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Abstract

Density functional theory in the Kohn-Sham framework is the most common and widespread method in
computational material science. However, the necessity for highly accurate electronic structure theory
calculations gives rise to the continued exploration of alternative techniques. Within these approaches,
quantum chemical wave function based methods such as the equation of motion coupled cluster theories
show remarkable potential. In conjunction with these methods, the biggest drawback stems from the
significantly larger computational cost, which scales polynomially with the system size.
The aim of this work is the implementation of several electronic structure algorithms culminating in
the improvement of the computational efficiency of the equation of motion coupled cluster singles and
doubles theory by applying low-rank factorization techniques to the Coulomb integrals. As proof of
principle, we employ a model of two electrons in one dimension confined within a harmonic potential.
We can validate the successful implementation of this approach and we are able to verify that the
overall computational expenses are reduced through the approximation of the Coulomb integrals via
six small matrices using tensor contraction. The low-rank factorized Coulomb integrals prove effective
in calculating excited state energies without significant loss of accuracy. We find that adjusting two
parameters of our low-rank approximation techniques allows for a systematic trade-off between accurate
results and computational expenses.
The results of our work make us optimistic that, building on this proof of principle, we can go a step
beyond and develop efficient methods for calculating linear absorption spectra of real materials.

Kurzfassung

Dichtefunktionaltheorie im Kohn-Sham Formalismus ist die am häufigsten verwendete Methode in der
computer-gestützten Materialwissenschaft. Die Notwendigkeit hochgenauer Berechnungen elektronischer
Strukturen öffnet jedoch die Tür für alternative Methoden. Eine Familie vielversprechender Vertreter
sind quantenchemische Wellenfunktions-basierte Methoden unter welche auch die sogenannte „equation
of motion coupled cluster“ Theorien fallen. Einer der größten Nachteile dieser Algorithmen ist der sig-
nifikant höhere Rechenaufwand, welcher polynomiell mit der Systemgröße skaliert.
Diese Arbeit beschreibt zunächst verschiedene Algorithmen für elektronische Strukturberechnungen,
mit dem finalen Ziel der Reduzierung des Rechenaufwands der „equation of motion coupled cluster
singles and doubles“ Theorie durch Faktorisierungtechniken. Wir verwenden ein Modell von zwei Elek-
tronen in einem eindimensionalen harmonischen Potential. Die numerische Implementierung ist de-
tailliert beschrieben und es ist gezeigt, dass sich die Gesamtrechenkosten durch die Approximation
der Coulomb-Integrale mittels sechs Matrizen durch Tensor-Kontraktion reduzieren lassen. Weiters
erlauben die faktorisierten Coulomb-Integrale die effektive Berechnung von Anregungsenergien ohne
signifikante Genauigkeitsverluste. Die systematische Variation zweier Parameter, die in unseren Fak-
torisierungsmethoden vorkommen, ermöglichen einen Kompromiss zwischen genauen Ergebnissen und
Rechenaufwand.
Die Ergebnisse unserer Arbeit stimmen uns zuversichtlich, dass wir einen Schritt weiter gehen und ef-
fiziente Methoden zur Berechnung von linearen Absorptionsspektren realer Materialien entwickeln kön-
nen.
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Introduction

1 Introduction

In computational material science, a primary objective revolves around solving the many-electron Schrödinger
equation. However, exact solutions are only feasible for the smallest systems, necessitating the utilization
of numerical approximation methods. Density functional theory thereby represents without a doubt the
method of choice when studying ab initio problems [1–3]. The good trade-off between accuracy and com-
putational cost in the Kohn-Sham framework of approximate exchange and correlation energy functionals
stands as a fundamental benchmark in contemporary material science. Despite the significant achievements
of density functional theory over the past decades, there are still challenges in systematically improving the
accuracy of existing approximate density functionals. Amongst various aspects, systems involving strong
electronic correlation effects, non-local van der Waals interactions or density-driven errors may even exhibit
qualitative failures [4]. This opens the door for other techniques such as wave function-based methods,
which have the property of capturing electronic exchange and correlation effects in a systematically im-
provable manner. The drawbacks of such theories involve significantly larger numerical costs restricting
the computation to relatively small system sizes only. Nevertheless, highly accurate electronic structure
theories are much needed to get important benchmark results as well as to predict material properties
without relying on non-improvable approximations.

The one theory to which we will devote ourselves in the course of this work is the so-called coupled
cluster theory which has already had great success in predicting various material properties [5–11]. Initially
proposed in the 1950s by Fritz Coester and Herman Kümmel for the field of nuclear physics [12,13], coupled
cluster theory nowadays is also widespread in computational chemistry. Jiri Cizek and Josef Paldus were
the first to introduce the coupled cluster method explicitly for the description of electron correlations in
the 1960s [14, 15]. The underlying principle is the description of the many-electron wave function by an
exponential ansatz of cluster operators acting on a single reference Slater determinant. Further advancement
is introduced by the equation of motion coupled cluster theories enabling the calculation of electron addition
and removal energies in solids as well as excited state properties [16–18]. In this case, the ansatz for the
coupled cluster wave function is extended by incorporating an additional linear excitation operator.

For both coupled cluster and equation of motion coupled cluster theories, the achievable accuracy substan-
tially depends on the employed level of truncation in the wave function ansatz. Consequently, the high
dimensionality of the many-electron wave functions is one of the most limiting factors for such electronic
structure theories. Over the past decade great efforts have been made to improve numerical efficiency
through tensor rank decomposition and low-rank tensor approximation [19–23]. These techniques not only
reduce computational costs but also minimize memory footprints, enabling the storage of the approximated
many-electron wave functions.

The main goal of this thesis is to employ the aforementioned techniques to improve the computational
efficiency of the equation of motion coupled cluster theory, focusing on a model of two electrons confined
in a one-dimensional harmonic potential. To achieve this, we introduce in the first chapter the theoretical
foundations necessary for the course of this thesis. The second chapter is dedicated to the Hartree-Fock
method, which is needed as a prerequisite for all subsequent post-Hartree-Fock methods. These methods,
namely Møller-Plesset perturbation theory, coupled cluster and equation of motion coupled cluster theory
are discussed in detail in the third chapter. Following the implementation of these methods, the final chapter
focuses on their computational optimization in terms of tensor rank reduction of the Coulomb integrals. In
the concluding part of the thesis we present the most significant findings and their interpretation. Finally,
a brief summary of the key outcomes is provided, along with an outlook on potential future extensions
considering the equation of motion coupled cluster theory and low-rank approximation methods.
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Many Electron Theory

2 Many Electron Theory

In this chapter we provide an introductory overview of the fundamental principles essential for the subse-
quent work. The derivations are primarily based on the electronic Hamiltonian which is commonly employed
for realistic materials. However, we also introduce the Hamiltonian of our model and, if necessary, we refer
to it during the discussion. The main topics covered are the Schrödinger equation, the concepts of spin
orbitals and Slater determinants. Based on this, we discuss one- and two-electron integrals and their eval-
uation outlining the main results of the Slater-Condon rules. Finally, we introduce the concept of second
quantization, which is especially useful for the description of the coupled cluster theory.

2.1 Schrödinger Equation

The calculation of properties of a non-relativistic quantum system commonly requires the solution of the
Schrödinger equation. It is a partial differential equation that describes the change in time of a quantum
mechanical state of a system. This state is represented by a wave function, and the time evolution is given
by the action of the Hamiltonian operator on this wave function. The most general form of the Schrödinger
equation is

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ ,

where |Ψ(t)⟩ is the time-dependent wave function in Dirac notation and Ĥ the Hamiltonian operator.
The constants i and ℏ denote the imaginary unit and the reduced Planck constant, respectively. In the
case of a time-independent Hamiltonian, the wave function can be factorized into a time-dependent and a
time-independent part. Consequently, the time evolution of the wave function is given by:

|Ψ(t)⟩ = e−iHt/ℏ |Ψ(t = 0)⟩ = e−iHt/ℏ |Ψ⟩ .

