟨30⟩}] = 1 − 4
4 = 0

COUNTERC,P r(⟨00⟩, B) = C(⟨00⟩) − EP r[C|{⟨00⟩, ⟨01⟩, ⟨02⟩, ⟨03⟩}] = 1 − 3
4 = 1

4

In contrast to feature A, feature B can be used to form a counterfactual version of ⟨00⟩,
so COUNTERC,P r(⟨00⟩, B) > 0, since this requires a counterfactual intervention. The
COUNTER score of B, means that 1

4 is the expected classification outcome by changing
the value of feature B. The COUNTER score of 0 means that any change in the feature
does not change the classification outcome.

However, the COUNTER score has a problem: an entity does not always have counterfac-
tual interventions, meaning that changing a single feature does not necessarily change the
outcome. Such an entity would then have COUNTER score 0 for each individual feature.
Therefore, no explanation could be made about such an entity and the COUNTER score
would be useless. To overcome the problem, a score is needed that evaluates the features
not only according to possible counterfactual interventions. [8]

In Section 3.2 we presented actual causes together with their contingency sets. Formally,
a pair (f, v) is an actual cause for an entity e with contingency set Γ, which is a set of
features of e with new values, if (f, v) is a counterfactual intervention for e previously
changed by Γ. Thus counterfactual interventions are actual causes with empty contingency
set, since nothing about e needs to be changed before it is a counterfactual intervention.
The extent to which an actual cause is a counterfactual intervention can be derived from
the responsibility of a cause from Section 4.6. This is defined as 1

1+|Γ| . [6] This gives the
definition for the x-RESP score:

Definition 6.1.3 (x-RESP) [8]. If Γ is a minimum-size contingency set for an actual
cause with feature f , then the x-RESP score for f is

x-RESP(f) = 1
1 + |Γ|
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The x-RESP score should indicate how responsible a feature is for the classification
outcome. The smaller the contingency set, the larger the x-RESP score and thus also
the responsibility for the classification outcome. The x-RESP score for a counterfactual
intervention, that is, an actual cause with the contingency ∅, is 1. [6]

Now consider Example 6.1.2 again and let us compute the x-RESP score for features A
and B:

Example 6.1.4. In Example 6.1.2, although only (B, 1) is a counterfactual intervention
for entity 00, (A, 1), (A, 2) and (A, 3) are at least actual causes with contingency set
Γ = {(B = 3)}, so we can compute the following x-RESP scores:

x-RESP(A) = 1
1 + |{(B = 3)}| = 1

2

x-RESP(B) = 1
1 + |∅| = 1

It can be seen immediately that by changing B alone, one can change the classification
outcome C(⟨00⟩) to the value 0. A is only half responsible, because before A can form a
counterfactual intervention, the contingency set {(B = 3)} of size 1 must be applied.

However, the x-RESP score also causes problems. Take a close look at the table in
Example 6.1.2. In order to change the classification outcome with the feature B, it must
be set exactly to the value 1. So the classification outcome is very unstable by changing
the feature B. This is in contrast to when B is set to the value 3. Actually, it almost
doesn’t matter what value the feature A is set to as long as the feature B is set to the
value 3.

In Example 6.1.2 and Example 6.1.4 it looks like the counterfactual intervention (B, 1)
is the cause for the classification outcome. A better explanation, however, would be to
set the feature B to the value 3, since there are so many different ways to change the
classification outcome. To achieve better explanations and at the same time not neglect
the fact that a counterfactual intervention can be formed with the feature B, Bertossi et
al. introduced the RESP score in [9]. This score computes the ratio between the expected
value of the classifier given any change in a feature and the size of the contingency set
used. [8] Formally, the RESP score is defined as follows:

Definition 6.1.5 (RESP) [8]. Consider a classifier C and an entity e with classification
outcome C(e). Let Γ be a contingency set, where the features in Γ must not be set to
the original values of e. Further, let e* be the entity e modified by Γ with C(e*) = C(e).
Also, there is at least one feature f of e* whose change would cause a change in C(e*).
The RESP score for f with Γ is then defined as follows:

RESPC,P r(e, f, Γ) =
C(e*) − EP r[C|e*F\{f}]

1 + |Γ|

RESPC,P r(e, f) is defined as maxΓ(RESPC,P r(e, f, Γ)) where Γ is the smallest contingency
set at which RESPC,P r(e, f, Γ) > 0 holds.
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If we now apply the RESP score to Example 6.1.2, we come to the following conclusions:

Example 6.1.6. In Example 6.1.2, for feature A there are three actual causes (A, 1),
(A, 2) and (A, 3) with contingency set {(B = 3)}. This results in

RESPC,P r(⟨00⟩, A, {(B = 3)}) = C(⟨03⟩) − EP r[C|{⟨03⟩, ⟨13⟩, ⟨23⟩, ⟨33⟩}]
1 + |{(B = 3)}| =

1 − 1
4

2 = 3
8

Furthermore, since Γ = {(B = 3)} is the only contingency set with RESPC,P r(⟨00⟩, A) > 0

RESPC,P r(⟨00⟩, A) = 3
8 .

holds.

However, this looks a little different for feature B. Feature B can form the counterfactual
intervention (B, 1) as well as the actual cause (B, 3) with the three possible contingency
sets {(A, 1)}, {(A, 2)} or {(A, 3)}. This results in the following RESP scores:

RESPC,P r(⟨00⟩, B, ∅) = C(⟨00⟩) − EP r[C|{⟨00⟩, ⟨01⟩, ⟨02⟩, ⟨03⟩}]
1 + |∅| =

1 − 3
4

1 = 1
4

RESPC,P r(⟨00⟩, B, {(A = 1)}) = C(⟨10⟩) − EP r[C|{⟨10⟩, ⟨11⟩, ⟨12⟩, ⟨13⟩}]
1 + |{(A = 1)}| =

1 − 3
4

2 = 1
8

RESPC,P r(⟨00⟩, B, {(A = 2)}) = C(⟨20⟩) − EP r[C|{⟨20⟩, ⟨21⟩, ⟨22⟩, ⟨23⟩}]
1 + |{(A = 2)}| =

1 − 3
4

2 = 1
8

RESPC,P r(⟨00⟩, B, {(A = 3)}) = C(⟨30⟩) − EP r[C|{⟨30⟩, ⟨31⟩, ⟨32⟩, ⟨33⟩}]
1 + |{(A = 3)}| =

1 − 3
4

2 = 1
8

Since Γ = ∅ is the smallest contingency set, with RESPC,P r(⟨00⟩, B, Γ) > 0

RESPC,P r(⟨00⟩, B) = 1
4 .

holds.

In Example 6.1.6 it is now clear that both feature A and feature B are causes for the
classification outcome, and changing feature A may even have a little more impact, even
if it requires the change of feature B.

6.1.1 Complexity
To better examine and compare the scores, in this section we look at the complexity of
the RESP score.
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RESP over Fully-Factorized Distributions

Note that the complexity of the RESP score is mainly to calculate the x-RESP score for
the same entity. The definition of the RESP score describes that the RESP score can be
calculated from the multiplication of the x-RESP score and the COUNTER score for the
entity modified with the contingency set.

To calculate the RESP score, the COUNTER score can be calculated first. This is much
easier to calculate. From Equation 5.2

EP r[C|eF\{f}] =
e∈eF\{f}

C(e)Pr(e)

can be derived. This requires only a single scan over dom(f) and at most |dom(f)| calls
to the classifier C. [9]

In practice, usually not many features need to be changed to alter the classification
outcome. Therefore, the COUNTER score is often non-zero and thus equal to the RESP
score. [9]

If the COUNTER score should still be zero, contingency sets of size 1, 2, . . . are examined
until a non-zero RESP score is found. First the features for the contingency set are
chosen. Then the RESP score is calculated by taking the Cartesian product of the values
of the selected contingency set and the domains of the remaining features. [9]

Of course, in the worst case, all values of all features must be tested. This makes the
calculation of the RESP score an NP-complete problem. However, since the worst case
occurs very rarely in practice, one usually achieves a non-zero RESP score even with
contingency sets of small size. We will show this in Chapter 9 on a real world dataset. In
Chapter 11 we will then go into more detail on how meaningful larger contingency sets
are. [7, 9]

6.2 Counterfactual Interventions in Databases
As in Section 5.4 with the Shapley values, causality can be used to perform database
repairs. The goal here is still to determine which of the tuples in a database makes the
difference between an inconsistent database to a consistent database. In other words,
we are looking for counterfactual interventions that make the inconsistent database
consistent by deleting tuples. [8]

6.2.1 COUNTER, x-RESP and RESP in Databases
With databases, there are only two ways to modify instances: Either deleting a tuple
or not. Thus, no expected value can be calculated, since the result is always binary.
Regardless of whether we delete the database tuple or not, in both cases we can tell
exactly whether the database is consistent or inconsistent with respect to Q. Therefore
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the COUNTER score of a database tuple can only be either 0 or 1 and is not really
meaningful. The only statement that can be made is:

• If the inconsistent database D becomes consistent when tuple τ ∈ D is deleted:

COUNTERQ(D, τ) = 1

• If the inconsistent database D remains inconsistent when tuple τ ∈ D is deleted:

COUNTERQ(D, τ) = 0

The former condition describes τ ∈ D as a counterfactual intervention. The second
condition, on the other hand, expresses that the deletion of τ has no effect on the
consistency of the database D. In practice, there is usually not just a single tuple
involved in database repairs, so the COUNTERQ(D, τ) = 0 occurs much more frequently.
Often it takes multiple tuples to be deleted. The more tuples that are, the less important
the single tuple is in the set and vice versa. The idea of x-RESP score from this chapter
can be used to form the following definition:

Definition 6.2.1 (x-RESP for Database Repairs) [8, 31]. Given an inconsistent
database D and a tuple τ ∈ D. If there is a minimum-size contingency set Γ for τ in D,
then it holds:

x-RESP(τ) = 1
1 + |Γ|

If there is no contingency set for τ , then: x-RESP(τ) = 0

If the same idea is applied to the RESP score, it can be seen that it always equals the
x-RESP, since the COUNTER score is only either 0 or 1.

It can be noticed that explanations with counterfactual interventions make more sense for
classifiers than for database repairs. While there is a helpful score for tuples in database
repairs by the x-RESP score, there are additionally the COUNTER and the RESP score
for classifiers. For this reason, we will mainly focus on explanations for classifier scores
in the following chapter, as these can be compared better.

