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Abstract

The study of cardinal characteristics on regular uncountable cardinals has significantly
gained in popularity during the last decade. The generalizations of the Cantor and Baire
space to regular uncountable cardinals κ naturally induce generalizations of the related
cardinal characteristics. While for an arbitrary regular uncountable cardinal κ the pic-
ture can be quite different from the classical case, it turns out that if one requires κ to
be a large cardinal, then many classical results generalize.

In this thesis we aim to further investigate cardinal characteristics related to the ideal of
strong measure zero sets on inaccessible κ, define stationary variants of several combi-
natorial cardinal characteristics, present a new method to iterate forcing notions, which
seems to be a very promising tool to separate cardinal characteristics in the higher Ci-
choń diagram, and use the recently developed technique of capturing to investigate the
interaction between determinacy and forcing.
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Kurzfassung

Das Studium von Kardinalzahlcharakteristiken auf regulären überabzählbaren Kardi-
nalzahlen hat in den letzten zehn Jahren erheblich an Popularität gewonnen. Die Ve-
rallgemeinerungen des Cantor- und Baire-Raums auf reguläre überabzählbare Kardi-
nalzahlen κ induzieren auf natürliche Weise Verallgemeinerungen der zugehörigen Kar-
dinalzahlcharakteristiken. Während für eine beliebige reguläre überabzählbare Kardi-
nalzahl κ das Bild ganz anders als im klassischen Fall aussehen kann, stellt sich heraus,
dass sich viele klassische Ergebnisse verallgemeinern lassen, wenn man voraussetzt, dass
κ eine große Kardinalzahl ist.

In dieser Arbeit wollen wir Kardinalzahlcharakteristiken im Zusammenhang mit dem
Ideal der starken Nullmengen auf unerreichbaren κ weiter untersuchen, stationäre Vari-
anten einiger kombinatorischer Kardinalzahlcharakteristiken definieren, eine neue Meth-
ode zur Iteration von Forcings vorstellen, die ein sehr vielversprechendes Werkzeug zu
sein scheint, um Kardinalzahlcharakteristiken im höheren Cichoń-Diagramm zu trennen,
und die vor kurzem entwickelte Technik des Capturings verwenden, um das Zusammen-
spiel zwischen Determiniertheit und Forcing zu untersuchen.
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Introduction

The foundations of modern Set Theory go back to Georg Cantor who introduced the
notion of ‘Menge’ (German for ‘set’) around the end of the 19th century. He postulated
the existence of certain sets by a list of heuristic axioms, e.g. the set of all natural num-
bers, which we will denote by ω. He also compared these sets in size and showed that
two sets, one properly containing the other, (e.g. the set of natural numbers and the set
of algebraic numbers) can still have the same size. On the other hand, he proved that
there are different sizes of infinity, which he called cardinalities.

Soon after the discovery of the Lebesgue measure by Henri Lebesgue in 1902, the in-
vestigation of cardinal characteristics on ω, in particular those of the Cantor space 2ω,
i.e. the space of 0-1 sequences equipped with the Tychonoff topology, started to attract
more attention:
The union of how many Lebesgue measure zero sets is not Lebesgue measure zero? What
is the smallest size of a set which is not Lebesgue measure zero? The union of how many
meager sets covers the whole space? What is the smallest size of a family of meager sets
such that every meager set is covered by a set of the family?
It was these questions that underlined the importance of Set Theory in other areas of
mathematics such as Measure Theory and Topology.

In the 1920’s Emile Borel introduced the notion of strong measure zero, a strength-
ening of Lebesgue measure zero, and conjectured that every strong measure zero set had
to be countable. This statement is nowadays known as the Borel Conjecture.
A few years later Wacław Sierpiński discovered that assuming CH, i.e. the Continuum
Hypothesis whose consistency relative to ZFC was not known at that time, the Borel
Conjecture fails. In 1940, Kurt Gödel established the relative consistency of the Con-
tinuum Hypothesis and the Axiom of Choice by showing that both statements hold in
the constructible universe.

In 1963, Paul Cohen (see [Coh63] and [Coh64]) used his revolutionizing technique of
forcing to show that also the failure of the Continuum Hypothesis is consistent relative
to ZFC. He also showed that the failure of the Axiom of Choice is consistent relative to
ZF. Paul Cohen’s results together with those of Kurt Gödel show that the Continuum
Hypothesis is independent of ZFC and the Axiom of Choice is independent of ZF.
In 1976, Richard Laver (see [Lav76]) invented Laver forcing to show the relative consis-
tency of the Borel Conjecture. His result together with Sierpiński’s show that the Borel
Conjecture is independent of ZFC.
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In 1984, David Fremlin (see [Fre84]) picked up on some of the original questions about
measure and category, and summarized the known inequalities between 12 cardinal char-
acteristics (the additivity number, the covering number, the uniformity number and the
cofinality number for measure and category, respectively, as well as the bounding num-
ber, the dominating number, ℵ1 the first uncountable cardinal and 2ℵ0 the size of the
continuum) in a single diagram, which he called Cichoń’s diagram:

ℵ1 add(N )

cov(N )

add(M)

non(M)

cov(M)

cof(M)

non(N )

cof(N ) 2ℵ0

b d

Figure 1: Cichoń’s diagram

Here, an arrow from κ1 to κ2 denotes κ1 ≤ κ2. Furthermore, the equalities add(M) =
min{b, cov(M)} and cof(M) = max{d, non(M)} hold true.
And indeed the pairwise inequalities represented in Cichoń’s diagram are all that are
provable in ZFC: Any assignment of the cardinals ℵ1 and ℵ2 to the 12 cardinal charac-
teristics not contradicting the inequalities in the diagram is consistent relative to ZFC
(see Chapter 7 in [BJ95]).

Since then the study of cardinal characteristics has only become more popular. Very re-
cently, Martin Goldstern, Jakob Kellner, Diego Mejía and Saharon Shelah (see [GKS19]
and [GKMS20]) showed that consistently all independent entries in Cichoń’s diagram
can be different. It remains open, whether all configurations of strict inequalities be-
tween the 12 cardinal characteristics, not contradicting the diagram, are consistent.
Also cardinal characteristics with a more combinatorial flavor such as the almost-disjoint-
ness number, the pseudo-intersection number, the reaping number, the splitting number,
the tower number and the ultrafilter number have been studied extensively. Maybe most
notably is the much celebrated result by Maryanthe Malliaris and S. Shelah (see [MS13])
that the pseudo-intersection number equals the tower number.

But what happens if one replaces ω by a regular uncountable cardinal κ and studies
cardinal characteristics on κ, in particular those of the higher Cantor space 2κ, which
consists of all 0-1 sequences of length κ and carries the <κ-box topology (a topology
canonically generalizing the Tychonoff topology on ω)? It turns out that this ques-
tion is particularly interesting if κ is a large cardinal (e.g. inaccessible, weakly compact,
strongly unfoldable, measurable, supercompact), since, in this case, κ is (similar to ω)
also very large compared to all of its predecessors.
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The first results in this field appeared in the 90’s when Toshio Suzuki (see [Suz93]) and
Jindřich Zapletal (see [Zap97]) showed that the statement ‘the splitting number on κ
is larger than κ’ implies the existence of large cardinals. Meanwhile, James Cummings
and S. Shelah (see [CS95]) were the first to investigate the bounding and dominating
number on κ, and Aapo Halko (see [Hal96] and [HS01]) was the first to generalize the
notion of strong measure zero to κ.

However, it was only in the last decade that the field of higher cardinal characteris-
tics really gained in popularity: Sy-David Friedman and Giorgio Laguzzi (see [FL17])
introduced a notion of null ideal on 2κ using a ♦-sequence on κ+, and Jörg Brendle, An-
drew Brooke-Taylor, S.-D. Friedman and Diana Montoya (see [BBTFM18]) established
a version of a higher Cichoń diagram.
Meanwhile, S. Shelah (see [She17]) developed a different notion of null ideal on 2κ for
κ weakly compact, which is related to a generalization of random forcing, and is also
compatible with |2κ| being larger than κ+. Thomas Baumhauer, M. Goldstern and S.
Shelah (see [BGS21]) used this version of a null ideal to define their own higher Cichoń
diagram. It is this version of null ideal and higher Cichoń’s diagram that we want to
further investigate here.

Finally, let us note that while some results on ω easily generalize to κ, there are oth-
ers which are only consistently true (see [LMRS16]), and some fail completely (e.g. see
[FHK14] and [FKK16]). Furthermore, results from Omer Ben-Neria and Moti Gitik
(see [BNG15]) and from Shimon Garti (see [BNG20]) suggest that the study of higher
cardinal characteristics is very much related to the study of the large cardinal properties
themselves.
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Overview

This thesis is structured into six chapters:

We start the 1st chapter by giving basic definitions about large cardinals, ideals and
forcing in general. We present Shelah’s generalization of random forcing and show how
it induces an ideal on 2κ giving a generalization of the null ideal. We conclude the chapter
by recalling the basic definitions about sharps, the projective hierarchy and determinacy.

In the 2nd chapter we investigate the ideal of strong measure zero sets on κ inacces-
sible. We check that Sacks and Silver forcing on κ satisfy an appropriate version of
Axiom A (+ bounding), and give two different constructions showing the consistency
of the statement ‘ |2κ| has size κ++ and ∀X ⊆ 2κ : X is strong measure zero iff X has
size ≤κ+ ’. We also investigate the notion of stationary strong measure zero (see [Sch19]).

In the 3rd chapter we approximate the ideal of strong measure zero sets on κ inac-
cessible with the help of ‘generalized Yorioka’ ideals, and use them to characterize its
cofinality. We show that this cardinal characteristic can consistently be smaller, equal
or even larger than |2κ|, and conclude this chapter by showing that the additivity of the
meager ideal can consistently be larger than the covering number of the strong measure
zero ideal (see [Sch20]).

In the 4th chapter we define variants of the classical cardinal characteristics modulo
the non-stationary ideal for κ regular uncountable. While some of them turn out to be
trivial, we provide forcing constructions separating the non-trivial ones. However, many
interesting questions remain open in this new field of study (see [Sch21]).

The 5th chapter mainly consists of a write-up of Shelah’s Corrected Iteration (see [She19]).
This kind of iteration seems to be a very promising new tool to separate cardinals in the
higher Cichoń diagram. Indeed, we planned to use it to separate the bounding number
on κ and the covering number of the higher null ideal. However, there are issues when
actually applying the Corrected Iteration. We present the technical problems, and as-
suming they can be fixed, we sketch how to achieve the desired consistency result.

In the 6th chapter we show using the technique of capturing that Π1
1-determinacy is

preserved under any countable support iteration of ‘simply’ definable, proper forcing no-
tions. We also investigate connected components of symmetric Δ1

3-relations on the reals,
and conclude the chapter by showing that even without the existence of large cardinals,
capturing can still be used to preserve certain regularity properties (see [SSS21]).
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1 Preliminaries

We will start with several basic definitions most of which can be found in [Jec03]:

Definition 1.0.1. Let κ be an infinite cardinal. We say that:

• κ is regular iff cf(κ) = κ where cf(α) := min{otp(E) : E ⊆ α is cofinal in α} is
defined for any limit ordinal α and otp denotes the order type.

• κ is inaccessible iff κ is regular and λλ < κ for every λ < κ.

• κ is weakly compact iff κ is inaccessible and every <κ-splitting tree T ⊆ κ<κ has
a branch of size κ.

• κ is measurable iff κ carries a <κ-complete ultrafilter.

• κ is supercompact iff for every θ > κ there exists an elementary embedding j : V →
M with critical point κ such that j(κ) > θ and M θ ⊆ M .

Definition 1.0.2. We call cl ⊆ κ a club iff cl is closed and unbounded in κ. Let
Cl := {x ⊆ κ : ∃cl ⊆ x cl is club} denote the club filter and let NS := {x ⊆ κ : ∃cl ∈
Cl x ∩ cl = ∅} denote the non-stationary ideal.

Let us define the higher Cantor space:

Definition 1.0.3. We call 2κ := {f : f : κ → 2 is a function} the higher Cantor space
and equip it with the following topology:
For η ∈ 2<κ we define [η] := {x ∈ 2κ : η H x}. Let B := {[η] : η ∈ 2<κ} and define the
<κ-box topology to be the closure of B under arbitrary unions. 1

Using this topology we can now generalize the notion of meagerness:

Definition 1.0.4. We call D ⊆ 2κ open dense iff D is open in the <κ-box topology and
for every η ∈ 2<κ there exists ν ∈ 2<κ such that η H ν and [ν] ⊆ D.
We call X ⊆ 2κ closed nowhere dense iff 2κ \X is open dense. We call X ⊆ 2κ meager
iff X ⊆ 

i<κ Yi for some closed nowhere dense (Yi)i<κ.
We define Mκ := {X ⊆ 2κ : X is meager} the κ-Borel ideal of all meager sets of 2κ.

Definition 1.0.5. Let I be an ideal. We say that I is ≤κ-complete iff for every (Yi)i<κ ⊆
I we have


i<κ Yi ∈ I.

1Note that for η ∈ 2<κ the set [η] is clopen in the <κ-box topology. Furthermore, if (Oi)i<λ is a family
of open sets of size λ < κ then

�
i<λ Oi is also open.
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Definition 1.0.6. If I ⊆ P(2κ) is a proper ideal containing all singletons, we can define
the following cardinal characteristics:

• add(I) := min{|F| : F ⊆ I ∧F /∈ I}
• cov(I) := min{|F| : F ⊆ I ∧F = 2κ}
• non(I) := min{|X| : X ⊆ 2κ ∧X /∈ I}
• cof(I) := min{|F| : F ⊆ I ∧ ∀X ∈ I ∃Y ∈ F X ⊆ Y }

The following is an easy fact:

Fact 1.0.7. We have add(I) ≤ cov(I) ≤ cof(I) and add(I) ≤ non(I) ≤ cof(I).
Fact 1.0.8. Mκ is a ≤κ-complete, proper ideal containing all singletons, hence add(Mκ),
cov(Mκ), non(Mκ) and cof(Mκ) are all defined. In particular add(Mκ) ≥ κ+.

Definition 1.0.9. We say that GCH at κ holds iff cκ := |2κ| = κ+.

1.1 Forcing

For a detailed presentation of the theory of forcing see Chapter 4 in [Kun11]. If P is a
forcing notion, we will use the convention to force downwards, i.e. q ≤P p means that q
is a stronger condition than p.

Definition 1.1.1. We say that a forcing notion P is <κ-closed iff for every λ < κ every
decreasing sequence (pi)i<λ ⊆ P has a lower bound in P .

Definition 1.1.2. We say that a forcing notion P is ≤κ-strategically closed iff for every
condition p∗ ∈ P Player I has a winning strategy in the following game of length κ:

• Player I starts the game, and always plays first in limit stages.

• Player I and II alternate playing conditions p, q ∈ P below p∗.

• If pi denotes Player I’s choice at stage i < κ and qi Player II’s, then we require:

– for every i < κ and every j < i we have pi ≤P qj.

– for every i < κ we have qi ≤P pi.

Player II wins the game iff at some stage i∗ < κ Player I has no legal move.

Fact 1.1.3. If P is a ≤κ-strategically closed forcing notion, then Π1
1-absoluteness holds

between V and V P , i.e. (V V
κ+1, V

V
κ ,∈) ≺Π1 (V

V P
κ+1, V

V
κ ,∈) (see [FKK16]).

Definition 1.1.4. We say that a forcing notion P is κ-linked iff there exists (Pi)i<κ such
that:

• P =


i<κ Pi

2



• ∀i < κ : Pi is linked, i.e. ∀p1, p2 ∈ Pi : p1 � p2, where � means compatible.

Definition 1.1.5. We say that a forcing notion P is κ-centered<κ iff there exists (Pi)i<κ

such that:

• P =


i<κ Pi

• ∀i < κ : Pi is centered<κ, i.e. ∀Q ∈ [Pi]
<κ ∃q ∈ P : q is a lower bound of Q.

Definition 1.1.6. We say that a forcing notion P is <κ-directed closed iff

∀Q ∈ [P ]<κ :
� ∀p1, p2 ∈ Q ∃q ∈ Q q ≤P p1, p2

� ⇒ ∃r ∈ P r is a lower bound of Q

The following theorem is due to Laver (see [Lav78]):

Theorem 1.1.7. Let κ be supercompact. Then V can be prepared using a κ-c.c. forcing
notion P preserving the supercompactness of κ such that V P � ‘ the supercompactness of κ
is indestructible by <κ-directed closed forcing notions ’.

Definition 1.1.8. We say that a forcing notion P is κκ-bounding iff �P ∀f ∈ κκ ∃g ∈
κκ ∩ V : f ≤∗

κ g (see Definition 1.2.4).

Definition 1.1.9. Let �Pα, Q̇β : α ≤ γ, β < γ� be an iteration. We say that Pγ has:

• <κ-support iff Pα =


β<α Pβ for cf(α) ≥ κ and Pα is the inverse limit of (Pβ)β<α

for cf(α) < κ.

• ≤κ-support iff Pα =


β<α Pβ for cf(α) > κ and Pα is the inverse limit of (Pβ)β<α

for cf(α) ≤ κ.

Let us now recall two very important forcing notions:

Definition 1.1.10. We denote the κ-Cohen forcing by Cκ. We have p ∈ Cκ iff p ∈ 2<κ

and define q ≤Cκ p iff p H q.

Definition 1.1.11. We denote the κ-Hechler forcing by Hκ. We have p ∈ Hκ iff p =
(ρp, fp) such that ρp ∈ κ<κ, fp ∈ κκ and ρp Hfp, and define q ≤Hκ p iff ρp Hρq and fp ≤ fq.

1.2 The generalized null ideal

In [She17] Shelah presents a generalization of random forcing for κ inaccessible and uses
it to generalize the ideal of measure zero sets. We need the following definitions:

Definition 1.2.1. We define

• Sκ
inc := {λ < κ : λ is inaccessible}

• S ⊆ Sκ
inc is nowhere stationary iff for every regular uncountable δ ≤ κ the set S∩ δ

is a non-stationary subset of δ.

3



We will now define by induction on δ ∈ Sκ
inc ∪ {κ}

• a forcing notion Rδ (whose definition will use the ideals id(Rλ) for λ ∈ Sκ
inc ∩ δ)

• ideals wid(Rδ) and id(Rδ) on 2δ.

Definition 1.2.2. We have p ∈ Rδ iff there exists (τp, Sp, (I
p
λ)λ∈Sp) such that

• p ⊆ 2<δ is a tree, i.e. downwards closed.

• τp ∈ 2<δ is the trunk of p, i.e. the smallest node in p that has two successors.

• Above τp the tree p is fully branching, i.e. τp H η ∈ p ⇒ η:0, η:1 ∈ p.

• Sp ⊆ Sκ
inc ∩ δ is nowhere stationary.

• For every λ ∈ Sp we have Ipλ ∈ id(Rλ)

• If λ /∈ Sp, λ is a limit ordinal and η ∈ 2λ, then η ∈ p iff ∀i < λ : η � i ∈ p.

• If λ ∈ Sp and η ∈ 2λ, then η ∈ p iff

– ∀i < λ : η � i ∈ p and

– η /∈ Ipλ

and we define q ≤Rδ
p iff q ⊆ p. If G is (V,Rκ)-generic, we define rG :=


p∈G τp.

Furthermore, we define

wid(Rδ) := {I ⊆ 2δ : ∃A ⊆ Rδ A is a maximal antichain ∧ I ⊆ 2δ \
�
p∈A

[p]}

where [p] := {x ∈ 2δ : ∀i < δ x � i ∈ p}. Define id(Rδ) to be the ≤δ-closure of wid(Rδ).

The following are the most important properties of Rκ, wid(Rκ) and id(Rκ):

Lemma 1.2.3. We have:

• Rκ is ≤κ-strategically closed and κ-linked. In particular, Rκ satisfies the κ+-c.c.

• wid(Rκ) and id(Rκ) are <κ-complete, proper ideals with a κ-Borel basis and con-
tain all singletons. Furthermore, id(Rκ) is even ≤κ-complete.

• G is (V,Rκ)-generic iff rG /∈ I for every κ-Borel set I ∈ wid(Rκ) ∩ V .

• For κ weakly compact, we have

wid(Rκ) = id(Rκ) = {I ⊆ 2κ : ∃S ∈ [Sκ
inc]

κ nowhere stationary ∃(Iλ)λ∈S� ∀λ ∈ S Iλ ∈ id(Rλ)
� ∧ � ∀x ∈ 2κ x ∈ I ⇔ ∃∞λ ∈ S x � λ ∈ Iλ

�}.
Here ∃∞λ ∈ S means ‘there exist unboundedly many λ ∈ S with the desired
property’.
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In particular, the cardinal characteristics add(id(Rκ)), cov(id(Rκ)), non(id(Rκ)) and
cof(id(Rκ)) are all defined.

We define two more cardinal characteristics:

Definition 1.2.4. Let f, g ∈ κκ. We say that f ≤∗
κ g iff |{i < κ : f(i) > g(i)}| < κ and

define:

• bκ := min{|B| : B ⊆ κκ ∧ ∀f ∈ κκ ∃g ∈ B g �∗
κ f} the bounding number

• dκ := min{|D| : D ⊆ κκ ∧ ∀f ∈ κκ ∃g ∈ D f ≤∗
κ g} the dominating number

Theorem 1.2.5. In [BGS21] the authors proved the following relations between the
various cardinal characteristics for κ inaccessible:

κ+ add(id(Rκ))

cov(id(Rκ))

add(Mκ)

non(Mκ)

cov(Mκ)

cof(Mκ)

non(id(Rκ))

cof(id(Rκ)) cκ

bκ dκ

Figure 2: The higher Cichoń diagram

where an arrow from θ1 to θ2 denotes θ1 ≤ θ2. Furthermore, the equalities add(Mκ) =
min{bκ, cov(Mκ)} and cof(Mκ) = max{dκ, non(Mκ)} hold true.

It remains open whether add(Mκ) < add(id(Rκ)) or cof(id(Rκ)) < cof(Mκ) are
consistent.

1.3 Sharps

The following presentation of x8 for a real x ∈ ωω can be found in Chapter 2.9 of
[Kan03], Chapter 18 of [Jec03] and Chapter 10.2 of [Sch14a]. We will start with several
definitions:

Definition 1.3.1. Let L := {∈, P} denote the language of Set Theory together with an
additional unary predicate P , and define L∗ := L ∪ {cn : n < ω} where cn is a constant
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symbol for every n < ω. Let Form denote the set of formulas in the language L and
Form∗ the set of formulas in the language L∗, respectively.
Let M be an L∗-structure. We define TM := {σ ∈ Form∗ : σ is a sentence ∧ M � σ}
the theory of M.

Definition 1.3.2. Working in the theory ZFC∗ + V = L[P ], where ZFC∗ denotes some
large enough fragment of ZFC, let <L[P ] denote the canonical well-order of L[P ](= V ).
For a formula ϕ(x0, ..., xn) ∈ Form we define the Skolem function hϕ : V

n → V such that

hϕ(ȳ) :=

�
min<L[P ]

{z : ϕ(z, ȳ)} if ∃x0 : ϕ(x0, ȳ)

∅ else

Definition 1.3.3. Let M = (M,E,A) be an L-structure. Let (X,<X) be a linear order
such that X ⊆ M . 2 We call (X,<X) a set of order indiscernibles for M iff for every
formula ϕ(x0, ..., xn) ∈ Form and every y0 <X ... <X yn and z0 <X ... <X zn we have

M � ϕ(y0, ..., yn) ↔ ϕ(z0, ..., zn)

For the rest of this section fix a real x ∈ ωω.

Definition 1.3.4. We call T ⊆ Form∗ an EM blueprint 3 for x iff T = T (Lδ[x],∈,x,(yn)n<ω)

such that δ is limit with ω < δ < ω1, (Lδ[x],∈, x, (yn)n<ω) � ‘ cn is an ordinal ∧ cn ∈ cn+1 ’
for every n < ω, and ({yn : n < ω},∈) is a set of order indiscernibles for (Lδ[x],∈, x).
Lemma 1.3.5. Let T be an EM blueprint for x and let α < ω1 be an infinite or-
dinal. Then there exists an L∗-structure M = (M,E,A, (yn)n<ω)

4 and a set X ⊆
OrdM with {yn : n < ω} ⊆ X 5 such that T = TM, (X,E) is a set of order in-
discernibles for (M,E,A) and (X,E) ≈ (α,∈). Furthermore, we can require that
M =


ϕ∈Form hM

ϕ [X<ω]. In this case (M, X) is unique up to isomorphism.

If M = (M,E,A) is an L-structure and X ⊆ OrdM such that (X,E) is a set of order
indiscernibles for M and M =


ϕ∈Form hM

ϕ [X<ω], it easily follows that:

• ∀y ∈ (M \X) ∩ OrdM : (X ∪ {y}, E) is not a set of order indiscernibles for M
• ∀y ∈ X : y /∈ 

ϕ∈Form hM
ϕ [(X \ {y})<ω]

Definition 1.3.6. Let T be an EM blueprint for x and let α < ω1 be infinite. By the
(T, α)-model we denote the (up to isomorphism) uniquely defined pair (M, X) such that
M = (M,E,A, (yn)n<ω) is a model of T , X ⊆ OrdM with (yn)n<ω ⊆ X and (X,E) is a
set of order indiscernible of order type α, and M =


ϕ∈Form hM

ϕ [X<ω].

Definition 1.3.7. Let T be an EM blueprint for x . We call T well-founded iff ∀α <
ω1 : the (T, α)-model is well-founded.

2Note that neither X nor <X must be an element of M .
3EM stands for Ehrenfeucht-Mostowski.
4In particular, for every n < ω we have n ∈ x iff nM ∈ A.
5W.l.o.g. we assume that {yn : n < ω} is an initial segment of X.
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Definition 1.3.8. Let T be an EM blueprint for x. We call T unbounded iff for every
formula ϕ(x0, ..., xn) ∈ Form we have hϕ(c0, ..., cn) ∈ Ord → hϕ(c0, ..., cn) < cn+1 ∈ T .

The following lemma motivates the notion ‘unbounded’:

Lemma 1.3.9. Let T be an unbounded EM blueprint for x and let α < ω1. Let (M, X)
be the (T, α)-model. Then X is unbounded in OrdM, i.e. ∀x� ∈ OrdM ∃y ∈ X : x� E y.

Definition 1.3.10. Let T be an EM blueprint for x. We call T remarkable iff T is
unbounded and for every formula ϕ(x0, ..., xm+n) ∈ Form we have

hϕ(c0, ..., cm+n) < cm → hϕ(c0, ..., cm+n) = hϕ(c0, ..., cm−1, cm+n+1, ..., cm+2n+1) ∈ T.

The following lemma motivates the notion ‘remarkable’:

Lemma 1.3.11. Let T be a remarkable EM blueprint for x and α < ω1. Let (M, X) be
the (T, α)-model and we define yω := minX\{yn : n < ω} 6. Then ∀x� ∈ OrdM : x�E yω ⇒
x� ∈ 

ϕ∈Form hM
ϕ [({yn : n < ω})<ω]. In particular, X is closed in OrdM.

Lemma 1.3.12. If there exists a well-founded EM blueprint for x, then there exists a
unique well-founded, remarkable EM blueprint for x.

Definition 1.3.13. We say x8 exists iff there exists a well-founded, remarkable EM
blueprint for x. In this case, we denote by x8 the unique well-founded, remarkable EM
blueprint for x, and identify it with a subset of ω.

Theorem 1.3.14. The following are equivalent:

• x8 exists.

• There exists a closed unbounded class Ix ⊆ Ord 7 containing all uncountable
cardinals such that for all cardinals κ ∈ Ix:

– |Ix ∩ κ| = κ

– (Ix ∩ κ,∈) is a set of order indiscernibles for (Lκ[x],∈, x).
– Lκ[x] =


ϕ∈Form h

(Lκ[x],∈,x)
ϕ [(Ix ∩ κ)<ω].

In particular, x8 = {σ ∈ Form∗ : σ is a sentence ∧ (Lℵω [x],∈, x, (ℵn)n<ω) � σ}.
• There exists a non-trivial, elementary embedding j : L[x] → L[x].

• There exists a countable structure (Lα[x],∈, U) such that

– (Lα[x],∈) is a model of ZFC− with a largest cardinal κ

– (Lα[x],∈, U) is a model of Σ0-separation

– (Lα[x],∈, U) � U is a <κ-complete ultrafilter

– all iterated ultrapowers of (Lα[x],∈, U) are well-founded

Definition 1.3.15. We say that the reals are A-closed iff ∀x� ∈ ωω : x� 8 exists.
6Since w.l.o.g. {yn : n < ω} is an initial segment of X, we have yn E yω for every n < ω.
7The elements of Ix are called Silver indiscernibles.
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1.4 Descriptive set theory and determinacy

The following can be found in Chapter 25 and 33 of [Jec03]. We start by defining the
projective hierarchy of (ωω)k simultaneously for every k < ω:

Definition 1.4.1. We call A ⊆ (ωω)k analytic or a Σ1
1 set iff A has a Σ1

1-definition, i.e.
there exists a tree T ⊆ (ω<ω)k × ω<ω such that

A = {x̄ ∈ (ωω)k : ∃y ∈ ωω ∀n� < ω (x0 � n�, ..., xk−1 � n�, y � n�) ∈ T}.
We call A ⊆ (ωω)k coanalytic or a Π1

1 set iff A has a Π1
1-definition: A = (ωω)k \ B for

some Σ1
1 set B ⊆ (ωω)k, and call A ⊆ (ωω)k a Δ1

1 set iff A is both a Σ1
1 and Π1

1 set.
Inductively, we call A ⊆ (ωω)k a Σ1

n+1 set iff A has a Σ1
n+1-definition:

A = {x̄ ∈ (ωω)k : ∃y ∈ ωω (x̄, y) ∈ B}
for some Π1

n set B ⊆ (ωω)k × ωω. Similarly, we call A ⊆ (ωω)k a Π1
n+1 set iff A has a

Π1
n+1-definition: A = (ωω)k \ B for some Σ1

n+1 set B ⊆ (ωω)k, and call A ⊆ (ωω)k a
Δ1

n+1 set iff A both is a Σ1
n+1 and Π1

n+1 set.

The projective hierarchy of 2ω × (ωω)k for k < ω is defined analogously.

Next we state two absoluteness results:

Theorem 1.4.2. Let N be a countable transitive model satisfying ZFC∗, i.e. a large
enough fragment of ZFC. Then Σ1

1-absoluteness holds between N and V .

Theorem 1.4.3. Let M be transitive (proper class) model satisfying ZFC; with ωV
1 ∈

M . Then Σ1
2-absoluteness holds between M and V .

Let us now turn to determinacy:

Definition 1.4.4. For A ⊆ ωω we define the two player game GA as follows:

• Player I starts the game.

• Player I and II alternate playing an, bn ∈ ω.

Player I wins the game iff �a0, b0, a1, b1, ...� ∈ A.

Definition 1.4.5. Let σ : ω<ω → ω be a strategy. We call σ a winning strategy for
Player I in the game GA iff for every b ∈ ωω we have �σ(∅), b0, σ(�b0�), b1, ...� ∈ A.
Conversely, we call σ a winning strategy for Player II in the game GA iff for every
a ∈ ωω we have �a0, σ(�a0�), a1, σ(�a0, a1�), ...� ∈ ωω \ A.
We call A determined iff one player has a winning strategy in the game GA.

Definition 1.4.6. For a collection Γ of subsets of ωω we say that Γ-determinacy holds
iff every set A in Γ is determined.

The following theorem is by Harrington (see [Har78]) and Martin (see [Mar70]):

Theorem 1.4.7. The following two statements are equivalent:

• Π1
1-determinacy holds.

• The reals are A-closed. (see Definition 1.3.15)
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2 Strong measure zero sets on 2κ

for κ inaccessible

In this chapter we will investigate the notion of strong measure zero sets on the higher
Cantor space 2κ for κ at least inaccessible as defined by Halko [Hal96]:

Definition 2.0.1. Let X ⊆ 2κ. We call X strong measure zero iff

∀f ∈ κκ ∃(ηi)i<κ :
� ∀i < κ ηi ∈ 2f(i)

� ∧X ⊆
�
i<κ

[ηi].

Let SN := {X ⊆ 2κ : X is strong measure zero} denote the collection of all strong
measure zero sets.

The following is an easy fact:

Fact 2.0.2. SN is a ≤κ-complete, proper ideal on 2κ which contains all singletons.
Furthermore, SN ⊆ id(Rκ) (see Definition 1.2.2).

We shall give two different proofs showing the relative consistency of:

ZFC + cκ = κ++ ∧ SN = [2κ]≤κ+

.

The first proof follows Goldstern, Judah and Shelah [GJS93] and we require κ to be
strongly unfoldable (see Definition 2.3.1). In the second, somewhat better proof we fol-
low Corazza [Cor89] and only require κ to be inaccessible.
Finally, we show that in the Corazza model every X ∈ SN is even stationary strong
measure zero (see Definition 2.5.1). On the other hand, assuming GCH at κ, we show
that there exists X ∈ SN such that X is not stationary strong measure zero.

Strong measure zero sets for κ regular uncountable have also been studied in [HS01],
where the authors show that the Borel Conjecture at κ, i.e. the statement that ‘ all
strong measure zero sets have size at most κ ’, is false for κ successor with κ<κ = κ. The
question, whether the Borel Conjecture for κ inaccessible is consistent, remains open 1

as is also stated in [KLLS16].

1This is related to the problem of how to add dominating reals without adding Cohen reals on κ (see
[KKLW20]).
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2.1 The Forcing

Let us assume that κ is an inaccessible cardinal, in particular λλ < κ for λ < κ.

For f ∈ κκ, f(0) > 1 and strictly increasing, we define the ‘ f -perfect tree ’ forcing
PTf as follows:

Definition 2.1.1. Let p ∈ PTf iff

P1 p ⊆ κ<κ, p 1= ∅ and p is a tree

P2 ∀η ∈ p ∀i ∈ dom(η) : η(i) < f(i)

P3 ∀η ∈ p : |succp(η)| = 1 ∨ succp(η) = {η:α : α < f(dom η)},
where succp(η) denotes the successors of η in p.

P4 ∀η ∈ p ∃ν ∈ p : η H ν ∧ |succp(ν)| > 1

P5 If λ < κ is a limit, then ∀η ∈ κλ : η ∈ p ⇔ ∀i < λ η � i ∈ p

P6 If λ < κ is a limit, then
∀η ∈ κλ :

�
η ∈ p ∧ {ν �Iη : |succp(ν)| > 1} is unbounded in η

� ⇒ |succp(η)| > 1

We define q ≤PTf
p iff q ⊆ p.

If G is a (V, PTf )-generic filter, we define g ∈ κκ to be the unique real contained in�
p∈G[p], where [p] := {x ∈ κκ : ∀i < κ x � i ∈ p}.

Definition 2.1.2. Furthermore, we define:

• splitp(η) iff |succp(η)| > 1

• htp(η) := otp {ν �Iη : splitp(ν)}, where otp denotes the order type

• For i < κ: spliti(p) := {η ∈ p : splitp(η) ∧ htp(η) = i}
Lemma 2.1.3. PTf is <κ-closed.

Proof. If (pj)j<λ with λ < κ is a decreasing sequence, it is easy to see that p :=
�

j<λ pj
is a condition.

Definition 2.1.4. For i < κ, we define q ≤i p iff q ≤PTf
p ∧ spliti(p) ⊆ q.

Fact 2.1.5. The following holds true:

• q ≤i p ⇔ q ≤PTf
p ∧ ∀j < i splitj(q) = splitj(p)

• ∀b ∈ κκ ∀i < κ : b ∈ [p] ⇒ b ∩ spliti(p) 1= ∅, i.e. spliti(p) is a front in p

Definition 2.1.6. We call a forcing notion P strongly κκ-bounding iff there is a sequence
(≤i)i<κ of reflexive and transitive, binary relations on P such that:
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• (P ,≤P) is <κ-closed

• ≤i ⊆≤P

• ∀j < i : ≤i ⊆≤j

• If (pj)j<δ is a fusion sequence of length δ ≤ κ, i.e. ∀j < δ : pj+1 ≤j pj and ∀λ <
δ ∀j < λ : λ is limit ⇒ pλ ≤j pj, then there exists a qδ such that ∀j < δ : qδ ≤j pj.

• If A is a maximal antichain, p ∈ P and i < κ, then there exists q ≤i p such that
A � q := {r ∈ A : r � q} has size < κ, where � means compatible.

Fact 2.1.7. Obviously, strongly κκ-bounding implies κκ-bounding.

Lemma 2.1.8. Let (pj)j<δ be a fusion sequence in PTf of length δ ≤ κ. Then there
exists qδ such that ∀j < δ : qδ ≤j pj.

Proof. Define qδ :=
�

j<δ pj. We need to show that qδ is a condition. Only P4 is
non-trivial. Let η ∈ qδ be arbitrary and set j∗ := htp0(η). Consider pj∗+1 and note
that htpj∗+1

(η) ≤ htp0(η). Find ν ∈ pj∗+1 with η H ν, splitpj∗+1
(ν) and with minimal

domain. For every ρ ∈ succpj∗+1
(ν) we have htpj∗+1

(ρ) ≤ j∗ + 1, hence we can deduce
∀j < δ : ρ ∈ pj. Thus ρ ∈ qδ and splitqδ(ν) follows.

Definition 2.1.9. If p ∈ PTf is a condition and η ∈ p, let p[η] := {ν ∈ p : ν Hη∨η Hν}. 2

Lemma 2.1.10. Let p be a forcing condition and i < κ. Then |spliti(p)| < κ.

Proof. We will prove the lemma by induction on i < κ:

• i = 0 is trivial.

• i → i+1: As |spliti(p)| < κ and p is always <κ-splitting, it follows that |spliti+1(p)| =
|η∈spliti(p)

succp(η)| < κ.

• λ is a limit: As κ is inaccessible, it follows that |splitλ(p)| ≤ |
i<λ spliti(p)| < κ.

This finishes the proof.

Theorem 2.1.11. PTf is strongly κκ-bounding.

Proof. Only the antichain condition remains to be shown. Let A be a maximal antichain,
p ∈ PTf and i < κ be arbitrary 3. Enumerate spliti(p) as {ηj : j < δ} with δ < κ. For
every ηj find qηj ≤ p[ηj ] such that qηj is compatible with a unique element from the
antichain. Now set q :=


j<δ qηj which is a condition. Obviously q ≤i p.

Now let r ∈ A be compatible with q. Let s ≤PTf
q, r. W.l.o.g. let s be such that

|spliti(p) ∩ s| = 1, this is possible if the stem is simply long enough: Pick b ∈ κκ with
b ∈ [s] ⊆ [p] and note that b ∩ spliti(p) 1= ∅, hence we have ∃! j : ηj ∈ spliti(p) ∩ b ∩ s.
Therefore s ≤PTf

p[ηj ], and since s ≤PTf
q we have s ≤PTf

qηj . It follows that if r ∈ A
is compatible with q, then it is also compatible with some qηjr . Hence, there exists a
function from A � q to δ which has to be injective, since any qηj is compatible with a
unique element from the antichain. Now |A � q| < κ follows easily.

2Obviously, p[η] is a condition stronger than p.
3Work with i+ 1, if i is a limit.

11



2.2 The Iteration

Assume that V � |2κ| = κ+. Let �Pα, Q̇β : α ≤ κ++, β < κ++� be an iteration of length
κ++ with ≤κ-support such that �α Q̇α = ˙PTfα . The family (fα)α<κ++ is in the ground
model V and we require that every f ∈ κκ∩V appears cofinally often. We set P := Pκ++ .

Definition 2.2.1. We say that a forcing notion P is κ-proper iff for every regular and
sufficiently large cardinal θ (e.g. θ > |P(P)|), every elementary submodel M ≺ H(θ)
containing P such that |M | = κ and <κM ⊆ M , and every p ∈ P ∩ M , there exists
q ≤P p such that q is (P ,M)-generic.

Note that there cannot exist a general preservation theorem for κ-properness by
Rosłanowski [Ros18]. Therefore, we will have to work to ensure κ-properness.

Definition 2.2.2. The following generalizes the notion of strongly κκ-bounding:

• Let �Pα, Q̇β : α ≤ κ++, β < κ++� be an iteration of strongly κκ-bounding forcing
notions, i.e. ∀α < κ++ : �α ‘ Q̇α is stronglyκκ-bounding ’. Let F ∈ [κ++]<κ and
i < κ. We define q ≤F,i p iff q ≤Pκ++ p and ∀α ∈ F : q � α �α q(α) ≤Q̇α

i p(α).

• A sequence �(pi, Fi) : i < δ� of length δ ≤ κ is called a fusion sequence iff:

– ∀j < δ : pj+1 ≤Fj ,j pj

– ∀λ < δ ∀j < λ : λ is limit ⇒ pλ ≤Fj ,j pj

– Fj increasing and, if δ = κ, then


j<δ supp(pj) ⊆


j<δ Fj.

• We say that Pκ++ satisfies Axiom B iff for every fusion sequence of length δ ≤ κ
there exists a qδ such that ∀j < δ : qδ ≤Fj ,j pj and, in addition, for every maximal
antichain A ⊆ Pκ++ , every F ∈ [κ++]<κ, every i < κ and every p ∈ Pκ++ there
exists a q ≤F,i p such that |A � q| < κ.

Note that this is similar to fusion with countable support.

Fact 2.2.3. Axiom B implies κ-properness and κκ-bounding.

Lemma 2.2.4. For every fusion sequence of length δ ≤ κ in P, there exists a qδ ∈ P
such that ∀j < δ : qδ ≤Fj ,j pj.

Proof. We will only consider the case δ = κ. For α ∈ 
j<δ supp(pj) choose jα min-

imal such that α ∈ Fjα . Set qδ(α) :=
�

j≥jα
pj(α). Otherwise let qδ(α) = ✶PTfα

.
By induction on α ≤ κ++ show that qδ � α ∈ Pα (using Lemma 2.1.8), qδ � α �α

‘ (pj(α))j≥jα is a fusion sequence ’ and use supp(qδ) =


j<δ supp(pj) for limit steps. Ob-
viously ∀j < δ : qδ ≤Fj ,j pj.

Next we want to show the following theorem:

Theorem 2.2.5. P satisfies Axiom B.
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In [BGS21], the authors describe a ‘Fusion game’, which could be used to prove
Axiom B. However, we use different methods, which shall come in handy later.

In order to prove this theorem, we will need some lemmas. Until the proof of Theo-
rem 2.2.5 fix p ∈ P, F ∈ [κ++]<κ and i < κ.

Lemma 2.2.6. For α ≤ κ++ define the set

Dα := {s ∈ Pα : ∀β ∈ F ∩ α ∃xβ, yβ ∈ κ<κ

s � β �β s(β) ∩ spliti(p(β)) = {xβ}ˇ ∧ succs(β)(xβ)
ˇ= {yβ}ˇ}.

Then Dα is dense below p � α.

Proof. Fix some p� ∈ Pα with p� ≤Pα p � α. Since |F | < κ, Pα is <κ-closed, p� � β �β

p�(β) ⊆ p(β) and �β ‘ spliti(p(β)) is a front in p(β) ’, we can inductively construct some
s ≤Pα p� such that s ∈ Dα.

