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Abstract

The study of cardinal characteristics on regular uncountable cardinals has significantly
gained in popularity during the last decade. The generalizations of the Cantor and Baire
space to regular uncountable cardinals s naturally induce generalizations of the related
cardinal characteristics. While for an arbitrary regular uncountable cardinal « the pic-
ture can be quite different from the classical case, it turns out that if one requires x to
be a large cardinal, then many classical results generalize.

In this thesis we aim to further investigate cardinal characteristics related to the ideal of
strong measure zero sets on inaccessible x, define stationary variants of several combi-
natorial cardinal characteristics, present a new method to iterate forcing notions, which
seems to be a very promising tool to separate cardinal characteristics in the higher Ci-
chon diagram, and use the recently developed technique of capturing to investigate the
interaction between determinacy and forcing.

1l
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Kurzfassung

Das Studium von Kardinalzahlcharakteristiken auf reguldren iiberabzahlbaren Kardi-
nalzahlen hat in den letzten zehn Jahren erheblich an Popularitit gewonnen. Die Ve-
rallgemeinerungen des Cantor- und Baire-Raums auf reguldre iiberabzidhlbare Kardi-
nalzahlen x induzieren auf natiirliche Weise Verallgemeinerungen der zugehorigen Kar-
dinalzahlcharakteristiken. Wahrend fiir eine beliebige regulire iiberabzéhlbare Kardi-
nalzahl x das Bild ganz anders als im klassischen Fall aussehen kann, stellt sich heraus,
dass sich viele klassische Ergebnisse verallgemeinern lassen, wenn man voraussetzt, dass
k eine grofse Kardinalzahl ist.

In dieser Arbeit wollen wir Kardinalzahlcharakteristiken im Zusammenhang mit dem
Ideal der starken Nullmengen auf unerreichbaren s weiter untersuchen, stationédre Vari-
anten einiger kombinatorischer Kardinalzahlcharakteristiken definieren, eine neue Meth-
ode zur Iteration von Forcings vorstellen, die ein sehr vielversprechendes Werkzeug zu
sein scheint, um Kardinalzahlcharakteristiken im hoheren Cichon-Diagramm zu trennen,
und die vor kurzem entwickelte Technik des Capturings verwenden, um das Zusammen-
spiel zwischen Determiniertheit und Forcing zu untersuchen.
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Introduction

The foundations of modern Set Theory go back to Georg Cantor who introduced the
notion of ‘Menge’ (German for ‘set’) around the end of the 19" century. He postulated
the existence of certain sets by a list of heuristic axioms, e.g. the set of all natural num-
bers, which we will denote by w. He also compared these sets in size and showed that
two sets, one properly containing the other, (e.g. the set of natural numbers and the set
of algebraic numbers) can still have the same size. On the other hand, he proved that
there are different sizes of infinity, which he called cardinalities.

Soon after the discovery of the Lebesgue measure by Henri Lebesgue in 1902, the in-
vestigation of cardinal characteristics on w, in particular those of the Cantor space 2%,
i.e. the space of 0-1 sequences equipped with the Tychonoff topology, started to attract
more attention:

The union of how many Lebesgue measure zero sets is not Lebesgue measure zero? What
is the smallest size of a set which is not Lebesgue measure zero? The union of how many
meager sets covers the whole space? What is the smallest size of a family of meager sets
such that every meager set is covered by a set of the family?

It was these questions that underlined the importance of Set Theory in other areas of
mathematics such as Measure Theory and Topology.

In the 1920’s Emile Borel introduced the notion of strong measure zero, a strength-
ening of Lebesgue measure zero, and conjectured that every strong measure zero set had
to be countable. This statement is nowadays known as the Borel Conjecture.

A few years later Wactaw Sierpinski discovered that assuming CH, i.e. the Continuum
Hypothesis whose consistency relative to ZFC was not known at that time, the Borel
Conjecture fails. In 1940, Kurt Godel established the relative consistency of the Con-
tinuum Hypothesis and the Axiom of Choice by showing that both statements hold in
the constructible universe.

In 1963, Paul Cohen (see [Coh63] and [Coh64|) used his revolutionizing technique of
forcing to show that also the failure of the Continuum Hypothesis is consistent relative
to ZFC. He also showed that the failure of the Axiom of Choice is consistent relative to
ZF. Paul Cohen’s results together with those of Kurt Goédel show that the Continuum
Hypothesis is independent of ZFC and the Axiom of Choice is independent of ZF.

In 1976, Richard Laver (see |Lav76|) invented Laver forcing to show the relative consis-
tency of the Borel Conjecture. His result together with Sierpinski’s show that the Borel
Conjecture is independent of ZFC.

x1
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In 1984, David Fremlin (see [Fre84]|) picked up on some of the original questions about
measure and category, and summarized the known inequalities between 12 cardinal char-
acteristics (the additivity number, the covering number, the uniformity number and the
cofinality number for measure and category, respectively, as well as the bounding num-
ber, the dominating number, ®; the first uncountable cardinal and 2% the size of the
continuum) in a single diagram, which he called Cichoni’s diagram:

cov(N) —— non(M) —— cof (M) ———— cof (N) ——— 2o

N, —— add(N) —— add(M) —— cov(M) ——— non(N)
Figure 1: Cichori’s diagram

Here, an arrow from r; to ko denotes k; < ky. Furthermore, the equalities add(M) =
min{b, cov(M)} and cof(M) = max{d, non(M)} hold true.
And indeed the pairwise inequalities represented in Cichont’s diagram are all that are
provable in ZFC: Any assignment of the cardinals N; and Ny to the 12 cardinal charac-
teristics not contradicting the inequalities in the diagram is consistent relative to ZFC
(see Chapter 7 in [BJ95]).

Since then the study of cardinal characteristics has only become more popular. Very re-
cently, Martin Goldstern, Jakob Kellner, Diego Mejia and Saharon Shelah (see [GKS19]
and |[GKMS20]) showed that consistently all independent entries in Cichon’s diagram
can be different. It remains open, whether all configurations of strict inequalities be-
tween the 12 cardinal characteristics, not contradicting the diagram, are consistent.
Also cardinal characteristics with a more combinatorial flavor such as the almost-disjoint-
ness number, the pseudo-intersection number, the reaping number, the splitting number,
the tower number and the ultrafilter number have been studied extensively. Maybe most
notably is the much celebrated result by Maryanthe Malliaris and S. Shelah (see [MS13])
that the pseudo-intersection number equals the tower number.

But what happens if one replaces w by a regular uncountable cardinal x and studies
cardinal characteristics on k, in particular those of the higher Cantor space 2%, which
consists of all 0-1 sequences of length x and carries the <s-box topology (a topology
canonically generalizing the Tychonoff topology on w)? It turns out that this ques-
tion is particularly interesting if x is a large cardinal (e.g. inaccessible, weakly compact,
strongly unfoldable, measurable, supercompact), since, in this case,  is (similar to w)
also very large compared to all of its predecessors.

x1i
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The first results in this field appeared in the 90’s when Toshio Suzuki (see [Suz93]) and
Jindfich Zapletal (see [Zap97|) showed that the statement ‘the splitting number on
is larger than x’ implies the existence of large cardinals. Meanwhile, James Cummings
and S. Shelah (see [CS95|) were the first to investigate the bounding and dominating
number on x, and Aapo Halko (see [Hal96] and [HSO1|) was the first to generalize the
notion of strong measure zero to .

However, it was only in the last decade that the field of higher cardinal characteris-
tics really gained in popularity: Sy-David Friedman and Giorgio Laguzzi (see |[FL17|)
introduced a notion of null ideal on 2 using a <{-sequence on ', and Jorg Brendle, An-
drew Brooke-Taylor, S.-D. Friedman and Diana Montoya (see [BBTFM18|) established
a version of a higher Cichori diagram.

Meanwhile, S. Shelah (see [Shel7]) developed a different notion of null ideal on 2% for
r weakly compact, which is related to a generalization of random forcing, and is also
compatible with |27 being larger than k™. Thomas Baumhauer, M. Goldstern and S.
Shelah (see [BGS21]) used this version of a null ideal to define their own higher Cichori
diagram. It is this version of null ideal and higher Cichori’s diagram that we want to
further investigate here.

Finally, let us note that while some results on w easily generalize to s, there are oth-
ers which are only consistently true (see [LMRS16]), and some fail completely (e.g. see
[FHK14] and [FKK16]). Furthermore, results from Omer Ben-Neria and Moti Gitik
(see IBNG15]) and from Shimon Garti (see [BNG20]) suggest that the study of higher
cardinal characteristics is very much related to the study of the large cardinal properties
themselves.

xiil
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Overview

This thesis is structured into six chapters:

We start the 15 chapter by giving basic definitions about large cardinals, ideals and
forcing in general. We present Shelah’s generalization of random forcing and show how
it induces an ideal on 2" giving a generalization of the null ideal. We conclude the chapter
by recalling the basic definitions about sharps, the projective hierarchy and determinacy.

In the 2" chapter we investigate the ideal of strong measure zero sets on s inacces-
sible. We check that Sacks and Silver forcing on k satisfy an appropriate version of
Axiom A (+ bounding), and give two different constructions showing the consistency
of the statement ‘|2%| has size k™ and VX C 2": X is strong measure zero iff X has
size <kt ’. We also investigate the notion of stationary strong measure zero (see [Sch19]).

In the 3" chapter we approximate the ideal of strong measure zero sets on & inac-
cessible with the help of ‘generalized Yorioka’ ideals, and use them to characterize its
cofinality. We show that this cardinal characteristic can consistently be smaller, equal
or even larger than [27|, and conclude this chapter by showing that the additivity of the
meager ideal can consistently be larger than the covering number of the strong measure
zero ideal (see [Sch20]).

In the 4" chapter we define variants of the classical cardinal characteristics modulo
the non-stationary ideal for x regular uncountable. While some of them turn out to be
trivial, we provide forcing constructions separating the non-trivial ones. However, many
interesting questions remain open in this new field of study (see [Sch21]).

The 5™ chapter mainly consists of a write-up of Shelah’s Corrected Iteration (see [Shel9)).
This kind of iteration seems to be a very promising new tool to separate cardinals in the
higher Cichoni diagram. Indeed, we planned to use it to separate the bounding number
on k and the covering number of the higher null ideal. However, there are issues when
actually applying the Corrected Iteration. We present the technical problems, and as-
suming they can be fixed, we sketch how to achieve the desired consistency result.

In the 6' chapter we show using the technique of capturing that IT}-determinacy is
preserved under any countable support iteration of ‘simply’ definable, proper forcing no-
tions. We also investigate connected components of symmetric Al-relations on the reals,
and conclude the chapter by showing that even without the existence of large cardinals,
capturing can still be used to preserve certain regularity properties (see [SSS21]).

XV
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1 Preliminaries

We will start with several basic definitions most of which can be found in [Jec03]:
Definition 1.0.1. Let « be an infinite cardinal. We say that:

e « is regular iff cf(k) = k where cf(a) := min{otp(F): E C « is cofinal in a} is
defined for any limit ordinal a and otp denotes the order type.

e & is inaccessible iff s is regular and A < & for every \ < k.

k is weakly compact iff x is inaccessible and every <k-splitting tree T' C k<" has
a branch of size k.

e x is measurable iff K carries a <k-complete ultrafilter.

e £ is supercompact iff for every 6 > k there exists an elementary embedding j: V' —
M with critical point x such that j(x) > 6 and M? C M.

Definition 1.0.2. We call ¢l C k a club iff ¢l is closed and unbounded in x. Let
Cl:={x C k: 3l C x cl is club} denote the club filter and let NS := {z C k: Jcl €
Cl x N el = (0} denote the non-stationary ideal.

Let us define the higher Cantor space:

Definition 1.0.3. We call 2" := {f: f : kK — 2 is a function} the higher Cantor space
and equip it with the following topology:

For n € 2<% we define [n] := {x € 2": n<x}. Let B := {[n]: n € 2<"} and define the
<k-box topology to be the closure of B under arbitrary unions. *

Using this topology we can now generalize the notion of meagerness:

Definition 1.0.4. We call D C 2" open dense iff D is open in the <x-box topology and
for every n € 2<% there exists v € 2<" such that n<v and [v] C D.

We call X C 27 closed nowhere dense iff 27\ X is open dense. We call X C 2% meager
iff X € J,., Y: for some closed nowhere dense (Y);<.

We define M,; := {X C 2": X is meager} the x-Borel ideal of all meager sets of 2*.

Definition 1.0.5. Let Z be an ideal. We say that Z is <x-complete iff for every (Y;);<, C
7 we have | J,_, Y € Z.

1<K

Note that for n € 2<% the set [1] is clopen in the <k-box topology. Furthermore, if (O;);<» is a family

of open sets of size A < x then [, _, O; is also open.
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Definition 1.0.6. If Z C SB(2") is a proper ideal containing all singletons, we can define
the following cardinal characteristics:

e add(Z) := min{|F|: FCIAUF ¢Z1}
o cov(Z) :=min{|F|: FCIAYUF =2"}
e non(Z) :=min{|X|: X C2"NX ¢ T}
o cof(Z) :=min{|F|: FCIAVX e€Z IV ¢ F XY}
The following is an easy fact:
Fact 1.0.7. We have add(Z) < cov(Z) < cof(Z) and add(Z) < non(Z) < cof(Z).

Fact 1.0.8. M, is a <k-complete, proper ideal containing all singletons, hence add(M,),
cov(M,), non(M,) and cof(M,) are all defined. In particular add(M,,) > x*.

Definition 1.0.9. We say that GCH at « holds iff ¢, := |27 = ™.

1.1 Forcing

For a detailed presentation of the theory of forcing see Chapter 4 in [Kunll|. If P is a
forcing notion, we will use the convention to force downwards, i.e. ¢ <p p means that ¢
is a stronger condition than p.

Definition 1.1.1. We say that a forcing notion P is <x-closed iff for every A < k every
decreasing sequence (p;);<x C P has a lower bound in P.

Definition 1.1.2. We say that a forcing notion P is <k-strategically closed iff for every
condition p* € P Player I has a winning strategy in the following game of length x:

e Player I starts the game, and always plays first in limit stages.
e Player I and II alternate playing conditions p,q € P below p*.

e If p; denotes Player I's choice at stage i < k and ¢; Player II’s, then we require:
— for every ¢ < k and every j < i we have p; <p ¢;.

— for every i < k we have ¢; <p p;.
Player II wins the game iff at some stage i* < k Player I has no legal move.

Fact 1.1.3. If P is a <s-strategically closed forcing notion, then ITi-absoluteness holds
between V and V7, ie. (VY. VY. €) <n, (V‘ﬁ, VYV €) (see [FKK16]).

K

Definition 1.1.4. We say that a forcing notion P is x-linked iff there exists (P;);, such
that:

° 7D:LJ1'<;4P1‘
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e Vi < k: P, is linked, i.e. Vp1,ps € P;: py || p2, where || means compatible.

Definition 1.1.5. We say that a forcing notion P is k-centered_, iff there exists (P;);<,
such that:

e P=UFi

e Vi < k: P, is centered_,, i.e. VQ € [P,]<" g € P: ¢ is a lower bound of Q.
Definition 1.1.6. We say that a forcing notion P is <k-directed closed iff

VQ € [PI<": (Vp1,p2 € Q 3¢ € Q ¢ <p p1,p2) = Ir € P r is a lower bound of Q

The following theorem is due to Laver (see [Lav78|):

Theorem 1.1.7. Let x be supercompact. Then V' can be prepared using a k-c.c. forcing
notion IP preserving the supercompactness of x such that V¥ £ ¢ the supercompactness of &
is indestructible by <x-directed closed forcing notions’.

Definition 1.1.8. We say that a forcing notion P is k"-bounding iff IFp Vf € k" Jg €
kPN V: f < g (see Definition 1.2.4).

Definition 1.1.9. Let (P,, Qﬁ: a <7, <) be an iteration. We say that P, has:

o <n-support iff P, =, Ps for cf(a) > r and P, is the inverse limit of (Pg)s<a
for cf(a) < k.

o <s-support iff P, =, Ps for cf(a) >k and P, is the inverse limit of (Pg)s<a
for cf(a) < k.

Let us now recall two very important forcing notions:

Definition 1.1.10. We denote the x-Cohen forcing by C,. We have p € C,, iff p € 2=~
and define ¢ <¢, piff p<gq.

Definition 1.1.11. We denote the x-Hechler forcing by H,. We have p € H, iff p =
(pp, fp) such that p, € k<", f, € k" and p, < f,, and define g <y, p iff p,<p, and f, < f,.

1.2 The generalized null ideal

In [Shel7] Shelah presents a generalization of random forcing for x inaccessible and uses
it to generalize the ideal of measure zero sets. We need the following definitions:

Definition 1.2.1. We define

o S :={\ < K:\is inaccessible}

mc

o S5 C S . is nowhere stationary iff for every regular uncountable < k the set SNd

is a non-stationary subset of 4.
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We will now define by induction on § € Sfi. U {x}
e a forcing notion Rs (whose definition will use the ideals id(Ry) for A € S _N0)
e ideals wid(Rs) and id(IR;s) on 2°.
Definition 1.2.2. We have p € R; iff there exists (7,,.5,, (I§)acs,) such that

e p C 2<% is a tree, i.e. downwards closed.

Tp € 2<% is the trunk of p, i.e. the smallest node in p that has two successors.

Above 7, the tree p is fully branching, i.e. 7,<n € p=n"0,1"1 € p.

Sp € Sf. M0 is nowhere stationary.

For every A € S, we have I} € id(R))

If)\géSp,Aisalimitordinalandné?‘, thennepiff Vi< A:n i €p.
If A\ € S, and ny € 2%, then n € p iff

— Vi< A:n|i€pand

- n¢I§

and we define ¢ <g, p iff ¢ C p. If G is (V,R,)-generic, we define r¢ = |
Furthermore, we define

peG Tp-

wid(Rs) := {I € 2°: 3A C Rs A is a maximal antichain AT C 2°\ U [p]}

peA
where [p] := {x € 2°: Vi < § x | i € p}. Define id(R;s) to be the <d-closure of wid(Rs).
The following are the most important properties of R,, wid(R,) and id(R,):
Lemma 1.2.3. We have:
e R, is <k-strategically closed and k-linked. In particular, R, satisfies the x™-c.c.

e wid(R,) and id(R,) are <x-complete, proper ideals with a x-Borel basis and con-
tain all singletons. Furthermore, id(RR,) is even <rk-complete.

e G is (V,R,)-generic iff rg ¢ I for every r-Borel set I € wid(R,) NV
e For k weakly compact, we have

wid(R,) = id(R,) = {I C 2": 35 € [S~

] nowhere stationary 3(I))aes

(VAeS L cidRy))A (Ve e2t zelw I NeSarel)}

Here 3°\ € S means ‘there exist unboundedly many A € S with the desired
property’.
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In particular, the cardinal characteristics add(id(RR,)), cov(id(R,)), non(id(R,)) and
cof(id(R,)) are all defined.

We define two more cardinal characteristics:

Definition 1.2.4. Let f,g € k". We say that f <* g iff [{i < k: f(i) > g(i)}| < k and
define:

e b, :=min{|B|: BC k" AVf € k" 3Jg € B g« [} the bounding number
e 0, :=min{|D|: D C k" AVfer"3ge D f <! g} the dominating number

Theorem 1.2.5. In [BGS21| the authors proved the following relations between the
various cardinal characteristics for s inaccessible:

_ - T

Figure 2: The higher Cichon diagram
where an arrow from 6 to 05 denotes 6; < 6,. Furthermore, the equalities add(M,) =
min{b,, cov(M,)} and cof(M,;) = max{d,, non(M,)} hold true.

It remains open whether add(M,) < add(id(R,)) or cof(id(R,)) < cof(M,) are
consistent.

1.3 Sharps

The following presentation of z* for a real x € w® can be found in Chapter 2.9 of
[Kan03], Chapter 18 of [Jec03| and Chapter 10.2 of [Sch1l4al. We will start with several
definitions:

Definition 1.3.1. Let £ := {€, P} denote the language of Set Theory together with an
additional unary predicate P, and define £L* := LU {¢,: n < w} where ¢, is a constant
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symbol for every n < w. Let Form denote the set of formulas in the language £ and
Form® the set of formulas in the language L£*, respectively.

Let M be an L*-structure. We define T := {o € Form*: ¢ is a sentence A M F o}
the theory of M.

Definition 1.3.2. Working in the theory ZFC* + V' = L[P], where ZFC* denotes some
large enough fragment of ZFC, let <, (p denote the canonical well-order of L[P|(= V).
For a formula ¢(z, ..., z,) € Form we define the Skolem function h,: V" — V such that

_ min., . {z: ¢(z,9)} if Jzo: ¢(z0,7)
holy) = {@ o else

Definition 1.3.3. Let M = (M, E, A) be an L-structure. Let (X, <x) be a linear order
such that X C M. ? We call (X, <x) a set of order indiscernibles for M iff for every
formula ¢(zo, ..., z,,) € Form and every yp <x ... <x yn and zy <x ... <x 2z, we have

ME ©(Yo, - Yn) <> (205 - 2n)
For the rest of this section fix a real z € w®.

Definition 1.3.4. We call 7' C Form* an EM blueprint ? for z iff T = TFsl#l.€2.(un)n<w)
such that ¢ is limit with w < § < wy, (Ls[z], €, 2, (Yn)n<w) F ‘¢ is an ordinal A ¢, € ¢pyq’
for every n < w, and ({y,: n < w}, €) is a set of order indiscernibles for (L;[z], €, x).

Lemma 1.3.5. Let T" be an EM blueprint for z and let @ < w; be an infinite or-
dinal. Then there exists an L*-structure M = (M, E, A, (yn)n<w) * and a set X C
Ord™ with {y,: n < w} € X ® such that T = T™ (X, E) is a set of order in-
discernibles for (M, E,A) and (X,FE) ~ (a,€). Furthermore, we can require that

M = U, erorm h@" [X<“]. In this case (M, X) is unique up to isomorphism.

If M = (M, E,A) is an L-structure and X C Ord™ such that (X, E) is a set of order

indiscernibles for M and M = [ cporm h[X <], it easily follows that:

e Vyc (M\ X)NOrd™: (X U{y}, E) is not a set of order indiscernibles for M

o ¥y € X2y & Upepor M5 (X \ {1})<]

Definition 1.3.6. Let 7" be an EM blueprint for x and let @ < w; be infinite. By the
(T, a)-model we denote the (up to isomorphism) uniquely defined pair (M, X') such that
M= (M,E, A, (yn)n<w) is a model of T, X C Ord™ with (y,)pe, € X and (X, E) is a

set of order indiscernible of order type o, and M = {J cppm h X =],

Definition 1.3.7. Let T" be an EM blueprint for x . We call T" well-founded iff Vo <
wy : the (T, )-model is well-founded.

2Note that neither X nor <x must be an element of M.

3EM stands for Ehrenfeucht-Mostowski.

4In particular, for every n < w we have n € z iff n”™ € A.
"W.lo.g. we assume that {y,,: n < w} is an initial segment of X.
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Definition 1.3.8. Let 7" be an EM blueprint for . We call T" unbounded iff for every
formula ¢(zo, ..., x,) € Form we have hy(co, ..., ¢,) € Ord = hy(co, ..., cn) < cpp1 €T

The following lemma motivates the notion ‘unbounded’:

Lemma 1.3.9. Let T be an unbounded EM blueprint for x and let o < w;. Let (M, X)
be the (T, a)-model. Then X is unbounded in Ord™, ie. Va' € Ord™ 3y € X: 2/ Ey.

Definition 1.3.10. Let 7" be an EM blueprint for x. We call T' remarkable iff T" is
unbounded and for every formula ¢(xq, ..., Z;4,) € Form we have
hy(Co, ooy Cman) < Cm = (€0 ooy Cmgn) = hip(C0s ooy C—1s Cintnt1s oo Crong1) € T
The following lemma motivates the notion ‘remarkable’:

Lemma 1.3.11. Let T" be a remarkable EM blueprint for z and o < w;. Let (M, X)) be
the (T, a)-model and we define ,, := min X\ {y,: n < w} . ThenVa’ € Ord™: 2/ Ey, =
2" € Uerorm M5 [({yn: n < w})=]. In particular, X is closed in Ord™M.

Lemma 1.3.12. If there exists a well-founded EM blueprint for z, then there exists a
unique well-founded, remarkable EM blueprint for x.

Definition 1.3.13. We say * exists iff there exists a well-founded, remarkable EM
blueprint for . In this case, we denote by z! the unique well-founded, remarkable EM
blueprint for z, and identify it with a subset of w.

Theorem 1.3.14. The following are equivalent:

e 1 exists.

e There exists a closed unbounded class I, € Ord 7 containing all uncountable
cardinals such that for all cardinals k € I,:
— |, Nk|l=k
— (I, Nk, €) is a set of order indiscernibles for (L,[x], €, x).
= Luft] = Ugerom b <L 0 1)<,
In particular, 2* = {0 € Form™*: ¢ is a sentence A (Ly,[7], €, 2, (N,))pew) F o}

e There exists a non-trivial, elementary embedding j: L[z] — L[x].

e There exists a countable structure (L,[z], €, U) such that
— (Lalx], €) is a model of ZFC™ with a largest cardinal &
— (La[z], €,U) is a model of ¥y-separation
— (Lalz], €,U) E U is a <k-complete ultrafilter
— all iterated ultrapowers of (L,[z], €, U) are well-founded

Definition 1.3.15. We say that the reals are f-closed iff Vo' € w®: 2’ ¥ exists.

6Since w.l.o.g. {yn: n < w} is an initial segment of X, we have y,, Ey,, for every n < w.
"The elements of I, are called Silver indiscernibles.
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1.4 Descriptive set theory and determinacy

The following can be found in Chapter 25 and 33 of [Jec03|. We start by defining the
projective hierarchy of (w*)* simultaneously for every k < w:

Definition 1.4.1. We call A C (w*®)* analytic or a 31 set iff A has a Xi-definition, i.e.
there exists a tree T C (w<“)¥ x w<¥ such that

A={Zec W) yew v <w (x| n,...,zp1 [0,y [ n') €T}
We call A C (w¥)* coanalytic or a I} set iff A has a ITi-definition: A = (w*)*\ B for

some X1 set B C (w”)*, and call A C (w*”)* a Al set iff A is both a ¥ and IT! set.
Inductively, we call A C (w*)* a 3! set iff A has a X!, -definition:

A={z¢c (W) Jycw’ (z,y) € B}
for some IT} set B C (w*)* x w*”. Similarly, we call A C (w*)* a II},, set iff A has a

I1} . ,-definition: A = (w*)*\ B for some ¥} | set B C (w*)*, and call A C (w*)* a
A, set iff A bothisa X, ; and IT) ; set.

The projective hierarchy of 2* x (w*)* for k < w is defined analogously.

Next we state two absoluteness results:

Theorem 1.4.2. Let N be a countable transitive model satisfying ZFC*| i.e. a large
enough fragment of ZFC. Then Xi-absoluteness holds between N and V.

Theorem 1.4.3. Let M be transitive (proper class) model satisfying ZFC* with w) €
M. Then X}-absoluteness holds between M and V.

Let us now turn to determinacy:
Definition 1.4.4. For A C w* we define the two player game G4 as follows:
e Player I starts the game.

e Player I and II alternate playing a,, b, € w.
Player I wins the game iff {(ag, bo, as, b1, ...) € A.

Definition 1.4.5. Let 0: w<“ — w be a strategy. We call ¢ a winning strategy for
Player I in the game G, iff for every b € w” we have (o(0), b, 0((bo)),b1,...) € A.
Conversely, we call ¢ a winning strategy for Player II in the game G4 iff for every
a € w¥ we have (ag, 0({ag)),ar,o({ag,ar)),...) € w*\ A.

We call A determined iff one player has a winning strategy in the game G 4.

Definition 1.4.6. For a collection I' of subsets of w* we say that I'-determinacy holds
iff every set A in I' is determined.

The following theorem is by Harrington (see [Har78|) and Martin (see [Mar70]):
Theorem 1.4.7. The following two statements are equivalent:

e IT!-determinacy holds.
e The reals are f-closed. (see Definition 1.3.15)
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2 Strong measure zero sets on 2"
for k inaccessible

In this chapter we will investigate the notion of strong measure zero sets on the higher
Cantor space 27 for x at least inaccessible as defined by Halko [Hal96]:

Definition 2.0.1. Let X C 2". We call X strong measure zero iff

Vf€R Im)icn: (Vi<rm € 2f(i)) NX C U[m]

<K

Let SN := {X C 2%: X is strong measure zero} denote the collection of all strong
measure zero sets.

The following is an easy fact:

Fact 2.0.2. SN is a <k-complete, proper ideal on 2* which contains all singletons.
Furthermore, SN C id(Ry) (see Definition 1.2.2).

We shall give two different proofs showing the relative consistency of:
ZFC + ¢, = rTH ASN = 2957,

The first proof follows Goldstern, Judah and Shelah |[GJS93] and we require s to be
strongly unfoldable (see Definition 2.3.1). In the second, somewhat better proof we fol-
low Corazza [Cor89| and only require x to be inaccessible.

Finally, we show that in the Corazza model every X € SN is even stationary strong
measure zero (see Definition 2.5.1). On the other hand, assuming GCH at x, we show
that there exists X € SN such that X is not stationary strong measure zero.

Strong measure zero sets for x regular uncountable have also been studied in [HS01],
where the authors show that the Borel Conjecture at x, i.e. the statement that ‘all
strong measure zero sets have size at most x’, is false for x successor with k<% = k. The
question, whether the Borel Conjecture for  inaccessible is consistent, remains open !
as is also stated in [KLLS16].

I This is related to the problem of how to add dominating reals without adding Cohen reals on & (see
[KKLW20]).
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2.1 The Forcing

Let us assume that x is an inaccessible cardinal, in particular A < & for A < k.

For f € k*, f(0) > 1 and strictly increasing, we define the * f-perfect tree’ forcing
PTy as follows:

Definition 2.1.1. Let p € PTy iff
Pl pC k" p# () and p is a tree
P2 Vn e p Vi e dom(n): n(i) < f(i)

P3 Vn € p: |succ,(n)| =1V sucey(n) = {n"a: a < f(domn)},
where succ,(n) denotes the successors of 7 in p.

P4 Vnpep v ep: nav Alsuce,(v)] > 1
P5 If A < kis a limit, then Vn e kM :nEp Vi< A nlicp

P6 If A < k is a limit, then
Vn e r*: (nep A {vgn: |suce,(v)| > 1}is unbounded inn ) = |succ,(n)] > 1

We define ¢ <pr, p iff ¢ C p.
If G is a (V, PTy)-generic filter, we define g € k" to be the unique real contained in
Mpeclpl; where [p] := {z € k*: Vi <k z [ i € p}.
Definition 2.1.2. Furthermore, we define:
e split,(n) iff [succ,(n)| > 1
e ht,(n) := otp {v g n: split,(v)}, where otp denotes the order type
e For i < k: split,(p) := {n € p: split,(n) A hty(n) = i}
Lemma 2.1.3. PTy is <x-closed.

Proof. If (p;)j<x with A < & is a decreasing sequence, it is easy to see that p := ﬂj</\ Dj
is a condition. ]

Definition 2.1.4. For i < x, we define ¢ <; p iff ¢ <pr, p A split,;(p) C .
Fact 2.1.5. The following holds true:

e ¢ <ip+q<pr, pAVj <isplit;(q) = split;(p)

e Vb e K" Vi< k:be [pl = bnsplit,(p) # 0, i.e. split,(p) is a front in p

Definition 2.1.6. We call a forcing notion P strongly x"-bounding iff there is a sequence
(<;)i<r of reflexive and transitive, binary relations on P such that:

10
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(P, <p) is <r-closed

<GC<p

o Vi< <CK

If (pj)j<s is a fusion sequence of length § < k, i.e. Vj < 6: pjp1 <; p; and VA <
0 Vj < At Ais limit = py < pj, then there exists a g; such that Vj < d: ¢5 <, p;.

If A is a maximal antichain, p € P and ¢ < k, then there exists ¢ <; p such that
Al q:={r € A:r| q} has size < k, where || means compatible.

Fact 2.1.7. Obviously, strongly x"-bounding implies x"-bounding.

Lemma 2.1.8. Let (p;)j<s be a fusion sequence in PT; of length § < k. Then there
exists g5 such that Vj < d: g5 <; p;.

Proof. Define ¢s := ﬂj <sPj- We need to show that ¢s is a condition. Only P4 is
non-trivial. Let n € ¢s be arbitrary and set j* := ht, (n). Consider p;-;; and note
that ht, .  (n) < hty,(n). Find v € pj-iq with n<v, split, . (v) and with minimal
domain. For every p € succ,.  (v) we have ht, .. (p) < j*+ 1, hence we can deduce

Vj <d:p€p;. Thus p € g; and split, (v) follows. ]
Definition 2.1.9. If p € PT} is a condition and 1 € p, let p" := {v € p: vanvn<v}. 2
Lemma 2.1.10. Let p be a forcing condition and i < k. Then |split;(p)| < k.
Proof. We will prove the lemma by induction on i < k:

e ; = () is trivial.

e i — i+1: As|split;(p)| < x and pis always <s-splitting, it follows that |split,,;(p)| =
|Unesphti(p) suce,(n)] < k.
e \is a limit: As & is inaccessible, it follows that [split,(p)| < |]],., split;(p)| < &.
This finishes the proof. O
Theorem 2.1.11. PTy is strongly <"-bounding.

Proof. Only the antichain condition remains to be shown. Let A be a maximal antichain,
p € PT; and i < k be arbitrary ®. Enumerate split,(p) as {n;: j < d} with § < k. For
every n; find ¢,, < pl"l such that qy, is compatible with a unique element from the
antichain. Now set ¢ := | ;<5 Qn; which is a condition. Obviously ¢ <; p.

Now let € A be compatible with q. Let s <pp, ¢,r. W.lo.g. let s be such that
|split,(p) N s| = 1, this is possible if the stem is simply long enough: Pick b € " with
b € [s] C [p] and note that b N split,(p) # 0, hence we have 3! j: n; € split;(p) NbNs.
Therefore s <pr; pl and since s <pr; ¢ we have s <pr, q,,. Tt follows that if r € A
is compatible with ¢, then it is also compatible with some ¢, . Hence, there exists a
function from A | ¢ to 6 which has to be injective, since any g, is compatible with a
unique element from the antichain. Now |A | ¢| < & follows easily. ]

2Obviously, pl is a condition stronger than p.
3Work with i + 1, if ¢ is a limit.

11
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2.2 The lteration

Assume that V' F |27 = kT, Let (PQ,QB' a < KT8 < k*T) be an iteration of length
kT with <wx-support such that Ik, Q, = PT},. The family (fa)qcp++ is in the ground
model V' and we require that every f € "NV appears cofinally often. We set P := P, ++.

Definition 2.2.1. We say that a forcing notion P is k-proper iff for every regular and
sufficiently large cardinal 6 (e.g. 6 > |'B(P)|), every elementary submodel M < H(0)
containing P such that |M| = k and <"M C M, and every p € P N M, there exists
q <p p such that ¢ is (P, M)-generic.