6.2.2 Causal Effect
Nevertheless, the causal effect should be mentioned here. This was introduced in [39] and
is very similar to the COUNTER score described in this chapter. A probabilistic database
DP r is used, in which each tuple of a database D is uniformly and independently assigned
a probability, with tuples that do not appear in the database being assigned probability
0. Then, the expected value that query Q is satisfied can be calculated. The causal effect
of tuple τ is the difference of the expected values of query Q as the probability of τ is
changed. If the deletion of τ changes much in the expected value, also the causal effect
for τ is high. [8]
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Definition 6.2.2 (causal effect) [8, 31]. Given a database D that is inconsistent
with respect to the query Q and a tuple τ ∈ D. Let Dτ=0 be the database D with the
probability of tuple τ changed to 0. Equivalently, let the probabilistic database Dτ=1 be
the database D where the probability for tuple τ has been set to 1. The causal effect
CEQ,P r(D, τ) is then

CEQ,P r(D, τ) = EP r[Q|Dτ=1] − EP r[Q|Dτ=0]

Example 6.2.3. Consider the database D with its two relations R and S and a denial
constraint DC as given below.

R A B

a b
a c
c b

S C

b
c

DCs : ¬∃x∃y(R(x, y) ∧ S(y))

Table 6.1: An inconsistent database with its denial constraint. [8]

By assigning probabilities uniformly, the database DP r then looks like this:

RP r A B Pr

a b 1
2

a c 1
2

c b 1
2

SP r C Pr

b 1
2

c 1
2

Table 6.2: A probabilistic database. [8]

Assuming the probability for the tuple SP r(b) is set to 1, the reasons that the denial
constraint is satisfied and the database is inconsistent are R(a, b), R(a, c) ∧ S(c), and
R(c, b). The expected value of such a query is then EP r[DC|DS(b)=1] = 13

16 , since the
probability of all three reasons not occurring is only 3

16 . On the other hand, setting the
probability of SP r(b) to 0, we get EP r[DC|DS(b)=0] = 1

4 , since then only R(a, c) ∧ S(c)
is a cause for DC to be satisfied. By the large difference of the two expected values, the
causal effect, it can be seen that the tuple S(b) is an important component to fulfill DC.
Accordingly, the deletion of S(b) causes the largest contribution to make the database
consistent. [8]

In closing this section, it is worth noting that [10] presents a further advancement in
reducing the amount of data that has to be deleted so that an inconsistent database
becomes consistent. Bertossi and Salimi focused on database repairs at the attribute
level, by setting specific attributes in the database to NULL. By doing so, they achieved
consistency while minimizing data loss, as only individual attributes needed to be deleted
rather than entire tuples. [8]
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CHAPTER 7
Relations between the Scores

The described scores are for explanations for classification outcomes or to better perform
database repairs. But are the explanations of the scores all equally good? And are their
values all the same? In this chapter we ask ourselves whether there are relations between
the described scores and what these relations look like. We will concentrate on the results
from the field of machine learning, because on the one hand this field is already widely
researched and therefore there are more results and on the other hand most of the results
can be applied relatively easily to the problem of database repairs anyway.

We will also show comparisons that are almost self-evident or have already been dis-
cussed in individual chapters. Nevertheless, we will mention them here for the sake of
completeness, in order to provide a holistic picture of the scores.

Furthermore, we will use the following trivial example to illustrate the relations with the
calculation of the individual scores:

Example 7.0.1. A fire can only burn if the three ingredients oxygen, heat and fuel are
always available. If one of the three is missing, the fire cannot continue to burn. From
this, a trivial classifier C can be built, which for each of the eight possible combinations
of the three binary features oxygen/no oxygen, heat/no heat and fuel/no fuel can tell
whether a fire can burn in such an environment.

For our example, we will use the letters O, H, and F to abbreviate the feature names
oxygen, heat, and fuel. We will further use the entity e = {oxygen, no heat, fuel} and
calculate the different scores for the feature heat.

7.1 SHAP and Banzhaf Power Index
As described in Section 5.4.1, there is a trivial relationship between the SHAP score and
the Banzhaf power index. This is because the latter consider not the permutations of
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teams, but the combinations of teams. Consequently, the scores of the features naturally
differ because the individual differences in the expected values are weighted differently.
Furthermore, it can happen that not only the two scores are different, but one can
even show differences in the ranking of the features. Nonetheless, SHAP and Banzhaf
power index are very similar because they both have to compute the same expected
values, which are only weighted differently. The calculation method also leads to the
computational complexity of the scores, which is the same for both scores.

Example 7.1.1. To calculate the SHAP score for Example 7.0.1, all possible expected
values must be calculated beforehand:

E[C|e∅] = 7
8 E[C|e{O}] = 3

4
E[C|e{H}] = 1
E[C|e{F}] = 3

4

E[C|e{O,H}] = 1
E[C|e{O,F}] = 1

2
E[C|e{H,F}] = 1

E[C|e{O,H,F}] = 1

These expected values are then weighted as follows:

SHAPC,P r(e, H) = 0!2!
3! ·


1 − 7

8


+ 1!1!

3! ·


1 − 3
4


+ 1!1!

3! ·


1 − 3
4


+ 2!0!

3! ·


1 − 1
2


= 2

6 · 1
8 + 1

6 · 1
4 + 1

6 · 1
4 + 2

6 · 1
2

= 1
24 + 1

24 + 1
24 + 4

24 = 7
24

The Banzhaf power index, on the other hand, uses exactly the same expected values, but
weights them differently and thus produces a different result:

SHAPC,P r(e, H) = 1
4 ·


1 − 7

8


+ 1

4 ·


1 − 3
4


+ 1

4 ·


1 − 3
4


+ 1

4 ·


1 − 1
2


= 1

4 · 1
8 + 1

4 · 1
4 + 1

4 · 1
4 + 1

4 · 1
2

= 1
32 + 2

32 + 2
32 + 4

8 = 9
32

So we can clearly see that the computational effort is the same, but the weighting is
different. This results in two different scores, where the Banzhaf power index, unlike the
SHAP score, does not have the properties described in Section 5.2 and is therefore less
used in practice.

7.2 Banzhaf Power Index and Causal Effect
Since both the Banzhaf power index and the causal effect are used in the field of databases,
it makes more sense to compare them this way instead of reformulating both definitions
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for a classifier. As already mentioned in Section 5.4, both scores are equivalent. Due to
the associativity of addition, Banzhaf power index can also be defined as follows:

BPIQ(D, τ) = T ⊆D\{τ} Q(T ∪ {τ})
2|D|−1 − T ⊆D\{τ} Q(T )

2|D|−1

The two terms here correspond exactly to the two expected values for the query Q
on the probabilistic database as they appear in Definition 6.2.1. Unfortunately, the
computational complexity is the same as for the Shapley values, so in practice the latter
are used more often.

Example 7.2.1. Since the two scores are equivalent, the value for the causal effect
CEC,P r(e, H) for the running example is also 9

32 , like the BPIC,P r(e, H) in Example 7.1.1.

7.3 SHAP and COUNTER
In [9], the SHAP score is defined in several steps, called levels. Each so-called level-based
SHAP score, denoted by lb-SHAP, is only part of the total SHAP score, so that when
all lb-SHAP scores are summed up, the total SHAP score is obtained. This is done
by splitting the sum in Definition 5.3.2 into multiple sums that no longer iterate over
all subsets, but only over those of a certain size, the level. Thus, intuitively, the levels
represent the size of the teams in the cooperative game that underlie the SHAP score.
The formal definition of the lb-SHAP score is as follows:

Definition 7.3.1 (level-based SHAP) [9]. Let C be a classifier and Pr be a data
distribution, then the lb-SHAP score for level l, feature f ∈ F and entity e ∈ E is:

lb-SHAPC,P r(e, f, l) =
F ⊆F\{f},|F |=l

l!(|F| − l − 1)!
|F|! (EP r[C|eF ∪{f}] − EP r[C|eF ])

Note, that the only difference to the SHAP score is the size of the set F .

If the level of the lb-SHAP score is set to l = |F| − 1, there is only one set for which
F ⊆ F \ {f} holds. The relation between the SHAP score and the COUNTER score is
therefore:

lb-SHAPC,P r(e, f, l) = l!(|F| − l − 1)!
|F|! (EP r[C|eF ] − EP r[C|eF\{f}])

= l!
|F|! (EP r[C|eF ] − EP r[C|eF\{f}])

= l!
|F|! (C(e) − EP r[C|eF\{f}])

= l!
|F|!COUNTERC,P r(e, f)

= 1
|F|COUNTERC,P r(e, f)
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Here it can be seen that COUNTER score and SHAP score are quite different, because
the SHAP score has not only one level, but |F| different levels. Also the complexity is
very different, because with the COUNTER score only one level of the SHAP score can
be calculated, but for the SHAP score all levels are needed to be computed to sum them
up. [9]

Example 7.3.2. Consider again the running example of this chapter. Notice that
only two of the expected values calculated in Example 7.1.1 are needed to compute the
COUNTER score. This makes the calculation much easier, but also less accurate, since it
does not include all the information. The COUNTER score is then calculated as follows:

COUNTERC,P r(e, H) = C(e) − EP r[C|e{O,F }] = 1 − 1
2 = 1

2

Similarly, two expected values are sufficient to calculate the lb-SHAP score:

lb-SHAPC,P r(e, H, 2) = 2!0!
3! ·


1 − 1

2


= 2

6 · 1
2 = 1

6

The following equation can be used to verify that the values of the two scores are in the
correct ratio to each other:

lb-SHAPC,P r(e, H, 2) = 1
|F| · COUNTERC,P r(e, H) = 1

3 · 1
2 = 1

6

For the SHAP score, however, all levels of the lb-SHAP score must be calculated. This
makes the calculation of the SHAP score, as shown in Example 7.1.1, very different from
that of the COUNTER score.

7.4 RESP and Causal Effect
In Chapter 6, the RESP score and the causal effect are introduced. These were defined
because the x-RESP score is too unintuitive. For a feature f the x-RESP score only
counts the features whose values necessarily need to be changed to make the actual
cause f a counterfactual cause, but not how likely the counterfactual cause also changes
the outcome. This problem is solved by the RESP score and the causal effect, but in
different ways. The RESP score uses a combination of the COUNTER and x-RESP
scores. For the causal effect, a probabilistic database is required initially, through which
the probabilities of the outcomes with and without the feature can be calculated. Due to
their different calculation methods, there is no real relationship between the two scores,
except that they both solve the problem of the x-RESP score.

Example 7.4.1. For the RESP score, it needs a contingency set. We start with the
smallest possible set, the empty set. Since we already know from Example 7.3.2 that
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COUNTERC,P r(e, H) > 0, we also know that the feature heat must be a counterfactual
cause for the entity e. As a result, the contingency set ∅ is already sufficient to change
the result with a single change of the feature heat. This results in the following RESP
score:

RESPC,P r(e, H, ∅) =
C(e) − EP r[C|e{O,F }]

1 + |∅| =
1 − 1

2
1 = 1

2

Since ∅ is the smallest contingency set, with RESPC,P r(e, H, ∅) > 0 we have

RESPC,P r(e, H) = 1
2 .