The decoupling of the time-dependent Schrödinger equation leads to a time-independent eigenvalue problem,
known as the time-independent Schrödinger equation:

Ĥ |Ψ⟩ = E |Ψ⟩ . (2.1)

The explicit form of the Schrödinger equation is determined by the definition of the Hamiltonian opera-
tor which depends on the system under consideration. In molecular electronic structure theory an arbi-
trary quantum mechanical system with Ne electrons and Nn nuclei is often described by the many-body
(Coulomb) Hamiltonian:

Ĥ = −
Ne"
i

ℏ2

2m
∆⃗i −

Nn"
k

ℏ2

2Mk
∆⃗k +

e2

4πϵ0

1

2

Ne"
i,j=1;i ̸=j

1

|r⃗i − r⃗j | −
Ne"
i=1

Nn"
k=1

Zk

|r⃗i − R⃗k|
+

1

2

Nn"
k,l=1;k ̸=l

ZkZl

|R⃗k − R⃗l|

 .

(2.2)

Here m and Mk stand for the electron mass and the k-th nucleus mass, respectively. Zk is the atomic
number, ϵ0 corresponds to the vacuum permittivity, e denotes the elementary charge, r⃗i and R⃗k are the
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Many Electron Theory

coordinates of the electrons and the nuclei, respectively.
In order to get the electronic properties of such systems the so-called Born-Oppenheimer approximation is
applied. This approximation assumes that the wave functions of atomic nuclei and electrons in a molecule
can be treated independently. Since the relative mass of a nucleus is much larger than the one of the
electron, it moves much slower. This allows a separation of the Hamiltonian (s. Eq. 2.2) into an electronic
and a nuclear part, where cross terms between electrons and nuclei are neglected. The wave function
associated with the Coulomb Hamiltonian in the Born-Oppenheimer approximation is then given by:

Ψcoul = Φe · ξn.

Φe denotes the electronic and ξn the nuclear wave function. The Coulomb Hamiltonian applied to this wave
function thus yields the Schrödinger equation for the motion of the electrons:

ĤeΦe(r⃗; R⃗n) = Ee(R⃗n)Φe(r⃗; R⃗n), (2.3)

with the electronic Hamiltonian:

Ĥe =

Ne"
i

− ℏ2

2m
∆⃗i +

e2

4πϵ0

1

2

Ne"
i,j=1;i ̸=j

1

|r⃗i − r⃗j | −
Ne"
i=1

Nn"
k=1

Zk

|r⃗i − R⃗k|

 , (2.4)

and another Schrödinger equation for the motion of the nuclei:

Ĥnξn(R⃗n) = Enξn(R⃗n),

with the nuclear Hamiltonian:

Ĥn =

Nn"
k

− ℏ2

2Mk
∆⃗k +

e2

4πϵ0

1

2

Nn"
k,l=1;k ̸=l

ZkZl

|R⃗k − R⃗l|
.

In order to obtain, for example, potential energy surfaces, the electronic Schrödinger equation (s. Eq. 2.3)
is solved successively for different nuclear distances.
Many numerical algorithms, such as the methods discussed later, strive to solve the electronic Schrödinger
equation by relying on the Born-Oppenheimer approximation. For further reading and more details, see
Ref. [24].

At this point, we want to introduce our model Hamiltonian. Since this thesis represents a so-called proof
of principle, it is reasonable to work with a rather simple model. This offers us two advantages. On one
hand, we are able to qualitatively analyze the obtained results without exceeding the given computational
resources. This means that all implemented codes can be executed on standard computer devices. On the
other hand, we are able to focus more on the main goal of the work, the low-rank approximation of the
two-electron integrals. Accordingly, our Hamiltonian shall describe two electrons confined in a harmonic
potential in one dimension, i.e.
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Ĥ =

2"
i=1



− ℏ2

2m

∂2

∂x2i
+

1

2
mω2x2i

�
+

e2

4πϵ0

1

|x1 − x2|+ σ
. (2.5)

Here, ω is the oscillator frequency and σ > 0 a real number. The first term describes the kinetic energy of an
electron while the second term represents the harmonic potential. The third expression gives a regularized
Coulomb potential between the two electrons.
Further, the Schrödinger equation is transformed into atomic units (ℏ = e = m = (4πϵ0)

−1 = 1 a.u.)
making Eq. (2.5) read:

Ĥ =
2"

i=1



−1

2

∂2

∂x2i
+

1

2
ω2x2i

�
+

1

|x1 − x2|+ σ
. (2.6)

Due to the fact that our model is set up in one dimension only, the Coulomb interaction is not very intuitive
since the electrons are not able to pass each other. For the present work, we stick to this designation and
introduce σ as a regularization parameter to prevent singularities arising in the involved integrations (s.
Sec. 2.4). This allows us quick testing and prototyping of different ideas for the further course of the thesis.

2.2 Spin Orbitals

We introduce the term orbital in the context of a single electron wave function. This wave function is
obtained by the solution of the electronic Schrödinger equation (s. Eq. 2.1). A spatial orbital Φ(r⃗) describes
the spatial distribution of an electron with the probability |Φ(r⃗)|2 of finding that electron in a small volume
dr⃗ around r⃗. These orbitals have the property of orthonormality

⟨Φi|Φj⟩ =
�

dr⃗ Φ∗
i (r⃗)Φj(r⃗) = δij .

Further, an arbitrary function f(r⃗) can be expanded in terms of the complete set of spatial orbitals {Φi}

f(r⃗) =
∞"
i=1

aiΦi(r⃗).

However, the full description of an electron also requires the consideration of its spin. Electrons are fermions
with spin S = 1/2, which leads to spin up (MS = 1/2) and spin down (MS = −1/2) states. In this context,
we introduce the spin functions α(ω̄) and β(ω̄) corresponding to spin up and down, respectively. We define
the common spin variable with a horizontal line to avoid confusion with the frequency ω from the harmonic
potential. The two spin functions have the following properties:

�
dω̄ α∗(ω̄)α(ω̄) =

�
dω̄ β∗(ω̄)β(ω̄) = 1,�

dω̄ α∗(ω̄)β(ω̄) =
�

dω̄ β∗(ω̄)α(ω̄) = 0.

(2.7)
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Thus, α(ω̄) and β(ω̄) are complete and orthonormal and an electron can be fully described by the three
spatial coordinates r⃗ and the spin coordinate ω̄. We define a new variable that contains both the spatial
and spin coordinates:

x⃗ = {r⃗, ω̄}.

The spin orbital χ(x⃗) is defined as the wave function that describes the spatial distribution as well as the
spin of the electron. Due to the fact, that we have the possibility of finding an electron in spin up or down,
we can form two spin orbitals from each spatial orbital:

χ(x⃗) =


Φ(r⃗)α(ω̄)
or .

Φ(r⃗)β(ω̄)
(2.8)

2.3 Slater Determinants

After introducing the spin orbitals for a single electron, we look at the generalization of a system with
N electrons. We start with a historically important description of the many-electron wave function, the
so-called Hartree product. For a system of N electrons, the Hartree product is

ΨHartree(x⃗1, x⃗2, . . . , x⃗N ) = χ(x⃗1)χ(x⃗2) . . . χ(x⃗N ). (2.9)

This is a rather intuitive solution, where the N -electron wave function is represented as a product of one-
electron spin orbitals. Indeed, for the special case where the total Hamiltonian is defined as the sum of
one-electron Hamiltonians ĥ(i), whose eigenstates are the spin orbitals, the Hartree product is the eigenstate
of the total Hamiltonian operator. It can be shown that it holds:

�
N"
i=1

ĥi

�
ΨHartree =

�
N"
i=1

ϵi

�
ΨHartree.