Note that there cannot exist a general preservation theorem for s-properness by
Rostanowski [Ros18|. Therefore, we will have to work to ensure k-properness.

Definition 2.2.2. The following generalizes the notion of strongly x"-bounding:

o Let (P, Qp: a < w1t B < xT) be an iteration of strongly x"-bounding forcing
notions, i.e. Voo < k771 Ik, © Qg is strongly k"-bounding’. Let F' € [xF]<" and
i < k. Wedefine g <p;piff ¢ <p  pandVa e F:qal-, q(a) <2 p(a).
e A sequence ((p;, F;): i < 9) of length ¢ < k is called a fusion sequence iff:
— V] <0:pjt1 <k P
— VA <0 Vj < A: Ais limit = py <p, ; p;
— Fj increasing and, if 6 = &, then |J;_;supp(p;) €U

j<6

e We say that P.++ satisfies Axiom B iff for every fusion sequence of length § < &
there exists a gs such that Vj < d: ¢s <, ; p; and, in addition, for every maximal
antichain A C P4+, every F € [kTT]<% every i < k and every p € P.++ there
exists a ¢ <p; p such that |A | ¢| < k.

Note that this is similar to fusion with countable support.
Fact 2.2.3. Axiom B implies x-properness and s"-bounding.

Lemma 2.2.4. For every fusion sequence of length § < k in P, there exists a g5 € P
such that Vj < d: ¢; <, ; p;.

Proof. We will only consider the case 6 = k. For a € |J;_5supp(p;) choose j, min-
imal such that o € Fj,. Set gs(a) := (5, pj(a). Otherwise let gs(a) = Lpr,, .
By induction on o < k% show that ¢s | o € P, (using Lemma 2.1.8), ¢s [ « Ik,
“(pj(@));>j. is a fusion sequence” and use supp(gs) = U;_;supp(p;) for limit steps. Ob-
viously Vj < 0: gs <r, j p;- n

Next we want to show the following theorem:

Theorem 2.2.5. P satisfies Axiom B.

12
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In [BGS21|, the authors describe a ‘Fusion game’, which could be used to prove
Axiom B. However, we use different methods, which shall come in handy later.

In order to prove this theorem, we will need some lemmas. Until the proof of Theo-
rem 2.2.5 fix pe P, F € [xTT]<% and i < k.

Lemma 2.2.6. For a < k™1 define the set
D, :={s€P,: Ve FNa 3z ys € k™"
s | Blrg s(8) Nsplit;(p(B)) = {2} A suceyp)(ws) = {ys} }-
Then D,, is dense below p | a.

Proof. Fix some p' € P, with p’ <p_ p [ a. Since |F| < k, P, is <k-closed, p' [ § IF3
P (B) C p(B) and -5 “split,(p(5)) is a front inp(5) ’, we can inductively construct some
s <p, p’' such that s € D,,. O

If s € D, we shall write x3, y; for the corresponding xg, ys.

In the next lemmas we shall slightly abuse notation: If s € P, with s <p, p' | «
we shall identify s with s™p' | [a, kTT), e.g. saying s <p p/. For such s and p’ the next
lemma defines a new condition p/l*!:

Lemma 2.2.7. Let p’ <p,41 p and s € D, with s <p p’. Then there exists p'ls! <pi+1 D
such that

(a) Vo' > a: ptl(a/) = p/(a),
(b) s <p p'¥ and
(c) Vs' € Dy: (8 <ppPAVB E FNa yf{ = yg) =5 <ps.

Proof. We will only consider the case @ = k*7. Note that V5 € F': s [ 8 IF5 split,(p(f5)) =
split; (p'(/3)). Construct a sequence (rg)s<,++ of extending conditions by induction: As-
sume that r3 € Pz has been constructed, rg <prsi11 P’ and s [ 8 <p r5. Now there are
two cases:

s(B) ifs|Beds
p(B) else

s(

e 3¢ F: Define r3.1(5) := {

BYU (P (B)\ P (B)¥]) if s | B e Gy
(B) else

3

e 5 € F: Define r541(8) := {

Obviously, 7311 <png+1),+1 P and s [ (B + 1) <p rg4q. If v is a limit, define r,, to be
the union of {rg: 8 < v}. Set p'¥l := r.++ and note that supp(p'*!) C supp(p’) Usupp(s).

13
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We check property (c). Let s € D,++ with 8 <p p/¥l and V3 € F: y,g' = y3. As-
sume that s [ f <p s [ 8. If B € F, we have that &' [ 5 IFz §'(5) SP'TfB pB(B) =

s(B) Up'(B) \ P'(B)¥3. Since y§ = yj it follows that s' | B Ik5 s'(8) < Py, s(). The
case 3 ¢ I is trivial. Hence s’ [ (5 + 1) <ps [ (8+1). ]

The next lemma will be used for the successor step in the proof of Theorem 2.2.5.

Lemma 2.2.8. Assume that P, satisfies Axiom B. Let p’ <p,;11 p. Then there exists

q <pit1 P such that Ju, <k VB € FN(a+1):q | Blrg o(pg, q(B),1) where p(u, s, j)
is the formula |split;(s)| < p A split;(s) C p=".

Proof. Note that as x remains inaccessible in V¥ it follows that I-, Ju < kK VB €
Fn(a+1): o(u,p'(8),1). Therefore, since P, satisfies Axiom B, there exists ¢ <p;1 p
and pi; < r such that V8 € FN(a+1):q | Bk (g, P'(5),7). Since VB € F: q | Bz
split; (p'(5)) = split;(¢(B)), it follows that V5 € F N (a+1): q [ BIFg p(pg, ¢(8),7). O

Proof of Theorem 2.2.5. By Lemma 2.2.4 it remains to be shown that for every maximal
antichain A C P, every F' € [rT1]<", every i < rk and every p € P there exists a ¢ <p; p
such that |A | ¢| < k. We shall prove the theorem for P, by induction on @ < x™+:

e o = 1: This follows from Theorem 2.1.11.

e a - a+1: Let A C P, be a maximal antichain, p € P,,; a condition, F' €
[ + 1]<" a set and ¢ < k an ordinal. Let ¢ and p, be as in Lemma 2.2.8. Now
consider the set:

C=A{g €[] folng)="™: 35 € Day1 5 <p, qAIA T s| = 1AVB € F yj = g(8)}.
BEF

Enumerate C' as (g;+1);<s with § < k. Now construct a <pg,;;;-decreasing sequence
(t;)j<s by induction:

— Set ty :=q.

— j — g+ 1: If for gj41 there still exists an s € Dy with s <p_ t; witnessing
gj+1 € C, pick such an s, call it s;4q, and set ¢4 = tgsj“]. Otherwise, set
tj+1 = tj. ObViOllSly, we have tj+1 SF,i+1 tj.

— A < dis alimit: Set £y := (), \ 5, Le. Vo' < a+1: {(a) == (o ().
Then we have ty <p;1 t; for all j <A

Set t := ﬂj<5tj. Then t <g; p.

We claim that |A [ t| < k. Let & € D,y with & <p_ t be compatible with
a unique element from the antichain. Hence, there exists an g;4; € C such that
VB € F:yy = gj11(B). Now as yj = y7 "' holds and |A | s;44] = 1, it follows
from Lemma 2.2.7 and t;, = sl that o <p, Sj+1 and hence A [ & = A | sj41.
Thus A [t C{re A: 35 < s;41 | 7} and |A [ t| < & follows.

14
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e v < k' is a limit: Let A C P, be an antichain, p € P, a condition, F' € [y]<*
a set and 7 < k an ordinal. Using the induction hypothesis and the fact that
P, is <r-closed, we can easily construct a decreasing sequence (gz)ger with the
following properties:

—VBeF:qs<pit1 D
— Ve FVYB e FNB:qs <piy1 ¢

~ VB EF g, <w VB € FN(B+1): g5 | B kg ¢(ptgs,45(8'), 1)

Set ¢ = (Nger qs and py := sup{pg: B € F'}. Then ¢ <p; p and satisfies V3 €
F:ql B kg o, q(B),i). Now proceed as in the successor step.

This finishes the proof of Theorem 2.2.5. O]
Finally, we want to show some antichain results:
Theorem 2.2.9. P has the k™ t-c.c.

The proof will easily follow from the following lemmas and noting that the set {a <
kT ef(o) = K1} is stationary in kT

Lemma 2.2.10. Let (P,, Qs: o <, < ) be an iteration such that Va < v: P, has
the 6-c.c., where 6 is regular uncountable, and P, is a direct limit. If either cf(vy) # 6 or
the set {a < v: P,is a direct limit} is stationary, then P, satisfies the 6-c.c.

For the proof of the above lemma see Chapter 16 in [Jec03].

Lemma 2.2.11. Vo < k™ : P, has a dense subset of size k7. Hence P, satisfies the
kTT-c.c.

In [BGS21] the authors use ‘hereditary x™-names’ to find a dense subset of size k™.

For the proof we will need the following definition by Baumgartner and Laver |[BL79|:

Definition 2.2.12. Let p € P, F € [x1TT]|~" and i < k. We say that p is (F, i)-determined
iff for every (g, h) € [gcp " X [[5cp £=" such that V3 € F': h(f) € suce(g(f)):

o cither V3 € F: pl"l | 815 g(8) € split;(p(3))

eor 38 € F: V3 < B p" | B Ikg g(8) € split;(p(B)) Ap" | B kg g(B) ¢
split, (p(8'))

where p"! is defined inductively such that pl"l(3) := pl"®I(B) if B € FNB" and p!(B3) :=
p(5) else (see Definition 2.1.9).

Proof of Lemma 2.2.11. Let a < kT be arbitrary. We will show that the set

E,:={peP,: Vs esupp(p) Vi <k Jj > i IF € [a|~" f € F A pis(F,j)-determined}

15
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is dense and has size k. Hence P, will have the k™" -c.c.

We will first show density. Let p € P, be arbitrary. By induction construct a fusion se-
quence (q;, F;j)j<x below p such that Vj < x VB € Fj: I split;(g;41(83)) = split;(¢;(3))

and Vj < k: gj41 is (Fj,j)-determined. Use a bookkeeping argument to construct the

Fj’s. Then ¢, € E,, where g, denotes the fusion limit:

In the successor step do the following: Assume that ¢; and F; are defined. Using
Lemma 2.2.8 find ¢; <, j41 g; such that H,uq; <kVBEF:q|Blg cp(uq;,,q;(ﬂ),j).
Now if we want to make sure that ¢;+1 is (Fj},j)-determined, we only need to check

) <(u, +1)
(ga h) S H,BeFj :uq; X H,BeFj .fb’(:uq;) K .
This product is of size < k, so enumerate the relevant (g,h) as ((gr+1, Prr1))k<s With
0 < k. Similarly to the proof of Theorem 2.2.5 we construct ¢;1; by induction on k < d:

e Set ¢} := (¢}

e k— k+1: Assume that ¢} is defined. Define the condition sy, as follows:

[(Pes1(B)] .
157 if g€ F;
Shk+1(/8) = { s !

1pr s else

Since supp(sp,,,) has size < &, we can distinguish two cases:

— Case 1: ds <p, q}“,sylk+1 such that V5 € F;: s | B 1Fg grp1(5) € splitj(qf(ﬁ)).
Then set qf“ = q;-c 5],

— Case 2: Else there exists s <p,_ q;?‘ and 8’ € Fj such that s [ 3 <p_ sp,,, |
B, V8 < B s | B lrg gen(B) € splity(qf(B)) and s | B g gia (B) ¢
split; (¢f(6)). In this case set ¢f ™ := qf (S5,

This follows because if case 2 does not occur, then, by noting that gx.1(8) €
split; (¢¥(5)) implies hy41(8) € ¢} (), an s satisfying case 1 can be constructed.

e (s a limit: Set ¢} := (), C]f-

Define g1 := s qf. Clearly, g;41 is (Fj}, j)-determined.

In a limit step A set ¢y := ) x4 Clearly the fusion limit g, has the required properties.
This shows that F, is dense.

Now we will show by induction on o < k™ that |E,| = k™:
e o« = 1: Then E, = P; which has size 27| = k™.

e v is a limit: If p € E, then p [ o € E, for every a < 7, hence |E,| <
|UHGMS~ HﬁeH K| =K

16
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e o - a+1: Let p € E,yq. Then p is completely determined by p [ a € E,,

(F3, ji)i<w such that o € F, and (b;)icx € []ic Bl per, £°7 X [ger, £°7). The
F}’s are increasing such that supp(p) C |, Fi and Vi < k: p is (£}, j;)-determined.
The b;’s consist of those (g,h) € [[5cp " X [ =" for which we have V3 €

Fi:pl 1 Blkg g(B) € split; (p(8)). Therefore, the mapping
Ea-‘,—l o>p= (p f «, (Ey.]zy bi)i<m)

is injective. Hence, E,,1 has size k. O]

2.3 The Model

Recall that [P will be an iteration of forcings of the form PTY, .

In what follows we shall always refer to the pointwise (not just eventually) dominat-
ing relation. This does not make any difference, since if D is an eventually dominating
family, there exists D’ of the same cardinality, such that D’ is pointwise dominating.
This easily follows from k<% = k. Note that since P is x"-bounding, " NV will be a
dominating family in V¥,

Furthermore, we require that s is strongly unfoldable:

Definition 2.3.1. We call a cardinal s strongly unfoldable iff s is inaccessible and for
every cardinal € and every = C k there exists a transitive model M, such that x € M
and M FE ZFC, and an elementary embedding j: M — N with critical point &, such
that j(k) > 60 and V C N.

Note that strong unfoldability is downward absolute to L (see [Vil98]).

The first step in our iteration is a ‘Johnstone preparation’ to make the strong unfold-
ability of x indestructible by <k-closed, k-proper forcing notions (see [Joh08|). We then
collapse ¢, to kT using a <x'-closed forcing notion.

So w.lo.g. V E ¢|2¢] = k" and the strong unfoldability is indestructible under <s-
closed, k-proper forcing extensions’.

For the rest of this section we will be concerned with the main theorem:
Theorem 2.3.2. VP E SN = [25]=+".
We will need several lemmas for the proof:

Lemma 2.3.3. Let & be a P-name for a real in 2", p € P a condition, F' € [xTT]|<" a set
and ¢ < k an ordinal, and assume p IFp & ¢ V. Since k is weakly compact, there exists
§ < r such that Vs € 2° 3¢ <p; p: qlFp s € i. We will write 8, r; for the least such §.

17
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Proof. Assume towards a contradiction that the statement is false, i.e. for some &, p, F’, 1

we have:
Vo < k dss € 2°: —|(E|q <pip:qlFp ss Qm)

Set T :={ss [ j: j <IN < k}. Tisa <r-branching tree of height x and as & is
weakly compact, T must have an infinite branch x*. Since x* € V but p Ibp & ¢ V there
exists a P-name j for an ordinal less than x such that p IFp 4 | j # 2* | j. As P satisfies
Axiom B there exists a ¢ <p; p such that ¢ IFp j < j* for some j* < k.

We claim that for some § < k we have ¢ Ip s5 € . We have that g IFp @ | j* # 2* | j*,

and since x* [ j* € T, there exists 6 > j* such that =* | j* = s5 [ j*. Hence

qlkp @ | j* # ss | 7* and therefore g IFp ss € . But this is a contradiction. n

Definition 2.3.4. Let D be a dominating family. We say that H has index D iff
H = {hs: f € D} and Vi < k: hy(i) € 2/,

Fact 2.3.5.

X € SN « 3D dominating IH with index D: X € ) | [y ()]

feED i<k

& VD dominating 3H with index D: X C () | [y (4)]

feED i<k

If o < kT and G, is a (V,P,)-generic filter, then in V¥ we define P**"" = R, ++,
where (R, QC‘ e < kKT, < kTT) is an iteration of length k™" with <k-support such
that IF. Q. = PTfa .- It follows from standard proper forcing arguments that in V' the
forcing P ~ P, ]P’/G‘a is dense in P, x Per""

Lemma 2.3.6. Let D € V be a dominating family, « < k™" and H € V¥ has index

D. Then we have
Fpanss () JIRs()] € 27 NV

fED i<k

" ++ .
Proof. Assume that for some condition p and some P*"" " -name & we have

plrpars & ¢ Vi nd € () (s (0):

feD i<k

Working in VFe we will define a tree of conditions such that along every branch we have
a fusion sequence. Furthermore, we will define an increasing sequence (;);<, of ordinals
less than x and an increasing sequence (F;);-, such that F; € [gTT]<".

For every ¢ < k and every g € ngz‘ 2% we shall construct a condition p(g) below p
satisfying :

o Vi <k Vg€[l;;2%: p(g) Fpanes g(i) &

o Vi< kVgel], 2% Vsiy1 € 20411 p(g7 8i41) <mi p(9)

18
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o VA< ki Ais limit = Vg € [T,0,2% Vi < A p(g) <p,; p(g | (5 +1))

o Vi <k Vg€ [],2%:supp(p(9) € U, F

i = 0: Since x remains weakly compact in V¥, we can use Lemma 2.3.3 below p to find
do < r and p(sg) for every so € 2% such that p(g) lFpa++ So € @. Set Fy:= {0}

i — i+ 1: Assume that p(g) is defined for every g € [],; 29, Again using Lemma 2.3.3
we set 0;41 := sup{dp(g) ra: g € [[;<;2%} and find p(g~si41) for every g € [],;2% and
siy1 € 2%+ with the required properties. Finally, we use a bookkeeping argument to
define Fj ;.

A is a limit: Every h € [[,., 2% defines a fusion sequence (p(h | (i + 1)))icx. Set
p(h) = Neyp(h | (1 +1)) and F)\ = |J,., Fi- Next define 65 := sup{dymn)ma: b €
[1,-,2%} and for every g € [1;<, 2% and sy € 2% find p(h”s)) again using Lemma
2.3.3. Note that p(h™sy) is still a fusion limit of (p(h | (i + 1) ))i<x.

Let f € D dominate the function (0;);<.. Set s; := hy(7) | §;. Now (p((so, ..., 5;)))j<n is
a fusion sequence and has a lower bound p,. It follows that p, IFpa.++ 55 g x for every
i < K. Thus py lbpat+ @ & (Vpep Uicillr(1)]. A contradiction. O

We will also need the following lemma:

Lemma 2.3.7. If for every bounded family B C k" of size < 6 there exists a g € k"
such that ¢ diagonalizes B, i.e. Vh € B 3% < k: g(i) = h(i) %, then non(SN) > 0.

Proof. Let X C 2" be of size < 0 and let f € x". For z € X let h,(i) := x | f(i). The
family {h,: z € X} can be coded as a family B C x* bounded by (|2/®|);.. Now if g
diagonalizes B, then ¢ defines a covering for X with respect to f. n

Proof of Theorem 2.3.2. Since for every a < ™' the forcing P, has dense subset of
size kT by Lemma 2.2.11 and is k-proper, there are essentially only |(x7)"| = ™ many
P,-names for reals. Hence V¥ [ |25 = xt. As P satisfies the x*-c.c. and is also
k-proper, we see that VF E ¢|2%| = k™+ and no cardinals are collapsed .

Let us first show that SA° C [25]=¢". Let X C 2% be of size x**, and let D be a
dominating family in V¥ which lies in V. We will show that there exists no H in V¥
with index D such that X C (;cp Ui, [hs(7)]. To this end let H € V¥ be such that
H has index D, and note that H must be of size k™ as V satisfies GCH at k. Since
PP satisfies the k™*-c.c., H must already appear in some V¥, Now there must be an
x € X such that z ¢ V. Hence, it follows by Lemma 2.3.6 that = ¢ (., U, [l (3)].
Therefore, X is not strong measure zero.

In order to show that [25]<%" C SN we use Lemma 2.3.7: Let B C " be a bounded fam-
ily of size < k™, hence B appears in some intermediate model. Find some large enough

4Here 3°i < k means ‘there exist unboundedly many i < x with the desired property’.
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a such that f,, dominates B. We will show that 3g € k*NV¥e+1 Vh € B 3%i: g(i) = h(i),
hence VF E non(SN) > xt7.

. . Pa .o .
Let h € B and j < k be arbitrary. Define the set Dy, ; := {p]PG PT}/a :3di>jplepr,,
ga(1) = h(i) }. By extending the stem of a condition g € PT}?{;Q, we can show that Dy, ;

is dense in PT}LPQ. Therefore, g, will diagonalize every h € B. O

2.4 A model where every X C 2" of size ¢, can
uniformly continuously be mapped onto 2"

Again, assume V F |27 = kT, but now & is only inaccessible.
First we will define two forcing notions:

We define S,, the generalized Sacks forcing, which is due to Kanamori [Kan80]|, as
follows:

Definition 2.4.1. Let p € S, iff:
e pC 2, pH#D
e Vn€pdvep:navAsplit,(v)
o If \is a limit, then Vn €2 nep Vi< nlicyp

e If )\ is a limit, then
vn € 2*: (n e pA{vgn:split,(v)}is unbounded inn ) = split,(n)

Define g <g, p iff ¢ C p. Set ¢ <; p iff ¢ <s, p Asplit,;(p) C q.

If G is a (V,S,)-generic filter we define sg € 2" to be the unique real contained in
Nyea(p], where [p] := {z € 2%: Vi < w2 | i € p}.

And for f € k" NV we define I; the infinitely equal forcing as follows:
Definition 2.4.2. Let p € I iff:
e dom(p) C K
e |5\ dom(p)| = &
e x\ dom(p) is closed

e Vi € dom(p): p(i) € 2/
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Define ¢ <y, piff p € ¢q. Set ¢ <; piff ¢ <y, pA (3 = i: (5 \ dom(g)) Nj =
(k£ \ dom(p)) N j Aotp (x\ dom(p) N j) = i).

If G'is a (V,I;)-generic filter we define g € (25%)" as U, p-

Note that I; is also a ‘tree forcing’, hence Definition 2.1.2 can be used analogously.
However, the conditions are Silver-like trees, therefore we need to modify some proofs.

Lemma 2.4.3. S, and I; are strongly ~"-bounding.

Proof. We will only consider the forcing Iy. Let A be a maximal antichain, p € Iy and
i < K be arbitrary °. Enumerate split,(p) as {n;41: j < 0} with 6 < . Inductively
define a sequence (g;);<s such that go = p and g1 <g, (g; \1;) Un;11 is compatible with
a unique element from the antichain. If A is a limit, define g\ := U, _5(gj+1 \ mj+1). Now
set ¢ :=pUU,_5(¢j+1 \ 1j+1). The rest follows easily. O

Let (Py,Qs: a < &7, 3 < k7F) be an iteration of length £+ with <s-support such
that:

o if cf(a) = k" or &« = 0 then IFp, Q, =S,
e otherwise IFp, Q. = ]'Ifa such that every f € k® NV appears cofinally often
We set P:= P, ++.

We will also need to modify Lemma 2.2.7. Let p € P, F € [x"1]<" and i < k.

Lemma 2.4.4. Let D, be as in Lemma 2.2.6. Let p’ <p,;11 p and s € D, with s <p p'.
Then there exists p/l*) < Fi+1 P’ such that

(a) Yo/ > a: pH(a/) = p/ (o),

(b) s <p p't¥

(c) Vs € Dy : (3’ <ppBIAVBEFNa yg/ = yg) = s <ps.
Proof. We will only consider the case o = k7", Again, construct a sequence (rg)g<,++

by induction: Assume that rz € P53 has been constructed, 13 <pngiy1 p'and s [ 8 <p ra.
Now there are 3 cases:

s(8) ifs|BeGs

e 5 ¢ I Define r541(8) := {p (8) else

sB)U @B\ P (B ifs|pedy

e J€ F/\Qﬁ = S;«J Define Tﬁ+1(ﬁ) = {p (5) else

5 Again, work with 7 + 1, if 4 is a limit.
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PBYU(s(B)\ys) ifs|BeGs
p'(B) else

Obviously, 7511 <pag+1),i+1 P and s [ (B + 1) <p rgq1. If v is a limit, define 7, to be
the union of {rg: B < ~v}. Set p'¥l ;= r,_++ and note that supp(p'*!) C supp(p’) Usupp(s).

o 3€ FAQs =1, Define rg;(B) := {

We check property (c). Let s € l?,i++ With s <p p'¥l and V5 € F: yg/ = yj3. Assume
that ' | B <e s | . If € FAQg = Iy, we have that s’ | 8 g s'(8) <p p/I¥(8) =
P'(B)U(s(B) \y3). As y[";' =ys and s’ [ B 15 s(8) Sﬂfﬁ P'(B), it follows that s’ | § IFg
s'(B) Sﬁfﬂ s(3). The other 2 cases are similar. Hence s’ [ (64 1) <p s [ (8 +1). O
Lemma 2.4.5. P satisfies Axiom B.
Proof. See the proof of Theorem 2.2.5. m
Lemma 2.4.6. Vo < k1 : P, has a dense subset of size k1, and P satisfies the x**-c.c.
Proof. See the proof of Theorem 2.2.9 and Lemma 2.2.11. m
Again, our goal is to show the following theorem:
Theorem 2.4.7. VP E SN = [25]=+".
One direction is the following lemma:
Lemma 2.4.8. VP E [2¢]=57 C SN.

Proof. Let f € k" NV and X € [27]5*". Since P satisfies the n**-c.c., there exists
o < kT such that X € V. Find o > o such that Q, =1, and fy = f. For z € X

define the set D, := {p € ]I}/IF:‘*/: Ji < Kk plhy, go(i) = 2 | f(i)}. Obviously, D, is
dense in ]I}/IF:“/, hence (ga(7))iex will be the required covering. O

The next lemma will be crucial for the proof of Theorem 2.4.7

Lemma 2.4.9. Let 7 be a P-name for an element of 2%, p € P and p IFp 7 ¢ V. Then
there exists ¢ <p p and (A,)yesplit(q(0)) such that A, C 2% are non-empty, clopen and:

o if ny L 7y then A, NA,, =0
o if 7, <my then A,, C A,,
o ¢"ikp 7€ A,
where ¢"(3) := ¢"(0) if 8 = 0 and ¢(83) otherwise.

Proof. We shall construct a fusion sequence (g;, F});<, such that ¢1 <pg 41 ¢. The
condition ¢;1; will have the required properties for (A,),cspiit, (q;(0))- Also recall the
definition of D', . :

D, ={s€P:V3€F Ing, ys € i~"

s [ Blrg s(8) Nsplit,(p(8)) = {zs} A suceys)(ws) = {ys} }-
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e i = 0: Pick Fy with 0 € Fy. Set qo := p.
e \isa limit: Set ¢y :=();,., ¢ and F) =, Fi.

e i — i+1: Pick ¢; <p, ;11 ¢ such that there exists a iy < k with V8 € F;: ¢} | B 1
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©(pq, ¢(B), ) (see Lemma 2.2.8). Enumerate split;(¢;(0)) as (1%, ,);<s, with é; < £.

Now take care of the n;-’s inductively. Simultaneously, define an increasing se-
quence (X7);<5, with X7 C 2% and |X}| < x. The X’s will contain interpretations
of 7.

— j=0:Set X! = X} :=0 and I = I} := 0.

— j — j+ 1: Now work below q;[nj“]. Find q;[nj“} <pFit1 q;[”f“] and 1%,

such that ¢/ Ibp Vo € Xi:7 [ li,, # x | li,,. This is possible, be-
cause p lkp 7 ¢ V, |X}| < K, P is <r-closed and satisfies Axiom B. In

more detail: There exists a P-name l for an Qrdipal < kK such that the set
{s €eP:3l; < kslpVre X;:% 'l # x [ IN] =1} is dense. Now use
Axiom B to find an upper bound for /.

By induction we now define decreasing sequences (“*'¢F, )<, such that

j i : i Spg+1
]+1q£€+1 SFi\{0}7i+1 ¢i, and (C})r<, with C} C HﬂEFi fﬂ(qu) (g +1) 6
set ¢* =gk .

, and

* k=0: Set ¢° := q;[n;“] . Define

i <(pg+1)
ci=A{ge ] folpa)™" 4"

BEF;

ds€ Dy s <p " NVB € Fy yy = g(B)}.

x k — k + 1: Similarly to the proof of Theorem 2.2.5 we take care of all
g € C}, and witnesses ‘s?, and construct ¢"*! using Lemma 2.4.4. Define:

i S(pgr+1)
Ciiy1={g€ H fo(ugy) o

BEF;
Js € Diyy s <p ¢"' As decides 7 | (k+ 1) AVB € F; y§ = g(8)}.

% € is a limit: Set ¢ := ﬂk<£ q* and define:

i <(pgr+1)
ti={ge [ foluy)™" "

BEF;

3s€ Diyy s <p ¢® Asdecides 7 | EAVS € F vz = 9(B)}-

SIf B has cofinality x T, then set f3 to be the identity.

23



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

As (C%)g<x is a decreasing sequence of length x and |C’l\ < k the sequence
must eventually be constant. Denote this index by l] +1- Note that C} is
non-empty by a density argument.

Now define X;H. Set
Xi,, ={rve2m EIgEC’l%_H Vk <k 'silbp il k=] k}
and note that (‘s ’“) k<x 18 necessarily a decreasing sequence by Lemma 2~'4'4'
Furthermore, note that XZ+1 is disjoint from X7 and set X7,, := X; U X},
— ¢ is a limit: Set X} :=J,_, Xj and Xi=0. Set I! =1 := 0.

Define ' := max { sup{l}: j < 6;}, sup{l’: j < &;}}. Recall that X | = '+1\Xi
Define A, = Umexl [ [ I]. W.lo.g. let I* be large enough such that the Ay

are disjoint. We can assume this, since the X Vs are disjoint and of size < k.
Define ¢;11 € PP such that ¢;11(0) := |, +1qil++11(0) and ¢;41(8) :== J“qﬁjll (B) if

. . J<6;
j“qi:fll I 5 € Ggand ¢;41(8) := g, else for § > 0. Note that ¢;11 <p ;11 ¢; and
ql[?ff il jﬂqéﬁll. Define F;,; using a bookkeeping argument.

We claim that the fusion limit ¢, has the reo]|u1red properties. Let ¢ < xk and 7 €

split;(¢.(0)) be arbitrary. We must show that ¢s" IFp 7 € A,

It follows that 1 € split;(¢;+1(0)), and since gi+1 <pg i+1 ¢, We deduce n € split,(¢;(0)).

Therefore n = 7, for some j < &;. We will show that qy}jf . Fp 7 € Ay, . Let
qz[ijfl} with s € D’ , and s decides 7 [ I'. As qznj+1 gL we have s <p JHqi:l

Therefore s <p sl for some g € C}; and hence s IFp 7 [ I' =z [ I’ for some = € X n

In particular, 7 can continuously be mapped onto the first Sacks real sy by a function
from V. Note that for <k-closed forcing extensions it is clear how to evaluate the
image of a new real # under a ground model x-Borel function f: In the ground model
[ is completely determined by (Bj)sex<x where B, := f~!([s]), and the following is a
[1}-statement:

Vee2°Vi<kIse2:xe B,AVs,t € k" sat = B, C B,.

Note that the mapping s — Bj is k-Borel, since |x<*| = k. By II}-absoluteness for <kx-
closed forcing extensions (see Fact 1.1.3), it follows that f(2%) = U{s € k<*: 2% € B,}.

Lemma 2.4.10. Let p € S,; be a Sacks condition. Then there exists a homeomorphism
g: [p] = 27 x 2% such that Vo € 27: {n € 2<%: Jy € g '({z} x 2) n<y} is a Sacks
condition stronger than p.

Proof. First we define e: p — 2<% x 2<% as follows:

e ¢ 1s monotonous
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e is continuous
e() = (0,0)

n & split(p) = e(n™i) == e(n)

1 € split;(p)

— if j is a successor, then e(n™4) := (e1(n) i, e2(n))

— if j is a limit, then e(n™7) := (e1(n), ea(n) ")
(

For u € [p] set g(u) := v iff {v} =, .[e(u [ 7)]. Then g is a homeomorphism, since the
topologies on [p] and 2" x 2% both have a clopen basis.

Now we must show that ¢, := {n € 2<*: Jy € g~ ' ({z} x 2") n<y} is a condition:

o Let (1;)j<s with 1; € ¢, be a strictly increasing sequence of length < k. Set
n =5 It easily follows that v € ¢, & x € [e1(v)]. As e(n) = U,;_se(n;) we
see that x € [e1(n)]. Hence n € q,.

e It easily follows that g~ '({z} x 2%) is a perfect set. It remains to be shown that
splitting is continuous: Let (7;);<s be a strictly increasing sequence of length < &
such that n; € split(g,). Again, set n := (J;_sm;. It follows that n; € split(p),
hence n € split, (p) for some limit A\. But as = € [e1(n)] and [e1(n)] = [e1(n™7)], it
follows that n™i € g, for i = 1,2 |, hence n € split(q,).

Finally, note that ¢, is obviously stronger than p. O]
The following is an easy observation:

Lemma 2.4.11. Let Y, Z C 2" be closed and f: Y — Z uniformly continuous, i.e.
Vi<kdy <wkVoee2t:f'(v|j]nY) C[f(x)|i. Then f can be extended to a
uniformly continuous, total function f* with f*”2% C Z.

Theorem 2.4.12. In V¥ the following holds true: Every X C 27 of size ¢, can uniformly
continuously be mapped onto 2~.

Proof. Again, as every P, with @ < 't has a dense subset of size k™ by Lemma
2.4.6 and is k-proper, there are essentially only |(k7)"| = k™ many P,-names for reals.
Hence VFe E |2%] = k7. As P satisfies the kT-c.c. and is also s-proper, we see that
VFE 25| = k™" and no cardinals are collapsed .

In V¥ assume that X C 2% and for every uniformly continuous function f there ex-
ists a y € 2" such that y ¢ f”X. Pick such a y and denote it by F(f).

Since P satisfies the k*-c.c. and is k-proper, hence no new x-Borel functions appear in
limit steps of cofinality k%, we can now find 8 < k" with cf(3) = k* such that for every
uniformly continuous function f € V¥ we have F(f) € V¥ and IFps 4+ F(f) ¢ f"2".
We will show that X C VFs hence |X| < k™.
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Working in V¥ we assume that p Ibps0 7 € 209 A7 ¢ V. As p(0) € SZPB we
can use Lemma 2.4.9 to find ¢ <ps.++ p and (A;)pesplit(q(0)) clopen sets. We define
Y = i, Uyespiic, () An» and note that Y is closed and non-empty by [1}-absoluteness.
Define f: Y — [q(0)] as follows: f(x) = U{n € 2": 2z € A,}, and note that
q ||—P57,€++ f(T) = S0.

We shall show that f: Y — [¢(0)] is uniformly continuous: Let i < k be arbitrary and
consider 7 € split;(q). We know that if z € Y N A4,, then f(x) € [n]. We also know that
A, = Uxei@i“[x I 7] for some j < §; (see Lemma 2.4.9). Let z € Y be arbitrary. Then

there exists 7 € split;(¢) such that [z | I'] C A,, hence f"([z [ 1]NY) C [y C [f(z) [ 1]
as ¢ C dom(n). Therefore, f is uniformly continuous.