In this particular example, the RESP score also requires only two of the expected values
calculated in Example 7.1.1, since the contingency set is ∅. This greatly simplifies the
calculation, requiring far fewer expected values to be calculated than when calculating
the causal effect, since the calculation can be stopped early. As we have shown in
Example 7.2.1, not only the calculation method but also the results of the two scores are
different, so there is no direct relation between them.

7.5 SHAP and RESP
As we have just seen, COUNTER score and SHAP score are already relatively dissimilar.
Since the RESP score is only equal to the COUNTER score if the contingency set is
0, RESP score and SHAP score are even more different. Despite the general similarity
in complexity, their computations are very different. The SHAP score originates from
the Shapley values and the RESP score derives from causality. The different underlying
principles then give rise to the different mathematical definition. [9]

What is exciting, however, is that both scores have their own advantages and disadvantages.
The SHAP score is already very well researched. This has already allowed us to define
problem classes where the computation works in polynomial time. An example of this is
mentioned in Section 5.3.1, where we proved that the SHAP score can be computed in
polynomial time for all features of a binary classifier with a fully factorized distribution
of the data. A disadvantage of the SHAP score is that the computation requires a large
number of conditional expected values and these cannot be properly estimated from a
sample. In contrast, the RESP score does not need to calculate every possible contingency
set in many cases. Often a small contingency set or even an empty contingency set is
sufficient to compute the RESP score. Especially in real cases, there are rarely large
contingency sets, or they make little sense there. [9]

Example 7.5.1. The advantages and disadvantages just described are also reflected in
the calculations. In Example 7.1.1 and Example 7.4.1 it can be seen that the calculations
are very different, bring different results and in special edge cases are even significantly
easier than the other. Therefore, the underlying definitions do not invoke any relations
between the two scores.
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CHAPTER 8
Explanations for Sets of Features

With all the scores for single features it seems straightforward to extend these to arbitrary
coalitions. Note that it is not just the explanation of a single feature, but the explanation
of the combined set of features. The question we ask in this chapter is: how much
contribution does an arbitrary set of features S have to the outcome of a classifier?
For this we redefine SHAP and COUNTER to form a generalization of the relation in
Section 7.3. We call the two new definitions SHAP+ and COUNTER+ respectively and
will introduce them first in the following two sections before we then redefine the relation.

8.1 Definition of SHAP+

We start with the definition of the SHAP+ score. This is the extension of the SHAP
score to sets of features and is defined as follows:

Definition 8.1.1 (SHAP+). Let C be a classifier and Pr be a data distribution, then
the SHAP+ score of a set of features S ⊆ F of an entity e ∈ E is:

SHAP+C,P r(e, S) =
F ⊆F\S

|F |!|S|!(|F| − |F | − |S|)!
|F|! (EP r[C|eF ∪S ] − EP r[C|eF ])

Note that the definition is very similar to that of SHAP, except that the numerator
is multiplied by |S|!. Recall that in the numerator of Definition 5.3.2 we multiplied
the number of permutations of the set F by the number of permutations of the set
|F| − |F | − 1 to enumerate all permutations where feature f ∈ F is at position |F | + 1.
Now, instead of a single feature f ∈ F , we have a set of features S ⊆ F that can also
take different orders in a permutation of F . In the definition of SHAP+ the factor |S|!
was added to include these permutations.

It is easy to show that unfortunately not all of the properties described in Section 5.2
are valid for the SHAP+ score. Nevertheless, this score is highly relevant because it
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calculates not only the contribution of individual features, but also the contribution of
combinations of features. In practice, there are cases where multiple feature values can
be changed, and instead of using the top features with the highest SHAP scores, the
SHAP+ score can be used to calculate the best combination of features to change the
result of the classifier.

8.2 Definition of COUNTER+

The second definition we want to present here is the COUNTER+ score. This uses the
idea of the COUNTER score, where a single feature, a so-called counterfactual cause,
makes the difference between the real and the desired classifier outcome. If the probability
is high that a change in the value of the feature of a certain entity e will also change
the classifier outcome, then the feature has a high COUNTER score for e. To find
explanations for sets of features, such a counterfactual cause must consist of the change
of the value of several features, whereby it can be computed whether a change of the
classifier outcome is likely. The COUNTER+ score is therefore defined as follows:

Definition 8.2.1 (COUNTER+). Let C be a classifier and Pr be a data distribution,
then the COUNTER+ score for features S ⊆ F and entity e ∈ E is:

COUNTER+C,P r(e, S) = C(e) − EP r[C|eF\S ]

This definition is similar to the underlying Definition 6.1.1 of the COUNTER score,
except that instead of a single feature f , we now use a set of features S. However, this set
S is different from the contingency set of the RESP score. Recall that the contingency set
is a set of features that must be changed before calculating the probability of obtaining
the desired classifier outcome by changing the value of a single feature f . However, the
set for the COUNTER+ score is used to calculate the probability of obtaining the desired
classifier outcome by changing all feature values in the set S.

8.3 Generalization of the Relation between SHAP and
COUNTER

In Section 7.3 we saw that by using the lb-SHAP score we can establish a relationship
between SHAP and COUNTER. Now we try to use the generalizations of the mentioned
scores to create a new relation between SHAP+ and COUNTER+.

For this also the SHAP+ score can be level-based, in which we can fix the size of the
subsets in the sum:

lb-SHAP+C,P r(e, S, l) =
F ⊆F\S,|F |=l

l!|S|!(|F| − l − |S|)!
|F|! (EP r[C|eF ∪S ] − EP r[C|eF ])
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Note that the same factor had to be added to this definition as to Definition 8.1.1, since
the order of the features of the set S is relevant here as well. Otherwise, this definition is
similar to Definition 7.3.1 from Section 7.3.

If the level l is restricted to the form l = |F| − |S|, where S is an arbitrary subset of
the features F . Note that due to the restricted form of the level, the conditions in the
sum would only apply to a single set of features. Then the relation between SHAP+ and
COUNTER+ follows immediately:

lb-SHAP+C,P r(e, S, l) = l!|S|!(|F| − l − |S|)!
|F|! (EP r[C|eF ] − EP r[C|eF\S ])

= l!|S|!
|F|! (EP r[C|eF ] − EP r[C|eF\S ])

= l!|S|!
|F|! (C(e) − EP r[C|eF\S ])

= l!|S|!
|F|! COUNTER+C,P r(e, S)

= |F|
|S|

−1

COUNTER+C,P r(e, S)

This relation is the generalization of the relation in Section 7.3. Thus, as already shown
in Section 7.3, it is clear that both the computation and therefore also the complexity of
the SHAP+ score is much more difficult than that of COUNTER+ score, since in the
relation only a single level of the SHAP+ score has to be calculated. Nevertheless, it is
interesting to note that there is a relationship between the Shapley value based score
and the causality based score even with set of features.

A final word on the RESP score with sets of features: Of course, it is possible to extend
the RESP score for sets of features and define a RESP+ score similar to what we did at the
beginning of this chapter. However, we have already seen in the last chapter in Section 7.5
that there are no meaningful relations between SHAP and RESP. During our research
we came to the same results with sets of features, since responsibility is a completely
different concept then the Shapley values. Therefore, we came to the conclusion that two
scores can only be compared by their empirically results. We discuss this comparison at
the end of the next chapter, after we have presented our own implementation of these
scores.
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CHAPTER 9
Implementation and Experimental

Evaluation

In order to work with the scores, to develop them further or to carry out tests, imple-
mentations and their evaluations are necessary. We will divide this chapter into two
main parts. First, we will present the existing implementation by Bertossi in [7], which
allows us to calculate at least the x-RESP score, and second, we will present our own
implementation for all the scores mentioned so far. For a better understanding, we will
also show examples and finally present and discuss an evaluation, possible extensions
and improvements of the implementation.

9.1 Counterfactual Intervention Programs
First, let’s look at Bertossi’s implementation in [7]. There he introduces the notion
of Counterfactual Intervention Programss (CIPs). CIPs are ASPs that can compute
counterfactual explanations for a classifier through multiple interventions. Since entities
are needed for the input to the classifier, they are represented as predicates of the form
E(id, f1, . . . , fn, state):

• The first argument is the id of the entity to find all related entities after the program
starts. When dealing exclusively with individual entities, the inclusion of id can be
omitted entirely or substituted with a constant value. Therefore the constant e is
used in the examples.

• The next n arguments describe the entity in more detail. The variables f1, . . . , fn

represent the n properties of the entity.

• The last argument specifies the status of the entity. The following values are allowed
{o, do, tr, s}, which are explained in the general description of CIPs.
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From this, the initial entity f⃗ = ⟨f1, . . . , fn⟩ gives rise to a predicate E(e, f⃗ , o), where the
state o marks the ”original” entity. In his examples, Bertossi assumes that the undesired
output is 1 and the desired output is 0. To emphasise that this is not necessary, we
replace the two constants by bad and good respectively. Since Bertossi assumes that
the classifier assigns the value 1 to the initial entity, we assume that the initial entity
receives the value bad. [7]
A classifier is also required for a CIP, but the concrete implementation of the classifier is
irrelevant for the CIP. Here are possible ways to implement it, which we will use and
discuss later:

• For each entity f⃗ = ⟨f1, . . . , fn⟩, facts of the form C(f⃗ , prediction) can be defined,
where the variable prediction can take the values bad or good and thus determines
the classification of the entity f⃗ .

• The facts just described can also be defined by rules and calculated dynamically.

• An external program can be used that is called and executed for each classification.
In this way, for example, existing classifiers in other programming languages can
be used.

We will show and discuss examples for all three types in this chapter. But first, let us
look at the general structure of a CIPs:

P1 First, the facts of the program are defined. These consist of the domains of the
features Dom(i, c) with c ∈ Domi and E(e, f⃗ , o) with f⃗ as features of the initial
entity.

P2 Then all entities are put into the state ”transition”, abbreviated tr. It is only in
this state that small changes are made in an attempt to find an entity that achieves
the desired result, good. This is why we have the following formulas:

E(e, f⃗ , tr) → E(e, f⃗ , o).
E(e, f⃗ , tr) → E(e, f⃗ , do).