If s ∈ Dα we shall write xs
β, y

s
β for the corresponding xβ, yβ.

In the next lemmas we shall slightly abuse notation: If s ∈ Pα with s ≤Pα p� � α
we shall identify s with s:p� � [α, κ++), e.g. saying s ≤P p�. For such s and p� the next
lemma defines a new condition p�[s]:

Lemma 2.2.7. Let p� ≤F,i+1 p and s ∈ Dα with s ≤P p�. Then there exists p�[s] ≤F,i+1 p
�

such that

(a) ∀α� ≥ α : p�[s](α�) = p�(α�),

(b) s ≤P p�[s] and

(c) ∀s� ∈ Dα :
�
s� ≤P p�[s] ∧ ∀β ∈ F ∩ α ys

�
β = ysβ

� ⇒ s� ≤P s.

Proof. We will only consider the case α = κ++. Note that ∀β ∈ F : s � β �β spliti(p(β)) =
spliti(p�(β)). Construct a sequence (rβ)β≤κ++ of extending conditions by induction: As-
sume that rβ ∈ Pβ has been constructed, rβ ≤F∩β,i+1 p

� and s � β ≤P rβ. Now there are
two cases:

• β /∈ F : Define rβ+1(β) :=

�
s(β) if s � β ∈ Ġβ

p�(β) else

• β ∈ F : Define rβ+1(β) :=

�
s(β) ∪ (p�(β) \ p�(β)[ysβ ]) if s � β ∈ Ġβ

p�(β) else

Obviously, rβ+1 ≤F∩(β+1),i+1 p
� and s � (β + 1) ≤P rβ+1. If γ is a limit, define rγ to be

the union of {rβ : β < γ}. Set p�[s] := rκ++ and note that supp(p�[s]) ⊆ supp(p�)∪supp(s).
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We check property (c). Let s� ∈ Dκ++ with s� ≤P p�[s] and ∀β ∈ F : ys
�

β = ysβ. As-
sume that s� � β ≤P s � β. If β ∈ F , we have that s� � β �β s�(β) ≤ṖTfβ

p�[s](β) =

s(β) ∪ p�(β) \ p�(β)[y
s
β ]. Since ys

�
β = ysβ it follows that s� � β �β s�(β) ≤ṖTfβ

s(β). The
case β /∈ F is trivial. Hence s� � (β + 1) ≤P s � (β + 1).

The next lemma will be used for the successor step in the proof of Theorem 2.2.5.

Lemma 2.2.8. Assume that Pα satisfies Axiom B. Let p� ≤F,i+1 p. Then there exists
q ≤F,i+1 p

� such that ∃µq < κ ∀β ∈ F ∩ (α + 1): q � β �β ϕ(µq, q(β), i) where ϕ(µ, s, j)
is the formula |splitj(s)| ≤ µ ∧ splitj(s) ⊆ µ≤µ.

Proof. Note that as κ remains inaccessible in V Pα , it follows that �α ∃µ < κ ∀β ∈
F ∩ (α+1): ϕ(µ, p�(β), i). Therefore, since Pα satisfies Axiom B, there exists q ≤F,i+1 p

�

and µq < κ such that ∀β ∈ F ∩ (α+1): q � β �β ϕ(µq, p
�(β), i). Since ∀β ∈ F : q � β �β

spliti(p�(β)) = spliti(q(β)), it follows that ∀β ∈ F ∩ (α + 1): q � β �β ϕ(µq, q(β), i).

Proof of Theorem 2.2.5. By Lemma 2.2.4 it remains to be shown that for every maximal
antichain A ⊆ P, every F ∈ [κ++]<κ, every i < κ and every p ∈ P there exists a q ≤F,i p
such that |A � q| < κ. We shall prove the theorem for Pα by induction on α ≤ κ++:

• α = 1: This follows from Theorem 2.1.11.

• α → α + 1: Let A ⊆ Pα+1 be a maximal antichain, p ∈ Pα+1 a condition, F ∈
[α + 1]<κ a set and i < κ an ordinal. Let q and µq be as in Lemma 2.2.8. Now
consider the set:

C = {g ∈
	
β∈F

fβ(µq)
≤(µq+1) : ∃s ∈ Dα+1 s ≤Pα q∧|A � s| = 1∧∀β ∈ F ysβ = g(β)}.

Enumerate C as (gj+1)j<δ with δ < κ. Now construct a ≤F,i+1-decreasing sequence
(tj)j<δ by induction:

– Set t0 := q.

– j → j + 1: If for gj+1 there still exists an s ∈ Dα+1 with s ≤Pα tj witnessing
gj+1 ∈ C, pick such an s, call it sj+1, and set tj+1 := t

[sj+1]
j . Otherwise, set

tj+1 := tj. Obviously, we have tj+1 ≤F,i+1 tj.

– λ < δ is a limit: Set tλ :=
�

j<λ tj, i.e. ∀α� < α + 1: tλ(α
�) :=

�
j<λ tj(α

�).
Then we have tλ ≤F,i+1 tj for all j < λ.

Set t :=
�

j<δ tj. Then t ≤F,i p.

We claim that |A � t| < κ. Let s� ∈ Dα+1 with s� ≤Pα t be compatible with
a unique element from the antichain. Hence, there exists an gj+1 ∈ C such that
∀β ∈ F : ys

�
β = gj+1(β). Now as ys

�
β = y

sj+1

β holds and |A � sj+1| = 1, it follows
from Lemma 2.2.7 and tj+1 = t

[sj+1]
j that s� ≤Pα sj+1 and hence A � s� = A � sj+1.

Thus A � t ⊆ {r ∈ A : ∃j < δ sj+1 � r} and |A � t| < κ follows.
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• γ ≤ κ++ is a limit: Let A ⊆ Pγ be an antichain, p ∈ Pγ a condition, F ∈ [γ]<κ

a set and i < κ an ordinal. Using the induction hypothesis and the fact that
Pγ is <κ-closed, we can easily construct a decreasing sequence (qβ)β∈F with the
following properties:

– ∀β ∈ F : qβ ≤F,i+1 p

– ∀β ∈ F ∀β� ∈ F ∩ β : qβ ≤F,i+1 qβ�

– ∀β ∈ F ∃µqβ < κ ∀β� ∈ F ∩ (β + 1): qβ � β� �β� ϕ(µqβ , qβ(β
�), i)

Set q :=
�

β∈F qβ and µq := sup{µβ : β ∈ F}. Then q ≤F,i p and satisfies ∀β ∈
F : q � β �β ϕ(µq, q(β), i). Now proceed as in the successor step.

This finishes the proof of Theorem 2.2.5.

Finally, we want to show some antichain results:

Theorem 2.2.9. P has the κ++-c.c.

The proof will easily follow from the following lemmas and noting that the set {α <
κ++ : cf(α) = κ+} is stationary in κ++:

Lemma 2.2.10. Let �Pα, Q̇β : α ≤ γ, β < γ� be an iteration such that ∀α < γ : Pα has
the θ-c.c., where θ is regular uncountable, and Pγ is a direct limit. If either cf(γ) 1= θ or
the set {α < γ : Pα is a direct limit} is stationary, then Pγ satisfies the θ-c.c.

For the proof of the above lemma see Chapter 16 in [Jec03].

Lemma 2.2.11. ∀α < κ++ : Pα has a dense subset of size κ+. Hence Pα satisfies the
κ++-c.c.

In [BGS21] the authors use ‘hereditary κ+-names’ to find a dense subset of size κ+.

For the proof we will need the following definition by Baumgartner and Laver [BL79]:

Definition 2.2.12. Let p ∈ P, F ∈ [κ++]<κ and i < κ. We say that p is (F, i)-determined
iff for every (g, h) ∈ 


β∈F κ<κ ×

β∈F κ<κ such that ∀β ∈ F : h(β) ∈ succ(g(β)):

• either ∀β ∈ F : p[h] � β �β g(β) ∈ spliti(p(β))

• or ∃β� ∈ F : ∀β < β� p[h] � β �β g(β) ∈ spliti(p(β)) ∧ p[h] � β� �β� g(β�) /∈
spliti(p(β�))

where p[h] is defined inductively such that p[h](β) := p[h(β)](β) if β ∈ F ∩β� and p[h](β) :=
p(β) else (see Definition 2.1.9).

Proof of Lemma 2.2.11. Let α < κ++ be arbitrary. We will show that the set

Eα := {p ∈ Pα : ∀β ∈ supp(p) ∀i < κ ∃j ≥ i ∃F ∈ [α]<κ β ∈ F ∧ p is (F, j)-determined}
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is dense and has size κ+. Hence Pα will have the κ++-c.c.

We will first show density. Let p ∈ Pα be arbitrary. By induction construct a fusion se-
quence (qj, Fj)j<κ below p such that ∀j < κ ∀β ∈ Fj : �β splitj(qj+1(β)) = splitj(qj(β))
and ∀j < κ : qj+1 is (Fj, j)-determined. Use a bookkeeping argument to construct the
Fj’s. Then qκ ∈ Eα, where qκ denotes the fusion limit:

In the successor step do the following: Assume that qj and Fj are defined. Using
Lemma 2.2.8 find q�j ≤Fj ,j+1 qj such that ∃µq�j < κ ∀β ∈ Fj : q

�
j � β �β ϕ(µq�j , q

�
j(β), j).

Now if we want to make sure that qj+1 is (Fj, j)-determined, we only need to check
(g, h) ∈ 


β∈Fj
µq�j

≤µq�
j ×


β∈Fj
fβ(µq�j)

≤(µq�
j
+1)

.
This product is of size < κ, so enumerate the relevant (g, h) as ((gk+1, hk+1))k<δ with
δ < κ. Similarly to the proof of Theorem 2.2.5 we construct qj+1 by induction on k < δ:

• Set q0j := q�j

• k → k + 1: Assume that qkj is defined. Define the condition shk+1
as follows:

shk+1
(β) :=

�
✶
[hk+1(β)]
PTfβ

if β ∈ Fj

✶PTfβ
else

Since supp(shk+1
) has size < κ, we can distinguish two cases:

– Case 1: ∃s ≤Pα qkj , shk+1
such that ∀β ∈ Fj : s � β �β gk+1(β) ∈ splitj(qkj (β)).

Then set qk+1
j := q

k [s]
j .

– Case 2: Else there exists s ≤Pα qkj and β� ∈ Fj such that s � β� ≤Pα shk+1
�

β�, ∀β < β� s � β �β gk+1(β) ∈ splitj(qkj (β)) and s � β� �β� gk+1(β
�) /∈

splitj(qkj (β�)). In this case set qk+1
j := q

k [s�β�]
j .

This follows because if case 2 does not occur, then, by noting that gk+1(β) ∈
splitj(qkj (β)) implies hk+1(β) ∈ qkj (β), an s satisfying case 1 can be constructed.

• ι is a limit: Set qιj :=
�

k<ι q
k
j .

Define qj+1 :=
�

k<δ q
k
j . Clearly, qj+1 is (Fj, j)-determined.

In a limit step λ set qλ :=
�

j<λ qj. Clearly the fusion limit qκ has the required properties.
This shows that Eα is dense.

Now we will show by induction on α < κ++ that |Eα| = κ+:

• α = 1: Then Eα = P1 which has size |2κ| = κ+.

• γ is a limit: If p ∈ Eγ then p � α ∈ Eα for every α < γ, hence |Eγ| ≤
|H∈[γ]≤κ



β∈H κ+| = κ+.
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• α → α + 1: Let p ∈ Eα+1. Then p is completely determined by p � α ∈ Eα,
(Fi, ji)i<κ such that α ∈ Fi, and (bi)i<κ ∈ 


i<κ P(



β∈Fi
κ<κ × 


β∈Fi
κ<κ). The

Fi’s are increasing such that supp(p) ⊆ 
i<κ Fi and ∀i < κ : p is (Fi, ji)-determined.

The bi’s consist of those (g, h) ∈ 

β∈Fi

κ<κ ×

β∈Fi

κ<κ for which we have ∀β ∈
Fi : p

[h] � β �β g(β) ∈ splitji(p(β)). Therefore, the mapping

Eα+1 3 p .→ (p � α, (Fi, ji, bi)i<κ)

is injective. Hence, Eα+1 has size κ+.

2.3 The Model

Recall that P will be an iteration of forcings of the form PTfα .

In what follows we shall always refer to the pointwise (not just eventually) dominat-
ing relation. This does not make any difference, since if D is an eventually dominating
family, there exists D� of the same cardinality, such that D� is pointwise dominating.
This easily follows from κ<κ = κ. Note that since P is κκ-bounding, κκ ∩ V will be a
dominating family in V P.

Furthermore, we require that κ is strongly unfoldable:

Definition 2.3.1. We call a cardinal κ strongly unfoldable iff κ is inaccessible and for
every cardinal θ and every x ⊆ κ there exists a transitive model M , such that x ∈ M
and M � ZFC, and an elementary embedding j : M → N with critical point κ, such
that j(κ) ≥ θ and Vθ ⊆ N .

Note that strong unfoldability is downward absolute to L (see [Vil98]).

The first step in our iteration is a ‘Johnstone preparation’ to make the strong unfold-
ability of κ indestructible by <κ-closed, κ-proper forcing notions (see [Joh08]). We then
collapse cκ to κ+ using a <κ+-closed forcing notion.

So w.l.o.g. V � ‘ |2κ| = κ+ and the strong unfoldability is indestructible under <κ-
closed, κ-proper forcing extensions ’.

For the rest of this section we will be concerned with the main theorem:

Theorem 2.3.2. V P � SN = [2κ]≤κ+ .

We will need several lemmas for the proof:

Lemma 2.3.3. Let ẋ be a P-name for a real in 2κ, p ∈ P a condition, F ∈ [κ++]<κ a set
and i < κ an ordinal, and assume p �P ẋ /∈ V . Since κ is weakly compact, there exists
δ < κ such that ∀s ∈ 2δ ∃q ≤F,i p : q �P s � ẋ. We will write δp,F,i for the least such δ.
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Proof. Assume towards a contradiction that the statement is false, i.e. for some ẋ, p, F, i
we have:

∀δ < κ ∃sδ ∈ 2δ : ¬ � ∃q ≤F,i p : q �P sδ � ẋ
�
.

Set T := {sδ � j : j ≤ δ ∧ δ < κ}. T is a <κ-branching tree of height κ and as κ is
weakly compact, T must have an infinite branch x∗. Since x∗ ∈ V but p �P ẋ /∈ V there
exists a P-name j̇ for an ordinal less than κ such that p �P ẋ � j̇ 1= x∗ � j̇. As P satisfies
Axiom B there exists a q ≤F,i p such that q �P j̇ ≤ j∗ for some j∗ < κ.
We claim that for some δ < κ we have q �P sδ � ẋ. We have that q �P ẋ � j∗ 1= x∗ � j∗,
and since x∗ � j∗ ∈ T , there exists δ ≥ j∗ such that x∗ � j∗ = sδ � j∗. Hence
q �P ẋ � j∗ 1= sδ � j∗ and therefore q �P sδ � ẋ. But this is a contradiction.

Definition 2.3.4. Let D be a dominating family. We say that H has index D iff
H = {hf : f ∈ D} and ∀i < κ : hf (i) ∈ 2f(i).

Fact 2.3.5.

X ∈ SN ⇔ ∃D dominating ∃H with indexD : X ⊆
�
f∈D

�
i<κ

[hf (i)]

⇔ ∀D dominating ∃H with indexD : X ⊆
�
f∈D

�
i<κ

[hf (i)]

If α < κ++ and Gα is a (V,Pα)-generic filter, then in V Pα we define Pα,κ++
:= Rκ++ ,

where �Rε, Q̇ζ : ε ≤ κ++, ζ < κ++� is an iteration of length κ++ with ≤κ-support such
that �ε Q̇ε = ṖTfα+ε . It follows from standard proper forcing arguments that in V the
forcing P ≈ Pα D P/Ġα is dense in Pα D Ṗα,κ++ .

Lemma 2.3.6. Let D ∈ V be a dominating family, α < κ++ and H ∈ V Pα has index
D. Then we have

�Pα,κ++

�
f∈D

�
i<κ

[hf (i)] ⊆ 2κ ∩ V Pα

Proof. Assume that for some condition p and some Pα,κ++-name ẋ we have

p �Pα,κ++ ẋ /∈ V Pα ∧ ẋ ∈
�
f∈D

�
i<κ

[hf (i)].

Working in V Pα we will define a tree of conditions such that along every branch we have
a fusion sequence. Furthermore, we will define an increasing sequence (δi)i<κ of ordinals
less than κ and an increasing sequence (Fi)i<κ such that Fi ∈ [κ++]<κ.

For every i < κ and every g ∈ 

j≤i 2

δj we shall construct a condition p(g) below p
satisfying :

• ∀i < κ ∀g ∈ 

j≤i 2

δj : p(g) �Pα,κ++ g(i) � ẋ

• ∀i < κ ∀g ∈ 

j≤i 2

δj ∀si+1 ∈ 2δi+1 : p(g:si+1) ≤Fi,i p(g)
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• ∀λ < κ : λ is limit ⇒ ∀g ∈ 

j≤λ 2

δj ∀j < λ p(g) ≤Fj ,j p(g � (j + 1))

• ∀i < κ ∀g ∈ 

j≤i 2

δj : supp(p(g)) ⊆ 
j<κ Fj

i = 0: Since κ remains weakly compact in V Pα , we can use Lemma 2.3.3 below p to find
δ0 < κ and p(s0) for every s0 ∈ 2δ0 such that p(g) �Pα,κ++ s0 � ẋ. Set F0 := {0}.

i → i+1: Assume that p(g) is defined for every g ∈ 

j≤i 2

δj . Again using Lemma 2.3.3
we set δi+1 := sup{δp(g),Fi,i : g ∈ 


j≤i 2
δj} and find p(g:si+1) for every g ∈ 


j≤i 2
δj and

si+1 ∈ 2δi+1 with the required properties. Finally, we use a bookkeeping argument to
define Fi+1.

λ is a limit: Every h ∈ 

i<λ 2

δi defines a fusion sequence (p(h � (i + 1) ))i<λ. Set
p(h) :=

�
i<λ p(h � (i + 1)) and Fλ :=


i<λ Fi. Next define δλ := sup{δp(h),Fλ,λ : h ∈


i<λ 2
δi} and for every g ∈ 


j≤λ 2
δj and sλ ∈ 2δλ find p(h:sλ) again using Lemma

2.3.3. Note that p(h:sλ) is still a fusion limit of (p(h � (i+ 1) ))i<λ.

Let f ∈ D dominate the function (δi)i<κ. Set si := hf (i) � δi. Now (p(�s0, ..., sj�))j<κ is
a fusion sequence and has a lower bound pκ. It follows that pκ �Pα,κ++ si � ẋ for every
i < κ. Thus pκ �Pα,κ++ ẋ /∈ �

f∈D


i<κ[hf (i)]. A contradiction.

We will also need the following lemma:

Lemma 2.3.7. If for every bounded family B ⊆ κκ of size < θ there exists a g ∈ κκ

such that g diagonalizes B, i.e. ∀h ∈ B ∃∞i < κ : g(i) = h(i) 4, then non(SN ) ≥ θ.

Proof. Let X ⊆ 2κ be of size < θ and let f ∈ κκ. For x ∈ X let hx(i) := x � f(i). The
family {hx : x ∈ X} can be coded as a family B ⊆ κκ bounded by (|2f(i)|)i<κ. Now if g
diagonalizes B, then g defines a covering for X with respect to f .

Proof of Theorem 2.3.2. Since for every α < κ++ the forcing Pα has dense subset of
size κ+ by Lemma 2.2.11 and is κ-proper, there are essentially only |(κ+)κ| = κ+ many
Pα-names for reals. Hence V Pα � |2κ| = κ+. As P satisfies the κ++-c.c. and is also
κ-proper, we see that V P � ‘ |2κ| = κ++ and no cardinals are collapsed ’.

Let us first show that SN ⊆ [2κ]≤κ+ . Let X ⊆ 2κ be of size κ++, and let D be a
dominating family in V P which lies in V . We will show that there exists no H in V P

with index D such that X ⊆ �
f∈D


i<κ[hf (i)]. To this end let H ∈ V P be such that

H has index D, and note that H must be of size κ+ as V satisfies GCH at κ. Since
P satisfies the κ++-c.c., H must already appear in some V Pα . Now there must be an
x ∈ X such that x /∈ V Pα . Hence, it follows by Lemma 2.3.6 that x /∈ �

f∈D


i<κ[hf (i)].
Therefore, X is not strong measure zero.
In order to show that [2κ]≤κ+ ⊆ SN we use Lemma 2.3.7: Let B ⊆ κκ be a bounded fam-
ily of size < κ++, hence B appears in some intermediate model. Find some large enough

4Here ∃∞i < κ means ‘there exist unboundedly many i < κ with the desired property’.
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α such that fα dominates B. We will show that ∃g ∈ κκ∩V Pα+1 ∀h ∈ B ∃∞i : g(i) = h(i),
hence V P � non(SN ) ≥ κ++.
Let h ∈ B and j < κ be arbitrary. Define the set Dh,j := {p ∈ PTV Pα

fα : ∃i ≥ j p �PTfα

ġα(i) = h(i)ˇ}. By extending the stem of a condition q ∈ PTV Pα
fα , we can show that Dh,j

is dense in PTV Pα
fα . Therefore, gα will diagonalize every h ∈ B.

2.4 A model where every X ⊆ 2κ of size cκ can
uniformly continuously be mapped onto 2κ

Again, assume V � |2κ| = κ+, but now κ is only inaccessible.

First we will define two forcing notions:

We define Sκ, the generalized Sacks forcing, which is due to Kanamori [Kan80], as
follows:

Definition 2.4.1. Let p ∈ Sκ iff:

• p ⊆ 2<κ, p 1= ∅
• ∀η ∈ p ∃ν ∈ p : η H ν ∧ splitp(ν)

• If λ is a limit, then ∀η ∈ 2λ : η ∈ p ⇔ ∀i < λ η � i ∈ p

• If λ is a limit, then
∀η ∈ 2λ :

�
η ∈ p ∧ {ν �Iη : splitp(ν)} is unbounded in η

� ⇒ splitp(η)

Define q ≤Sκ p iff q ⊆ p. Set q ≤i p iff q ≤Sκ p ∧ spliti(p) ⊆ q.

If G is a (V, Sκ)-generic filter we define sG ∈ 2κ to be the unique real contained in�
p∈G[p], where [p] := {x ∈ 2κ : ∀i < κ x � i ∈ p}.
And for f ∈ κκ ∩ V we define If the infinitely equal forcing as follows:

Definition 2.4.2. Let p ∈ If iff:

• dom(p) ⊆ κ

• |κ \ dom(p)| = κ

• κ \ dom(p) is closed

• ∀i ∈ dom(p) : p(i) ∈ 2f(i)
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Define q ≤If p iff p ⊆ q. Set q ≤i p iff q ≤If p ∧ ( ∃j ≥ i : (κ \ dom(q)) ∩ j =
(κ \ dom(p)) ∩ j ∧ otp (κ \ dom(p) ∩ j) = i ).

If G is a (V, If )-generic filter we define g ∈ (2<κ)κ as


p∈G p.

Note that If is also a ‘tree forcing’, hence Definition 2.1.2 can be used analogously.
However, the conditions are Silver-like trees, therefore we need to modify some proofs.

Lemma 2.4.3. Sκ and If are strongly κκ-bounding.

Proof. We will only consider the forcing If . Let A be a maximal antichain, p ∈ If and
i < κ be arbitrary 5. Enumerate spliti(p) as {ηj+1 : j < δ} with δ < κ. Inductively
define a sequence (qj)j<δ such that q0 = p and qj+1 ≤If (qj \ηj)∪ηj+1 is compatible with
a unique element from the antichain. If λ is a limit, define qλ :=


j<δ(qj+1 \ ηj+1). Now

set q := p ∪
j<δ(qj+1 \ ηj+1). The rest follows easily.

Let �Pα, Q̇β : α ≤ κ++, β < κ++� be an iteration of length κ++ with ≤κ-support such
that:

• if cf(α) = κ+ or α = 0 then �Pα Q̇α = Ṡκ

• otherwise �Pα Q̇α = İfα such that every f ∈ κκ ∩ V appears cofinally often

We set P := Pκ++ .

We will also need to modify Lemma 2.2.7. Let p ∈ P, F ∈ [κ++]<κ and i < κ.

Lemma 2.4.4. Let Dα be as in Lemma 2.2.6. Let p� ≤F,i+1 p and s ∈ Dα with s ≤P p�.
Then there exists p�[s] ≤F,i+1 p

� such that

(a) ∀α� ≥ α : p�[s](α�) = p�(α�),

(b) s ≤P p�[s]

(c) ∀s� ∈ Dα :
�
s� ≤P p�[s] ∧ ∀β ∈ F ∩ α ys

�
β = ysβ

� ⇒ s� ≤P s.

Proof. We will only consider the case α = κ++. Again, construct a sequence (rβ)β≤κ++

by induction: Assume that rβ ∈ Pβ has been constructed, rβ ≤F∩β,i+1 p
� and s � β ≤P rβ.

Now there are 3 cases:

• β /∈ F : Define rβ+1(β) :=

�
s(β) if s � β ∈ Ġβ

p�(β) else

• β ∈ F ∧ Q̇β = Ṡκ: Define rβ+1(β) :=

�
s(β) ∪ (p�(β) \ p�(β)[ysβ ]) if s � β ∈ Ġβ

p�(β) else

5Again, work with i+ 1, if i is a limit.
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• β ∈ F ∧ Q̇β = İfβ : Define rβ+1(β) :=

�
p�(β) ∪ (s(β) \ ysβ) if s � β ∈ Ġβ

p�(β) else

Obviously, rβ+1 ≤F∩(β+1),i+1 p
� and s � (β + 1) ≤P rβ+1. If γ is a limit, define rγ to be

the union of {rβ : β < γ}. Set p�[s] := rκ++ and note that supp(p�[s]) ⊆ supp(p�)∪supp(s).

We check property (c). Let s� ∈ Dκ++ with s� ≤P p�[s] and ∀β ∈ F : ys
�

β = ysβ. Assume
that s� � β ≤P s � β. If β ∈ F ∧ Q̇β = İfβ , we have that s� � β �β s�(β) ≤P p�[s](β) =
p�(β) ∪ (s(β) \ ysβ). As ys

�
β = ysβ and s� � β �β s(β) ≤İfβ

p�(β), it follows that s� � β �β

s�(β) ≤İfβ
s(β). The other 2 cases are similar. Hence s� � (β + 1) ≤P s � (β + 1).

Lemma 2.4.5. P satisfies Axiom B.

Proof. See the proof of Theorem 2.2.5.

Lemma 2.4.6. ∀α < κ++ : Pα has a dense subset of size κ+, and P satisfies the κ++-c.c.

Proof. See the proof of Theorem 2.2.9 and Lemma 2.2.11.

Again, our goal is to show the following theorem:

Theorem 2.4.7. V P � SN = [2κ]≤κ+ .

One direction is the following lemma:

Lemma 2.4.8. V P � [2κ]≤κ+ ⊆ SN .

Proof. Let f ∈ κκ ∩ V and X ∈ [2κ]≤κ+ . Since P satisfies the κ++-c.c., there exists
α < κ++ such that X ∈ V Pα . Find α� > α such that Q̇α� = İfα� and fα� = f . For x ∈ X

define the set Dx := {p ∈ IV
Pα�

fα� : ∃i < κ p �Ifα� ġα�(i) = x � f(i)ˇ}. Obviously, Dx is

dense in IV
Pα�

fα� , hence (gα�(i))i∈κ will be the required covering.

The next lemma will be crucial for the proof of Theorem 2.4.7

Lemma 2.4.9. Let τ̇ be a P-name for an element of 2κ, p ∈ P and p �P τ̇ /∈ V . Then
there exists q ≤P p and (Aη)η∈split(q(0)) such that Aη ⊆ 2κ are non-empty, clopen and:

• if η1 ⊥ η2 then Aη1 ∩ Aη2 = ∅
• if η1 H η2 then Aη2 ⊆ Aη1

• q[η] �P τ̇ ∈ Aη

where q[η](β) := q[η](0) if β = 0 and q(β) otherwise.

Proof. We shall construct a fusion sequence (qi, Fi)i<κ such that qi+1 ≤Fi,i+1 qi. The
condition qi+1 will have the required properties for (Aη)η∈spliti(qi(0)). Also recall the
definition of Di

κ++ :
Di

κ++ = {s ∈ P : ∀β ∈ Fi ∃xβ, yβ ∈ κ<κ

s � β �β s(β) ∩ spliti(p(β)) = {xβ}ˇ ∧ succs(β)(xβ)
ˇ= {yβ}ˇ}.
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• i = 0: Pick F0 with 0 ∈ F0. Set q0 := p.

• λ is a limit: Set qλ :=
�

i<λ qi and Fλ :=


i<λ Fi.

• i → i+1: Pick q�i ≤Fi,i+1 qi such that there exists a µq�i < κ with ∀β ∈ Fi : q
�
i � β �β

ϕ(µq�i , q
�
i(β), i) (see Lemma 2.2.8). Enumerate spliti(q�i(0)) as (ηij+1)j<δi with δi < κ.

Now take care of the ηij’s inductively. Simultaneously, define an increasing se-
quence (X i

j)j<δi with X i
j ⊆ 2κ and |X i

j| < κ. The X i
j’s will contain interpretations

of τ̇ .

– j = 0: Set X i
0 = X̃ i

0 := ∅ and li0 = l̃i0 := 0.

– j → j + 1: Now work below q
�[ηij+1]

i . Find q
�[ηij+1]

�

i ≤Fi,i+1 q
�[ηij+1]

i and lij+1

such that q
�[ηij+1]

�

i �P ∀x ∈ X i
j : τ̇ � lij+1 1= x � lij+1. This is possible, be-

cause p �P τ̇ /∈ V , |X i
j| < κ, P is <κ-closed and satisfies Axiom B. In

more detail: There exists a P-name l̇ for an ordinal < κ such that the set
{s ∈ P : ∃ls < κ s �P ∀x ∈ X̌ i

j : τ̇ � l̇ 1= x � l̇ ∧ l̇ = ls} is dense. Now use
Axiom B to find an upper bound for l̇.

By induction we now define decreasing sequences (j+1qki+1)k<κ, such that
j+1qki+1 ≤Fi\{0},i+1 qi, and (C i

k)k<κ with C i
k ⊆ 


β∈Fi
fβ(µq�i)

≤(µq�
i
+1) 6, and

set qk := j+1qki+1.

∗ k = 0: Set q0 := q
�[ηij+1]

�

i . Define

Ci
0 := {g ∈

	
β∈Fi

fβ(µq�i)
≤(µq�

i
+1)

:

∃s ∈ Di
κ++ s ≤P q0 ∧ ∀β ∈ Fi y

s
β = g(β)}.

∗ k → k + 1: Similarly to the proof of Theorem 2.2.5 we take care of all
g ∈ C i

k and witnesses iskg , and construct qk+1 using Lemma 2.4.4. Define:

C i
k+1 := {g ∈

	
β∈Fi

fβ(µq�i)
≤(µq�

i
+1)

:

∃s ∈ Di
κ++ s ≤P qk+1 ∧ s decides τ̇ � (k + 1) ∧ ∀β ∈ Fi y

s
β = g(β)}.

∗ ξ is a limit: Set qξ :=
�

k<ξ q
k and define:

Ci
ξ := {g ∈

	
β∈Fi

fβ(µq�i)
≤(µq�

i
+1)

:

∃s ∈ Di
κ++ s ≤P qξ ∧ s decides τ̇ � ξ ∧ ∀β ∈ Fi y

s
β = g(β)}.

6If β has cofinality κ+, then set fβ to be the identity.
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As (C i
k)k<κ is a decreasing sequence of length κ and |C i

k| < κ the sequence
must eventually be constant. Denote this index by l̃ij+1. Note that Ci

k is
non-empty by a density argument.

Now define X i
j+1. Set

X̃ i
j+1 := {x ∈ 2κ : ∃g ∈ Ci

l̃ij+1
∀k < κ iskg �P τ̇ � k = x � k}

and note that (iskg)k<κ is necessarily a decreasing sequence by Lemma 2.4.4.
Furthermore, note that X̃ i

j+1 is disjoint from X i
j and set X i

j+1 := X i
j ∪ X̃ i

j+1.

– ι is a limit: Set X i
ι :=


j<ι X

i
j and X̃ i

ι = ∅. Set liι = l̃iι := 0.

Define li := max
�
sup{lij : j < δi}, sup{l̃ij : j < δi}

�
. Recall that X̃ i

j+1 = X i
j+1\X i

j.
Define Aηij+1

:=


x∈X̃i
j+1

[x � li]. W.l.o.g. let li be large enough such that the Aηij
’s

are disjoint. We can assume this, since the X̃ i
j’s are disjoint and of size < κ.

Define qi+1 ∈ P such that qi+1(0) :=


j<δi
j+1ql

i+1
i+1 (0) and qi+1(β) :=

j+1ql
i+1
i+1 (β) if

j+1ql
i+1
i+1 � β ∈ Ġβ and qi+1(β) := ✶Q̇β

else for β > 0. Note that qi+1 ≤Fi,i+1 qi and

q
[ηij+1]

i+1 = j+1ql
i+1
i+1 . Define Fi+1 using a bookkeeping argument.

We claim that the fusion limit qκ has the required properties. Let i < κ and η ∈
spliti(qκ(0)) be arbitrary. We must show that q[η]κ �P τ̇ ∈ Aη.
It follows that η ∈ spliti(qi+1(0)), and since qi+1 ≤Fi,i+1 qi, we deduce η ∈ spliti(qi(0)).

Therefore η = ηij+1 for some j < δi. We will show that q
[ηij+1]

i+1 �P τ̇ ∈ Aηij+1
. Let

s ≤P q
[ηij+1]

i+1 with s ∈ Di
κ++ and s decides τ̇ � li. As q

[ηij+1]

i+1 = j+1ql
i+1
i+1 we have s ≤P

j+1ql
i+1
i+1 .

Therefore s ≤P
isl

i

g for some g ∈ Ci
li and hence s �P τ̇ � li = x � li for some x ∈ X̃ i

j+1.

In particular, τ̇ can continuously be mapped onto the first Sacks real ṡ0 by a function
from V . Note that for <κ-closed forcing extensions it is clear how to evaluate the
image of a new real ẋ under a ground model κ-Borel function f : In the ground model
f is completely determined by (Bs)s∈κ<κ where Bs := f−1([s]), and the following is a
Π1

1-statement:

∀x ∈ 2κ ∀i < κ ∃!s ∈ 2i : x ∈ Bs ∧ ∀s, t ∈ κ<κ : s H t ⇒ Bt ⊆ Bs.

Note that the mapping s .→ Bs is κ-Borel, since |κ<κ| = κ. By Π1
1-absoluteness for <κ-

closed forcing extensions (see Fact 1.1.3), it follows that f(ẋG) =
{s ∈ κ<κ : ẋG ∈ Bs}.

Lemma 2.4.10. Let p ∈ Sκ be a Sacks condition. Then there exists a homeomorphism
g : [p] → 2κ × 2κ such that ∀x ∈ 2κ : {η ∈ 2<κ : ∃y ∈ g−1({x} × 2κ) η H y} is a Sacks
condition stronger than p.

Proof. First we define e : p → 2<κ × 2<κ as follows:

• e is monotonous
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• e is continuous

• e(∅) = (∅, ∅)
• η /∈ split(p) ⇒ e(η:i) := e(η)

• η ∈ splitj(p)

– if j is a successor, then e(η:i) := (e1(η)
:i, e2(η))

– if j is a limit, then e(η:i) := (e1(η), e2(η)
:i)

For u ∈ [p] set g(u) := v iff {v} =
�

i<κ[e(u � i)]. Then g is a homeomorphism, since the
topologies on [p] and 2κ × 2κ both have a clopen basis.

Now we must show that qx := {η ∈ 2<κ : ∃y ∈ g−1({x} × 2κ) η H y} is a condition:

• Let (ηj)j<δ with ηj ∈ qx be a strictly increasing sequence of length < κ. Set
η :=


j<δ ηj. It easily follows that ν ∈ qx ⇔ x ∈ [e1(ν)]. As e(η) =


j<δ e(ηj) we

see that x ∈ [e1(η)]. Hence η ∈ qx.

• It easily follows that g−1({x} × 2κ) is a perfect set. It remains to be shown that
splitting is continuous: Let (ηj)j<δ be a strictly increasing sequence of length < κ
such that ηj ∈ split(qx). Again, set η :=


j<δ ηj. It follows that ηj ∈ split(p),

hence η ∈ splitλ(p) for some limit λ. But as x ∈ [e1(η)] and [e1(η)] = [e1(η
:i)], it

follows that η:i ∈ qx for i = 1, 2 , hence η ∈ split(qx).

Finally, note that qx is obviously stronger than p.

The following is an easy observation:

Lemma 2.4.11. Let Y, Z ⊆ 2κ be closed and f : Y → Z uniformly continuous, i.e.
∀i < κ ∃j < κ ∀x ∈ 2κ : f ��([x � j] ∩ Y ) ⊆ [f(x) � i]. Then f can be extended to a
uniformly continuous, total function f ∗ with f ∗ �� 2κ ⊆ Z.

Theorem 2.4.12. In V P the following holds true: Every X ⊆ 2κ of size cκ can uniformly
continuously be mapped onto 2κ.

Proof. Again, as every Pα with α < κ++ has a dense subset of size κ+ by Lemma
2.4.6 and is κ-proper, there are essentially only |(κ+)κ| = κ+ many Pα-names for reals.
Hence V Pα � |2κ| = κ+. As P satisfies the κ++-c.c. and is also κ-proper, we see that
V P � ‘ |2κ| = κ++ and no cardinals are collapsed ’.

In V P assume that X ⊆ 2κ and for every uniformly continuous function f there ex-
ists a y ∈ 2κ such that y /∈ f ��X. Pick such a y and denote it by F (f).
Since P satisfies the κ++-c.c. and is κ-proper, hence no new κ-Borel functions appear in
limit steps of cofinality κ+, we can now find β < κ++ with cf(β) = κ+ such that for every
uniformly continuous function f ∈ V Pβ we have F (f) ∈ V Pβ and �Pβ,κ++ F (f) /∈ f �� 2κ.
We will show that X ⊆ V Pβ , hence |X| ≤ κ+.
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Working in V Pβ we assume that p �Pβ,κ++ τ̇ ∈ 2κ ∧ τ̇ /∈ V Pβ . As p(0) ∈ SV
Pβ

κ we
can use Lemma 2.4.9 to find q ≤Pβ,κ++ p and (Aη)η∈split(q(0)) clopen sets. We define
Y :=

�
i<κ


η∈spliti(q)

Aη, and note that Y is closed and non-empty by Π1
1-absoluteness.

Define f : Y → [q(0)] as follows: f(x) :=
{η ∈ 2<κ : x ∈ Aη}, and note that

q �Pβ,κ++ f(τ̇) = ṡ0.

We shall show that f : Y → [q(0)] is uniformly continuous: Let i < κ be arbitrary and
consider η ∈ spliti(q). We know that if x ∈ Y ∩Aη, then f(x) ∈ [η]. We also know that
Aη =


x∈X̃i

j+1
[x � li] for some j < δi (see Lemma 2.4.9). Let x ∈ Y be arbitrary. Then

there exists η ∈ spliti(q) such that [x � li] ⊆ Aη, hence f ��([x � li] ∩ Y ) ⊆ [η] ⊆ [f(x) � i]
as i ⊆ dom(η). Therefore, f is uniformly continuous.

By Lemma 2.4.11 f can be extended to a uniformly continuous, total function f ∗ with
f ∗ �� 2κ ⊆ [q(0)]. Define h := π1 ◦ g ◦ f ∗ with g from Lemma 2.4.10 and π1 the projection
onto the first coordinate. Similarly to above, it follows that also g is uniformly continu-
ous. Hence, h is a uniformly continuous function in V Pβ .

Now let x ∈ 2κ ∩ V Pβ be arbitrary. Then qx �Pβ,κ++ h(τ̇) = x. This follows, be-
cause q �Pβ,κ++ f ∗(τ̇) = ṡ0 and qx �Pβ,κ++ ṡ0 ∈ g−1({x} × 2κ). If we set x := F (h) then
we can conclude that qx �Pβ,κ++ τ̇ /∈ Ẋ, where Ẋ is a Pβ,κ++-name for X. As τ̇ and p

were arbitrary, it follows that �Pβ,κ++ Ẋ ⊆ V Pβ .

Proof of Theorem 2.4.7. We have already seen one inclusion. Now assume that X ⊆ 2κ

is of size κ++. By the above theorem we can conclude that X can uniformly continuously
be mapped onto 2κ. It can easily be seen that the image of a strong measure zero set
under a uniformly continuous function is again strong measure zero. Hence X /∈ SN .

2.5 Strong measure zero vs. stationary strong
measure zero

Finally, we take a look at the following definition by Halko [Hal96]:

Definition 2.5.1. Let X ⊆ 2κ. We call X stationary strong measure zero iff

∀f ∈ κκ ∃(ηi)i<κ :
� ∀i < κ ηi ∈ 2f(i)

� ∧X ⊆
�
cl∈Cl

�
i∈cl

[ηi].

So for every x ∈ X the set {i < κ : x ∈ [ηi]} is stationary.

The following lemma shows, why stationary strong measure zero is a natural general-
ization.
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Lemma 2.5.2.

X ∈ SN ⇔ ∀f ∈ κκ ∃(ηj)j<κ :
� ∀j < κ ηj ∈ 2f(j)

� ∧X ⊆
�
i<κ

�
j≥i

[ηj].

So for every x ∈ X the set {j < κ : x ∈ [ηj]} is unbounded.

Proof. Only the ⇒ direction is non-trivial. Let X ∈ SN and f ∈ κκ be a challenge.
Partition κ into (Si)i<κ such that |Si| = κ. Now for every i < κ find a covering (ηij)j∈Si

of X for the challenge (f(j))j∈Si
. But then (ηj)j<κ := (ηij)j∈Si, i<κ has the required

properties.

The next theorem shows that the two notions coincide in the Corazza model.

Theorem 2.5.3. V P � ∀X ∈ SN : X is stationary strong measure zero

Proof. Working in V P let X ∈ SN be arbitrary. Find α such that X ∈ V Pα . Let
f ∈ κκ ∩ V and a club cl ∈ V P be arbitrary. Since P satisfies Axiom B, we can
assume w.l.o.g. that cl ∈ V . Find β > α such that f = fβ and Q̇β = İfβ . Let
p ∈ IV

Pβ
fβ

be arbitrary. Find q ≤
IV

Pβ
fβ

p such that κ \ dom(q) = κ \ dom(p) ∩ cl. Then

q �
IV

Pβ
fβ

X ⊆ 
i∈cl[ġβ(i)]. Hence, the set {p ∈ IV

Pβ
fβ

: p �
IV

Pβ
fβ

X ⊆ 
i∈cl[ġβ(i)]} is dense

in IV
Pβ

fβ
. Since cl was arbitrary, we see that X ⊆ �

cl∈Cl


i∈cl[gβ(i)].