By Lemma 2.4.11 f can be extended to a uniformly continuous, total function f* with
725 C[q(0)]. Define h := m 0 go f* with g from Lemma 2.4.10 and 7; the projection
onto the first coordinate. Similarly to above, it follows that also g is uniformly continu-
ous. Hence, h is a uniformly continuous function in V¥s.

Now let € 2% N V¥ be arbitrary. Then ¢, Ibps.++ h(7) = x. This follows, be-
cause ¢ lbps i+ [*(7) = So and ¢, lFps i+ So € g7 ({z} x 27). If we set @ := F(h) then
we can conclude that g, IFps .+ 7 ¢ X, where X is a P?*" -name for X. As 7 and p
were arbitrary, it follows that IFps .+ X C VP, O

Proof of Theorem 2.4.7. We have already seen one inclusion. Now assume that X C 2
is of size k1. By the above theorem we can conclude that X can uniformly continuously
be mapped onto 2. It can easily be seen that the image of a strong measure zero set
under a uniformly continuous function is again strong measure zero. Hence X ¢ SN. [

2.5 Strong measure zero vs. stationary strong
measure zero
Finally, we take a look at the following definition by Halko [Hal96]:

Definition 2.5.1. Let X C 2%. We call X stationary strong measure zero iff

cleCliecl
So for every z € X the set {i < k: x € [,]} is stationary.

The following lemma shows, why stationary strong measure zero is a natural general-
ization.
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Lemma 2.5.2.
X €SN & Vfer An)jen: (Vi<rme2lP)ax (Y Jml
i<k j>i
So for every x € X the set {j < k: x € [1;]} is unbounded.

Proof. Only the = direction is non-trivial. Let X € SA and f € k" be a challenge.
Partition & into (S;)i<x such that |S;| = x. Now for every i < s find a covering (n});es,
of X for the challenge (f(j))jes,- But then (1;)j<x := (1))jes, i<x has the required
properties. O

The next theorem shows that the two notions coincide in the Corazza model.
Theorem 2.5.3. VF EVX € SN: X is stationary strong measure zero

Proof. Working in V¥ let X € SN be arbitrary. Find « such that X € VFa. Let
f e k"NV and a club ¢l € VP be arbitrary. Since P satisfies Axiom B, we can
assume w.l.o.g. that ¢/ € V. Find 8 > « such that f = fs and Qg = I;,. Let

vEs . . _
p € I}, be arbitrary. Find ¢ < 7, p such that \ dom(q) = &\ dom(p) N¢cl. Then

/s
q “'Hvﬂ"ﬁ X € Uiealgs(i)]. Hence, the set {p € JI,YB% -p ”‘Hvﬂ”ﬂ X € Uicalgs(2)]} is dense
Is 78
in ]IJ‘{;B. Since cl was arbitrary, we see that X C ey Uiculgs(?)]. O

On the other hand, assuming |2*| = k™ we can prove the following theorem:

Theorem 2.5.4. Under GCH at « there exists a set X € SN which is not stationary
strong measure zero.

Proof. We shall construct X by induction. First enumerate all f € k", such that f is
strictly increasing, as (fs)a<x+. Furthermore, define the set S := {o € (2%)": Vi <
k dom(o(i)) =i+ 1} and also enumerate it as (04 )a<p+-

If o = 0 define 2¢(i) :== 1 — 00(4) (¢) so that xy ¢ [J,_.[00(7)]. Then choose 7y € (2%)"
such that Vi < r: dom(7o(2)) = fo(i), Vi < r: U;5[m0(4)] is open dense and zy €
Ui<xlo(@)]:

Assume that (25)s<o and (75)s<q have already been constructed. Enumerate (25)s<q
and (73)g<a as (@, )icx and (77, 4)i<x. Inductively, we will now construct z, and a club
cl:

e Set cly := 0 and set ty := (1 — 05,(0) (0)).

e If i =4+ 1 and t; as well as cly have already been defined, find j > ¢l; such that
ty < 7/(j) and 7/(j) < ;. Set cl; := dom(7!(j)) and t; := 7/(7) " (1 — o4(cl;) (cl;)).

o If Mis alimit set cly :=sup{cl;: j < A} and set t) := (U; ., t;) ~ (1 —0a(cly) (cly)).
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Set o := U, ti and cl := {cl;: i < x}. By construction it follows that V3 < a: z, €
Uic.l78(0)], 2o is distinet from zg for every 8 < a and x4 ¢ U;cyloa(i)]. Finally,
find 7, such that Vi < k: dom(7,(i)) = fuo(i), Vi < k: |J,~,;[7a(j)] is open dense and
{25 6 < 0} € Uy i)

Set X = {zo: a < k7}. Then Vo < w*: X C |, ,.[7a(i)], because {z3: f < a} C
Ui<.[7a(9)] by the construction of 7, and zg € |J,_,.[7a(?)] for 3 > a by the construction
of 3. Hence, X is strong measure zero. However, Vo € S 3z € X 3l € Cl: x ¢
Uicalo(@)]. Therefore, X cannot be stationary strong measure zero. O

J=i
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3 The cofinality of the strong
measure zero ideal for k
iInaccessible

In this chapter we continue to investigate the notion of strong measure zero on 2” for k
at least inaccessible.

Fact 3.0.1. Since SN is a <k-complete, proper ideal on 2 which contains all singletons,
the cardinal characteristics add(SN), cov(SN), non(SN') and cof(SN) are all defined.

In [Yor02|, Yorioka introduced the so-called Yorioka ideals approximating the ideal

of strong measure zero sets on 2*. We will generalize this notion to x and use it to
investigate cof(SN'). Our aim is to show that cof(SN) < ¢, cof(SN) = ¢, as well as
cof(SN) > ¢, are all consistent relative to ZFC.
We also generalize the Galvin—-Mycielski-Solovay theorem (see Chapter 8.1 in [BJ95]) to
K inaccessible. This result was originally proven by Wohofsky (see [Woh]). Finally, we
follow Pawlikowski [Paw90] and show the relative consistency of cov(SN) < add(M,)
for x strongly unfoldable (see Definition 2.3.1).

3.1 Prerequisites

We start with several definitions:
Definition 3.1.1. Let f,g € x" and f strictly increasing.

e We define the partial order < on k" as follows: [ < ¢ ifft V0 < k Ju < K Vi >
w: g(i) > f(i%). Here ° is defined using ordinal arithmetic.

For o € (2<%)* define g, € k" as follows: ¢,(7) := dom(o(7)).

For o € (25%)" define Y'(0) C 2" as follows: Y'(0) :=(,_. U;5; [e(4)]-
Define S(f) C (2<%)* as follows: S(f) := {0 € (2<%)": f < ¢, }.

Define A C 27 to be f-small iff there exists o € S(f) such that A C Y (o).

Define Z(f) := {A C 2%: Ais f-small}.

Definition 3.1.2. Let f € k" be strictly increasing and let o € S(f). For every 0 < k
we define M? to be the minimal ordinal > 2 such that Vi > M?: g, (i) > f(i%).
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Lemma 3.1.3. Z(f) forms a <k-complete ideal.

Proof. Z(f) is obviously closed under subsets. Hence, we must show that it is also closed
under s-unions.

Let (Ak)r<x be a family of f-small sets and (ox)r<x € S(f) such that Ay C Y (oy).
We shall find a 7 € S(f) such that (J,_, Y (o) € Y(7). For every k < & let gi := go,
and let M) := M?_for ever § < k. Define my, := sup{M;°: j, § < k}.

We need the following definitions for i > my:
e Define ¢(i) > 0 such that mo + 32,y j-my <i<mo+ 3, .7 my.
e Define d(i) :=mo + D) J - my-
e Define a(i) and b(7) such that i — d(i) = ¢(7) - a(i) 4 b(:) with b(i) < ().
e Define e(i) := >, _ ;) my.
The following are immediate consequences for ¢ > my:

i>mo+ Y0 Jmy = (i) >

a(z) < M)
0 <b(i) < c(i) < e(d).
d(i) < ¢(i) - e(i) (show by induction)

i = d(i) + (i) - a@) +0(i) < (i) - (i) + (i) - a(i) + i) = (i) - (e(t) +ali) +1) <
((e(@) + a(i)) - (e(d) + ald) + 1) < ((e(d) + a(i))®
o VE <k VXl <k Ji<r:e(i)+ali)=INb01E) =k

The last statement can be deduced as follows: Given k < x let | > Zj<k m; be
arbitrary. Hence, there exists a ¢ > k such that ) m; < [ < Zj<5mj. De-

<&
fine i == mo + > ;7 -my+é- (1= .my) + k. ’ Then c(i) = ¢ follows, be-
cause mz > (I — Z]<c m;) + 1 and therefore - me > ¢ (L= s ]) + k. Hence
d(@) = mo + 3 ;50 - my, a(i) =1 — > _smy, b(i) = k: and e() = m;. Now

e(i) + a(i) = 1 follows.

We are ready to define 7: If i > mg set 7(i) := op)(e(i) + a(i)). Else set 7(i) := ().
We must show that 7 has the required properties.
First let us show that | J,_, Y (ox) € Y(7). Let x € Y (o) for some k < s be arbitrary.
For every [ < k large enough, there exists i < x such that 7(i) = oy(l). Hence x € Y (7).
Now we must show that 7 € S(f). Let § < x be arbitrary. If i > mo+3_; 5 j-m; (hence
c(i) > 9), then the following (in-)equalities hold: 7(i) = oy;)(e(i) + a(i)) by definition,
gy (e(i) + a(i)) > f((e(i) + a(i))*?) since e(i) + a(i) > le’('f) and b(i),0 < c(i), and
f((e(d) + ( ))%%) > f(i%) since f is strictly increasing and i < (e(i) + a(i))®. Hence
g+ (i) = f(@°). O
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0 1 m, mg+m, mg+m;+2-m,

k
0 <- my-> t(mg) ™{my+ my) T(mg+m;+2-m,)
1 < my; -> t(mg+ my+1) tmg+my+2-m,+1)
2 <-m,-> T(mg+my+2-my+2)
3 <-mz->

Figure 3: Definition of 7

The following fact is straightforward:
Fact 3.1.4. SN = (.. Z(f).
The next lemma implicitly shows that comeager sets cannot be strong measure zero:

Lemma 3.1.5. Let A C 2" be comeager. Then there exists f € " such that for every
f-small set B the set A\ B is non-empty.

Proof. Let A be comeager. We shall show that A contains a perfect set, which im-
plies that there exists f € k" such that A is not f-small: If P C A is a perfect set,
let T C 2<% be a perfect tree such that [T] = P. Pick a function f € k" such that
f(6) > sup{dom(t): t is in the dth splitting level of T'}. Let o € S(f) be arbitrary.
Then an = € [T]\ Y (o) can be constructed by induction.

Therefore, let us assume that A = ("),_,. Dit1, where D; 1, are open dense and decreasing,
and we inductively construct a perfect tree 7' C 2<" such that no branches die out and
[T C A:

e Set T := {t(y} where ¢y := ().

e If i = i/ + 1 assume inductively that T = {t,: 7 € 2"} has already been defined
and for every ¢, € Ty we have [t,] C [, s Dj41. For every t, € Ty find ¢, > ¢, such
that [t;] C D;. Set t,~uy = t,7 (i) and T; := {t,y: n' € 2'}.

e If \ is a limit and n € 2* define ¢, := Uyan bt and set Ty := {t,: n € 2*}. Then
we can deduce that [t,] C ;.\ Djt1 for every ¢, € T).

It follows from the construction that (the downward closure of) T := |J,_,. T; is a perfect
tree and that [T'] C A. O
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Conversely, the following fact holds true:

Fact 3.1.6. For every f € k" strictly increasing there exists a comeager set A C 2" such
that A € Z(f).

Lemma 3.1.7. Assume GCH at  and let (fa)a<ﬂ+ be a k-scale such that f, is strictly

B<rkt
a<kt

increasing. Then there exists a matrix (A7) with the following properties:

e Vo, < rkt: AP C 2%is comeager and f,-small.
o Va,B,8 <kt:B< B = A8 C AV,
o Va < kt Vf,-small B C 28 33 < kT: B C AP,

o Va < k't VfsmallB C 2°: a > 0 = ( M, <a A%)\ B # 0. This means that for

every v < 17 the set (), _, A is not f,-small.

Proof. We shall construct A2 by a lexicographic induction on («, 8) € k* x k™: Assume
that (AB)EE;”; have already been defined. Since [, _, AY is comeager, there exists f
such that ﬂKa AO is not f-small (see Lemma 3.1.5). W.lo.g. let f = f,. Choose
some 179 € S(fa) Such that Y(7p) is comeager and set A% := Y (7). Next enumerate

S(fa) as (08)p<n+ such that oy = 79. Finally choose 753 € S(f,) inductively such
that |, ;Y () UY(05) C Y(TB). This is possible since Z(f,) is <k-complete. Set

A8 =Y (15). O

Fact 3.1.8. If (f,)a<w+ and (A5)§§Z+ are as above, then for every g € (/<;+)ii+ we have
MNoers ALY € SN

We are ready to prove the following theorem:
Theorem 3.1.9. Assume GCH at x. Then cof(SN) = 0,+.
Proof. First we prove cof(SN) < 0.+. Let D be a pointwise dominating family in

(/{*)K+ of size 0,+. This family exists, because there is an eventually dominating fam-
ily of size 0+ and (k*)" = k¥, since we have 27| = kT. Let (fa)acs+ be a k-scale
(which exists by GCH at k) and let (Aﬂ )’8 <" be the matrix from Lemma 3.1.7. Define

B:={XC2:3geDX = } B has size < 0,+. We must show that B is
cofinal in SN. .
First, we obviously have B € SN. Now let Y € SN. Then there exists an h € (KJ*)K

such that Y C (), _.+ 4 Ahe) Hence, there exists g € D such that g dominates h point-

Ag<a € B.

a<kT

wise. In particular, Y C ma<,@+

Now let us show that cof(SA) > d.+. Towards a contradiction we assume the op-
posite, i.e. there exists a C cofinal in SN of size <0,+. Hence, for every X € C there
exists gx € D such that X C [, _.+ AX@ et us define D' = {9x: X € C} C D.
Then |D'| < 0,+. Hence, there exists h such that no g € D’ dominates it.

rkT
Inductively we will now construct b’ € (k*)" and {z,: v < £"} such that:
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o Va <kt ha) < W (a)
o Va<kT:{z,:y<a} C AL
o 1, € ( ﬂ’yga Ag'(v)) \AZ(O‘)

Assume that &' [ o and {x,: v < a} have already been defined. Simply by choosing
h'(cv) large enough we can ensure that {z,: v < a} C AR Also since Nyeo A9 C
M) <a AM® it follows by Lemma 3.1.7 that ( ﬂ/Ka Al (W)) \ AMD £ 9. Again, if we
choose h'(a) large enough, then also ( MNy<a Al (7)) \AZ(“) # (. Therefore, choose
h(a) > h(e) large enough, and pick 2o € (<, AZ/(V)) \ AN,

First, {z,: v < k7} € SN, because {z,: v < v} C .+ AYO) " Pinally we show
that no X € C covers {z,: v < xT}. It suffices to show that for every gx € D’ we
have {z,: v < KT} € Nocrr AX@ et gy € D' be arbitrary. Find o <  such that
gx(a) < h(a). But then z, ¢ A%, O

We can generalize Theorem 3.1.9 as follows:

Theorem 3.1.10. Assume that add(M,) = 0, and there exists a dominating family
{fa € K": @ <0,} such that add(Z(f.)) = cof(Z(fa)) = 0x. Then cof(SN) = 0,,.

Proof. First note that also b, = 9,. Therefore, for every < 0, the family {f,: 5 <
a < 0.} is also dominating. So w.l.o.g. we can assume that {f,: o < 0,} is a k-scale.
Next, construct a matrix (A%)2<3" similar to Lemma 3.1.7 using add(M,,) = d,.

Let D be a dominating a family in 9% of size d,,_. Following the proof of Theorem 3.1.9
we define B :={X C2":3g € D I3 <0, X =(,>4 A%} Note that |B| < 0,, and
B C SN, since {f,: a <0,} is a r-scale. We will show that B is cofinal in SN:

Let Y € SN, hence there exists h € 0%~ such that Y C () _,. AN But then there is

g € D and 8 <0, such that Va > B: g(a) > h(a). Therefore Y C 1,4 A9 ¢ B,
To prove 0,, < cof(SN') we proceed as in the proof of Theorem 3.1.9. O

3.2 Separating cof(SN) and ¢,

In this section we want to force add(M,) = 0, and there exists a dominating family
{fa: a < 0.} such that add(Z(f,)) = cof(Z(f.)) = 0, for every a < d,.. Then cof(SN') =
0,, holds by Theorem 3.1.10. Using this we can separate cof(SN') and c,.

Definition 3.2.1. For f € s" strictly increasing define the forcing notion Oy:
Let p € Oy iff p = (0, 0p, I, F},) such that:

P1 o, € (25%)<%, 6,,1, < k and F, C S(f) is infinite and of size < K

P2 |E,| -1, > dom(o,) > 1, > sup{M>*: 7 € F,, p < 0,} U |F}|
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If p = (0, 0p,lp, ) and q = (04, 6y, 1y, Fy) are conditions in Oy we define ¢ <g, p, i.e. ¢
is stronger than p, iff:

Ql 0, C oy, 0p <6y, 1, <lyand F, C I,

Q2 Vu < 0, Vi € dom(oy) \ dom(oyp): g, (i) > f(i*)

Q3 VT e F,Viel,\1l,3j € dom(a,): o,(j) = 7(7)

The following lemma will be crucial for many density arguments.

Lemma 3.2.2. Let p = (0, 0p,l,, F) € Of. Let ¢+ > dom(ay,), &' > §,, I' > [, and
F" O F,. Then there exists an extension ¢ = (04,04, l;, F,;) such that dom(c,) > ¢,
dg=0,1,>1"and F, = F".

Proof. Let {7;: k < |F,|} enumerate F}, and set
[ := max {sup{MZ*: 7€ F', p <&}, |F'|l', 0}
Set I, =1, + [. Hence l, > U', and we define o, as follows:
e 0, | dom(o,) =0,
e For i € (dom(o,) + |Fpl - 1)\ dom(o,) such that i = dom(c,) + |E,| - a + b, where
a <land b < |F,|, weset o,(i) :=1(l, + a).

Then dom(o,) > ¢. Set ¢, :=¢" and F, := I, and set ¢ := (0, 6.y, F;). Now we must
check that ¢ € Oy and ¢ <o, p.

Let us first check that ¢ € Oy. The following inequalities hold:
|F,| -1, > dom(a,) = dom(a,) + |F,| -1 > 1, =1+ 1 > sup{M>*": 7 € F,, u < 8,} U|F,]
Therefore ¢ € Oy.

Now let us check that ¢ <g, p:
(Ql) o, C oy, 0, <y, 1, <, and F, C F,.

(Q2) We need to show that Vu < 6, Vi € dom(o,) \ dom(o,): g, (¢) > f(i*). Let u < 6,
and ¢ € dom(o,) \ dom(o,) be arbitrary such that i — dom(o,) = |F,| - a +b. We
note that [, +a > be“ by the definition of O, and the following inequalities hold:

(l+a)P >, +a) (L+a+1)>|F| - (l,+a+1)>|F)|-l,+|F,| -a+b>i
Therefore gy, (1) = gr, (I, +a) > f((l, +a)**) > f(i").

(Q3) Obviously, V7 € F, Vi € I, \ I, 3j € dom(o,): 0,(j) = 7(i) by the definition of o,
and [, — 1, = L. O
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Lemma 3.2.3. Oy is <k-closed.

Proof. Let (pg)k<a be a decreasing sequence of length A\ < k. Define ¢ := (0, 04, ly, F}),

where 0 := Uy 0pis 0g 7= U O lg = U bp, and Fy := U B,
Let us first check that ¢ € Oy. Since |Fy| -1, > |F,,| - [,, for every k < A, the following
inequalities hold:

|F,| -1, > dom(a,) > 1, > sup{M>": 7 € F,, p < &,} U|F,|

and therefore, ¢ is indeed a condition.

Next let us check that ¢ is a lower bound of (pg)r<x. Fix pr and we shall show that
q <o, pr- (Q1) is trivially satisfied. For (Q2) fix u < d,, and 7 € dom(o,) \ dom(oy, ).
Choose k' > k such that ¢ € dom(oy,,). But then g,, (i) > f(i*). (Q3) can be shown
similarly. [

Lemma 3.2.4. Oy is s-linked L

Proof. For 0 € (25%)<", 0 < k and | < k define the set Py, 5, = {p € Qp: IF, C
S(f) p = (0,9,1, F,)}. We will show that P is linked. Then O; will be s-linked,

because Oy = UU€(2<“)<“ U5<n Ul</~: Plosi)-
Fix (0,6,1) and let p1, ps € Py 51). Set Fy := F, UF,, and note that |F,| = max{|F},|, |F}.|}
Hence [ > |F,| and therefore, q := (0,6, [, F},) is a lower bound of p; and ps. O

Assume that V' F ‘k is inaccessible” and let f € " NV be strictly increasing. Fur-
thermore, let G be a (V,Oy)-generic filter. Define 7¢ = J{o € (2<%)<~*: Ip e Gp =
(0,0p,1,, F,)}. Then the following lemma is an easy observation:

Lemma 3.2.5. The following holds in V©s:
1. 7¢ € (25%)"
2. g, > f, in particular 7¢ € S(f)
3.VreS(f)NV:Y(r) CY(rq)
Hence, 7 codes an f-small set which covers all ground model f-small sets.
Proof. ad 1.) By Lemma 3.2.2 the set {p € Oy: dom(o,) > ¢} is dense for every ¢ < k.

Hence 7¢ € (257%)".

ad 2.) Let 6 < k be arbitrary. By a density argument there exists p € G such that
8§, > 8+ 1. But then g,.(i) > f(i°) for all i > dom(c,).

ad 3.) Let 7 € S(f) NV be arbitrary and fix z € Y(7), in particular the set {i <
k: x € [7(i)]} has size k. By a density argument there exists p,q € G such that 7 € F,,
l, is arbitrarily large and ¢ <o, p. Hence, the set {i > dom(o,): v € [75(7)]} will also
be of size k. O

'Note that Oy is not x-centered,.
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Definition 3.2.6. Let A > & be a regular cardinal. Define B to be a bijection between
A and A X A such that:

o If B*a) = (B,7) then 8 <«
o If BNa) = (8,7), BMa') = (8,7') and a < o, then v </

Furthermore, define B} () and B;(«) to be the projection of B*(a) onto the first and
second coordinate, respectively.

Now we are ready to define the iteration:

Definition 3.2.7. Let <].P>E=QC: e < A\ ¢ < A) be a <r-support iteration such that
Ve < At IFe Qc = H, x Oy e’ where H, denotes k-Hechler forcing and ng(e) is the
B0 €

generic k-Hechler added by the first half of Q B (e)-

Note that H,, is k-centered.,.

The following lemma should be a straightforward consequence of Lemma 3.2.4:

Lemma 3.2.8. P, satisfies the x™-c.c. Furthermore, if [27] < XA and \* = X or [27] > ),
then there exists a dense set D C P, of size max{|2"|, A\}.

Proof. The set

D:={pePy,:Ve<AIper¥Ioec (236 <rI<rIf I

plelre p<€) = ((p, ), (0’ 9,1, (gk)k@))}

is dense in Py. Let Q C D be of size k* and use a A-system argument to find Q' C Q
of size kT such that @’ is linked. Hence Py satisfies the x*-c.c.

Show by induction on € < A that |D NP < max{|2%|,\} using the xT-c.c. of P, and
the fact that every P.-name for an element of k" is completely determined by a family
of maximal antichains of size k. O

We are ready to state and prove the following theorem:

Theorem 3.2.9. Let A > k be regular. Let V F “|2%] > X or [2%] < AAX* = \". Then
in VE the following holds true: add(M,) = 0, = A and there exists a dominating family
{fa € K": @ < A} such that add(Z(f,)) = cof(Z(f.)) = A\. Hence cof(SN') = d,, = 0.
Furthermore, 27| = max{|2*NV|, A}, 0, = 0} and add(SN') = cov(SN') = non(SN) = \.

Proof. Using the k*-c.c., the following should be straightforward: The s-Hechler re-
als (de)e<>\ form a k-scale, hence 0, = b, = A. A <k-support iteration adds x-Cohen
reals, which implies cov(M,) = A, and since add(M,,) = min{b,, cov(M,)} by Theo-
rem 1.2.5, it follows that add(M,) = 9. = A. The family (%) cpa—1 15y Witnesses

add(Z(d.)) = cof(Z(d.)) = A, since Z(d.)) is a k-Borel ideal. Hence cof(SN) = 0,, by
Theorem 3.1.10.
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Since P, has a dense subset of size max{|2" N V|, A}, it satisfies the x*-c.c. and either
125N V| > Xor \* = ), it follows that |27| < max{|2" N V|, A\}. Again using the x"-c.c.,
it follows that P is A-bounding, hence 9y = Y. Using add(Z(d,)) = X for all € < A,
we can deduce A < add(SN). For cov(SN) < X we note that 28 N V¥ € SN for all
€ < X\ as being witnessed by (7¢)es.. For non(SN') < A\ we pick for every 7, possibly not
distinct x.’s such that z. € 2"\ Y (7.) and set X := {z.: ¢ < A}. It follows that | X| < A
and X ¢ SN, since no 7, can cover X. [l

Theorem 3.2.10. ¢, < cof(SN), ¢, = cof(SN) and ¢, > cof(SN) are all consistent
relative to ZFC.

Proof. ¢, < cof(SN') holds under GCH at k (see Theorem 3.1.9). For ¢, = cof(SN)
assume that V' F |2°] = kT A D+ = k1 (e.g. by forcing over GCH with a -
product of x-Cohen forcing) and force with P,+. For ¢, > cof(SN) assume V F |27 =
KTTT A+ = kT (e.g. by forcing over GCH with a k™™ *-product of k-Cohen forcing)
and again force with P,+. m

3.3 A model for cov(SN) < add(M,)

In this section we first generalize the Galvin—Mycielski-Solovay theorem to x inaccessible.
Then we shall assume that s is strongly unfoldable, and want to construct a model for
cov(SN) < add(M,). Indeed this will hold in the k-Hechler model.

Definition 3.3.1. Let X C 2%. We call X meager-shiftable iff for every comeager
D C 2% there exists y € 2 such that X +y C D.

The following result is well-known in the classical case:
Theorem 3.3.2. (GMS) X € SN iff X is meager-shiftable.

Proof. First we shall show that meager-shiftable implies strong measure zero: Let X C
2" be meager-shiftable and let f € x®. Choose (s;)i<x such that s; € 2/ and D :=
Ui<.[si] is open dense. Since X is meager-shiftable, there exists y € 2% such that
X +y C D. Define t; := s; +y [ f(i). But then X C J,_[t:]. Hence X is strong
measure zero.

We shall now show that strong measure zero implies meager-shiftable: Let X C 2% be
strong measure zero and let D = (7),_,. D; be an intersection of arbitrary dense open sets.
W.lo.g. let the D;’s be decreasing. Now construct a normal sequence (¢;)i<x, ¢; € K,
such that for every i < k and every s € 2 there exists ¢ € 2%+ with s <t such that
[t] € D;. Define f(i) := c;y1 and find (s;);<,. such that s; € 2() and X C < Uis;lsil-
We shall now inductively construct y € 2" such that Vi < k: [s; +y [ ¢;41] € D;:

e Choose ty € 2°* such that [ty] € Dy and set y | ¢; := so+to. Hence, so+y | ¢1 = to
and so [so+y [ ¢1] C Dy.
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e ; = ¢'4+1: Assume that y | ¢y, has already be constructed. Find ¢; > s; [ ¢;+vy | ¢;,
t; € 2%+ such that [t;] € D;. Set y | ¢;y1 := s; +t;. Then s; +y | ¢;11 = t; and
ylepibyl e

e \is a limit: Set y [ ¢\ = Uj</\y | ¢; and proceed as in the successor step to
construct y [ cyy1.

Now we will show that Vi < k: X +y C D;. To this end let + < x and x € X be
arbitrary. We can now find ¢ > i such that x € [sy]. It follows that z +y € [sy +y |
ciy1] € Dy € D;. This finishes the proof. a

Before we can construct the model, we will need some definitions:

Definition 3.3.3. We say that a forcing notion P has precaliber x* iff for every P €
[P]*" there exists @ € [P]*" such that Q is centered.,.

While the previous definition is about forcing in general, the next definition is con-
cerned with cov(SN):

Definition 3.3.4. Let {D,: o« < k™} be a sequence of families of open subsets of 2~.
We call the family {D,: o < k™} good iff VE € [/@+]’*+: Uuer N Do = 2"

The motivation behind Definition 3.3.4 is that for each a@ < k™ the set (D, could
be a strong measure zero set. Then a good family corresponds to a family of strong
measure zero sets of size k* such that every subfamily of size k* covers 2.

Lemma 3.3.5. Suppose that {D,: a < k7} is a good family in V, V E ‘k is weakly
compact’ and P is a <k-closed forcing notion, which has precaliber k™. Then {D,: o <
kT} is also good in V7.

Proof. Towards a contradiction assume that there are names 4, E and a condition p
such that p lFp & € 28 A E € [6F]* Ad ¢ U,eis (Do Working in V, for every a < &+
find ¢, > «, D,, € D, and conditions p, <p p such that p, IFp €, € ENi ¢ D,. Since
P has precaliber k¥, we can find E* € [k7]"" such that {p,: a € E*} is centered.,.
Let ¥ C E* be of size < s and let gp be a lower bound of {p,: @ € F}. Then
qr Fp Uuper Do # 2. By IIj-absoluteness ? for <k-closed forcing extensions (see
Fact 1.1.3) U,cp Do # 2% must hold in V. Since s is weakly compact it follows that
Uacr Do # 2% Hence Ugcy., . aep+y (1D # 27. However, this is a contradiction to
{D,: a < KT} being a good family in V. O

We are now ready to prove the main theorem of this section:

Theorem 3.3.6. Let V satisfy |2| = kT and the strong unfoldability of x is indestruc-
tible by <k-closed, k"-c.c. forcing notions (see [Joh08]). Define P to be a <x-support it-
eration of s-Hechler forcing of length . Then V¥  cov(SN) = kT < add(M,,) = k.

2This also guarantees that if B;, By € V are x-Borel codes, then V E ‘B, =By’ if VP ‘B, =B, .
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Proof. Since add(M,) = min{b,,cov(M,)}, it easily follows that add(M,) = k™ in
VE. Tt remains to be shown that V¥ F cov(SA) = kT: Working in V¥ we define for
a < k1T the set

D,, := {D: Dis dense open with x-Borel code in V1 A 2" N VF« C D}.

For E C r** define X := (,cz ) Do If £ is cofinal in x*+, then X is smz: By GMS
(see Theorem 3.3.2) it is enough to show that Xj is meager-shiftable. To this end let
D be a comeager set in VF and find o € E such that D is coded in VF~'. But then
28N VP C D+ ¢, where ¢y is some k-Cohen real over V'’ added by the next iterand
of k-Hechler forcing. Hence D + ¢, € D/, and therefore Xz C (Do C D + .

We claim that Vo € 2%: [{a < k™" : 2 ¢ (\D,}| < £+ holds in V¥. Towards a contra-
diction assume that a* < x** is the minimal ordinal such that there exists E € [a*]*"
with (J,cp [ Do # 2%. This observation means that the family {D,: o € a*} (note that
la*| = k1) is not good in VF. By the minimality of a* it follows that E is cofinal in
a* and otp(F) = kT, hence cf(a*) = k. Since the family {D,: a € a*} is in VFe
x remains weakly compact in V¥e* and the quotient forcing P/G,.- is <r-closed and
has precaliber kT, it follows by the previous lemma that {D,: o € o*} is also not good
in VP*. Now working in VFe| for any E' € [a*]*" N VPe if E' is not cofinal in a*,
then 27 N V¥ C |J,cp () Do must hold by the minimality of a*. If E is cofinal in a*,
then we have 28 N V¥ =, 5 2" NV CJ,cp () Da. But this is a contradiction to
{D,: a € a*} not being good in VFe*,

Again working in VP let {E¢: € < x*} be a partition of 5™ into cofinal subsets. It
follows from the above claim that Ug et X B = 2", because for every x € 2" there must

exist & < kT such that for every o € E¢ we have x € () D,. Hence cov(SN) =rT. [
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4 Cardinal characteristics on &
modulo non-stationary

Cardinal characteristics of (k) for k at least inaccessible have been studied extensively
in [BTFFM17], [FMSS19|, [FS18b], [RS17] and [RS19|. Similar to the classical case on
w, these cardinal characteristics are usually defined modulo the bounded ideal:

Definition 4.0.1. Let z,y € P(x). We define:

e y splits z iff [zNy| =k and |z \ y| = k.
s, = min{|S|: S CP(r) AVx € P(k) Jy € S y splits x} the splitting number
v, = min{|R|: R € P(k) AVz € P(x) Iy € R = (z splits y )} the reaping
number

o z Cryiff |2\ y| < k.
F C P(k) has the <r-intersection property iff for every F' C F of size <k we
have that | (), x| = .
p. == min{|P[: P € P(x) A P has the <x-intersection property A = (Jz € P(x)
Vye PaxC'y )} the pseudo intersection number
t, ;= min{|T|: T CP(k)AT has the <r-intersection property AT is well-ordered
by *D A= (3z € P(k) Yy € T x C* y)} the tower number

e 1 is almost disjoint from y iff |z Ny| < k.
a, := min{|A|: A is a maximal almost disjoint family A |A| > x} the almost dis-
jointness number

e B CP(k) is a base for an ultrafilter U iff U = {x € P(k): Jy € By C z}.
u, = min{|B|: B C [k]" A 3U C P(x) U is an ultrafilter A B is a base for U} the
ultrafilter number

In this chapter we intend to define variants of these cardinal characteristics modulo
the non-stationary ideal for x regular uncountable. To this end we recall the club fil-
ter Cl = {& C k: Jcl C x cl is club}, the non-stationary ideal NS = {z C k: 3cl €
Cl xNecl = P} and define the set of stationary sets St := PB(x)\ NS. Note that while the
property x € Cl is upward absolute for models with the same cofinalities, the properties
x € NS and x € St are in general not.