P3 Any resulting entity that does not produce the desired result is marked with ”do” to
initiate a new change. To do this, the non-deterministic ”choice-operator” chooses
a new value for a change for each entity whose prediction yields bad. Of course,
this choice must be restricted to the domain of the respective feature, and at the
same time the entity must actually change as a result of the new value. This leads
to the following rules:

E(e, f ′
1.f2, . . . , fn, do) ∨ · · · ∨ E(e, f1.f2, . . . , f ′

n, do) → E(e, f⃗ , do), C(f⃗ , bad),
Dom(f ′

1), . . . , Dom(f ′
n),

f1 ̸= f ′
1, fn ̸= f ′

n,

choice(f⃗ , f ′
1), . . . , choice(f⃗ , f ′

n).
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where choice(f⃗ , f ′
i) means to choose a new value f ′

i for the feature i and replace it
in the entity f⃗ . Here choice(f⃗ , fi) is only meant to be comprehensible, but can be
replaced by the predicate choseni(f⃗ , c), which can be defined by classical rules:

Choseni(f⃗ , c) → E(e, f⃗ , tr), C(f⃗ , bad), Dom(c), c ̸= fi, notDiffChoicei(f⃗ , c).
DiffChoicei(f⃗ , c) → Choseni(f⃗ , c′), c′ ̸= c.

P4 The program stops when our result matches the desired result, good. To do this,
we introduce a rule that creates an entity with status s, for ”stop”, at the given
time:

E(e, f⃗ , s) → E(e, f⃗ , do), C(f⃗ , good).

P5 Of course, we don’t want the program to revert to the original entity by making
changes, so we need to add the following rule to prevent this:

→ E(e, f⃗ , do), E(e, f⃗ , o).

P6 Finally, all that remains is to form explanations with the available facts. All we need
to do is to check which features have changed from the original entity and create a
new predicate Expl(e, i, fi). i stands for the feature and fi for the original value
that had to be changed to get the result good. The resulting rule for i = 1, . . . , n
is

Expl(e, i, fi) → E(e, f⃗ , o), E(e, f⃗ ′, s), fi ̸= f ′
i .

The goal of a CIP is stable models. Because of the choice operator and the disjoint rule
P3, it is possible that there are multiple stable models for a CIP. Each of the stable
models contains modified versions of the initial entity and also one that is annotated
with the status s and thus is a counterfactual version of the initial entity. If the program
is unsatisfiable, so there are no stable models, there is no way to modify the initial
version so that an entity with status s can emerge, and therefore no explanations for the
result. [7]

The following example should make the functionality of CIPs clearer. We are using the
DLV system [28]. We will also use the DLV-Complex system [11] for numeric aggregation
and set operators, and finally show how to use external programs as classifiers with the
newer version DLV2 [2, 1], which follows the ASP Core 2 standard [12]. [7]

Example 9.1.1. Consider Example 3.1.1. We now present the CIP for the decision tree
in Figure 3.2. Compared to Bertossi’s [7], we have made some minor changes to make it
easier to understand and consistent with our definitions.

1 % facts
2 dom(outlook,sunny). dom(outlook,cloudy). dom(outlook,rain).
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3 dom(humidity,high). dom(humidity,normal).
4 dom(wind,strong). dom(wind,weak).
5
6 % original entity
7 E(e,sunny,normal,weak,o).
8
9 % specification of the classifier

10 cls(sunny,high,strong,no). cls(sunny,high,weak,no).
11 cls(sunny,normal,strong,yes). cls(sunny,normal,weak,yes).
12 cls(cloudy,high,strong,yes). cls(cloudy,high,weak,yes).
13 cls(cloudy,normal,strong,yes). cls(cloudy,normal,weak,yes).
14 cls(rain,high,strong,no). cls(rain,high,weak,yes).
15 cls(rain,normal,strong,no). cls(rain,normal,weak,yes).
16
17
18 % transition rules
19 E(e,O,H,W,tr) :- E(e,O,H,W,o).
20 E(e,O,H,W,tr) :- E(e,O,H,W,do).
21
22 % counterfactual rule
23 E(e,Op,H,W,do) v E(e,O,Hp,W,do) v E(e,O,H,Wp,do) :-
24 E(e,O,H,W,tr), cls(O,H,W,yes),
25 dom(outlook,Op), dom(humidity,Hp), dom(wind,Wp),
26 O!=Op, H!=Hp, W!= Wp,
27 chosen(outlook,O,H,W,Op),
28 chosen(humidity,O,H,W,Hp),
29 chosen(wind,O,H,W,Wp).
30
31 % definitions of chosen operators
32 chosen(F,O,H,W,U) :- E(e,O,H,W,tr), cls(O,H,W,yes),
33 dom(F,U), U!=O, not diffchoice(F,O,H,W,U).
34 diffchoice(F,O,H,W,U) :- chosen(F,O,H,W,Up), U!=Up, dom(F,U).
35
36 % not going back to initial entity
37 :- E(e,O,H,W,do), E(e,O,H,W,o).
38
39 % stop when label has been changed
40 E(e,O,H,W,s) :- E(e,O,H,W,do), cls(O,H,W,no).
41
42 % collecting changed values for each feature
43 expl(e,outlook,O) :- E(e,O,H,W,o), E(e,Op,Hp,Wp,s), O!=Op.
44 expl(e,humidity,H) :- E(e,O,H,W,o), E(e,Op,Hp,Wp,s), H!=Hp.
45 expl(e,wind,W) :- E(e,O,H,W,o), E(e,Op,Hp,Wp,s), W!=Wp.
46
47 % auxiliary predicate
48 % to avoid unsafe negation in the constraint below
49 entAux(e) :- E(e,O,H,W,s).
50 % discard models where label does not change
51 :- E(e,O,H,W,o), not entAux(e).
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52
53 % computing the inverse of x-Resp
54 invResp(e,M) :- #count {F: expl(e,F,_)}=M, #int(M).

Algorithm 9.1: CIP for the decision tree in Figure 3.2. [7]

Lines 2-4 first define the domains for outlook, humidity and wind. Then the initial
entity is defined in line 6. The classifier is specified explicitly in lines 8-13. Note that the
classifier can also be defined implicitly by rules as in Algorithm 9.2.

1 cls(O,H,W,yes) :- O=sunny, H=normal, dom(wind,W).
2 cls(O,H,W,yes) :- O=cloudy, dom(humidity,H), dom(wind,W).
3 cls(O,H,W,yes) :- O=rain, W=weak, dom(humidity,H).
4 cls(O,H,W,no) :- dom(outlook,O), dom(humidity,H), dom(wind,W),
5 not cls(O,H,W,yes).

Algorithm 9.2: Additional rules for the decision tree in Figure 3.2. [7]

Another way to specify the classifier would be to represent it by an external program, as
was done in Algorithm 9.3 in Python.

1 def classifier(O,H,W):
2 if (O == "sunny") and (H == "normal"):
3 return "yes"
4 if (O == "overcast"):
5 return "yes"
6 if (O == "rain") and (W == "weak"):
7 return "yes"
8 else:
9 return "no"

Algorithm 9.3: External Python program for the decision tree in Figure 3.2. [7]

All that needs to be done is to compute the predicate cls at the beginning by calling the
function in the Python program with &classifier(O, H, W ; L). This can be done with
DLV2 as long as the path to the Python Program 9.3 is passed as the second parameter
in the program call. [7]

Once the facts and classifier are defined, the rules in lines 19 and 20 bring the initial en-
tity E(e, sunny, normal, weak, o) into its transition state E(e, sunny, normal, weak, tr).
Thus, the rules in lines 32 and 34 become active and produce all possible changes to the
individual feature values. The rule in line 23 then creates counterfactual versions of the
initial entity. Important here is line 37, so that the calculation does not start over, and
the rule in line 40, so that the program stops as soon as a counterfactual version is found.

Finally, the explanations for each feature are collected in lines 43-45. Counting the
explanations, which are the features that have changed, gives the inverse x-RESP score.
The rule in line 52 creates a score for each stable model. The predicate invResp has
been introduced to make it more convenient to read the score. [7]
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The only problem with this CIP is that the quality of the stable models as explanations
varies widely. Let’s take a closer look at the two resulting stable models:
{E(e,sunny,normal,weak,o),

cls(sunny,normal,strong,1),cls(sunny,normal,weak,1),
cls(overcast,high,strong,1),cls(overcast,high,weak,1),
cls(rain,high,weak,1),cls(overcast,normal,weak,1),
cls(rain,normal,weak,1),cls(overcast,normal,strong,1),
cls(sunny,high,strong,0),cls(sunny,high,weak,0),
cls(rain,high,strong,0),cls(rain,normal,strong,0),

E(e,sunny,high,weak,do),E(e,sunny,high,weak,tr),
E(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)
}

{E(e,sunny,normal,weak,o),
cls(sunny,normal,strong,1),...,cls(rain,normal,strong,0),

E(e,rain,normal,strong,do),E(e,rain,normal,strong,tr),
E(e,rain,normal,strong,s),
expl(e,outlook,sunny),expl(e,wind,weak),invResp(e,2)

}

Both stable models contain the facts described above and the classifier. In addition,
they both have one counterfactual entity each, which is marked with the status s and
would be labeled no by the classifier. Note that each entity that is labeled no by the
classifier would have its own model if we did not stop the computation as soon as such an
entity is reached. Thus, changing the feature wind of the counterfactual version of the
first stable model would create the entity E(e, sunny, high, strong), which would also
receive the label no. The same is true for the second stable model, the feature humidity,
and the resulting counterfactual version of the original entity E(e, rain, high, strong).
However, the two counterfactual versions of the initial entity differ mainly in the number
of modified features. The first stable model requires only one change to the initial entity,
while the second requires two. This value can also be read from the predicate invResp.
As we know, a single explanation of the classifier’s result for the initial entity is more
meaningful and thus more important than two explanations. Therefore, the first stable
model is ”better” than the second. The stable models are thus s-explanations. However,
we are mainly interested in the c-explanation. In order to obtain only the c-explanation,
we only need to add weak constraints that minimize the changes. In other words, we
have to minimize the number of explanations. These weak constraints, unlike strong
constraints, can be violated, but the violation must be kept as small as possible. The
following rules accomplish this:

⇝ E(e, f⃗ , o), E(e, f⃗ ′, s), xi ̸= x′
i.

So for our program only these DLV rules would be missing:
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1 % weak constraints for minimizing number of changes:
2 :~ E(E,O,H,W,o), E(E,Op,Hp,Wp,s), O != Op.
3 :~ E(E,O,H,W,o), E(E,Op,Hp,Wp,s), H != Hp.
4 :~ E(E,O,H,W,o), E(E,Op,Hp,Wp,s), W != Wp.