On the other hand, assuming |2κ| = κ+ we can prove the following theorem:

Theorem 2.5.4. Under GCH at κ there exists a set X ∈ SN which is not stationary
strong measure zero.

Proof. We shall construct X by induction. First enumerate all f ∈ κκ, such that f is
strictly increasing, as (fα)α<κ+ . Furthermore, define the set S := {σ ∈ (2<κ)κ : ∀i <
κ dom(σ(i)) = i+ 1} and also enumerate it as (σα)α<κ+ .
If α = 0 define x0(i) := 1 − σ0(i) (i) so that x0 /∈ 

i<κ[σ0(i)]. Then choose τ0 ∈ (2<κ)κ

such that ∀i < κ : dom(τ0(i)) = f0(i), ∀i < κ :


j≥i[τ0(j)] is open dense and x0 ∈
i<κ[τ0(i)].

Assume that (xβ)β<α and (τβ)β<α have already been constructed. Enumerate (xβ)β<α

and (τβ)β<α as (x�
i+1)i<κ and (τ �i+1)i<κ. Inductively, we will now construct xα and a club

cl:

• Set cl0 := 0 and set t0 := �1− σα(0) (0)�.
• If i = i� + 1 and ti� as well as cli� have already been defined, find j > cli� such that
ti� H τ �i(j) and τ �i(j) � x�

i. Set cli := dom(τ �i(j)) and ti := τ �i(j)
:(1− σα(cli) (cli)).

• If λ is a limit set clλ := sup{clj : j < λ} and set tλ := (


j<λ tj)
:(1−σα(clλ) (clλ)).
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Set xα :=


i<κ ti and cl := {cli : i < κ}. By construction it follows that ∀β < α : xα ∈
i<κ[τβ(i)], xα is distinct from xβ for every β < α and xα /∈ 

i∈cl[σα(i)]. Finally,
find τα such that ∀i < κ : dom(τα(i)) = fα(i), ∀i < κ :


j≥i[τα(j)] is open dense and

{xβ : β ≤ α} ⊆ 
i<κ[τα(i)].

Set X := {xα : α < κ+}. Then ∀α < κ+ : X ⊆ 
i<κ[τα(i)], because {xβ : β ≤ α} ⊆

i<κ[τα(i)] by the construction of τα and xβ ∈ 
i<κ[τα(i)] for β > α by the construction

of xβ. Hence, X is strong measure zero. However, ∀σ ∈ S ∃x ∈ X ∃cl ∈ Cl : x /∈
i∈cl[σ(i)]. Therefore, X cannot be stationary strong measure zero.
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3 The cofinality of the strong
measure zero ideal for κ
inaccessible

In this chapter we continue to investigate the notion of strong measure zero on 2κ for κ
at least inaccessible.

Fact 3.0.1. Since SN is a ≤κ-complete, proper ideal on 2κ which contains all singletons,
the cardinal characteristics add(SN ), cov(SN ), non(SN ) and cof(SN ) are all defined.

In [Yor02], Yorioka introduced the so-called Yorioka ideals approximating the ideal
of strong measure zero sets on 2ω. We will generalize this notion to κ and use it to
investigate cof(SN ). Our aim is to show that cof(SN ) < cκ, cof(SN ) = cκ as well as
cof(SN ) > cκ are all consistent relative to ZFC.
We also generalize the Galvin–Mycielski–Solovay theorem (see Chapter 8.1 in [BJ95]) to
κ inaccessible. This result was originally proven by Wohofsky (see [Woh]). Finally, we
follow Pawlikowski [Paw90] and show the relative consistency of cov(SN ) < add(Mκ)
for κ strongly unfoldable (see Definition 2.3.1).

3.1 Prerequisites

We start with several definitions:

Definition 3.1.1. Let f, g ∈ κκ and f strictly increasing.

• We define the partial order * on κκ as follows: f * g iff ∀δ < κ ∃µ < κ ∀i ≥
µ : g(i) ≥ f(iδ). Here iδ is defined using ordinal arithmetic.

• For σ ∈ (2<κ)κ define gσ ∈ κκ as follows: gσ(i) := dom(σ(i)).

• For σ ∈ (2<κ)κ define Y (σ) ⊆ 2κ as follows: Y (σ) :=
�

i<κ


j≥i [σ(j)].

• Define S(f) ⊆ (2<κ)κ as follows: S(f) := {σ ∈ (2<κ)κ : f * gσ}.
• Define A ⊆ 2κ to be f -small iff there exists σ ∈ S(f) such that A ⊆ Y (σ).

• Define I(f) := {A ⊆ 2κ : A is f -small}.
Definition 3.1.2. Let f ∈ κκ be strictly increasing and let σ ∈ S(f). For every δ < κ
we define M δ

σ to be the minimal ordinal ≥ 2 such that ∀i ≥ M δ
σ : gσ(i) ≥ f(iδ).

29



Lemma 3.1.3. I(f) forms a ≤κ-complete ideal.

Proof. I(f) is obviously closed under subsets. Hence, we must show that it is also closed
under κ-unions.

Let (Ak)k<κ be a family of f -small sets and (σk)k<κ ⊆ S(f) such that Ak ⊆ Y (σk).
We shall find a τ ∈ S(f) such that


k<κ Y (σk) ⊆ Y (τ). For every k < κ let gk := gσk

and let M δ
k := M δ

σk
for ever δ < κ. Define mk := sup{M3·δ

j : j, δ ≤ k}.

We need the following definitions for i ≥ m0:

• Define c(i) > 0 such that m0 +
�

j<c(i) j ·mj ≤ i < m0 +
�

j≤c(i) j ·mj.

• Define d(i) := m0 +
�

j<c(i) j ·mj.

• Define a(i) and b(i) such that i− d(i) = c(i) · a(i) + b(i) with b(i) < c(i).

• Define e(i) :=
�

j<c(i)mj.

The following are immediate consequences for i ≥ m0:

• i ≥ m0 +
�

j<c� j ·mj ⇒ c(i) ≥ c�

• a(i) < mc(i)

• 0 ≤ b(i) < c(i) ≤ e(i).

• d(i) ≤ c(i) · e(i) (show by induction)

• i = d(i) + c(i) · a(i) + b(i) < c(i) · e(i) + c(i) · a(i) + c(i) = c(i) · (e(i) + a(i) + 1) ≤
((e(i) + a(i)) · (e(i) + a(i) + 1) ≤ ((e(i) + a(i))3

• ∀k < κ ∀∞l < κ ∃i < κ : e(i) + a(i) = l ∧ b(i) = k

The last statement can be deduced as follows: Given k < κ let l ≥ �
j≤k mj be

arbitrary. Hence, there exists a c̃ > k such that
�

j<c̃ mj ≤ l <
�

j≤c̃ mj. De-
fine i := m0 +

�
j<c̃ j · mj + c̃ · (l − �

j<c̃ mj) + k. Then c(i) = c̃ follows, be-
cause mc̃ ≥ (l − �

j<c̃ mj) + 1 and therefore c̃ · mc̃ > c̃ · (l − �
j<c̃ mj) + k. Hence

d(i) = m0 +
�

j<c̃ j · mj, a(i) = l − �
j<c̃ mj, b(i) = k and e(i) =

�
j<c̃ mj. Now

e(i) + a(i) = l follows.

We are ready to define τ : If i ≥ m0 set τ(i) := σb(i)(e(i) + a(i)). Else set τ(i) := � �.
We must show that τ has the required properties.
First let us show that


k<κ Y (σk) ⊆ Y (τ). Let x ∈ Y (σk) for some k < κ be arbitrary.

For every l < κ large enough, there exists i < κ such that τ(i) = σk(l). Hence x ∈ Y (τ).
Now we must show that τ ∈ S(f). Let δ < κ be arbitrary. If i ≥ m0+

�
j≤δ j ·mj (hence

c(i) > δ), then the following (in-)equalities hold: τ(i) = σb(i)(e(i) + a(i)) by definition,
gb(i)(e(i) + a(i)) ≥ f((e(i) + a(i))3·δ) since e(i) + a(i) ≥ M3·δ

b(i) and b(i), δ < c(i), and
f((e(i) + a(i))3·δ) ≥ f(iδ) since f is strictly increasing and i ≤ (e(i) + a(i))3. Hence
gτ (i) ≥ f(iδ).
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Figure 3: Definition of τ

The following fact is straightforward:

Fact 3.1.4. SN =
�

f∈κκ I(f).
The next lemma implicitly shows that comeager sets cannot be strong measure zero:

Lemma 3.1.5. Let A ⊆ 2κ be comeager. Then there exists f ∈ κκ such that for every
f -small set B the set A \B is non-empty.

Proof. Let A be comeager. We shall show that A contains a perfect set, which im-
plies that there exists f ∈ κκ such that A is not f -small: If P ⊆ A is a perfect set,
let T ⊆ 2<κ be a perfect tree such that [T ] = P . Pick a function f ∈ κκ such that
f(δ) > sup{dom(t) : t is in the δth splitting level of T}. Let σ ∈ S(f) be arbitrary.
Then an x ∈ [T ] \ Y (σ) can be constructed by induction.

Therefore, let us assume that A =
�

i<κ Di+1, where Di+1 are open dense and decreasing,
and we inductively construct a perfect tree T ⊆ 2<κ such that no branches die out and
[T ] ⊆ A:

• Set T0 := {t� 	} where t� 	 := � �.
• If i = i� + 1 assume inductively that Ti� = {tη : η ∈ 2i

�} has already been defined
and for every tη ∈ Ti� we have [tη] ⊆

�
j<i� Dj+1. For every tη ∈ Ti� find t�η I tη such

that [t�η] ⊆ Di. Set tη$�i	 := t�:η �i� and Ti := {tη� : η� ∈ 2i}.
• If λ is a limit and η ∈ 2λ define tη :=


η�? η tη� and set Tλ := {tη : η ∈ 2λ}. Then

we can deduce that [tη] ⊆
�

j<λ Dj+1 for every tη ∈ Tλ.

It follows from the construction that (the downward closure of) T :=


i<κ Ti is a perfect
tree and that [T ] ⊆ A.
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Conversely, the following fact holds true:

Fact 3.1.6. For every f ∈ κκ strictly increasing there exists a comeager set A ⊆ 2κ such
that A ∈ I(f).
Lemma 3.1.7. Assume GCH at κ and let (fα)α<κ+ be a κ-scale such that fα is strictly
increasing. Then there exists a matrix (Aβ

α)
β<κ+

α<κ+ with the following properties:

• ∀α, β < κ+ : Aβ
α ⊆ 2κ is comeager and fα-small.

• ∀α, β, β� < κ+ : β ≤ β� ⇒ Aβ
α ⊆ Aβ�

α .

• ∀α < κ+ ∀fα-smallB ⊆ 2κ ∃β < κ+ : B ⊆ Aβ
α.

• ∀α < κ+ ∀fα-smallB ⊆ 2κ : α > 0 ⇒ � �
γ<α A

0
γ

� \ B 1= ∅. This means that for
every α < κ+ the set

�
γ<α A

0
γ is not fα-small.

Proof. We shall construct Aβ
α by a lexicographic induction on (α, β) ∈ κ+×κ+: Assume

that (Aβ
γ)

β<κ+

γ<α have already been defined. Since
�

γ<α A
0
γ is comeager, there exists f

such that
�

γ<α A
0
γ is not f -small (see Lemma 3.1.5). W.l.o.g. let f = fα. Choose

some τ0 ∈ S(fα) such that Y (τ0) is comeager and set A0
α := Y (τ0). Next enumerate

S(fα) as (σβ)β<κ+ such that σ0 = τ0. Finally choose τβ ∈ S(fα) inductively such
that


γ<β Y (τγ) ∪ Y (σβ) ⊆ Y (τβ). This is possible since I(fα) is ≤κ-complete. Set

Aβ
α := Y (τβ).

Fact 3.1.8. If (fα)α<κ+ and (Aβ
α)

β<κ+

α<κ+ are as above, then for every g ∈ �
κ+

�κ+

we have�
α<κ+ A

g(α)
α ∈ SN .

We are ready to prove the following theorem:

Theorem 3.1.9. Assume GCH at κ. Then cof(SN ) = dκ+ .

Proof. First we prove cof(SN ) ≤ dκ+ . Let D be a pointwise dominating family in�
κ+

�κ+

of size dκ+ . This family exists, because there is an eventually dominating fam-
ily of size dκ+ and

�
κ+

�κ
= κ+, since we have |2κ| = κ+. Let (fα)α<κ+ be a κ-scale

(which exists by GCH at κ) and let (Aβ
α)

β<κ+

α<κ+ be the matrix from Lemma 3.1.7. Define
B := {X ⊆ 2κ : ∃g ∈ D X =

�
α<κ+ A

g(α)
α }. B has size ≤ dκ+ . We must show that B is

cofinal in SN .
First, we obviously have B ⊆ SN . Now let Y ∈ SN . Then there exists an h ∈ �

κ+
�κ+

such that Y ⊆ �
α<κ+ A

h(α)
α . Hence, there exists g ∈ D such that g dominates h point-

wise. In particular, Y ⊆ �
α<κ+ A

g(α)
α ∈ B.

Now let us show that cof(SN ) ≥ dκ+ . Towards a contradiction we assume the op-
posite, i.e. there exists a C cofinal in SN of size < dκ+ . Hence, for every X ∈ C there
exists gX ∈ D such that X ⊆ �

α<κ+ A
gX(α)
α . Let us define D� := {gX : X ∈ C} ⊆ D.

Then |D�| < dκ+ . Hence, there exists h such that no g ∈ D� dominates it.
Inductively we will now construct h� ∈ �

κ+
�κ+

and {xγ : γ < κ+} such that:

32



• ∀α < κ+ : h(α) ≤ h�(α)

• ∀α < κ+ : {xγ : γ < α} ⊆ A
h�(α)
α

• xα ∈ � �
γ≤α A

h�(γ)
γ

� \ Ah(α)
α

Assume that h� � α and {xγ : γ < α} have already been defined. Simply by choosing
h�(α) large enough we can ensure that {xγ : γ < α} ⊆ A

h�(α)
α . Also since

�
γ<α A

0
γ ⊆�

γ<α A
h�(γ)
γ , it follows by Lemma 3.1.7 that

� �
γ<α A

h�(γ)
γ

� \ A
h(α)
α 1= ∅. Again, if we

choose h�(α) large enough, then also
� �

γ≤α A
h�(γ)
γ

� \ A
h(α)
α 1= ∅. Therefore, choose

h�(α) ≥ h(α) large enough, and pick xα ∈ � �
γ≤α A

h�(γ)
γ

� \ Ah(α)
α .

First, {xγ : γ < κ+} ∈ SN , because {xγ : γ < κ+} ⊆ �
γ<κ+ A

h�(γ)
γ . Finally we show

that no X ∈ C covers {xγ : γ < κ+}. It suffices to show that for every gX ∈ D� we
have {xγ : γ < κ+} �

�
α<κ+ A

gX(α)
α . Let gX ∈ D� be arbitrary. Find α < κ such that

gX(α) ≤ h(α). But then xα /∈ A
gX(α)
α .

We can generalize Theorem 3.1.9 as follows:

Theorem 3.1.10. Assume that add(Mκ) = dκ and there exists a dominating family
{fα ∈ κκ : α < dκ} such that add(I(fα)) = cof(I(fα)) = dκ. Then cof(SN ) = ddκ .

Proof. First note that also bκ = dκ. Therefore, for every β < dκ, the family {fα : β ≤
α < dκ} is also dominating. So w.l.o.g. we can assume that {fα : α < dκ} is a κ-scale.
Next, construct a matrix (Aβ

α)
β<dκ
α<dκ similar to Lemma 3.1.7 using add(Mκ) = dκ.

Let D be a dominating a family in ddκκ of size ddκ . Following the proof of Theorem 3.1.9
we define B := {X ⊆ 2κ : ∃g ∈ D ∃β < dκ X =

�
α≥β A

g(α)
α }. Note that |B| ≤ ddκ and

B ⊆ SN , since {fα : α < dκ} is a κ-scale. We will show that B is cofinal in SN :
Let Y ∈ SN , hence there exists h ∈ ddκκ such that Y ⊆ �

α<dκ
A

h(α)
α . But then there is

g ∈ D and β < dκ such that ∀α ≥ β : g(α) ≥ h(α). Therefore Y ⊆ �
α≥β A

g(α)
α ∈ B.

To prove ddκ ≤ cof(SN ) we proceed as in the proof of Theorem 3.1.9.

3.2 Separating cof(SN ) and cκ

In this section we want to force add(Mκ) = dκ and there exists a dominating family
{fα : α < dκ} such that add(I(fα)) = cof(I(fα)) = dκ for every α < dκ. Then cof(SN ) =
ddκ holds by Theorem 3.1.10. Using this we can separate cof(SN ) and cκ.

Definition 3.2.1. For f ∈ κκ strictly increasing define the forcing notion Of :
Let p ∈ Of iff p = (σp, δp, lp, Fp) such that:

P1 σp ∈ (2<κ)<κ, δp, lp < κ and Fp ⊆ S(f) is infinite and of size < κ

P2 |Fp| · lp ≥ dom(σp) ≥ lp ≥ sup{M3·µ
τ : τ ∈ Fp, µ < δp} ∪ |Fp|
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If p = (σp, δp, lp, Fp) and q = (σq, δq, lq, Fq) are conditions in Of we define q ≤Of
p, i.e. q

is stronger than p, iff:

Q1 σp ⊆ σq, δp ≤ δq, lp ≤ lq and Fp ⊆ Fq

Q2 ∀µ < δp ∀i ∈ dom(σq) \ dom(σp) : gσq(i) ≥ f(iµ)

Q3 ∀τ ∈ Fp ∀i ∈ lq \ lp ∃j ∈ dom(σq) : σq(j) = τ(i)

The following lemma will be crucial for many density arguments.

Lemma 3.2.2. Let p = (σp, δp, lp, Fp) ∈ Of . Let ι ≥ dom(σp), δ� ≥ δp, l� ≥ lp and
F � ⊇ Fp. Then there exists an extension q = (σq, δq, lq, Fq) such that dom(σq) ≥ ι,
δq = δ�, lq ≥ l� and Fq = F �.

Proof. Let {τk : k < |Fp|} enumerate Fp and set

l̃ := max
�
sup{M3·µ

τ : τ ∈ F �, µ < δ�}, |F �|, l�, ι�.
Set lq := lp + l̃. Hence lq ≥ l�, and we define σq as follows:

• σq � dom(σp) = σp

• For i ∈ (dom(σp) + |Fp| · l̃) \ dom(σp) such that i = dom(σp) + |Fp| · a + b, where
a < l̃ and b < |Fp|, we set σq(i) := τb(lp + a).

Then dom(σq) ≥ ι. Set δq := δ� and Fq := F �, and set q := (σq, δq, lq, Fq). Now we must
check that q ∈ Of and q ≤Of

p.

Let us first check that q ∈ Of . The following inequalities hold:

|Fq| · lq ≥ dom(σq) = dom(σp) + |Fp| · l̃ ≥ lq = l + l̃ ≥ sup{M3·µ
τ : τ ∈ Fq, µ < δq} ∪ |Fq|

Therefore q ∈ Of .

Now let us check that q ≤Of
p:

(Q1) σp ⊆ σq, δp ≤ δq, lp ≤ lq and Fp ⊆ Fq.

(Q2) We need to show that ∀µ < δp ∀i ∈ dom(σq) \dom(σp) : gσq(i) ≥ f(iµ). Let µ < δp
and i ∈ dom(σq) \ dom(σp) be arbitrary such that i− dom(σp) = |Fp| · a + b. We
note that lp+a ≥ M3·µ

τb
by the definition of Of , and the following inequalities hold:

(lp + a)3 ≥ (lp + a) · (lp + a+ 1) ≥ |Fp| · (lp + a+ 1) ≥ |Fp| · lp + |Fp| · a+ b ≥ i

Therefore gσq(i) = gτb(lp + a) ≥ f((lp + a)3·µ) ≥ f(iµ).

(Q3) Obviously, ∀τ ∈ Fp ∀i ∈ lq \ lp ∃j ∈ dom(σq) : σq(j) = τ(i) by the definition of σq

and lq − lp = l̃.
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Lemma 3.2.3. Of is <κ-closed.

Proof. Let (pk)k<λ be a decreasing sequence of length λ < κ. Define q := (σq, δq, lq, Fq),
where σq :=


k<λ σpk , δq :=


k<λ δpk , lq :=


k<λ lpk and Fq :=


k<λ Fpk .

Let us first check that q ∈ Of . Since |Fq| · lq ≥ |Fpk | · lpk for every k < λ, the following
inequalities hold:

|Fq| · lq ≥ dom(σq) ≥ lq ≥ sup{M3·µ
τ : τ ∈ Fq, µ < δq} ∪ |Fq|

and therefore, q is indeed a condition.
Next let us check that q is a lower bound of (pk)k<λ. Fix pk and we shall show that
q ≤Of

pk. (Q1) is trivially satisfied. For (Q2) fix µ < δpk and i ∈ dom(σq) \ dom(σpk).
Choose k� > k such that i ∈ dom(σpk� ). But then gσpk�

(i) ≥ f(iµ). (Q3) can be shown
similarly.

Lemma 3.2.4. Of is κ-linked 1.

Proof. For σ ∈ (2<κ)<κ, δ < κ and l < κ define the set P(σ,δ,l) := {p ∈ Of : ∃Fp ⊆
S(f) p = (σ, δ, l, Fp)}. We will show that P(σ,δ,l) is linked. Then Of will be κ-linked,
because Of =


σ∈(2<κ)<κ


δ<κ


l<κ P(σ,δ,l).

Fix (σ, δ, l) and let p1, p2 ∈ P(σ,δ,l). Set Fq := Fp1∪Fp2 and note that |Fq| = max{|Fp1 |, |Fp2 |}.
Hence l ≥ |Fq| and therefore, q := (σ, δ, l, Fq) is a lower bound of p1 and p2.

Assume that V � ‘κ is inaccessible ’ and let f ∈ κκ ∩ V be strictly increasing. Fur-
thermore, let G be a (V,Of )-generic filter. Define τG :=

{σ ∈ (2<κ)<κ : ∃p ∈ G p =
(σ, δp, lp, Fp)}. Then the following lemma is an easy observation:

Lemma 3.2.5. The following holds in V Of :

1. τG ∈ (2<κ)κ

2. gτG & f , in particular τG ∈ S(f)
3. ∀τ ∈ S(f) ∩ V : Y (τ) ⊆ Y (τG)

Hence, τG codes an f -small set which covers all ground model f -small sets.

Proof. ad 1.) By Lemma 3.2.2 the set {p ∈ Of : dom(σp) ≥ ι} is dense for every ι < κ.
Hence τG ∈ (2<κ)κ.

ad 2.) Let δ < κ be arbitrary. By a density argument there exists p ∈ G such that
δp ≥ δ + 1. But then gτG(i) ≥ f(iδ) for all i ≥ dom(σp).

ad 3.) Let τ ∈ S(f) ∩ V be arbitrary and fix x ∈ Y (τ), in particular the set {i <
κ : x ∈ [τ(i)]} has size κ. By a density argument there exists p, q ∈ G such that τ ∈ Fp,
lq is arbitrarily large and q ≤Of

p. Hence, the set {i ≥ dom(σp) : x ∈ [τG(i)]} will also
be of size κ.

1Note that Of is not κ-centered<κ.
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Definition 3.2.6. Let λ > κ be a regular cardinal. Define Bλ to be a bijection between
λ and λ× λ such that:

• If Bλ(α) = (β, γ) then β ≤ α

• If Bλ(α) = (β, γ), Bλ(α�) = (β, γ�) and α < α�, then γ < γ�

Furthermore, define Bλ
0 (α) and Bλ

1 (α) to be the projection of Bλ(α) onto the first and
second coordinate, respectively.

Now we are ready to define the iteration:

Definition 3.2.7. Let �P�, Q̇ζ : # ≤ λ, ζ < λ� be a <κ-support iteration such that
∀# < λ : �� Q̇� = Ḣκ D Ȯḋ

Bλ
0 (�)

, where Hκ denotes κ-Hechler forcing and ḋBλ
0 (�)

is the

generic κ-Hechler added by the first half of Q̇Bλ
0 (�)

.

Note that Hκ is κ-centered<κ.

The following lemma should be a straightforward consequence of Lemma 3.2.4:

Lemma 3.2.8. Pλ satisfies the κ+-c.c. Furthermore, if |2κ| < λ and λκ = λ or |2κ| ≥ λ,
then there exists a dense set D ⊆ Pλ of size max{|2κ|, λ}.
Proof. The set

D := {p ∈ Pλ : ∀# < λ ∃ρ ∈ κ<κ ∃σ ∈ (2<κ)<κ ∃δ < κ ∃l < κ ∃ḟ ∃(ġk)k<ι

p � # ��
˙p(#) = ((ρ, ḟ), (σ, δ, l, (ġk)k<ι))}

is dense in Pλ. Let Q ⊆ D be of size κ+ and use a Δ-system argument to find Q� ⊆ Q
of size κ+ such that Q� is linked. Hence Pλ satisfies the κ+-c.c.
Show by induction on # < λ that |D ∩ P�| ≤ max{|2κ|, λ} using the κ+-c.c. of P� and
the fact that every P�-name for an element of κκ is completely determined by a family
of maximal antichains of size κ.

We are ready to state and prove the following theorem:

Theorem 3.2.9. Let λ > κ be regular. Let V � ‘ |2κ| ≥ λ or |2κ| < λ ∧ λκ = λ ’. Then
in V Pλ the following holds true: add(Mκ) = dκ = λ and there exists a dominating family
{fα ∈ κκ : α < λ} such that add(I(fα)) = cof(I(fα)) = λ. Hence cof(SN ) = ddκ = dλ.
Furthermore, |2κ| = max{|2κ∩V |, λ}, dλ = dVλ and add(SN ) = cov(SN ) = non(SN ) = λ.

Proof. Using the κ+-c.c., the following should be straightforward: The κ-Hechler re-
als (ḋ�)�<λ form a κ-scale, hence dκ = bκ = λ. A <κ-support iteration adds κ-Cohen
reals, which implies cov(Mκ) = λ, and since add(Mκ) = min{bκ, cov(Mκ)} by Theo-
rem 1.2.5, it follows that add(Mκ) = dκ = λ. The family (τ̇��)��∈Bλ−1

({�}×λ) witnesses
add(I(ḋ�)) = cof(I(ḋ�)) = λ, since I(ḋ�)) is a κ-Borel ideal. Hence cof(SN ) = ddκ by
Theorem 3.1.10.
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Since Pλ has a dense subset of size max{|2κ ∩ V |, λ}, it satisfies the κ+-c.c. and either
|2κ ∩ V | ≥ λ or λκ = λ, it follows that |2κ| ≤ max{|2κ ∩ V |, λ}. Again using the κ+-c.c.,
it follows that Pλ is λλ-bounding, hence dλ = dVλ . Using add(I(ḋ�)) = λ for all # < λ,
we can deduce λ ≤ add(SN ). For cov(SN ) ≤ λ we note that 2κ ∩ V P� ∈ SN for all
# < λ as being witnessed by (τ̇��)��>�. For non(SN ) ≤ λ we pick for every τ̇� possibly not
distinct x�’s such that x� ∈ 2κ \ Y (τ̇�) and set X := {x� : # < λ}. It follows that |X| ≤ λ
and X /∈ SN , since no τ̇� can cover X.

Theorem 3.2.10. cκ < cof(SN ), cκ = cof(SN ) and cκ > cof(SN ) are all consistent
relative to ZFC.

Proof. cκ < cof(SN ) holds under GCH at κ (see Theorem 3.1.9). For cκ = cof(SN )
assume that V � |2κ| = κ++ ∧ dκ+ = κ++ (e.g. by forcing over GCH with a κ++-
product of κ-Cohen forcing) and force with Pκ+ . For cκ > cof(SN ) assume V � |2κ| =
κ+++ ∧ dκ+ = κ++ (e.g. by forcing over GCH with a κ+++-product of κ-Cohen forcing)
and again force with Pκ+ .

3.3 A model for cov(SN ) < add(Mκ)

In this section we first generalize the Galvin–Mycielski–Solovay theorem to κ inaccessible.
Then we shall assume that κ is strongly unfoldable, and want to construct a model for
cov(SN ) < add(Mκ). Indeed this will hold in the κ-Hechler model.

Definition 3.3.1. Let X ⊆ 2κ. We call X meager-shiftable iff for every comeager
D ⊆ 2κ there exists y ∈ 2κ such that X + y ⊆ D.

The following result is well-known in the classical case:

Theorem 3.3.2. (GMS) X ∈ SN iff X is meager-shiftable.

Proof. First we shall show that meager-shiftable implies strong measure zero: Let X ⊆
2κ be meager-shiftable and let f ∈ κκ. Choose (si)i<κ such that si ∈ 2f(i) and D :=

i<κ[si] is open dense. Since X is meager-shiftable, there exists y ∈ 2κ such that
X + y ⊆ D. Define ti := si + y � f(i). But then X ⊆ 

i<κ[ti]. Hence X is strong
measure zero.

We shall now show that strong measure zero implies meager-shiftable: Let X ⊆ 2κ be
strong measure zero and let D =

�
i<κ Di be an intersection of arbitrary dense open sets.

W.l.o.g. let the Di’s be decreasing. Now construct a normal sequence (ci)i<κ, ci ∈ κ,
such that for every i < κ and every s ∈ 2ci there exists t ∈ 2ci+1 with s H t such that
[t] ⊆ Di. Define f(i) := ci+1 and find (si)i<κ such that si ∈ 2f(i) and X ⊆ �

j<κ


i≥j[si].

We shall now inductively construct y ∈ 2κ such that ∀i < κ : [si + y � ci+1] ⊆ Di:

• Choose t0 ∈ 2c1 such that [t0] ⊆ D0 and set y � c1 := s0+t0. Hence, s0+y � c1 = t0
and so [s0 + y � c1] ⊆ D0.
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• i = i�+1: Assume that y � ci�+1 has already be constructed. Find ti I si � ci+y � ci,
ti ∈ 2ci+1 , such that [ti] ⊆ Di. Set y � ci+1 := si + ti. Then si + y � ci+1 = ti and
y � ci+1 I y � ci.

• λ is a limit: Set y � cλ :=


j<λ y � cj and proceed as in the successor step to
construct y � cλ+1.

Now we will show that ∀i < κ : X + y ⊆ Di. To this end let i < κ and x ∈ X be
arbitrary. We can now find i� ≥ i such that x ∈ [si� ]. It follows that x + y ∈ [si� + y �
ci�+1] ⊆ Di� ⊆ Di. This finishes the proof.

Before we can construct the model, we will need some definitions:

Definition 3.3.3. We say that a forcing notion P has precaliber κ+ iff for every P ∈
[P ]κ

+ there exists Q ∈ [P ]κ
+ such that Q is centered<κ.

While the previous definition is about forcing in general, the next definition is con-
cerned with cov(SN ):

Definition 3.3.4. Let {Dα : α < κ+} be a sequence of families of open subsets of 2κ.
We call the family {Dα : α < κ+} good iff ∀E ∈ [κ+]κ

+
:


α∈E
�Dα = 2κ.

The motivation behind Definition 3.3.4 is that for each α < κ+ the set
�Dα could

be a strong measure zero set. Then a good family corresponds to a family of strong
measure zero sets of size κ+ such that every subfamily of size κ+ covers 2κ.

Lemma 3.3.5. Suppose that {Dα : α < κ+} is a good family in V , V � ‘κ is weakly
compact ’ and P is a <κ-closed forcing notion, which has precaliber κ+. Then {Dα : α <
κ+} is also good in V P .

Proof. Towards a contradiction assume that there are names ẋ, Ė and a condition p
such that p �P ẋ ∈ 2κ ∧ Ė ∈ [κ+]κ

+ ∧ ẋ /∈ 
α∈Ė

�Dα. Working in V , for every α < κ+

find εα > α, Dα ∈ Dεα and conditions pα ≤P p such that pα �P εα ∈ Ė ∧ ẋ /∈ Dα. Since
P has precaliber κ+, we can find E∗ ∈ [κ+]κ

+ such that {pα : α ∈ E∗} is centered<κ.
Let F ⊆ E∗ be of size < κ and let qF be a lower bound of {pα : α ∈ F}. Then
qF �P


α∈F Dα 1= 2κ. By Π1

1-absoluteness 2 for <κ-closed forcing extensions (see
Fact 1.1.3)


α∈F Dα 1= 2κ must hold in V . Since κ is weakly compact it follows that

α∈E∗ Dα 1= 2κ. Hence


β∈{εα : α∈E∗}
�Dβ 1= 2κ. However, this is a contradiction to

{Dα : α < κ+} being a good family in V .

We are now ready to prove the main theorem of this section:

Theorem 3.3.6. Let V satisfy |2κ| = κ+ and the strong unfoldability of κ is indestruc-
tible by <κ-closed, κ+-c.c. forcing notions (see [Joh08]). Define P to be a <κ-support it-
eration of κ-Hechler forcing of length κ++. Then V P � cov(SN ) = κ+ < add(Mκ) = κ++.

2This also guarantees that if B1,B2 ∈ V are κ-Borel codes, then V � ‘B1 = B2 ’ iff V P � ‘B1 = B2 ’.
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Proof. Since add(Mκ) = min{bκ, cov(Mκ)}, it easily follows that add(Mκ) = κ++ in
V P. It remains to be shown that V P � cov(SN ) = κ+: Working in V P we define for
α < κ++ the set

Dα := {D : D is dense open with κ-Borel code inV Pα+1 ∧ 2κ ∩ V Pα ⊆ D}.

For Ẽ ⊆ κ++ define XẼ :=
�

α∈Ẽ
�Dα. If Ẽ is cofinal in κ++, then XẼ is smz: By GMS

(see Theorem 3.3.2) it is enough to show that XẼ is meager-shiftable. To this end let
D be a comeager set in V P and find α� ∈ Ẽ such that D is coded in V Pα� . But then
2κ∩V Pα� ⊆ D+ cα� , where cα� is some κ-Cohen real over V Pα� added by the next iterand
of κ-Hechler forcing. Hence D + cα� ∈ Dα� , and therefore XẼ ⊆ �Dα� ⊆ D + cα� .

We claim that ∀x ∈ 2κ : |{α < κ++ : x /∈ �Dα}| < κ+ holds in V P. Towards a contra-
diction assume that α∗ < κ++ is the minimal ordinal such that there exists E ∈ [α∗]κ

+

with


α∈E
�Dα 1= 2κ. This observation means that the family {Dα : α ∈ α∗} (note that

|α∗| = κ+) is not good in V P. By the minimality of α∗ it follows that E is cofinal in
α∗ and otp(E) = κ+, hence cf(α∗) = κ+. Since the family {Dα : α ∈ α∗} is in V Pα∗ ,
κ remains weakly compact in V Pα∗ , and the quotient forcing P/Gα∗ is <κ-closed and
has precaliber κ+, it follows by the previous lemma that {Dα : α ∈ α∗} is also not good
in V Pα∗ . Now working in V Pα∗ , for any E � ∈ [α∗]κ

+ ∩ V Pα∗ if E � is not cofinal in α∗,
then 2κ ∩ V Pα∗ ⊆ 

α∈E�
�Dα must hold by the minimality of α∗. If E � is cofinal in α∗,

then we have 2κ ∩ V Pα∗ =


α∈E� 2κ ∩ V Pα ⊆ 
α∈E�

�Dα. But this is a contradiction to
{Dα : α ∈ α∗} not being good in V Pα∗ .

Again working in V P let {Ẽξ : ξ < κ+} be a partition of κ++ into cofinal subsets. It
follows from the above claim that


ξ<κ+ XẼξ

= 2κ, because for every x ∈ 2κ there must
exist ξ < κ+ such that for every α ∈ Ẽξ we have x ∈ �Dα. Hence cov(SN ) = κ+.
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4 Cardinal characteristics on κ
modulo non-stationary

Cardinal characteristics of P(κ) for κ at least inaccessible have been studied extensively
in [BTFFM17], [FMSS19], [FS18b], [RS17] and [RS19]. Similar to the classical case on
ω, these cardinal characteristics are usually defined modulo the bounded ideal:

Definition 4.0.1. Let x, y ∈ P(κ). We define:

• y splits x iff |x ∩ y| = κ and |x \ y| = κ.
sκ := min{|S| : S ⊆ P(κ) ∧ ∀x ∈ P(κ) ∃y ∈ S y splits x} the splitting number
rκ := min{|R| : R ⊆ P(κ) ∧ ∀x ∈ P(κ) ∃y ∈ R ¬ �

x splits y
�} the reaping

number

• x ⊆∗ y iff |x \ y| < κ.
F ⊆ P(κ) has the <κ-intersection property iff for every F � ⊆ F of size <κ we
have that |�x∈F � x| = κ.
pκ := min{|P| : P ⊆ P(κ) ∧ P has the <κ-intersection property ∧ ¬ � ∃x ∈ P(κ)
∀y ∈ P x ⊆∗ y

�} the pseudo intersection number
tκ := min{|T | : T ⊆ P(κ)∧T has the <κ-intersection property ∧T is well-ordered
by ∗⊇ ∧ ¬ � ∃x ∈ P(κ) ∀y ∈ T x ⊆∗ y

�} the tower number

• x is almost disjoint from y iff |x ∩ y| < κ.
aκ := min{|A| : A is a maximal almost disjoint family ∧ |A| ≥ κ} the almost dis-
jointness number

• B ⊆ P(κ) is a base for an ultrafilter U iff U = {x ∈ P(κ) : ∃y ∈ B y ⊆ x}.
uκ := min{|B| : B ⊆ [κ]κ ∧ ∃U ⊆ P(κ) U is an ultrafilter ∧ B is a base for U} the
ultrafilter number

In this chapter we intend to define variants of these cardinal characteristics modulo
the non-stationary ideal for κ regular uncountable. To this end we recall the club fil-
ter Cl = {x ⊆ κ : ∃cl ⊆ x cl is club}, the non-stationary ideal NS = {x ⊆ κ : ∃cl ∈
Cl x∩cl = ∅} and define the set of stationary sets St := P(κ)\NS. Note that while the
property x ∈ Cl is upward absolute for models with the same cofinalities, the properties
x ∈ NS and x ∈ St are in general not.

We will now define several relations on St × St modulo the non-stationary ideal and
use them to define cardinal characteristics on St:
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Definition 4.0.2. Let x, y ∈ St. We define:

• y stationarily splits x iff x ∩ y ∈ St and x \ y ∈ St.
sclκ := min{|S| : S ⊆ St ∧ ∀x ∈ St ∃y ∈ S y stationarily splits x} the stationary
splitting number and
rclκ := min{|R| : R ⊆ St ∧ ∀x ∈ St ∃y ∈ R ¬ �

x stationarily splits y
�} the sta-

tionary reaping number

• x ⊆∗
cl y iff x \ y ∈ NS.

F ⊆ St has the <κ-stationary intersection property iff for every F � ⊆ F of size
<κ we have that

�
x∈F � x ∈ St.

pclκ := min{|P| : P ⊆ St∧P has the <κ-stationary intersection property ∧¬ � ∃x ∈
St ∀y ∈ P x ⊆∗

cl y
�} the stationary pseudo intersection number

tclκ := min{|T | : T ⊆ St∧T has the <κ-stationary intersection property ∧T is well-
ordered by ∗

cl⊇ ∧ ¬ � ∃x ∈ St ∀y ∈ T x ⊆∗
cl y

�} the stationary tower number 1

• x is stationary almost disjoint from y iff x ∩ y ∈ NS.
aclκ := min{|A| : A is a maximal stationary almost disjoint family ∧ |A| ≥ κ} the
stationary almost disjointness number

• uclκ := min{|B| : B ⊆ St∧ ∃U ⊆ P(κ) U is an ultrafilter ∧B is a base for U} 2 the
stationary ultrafilter number
ucl

∗
κ := min{|B| : B ⊆ St ∧ ∃U ⊆ P(κ) U is an ultrafilter ∧ B ∪ Cl is a subbase

for U} 3 the stationary∗ ultrafilter number
ume
κ := min{|B| : B ⊆ St ∧ ∃U ⊆ P(κ) U is a measure ∧ B is a base for U} 4 the

measure ultrafilter number
unmκ := min{|B| : B ⊆ St∧∃U ⊆ P(κ) U is a normal measure ∧B is a base for U}
the normal measure ultrafilter number
unm

∗
κ := min{|B| : B ⊆ St∧∃U ⊆ P(κ) U is a normal measure ∧B∪Cl is a subbase

for U} the normal measure∗ ultrafilter number

• Let f, g ∈ κκ and define f ≤∗
cl g iff {α < κ : g(α) < f(α)} ∈ NS.

bclκ := min{|B| : B ⊆ κκ ∧ ∀f ∈ κκ ∃g ∈ B g �∗
cl f} the club bounding number

dclκ := min{|D| : D ⊆ κκ ∧ ∀f ∈ κκ ∃g ∈ D f ≤∗
cl g} the club dominating number

We will aim to establish some relations between these cardinal characteristics and also
show some consistency results.

1Note that the notions of pclκ and tclκ introduced here are different to the ones defined in [FMSS19].
2In particular, Cl ⊆ U .
3i.e. {y ∈ St : ∃x ∈ B ∃cl ∈ Cl y = x∩ cl} is a base for U , since w.l.o.g. B is closed under intersections.
4i.e. U is a <κ-complete ultrafilter.
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4.1 Results / Questions

The notions of the club bounding and dominating number have already been investigated
by Cummings and Shelah (see [CS95]). In particular they showed the following theorem:

Theorem 4.1.1. Let κ be regular uncountable. Then bκ = bclκ . If κ ≥ �ω then dκ = dclκ .

The stationary almost disjointness number aclκ is trivial:

Lemma 4.1.2. Let κ be regular uncountable. Then aclκ = κ.

Proof. Partition κ into κ many stationary sets (xi)i<κ. Define yi := κ \j≤i xj and set
xκ := 9i<κ yi. Note that xi ∩ xκ ∈ NS for every i < κ. Now we have to distinguish two
cases:

• If xκ ∈ St, then we claim that the family (xi)i≤κ is maximal stationary almost
disjoint. Towards a contradiction assume that x∗ ∈ St is stationary almost disjoint
from xi for every i ≤ κ. We define a function f : x∗ → κ such that f(k) is the
unique i < κ such that k ∈ xi. Equivalently f(k) := min{i < κ : k /∈ yi}. If the
set {k ∈ x∗ : f(k) < k} is stationary, then by Fodor’s lemma (see Chapter 8 in
[Jec03]) the set {k ∈ x∗ : f(k) = δ} is stationary for some δ < κ. But this implies
that x∗ ∩ xδ ∈ St. Hence, the set {k ∈ x∗ : f(k) ≥ k} is stationary, and therefore
x∗ ∩ xκ ∈ St. But this also leads to a contradiction, hence (xi)i≤κ is a maximal
stationary almost disjoint family.

• If xκ ∈ NS, then we proceed similarly and claim that (xi)i<κ is maximal stationary
almost disjoint. We define f : x∗ → κ as above, and note that {k ∈ x∗ : f(k) ≥ k}
cannot be stationary. Hence, there exists δ < κ such that x∗ ∩ xδ ∈ St.