However, the Hartree product does not cover the general case of a many-electron wave function. Moreover,
it has two major problems that cannot be overlooked. Due to the definition of the Hartree product (s. Eq.
2.9), the probability of finding an electron (e.g. labeled 1) around the position r⃗1 in the volume element
dr⃗1 is independent of the positions of the other electrons in the systems. It is well known that between the
electrons there is a repulsive force, i.e. the electrons avoid the regions occupied by other electrons. Thus,
the Hartree product represents an uncorrelated wave function that does not reflect the actual behavior of
a many-electron system. The second deficiency is that the Pauli principle is not fulfilled. Electrons cannot
occupy the same quantum state in a system. In other words, electrons are indistinguishable, but the Hartree
product assigns each electron its own spin orbital. These inconveniences are overcome by introducing the
antisymmetry principle, i.e. the wave function must change sign with respect to the interchange of the space
and spin coordinates of any two electrons.
The mentioned drawbacks are overcome by the formalism of Slater determinants defined as:

5
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ΨSD(x⃗1, x⃗2, . . . , x⃗N ) =
1√
N !

$$$$$$$$$
χ1(x⃗1) χ2(x⃗1) . . . χN (x⃗1)
χ1(x⃗2) χ2(x⃗2) . . . χN (x⃗2)

...
...

. . .
...

χ1(x⃗N ) χ2(x⃗N ) . . . χN (x⃗N )

$$$$$$$$$ . (2.10)

The factor (N !)−1/2 stems from the normalization. The Slater determinant in Eq. 2.10 describes N electrons
occupying N spin orbitals {χ1, χ2, . . . χN}. The rows correspond to electrons and the columns are labeled
by the spin orbitals. Interchanging the coordinates of two electrons means switching two rows of the
determinant, which changes its sign. In the case of two equal columns, this corresponds to two electrons in
the same spin orbital, making the Slater determinant zero (Pauli exclusion principle). Another remarkable
property of the Slater determinants is the consideration of exchange effects. The motion of electrons with
parallel spin is correlated, while the one for anti-parallel electrons is not affected. These properties of the
Slater determinant wave function can be displayed as:

ΨSD(. . . , x⃗i, . . . , x⃗j , . . . ) = −ΨSD(. . . , x⃗j , . . . , x⃗i, . . . ).

Furthermore, we introduce a short notation, which simplifies our work later on. First, we rewrite the
expression in Eq. 2.10 by showing only the diagonal elements of the determinant

ΨSD(x⃗1, x⃗2, . . . , x⃗N ) = |χ1(x⃗1)χ2(x⃗2) . . . χN (x⃗N )⟩ .

In this notation, we drop the superscript SD due to the fact that in the course of this work, we only deal
with Slater determinant like wave functions. The normalization factor is included implicitly. If we choose
an ordered sequence of the variables x⃗1, x⃗2, . . . , x⃗N we get a further simplification:

|Ψ⟩ = |χ1 χ2 . . . χN ⟩ = |1 2 . . . N⟩ . (2.11)

Here, we introduce the shorthand notation χi = i which is convenient to use for more tedious expressions.
The simplest wave function describing a set of 2K spin orbitals and N electrons (2K ≥ N) is the single
Slater determinant. Within the Slater determinant we distinguish between occupied and unoccupied spin
orbitals. The former are labeled with the indices (i, j, k, . . . ) while the latter, also called virtual spin orbitals,
are labeled with the indices (a, b, c, . . . ). We use the indices (p, q, r, . . . ) for the generic orbitals, where the
occupation is not specified. The most intuitive way to construct a single Slater determinant is where first
the occupied and then the virtual orbitals are labeled:

|ΨHF ⟩ = |1 2 . . . i j . . . N⟩ . (2.12)

Here, we introduce the Hartree-Fock (ground state) wave function |ΨHF ⟩ which will be needed in all
upcoming chapters. More details about Hartree-Fock are provided in chapter 3.
Further, we can take one Slater determinant, e.g. the Hartree-Fock determinant, as a reference and describe
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others by their deviation from it. We name these different determinants excited Slater determinants, with
the singly and doubly excited states being of most interest to us. A single excitation is given when an
electron in an occupied orbital χi transitions to a virtual orbital χa:

|Ψa
i ⟩ = |1 2 . . . a j . . . N⟩ .

Analogously, a doubly excited determinant corresponds to two electrons that are lifted from occupied to
virtual orbitals

|Ψab
ij ⟩ = |1 2 . . . a b . . . N⟩ .

2.4 One-Electron and Two-Electron Operators

In this section, we look at the individual contributions from an arbitrary Hamiltonian operator. The
electronic Hamiltonian defined in Eq. 2.4 and also our model Hamiltonian in Eq. 2.6 have in common that
both can be split up into terms acting on only one electron and terms acting on two electrons. For N
electrons, the one-electron terms are described by the one-electron operator Ô1:

Ô1 =
N"
i=1

ĥi ; ĥi = −1

2
∆i +

N"
i=1

Vi, (2.13)

where we don’t specify the form of the potential Vi. For the electronic Hamiltonian, V is the electron-nucleus
potential while for our model it represents the harmonic potential. On the other hand, the two-electron
operator Ô2 is given by:

Ô2 = vij , (2.14)

where, again, vij is an arbitrary two-electron potential. In the case of the electronic Hamiltonian, in atomic
units, it represents the Coulomb potential vij = 1

2

#N
i ̸=j r⃗

−1
ij where the factor 1/2 is included to avoid double

counting. In our model v has a similar form characterizing the same potential but only in one dimension
(s. Eq. 2.6).

Next, we want to investigate the matrix elements of these one- and two-electron operators in the basis of
the spin orbitals. The evaluation of these matrix elements corresponds to the solution of integrals involving
the spin orbitals in the respective Slater determinants. The one-electron integrals are defined as

⟨χi|ĥ|χj⟩ = ⟨i|ĥ|j⟩ = hij =

�
dx⃗1 χi(x⃗1)ĥ(r⃗1)χj(x⃗1),

where the property ⟨i|ĥ|j⟩ = ⟨j|ĥ|i⟩∗ holds. Further, the operator ĥ does not depend on spin coordinates,
while the spin orbital variable x⃗i contain both spin and spatial coordinates. Here we assume that every
orbital is occupied with two electrons which is referred to as the restricted spin orbital formalism, discussed
in the next chapter. Similarly, we define the two-electron integrals as
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⟨χiχj |v|χkχl⟩ = ⟨ij|v|kl⟩ = ⟨ij|kl⟩ =
�

dx⃗1

�
dx⃗2 χ

∗
i (x⃗1)χ

∗
j (x⃗2)vij(r⃗1, r⃗2)χk(x⃗1)χl(x⃗2). (2.15)

Also in this case the condition ⟨ij|kl⟩ = ⟨kl|ij⟩∗ is valid.
Additionally, we briefly mention further notations regarding the one- and two-electron integrals which are
commonly used by the community. The introduced Dirac bra-ket formalism in the integrals is also called
the physicist’s notation. However, there exists also the so-called chemist’s notation, which is equal in the
case of the one-electron integrals, but essentially different in the two-electron integrals. For the one-electron
case, it holds

⟨i|ĥ|j⟩ = [i|ĥ|j],

where the former is the physicist’s and the latter the chemist’s notation. For the two-electron case, we get

⟨ij|kl⟩ = [ik|jl] =
�

dx⃗1

�
dx⃗2 χ

∗
i (x⃗1)χ

∗
k(x⃗1)vij(r⃗1, r⃗2)χj(x⃗2)χl(x⃗2).