This leaves only the stable models with the minimum number of changed features needed
to compute the x-RESP score. [7]

Note that this program is completely generic except for the initial entity. Therefore, it
is possible to compute the inverse x-RESP score for any and even multiple entities. As
an example, entities can be read from a separate file and subsequently provided to the
program as input. [7]

Through Example 9.1.1 we have seen how to use CIPs to compute the x-RESP score of
one or more entities. A natural question is whether this also works with the other scores
described in this thesis. During our research we noticed a new probabilistic extension
called plingo [20] for clingo, another system besides DLV for solving logic programs. This
one was promising because, at least we thought, it also allowed different distributions of
the data for the classifier. Unfortunately, the systems for solving logic problems are not
yet advanced enough to continue computing with the probabilistic values. Therefore, we
decided to implement the scores in Python. This implementation will be explained and
discussed in detail in the following section, before we perform an evaluation with real
data.

9.2 Python Implementation

As shown in the last section, there are ways to calculate the x-RESP score using logic
programs. To compute other scores, we decided to create a framework in Python that
allows us to use real datasets and classifiers. In the following we will describe the different
parts of the framework and try to make them understandable.

Since data is used throughout the entire computation, we need to take a closer look at
data preprocessing at the beginning. Before the data can be used, it has to be prepared.
For example, some classifiers require binary features, some feature values need to be
scaled, or records with missing information need to be deleted or modified. All of this
must be done before the classifier can be trained. We also decided to keep the operation
as simple as possible, and to store these transformation steps so that they can be used
to modify any entity in the same way later, rather than having to calculate them by
hand for each feature. For the storage and transformation we created a class Preparer,
which can be completely customized by a configuration file. The data is read in CSV
format and transformed into the DataFrame datatype of the Python package pandas at
the beginning of the program. This has an advantage and a disadvantage. On the one
hand, the data can be used quickly at any time, but on the other hand, the memory of
the hardware is a limiting factor, since the data is completely in memory.
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Once the data is read and processed, a classifier can be trained. In Section 9.1 we have
seen different ways to define such a classifier for CIPs. Since we are using the Python
programming language, which is widely used in the field of machine learning, there
are almost no limits for the programmer to define the classifier. Therefore, we have
created a highly parameterized Python framework that allows to train a classifier with a
configuration file and to save the model with little effort. In our tests we mainly used
simple classifiers like the RandomForestClassifier or the GaussianNB from the
scikit-learn Python package, since our focus was on computing scores rather than good
classifiers. However, by Grid Search the parameters of the mentioned classifiers, which
means a repeated division of training and test data and the corresponding training, we
were able to create quite accurate classifiers. It was especially important for us not to
make the classifier too sensitive to our few datasets, in order to avoid so-called overfitting,
which means tailoring the classifier to the given data. Otherwise, the classifier would
not be as accurate for new datasets. In addition, the framework stores the model of the
classifier so that we do not have to restart training for each score calculation.

The core of our score calculation implementation is the Python class Explainer with
the following properties

• the predict function of the classifier

• the preprocessing steps to make an entity ”classifier-ready”

• the domains of the features

• the function to distribute the entities

The Explainer class also contains two functions, namely partial_entity and
expected_prediction. The former creates a DataFrame of a partial entity according
to Definition 5.3.1. The latter computes the expected value of the predictions of a
DataFrame of entities according to the stored distribution function.

For the score calculation, we created additional functions. Let’s start with the trivial
implementation of the COUNTER score:

1 def counter(self, entity, feature):
2 return self.expected_prediction(entity, set(entity.index)-{

feature})

Algorithm 9.4: Python implementation of the COUNTER score

The first parameter of the function is self, which is an instance of the explainer
class and thus specifies the setting. This parameter is present in all functions because we
need the information stored in the Explainer class anyway. For this reason we will
ignore it in the following function descriptions. The other parameters are entity and
feature. entity is the entity we want to analyze and feature is the feature we
want to compute the COUNTER value for. The expected value of the partial entity is
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returned, where the second parameter of the expected_prediction function specifies
the features to fix. In other words, it calculates the expected value of the entities where
all feature values remain the same except for the value of the feature feature.

Almost self-explanatory is the very similar implementation of the COUNTER+ score:
1 def counter_plus(self, entity, features):
2 return self.expected_prediction(entity, set(entity.index)-set(

features))

Algorithm 9.5: Python implementation of the COUNTER+ score

Here, only the feature has been replaced by a set of features features. This changes
the value for all features in the set features instead of just a single feature.

Probably the most complicated implementation is the x-RESP score:
1 def x_resp(self, entity, feature, max_size=None, get_counter=True):
2 entity_prediction = self.predict(self.preprocess(entity.to_frame

().transpose()))[0]
3
4 candidates = list(set(entity.index)-{feature})
5 best_counter = entity_prediction
6 max_size = len(candidates) if max_size is None else max_size-1
7 for size in range(max_size+1):
8 for contingency_set in combinations(candidates, size):
9

10 entities = self.partial_entity(entity, set(entity.index)-
set(contingency_set))

11 bad_entities = entities[self.predict(self.preprocess(
entities)) == entity_prediction]

12 counters = bad_entities.apply(lambda pe: self.counter(pe,
feature), axis=1)

13
14 best_counter = max(best_counter, *counters, key=lambda c:

abs(c-entity_prediction))
15 if best_counter != entity_prediction:
16 return (1/(1+size), best_counter) if get_counter else

1/(1+size)
17 return (0, 0) if get_counter else 0

Algorithm 9.6: Python implementation of the x-RESP score

In addition to the parameters already explained, there are two more optional parameters.
The parameter max_size can be used to set the maximum size of the contingency set.
One significant advantage of the RESP score, as discussed in Section 7.5, is the ability to
terminate the score calculation early. This is possible due to the initial consideration
of small contingency sets, as larger contingency sets tend to have diminished expressive
power. To not have an early termination condition here, leave max_size to None,
otherwise set the parameter to the maximum size of the contingency set that still makes

69



9. Implementation and Experimental Evaluation

sense. The last parameter is get_counter. This parameter determines whether the best
counter for the contingency set is also returned or just the contingency set. The function
itself then tries to find the smallest possible contingency set by cleverly testing values
and returns the x-RESP score of the entity entity and the feature feature. Since
the COUNTER score function is present and frequently executed in this implementation,
we can see that the x-RESP score is derived from the COUNTER score.

To combine the positive features of the COUNTER score and the x-RESP score, we
have the RESP score. Once again, it is evident in the implementation that both the
COUNTER score and the x-RESP score are used within the calculation of the RESP
score:

1 def resp(self, entity, feature):
2 x_resp_score, best_counter = self.x_resp(entity, feature,

get_counter=True)
3 return x_resp_score * best_counter

Algorithm 9.7: Python implementation of the RESP score

The parameters of this function are the same as for the COUNTER score and are used
to calculate the x-RESP score including the best COUNTER score. The two results are
then simply multiplied to return the RESP score.

For the SHAP score, we created our own Python class COOP_Game. This is capable of
calculating Shapley scores. For the SHAP score, we simply compute the Shapley values
for a given wealth function. Since Python is also a functional programming language, we
could simply pass the appropriate function as a parameter. The implementation for the
Shapley scores looks like this

1 class COOP_Game:
2 def __init__(self, game_function):
3 self.GAME_FUNCTION = game_function
4
5 def shapley(self, all_players, player):
6 shapley_value = 0
7 for size in range(len(all_players)):
8 coefficient = (factorial(size)*factorial(len(all_players)

-size-1)) / (factorial(len(all_players)))
9 for team in combinations(set(all_players.index)-set(

player), size):
10 shapley_value += coefficient * (self.GAME_FUNCTION(

all_players, set(player).union(team)) - self.
GAME_FUNCTION(all_players, team))

11
12 return shapley_value

Algorithm 9.8: Python implementation of the COOP_Game class

The COOP_Game class stores the wealth function because it is necessary for further
calculations. To compute Shapley values as in Example 5.1.2, the function shapley
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needs the list of all players all_players and the one player player for which the
Shapley value is to be computed. Then the Shapley values of the teams and their
coefficients are calculated and multiplied. The sum calculated in line 10 is then the
resulting Shapley score that is returned.

As previously mentioned, calculating the SHAP score simply requires the creation of a
COOP_Game using the wealth function expected_prediction from the Explainer
class. The resulting Shapley scores will be equivalent to the SHAP score. The creation
of the COOP_Game object and the function call were implemented as follows:

1 def shap(self, entity, feature):
2 return COOP_Game(self.expected_prediction).shapley(entity, {

feature})

Algorithm 9.9: Python implementation of the SHAP score

Like the COUNTER+ score, the SHAP+ score is very similar to the SHAP score. Again,
a COOP_Game is created with the wealth function expected_prediction. This time,
however, the function is called with a set of features:

1 def shap_plus(self, entity, features):
2 return COOP_Game(self.expected_prediction).shapley(entity, set(

features))

Algorithm 9.10: Python Implementation of the SHAP+ score

9.3 Evaluation
To test the framework, we used real data. In principle, the content and the statement
of the data is not important for a test. Nevertheless we tried to find data that are
similar to the examples in this thesis. To be able to use the continuous features, we
discretized them to get categorical features where one can change feature values in a finite
domain. In addition, we encoded all categorical data into multiple binary features using
OneHotEncoder from the Python package sklearn.preprocessing to prevent the
classifier from creating unwanted relationships between the values of individual features
and thus achieve higher accuracy. The resulting domains can be found in the parenthesis
next to the features.

• Blood Transfusion Service Center Data Set (blood) [43]: A relatively small dataset
that can be used to predict whether people will donate blood. It contains 748
records of blood donors, each with 4 features and a binary class for classification:

– Recency: Months since last donation
(<3, 3-4, 5-11, 12-16, >16)

– Frequency: Total number of blood donations
(<3, 3-4, 5-7, >7)
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– Monetary: Total amount of blood donated in c.c.
(<501, 501-1000, 1001-1750, >1750)

– Time: Months since first donation
(<15, 15-23, 24-35, 36-57, >57)

– Class: Binary feature representing whether the donor was a blood donor in
March 2007
(’yes’, ’no’)

For this dataset, we used the GaussianNB classifier from the Python package
sklearn.naive_bayes and set the parameter

– var_smoothing: 1.484,

for an accuracy of 0.73.

• Statlog (German Credit Data) Data Set (creditworthiness) [26]: This is the largest
dataset we have tested. It can be used to determine a person’s credit score. It
contains 1000 records with a total of 20 features. The features include the person’s
gender, education level, and whether the person rents or owns their home. The
resulting binary class indicates whether the person is creditworthy (good) or not
(bad). We discretized the following features:

– Age: Age of person
(<28, 28-33, 34-42, >42)

– Credit amount: Amount of the credit
(<1367, 1367-2320, 2321-3973, >3973)

– Duration: Duration of the credit
(<13, 13-24, >24)

For this dataset, we used the RandomForestClassifier classifier from the
Python package sklearn.ensemble and called it with the parameters

– n_estimators: 50

– criterion’: entropy

– min_samples_split: 0.012

for an accuracy of 0.755.