Let us say a few words about the spectrum of stationary almost disjointness:

Definition 4.1.3. We define Specsad := {γ ≥ κ : ∃A A is a maximal stationary almost
disjoint family ∧ |A| = γ}.
Definition 4.1.4. Let x ∈ St. We say that NS � x is γ-saturated iff for every stationary
almost disjoint family A ⊆ P(x) we have |A| < γ.

Obviously, this definition agrees with the usual definition of saturation (see Chapter
22 in [Jec03]).

The next lemma will summarize some properties of Specsad:

Lemma 4.1.5. The following holds true for κ regular uncountable:

1. By Lemma 4.1.2 we have κ ∈ Specsad.

2. By [GS97] we have NS is not κ+-saturated for κ ≥ ω2, hence {κ} � Specsad.

3. If ♦κ(κ) holds (see Definition 4.1.9), then cκ ∈ Specsad.
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4. By [Git86] it is consistent that κ is inaccessible and there exists x ∈ St such that
x ∩ {i < κ : cf(i) = j} ∈ St for all cardinals j < κ and NS � x is κ+-saturated.
By [JW85] it is consistent that κ is Mahlo and NS � Reg is κ+-saturated.

Question 4.1.6. Is it consistent that NS is cκ-saturated for κ inaccessible? Is it even
consistent that NS is κ++-saturated and cκ is very large?
In [GS97] the authors ask whether the following is consistent for κ inaccessible: ∀x ∈
St ∃y ∈ St : y ⊆ x ∧NS � y is κ+-saturated.

Also the stationary pseudo intersection number pclκ and the stationary tower number
tclκ are trivial:

Lemma 4.1.7. Let κ be regular uncountable. Then pclκ = tclκ = κ.

Proof. It will suffice to show that there exists a decreasing sequence (xi)i<κ of stationary
sets such that 9i<κ xi = {0}: Assume that x∗ is a stationary pseudo intersection of
(xi)i<κ. Again define f : x∗ → κ such that f(j) := min{i < κ : j /∈ xi} and again we
note that {j ∈ x∗ : f(j) < j} ∈ NS. Hence, x∗ ⊆∗

cl 9i<κ xi must hold, which leads to a
contradiction.
Therefore, let us show that there exists such a sequence (xi)i<κ. Let Eκ

ω := {i <
κ : cf(i) = ω} and for every k ∈ Eκ

ω let (jkn)n<ω be a cofinal sequence in k. We claim
that there exists n∗ < ω such that for every i < κ the set xi := {k < κ : jkn∗ ≥ i} is
stationary. Assume towards a contradiction that for every n < ω there exist in < κ such
that xin ∈ NS and let cln be a club disjoint from xin . We define i∗ := supn<ω in and
cl∗ :=

�
n<ω cln. Let k∗ ∈ Eκ

ω ∩ cl∗ with k∗ > i∗. Then it follows that jk
∗

n < i∗ for every
n < ω. But this contradicts the assumption that (jk∗n )n<ω is cofinal in k∗.
Hence, let n∗ and (xi)i<κ be as defined above. It remains to be shown that 9i<κ xi = {0}.
Assume towards a contradiction that there exists k > 0 such that k ∈ 9i<κ xi. This
means that jkn∗ ≥ i for every i < k. But this is a contradiction.

Next, we investigate the stationary reaping number rclκ :

Theorem 4.1.8. rclκ ≥ κ for κ inaccessible.

Proof. Let (xi)i<λ with λ < κ be a family of stationary sets and w.l.o.g. assume that
κ ⊆∗

cl


i<λ xi. Assume that (xi,j)j<λ is a partition of xi into λ many stationary sets and

define xi,λ := κ \ xi for every i < λ. We will find a common refinement of the partitions
(xi,j)j≤λ.
For every s ∈ (λ+ 1)λ define ys :=

�
i<λ xi,s(i). Clearly, if s1, s2 ∈ (λ+ 1)λ with s1 1= s2

then ys1 ∩ys2 = ∅. Now set S := {s ∈ (λ+1)λ : ys ∈ St} and note that since (λ+1)λ < κ
and every xi,j =


s∈(λ+1)λ, s(i)=j ys, we clearly have that κ ⊆∗

cl


s∈S ys and (ys)s∈S refines

every partition (xi,j)j≤λ.
Since the ys are pairwise disjoint, one can now easily construct a set y∗ ∈ St which
stationarily splits ys for every s ∈ S, and hence stationarily splits xi for every i < λ.

We will later see that rclκ > κ can be forced.
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Definition 4.1.9. Let x ⊆ κ be stationary. We say that ♦κ(x) holds iff there exists
a sequence (si)i∈x with si ⊆ i such that for every y ⊆ κ the set {i ∈ x : y � i = si} is
stationary (see Chapter 27 in [Jec03]).

Question 4.1.10. Is rclκ = κ consistent? Does ∀x ∈ St : ♦κ(x) imply rclκ > κ? How does
rclκ relate to rκ?

Concerning the various definitions of ultrafilter numbers:

Lemma 4.1.11. For κ measurable we have:

1. κ+ ≤ rκ ≤ uκ ≤ uclκ ≤ unmκ

2. κ ≤ rclκ ≤ ucl
∗

κ ≤ unm
∗

κ , ucl∗κ ≤ uclκ and unm
∗

κ ≤ unmκ

3. ume
κ = unmκ and κ+ ≤ unm

∗
κ

Proof. 1.) and 2.) should be obvious (using Theorem 4.1.8). Hence let us prove 3.): We
clearly have ume

κ ≤ unmκ . On the other hand let U be a measure such that there exists
a base B of U with |B| = ume

κ . Let V κ/U denote the ultrapower of V modulo U , let
M := mos(V κ/U) be the transitive collapse and j : V → M the elementary embedding.
Pick f : κ → κ such that κ = mos([f ]U). Then V := {x ⊆ κ : κ ∈ j(x)} is a normal
measure and it easily follows that V = {x ⊆ κ : ∃y ∈ U f [y] ⊆ x}. Hence, f [B] is a base
of V and unmκ ≤ ume

κ follows.
To show that κ+ ≤ unm

∗
κ we assume towards a contradiction that U is a normal measure

and there exists B ⊆ U with |B| = κ such that {y ∈ St : ∃x ∈ B ∃cl ∈ Cl y = x ∩ cl} is
a base of U . If we enumerate B as (xi)i<κ then we see that 9i<κ xi ∈ U . But for every
x ∈ B we have x �∗

cl 9i<κ xi which leads to a contradiction.

Lemma 4.1.12. By [BTFFM17] the following is consistent: κ+ < rκ = unmκ < cκ.

Question 4.1.13. Are there any other provable relations between the various ultrafilter
numbers? Are ucl

∗
κ < uclκ or unm

∗
κ < unmκ consistent? Is even ucl

∗
κ = κ consistent?

Let us now investigate the stationary splitting number sclκ :

Theorem 4.1.14. For κ regular uncountable we have sclκ ≥ κ iff κ is inaccessible.

Proof. We follow the proof of [Suz93]. First assume that κ is not inaccessible, hence
there exists a minimal λ < κ such that |2λ| ≥ κ. Let f : κ → 2λ be injective and for
every s ∈ 2<λ define xs := {i < κ : s H f(i)}. We set X := {xs : s ∈ 2<λ ∧ xs ∈ St}
which is of size |2<λ| < κ, and claim that X is a stationary splitting family. Towards a
contradiction assume that y ∈ St is not stationarily split by X. It follows that the set
S := {s ∈ 2<λ : y ⊆∗

cl xs} is linearly ordered by H , because for incompatible s1, s2 ∈ 2<λ

we have that xs1 and xs2 are disjoint. Let us define t :=

S and note that t ∈ 2λ.

Now we can deduce that y ⊆ f−1({t}) ∪ 
s∈2<λ\S (xs ∩ y). However, this leads to a

contradiction, because y would be covered by a union of < κ many non-stationary sets.
On the other hand assume that κ is inaccessible and let X ⊆ St be of size λ < κ.
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Let θ > κ be a sufficiently large, regular cardinal, and choose an elementary submodel
M ≺ H(θ) with κ,X ∈ M , X, 2λ ⊆ M and |M | < κ. Now pick i∗ > sup(M ∩ κ)
such that i∗ ∈ �

cl∈Cl∩M cl. The ordinal i∗ induces a partition Y0, Y1 of X: set Y0 :=
{x ∈ X : i∗ /∈ x} and Y1 := {x ∈ X : i∗ ∈ x}. Since 2λ ⊆ M we can deduce that also
Y0, Y1 ∈ M , and hence y :=

�
Y1 \


Y0 ∈ M . If we can show that y ∈ St, this will imply

that X is not a stationary splitting family. To this end let cl ∈ Cl∩M be arbitrary, and
we obviously have H(θ) � i∗ ∈ y ∩ cl. By elementarity it follows that M � y ∩ cl 1= ∅,
and since cl was arbitrary, we can deduce that M � y ∈ St. Again by elementarity we
have y ∈ St.

The following definition already appeared in [HS18]:

Definition 4.1.15. Let F ⊆ P(κ) be a uniform filter 5, i.e. for every x ∈ F we have
|x| = κ. We define:

• F is <κ-complete∗ iff for every λ < κ and every (xi)i<λ with xi ∈ F we have
|�i<λ xi| = κ. 6

• F is normal∗ iff for every (xi)i<κ with xi ∈ F we have that 9i<κ xi is stationary.

• F measures a set X ⊆ P(κ) iff for every x ∈ X either x ∈ F or κ \ x ∈ F holds
true.

Note that we explicitly do not require that the (diagonal) intersection is again an
element of F . Clearly, if F is normal∗, then it is also <κ-complete∗.

Definition 4.1.16. We say that κ has the normal∗ filter property iff for every X ⊆ P(κ)
of size ≤κ there exists a normal∗ filter F measuring X.

The following notion clearly strengthens weak compactness and is downward absolute
to L (see [JK69]):

Definition 4.1.17. Recall that κ is ineffable iff for every partition f : [κ]2 → {0, 1}
there exists a stationary homogeneous set x ⊆ κ.

The following theorem was proven in [DPZ80]:

Theorem 4.1.18. Let κ be regular uncountable. Then κ has the normal∗ filter property
iff κ is ineffable.

Theorem 4.1.19. For κ regular uncountable we have sclκ > κ iff κ is ineffable.

Proof. We will show that sclκ > κ iff κ has the normal∗ filter property. Then this theorem
follows by the previous theorem.
Let us first assume that sclκ > κ and let X ⊆ P(κ) be of size ≤κ. We will show that there
exists a normal∗ filter F measuring X. W.l.o.g. X is closed under compliments. Since

5In particular we can assume that F contains the co-bounded filter.
6Note that any <κ-complete∗ filter F can be extended to a <κ-complete filter F̃ .
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sclκ > κ there exists y∗ ∈ St such that X does not stationarily split y∗. Now we define
F := {x ∈ X : y∗ ⊆∗

cl x} and note that F is obviously an ultrafilter on X. We claim
that F is normal∗. Let (xi)i<κ with xi ∈ F be arbitrary and cli ∈ Cl with y∗ ∩ cli ⊆ xi.
Then 9i<κ xi ⊇ 9i<κ y

∗ ∩ cli = y∗ ∩9i<κ cli which is clearly stationary.
On the other hand assume that κ has the normal∗ filter property and let X ⊆ St be of
size κ. Then there exists a normal∗ filter F measuring X, and enumerate X as (xi)i<κ.
Define yi := xi if xi ∈ F and yi := κ \ xi else. Since F is normal∗, we can deduce that
y∗ := 9i<κ yi ∈ St. But no xi ∈ X can stationarily split y∗, hence sclκ > κ.

Before we can state the next theorem, we need the following definition:

Definition 4.1.20. Let α be a measurable cardinal and let U0, U1 and U be normal
measures on α. We recall (see Chapter 19 in [Jec03]):

• the Mitchell order: U0 H U1 iff U0 ∈ V κ/U1, i.e. U0 is contained in the ultrapower
of V modulo U1

• o(U) := sup{o(U �) + 1: U � H U} the order of U
• o(α) := sup{o(U �) : U � is normal measure on α} the order of α

It was proven by Zapletal (see [Zap97]) that sκ > κ+ has large consistency strength,
and indeed the same proof shows:

Theorem 4.1.21. Let sclκ > κ+. Then there exists an inner model with a measurable
cardinal α of order α++. 7

Let us now show some consistency results regarding sclκ , bκ, dκ and rclκ . First we state
a helpful tool:

Lemma 4.1.22. Let V � x ∈ St and let P be a <κ-closed forcing. Then V P � x ∈ St.

Proof. Since being stationary is a Π1
1-statement, the lemma follows by Π1

1-absoluteness
for <κ-closed forcing extensions (see Fact 1.1.3).

Definition 4.1.23. Let U be a <κ-complete, normal ultrafilter on κ. We define MU ,
the generalized Mathias forcing with respect to U , as follows:

• A condition p is of the form (sp, Ap) where sp ∈ [κ]<κ, Ap ∈ U and sup sp ≤ minAp.

• Let p = (sp, Ap) and q = (tq, Bq) be conditions in MU . We define q ≤MU p, in
words q is stronger than p, if sp ⊆ tq, Bq ⊆ Ap and tq \ sp ⊆ Ap.

If G is a (V,MU)-generic filter, we define mG :=


p∈G sp.

The next lemma follows immediately.

7This is equivalent to ∃F : L[F ] � ∃α : α is measurable with order α++ (see [Mit83]) .
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Lemma 4.1.24. Let U be a <κ-complete, normal ultrafilter. Then the forcing MU has
the following properties:

• MU is κ-centered<κ. In particular it satisfies the κ+-c.c.

• MU is <κ-directed closed.

Lemma 4.1.25. Let U be a <κ-complete, normal ultrafilter on κ and let V � x ∈ St.
Then �MU ṁG ∈ St ∧ (ṁG ⊆∗

cl x ∨ ṁG ∩ x ∈ NS).

Proof. If x ∈ U then clearly �MU ṁG ⊆∗ x. On the other hand, if x /∈ U then �MU ṁG∩
x is bounded. Hence, it remains to be shown that �MU ṁG ∈ St. To this end let p ∈ MU
and ċl be a MU -name for a club. Let (pi)i<κ be a decreasing sequence of conditions below
p interpreting ċl as cl∗ ∈ V , and w.l.o.g assume that pλ = infi<λ pi for every limit λ < κ.
Let A∗ := 9i<κA

pi denote the diagonal intersection of the Api , and since U is a normal
measure, we have that A∗ ∈ U . Hence, A∗ ∩ Lim(cl∗) 1= ∅ where Lim(cl∗) is the club
consisting only of the limit points of cl∗, and pick i∗ ∈ A∗ ∩ cl∗. It follows that i∗ ∈ Api∗

and pi∗ �MU i∗ ∈ ċl. If we define a condition q := (spi∗ ∪ {i∗}, Api∗ \ {i∗}) then trivially
q ≤MU pi∗ and q �MU i∗ ∈ ṁG ∩ ċl. Hence �MU ṁG ∈ St.

Theorem 4.1.26. Let κ be supercompact and indestructible by <κ-directed closed
forcing notions (see Theorem 1.1.7). Let �Pα, Q̇β : α ≤ κ++, β < κ++� be a <κ-support
iteration such that �Pα Q̇α = MU̇α

where U̇α is a Pα-name for a <κ-complete, normal
ultrafilter, and set P := Pκ++ . Furthermore, assume that V � |2κ| = κ+. Then V P �
sclκ = bκ = dκ = rclκ = cκ = κ++.

Proof. Since P satisfies the κ+-c.c. and for every α < κ++ the forcing Pα has a dense
subset of size κ+, we can deduce that V P � |2κ| = κ++. It is easy to see that V P �
bκ = dκ = κ++. Since P has <κ-support, it follows that P adds κ-Cohen reals, hence
V P � rclκ = κ++ (see Lemma 4.1.27). Now if V P � ‘X ⊆ St is a set of size ≤ κ+ ’, then by
the κ+-c.c. there exists α < κ++ such that X ∈ V Pα and by Π1

1-downward absoluteness
V Pα � X ⊆ St. By Lemma 4.1.25 X is not a stationary splitting family in V Pα+1 , hence
by Lemma 4.1.22 X cannot be a stationary splitting family in V P.

Lemma 4.1.27. Let G be a (V,Cκ)-generic filter and let cG ⊆ κ denote the κ-Cohen real
added by G. Let x ⊆ κ be arbitrary. If V � x ∈ St, then V Cκ � cG stationarily splits x.
Furthermore, if P :=



α<κ+ Cκ denotes the <κ-support product of κ-Cohen forcing,

then V P � (cα)α<κ+ is a stationary splitting family.

Proof. We proceed similarly to the proof of 4.1.25: Let p ∈ Cκ and ċl be a Cκ-name for a
club. Let (pi)i<κ be a decreasing sequence below p interpreting ċl as cl∗ ∈ Cl∩V . Again,
w.l.o.g. assume that pλ = infi<λ pi for every limit λ < κ. Since x is stationary in V , we
can find i∗ ∈ x ∩ Lim(cl∗) where Lim(cl∗) is again the club consisting only of the limit
points of cl∗. Hence, there are q0, q1 ∈ Cκ below pi∗ such that q0 �Cκ i∗ ∈ (x \ cĠ) ∩ ċl
and q1 �Cκ i∗ ∈ x ∩ cĠ ∩ ċl.
Let ẋ be a P-name for a stationary set in V P. By the κ+-c.c. of P it follows that there
exists α < κ+ such that ẋ is a Pα-name, where Pα :=



β<α Cκ. By the above V Pα+1 �

cα stationarily splits x. By Lemma 4.1.22 we have V P � cα stationarily splits x.
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The following proof already appeared in a similar version in [She84]:

Theorem 4.1.28. Let κ be supercompact and indestructible by <κ-directed closed
forcing notions. Let V � |2κ| = κ+ and define R := P D Q̇ where P :=



α<κ+ Cκ

and Q̇ is a P-name for a κ++ iteration of κ-Hechler forcing Hκ with <κ-support. Then
V R � sclκ = κ+ ∧ bκ = dκ = rclκ = cκ = κ++.

Proof. Obviously, bκ = dκ = κ++. Since Hκ adds κ-Cohen reals, we can deduce by 4.1.27
that rclκ = κ++. Since κ remains ineffable in V R it follows that sclκ ≥ κ+. It remains to
be shown that sclκ ≤ κ+. To this end we will show that (cα)α<κ+ remains a stationary
splitting family in V R where the (cα)α<κ+ are the generic κ-Cohen reals added by P.
Towards a contradiction assume that ẋ is a R-name and (p, q̇) a condition in R such that
(p, q̇) �R ẋ ∈ St ∧ ( ∀α < κ+ : ẋ ⊆∗

cl ċα ∨ ẋ ∩ ċα ∈ NS ). Since R satisfies the κ+-c.c. we
can find α∗ < κ+ such that the R-name ẋ does not depend on ċα∗ . Since P is <κ-closed
and �P ‘ Q̇ has <κ-support and is <κ-closed ’, we obviously have

�P {q ∈ Q̇ : dom(q) ∈ V̌ ∧ ∃ρ̄ ∈ (κ<κ)dom(q) ∩ V̌

∀α ∈ dom(q) ∃ḟ �Q̇ q̇(α) = (ρ̄(α), ḟ)} is dense in Q̇

Hence, we can pick a condition (p�, q̇�) ≤R (p, q̇) such that all trunks of (p�, q̇�) are
ground model objects, and (p�, q̇�) decides whether ẋ ⊆∗

cl cα∗ or ẋ ∩ cα∗ ∈ NS, w.l.o.g.
assume that (p�, q̇�) �R ẋ ⊆∗

cl cα∗ . Now we define an automorphism π of P which
fixes



α∈κ\{α∗}Cκ and �P ċα∗ ∩ π(ċα∗) ⊆ dom(p�(α∗)), in particular p� = π(p�). Now

π induces an automorphism π̃ of R, and since all trunks of (p�, q̇�) are ground model
objects, we can deduce that p� �P q̇� and π̃(q̇�) are compatible in Q̇. Hence there exists
a condition (p�, ṙ) ≤R (p�, q̇�), (p�, π̃(q̇�)), and since �R ẋ = π̃(ẋ) we can deduce that
(p�, ṙ) �R ẋ ⊆∗

cl cα∗ ∧ ẋ ⊆∗
cl π̃(cα∗). But this immediately leads to a contradiction.

Lemma 4.1.29. Let κ be supercompact and indestructible by <κ-directed closed forcing
notions. Let V � |2κ| = κ+ and define P :=



α<κ++ Cκ. Then V P � sclκ = bκ = κ+∧dκ =

rclκ = cκ = κ++.

Proof. The lemma immediately follows from the proof of Theorem 4.1.28.

Lemma 4.1.30. Let κ be supercompact and indestructible by <κ directed-closed forcing
notions. Let V � |2κ| = κ+ and define P :=



α<κ++ Sκ, i.e. a κ++-product of κ-Sacks

forcing with ≤κ-support. Then V P � bκ = dκ = κ+ ∧ rclκ = cκ = κ++.

Proof. Since P is κκ-bounding (see Lemma 2.4.5), we have V P � bκ = dκ = κ+. It
also follows that V P � ‘Cl ∩ V is cofinal in Cl ’, and therefore, it is easy to see that
V P � ‘ ∀α < κ++ : sα stationarily splits St ∩ V Pα ’, where Pα :=



β<α Sκ. Hence

V P � rclκ = cκ = κ++.

It seems very reasonable to conjecture that V P � sclκ = κ+.

Question 4.1.31. Is bκ < sclκ consistent? Is even dκ < sclκ consistent? How does sclκ
relate to sκ?
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5 The Corrected Iteration
In this chapter we want to give a more transparent presentation of Shelah’s Corrected
Iteration (see [She19]), which seems to be a very promising tool to show further consis-
tency results in the higher Cichoń diagram. For reasons of notational simplicity we will
show how to construct a Corrected Iteration for κ-Hechler forcing.

Actually, we planned to use the Corrected Iteration to iterate the higher random forcing
Rκ without adding dominating reals. This would yield the consistency of κ+ = bκ <
cov(id(Rκ)) = κ++. Unfortunately, there seems to be a general problem when actually
applying the Corrected Iteration.
We will address the issue in the last section, where we first show how to modify the
Corrected Iteration to iterate Rκ and, assuming the issue can be fixed, sketch how to
prove that the Corrected Iteration of higher random forcing does not add dominating
reals.

Fix κ to be at least inaccessible. Let M be some well-founded partial order along
which we want to iterate. We are looking for a definition of a forcing notion QM with
the following properties:

• QM is a κ+-c.c. forcing notion which does not add short sequences, i.e. V <κ ∩
V QM = V <κ ∩ V .

• For s ∈ M we define M<s := {t ∈ M : t < s}. Similarly, we define M≤s. We
require that QM<s HQM as well as QM≤s

HQM for every s ∈ M . Hence, QM is an
iteration.

• There exists a sequence (η̇s)s∈M such that for every s ∈ M we have �QM≤s
η̇s ∈

κκ ∧ η̇s dominates κκ ∩ V QM<s .

• QM has ‘<κ-support ’, i.e. for every ϕ ∈ QM the set {s ∈ M : ∃i, j < κ ϕ �QM≤s

η̇s(i) 1= j} has size < κ.

• Let G be a (V,QM)-generic filter. We require that V [G] = V [(η̇Gs )s∈M ]. Hence, G
is completely determined by (η̇Gs )s∈M .

Any ordinary iteration of κ-Hechler forcing along a well-order satisfies those require-
ments. However, the next requirement is crucial:

• Let G be a (V,QM)-generic filter and let f : M → M be a strictly increasing
function such that f ∈ V . Then the sequence (η̇Gf(s))s∈M naturally defines a filter
G� ⊆ QM , which is also (V,QM)-generic.
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In the classical case, Judah and Shelah showed in [IHJS88] that for a finite support
iteration of Suslin-c.c.c. forcing notions a similar claim is true.

Roughly, the construction will go as follows:

1. For any well-founded partial order L ⊇ M define PL
M to be an iteration of κ-Hechler

forcing along L with ‘partial memory’.

2. It turns out that we can find a ‘sufficiently saturated’ L∗ ⊇ M such that for any
L ⊇ L∗ we have PL∗

M H PL
M . Roughly this will work, because, if L∗ is ‘sufficiently

saturated’, many automorphism arguments will go through.

3. Define QM to be the complete subforcing generated by the (η̇s)s∈M in PL∗
M . Note

that this definition does not depend on L∗, because different L;
1 and L;

2 satisfying
(2.) can be amalgamated to become an L† ⊇ M , and hence PL%

1
M H PL†

M as well as
PL%

2
M HPL†

M hold. Therefore, QM is a definition for an iteration only depending on M .

4. Let N ⊆ M with N ∈ V be arbitrary, and similarly to QM define QN . It turns
out that there exists an L∗∗ satisfying (2.) such that PL∗∗

M = PL∗∗
N . 1 Hence, QN

is not only the complete subforcing of PL∗∗
N generated by the (η̇s)s∈N , but also the

complete subforcing generated by the (η̇s)s∈N within QM .

5. Now let f : M → M be a strictly increasing function such that f ∈ V , and
set N := {f(s) : s ∈ M}. Let (ηs)s∈M be (V,QM)-generic. By (4.) it follows
that (ηs)s∈N is (V,QN)-generic. Since, however, M and N are isomorphic, we
can deduce that QM and QN are isomorphic as well, and hence (ηs)s∈N is also
(V,QM)-generic.

Of course, the above is only a very rough sketch and many subtleties and details need
to be checked.

5.1 Prerequisites

Fix a well-founded partial order M (in a typical case M = κ++) for which we want to
construct the Corrected Iteration. Fix λ1 ≥ |M | such that λκ

1 = λ1, and fix λ2 ≥ �2(λ1)
with λκ

2 = λ2. Pedantically, all notations should have the parameter (M,λ1, λ2).

Definition 5.1.1. For a well-founded partial order L and t ∈ L define:

• L<t := {s ∈ L : s <L t}
• L≤t := {s ∈ L : s ≤L t}
• dpL(t) :=

{dpL(s) + 1: s <L t} by induction

1Note that PL
M will heavily depend on M , so it is a priori not clear that PL

M = PL
N can hold for any L.
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• ∞L :=
{dpL(t) + 1: t ∈ L}

• Lα := {t ∈ L : dpL(t) < α} for α ≤ ∞L

We will now define how an iteration parameter m looks like:

Definition 5.1.2. An iteration parameter m consists of:

(a) a well-founded partial order L such that M ⊆ L as partial orders.

(b) sequences ū = �ut : t ∈ L� and P̄ = �Pt : t ∈ L� such that ut ⊆ L<t and Pt ⊆ P(ut).

(c) an equivalence relation E on L \M ; by t/E we denote the equivalence class of t
modulo E.

with the following restrictions:

(α) If t1, t2 ∈ L \M are not E-equivalent, then t1 <L t2 ⇔ ∃s ∈ M : t1 <L s <L t2.

(β) If t ∈ L \M then ut ⊆ t/E ∪M .

(γ) If t ∈ L \M then |t/E| ≤ λ2.

(δ) For every t ∈ L the set Pt is closed under subsets.

(ε) For every t ∈ L if u ∈ Pt then ∃t� ∈ L \M : u ⊆ t�/E ∪M .

(ζ) If t ∈ L \M then |Pt| ≤ λ2 and, for simplicity, Pt ⊆ [ut]
≤κ.

(η) Within M we have ‘full memory’: L<t ∩M ⊆ ut and [L<t ∩M ]≤κ ⊆ Pt for every
t ∈ L.

We shall use the following notation: m = (Lm, �um
t : t ∈ Lm�, �Pm

t : t ∈ Lm�, Em).

We shall refer to s ∈ M as ‘real’ coordinates and to t ∈ L\M as ‘fake’ coordinates. M
is the skeleton of the iteration parameter. Fake coordinates from different equivalence
classes can only interact via M . The supports u can only reach into one equivalence
class and M .

Definition 5.1.3. We define M := {m : m is an iteration parameter}, M≤θ := {m ∈
M : |Lm| ≤ θ} and Moc := {m ∈ M : ∀t1, t2 ∈ Lm \M t1 E

m t2}. Here ‘oc’ stands for
‘one (equivalence) class’.

For m ∈ M we will now define the corresponding iteration of κ-Hechler forcing Pm:

Definition 5.1.4. By induction on α ≤ ∞Lm we want to define the forcing notion Pm
α :

• Define Pm
1 to be the set of functions p such that dom(p) ⊆ Lm

1 , |dom(p)| < κ and
for every t ∈ dom(p) we have p(t) = (ρ, f) such that ρ ∈ κ<κ, f ∈ κκ and ρ H f .

• If γ is a limit, we have two cases:
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– cf(γ) ≥ κ: Set Pm
γ :=


α<γ Pm

α .

– cf(γ) < κ: Define Pm
γ to be the set of functions p such that dom(p) ⊆ Lm

γ ,
|dom(p)| < κ and for every α < γ we have p � Lm

α ∈ Pm
α .

• α → α + 1: Define Pm
α+1 to be the set of functions p such that dom(p) ⊆ Lm

α+1,
|dom(p)| < κ, p � Lm

α ∈ Pm
α and for every t ∈ dom(p) with dpLm(t) = α we have

that p(t) = (ρ, supj<δ Bj((η̇t�)t�∈uj
) ) where:

– ρ ∈ κ<κ

– δ < κ and (Bj)j<δ is a sequence of κ-Borel functions 2 Bj : (κ
κ)uj → κκ in V ,

where uj ∈ Pt for every j < δ.

– ∀j < δ ∀x̄ ∈ (κκ)uj : ρ H Bj(x̄)
3

– (η̇t�)t�∈uj
is a subsequence of the generic sequence (η̇t)t∈Lm

α
added by Pm

α .

We will use the notation p(t) = (ρp(t), Ḃp(t)) = (ρp(t), supj<δ B
p(t)
j ((η̇t�)t�∈uj

) ).

We define q ≤Pm p, in words q is stronger than p, inductively:

• dom(p) ⊆ dom(q)

• for every t ∈ dom(p) we have:
ρp(t) H ρq(t) and q � Lm

<t �Pm�Lm
<t

Ḃp(t) ≤ Ḃq(t)

Define η̇t :=
{ρ ∈ κ<κ : ∃p ∈ Ġ p(t) = (ρ, Ḃp(t))}. Set Pm := Pm

∞L
.

Notice the supj<δ which we use in the definition for the successor step. This is crucial
if s is a real coordinate: This way conditions can reach into different equivalence classes,
and therefore different fake coordinates interplay at real coordinates.

Definition 5.1.5. For p ∈ Pm we define:

• the full support fsupp(p) :=

{t ∈ Lm : ∃t̃ ∈ dom(p) p(t̃) = (ρp(t̃), sup
j<δ

B
p(t̃)
j ((η̇t�)t�∈uj

) ) ∧ ∃j < δ t ∈ uj}

• the wide support wsupp(p) :=
{t/E : t ∈ fsupp(p) \M} ∪M

Lemma 5.1.6. The following facts hold true:

1. Pm is a <κ-closed, κ+-c.c. forcing notion.

2. �Pm�Lm
≤t

η̇t ∈ κκ.

3. �Pm V [Ġ] = V [(η̇t)t∈Lm ].
2Note that by Π1

1-absoluteness (see Fact 1.1.3) it is clear how to evaluate the image of a new real η̇
under a ground model κ-Borel function B for <κ-closed forcing extensions.

3Note that this statement is also absolute for <κ-closed forcing extension.
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4. For any initial segment (i.e. downwards closed) L ⊆ Lm we have Pm � L H Pm.

5. For any Pm-name ḟ for an element of κκ there exists u ⊆ Lm of size ≤κ and a
ground model κ-Borel function B : (κκ)u → κκ such that �Pm ḟ = B((η̇t)t∈u).

Proof. ad 1.) It should be obvious that Pm is <κ-closed. For the κ+-c.c. use a Δ-system
argument and note that Hκ is κ-linked and |dom(p)| < κ for every p ∈ Pm.
ad 2., 3. and 4.) Trivial.
ad 5.) There are maximal antichains (Ai)i<κ which are all w.l.o.g. of size κ, such that
for every i < κ each p ∈ Ai decides the value of ḟ(i). Enumerate each Ai as (pi,j)j<κ

and define ki,j ∈ κ such that pi,j �Pm ḟ(i) = ki,j. Set u :=


i<κ


j<κ fsupp(pi,j).

Obviously, u is of size ≤κ. For x̄ ∈ (κκ)u and i < κ define B(x̄)(i) := ki,j∗ where
j∗ := min{j < κ : pi,j ∈ Gx̄} if the minimum is well defined, else set j∗ := 0. Here Gx̄ is
the following set:

{p ∈ Pm ∩
�
i<κ

Ai : ∀t ∈ dom(p) ( ρp(t) H xt ∧Bp(t)(x̄) ≤ xt )}.

Since


i<κ Ai is of size κ, B is obviously a κ-Borel function and for every i, j < κ we
have that pi,j �Pm B((η̇t)t∈u)(i) = ki,j, hence �Pm ḟ = B((η̇t)t∈u).

Lemma 5.1.7. Let m ∈ M and define Q̇m
t to be the (Pm � Lm

<t)-name for the quotient
forcing (Pm � Lm

≤t) / (Ġ � Lm
<t) for every t ∈ Lm. Then the following holds true:

1. �Pm�Lm
<t

Q̇m
t ⊆ Ḣκ as partial orders.

2. Let p, q ∈ Pm and t ∈ dom(p) ∩ dom(q). Then for every r ∈ Pm � Lm
<t we have

r �Pm�Lm
<t

p(t) and q(t) are incompatible in Q̇m
t iff one of the following conditions

is satisfied:

- ρp(t) and ρq(t) are incompatible

- ρp(t) H ρq(t) and r �Pm�Lm
<t

Ḃp(t) � dom(ρq(t)) � ρq(t)

- ρq(t) H ρp(t) and r �Pm�Lm
<t

Ḃq(t) � dom(ρp(t)) � ρp(t)

In particular we have:
�Pm�Lm

<t
p(t) and q(t) are compatible in Q̇m

t ⇔ p(t) and q(t) are compatible in Ḣκ

3. Let p, q ∈ Pm such that dom(p) ⊆ dom(q) but q �Pm p. Then there exists t ∈
dom(p) and r ∈ Pm � Lm

≤t such that r � Lm
≤t ≤Pm q � Lm

≤t and r � Lm
<t ≤Pm p � Lm

<t,
but r � Lm

<t �Pm�Lm
<t

r(t) and p(t) are incompatible in Q̇m
t .

Proof. ad 1.) Trivial
ad 2.) Let p, q ∈ Pm, t ∈ dom(p) ∩ dom(q) and r ∈ Pm � Lm

<t be arbitrary. Assume
w.l.o.g. that ρp(t) H ρq(t) and r �Pm�Lm

<t
Ḃp(t) � dom(ρq(t)) � ρq(t). Hence, there exist

r� ∈ Pm � Lm
<t with r� ≤Pm r such that r� �Pm�Lm

<t
Ḃp(t) � dom(ρq(t)) ≤ ρq(t). Define a

(Pm � Lm
<t)-name ḟ such that �Pm�Lm

<t
ḟ � dom(ρq(t)) = ρq(t) ∧∀i ∈ κ \dom(ρq(t)) : ḟ(i) =
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max{Ḃp(t)(i), Ḃq(t)(i)}. If we set r̄ := (ρq(t), ḟ) , we can deduce that �Pm�Lm
<t

r̄ ∈ Q̇m
t

and r� �Pm�Lm
<t

r̄ is a common lower bound of p(t) and q(t) in Q̇m
t .

ad 3.) It easily follows that there is t ∈ dom(p) such that q � Lm
<t ≤Pm p � Lm

<t but q �
Lm
<t �Pm�Lm

<t
q(t) ≤Qm

t
p(t). Hence, there exists q� ∈ Pm � Lm

<t such that q� ≤Pm q � Lm
<t

and q� �Pm�Lm
<t

q(t) �Qm
t

p(t). W.l.o.g assume that ρp(t) H ρq(t) and there exists i < κ

such that q� decides Ḃp(t) � (i + 1) and Ḃq(t) � (i + 1) and q� �Pm�Lm
<t

Ḃp(t)(i) � Ḃq(t)(i).
Now we can deduce that there exists r ∈ Pm � Lm

≤t such that r � Lm
<t = q�, r ≤Pm q � Lm

≤t

and r � Lm
<t �Pm�Lm

<t
r(t) and p(t) are incompatible in Q̇m

t .

We will now have a look at how we can compare different iteration parameters:

Definition 5.1.8. Let m1,m2 ∈ M. Define m1 ≤M m2 iff:

• Lm1 ⊆ Lm2 as partial orders

• If t ∈ Lm1 \M then um1
t = um2

t and Pm1
t = Pm2

t

• If s ∈ M then um1
s = um2

s ∩ Lm1 and Pm1
s = Pm2

s ∩ [Lm1 ]≤κ 4

• Em1 = Em2 � Lm1 × Lm1

It can easily be seen that (M,≤M) is a partial order.

The next lemma shows some properties of (M,≤M), in particular it has amalgama-
tion and is <Ord-closed.

Lemma 5.1.9. The following holds true:

1. Let m0 ≤M m1 and m0 ≤M m2 such that Lm1 ∩ Lm2 = Lm0 . Then there exists
m3 ∈ M with Lm3 = Lm1 ∪ Lm2 such that m1 ≤M m3 and m2 ≤M m3.

2. Let (mα)α<γ be an ≤M-increasing sequence. Then there exists m ∈ M which is
an upper bound.

Proof. ad 1.)

• Define Lm3 := Lm1 ∪ Lm2 . In particular t1 ≤Lm3 t2 iff t1 ≤Lm1 t2 or t1 ≤Lm2 t2 or
there exists s ∈ M such that either t1 ≤Lm1 s ≤Lm2 t2 or t1 ≤Lm2 s ≤Lm1 t2 holds.

• If t ∈ Lm0 \M set um3
t := um0

t and Pm3
t := Pm0

t .

• If t ∈ Lmi \ Lm0 set um3
t := umi

t and Pm3
t := Pmi

t .

• If s ∈ M set um3
s := um1

s ∪ um2
s and Pm3

s := Pm1
s ∪ Pm2

s .

• Define Em3 := Em1 ∪ Em2 .

4In particular, it follows that for every u ∈ Pm2
s \ Pm1

s there exists t ∈ Lm2 \ Lm1 such that u ⊆
t/Em2 ∪M .
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It can easily be seen that m3 ∈ M and mi ≤M m3.

ad 2.) We define m similarly to above. In particular, we set Lm :=


α<γ L
mα as

partial order. We must show that Lm is still well-founded. Let A ⊆ Lm be non-empty.
We distinguish two cases:

• If ∀t ∈ A ∃s ∈ A∩M : s ≤Lm t then any minimal s ∈ A∩M is also minimal in A.

• If ∃t ∈ A ∀s ∈ A∩M : s �Lm t choose such a t and α < γ with t ∈ Lmα . It follows
by our construction that any minimal t� ∈ A ∩ t/Emα must also be minimal in A.

Again, all the other conditions are obviously satisfied. Hence, m is an upper bound.

Note that if m1 ≤M m2 then Pm1 ⊆ Pm2 as sets, but, in general, not as partial orders.
Furthermore, for t ∈ Lm1 we have that dpLm1 (t) ≤ dpLm2 (t), but, in general, not equal.

Now we define how to restrict iteration parameters:

Definition 5.1.10. Let m ∈ M and let L ⊆ Lm such that M ⊆ L. We define m � L :=
(L, �um

t ∩ L : t ∈ L�, �Pm
t ∩ [L]≤κ : t ∈ L�, Em ∩ L× L).

The following lemma is straightforward:

Lemma 5.1.11. Let m ∈ M and let L ⊆ Lm such that M ⊆ L. Then also m � L ∈ M.
Furthermore, if ∀t ∈ L \M : t/Em ⊆ L then even m � L ≤M m.

Now we define a very important subclass of M:

Definition 5.1.12. Set Mec := {m ∈ M : ∀m1,m2 ≥M m
�
m1 ≤M m2 ⇒ Pm1 H Pm2

�}.
Here ‘ec’ stands for existentially closed.

The point of the above definition is that the procedure of adding more and more fake
coordinates stabilizes at m ∈ Mec.

We are ready to state the first crucial theorem:

Theorem 5.1.13. For any m ∈ M there exists m∗ ∈ Mec such that m ≤M m∗. Hence,
Mec is not only upwards closed but also cofinal in (M,≤M).

In order to prove the above theorem, we will define an equivalence relation on M:

Definition 5.1.14. We say that m1,m2 ∈ M are equivalent iff there exists a function
f such that:

• f : Lm1 → Lm2 is bijective

• ∀s ∈ M : f(s) = s

• ∀t1, t2 ∈ Lm1 : t1 ≤Lm1 t2 ⇔ f(t1) ≤Lm2 f(t2)
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• ∀t1, t2 ∈ Lm1 \M : t1E
m1 t2 ⇔ f(t1)E

m2 f(t2)

• ∀t ∈ Lm1 : f [um1
t ] = um2

f(t)

• ∀t ∈ Lm1 ∀u ∈ [um1
t ]≤κ : u ∈ Pm1

t ⇔ f [u] ∈ Pm2

f(t)

We will call such an f an isomorphism. We will denote the equivalence by m1 ≈M m2.

Lemma 5.1.15. Let m1,m2 ∈ M be iteration parameters and let f : Lm1 → Lm2 be an
isomorphism. Then f canonically induces an isomorphism f̂ : Pm1 → Pm2 .

Proof. Canonically define f̂ : Pm1 → Pm2 , i.e. for p ∈ Pm1 and t ∈ dom(p) define
f̂(p) (f(t)) := (ρp(t), supj<δ B

p(t)
j ((η̇t�)t�∈f [u]) ). 5 Obviously f̂ : Pm1 → Pm2 is bijective.

One can easily show by induction on dpLm1 that ∀p, q ∈ Pm1 : q ≤Pm1 p ⇔ f̂(q) ≤Pm2 f̂(p).

The next definition will be crucial:

Definition 5.1.16. Let m ∈ M be an iteration parameter. We call m wide iff for every
m� ∈ Moc there exist (ti)i<λ2 ⊆ Lm \ M such that ∀i, j < λ2 : i 1= j ⇒ ¬ ti E

m tj and
m � (ti/Em ∪M) ≈M m� for every i < λ2.

The next lemma combined with Lemma 5.1.15 shows that Pm has many automor-
phisms if m is wide:

Lemma 5.1.17. Let m ∈ M be wide. Let (t1i )i<i∗ , (t2i )i<i∗ and (fi)i<i∗ with i∗ < λ2 be
such that:

• ∀k ∈ {1, 2} ∀i < i∗ : tki ∈ Lm \M
• ∀k ∈ {1, 2} ∀i, j < i∗ : i 1= j ⇒ ¬ tki E

m tkj

• fi witnesses that m � (t1i /Em ∪M) ≈M m � (t2i /Em ∪M) for every i < i∗

Then there exists an isomorphism f : Lm → Lm extending every fi.