Chemists prefer to put the spin orbitals with the same coordinate together, while physicist’s like to first
write the complex conjugate spin orbitals. Moreover, we introduce the antisymmetric two-electron integral
as:

⟨ij||kl⟩ = ⟨ij|kl⟩ − ⟨ij|lk⟩ = [ik|jl]− [il|jk].

So far, we discussed integrals concerning the spin orbitals. However, in the Hartree-Fock method, we mostly
discuss the restricted closed-shell case (s. Sec. 3.3), where the spin part can be eliminated by integration
yielding one- and two-electron integrals just over the spatial orbitals. Our convention for these spatial
integrals is

(ij|kl) =
�

dr⃗1

�
dr⃗2 Φ

∗
i (r⃗1)Φ

∗
j (r⃗2)vij(r⃗1, r⃗2)Φk(r⃗1)Φl(r⃗2), (2.16)

where we designate the spatial integral with round brackets and refer to Φi as spatial orbitals.

2.5 Slater-Condon Rules

To evaluate the one- and two-electron integrals we exploit the Slater-Condon rules. These rules determine
whether certain matrix elements contribute to the whole Hamiltonian matrix or vanish. The derivation of
the Slater-Condon rules is beyond the scope of this work. Nevertheless, we present the main results and
refer to Refs. [25, 26] for further reading. The approach of the Slater-Condon rules is to look at the one-
and two-electron integrals between the Hartree-Fock determinant and excited determinants. Thereby, each
determinant is expressed in the spin orbital basis:
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|χi χj . . . χk⟩ = (N !)−1/2
N !"
n=1

(−1)pnP̂n{χi(1)χj(2) . . . χk(N)}, (2.17)

where P̂n is the permutation operator and pn the number of transpositions required to obtain that permu-
tation. The factor N ! in the sum accounts for all possible distinct permutations.
In the following, the Hartree-Fock ground state wave function |ΨHF ⟩ is taken as the reference determinant.
We begin with the case of the identity operator ✶, i.e. the scalar product between two determinants:

⟨ΨHF |ΨHF ⟩ = 1 ; ⟨ΨHF |Ψa...
i... ⟩ = 0. (2.18)

We see that every scalar product vanishes except the one between two equal determinants. This means
that every electron occupies the same spin orbital in the permutations of both determinants according to
Eq. 2.17. For a one-electron operator Ô1 (s. Eq. 2.13) it holds:

⟨ΨHF |Ô1|ΨHF ⟩ =
N"
i

⟨i|ĥ|i⟩ = 2

N/2"
i

(i|ĥ|i),

⟨ΨHF |Ô1|Ψa
i ⟩ = ⟨i|ĥ|a⟩ = (i|ĥ|a),

⟨ΨHF |Ô1|Ψab...
ij... ⟩ = 0.

(2.19)

The expectation value with the same determinant gives the sum over the spin orbitals, which can be
rewritten as twice the sum over the spatial orbitals assuming two electrons occupy one orbital. According
to Eq. 2.17 there are (N − 1)! ways that one electron (we label it 1) occupies each spin orbital. On the
other hand, there exists only one possibility regarding the integration with the Hartree-Fock and the single
excited determinant. This is due to the fact that the spin orbital in the first permutation is orthogonal to
any other spin orbital in the second permutation unless electron 1 occupies it and thus yields an association
with ˆh(1). The integration with respect to higher excited determinants vanishes since there is no possible
way electron 1 can occupy two spin orbitals and be associated with ĥ(1). The Slater-Condon rules for the
two-electron operator (s. Eq. 2.14) read:

⟨ΨHF |Ô2|ΨHF ⟩ = 1

2

N"
ij

⟨ij||ij⟩ =
N/2"
ij

2(ij|ji)− (ij|ji),

⟨ΨHF |Ô2|Ψa
i ⟩ =

N"
j

⟨ij||aj⟩ =
N/2"
i

2(ij|aj)− (ij|ja),

⟨ΨHF |Ô2|Ψab
ij ⟩ = ⟨ij||ab⟩ ,

⟨ΨHF |Ô2|Ψabc...
ijk...⟩ = 0.

(2.20)

Similar to the one-electron integrals, we find (N−2)! possibilities of permuting N−2 electrons amongst the
remaining spin orbitals. The factor 1/2 again accounts for double counting. For the case with the singly
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occupied determinant, electron 1 can be assigned to a spin orbital χi. Then electron 2 can be in any of the
remaining N − 1 spin orbitals. Concerning the doubly excited determinant, electron 1 can occupy the spin
orbital χi and electron 2 χj , or vice versa. All other permutations don’t give a contribution. Ultimately,
matrix elements of two-electron operators that differ by more than two spin orbitals are zero. The second
equality in the first and second line is a result of the spin integration, which we discuss in more detail in
the next chapter of the Hartree-Fock method.

2.6 Second Quantization

To this point, we described many-body wave functions with the formalism of Slater determinants. We
further constructed them to satisfy the antisymmetry and Pauli principle. Thereby, Slater determinants
provide a rather intuitive approach to the many-electron theory. In the following, we want to introduce a
more elegant way to describe wave functions, the second quantization. Here, the properties of determinants
are transferred onto the algebraic properties of operators.

2.6.1 Annihilation and Creation Operators

We start with the introduction of the annihilation and creation operators by their action on an arbitrary
Slater determinant. The creation operator is defined as:

â†i |χj χk . . . χN ⟩ = |χi χj χk . . . χN ⟩ ,

while the annihilation operator reads:

âi |χi χj . . . χN ⟩ = |χj . . . χN ⟩ .

On one hand a†i creates an electron in spin orbital χi. On the other hand, ai annihilates an electron from
spin orbital χi. We further introduce the occupation number operator

n̂i = â†i âi.

With this, it is possible to express the Slater determinants in the occupation number basis

|Ψ⟩ = |ni, nj , . . . , nN ⟩ ,

where the n’s are called the occupation numbers being one if the respective spin orbital is occupied, zero
otherwise. In this way, a variable number of electrons can be described. Another common representation
of a Slater determinant in terms of second quantization is the Fermi vacuum formalism

|Ψ⟩ = â†i â
†
j â

†
k . . . | ⟩ ,

where | ⟩ represents the orthonormalized (⟨ | ⟩ = 1) vacuum state. Any determinant can now be expressed
in terms of the action of creation operators on that vacuum state. The formalism of the second quantization
with the creation and annihilation operators also satisfies the fermionic wave function properties specified
for the Slater determinants. The action of the annihilation operator on the vacuum state yields a zero result
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âi | ⟩ = 0.

The vacuum state does not contain any electrons and therefore no electrons can be removed. Also, the
Pauli exclusion principle is implicitly satisfied such that

â†i |χk . . . χl⟩ = 0 if i ∈ {k, . . . , l},

i.e. an electron cannot be created in a spin orbital that is already occupied. The antisymmetry is given by
the fact that exchanging the order of two operators results in a sign change:

â†i âj = −âj â
†
i for i ̸= j.

The last two properties are equal to exchanging two columns or rows in a Slater determinant (s. Eq. 2.10),
respectively. Further, the fermionic anti-commutation relations for the creation and annihilation operator
read:

[â†i , â
†
j ]+ = [âi, âj ]+ = 0,

[â†i , âj ]+ = [âi, â
†
j ]+ = δij .

Finally, the creation and annihilation operators are connected via adjunction:

�
â†i
�†

= âi.

In summary, we are able to use the creation and annihilation operators to describe fermionic wave functions
in the same way as the Slater determinant formalism. We exploit this fact in the next section as well as in
the chapters 4.2 and 4.3.2. For more information about second quantization we recommend Ref. [27].