• German Credit Risk (creditworthiness-small) [27]: This dataset is the same as
the previous one and also contains all 1000 records, but only 9 features. It was
generated from the previous dataset by omitting some features and better describing
others. We use it mainly because it contains fewer features and thus reduces the
number of possible value combinations.
For this dataset, we again used the GaussianNB classifier from the Python package
sklearn.naive_bayes, but this time we specified the parameter
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– var_smoothing: 1

for a precision of 0.725.

To compute the scores, we selected multiple entities for each dataset that received a
negative classification result and tried to determine which parameters were most likely to
need to be changed to achieve a positive result. To do this, we selected the following
entities:

• blood: Since the 4 features can take 5, 4, 4 and 5 different values, this gives
400 possible entities. We deleted those that did not give a negative result at the
beginning. We were left with 393 entities for which we then calculated scores for
all features.

• creditworthiness: Since this dataset contains a lot of possible entities due to the 20
features and up to 10 possible values per feature, we decided to take only those
that actually occur in the dataset and give a negative result. From the remaining
216 entities, we then used the 66 for which there is also an equivalent entity for the
creditworthiness-small dataset, which returned a negative result with the associated
classifier. This makes the two datasets easy to compare as we used the same entities
for both.

• creditworthiness-small: As just described, for this dataset we used the 66 entities
that occur in the datasets and returned a negative result for both the classifier of
the creditworthiness dataset and the creditworthiness-small dataset.

Note that the last two entity sets describe the same people, so only the size of the dataset
differs, not the local case under study.

In addition, we used the uniform distribution, the fully-factorized distribution and the
experimental distribution as parameters to compute both the scores of the features for
the selected entities and to investigate how long the computation takes for the different
distributions.

The evaluation was carried out on a standard laptop equipped with an Intel® Core™

i7-12700H processor and 16 GB of RAM. This setup was complemented by an Arch Linux
operating system running Kernel version 6.4.4-arch1-1 (64-bit). Opting for a common
laptop configuration was a deliberate choice to ensure the applicability of our results
across a wide range of real-world scenarios, without being influenced by specialized
hardware accelerators or excessive computational resources. This decision aligns with
our commitment to prioritizing simplicity and accessibility in our hardware choices, thus
promoting a collaborative and sustainable framework for advancements in the field. The
entire calculation of all the scores, took over 9 hours.
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9.3.1 Scores for single Features
In Figure 9.1, 9.2 and 9.3, we have shown the computed scores for the features from
the blood, creditworthiness-small and creditworthiness datasets, respectively. We used
boxplots to get a sense of which features are relevant to a change in classifier outcome.
Note that in Figure 9.3, due to the size of the dataset, we can only display the features
that are similar to those in the creditworthiness-small dataset.
If we look at the results for the blood dataset in Figure 9.1, we see that for any feature,
in any distribution, the COUNTER value is almost always 0. This means that there
are very few entities with a single feature for which there is another value that would
produce a counterfactual version of the entity. It also means that calculating the other
causality-based scores is not trivial, as it usually requires a contingency set to be found
first. We will see this again later in Figure 9.4: the calculation of the RESP score is
no faster than that of the SHAP score for the blood dataset. The same can be seen
with the x-RESP score: There are only a few outliers with a x-RESP score of 1, which
means that no contingency set is needed. Furthermore, the median of the x-RESP scores
for the features Frequency and Monetary is 0.3, which means that half of all entities
need at most two additional features to turn a negative result of the classifier into a
positive one. However, the range is relatively large and there are some entities that
require three additional features or whose classification result cannot be changed at all.
This is different from the feature Recency because here, apart from a few outliers, all
entities need two or three features in the contingency set. On the other hand, besides
the fact that a single feature in the contingency set is not sufficient, this means that
virtually any entity can be modified so that the feature Recency can be decisive for the
classification result of the modified entity. The low x-RESP values for the feature Time
show that this feature can only be decisive for the result of the classifier by changing the
values of almost all other features. Furthermore, it can be clearly seen that the RESP
score is always smaller or equal to the x-RESP score found with the contingency set,
since the RESP score becomes smaller and smaller as the contingency sets become larger
and larger.
The SHAP score, on the other hand, is quite different and always near 0. As we saw
in Section 5.2, the SHAP scores can be summed up to the difference G(P) − G(∅). For
example, the result of the classifier for the entity ⟨2, 11, 2750, 23⟩ of the blood dataset is
1.0 and the expected value of the classifier with uniform distribution is 0.9825. Thus, the
difference of 0.0175 is equal to the sum of all SHAP scores for this configuration, except
for rounding errors resulting from the Python calculation:

0.014375 − 0.093125 − 0.093125 + 0.189375 = 0.0175

Of course, other distributions will have different expected values and thus different results,
but they can still be summed up to this difference. This is why the SHAP values are so
close to 0.
In the creditworthiness-small dataset examined in Figure 9.2, more COUNTER scores
are not equal to 0 than in the blood dataset. Therefore, there are many x-RESP scores
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Figure 9.1: Scores for the entities of the blood dataset.

of 1, which results from an empty contingency set. This makes the COUNTER scores
and the RESP scores similar. The features Saving accounts, Checking account
and Duration are even counterfactual causes for almost all entities. The same features
emerge when the SHAP scores of each feature are considered. These features have on
average the highest SHAP scores and therefore contribute the most to the classifier’s
result. However, by stopping the search for the smallest possible contingency sets, it
is possible to compute the causality-based scores faster than the SHAP scores, thus
providing similar results with less effort.

Due to the same data origin, the results for the creditworthiness dataset are very similar
to the results for the creditworthiness-small dataset. This can also be seen in Figure 9.3.
On the one hand, we see many high RESP scores for the features on the right side of the
figure, which indicates a large influence on the classifier outcome. On the other hand,
we see some features with COUNTER score 0 for almost all entities on the left side of
the figure. However, for the latter, usually only a second feature needs to be changed to
make them counterfactual causes, since the x-RESP score is 0.5 for almost every entity.

In general, the results of the uniform distributions and the fully-factorized distributions
of all datasets are very similar. However, the experimental distribution is often very
different from the other two. This difference is due to the fact that the dataset has only

75



9. Implementation and Experimental Evaluation

0

0.5

1
Sc

or
e

uniform distribution

COUNTER x-RESP RESP SHAP

0

0.5

1

Sc
or

e

fully-factorized distribution

Age Sex Job
Housing

Saving accounts

Checking account

Credit amount

Duration
Purpose

0

0.5

1

Sc
or

e

experimental distribution

Figure 9.2: Scores for the entities of the creditworthiness-small dataset.

1000 records, which reduces the probability of any modified entities occurring at all. This
bias does not occur in the first two distributions because no entity has a probability of 0.

The reason why the dataset is too small is also the reason why we could not compute the
scores for the experimental distribution of creditworthiness at all. It would require too
many contingency sets, which would require computing too many expected values. The
same is true for calculating the SHAP score. For the 20 features of the creditworthiness
dataset, each with two to ten different possible values, there are individual expected
values for which more than 20 · 109 possible entities would have to be classified and then
weighted according to the distribution used. All these entities need to be created and
stored, so the 16 GB of memory used would not be enough. For the same reasons, the
values for the x-RESP score and RESP score for the creditworthiness record cannot be
computed.

Figure 9.4 illustrates again that for small instances the SHAP score can be computed
quickly, but for larger instances the RESP score can be computed faster due to the few
expected values that need to be computed, since in practice often small contingency sets
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Figure 9.3: Scores for the entities of the creditworthiness dataset.

are sufficient to change the classifier outcome of an entity.

On the other hand, the expected values computed for a feature during the computation
of the first SHAP score can be used to compute the score of further features faster. All
possible expected values must be computed at least once, but this can be done in advance.
Afterwards, the values just need to be saved and can then be used. However, this is not
noticeable in Figure 9.4, as it shows the average runtime for computing the scores of
single entities. Storing expected values with the RESP score is of little or no use, however,
since expected values of different entities must be computed in most cases. Since it is
not clear in advance which entities these are, too many expected values would have to be
computed and stored, so it is not worthwhile to compute the values in advance.
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Figure 9.4: Average computation time of the scores.
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9.3.2 Scores for Sets of Features

Due to the high complexity and huge computational effort of calculating the scores for all
feature sets, we could not calculate them for the creditworthiness dataset. For the other
two datasets, however, we again used the entities described earlier and focused primarily
on whether they rank the feature combinations in the same way, since the values do not
have any relations per se.

However, there were significant differences in the correlations between the two datasets. In
the table 9.1 we have listed the average correlations of the rankings of of the COUNTER+

score and the SHAP+ score. It quickly becomes clear that the rankings for the blood
dataset are very different and have a correlation of about 0.27 in the best case. The
rankings of the creditworthiness-small dataset, on the other hand, are almost identical
with a correlation of over 0.93. This large difference is due to the fact that many
COUNTER+ scores cannot be ranked properly at all. For the majority of entities
examined in the blood dataset, many feature combinations have a COUNTER+ score of
0. This does not define which feature combination has more influence on the classifier
outcome. Since this does not happen as often in the creditworthiness-small dataset, the
results are much better and also show that the two scores for sets of features tend to be
highly correlated in their feature combination ranking.

Furthermore, it is noticeable that for both scores there is a tendency that feature
combinations with features that were ranked high by the COUNTER score or the SHAP
score were also ranked high in the ranking of the COUNTER+ score and the SHAP+

score, and vice versa.

Dataset
Distribution uniform fully-factorized experimental

blood 0.15029187 0.17459961 0.270176622
creditworthiness-small 0.94185869 0.94254958 0.93906126

Table 9.1: Correlation of COUNTER+ score and SHAP+ score.

In terms of computation time, the COUNTER+ score and the SHAP+ score are almost
identical, as can be seen in Figure 9.5. This is again due to the fact that they have
to compute the same expected values. However, they do so at different times. The
COUNTER+ score calculates a single expected value for each feature combination, while
the SHAP+ requires each expected value calculated by the COUNTER+ score for each
individual feature combination. This results in the calculation times of an exemplary
entity shown in Figure 9.5. The COUNTER+ score computes the expected values
continuously, with the latter combinations containing more entities and taking longer to
compute a single expected value. The SHAP+ score, on the other hand, computes all
the expected values at the first feature combination and stores them so that they do not
have to be computed again for the other combinations. The storage is important because
otherwise each call would take the same time as the first one. Again, this is a problem
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when there is not enough memory for the results. This storage is not necessary with the
COUNTER+ score.
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Figure 9.5: Computation time of the scores for sets of features.