We will now define several relations on St x St modulo the non-stationary ideal and
use them to define cardinal characteristics on St:
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Definition 4.0.2. Let z,y € St. We define:

e y stationarily splits z iff t Ny € St and x \ y € St.

s¢ = min{|S|: § C St AVx € St Iy € S y stationarily splits x} the stationary
splitting number and
v = min{|R|: R C St AVz € St Jy € R — (x stationarily splits y )} the sta-
tionary reaping number

o r ChHyiff z\ye NS.
F C St has the <k-stationary intersection property iff for every F' C F of size
<k we have that (), - = € St.
p? = min{|P|: P C StAP has the <r-stationary intersection property A— (3z €
StVye P x y)} the stationary pseudo intersection number
t .= min{|T|: T C StAT has the <x-stationary intersection property AT is well-
ordered by jD A= (Jz € StVy e T x Cy)} the stationary tower number *

e 1 is stationary almost disjoint from y iff rtNy € NS.
a? := min{|A|: A is a maximal stationary almost disjoint family A |A| > «} the
stationary almost disjointness number

e u :=min{|B|: B C St AU CP(x) U is an ultrafilter A B is a base for U} ? the
stationary ultrafilter number
u” = min{|B|: B C St A 3U C PB(k) U is an ultrafilter A B U CI is a subbase
for U} 3 the stationary* ultrafilter number
u™ = min{|B|: B C St AU C P(r) U is a measure A B is a base for U} * the
measure ultrafilter number
u"™ = min{|B|: B C StA3IU C P(k) U is a normal measure AB is a base for U}
the normal measure ultrafilter number
™ = min{|B|: B C StAFU C PB(k) U is a normal measure ABUCI is a subbase

for U} the normal measure® ultrafilter number

e Let f,g € k" and define f <}, g iff {a < k: g(a) < f(a)} € NS.
6 := min{|B|: BC k" AVf € k¥ Ig € B g £ f} the club bounding number
¢ :=min{|D|: D C k" AVf € k" Ig € D f <} g} the club dominating number

We will aim to establish some relations between these cardinal characteristics and also
show some consistency results.
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!Note that the notions of p¢ and t¢ introduced here are different to the ones defined in [FMSS19].
2In particular, Cl C U.

3ie. {y € St: 3x € B 3cl € Cl y = xNcl} is a base for U, since w.l.o.g. B is closed under intersections.
4i.e. U is a <k-complete ultrafilter.
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4.1 Results / Questions

The notions of the club bounding and dominating number have already been investigated
by Cummings and Shelah (see [CS95]). In particular they showed the following theorem:

Theorem 4.1.1. Let x be regular uncountable. Then b, = b, If x > 3, then 0,, = 0<.
The stationary almost disjointness number a¢ is trivial:
Lemma 4.1.2. Let x be regular uncountable. Then a¢ = k.

Proof. Partition « into x many stationary sets (z;)i<,. Define y; == x\ U, 7; and set
T, := N y;. Note that x; Nz, € NS for every i < k. Now we have to distinguish two
cases:

o If 2, € St, then we claim that the family (z;);<, is maximal stationary almost
disjoint. Towards a contradiction assume that x* € St is stationary almost disjoint
from z; for every i < k. We define a function f: z* — &k such that f(k) is the
unique ¢ < k such that k € x;. Equivalently f(k) := min{i < x: k ¢ y;}. If the
set {k € 2*: f(k) < k} is stationary, then by Fodor’s lemma (see Chapter 8 in
[Jec03]) the set {k € x*: f(k) = d} is stationary for some 6 < . But this implies
that * Nzs € St. Hence, the set {k € x*: f(k) > k} is stationary, and therefore
z* Nz, € St. But this also leads to a contradiction, hence (x;);<, is a maximal
stationary almost disjoint family.

e If x, € NS, then we proceed similarly and claim that (z;);<, is maximal stationary
almost disjoint. We define f: 2* — k as above, and note that {k € z*: f(k) > k}
cannot be stationary. Hence, there exists 6 < k such that z* Ny € St. O

Let us say a few words about the spectrum of stationary almost disjointness:

Definition 4.1.3. We define Spec,,, := {7 > k: 3A A is a maximal stationary almost
disjoint family A [A] = ~}.

Definition 4.1.4. Let x € St. We say that NS | z is y-saturated iff for every stationary
almost disjoint family A C B(x) we have |A| < .

Obviously, this definition agrees with the usual definition of saturation (see Chapter
22 in [Jec03]).

The next lemma will summarize some properties of Specg,4:
Lemma 4.1.5. The following holds true for s regular uncountable:
1. By Lemma 4.1.2 we have x € Specg,.
2. By |GS97] we have NS is not k*-saturated for k > wo, hence {x} C Spec,.

3. If $x(k) holds (see Definition 4.1.9), then ¢, € Specg,q.
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4. By [Git86] it is consistent that « is inaccessible and there exists x € St such that
xN{i < k:cf(i) = j} € St for all cardinals j < k and NS | x is kT -saturated.
By [JW85] it is consistent that x is Mahlo and NS [ Reg is x"-saturated.

Question 4.1.6. Is it consistent that NS is ¢.-saturated for x inaccessible? Is it even
consistent that NS is kT t-saturated and ¢, is very large?

In [GS97] the authors ask whether the following is consistent for x inaccessible: Va €
Sty e St:yCx ANS | yis kT -saturated.

Also the stationary pseudo intersection number p¢ and the stationary tower number
t are trivial:

Lemma 4.1.7. Let x be regular uncountable. Then p¢ =t = k.

Proof. Tt will suffice to show that there exists a decreasing sequence (z;);<, of stationary
sets such that A;.,x; = {0}: Assume that z* is a stationary pseudo intersection of
(%i)i<k. Again define f: * — & such that f(j) := min{i < k: j ¢ z;} and again we
note that {j € z*: f(j) < j} € NS. Hence, z* C, A, x; must hold, which leads to a
contradiction.

Therefore, let us show that there exists such a sequence (z;);<,. Let Ef := {i <
k: cf(i) = w} and for every k € E% let (j%),-. be a cofinal sequence in k. We claim
that there exists n* < w such that for every i < s the set x; := {k < k: jk > i} is
stationary. Assume towards a contradiction that for every n < w there exist i,, < x such
that x;, € NS and let cl,, be a club disjoint from z;,. We define ¢* := sup,,_,, i, and
cl* :=,ep cln- Let k* € Ef N cl* with k* > *. Then it follows that ji < i* for every
n < w. But this contradicts the assumption that (j%"),, is cofinal in k*.

Hence, let n* and (z;);<, be as defined above. It remains to be shown that A, z; = {0}.
Assume towards a contradiction that there exists k& > 0 such that k£ € A, x;. This
means that j*. > i for every i < k. But this is a contradiction. O]

Next, we investigate the stationary reaping number t<:
Theorem 4.1.8. t¢ > k for r inaccessible.

Proof. Let (z;);<x with A\ < k be a family of stationary sets and w.l.o.g. assume that
K C5 U;cy @i Assume that (z;;),<x is a partition of x; into A many stationary sets and
define z; ) := K \ x; for every i < A\. We will find a common refinement of the partitions
(i j)j<r

For every s € (A + 1) define y, := (), Tis(). Clearly, if 51,50 € (A + 1) with s # s
then ys, Ny,, = 0. Now set S := {s € (A+1)*: y, € St} and note that since (A\+1)* < &
and every z; ; = Use(A+1)A,s(i):j Ys, we clearly have that k C}; | J,cq ¥s and (ys)ses refines
every partition (z;;);<x.

Since the y, are pairwise disjoint, one can now easily construct a set y* € St which
stationarily splits y, for every s € S, and hence stationarily splits x; for every i < A. [

We will later see that t¢ > k can be forced.
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Definition 4.1.9. Let x C k be stationary. We say that {,(x) holds iff there exists
a sequence (s;);e, with s; C i such that for every y C k the set {i € x:y [ i = s;} is
stationary (see Chapter 27 in [Jec03)]).

Question 4.1.10. Is v = x consistent? Does Vx € St: $,(x) imply & > 7 How does
t¢ relate to t,?

Concerning the various definitions of ultrafilter numbers:
Lemma 4.1.11. For x measurable we have:

Lost <t <u, <ud <ym

2.k <t <ud” <yt oyt <udand utmt <y

3. um =y and kT < uMm

Proof. 1.) and 2.) should be obvious (using Theorem 4.1.8). Hence let us prove 3.): We
clearly have u}’® < u™. On the other hand let &/ be a measure such that there exists
a base B of U with |B] = u. Let V*/U denote the ultrapower of V' modulo U, let
M := mos(V"/U) be the transitive collapse and j: V — M the elementary embedding.
Pick f: K — &k such that x = mos([f]y). Then V := {z C k: k € j(z)} is a normal
measure and it easily follows that V = {z C k: Jy € U f[y] C x}. Hence, f[B] is a base
of V and u}™ < uj* follows.

To show that kT < u™™" we assume towards a contradiction that ¢ is a normal measure
and there exists B C U with |B| = k such that {y € St: Iz € B3l € Cly =z Necl} is
a base of U. If we enumerate B as (z;);<, then we see that A, z; € U. But for every
r € B we have x Qzl A x; which leads to a contradiction. O

Lemma 4.1.12. By [BTFFM17| the following is consistent: £ < v, = ul™ < c,.

Question 4.1.13. Are there any other provable relations between the various ultrafilter

numbers? Are u?” < u< or u™ < u™™ consistent? Is even u¢" = x consistent?

Let us now investigate the stationary splitting number s¢:
Theorem 4.1.14. For k regular uncountable we have 5% > i i k is inaccessible.

Proof. We follow the proof of [Suz93|. First assume that x is not inaccessible, hence
there exists a minimal A <  such that [2*| > k. Let f: k — 2* be injective and for
every s € 2<% define z, := {i < k: s< f(i)}. Weset X := {x,: s € 2 A, € St}
which is of size [2<*| < &, and claim that X is a stationary splitting family. Towards a
contradiction assume that y € St is not stationarily split by X. It follows that the set
S:={s€2<*: y C¥ z,} is linearly ordered by <, because for incompatible s;, s, € 2<*
we have that z,, and z,, are disjoint. Let us define t := |JS and note that t € 2*.
Now we can deduce that y C f~1({t}) U Usea<nis (zs Ny). However, this leads to a
contradiction, because y would be covered by a union of < x many non-stationary sets.
On the other hand assume that x is inaccessible and let X C St be of size A < k.
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Let 0 > k be a sufficiently large, regular cardinal, and choose an elementary submodel
M < H(0) with x,X € M, X,2* C M and |M| < x. Now pick i* > sup(M N k)
such that i* € (), e ¢- The ordinal i* induces a partition Y;,Y; of X: set Vg :=
{reX:i*¢a}and V) = {zr € X:i* € x}. Since 2* C M we can deduce that also
Y0,Y: € M, and hence y := (Y1 \J Yo € M. If we can show that y € St, this will imply
that X is not a stationary splitting family. To this end let ¢l € C1N M be arbitrary, and
we obviously have H () E i* € y Ncl. By elementarity it follows that M E y Nl # 0,
and since cl was arbitrary, we can deduce that M F y € St. Again by elementarity we
have y € St. m

The following definition already appeared in [HS18|:

Definition 4.1.15. Let F' C %(x) be a uniform filter °, i.e. for every x € F we have
|z| = k. We define:

e F'is <rk-complete® iff for every A < k and every (x;);<) with x; € F we have
|ﬂi<>\‘ri| =K. °
e [ is normal* iff for every (z;);<, with z; € F' we have that A\, z; is stationary.

e F measures a set X C P(k) iff for every # € X either z € F or k \ € F holds
true.

Note that we explicitly do not require that the (diagonal) intersection is again an
element of F'. Clearly, if F'is normal*, then it is also <x-complete®.

Definition 4.1.16. We say that x has the normal* filter property iff for every X C (k)
of size <k there exists a normal* filter F' measuring X.

The following notion clearly strengthens weak compactness and is downward absolute
to L (see [JK69)]):

Definition 4.1.17. Recall that x is ineffable iff for every partition f: [k]* — {0,1}
there exists a stationary homogeneous set z C k.

The following theorem was proven in [DPZ80]:

Theorem 4.1.18. Let s be regular uncountable. Then x has the normal* filter property
iff x is ineffable.

Theorem 4.1.19. For s regular uncountable we have 5 > x iff & is ineffable.

Proof. We will show that s¢ > x iff k has the normal* filter property. Then this theorem
follows by the previous theorem.

Let us first assume that szl > k and let X C P(k) be of size <k. We will show that there
exists a normal* filter /' measuring X. W.l.o.g. X is closed under compliments. Since

5In particular we can assume that F' contains the co-bounded filter.
6Note that any <s-complete* filter F' can be extended to a <x-complete filter F.
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s > k there exists y* € St such that X does not stationarily split 4*. Now we define
F = {x € X:y* C} v} and note that F' is obviously an ultrafilter on X. We claim
that F'is normal*. Let (z;);<, with x; € F be arbitrary and cl; € Cl with y* N cl; C ;.
Then Ao, x; O N y* Nel; = y* N A, cl; which is clearly stationary.

On the other hand assume that x has the normal* filter property and let X C St be of
size k. Then there exists a normal® filter F' measuring X, and enumerate X as (;);<x.
Define y; := z; if ; € F and y; := k \ z; else. Since F' is normal*, we can deduce that
y* = Njcny; € St. But no z; € X can stationarily split y*, hence 5 > k. [

Before we can state the next theorem, we need the following definition:

Definition 4.1.20. Let o be a measurable cardinal and let Uy, U; and U be normal
measures on «. We recall (see Chapter 19 in [Jec03]):

e the Mitchell order: Uy < iff Uy € V¥ /Uy, i.e. Uy is contained in the ultrapower
of V modulo U,

e o(U) :=sup{oU')+ 1: U’ <aU} the order of U
e o(a) :=sup{o(U’): U is normal measure on «} the order of «

It was proven by Zapletal (see [Zap97]) that s, > T has large consistency strength,
and indeed the same proof shows:

Theorem 4.1.21. Let s¢ > . Then there exists an inner model with a measurable
cardinal o of order a*t. 7

Let us now show some consistency results regarding s<, b,, 0, and t<. First we state
a helpful tool:

Lemma 4.1.22. Let V F 2 € St and let P be a <x-closed forcing. Then V* E x € St.

Proof. Since being stationary is a II}-statement, the lemma follows by ITi-absoluteness
for <k-closed forcing extensions (see Fact 1.1.3). O

Definition 4.1.23. Let U be a <k-complete, normal ultrafilter on k. We define M,
the generalized Mathias forcing with respect to U, as follows:

e A condition p is of the form (s?, AP) where s? € [k]|<", AP € U and sup s? < min AP.

o Let p = (sP,AP) and ¢ = (t9, B?) be conditions in M. We define ¢ <y, p, in
words ¢ is stronger than p, if s C ¢4, B? C AP and t7\ sP C AP.

If G is a (V, My )-generic filter, we define mg := ¢ 57

The next lemma follows immediately.

"This is equivalent to 3F: L[F] F Ja: « is measurable with order att (see [Mit83]) .
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Lemma 4.1.24. Let U be a <k-complete, normal ultrafilter. Then the forcing My, has
the following properties:

e M, is k-centered.,. In particular it satisfies the x*-c.c.

e M, is <k-directed closed.

Lemma 4.1.25. Let U be a <k-complete, normal ultrafilter on x and let V E z € St.
Then ”_Mu mqg € St A (mG ChaxVmgNx € NS)

Proof. If x € U then clearly Ik, e € . On the other hand, if » ¢ U then Iy, e N
x is bounded. Hence, it remains to be shown that IFy,, g € St. To this end let p € My,
and ¢l be a M-name for a club. Let (psi)i<w be a decreasing sequence of conditions below
p interpreting clas cl* € V', and w.l.o.g assume that p, = inf;-) p; for every limit \ < k.
Let A* := A\, AP denote the diagonal intersection of the APi, and since U is a normal
measure, we have that A* € U. Hence, A* N Lim(cl*) # 0 where Lim(cl*) is the club
consisting only of the limit points of ¢/*, and pick i* € A* Nel*. It follows that i* € AP
and p;- Iy, i* € ¢l. If we define a condition ¢ := (s?* U {i*}, AP \ {i*}) then trivially
q <my, i+ and q g, * € 1hg N el. Hence Iy, g € St. O

Theorem 4.1.26. Let s be supercompact and indestructible by <r-directed closed
forcing notions (see Theorem 1.1.7). Let (P,,Qz: o < ™, 3 < k**) be a <k-support
iteration such that IFp,_ Qa = M, where Zla is a P,-name for a <k-complete, normal
ultrafilter, and set P := P.++. Furthermore, assume that V F |25 = x*. Then V¥ E
sl=p, =0, =t =¢c,=r"T.

Proof. Since IP satisfies the k'-c.c. and for every a < x** the forcing P, has a dense
subset of size kT, we can deduce that V¥ E |2¢] = x*T. It is easy to see that V¥
b, = 0. = kTT. Since P has <k-support, it follows that P adds x-Cohen reals, hence
VEEd = kT (see Lemma 4.1.27). Now if V¥ £ ¢ X C St is a set of size < kT, then by
the kt-c.c. there exists o < x** such that X € V¥ and by IIi-downward absoluteness
VFe £ X C St. By Lemma 4.1.25 X is not a stationary splitting family in VFe+1, hence
by Lemma 4.1.22 X cannot be a stationary splitting family in V. O]

Lemma 4.1.27. Let G be a (V, C,)-generic filter and let ¢ C x denote the k-Cohen real
added by G. Let = C & be arbitrary. If V = 2 € St, then VC E ¢q stationarily splits .
Furthermore, if P := [],_,+ C. denotes the <s-support product of x-Cohen forcing,
then VF E (¢4 )<yt is a stationary splitting family.

Proof. We proceed similarly to the proof of 4.1.25: Let p € C,, and ¢l be a C,-name for a
club. Let (p;)i<x be a decreasing sequence below p interpreting clas cl* € CINV. Again,
w.l.o.g. assume that p, = inf,.) p; for every limit A < k. Since zx is stationary in V', we
can find ¢* € z N Lim(cl*) where Lim(cl*) is again the club consisting only of the limit
points of ¢l*. Hence, there are qo,q1 € C, below p;» such that go IF¢, i* € (x\ ¢z) N cl
and ¢ ¢, i* € x Neg Nl

Let & be a P-name for a stationary set in V. By the kT-c.c. of IP it follows that there
exists @ < k' such that & is a P,-name, where P, := Hﬁm C.. By the above VFe+1
Cq stationarily splits . By Lemma 4.1.22 we have V' ¢, stationarily splits . O]
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The following proof already appeared in a similar version in [She84]:

Theorem 4.1.28. Let x be supercompact and indestructible by <rs-directed closed
forcing notions. Let V F |2°| = &% and define R := P x Q where P := [[,_.. C,
and Q is a P-name for a x** iteration of x-Hechler forcing H, with <s-support. Then
VEEs! =kt Ab, =0, =1td =¢, =rTT.

Proof. Obviously, b, =0, = k™. Since H, adds x-Cohen reals, we can deduce by 4.1.27
that v = k™. Since k remains ineffable in V¥ it follows that s > xT. It remains to
be shown that s¢ < x*. To this end we will show that (¢, )<+ remains a stationary
splitting family in V® where the (cq)q<x+ are the generic x-Cohen reals added by P.
Towards a contradiction assume that & is a R-name and (p, ¢) a condition in R such that
(p,q) IFr & € StA (VYo < kT: & Cf ¢, VENE, € NS). Since R satisfies the kt-c.c. we
can find o* < k™ such that the R-name & does not depend on ¢,-. Since P is <xk-closed
and IFp ‘@ has <k-support and is <k-closed’, we obviously have

IFp {q € Q dom(q) € VA Jp € (,{<H)d0m(q) AV

Va € dom(q) 3f ko ¢(a) = (p(a), f)}is dense in Q

Hence, we can pick a condition (p/,q') <g (p,q) such that all trunks of (p/,¢q’) are
ground model objects, and (p/,¢') decides whether & C¥, o+ or & N ¢y € NS, w.lo.g.
assume that (p/,q') IFg @ C¥ co. Now we define an automorphism 7 of P which
fixes [[,en oy Cr and Ikp Car N 7(¢a-) € dom(p'(a*)), in particular p’ = 7 (p’). Now
7 induces an automorphism 7 of R, and since all trunks of (p ,cj’) are ground model
objects, we can deduce that p’ IFp ¢’ and 7(¢') are compatible in Q. Hence there exists
a condition (p/,7) <g (¢,¢), (p',7(¢")), and since IFp & = 7(&) we can deduce that
(p',7) IFr @ CF cox N & CF, T(cax). But this immediately leads to a contradiction. O

Lemma 4.1.29. Let  be supercompact and indestructible by <x-directed closed forcing
notions. Let V' E |2%| = kT and define P:=[] _, .+ C,. Then VF E s = b, = kT AD, =
c — et

0 =c, =K.

Proof. The lemma immediately follows from the proof of Theorem 4.1.28. O]

Lemma 4.1.30. Let x be supercompact and indestructible by <& directed-closed forcing
notions. Let V F [2°] = x* and define P := [[,_,++ Sk, i.e. a k™ -product of r-Sacks
forcing with <s-support. Then VEE b, =0, = kT At = ¢, = kTT.

Proof. Since P is x*-bounding (see Lemma 2.4.5), we have V¥ £ b, = 0, = x*. It
also follows that V¥ E Cl NV is cofinal in C1’, and therefore, it is easy to see that
VP E ‘Va < k*T: s, stationarily splits St N Ve’ where P, := [I5-4 Sk Hence
VEE W = ¢, =rtt. O

It seems very reasonable to conjecture that V¥ I s = k.

Question 4.1.31. Is b, < 59 consistent? Is even 0, < s¢ consistent? How does s¢
relate to s,.7
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5 The Corrected lteration

In this chapter we want to give a more transparent presentation of Shelah’s Corrected
Iteration (see [Shel9]), which seems to be a very promising tool to show further consis-
tency results in the higher Cichori diagram. For reasons of notational simplicity we will
show how to construct a Corrected Iteration for x-Hechler forcing.

Actually, we planned to use the Corrected Iteration to iterate the higher random forcing
R, without adding dominating reals. This would yield the consistency of Kt = b, <
cov(id(R,)) = k™*. Unfortunately, there seems to be a general problem when actually
applying the Corrected Iteration.

We will address the issue in the last section, where we first show how to modify the
Corrected Iteration to iterate R, and, assuming the issue can be fixed, sketch how to
prove that the Corrected Iteration of higher random forcing does not add dominating
reals.

Fix xk to be at least inaccessible. Let M be some well-founded partial order along
which we want to iterate. We are looking for a definition of a forcing notion Q,; with
the following properties:

e Qu is a kT-c.c. forcing notion which does not add short sequences, i.e. V<F N
Vo — <y,

e For s € M we define Mg := {t € M:t < s}. Similarly, we define M<,. We
require that Qs <Qyur as well as Qpr_, < Qs for every s € M. Hence, Q) is an
iteration.

e There exists a sequence (7s)scps such that for every s € M we have II—@M< Ns €

K" A1), dominates k" N V@M<,

o Q) has ‘ <w-support’, i.e. for every ¢ € Qus the set {s € M: Ji,j < r ¢ IFq,,_
1s(1) # j} has size < k. <

e Let G be a (V,Qy)-generic filter. We require that V[G] = V[(7%)senr]. Hence, G
is completely determined by (7%)scar.

Any ordinary iteration of x-Hechler forcing along a well-order satisfies those require-
ments. However, the next requirement is crucial:

e Let G be a (V,Qyy)-generic filter and let f: M — M be a strictly increasing
function such that f € V. Then the sequence (7'7?(8))56 u naturally defines a filter
G’ C Qyy, which is also (V, Qp/)-generic.
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In the classical case, Judah and Shelah showed in [IHJS88| that for a finite support
iteration of Suslin-c.c.c. forcing notions a similar claim is true.

Roughly, the construction will go as follows:

1.

For any well-founded partial order L. 2 M define P{; to be an iteration of xk-Hechler
forcing along L with ‘partial memory’.

It turns out that we can find a ‘sufficiently saturated” L* O M such that for any
L O L* we have P{; «P4,. Roughly this will work, because, if L* is ‘sufficiently
saturated’, many automorphism arguments will go through.

Define Q) to be the complete subforcing generated by the (1)scps in PX;. Note
that this definition does not depend on L*, because different L] and Lj satisfying
(2.) can be amalgamated to become an LT O M, and hence ]P’ﬁ aPE as well as
Pﬁ <1]P’LMT hold. Therefore, Q,, is a definition for an iteration only depending on M.

Let N C M with N € V be arbitrary, and similarly to Q,; define Qy. It turns
out that there exists an L** satisfying (2.) such that PX~ = PX". ! Hence, Qy
is not only the complete subforcing of PX™ generated by the (),)scx, but also the
complete subforcing generated by the (7;)seny within Q.

Now let f: M — M be a strictly increasing function such that f € V, and
set N = {f(s): s € M}. Let (ns)sems be (V,Qpr)-generic. By (4.) it follows
that (ns)sen is (V,Qu)-generic. Since, however, M and N are isomorphic, we
can deduce that Qy; and Qy are isomorphic as well, and hence (ny)sen is also

(V, Qar)-generic.

Of course, the above is only a very rough sketch and many subtleties and details need
to be checked.

5.1 Prerequisites

Fix a well-founded partial order M (in a typical case M = k™) for which we want to
construct the Corrected Iteration. Fix A; > | M| such that \f = Aq, and fix Ay > Js(A\1)
with Aj = Ao. Pedantically, all notations should have the parameter (M, Aj, \2).

Definition 5.1.1. For a well-founded partial order L and t € L define:

o Ly ={seL:s<yt}

o Loy:={seL:s<t}

e dp,(t) ;== U{dp.(s) + 1: s <y t} by induction

'Note that P& will heavily depend on M, so it is a priori not clear that Pﬁ/[ = ]P’]LV can hold for any L.
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o oo = J{dp,(t)+1:te L}
o L,:={te L:dp,(t) < a} for a < oo,
We will now define how an iteration parameter m looks like:
Definition 5.1.2. An iteration parameter m consists of:
(a) a well-founded partial order L such that M C L as partial orders.
(b) sequences 4 = (u;: t € L) and P = (P;: t € L) such that u; C L., and P; C B(uy).

(c) an equivalence relation E on L\ M; by t/FE we denote the equivalence class of ¢
modulo E.

with the following restrictions:

Q

8

(o) If ty,ty € L\ M are not E-equivalent, then ¢ <p to < ds € M: t; < s <y ta.
(B) Ift e L\ M then u; Ct/EU M.
(v) Ift € L\ M then [t/E| < X,

S 2

For every t € L the set P, is closed under subsets.

) Foreveryt € Lif u € Py then 3t' € L\ M:u Ct'/EUM.

¢

n

(0)
()
(¢) Ift € L'\ M then |P;| < Ay and, for simplicity, P; C [u]=".

(n) Within M we have ‘full memory’: L., N M C u; and [Lo; N M|=® C P, for every
te L.

We shall use the following notation: m = (L™, (uf*: t € L™), (P™: t € L™), E™).

We shall refer to s € M as ‘real’ coordinates and to t € L\ M as ‘fake’ coordinates. M
is the skeleton of the iteration parameter. Fake coordinates from different equivalence

classes can only interact via M. The supports u can only reach into one equivalence
class and M.

Definition 5.1.3. We define M := {m: m is an iteration parameter}, M<y := {m €
M: |L™] < 0} and M, :== {m € M: Vt;,t, € L™\ M t; E™ty}. Here ‘oc’ stands for
‘one (equivalence) class’.

For m € M we will now define the corresponding iteration of x-Hechler forcing P™:
Definition 5.1.4. By induction on a < coym we want to define the forcing notion P2

e Define P* to be the set of functions p such that dom(p) C LT*, |dom(p)| < k and
for every t € dom(p) we have p(t) = (p, f) such that p € k<%, f € k" and p< f.

e If v is a limit, we have two cases:
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— cf(y) > K Set P .=, P5.

aly =«
— cf(y) < K Define P to be the set of functions p such that dom(p) C L7,
|dom(p)| < k and for every av < v we have p [ LI € P™.

e o« — o+ 1: Define P2 | to be the set of functions p such that dom(p) € L2,
|dom(p)| < K, p [ L™ € P and for every ¢t € dom(p) with dp;m(t) = o we have

that p(t) = (p, sup;s Bj((1)rew;) ) where:
- p c R<N

— 0 < k and (B;);<s is a sequence of x-Borel functions ? B; : (k%)% — " in V,
where u; € P, for every j < 0.

—Vj<oVze (k®): paB(z)?
— (1 )reu, is a subsequence of the generic sequence (7);)icrm added by Pgt.
We will use the notation p(t) = (p*®), BP®) = (o), sup, Bf(t)((ﬁt/)t/euj) ).
We define ¢ <pm p, in words ¢ is stronger than p, inductively:

e dom(p) C dom(q)

e for every t € dom(p) we have: '
pp(t) g pq(t) and q | L™, “‘Pm[ygt Br) < pa®)

Define 7, := J{p € k<: Tp € G p(t) = (p, B"®)}. Set P™ := P2 .

Notice the sup; s which we use in the definition for the successor step. This is crucial
if s is a real coordinate: This way conditions can reach into different equivalence classes,
and therefore different fake coordinates interplay at real coordinates.

Definition 5.1.5. For p € P™ we define:

e the full support fsupp(p) :=

{t e 130 € dom(p) p(l) = ("7, sup B (i )vew,)) A ] < 0 1 € uj}
i<

e the wide support wsupp(p) := J{t/E: t € fsupp(p) \ M} UM
Lemma 5.1.6. The following facts hold true:
1. P™ is a <k-closed, k"-c.c. forcing notion.

2. “‘PmFLrSnt 7;]25 € k™.

3. lkpm VI[G] = V[(0)ieL.]-

ZNote that by ITi-absoluteness (see Fact 1.1.3) it is clear how to evaluate the image of a new real 7
under a ground model x-Borel function B for <x-closed forcing extensions.
3Note that this statement is also absolute for <r-closed forcing extension.

52



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4. For any initial segment (i.e. downwards closed) L C L™ we have P™ [ L <P™.

5. For any P™-name f for an element of x* there exists u C L™ of size <r and a
ground model x-Borel function B: (k)" — k" such that lFpm f = B((1)scu)-

Proof. ad 1.) It should be obvious that P™ is <k-closed. For the kx™-c.c. use a A-system
argument and note that H, is x-linked and |dom(p)| < k for every p € P™.

ad 2., 3. and 4.) Trivial.

ad 5.) There are maximal antichains (A;);<, which are all w.l.o.g. of size k, such that
for every i < w each p € A; decides the value of f(i). Enumerate each A; as (p;;);<x
and define k;; €  such that p;; IFpm f(i) = kij. Set u := Uicr Uj < fsupp(pij)-
Obviously, u is of size <k. For Z € (x")" and i < &k define B(Z)(i) := k; j» where
J*=min{j < k: p;; € Gz} if the minimum is well defined, else set j* := 0. Here G; is
the following set:

{peP™n U A;: Vit € dom(p) (pPY axp A BPO(Z) < a,)}.

1<K
Since (J,,, A; is of size x, B is obviously a s-Borel function and for every i,j < & we
have that p; j lFpm B((1)eu)(i) = ki j, hence lkpm f = B((M)1eu)- O

Lemma 5.1.7. Let m € M and define Q™ to be the (P™ | L™ )-name for the quotient

forcing (P™ | L%)) / (G | L%,) for every t € L™. Then the following holds true:
1. IFpm e, Ql{“ - ]I;]I,.i as partial orders.

2. Let p,q € P™ and t € dom(p) N dom(g). Then for every r € P™ | L%, we have
7 lFpmizm p(t) and g(t) are incompatible in Q7™ iff one of the following conditions
is satisfied:

- pP® and p® are incompatible
- P 9 p1® and 7 IFpm L, Br®) I dom(p?®) e pI®)
- p1® g pP® and 7 IFpm o, B I dom(pP®) e pP®)

In particular we have: _ '
IFpmizm p(t) and q(t) are compatible in Q" < p(t) and ¢(t) are compatible in H,

3. Let p,¢ € P™ such that dom(p) C dom(g) but ¢ £pm p. Then there exists ¢ €
dom(p) and r € P™ | LY, such that v [ LT, <pm q [ LY, and r | LT}, <pm p [ L%,
but r [ LT} IFpmizm 7(t) and p(t) are incompatible in QM.

Proof. ad 1.) Trivial

ad 2.) Let p,q € P™, ¢t € dom(p) Ndom(q) and r € P™ | L%, be arbitrary. Assume
w.lo.g. that p"®) < pf® and r Wpmipm BPO | dom(p®) £ p?®). Hence, there exist
v’ e P™ [ L% with 7' <pm r such that " lFpmzm Br®) | dom(p?®) < p?® . Define a
(P™ | L™)-name f such that IFpmm, f 1 dom(p?®) = p1® AVi € &\ dom(p?®): f(i) =
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max{BP") (1), BID (i)}, If we set 7 := (p?®, f) , we can deduce that IFpmypm, 7 € Qm
and 7’ IFpmizm 7 is a common lower bound of p(t) and ¢(t) in Q™.

ad 3.) It easily follows that there is ¢ € dom(p) such that ¢ [ LY, <pm p [ L', but ¢ |
L2, Wpmipm q(t) <gm p(t). Hence, there exists ¢’ € P™ | LT} such that ¢’ <pm ¢ [ LT}
and ¢ lrpmipm q(t) Lom p(t). W.lo.g assume that p*) < p?® and there exists i <
such that ¢’ decides B*® | (i +1) and B4® | (i + 1) and ¢/ IFpmm, BrO(i) £ B (5).
Now we can deduce that there exists r € P™ | LZ, such that r [ L%, = ¢/, <pm ¢ [ LY,

and r [ L% lFpmzm 7(t) and p(t) are incompatible in Q™. O
We will now have a look at how we can compare different iteration parameters:
Definition 5.1.8. Let m;, my € M. Define m; <p; my iff:
o [™ C [™2 as partial orders
o If t € L™ \ M then ui™ = v and P/ = P;™
o If s € M then u™ = u™ N L™ and P™ = Pm2 ) [[m]sF 4
o F™M1 = Fm2 | M x [™

[t can easily be seen that (MM, <yp) is a partial order.

The next lemma shows some properties of (M, <jp), in particular it has amalgama-
tion and is <Ord-closed.

Lemma 5.1.9. The following holds true:

1. Let mg <31 my and mg <yp my such that L™ N L™2 = [™0, Then there exists
m3 € M with L™3 = L™ U L™2 such that m; <y m3 and my <p; mg.

2. Let (mg,)q<, be an <y-increasing sequence. Then there exists m € M which is
an upper bound.

Proof. ad 1.)

e Define L™3 ;= L™ U L™2. In particular t; <pmjs to iff t; <pm; t5 or t; <pm, t5 or
there exists s € M such that either t; <pm; s <pmy t9 or t] <pmy s <pm; t9 holds.

If t € L™\ M set u;™ := u™ and P, := Py,

If t € L™\ L™ set uy™ := u™ and P;™ = P™.

If se M set u™ :=uP UuP? and P =P U P2,

Define F™3 ;= F™ Uy ™2,

“In particular, it follows that for every u € P™z \ P™ there exists t € L™2 \ L™ such that u C
t/E™2 U M.
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It can easily be seen that mg € M and m; <p; mj.

ad 2.) We define m similarly to above. In particular, we set L™ := |J,_ L™ as
partial order. We must show that L™ is still well-founded. Let A C L™ be non-empty.
We distinguish two cases:

o [fVie Adse ANM: s <;m t then any minimal s € AN M is also minimal in A.

e If3t € AVs e ANM: s £m ¢ choose such a ¢ and o < v with ¢ € L™= It follows
by our construction that any minimal ¢ € A N¢/E™> must also be minimal in A.