2.6.2 Wick’s Theorem

For the entire theory of many-electron systems, we also need to express the one- and two-particle operators
in terms of annihilation and creation operators. The expressions for Ô1 (s. Eq. 2.13) and Ô2 (s. Eq. 2.14)
read:

Ô1 =
"
pq

⟨p|ĥ|q⟩ â†pâq,

Ô2 =
1

2

"
pqrs

⟨pq|rs⟩ â†pâ†qâsâr.
(2.21)

In the former, one electron in spin orbital χq gets annihilated, and another is created in spin orbital χp.
For diagonal elements, i.e. for p = q, the occupation number operator n̂p is present. For Ô2 we see the
same pattern, but now with twice the number of operators in order to annihilate and create two electrons,
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respectively. Note that in this section we consider a set of 2K ≥ N spin orbitals with N being the number
of electrons. The sums with the generic indices are limited to the total number of spin orbitals. For brevity,
however, only the restriction of the sums involving occupied spin orbitals only is explicitly stated.
We want to introduce the normal order of second quantized operators. Normal order means that the
annihilation operators are on the right of all creation operators. The benefit of normal-ordering is the
better bookkeeping of non-zero matrix elements. Considering an arbitrary string of creation and annihilation
operators apa

†
qara

†
s, we can exploit the anti-commutation relations to get normal-ordering:

apa
†
qara

†
s = δpqara

†
s − a†qapara

†
s

= δpqδrs − δpqa
†
sar − δrsa

†
qap + a†qapa

†
sar

= δpqδrs − δpqa
†
sar − δrsa

†
qap + δpsa

†
qar − a†qa

†
sapar.

In addition, we introduce the contraction between annihilation and creation operators. In general, the
definition of two arbitrary contracted operators α̂ and γ̂ reads:

α̂γ̂ ≡ αγ − {αγ},

where the notation {αγ} represents the normal-ordered form of the pair. For the annihilation and creation
operator follows

âpâq = âpâq − {âpâq} = âpâq − âpâq = 0,

â†pâ
†
q = â†pâ

†
q − {â†pâ†q} = â†pâ

†
q − â†pâ

†
q = 0,

â†pâq = â†pâq − {â†pâq} = â†pâq − â†pâq = 0,

âpâ
†
q = âpâ

†
q − {âpâ†q} = âpâ

†
q + â†qâp = δpq.

(2.22)

Note that in the last line we get a negative sign when evaluating the normal order of {âpâ†q}.
Now, the so-called Wick theorem states that any string of annihilation and creation operators may be
written as a linear combination of normal-ordered strings. For the sake of compactness, we look at a string
of operators ABCDE . . . without the operator symbol “ � ” :

ABCDE · · · = {ABCDE . . . }+
"

singles

{ABCDE . . . }+
"

doubles

{ABCDE . . . }+ . . . . (2.23)

The lower limit of the sums indicates the number of pairwise contractions included in the respective sum-
mation. Due to the anti-commutation rules, where a sign change arises from switching two operators, the
contraction introduces also a sign change (−1)N with N being the number of permutations required to
bring the operators into adjacency. Given a large number of contractions, the sign of a fully contracted
term can then be determined by the number of crossings in the contraction lines. If this number is odd,
the sign of that term is negative, for an even number it’s positive.
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At this point, we are able to evaluate matrix elements using Wick’s theorem. However, it is inconvenient
and tedious to create every wave function from the true vacuum state | ⟩, especially when dealing with a
large number of electrons. A better approach is to define normal-ordering relative to a given reference state,
e.g. the Hartree-Fock ground state |ΨHF ⟩. Still, we need to redefine our nomenclature accordingly which
leads to the particle-hole formalism of the Wick theorem. Here, the one-electron states occupied in |ΨHF ⟩
are called hole states, and the unoccupied ones are called particle states. This can be understood in the
following way. A hole is created when an originally occupied state is affected by an annihilation operator.
Similarly, a particle is created when an originally unoccupied state is affected by a creation operator. Now
we find operators acting on hole states (i, j . . . ) and operators acting on particle states (a, b . . . ). This
redefinition leads to two non-zero contractions compared to the original definition in Eq. 2.22:

â†i âj = â†i âj − {â†i âj} = â†i âj + âj â
†
i = δij ,

âaâ
†
b = âaâ

†
b − {âaâ†b} = âaâ

†
b + â†bâa = δab,

â†aâb = âiâ
†
j = 0.

Now we may rewrite the one- and two-electron operators in terms of the redefined normal-ordering. In
contrast to Eq. 2.21, we look at a different but equivalent form of the electronic Hamiltonian. The motivation
behind this is that we later start from this expression to derive the coupled cluster method (s. Sec. 4.2).
We first deduce the new form of the electronic Hamiltonian and then look at the individual expressions for
the Ô1 and Ô2 operators:

Ĥ =
"
pq

⟨p|ĥ|q⟩ â†pâq +
1

2

"
pqrs

⟨pq|rs⟩ â†pâ†qâsâr

=
"
pq

⟨p|ĥ|q⟩ â†pâq +
1

4

"
pqrs

⟨pq|rs⟩ â†pâ†qâsâr
r↔s
+

1

4

"
pqrs

⟨pq|sr⟩ â†pâ†qârâs

=
"
pq

⟨p|ĥ|q⟩ â†pâq +
1

4

"
pqrs

⟨pq|rs⟩ â†pâ†qâsâr −
1

4

"
pqrs

⟨pq|sr⟩ â†pâ†qâsâr

=
"
pq

⟨p|ĥ|q⟩ â†pâq +
1

4

"
pqrs

⟨pq||rs⟩ â†pâ†qâsâr.

(2.24)

Here, the antisymmetrized two-electron integrals ⟨pq||rs⟩ introduced in Sec. 2.4 appear again. The advan-
tage of this representation will be clear in chapter 4 concerning post-Hartree-Fock theory. With this, the
one-electron operator reads:

Ô1 =
"
pq

⟨p|ĥ|q⟩ â†pâq =
"
pq

⟨p|ĥ|q⟩ {â†pâq}+
"
pq

⟨p|ĥ|q⟩ δpq =
"
pq

⟨p|ĥ|q⟩ {â†pâq}+
N"
i

⟨i|ĥ|i⟩ .

Although we look at a slightly different two-electron operator Ô2 compared to Eq. 2.21, the algebra is the
same:
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Ô2 =
1

4

"
pqrs

⟨pq||rs⟩ â†pâ†qâsâr =
1

4

"
pqrs

⟨pq||rs⟩ {â†pâ†qâsâr} −
1

4

"
qr

N"
i

⟨iq||ri⟩ {â†qâr}+
1

4

"
pr

N"
i

⟨pi||ri⟩ {â†pâr}

+
1

4

"
qs

N"
i

⟨iq||is⟩ {â†qâs} −
1

4

"
ps

N"
i

⟨pi||is⟩ {â†pâs} −
1

4

N"
ij

⟨ij||ji⟩+ 1

4

N"
ij

⟨ij||ij⟩

=
1

4

"
pqrs

⟨pq||rs⟩ {â†pâ†qâsâr}+
"
pr

N"
i

⟨pi||ri⟩ {â†pâr}+
1

2

N"
ij

⟨ij||ij⟩ .

In the last line we renamed several indices and used the fact that ⟨pq||rs⟩ = −⟨pq||sr⟩. In the end, the
electronic Hamiltonian in normal-ordered second quantization reads:

Ĥ =
1

4

"
pqrs

⟨pq||rs⟩ {â†pâ†qâsâr}+
"
pq

⟨p|ĥ|q⟩ {â†pâq}+
"
pr

N"
i

⟨pi||ri⟩ {â†pâr}+
N"
i

⟨i|ĥ|i⟩+ 1

2

N"
ij

⟨ij||ij⟩ .