9.4 Future Extensions
Of course, the described implementation of our score framework can be improved. For
further research in the future, it will be important to be able to compute the scores faster
and to create even more possibilities for customization.

Again, let us start with the data. The choice of data and its pre-processing strongly
influences the result. Since we were only doing tests for the computation, we could
discretize the data arbitrarily and even change it. This is not possible for real applications.
Future research could focus on minimizing the need to prepare the data and perhaps
even allow continuous features. Choosing the right classifier is also important. More
options to use different data, preprocessing and classifiers would help to get results faster
with less effort and fewer changes to the data.

Also, the choice of distributions and scores could be expanded to create more comparisons.
It is important to note that very few distributions are discussed in the literature, and a
scientific focus should be placed on this theoretical area.

Finally, it should be noted that our implementation is deliberately very naïve in order to
make the definitions as understandable as possible. Also, the choice of data structures
and the Python programming language itself, while understandable, are not as efficient
as possible. Of course, faster algorithms can be implemented in more special cases, as we
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have shown for example in Section 5.3.1, but this would miss our goal of explaining the
scores and their relationships.
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CHAPTER 10
Conclusion

In conclusion, the field of explainable data management and eXplainable Artificial
Intelligence (XAI) is a rapidly advancing area of research, gaining increasing importance
with a strong emphasis on transparency, fairness and explainability in machine learning
and data management systems. The demand for explanations is growing constantly,
underscoring the critical need to delve deeper into the notions of explanation and
interpretation.

Throughout this thesis, we have extensively explored various facets of explanation in
the realms of machine learning and databases, providing a comprehensive overview of
the fundamental principles. Additionally, we have examined the role of causality within
the context of explanations, with a particular focus on the concept of responsibility.
Our analysis has encompassed score-based explanations utilizing Shapley scores in both
machine learning and databases, shedding light on their intricacies and complexities.

Furthermore, we have ventured into the integration of causality and responsibility into
predictive explanations, specifically exploring the realm of counterfactual interventions.
Here, our primary focus has centered around the COUNTER, x-RESP, and RESP scores
proposed by Bertossi et al. in [9]. We have conducted an extensive comparative analysis of
these different scores while also introducing two novel scores derived from the COUNTER
and SHAP scores, namely COUNTER+ score and SHAP+ score. To illustrate the
practical implementation of these conceptual approaches, we have demonstrated and
elucidated counterfactual intervention programs developed by Bertossi in [7]. Recognizing
the challenges associated with computing scores beyond the x-RESP score, we have
taken the initiative to develop our own Python framework, providing a comprehensive
description of the entire explanation workflow. This framework, complemented by an
evaluation of the proposed methods, offers a practical tool for both researchers and
practitioners. It is our belief that this contribution will facilitate further advancements
in the field of explanation.
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Nevertheless, the pursuit of comprehensive and effective metrics for evaluating the quality
of explanations remains a pressing research challenge. By identifying and defining the
desired properties of explanation scores, researchers can pave the way for the development
of robust evaluation measures. Additionally, the continued evolution of the framework,
along with novel approaches incorporating probabilistic extensions for logic programs,
holds the potential to enhance the analysis of explanations in complex and uncertain
scenarios.

As we look toward the future of XAI, it is imperative that we confront these challenges
head-on and strive to establish comprehensive frameworks for generating high-quality
explanations. The concepts, methods, and tools presented in this thesis offer a solid
foundation upon which future research can build. Their practical applicability across
diverse domains further underscores their value and potential impact.

In summary, this thesis has contributed to the understanding and application of ex-
planations in the fields of machine learning and databases. The insights gained from
this research provide valuable resources for explanations of predictive models and can
be leveraged in various application areas. The developed Python framework not only
demonstrates its utility in practical scenarios but also serves as a catalyst for further
advancements in the field. With continued exploration, refinement, and collaborative
efforts, we can chart a course towards a future where high-quality explanations are an
integral part of intelligent systems, fostering trust, understanding, and responsible use of
AI technology.
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CHAPTER 11
Future Work

This thesis has dealt with score-based explanations and tried to look at them from
different perspectives and different research areas. In this chapter we will now look at
possible extensions of the topic. We will ask ourselves which aspects have not yet been
sufficiently researched and which new methods could be used in the future to advance
research in this area. Furthermore, this chapter will serve to uncover open questions and
challenges that have not yet been resolved or should be considered in further proceedings.

11.1 I cannot change my Age
Central to the notion of counterfactual interventions is the practice of changing input
parameters to induce a change in outcomes, as seen in scenarios such as classification tasks.
But some things cannot be changed, or not without considerable effort. An example
of this is the age of a person. Consider again Example 1.0.1 from the introduction: if
the bank employee would use one of the scores defined in the last chapters to make an
explanation, the best way to get a loan might be to change the age of the bank customer.
This is hardly possible (or only possible with a lot of time and even then only in one
direction) and therefore certainly not a reasonable explanation for not getting the credit.
Another example is the citizenship of a bank client. This is also impossible or very
difficult to change.

So there are explanations that simply do not translate to concrete actions to change the
outcome. Finding these in the appropriate domain is sometimes not easy, but must be
the first step to be able to calculate useful scores. Excluding single features from the
calculation of the scores could be a way to get no explanations for them. In general, if
the feature to be excluded reaches the highest score, it is not enough to simply take the
feature with the next lower score. Excluding individual features can alter the scores of
all features, which are highly dependent on each other in the presented score calculations.
The RESP score, for example, uses a contingency set. If a feature that cannot be changed
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is in the contingency set, it is not sufficient to simply remove it from the set. The original
contingency set would not be minimal if that were possible.

So features that are not allowed to be changed are something that has to be considered
in future research. It is necessary to find solutions that can handle this and to define
new scores with which a subsequent change of the set of changeable features is possible.

11.2 Probability Distributions
Another problem mentioned in [9] concerns the probability distribution. If the expected
values are not precise, no score is of any use, because the resulting explanations are
not accurate enough to be used. The choice of the probability distribution is therefore
essential. In this thesis we have looked at the uniform, the fully-factorized and the
experimental distribution. If one has more information about the field of application,
one can achieve great advances. It depends on how likely it is that certain combinations
of feature values occur. If these are ignored, a lot of information is lost, which could
help to calculate the expected values more exactly and faster. Of course, one could also
calculate the expected values exactly, if one has the data for it, but this helps only little
for new entities and is mostly very time-consuming. [7, 9]

Example 11.2.1. Suppose we have data with two features A and B with their do-
mains dom(A) = {a1, a2, . . . , an} and dom(B) = {b1, b2, . . . , bn}. Without looking at
the data specifically, one might assume a fully factorized distribution and perhaps over-
look the fact that the two features are not independent, but always occur in a pair:
{(a1, b1), (a2, b2), . . . , (an, bn)}. The expected value and thus the probability for a single
entity would be 1

n2 , although the single entities have a probability of 1
n , that is, far more

likely to occur.

Often minor dependencies and relationships are not easy to find, but they can greatly affect
the result. A solution to keep the information about the frequencies of the combinations
of the feature values is to define them explicitly. We will look at this in more detail in
Section 11.2.1. [7]

11.2.1 Custom Probability Distributions
Wherever standardized distributions are no longer sufficient or too little data is available
for experimental distributions, these can be customized. This has the purpose to capture
more of the correlations and logical relationships between the features. To calculate the
probability of an entity e in a population E we first assume a probability distribution Pr.
For Pr we introduce so-called constraints, which are very similar to the denial constraints
in databases. [7]

These use the set of all binary features F and are of the form:

χ : ¬


F ∈F1

F̄ ∧
F ′∈F2

F̄ ′
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where F1 ∪ F2 ⊆ F , F1 ∩ F2 = ∅ and F̄ and F̄ ′ mean that features F and F ′ take values
1 and 0, respectively. Intuitively, these describe the absence of certain pairs of feature
values in a population. To use the constraint χ in the custom probability distribution
Prχ, we define the event E(χ) = {e ∈ E | e |= χ}. Here e |= χ means that e satisfies the
constraint χ. [7]

Given the initial probability space ⟨E , P r⟩, we can now define the customized probability
space ⟨E , P rχ⟩ by

Prχ(E) = Pr(E|E(χ)) = Pr(E ∩ E(χ))
Pr(E(χ))

where E ∈ (E). Thus Pr is well-defined as long as E(χ) ̸= ∅. The probability of the
violation set of χ is:

Prχ(E \ E(χ)) = Pr(E \ E(χ)|E(χ)) = Pr(∅)
Pr(E(χ)) = 0

Furthermore, the definition for finite conjunctions of constraints θ and arbitrary
propositional formulas f , which can be evaluated for single entities, can be extended
by using Pr θ(E) or Prf (E) respectively. The resulting customized version of the
probability distribution can be used in all described scores to calculate the expected
values as accurately as possible. [7]

Example 11.2.2. Let us assume that the two features in Example 11.2.1 represent two
binary properties of a person:

• Adult: Is the person an adult

• highIncome: If the person earns a lot

Most likely, the two properties Adult and highIncome have a correlation. Using the
full-factorized distribution as in Example 11.2.1 would lead to inaccurate results. It
is rare to have children who have a very high income. Thus, value pairs would be
included in the calculation, which do not occur at all or only rarely. The constraint
¬(¬Adult ∧ highIncome) prevents these combinations and thus leads to a more accurate
expected value of the entities. Furthermore, other constraints can be added to further
improve the result. [7]

In any case, the two improvements described in this chapter should be considered and
perhaps even compared in future work. Expected values, which were created without
including the context, lead to wrong results and make a correct calculation and thus the
interpretation of the scores impossible.