Again, all the other conditions are obviously satisfied. Hence, m is an upper bound. [

Note that if m; <pp my then P™t C P™2 as sets, but, in general, not as partial orders.
Furthermore, for t € L™ we have that dpym, (t) < dpym,(t), but, in general, not equal.

Now we define how to restrict iteration parameters:

Definition 5.1.10. Let m € M and let L C L™ such that M C L. We definem | L :=
(L,(uNL:tel),(PN[L]=*:te€ L),E™NLxL).

The following lemma is straightforward:

Lemma 5.1.11. Let m € M and let L C L™ such that M C L. Then alsom [ L € M.
Furthermore, if Vt € L\ M : t/E™ C L then even m | L <p m.

Now we define a very important subclass of M:

Definition 5.1.12. Set M., := {m € M: Vm;, my; >y m (m1 <y Iy = P g P2 )}
Here ‘ec’ stands for existentially closed.

The point of the above definition is that the procedure of adding more and more fake
coordinates stabilizes at m € M,..

We are ready to state the first crucial theorem:

Theorem 5.1.13. For any m € M there exists m* € M., such that m <y;y m*. Hence,
M., is not only upwards closed but also cofinal in (M, <y).

In order to prove the above theorem, we will define an equivalence relation on M:

Definition 5.1.14. We say that m;, my; € M are equivalent iff there exists a function
f such that:

o f: L™ — [™2 is bijective
o Vse M: f(s)=s

o Vi, to € L™ : 1y <pmi ty & f(t1) <pm: f(l2)
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o th,tg e L™ \M t E"™ty, & f(tl) Em2 f(tg)
o Vte L™: flui™] =ujy
o Vi€ L™ Vue [u™]=":ueP™ & flu] € Pij
We will call such an f an isomorphism. We will denote the equivalence by m; ~n ms.

Lemma 5.1.15. Let my, my € M be iteration parameters and let f: L™ — L™2 be an

isomorphism. Then f canonically induces an isomorphism f: P™ — P™2,

Proof. Canonically define f: P™ — P™ ie for p € P™ and t € dom(p) define

Fp) (1) = (pPD,sup;_s B (3 )wesp) ). ° Obviously f: P™ — P™ is bijective.

One can easily show by induction on dp;m, that Vp,q € P™: ¢ <pm; p & f(q) <pmy f(p)
O

The next definition will be crucial:

Definition 5.1.16. Let m € M be an iteration parameter. We call m wide iff for every
m’ € M, there exist (¢;);<x, € L™ \ M such that Vi,j < A\y: i # j = —t; E™t; and
m [ (t;/E™ U M) =~y m' for every i < \s.

The next lemma combined with Lemma 5.1.15 shows that P™ has many automor-
phisms if m is wide:

Lemma 5.1.17. Let m € M be wide. Let (t);ci-, (t?)ici» and (f;)i<i» with i* < Xy be
such that:

e Vke {1,2} Vi<i*:the L™\ M

o Vhke{l,2} Vi,j<i*:i#j= ﬂthmt;?

e f; witnesses that m | (] /E™ U M) ~y m | (£2/E™ U M) for every i < i*
Then there exists an isomorphism f: L™ — L™ extending every f;.

Proof. First we check that f’:=(J,_,. f; is a partial isomorphism, i.e. f" witnesses that
m | (U ti/E™UM) =y m | (U, t7/E™ U M). This holds because different
equivalence classes only interact via M. Next we extend f’ to a partial isomorphism
f" such that dom(f”) = ran(f”). We can do this inductively using that m is wide.
Now extend f” to a total isomorphism f: L™ — L™ by defining f to be the identity on
L™\ dom(f"). O

We are now ready to prove Theorem 5.1.13:

"Here we set B((2¢)iefu)) = B((2f(1))teu) for a x-Borel function B: (k7)* — k"

26



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

Proof of Theorem 5.1.13. Let m € M be arbitrary. For every equivalence class [m’] €
M./~ We want to add Ay many disjoint, ~p-equivalent copies of m’ to m. Since
M,/ contains only 22 many equivalence classes, this can be done inductively by
Lemma 5.1.9. Call the resulting iteration parameter m*. Obviously, m* is wide.

We must show that m* € M,... Let m;,my € M such that m* <\ m; <y ms.
Obviously, P™ C P™2 as sets. We must show that <pm,[ P™ x P™ =<pm, and
furthermore P™ <« P™2. We will show by induction on o < 0oy, that PIM < P™2:

e o = 1: This case is easy, as P™ is a side by side product of x-Hechler forcings, all
of which also appear in P7**. Hence P{™ < P{™* < P™2.

e o — a+1: First we show that <pwe, | PoY < PR =<pm1 . Assume that P2 <P™2.
Let p,q € P3Y, such that dom(p) € dom(g). We have:

— q <pm; piff

—q [ Ly <pmi p | LY and for every ¢t € dom(p) with dpym, (t) = a we have
that ¢ | L% pm, m q(t) <g p(t) iff

—q [ LF? <pm: p | LY? and for every ¢t € dom(p) with dpym, (t) = a we have
that g [ LZ7 IFpmy pme q(t) <m p(t) iff
= q <pm2 P
This holds because P™ | LT} <P™2 | L'Z2 the statement ‘ q(t) <g p(t)’ is arith-

metical and B(Z) = y is absolute between VE™ L2 and VE™ILZ2 Hence g <pm; p
iff ¢ <pm: p.

Next we will show that if p,q € PpY, are incompatible in P™!, then they are
also incompatible in P™2: Assume that r <pm, p and r <pm, ¢ with r € P™2,
Furthermore, assume for every ¢ € dom(r) there exists ¢ € dom(p) U dom(q) such
that t <;m, t'. We can assume this, because for any initial L' C L™2 we have
P™2 | [/ <P™2 by Lemma 5.1.6.

Enumerate wsupp(r) \ (wsupp(p) U wsupp(gq)) modulo E™2 as (t;);<s for some
§ < K, and for every i < § find ¢, € L™ \ (wsupp(p) U wsupp(q)) (in particular
t; € L™) such that Vi,j < 0:4 # j = —t; E™ t; and my | (;/E™ U M) ~y
m* | (t;/E™ U M). This is possible, since m* is wide.

Define an isomorphism f: L™2 — L™2 which is the identity on wsupp(p)Uwsupp(q)
and maps t;/E™? onto t;/E™? for every i < 0. This can be done using Lemma
5.1.17. By Lemma 5.1.15 the isomorphism f induces an automorphism f of Pm2,
and we can deduce that f (r) <pm: p and f (r) <pm: g. Furthermore, we have
f(r) € P™. Since dom(p) U dom(q) is cofinal in dom(f(r)), we can deduce that
f(r) e P, . As we already know that <pmz | PO, x Py =<pm , it follows that

also f(r) <pm; p and f(r) <pm; ¢. Hence, p and ¢ are also compatible in P™!.

Finally we show that P.Y, «P™2. Let A C P;Y, be a maximal antichain. It
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follows that A C P™2 is also an antichain. Towards a contradiction assume that
A is not maximal in P™2 and let ¢ € P™2 be incompatible with every p € A.
Again, we can assume that for every ¢ € dom(q) there exists ¢ € [, , dom(p)
such that ¢t <ym, ¢’. Similar to above, define an isomorphism f: L™2 — L™ fixing
U,ea wsupp(p) pointwise and mapping wsupp(q) \ U, 4 wsupp(p) into L™ . Again
by Lemma 5.1.15 it follows that f induces an automorphism f of P™2. We can
deduce that f(q) € P}, and hence is compatible with some p’ € A. Let r € P2,
be a common lower bound. But this immediately leads to a contradiction, since
f7(r) would be a lower bound of p’ and ¢ in P™2.

e 7 is a limit ordinal: Assume inductively that for every a < v we have P < P™2.
For p,q € P7" we have:

— ¢ <pm piff

— for every v < v we have ¢ [ L2 <pm, p | L2 iff
— for every aw < v we have ¢ [ L2 <pm, p [ L2 iff
— ¢ <pmp

Similar to the successor step prove that for p,q € PJ* we have p and ¢ are com-
patible in P™2 iff they are compatible in P™!.

Similar to the successor step prove that if A C P™ is a maximal antichain, then
A is also maximal in P™2.

Hence P™ < P™2 which finishes the proof. n

In particular, M., is non-empty.

5.2 The Corrected lteration

In this section we want to properly define the Corrected Iteration and show some of its
basic properties.

Definition 5.2.1. Let Var be a set of variables. We define L.+ (Var) (the x™-propositional
logic) inductively:

e Var C L,+(Var)
o If p € L,+(Var) then ¢ € L,+(Var)
o If a <w'and {y;: i <a} C L.+(Var) then A,_, ¢; € L.+ (Var)

For an assignment b: Var — 2 one inductively defines ¢[b] € {0,1} for ¢ € L,+(Var) in
the natural way.

The next lemma follows immediately:
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Lemma 5.2.2. For every ¢ € L,+(Var) the mapping B,: 2V* 3 b+ p[b] € {0,1} is -
Borel. ¢ In particular, there exists u, C Var of size < x such that for every by, by € 2V
if b1 [uw = bg [u<p then B@<b1) = Bcp(bg)

Definition 5.2.3. Let m € M. Let Var := {p;;;: t € L™ Ai,j < x}. For p € P™
and ¢ € L,+(Var) we define p lFpm ¢ is true iff p IFpm [bs| = 1, where b, is a P™-
name for an element of 2 such that for every t € L™ and every i,j < x we have
lFpm b (prij) = 1 < (1) = j. Similarly we define p lFpm ¢ is false.

Let L C L™ be arbitrary. Set Var | L := {p;;; € Var: t € L}. We define P™[L] := {p €
L+ (Var [ L): 3p € P™ plbpm ¢ is true} and set ¢ <pmpz) ¢ iff lbpm = (1 A=) is true.”

The following facts are obvious:
Lemma 5.2.4. Let m € M and let L C L™ be arbitrary. The following is true:
o P [L]<B(P™), where B(P) denotes the Boolean completion of a forcing notion P.
o P [L™] = B(P™).
e If L C L™ is an initial segment, then P™ | L is dense in P™[L].

e For every condition p € P™ there exist a unique condition m(p) € P™[M], called
the projection of p, such that for every ¢ € P™[M] we have: p and ¢ are compatible
iff 7(p) and ¢ are compatible.

e In particular, 7(p) is a reduct of p, i.e. for every ¢ € P®[M] with ¢ <gpm=) 7(p)
we have p and ¢ are compatible.

Now we are ready to define the Corrected Iteration Q,;:

Definition 5.2.5. Fix m* € M,.. We define Q,; as the complete Boolean algebra
generated by (7))sens within P™": Qyy := P™ [M]. Furthermore, we define Q) | N :=
P™[N] for N C M.

Next we show that our definition is well defined:
Lemma 5.2.6. Q,; does not depend on the choice of m* € M,..

Proof. Let my, my € M. and w.l.o.g. assume that L™ N L™ = M. By Lemma 5.1.9
there exists ms such that m; <y m3 and my <y mgs. Since both m;,my € M, it
follows that P™! <P™3 and P™2 <P™3. Hence, it does not matter whether we define Q,;
in P™3 ) in P™! or in P™2. O

The following lemma summarizes the most important properties of the Corrected
Iteration:

SNote that the x-Borel algebra on 2V is the family B C B(2V®) which is generated by the basic
clopen sets only.
"If we factorize P™[L] modulo v <pm[r] p A\ @ <pm[r) ¥, We get a complete Boolean algebra.
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Lemma 5.2.7. The following facts hold true:
1. Qu is kt-c.c. and is <k-strategically closed 8.

2. For every s,t € M we have Qp [ Moy < Qp | Moy if s <p; t. Hence, (Qu |
M_g)senr is indeed an iteration.

3. gy VIG] = V[(1)senm].
4. Ikqu e, s dominates V@M<

5. If cf(ar) > Kk then U5<a Qur | Mg is dense in Qp [ M,. Hence, the iteration has
‘ <k-support .

Proof. ad 1.) First we will show that Q) satisfies the x™-c.c. Towards a contradiction
assume that (¢;);<.+ is a family of pairwise incompatible conditions in Q;. Let (p;);<,+
be a sequence of conditions in P™" such that p; lFpm= ¢; is true for every i < x*. But
then the p;’s must also be pairwise incompatible, which contradicts the x*-c.c. of P™.
Now let us show that Q,, is <k-strategically closed. Let ¢* € Q,; be arbitrary and
denote Player I's choice in stage ¢ < k by ¢; and Player II's by ¢;, which are all below
©*. Player I's winning strategy is to inductively pick decreasing p; € P™ and to set
¢; = 7(p;). Hence, p; will be compatible with ); and there exists a common lower bound
pi+1- In a limit stage A\ < & the condition py = inf;.) p; will ensure that A,_, ¢ € Qp.

ad 2.) Trivial.

ad 3.) We will show that IFg,, ¢ € G < Bw(bg) = 1 for every ¢ € Qys, where b]g
is a Qp-name for an element of 2™ guch that for every s € M and every i,j < &
we have l-q,, bau (ps,ij) = 1iff 15(7) = j (see Lemma 5.2.2 and Definition 5.2.3). Then
IFo,, G ={¢ € Qu: B@(bg) =1}

Let ¢ € Qu be arbitrary. Let ¢ € Qs be such that ¢ I-g,, ¢ € G. Let ¢/ € Qu be
a common lower bound of ¢ and ¢, and let p € P™" be such that p |Fpm* Bwr(b]‘g) =1
Then 7(p) <g,, ¥ and 7(p) IFq,, Bg,(b]‘G-J) =1.

On the other hand, let v € Qy be such that ¢ Iq,, Bw(bg) = 1. Then ¢ lkq,,
Bﬂp(bgl) = 0. Hence, 1 and — ¢ are incompatible in Q. As {p,—¢p} C Qu is a
maximal antichain, we can deduce that v Ikg,, ¢ € G.

ad 4.) Let f bea Q) | M. -name for an element of x*. Since l-g,, ¢ € G < B@(b]g) =1
for every ¢ € Qu, we can find u € [M.,J=" and a s-Borel function B: (5%)"* — &*
such that kg, f = B((1s)seu). Hence lbpmem 1) eventually dominates f.  But

Qur [ M<y aP™ [L2]], hence lkq,, 1., 75 eventually dominates f.

ad 5.) Let cf(o) > k and let ¢ € Qy | M,. Pick p € P2 with p <gpm+=) . Since

8As a complete Boolean algebra Qj; cannot be <r-closed.
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|dom(p)| < k, it follows that there exists a f < « such that p € IP"B“*. We claim that
m(p) € Q| Mps. To this end let 7@™Ms(p) € Qy | My be the projection of p onto
Qur | Mg, and we will show that m(p) = 7@ M5 (p):

Since obviously 7(p) <q,, 7™ (p), it follows for any ¢’ € Qs that 7@Ms(p) and
¢’ are compatible if p and ¢’ are compatible. On the other hand assume towards
a contradiction that there exists ¢’ € Qu; such that 7@7Ms(p) and ¢’ are compat-
ible, but p and ¢’ are incompatible. Let ¢ € @Q, be a common lower bound of
7@ M5 (p) and ¢ such that there exists ¢ € P™ with ¢ = n(¢). W.lo.g. we can
assume that wsupp(p) N wsupp(q) = M. By setting ¢/ := 7@ (g) and noting that
aQlMs (q) <q,, 7@™M5(p) we can show following the proof of Lemma 5.3.8 that p and
ql g‘ are compatible. But then p and ¢ must be compatible as well, which leads to a
contradiction, since p and ¢’ were assumed to be incompatible. Hence 7(p) = 7@ Mz (p).
It follows that 7(p) <q,, ¢ and therefore, (J5_, Qar [ Mp is dense in Qu | M. O

5.3 Different lteration Parameters

In this section we want to show that if N C M then Qu < Q. Indeed this is not even
trivial if V is an initial segment of M. In particular it is not obvious if Qn;, = Qus | M.
As a motivational example we will show this in the next lemma.

We will use the following notation: if we want to refer to a definition using N as the
well-founded partial for which we want to construct the Corrected Iteration, we will
denote this by a superscript N (e.g. MY, MY <y~ etc.). Furthermore, elements of
MY we will denote by n, n;, n* etc.

Lemma 5.3.1. Let N C M be an initial segment. Then Qn <Qy; and Qy = Qu [ N
hold true.

Proof. Let m* € M,.. We define n* :==m* | {t € L™:3s € Nt <ym s}, i.e. L* :=
{t e L™ :3s € Nt <pm s}, uf :=u™, PP :=P™ and B = E™ NL™ x ™.
Since N is an initial segment of M, it can easily be checked that n* € M”. The crucial
point is that real coordinates in m* remain such in n*.

We will now show that even n* € MY. Let n;,ny, € MY with n* <yv n; <pyv no.
W.lo.g. we can assume that L*2 N L™ = L™ . Similar to Lemma 5.1.9 we can now
‘amalgamate’ n; and m* over n*:

e Define L™ := L™ U L™ . In particular t; <;m; ty iff t; <gm; ty or t; <ym* 1y O
there exists s € N such that t; <pn; s <;m* t5 holds.

Ift € L™ \ M set uj™ :=u? and P/™ = P,

Ift € L™\ L™ set u}™ :=u} and P/™ = P/,

Ift e L™\ (L™ UM) set ui™ :=u™ and P := P™ .

If s € N set u™ :=ul and P := P,

s
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o If s€ M\ N set u™ :=u™ and P™ :=P™",
e Define E™i := E™ U ™,

One can easily check that m;, my € M and m* <py m; <y mo. Hence P™ qP™1 qPm2,

Using the fact that L™ is an initial segment of L™ we can show by induction on

a < oorm; that Phi = P™ [ LY. But P™ | L™ <P™2 and therefore P™ | L™t qP™2 | LP2,

Hence n* € M.

Since obviously P* <P™" holds, it follows that Qx <Qj; and furthermore Qx = Qu; | N.
O

The remainder of this paper will deal with generalizing the previous lemma to any
N C M. If N is not an initial segment of M the previous proof fails, because a t € M\ N
might reach into more than A\, equivalence classes in m*. Indeed for the m* we con-
structed in Theorem 5.1.13 this will definitely be the case.

It will suffice if we construct m* € M.. N Mc,,:

Theorem 5.3.2. Let m* € M,. N Mc,,. Let N C M be arbitrary. Then there exists
n* € MY such that P = P™ . Hence Qy <Qy; and Qy = Qs | N.

Furthermore, if G is a (V,Qu)-generic filter and f: M — M is a strictly increasing
function such that f € V', then the sequence (7'7?(8))56  naturally defines a filter G/ C Qyy,
which is also (V, Qyy)-generic.

Proof. We define n* as follows:
e Set L™ := L™ as partial orders.
e Define E™ := L™ \ N x L™ \ N.
o Ift € L™ \ N set u® :=u™ and PP :=P™.
o If s€ N set u? :=u™ and P :=P™.

It is crucial that L™ is of size <),, hence we can treat L™ \ N as one equivalence class,
and therefore, we can set u® := u™ and PP := P™ even for t € M \ N. It follows
that n* € M¥.

Now let us show that n* € MY: Let n;,n, € MY such that n* <yv n; <pynv no.
Similar to the previous proof we define m; as follows:

e Set L™ := L™ as partial orders.
o Define E™i := ™ U E™ | (L% \ L™ x (L \ L™)).
o Ift € L™\ M set uj™ :=u" and P;™ := P,

o If s € M set u™ :=u? and P™ =P,

s
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One can easily check that m;, my € M and m* <y m; <p my. Hence P™ qP™1 P2,
By induction on o < oogn; show that Phi = P5 | recalling that P™ does not depend on
E™i. Hence n* € MY, Since, in particular, P* = P™" it follows that Qxy < Q,; and
Qv =Qu [ N.

Let G be a (V,Qyy)-generic filter and let f: M — M be a strictly increasing function
in V. Set N := f[M]. The sequence (7'7?(8))56 a obviously induces a (V, Qs [ N)-generic
filter: Set G’ := {¢ € Qu | N: B,(bY¥ | N) = 1}, where bY | N(pss)i;) = 1 iff
7.7?(5) (1) = j for every i,7 < k and s € M (see Lemma 5.2.2 and Definition 5.2.3). Since
Qnx = Qu [ N, we can deduce that G’ is a (V, Qy)-generic filter. But since Q,; and Qy
are obviously isomorphic, it follows that G’ is (V, Qp)-generic. O

We are left with showing that M. MMc,, # 0. This however will require some work.
If we look back at how we constructed the m* € M., in Theorem 5.1.13, we notice two
things: first, of course, that |L™ | = 2*2, and secondly that m* is ‘very saturated’, i.e.
every ‘reasonable type’ is satisfied A\o-many times in m*. However, conditions and even
antichains in P™" only use <s-many coordinates. Indeed it turns out that we do not
need global automorphisms, but local ones will suffice. In particular, we do not need
that every ‘reasonable type’ is satisfied in m*, but only those of ‘size <x’. This will be
the reason why we can find m* € M, N Mc,,.

We will need several definitions:

Definition 5.3.3. Let m € M and let L C L™ be arbitrary, in particular, not necessarily
an initial segment. We define P™ | L := {p € P™: fsupp(p) C L} and endow it with the
partial ordering <pm:=<pm|[ (P™ [ L xP™ [ L).

Definition 5.3.4. Let m € M and let L C L™ be arbitrary. For a condition p € P™
we define p [ L as follows:

e Set dom(p [ L) := dom(p) N L.

o If t € dom(p | L) define (p [ L)(1) = (0", supjc;, BY (()ve,) ), where p(t) =
(P, sup; 5 BI" (()wew,) ) and Iy o= {j < 6: u; € L}.

Note that if M C L, then P™IZ = P™ | [ as sets, but, in general, not as partial orders.

Lemma 5.3.5. Let m € M and L C L™ such that M C L. Let p € P™ be a condition.
Then the following facts hold true:

LplLeP™|L
2. P | L CP™[L] as partial orders

3. kpmpeG e {p| (t/E™UM):tc wsupp(p)\ M} C G
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Proof. ad 1., 2.) Trivial.

ad 3.) Obviously, for any ¢ € P™ if ¢ lFpm p € G, then also g lkpm {p | (t/E™UM): t €
wsupp(p) \ M} € G. Hence lbpm p € G = {p | (t/E™U M): t € wsupp(p) \ M} C G.
On the other hand let ¢ € P™ be such that ¢ IFpm p ¢ G. By Lemma 5.1.7 we
can assume w.l.o.g that there exists t € dom(p) such that ¢ [ LT, <pm p [ L%, and
q | L% Ikpmipm p(t) and ¢(t) are incompatible in Q;n Again by Lemma 5.1.7, there are
now three cases:

o p*" and p?® are incompatible. Find ¢’ € wsupp(p) \ M such that ¢ € ¢'/E™ U M.
But then g lFpm p [ ({//E™UM) ¢ G.

o p?® qpr® and there exists i* € dom(p*") such that g | L% IFpmpm o0 (i*) <
BIM(3*). Again there exists ¢/ € wsupp(p) \ M with t € ¢//E™ U M. It follows
that g lkpm p [ (/E™UM) ¢ G.

o pP® < pi® and there exists j < ¢ and i* € dom(p?®) such that ¢ | L™ IFpm Lm,
P (i) < B;’(t)((ﬁt/)tleuj)(i*). Note that this follows because IFpmzm, Br) —
SUpP, -5 Bf(t)((ﬁt/)tfeu). Now there exists t" € wsupp(p) \ M such that u; Ct'/E™U
M. Hence g lkpm p | (t'//E™UM) ¢ G.

In any case it follows that ¢ IFpm {p [ (t/E™ U M): ¢ € wsupp(p) \ M} & (. Hence
lFpm {p | (t/E™UM):t € wsupp(p) \ M} CG=peqG. ]

Definition 5.3.6. Let m € M. We define Yy, := {(t,5): t € L™\ M A 5 € (t/E™)<"
is injective}. Furthermore, we define an equivalence relation on Vy,. We say that (1, 51)
and (ty, 52) are O-equivalent over m iff there exists a bijective function® f: 5 U M —
59 U M, which we will call a weak isomorphism, such that:

o f(51(i)) = 53(4) for every i < dom(s;) 1°

e Vsc M: f(s)=s

o Vi the st UM: t) <imth s f(t)) <pm f(t))

o ViE ST UM: flui® N (51U M)] =uf, N(5UM)

o Vi €5 UM Yu € uPN(51UM)]=": u € PPO[5;UM]=" & flu] € P, N[5:UM]="

Clearly f induces a bijective function f:P™ ] (5,UM) — P™ | (5,UM), but in general
f does neither preserve <pm nor compatibility in P™. Hence, we further require:

A~

e [ is an isomorphism from P™ [ (5; U M) to P™ [ (s, U M)

e f extends to an isomorphism f from P™[5; U M] to P™[s, U M|

9We will occasionally identify 5 with {5(i): i < dom(5)}.
10This guarantees that there exists at most one such a function.
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We say that (t1,51) and (t2, S9) are l-equivalent over m iff:
e (t1,51) and (t2, S2) are O-equivalent over m

e for every i € {1,2} and every Z € (t;/E™)<*" there exists Z3_; € (t3_;/E™)<F"
such that (t1,57°z1) and (2, 55 Z2) are 0-equivalent over m

Lemma 5.3.7. Let m € M. The following holds true:
e The number of 0-equivalence classes over m is at most J;(\1).
e The number of 1-equivalence classes over m is at most Jy(\1).

Proof. There are at most 2* many possibilities for m | (53U M) modulo isomorphism.
P™ | (sUM) as a set is uniquely determined by m [ (5 U M) and is at most of size
A% = )\;. Hence, there are at most 2*' many possibilities for P™ | (5U M) as a partial
order. P™[s U M] is not completely determined by m [ (5U M), but there are at most
A1 many possibilities for P™[s U M] as a set, all of which are of size <\;. Hence, there
are at most 2 many possibilities for P™[5U M] as a partial order. It follows that there
are at most J;(\;) many 0-equivalence classes over m.

For (t,5) € Vm we define a function Fi; 5): Ym /o-equ. — 2 as follows: Fiy 5 ([(',5)]o-equ. ) =
1 iff there exists z € (t/E™)<*" such that (t,57%) € [(t', 5)]oequ.. Obviously (t,,5,) and
(t2,59) are l-equivalent over m iff they are 0-equivalent over m and Fy, 5,) = Fii,5,)-
Hence, there are at most Jy(\1) many l-equivalence classes over m. O

Lemma 5.3.8. Let m € M be wide. Let p,q € P™ and ¢ € P™[M] such that:

e wsupp(p) N wsupp(q) = M

e ¢ is a reduct of p
e ¢ and 1) are compatible in B(P™)
Then p and ¢ are compatible.

Proof. Simultaneously we shall construct by induction decreasing sequences (pp)n<w,
(Gn)n<w and (1,)n<, such that for any n < w we have dom(p,) " M C dom(g,+1) and
dom(q,) N M C dom(pp1), wsupp(p,) Nwsupp(q,) = M, 1, is a reduct of p,, and g,
and 1), are compatible (¢, will even be a reduct of ¢, for n > 1).

Set po :=p, qo := q and vy := 1». They satisfy the requirements by assumption.

Assume that p,, ¢,, ¥, have been defined. Since ¢, and 1, are compatible, we can find
a lower bound ¢/,. Obviously we can assume that dom(p,) N M C dom(q,,). However,
it is not necessarily the case that wsupp(p,) N wsupp(q,,) = M. Therefore, we define an
automorphism f of P™ fixing wsupp(q,,) pointwise and moving wsupp(q.,) \ wsupp(q,)
away from wsupp(p,). Then f (q,,) is also a lower bound of ¢, and 1, and wsupp(p,) N
wsupp(f(¢.)) = M. Set gni1 := f(¢,), and define ¢, := 7(gns1). It ecasily follows that
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Y, <gpm) ¢y, hence p, and ¢, are compatible.
Similar to above find p,,; with the required properties. Set 1,1 := m(p,+1) and notice
that ¥, 1 <ppem) Y. Hence, g,.1 and 1,1 are compatible (¢, is even a reduct of

Qn—l—l)-

Since (Pn)n<w, (Gn)n<w and (¢¥n)n<w are decreasing sequences, there exist greatest lower
bounds p*, ¢* and ¥*. It follows that dom(p*) N M = dom(g*) N M and wsupp(p*) N
wsupp(q*) = M. Furthermore, since for every s € dom(p*) N M the condition 1* decides
PP ) and p? ) it follows that p?"(®) = p?*(*) for every s € dom(p*) N M. Hence, p* and
q* are compatible, which proves that p and ¢ are compatible. O

Lemma 5.3.9. Let m € M be wide. Let {x;: i <*} C B(P™) with i* < & be a family
of conditions such that:

e There exists ¢ € P™[M] such that 1 is a reduct of x; for every i < i*.

e There exists (L;);<; with L; € L™ such that:
Vi<i*Vte Ly t/E™C L
— Vi <y € PP[L]
Then there exists p € P™ which is a lower bound of {;: i < i*}.

Proof. By induction we will construct decreasing sequences (p;)i<;+ and (1;);< such
that p; is a lower bound of {x;: j < i}, Vj > i: wsupp(p;) N L; = M and v; € P™[M] is
a reduct of p;.

Set py € P™ to be any condition below 1 such that Vi < i*: wsupp(po) N L; = M.
One can achieve this by using an automorphism argument. Set vy := m(pp).

Assume inductively that p; and v; have already been defined and satisfy the required
properties. Since 1; <g@pm) 1, it follows that x; and 1); are compatible. Pick a com-
mon lower bound p; € P™ and use an automorphism argument to make sure that
wsupp(p;) Nwsupp(p;) = M. This is possible since x; € P™[L;] and wsupp(p;) N L; = M.
If we set ¢ := 7(p}) and note that ] <gpm) 1);, we can use the previous lemma to show
that there exist a lower bound p of p; and p,. Again use an automorphism argument
to make wsupp(p;) \ M disjoint from (J,.,; L;. Define p;;, := f(p!) where f is the cor-
responding automorphism of P™. Set ;1 := m(p;y1).

In the limit step define p, to be the greatest lower bound of {p;: i < A} and set 1, :=
7(pa). Obviously 1y is a lower bound of {#;: i < A} and wsupp(py) NU;s, Lj = M.

Define p;« to be the greatest lower bound of {p;: ¢ < i*}. Then p;+ is obviously a
lower bound of {x;: i < i*}. O

Lemma 5.3.10. Let m € M be wide. Let ((£{,5%))i<i<, ((t,55))i< and (f;)i<i+ be such
that:
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o Vk e {1,2} Vi <i*: (t:,5,) € Vm
o VEk € {1,2} Vi,j <i*:i#j=—ti E™t]
e f; witnesses that (¢,5%) and (¢}, %) are 0-equivalent over m

Then f :=J,_,. fi induces an isomorphism fpm (Ujcis SUM) = P™ [ (e S5 UM).

i<i* i<i
Proof. Abbreviate |J,_;. 5, UM by Li. Canonically define fiP™ | Ly — P™ | Ly, ie.
for p € P | Ly and ¢ € dom(p) define f(p) (f(t)) := (7", sup,<5 B} (e )ve ) )-
Obviously f: P™ [ Ly — P™ | Ly is bijective and extends every f;. We need to show
that Vp,q € P™ [ L1: ¢ <pm p & f(q) <pm f(p).

In order to show this, we will first verify the following claim: The following two state-
ments are equivalent for p, ¢ € P™ satisfying dom(p) C dom(q).

() g €P™ [ Ly Aq <pmp
(D) pg€P™ [ Ly AVi <i*: q | (5,UM)An(q) <gem) p | (5, UM)A7(p)

(a)g = (b)k: Let p,g € P™ | L and i < ¢* be arbitrary, and assume towards a
contradiction that there exists ¢’ € P™ such that

¢ IFpm (g (5, UM)AT(q)is true) A (p ] (5, UM)Ar(p) is false).

Using an automorphism argument we can assume that wsupp(q’) Nwsupp(q) C t;/E™ U
M. Now we use the previous lemma with yy := ¢ | (5% U M) for i’ # i, x; := ¢’ and
Y := 7(¢') noting that m(¢') <pem) 7(¢) and {i' < i*: q | (5, UM) # q | M} is of size
< K, hence {q | (5, UM): i <i*} U{q} is of size < k. Therefore, we get a condition
¢" which is a lower bound of ¢ and by Lemma 5.3.5 ¢” IFpm ¢ € G. Since ¢ <pm p, it
follows that ¢” IFpm p € G. But this immediately leads to a contradiction, since ¢’ and
p must be incompatible.

(b)r = (a): Let p,q € P™ | L be arbitrary and assume towards a contradiction
that ¢ £pm p. Since dom(p) C dom(q), it follows by Lemma 5.1.7 that there exists
¢ <pm qsuch that ¢ lFpm p ¢ G. However, ¢ <p@m) ¢ [ (5,UM)Am(q) for every i < ¥,
hence ¢/ IFpm {p | (L UM): i <i*} C G. By Lemma 5.3.5 it follows that ¢/ IFpm p € G,
which is a contradiction.

Next we show that for every p € P™ [ L; we have n(p) = ﬂ(f(p)), i.e. for every
¢ € P™[M] we have m(p) is compatible with ¢ iff f(p) is compatible with ¢:

Let m(p) be compatible with ¢ and let ¢y € P™[M] be a common lower bound. Enu-
merate wsupp(p) \ M modulo E™ as (t]);<;+ with j* < k. Since the condition 7(p) is a
reduct of p | (8] U M), we can deduce that v is a reduct of p | (§J1 U M) A @ for every

j < j*. Furthermore, since f;: P™[8] U M] — P™[5, U M] is an isomorphism, it follows
that v is also a reduct of f(p) [ (85U M) A . By Lemma 5.3.9 and Lemma 5.3.5 we
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can deduce that f (p) and v are compatible. Hence, f (p) and ¢ are compatible.

On the other hand, assume that f (p) and ¢ are compatible and let ¢ € P™ be a common
lower bound. It follows that 7(q) <g@m) ¢ and it is a reduct of () 1 (BUM)A7(q) for
every j < j*. Furthermore, since fj_l: P™ (5, U M| — P™[5] U M] is an isomorphism, we
can deduce that 7(q) is also a reduct of p | (5, UM) Aw(q). Again by Lemma 5.3.9 and
Lemma 5.3.5 it follows that p and ¢ are compatible. Hence, 7(p) and ¢ are compatible.

Now let p,q € P™ | Ly such that dom(p) C dom(g). We can conclude that the fol-
lowing are equivalent:

q <pm p

Vi<i*:q | (5 UM)An(q) <pem)p | (5 UM)Ax(p) by (a); < (b);

S Vi< it fi(q 1 (SBUM))AT(q) < f( I (§§UM))/\7T(]3) since ng Pm[stUM] —
[P

P™[5, U M] is an isomorphism, f f m (5t U M) and f; | P™[M] is the identity
for every 1 < ¢*

- Vi < i filg T(85 U M) A T(flg )) <pem) filp [ (85 UM)) A 7(f(p)) since
w(r) = (())foreveryrEIPm[

~

(@) <em f(p) by (b)2 & (a)s and ﬁ-(?‘ [ (81 UM)) = f(r) | (55U M) for every

reP™ | L; and every i < ¢*

Hence f P™ | Ly — P™ | Ly is an isomorphism. O
Lemma 5.3.11. Let m € M. Assume that Lg, L1, Ly C L™ such that:

e [, is an initial segment of L™.

o Lo=L1NLy

o P | Ly<aP™ | Ly

e [\ Ly is disjoint from M

o ift € Ly \ Ly then (t/E™UM)NLY C L,
Then P™ [ Ly <P™.