(2.25)

In summary, second quantization is a very elegant and powerful formalism that is especially advantageous
in solid-state physics, since an arbitrarily large and varying number of particles can be described.
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3 Hartree-Fock Approximation

One of the first attempts to find an approximate solution to the Schrödinger equation was given by Douglas
Rayner Hartree and Wladimir Alexandrowitsch Fock [28]. Thereby, the interactions of particles with each
other are simplified in such a way that they no longer interact in pairs, but with a field generated on
average by all other particles. Therefore, the Hartree-Fock method belongs to the group of mean-field
methods. Not only does it provide reasonably accurate results, which is especially important to get a basic
understanding of underlying systems, but it is also essential nowadays because many modern electronic
structure calculations are based on its solution.

In the following sections we derive the Hartree-Fock equations from a general point of view using the
standard electronic Hamiltonian for molecular systems (s. Eq. 2.4). Moreover, we explain the resulting
Koopman and Brillouin theorem. After that, we discuss in detail the restricted closed-shell Hartree-Fock
formalism which will be used for the rest of this work. In the penultimate section, we outline the necessary
steps to solve the Hartree-Fock equations for the electronic Hamiltonian in a general manner. For the
implementation, we modify these general considerations according to our model and explain the required
steps to find a solution. We want to point out that our derivations in this chapter closely follow the book
of Szabo and Ostlund [24].

3.1 Hartree-Fock Equations

We begin with the time-independent electronic Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ . (3.1)

Since Hartree-Fock is a variational method, we seek to find the best approximation to the ground state
energy. In order to do that, we briefly summarize the variational principle. The energy of the system can
be expressed as a functional of an arbitrary wave function

E[Ψ] = ⟨Ψ|Ĥ|Ψ⟩ .

Variation means modifying the parameters on which Ψ depends by a small amount, resulting in Ψ → Ψ+δΨ.
Accordingly, we write the variation of the energy functional as follows:

δE = δ ⟨Ψ|Ĥ|Ψ⟩ = ⟨δΨ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ|δΨ⟩ .

Here, δ works just like a differential operator. To find the best possible approximation of Ψ we use the
method of Lagrange multipliers where we minimize the total energy such that the variation of the functional
disappears. Further, we set the additional constraint that the wave function is normalized, i.e. ⟨Ψ|Ψ⟩ = 1.
The Lagrangian is given by:

L = ⟨Ψ|Ĥ|Ψ⟩ − E (⟨Ψ|Ψ⟩ − 1) ,

where E has the function of the Lagrange multiplier. By introducing a basis |Ψ⟩ =
#

i ci |Ψ̃i⟩ with the
coefficients ci and by setting δL = 0 it can be shown that a generalized eigenvalue equation Hc = ESc
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with the overlap matrix Sij = ⟨Ψ̃i|Ψ̃j⟩ is obtained. The lowest eigenvalue provides the best approximation
and simultaneously an upper limit of the true lowest Hamiltonian eigenvalue ϵ0

E =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ ≥ ϵ0.

In the case of orthonormal basis functions |Ψ̃i⟩ the overlap matrix is just δij . Then we get a simple eigen-
value equation Hc = Ec.

Now, we want to apply these general considerations to the Hartree-Fock method. Here, the energy is a
functional of the occupied spin orbitals {χi} from the single determinant |ΨHF ⟩ = |χ1χ2 . . . χiχj . . . χN ⟩.
With this the Langrangian reads:

L[{χi}] = E0[{χi}]−
N"
i

N"
j

ϵji

�
⟨χi|χj⟩ − δij

�
,

where E0 is the determinantal energy and ϵij are the Lagrange multipliers. Further, we can exploit the fact
that the L ∈ R and the properties of the scalar product to verify that ϵji = ϵ∗ij .
The expectation value E0 of the single Slater determinant can be determined by the Slater-Condon rules
introduced in Sec. 2.5

E0[{χi}] =
N"
i=1

⟨i|ĥ|i⟩+ 1

2

N"
i=1

N"
j=1

�
⟨ij|ij⟩ − ⟨ij|ji⟩

�
. (3.2)

For the sake of compactness, we carry on with the shorthand notation of the spin orbitals χi ≡ i. The
minimization of E0 is now obtained by minimizing the Lagrangian L

δL = δE0 −
N"
ij

ϵji δ ⟨i|j⟩ = 0. (3.3)

Since the variation acts like a differential operator, we investigate each term in Eq. 3.3 separately. Let us
examine the constraint term first:

"
ij

ϵji δ ⟨i|j⟩ =
"
ij

ϵji ⟨δi|j⟩+
"
ij

ϵji ⟨i|δj⟩ =
"
ij

ϵji ⟨δi|j⟩+
"
ij

ϵij ⟨j|δi⟩

=
"
ij

ϵji ⟨δi|j⟩+
"
ij

ϵ∗ji ⟨δi|j⟩∗ =
"
ij

ϵji ⟨δi|j⟩+ c.c.

We use the fact that ϵji = ϵ∗ij and that i and j are just dummy variables that can be interchanged. In the
last line c.c. denotes the complex conjugate of the first term. Next, we look at the variation of the energy
stemming from the one-electron integrals:
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δ
"
i

⟨i|ĥ|i⟩ =
"
i

⟨δi|ĥ|i⟩+
"
i

⟨i|ĥ|δi⟩ =
"
i

⟨δi|ĥ|i⟩+
"
i

⟨δi|ĥ|i⟩∗ =
"
i

⟨δi|ĥ|i⟩+ c.c.

Finally, we apply the variational ansatz on the energy contribution from the two-electron integrals:

δ
1

2

"
ij

�
⟨ij|ij⟩ − ⟨ij|ji⟩

�
=

1

2

"
ij

�
⟨δij|ij⟩+ ⟨iδj|ij⟩+ ⟨ij|δij⟩+ ⟨ij|iδj⟩

�
− 1

2

"
ij

�
⟨δij|ji⟩+ ⟨iδj|ji⟩+ ⟨ij|δji⟩+ ⟨ij|jδi⟩

�
=

1

2

"
ij

�
⟨δij|ij⟩+ ⟨δij|ij⟩ − ⟨δij|ji⟩ − ⟨δij|ji⟩+ c.c.

�
=

"
ij

�
⟨δij|ij⟩ − ⟨δij|ji⟩+ c.c.

�
,

where we exploit the fact that ⟨δij|ij⟩∗ = ⟨ij|δij⟩ and ⟨iδj|ij⟩ = ⟨δji|ji⟩ i↔j
= ⟨δij|ij⟩.

Combing these three terms yields the first variation in L:

δL =
N"
i

⟨δi|ĥ|i⟩+
N"
ij

⟨δij|ij⟩ − ⟨δij|ji⟩ −
N"
ij

ϵji ⟨δi|j⟩+ c.c. = 0. (3.4)

Further, we can rewrite Eq. 3.4 in terms of integrals:

δL =
N"
i

�
dx⃗1 δχ

∗
i (1)

ĥ(1)χi(1) +
N"
j

�
dx⃗2

||χj(2)||2
r⃗12

χi(1)

−
N"
j

�
dx⃗2

χ∗
j (2)χi(2)

r⃗12
χj(1)−

N"
j

ϵjiχj(1)

+ c.c. = 0,

(3.5)

where the spin orbitals χi(1) and χi(2) refer to two arbitrary electrons of the system. Since electrons are
indistinguishable, we could use every labeling, but for convenience, we stick with electron 1 and electron
2. Also, as mentioned earlier, in the derivation of the Hartree-Fock method we stick to the general 3D
Coulomb potential 1/r⃗12 = 1/|r⃗1 − r⃗2| instead of the 1D two-electron potential of our model.
The first two-electron integral represents the averaged Coulomb potential at x⃗1 arising from an electron in
χj . By summing over all orbitals, we obtain the total averaged potential acting on the electron in χi. The
Coulomb operator acting on the spin orbital χi reads:

Ĵj(1)χi(1) =


�
dx2

||χj(2)||2
r⃗12

�
χi(1). (3.6)

17



Hartree-Fock Approximation

Furthermore, due to the antisymmetric nature of the single Slater determinant, we get a second two-
integral term, which has no classical interpretation. However, we can imagine this additional contribution
as a correction to the overestimation of the repulsion between electrons which are naively assumed to move
independently, but in reality are correlated with each other. Similarly, we define this so-called exchange
operator

K̂j(1)χi(1) =


�
dx2

χ∗
j (2)χi(2)

r⃗12

�
χj(1). (3.7)

In contrast to the Coulomb term, we find a non-local potential in the exchange term. If we want to express
the expectation values of these two operators with respect to the spin orbital χi, we get:

⟨χi(1)|Ĵj(1)|χi(1)⟩ = ⟨ij|ij⟩ = Jij ,

⟨χi(1)|K̂j(1)|χi(1)⟩ = ⟨ij|ji⟩ = Kij .