Proof. First we check that f � :=


i<i∗ fi is a partial isomorphism, i.e. f � witnesses that
m � (


i<i∗ t

1
i /E

m ∪ M) ≈M m � (


i<i∗ t
2
i /E

m ∪ M). This holds because different
equivalence classes only interact via M . Next we extend f � to a partial isomorphism
f �� such that dom(f ��) = ran(f ��). We can do this inductively using that m is wide.
Now extend f �� to a total isomorphism f : Lm → Lm by defining f to be the identity on
Lm \ dom(f ��).

We are now ready to prove Theorem 5.1.13:

5Here we set B((xt)t∈f [u]) := B((xf(t))t∈u) for a κ-Borel function B : (κκ)u → κκ.
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Proof of Theorem 5.1.13. Let m ∈ M be arbitrary. For every equivalence class [m�] ∈
Moc/≈M

we want to add λ2 many disjoint, ≈M-equivalent copies of m� to m. Since
Moc/≈M

contains only 2λ2 many equivalence classes, this can be done inductively by
Lemma 5.1.9. Call the resulting iteration parameter m∗. Obviously, m∗ is wide.

We must show that m∗ ∈ Mec. Let m1,m2 ∈ M such that m∗ ≤M m1 ≤M m2.
Obviously, Pm1 ⊆ Pm2 as sets. We must show that ≤Pm2 � Pm1 × Pm1 =≤Pm1 and
furthermore Pm1 H Pm2 . We will show by induction on α ≤ ∞m1 that Pm1

α H Pm2 :

• α = 1: This case is easy, as Pm1
1 is a side by side product of κ-Hechler forcings, all

of which also appear in Pm2
1 . Hence Pm1

1 H Pm2
1 H Pm2 .

• α → α+1: First we show that ≤Pm2
α+1

� Pm1
α+1×Pm1

α+1 =≤Pm1
α+1

. Assume that Pm1
α HPm2 .

Let p, q ∈ Pm1
α+1 such that dom(p) ⊆ dom(q). We have:

– q ≤Pm1 p iff

– q � Lm1
α ≤Pm1

α
p � Lm1

α and for every t ∈ dom(p) with dpLm1 (t) = α we have
that q � Lm1

<t �Pm1 �Lm1
<t

q(t) ≤H p(t) iff

– q � Lm2
α ≤Pm2

α
p � Lm2

α and for every t ∈ dom(p) with dpLm1 (t) = α we have
that q � Lm2

<t �Pm2 �Lm2
<t

q(t) ≤H p(t) iff

– q ≤Pm2 p

This holds because Pm1 � Lm1
<t H Pm2 � Lm2

<t , the statement ‘ q(t) ≤H p(t) ’ is arith-
metical and B(x̄) = y is absolute between V Pm1 �Lm1

<t and V Pm2 �Lm2
<t . Hence q ≤Pm1 p

iff q ≤Pm2 p.

Next we will show that if p, q ∈ Pm1
α+1 are incompatible in Pm1 , then they are

also incompatible in Pm2 : Assume that r ≤Pm2 p and r ≤Pm2 q with r ∈ Pm2 .
Furthermore, assume for every t ∈ dom(r) there exists t� ∈ dom(p) ∪ dom(q) such
that t ≤Lm2 t�. We can assume this, because for any initial L� ⊆ Lm2 we have
Pm2 � L� H Pm2 by Lemma 5.1.6.
Enumerate wsupp(r) \ (wsupp(p) ∪ wsupp(q)) modulo Em2 as (ti)i<δ for some
δ < κ, and for every i < δ find t�i ∈ Lm∗ \ (wsupp(p) ∪ wsupp(q)) (in particular
t�i ∈ Lm1) such that ∀i, j < δ : i 1= j ⇒ ¬ ti E

m∗
tj and m2 � (ti/E

m2 ∪ M) ≈M

m∗ � (t�i/Em∗ ∪M). This is possible, since m∗ is wide.
Define an isomorphism f : Lm2 → Lm2 which is the identity on wsupp(p)∪wsupp(q)
and maps ti/E

m2 onto t�i/E
m2 for every i < δ. This can be done using Lemma

5.1.17. By Lemma 5.1.15 the isomorphism f induces an automorphism f̂ of Pm2 ,
and we can deduce that f̂(r) ≤Pm2 p and f̂(r) ≤Pm2 q. Furthermore, we have
f̂(r) ∈ Pm1 . Since dom(p) ∪ dom(q) is cofinal in dom(f̂(r)), we can deduce that
f̂(r) ∈ Pm1

α+1. As we already know that ≤Pm2
α+1

� Pm1
α+1×Pm1

α+1 =≤Pm1
α+1

, it follows that

also f̂(r) ≤Pm1 p and f̂(r) ≤Pm1 q. Hence, p and q are also compatible in Pm1 .

Finally we show that Pm1
α+1 H Pm2 . Let A ⊆ Pm1

α+1 be a maximal antichain. It
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follows that A ⊆ Pm2 is also an antichain. Towards a contradiction assume that
A is not maximal in Pm2 and let q ∈ Pm2 be incompatible with every p ∈ A.
Again, we can assume that for every t ∈ dom(q) there exists t� ∈ 

p∈A dom(p)
such that t ≤Lm2 t�. Similar to above, define an isomorphism f : Lm2 → Lm2 fixing

p∈A wsupp(p) pointwise and mapping wsupp(q)\p∈A wsupp(p) into Lm∗ . Again
by Lemma 5.1.15 it follows that f induces an automorphism f̂ of Pm2 . We can
deduce that f̂(q) ∈ Pm1

α+1 and hence is compatible with some p� ∈ A. Let r ∈ Pm1
α+1

be a common lower bound. But this immediately leads to a contradiction, since
f̂−1(r) would be a lower bound of p� and q in Pm2 .

• γ is a limit ordinal: Assume inductively that for every α < γ we have Pm1
α H Pm2 .

For p, q ∈ Pm1
γ we have:

– q ≤Pm1 p iff

– for every α < γ we have q � Lm1
α ≤Pm1 p � Lm1

α iff

– for every α < γ we have q � Lm2
α ≤Pm2 p � Lm2

α iff

– q ≤Pm2 p

Similar to the successor step prove that for p, q ∈ Pm1
γ we have p and q are com-

patible in Pm2 iff they are compatible in Pm1 .

Similar to the successor step prove that if A ⊆ Pm1 is a maximal antichain, then
A is also maximal in Pm2 .

Hence Pm1 H Pm2 which finishes the proof.

In particular, Mec is non-empty.

5.2 The Corrected Iteration

In this section we want to properly define the Corrected Iteration and show some of its
basic properties.

Definition 5.2.1. Let Var be a set of variables. We define Lκ+(Var) (the κ+-propositional
logic) inductively:

• Var ⊆ Lκ+(Var)

• If ϕ ∈ Lκ+(Var) then ¬ϕ ∈ Lκ+(Var)

• If α < κ+ and {ϕi : i < α} ⊆ Lκ+(Var) then
�

i<α ϕi ∈ Lκ+(Var)

For an assignment b : Var → 2 one inductively defines ϕ[b] ∈ {0, 1} for ϕ ∈ Lκ+(Var) in
the natural way.

The next lemma follows immediately:
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Lemma 5.2.2. For every ϕ ∈ Lκ+(Var) the mapping Bϕ : 2
Var 3 b .→ ϕ[b] ∈ {0, 1} is κ-

Borel. 6 In particular, there exists uϕ ⊆ Var of size ≤ κ such that for every b1, b2 ∈ 2Var

if b1 � uϕ = b2 � uϕ then Bϕ(b1) = Bϕ(b2).

Definition 5.2.3. Let m ∈ M. Let Var := {pt,i,j : t ∈ Lm ∧ i, j < κ}. For p ∈ Pm

and ϕ ∈ Lκ+(Var) we define p �Pm ϕ is true iff p �Pm ϕ[bĠ] = 1, where bĠ is a Pm-
name for an element of 2Var such that for every t ∈ Lm and every i, j < κ we have
�Pm bĠ(pt,i,j) = 1 ⇔ η̇t(i) = j. Similarly we define p �Pm ϕ is false.
Let L ⊆ Lm be arbitrary. Set Var � L := {pt,i,j ∈ Var : t ∈ L}. We define Pm[L] := {ϕ ∈
Lκ+(Var � L) : ∃p ∈ Pm p �Pm ϕ is true} and set ψ ≤Pm[L] ϕ iff �Pm ¬ (ψ∧¬ϕ) is true.7

The following facts are obvious:

Lemma 5.2.4. Let m ∈ M and let L ⊆ Lm be arbitrary. The following is true:

• Pm[L]HB(Pm), where B(P) denotes the Boolean completion of a forcing notion P .

• Pm[Lm] = B(Pm).

• If L ⊆ Lm is an initial segment, then Pm � L is dense in Pm[L].

• For every condition p ∈ Pm there exist a unique condition π(p) ∈ Pm[M ], called
the projection of p, such that for every ϕ ∈ Pm[M ] we have: p and ϕ are compatible
iff π(p) and ϕ are compatible.

• In particular, π(p) is a reduct of p, i.e. for every ϕ ∈ Pm[M ] with ϕ ≤B(Pm∗ ) π(p)
we have p and ϕ are compatible.

Now we are ready to define the Corrected Iteration QM :

Definition 5.2.5. Fix m∗ ∈ Mec. We define QM as the complete Boolean algebra
generated by (η̇s)s∈M within Pm∗ : QM := Pm∗

[M ]. Furthermore, we define QM � N :=
Pm∗

[N ] for N ⊆ M .

Next we show that our definition is well defined:

Lemma 5.2.6. QM does not depend on the choice of m∗ ∈ Mec.

Proof. Let m1,m2 ∈ Mec and w.l.o.g. assume that Lm1 ∩ Lm2 = M . By Lemma 5.1.9
there exists m3 such that m1 ≤M m3 and m2 ≤M m3. Since both m1,m2 ∈ Mec it
follows that Pm1 HPm3 and Pm2 HPm3 . Hence, it does not matter whether we define QM

in Pm3 , in Pm1 or in Pm2 .

The following lemma summarizes the most important properties of the Corrected
Iteration:

6Note that the κ-Borel algebra on 2Var is the family B ⊆ P(2Var) which is generated by the basic
clopen sets only.

7If we factorize Pm[L] modulo ψ ≤Pm[L] ϕ ∧ ϕ ≤Pm[L] ψ, we get a complete Boolean algebra.
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Lemma 5.2.7. The following facts hold true:

1. QM is κ+-c.c. and is ≤κ-strategically closed 8.

2. For every s, t ∈ M we have QM � M<s H QM � M<t if s ≤M t. Hence, (QM �
M<s)s∈M is indeed an iteration.

3. �QM
V [Ġ] = V [(η̇s)s∈M ].

4. �QM �M≤s
η̇s dominates V QM �M<s

5. If cf(α) ≥ κ then


β<α QM � Mβ is dense in QM � Mα. Hence, the iteration has
‘<κ-support ’.

Proof. ad 1.) First we will show that QM satisfies the κ+-c.c. Towards a contradiction
assume that (ϕi)i<κ+ is a family of pairwise incompatible conditions in QM . Let (pi)i<κ+

be a sequence of conditions in Pm∗ such that pi �Pm∗ ϕi is true for every i < κ+. But
then the pi’s must also be pairwise incompatible, which contradicts the κ+-c.c. of Pm∗ .
Now let us show that QM is ≤κ-strategically closed. Let ϕ∗ ∈ QM be arbitrary and
denote Player I’s choice in stage i < κ by ϕi and Player II’s by ψi, which are all below
ϕ∗. Player I’s winning strategy is to inductively pick decreasing pi ∈ Pm∗ and to set
ϕi := π(pi). Hence, pi will be compatible with ψi and there exists a common lower bound
pi+1. In a limit stage λ < κ the condition pλ = infj<λ pj will ensure that

�
i<λ ψi ∈ QM .

ad 2.) Trivial.

ad 3.) We will show that �QM
ϕ ∈ Ġ ⇔ Bϕ(b

M
Ġ
) = 1 for every ϕ ∈ QM , where bM

Ġ

is a QM -name for an element of 2Var�M such that for every s ∈ M and every i, j < κ
we have �QM

bĠM (ps,i,j) = 1 iff η̇s(i) = j (see Lemma 5.2.2 and Definition 5.2.3). Then
�QM

Ġ = {ϕ ∈ QM : Bϕ(b
M
Ġ
) = 1}.

Let ϕ ∈ QM be arbitrary. Let ψ ∈ QM be such that ψ �QM
ϕ ∈ Ġ. Let ψ� ∈ QM be

a common lower bound of ϕ and ψ, and let p ∈ Pm∗ be such that p �Pm∗ Bψ�(bM
Ġ
) = 1.

Then π(p) ≤QM
ψ and π(p) �QM

Bϕ(b
M
Ġ
) = 1.

On the other hand, let ψ ∈ QM be such that ψ �QM
Bϕ(b

M
Ġ
) = 1. Then ψ �QM

B¬ϕ(b
M
Ġ
) = 0. Hence, ψ and ¬ϕ are incompatible in QM . As {ϕ,¬ϕ} ⊆ QM is a

maximal antichain, we can deduce that ψ �QM
ϕ ∈ Ġ.

ad 4.) Let ḟ be a QM � M<s-name for an element of κκ. Since �QM
ϕ ∈ Ġ ⇔ Bϕ(b

M
Ġ
) = 1

for every ϕ ∈ QM , we can find u ∈ [M<s]
≤κ and a κ-Borel function B : (κκ)u → κκ

such that �QM
ḟ = B((η̇s)s∈u). Hence �Pm∗ �Lm∗

≤s
η̇s eventually dominates ḟ . But

QM � M≤s H Pm∗
[Lm∗

≤s ], hence �QM �M≤s
η̇s eventually dominates ḟ .

ad 5.) Let cf(α) ≥ κ and let ϕ ∈ QM � Mα. Pick p ∈ Pm∗
α with p ≤B(Pm∗

) ϕ. Since

8As a complete Boolean algebra QM cannot be <κ-closed.
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|dom(p)| < κ, it follows that there exists a β < α such that p ∈ Pm∗
β . We claim that

π(p) ∈ QM � Mβ. To this end let πQM �Mβ(p) ∈ QM � Mβ be the projection of p onto
QM � Mβ, and we will show that π(p) = πQM �Mβ(p):
Since obviously π(p) ≤QM

πQM �Mβ(p), it follows for any ϕ� ∈ QM that πQM �Mβ(p) and
ϕ� are compatible if p and ϕ� are compatible. On the other hand assume towards
a contradiction that there exists ϕ� ∈ QM such that πQM �Mβ(p) and ϕ� are compat-
ible, but p and ϕ� are incompatible. Let ψ ∈ QM be a common lower bound of
πQM �Mβ(p) and ϕ such that there exists q ∈ Pm∗ with ψ = π(q). W.l.o.g. we can
assume that wsupp(p) ∩ wsupp(q) = M . By setting ψ� := πQM �Mβ(q) and noting that
πQM �Mβ(q) ≤QM

πQM �Mβ(p) we can show following the proof of Lemma 5.3.8 that p and
q � Lm∗

β are compatible. But then p and q must be compatible as well, which leads to a
contradiction, since p and ϕ� were assumed to be incompatible. Hence π(p) = πQM �Mβ(p).
It follows that π(p) ≤QM

ϕ and therefore,


β<α QM � Mβ is dense in QM � Mα.

5.3 Different Iteration Parameters

In this section we want to show that if N ⊆ M then QN HQM . Indeed this is not even
trivial if N is an initial segment of M . In particular it is not obvious if QMα = QM � Mα.
As a motivational example we will show this in the next lemma.
We will use the following notation: if we want to refer to a definition using N as the
well-founded partial for which we want to construct the Corrected Iteration, we will
denote this by a superscript N (e.g. MN , MN

ec, ≤MN etc.). Furthermore, elements of
MN we will denote by n, ni, n∗ etc.

Lemma 5.3.1. Let N ⊆ M be an initial segment. Then QN HQM and QN = QM � N
hold true.

Proof. Let m∗ ∈ Mec. We define n∗ := m∗ � {t ∈ Lm : ∃s ∈ N t ≤Lm s}, i.e. Ln∗
:=

{t ∈ Lm∗
: ∃s ∈ N t ≤Lm s}, un∗

t := um∗
t , Pn∗

t := Pm∗
t and En∗

:= Em∗ ∩ Ln∗ × Ln∗ .
Since N is an initial segment of M , it can easily be checked that n∗ ∈ MN . The crucial
point is that real coordinates in m∗ remain such in n∗.
We will now show that even n∗ ∈ MN

ec. Let n1,n2 ∈ MN with n∗ ≤MN n1 ≤MN n2.
W.l.o.g. we can assume that Ln2 ∩ Lm∗

= Ln∗ . Similar to Lemma 5.1.9 we can now
‘amalgamate’ ni and m∗ over n∗:

• Define Lmi := Lni ∪ Lm∗ . In particular t1 ≤Lmi t2 iff t1 ≤Lni t2 or t1 ≤Lm∗ t2 or
there exists s ∈ N such that t1 ≤Lni s ≤Lm∗ t2 holds.

• If t ∈ Ln∗ \M set umi
t := un∗

t and Pmi
t := Pn∗

t .

• If t ∈ Lni \ Ln∗ set umi
t := uni

t and Pmi
t := Pni

t .

• If t ∈ Lm∗ \ (Ln∗ ∪M) set umi
t := um∗

t and Pmi
t := Pm∗

t .

• If s ∈ N set umi
s := uni

s and Pmi
s := Pni

s .
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• If s ∈ M \N set umi
s := um∗

s and Pmi
s := Pm∗

s .

• Define Emi := Eni ∪ Em∗ .

One can easily check that m1,m2 ∈ M and m∗ ≤M m1 ≤M m2. Hence Pm∗
HPm1 HPm2 .

Using the fact that Lni is an initial segment of Lmi , we can show by induction on
α ≤ ∞Lni that Pni

α = Pmi � Lni
α . But Pm1 � Ln1HPm2 and therefore Pm1 � Ln1HPm2 � Ln2 .

Hence n∗ ∈ MN
ec.

Since obviously Pn∗
HPm∗ holds, it follows that QN HQM and furthermore QN = QM � N .

The remainder of this paper will deal with generalizing the previous lemma to any
N ⊆ M . If N is not an initial segment of M the previous proof fails, because a t ∈ M \N
might reach into more than λ2 equivalence classes in m∗. Indeed for the m∗ we con-
structed in Theorem 5.1.13 this will definitely be the case.

It will suffice if we construct m∗ ∈ Mec ∩M≤λ2 :

Theorem 5.3.2. Let m∗ ∈ Mec ∩M≤λ2 . Let N ⊆ M be arbitrary. Then there exists
n∗ ∈ MN

ec such that Pn∗
= Pm∗ . Hence QN HQM and QN = QM � N .

Furthermore, if G is a (V,QM)-generic filter and f : M → M is a strictly increasing
function such that f ∈ V , then the sequence (η̇Gf(s))s∈M naturally defines a filter G� ⊆ QM ,
which is also (V,QM)-generic.

Proof. We define n∗ as follows:

• Set Ln∗
:= Lm∗ as partial orders.

• Define En∗
:= Ln∗ \N × Ln∗ \N .

• If t ∈ Ln∗ \N set un∗
t := um∗

t and Pn∗
t := Pm∗

t .

• If s ∈ N set un∗
s := um∗

s and Pn∗
s := Pm∗

s .

It is crucial that Lm∗ is of size ≤λ2, hence we can treat Ln∗ \N as one equivalence class,
and therefore, we can set un∗

t := um∗
t and Pn∗

t := Pm∗
t even for t ∈ M \ N . It follows

that n∗ ∈ MN .
Now let us show that n∗ ∈ MN

ec: Let n1,n2 ∈ MN such that n∗ ≤MN n1 ≤MN n2.
Similar to the previous proof we define mi as follows:

• Set Lmi := Lni as partial orders.

• Define Emi := Em∗ ∪ Eni �
�
(Lni \ Lm∗

)× (Lni \ Lm∗
)
�
.

• If t ∈ Lni \M set umi
t := uni

t and Pmi
t := Pni

t .

• If s ∈ M set umi
s := uni

s and Pmi
s := Pni

s .
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One can easily check that m1,m2 ∈ M and m∗ ≤M m1 ≤M m2. Hence Pm∗
HPm1 HPm2 .

By induction on α ≤ ∞Lni show that Pni
α = Pmi

α , recalling that Pmi does not depend on
Emi . Hence n∗ ∈ MN

ec. Since, in particular, Pn∗
= Pm∗ , it follows that QN H QM and

QN = QM � N .
Let G be a (V,QM)-generic filter and let f : M → M be a strictly increasing function
in V . Set N := f [M ]. The sequence (η̇Gf(s))s∈M obviously induces a (V,QM � N)-generic
filter: Set G� := {ϕ ∈ QM � N : Bϕ(b

M
G � N) = 1}, where bMG � N(pf(s),i,j) = 1 iff

η̇Gf(s)(i) = j for every i, j < κ and s ∈ M (see Lemma 5.2.2 and Definition 5.2.3). Since
QN = QM � N , we can deduce that G� is a (V,QN)-generic filter. But since QM and QN

are obviously isomorphic, it follows that G� is (V,QM)-generic.

We are left with showing that Mec ∩M≤λ2 1= ∅. This however will require some work.
If we look back at how we constructed the m∗ ∈ Mec in Theorem 5.1.13, we notice two
things: first, of course, that |Lm∗ | = 2λ2 , and secondly that m∗ is ‘very saturated’, i.e.
every ‘reasonable type’ is satisfied λ2-many times in m∗. However, conditions and even
antichains in Pm∗ only use ≤κ-many coordinates. Indeed it turns out that we do not
need global automorphisms, but local ones will suffice. In particular, we do not need
that every ‘reasonable type’ is satisfied in m∗, but only those of ‘size ≤κ’. This will be
the reason why we can find m∗ ∈ Mec ∩M≤λ2 .

We will need several definitions:

Definition 5.3.3. Let m ∈ M and let L ⊆ Lm be arbitrary, in particular, not necessarily
an initial segment. We define Pm � L := {p ∈ Pm : fsupp(p) ⊆ L} and endow it with the
partial ordering ≤Pm�L:=≤Pm� (Pm � L× Pm � L ).

Definition 5.3.4. Let m ∈ M and let L ⊆ Lm be arbitrary. For a condition p ∈ Pm

we define p � L as follows:

• Set dom(p � L) := dom(p) ∩ L.

• If t ∈ dom(p � L) define (p � L)(t) := (ρp(t), supj∈IL B
p(t)
j ((η̇t�)t�∈uj

) ), where p(t) =

(ρp(t), supj<δ B
p(t)
j ((η̇t�)t�∈uj

) ) and IL := {j < δ : uj ⊆ L}.
Note that if M ⊆ L, then Pm�L = Pm � L as sets, but, in general, not as partial orders.

Lemma 5.3.5. Let m ∈ M and L ⊆ Lm such that M ⊆ L. Let p ∈ Pm be a condition.
Then the following facts hold true:

1. p � L ∈ Pm � L

2. Pm � L ⊆ Pm[L] as partial orders

3. �Pm p ∈ Ġ ⇔ {p � (t/Em ∪M) : t ∈ wsupp(p) \M} ⊆ Ġ
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Proof. ad 1., 2.) Trivial.
ad 3.) Obviously, for any q ∈ Pm if q �Pm p ∈ Ġ, then also q �Pm {p � (t/Em ∪M) : t ∈
wsupp(p) \M} ⊆ Ġ. Hence �Pm p ∈ Ġ ⇒ {p � (t/Em ∪M) : t ∈ wsupp(p) \M} ⊆ Ġ.
On the other hand let q ∈ Pm be such that q �Pm p /∈ Ġ. By Lemma 5.1.7 we
can assume w.l.o.g that there exists t ∈ dom(p) such that q � Lm

<t ≤Pm p � Lm
<t and

q � Lm
<t �Pm�Lm

<t
p(t) and q(t) are incompatible in Q̇m

t . Again by Lemma 5.1.7, there are
now three cases:

• ρp(t) and ρq(t) are incompatible. Find t� ∈ wsupp(p) \M such that t ∈ t�/Em ∪M .
But then q �Pm p � (t�/Em ∪M) /∈ Ġ.

• ρq(t) H ρp(t) and there exists i∗ ∈ dom(ρp(t)) such that q � Lm
<t �Pm�Lm

<t
ρp(t)(i∗) <

Ḃq(t)(i∗). Again there exists t� ∈ wsupp(p) \ M with t ∈ t�/Em ∪ M . It follows
that q �Pm p � (t�/Em ∪M) /∈ Ġ.

• ρp(t) H ρq(t) and there exists j < δ and i∗ ∈ dom(ρq(t)) such that q � Lm
<t �Pm�Lm

<t

ρq(t)(i∗) < B
p(t)
j ((η̇t�)t�∈uj

)(i∗). Note that this follows because �Pm�Lm
<t

Ḃp(t) =

supj<δ B
p(t)
j ((η̇t�)t�∈u). Now there exists t� ∈ wsupp(p) \M such that uj ⊆ t�/Em ∪

M . Hence q �Pm p � (t�/Em ∪M) /∈ Ġ.

In any case it follows that q �Pm {p � (t/Em ∪ M) : t ∈ wsupp(p) \ M} 1⊆ Ġ. Hence
�Pm {p � (t/Em ∪M) : t ∈ wsupp(p) \M} ⊆ Ġ ⇒ p ∈ Ġ.

Definition 5.3.6. Let m ∈ M. We define Ym := {(t, s̄) : t ∈ Lm \M ∧ s̄ ∈ (t/Em)<κ+

is injective}. Furthermore, we define an equivalence relation on Ym. We say that (t1, s̄1)
and (t2, s̄2) are 0-equivalent over m iff there exists a bijective function9 f : s̄1 ∪ M →
s̄2 ∪M , which we will call a weak isomorphism, such that:

• f(s̄1(i)) = s̄2(i) for every i < dom(s̄1)
10

• ∀s ∈ M : f(s) = s

• ∀t�1, t�2 ∈ s̄1 ∪M : t�1 ≤Lm t�2 ⇔ f(t�1) ≤Lm f(t�2)

• ∀t ∈ s̄1 ∪M : f [um
t ∩ (s̄1 ∪M)] = um

f(t) ∩ (s̄2 ∪M)

• ∀t ∈ s̄1∪M ∀u ∈ [um
t ∩(s̄1∪M)]≤κ : u ∈ Pm

t ∩[s̄1∪M ]≤κ ⇔ f [u] ∈ Pm
f(t)∩[s̄2∪M ]≤κ

Clearly f induces a bijective function f̂ : Pm � (s̄1∪M) → Pm � (s̄2∪M), but in general
f̂ does neither preserve ≤Pm nor compatibility in Pm. Hence, we further require:

• f̂ is an isomorphism from Pm � (s̄1 ∪M) to Pm � (s̄2 ∪M)

• f̂ extends to an isomorphism ˆ̂
f from Pm[s̄1 ∪M ] to Pm[s̄2 ∪M ]

9We will occasionally identify s̄ with {s̄(i) : i < dom(s̄)}.
10This guarantees that there exists at most one such a function.
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We say that (t1, s̄1) and (t2, s̄2) are 1-equivalent over m iff:

• (t1, s̄1) and (t2, s̄2) are 0-equivalent over m

• for every i ∈ {1, 2} and every z̄i ∈ (ti/E
m)<κ+ there exists z̄3−i ∈ (t3−i/E

m)<κ+

such that (t1, s̄
:
1 z̄1) and (t2, s̄

:
2 z̄2) are 0-equivalent over m

Lemma 5.3.7. Let m ∈ M. The following holds true:

• The number of 0-equivalence classes over m is at most �1(λ1).

• The number of 1-equivalence classes over m is at most �2(λ1).

Proof. There are at most 2λ1 many possibilities for m � (s̄ ∪M) modulo isomorphism.
Pm � (s̄ ∪ M) as a set is uniquely determined by m � (s̄ ∪ M) and is at most of size
λκ
1 = λ1. Hence, there are at most 2λ1 many possibilities for Pm � (s̄ ∪M) as a partial

order. Pm[s̄ ∪M ] is not completely determined by m � (s̄ ∪M), but there are at most
λ1 many possibilities for Pm[s̄ ∪M ] as a set, all of which are of size ≤λ1. Hence, there
are at most 2λ1 many possibilities for Pm[s̄∪M ] as a partial order. It follows that there
are at most �1(λ1) many 0-equivalence classes over m.

For (t, s̄) ∈ Ym we define a function F(t,s̄) : Ym /0-equ. → 2 as follows: F(t,s̄)( [(t
�, s̄�)]0-equ. ) =

1 iff there exists z̄ ∈ (t/Em)<κ+ such that (t, s̄:z̄) ∈ [(t�, s̄�)]0-equ.. Obviously (t1, s̄1) and
(t2, s̄2) are 1-equivalent over m iff they are 0-equivalent over m and F(t1,s̄1) = F(t2,s̄2).
Hence, there are at most �2(λ1) many 1-equivalence classes over m.

Lemma 5.3.8. Let m ∈ M be wide. Let p, q ∈ Pm and ψ ∈ Pm[M ] such that:

• wsupp(p) ∩ wsupp(q) = M

• ψ is a reduct of p

• q and ψ are compatible in B(Pm)

Then p and q are compatible.

Proof. Simultaneously we shall construct by induction decreasing sequences (pn)n<ω,
(qn)n<ω and (ψn)n<ω such that for any n < ω we have dom(pn) ∩M ⊆ dom(qn+1) and
dom(qn) ∩M ⊆ dom(pn+1), wsupp(pn) ∩ wsupp(qn) = M , ψn is a reduct of pn, and qn
and ψn are compatible (ψn will even be a reduct of qn for n ≥ 1).

Set p0 := p, q0 := q and ψ0 := ψ. They satisfy the requirements by assumption.
Assume that pn, qn, ψn have been defined. Since qn and ψn are compatible, we can find
a lower bound q�n. Obviously we can assume that dom(pn) ∩ M ⊆ dom(q�n). However,
it is not necessarily the case that wsupp(pn) ∩wsupp(q�n) = M . Therefore, we define an
automorphism f̂ of Pm fixing wsupp(qn) pointwise and moving wsupp(q�n) \ wsupp(qn)
away from wsupp(pn). Then f̂(q�n) is also a lower bound of qn and ψn, and wsupp(pn)∩
wsupp(f̂(q�n)) = M . Set qn+1 := f̂(q�n), and define ψ�

n := π(qn+1). It easily follows that
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ψ�
n ≤B(Pm) ψn, hence pn and ψ�

n are compatible.
Similar to above find pn+1 with the required properties. Set ψn+1 := π(pn+1) and notice
that ψn+1 ≤B(Pm) ψ

�
n. Hence, qn+1 and ψn+1 are compatible (ψn+1 is even a reduct of

qn+1).

Since (pn)n<ω, (qn)n<ω and (ψn)n<ω are decreasing sequences, there exist greatest lower
bounds p∗, q∗ and ψ∗. It follows that dom(p∗) ∩ M = dom(q∗) ∩ M and wsupp(p∗) ∩
wsupp(q∗) = M . Furthermore, since for every s ∈ dom(p∗)∩M the condition ψ∗ decides
ρp

∗(s) and ρq
∗(s), it follows that ρp∗(s) = ρq∗(s) for every s ∈ dom(p∗) ∩M . Hence, p∗ and

q∗ are compatible, which proves that p and q are compatible.

Lemma 5.3.9. Let m ∈ M be wide. Let {χi : i < i∗} ⊆ B(Pm) with i∗ < κ be a family
of conditions such that:

• There exists ψ ∈ Pm[M ] such that ψ is a reduct of χi for every i < i∗.

• There exists (Li)i<i∗ with Li ⊆ Lm such that:

– ∀i, j < i∗ : i 1= j ⇒ Li ∩ Lj = M

– ∀i < i∗ ∀t ∈ Li : t/E
m ⊆ Li

– ∀i < i∗ : χi ∈ Pm[Li]

Then there exists p ∈ Pm which is a lower bound of {χi : i < i∗}.
Proof. By induction we will construct decreasing sequences (pi)i<i∗ and (ψi)i<i∗ such
that pi is a lower bound of {χj : j < i}, ∀j ≥ i : wsupp(pi)∩Lj = M and ψi ∈ Pm[M ] is
a reduct of pi.

Set p0 ∈ Pm to be any condition below ψ such that ∀i < i∗ : wsupp(p0) ∩ Li = M .
One can achieve this by using an automorphism argument. Set ψ0 := π(p0).
Assume inductively that pi and ψi have already been defined and satisfy the required
properties. Since ψi ≤B(Pm) ψ, it follows that χi and ψi are compatible. Pick a com-
mon lower bound p�i ∈ Pm and use an automorphism argument to make sure that
wsupp(p�i)∩wsupp(pi) = M . This is possible since χi ∈ Pm[Li] and wsupp(pi)∩Li = M .
If we set ψ�

i := π(p�i) and note that ψ�
i ≤B(Pm) ψi, we can use the previous lemma to show

that there exist a lower bound p��i of pi and p�i. Again use an automorphism argument
to make wsupp(p��i ) \M disjoint from


j>i Lj. Define pi+1 := f̂(p��i ) where f̂ is the cor-

responding automorphism of Pm. Set ψi+1 := π(pi+1).
In the limit step define pλ to be the greatest lower bound of {pi : i < λ} and set ψλ :=
π(pλ). Obviously ψλ is a lower bound of {ψi : i < λ} and wsupp(pλ) ∩


j≥λ Lj = M .

Define pi∗ to be the greatest lower bound of {pi : i < i∗}. Then pi∗ is obviously a
lower bound of {χi : i < i∗}.
Lemma 5.3.10. Let m ∈ M be wide. Let ((ti1, s̄i1))i<i∗ , ((ti2, s̄i2))i<i∗ and (fi)i<i∗ be such
that:
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• ∀k ∈ {1, 2} ∀i < i∗ : (tik, s̄
i
k) ∈ Ym

• ∀k ∈ {1, 2} ∀i, j < i∗ : i 1= j ⇒ ¬ tik E
m tjk

• fi witnesses that (ti1, s̄
i
1) and (ti2, s̄

i
2) are 0-equivalent over m

Then f :=


i<i∗ fi induces an isomorphism f̂ : Pm � (


i<i∗ s̄
i
1 ∪M) → Pm � (


i<i∗ s̄

i
2 ∪M).

Proof. Abbreviate


i<i∗ s̄
i
k ∪M by Lk. Canonically define f̂ : Pm � L1 → Pm � L2, i.e.

for p ∈ Pm � L1 and t ∈ dom(p) define f̂(p) (f(t)) := (ρp(t), supj<δ B
p(t)
j ((η̇t�)t�∈f [u]) ).

Obviously f̂ : Pm � L1 → Pm � L2 is bijective and extends every f̂i. We need to show
that ∀p, q ∈ Pm � L1 : q ≤Pm p ⇔ f̂(q) ≤Pm f̂(p).

In order to show this, we will first verify the following claim: The following two state-
ments are equivalent for p, q ∈ Pm satisfying dom(p) ⊆ dom(q).

(a)k p, q ∈ Pm � Lk ∧ q ≤Pm p

(b)k p, q ∈ Pm � Lk ∧ ∀i < i∗ : q � (s̄ik ∪M) ∧ π(q) ≤B(Pm) p � (s̄ik ∪M) ∧ π(p)

(a)k ⇒ (b)k: Let p, q ∈ Pm � Lk and i < i∗ be arbitrary, and assume towards a
contradiction that there exists q� ∈ Pm such that

q� �Pm

�
q � (s̄ik ∪M) ∧ π(q) is true

� ∧ �
p � (s̄ik ∪M) ∧ π(p) is false

�
.

Using an automorphism argument we can assume that wsupp(q�)∩wsupp(q) ⊆ ti/E
m∪

M . Now we use the previous lemma with χi� := q � (s̄i
�
k ∪ M) for i� 1= i, χi := q� and

ψ := π(q�) noting that π(q�) ≤B(Pm) π(q) and {i� < i∗ : q � (s̄i�k ∪M) 1= q � M} is of size
< κ, hence {q � (s̄i�k ∪M) : i� < i∗} ∪ {q�} is of size < κ. Therefore, we get a condition
q�� which is a lower bound of q� and by Lemma 5.3.5 q�� �Pm q ∈ Ġ. Since q ≤Pm p, it
follows that q�� �Pm p ∈ Ġ. But this immediately leads to a contradiction, since q� and
p must be incompatible.

(b)k ⇒ (a)k: Let p, q ∈ Pm � Lk be arbitrary and assume towards a contradiction
that q 1≤Pm p. Since dom(p) ⊆ dom(q), it follows by Lemma 5.1.7 that there exists
q� ≤Pm q such that q� �Pm p /∈ Ġ. However, q� ≤B(Pm) q � (s̄ik∪M)∧π(q) for every i < i∗,
hence q� �Pm {p � (s̄ik ∪M) : i < i∗} ⊆ Ġ. By Lemma 5.3.5 it follows that q� �Pm p ∈ Ġ,
which is a contradiction.

Next we show that for every p ∈ Pm � L1 we have π(p) = π(f̂(p)), i.e. for every
ϕ ∈ Pm[M ] we have π(p) is compatible with ϕ iff f̂(p) is compatible with ϕ:
Let π(p) be compatible with ϕ and let ψ ∈ Pm[M ] be a common lower bound. Enu-
merate wsupp(p) \M modulo Em as (tj1)j<j∗ with j∗ < κ. Since the condition π(p) is a
reduct of p � (s̄j1 ∪M), we can deduce that ψ is a reduct of p � (s̄j1 ∪M) ∧ ψ for every
j < j∗. Furthermore, since ˆ̂

fj : Pm[s̄j1 ∪M ] → Pm[s̄j2 ∪M ] is an isomorphism, it follows
that ψ is also a reduct of f̂(p) � (s̄j2 ∪ M) ∧ ψ. By Lemma 5.3.9 and Lemma 5.3.5 we
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can deduce that f̂(p) and ψ are compatible. Hence, f̂(p) and ϕ are compatible.
On the other hand, assume that f̂(p) and ϕ are compatible and let q ∈ Pm be a common
lower bound. It follows that π(q) ≤B(Pm) ϕ and it is a reduct of f̂(p) � (s̄j2∪M)∧π(q) for

every j < j∗. Furthermore, since ˆ̂
f−1
j : Pm[s̄j2 ∪M ] → Pm[s̄j1 ∪M ] is an isomorphism, we

can deduce that π(q) is also a reduct of p � (s̄j1 ∪M)∧ π(q). Again by Lemma 5.3.9 and
Lemma 5.3.5 it follows that p and ϕ are compatible. Hence, π(p) and ϕ are compatible.

Now let p, q ∈ Pm � L1 such that dom(p) ⊆ dom(q). We can conclude that the fol-
lowing are equivalent:

- q ≤Pm p

- ∀i < i∗ : q � (s̄i1 ∪M) ∧ π(q) ≤B(Pm) p � (s̄i1 ∪M) ∧ π(p) by (a)1 ⇔ (b)1

- ∀i < i∗ : f̂i(q � (s̄i1∪M))∧π(q) ≤B(Pm) f̂i(p � (s̄i1∪M))∧π(p) since ˆ̂
fi : Pm[s̄i1∪M ] →

Pm[s̄i2 ∪M ] is an isomorphism, f̂ =
ˆ̂
f � Pm(s̄i1 ∪M) and ˆ̂

fi � Pm[M ] is the identity
for every i < i∗

- ∀i < i∗ : f̂i(q � (s̄i1 ∪ M)) ∧ π(f̂(q)) ≤B(Pm) f̂i(p � (s̄i1 ∪ M)) ∧ π(f̂(p)) since
π(r) = π(f̂(r)) for every r ∈ Pm � L1

- f̂(q) ≤Pm f̂(p) by (b)2 ⇔ (a)2 and f̂i(r � (s̄i1 ∪ M)) = f̂(r) � (s̄i2 ∪ M) for every
r ∈ Pm � L1 and every i < i∗

Hence f̂ : Pm � L1 → Pm � L2 is an isomorphism.

Lemma 5.3.11. Let m ∈ M. Assume that L0, L1, L2 ⊆ Lm such that:

• L2 is an initial segment of Lm.

• L0 = L1 ∩ L2

• Pm � L0 H Pm � L2

• L1 \ L0 is disjoint from M

• if t ∈ L1 \ L0 then (t/Em ∪M) ∩ Lm
<t ⊆ L1

Then Pm � L1 H Pm.

Proof. The crucial point of the proof will be the fact that L2 ∪ (L1 \ L0) is an initial
segment of Lm. To see this let t1 ∈ L1 \ L0 and t2 ≤m t1. If t1Em t2 then t2 ∈ L1,
hence t2 ∈ L2 ∪ (L1 \ L0). If ¬ t1 E

m t2 then there exists by definition an s ∈ M with
t2 ≤m s ≤m t1. It follows that s ∈ L2 and hence t2 ∈ L2.

Furthermore, since (t/Em ∪M) ∩ Lm
<t ⊆ L1 for every t ∈ L1 \ L0, we have:
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(†) For every p ∈ Pm � (L2 ∪ (L1 \L0) ) and every t ∈ dom(p)∩L1 \L0 it follows that
�Pm�Lm

<t
p(t) = (p � L1)(t).

For p, q ∈ Pm � L1 we have by definition q ≤Pm�L1 p iff q ≤Pm p. Set L� := L1 \ L0.
We will show by induction on α ≤ ∞L� that Pm � (L0 ∪ L�

α) H Pm:

• If α = 0 then L�
α = ∅ and Pm � L0 H Pm holds by assumption.

• α → α + 1: We assume inductively that Pm � (L0 ∪ L�
α) H Pm.

Assume that p, q ∈ Pm � (L0 ∪ L�
α+1) are compatible in Pm and w.l.o.g. let

r ∈ Pm � (L2 ∪ L�
α+1) be a common lower bound. We can assume this, because

L2∪L�
α+1 is an initial segment of Lm. Since Pm � (L0∪L�

α) HPm � (L2∪L�
α), there

exists r� ∈ Pm � (L0 ∪ L�
α) which is a reduct of r � (L2 ∪ L�

α). Define a condition
r̄ ∈ Pm � (L0 ∪ L�

α+1) such that r̄(t) := r�(t) if t ∈ L0 ∪ L�
α and r̄(t) := r(t) if

dpL�(t) = α. By (†) we can deduce r̄ ∈ Pm � (L0 ∪ L�
α+1).

Towards a contradiction assume that r̄ 1≤Pm p. W.l.o.g. we have dom(p) ⊆ dom(r̄)
and hence, by Lemma 5.1.7, there exists r̄� ∈ Pm � (L2 ∪ L�

α+1) with r̄� ≤Pm r̄ and
t ∈ dom(p) such that r̄� � Lm

<t �Pm�Lm
<t

r̄�(t) and p(t) are incompatible in Q̇m
t .

There are now 2 cases: If dpL�(t) < α pick a condition r̄�� ∈ Pm � (L0 ∪ L�
α) which

is a reduct of r̄� � (L2∪L�
α). Then r̄�� ≤Pm r̄ � (L0∪L�

α) and r̄�� is incompatible with
p � (L0 ∪ L�

α). Since r� = r̄ � (L0 ∪ L�
α), the conditions r and r̄�� are compatible.