Proof. The crucial point of the proof will be the fact that Ly U (Ly \ Lo) is an initial
segment of L™. To see this let t; € Ly \ Lo and ty <., t1. If t; E™ 1y then ty € Ly,
hence ty € Ly U (L1 \ Lg). If =t; E™ ¢y then there exists by definition an s € M with
tr <m S <m t1. It follows that s € Ly and hence t5 € Lo.

Furthermore, since (¢/E™ U M) N L%, C L, for every t € Ly \ Ly, we have:
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(t) For every p € P™ | (Lo U (Ly \ Lo) ) and every ¢t € dom(p) N Ly \ Ly it follows that
e, p(t) = (p [ L1)(®).

For p,q € P™ | L; we have by definition ¢ <pm,, p iff ¢ <pm p. Set L' := Ly \ Ly.
We will show by induction on o < ooy, that P™ | (Lo U L)) < P™:

e If « =0 then L, = () and P™ | Ly <P™ holds by assumption.

e a — o+ 1: We assume inductively that P™ [ (Lo U L)) <P™.

Assume that p,q € P™ | (Lo U L}, ,) are compatible in P™ and w.lo.g. let
reP™ | (LyUL,,,) be acommon lower bound. We can assume this, because
L,U L, is an initial segment of L™. Since P™ [ (LoU L)) <P™ [ (LyUL,), there
exists ' € P™ | (Lo U L!) which is a reduct of r | (Ly U L!,). Define a condition
T e P™ | (LyUL,,,) such that 7(t) :== r'(t) if t € Lo U L], and 7(t) := r(t) if
dpy,(t) = . By (f) we can deduce 7 € P™ | (Lo U L, ,).

Towards a contradiction assume that 7 €pm p. W.Lo.g. we have dom(p) C dom(7)
and hence, by Lemma 5.1.7, there exists 7’ € P™ [ (Lo U L ;) with 7 <pm 7 and
t € dom(p) such that 7 | L%, lFpmpm () and p(t) are incompatible in Q.
There are now 2 cases: If dpL,( ) < « pick a condition 7 € P™ | (Ly U L.)) which
is a reduct of 7 | (LoULL). Then 7 <pm 7 | (LyUL!) and 7 is incompatible with
p | (LoULL). Since ' =7 [ (LyU L), the conditions r and 7 are compatible.
But this leads to a contradiction, because r <pm p.

If dp;/(t) = « then 7(t) and p(t) are P™ | (Lo U L,,)-names by definition. Since
e P™ | (Lo U L) is a reduct of r [ (Ly U L},) it follows that 7 | L%} [Fpmpm
7(t) = r(t) <m p(t). But this leads to a contradiction, because 7 [ (Ly U L) <pm
T r (LO U L/oc) and f/ r Lr<nt |}_Pmm2‘t f/(t) SH f(t)

Similarly show that ¥ <pm ¢. Hence, p and ¢ are also compatible in P™ |
(LU U La-l—l)

Now let A C P™ | (Lo U L, ,) be a maximal antichain, and assume that A
is not maximal in P™. W.lo.g let p € P™ | (L, U L, ;) be incompatible
with every element from A. Again, there exists p’ € P™ [ (Lo U L!) which is
a reduct of p [ (Ly U L)). Define a condition p € P™ | (Lo U L, ) such that
p(t) :==p/(t) if t € Lo U L, and p(t) := p(t) if dp,(t) = . Again, we can deduce
peP™ ] (LoUL,,,) by (1)

Since A is maximal in P™ [ (Lo U L/ ) there exists ¢ € A such that p and ¢ are
compatible in P™ | (Lo U L[, ;). Let r € P™ [ (Lo UL, ,,) be a common lower
bound of p and ¢. Since r | (LoUL.) <pm p | (LoUL.), it follows that r | (LoUL.)
and p | (LyUL!) are compatible in P™ | Ly and let 7/ € P™ [ (LyU L)) be a com-
mon lower bound. Define a condition 7 € P™ [ (L, U L) such that 7(t) := 7/(t)
ift € LyU L/ and 7(t) := r(t) if dp,(t) = a. It follows that 7 is a common lower
bound of r and p. This however immediately leads to a contradiction, since r and
p must be incompatible. Hence, A is also maximal in P™.
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e If v is a limit we assume inductively that P™ | (Lo U L.) <P™ for every a < 7.

Assume that p,q € P™ [ (LoUL.) are compatible in P™ and let r € P™ [ (LoUL!)
be a common lower bound. There exists 7’ € P™ | Ly which is a reduct of r [ Lo.
Define a condition # € P™ [ (Lo U L) such that 7(¢) := r'(t) if t € Lo and
7(t) :==r(t) if t € L. Again, we can deduce 7 € P™ | (Lo U L) by ().

It follows that for every a < 7y the condition 7 [ (LoUL.)) is areduct of r [ (LoUL.):
For v € P™ | (Lo U L)) such that " <pm 7 | (Lo U L.,) one can inductively con-
struct a lower bound of r [ (Ly U L)) and r” in P™ | (Lo U L)).

Towards a contradiction assume that 7 ZLpm p. Again by Lemma 5.1.7 there
exists 77 € P™ | (Ly U L)) with 7 <pm 7 and ¢t € dom(p) such that 7 |
L2, Ikpmpm () and p(t) are incompatible in Q™. Fix o < 7 such that t € L/,.
Pick a condition 7 € P™ | (Lo U L,) which is a reduct of # | (Ly U L!). Then
7" <pm 7 | (LoUL!,)) and 7" is incompatible with p | (LoUL!,). But then r and 7" are
compatible, which leads to a contradiction, because r [ (LoUL!) <pm p | (LoULL).
Similarly show that 7 <pm ¢. Hence, p and ¢ are also compatible in P™ [ (Lg UL;).

Now let A C P™ [ (Lo U L) be a maximal antichain, and assume that A is
not maximal in P™. Let p € P™ | (L, U L) be incompatible with every element
from A. Again, there exists p’ € P™ | Lo which is a reduct of p | Ly. Define a
condition p € P™ | (Lo U L) such that p(t) := p'(t) if t € Ly and p(t) := p(¢) if
t € L. Again, we can deduce p € P™ [ (Lo U L) by (f).

Since A is maximal in P™ | (Lo U L)) there exists ¢ € A such that p and ¢ are
compatible in P™ [ (LoUL.). Let r € P™ | (LoUL’) be a common lower bound of
p and q. Since r | Ly <pm p | Ly, it follows that r [ Ly and p | Ly are compatible
in P™ [ Ly and let ' € P™ | Ly be a common lower bound. Define a condition
7€ P™ [ (LyUL!) such that 7(t) :=r'(t) if t € Ly and 7°(t) 1= r(t) if t € L1\ Lo. It
follows by induction on dom(7) that 7 is a common lower bound of r and p. This
however immediately leads to a contradiction, since r and p must be incompatible.
Hence, A is also maximal in P™. O

Lemma 5.3.12. Let m;, my € M such that m; <y; my. Assume that Lo, L1, Ly C L™2
such that:

e [, is an initial segment of L™2.
e [, is an initial segment of L™!.
o Lg=1L1N1Ly

o P Ly<aP™2 | [y
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e If « =0 then L, = () and we know that P™! | Ly <P™2 holds by assumption.

e a — o+ 1: We assume inductively that P™ | (Lo U L) <P™2. Let p,q € P™ |
(Lo U L, ) such that dom(p) € dom(q). We have:
— ¢ <pm piff
—q | (Lo U L,) <pmijrouryy p | (Lo U L,) and for every ¢ € dom(p) with

—q | (LaULL) <pmayrouryy p | (L2 U L) and for every ¢ € dom(p) with
dp,(t) = « we have that g [ LZ7 IFpm, pme q(t) <m p(t) i

—qSpmp
This holds because Ly, U L/, is an initial segment of L™2, P™ | L0 aP™2 | L2
the statement ‘q(t) <y p(t)’ is arithmetical and B(Z) = y is absolute between
VERILE and VE™ILEE | Hence P™ | (Lo U LL,,,) = P™ | (LyU L!,,,) as partial
orders.
By Lemma 5.3.11 with m := my it follows that P™ | (Lo U L[, ;) <P™2.

e If v is a limit we assume that for every o < v we have P™! | (Lo U L.) <P™2. Let
p,q € P™ | (Lo U L)) such that dom(p) C dom(q). We have:
— q <pm piff
= q [ (Lo UL,) <pmiyrour) P | (LoUL,) for every o <y iff
— q [ (LaULL) <pmayr,un) P | (L2 ULL) for every o <y iff
= q <pm: D
Hence P™ | (Lo U L) = P™ [ (Lo U L) as partial orders.
Again, by Lemma 5.3.11 with m := my it follows that P™ | (Lo U L) <P™2. [

From this point on we denote by m* the iteration parameter in M., which we con-
structed in Theorem 5.1.13.

Lemma 5.3.13. Let m € M be wide. Then the following holds true:

1. Let (t1,51) € Ym- Let to € L™\ M be such that m [ (t;/E™ U M) ~py m |
(ty/E™UM). Then there exists 55 € (to/E™)<"" such that (1,5,) and (t,, 5,) are
l-equivalent over m.

2. Let m* <pp mand (¢, 51), (t2, S2) € Ym~. Then (1, 51) and (t2, 59) are k-equivalent
over m* iff they are k-equivalent over m for k € {0,1}.

Proof. ad 1) Let f: L™ — L™ be an isomorphism mapping ¢;/E™ onto ty/E™, which
exists by Lemma 5.1.17. If we set 55(i) := f(51(7)) for every i < dom(5;), then it easily
follows that (¢1,51) and (t3, S2) are l-equivalent over m.

ad 2) This is should be straightforward using the fact that P™ < P™, O
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Theorem 5.3.14. M.. N Mc,, is non-empty.

Proof. We will construct n* € M.. N Mc,, from within m*: For every [(,5)]1-cqu. €
Vin* | 1-equ. We want to add Ay many disjoint, ~pp-equivalent copies of m* | (t/E™ UM) to
m* [ M. This can be done by Lemma 5.1.9 using that m* is wide. Since |Vim*/1-equ.| = A2
by Lemma 5.3.7, it follows that also |L® . Obviously n* <p; m*.

It remains to be shown that n* € M,.. Let n;,ny € M, such that n* <y n; <y n».
W.lo.g. we can assume that L™ N L™ = L™ for i € {1,2}, hence we can amalgamate
n; and m* over n* to get m;, my, € M with m* <p; m; <y; my. Since m* € M., we
have P™" qP™ qP™z2, Tt will suffice to show that P™ <™ for i € {1,2}, because then
P aP™2 for i € {1,2}, and hence P* <P** follows.

Let n,m € M be such that n* < n, m* <3y m and n <y m. For a < ooy, we
define L2 | ={te€ L™:ds€ Mt <pm s\t # sANdpy(s) <a}and L2 = {t¢€
L™:3s € Mt <;m s Adpy(s) < a}. We will show by induction on a < ooy, that
P (L2, N L) <P™ as well as P* [ (L2, N L") <P™. This will then yield P* <™.
If we set n := n; and m := m;, then we get P™ < P™:,

e a = 0: We obviously have P* | (L2 N L") <P™ because P [ (LZ (N L") is a
side by side product of iterations of k-Hechler forcing all of which also appear in
P | L2 . This follows in particular from the fact that for ¢,,¢, € LZ  with
=ty E™ {5 neither ¢t; <gm ¢y nor ty <;m t; can hold.

Since P* | (L2 N L") <P™ we can deduce for p,q € P* | (L2 ;N L") that
q <pn p iff ¢ <pm p.

Assume that p,q € P* | (L2 (N L") are compatible in P™ and let r € P™ [ L2
be a common lower bound. Enumerate (wsupp(p)Uwsupp(q)Uwsupp(r))\ M mod-
ulo E™ as (t;);< and for every i < i* enumerate t;/E™ N (fsupp(p) U fsupp(q) U
fsupp(r) ) as 5. Obviously, 5; € (t;/E™)<%". Since m* is wide, it follows that for
every i < ¢* there are \y many disjoint, ~yr-equivalent copies of m [ (¢;/E™ U M)
in m*. By Lemma 5.3.13 it follows that for every i < i* there exists (¢}, 5}) € Vi~
which is O-equivalent over m to (t;, ;). By the construction of n* it follows that for
every i < i* there exist Ay many E™ -disjoint (¢/,5) € Vu+ which are 0-equivalent
over m* to (¢, 5,). Again by Lemma 5.3.13, (¢/, 8/) and (¢, 5}) are also O-equivalent
over m for every ¢ < ¢*, and hence (t/,5/) and (¢;, 5;) are 0-equivalent over m for
every i < .

For t; € wsupp(r) \ (wsupp(p) U wsupp(q)) choose 0- equivalent over m, mutually
E™ -disjoint (t/,5") € Y- such that they are also E™ -disjoint from Wsupp(p) U
wsupp(q), and let f; be the corresponding weak isomorphisms. For ¢; € wsupp(p)U
wsupp(q) set (t7,8)) := (;,5;) and define f; to be the identity.

Using Lemma 5.3.10 it follows that f :=(J,_,. fi induces an isomorphism fopm

(Ujess 5iU M) = P™ | (U, 57 U M) such that f(p) = p and f(¢q) = ¢. Since
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reP™ [ (U, 5 UM), it follows that f(ryepm™ (Ujeie STUM) CP™ | L™ and
it is a lower bound of p and ¢ in P™. Since f(s) = s for every s € M, we can deduce
that f(r) eP™ | (L2 ,NL*) ' Since P™ | (L2 (NL") =P (LE‘MO NL™) as
partial orders, it follows that f (r) is also a lower bound of p and ¢ in P*. Hence,

p and ¢ are also compatible in P".

Now let A C P* | (L2 N L") be a maximal antichain. It follows that A is
also an antichain in P™, and assume towards a contradiction that A is not maxi-
mal in P™. Hence, there exists ¢ € P™ [ (L2 (N L") such that ¢ is incompatible
with every p € A. Again, enumerate (U, wsupp(p) U wsupp(q)) \ M modulo
E™ as ()i« and for every i <" enumerate t;/E™ N (U, , fsupp(p) U fsupp(q) )
as 5;,. Obviously, 5; € (t;/E™)<"". Again, for every i < i* we can find A\, many
E™ -disjoint (¢!, 3" ) € Yo+ which are l-equivalent over m using Lemma 5.3.13

and noting how n* was constructed. For ¢; € wsupp(q) \ U,c, wsupp(p) choose
l-equivalent over m, mutually E™ -disjoint (¢/,5}) € YV, such that they are also
E™ _disjoint from Up6 4 wsupp(p), and let f; be the corresponding weak isomor-
phisms. For t; € (U, wsupp(p) set (¢/,5) := (t;,5;) and define f; to be the
identity.

Using Lemma 5.3.10 it follows that f :=|J,_; fi; induces an isomorphism fipm
(Ui 5iUM) = P™ | (U, 57 U M) such that f(p) = p for every p € A. Again
flg) e P™ | (L2 o N L"), and since P™ [ (L2 (N L*) =P* [ (L2 N L") as
partial orders, there exists p € A such that f(q) and p/ are compatible in P".
Hence, let r € P* [ (L2 (N L") be a common lower bound. Obviously, r is also a

lower bound of f (¢) and p’ in P™.

We will now aim to extend f‘l to an isomorphism ¢g: P™ | Ly — P™ | Ly such
that (J,_;. 5 UM C Ly C L, |J,.;s 5iUM C Ly € L™ and r € P™ [ Ly. Then
§(r) € P™ will witness that §(p') = p’ and §(f(¢)) = ¢ are compatible in P™, which
is a contradiction. To this end enumerate (|, , wsupp(p) Uwsupp(r))\ M modulo
E™ as (] )i<j extending (t])i<i+, and enumerate t;'/ E™N({ ¢ , fsupp(p)Ufsupp(r))
as z/ extending s/ for every ¢ < i*. '* Since (¢/, ;’ ) and (¢;,5;) are 1—equivalent
over m for every i < i*, we can ﬁnd % € (t;/ E™)<%" extending 5 such that (, z")
and (t;, z;) are 0-equivalent over m, and let g; be the corresponding weak isomor-
phisms. For ¢ € 5%\ i* enumerate t;//E™ Nfsupp(r) as z/', set (¢;, z;) = (¢, Z) and
define g; to be the identity.

Since for every ¢ < ¢* the isomorphism ¢; obviously extends f ~1 it follows that
the isomorphism g: P™ [ (U,;_;. 2 U M) — P™ | (U;;- Z U M), which extends g

for every ¢ < j* and exists by Lemma 5.3.10, necessarily extends f —1. Clearly, we
have r € P™ | (U,_.. 2/ U M).

1<j*

Note that weak isomorphisms do not necessarily preserve dp;m, but they preserve dp,,. This is the
reason why we do induction along L2  and L2 , respectively.

12W lo.g. let wsupp(f(q)) € wsupp(r) and fsupp(f(q)) C fsupp(r).
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e a — a+1: We assume inductively that P* | (L2 N L") <P™. By Lemma 5.3.12
we can deduce P™ [ (L2 ., N L") aP™.

<m

Since P* | (L2 .1 N L") 9P™ we can deduce for p,q € P* | (L2 .., N L")
that ¢ <ps p iff ¢ <pm p.

Show that p,q € P* | (L2 ;N L") are compatible in P™ iff they are compatible
in P similar to the base case.

Let ACP™ | (L2 ,,1NL") be a maximal antichain. Show that A is also maximal
in P™ similar to the base case.

e If v is a limit we assume inductively that P* [ (L2 N L") <P™ for every o < 7.
Set L=, L2, . We must first show that P* | (LN L") <P™.

Obviously, P* [ (LN L™) =P™ | (LN L™) as partial orders. Use a weak automor-
phism argument to show that p,q € P* | (L N L") are compatible in P™ iff they
are compatible in P". Again using a weak automorphism argument show that if
ACP" | (LNL") is a maximal antichain, then it is also maximal in P™.

Next use Lemma 5.3.12 to show that P* [ (L2 N L") <P™,

Now that we know that P* [ (L2 _NL")<P™ we can show P* [ (L2 _NL*)<P™
similar to the base case.

This shows that n* € M, N Mc,,. O

5.4 lterating R, without adding dominating reals

Last but not least we want to discuss how to iterate Shelah’s higher random forcing
for k supercompact using a Corrected Iteration, and show that this way no dominating
reals on k" are being added. Unfortunately, there seems to be a general problem when
actually applying the Corrected Iteration.

We shall first elaborate on the problem and explain the difficulties concerning it. Then,
assuming this problem can be fixed, we sketch how to achieve the consistency of kT =
b, < cov(id(R,)) = k7.

Let x be supercompact and let Q); denote the Corrected Iteration along a well-founded
partial order M (of a <k-strategically closed, k"-c.c. ‘simply definable’ forcing notion
Q preserving supercompactness) which we constructed in the previous sections. Since
Qs is a complete Boolean algebra, it obviously cannot be <k-directed closed. However,
we would like that Q) satisfies a slightly weaker property:

Conjecture 5.4.1. Let § > & be a regular and sufficiently large cardinal. Let N < H(#)
be of size <k such that Q) € N, ky := sup(k N N) is inaccessible and N<"~ C N.
Then every (N, Qyy)-generic filter Gy has a lower bound in Q.

Since Qyy is a complete subforcing of P™", which is a standard iteration (along a well-
founded partial order) of Q, this conjecture seems plausible. Indeed it appears as an
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‘obvious’ claim in (|She20]) for a Corrected Iteration of the respective forcing considered
there.

However, a more careful analysis of the conjecture leads to the following problem: If
one wants to construct a lower bound ¢ € Q,; of G, one needs to construct a witness
py € P™ at the same time. If one tries to do this inductively, the discontinuity of the
projection m: P™" — Q;; could possibly ruin the construction in limit steps.

And indeed this issue is non-trivial: by a result of Kunen (see [Kun78|) x-Cohen forc-
ing has a complete subforcing which adds a x-Aronszajn tree, and hence this complete
subforcing destroys the weak compactness of k. But since the conjecture in particular
implies that if V' is appropriately prepared, supercompactness is preserved (see [Koe06)),
we see that even k-Cohen forcing has a complete subforcing for which the respective con-
jecture cannot hold. Therefore, the only hope to prove this conjecture (for a Corrected
iteration of suitable Q) is to use the fact that Q,; is still ‘quite similar’ to a standard
iteration of Q.

We aim to establish the consistency of k¥ = b, < 0, = cov(id(R,)) = non(id(R,)) =
cof(id(R,)) = x**. To this end we will define similar to x-Hechler forcing a Corrected
Iteration for Shelah’s higher random forcing R,.. For our purpose M := ™1 will suffice.

Definition 5.4.2. Let m € M be an iteration parameter (see Definition 5.1.2). Similar
to Definition 5.1.4 we will now define by induction on o < corm the forcing notion P2*:

e Define P to be the set of functions p such that dom(p) C L, |dom(p)| < &
and for every ¢ € dom(p) we have p(t) = (7,9, Cl, (Iy)resx_) such that 7 € 25,
S C St nowhere stationary, Cl is a club disjoint from S and I, € id(R,) for every

mc

A e Sk

mc*

e If v is a limit, we have two cases:
— cf(y) = ki Set P =, P
— cf(y) < K Define P to be the set of functions p such that dom(p) C L7,

|dom(p)| < k and for every av < 7 we have p [ L™ € P™.

e o — o+ 1: Define P2 | to be the set of functions p such that dom(p) € L2,
|dom(p)| < K, p [ L™ € P2 and for every ¢t € dom(p) with dp;m(t) = a we have

U B Tt/ t’Eu ﬂ B Tt’ t’Eu (U B?((f’t’)t’ew)()‘) ))\E(S;C\é) )

j<é j<dé j<é

where:
— 7 € 2"

— 0 < dom(7), (B});<s is a sequence of ground model s-Borel functions for
every i € {1,2,3}, and u; € P, for every j < ¢ such that

x Bj:(25)% — P(Sf,) and VI € (27)" : B}(Z) nowhere stationary below r
x BF: (27)% — P(k) and VI € (2°)": B} () is club A Bj(z) N B} (%) =0
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Bj(z)(A) €id(Ry) ¥
— (71)reu, 1s a subsequence of the generic sequence (7);cLm added by P4

B]?:(t)) Clearly “_IpmrLr<nt p(t) =

nc *

+ B (2% — (PR and ¥ € (2 VA € S

We Will use the notation p(t) = (Tp), Bp(t) B}Q,(t)

We define ¢ <pm p mductlvely:
e dom(p) C dom(q)
e for every t € dom(p) we have q [ LT, Irpmzm q(t) <, p(t)
Define 7, := |J{7 € k<*: Ip € G p(t) = (7, Bp(t) Bg(t), 'p(t))} Set P™ := PR .

Since R, is not <k-closed, we can not expect that P™ is. However, we have the
following lemma:

Lemma 5.4.3. P™ is <k-strategically closed. Furthermore, it satisfies all other prop-
erties of Lemma 5.1.6.

Following Definition 5.2.5 we can now define the Corrected Iteration of R,:

Definition / Assumption 5.4.4. Fix m* € M,.. We define Q,++ := P™ [xF].
We shall assume that Conjecture 5.4.1 holds for the Corrected Iteration Q,++ of higher
random forcing.

Since we know that V' can be appropriately prepared such that this assumption in
particular implies that supercompactness and therefore, weak compactness is preserved
in V@++ we have:

Lemma 5.4.5. Let I be a Q,++-name for an element of id(R,.). Then there exist x-Borel
functions (B");eq123 in V and u C 71 of size < k such that:

IFo .y B'((75)scu) C Sf. is nowhere stationary below x
A B*((7)seu) C £ is club A BY((7)seu) N B?((7)seu) = 0
A BS(U"S)SEU) = (‘B@“)) e AVA € St B ((728)860()‘) € id(R,)
A ] g {l’ €2 d%\ e Bl((f"“s)seu) Y f A€ Bg((Ts)Seu)()\)}

Now this easily implies that I-q ,, cov(id(R,)) = ™. Since Q,++ adds x-Cohen reals,
we also have Ikg . 0, = non(id(R,)) = cof(id(R,)) = x*™.

But why does b, stay small in V@++?

To show this we will need the following definition:

L3Hence Vz € (27)v VA 6 Sthe \d: U]<5 B}(z)(\) € id(Ry) where u := UJ<5
14Pedantically, (7o), B p(t), 2(t) i p(t)) is a witness for a condition p(t) in R, and B2 (1) Witnesses that

B;‘)( +) is non-stationary.
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Definition 5.4.6. We say that [, holds iff for any sufficiently large, regular # > s and
any forcing notion Q € H(#) which is <s-strategically closed, the set Sy o consisting of
N € [H(0)]<" with the following properties, is a stationary subset of [H (6)]<":

e N<H(f) and Q € N.
e The Mostowski collapse of N is Ay with mosy: N — Ay.

e ky :=sup(k N N) is inaccessible and N<"~ C N.

30]\/ < K: AN - H(QN)/\ANQOI‘dZQN.

AGNy C mosy(Q): Gy is an (A, mosy(Q))-generic filter.
e H(On)=AN[GN].
It turns out that we can force [J,.:

Lemma 5.4.7. After some preliminary forcing we have that [, holds in the extension
and k is still supercompact. Hence, we can assume that V E [J,.
Under Assumption 5.4.4 we can even assume that V F Sy =={N € Syq_,, : kn is

weakly compact} is stationary in [H(6)]<"’ for any 6 > k regular and sufficiently large.

Now assume towards a contradiction that there exists a Q,.++-name f and a condition
¢ € Qp++ such that ¢ kg _, | f dominates k* N'V. Since Q,++ <P™" we can work with
a p, € P™ below .

Let 0 > r be a regular and sufficiently large cardinal. Let us pick a sequence (N;)i<x
such that N; € SAQKH, i, f,pp € N; and (kn;, )iy is unbounded in k. We can do this,
because by [, and Assumption 5.4.4 the set S o s stationary in [H(0)]=".

Let f* € " be a function such that Vi < k: f*(i) > xy, and let ¢ € P™" with ¢ <pm* p,

and i* < k be such that g lFpm< Vi > ¢*: f(i) > f*(i). W.Lo.g. let i* > |dom(q)| U

Utedom(q) dom(TQ(t) ) :
Note that by elementarity the forcing notion mosy.. (Q,++) is just the Corrected Iteration

of Ry, . of length (kn,.)™" in Ay...

Gy,
Theorem 5.4.8. Let (7' Nis Ja<(rn., )+ be the generic sequence of ky,,-reals added by
Gn,. € mosy,. (Q++) over Ay,. Under Assumption 5.4.4 we can now find F': (ky. )"t —
(kn,. )T strictly increasing with F' € Ay, such that:

G, . .
e The sequence (TFE\Z) Ja<(ry.,)++ induces a (Ay,., mosy,. (Qu++))-generic filter G'y . .

(Here we use Theorem 5.3.2, i.e. the crucial property of the Corrected Iteration.)
e There exists a lower bound 7 € P™ of mosjvil* [G'y..] € Qu++ such that r <pm+ g.

Since mos]_vj* [G'y..] is a (N, Qu++)-generic filter and i € Ny, we have that r IFpm-
f(i*) € Ni- N k. But this is a contradiction to ¢ lFpm= f(i*) > f*(i*) > #n,.. Hence,
Q,++ does not add any dominating reals on s".
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6 Preserving H%—determinacy

In this chapter ! we study the preservation of IT}-determinacy under ‘simply’ definable,
proper forcing notions and their iterations. One of the earliest results on preservation
of large cardinals 2 by forcing is the Levy-Solovay theorem (see Chapter 21 in [Jec03])
which shows that measurability is preserved by small forcing notions via lifting of el-
ementary embeddings. Similar preservation results have been proven for many other
large cardinal notions such as weakly compact, Ramsey, supercompact, huge, strong or
Woodin cardinals (see [Hjo95]).

Besides small forcings, there are several other classes of forcing notions which preserve
large cardinals under certain conditions: Laver showed in [Lav78| that the supercom-
pactness of k becomes indestructible under <x-directed closed forcing notions after some
preliminary preparation, and Johnstone showed in [Joh08| a similar result for x strongly
unfoldable.

We aim to prove the preservation of IT}-determinacy under any countable support itera-
tion of ‘simply’ definable, proper forcing notions using the technique of capturing. While
such a preservation result (for an iteration of length wy) easily follows from the existence
of a measurable cardinal using Levy-Solovay’s theorem, we do not want to make any
additional assumptions on the existence of stronger large cardinals.

Surprisingly, rather little was known beforehand: Woodin showed in [Wo082| that Cohen

and random forcing preserve Al-determinacy. Schlicht proved in [Sch14b| that 321- abso-

lutely c.c.c. forcing notions preserve IT}, |-determinacy, and, together with Castiblanco,

extended this to Sacks, Silver, Miller, Mathias and Laver forcing (see [CS21]).

We also aim to investigate connected components of symmetric Al-relations on the reals
and show preservation of regularity properties such as the Al- or X1-Baire property.

6.1 Prerequisites

We start with several important definitions which we will use throughout this chapter.

First, we define a class of ‘simply’ definable, proper forcing notions:

IThis chapter was a joint project with Jonathan Schilhan and Philipp Schlicht.
2Note that IT}-determinacy is a large cardinal property by Theorem 1.4.7.
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Definition 6.1.1. Let P = (dom(P), <p) be a forcing notion such that dom(P) C w*.
Following the notation of [GJ92] we say that P is Suslin iff dom(P) and <p have X}-
definitions. We say that P is strongly Suslin iff additionally the incompatibility relation
1p also has a Xi-definition.

Although most classical forcings are not literally defined on w®, they are usually
defined on some Polish space.

Definition 6.1.2. Let P be a Suslin forcing. Then a countable transitive model N
satisfying ZFC*, i.e. a large enough fragment of ZFC, and containing all the parameters
for the definition of IP is called a candidate for P. We say that P is proper-for-candidates
iff for every candidate N for P and every p € PV 3 there exists ¢ <p p such that ¢ is
(N, P)-generic.

The definition of proper-for-candidates for strongly Suslin forcing is similar and in-
cludes the parameter for the definition of Lp. Note that for a strongly Suslin forcing P
it follows that ‘P is proper-for-candidates’ is a IT}-property. Furthermore, note that all
the classical tree forcings such as Sacks forcing S, Silver forcing SI, Miller forcing MI,
Mathias forcing Ml or Laver forcing IL are Suslin, proper-for-candidates forcing notions.

Let us now turn to the notion of capturing. This technique was originally introduced in

[CS21]:

Definition 6.1.3. Let P and Q be forcing notions such that Q is definable. We say
that Q captures P iff for every p € P, every P-name 7 for a real and every y € w®, there
exists some z € w* and some g <p p such that:

qIFp 3Gq: Gg is (Lly, 2], Q¥¥*)-generic A 7 € L[y, 2][Gg).
We define a weaker version where the forcing QQ may depend on 7:

Definition 6.1.4. Let P be a forcing notion. We say that P is captured (by forcing
notions with property ¢) iff for every p € P, every P-name 7 for a real and every y € w®,
there exists some z € w*, some Q € Ly, 2] (with Ly, z] F ¢(Q)) and some g <p p such
that:

qlFp 3Gq: Go is (L[y, 2], Q)-generic A 7 € L[y, z|[Gg].

And we define a stronger version that provides a uniform P-name for the relevant
Q-generic filter.

Definition 6.1.5. Let P and QQ be forcing notions such that Q is definable. We say that
Q uniformly captures P iff for every p € P and every P-name 7 for a real, there exists
some z € w* and some P-name G@ such that for every y € w®, there is some ¢ <p p
such that:

qIFp Gg is (L[z,y], Q"W*)-generic A 7 € L[z][Gg).

3Note that by Xi-absoluteness we have PV =P N N
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Finally, let us define the following large cardinal property:

[]

Definition 6.1.6. We say that w; is inaccessible to the reals iff wlL < wy for every real

T € wv.

Note that this large cardinal property can be viewed as a regularity property: By
a result of Solovay (see Chapter 14 in [Kan03]) it is equivalent to the statement that
every X1 set has the perfect set property, and by a result of Brendle and Lowe (see
[BL99)]), it is equivalent to the statement that every X} set has the property of Baire in
the dominating topology.

6.2 Preserving ‘The reals are f-closed’

Let us show how capturing can be used to preserve IT}-determinacy. By Theorem 1.4.7
it will be enough to preserve that the reals are f-closed:

Theorem 6.2.1. Assume that V F ‘“The reals are f§-closed’ and let IP be a forcing notion
that is captured. Then also V¥  ‘The reals are f-closed’.

Proof. Working in V' let z € w® be arbitrary. Since IP is captured, there exist z € w*NV/,
a forcing notion Q € L[z] and an (L[z], Q)-generic filter G such that € L[z][Gg]. Since
2% exists, there is a non-trivial, elementary embedding j : L[z] — L[z] with crit(j) >
|Q|*FFl. Using a Levy-Solovay argument, j can be lifted to j* : L[z][Gg] — L[2][Gql,
and we can conclude that j* [ L{z|: L[z] — L|x] is a non-trivial, elementary embedding.
Hence z* exists. L

We can also preserve that w, is inaccessible to the reals:

Theorem 6.2.2. Assume that V E ‘w; is inaccessible to the reals’ and let P be a forc-
ing notion that is captured by forcing notions not collapsing w;. Then also VF E
‘wy 1s inaccessible to the reals’.

Proof. Working in V¥ let € w*” be arbitrary. Since P is captured by forcing notions
not collapsing wy, there exists z € w* NV, a forcing notion Q € L|z] such that L[z] F
‘Q does not collapse wy’ and an (L[z], Q)-generic filter Gg such that x € L[z|[Gg].

Hence, we can deduce wlL[x] < wf[z][G@} = wlL[Z] < wy. O]
We will also need the following technical lemma:

Lemma 6.2.3. Assume that V' E ‘The reals aref-closed” and let P and P’ be forc-
ing notions that are captured. Furthermore, let § > w be a regular and sufficiently
large cardinal, let M < H(#) be a countable, elementary submodel with P’ € M, let
mos: M — N denote be Mostowski collapse, and let g € V¥ be an (N, mos(P’))-generic
filter. Then VT Vz € w* N N[g]: 2% exists A 2* € w* N N|g].
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Proof. Working in V¥ let x € w* N N[g] be arbitrary. By Theorem 6.2.1 we know
that 2 exists in V¥, hence it remains to be shown that z* € w® N Nlg]. Since N F
‘mos(IP’) is captured’, there exist z € w* N N, a forcing notion Q € L[z] N N and an
(L[z] " N, Q)-generic filter Gg € Nlg| such that x € (L[z] N N)[Gg]. Since indiscernibles
for well-founded, remarkable EM blueprints are absolute for transitive models satisfying
ZFC*, i.e. a large enough fragment of ZFC, and z* € N, we can deduce that ()" =
I, N N, where I, is the class of Silver indiscernibles for L[z]. In particular, this implies
that Gg is also (L[z], Q)-generic. Now pick an increasing sequence (a,)n<w € I, NN in
N with g large enough and let a* := sup{a,,: n <w} € I,NAN. Since x € L,+[2][Gg] C
Ly, [2]|Go) and {a,: n < w}U{R,:n < w} U {a*,R,} C I, we can conclude that
TForlal € (@ncw) = Tlnolel€x,Ra)ncw) (see Definition 1.3.1). By Theorem 1.3.14 this
implies that z* € w* N N|g]. O

6.3 Capturing iterations of ‘simply’ definable, proper
forcing notions

In [CS21] the authors showed the following lemma:

Lemma 6.3.1. If w; is inaccessible to the reals, then Cohen forcing uniformly captures
Sacks and Silver forcing, and Mathias forcing uniformly captures Miller, Mathias and
Laver forcing.