Now we come back to Eq. 3.5. Here, δχ∗
i (1) is arbitrary and therefore the quantity in the square brackets

is zero for all i. With the definition of the Coulomb and exchange operator we obtain:

ĥ(1) + N"
j

Ĵj(1)− K̂j(1)


� �� �

f̂(1)

χi(1) =
N"
j

ϵjiχj(1). (3.8)

Eploiting the definition of the Fock operator f̂(1) from Eq. 3.8 yields:

f̂(1)χi(1) =

N"
j

ϵjiχj(1). (3.9)

Finally, we need to consider that spin orbitals can be mixed amongst each other without changing the
expectation value EHF = ⟨ΨHF |Ĥ|ΨHF ⟩. For a single determinant, any expectation value is invariant
under unitary transformation of the spin orbitals. Thus, there exists no unique set of spin orbitals and
subsequently no significant physical meaning can be given to a certain set of them. Hence, more localized
spin orbitals are equally valid as delocalized ones. However, the invariance of a single determinant under
unitary transformation can be used to simplify Eq. 3.9 to an eigenvalue equation for a particular set of spin
orbitals. For this, we consider the following unitary transformation

χ̃ = Uχ,

where U † = U−1 holds. Since the trace of the Fock operator f̂ is independent of the choice of the basis set,
f̂ transforms like:
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˜̂
f = Uf̂U †.

Now Eq. 3.9 may be written as

˜̂
fχ̃ = U †ϵUχ̃,

where ϵ is a Hermitian matrix that reasons to choose U in such a way that it diagonalizes the matrix of the
Lagrange multipliers. By doing so, we get the canonical Hartree-Fock equations

f̂ |χi⟩ = ϵi |χi⟩ . (3.10)

Here, we drop the tildes and remark that the ϵi are the eigenvalues of the Fock operator f̂ . To find a
solution to the canonical Hartree-Fock equation we need to introduce a basis set and consequently solve a
set of matrix equations.

3.2 Koopman and Brillouin Theorem

Before we go into the details of the actual solution of the Hartree-Fock equations, we want to discuss some
aspects of the eigenvalue equation itself. As we have seen, for an N -electron system with the single Slater
determinant |χ1χ2 . . . χiχj . . . χN ⟩ we get the following equation:

f̂ |χi⟩ = ϵi |χi⟩ ,

for the N occupied spin orbitals {χi}. Once the set {χi} is known, the Fock operator f̂ is a well-defined
Hermitian operator with an infinite number of eigenfunctions

f̂ |χp⟩ = ϵp |χp⟩ . (3.11)

We want to point out again that the subscript i refers to occupied spin orbitals while p indicates generic
spin orbitals. The eigenvalues ϵp are the orbital energies, whereas the first N -lowest belong to the occupied
orbitals. The remaining number of spin orbitals are attributed to the unoccupied or virtual orbitals, labeled
with (a, b, . . . ). We use the shorthand notation and project the state ⟨q| onto Eq. 3.11 to get:

⟨q|f̂ |p⟩ = ϵp ⟨q|p⟩ ,�
⟨q|ĥ|p⟩+

N"
r

⟨qr||pr⟩
�
δpq = ϵpδpq.

Only for p = q we get a non-vanishing solution and thus the orbital energies to the corresponding orbitals.
Further, the occupied spin orbital |i⟩ with eigenvalue ϵi can be interpreted as the energy of an electron in
that orbital. On the other side, an unoccupied spin orbital |a⟩ with the orbital energy ϵa represents the
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energy needed to add one additional electron to that state.
This brings us to the Koopman theorem, where we only present the main outcomes. The significance of
the orbital energies can be pointed out by looking at two cases: Adding and removing an electron with
respect to an N -electron state declared as |NΨHF ⟩. These two processes can be viewed in terms of second
quantization introduced in Sec. 2.6

|N+1Ψa⟩ = a†a |NΨHF ⟩ ,
|N−1Ψi⟩ = ai |NΨHF ⟩ ,

where in the first line one electron is added to the virtual spin orbital |a⟩ and in the second line an electron
is removed from spin orbital |i⟩. Now, by comparing the energies of these determinants with a different
number of electrons, the ionization potential can be defined. The result is stated in Koopman’s theorem,
namely that the ionization potential for removing an electron from |i⟩ is just the negative orbital energy

IP = N−1Ei − NE0 = −ϵi.

Similarly, adding an electron to |a⟩ gives the electron affinity

EA = NE0 − N+1Ea = −ϵa.

Koopman’s theorem yields an approximation since the relaxation of the orbitals is not considered (frozen
orbital approximation). Further, the approach with the single determinant as well as neglecting the electron-
electron correlation effects obtained by post-Hartree-Fock methods leads to inaccuracies.

The second important theorem resulting from the Hartree-Fock eigenvalue equation is the so-called Brillouin
theorem. It states that singly excited determinants |Ψa

i ⟩ do not interact with the reference Hartree-Fock de-
terminant |ΨHF ⟩. Again, we don’t provide the full derivation, but with the Slater-Condon rules introduced
in Sec. 2.5, it follows that

⟨ΨHF |Ĥ|Ψa
i ⟩ = ⟨i|ĥ|a⟩+

N"
p

⟨ip||ap⟩ = fia = ϵaδia.

An intuitive explanation is given considering the matrix element which mixes singly excited determinants
with |ΨHF ⟩. This matrix element must be equal to an off-diagonal element of the Fock matrix. However,
solving the Hartree-Fock eigenvalue equations implies that the off-diagonal fpq are zero. Therefore solving
the Hartree-Fock equation is equivalent to ensuring that the reference determinant |ΨHF ⟩ does not mix
with any of the singly excited ones. For the total derivation, we recommend the book of Szabo and Ostlund
(s. Ref. [24]).

3.3 Restricted Closed-Shell Hartree-Fock Theory

In order to solve the Hartree-Fock equation, we need to specify what kind of orbitals we are dealing with.
Namely, it is differentiated between unrestricted and restricted as well as open- and closed-shell spin orbitals.
Thereby it is distinguished between the type of spatial functions for the two spin functions α (spin up)
and β (spin down) as well as the occupation of the spin orbitals. In this work, our main interest lies in
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(restricted) closed-shell spin orbitals where all electrons are paired such that all spatial orbitals are doubly
occupied. This further implies an even number of electrons. We write an arbitrarily restricted spin orbital
according to Eq. 2.8 as follows:

χp(x⃗) =

�
Φ(r⃗)α(ω̄)
Φ(r⃗)β(ω̄)

,

together with the restricted ground state function

|ΨHF ⟩ = |χ1χ2 . . . χN ⟩ = |Φ1Φ̄1 . . .ΦN/2Φ̄N/2⟩ ,

where for the last equality we used the fact that two spatial orbitals, belonging to the two different spin
functions, are equal. We can exploit this further in order to derive the Hartree-Fock equation as a spatial
eigenvalue equation. We project the spin up function on the following Hartree-Fock equation:

f̂(x⃗1)Φp(r⃗1)α(ω̄1) = ϵpΦp(r⃗1)α(ω̄1).