But this leads to a contradiction, because r ≤Pm p.
If dpL�(t) = α then r̄(t) and p(t) are Pm � (L0 ∪ L�

α)-names by definition. Since
r� ∈ Pm � (L0 ∪ L�

α) is a reduct of r � (L2 ∪ L�
α) it follows that r̄ � Lm

<t �Pm�Lm
<t

r̄(t) = r(t) ≤H p(t). But this leads to a contradiction, because r̄� � (L2 ∪ L�
α) ≤Pm

r̄ � (L0 ∪ L�
α) and r̄� � Lm

<t �Pm�Lm
<t

r̄�(t) ≤H r̄(t).
Similarly show that r̄ ≤Pm q. Hence, p and q are also compatible in Pm �
(L0 ∪ L�

α+1).

Now let A ⊆ Pm � (L0 ∪ L�
α+1) be a maximal antichain, and assume that A

is not maximal in Pm. W.l.o.g. let p ∈ Pm � (L2 ∪ L�
α+1) be incompatible

with every element from A. Again, there exists p� ∈ Pm � (L0 ∪ L�
α) which is

a reduct of p � (L2 ∪ L�
α). Define a condition p̄ ∈ Pm � (L0 ∪ L�

α+1) such that
p̄(t) := p�(t) if t ∈ L0 ∪ L�

α and p̄(t) := p(t) if dpL(t) = α. Again, we can deduce
p̄ ∈ Pm � (L0 ∪ L�

α+1) by (†).
Since A is maximal in Pm � (L0 ∪ L�

α+1) there exists q ∈ A such that p̄ and q are
compatible in Pm � (L0 ∪ L�

α+1). Let r ∈ Pm � (L0 ∪ L�
α+1) be a common lower

bound of p̄ and q. Since r � (L0∪L�
α) ≤Pm p̄ � (L0∪L�

α), it follows that r � (L0∪L�
α)

and p � (L2 ∪L�
α) are compatible in Pm � L2 and let r� ∈ Pm � (L2 ∪L�

α) be a com-
mon lower bound. Define a condition r̄ ∈ Pm � (L2 ∪ L�

α+1) such that r̄(t) := r�(t)
if t ∈ L2 ∪ L�

α and r̄(t) := r(t) if dpL(t) = α. It follows that r̄ is a common lower
bound of r and p. This however immediately leads to a contradiction, since r and
p must be incompatible. Hence, A is also maximal in Pm.
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• If γ is a limit we assume inductively that Pm � (L0 ∪ L�
α) H Pm for every α < γ.

Assume that p, q ∈ Pm � (L0∪L�
γ) are compatible in Pm and let r ∈ Pm � (L2∪L�

γ)
be a common lower bound. There exists r� ∈ Pm � L0 which is a reduct of r � L2.
Define a condition r̄ ∈ Pm � (L0 ∪ L�

γ) such that r̄(t) := r�(t) if t ∈ L0 and
r̄(t) := r(t) if t ∈ L�

γ. Again, we can deduce r̄ ∈ Pm � (L0 ∪ L�
α+1) by (†).

It follows that for every α < γ the condition r̄ � (L0∪L�
α) is a reduct of r � (L2∪L�

α):
For r�� ∈ Pm � (L0 ∪ L�

α) such that r�� ≤Pm r̄ � (L0 ∪ L�
α) one can inductively con-

struct a lower bound of r � (L2 ∪ L�
α) and r�� in Pm � (L2 ∪ L�

α).
Towards a contradiction assume that r̄ 1≤Pm p. Again by Lemma 5.1.7 there
exists r̄� ∈ Pm � (L2 ∪ L�

γ) with r̄� ≤Pm r̄ and t ∈ dom(p) such that r̄� �
Lm

<t �Pm�Lm
<t

r̄�(t) and p(t) are incompatible in Q̇m
t . Fix α < γ such that t ∈ L�

α.
Pick a condition r̄�� ∈ Pm � (L0 ∪ L�

α) which is a reduct of r̄� � (L2 ∪ L�
α). Then

r̄�� ≤Pm r̄ � (L0∪L�
α) and r̄�� is incompatible with p � (L0∪L�

α). But then r and r̄�� are
compatible, which leads to a contradiction, because r � (L2∪L�

α) ≤Pm p � (L0∪L�
α).

Similarly show that r̄ ≤Pm q. Hence, p and q are also compatible in Pm � (L0∪L�
γ).

Now let A ⊆ Pm � (L0 ∪ L�
γ) be a maximal antichain, and assume that A is

not maximal in Pm. Let p ∈ Pm � (L2 ∪ L�
γ) be incompatible with every element

from A. Again, there exists p� ∈ Pm � L0 which is a reduct of p � L2. Define a
condition p̄ ∈ Pm � (L0 ∪ L�

γ) such that p̄(t) := p�(t) if t ∈ L0 and p̄(t) := p(t) if
t ∈ L�

γ. Again, we can deduce p̄ ∈ Pm � (L0 ∪ L�
γ) by (†).

Since A is maximal in Pm � (L0 ∪ L�
γ) there exists q ∈ A such that p̄ and q are

compatible in Pm � (L0∪L�
γ). Let r ∈ Pm � (L0∪L�

γ) be a common lower bound of
p̄ and q. Since r � L0 ≤Pm p̄ � L0, it follows that r � L0 and p � L2 are compatible
in Pm � L2 and let r� ∈ Pm � L2 be a common lower bound. Define a condition
r̄ ∈ Pm � (L2∪L�

γ) such that r̄(t) := r�(t) if t ∈ L2 and r̄(t) := r(t) if t ∈ L1 \L0. It
follows by induction on dom(r̄) that r̄ is a common lower bound of r and p. This
however immediately leads to a contradiction, since r and p must be incompatible.
Hence, A is also maximal in Pm.

Lemma 5.3.12. Let m1,m2 ∈ M such that m1 ≤M m2. Assume that L0, L1, L2 ⊆ Lm2

such that:

• L2 is an initial segment of Lm2 .

• L1 is an initial segment of Lm1 .

• L0 = L1 ∩ L2

• Pm1 � L0 H Pm2 � L2

• L1 \ L0 is disjoint from M

Then Pm1 � L1 H Pm2 .

Proof. Set L� := L1\L0. We will show by induction on α ≤ ∞L� that Pm1 � (L0 ∪ L�
α) H Pm2 :
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• If α = 0 then L�
α = ∅ and we know that Pm1 � L0 H Pm2 holds by assumption.

• α → α + 1: We assume inductively that Pm1 � (L0 ∪ L�
α) H Pm2 . Let p, q ∈ Pm1 �

(L0 ∪ L�
α+1) such that dom(p) ⊆ dom(q). We have:

– q ≤Pm1 p iff

– q � (L0 ∪ L�
α) ≤Pm1 �(L0∪L�

α) p � (L0 ∪ L�
α) and for every t ∈ dom(p) with

dpL�(t) = α we have that q � Lm1
<t �Pm1 �Lm1

<t
q(t) ≤H p(t) iff

– q � (L2 ∪ L�
α) ≤Pm2 �(L2∪L�

α) p � (L2 ∪ L�
α) and for every t ∈ dom(p) with

dpL�(t) = α we have that q � Lm2
<t �Pm2 �Lm2

<t
q(t) ≤H p(t) iff

– q ≤Pm2 p

This holds because L2 ∪ L�
α is an initial segment of Lm2 , Pm1 � Lm1

<t H Pm2 � Lm2
<t ,

the statement ‘ q(t) ≤H p(t) ’ is arithmetical and B(x̄) = y is absolute between
V Pm1 �Lm1

<t and V Pm2 �Lm2
<t . Hence Pm1 � (L0 ∪ L�

α+1) = Pm2 � (L0 ∪ L�
α+1) as partial

orders.
By Lemma 5.3.11 with m := m2 it follows that Pm1 � (L0 ∪ L�

α+1) H Pm2 .

• If γ is a limit we assume that for every α < γ we have Pm1 � (L0 ∪ L�
α) H Pm2 . Let

p, q ∈ Pm1 � (L0 ∪ L�
γ) such that dom(p) ⊆ dom(q). We have:

– q ≤Pm1 p iff

– q � (L0 ∪ L�
α) ≤Pm1 �(L0∪L�

α) p � (L0 ∪ L�
α) for every α < γ iff

– q � (L2 ∪ L�
α) ≤Pm2 �(L2∪L�

α) p � (L2 ∪ L�
α) for every α < γ iff

– q ≤Pm2 p

Hence Pm1 � (L0 ∪ L�
γ) = Pm2 � (L0 ∪ L�

γ) as partial orders.
Again, by Lemma 5.3.11 with m := m2 it follows that Pm1 � (L0 ∪ L�

γ) H Pm2 .

From this point on we denote by m∗ the iteration parameter in Mec which we con-
structed in Theorem 5.1.13.

Lemma 5.3.13. Let m ∈ M be wide. Then the following holds true:

1. Let (t1, s̄1) ∈ Ym. Let t2 ∈ Lm \ M be such that m � (t1/E
m ∪ M) ≈M m �

(t2/E
m∪M). Then there exists s̄2 ∈ (t2/E

m)<κ+ such that (t1, s̄1) and (t2, s̄2) are
1-equivalent over m.

2. Let m∗ ≤M m and (t1, s̄1), (t2, s̄2) ∈ Ym∗ . Then (t1, s̄1) and (t2, s̄2) are k-equivalent
over m∗ iff they are k-equivalent over m for k ∈ {0, 1}.

Proof. ad 1) Let f : Lm → Lm be an isomorphism mapping t1/E
m onto t2/E

m, which
exists by Lemma 5.1.17. If we set s̄2(i) := f(s̄1(i)) for every i < dom(s̄1), then it easily
follows that (t1, s̄1) and (t2, s̄2) are 1-equivalent over m.
ad 2) This is should be straightforward using the fact that Pm∗

H Pm.

We are ready to prove the crucial theorem:
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Theorem 5.3.14. Mec ∩M≤λ2 is non-empty.

Proof. We will construct n∗ ∈ Mec ∩ M≤λ2 from within m∗: For every [(t, s̄)]1-equ. ∈
Ym∗/1-equ. we want to add λ2 many disjoint, ≈M-equivalent copies of m∗ � (t/Em∗∪M) to
m∗ � M . This can be done by Lemma 5.1.9 using that m∗ is wide. Since |Ym∗/1-equ.| = λ2

by Lemma 5.3.7, it follows that also |Ln∗ | = λ2. Obviously n∗ ≤M m∗.

It remains to be shown that n∗ ∈ Mec. Let n1,n2 ∈ Mec such that n∗ ≤M n1 ≤M n2.
W.l.o.g. we can assume that Lni ∩ Lm∗

= Ln∗ for i ∈ {1, 2}, hence we can amalgamate
ni and m∗ over n∗ to get m1,m2 ∈ M with m∗ ≤M m1 ≤M m2. Since m∗ ∈ Mec we
have Pm∗

H Pm1 H Pm2 . It will suffice to show that Pni H Pmi for i ∈ {1, 2}, because then
Pni H Pm2 for i ∈ {1, 2}, and hence Pn1 H Pn2 follows.

Let n,m ∈ M be such that n∗ ≤M n, m∗ ≤M m and n ≤M m. For α ≤ ∞M we
define Lm

<M α := {t ∈ Lm : ∃s ∈ M t ≤Lm s ∧ t 1= s ∧ dpM(s) ≤ α} and Lm
≤M α := {t ∈

Lm : ∃s ∈ M t ≤Lm s ∧ dpM(s) ≤ α}. We will show by induction on α ≤ ∞M that
Pn � (Lm

<M α ∩ Ln) H Pm as well as Pn � (Lm
≤M α ∩ Ln) H Pm. This will then yield Pn H Pm.

If we set n := ni and m := mi, then we get Pni H Pmi .

• α = 0: We obviously have Pn � (Lm
<M 0 ∩ Ln) H Pm, because Pn � (Lm

<M 0 ∩ Ln) is a
side by side product of iterations of κ-Hechler forcing all of which also appear in
Pm � Lm

<M 0. This follows in particular from the fact that for t1, t2 ∈ Lm
<M 0 with

¬ t1 E
m t2 neither t1 ≤Lm t2 nor t2 ≤Lm t1 can hold.

Since Pn � (Lm
<M 0 ∩ Ln) H Pm we can deduce for p, q ∈ Pn � (Lm

≤M 0 ∩ Ln) that
q ≤Pn p iff q ≤Pm p.

Assume that p, q ∈ Pn � (Lm
≤M 0∩Ln) are compatible in Pm and let r ∈ Pm � Lm

≤M 0

be a common lower bound. Enumerate (wsupp(p)∪wsupp(q)∪wsupp(r))\M mod-
ulo Em as (ti)i<i∗ and for every i < i∗ enumerate ti/E

m ∩ (fsupp(p) ∪ fsupp(q) ∪
fsupp(r) ) as s̄i. Obviously, s̄i ∈ (ti/E

m)<κ+ . Since m∗ is wide, it follows that for
every i < i∗ there are λ2 many disjoint, ≈M-equivalent copies of m � (ti/Em ∪M)
in m∗. By Lemma 5.3.13 it follows that for every i < i∗ there exists (t�i, s̄

�
i) ∈ Ym∗

which is 0-equivalent over m to (ti, s̄i). By the construction of n∗ it follows that for
every i < i∗ there exist λ2 many En∗-disjoint (t��i , s̄��i ) ∈ Yn∗ which are 0-equivalent
over m∗ to (t�i, s̄

�
i). Again by Lemma 5.3.13, (t��i , s̄��i ) and (t�i, s̄

�
i) are also 0-equivalent

over m for every i < i∗, and hence (t��i , s̄
��
i ) and (ti, s̄i) are 0-equivalent over m for

every i < i∗.
For ti ∈ wsupp(r) \ (wsupp(p) ∪ wsupp(q)) choose 0-equivalent over m, mutually
En∗-disjoint (t��i , s̄

��
i ) ∈ Yn∗ such that they are also En∗-disjoint from wsupp(p) ∪

wsupp(q), and let fi be the corresponding weak isomorphisms. For ti ∈ wsupp(p)∪
wsupp(q) set (t��i , s̄

��
i ) := (ti, s̄i) and define fi to be the identity.

Using Lemma 5.3.10 it follows that f :=


i<i∗ fi induces an isomorphism f̂ : Pm �
(


i<i∗ s̄i ∪ M) → Pm � (


i<i∗ s̄
��
i ∪ M) such that f̂(p) = p and f̂(q) = q. Since
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r ∈ Pm � (


i<i∗ s̄i∪M), it follows that f̂(r) ∈ Pm � (


i<i∗ s̄
��
i ∪M) ⊆ Pm � Ln and

it is a lower bound of p and q in Pm. Since f(s) = s for every s ∈ M , we can deduce
that f̂(r) ∈ Pm � (Lm

≤M 0 ∩ Ln) 11. Since Pm � (Lm
≤M 0 ∩ Ln) = Pn � (Lm

≤M 0 ∩ Ln) as
partial orders, it follows that f̂(r) is also a lower bound of p and q in Pn. Hence,
p and q are also compatible in Pn.

Now let A ⊆ Pn � (Lm
≤M 0 ∩ Ln) be a maximal antichain. It follows that A is

also an antichain in Pm, and assume towards a contradiction that A is not maxi-
mal in Pm. Hence, there exists q ∈ Pm � (Lm

≤M 0 ∩ Ln) such that q is incompatible
with every p ∈ A. Again, enumerate (


p∈A wsupp(p) ∪ wsupp(q)) \ M modulo

Em as (ti)i<i∗ and for every i < i∗ enumerate ti/E
m ∩ (


p∈A fsupp(p) ∪ fsupp(q) )

as s̄i. Obviously, s̄i ∈ (ti/E
m)<κ+ . Again, for every i < i∗ we can find λ2 many

En∗-disjoint (t��i , s̄
��
i ) ∈ Yn∗ which are 1-equivalent over m using Lemma 5.3.13

and noting how n∗ was constructed. For ti ∈ wsupp(q) \ 
p∈A wsupp(p) choose

1-equivalent over m, mutually En∗-disjoint (t��i , s̄
��
i ) ∈ Yn∗ such that they are also

En∗-disjoint from


p∈A wsupp(p), and let fi be the corresponding weak isomor-
phisms. For ti ∈ 

p∈A wsupp(p) set (t��i , s̄
��
i ) := (ti, s̄i) and define fi to be the

identity.
Using Lemma 5.3.10 it follows that f :=


i<i fi induces an isomorphism f̂ : Pm �

(


i<i∗ s̄i ∪M) → Pm � (


i<i∗ s̄
��
i ∪M) such that f̂(p) = p for every p ∈ A. Again

f̂(q) ∈ Pm � (Lm
≤M 0 ∩ Ln), and since Pm � (Lm

≤M 0 ∩ Ln) = Pn � (Lm
≤M 0 ∩ Ln) as

partial orders, there exists p� ∈ A such that f̂(q) and p� are compatible in Pn.
Hence, let r ∈ Pn � (Lm

≤M 0 ∩Ln) be a common lower bound. Obviously, r is also a
lower bound of f̂(q) and p� in Pm.
We will now aim to extend f̂−1 to an isomorphism ĝ : Pm � L1 → Pm � L2 such
that


i<i∗ s̄

��
i ∪M ⊆ L1 ⊆ Ln,


i<i∗ s̄i ∪M ⊆ L2 ⊆ Lm and r ∈ Pm � L1. Then

ĝ(r) ∈ Pm will witness that ĝ(p�) = p� and ĝ(f̂(q)) = q are compatible in Pm, which
is a contradiction. To this end enumerate (


p∈A wsupp(p)∪wsupp(r))\M modulo

Em as (t��i )i<j∗ extending (t��i )i<i∗ , and enumerate t��i /Em∩(p∈A fsupp(p)∪fsupp(r))
as z̄��i extending s̄��i for every i < i∗. 12 Since (t��i , s̄

��
i ) and (ti, s̄i) are 1-equivalent

over m for every i < i∗, we can find z̄i ∈ (ti/E
m)<κ+ extending s̄ such that (t��i , z̄��i )

and (ti, z̄i) are 0-equivalent over m, and let gi be the corresponding weak isomor-
phisms. For i ∈ j∗ \ i∗ enumerate t��i /E

m∩ fsupp(r) as z̄��i , set (ti, z̄i) := (t��i , z̄
��
i ) and

define gi to be the identity.
Since for every i < i∗ the isomorphism ĝi obviously extends f̂−1

i , it follows that
the isomorphism ĝ : Pm � (


i<j∗ z̄

��
i ∪M) → Pm � (


i<j∗ z̄i ∪M), which extends ĝi

for every i < j∗ and exists by Lemma 5.3.10, necessarily extends f̂−1. Clearly, we
have r ∈ Pm � (


i<j∗ z̄

��
i ∪M).

11Note that weak isomorphisms do not necessarily preserve dpLm , but they preserve dpM . This is the
reason why we do induction along Lm

<M α and Lm
≤M α respectively.

12W.l.o.g. let wsupp(f̂(q)) ⊆ wsupp(r) and fsupp(f̂(q)) ⊆ fsupp(r).

73



• α → α+1: We assume inductively that Pn � (Lm
≤M α∩Ln) HPm. By Lemma 5.3.12

we can deduce Pn � (Lm
<M α+1 ∩ Ln) H Pm.

Since Pn � (Lm
<M α+1 ∩ Ln) H Pm we can deduce for p, q ∈ Pn � (Lm

≤M α+1 ∩ Ln)
that q ≤Pn p iff q ≤Pm p.
Show that p, q ∈ Pn � (Lm

≤M α+1 ∩Ln) are compatible in Pm iff they are compatible
in Pn similar to the base case.
Let A ⊆ Pn � (Lm

≤M α+1∩Ln) be a maximal antichain. Show that A is also maximal
in Pm similar to the base case.

• If γ is a limit we assume inductively that Pn � (Lm
≤M α ∩ Ln) H Pm for every α < γ.

Set L :=


α<γ L
m
<M α. We must first show that Pn � (L ∩ Ln) H Pm.

Obviously, Pn � (L ∩ Ln) = Pm � (L ∩ Ln) as partial orders. Use a weak automor-
phism argument to show that p, q ∈ Pn � (L ∩ Ln) are compatible in Pm iff they
are compatible in Pn. Again using a weak automorphism argument show that if
A ⊆ Pn � (L ∩ Ln) is a maximal antichain, then it is also maximal in Pm.
Next use Lemma 5.3.12 to show that Pn � (Lm

<M γ ∩ Ln) H Pm.

Now that we know that Pn � (Lm
<M γ∩Ln)HPm, we can show Pn � (Lm

≤M γ∩Ln)HPm

similar to the base case.

This shows that n∗ ∈ Mec ∩M≤λ2 .

5.4 Iterating Rκ without adding dominating reals

Last but not least we want to discuss how to iterate Shelah’s higher random forcing
for κ supercompact using a Corrected Iteration, and show that this way no dominating
reals on κκ are being added. Unfortunately, there seems to be a general problem when
actually applying the Corrected Iteration.
We shall first elaborate on the problem and explain the difficulties concerning it. Then,
assuming this problem can be fixed, we sketch how to achieve the consistency of κ+ =
bκ < cov(id(Rκ)) = κ++.

Let κ be supercompact and let QM denote the Corrected Iteration along a well-founded
partial order M (of a ≤κ-strategically closed, κ+-c.c. ‘simply definable’ forcing notion
Q preserving supercompactness) which we constructed in the previous sections. Since
QM is a complete Boolean algebra, it obviously cannot be <κ-directed closed. However,
we would like that QM satisfies a slightly weaker property:

Conjecture 5.4.1. Let θ > κ be a regular and sufficiently large cardinal. Let N ≺ H(θ)
be of size <κ such that QM ∈ N , κN := sup(κ ∩ N) is inaccessible and N<κN ⊆ N .
Then every (N,QM)-generic filter GN has a lower bound in QM .

Since QM is a complete subforcing of Pm∗ , which is a standard iteration (along a well-
founded partial order) of Q, this conjecture seems plausible. Indeed it appears as an
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‘obvious’ claim in ([She20]) for a Corrected Iteration of the respective forcing considered
there.
However, a more careful analysis of the conjecture leads to the following problem: If
one wants to construct a lower bound ϕ ∈ QM of GN , one needs to construct a witness
pϕ ∈ Pm∗ at the same time. If one tries to do this inductively, the discontinuity of the
projection π : Pm∗ → QM could possibly ruin the construction in limit steps.
And indeed this issue is non-trivial: by a result of Kunen (see [Kun78]) κ-Cohen forc-
ing has a complete subforcing which adds a κ-Aronszajn tree, and hence this complete
subforcing destroys the weak compactness of κ. But since the conjecture in particular
implies that if V is appropriately prepared, supercompactness is preserved (see [Koe06]),
we see that even κ-Cohen forcing has a complete subforcing for which the respective con-
jecture cannot hold. Therefore, the only hope to prove this conjecture (for a Corrected
iteration of suitable Q) is to use the fact that QM is still ‘quite similar’ to a standard
iteration of Q.

We aim to establish the consistency of κ+ = bκ < dκ = cov(id(Rκ)) = non(id(Rκ)) =
cof(id(Rκ)) = κ++. To this end we will define similar to κ-Hechler forcing a Corrected
Iteration for Shelah’s higher random forcing Rκ. For our purpose M := κ++ will suffice.

Definition 5.4.2. Let m ∈ M be an iteration parameter (see Definition 5.1.2). Similar
to Definition 5.1.4 we will now define by induction on α ≤ ∞Lm the forcing notion Pm

α :

• Define Pm
1 to be the set of functions p such that dom(p) ⊆ Lm

1 , |dom(p)| < κ
and for every t ∈ dom(p) we have p(t) = (τ, S, Cl, (Iλ)λ∈Sκ

inc
) such that τ ∈ 2<κ,

S ⊆ Sκ
inc nowhere stationary, Cl is a club disjoint from S and Iλ ∈ id(Rλ) for every

λ ∈ Sκ
inc.

• If γ is a limit, we have two cases:

– cf(γ) ≥ κ: Set Pm
γ :=


α<γ Pm

α .

– cf(γ) < κ: Define Pm
γ to be the set of functions p such that dom(p) ⊆ Lm

γ ,
|dom(p)| < κ and for every α < γ we have p � Lm

α ∈ Pm
α .

• α → α + 1: Define Pm
α+1 to be the set of functions p such that dom(p) ⊆ Lm

α+1,
|dom(p)| < κ, p � Lm

α ∈ Pm
α and for every t ∈ dom(p) with dpLm(t) = α we have

p(t) =
�
τ,

�
j<δ

B1
j ((ṙt�)t�∈uj

),
�
j<δ

B2
j ((ṙt�)t�∈uj

), (
�
j<δ

B3
j ((ṙt�)t�∈uj

)(λ) )λ∈(Sκ
inc\δ)

�
where:

– τ ∈ 2<κ

– δ ≤ dom(τ), (Bi
j)j<δ is a sequence of ground model κ-Borel functions for

every i ∈ {1, 2, 3}, and uj ∈ Pt for every j < δ such that

∗ B1
j : (2

κ)uj → P(Sκ
inc) and ∀x̄ ∈ (2κ)uj : B1

j (x̄) nowhere stationary below κ

∗ B2
j : (2

κ)uj → P(κ) and ∀x̄ ∈ (2κ)uj : B2
j (x̄) is club ∧B1

j (x̄) ∩B2
j (x̄) = ∅
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∗ B3
j : (2

κ)uj → (P(2<κ))S
κ
inc and ∀x̄ ∈ (2κ)uj ∀λ ∈ Sκ

inc : B
3
j (x̄)(λ) ∈ id(Rλ)

13

– (ṙt�)t�∈uj
is a subsequence of the generic sequence (ṙt)t∈Lm

α
added by Pm

α .

We will use the notation p(t) = (τp(t), Ḃ
1
p(t), Ḃ

2
p(t), Ḃ

3
p(t)). Clearly �Pm�Lm

<t
p(t) =

(τp(t), Ḃ
1
p(t), Ḃ

2
p(t), Ḃ

3
p(t)) ∈ Ṙκ. 14

We define q ≤Pm p inductively:

• dom(p) ⊆ dom(q)

• for every t ∈ dom(p) we have q � Lm
<t �Pm�Lm

<t
q(t) ≤Rκ p(t)

Define ṙt :=
{τ ∈ κ<κ : ∃p ∈ Ġ p(t) = (τ, Ḃ1

p(t), Ḃ
2
p(t), Ḃ

3
p(t))}. Set Pm := Pm

∞L
.

Since Rκ is not <κ-closed, we can not expect that Pm is. However, we have the
following lemma:

Lemma 5.4.3. Pm is ≤κ-strategically closed. Furthermore, it satisfies all other prop-
erties of Lemma 5.1.6.

Following Definition 5.2.5 we can now define the Corrected Iteration of Rκ:

Definition / Assumption 5.4.4. Fix m∗ ∈ Mec. We define Qκ++ := Pm∗
[κ++].

We shall assume that Conjecture 5.4.1 holds for the Corrected Iteration Qκ++ of higher
random forcing.

Since we know that V can be appropriately prepared such that this assumption in
particular implies that supercompactness and therefore, weak compactness is preserved
in V Qκ++ , we have:

Lemma 5.4.5. Let İ be a Qκ++-name for an element of id(Rκ). Then there exist κ-Borel
functions (Bi)i∈{1,2,3} in V and u ⊆ κ++ of size ≤ κ such that:

�Qκ++ B1((ṙs)s∈u) ⊆ Sκ
inc is nowhere stationary below κ

∧ B2((ṙs)s∈u) ⊆ κ is club ∧B1((ṙs)s∈u) ∩B2((ṙs)s∈u) = ∅
∧ B3((ṙs)s∈u) ∈ (P(2<κ))S

κ
inc ∧ ∀λ ∈ Sκ

inc : B
3((ṙs)s∈u)(λ) ∈ id(Rλ)

∧ İ ⊆ {x ∈ 2κ : ∃∞λ ∈ B1((ṙs)s∈u) x � λ ∈ B3((ṙs)s∈u)(λ)}
Now this easily implies that �Qκ++ cov(id(Rκ)) = κ++. Since Qκ++ adds κ-Cohen reals,
we also have �Qκ++ dκ = non(id(Rκ)) = cof(id(Rκ)) = κ++.

But why does bκ stay small in V Qκ++?

To show this we will need the following definition:
13Hence ∀x̄ ∈ (2κ)u ∀λ ∈ Sκ

inc \ δ :


j<δ B
3
j (x̄)(λ) ∈ id(Rλ) where u :=


j<δ uj .

14Pedantically, (τp(t), Ḃ1
p(t), Ḃ

3
p(t) � Ḃ1

p(t)) is a witness for a condition p(t) in Ṙκ and Ḃ2
p(t) witnesses that

Ḃ1
p(t) is non-stationary.
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Definition 5.4.6. We say that �κ holds iff for any sufficiently large, regular θ > κ and
any forcing notion Q ∈ H(θ) which is ≤κ-strategically closed, the set Sθ,Q consisting of
N ∈ [H(θ)]<κ with the following properties, is a stationary subset of [H(θ)]<κ:

• N ≺ H(θ) and Q ∈ N .

• The Mostowski collapse of N is AN with mosN : N → AN .

• κN := sup(κ ∩N) is inaccessible and N<κN ⊆ N .

• ∃θN < κ : AN ⊆ H(θN) ∧ AN ∩ Ord = θN .

• ∃GN ⊆ mosN(Q) : GN is an (AN ,mosN(Q))-generic filter.

• H(θN) = AN [GN ].

It turns out that we can force �κ:

Lemma 5.4.7. After some preliminary forcing we have that �κ holds in the extension
and κ is still supercompact. Hence, we can assume that V � �κ.
Under Assumption 5.4.4 we can even assume that V � ‘S �

θ,Qκ++
:= {N ∈ Sθ,Qκ++ : κN is

weakly compact} is stationary in [H(θ)]<κ ’ for any θ > κ regular and sufficiently large.

Now assume towards a contradiction that there exists a Qκ++-name ḟ and a condition
ϕ ∈ Qκ++ such that ϕ �Qκ++ ḟ dominates κκ ∩ V . Since Qκ++ H Pm∗ we can work with
a pϕ ∈ Pm∗ below ϕ.
Let θ > κ be a regular and sufficiently large cardinal. Let us pick a sequence (Ni)i<κ

such that Ni ∈ S �
θ,Qκ++

, i, ḟ , pϕ ∈ Ni and (κNi
)i<κ is unbounded in κ. We can do this,

because by �κ and Assumption 5.4.4 the set S �
θ,Qκ++

is stationary in [H(θ)]<κ.
Let f ∗ ∈ κκ be a function such that ∀i < κ : f ∗(i) > κNi

and let q ∈ Pm∗ with q ≤Pm∗ pϕ
and i∗ < κ be such that q �Pm∗ ∀i ≥ i∗ : ḟ(i) ≥ f ∗(i). W.l.o.g. let i∗ > |dom(q)| ∪

t∈dom(q) dom(τq(t)).
Note that by elementarity the forcing notion mosNi∗ (Qκ++) is just the Corrected Iteration
of RκNi∗

of length (κNi∗ )
++ in ANi∗ .

Theorem 5.4.8. Let (ṙ
GNi∗
α )α<(κNi∗ )

++ be the generic sequence of κNi∗ -reals added by
GNi∗ ⊆ mosNi∗ (Qκ++) over ANi∗ . Under Assumption 5.4.4 we can now find F : (κNi∗ )

++ →
(κNi∗ )

++ strictly increasing with F ∈ ANi∗ such that:

• The sequence (ṙ
GNi∗
F (α) )α<(κNi∗ )

++ induces a (ANi∗ ,mosNi∗ (Qκ++))-generic filter G�
Ni∗ .

(Here we use Theorem 5.3.2, i.e. the crucial property of the Corrected Iteration.)

• There exists a lower bound r ∈ Pm∗ of mos−1
Ni∗ [G

�
Ni∗ ] ⊆ Qκ++ such that r ≤Pm∗ q.

Since mos−1
Ni∗ [G

�
Ni∗ ] is a (Ni∗ ,Qκ++)-generic filter and i∗ ∈ Ni∗ , we have that r �Pm∗

ḟ(i∗) ∈ Ni∗ ∩ κ. But this is a contradiction to q �Pm∗ ḟ(i∗) ≥ f ∗(i∗) > κNi∗ . Hence,
Qκ++ does not add any dominating reals on κκ.
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6 Preserving Π1
1-determinacy

In this chapter 1 we study the preservation of Π1
1-determinacy under ‘simply’ definable,

proper forcing notions and their iterations. One of the earliest results on preservation
of large cardinals 2 by forcing is the Levy-Solovay theorem (see Chapter 21 in [Jec03])
which shows that measurability is preserved by small forcing notions via lifting of el-
ementary embeddings. Similar preservation results have been proven for many other
large cardinal notions such as weakly compact, Ramsey, supercompact, huge, strong or
Woodin cardinals (see [Hjo95]).

Besides small forcings, there are several other classes of forcing notions which preserve
large cardinals under certain conditions: Laver showed in [Lav78] that the supercom-
pactness of κ becomes indestructible under <κ-directed closed forcing notions after some
preliminary preparation, and Johnstone showed in [Joh08] a similar result for κ strongly
unfoldable.

We aim to prove the preservation of Π1
1-determinacy under any countable support itera-

tion of ‘simply’ definable, proper forcing notions using the technique of capturing. While
such a preservation result (for an iteration of length ω2) easily follows from the existence
of a measurable cardinal using Levy-Solovay’s theorem, we do not want to make any
additional assumptions on the existence of stronger large cardinals.

Surprisingly, rather little was known beforehand: Woodin showed in [Woo82] that Cohen
and random forcing preserve Δ1

2-determinacy. Schlicht proved in [Sch14b] that Σ1
2- abso-

lutely c.c.c. forcing notions preserve Π1
n+1-determinacy, and, together with Castiblanco,

extended this to Sacks, Silver, Miller, Mathias and Laver forcing (see [CS21]).

We also aim to investigate connected components of symmetric Δ1
3-relations on the reals

and show preservation of regularity properties such as the Δ1
2- or Σ1

2-Baire property.

6.1 Prerequisites

We start with several important definitions which we will use throughout this chapter.

First, we define a class of ‘simply’ definable, proper forcing notions:

1This chapter was a joint project with Jonathan Schilhan and Philipp Schlicht.
2Note that Π1

1-determinacy is a large cardinal property by Theorem 1.4.7.
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Definition 6.1.1. Let P = (dom(P),≤P) be a forcing notion such that dom(P) ⊆ ωω.
Following the notation of [GJ92] we say that P is Suslin iff dom(P) and ≤P have Σ1

1-
definitions. We say that P is strongly Suslin iff additionally the incompatibility relation
⊥P also has a Σ1

1-definition.

Although most classical forcings are not literally defined on ωω, they are usually
defined on some Polish space.

Definition 6.1.2. Let P be a Suslin forcing. Then a countable transitive model N
satisfying ZFC∗, i.e. a large enough fragment of ZFC, and containing all the parameters
for the definition of P is called a candidate for P. We say that P is proper-for-candidates
iff for every candidate N for P and every p ∈ PN 3 there exists q ≤P p such that q is
(N,P)-generic.

The definition of proper-for-candidates for strongly Suslin forcing is similar and in-
cludes the parameter for the definition of ⊥P. Note that for a strongly Suslin forcing P
it follows that ‘P is proper-for-candidates ’ is a Π1

3-property. Furthermore, note that all
the classical tree forcings such as Sacks forcing S, Silver forcing SI, Miller forcing MI,
Mathias forcing M or Laver forcing L are Suslin, proper-for-candidates forcing notions.

Let us now turn to the notion of capturing. This technique was originally introduced in
[CS21]:

Definition 6.1.3. Let P and Q be forcing notions such that Q is definable. We say
that Q captures P iff for every p ∈ P, every P-name τ̇ for a real and every y ∈ ωω, there
exists some z ∈ ωω and some q ≤P p such that:

q �P ∃GQ : GQ is (L[y, z],QL[y,z])-generic ∧ τ̇ ∈ L[y, z][GQ].

We define a weaker version where the forcing Q may depend on τ̇ :

Definition 6.1.4. Let P be a forcing notion. We say that P is captured (by forcing
notions with property ϕ) iff for every p ∈ P, every P-name τ̇ for a real and every y ∈ ωω,
there exists some z ∈ ωω, some Q ∈ L[y, z] (with L[y, z] � ϕ(Q)) and some q ≤P p such
that:

q �P ∃GQ : GQ is (L[y, z],Q)-generic ∧ τ̇ ∈ L[y, z][GQ].

And we define a stronger version that provides a uniform P-name for the relevant
Q-generic filter.

Definition 6.1.5. Let P and Q be forcing notions such that Q is definable. We say that
Q uniformly captures P iff for every p ∈ P and every P-name τ̇ for a real, there exists
some z ∈ ωω and some P-name ĠQ such that for every y ∈ ωω, there is some q ≤P p
such that:

q �P ĠQ is (L[z, y],QL[y,z])-generic ∧ τ̇ ∈ L[z][ĠQ].

3Note that by Σ1
1-absoluteness we have PN = P ∩N
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Finally, let us define the following large cardinal property:

Definition 6.1.6. We say that ω1 is inaccessible to the reals iff ω
L[x]
1 < ω1 for every real

x ∈ ωω.

Note that this large cardinal property can be viewed as a regularity property: By
a result of Solovay (see Chapter 14 in [Kan03]) it is equivalent to the statement that
every Σ1

2 set has the perfect set property, and by a result of Brendle and Löwe (see
[BL99]), it is equivalent to the statement that every Σ1

2 set has the property of Baire in
the dominating topology.

6.2 Preserving ‘The reals are A-closed’

Let us show how capturing can be used to preserve Π1
1-determinacy. By Theorem 1.4.7

it will be enough to preserve that the reals are A-closed:

Theorem 6.2.1. Assume that V � ‘The reals are A-closed’ and let P be a forcing notion
that is captured. Then also V P � ‘The reals are A-closed’.

Proof. Working in V P let x ∈ ωω be arbitrary. Since P is captured, there exist z ∈ ωω∩V ,
a forcing notion Q ∈ L[z] and an (L[z],Q)-generic filter GQ such that x ∈ L[z][GQ]. Since
z8 exists, there is a non-trivial, elementary embedding j : L[z] → L[z] with crit(j) >
|Q|L[z]. Using a Levy-Solovay argument, j can be lifted to j∗ : L[z][GQ] → L[z][GQ],
and we can conclude that j∗ � L[x] : L[x] → L[x] is a non-trivial, elementary embedding.
Hence x8 exists.

We can also preserve that ω1 is inaccessible to the reals:

Theorem 6.2.2. Assume that V � ‘ω1 is inaccessible to the reals ’ and let P be a forc-
ing notion that is captured by forcing notions not collapsing ω1. Then also V P �
‘ω1 is inaccessible to the reals ’.

Proof. Working in V P let x ∈ ωω be arbitrary. Since P is captured by forcing notions
not collapsing ω1, there exists z ∈ ωω ∩ V , a forcing notion Q ∈ L[z] such that L[z] �
‘Q does not collapse ω1 ’ and an (L[z],Q)-generic filter GQ such that x ∈ L[z][GQ].
Hence, we can deduce ω

L[x]
1 ≤ ω

L[z][GQ]
1 = ω

L[z]
1 < ω1.

We will also need the following technical lemma:

Lemma 6.2.3. Assume that V � ‘The reals are A-closed’ and let P and P� be forc-
ing notions that are captured. Furthermore, let θ > ω be a regular and sufficiently
large cardinal, let M ≺ H(θ) be a countable, elementary submodel with P� ∈ M , let
mos : M → N denote be Mostowski collapse, and let g ∈ V P be an (N,mos(P�))-generic
filter. Then V P � ∀x ∈ ωω ∩N [g] : x8 exists ∧ x8 ∈ ωω ∩N [g].
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Proof. Working in V P let x ∈ ωω ∩ N [g] be arbitrary. By Theorem 6.2.1 we know
that x8 exists in V P, hence it remains to be shown that x8 ∈ ωω ∩ N [g]. Since N �
‘ mos(P�) is captured ’, there exist z ∈ ωω ∩ N , a forcing notion Q ∈ L[z] ∩ N and an
(L[z]∩N,Q)-generic filter GQ ∈ N [g] such that x ∈ (L[z]∩N)[GQ]. Since indiscernibles
for well-founded, remarkable EM blueprints are absolute for transitive models satisfying
ZFC∗, i.e. a large enough fragment of ZFC, and z8 ∈ N , we can deduce that (Iz)

N =
Iz ∩N , where Iz is the class of Silver indiscernibles for L[z]. In particular, this implies
that GQ is also (L[z],Q)-generic. Now pick an increasing sequence (αn)n<ω ⊆ Iz ∩N in
N with α0 large enough and let α∗ := sup{αn : n < ω} ∈ Iz∩N . Since x ∈ Lα∗ [z][GQ] ⊆
Lℵω [z][GQ] and {αn : n < ω} ∪ {ℵn : n < ω} ∪ {α∗,ℵω} ⊆ Iz, we can conclude that
T (Lα∗ [x],∈,x,(α)n<ω) = T (Lℵω [x],∈,x,(ℵn)n<ω) (see Definition 1.3.1). By Theorem 1.3.14 this
implies that x8 ∈ ωω ∩N [g].

6.3 Capturing iterations of ‘simply’ definable, proper
forcing notions

In [CS21] the authors showed the following lemma:

Lemma 6.3.1. If ω1 is inaccessible to the reals, then Cohen forcing uniformly captures
Sacks and Silver forcing, and Mathias forcing uniformly captures Miller, Mathias and
Laver forcing.

Our main theorem generalizes the above lemma:

Theorem 6.3.2. Assume that ω1 is inaccessible to the reals and let �Pα, Ṗβ : α ≤ κ, β < κ�
with P := Pκ++ be a countable support iteration of length κ of Suslin forcing notions Ṗα

such that for every α < κ,

�Pα Ṗα is proper-for-candidates in L[A] for every A ∈ [ωω]ω. 4 5

Then for every p ∈ P, every P-name τ̇ for a real and every y ∈ ωω there exist z ∈ ωω and
Q ∈ L[y, z] such that L[y, z] � ‘Q = �Qα, Q̇β : α ≤ α∗, β < α∗� is a countable support
iteration of length α∗ < ω1 of Suslin, proper-for-candidates forcing notions Q̇β ’ and there
exists p� ∈ P with p� ≤P p such that p� �P ∃GQ : GQ is (L[y, z],Q)-generic ∧ τ̇ ∈
L[y, z][GQ]. In particular, P is captured by forcing notions of size < ωV

1 .

Q is obtained in a very concrete way from P, essentially as an iteration of certain
iterands of P. For example, if P is an iteration of Sacks forcing, then Q is an iteration
of Sacks forcing in L[y, z].

4Of course, L[A] must contain the real parameters for the definition of Pα, and note that A can be
uncountable in L[A]. Also note that if N ∈ V Pα is a candidate for Pα, then the statement ‘ p� ∈ Pα

is (N,Pα)-generic ’ is a Π1
2-property. Hence V Pα � Pα is proper-for-candidates.