Our main theorem generalizes the above lemma:

Theorem 6.3.2. Assume that w; is inaccessible to the reals and let (P,, Pg ra <k, B < K)
with P := IP.++ be a countable support iteration of length x of Suslin forcing notions P,
such that for every a < &,
ks, P, is proper-for-candidates in L[A] for every A € [w*]*. 4 ?

Then for every p € P, every P-name 7 for a real and every y € w* there exist z € w* and
Q € Lly, 2] such that Lly, 2] F ‘Q = (Qa, Qs: a < a*, 3 < a¥) is a countable support
iteration of length a* < w; of Suslin, proper-for-candidates forcing notions ()g " and there
exists p' € P with p’ <p p such that p’ IFp IGo: Gg is (L]y, 2], Q)-generic A 7 €
Lly, 2]|[Gg]. In particular, P is captured by forcing notions of size < wy .

Q is obtained in a very concrete way from P, essentially as an iteration of certain
iterands of P. For example, if P is an iteration of Sacks forcing, then QQ is an iteration
of Sacks forcing in Lly, z].

40f course, L|A] must contain the real parameters for the definition of P,, and note that A can be
uncountable in L[A]. Also note that if N € VP« is a candidate for P,, then the statement ‘p’ € P,
is (N, P,)-generic’ is a ITi-property. Hence V¥ E P, is proper-for-candidates.

5This is a technical requirement which we will need for the proof. Note that if P, is provably proper-
for-candidates this is trivially satisfied. Also, if P, is strongly Suslin and proper-for-candidates, then
it is also proper-for candidates in every L[A], since ITi-statements are downward absolute.

81



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

We will prove this theorem in several steps using techniques from [IHJS88|. We start
with an arbitrary condition p* € P, an arbitrary P-name 7 for a real and an arbitrary
y € w’. Let 6§ > w be a sufficiently large, regular cardinal and let M < H(0) be a
countable, elementary submodel such that p*, P, 7,y,x € M. Let mos: M — N denote
the Mostowski collapse and let us define P := mos(P), p* := mos(p*), 7 := mos(7) and
a* :=mos(k). ® Since N € H(w;) we can code it as a real z € w®.

Now working in L][z]:
Definition / Lemma 6.3.3. By induction on o < a* we now want to define:
e the countable support iteration Q,
e a function i,: P, — Q,
e the notion ¢ € Q, is (N, P,)-generic
and prove
e Q, is an iteration of Suslin forcings *
e i, is an embedding, i.e. for every py, pp € P, we have py <p_ Py iff in(p2) <q, ia(P1)
We set Q := Q.
Proof. If a = 1:

e We define Q; := @ := Pf[z], i.e. P; has a Suslin definition in N which we can
evaluate in L|z].

e We set iy := idp,. By 2%—absoluteness we have P; € Q; and 4, is an embedding.
e We define ¢ € Q, is (N, Py)-generic iff ¢ IFg, i7'[Gg,] is an (N, P;)-generic filter.®
a— o+ 1:

e We define a Q,-name Q, for a forcing notion such that:
— qlrg, Qu = (ﬁa[igl[é@a]])“zm@a] iff ¢ € Q, is (N, P,)-generic.
— qlrg, Qo = {1} iff ¢ € Q, is (N, P,)-antigeneric.
If G, is a (L[z], Qa)-generic filter and ¢ € Gg, is (IV, P, )-generic, then by defini-
tion Gp, = i,'[Gg,] is an (N, P,)-generic filter and P, |G, ] is a Suslin definition
in N[Gp,] which we can evaluate in L[z][Gg,]. Since IFg, Qo is Suslin, we have
that Qu11 := Q4 x @, is an iteration of Suslin forcings.

6The variable p will range over conditions in P, and will not denote mos(p) for some p € P.
"We will later see that Q, is even an iteration of Suslin, proper-for-candidates forcing notions.
8Obviously, this notion here coincides with the classical notion of (N, P)-genericity.

9We define ¢ € Q, to be (N, P,)-antigeneric iff V¢’ <g_ ¢: ¢’ is not (N, P,)-generic.
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e We will define iq;1: Pay1 — Qi1 such that iy, extends i,. For p € Pyyq we
define iq41(p) :=ia(p | @) ¢s(a), where gz() is a Q,-name such that:

— qlrq, gpla) = p(a)[i'[Go,]] iff ¢ € Qq is (N, Py )-generic.
— qlrg, dp(a) = 1iff g € Q, is (N, P,)-antigeneric.

Note that IFg, ¢s(a) € Q.. Using the induction hypothesis and 3 1-absoluteness,
it easily follows that i, is an embedding. °

e We define ¢ € Quy41 is (N, Puy1)-generic iff ¢ Ikq, ., i;Jlr1[G@a+1] is an (N, Pyyq)-
generic filter

A < o* is a limit:

e We define Q) to be the countable support limit of (Q,,Qs: a < A, < A). Using
the induction hypothesis Q@) is obviously an iteration of Suslin forcings.

e For p € P we define i,(p) to be the union of (in(p | @))a<x. Using the induction
hypothesis we clearly have i,(p) € Q, and 7, is an embedding.

o We define ¢ € Qy is (N, Py)-generic iff ¢ Ik, i, '[Gg,] is an (N, Py)-generic filter.
[

Now working in V: Let m : N — M denote the uncollapse and note that obviously
m(a+1) =7m(a) + 1 for every a < o*.

Definition / Lemma 6.3.4. By induction on a < a* we now want to define:
e a function j,: Qo — Pr(a)
e the notion p € Pr(o) is (L[z], Qq)-generic

and prove

® jo is an embedding, i.e. for every g1, g2 € Q, we have g2 <q, ¢1 iff ju(q2) <p,,, Ja(q1)

o if p € Pri is (L[z],Qq)-generic and p ke ., g € j;l[G.[pﬂ(a)]f qis (N, P,)-
generic, then

(Ta) Vﬁ 6 Pa: p ”_]Pw(a) W(ﬁ) e G[P’ﬂ-(a) <:> ja<la(p>) e G'[Pﬂ.(a)

Proof. If a = 1:

e Since Py, P; and hence Q; have the same Suslin definition, we can deduce by
E}—absoluteness that @, C P; and j; := idg, is an embedding.

o Wedefine p € Py is (L[z], Qy)-genericiff p IFp, j7 [Gp,] is an (L[2], Q;)-generic filter.

10Note that the embedding will not preserve incompatibility.
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e Since 7(p) = p = ju(ia(p)) for every p € Py, we have that (f1) trivially follows.
a— a—+1:

o We will define joy1: Qas1 — Pr(as1) such that j,i; extends j,. For ¢ € Qqq1 we
define jot1(q) == jalq [ @) pg(m(a)), where py(m(a)) is a Pr(qy-name such that:
- plFe., Dy(m(ar)) = q<04)[j071[G]pﬂ(a)]] iff p € Prq) is (L[z], Qa)-generic.
— plhe,,, Py(m()) = Liff pe Pr(a) is (L[z], Q4)-antigeneric.
Since Pria+1) = Pr(a) * P,r(a) it remains to be shown that Ip_ pe(m(ar)) € Pw(a)
— This is obvious if p € Py, is (L[2], Qq)-antigeneric.

— If p € Pr(a) is (L[2], Qa)-generic, but p ke “3q € j;l[G]pw(a)]: qis (N,P,)
-antigeneric’, then p H_]pw(a) Qaliz [GPW(MH = {1}, hence p Fp, ., Po(m(a)) =
q(a)[ja'[Ge, )] = 1 € Pr(a)-

— Now if p € Pra is (L[], Qq)-generic and p ke Jg € j;l[G]pw(a)]: q is
(N, P,)-generic, then we can use (f,) to deduce that

p H_Rf(a) ‘Pa[igl[j(;l[ép H ] ) PTr(oc) and hence Qa [jccl[GPﬂ(a)H

()
have the same Suslin definition .
Hence, by 3j-absoluteness, it follows that p lFp_ py(7()) € Pr(a)-

Again using Xl-absoluteness and the induction hypothesis, we see that j,.; is an
embedding. 2

o We define p € Pray1) is (L[z], Qa1)-generic iff p Ikp_ j(;il[G]pﬁ(aH)] is an
(L[z], Qaq1)-generic filter.

e Assume that p € P41 satisfies the assumptions for (fa41). Using the induction
hypothesis (f,), we can deduce that p | 7(«) H_[pﬁ(&) (D) (7m(a)) = Jas1(iar1(p))(7(a))

for every p € Puoyi. Hence p [ JON 7(p) € G]pw(a) * Gpﬂ S Jar1(ias1(p)) €

a)

G, * Gpﬂ(a) for every p € Pyq.

A < a* is a limit: Let A := sup(mw(\) N M).
e For g € Q) let ja(q) | N € ]P’X be the union of (ju(q [ @))a<r. Extend jy(q) [ N

trivially to get ja(¢q) € Px(»). Using the induction hypothesis we clearly have that
7 is an embedding.

o We define p € Py is (L[2], Qx)-generic iff p IFp_ j;l[Gpw(/\)] is an (L[z],Q))-

generic filter.

! Again, we define p € Pr(q) to be (L[z], Qq)-antigeneric iff Vp' <p__ p:p’is not (L[z], Qa)-generic.
12Note that again the embedding will not preserve incompatibility.
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e Assume that p € P satisfies the assumptions for (). Using the induction
hypothesis (fo) for every o < A and noting that IFp, p’ € GPA, SVn<w:p |
Qa, € Gpan holds for every p’ € Py and every cofinal sequence (o, )< € NNM, we
can deduce that p lFp, 7(p) [ X' € GPA/ < galiap) TN € GPA, for every p € Pj.
Since both 7(p) and jx(ix(p)) are trivial extensions of 7(p) [ A" and jx(ix(p)) [ N,
respectively, it easily follows that p Ik, 7(p) € Gp,_, < jr(ix(D)) € GIP’W(A) for
every p € Py. O

Lemma 6.3.5. For every ¢ € Q there exists p € P such that p <p j,«(¢) and p is
(L[z], Q)-generic.

Proof. By induction on o < o* we will show the following claim:

(ia) VB <« Vp € Pﬂ(ﬁ) vQ € Qa: (p S]P’,r(@) ja(Q) rﬂ(ﬁ) Ap is (L[Z]vQ,B)'generiC) =

(3 € Prioy: ' < P Ja(@) AP T 7(B) =pApis (L2, Q. )-generic )

Clearly, for @ = a* the claim implies the lemma.

Since w; is inaccessible to the reals and hence L[z] F ‘w{ is inaccessible’; there ex-
ists v < wy such that L,[2] F ZFC*, i.e. a large enough fragment of ZFC, and BLEN(Q) €
L,[7].

e If & =1 we must simply show that for every ¢ € Q; there exists p € P; such that
p <p, ¢ and p is (L[z], Q)-generic). Since Py is proper-for-candidates and L, [2] is
a candidate for Q;, such a condition p obviously exists.

e a - a+1: Let ¢ € Quy1 and p € Prg) such that p <p_, jot1(q) [ 7(3) and
p is (L[z], Qp)-generic be arbitrary. Using ({,) we can assume w.l.o.g. that § = a.
Let Gp,,, be a (V,Pry)-generic filter containing p. Hence Gg, = j,'[Gp is
an (L, [z], Q,)-generic filter. There are now two cases:

— If there is ¢’ € Gg, such that ¢ is (N, P,)-antigeneric, then Qu[Go.] = {1}.
Hence 1 € Pyo[Gr. ] is trivially (L, [£][Ga, ). QulGo, ])-generic.

w(a)]

— Ifthereis ¢’ € G, such that ¢’ is (N, P, )-generic, then Q,[Gg,] and Py)[Gr,
have the same Suslin definition. Since L,[2][Gq,] € V[Gp, ] is a candi-

date for Pr(a) (G, ,) and ¢(a)[Gq,] € Pra )G, 17 FlGeal there exists p' €

(@)[Gpyo]suchthatp’ <p g, dla )[G@a] andp is (L, [2][Ga.), QulGaa))-

generic.

In any case there exists a P ()-name p, (m(c)) for an element of Pﬂ(a) such that
p e,y B (7(@) <, 1@ Gyl = Jari0) (7(0)) A

() i (LI, (G ) Qulia (G, ]-emeric
Hence p' := p™py (m(cr)) € Pr(at1) has the required properties.
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e A < o"is a limit: Let ¢ € Qy, 8 < X and p € P, be arbitrary such that

P <p, Jalq) | 7(8) and pis (L[z], Qp)-generic. Let N := sup(m(\) N M). Let
(an)n<w € L[z] with ag := § be a cofinal sequence in A and enumerate every dense
subset of Q in L, [z] as (Dy)n<w **. By induction on n < w we will now construct:

— (Gn)n<w decreasing such that ¢, € Qx, ¢ni1 [ @n = ¢ | @, and the set
E, ={¢d € Qa,: ¢ Gus1 | [an,\) € D, } is dense below ¢,11 | «, for every
n<w

— (Pn)n<w decreasing such that p, € Pr(a,), Pnt1 | T(n) = Dy Dn <Py an)
Ja(qn) | m(aw,) and p,, is (L[z], Qa,, )-generic for every n < w

If n =0 we set qo := ¢ and py := p. Then py and qq satisfy the requirements by
assumption.

n — n + 1: The existence of ¢,,1 € Q, with the required properties follows from
a standard ‘iteration of proper forcing’ argument. Now we use (1,,,,) to extend
Pn t0 ppy1 € Pr(a,,,) With the required properties.

Let p, € Py be the union of (p,)n<., and extend p, trivially to get p’ € Pr).
Since p' <p_,, ja(gn) and p' | w(a,) is (L[z], Qa,, )-generic for every n < w, we can
deduce that p/ Fp, ) VR <w: E, N j;nl [G]}»ﬂ(an)] # () and therefore p/ Fp, VR <
w: Dy, mj;l[G.]pw(/\)] # 0. But why does p' IFp_ j;l[GPWW] is a filter?

To this end we define for every ¢;,q, € Q, such that ¢; and ¢, are incompatible
in Qx the set Dy, 4, == {¢' € Qx: Ja < A ¢ [ alkq, ¢'(a) Ly, di(a) V' (a) Ly,
Ga(a)}. It can easily be seen that Dy, 4 € L[2] is dense. Let p” <p_,, p' be
arbitrary such that there exists ¢’ € Qy with p” Ikp_, ) ¢ € Dy, N j;l[GPﬁ(A)],
and let o < A be such that ¢' [ a lFg, ¢'(a) Ly, ¢i(a) V(o) Ly, do(a). Since
prlmla+1) ke j/\_l[GPﬁ(aH)] is a (L[z], Qa41)-generic filter, it follows that
P e, @ & 95 GE, )V @2 € 55 [Ge, o) -

In particular, p’ IFp_ j;l[GPW(A)] is a filter and hence p’ is (L[z], Q,)-generic. [

Lemma 6.3.6. L[z] F ‘Qis an iteration of proper-for-candidates forcing notions’; i.e.
Liz| EVa < o*: kg, Q, is proper-for-candidates.

Proof. Let a < o and ¢ € Q, be arbitrary such that ¢ is either (N, P,)-generic or
(N, P, )-antigeneric. Hence, there are two cases:
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- If ¢ is (N, P,)-antigeneric, then ¢ IFq, Qo = {1} and hence q IFq, Q. is proper-
for-candidates.

- If gis (N, P,)-generic, we use Lemma 6.3.5 to find p € P,(4) such that p <P, (o) Ja(q)
and p is (L[z], Qa)-generic. Hence, p satisfies the assumptions for (f,). Let Gp_,
be a (V,Pr(a))-generic filter with p € Gp_ ., and set Go, = j,'[Gp,,]. Then
Go, is a (L[z], Q,)-generic filter with ¢ € Gg, and by (t,) we can deduce that
Qu]Go.] and Py [Gp,,,] have the same Suslin definition. Hence Qu[Go.] =

13This enumeration only exists in V/, but this will suffice.
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(Pr(a) (G, ., )PFCea] Since L[z] E ‘w} is inaccessible’, we can deduce |w* N

L[z][Gg,]| < wi. Since L[z] E ‘o is countable’, we can now find A € ([ww]“)V[GP“(M]
such that L[z|[Gq,] = L[A]. By

VI{Ge, | F VA€ [w]: LIA]F* (Pr(oy [GPW(M])L[A} is proper-for-candidates’

which is our technical requirement for Theorem 6.3.2, we can deduce that L|[z][Gg,] F
‘Qa|Go,] is proper-for-candidates’. Since ¢ € Gq,, there exists ¢ € Gg, with
¢ <g, q and ¢’ IFq, Q. is proper-for-candidates. n

Lemma 6.3.7. For every condition p € P there exists ¢ € Q such that ¢ <g i, (p) and
q is (N, P)-generic.

Proof. By Lemma 6.3.6 we know that Q is an iteration of Suslin, proper-for-candidates
forcing notions in L|[z]. Hence, the proof is just a simpler version of the proof of Lemma
6.3.5. u

Proof of Theorem 6.3.2. By Lemma 6.3.7 there exists ¢ € Q such that ¢ <qg in+(p")
and ¢ is (N, P)-generic. By Lemma 6.3.5 there exists p’ € P such that p’ <p jo-(¢') and
P’ is (L[z],Q)-generic. Hence, p’ satisfies the assumptions for (t,+) and we can deduce
that p’ IFp 7[i;2[j2[Gp]] | = 7[Gp]. Furthermore, since p' Ibp p* € i 2[j2[Gp]] it follows
that p/ IFp p* € Gp. Therefore, we can assume w.lo.g. that p’ <p p*, and it follows that

p' ke 3Gg: Gg is (L[z], Q)-generic A 7 € L[z][Gg].

Since L[z] F ‘w} is inaccessible’; we can deduce that L[z] F |Q| < wy. This finishes the
proof. O]

6.4 Capturing products of iterations of Sacks forcing

We recall the definition Sacks forcing:
Definition 6.4.1. Let p € S iff:
e pC 2<% p+# () and pis a tree.

e Vn € p3dvep:navAlsuccey(n)| > 1, where succ,(n) denotes the successors of 7
in p.

Define q <g p iff ¢ C p.

If G is a (V,S)-generic filter we define s € 2“ to be the unique real contained in
Nyeqlp] where [p] == {z € 2°: Vn <w x| n € p}.

Definition 6.4.2. Furthermore, we define:

e split,(n) iff [succ,(n)| > 1
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o ht,(n) == [{v<n: v #nAsplit,(v)}
e For n < w: split, (p) := {n € p: split,(n) A hty(n) =n}
Set ¢ <, p iff ¢ <g p Asplit,,(p) C q.
Fact 6.4.3. The following holds true:
° ¢ <, p& q<gpAVm <nsplit,,(q) = split,, (p)
o VxewVn<w:x € [p] = xnsplit,(p) # 0, i.e. split,(p) is a front in p

Definition 6.4.4. Let p € S and let n € p. We define the condition pl" := {v €
p:v<aAnVn<av}.

Lemma 6.4.5. If (p,)n<w C S is a fusion sequence, ie. Vn < w: p,i1 <, pn, then
¢ = \peoPn €S and Vn < w: q <, pn.

Let P denote a countable support iteration of Sacks forcing of length .
Definition 6.4.6. Let p,q € P. Let F € ||~ and let n < w. We define:
e supp(p) the support of p.

o ¢ <p,piff VB e F:q] flFzq(B) <, p(B).

Lemma 6.4.7. Let (p,)n<w C P be a fusion sequence, i.e. there exists (F},)n<, C [K]
increasing such that J,_,, supp(pn) € U,<,, Fn and Vn < w: ppy1 <g, n Pn, then there
exists ¢ € P with Vn <w: q¢ <g, » Pn-

<w

Lemma 6.4.8. Let A C P be a maximal antichain, F' € [k]<¥, n < w and p € P. Then
there exists ¢ <p,, p such that |[A | ¢| <w with A [ ¢ :={r € A: r || ¢}, where || means
compatible.

Lemma 6.4.9. For F € [k]<¥, n < w and p € P the set
Dpy(p) :=={s €P: VB € F Jng, vg € 2=
s | B1kg s(B) Nsplit, (p(B)) = {ns} A succs)(ns) = {vs}}-
is open dense below p.

If e[k, n<w pe€lPands € Dpr,(p) are clear from the context, we write 7
and v for the corresponding 75 and vg.

Lemma 6.4.10. Let p € P, F' € [k]*¥, n < w and s € Dp,(p). Then there exists
Pl <g,i1 p such that

° supp(p[sl) = supp(p) U supp(s),

e s <pphland
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e Vs' € Dpn(p): (8 <pplAVBEF I/EI =v3) =8 <ps.

Note that pl*! depends on p and s as well as on F and n. For notational simplicity,
however, we will suppress F' and n if they are clear from the context.

Let us now turn to the product P2. By ((5})s<x)refo,1; we denote the sequence of
Sacks reals added by P? and define:
Definition 6.4.11. Let (p",p'),(¢°,¢') € P*, F € [k and n < w. We define
(@%q") <gn (% p") iff ¢% <p, p" for k € {0, 1}.
We will aim to show the following theorem:
Theorem 6.4.12. Assume that w; is inaccessible to the reals. Then P? is captured.
We will need several lemmas for the proof.

Lemma 6.4.13. Let (p%,p') € P? and 7 be a P>name for a real. Then there exists
(¢°,q") <p2 (p°, "), (Fo)n<w C [8]= and for every n < w: CF C [1gep, 279 X [pep, 2°¢
finite for k € {0,1} and A,,: C° x C! — 2™ such that:

1. if (7,7) € C¥ then for every 8 € F,, we have () = 7j(3) is for some iz € {0,1}.

2. if (,7) € C¥ then for every 8 € F, we have ¢*"1 | 8153 7(B) € split,(¢*(B))
where ¢" " is defined inductively such that for every o < x we have that ¢* 71 |
alFq ¢*7(a) = ¢ (@)@ if o € F, and ¢* 7 | a I, ¢* Pl(a) = ¢¥(a) else.

3. if s € Dr, n(¢") then ((n3)per,, (V3)ser,) € Cy.

4 A = (o) @omecy, (i shyecy such that for every ((7°,2°), (0, 7')) € € x Cy
we have (¢° 71, " ") Ikpe 7 [ 0 = P01

Proof. By induction on n < w we will construct a fusion sequence ((p2,pl))n<. such
that Vn < w: (p% 1, ph11) <mpnt1 (P2, ph), and the required sets C% and A,,. The fusion
limit (¢°, ¢') will have the required properties.

e n=0: Set (p),py) = (p°,p') and Fy := {0}.

e n — n+ 1: Assume that (p2,pl), F,, C* | and A,_; have already been defined.
Using Lemma 6.4.8 find ]52 <Fpnt1 pfl and | < w such that for every g € F,, we

have pf | 315 split,, (5% (8)) C 2.
Enumerate ( [Tsep, 25 X [Tgep, 2 )2 as (7%, 22, (7L, 71)),, -7 for some | < w.

By induction on m < [ construct a <g, ,.i-decreasing sequence (("p3,™p)),n<; :

— m = 0: Set ("p,"p,,) = (B, Pn)-

— m — m + 1: Assume that (™p? ™pl) has already been defined. If there
exists s* € Dp, ,("p") such that VB8 € F,: 7t (8) = ngk AR (B) = ng for
k € {0,1}, we can w.l.o.g. assume that also (s°,s') IFp2 7 | n = p for
some p € 2". In this case pick such (s° s') and p, call it (™s%,™s!) and
o o1y, respectively, and set ("0 mHIpLY = (mp0 Ml mpl "]y Else set
(P My = (P2, ™pl) and po 51y is undefined.
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Define (90, 1,ph 1) == (10, 'ph). Clearly we have (5%, 1, ph, 1) <mnrs (P2, pL). We

define
_{7]7 €H2<NXH2<M
BEF, BEF,
35 € Diaph1) W8 € Fi 1(8) = my A () = )
and for ((7°,2°), (7', 0")) € CY x C} we set A, (((7°,7°), (7", 7"))) == po, sy iff
(7°,2%), (7", ') = (72, 22), (L., L)) and peo. 5. is defined. Use a bookkeeping
argument to define F,, .1 D F,.

We must show that the fusion limit (¢°, ¢') has the required properties:
e ad 1.) This is obviously satisfied.

e ad 3.) Let n < w be arbitrary. Since ¢* <p, ,,11 pF., and therefore Dp, ,,(¢*) C
Dr, »(pk ), this is satisfied by the definition of C¥.

e ad 2. and ad 4.) Let n < w and (7, 7¥) € C¥ be arbitrary. Let s* € D, ,(pk_ ;)
for k € {0,1} witness (7%, 7¥) € C* such that (s° s') decides 7 | n. Let m < [

such that (7, %) = (7F | m) Since we also have DFn (pf 1) C Dp, o (™pk), it fol-

lows that there exists s} € D, ("™p)) with ((1, k)ﬁan, (ngsﬁ)ﬁan) = (k,v*)

and pio 51y € 2" such that (ms0 msly ke 7 | o= P 5 ). Furthermore,
we have (m“pg,m“p;) = (mpO "l mpl ["sul) and pro 1y is defined.  Hence
A ((1°,7°), (1", 7Y))) = ps, a,)-
By induction on 3 € F, we will now show that ¢* "l | 8l 7*(8) € split, (¢"(3)):
— B = 0: Since 7°(0) € split, (pf_;(0)) and sphtn(an(O)) = split,, (¢"(0)) we
have that 77(0) € split,,(¢"(0)).
— 8 > 0: Assume that for every 8/ € F N 3 we have ¢* "l | g/ g k(ﬁ')
split,, (¢"(3')). Therefore ¢* "1 | § is well defined. Since ¢* <p ™+ pk, q kT )
B € Dp,rgn(™pF | B) and therefore, by Lemma 6.4.10, ¢* "1 | 3 <p ™k | 3,
it follows that ¢* "1 | 3 -5 7%(B) € spht ("p (5)) Since ¢* "1 | 3 IF5
split,, (¢°(5)) = split,,("p}(8)) we have ¢* ) | B 15 7#(5) € split,, (¢*(5))-

Since ¢* 71 < msk for k€ {0,1}, we have (¢°” gt ]) lFp2 7 [ 0= popry. O

Definition 6.4.14. Let ¢* <p ¢* and let m < w. We define ¢* to be m-okay iff for every
(,7) € Ck one of the following two cases applies:

(Case 1.) VB € Fiu: ¢ 1| B 1Fg splitge g (7(5))
(Case 2.) B € F,, V8 € F,N3: " = Ik splitqk(ﬁ,)(ﬁ(ﬁ’)) and ¢*" | 8 k5 7(5) ¢ q*(B)

and set C% (§%) := {(7,7) € C¥: VB € Fj: ¢ | B Ikg splitze 4 (7(5)) -
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e (" is n-okay
o V(7,7) € CEG) VB € k: 7 | BIks ¢ () = ¢ 7).
o VG ER\Fn: §" 1 81 G°(5) = ¢"(5)

Lemma 6.4.15. Let ¢* <p ¢* be m-okay and m*-good for some m* > m. Let (7,7) €
C¥ (¢*) and let (,v) € Ck,(g*) for some m’ > m* such that V3 € F,,: v(5)<n(8). Then
there exists a condition ¢* ) <p §* such that:

1. ¢8P is m/ + 1—good.

2. VB € Fpu: 7 1 B kg 3 () ﬂsplitm+1(g (8)) = G"(8) Nsplit,,, 1 (¢°(B))
") = Cr(d").

In partlcular ¢ ) is m-okay with C* (
3. VB en: ¢ [Vlrﬁlwcz“? (8) = ¢18)
In particular, V3 € F: ¢ P | g ||—5 U< SB

Proof. We will define ¢* ) by induction on 3 < & and simultaneously prove (2. )p and (3.)s:

o 3=0: Weset @™ (0) := (¢°0)\ ¢*(0)F"©1) U ¢*(0) P! and see that (2.), and
(3.)o obviously hold true.

e 5> 0: Here we distinguish three cases:
— B¢ F,: Wet set ¢* ") (B) := ¢*() and see that (3.)5 obviously holds true.

_ ik (R EB]if gk @) 7]
— B € Fyy \ F,,: We define §* 7)(3) := ({ () if g* B €Gp
7" (B) else
Since ¢ @ 71 | 8 is well- deﬁned by (2.)g for B < B, G ¢ fﬁ 7}
B by (3 )5’ for B < B and ¢* is m'-okay, we have that q k(7) 7] r ﬁ ks

splitg g (71(B)) and hence ¢ k) (B) is well-defined. (3.)5 follows immediately.

— [ € F,,: Similarly we define ) )
iy ) (@BNEFEFON) UGB e it gt B e Gy
7" (P) else
Again, since ¢ ) 1 | 3 is well-defined by (2.)g for § < 8, ¢ P ¥ | g <p
G 1 B by (3.)g for B' < B and §® is m/-okay, we have that ¢* " P |
,8 IFg splitge ) (77(3)) and hence ¢* ) (B) is well-defined. (2.)s and (3.)4 follow
immediately.

It remams to be shown that q k) is m/ 4 1-good: We clearly have V3 € & \ Fpr: G° )
BlFs @P(B) = ¢(B) = ¢"(B). Now let n > m/ + 1 and (,0) € C* be arbitrary.
We will simultaneously show b_y induction on § € F, that either (Case 1.) or (Case 2.)
applies and ¢* v) 7] I BlFg

YOB) = g VI(B) i G I B 1k splitg o s (1(5)):
e 3 =0: We have four cases:

— splitge () (7(0)), 7(0) a7(0) and #(0) <7(0): Then clearly splitg @ ) (7(0)).
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0)(1(0)).

1(0) = ¢"(0).
~ splitge o (7(0)). #(0) <7(0) and 7(0) % 7(0): Then 7(0) ¢ ¢* P(0).

— 1(0) & @ (0): Then clearly (0) ¢ ¢* <’3>(0).

e 3 € F,\ Fuy: We assume 1nduct1vely that V[’ 6 F, N B nel ) g g
splitge o) (5 (1(6')).  Again, since q" [ B lFg G (B) = q (6) it follows that
39151 spltye 3y ((5) and @91 8165 g+ 9 9(g) = ¢ ().

e 3 € I\ F,: Again, we assume inductively that V3" € F, N 3: GgE @y g g
splitge o) (5 (7(5')). We have three cases:

— VB € By (155 5(8) 4i(5') and 5(8) <7i(): Then ¢ @ P | § <, ¢+ @11 |
and hence ¢* ) VI | B 1k split g @) () (N(5))-

—HB’EF ﬂﬁ :(ﬁ’)sﬂﬁ(ﬁ’) Letﬁ —mln{ﬁ’EF np: (B )ﬂﬁ(ﬁ
f
[7]

— splitg oy (7(0)) and 7(0) #4 7(0): Again clearly splitg () 7 (0
Clearly, in both of the above cases we have ¢* ) P1(0) = G*

Since G& ™) 1 | g* Ik split g (ﬁ(ﬂ )) and §& PPl g* <p q (@) [7]

it follows that 8* € F,, and 1/(6 ) zﬂ 7(3*). Hence ¢* ) f

are incompatible, and again ¢* ® " | 3 l—g spht G~ &) )(77
q

Clearly, in both of the above cases we have

¢“ ().

— VB’ € FyyNB: 0(8)an(p') and 7(8) #7(8): Then §* @ P11 5 <p @1 |
and ¢" W P Blkg 0 ¢ ().

e 3 € F,\{0}: Again, we assume inductiyely that V3’ € E, N B: Gg*@ P | g Ik g
split z <5>(5,)(ﬁ(ﬁ )) and ¢ @) B <p P | B. We have four cases:
— g" [’i [B [ spht (7:]( B)), V5 € Fpunp: ﬁi(ﬁ) an(p') and 7(B)<n (?’) Then
q~’g @ B <p @ @ P 3 and therefore & 7 1 | g4 splitg ) ( )(ﬁ(ﬁ))

— G B kg splitqk(ﬁ)(ﬁ(ﬁ)) and 30" € F, _ﬂ B:v(B) 4 n(B): Similar
to above 1t follows that ¢~ ?) (7] 5 and ¢ @ ") | B are incompatible and

g

therefore ¢* @ 171 | 3 |- spht -1 () (ﬂ)(n(ﬁ))
Clearly, in both of the above cases we have ¢ A1 Blkg g O P(B) = P (B) =
¢ "(B).
= 218y split (§9), V' € Fue 152 59) 37(8) ond 55) % 5(0)
Then ¢ @ 1 | 8 <p @@ 1| 5 and therefore @ @ P | 8157 & G 7)(3)

[ 5 kg
— gF 7] A n(8) ¢ ¢"(B): Then clearly ¢ ?) (7] [ B lFg n(B) & ¢ @(5) u
)

W.lo.g. we can assume that supp(q®) = supp(q'). Let mos : supp(¢*) — o* denote
the transitive collapse of supp(¢®) with o* < wy, let m: a* — supp(¢*) denote the
uncollapse, and let y € w* be arbitrary. Code the ‘transitive collapse’ of (F),)n<w,
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((Crl:>n<w)ke{0,1} and (A, )n<w as a real z € w”. Let ((c'g)gm*)ke{m} be a sequence of
P*-names for reals such that IFp> ¢5(n) = i iff i < ‘éfr(,@) for some 7 € split,, (¢"(7(3))).

Lemma 6.4.16. Let C, := H,B<a* C denote the finite support product of a* many Co-
hen forcings. Then there exists (%, ") <p (¢°, ¢") such that (7%, r') Irp2 ((¢§)s<ar Jreqo} 18
(L[z], C%.)-generic A 7 € L[] [((ég)ﬂ<a*>ke{oyl}].