85





List of Figures

3.1 A black-box Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 A Decision Tree for Example 3.1.1. [8] . . . . . . . . . . . . . . . . . . . . 15

9.1 Scores for the entities of the blood dataset. . . . . . . . . . . . . . . . . . 75
9.2 Scores for the entities of the creditworthiness-small dataset. . . . . . . . . 76
9.3 Scores for the entities of the creditworthiness dataset. . . . . . . . . . . . 77
9.4 Average computation time of the scores. . . . . . . . . . . . . . . . . . . . 77
9.5 Computation time of the scores for sets of features. . . . . . . . . . . . . . 79

List of Tables

2.1 An inconsistent Database. [8] . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 A Database and a BCQ. [8] . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 An inconsistent database with its denial constraint. [8] . . . . . . . . . . . 49
6.2 A probabilistic database. [8] . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.1 Correlation of COUNTER+ score and SHAP+ score. . . . . . . . . . . . . 78

87



List of Algorithms

9.1 CIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2 Additional Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.3 External Python Program . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.4 COUNTER score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.5 COUNTER+ score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.6 x-RESP score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.7 RESP score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.8 COOP_Game class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.9 SHAP score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.10 SHAP+ score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

88



Acronyms

ASP answer-set program. 7, 11, 12, 61

BCQ Boolean Conjunctive Query. 7, 16, 42

blood Blood Transfusion Service Center Data Set. 71, 73–75, 78

CIP Counterfactual Intervention Programs. 61–63, 65–68, 87

CQ Conjunctive Query. 7, 42

creditworthiness Statlog (German Credit Data) Data Set. 72–78

creditworthiness-small German Credit Risk. 72–76, 78

XAI eXplainable Artificial Intelligence. 81, 82

89





Bibliography

[1] M. Alviano, G. Amendola, C. Dodaro, N. Leone, M. Maratea, and F. Ricca. Evalua-
tion of disjunctive programs in WASP. In M. Balduccini, Y. Lierler, and S. Woltran,
editors, Logic Programming and Nonmonotonic Reasoning - 15th International Con-
ference, LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings, volume
11481 of Lecture Notes in Computer Science, pages 241–255. Springer, 2019.

[2] M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca, P. Veltri,
and J. Zangari. The ASP system DLV2. In M. Balduccini and T. Janhunen, editors,
Logic Programming and Nonmonotonic Reasoning - 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, volume 10377 of Lecture
Notes in Computer Science, pages 215–221. Springer, 2017.

[3] M. Arenas, P. Barceló, L. E. Bertossi, and M. Monet. The tractability of shap-scores
over deterministic and decomposable boolean circuits. CoRR, abs/2007.14045, 2020.

[4] M. Arenas, P. Barceló, L. E. Bertossi, and M. Monet. On the complexity of shap-score-
based explanations: Tractability via knowledge compilation and non-approximability
results. CoRR, abs/2104.08015, 2021.

[5] R. Bagheri. Introduction to shap values and their application in machine learning.
https://towardsdatascience.com/introduction-to-shap-values-
and-their-application-in-machine-learning-8003718e6827, Mar
2022. [Online; accessed 03-April-2022].

[6] L. Bertossi and G. Reyes. Answer-set programs for reasoning about counterfactual
interventions and responsibility scores for classification. CoRR, abs/2107.10159,
2021.

[7] L. E. Bertossi. Declarative approaches to counterfactual explanations for classification.
CoRR, abs/2011.07423, 2020.

[8] L. E. Bertossi. Score-based explanations in data management and machine learn-
ing: An answer-set programming approach to counterfactual analysis. CoRR,
abs/2106.10562, 2021.

91

https://towardsdatascience.com/introduction-to-shap-values-and-their-application-in-machine-learning-8003718e6827
https://towardsdatascience.com/introduction-to-shap-values-and-their-application-in-machine-learning-8003718e6827


[9] L. E. Bertossi, J. Li, M. Schleich, D. Suciu, and Z. Vagena. Causality-based
explanation of classification outcomes. In S. Schelter, S. Whang, and J. Stoyanovich,
editors, Proceedings of the Fourth Workshop on Data Management for End-To-End
Machine Learning, In conjunction with the 2020 ACM SIGMOD/PODS Conference,
DEEM@SIGMOD 2020, Portland, OR, USA, June 14, 2020, pages 6:1–6:10. ACM,
2020.

[10] L. E. Bertossi and B. Salimi. From causes for database queries to repairs and
model-based diagnosis and back. Theory Comput. Syst., 61(1):191–232, 2017.

[11] F. Calimeri, S. Cozza, G. Ianni, and N. Leone. An ASP system with functions, lists,
and sets. In E. Erdem, F. Lin, and T. Schaub, editors, Logic Programming and
Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam,
Germany, September 14-18, 2009. Proceedings, volume 5753 of Lecture Notes in
Computer Science, pages 483–489. Springer, 2009.

[12] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
M. Maratea, F. Ricca, and T. Schaub. Asp-core-2 input language format. Theory
Pract. Log. Program., 20(2):294–309, 2020.

[13] H. Chockler and J. Y. Halpern. Responsibility and blame: a structural-model
approach. CoRR, cs.AI/0312038, 2003.

[14] H. Chockler, J. Y. Halpern, and O. Kupferman. What causes a system to satisfy a
specification? CoRR, cs.LO/0312036, 2003.

[15] G. V. den Broeck, A. Lykov, M. Schleich, and D. Suciu. On the tractability of SHAP
explanations. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages 6505–6513. AAAI Press, 2021.

[16] T. Eiter and T. Lukasiewicz. Causes and explanations in the structural-model
approach : Tractable cases. In A. Darwiche and N. Friedman, editors, UAI ’02,
Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence, University
of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002, pages 146–153. Morgan
Kaufmann, 2002.

[17] T. Eiter and T. Lukasiewicz. Complexity results for structure-based causality. Artif.
Intell., 142(1):53–89, 2002.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[19] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. A. Kowalski and K. A. Bowen, editors, Logic Programming, Proceedings of the
Fifth International Conference and Symposium, Seattle, Washington, USA, August
15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press, 1988.

92



[20] S. Hahn, T. Janhunen, R. Kaminski, J. Romero, N. Rühling, and T. Schaub. Plingo:
A system for probabilistic reasoning in clingo based on LP mln . In G. Governatori
and A. Turhan, editors, Rules and Reasoning - 6th International Joint Conference
on Rules and Reasoning, RuleML+RR 2022, Berlin, Germany, September 26-28,
2022, Proceedings, volume 13752 of Lecture Notes in Computer Science, pages 54–62.
Springer, 2022.

[21] J. Y. Halpern. Defaults and normality in causal structures. In G. Brewka and
J. Lang, editors, Principles of Knowledge Representation and Reasoning: Proceedings
of the Eleventh International Conference, KR 2008, Sydney, Australia, September
16-19, 2008, pages 198–208. AAAI Press, 2008.

[22] J. Y. Halpern. A modification of the halpern-pearl definition of causality. In Q. Yang
and M. J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, pages 3022–3033. AAAI Press, 2015.

[23] J. Y. Halpern and C. Hitchcock. Graded causation and defaults. CoRR,
abs/1309.1226, 2013.

[24] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach,
part I: causes. CoRR, cs.AI/0011012, 2000.

[25] C. Hitchcock and J. Knobe. Cause and norm. Journal of Philosophy, 106(11):587–612,
2009.

[26] H. Hofmann. Statlog (german credit data) data set. https://
archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data),
Nov 1994. [Online; accessed 16-May-2023].

[27] U. M. Learning. German credit risk. https://www.kaggle.com/datasets/
uciml/german-credit, Sep 2019. [Online; accessed 16-May-2023].

[28] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log., 7(3):499–562, 2006.

[29] D. Lewis. Causation. Journal of Philosophy, 70(17):556–567, Oct 1973.

[30] E. Livshits, L. E. Bertossi, B. Kimelfeld, and M. Sebag. The shapley value of tuples
in query answering. CoRR, abs/1904.08679, 2019.

[31] E. Livshits, L. E. Bertossi, B. Kimelfeld, and M. Sebag. Query games in databases.
SIGMOD Rec., 50(1):78–85, 2021.

[32] S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions.
CoRR, abs/1705.07874, 2017.

93

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://www.kaggle.com/datasets/uciml/german-credit
https://www.kaggle.com/datasets/uciml/german-credit


[33] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore, and D. Suciu.
Causality in databases. IEEE Data Eng. Bull., 33(3):59–67, 2010.

[34] P. Menzies. Causation in context, pages 191–223. Clarendon Press, 2007.

[35] T. M. Mitchell. Machine learning, International Edition. McGraw-Hill Series in
Computer Science. McGraw-Hill, 1997.

[36] C. H. Papadimitriou. On the complexity of unique solutions. J. ACM, 31(2):392–400,
1984.

[37] S. J. Russell and P. Norvig. Artificial Intelligence - A Modern Approach, Third
International Edition. Pearson Education, 2010.

[38] B. Salimi and L. E. Bertossi. From causes for database queries to repairs and
model-based diagnosis and back. CoRR, abs/1412.4311, 2014.

[39] B. Salimi, L. E. Bertossi, D. Suciu, and G. V. den Broeck. Quantifying causal effects
on query answering in databases. CoRR, abs/1603.02705, 2016.

[40] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors,
Contributions to the Theory of Games II, pages 307–317. Princeton University Press,
Princeton, 1953.

[41] M. Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997.

[42] L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

[43] I.-C. Yeh. Blood transfusion service center data set. https:
//www.openml.org/search?type=data&status=active&sort=
runs&qualities.NumberOfFeatures=lte_10&id=1464, Oct 2008. [Online;
accessed 16-May-2023].

[44] F. Zhu. A new halpern-pearl definition of actual causality by appealing to the default
world. Axiomathes, pages 1–20, Jan 2022.

94

https://www.openml.org/search?type=data&status=active&sort=runs&qualities.NumberOfFeatures=lte_10&id=1464
https://www.openml.org/search?type=data&status=active&sort=runs&qualities.NumberOfFeatures=lte_10&id=1464
https://www.openml.org/search?type=data&status=active&sort=runs&qualities.NumberOfFeatures=lte_10&id=1464

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	Machine Learning
	Relational Databases
	Probability Distributions
	Complexity classes
	Answer-Set Programming

	Explanations
	Explanations for Classification
	Explanations in Databases

	Causality
	Causal Dependence
	Overdetermination
	Definition of Halpern and Pearl
	Problem of Isomorphism
	New Definition of Actual Causes appealing to the Default World
	Degree of Responsibility
	Complexity

	Score-based Explanations based on Shapley Values
	Definition of Shapley Values
	Properties of Shapley Values
	Shapley Values in Machine Learning
	Shapley Values in Databases

	Score-based Explanations based on Causality and Responsibility
	Counterfactual Interventions in Machine Learning
	Counterfactual Interventions in Databases

	Relations between the Scores
	SHAP and Banzhaf Power Index
	Banzhaf Power Index and Causal Effect
	SHAP and COUNTER
	RESP and Causal Effect
	SHAP and RESP

	Explanations for Sets of Features
	Definition of SHAP+
	Definition of COUNTER+
	Generalization of the Relation between SHAP and COUNTER

	Implementation and Experimental Evaluation
	Counterfactual Intervention Programs
	Python Implementation
	Evaluation
	Future Extensions

	Conclusion
	Future Work
	I cannot change my Age
	Probability Distributions

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