5This is a technical requirement which we will need for the proof. Note that if Ṗα is provably proper-
for-candidates this is trivially satisfied. Also, if Ṗα is strongly Suslin and proper-for-candidates, then
it is also proper-for candidates in every L[A], since Π1

3-statements are downward absolute.
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We will prove this theorem in several steps using techniques from [IHJS88]. We start
with an arbitrary condition p∗ ∈ P, an arbitrary P-name τ̇ for a real and an arbitrary
y ∈ ωω. Let θ > ω be a sufficiently large, regular cardinal and let M ≺ H(θ) be a
countable, elementary submodel such that p∗,P, τ̇ , y, κ ∈ M . Let mos : M → N denote
the Mostowski collapse and let us define P̄ := mos(P), p̄∗ := mos(p∗), ˙̄τ := mos(τ̇) and
α∗ := mos(κ). 6 Since N ∈ H(ω1) we can code it as a real z ∈ ωω.

Now working in L[z]:

Definition / Lemma 6.3.3. By induction on α ≤ α∗ we now want to define:

• the countable support iteration Qα

• a function iα : P̄α → Qα

• the notion q ∈ Qα is (N, P̄α)-generic

and prove

• Qα is an iteration of Suslin forcings 7

• iα is an embedding, i.e. for every p̄1, p̄2 ∈ P̄α we have p̄2 ≤P̄α
p̄1 iff iα(p̄2) ≤Qα iα(p̄1)

We set Q := Qα∗ .

Proof. If α = 1:

• We define Q1 := Q0 := P̄L[z]
1 , i.e. P̄1 has a Suslin definition in N which we can

evaluate in L[z].

• We set i1 := idP̄1
. By Σ1

1-absoluteness we have P̄1 ⊆ Q1 and i1 is an embedding.

• We define q ∈ Q1 is (N, P̄1)-generic iff q �Q1 i
−1
1 [ĠQ1 ] is an (N, P̄1)-generic filter.8

α → α + 1:

• We define a Qα-name Q̇α for a forcing notion such that:

– q �Qα Q̇α = ( ˙̄Pα[i
−1
α [ĠQα ]])

L[z][ĠQα ] iff q ∈ Qα is (N, P̄α)-generic.

– q �Qα Q̇α = {✶̇} iff q ∈ Qα is (N, P̄α)-antigeneric. 9

If GQα is a (L[z],Qα)-generic filter and q ∈ GQα is (N, P̄α)-generic, then by defini-
tion GP̄α

:= i−1
α [GQα ] is an (N, P̄α)-generic filter and ˙̄Pα[GP̄α

] is a Suslin definition
in N [GP̄α

] which we can evaluate in L[z][GQα ]. Since �Qα Q̇α is Suslin, we have
that Qα+1 := Qα D Q̇α is an iteration of Suslin forcings.

6The variable p̄ will range over conditions in P̄, and will not denote mos(p) for some p ∈ P.
7We will later see that Qα is even an iteration of Suslin, proper-for-candidates forcing notions.
8Obviously, this notion here coincides with the classical notion of (N, P̄1)-genericity.
9We define q ∈ Qα to be (N, P̄α)-antigeneric iff ∀q� ≤Qα q : q� is not (N, P̄α)-generic.

82



• We will define iα+1 : P̄α+1 → Qα+1 such that iα+1 extends iα. For p̄ ∈ P̄α+1 we
define iα+1(p̄) := iα(p̄ � α):q̇p̄(α), where q̇p̄(α) is a Qα-name such that:

– q �Qα q̇p̄(α) = ˙̄p(α)[i−1
α [ĠQα ]] iff q ∈ Qα is (N, P̄α)-generic.

– q �Qα q̇p̄(α) = ✶̇ iff q ∈ Qα is (N, P̄α)-antigeneric.

Note that �Qα q̇p̄(α) ∈ Q̇α. Using the induction hypothesis and Σ1
1-absoluteness,

it easily follows that iα+1 is an embedding. 10

• We define q ∈ Qα+1 is (N, P̄α+1)-generic iff q �Qα+1 i−1
α+1[ĠQα+1 ] is an (N, P̄α+1)-

generic filter

λ ≤ α∗ is a limit:

• We define Qλ to be the countable support limit of �Qα, Q̇β : α < λ, β < λ�. Using
the induction hypothesis Qλ is obviously an iteration of Suslin forcings.

• For p̄ ∈ P̄λ we define iλ(p̄) to be the union of (iα(p̄ � α))α<λ. Using the induction
hypothesis we clearly have iλ(p̄) ∈ Qλ and iλ is an embedding.

• We define q ∈ Qλ is (N, P̄λ)-generic iff q �Qλ
i−1
λ [ĠQλ

] is an (N, P̄λ)-generic filter.

Now working in V : Let π : N → M denote the uncollapse and note that obviously
π(α + 1) = π(α) + 1 for every α < α∗.

Definition / Lemma 6.3.4. By induction on α ≤ α∗ we now want to define:

• a function jα : Qα → Pπ(α)

• the notion p ∈ Pπ(α) is (L[z],Qα)-generic

and prove

• jα is an embedding, i.e. for every q1, q2 ∈ Qα we have q2 ≤Qα q1 iff jα(q2) ≤Pπ(α)
jα(q1)

• if p ∈ Pπ(α) is (L[z],Qα)-generic and p �Pπ(α)
∃q ∈ j−1

α [ĠPπ(α)
] : q is (N, P̄α)-

generic, then

(†α) ∀p̄ ∈ P̄α : p �Pπ(α)
π(p̄) ∈ ĠPπ(α)

⇔ jα(iα(p̄)) ∈ ĠPπ(α)

Proof. If α = 1:

• Since P̄1, P1 and hence Q1 have the same Suslin definition, we can deduce by
Σ1

1-absoluteness that Q1 ⊆ P1 and j1 := idQ1 is an embedding.

• We define p ∈ P1 is (L[z],Q1)-generic iff p �P1 j
−1
1 [ĠP1 ] is an (L[z],Q1)-generic filter.

10Note that the embedding will not preserve incompatibility.
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• Since π(p̄) = p̄ = jα(iα(p̄)) for every p̄ ∈ P̄1, we have that (†1) trivially follows.

α → α + 1:

• We will define jα+1 : Qα+1 → Pπ(α+1) such that jα+1 extends jα. For q ∈ Qα+1 we
define jα+1(q) := jα(q � α):ṗq(π(α)), where ṗq(π(α)) is a Pπ(α)-name such that:

– p �Pπ(α)
ṗq(π(α)) = q̇(α)[j−1

α [ĠPπ(α)
]] iff p ∈ Pπ(α) is (L[z],Qα)-generic.

– p �Pπ(α)
ṗq(π(α)) = ✶̇ iff p ∈ Pπ(α) is (L[z],Qα)-antigeneric. 11

Since Pπ(α+1) = Pπ(α) D Ṗπ(α) it remains to be shown that �Pπ(α)
ṗq(π(α)) ∈ Ṗπ(α):

– This is obvious if p ∈ Pπ(α) is (L[z],Qα)-antigeneric.

– If p ∈ Pπ(α) is (L[z],Qα)-generic, but p �Pπ(α)
‘ ∃q ∈ j−1

α [ĠPπ(α)
] : q is (N, P̄α)

-antigeneric ’, then p �Pπ(α)
Q̇α[j

−1
α [ĠPπ(α)

]] = {✶̇}, hence p �Pπ(α)
ṗq(π(α)) =

q̇(α)[j−1
α [ĠPπ(α)

]] = ✶̇ ∈ Ṗπ(α).

– Now if p ∈ Pπ(α) is (L[z],Qα)-generic and p �Pπ(α)
∃q ∈ j−1

α [ĠPπ(α)
] : q is

(N, P̄α)-generic, then we can use (†α) to deduce that

p �Pπ(α)
‘ ˙̄Pα[i

−1
α [j−1

α [ĠPπ(α)
]] ] , Ṗπ(α) and hence Q̇α[j

−1
α [ĠPπ(α)

]]

have the same Suslin definition ’.

Hence, by Σ1
1-absoluteness, it follows that p �Pπ(α)

ṗq(π(α)) ∈ Ṗπ(α).

Again using Σ1
1-absoluteness and the induction hypothesis, we see that jα+1 is an

embedding. 12

• We define p ∈ Pπ(α+1) is (L[z],Qα+1)-generic iff p �Pπ(α+1)
j−1
α+1[ĠPπ(α+1)

] is an
(L[z],Qα+1)-generic filter.

• Assume that p ∈ Pπ(α+1) satisfies the assumptions for (†α+1). Using the induction
hypothesis (†α), we can deduce that p � π(α) �Pπ(α)

π( ˙̄p)(π(α)) = jα+1(iα+1( ˙̄p))(π(α))

for every p̄ ∈ P̄α+1. Hence p �Pπ(α)
π(p̄) ∈ ĠPπ(α)

D ĠṖπ(α)
⇔ jα+1(iα+1(p̄)) ∈

ĠPπ(α)
D ĠṖπ(α)

for every p̄ ∈ P̄α+1.

λ ≤ α∗ is a limit: Let λ� := sup(π(λ) ∩M).

• For q ∈ Qλ let jλ(q) � λ� ∈ Pλ� be the union of (jα(q � α))α<λ. Extend jλ(q) � λ�

trivially to get jλ(q) ∈ Pπ(λ). Using the induction hypothesis we clearly have that
jλ is an embedding.

• We define p ∈ Pπ(λ) is (L[z],Qλ)-generic iff p �Pπ(λ)
j−1
λ [ĠPπ(λ)

] is an (L[z],Qλ)-
generic filter.

11Again, we define p ∈ Pπ(α) to be (L[z],Qα)-antigeneric iff ∀p� ≤Pπ(α)
p : p� is not (L[z],Qα)-generic.

12Note that again the embedding will not preserve incompatibility.
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• Assume that p ∈ Pπ(λ) satisfies the assumptions for (†λ). Using the induction
hypothesis (†α) for every α < λ and noting that �Pλ� p

� ∈ ĠPλ� ⇔ ∀n < ω : p� �
αn ∈ ĠPαn

holds for every p� ∈ Pλ� and every cofinal sequence (αn)n<ω ⊆ λ�∩M , we
can deduce that p �Pλ� π(p̄) � λ� ∈ ĠPλ� ⇔ jλ(iλ(p̄)) � λ� ∈ ĠPλ� for every p̄ ∈ P̄λ.
Since both π(p̄) and jλ(iλ(p̄)) are trivial extensions of π(p̄) � λ� and jλ(iλ(p̄)) � λ�,
respectively, it easily follows that p �Pπ(λ)

π(p̄) ∈ ĠPπ(λ)
⇔ jλ(iλ(p̄)) ∈ ĠPπ(λ)

for
every p̄ ∈ P̄λ.

Lemma 6.3.5. For every q ∈ Q there exists p ∈ P such that p ≤P jα∗(q) and p is
(L[z],Q)-generic.

Proof. By induction on α ≤ α∗ we will show the following claim:

(‡α) ∀β < α ∀p ∈ Pπ(β) ∀q ∈ Qα :
�
p ≤Pπ(β)

jα(q) � π(β) ∧ p is (L[z],Qβ)-generic
� ⇒� ∃p� ∈ Pπ(α) : p

� ≤Pπ(α)
jα(q) ∧ p� � π(β) = p ∧ p� is (L[z],Qα)-generic

�
Clearly, for α = α∗ the claim implies the lemma.

Since ω1 is inaccessible to the reals and hence L[z] � ‘ωV
1 is inaccessible ’, there ex-

ists γ < ω1 such that Lγ[z] � ZFC∗, i.e. a large enough fragment of ZFC, and PL[z](Q) ∈
Lγ[z].

• If α = 1 we must simply show that for every q ∈ Q1 there exists p ∈ P1 such that
p ≤P1 q and p is (L[z],Q1)-generic). Since P1 is proper-for-candidates and Lγ[z] is
a candidate for Q1, such a condition p obviously exists.

• α → α + 1: Let q ∈ Qα+1 and p ∈ Pπ(β) such that p ≤Pπ(β)
jα+1(q) � π(β) and

p is (L[z],Qβ)-generic be arbitrary. Using (‡α) we can assume w.l.o.g. that β = α.
Let GPπ(α)

be a (V,Pπ(α))-generic filter containing p. Hence GQα := j−1
α [GPπ(α)

] is
an (Lγ[z],Qα)-generic filter. There are now two cases:

– If there is q� ∈ GQα such that q� is (N, P̄α)-antigeneric, then Q̇α[GQα ] = {✶}.
Hence ✶ ∈ Ṗπ(α)[GPπ(α)

] is trivially (Lγ[z][GQα ], Q̇α[GQα ])-generic.

– If there is q� ∈ GQα such that q� is (N, P̄α)-generic, then Q̇α[GQα ] and Ṗπ(α)[GPπ(α)
]

have the same Suslin definition. Since Lγ[z][GQα ] ∈ V [GPπ(α)
] is a candi-

date for Ṗπ(α)[GPπ(α)
] and q̇(α)[GQα ] ∈ Ṗπ(α)[GPπ(α)

]Lγ [z][GQα ], there exists p� ∈
Ṗπ(α)[GPπ(α)

] such that p� ≤Ṗπ(α)[GPπ(α)
] q̇(α)[GQα ] and p� is (Lγ[z][GQα ], Q̇α[GQα ])-

generic.

In any case there exists a Pπ(α)-name ṗp�(π(α)) for an element of Ṗπ(α) such that

p �Pπ(α)
ṗp�(π(α)) ≤Ṗπ(α)

q̇(α)[j−1
α [ĠPπ(α)

]] = ˙jα+1(q)(π(α))∧

ṗp�(π(α)) is (L[z][j−1
α [ĠPπ(α)

]], Q̇α[j
−1
α [ĠPπ(α)

]])-generic.

Hence p� := p:ṗp�(π(α)) ∈ Pπ(α+1) has the required properties.
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• λ ≤ α∗ is a limit: Let q ∈ Qλ, β < λ and p ∈ Pπ(β) be arbitrary such that
p ≤Pπ(β)

jλ(q) � π(β) and p is (L[z],Qβ)-generic. Let λ� := sup(π(λ) ∩ M). Let
(αn)n<ω ∈ L[z] with α0 := β be a cofinal sequence in λ and enumerate every dense
subset of Qλ in Lγ[z] as (Dn)n<ω

13. By induction on n < ω we will now construct:

– (qn)n<ω decreasing such that qn ∈ Qλ, qn+1 � αn = qn � αn and the set
En := {q� ∈ Qαn : q

�:qn+1 � [αn, λ) ∈ Dn} is dense below qn+1 � αn for every
n < ω

– (pn)n<ω decreasing such that pn ∈ Pπ(αn), pn+1 � π(αn) = pn, pn ≤Pπ(αn)

jλ(qn) � π(αn) and pn is (L[z],Qαn)-generic for every n < ω

If n = 0 we set q0 := q and p0 := p. Then p0 and q0 satisfy the requirements by
assumption.
n → n + 1: The existence of qn+1 ∈ Qλ with the required properties follows from
a standard ‘iteration of proper forcing’ argument. Now we use (‡αn+1) to extend
pn to pn+1 ∈ Pπ(αn+1) with the required properties.

Let pω ∈ Pλ� be the union of (pn)n<ω and extend pω trivially to get p� ∈ Pπ(λ).
Since p� ≤Pπ(λ)

jλ(qn) and p� � π(αn) is (L[z],Qαn)-generic for every n < ω, we can
deduce that p� �Pπ(λ)

∀n < ω : En ∩ j−1
αn

[ĠPπ(αn)
] 1= ∅ and therefore p� �Pπ(λ)

∀n <

ω : Dn ∩ j−1
λ [ĠPπ(λ)

] 1= ∅. But why does p� �Pπ(λ)
j−1
λ [ĠPπ(λ)

] is a filter?
To this end we define for every q1, q2 ∈ Qλ such that q1 and q2 are incompatible
in Qλ the set Dq1,q2 := {q� ∈ Qλ : ∃α < λ q� � α �Qα q̇�(α) ⊥Q̇α

q̇1(α) ∨ q̇�(α) ⊥Q̇α

q̇2(α)}. It can easily be seen that Dq1,q2 ∈ L[z] is dense. Let p�� ≤Pπ(λ)
p� be

arbitrary such that there exists q� ∈ Qλ with p�� �Pπ(λ)
q� ∈ Dq1,q2 ∩ j−1

λ [ĠPπ(λ)
],

and let α < λ be such that q� � α �Qα q̇�(α) ⊥Q̇α
q̇1(α) ∨ q̇�(α) ⊥Q̇α

q̇2(α). Since
p�� � π(α + 1) �Pπ(α+1)

j−1
λ [ĠPπ(α+1)

] is a (L[z],Qα+1)-generic filter, it follows that
p�� �Pπ(λ)

q1 /∈ j−1
λ [ĠPπ(λ)

] ∨ q2 /∈ j−1
λ [ĠPπ(λ)

].
In particular, p� �Pπ(λ)

j−1
λ [ĠPπ(λ)

] is a filter and hence p� is (L[z],Qλ)-generic.

Lemma 6.3.6. L[z] � ‘Q is an iteration of proper-for-candidates forcing notions ’, i.e.
L[z] � ∀α < α∗ : �Qα Q̇α is proper-for-candidates.

Proof. Let α < α∗ and q ∈ Qα be arbitrary such that q is either (N, P̄α)-generic or
(N, P̄α)-antigeneric. Hence, there are two cases:

- If q is (N, P̄α)-antigeneric, then q �Qα Q̇α = {✶} and hence q �Qα Q̇α is proper-
for-candidates.

- If q is (N, P̄α)-generic, we use Lemma 6.3.5 to find p ∈ Pπ(α) such that p ≤Pπ(α)
jα(q)

and p is (L[z],Qα)-generic. Hence, p satisfies the assumptions for (†α). Let GPπ(α)

be a (V,Pπ(α))-generic filter with p ∈ GPπ(α)
and set GQα := j−1

α [GPπ(α)
]. Then

GQα is a (L[z],Qα)-generic filter with q ∈ GQ, and by (†α) we can deduce that
Q̇α[GQα ] and Ṗπ(α)[GPπ(α)

] have the same Suslin definition. Hence Q̇α[GQα ] =

13This enumeration only exists in V , but this will suffice.
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(Ṗπ(α)[GPπ(α)
])L[z][GQα ]. Since L[z] � ‘ωV

1 is inaccessible ’, we can deduce |ωω ∩
L[z][GQα ]| < ω1. Since L[z] � ‘α∗ is countable ’, we can now find A ∈ ([ωω]ω)

V [GPπ(α)
]

such that L[z][GQα ] = L[A]. By

V [GPπ(α)
] � ∀A ∈ [ωω]ω : L[A] � ‘ (Ṗπ(α)[GPπ(α)

])L[A] is proper-for-candidates ’

which is our technical requirement for Theorem 6.3.2, we can deduce that L[z][GQα ] �
‘ Q̇α[GQα ] is proper-for-candidates ’. Since q ∈ GQα , there exists q� ∈ GQα with
q� ≤Qα q and q� �Qα Q̇α is proper-for-candidates.

Lemma 6.3.7. For every condition p̄ ∈ P̄ there exists q ∈ Q such that q ≤Q iα∗(p̄) and
q is (N, P̄)-generic.

Proof. By Lemma 6.3.6 we know that Q is an iteration of Suslin, proper-for-candidates
forcing notions in L[z]. Hence, the proof is just a simpler version of the proof of Lemma
6.3.5.

Proof of Theorem 6.3.2. By Lemma 6.3.7 there exists q� ∈ Q such that q� ≤Q iα∗(p̄∗)
and q� is (N, P̄)-generic. By Lemma 6.3.5 there exists p� ∈ P such that p� ≤P jα∗(q�) and
p� is (L[z],Q)-generic. Hence, p� satisfies the assumptions for (†α∗) and we can deduce
that p� �P ˙̄τ [i−1

α∗ [j−1
α∗ [ĠP]] ] = τ̇ [ĠP]. Furthermore, since p� �P p̄∗ ∈ i−1

α∗ [j−1
α∗ [ĠP]] it follows

that p� �P p∗ ∈ ĠP. Therefore, we can assume w.l.o.g. that p� ≤P p∗, and it follows that

p� �P ∃GQ : GQ is (L[z],Q)-generic ∧ τ̇ ∈ L[z][GQ].

Since L[z] � ‘ωV
1 is inaccessible ’, we can deduce that L[z] � |Q| < ωV

1 . This finishes the
proof.

6.4 Capturing products of iterations of Sacks forcing

We recall the definition Sacks forcing:

Definition 6.4.1. Let p ∈ S iff:

• p ⊆ 2<ω, p 1= ∅ and p is a tree.

• ∀η ∈ p ∃ν ∈ p : η H ν ∧ |succp(η)| > 1, where succp(η) denotes the successors of η
in p.

Define q ≤S p iff q ⊆ p.

If G is a (V, S)-generic filter we define sG ∈ 2ω to be the unique real contained in�
p∈G[p] where [p] := {x ∈ 2ω : ∀n < ω x � n ∈ p}.

Definition 6.4.2. Furthermore, we define:

• splitp(η) iff |succp(η)| > 1
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• htp(η) := |{ν H η : ν 1= η ∧ splitp(ν)}|
• For n < ω: splitn(p) := {η ∈ p : splitp(η) ∧ htp(η) = n}

Set q ≤n p iff q ≤S p ∧ splitn(p) ⊆ q.

Fact 6.4.3. The following holds true:

• q ≤n p ⇔ q ≤S p ∧ ∀m < n splitm(q) = splitm(p)

• ∀x ∈ ωω ∀n < ω : x ∈ [p] ⇒ x ∩ splitn(p) 1= ∅, i.e. splitn(p) is a front in p

Definition 6.4.4. Let p ∈ S and let η ∈ p. We define the condition p[η] := {ν ∈
p : ν H η ∨ η H ν}.
Lemma 6.4.5. If (pn)n<ω ⊆ S is a fusion sequence, i.e. ∀n < ω : pn+1 ≤n pn, then
q :=

�
n<ω pn ∈ S and ∀n < ω : q ≤n pn.

Let P denote a countable support iteration of Sacks forcing of length κ.

Definition 6.4.6. Let p, q ∈ P. Let F ∈ [κ]<ω and let n < ω. We define:

• supp(p) the support of p.

• q ≤F,n p iff ∀β ∈ F : q � β �β q(β) ≤n p(β).

Lemma 6.4.7. Let (pn)n<ω ⊆ P be a fusion sequence, i.e. there exists (Fn)n<ω ⊆ [κ]<ω

increasing such that


n<ω supp(pn) ⊆


n<ω Fn and ∀n < ω : pn+1 ≤Fn,n pn, then there
exists q ∈ P with ∀n < ω : q ≤Fn,n pn.

Lemma 6.4.8. Let A ⊆ P be a maximal antichain, F ∈ [κ]<ω, n < ω and p ∈ P. Then
there exists q ≤F,n p such that |A � q| < ω with A � q := {r ∈ A : r � q}, where � means
compatible.

Lemma 6.4.9. For F ∈ [κ]<ω, n < ω and p ∈ P the set

DF,n(p) := {s ∈ P : ∀β ∈ F ∃ηβ, νβ ∈ 2<ω

s � β �β s(β) ∩ splitn(p(β)) = {ηβ} ∧ succs(β)(ηβ) = {νβ}}.
is open dense below p.

If F ∈ [κ]<ω, n < ω, p ∈ P and s ∈ DF,n(p) are clear from the context, we write ηsβ
and νs

β for the corresponding ηβ and νβ.

Lemma 6.4.10. Let p ∈ P, F ∈ [κ]<ω, n < ω and s ∈ DF,n(p). Then there exists
p[s] ≤F,n+1 p such that

• supp(p[s]) = supp(p) ∪ supp(s),

• s ≤P p[s] and
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• ∀s� ∈ DF,n(p) : (s
� ≤P p[s] ∧ ∀β ∈ F νs�

β = νs
β) ⇒ s� ≤P s.

Note that p[s] depends on p and s as well as on F and n. For notational simplicity,
however, we will suppress F and n if they are clear from the context.

Let us now turn to the product P2. By ((ṡkβ)β<κ)k∈{0,1} we denote the sequence of
Sacks reals added by P2 and define:

Definition 6.4.11. Let (p0, p1), (q0, q1) ∈ P2, F ∈ [κ]<ω and n < ω. We define
(q0, q1) ≤F,n (p0, p1) iff qk ≤F,n pk for k ∈ {0, 1}.

We will aim to show the following theorem:

Theorem 6.4.12. Assume that ω1 is inaccessible to the reals. Then P2 is captured.

We will need several lemmas for the proof.

Lemma 6.4.13. Let (p0, p1) ∈ P2 and τ̇ be a P2-name for a real. Then there exists
(q0, q1) ≤P2 (p0, p1), (Fn)n<ω ⊆ [κ]<ω and for every n < ω: Ck

n ⊆ 

β∈Fn

2<ω×

β∈Fn

2<ω

finite for k ∈ {0, 1} and An : C
0
n × C1

n → 2n such that:

1. if (η̄, ν̄) ∈ Ck
n then for every β ∈ Fn we have ν̄(β) = η̄(β):iβ for some iβ ∈ {0, 1}.

2. if (η̄, ν̄) ∈ Ck
n then for every β ∈ Fn we have qk [ν̄] � β �β η̄(β) ∈ splitn(qk(β))

where qk [ν̄] is defined inductively such that for every α < κ we have that qk [ν̄] �
α �α qk [ν̄](α) = qk(α)[ν̄(α)] if α ∈ Fn and qk [ν̄] � α �α qk [ν̄](α) = qk(α) else.

3. if s ∈ DFn,n(q
k) then ((ηsβ)β∈Fn , (ν

s
β)β∈Fn) ∈ Ck

n.

4. An = (ρ(ν̄0,ν̄1))(η̄0,ν̄0)∈C0
n , (η̄1,ν̄1)∈C1

n
such that for every ((η̄0, ν̄0), (η̄1, ν̄1)) ∈ C0

n × C1
n

we have (q0 [ν̄0], q1 [ν̄1]) �P2 τ̇ � n = ρ(ν̄0,ν̄1).

Proof. By induction on n < ω we will construct a fusion sequence ((p0n, p
1
n))n<ω such

that ∀n < ω : (p0n+1, p
1
n+1) ≤Fn,n+1 (p

0
n, p

1
n), and the required sets Ck

n and An. The fusion
limit (q0, q1) will have the required properties.

• n = 0: Set (p00, p
1
0) := (p0, p1) and F0 := {0}.

• n → n + 1: Assume that (p0n, p
1
n), Fn, Ck

n−1 and An−1 have already been defined.
Using Lemma 6.4.8 find p̃kn ≤Fn,n+1 pkn and l < ω such that for every β ∈ Fn we
have p̃kn � β �β splitn(p̃kn(β)) ⊆ 2<l.
Enumerate

� 

β∈Fn

2<l ×

β∈Fn

2≤l
�2 as ((η̄0m, ν̄

0
m), (η̄

1
m, ν̄

1
m))m<l̃ for some l̃ < ω.

By induction on m < l̃ construct a ≤Fn,n+1-decreasing sequence ((mp0n,
mp1n))m≤l̃ :

– m = 0: Set (0p0n,mp1n) := (p̃0n, p̃
1
n).

– m → m + 1: Assume that (mp0n,
mp1n) has already been defined. If there

exists sk ∈ DFn,n(
mpkn) such that ∀β ∈ Fn : η̄

k
m(β) = ηs

k

β ∧ ν̄k
m(β) = νsk

β for
k ∈ {0, 1}, we can w.l.o.g. assume that also (s0, s1) �P2 τ̇ � n = ρ for
some ρ ∈ 2n. In this case pick such (s0, s1) and ρ, call it (ms0n,

ms1n) and
ρ(ν̄0m,ν̄1m), respectively, and set (m+1p0n,

m+1p1n) := (mp0n
[ms0n],mp1n

[ms1n]). Else set
(m+1p0n,

m+1p1n) := (mp0n,
mp1n) and ρ(ν̄0m,ν̄1m) is undefined.
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Define (p0n+1, p
1
n+1) := (l̃p0n,

l̃p1n). Clearly we have (p0n+1, p
1
n+1) ≤Fn,n+1 (p

0
n, p

1
n). We

define
Ck

n := {(η̄, ν̄) ∈
	
β∈Fn

2<ω ×
	
β∈Fn

2<ω :

∃s ∈ DFn,n(p
k
n+1) ∀β ∈ Fn η̄(β) = ηsβ ∧ ν̄(β) = νs

β}
and for ((η̄0, ν̄0), (η̄1, ν̄1)) ∈ C0

n × C1
n we set An(((η̄

0, ν̄0), (η̄1, ν̄1))) := ρ(ν̄0m,ν̄1m) iff
((η̄0, ν̄0), (η̄1, ν̄1)) = ((η̄0m, ν̄

0
m), (η̄

1
m, ν̄

1
m)) and ρ(ν̄0m,ν̄1m) is defined. Use a bookkeeping

argument to define Fn+1 ⊇ Fn.

We must show that the fusion limit (q0, q1) has the required properties:

• ad 1.) This is obviously satisfied.

• ad 3.) Let n < ω be arbitrary. Since qk ≤Fn,n+1 pkn+1 and therefore DFn,n(q
k) ⊆

DFn,n(p
k
n+1), this is satisfied by the definition of Ck

n.

• ad 2. and ad 4.) Let n < ω and (η̄k, ν̄k) ∈ Ck
n be arbitrary. Let sk ∈ DFn,n(p

k
n+1)

for k ∈ {0, 1} witness (η̄k, ν̄k) ∈ Ck
n such that (s0, s1) decides τ̇ � n. Let m < l̃

such that (η̄k, ν̄k) = (η̄km, ν̄
k
m). Since we also have DFn,n(p

k
n+1) ⊆ DFn,n(

mpkn), it fol-
lows that there exists mskn ∈ DFn,n(

mpkn) with ((η
mskn
β )β∈Fn , (η

mskn
β )β∈Fn) = (η̄km, ν̄

k
m)

and ρ(ν̄0m,ν̄1m) ∈ 2n such that (ms0n,
ms1n) �P2 τ̇ � n = ρ(ν̄0m,ν̄1m). Furthermore,

we have (m+1p0n,
m+1p1n) := (mp0n

[ms0n],mp1n
[ms1n]) and ρ(ν̄0m,ν̄1m) is defined. Hence

An(((η̄
0, ν̄0), (η̄1, ν̄1))) = ρ(ν̄0m,ν̄1m).

By induction on β ∈ Fn we will now show that qk [ν̄k] � β �β η̄k(β) ∈ splitn(qk(β)):

– β = 0: Since η̄k(0) ∈ splitn(pkn+1(0)) and splitn(pkn+1(0)) = splitn(qk(0)) we
have that η̄k(0) ∈ splitn(qk(0)).

– β > 0: Assume that for every β� ∈ F ∩ β we have qk [ν̄k] � β� �β� η̄k(β�) ∈
splitn(qk(β�)). Therefore qk [ν̄k] � β is well defined. Since qk ≤P

m+1pkn, qk [ν̄k] �
β ∈ DFn∩β,n(

mpkn � β) and therefore, by Lemma 6.4.10, qk [ν̄k] � β ≤P
mskn � β,

it follows that qk [ν̄k] � β �β η̄k(β) ∈ splitn(mpkn(β)). Since qk [ν̄k] � β �β

splitn(qk(β)) = splitn(mpkn(β)) we have qk [ν̄k] � β �β η̄k(β) ∈ splitn(qk(β)).

Since qk [ν̄k] ≤P
mskn for k ∈ {0, 1}, we have (q0 [ν̄0], q1 [ν̄1]) �P2 τ̇ � n = ρ(ν̄0,ν̄1).

Definition 6.4.14. Let q̃k ≤P qk and let m < ω. We define q̃k to be m-okay iff for every
(η̄, ν̄) ∈ Ck

m one of the following two cases applies:

(Case 1.) ∀β ∈ Fm : q̃k [ν̄] � β �β splitq̃k(β)(η̄(β))

(Case 2.) ∃β ∈ Fm ∀β� ∈ Fm ∩ β : q̃k [ν̄] � β� �β� splitq̃k(β�)(η̄(β
�)) and q̃k [ν̄] � β �β η̄(β) /∈ q̃k(β)

and set Ck
m(q̃

k) := {(η̄, ν̄) ∈ Ck
m : ∀β ∈ Fm : q̃k [ν̄] � β �β splitq̃k(β)(η̄(β))}.

We define q̃k to be m-good iff for every n ≥ m we have:
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• q̃k is n-okay

• ∀(η̄, ν̄) ∈ Ck
n(q̃

k) ∀β ∈ κ : q̃k [ν̄] � β �β q̃k [ν̄](β) = qk [ν̄].

• ∀β ∈ κ \ Fm : q̃k � β �β q̃k(β) = qk(β)

Lemma 6.4.15. Let q̃k ≤P qk be m-okay and m∗-good for some m∗ ≥ m. Let (η̄, ν̄) ∈
Ck

m(q̃
k) and let (¯̃η, ¯̃ν) ∈ Ck

m�(q̃k) for some m� > m∗ such that ∀β ∈ Fm : ν̄(β)H ¯̃η(β). Then
there exists a condition q̃k �¯̃ν	 ≤P q̃k such that:

1. q̃k �¯̃ν	 is m� + 1-good.

2. ∀β ∈ Fm : q̃k �¯̃ν	 � β �β q̃k �¯̃ν	(β) ∩ splitm+1(q
k(β)) = q̃k(β) ∩ splitm+1(q

k(β))

In particular, q̃k �¯̃ν	 is m-okay with Ck
m(q̃

k �¯̃ν	) = Ck
m(q̃

k).

3. ∀β ∈ κ : q̃k �¯̃ν	 [ν̄] � β �β q̃k �¯̃ν	 [ν̄](β) = q̃k [¯̃ν](β)
In particular, ∀β ∈ Fm� : q̃k �¯̃ν	 [ν̄] � β �β

¯̃ν H ṡkβ.

Proof. We will define q̃k �¯̃ν	 by induction on β < κ and simultaneously prove (2.)β and (3.)β:

• β = 0: We set q̃k �¯̃ν	(0) :=
�
q̃k(0) \ q̃k(0)[ν̄(0)] � ∪ q̃k(0) [¯̃ν(0)] and see that (2.)0 and

(3.)0 obviously hold true.

• β > 0: Here we distinguish three cases:

– β /∈ Fm� : Wet set q̃k �¯̃ν	(β) := q̃k(β) and see that (3.)β obviously holds true.

– β ∈ Fm� \ Fm: We define q̃k �¯̃ν	(β) :=

�
q̃k (β)[

¯̃ν(β)] if q̃k �¯̃ν	 [ν̄] � β ∈ Gβ

q̃k(β) else
Since q̃k �¯̃ν	 [ν̄] � β is well-defined by (2.)β� for β� < β, q̃k �¯̃ν	 [ν̄] � β ≤P q̃k [¯̃ν] �
β by (3.)β� for β� < β and q̃k is m�-okay, we have that q̃k �¯̃ν	 [ν̄] � β �β

splitq̃k(β)(¯̃η(β)) and hence q̃k �¯̃ν	(β) is well-defined. (3.)β follows immediately.

– β ∈ Fm: Similarly we define

q̃k �¯̃ν	(β) :=

��
q̃k(β) \ q̃k(β)[ν̄(β)] � ∪ q̃k(β) [¯̃ν(β)] if q̃k �¯̃ν	 [ν̄] � β ∈ Gβ

q̃k(β) else
Again, since q̃k �¯̃ν	 [ν̄] � β is well-defined by (2.)β� for β� < β, q̃k �¯̃ν	 [ν̄] � β ≤P
q̃k [¯̃ν] � β by (3.)β� for β� < β and q̃k is m�-okay, we have that q̃k �¯̃ν	 [ν̄] �
β �β splitq̃k(β)(¯̃η(β)) and hence q̃k �¯̃ν	(β) is well-defined. (2.)β and (3.)β follow
immediately.

It remains to be shown that q̃k �¯̃ν	 is m� + 1-good: We clearly have ∀β ∈ κ \ Fm� : q̃k �¯̃ν	 �
β �β q̃k �¯̃ν	(β) = q̃k(β) = qk(β). Now let n ≥ m� + 1 and (¯̂η, ¯̂ν) ∈ Ck

n be arbitrary.
We will simultaneously show by induction on β ∈ Fn that either (Case 1.) or (Case 2.)
applies and q̃k �¯̃ν	 [¯̂ν] � β �β q̃k �¯̃ν	 [¯̂ν](β) = qk [¯̂ν](β) if q̃k �¯̃ν	 [¯̂ν] � β �β splitq̃k �¯̃ν�(β)(

¯̂η(β)):

• β = 0: We have four cases:

– splitq̃k(0)(¯̂η(0)), ν̄(0) H ¯̂η(0) and ¯̃ν(0) H ¯̂η(0): Then clearly splitq̃k �¯̃ν�(0)(
¯̂η(0)).
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– splitq̃k(0)(¯̂η(0)) and ν̄(0) � ¯̂η(0): Again clearly splitq̃k �¯̃ν�(0)(
¯̂η(0)).

Clearly, in both of the above cases we have q̃k �¯̃ν	 [¯̂ν](0) = q̃k [¯̂ν](0) = qk [¯̂ν](0).

– splitq̃k(0)(¯̂η(0)), ν̄(0) H ¯̂η(0) and ¯̃ν(0) � ¯̂η(0): Then ¯̂η(0) /∈ q̃k �¯̃ν	(0).

– ¯̂η(0) /∈ q̃k(0): Then clearly ¯̂η(0) /∈ q̃k �¯̃ν	(0).

• β ∈ Fn \ Fm� : We assume inductively that ∀β� ∈ Fn ∩ β : q̃k �¯̃ν	 [¯̂ν] � β� �β�

splitq̃k �¯̃ν�(β�)(
¯̂η(β�)). Again, since q̃k �¯̃ν	 � β �β q̃k �¯̃ν	(β) = qk(β) it follows that

q̃k �¯̃ν	 [¯̂ν] � β �β splitq̃k �¯̃ν�(β)(
¯̂η(β)) and q̃k �¯̃ν	 [¯̂ν] � β �β q̃k �¯̃ν	 [¯̂ν](β) = qk [¯̂ν](β).

• β ∈ Fm� \ Fm: Again, we assume inductively that ∀β� ∈ Fn ∩ β : q̃k �¯̃ν	 [¯̂ν] � β� �β�

splitq̃k �¯̃ν�(β�)(
¯̂η(β�)). We have three cases:

– ∀β� ∈ Fm� ∩ β : ¯̃ν(β�) H ¯̂η(β�) and ¯̃ν(β) H ¯̂η(β): Then q̃k �¯̃ν	 [¯̂ν] � β ≤P q̃k �¯̃ν	 [ν̄] � β
and hence q̃k �¯̃ν	 [¯̂ν] � β �β splitq̃k �¯̃ν�(β)(

¯̂η(β)).

– ∃β� ∈ Fm� ∩ β : ¯̃ν(β�) � ¯̂η(β�): Let β∗ := min{β� ∈ Fm� ∩ β : ¯̃ν(β�) � ¯̂η(β�)}.
Since q̃k �¯̃ν	 [¯̂ν] � β∗ �β∗ splitq̃k �¯̃ν�(β∗)(

¯̂η(β∗)) and q̃k �¯̃ν	 [¯̂ν] � β∗ ≤P q̃k �¯̃ν	 [ν̄] � β∗,
it follows that β∗ ∈ Fm and ν̄(β∗) � ¯̂η(β∗). Hence q̃k �¯̃ν	 [¯̂ν] � β and q̃k �¯̃ν	 [ν̄] � β
are incompatible, and again q̃k �¯̃ν	 [¯̂ν] � β �β splitq̃k �¯̃ν�(β)(

¯̂η(β)).

Clearly, in both of the above cases we have q̃k �¯̃ν	 [¯̂ν] � β �β q̃k �¯̃ν	 [¯̂ν](β) = q̃k [¯̂ν](β) =
qk [¯̂ν](β).

– ∀β� ∈ Fm�∩β : ¯̃ν(β�)H ¯̂η(β�) and ¯̃ν(β) � ¯̂η(β): Then q̃k �¯̃ν	 [¯̂ν] � β ≤P q̃k �¯̃ν	 [ν̄] � β
and q̃k �¯̃ν	 [¯̂ν] � β �β

¯̂η /∈ q̃k �¯̃ν	(β).

• β ∈ Fm \ {0}: Again, we assume inductively that ∀β� ∈ Fn ∩ β : q̃k �¯̃ν	 [¯̂ν] � β� �β�

splitq̃k �¯̃ν�(β�)(
¯̂η(β�)) and q̃k �¯̃ν	 [¯̂ν] � β ≤P q̃k [¯̂ν] � β. We have four cases:

– q̃k [¯̂ν] � β �β splitq̃k(β)(¯̂η(β)), ∀β� ∈ Fm�∩β : ¯̃ν(β�)H ¯̂η(β�) and ¯̃ν(β)H ¯̂η(β): Then
q̃k �¯̃ν	 [¯̂ν] � β ≤P q̃k �¯̃ν	 [ν̄] � β and therefore q̃k �¯̃ν	 [¯̂ν] � β �β splitq̃k �¯̃ν�(β)(

¯̂η(β)).

– q̃k [¯̂ν] � β �β splitq̃k(β)(¯̂η(β)) and ∃β� ∈ Fm� ∩ β : ¯̃ν(β�) � ¯̂η(β�): Similar
to above it follows that q̃k �¯̃ν	 [¯̂ν] � β and q̃k �¯̃ν	 [ν̄] � β are incompatible and
therefore q̃k �¯̃ν	 [¯̂ν] � β �β splitq̃k �¯̃ν�(β)(

¯̂η(β)).

Clearly, in both of the above cases we have q̃k �¯̃ν	 [¯̂ν] � β �β q̃k �¯̃ν	 [¯̂ν](β) = q̃k [¯̂ν](β) =
qk [¯̂ν](β).

– q̃k [¯̂ν] � β �β splitq̃k(β)(¯̂η(β)), ∀β� ∈ Fm� ∩ β : ¯̃ν(β�) H ¯̂η(β�) and ¯̃ν(β) � ¯̂η(β):
Then q̃k �¯̃ν	 [¯̂ν] � β ≤P q̃k �¯̃ν	 [ν̄] � β and therefore q̃k �¯̃ν	 [¯̂ν] � β �β

¯̂η /∈ q̃k �¯̃ν	(β).

– q̃k [¯̂ν] � β �β
¯̂η(β) /∈ q̃k(β): Then clearly q̃k �¯̃ν	 [¯̂ν] � β �β

¯̂η(β) /∈ q̃k �¯̃ν	(β).

W.l.o.g. we can assume that supp(q0) = supp(q1). Let mos : supp(qk) → α∗ denote
the transitive collapse of supp(qk) with α∗ < ω1, let π : α∗ → supp(qk) denote the
uncollapse, and let y ∈ ωω be arbitrary. Code the ‘transitive collapse’ of (Fn)n<ω,
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((Ck
n)n<ω)k∈{0,1} and (An)n<ω as a real z ∈ ωω. Let ((ċkβ)β<α∗)k∈{0,1} be a sequence of

P2-names for reals such that �P2 ċkβ(n) = i iff η:i H ṡkπ(β) for some η ∈ splitn(qk(π(β))).