Proof. For notational simplicity let us assume that supp(¢*) = a*, i.e. mos is the identity.
Let (Dp,)m<. enumerate all dense open subsets of C2. contained in L[z]. Working in V/

we will now construct by induction on m < w a decreasing sequence ((¢°,, ¢,))m<. and
an increasing sequence of natural numbers (n,, )<, such that:

*

1. Vm < w: supp(¢f) = a
2. Vm < w: ¢ is n,-good.

3.Ym <wVm' <mV3 e F, ,:q, | B8s ¢ (8) Nsplit, ,.1(¢"(B)) = ¢k (8) N
Sphtnm/ﬂ(qk(ﬂ))

4. Vm < w: (Q9n+17 qun+1) I-pe ((C]Za fnm+1)ﬁ€an+1)ke{0,1} € D,

Hence:

o If m = 0 we set (¢0,¢}) = (¢° ¢') and ng := 0. (1.) and (2.) are obviously
satisfied. (3.) and (4.) are vacuously true.

e m — m+ 1: Assume that (¢}, ¢,,) and n, have already been defined and satisfy
(1) - (4). Enumerate C (¢5)x C2, () as (i, #0), (it 7)), for some I < w.
By induction on [ < [ we will now construct a decreasing sequence (('q),,'q),)),<;
and an increasing sequence of natural numbers ‘n,, such that '¢* is n,,-okay with
CF ('¢k) = Ck (¢F) and 'n,,-good:

— 1 =0: We set (°%°,%) = (¢®,¢,) and °n,, := n,,. Obviously, °¢F is
Ny,-good by assumption.

— | — [+ 1: Assume that (‘¢% ¢} ) and n,, have already been defined. Since
‘gt is ny-okay with CF (1gk)) = CF (¢F)), we see that '¢f, 7 is well-defined.
Let s* € Dy, 1, (¢%) with s <p ‘g% 1. Since ! ¢~ is 'n,,-good, this im-

. Sk: Sk
plies that (3 )scr, . (5 )ser,, ) € Ch, (gh) and VB € Fy,,: vE(B) an-
Furthermore, we have

Sk Vsk Z/Sk
R e L e R B )
We see that g*, (05 )ser,, ke (¢ 1 ("
p* € Cyr Let(loll)<cz (p°, ph) uchthat(AOlAl)ED W.lo.g. we
> n,, such that V& € {0,1}: dom(‘p¥) =

N +1))per, = p* for some condition

can assume that there exists ‘71
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Fiy AVB € By, dom('pF(B)) = '+ 1. Now we can easily find sF € Dy, 1:(q")

with sF <p gt 2500 ek that b Iy (¢5 1 (7 + 1))ger, = '*. Note

that V3 € F,,, : vF(B) <177,8

We can now apply Lemma 6.4.15 with ¢* := qm, = Ny, m* = lng,,
— — k

m' =i, (1,0) = @F.0) and (7.5) = (3 )sen,. (V] )pen,) . and set

k
Usl
Brlgh = lgk k(s )sers) o d Hp,, ="'+ 1. By Lemma 6.4.15 we have that
Prlgh is np,-okay with C% ("lgh) = Ck (1¢k) = CF (¢F)) and "'n,,-good.

We set ¢F, ;== [qm and npi1 = n,,. We immediately see that (1.) and (2.) are
satisfied. )
ad (3.): Using induction on [ < [ and Lemma 6.4.15 it follows that

VB € Fu,t dhiy | Bls ahyy(8) Nisplity, 1 (¢°(8)) = qb,(8) Nsplit,,, 1 (¢"(8)).

But this implies
VBeF,, q71;+1 [ Bl qvlfwrl(ﬁ) N Sphtnmlﬂ(qk(ﬁ)) = an(/ﬁ) n splitnm/ﬂ(qk(ﬁ))

for every m’ < m + 1. Using the induction hypothesis for ¢* and noting that
q,’fwl <p qul we can deduce

VB EFy  qhir | B1Fs ahyr (8) Nsplit, 11(¢%(8)) = ahy (B) Nsplit,, 41 (¢"(B))
for every m/ < m + 1.
ad (4.): Let §" € Dg,

m (@%) with 8% <p ¢¥ | be arbitrary. Hence, there exists
30 5t 5t 0 - 1
U< Dwith (7)) pern, (V5 )pern, ) (05 )per,. (V5 )Banm>) (@, 20), (7).

By Lemma 6.4.15 we see that H1gk [0 )5 F ) <p !t (¢ )BGFZ“] and hence §¢ <p
k
lgk (5 )Be "7 Since !¢k, e 105 )ﬂe 1) decides (ch [l“nm)geplﬁ and s <p !¢k, (5" Joen, )

we have that

0 1
Vsl Vsl

m ? m

N )ger Jke{01} = (‘p%'p") € D,

and therefore (5%, 5') Ipe ((cﬁ rnm+1)66an+1)ke{0 1} € Dy

Now we define 7% such that for every 3 < a* we have r* | I3 r*(8) = ), €% (8)
(and 7% | B 15 r%(B) = 1g for B € K\ a*). We will show by induction on 3 < a* that
F1BIFsr*(B) €S:

e 3 =0: Let n € r*(0) be arbitrary and w.l.o.g. we can assume that n € split,(¢*(0))
for some | < w. Let m* := min{m < w: [ < np}. Let 77 € ¢),.(0) Nsplit,, ,(¢°(0))
such that n<7. Since ¢* . is, in particular, n,,«-okay, we have splityr (0)(7). By (3.)
it follows that splitqfn ,(0)(77) for every m’ > m*. Hence, we can deduce split, (1)

and therefore 7%(0) € S.
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e 3> 0: We assume that for every ' < 8 we have r* | 5’ Iz r*(f’) € S. Hence,

r® | B is a condition and Vm < w: r* | B <p ¢* | B. Towards a contradiction
assume that there exists s <p ¥ | 3 and n € 2<“ such that s -5 n € r*(8) AVY €
r*(B): n<an’ = —split,eg (7). Wlo.g. slkgn € split,(¢*(8)) for some | < w. Let
m*i={m<w:l<n, AB€EF,} Let s € Dp_.npn,.(¢" | B) with s’ <p s and
7 € 2<% with n <7 such that s’ IF5 7 € ¢,.(6) Nsplit, _(¢"(B)). Since . is Nype-

okay and s’ <p ¢F. [v5)prep,,e sl , we have ¢~ . (5)prer,,«ns] [ B I splitye (g (7).
By (4.) we have s’ IFg splitx (5(7) for every m’ > m*. But this implies s’ I-4
split, (7)) which is a contradiction.

It remains to be shown that (7%, r') Ikp2 7 € L[2][((¢})s<a* )kefo,13]. But this immediately
follows, because, given ((¢5)s<as)refo,1}, one can inductively reconstruct ((55)s<as)refo,1}

using (F,)new and ((CF)n<w)refo,1y » and 7 can be reconstructed from ((35)s<a*)reo.1}
and (A,)n<w- O

Proof of Theorem 6.4.12. Let (p°,p') € P2, 7 a P?-name for a real and y € w“ be
arbitrary. Using Lemma 6.4.13, Lemma 6.4.15 and Lemma 6.4.16 we can deduce that
there exists z € w®, a* < wf[y’z] and (¢°, ¢') <pz (p°, p') such that

(¢°,q") IFp2 3H : H is (L[y, 2], C2.)-generic A 7 € L[y, 2][H].
This shows that P? is captured. O

Lemma 6.4.17. Let 0 > w be a sufficiently large, regular cardinal and let M < H(0)
be a countable, elementary submodel such that P € M. Let g € V be an (M, P)-generic
filter and p € PN M be a condition. Then there exists ¢ <p p such that ¢ IFp g x G is
(M, P?)-generic.

Proof. We proceed very similar to Lemma 6.4.13: Let (D,,),«, enumerate all the dense
open subsets of P? contained M. Working in M we will construct by induction on n < w
a decreasing sequence (p?),., C ¢ and a fusion sequence (p}),-., € PN M such that
Vn < w:phy <pon phoand pho ke 30 € G (00, ,,p) € D, N M. Then the fusion
limit ¢ will have the required property.

e If n =0 let pY € g be some condition, and set p} := p and Fy := {0}.

e n — n+ 1: Assume that p?, p! and F), have already been defined. Using Lemma
6.4.8 we find p, <p, n41 P, and | < wsuch that V5 € F,: p, | Ik split, (p,,(8)) €
2<!. Now enumerate [ser, 25" X [ser, 25" @ (T, Pim) pyoq for some I < w. By
induction on m < I construct a decreasing sequence ("p}),,<; € g and a <p, n41-
decreasing sequence ("p,,)),,<; € M:

— m = 0: Set Opg = pg and OP}L = ﬁqqu

— m — m + 1: Assume that ™p? and ™pl have already been defined. If there
exists s' € Dp, ,(™p)) such that V3 € F,: 5,,(8) = ngl A Up(B) = Vgl,
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then there exist s € P with s € ¢, s <p ™p? and (s°,s') € D,.
In this case pick such (5% s!), call it (™s% ™sl), and set ™™pY := s and
i, =y, Ul Else set ("YU, ) = (M), ).

We clearly have ™™1p? € g, mtipl € M mHp0 <pmpb and ™Hpl <p | mpl
by Lemma 6.4.10.

We set p ., = ipg and pp,, = ip}L and note that clearly p) , € g, py., € M,
P01 <ppd and p.., <pg, ., ph. Define F, 1 O F), using a bookkeeping argument.

It remains to be shown that p; ., has the required properties. Now working in V/
let s € Dp, »(pL.,) be arbitrary. Hence, there exists m < [ such that (7, 7,) =
((n3)ser,, (V5)ser,). Since D, n(py1) € Dp,n(™py) and M is an elementary
submodel, there exists s’ € Dp, ,,("™pl) N M with (7, V) = ((UEI)BGFM (Vgl)gepn).

1

m ol m
Therefore, we defined ™s) € gand s, € D, o("py,) with (03" )ser,, (V5" )per,) =
(Tjm 7)) and (™%, ™s!) € D, in the construction above. Since ™Hpl = mpl [si]
and s <p p},; <p ""'p}, we have s <p s}, by Lemma 6.4.10. Hence s IFp ™s; €

GA P, ™sh) € DN M. O

6.5 Symmetric Al-relations

We start with the following definition:

Definition 6.5.1. Let P be a forcing notion and let £ C w* X w* be a symmetric
relation. We call E a P-absolute Al-relation iff £ both has a 33- and a ITi-definition,
which remain equivalent in every P-generic extension. We call E thin iff there is no
perfect subset of pairwise E-incompatible reals.

Furthermore, we define Fp C w* x w* to be the smallest equivalence relation containing
E. ' We call the equivalence classes of Fj the connected components of E.

We will need the following lemma, which implies that symmetric, P-absolute Al-
relations are absolute between V and V¥,

Lemma 6.5.2. Assume that V' F ‘The reals are f-closed’ and let P be a forcing notion
that is captured by forcing notions of size < w}. Then Xi-absoluteness holds between
V and VF.

Proof. Let o(x) be a Xi-definition and let ¢(z,y) be a IIi-definition such that ¢(z) is
equivalent to Jy € w*: ¥(z,y). Let a € w* NV and assume that V¥ F ¢(a). Hence,
there exists b € w* NV with VF E (a,b).

Since P is captured by forcing notions of size < w}’, there exist 2 € w* NV, Q € L[a, 2]
with |Q| < wi” and H € V¥ which is (Lla, z], Q)-generic such that b € L[a, z|][H|. By
Yl-absoluteness we have L[a, z|[H| F 1(a,b) and therefore Lla, 2][H] F ¢(a). Hence,

14To see this, note that the set E,, := {p’ € P: 35’ <p s (p/,s’) € D,,} is open dense, hence there exists
ap € E,Ng. Set s" :=p’ and w.l.o.g. assume that s° <p ™p? and (s°,s!) € D,,.
5Clearly, if £ is a Xi-relation, Fg is a Xi-relation.
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L[a,2]

there exists ¢ € H such that ¢ I-5“™ ¢(a). Since |Q| < w} and {a, z}* exists, we can
find an (L[a, z], Q)-generic filter H' containing ¢ in V. Hence Lla, z|[H'] E ¢(a) and, by

3!upward absoluteness, we have V E ¢(a).
[

The following arguments were inspired by [Hjo93| and can also be found in [CS21].

Lemma 6.5.3. Assume that V' F ‘The reals are f-closed’ and P is a forcing notion such
that P x P is captured. If E is a thin, symmetric IT}-relation, p € P a condition and 7
a P-name for a real such that p IFp 7 ¢ V, then

D:={p eP: @, p) Fpxp 71 E792}
is dense below p, where G x G5 denotes the P x P-name for the (V, P x P)-generic filter.

Proof. Towards a contradiction, assume that D is not dense below p. Pick a condition
q <p p such that for any r <p g, there are ro,r; <p 7 with (1o, 71)lFp,p— 76 E 762,

Let & > w be a regular and sufficiently large cardinal, let M < H(f) be a countable,
elementary submodel containing all the relevant parameters, and let mos: M — N
denote the Mostowski collapse. Let P := mos(P), q := q and 7 := mos(7). Working in
V' let (D,,)n<w enumerate all dense open subsets of P x P in N. We can now inductively
construct a tree (gs)sea<w of conditions in P such that:

L.gz=4q

Do

. gs~i <p qs for i € {0,1}
( s"qus 1) “_]1_J>><]1_J> _‘7_."(.]1 E7;'92 16
4. (¢s,q) € Don---N D, for s,t € 2" with s # ¢

For z € 2¥, we define g, := {p/ € P: In < W Gepn <p P'}. Now it easily follows that for
x,y € w¥ with x # y the filter g, x g, is (N, P x IP)-generic with

Nlgy X gy| E~ 79 ET9.

Since V' € w® N Ng, X g,]: 2'* € w* N N|g, x g,] by Lemma 6.2.3, we have X}-
absoluteness between N|g, X g,] and V, hence V E =79 E 7% by 3i-upward absolute-
ness. Since the map 2¥ 3 z + 79 is continuous and injective (since N F ‘G lrp 7 ¢ V),
there exists a perfect set of pairwise F-incompatible reals. This, however, contradicts
our assumption that F is thin. O

We can now prove the following theorem:

6Here, g1 x §2 denotes the P x P-name for the (N, P x P)-generic filter.
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Theorem 6.5.4. Assume that V' F ‘The reals are f-closed’, let P denote a countable
support iteration of Sacks forcing and let E be a thin, symmetric, P-absolute Al-relation.
Then VEEVz e w?\V JyewNV:zEy.

In particular, VF F ‘Vz € w® Iy € w? NV: 2 Fgy’, i.e. no new connected components
of E appear in V¥,

Proof. Let p € P be a condition and 7 a P-name for a real such that plFp 7 ¢ V. Since
P x P is captured by Theorem 6.4.12, we can use Lemma 6.5.3 to find ¢ <p p such that
(q, q) H_]px]p 7"G1 E7"GQ.

Let 6 > w be a regular and sufficiently large cardinal, let M < H(6) be a countable,
elementary submodel containing all the relevant parameters and let g € V' be an (M, P)-
generic filter containing ¢. By Lemma 6.4.17 we can now find r» <p ¢ such that

ke g x (GN M)is (M, P x P)-generic.

Let G be a (V, P)-generic filter containing r, and let mos: M — N denote the Mostowski
collapse. We can now deduce that mos[g] x mos|G N M] is a (N, mos(P) x mos(P))-
generic filter with N[mos[g] x mos[G N M]] E ‘79 E+¢’. Working in V¥ we see that
Vz € w” N N[mos[g] x mos[G N M]]: z* € w* N N[mos[g] x mos|G'N M]] by Lemma 6.2.3,
hence we have X1-absoluteness between N[mos[g] x mos[GNM]] and VE. By 3i-upward
absoluteness we get VP <79 B 79 with 79 € V.

Since P is captured by forcing notions of size < w; by Theorem 6.3.2, we have X1-
absoluteness between V' and V¥ by Lemma 6.5.2, hence E and, therefore, Fiy are abso-
lute. Together with the first part, this finishes the proof. n

6.6 Regularity properties

In this section we will not assume the existence of large cardinals. We start with the
following definition:

Definition 6.6.1. Recall that a set X C 2“ has the Baire property iff there exists an
open set O C 2¢ such that XAO = X \ OUO \ X is meager. Similarly, recall that X
is Lebesgue measurable iff there exists a G5 set B C 2 such that XA B is null.

For a collection I' of subsets of 2 we write BP(I") to denote that every set in I" has the
Baire property, and LM(T") to denote that every set in I" is Lebesgue measurable.

We will be particularly interested in the cases where I is the collection of A} or 32
subsets of 2¢. The following characterizations are well known (see Chapter 9.2 and
Chapter 9.3 in [BJ95]).

Theorem 6.6.2. BP(A}) holds iff for every x € w* there exists a Cohen real over L[z],
and BP(3}) holds iff for every z € w® there is a comeager set of Cohen reals over L|z].
Analogously, LM(A}) holds iff for every z € w® there exists a random real over L[z],
and LM(X1) holds iff for every z € w® there is a measure one set of random reals over

Lix].
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The next theorem shows how BP(Al) can be preserved:

Theorem 6.6.3. Let P be uniformly captured by Cohen forcing and assume that V F
BP(AL). Then also V¥ E BP(AL).

Proof. By the above theorem, BP(Al) holds iff there exists a Cohen real over L[z] for
every real x € w®. Moreover, note that if ¢ is a Cohen real over L[z, y], then it is also a
Cohen real over L[z]. Now assume that p € P and 7 is a P-name for a real. By uniform
capturing, there exist z € w* and a P-name ¢ such that for every y € w®, there is a
q <p p with

q IFp ¢ is a Cohen real over L[z, y] A7 € L[z][¢].

Let ¢g be a Cohen real over L[z]. If we set y := ¢, then we find ¢ <p p such that
q IFp ¢ is a Cohen real over L[z, co] AT € L|z][¢].
By mutual genericity, we have
q IFp ¢y is a Cohen real over L|z][¢] D L[7].
This finishes the proof. O
Similarly, for LM(AZ):

Theorem 6.6.4. Let P be uniformly captured by random forcing and assume that
V ELM(AL). Then also V¥ E LM(A}).

The next theorem shows how BP(X}) can be preserved:

Theorem 6.6.5. Let P be uniformly captured by Cohen forcing and assume that V F
BP(X3). Then also V¥ E BP(X)).

Proof. By Theorem 6.6.2, BP(X1) holds iff there is a comeager set of Cohen reals over
L[z] for every real x € w”. Equivalently, |J B is meager, where B is the collection of all
Borel meager subsets of 2 coded in L[z]. Let p € P and 7 be a P-name for a real. Again,
by uniform capturing there exist z € w* and a P-name ¢ with the required properties.
Consider the collection B of all Borel meager subsets of 2¢ x 2% coded in L[z]. By our
assumption, there exists a Borel meager set B C 2* x 2¥ coded in V' such that J B C B.
Let B be coded by y € w®. Then there is ¢ <p p such that

q IFp ¢ is a Cohen real over L[z, y] A7 € L[z][¢].

Let G be a (V,P)-generic filter with ¢ € G. Working in V[G], let X = {z € 2¥ :
(¢%,x) € B}. We claim that X is meager and contains every Borel meager set coded
in L[79]. To see that X is meager, recall that by the Kuratowski-Ulam Theorem (see
Chapter 15 in [Oxt80]) there exists a comeager set Y C 2¢ coded in L|z,y], such that
for every u € Y the set {x € 2¥ : (u,x) € B} is meager. Since ¢“ is a Cohen real over
L[z,y], we have ¢“ € Y and hence X is indeed meager. Now assume that Z is a Borel
meager set coded in L[z][¢“] D L[#%]. Then there is a Borel meager set B’ C 2% x 2
coded in L[z] such that Z = {x € 2* : (¢“,z) € B'}. Since B’ C B, we have Z C X. [
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Similarly, for LM(A3Z):

Theorem 6.6.6. Let P be uniformly captured by random forcing and assume that
V ELM(X}). Then also VF E BP(X)).

Next, we give some examples of forcing notions that are captured also without the
existence of large cardinals:

Example 6.6.7. Assuming BP(Al), Sacks forcing S is uniformly captured by Cohen
forcing.

Proof. Assume that p € S and 7 is an S-name for a real. Using continuous reading of
names, there exist p’ <p p and f: [p'| — 2* continuous such that p' Iks 7 = f(Zgen),
and let p’ and f be coded by some real z € w®. Furthermore, let n: [p'] — 2 be the
canonical homeomorphism, let ¢ be an S-name for 7(Zgen) and let y € w* be arbitrary.
Consider the forcing A consisting of finite subtrees of p’ ordered by end-extension. Then
A € L|z,y] is a countable forcing notion. Since there is a Cohen real over L[z, y|, there
also exists an (L[z, y]), A)-generic filter G. It is easy to see that ¢ := |JG C p is a perfect
tree such that for every branch = € [¢] we have that n(z) is a Cohen real over L[z, y].
Since this statement is absolute, we have

q IFs ¢ is a Cohen real over L[z, y| A 7 € L[z][¢].

This finishes the proof. O

Example 6.6.8. Assuming BP(A}), any countable support product or iteration of Sacks
forcing is uniformly captured by Cohen forcing.

Proof. Let us consider the product first: Let P be a countable support product of Sacks
forcing, p € P and 7 a P-name for a real. Using continuous reading of names, there exist
P <ppand f: [[;cqppe[P'(0)] = w* continuous such that p' IFp 7 = f(Egen [ supp(p')).
W.l.o.g. we can assume that supp(p’) is a countable ordinal, and let z € w* code p’ and
f. Furthermore, let n: J[;cqpp[P'(0)] = 2 be a canonical homeomorphism, let ¢ be a
P-name for 7)(Zge, [ supp(p’)) and let y € w* be arbitrary. For every i € supp(p’), let A,
be the forcing notion consisting of finite subtrees of p/(i) ordered by end-extension and
we define A to be the finite support product of (A;);csupp()- Hence, A is a countable
forcing notion in L[z, y]. Since we assume BP(AD), there exists an (L[z,y], A)-generic
filter adding a subtree q(i) of p'(i) for every i € supp(p). It is easy to see that for any
T € [ icoupp(p) @(2), we have that n(z) is a Cohen real over L[z, y]. Since this statement
is absolute, we have

q IFp ¢ is a Cohen real overL[z,y| A 7 € L[z][¢].

This finishes the proof for the product.

The proof for the iteration is essentially the same: Let P’ denote a countable support
iteration of Sacks forcing, p € P’ and 7 a P’-name for a real. It follows that there exist

P <p P, a continuous function f: (2¢)¥PPF) 5 ¥ and @: (2¢)%PP(F) _ (2)suPp()
with the following properties (see [F'S18a)):
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L. ¢ ke 7 = f(p(gen | supp(p))).

2. For any condition 7 in the countable support product of S along supp(p’), there
exists ¢ <p p’ such that g lFp @(Zgen [ supp(p)) € HiESupp(ﬁ,)[f(i)].

Again, w.l.o.g. we can assume that supp(p’) is a countable ordinal, and let z € w*

code p', f and ¢. Let n: (2¢)"PP(P) — 2% he a canonical homeomorphism, let ¢ be a
P'-name for n(p(Zgen | supp(p'))), and let y € w* be arbitrary. Similar to above, we use
a Cohen real over L|z,y| to find 7 in the countable support product of S along supp(p’)
such that for any Z € [[,cpp)[7(9)] we have that () is a Cohen real over L[z, y].
Since this statement is absolute, we can use (2.) to find § <p p’ such that

g IFp ¢ is a Cohen real over L[z, y] A7 € L[z][¢].

This finishes the proof for the iteration O

Example 6.6.9. Assuming BP(Al), Silver forcing SI is uniformly captured by Cohen
forcing.

Proof. Let p € SI and 7 be an SI-name for a real. Using continuous reading of names, we
find p’ <gr pand f: 2¥ — 2¢ continuous such that p’ IFg; 7 = f(Zgen), and let p’ and f be
coded by a real z € w”. Define i : 2 — 2“ such that n(x)(n) = ¢ iff x(m) = i where m is
the n’th element of w\dom(p'). Let ¢ be a SI-name for 7(&,e,) and let y € w* be arbitrary.
Consider the forcing A := {s € Fin(w,2): I3n < w dom(s) Cn Ap' [ n C s} ordered by
end-extension and note that A € L[z, y]. Since there is a Cohen real over L]z, y]|, there
also exists an (L[z,y]), A)-generic filter G. It is easy to see that ¢ := |JG € SI with
q <s1 P/, and that n(z) is a Cohen real over L[z, y| for every = O ¢. Since this statement
is absolute, we have

q IFgr ¢ is a Cohen real over L[z, y] A7 € L[z][¢].

This finishes the proof. O

Example 6.6.10. Assuming BP(3X1), Miller forcing MI is uniformly captured by Cohen
forcing.

Proof. Let p € M and 7 be an MlI-name for a real. Using continuous reading of names,
there exist p’ <y p and f: [p'] — 2% continuous such that p’ lFyy 7 = f(Zgen), and let p/
and f be coded by some real z € w* . Let n: [p'] = w* be the canonical homeomorphism,
let ¢ be an MI-name for 7)(Zge,) and let y € 2% be arbitrary. Since BP(X3) holds, the set
of Cohen reals C' C w® over L[z, y] is comeager. In particular, also n~!(C) is comeager
in [p'] and therefore, contains the branches of a superperfect tree ¢ <py p’. It is easy
to see that for every x € [g] we have that n(z) is a Cohen real over L[z, y]. Since this
statement is absolute, we have

q Ik ¢ is a Cohen real over L[z, y] A7 € L[z][¢].

This finishes the proof. O
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Example 6.6.11. Assuming LM(X1), Sacks forcing S is uniformly captured by random
forcing.

Proof. Assume that p € S and 7 is an S-name for a real. Using continuous reading of
names, there exist p’ <p p and f: [p'| — 2* continuous such that p' Iks 7 = f(Zgen),
and let p’ and f be coded by some real z € w®. Furthermore, let n: [p'] — 2 be the
canonical homeomorphism, let 7 be an S-name for 7(#g.,) and let y € w* be arbitrary.
Since LM(32}) holds, the set of random reals R C 2¥ over L[z, y] has measure one. In
particular, R contains a perfect set, hence n~!(R) contains the branches of a perfect tree
q <s p'. It is easy to see that for every branch of [¢| we have that n(x) is a random real
over L[z, y|. Since this statement is absolute, we have

q Ik 7 is a random real over L[z, y| A7 € L[z][F].

This finishes the proof. O

Since Miller forcing is captured by Cohen forcing under BP(X1), Theorem 6.6.5 implies
that Miller forcing preserves BP(X3). This does not hold for BP(A}):

Theorem 6.6.12. Let V' be the forcing extension obtained by adding w;-many Cohen
reals over L. Then BP(AL) holds in V' but not in VM.

Proof. Working in V' assume towards a contradiction that for some p € Ml and Ml-name
¢ we have
p Iy ¢ € Z% is a Cohen real over L[Zgey].

Note that for technical reasons we will consider a Cohen real to be an element of Z“ which
is Z<“-generic, where Z is the set of integers. Using continuous reading of names, we may
assume w.l.o.g. that there exists f: [p] — Z* continuous such that p Iy ¢ = f(Zgen)-
Let p and f be coded by some real z € w”.

Claim 6.6.13. There exists ¢ <pq p such that for every = € [g] we have that f(x) is a
Cohen real over Lz].

Proof. For every a < wy, the set B, of (z,u) € w* x Z* such that u is in a closed nowhere
dense subset of Z* coded in L[z] is a Al(y) set, where y € w* is a real coding a.'” In
particular, B, is coded in L for every a < wy, since w¥ = w;. Now note that for every
a < wp the set {x € [p] : (z, f(z)) € By} is bounded and coded in L[z]. Otherwise, it
would contain the branches of a superperfect tree r <y p (see Chapter 21.F in [Kec95]).
But then

7 Iy f(Zgen) 1S not a Cohen real over L[ gen],

since the statement * for every branch = € [r] we have ((z, f(x)) € B,)) is a IT}-property
and therefore absolute. Let n: w* — [p] be the canonical homeomorphism and we see
that n='({z € [p] : (z, f(x)) € B,}) is bounded as well. The statement ‘n~'({zx €

17To see this, note that once we fix a real y coding a well-ordering of w of type «, we easily get a Borel
function mapping x to a code for L,[z].
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[p] : (z, f(z)) € Ba}) is bounded’ is a ¥3(z)-property and therefore absolute between
L[z] and V. Since there is a Cohen real over L[z], there exists a real ¢ € w* which is
unbounded over L[z]. In particular, ¢ is unbounded over n~*({z € [p| : (z, f(z)) € Ba})
for every a < wy. If we pick ¢ <pg p such that for every z € [q] we have ¢ <* n~1(z),
this finishes the proof of the claim O

The set {f(z) : € [¢]} is analytic. If it is not contained in a o-compact subset of
Z¥, it contains the branches of a superperfect tree T', hence [T] is a superperfect set of
Cohen reals over L.

On the other hand, if {f(x) : x € [¢]} is contained in a o-compact subset of Z“, then
there exist a,b € Z* such that for every = € [g] we have a <* f(z) <* b. Now consider
the analytic set A := {z + f(x) : x € [¢]}. Tt follows that A is a set of Cohen reals over
L, since for every = € [¢] the real z + f(x) is the image of f(z) under a homeomorphism
of Z* in L[z], and hence also Cohen over L[z]. We show that A is not contained in
a o-compact set. To this end, let d € w* be arbitrary. Since [¢] is unbounded, there
exists © € [¢] such that © £* d — a. But then for infinitely many n < w we have
z(n) + f(z)(n) > d(n) —a(n) + f(x)(n) > d(n) — a(n) + a(n) = d(n), and hence
x + f(x) £° d. In particular, A contains the branches of a superperfect tree T', hence
[T[ is a superperfect set of Cohen reals over L.

We have shown that in any case there exists a superperfect set of Cohen reals over L in
V. This, however, is impossible in the Cohen model by a result of Spinas (see [Spi95]).
This finishes the proof Theorem 6.6.12. O]

Pawlikowski showed in [Paw86] that if ¢ is a Cohen real over V and r is a random
real over V[c|, then there exists a Cohen real over Vr] in Vc|[r]. In particular, this
shows that random forcing preserves BP(AlL). Using similar arguments, we generalize
his result:

Theorem 6.6.14. Let P be captured by w”-bounding forcing notions and assume that
V E BP(AL). Then also V¥ E BP(A}).

Proof. Let C'(2*) denote the space of continuous functions f: 2* — 2¥ equipped with
the topology of uniform convergence, and note that C'(2¥) is a Polish space (see Chapter
4.E in [Kec95]). Its topology is generated by open sets of the form

{g€C2°): Vo e 2(g(z) I k= f(z) | k)}

for f € C(2¥) and k < w. We will need the following lemma (see Chapter 3.2 in [BJ95|):

Lemma 6.6.15. Let F' C 2¢ X 2¥ be closed such that every vertical section of F' is
nowhere dense. Then the set F' := {f € C(2¥) : 3z € 2¥ (z, f(x)) € F} is closed
nowhere dense in C'(2¥).

Proof. Let f ¢ F be arbitrary. Hence, for every z € 2 there exist s,,t, € 2<% such
that s, <z, [s;] X [tz] NV F =0 and f”[s,] C [t,]. By compactness there are finitely many
g, ..., T, such that J,.[s2,] = 2¥. Let k* := max{|t,,[: i < n}. Then we see that
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{h € C(2¥) : Vx € 2¥(h(z) | k* = f(x) | k*)} is open, contains f and is contained in
the complement of F. Since f was arbitrary, this shows that C'(2¥) \ F' is open.

To show that C'(2¢)\ F is dense let f € C(2¥) and k < w be arbitrary. For every z € 2¢
we find s, <z and ¢, such that f”[s,] C [f(z) | k|, f(z) | k<t, and [s,] X [t,]NF = 0. By
compactness there are finitely many zo, ..., z, such that | J,, [s:,] = 2¥. Now consider
the function g mapping x € 2* to t,,”0707... , where i < n is least such that s,, < x.
Then g is continuous, g ¢ F and g(x) | k = f(x) | k for every x € 2.

Altogether we have shown that C'(2¥)\ F is open dense, hence F is closed nowhere dense.
This finishes the proof of the lemma. O

Let (s, : n € w) be some canonical enumeration of 2<“, and we say that x € 2¥ codes
a closed nowhere dense subset of 2¢ iff {s, : x(n) = 1} is a nowhere dense subtree of
2<¢¥. For such z let T, denote the corresponding nowhere dense tree.

Now let p € P and 7 a P-name for an element of 2% be arbitrary. By the assumptions
of the theorem, there exist z € w”, a P-name H , a forcing notion Q € L[z] such that
L[z] F “Q is w¥-bounding " and ¢ <p p such that

qIFp H is (L[z], Q)-generic A 7 € L[z][H].

Let & € L[z] be a Q-name and r <p ¢ such that r IFp ¢ = 7.
Since BP(AJ) holds, there exists a ¢ € C(2¥) not contained in any closed nowhere
dense subset of C'(2¥) coded in L[z].

Claim 6.6.16. r IFp g(7) is Cohen over L[7].

Proof. Let G be a (V,P)-generic filter containing r and set H := HES. For every real
x € Llz,6"] D L[7%] there exists a Borel function f : 2¥ — 2% coded in L[z] such that
f(e®) = z, since wlL[Z’dH] = w¥ (otherwise Q would not be w*-bounding in L[z]). In
particular, if x € L[z,5] codes a closed nowhere dense subset of 2°, then there exists
a Borel function f € L[z] such that f(y) codes a closed nowhere dense subset of 2¢ for
every real y € 2¢, and f(61) = 2. Now f is the projection onto the first two coordinates
of a set [T for some tree T C 2<% x2<¥ xw<¥. Therefore, there exists a Q-name w in L[]
for an element of w* such that (o, f(o#),wH) € [T]. Since L[z] F ‘Q is w*-bounding’,
we may find a finitely branching subtree S of T in L|[z] such that (67, f(7),w") € [S].
The projection of [S] onto the first two coordinates is then a compact subset of 2% x 2
hence a partial, continuous function on some closed set X C 2* containing 6. Consider
the set F':= {(z,y) : v € X ANy € Tj)} and note that F' is closed and each section of
F is nowhere dense. By the above lemma, F' is a closed nowhere dense subset of C'(2),
and it is obviously coded in L[z]. Hence, g ¢ F and it follows that for every z € 2 we
have g(z) ¢ Ty). In particular, we note that g(¢"") ¢ Ty m). Hence, we have shown
that g(7¢) = g(6) is not contained in any closed nowhere dense subset of 2% coded in
L[7Y], i.e. g(7) is a Cohen real over L[7¢]. This finishes the proof of the claim. O

By Theorem 6.6.2 this finishes the proof of Theorem 6.6.14. O]

We immediately get the following corollary:

104



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

L]
lio
nowledge

b

o
i
r

M You

Corollary 6.6.17. Let P be captured by w“-bounding forcing notions and assume that
V E BP(X}). Then also VF E BP(Z)).

Proof. By Theorem 6.6.14, we have V¥ = BP(A}). Since BP(A}) implies that BP(X1)
is equivalents to the statement ‘ L{z] Nw* is bounded for every real = € w*’ (see Chapter
9.3 in [BJ95]), and by capturing we have that every L[z] is contained in an w“-bounding
forcing extension of a model L|z] for some z € w* NV, it follows that V¥ E BP(X1). O

Example 6.6.18. Random forcing captures itself. In particular, it preserves BP(A})
and BP(X1).
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