Lemma 6.4.16. Let Cα∗ :=



β<α∗ C denote the finite support product of α∗ many Co-
hen forcings. Then there exists (r0, r1) ≤P2 (q0, q1) such that (r0, r1) �P2 ((ċkβ)β<α∗)k∈{0,1} is
(L[z],C2

α∗)-generic ∧ τ̇ ∈ L[z][((ċkβ)β<α∗)k∈{0,1}].

Proof. For notational simplicity let us assume that supp(qk) = α∗, i.e. mos is the identity.
Let (Dm)m<ω enumerate all dense open subsets of C2

α∗ contained in L[z]. Working in V
we will now construct by induction on m < ω a decreasing sequence ((q0m, q

1
m))m<ω and

an increasing sequence of natural numbers (nm)m<ω such that:

1. ∀m < ω : supp(qkm) = α∗

2. ∀m < ω : qkm is nm-good.

3. ∀m < ω ∀m� < m ∀β ∈ Fnm� : q
k
m � β �β qkm(β) ∩ splitnm�+1(q

k(β)) = qkm�(β) ∩
splitnm�+1(q

k(β))

4. ∀m < ω : (q0m+1, q
1
m+1) �P2 ((ċkβ � nm+1)β∈Fnm+1

)k∈{0,1} ∈ Dm

Hence:

• If m = 0 we set (q00, q
1
0) := (q0, q1) and n0 := 0. (1.) and (2.) are obviously

satisfied. (3.) and (4.) are vacuously true.

• m → m + 1: Assume that (q0m, q
1
m) and nm have already been defined and satisfy

(1.) - (4.). Enumerate C0
nm

(q0m)×C1
nm

(q1m) as (((η̄0l , ν̄0
l ), (η̄

1
l , ν̄

1
l )))l<l̃ for some l̃ < ω.

By induction on l < l̃ we will now construct a decreasing sequence ((lq0m,
lq1m))l≤l̃

and an increasing sequence of natural numbers lnm such that lqkm is nm-okay with
Ck

nm
(lqkm) = Ck

nm
(qkm) and lnm-good:

– l = 0: We set (0q0m,
0q1m) := (q0m, q

1
m) and 0nm := nm. Obviously, 0qkm is

nm-good by assumption.

– l → l + 1: Assume that (lq0m,
lq1m) and lnm have already been defined. Since

lqkm is nm-okay with Ck
nm

(lqkm) = Ck
nm

(qkm), we see that lqkm
[ν̄kl ] is well-defined.

Let sk ∈ DFlnm
,lnm

(qk) with sk ≤P
lqkm

[ν̄kl ]. Since lqkm is lnm-good, this im-

plies that ((ηs
k

β )β∈Flnm
, (νsk

β )β∈Flnm
) ∈ Ck

lnm
(lqkm) and ∀β ∈ Fnm : νk

l (β) H η
sk

β .
Furthermore, we have

∀β ∈ κ : lqkm
[(νs

k

β )β∈Flnm
] � β �β

lqkm
[(νs

k

β )β∈Flnm
]
(β) = qk

[(νs
k

β )β∈Flnm
]
(β).

We see that lqkm
[(νs

k

β )β∈Flnm
] �P (ċkβ � (lnm +1))β∈Flnm

= p̃k for some condition
p̃k ∈ Cα∗ . Let (lp̂0, lp̂1) ≤C2

α∗ (p̃0, p̃1) such that (lp̂0, lp̂1) ∈ Dm. W.l.o.g. we
can assume that there exists lñ > lnm such that ∀k ∈ {0, 1} : dom(lp̂k) =

93



Flñ ∧ ∀β ∈ Flñ dom(lp̂k(β)) = lñ+1. Now we can easily find skl ∈ DFlñ
,lñ(q

k)

with skl ≤P
lqkm

[(νs
k

β )β∈Flnm
]
such that skl �P (ċkβ � (lñ + 1))β∈Flñ

= lp̂k. Note

that ∀β ∈ Fnm : ν̄k
l (β) H η

skl
β .

We can now apply Lemma 6.4.15 with q̃k := lqkm, m := nm, m∗ := lnm,
m� := lñ, (η̄, ν̄) := (η̄kl , ν̄

k
l ) and (¯̃η, ¯̃ν) := ((η

skl
β )β∈Flñ

, (ν
skl
β )β∈Flñ

) , and set

l+1qkm := lqkm
�(νs

k
l

β )β∈Flñ
	

and l+1nm := lñ + 1. By Lemma 6.4.15 we have that
l+1qkm is nm-okay with Ck

nm
(l+1qkm) = Ck

nm
(lqkm) = Ck

nm
(qkm) and l+1nm-good.

We set qkm+1 :=
l̃qkm and nm+1 :=

l̃nm. We immediately see that (1.) and (2.) are
satisfied.
ad (3.): Using induction on l < l̃ and Lemma 6.4.15 it follows that

∀β ∈ Fnm : qkm+1 � β �β qkm+1(β) ∩ splitnm+1(q
k(β)) = qkm(β) ∩ splitnm+1(q

k(β)).

But this implies

∀β ∈ Fnm� : q
k
m+1 � β �β qkm+1(β) ∩ splitnm�+1(q

k(β)) = qkm(β) ∩ splitnm�+1(q
k(β))

for every m� < m + 1. Using the induction hypothesis for qkm and noting that
qkm+1 ≤P qkm we can deduce

∀β ∈ Fnm� : q
k
m+1 � β �β qkm+1(β) ∩ splitnm�+1(q

k(β)) = qkm�(β) ∩ splitnm�+1(q
k(β))

for every m� < m+ 1.
ad (4.): Let s̃k ∈ DFnm ,nm(q

k) with s̃k ≤P qkm+1 be arbitrary. Hence, there exists
l < l̃ with (((ηs̃

0

β )β∈Fnm
, (ν s̃0

β )β∈Fnm
), ((ηs̃

1

β )β∈Fnm
, (ν s̃1

β )β∈Fnm
)) = ((η̄0l , ν̄

0
l ), (η̄

1
l , ν̄

1
l )).

By Lemma 6.4.15 we see that l+1qkm
[(ν s̃

k

β )β∈Fnm
)] ≤P

lqkm
[(ν

skl
β )β∈Flñ

]
and hence s̃k ≤P

lqkm
[(ν

skl
β )β∈Flñ

]
. Since lqkm

[(ν
skl
β )β∈Flñ

]
decides (ċkβ � l+1nm)β∈Flñ

and skl ≤P
lqkm

[(ν
skl
β )β∈Flñ

]
,

we have that

(lq0m
[(ν

s0l
β )β∈Flñ

]
, lq1m

[(ν
s1l
β )β∈Flñ

]
) �P2 ((ċkβ � l+1nm)β∈Flñ

)k∈{0,1} = (lp̂0, lp̂1) ∈ Dm

and therefore (s̃0, s̃1) �P2 ((ċkβ � nm+1)β∈Fnm+1
)k∈{0,1} ∈ Dm.

Now we define rk such that for every β < α∗ we have rk � β �β rk(β) =
�

m<ω q
k
m(β)

(and rk � β �β rk(β) = ✶S for β ∈ κ \ α∗). We will show by induction on β < α∗ that
rk � β �β rk(β) ∈ S:

• β = 0: Let η ∈ rk(0) be arbitrary and w.l.o.g. we can assume that η ∈ splitl(qk(0))
for some l < ω. Let m∗ := min{m < ω : l ≤ nm}. Let η̃ ∈ qkm∗(0) ∩ splitnm∗ (q

k(0))

such that ηHη̃. Since qkm∗ is, in particular, nm∗-okay, we have splitqk
m∗ (0)(η̃). By (3.)

it follows that splitqk
m� (0)(η̃) for every m� > m∗. Hence, we can deduce splitrk(0)(η̃)

and therefore rk(0) ∈ S.
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• β > 0: We assume that for every β� < β we have rk � β� �β� rk(β�) ∈ S. Hence,
rk � β is a condition and ∀m < ω : rk � β ≤P qkm � β. Towards a contradiction
assume that there exists s ≤P rk � β and η ∈ 2<ω such that s �β η ∈ rk(β)∧∀η� ∈
rk(β) : η H η� ⇒ ¬ splitrk(β)(η�). W.l.o.g. s �β η ∈ splitl(qk(β)) for some l < ω. Let
m∗ := {m < ω : l ≤ nm ∧ β ∈ Fm}. Let s� ∈ DFm∗∩β,nm∗ (q

k � β) with s� ≤P s and
η̃ ∈ 2<ω with η H η̃ such that s� �β η̃ ∈ qkm∗(β) ∩ splitnm∗ (q

k(β)). Since qkm∗ is nm∗-

okay and s� ≤P qkm∗
[(νs

�
β� )β�∈Fm∗∩β ] , we have qkm∗

[(νs
�

β� )β�∈Fm∗∩β ] � β �β splitqk
m∗ (β)(η̃).

By (4.) we have s� �β splitqk
m� (β)(η̃) for every m� > m∗. But this implies s� �β

splitrk(β)(η̃) which is a contradiction.

It remains to be shown that (r0, r1) �P2 τ̇ ∈ L[z][((ċkβ)β<α∗)k∈{0,1}]. But this immediately
follows, because, given ((ċkβ)β<α∗)k∈{0,1}, one can inductively reconstruct ((ṡkβ)β<α∗)k∈{0,1}
using (Fn)n<ω and ((Ck

n)n<ω)k∈{0,1} , and τ̇ can be reconstructed from ((ṡkβ)β<α∗)k∈{0,1}
and (An)n<ω.

Proof of Theorem 6.4.12. Let (p0, p1) ∈ P2, τ̇ a P2-name for a real and y ∈ ωω be
arbitrary. Using Lemma 6.4.13, Lemma 6.4.15 and Lemma 6.4.16 we can deduce that
there exists z ∈ ωω, α∗ < ω

L[y,z]
1 and (q0, q1) ≤P2 (p0, p1) such that

(q0, q1) �P2 ∃H : H is (L[y, z],C2
α∗)-generic ∧ τ̇ ∈ L[y, z][H].

This shows that P2 is captured.

Lemma 6.4.17. Let θ > ω be a sufficiently large, regular cardinal and let M ≺ H(θ)
be a countable, elementary submodel such that P ∈ M . Let g ∈ V be an (M,P)-generic
filter and p ∈ P ∩M be a condition. Then there exists q ≤P p such that q �P g × Ġ is
(M,P2)-generic.

Proof. We proceed very similar to Lemma 6.4.13: Let (Dn)n<ω enumerate all the dense
open subsets of P2 contained M . Working in M we will construct by induction on n < ω
a decreasing sequence (p0n)n<ω ⊆ g and a fusion sequence (p1n)n<ω ⊆ P ∩ M such that
∀n < ω : p1n+1 ≤Fn,n+1 p1n and p1n+1 �P ∃p� ∈ Ġ : (p0n+1, p

�) ∈ Dn ∩ M . Then the fusion
limit q will have the required property.

• If n = 0 let p00 ∈ g be some condition, and set p10 := p and F0 := {0}.
• n → n+ 1: Assume that p0n, p1n and Fn have already been defined. Using Lemma

6.4.8 we find p̃1n ≤Fn,n+1 p
1
n and l < ω such that ∀β ∈ Fn : p̃

1
n � β �β splitn(p̃1n(β)) ⊆

2<l. Now enumerate



β∈Fn
2<l × 


β∈Fn
2≤l as (η̄m, ν̄m)m<l̃ for some l̃ < ω. By

induction on m < l̃ construct a decreasing sequence (mp0n)m≤l̃ ⊆ g and a ≤Fn,n+1-
decreasing sequence (mp1n))m≤l̃ ⊆ M :

– m = 0: Set 0p0n := p0n and 0p1n := p̃1n.

– m → m + 1: Assume that mp0n and mp1n have already been defined. If there
exists s1 ∈ DFn,n(

mp1n) such that ∀β ∈ Fn : η̄m(β) = ηs
1

β ∧ ν̄m(β) = νs1

β ,
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then there exist s0 ∈ P with s0 ∈ g, s0 ≤P
mp0n and (s0, s1) ∈ Dn. 14

In this case pick such (s0, s1), call it (ms0n,
ms1n), and set m+1p0n := s0 and

m+1p1n := mp1n
[ms1n]. Else set (m+1p0n,

m+1p1n) := (mp0n,
mp1n).

We clearly have m+1p0n ∈ g, m+1p1n ∈ M , m+1p0n ≤P
mp0n and m+1p1n ≤Fn,n

mp1n
by Lemma 6.4.10.

We set p0n+1 := l̃p0n and p1n+1 := l̃p1n and note that clearly p0n+1 ∈ g, p1n+1 ∈ M ,
p0n+1 ≤P p0n and p1n+1 ≤Fn,n p1n. Define Fn+1 ⊇ Fn using a bookkeeping argument.
It remains to be shown that p1n+1 has the required properties. Now working in V

let s ∈ DFn,n(p
1
n+1) be arbitrary. Hence, there exists m < l̃ such that (η̄m, ν̄m) =

((ηsβ)β∈Fn , (ν
s
β)β∈Fn). Since DFn,n(p

1
n+1) ⊆ DFn,n(

mp1n) and M is an elementary
submodel, there exists s� ∈ DFn,n(

mp1n) ∩M with (η̄m, ν̄m) = ((ηs
�

β )β∈Fn , (ν
s�
β )β∈Fn).

Therefore, we defined ms0n ∈ g and ms1n ∈ DFn,n(
mp1n) with ((η

ms1n
β )β∈Fn , (ν

ms1n
β )β∈Fn) =

(η̄m, ν̄m) and (ms0n,
ms1n) ∈ Dn in the construction above. Since m+1p1n = mp1n

[ms1n]

and s ≤P p1n+1 ≤P
m+1p1n, we have s ≤P

ms1n by Lemma 6.4.10. Hence s �P
ms1n ∈

Ġ ∧ (p0n+1,
ms1n) ∈ Dn ∩M .

6.5 Symmetric Δ1
3-relations

We start with the following definition:

Definition 6.5.1. Let P be a forcing notion and let E ⊆ ωω × ωω be a symmetric
relation. We call E a P-absolute Δ1

3-relation iff E both has a Σ1
3- and a Π1

3-definition,
which remain equivalent in every P-generic extension. We call E thin iff there is no
perfect subset of pairwise E-incompatible reals.
Furthermore, we define FE ⊆ ωω ×ωω to be the smallest equivalence relation containing
E. 15 We call the equivalence classes of FE the connected components of E.

We will need the following lemma, which implies that symmetric, P-absolute Δ1
3-

relations are absolute between V and V P.

Lemma 6.5.2. Assume that V � ‘The reals are A-closed’ and let P be a forcing notion
that is captured by forcing notions of size < ωV

1 . Then Σ1
3-absoluteness holds between

V and V P.

Proof. Let ϕ(x) be a Σ1
3-definition and let ψ(x, y) be a Π1

2-definition such that ϕ(x) is
equivalent to ∃y ∈ ωω : ψ(x, y). Let a ∈ ωω ∩ V and assume that V P � ϕ(a). Hence,
there exists b ∈ ωω ∩ V P with V P � ψ(a, b).
Since P is captured by forcing notions of size < ωV

1 , there exist z ∈ ωω ∩ V , Q ∈ L[a, z]
with |Q| < ωV

1 and H ∈ V P which is (L[a, z],Q)-generic such that b ∈ L[a, z][H]. By
Σ1

2-absoluteness we have L[a, z][H] � ψ(a, b) and therefore L[a, z][H] � ϕ(a). Hence,

14To see this, note that the set En := {p� ∈ P : ∃s� ≤P s1 (p�, s�) ∈ Dn} is open dense, hence there exists
a p� ∈ En ∩ g. Set s0 := p� and w.l.o.g. assume that s0 ≤P mp0n and (s0, s1) ∈ Dn.

15Clearly, if E is a Σ1
3-relation, FE is a Σ1

3-relation.
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there exists q ∈ H such that q �L[a,z]
Q ϕ(a). Since |Q| < ωV

1 and {a, z}8 exists, we can
find an (L[a, z],Q)-generic filter H � containing q in V . Hence L[a, z][H �] � ϕ(a) and, by
Σ1

3-upward absoluteness, we have V � ϕ(a).

The following arguments were inspired by [Hjo93] and can also be found in [CS21].

Lemma 6.5.3. Assume that V � ‘The reals are A-closed’ and P is a forcing notion such
that P × P is captured. If E is a thin, symmetric Π1

3-relation, p ∈ P a condition and τ̇
a P-name for a real such that p �P τ̇ /∈ V , then

D := {p� ∈ P : (p�, p�) �P×P τ̇ Ġ1 E τ̇ Ġ2}

is dense below p, where Ġ1× Ġ2 denotes the P×P-name for the (V,P×P)-generic filter.

Proof. Towards a contradiction, assume that D is not dense below p. Pick a condition
q ≤P p such that for any r ≤P q, there are r0, r1 ≤P r with (r0, r1)�P×P¬ τ̇ Ġ1 E τ̇ Ġ2 .
Let θ > ω be a regular and sufficiently large cardinal, let M ≺ H(θ) be a countable,
elementary submodel containing all the relevant parameters, and let mos : M → N
denote the Mostowski collapse. Let P̄ := mos(P), q̄ := q and ˙̄τ := mos(τ̇). Working in
V let (Dn)n<ω enumerate all dense open subsets of P̄× P̄ in N . We can now inductively
construct a tree (q̄s)s∈2<ω of conditions in P̄ such that:

1. q̄∅ = q̄

2. q̄s$i ≤P̄ q̄s for i ∈ {0, 1}
3. (q̄s$0, q̄s$1) �P̄×P̄ ¬ ˙̄τ ġ1 E ˙̄τ ġ2 16

4. (q̄s, q̄t) ∈ D0 ∩ · · · ∩Dn−1 for s, t ∈ 2n with s 1= t

For x ∈ 2ω, we define gx := {p̄� ∈ P̄ : ∃n < ω q̄x�n ≤P p̄�}. Now it easily follows that for
x, y ∈ ωω with x 1= y the filter gx × gy is (N, P̄× P̄)-generic with

N [gx × gy] � ¬ τ̄ gx E τ̄ gy .

Since ∀x� ∈ ωω ∩ N [gx × gy] : x
� 8 ∈ ωω ∩ N [gx × gy] by Lemma 6.2.3, we have Σ1

2-
absoluteness between N [gx × gy] and V , hence V � ¬ τ̄ gx E τ̄ gy by Σ1

3-upward absolute-
ness. Since the map 2ω 3 x .→ τ gx is continuous and injective (since N � ‘ q̄ �P̄ ˙̄τ /∈ V ’),
there exists a perfect set of pairwise E-incompatible reals. This, however, contradicts
our assumption that E is thin.

We can now prove the following theorem:

16Here, ġ1 × ġ2 denotes the P̄× P̄-name for the (N, P̄× P̄)-generic filter.
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Theorem 6.5.4. Assume that V � ‘The reals are A-closed’, let P denote a countable
support iteration of Sacks forcing and let E be a thin, symmetric, P-absolute Δ1

3-relation.
Then V P � ∀x ∈ ωω \ V ∃y ∈ ωω ∩ V : xE y.
In particular, V P � ‘ ∀x ∈ ωω ∃y ∈ ωω ∩ V : xFE y ’, i.e. no new connected components
of E appear in V P.

Proof. Let p ∈ P be a condition and τ̇ a P-name for a real such that p �P τ̇ /∈ V . Since
P× P is captured by Theorem 6.4.12, we can use Lemma 6.5.3 to find q ≤P p such that
(q, q) �P×P τ̇ Ġ1 E τ̇ Ġ2 .
Let θ > ω be a regular and sufficiently large cardinal, let M ≺ H(θ) be a countable,
elementary submodel containing all the relevant parameters and let g ∈ V be an (M,P)-
generic filter containing q. By Lemma 6.4.17 we can now find r ≤P q such that

r �P g × (Ġ ∩M) is (M,P× P)-generic.

Let G be a (V,P)-generic filter containing r, and let mos : M → N denote the Mostowski
collapse. We can now deduce that mos[g] × mos[G ∩ M ] is a (N,mos(P) × mos(P))-
generic filter with N [mos[g] × mos[G ∩ M ]] � ‘ τ̇ g E τ̇G ’. Working in V P we see that
∀x ∈ ωω ∩N [mos[g]×mos[G∩M ]] : x8 ∈ ωω ∩N [mos[g]×mos[G∩M ]] by Lemma 6.2.3,
hence we have Σ1

2-absoluteness between N [mos[g]×mos[G∩M ]] and V P. By Σ1
3-upward

absoluteness we get V P � ‘ τ̇ g E τ̇G ’ with τ̇ g ∈ V .
Since P is captured by forcing notions of size < ωV

1 by Theorem 6.3.2, we have Σ1
3-

absoluteness between V and V P by Lemma 6.5.2, hence E and, therefore, FE are abso-
lute. Together with the first part, this finishes the proof.

6.6 Regularity properties

In this section we will not assume the existence of large cardinals. We start with the
following definition:

Definition 6.6.1. Recall that a set X ⊆ 2ω has the Baire property iff there exists an
open set O ⊆ 2ω such that X9O = X \ O ∪ O \X is meager. Similarly, recall that X
is Lebesgue measurable iff there exists a Gδ set B ⊆ 2ω such that X9B is null.
For a collection Γ of subsets of 2ω we write BP(Γ) to denote that every set in Γ has the
Baire property, and LM(Γ) to denote that every set in Γ is Lebesgue measurable.

We will be particularly interested in the cases where Γ is the collection of Δ1
2 or Σ1

2

subsets of 2ω. The following characterizations are well known (see Chapter 9.2 and
Chapter 9.3 in [BJ95]).

Theorem 6.6.2. BP(Δ1
2) holds iff for every x ∈ ωω there exists a Cohen real over L[x],

and BP(Σ1
2) holds iff for every x ∈ ωω there is a comeager set of Cohen reals over L[x].

Analogously, LM(Δ1
2) holds iff for every x ∈ ωω there exists a random real over L[x],

and LM(Σ1
2) holds iff for every x ∈ ωω there is a measure one set of random reals over

L[x].
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The next theorem shows how BP(Δ1
2) can be preserved:

Theorem 6.6.3. Let P be uniformly captured by Cohen forcing and assume that V �
BP(Δ1

2). Then also V P � BP(Δ1
2).

Proof. By the above theorem, BP(Δ1
2) holds iff there exists a Cohen real over L[x] for

every real x ∈ ωω. Moreover, note that if c is a Cohen real over L[x, y], then it is also a
Cohen real over L[x]. Now assume that p ∈ P and τ̇ is a P-name for a real. By uniform
capturing, there exist z ∈ ωω and a P-name ċ such that for every y ∈ ωω, there is a
q ≤P p with

q �P ċ is a Cohen real over L[z, y] ∧ τ̇ ∈ L[z][ċ].

Let c0 be a Cohen real over L[z]. If we set y := c0, then we find q ≤P p such that

q �P ċ is a Cohen real over L[z, c0] ∧ τ̇ ∈ L[z][ċ].

By mutual genericity, we have

q �P c0 is a Cohen real over L[z][ċ] ⊇ L[τ̇ ].

This finishes the proof.

Similarly, for LM(Δ1
2):

Theorem 6.6.4. Let P be uniformly captured by random forcing and assume that
V � LM(Δ1

2). Then also V P � LM(Δ1
2).

The next theorem shows how BP(Σ1
2) can be preserved:

Theorem 6.6.5. Let P be uniformly captured by Cohen forcing and assume that V �
BP(Σ1

2). Then also V P � BP(Σ1
2).

Proof. By Theorem 6.6.2, BP(Σ1
2) holds iff there is a comeager set of Cohen reals over

L[x] for every real x ∈ ωω. Equivalently,
B is meager, where B is the collection of all

Borel meager subsets of 2ω coded in L[x]. Let p ∈ P and τ̇ be a P-name for a real. Again,
by uniform capturing there exist z ∈ ωω and a P-name ċ with the required properties.
Consider the collection B̃ of all Borel meager subsets of 2ω × 2ω coded in L[z]. By our
assumption, there exists a Borel meager set B ⊆ 2ω×2ω coded in V such that

 B̃ ⊆ B.
Let B be coded by y ∈ ωω. Then there is q ≤P p such that

q �P ċ is a Cohen real over L[z, y] ∧ τ̇ ∈ L[z][ċ].

Let G be a (V,P)-generic filter with q ∈ G. Working in V [G], let X := {x ∈ 2ω :
(ċG, x) ∈ B}. We claim that X is meager and contains every Borel meager set coded
in L[τ̇G]. To see that X is meager, recall that by the Kuratowski-Ulam Theorem (see
Chapter 15 in [Oxt80]) there exists a comeager set Y ⊆ 2ω coded in L[z, y], such that
for every u ∈ Y the set {x ∈ 2ω : (u, x) ∈ B} is meager. Since ċG is a Cohen real over
L[z, y], we have ċG ∈ Y and hence X is indeed meager. Now assume that Z is a Borel
meager set coded in L[z][ċG] ⊇ L[τ̇G]. Then there is a Borel meager set B� ⊆ 2ω × 2ω

coded in L[z] such that Z = {x ∈ 2ω : (ċG, x) ∈ B�}. Since B� ⊆ B, we have Z ⊆ X.
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Similarly, for LM(Δ1
2):

Theorem 6.6.6. Let P be uniformly captured by random forcing and assume that
V � LM(Σ1

2). Then also V P � BP(Σ1
2).

Next, we give some examples of forcing notions that are captured also without the
existence of large cardinals:

Example 6.6.7. Assuming BP(Δ1
2), Sacks forcing S is uniformly captured by Cohen

forcing.

Proof. Assume that p ∈ S and τ̇ is an S-name for a real. Using continuous reading of
names, there exist p� ≤P p and f : [p�] → 2ω continuous such that p� �S τ̇ = f(ẋgen),
and let p� and f be coded by some real z ∈ ωω. Furthermore, let η : [p�] → 2ω be the
canonical homeomorphism, let ċ be an S-name for η(ẋgen) and let y ∈ ωω be arbitrary.
Consider the forcing A consisting of finite subtrees of p� ordered by end-extension. Then
A ∈ L[z, y] is a countable forcing notion. Since there is a Cohen real over L[z, y], there
also exists an (L[z, y]),A)-generic filter G. It is easy to see that q :=


G ⊆ p is a perfect

tree such that for every branch x ∈ [q] we have that η(x) is a Cohen real over L[z, y].
Since this statement is absolute, we have

q �S ċ is a Cohen real over L[z, y] ∧ τ̇ ∈ L[z][ċ].

This finishes the proof.

Example 6.6.8. Assuming BP(Δ1
2), any countable support product or iteration of Sacks

forcing is uniformly captured by Cohen forcing.

Proof. Let us consider the product first: Let P be a countable support product of Sacks
forcing, p̄ ∈ P and τ̇ a P-name for a real. Using continuous reading of names, there exist
p̄� ≤P p̄ and f :



i∈supp(p̄�)[p̄

�(i)] → ωω continuous such that p̄� �P τ̇ = f(ẋgen � supp(p̄�)).
W.l.o.g. we can assume that supp(p̄�) is a countable ordinal, and let z ∈ ωω code p̄� and
f . Furthermore, let η :



i∈supp(p̄�)[p̄

�(i)] → 2ω be a canonical homeomorphism, let ċ be a
P-name for η(ẋgen � supp(p̄�)) and let y ∈ ωω be arbitrary. For every i ∈ supp(p̄�), let Ai

be the forcing notion consisting of finite subtrees of p̄�(i) ordered by end-extension and
we define A to be the finite support product of (Ai)i∈supp(p̄�). Hence, A is a countable
forcing notion in L[z, y]. Since we assume BP(Δ1

2), there exists an (L[z, y],A)-generic
filter adding a subtree q̄(i) of p̄�(i) for every i ∈ supp(p̄�). It is easy to see that for any
x̄ ∈ 


i∈supp(p̄�) q̄(i), we have that η(x̄) is a Cohen real over L[z, y]. Since this statement
is absolute, we have

q̄ �P ċ is a Cohen real overL[z, y] ∧ τ̇ ∈ L[z][ċ].

This finishes the proof for the product.

The proof for the iteration is essentially the same: Let P� denote a countable support
iteration of Sacks forcing, p̄ ∈ P� and τ̇ a P�-name for a real. It follows that there exist
p̄� ≤P� p̄, a continuous function f : (2ω)supp(p̄�) → ωω and ϕ : (2ω)supp(p̄�) → (2ω)supp(p̄�)

with the following properties (see [FS18a]):
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1. p̄� �P� τ̇ = f(ϕ(ẋgen � supp(p̄�))).

2. For any condition r̄ in the countable support product of S along supp(p̄�), there
exists q̄ ≤P� p̄� such that q̄ �P� ϕ(ẋgen � supp(p̄�)) ∈ 


i∈supp(p̄�)[r̄(i)].

Again, w.l.o.g. we can assume that supp(p̄�) is a countable ordinal, and let z ∈ ωω

code p̄�, f and ϕ. Let η : (2ω)supp(p̄�) → 2ω be a canonical homeomorphism, let ċ be a
P�-name for η(ϕ(ẋgen � supp(p̄�))), and let y ∈ ωω be arbitrary. Similar to above, we use
a Cohen real over L[z, y] to find r̄ in the countable support product of S along supp(p̄�)
such that for any x̄ ∈ 


i∈supp(p̄�)[r(i)] we have that η(x̄) is a Cohen real over L[z, y].
Since this statement is absolute, we can use (2.) to find q̄ ≤P� p̄� such that

q̄ �P� ċ is a Cohen real over L[z, y] ∧ τ̇ ∈ L[z][ċ].

This finishes the proof for the iteration

Example 6.6.9. Assuming BP(Δ1
2), Silver forcing SI is uniformly captured by Cohen

forcing.

Proof. Let p ∈ SI and τ̇ be an SI-name for a real. Using continuous reading of names, we
find p� ≤SI p and f : 2ω → 2ω continuous such that p� �SI τ̇ = f(ẋgen), and let p� and f be
coded by a real z ∈ ωω. Define η : 2ω → 2ω such that η(x)(n) = i iff x(m) = i where m is
the n’th element of ω\dom(p�). Let ċ be a SI-name for η(ẋgen) and let y ∈ ωω be arbitrary.
Consider the forcing A := {s ∈ Fin(ω, 2) : ∃n < ω dom(s) ⊆ n ∧ p� � n ⊆ s} ordered by
end-extension and note that A ∈ L[z, y]. Since there is a Cohen real over L[z, y], there
also exists an (L[z, y]),A)-generic filter G. It is easy to see that q :=


G ∈ SI with

q ≤SI p
�, and that η(x) is a Cohen real over L[z, y] for every x ⊇ q. Since this statement

is absolute, we have

q �SI ċ is a Cohen real over L[z, y] ∧ τ̇ ∈ L[z][ċ].

This finishes the proof.

Example 6.6.10. Assuming BP(Σ1
2), Miller forcing MI is uniformly captured by Cohen

forcing.

Proof. Let p ∈ MI and τ̇ be an MI-name for a real. Using continuous reading of names,
there exist p� ≤MI p and f : [p�] → 2ω continuous such that p� �MI τ̇ = f(ẋgen), and let p�
and f be coded by some real z ∈ ωω . Let η : [p�] → ωω be the canonical homeomorphism,
let ċ be an MI-name for η(ẋgen) and let y ∈ 2ω be arbitrary. Since BP(Σ1

2) holds, the set
of Cohen reals C ⊆ ωω over L[z, y] is comeager. In particular, also η−1(C) is comeager
in [p�] and therefore, contains the branches of a superperfect tree q ≤MI p

�. It is easy
to see that for every x ∈ [q] we have that η(x) is a Cohen real over L[z, y]. Since this
statement is absolute, we have

q �MI ċ is a Cohen real over L[z, y] ∧ τ̇ ∈ L[z][ċ].

This finishes the proof.
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Example 6.6.11. Assuming LM(Σ1
2), Sacks forcing S is uniformly captured by random

forcing.

Proof. Assume that p ∈ S and τ̇ is an S-name for a real. Using continuous reading of
names, there exist p� ≤P p and f : [p�] → 2ω continuous such that p� �S τ̇ = f(ẋgen),
and let p� and f be coded by some real z ∈ ωω. Furthermore, let η : [p�] → 2ω be the
canonical homeomorphism, let ṙ be an S-name for η(ẋgen) and let y ∈ ωω be arbitrary.
Since LM(Σ1

2) holds, the set of random reals R ⊆ 2ω over L[z, y] has measure one. In
particular, R contains a perfect set, hence η−1(R) contains the branches of a perfect tree
q ≤S p

�. It is easy to see that for every branch of [q] we have that η(x) is a random real
over L[z, y]. Since this statement is absolute, we have

q �MI ṙ is a random real over L[z, y] ∧ τ̇ ∈ L[z][ṙ].

This finishes the proof.

Since Miller forcing is captured by Cohen forcing under BP(Σ1
2), Theorem 6.6.5 implies

that Miller forcing preserves BP(Σ1
2). This does not hold for BP(Δ1

2):

Theorem 6.6.12. Let V be the forcing extension obtained by adding ω1-many Cohen
reals over L. Then BP(Δ1

2) holds in V but not in V MI.

Proof. Working in V assume towards a contradiction that for some p ∈ MI and MI-name
ċ we have

p �MI ċ ∈ Zω is a Cohen real over L[ẋgen].

Note that for technical reasons we will consider a Cohen real to be an element of Zω which
is Z<ω-generic, where Z is the set of integers. Using continuous reading of names, we may
assume w.l.o.g. that there exists f : [p] → Zω continuous such that p �MI ċ = f(ẋgen).
Let p and f be coded by some real z ∈ ωω.

Claim 6.6.13. There exists q ≤MI p such that for every x ∈ [q] we have that f(x) is a
Cohen real over L[x].

Proof. For every α < ω1, the set Bα of (x, u) ∈ ωω×Zω such that u is in a closed nowhere
dense subset of Zω coded in Lα[x] is a Δ1

1(y) set, where y ∈ ωω is a real coding α.17 In
particular, Bα is coded in L for every α < ω1, since ωL

1 = ω1. Now note that for every
α < ω1 the set {x ∈ [p] : (x, f(x)) ∈ Bα} is bounded and coded in L[z]. Otherwise, it
would contain the branches of a superperfect tree r ≤MI p (see Chapter 21.F in [Kec95]).
But then

r �MI f(ẋgen) is not a Cohen real over L[ẋgen],

since the statement ‘ for every branch x ∈ [r] we have ((x, f(x)) ∈ Bα)) ’ is a Π1
1-property

and therefore absolute. Let η : ωω → [p] be the canonical homeomorphism and we see
that η−1({x ∈ [p] : (x, f(x)) ∈ Bα}) is bounded as well. The statement ‘ η−1({x ∈
17To see this, note that once we fix a real y coding a well-ordering of ω of type α, we easily get a Borel

function mapping x to a code for Lα[x].
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[p] : (x, f(x)) ∈ Bα}) is bounded ’ is a Σ1
2(z)-property and therefore absolute between

L[z] and V . Since there is a Cohen real over L[z], there exists a real c ∈ ωω which is
unbounded over L[z]. In particular, c is unbounded over η−1({x ∈ [p] : (x, f(x)) ∈ Bα})
for every α < ω1. If we pick q ≤MI p such that for every x ∈ [q] we have c ≤∗ η−1(x),
this finishes the proof of the claim

The set {f(x) : x ∈ [q]} is analytic. If it is not contained in a σ-compact subset of
Zω, it contains the branches of a superperfect tree T , hence [T ] is a superperfect set of
Cohen reals over L.
On the other hand, if {f(x) : x ∈ [q]} is contained in a σ-compact subset of Zω, then
there exist a, b ∈ Zω such that for every x ∈ [q] we have a ≤∗ f(x) ≤∗ b. Now consider
the analytic set A := {x+ f(x) : x ∈ [q]}. It follows that A is a set of Cohen reals over
L, since for every x ∈ [q] the real x+ f(x) is the image of f(x) under a homeomorphism
of Zω in L[x], and hence also Cohen over L[x]. We show that A is not contained in
a σ-compact set. To this end, let d ∈ ωω be arbitrary. Since [q] is unbounded, there
exists x ∈ [q] such that x 1≤∗ d − a. But then for infinitely many n < ω we have
x(n) + f(x)(n) > d(n) − a(n) + f(x)(n) ≥ d(n) − a(n) + a(n) = d(n), and hence
x + f(x) 1≤∗ d. In particular, A contains the branches of a superperfect tree T , hence
[T [ is a superperfect set of Cohen reals over L.
We have shown that in any case there exists a superperfect set of Cohen reals over L in
V . This, however, is impossible in the Cohen model by a result of Spinas (see [Spi95]).
This finishes the proof Theorem 6.6.12.

Pawlikowski showed in [Paw86] that if c is a Cohen real over V and r is a random
real over V [c], then there exists a Cohen real over V [r] in V [c][r]. In particular, this
shows that random forcing preserves BP(Δ1

2). Using similar arguments, we generalize
his result:

Theorem 6.6.14. Let P be captured by ωω-bounding forcing notions and assume that
V � BP(Δ1

2). Then also V P � BP(Δ1
2).

Proof. Let C(2ω) denote the space of continuous functions f : 2ω → 2ω equipped with
the topology of uniform convergence, and note that C(2ω) is a Polish space (see Chapter
4.E in [Kec95]). Its topology is generated by open sets of the form

{g ∈ C(2ω) : ∀x ∈ 2ω(g(x) � k = f(x) � k)}

for f ∈ C(2ω) and k < ω. We will need the following lemma (see Chapter 3.2 in [BJ95]):

Lemma 6.6.15. Let F ⊆ 2ω × 2ω be closed such that every vertical section of F is
nowhere dense. Then the set F̃ := {f ∈ C(2ω) : ∃x ∈ 2ω (x, f(x)) ∈ F} is closed
nowhere dense in C(2ω).

Proof. Let f /∈ F̃ be arbitrary. Hence, for every x ∈ 2ω there exist sx, tx ∈ 2<ω such
that sx H x, [sx]× [tx]∩F = ∅ and f ��[sx] ⊆ [tx]. By compactness there are finitely many
x0, . . . , xn such that


i≤n[sxi

] = 2ω. Let k∗ := max{|txi
| : i ≤ n}. Then we see that
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{h ∈ C(2ω) : ∀x ∈ 2ω(h(x) � k∗ = f(x) � k∗)} is open, contains f and is contained in
the complement of F̃ . Since f was arbitrary, this shows that C(2ω) \ F̃ is open.

To show that C(2ω)\F̃ is dense let f ∈ C(2ω) and k < ω be arbitrary. For every x ∈ 2ω

we find sx Hx and tx such that f ��[sx] ⊆ [f(x) � k], f(x) � kHtx and [sx]× [tx]∩F = ∅. By
compactness there are finitely many x0, . . . , xn such that


i≤n[sxi

] = 2ω. Now consider
the function g mapping x ∈ 2ω to txi

:0:0:... , where i ≤ n is least such that sxi
H x.

Then g is continuous, g /∈ F̃ and g(x) � k = f(x) � k for every x ∈ 2ω.
Altogether we have shown that C(2ω)\F̃ is open dense, hence F̃ is closed nowhere dense.
This finishes the proof of the lemma.

Let �sn : n ∈ ω� be some canonical enumeration of 2<ω, and we say that x ∈ 2ω codes
a closed nowhere dense subset of 2ω iff {sn : x(n) = 1} is a nowhere dense subtree of
2<ω. For such x let Tx denote the corresponding nowhere dense tree.

Now let p ∈ P and τ̇ a P-name for an element of 2ω be arbitrary. By the assumptions
of the theorem, there exist z ∈ ωω, a P-name Ḣ, a forcing notion Q ∈ L[z] such that
L[z] � ‘Q is ωω-bounding ’ and q ≤P p such that

q �P Ḣ is (L[z],Q)-generic ∧ τ̇ ∈ L[z][Ḣ].

Let σ̇ ∈ L[z] be a Q-name and r ≤P q such that r �P σ̇Ḣ = τ̇ .
Since BP(Δ1

2) holds, there exists a g ∈ C(2ω) not contained in any closed nowhere
dense subset of C(2ω) coded in L[z].

Claim 6.6.16. r �P g(τ̇) is Cohen over L[τ̇ ].

Proof. Let G be a (V,P)-generic filter containing r and set H := ḢG. For every real
x ∈ L[z, σ̇H ] ⊇ L[τ̇G] there exists a Borel function f : 2ω → 2ω coded in L[z] such that
f(σ̇H) = x, since ω

L[z,σ̇H ]
1 = ω

L[z]
1 (otherwise Q would not be ωω-bounding in L[z]). In

particular, if x ∈ L[z, σ̇H ] codes a closed nowhere dense subset of 2ω, then there exists
a Borel function f ∈ L[z] such that f(y) codes a closed nowhere dense subset of 2ω for
every real y ∈ 2ω, and f(σ̇H) = x. Now f is the projection onto the first two coordinates
of a set [T ] for some tree T ⊆ 2<ω×2<ω×ω<ω. Therefore, there exists a Q-name ẇ in L[z]
for an element of ωω such that (σH , f(σH), ẇH) ∈ [T ]. Since L[z] � ‘Q is ωω-bounding ’,
we may find a finitely branching subtree S of T in L[z] such that (σ̇H , f(σ̇H), ẇH) ∈ [S].
The projection of [S] onto the first two coordinates is then a compact subset of 2ω × 2ω,
hence a partial, continuous function on some closed set X ⊆ 2ω containing σ̇H . Consider
the set F := {(x, y) : x ∈ X ∧ y ∈ Tf(x)} and note that F is closed and each section of
F is nowhere dense. By the above lemma, F̃ is a closed nowhere dense subset of C(2ω),
and it is obviously coded in L[z]. Hence, g /∈ F̃ and it follows that for every x ∈ 2ω we
have g(x) /∈ Tf(x). In particular, we note that g(σ̇H) /∈ Tf(σ̇H). Hence, we have shown
that g(τ̇G) = g(σ̇H) is not contained in any closed nowhere dense subset of 2ω coded in
L[τG], i.e. g(τ̇G) is a Cohen real over L[τ̇G]. This finishes the proof of the claim.

By Theorem 6.6.2 this finishes the proof of Theorem 6.6.14.

We immediately get the following corollary:
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Corollary 6.6.17. Let P be captured by ωω-bounding forcing notions and assume that
V � BP(Σ1

2). Then also V P � BP(Σ1
2).

Proof. By Theorem 6.6.14, we have V P � BP(Δ1
2). Since BP(Δ1

2) implies that BP(Σ1
2)

is equivalents to the statement ‘L[x]∩ωω is bounded for every real x ∈ ωω ’ (see Chapter
9.3 in [BJ95]), and by capturing we have that every L[x] is contained in an ωω-bounding
forcing extension of a model L[z] for some z ∈ ωω ∩V , it follows that V P � BP(Σ1

2).

Example 6.6.18. Random forcing captures itself. In particular, it preserves BP(Δ1
2)

and BP(Σ1
2).
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