Multiplying by α∗(ω̄1) gives:


�
dω̄1 α

∗(ω̄1)f̂(x⃗1)α(ω̄1)

�
Φp(r⃗1) = ϵpΦp(r⃗1),

where we use
�
dω̄ α∗(ω̄)α(ω̄) = 1 to obtain the right hand side. Inserting the definition of the Fock

operator (s. Eq. 3.8) yields

f̂(r⃗1)Φp(r⃗1) = ĥ(r⃗1)Φp(r⃗1)

+

N/2"
i

�
dω̄1

�
dω̄2

�
dr⃗2 α

∗(ω̄1)Φ
∗
i (r⃗2)α

∗(ω̄2)r⃗
−1
12 Φi(r⃗2)α(ω̄2)α(ω̄1)Φp(r⃗1)

+

N/2"
i

�
dω̄1

�
dω̄2

�
dr⃗2 α

∗(ω̄1)Φ
∗
i (r⃗2)β

∗(ω̄2)r⃗
−1
12 Φi(r⃗2)β(ω̄2)α(ω̄1)Φp(r⃗1)

−
N/2"
i

�
dω̄1

�
dω̄2

�
dr⃗2 α

∗(ω̄1)Φ
∗
i (r⃗2)α

∗(ω̄2)r⃗
−1
12 Φi(r⃗1)α(ω̄1)α(ω̄2)Φp(r⃗2)

−
N/2"
i

�
dω̄1

�
dω̄2

�
dr⃗2 α

∗(ω̄1)Φ
∗
i (r⃗2)β

∗(ω̄2)r⃗
−1
12 Φi(r⃗1)β(ω̄1)α(ω̄2)Φp(r⃗2)

= ϵpΦp(r⃗1),

(3.12)

where the closed-shell Fock operator reads f̂(r⃗1) =
�
dω̄1 α

∗(ω̄1)f̂(x⃗1)α(ω̄1). In addition, the four sums in
Eq. 3.12 arise due to the splitting of the sum over all N electrons in the Coulomb and exchange term to sums
over the occupied spin orbitals with the α and β spin functions, respectively. In passing we mention that the
same results are obtained by projection of β on the Hartree-Fock equation. Carrying out the integrations
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over the spin variables results in a vanishing last term because of the spin orthogonality relations (s. Eq.
2.7). The closed-shell Fock operator reads

f̂(r⃗1) = ĥ(r⃗1) +

N/2"
i

�
dr⃗2Φ

∗
i (r⃗2)(2− P̂12)r⃗

−1
12 Φi(r⃗2),

or more compactly

f̂(1) = ĥ(1) +

N/2"
i

2Ĵi(1)− K̂i(1). (3.13)

Here, the Coulomb and exchange operators are defined like in Eqs. 3.6 and 3.7 but with spatial orbitals.
Comparing the general Fock operator (s. Eq. 3.8) with the derived closed-shell Fock operator (s. Eq. 3.13),
we see two similar expressions but the latter has a factor 2 in front of the Coulomb operator and a sum
running over N/2 electrons. For a closed-shell determinant we are now able to write the ground state energy

EHF = ⟨Ψ0|Ĥ|Ψ0⟩ = 2

N/2"
i

(i|ĥ|i) +
N/2"
ij

2(ij|ij)− (ij|ji)

= 2

N/2"
i

hii +

N/2"
ij

2Jij −Kij ,

(3.14)

where the factor 2 in front of the first term stems from the fact that the core Hamiltonian is the same for
both spin functions in the same orbital. Furthermore, the orbital energies in the close-shell formalism are
given by

ϵp = fpp = (p|ĥ|p) +
N/2"
j

2(jp|jp)− (jp|pj)

= hpp +

N/2"
j

2Jjp −Kjp.

(3.15)

The sum of the orbital energies ϵp, however, does not give the ground state energy EHF . This is due to
the fact that the electron-electron interaction energy is counted twice. Taking that into account, EHF can
also be written in terms of the occupied orbital energies

EHF = 2ϵi −
N/2"
ij

2Jij −Kij . (3.16)
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This can be easily verified by comparing Eq. 3.14 and Eq. 3.15. We want to stress that in contrast to the
orbital energies, the ground state energy is calculated only over the occupied orbitals.

At this point, we want to make a connection to our model system. Up to now, the derivation of the Hartree-
Fock equation and the corresponding energies is done with the general electronic Hamiltonian usually used
for the calculation of molecules. The equations do not change for our model, i.e. we just need to plug in
our core Hamiltonian and two-electron potential (s. Eq. 2.6). However, the derived Hartree-Fock equation
represents an integro-differential equation. The numerical solution of such a problem is difficult. Therefore,
it is common to introduce a basis set with already-known functions in order to convert the problem to a
set of algebraic equations which can be solved by standard matrix techniques. The general approach is to
expand the spatial orbitals in a linear expansion

Φp(r⃗) =
K"
µ

Cµp ϕµ(r⃗) p = 1, 2, . . . ,K,

where {ϕµ(r⃗)} is a set of already known basis functions and Cµp are the corresponding coefficients. Note,
that the Greek subscripts denote the representation in the respective basis. With this, the Hartree-Fock
problem reduces to finding the optimal coefficients Cµp. One of the standard basis sets for ϕµ is the Gaus-
sian basis set. Returning to the comparison with our problem, we want to emphasize that we don’t need to
choose a basis set that provides the most efficient and accurate functions possible as is the case for realistic
systems. As we show later, our approach is less educated but nevertheless valid allowing to obtain accurate
results.
Still, we want to summarize the main outcome when solving the Hartree-Fock equations for realistic sys-
tems. The integration of the integro-differential Hartree-Fock equation over the basis functions leads to the
Roothan equation

FC = SCϵ,

which is a matrix equation with the Fock matrix Fµν =
�
dr⃗1ϕ

∗
µ(1)f̂(1)ϕν(1), the C matrix containing

the basis coefficients and the overlap matrix Sµν =
�
dr⃗1ϕ

∗
µ(1)ϕν(1). Here, the columns of C represent

the molecular orbitals and ϵ the corresponding energies. In practice, the Roothan equation is transformed
into an eigenvalue equation. This is done by diagonalizing the overlap matrix S with a unitary matrix U
according to X = Us−1/2, where s is a diagonal matrix containing the square roots of the eigenvalues of S.
The final result is:

F̃ C̃ = C̃ϵ.

This representation consequently also allows us to write the ground state energy in terms of the Fock matrix.
Without proof (s. Ref. [24]), this gives

EHF =
1

2

"
µν

Pµν(H
core
µν + Fµν),

where Hcore
µν =

�
dr⃗1ϕ

∗
µ(1)ĥ(1)ϕν(1) is the core Hamiltonian matrix and Pµν = 2

#N/2
i CµiC

∗
νi is known as

the density matrix.
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3.4 Self-Consistent Field Procedure

Now we are able to describe the actual steps for the implementation of the solver for the restricted closed-
shell Hartree-Fock equation. Since the Hartree-Fock equation is a non-linear equation, the solution needs to
be found iteratively. Therefore, the Hartree-Fock method is often also called the self-consistent field (SCF)
method.
The main steps of the SCF procedure are:

1. Specify system-specific parameters (number of electrons, nuclear coordinates, atomic numbers, basis
set).

2. Calculate all necessary integrals to get: Hcore, S, J and K.

3. Diagonalize the overlap matrix according to s = U †SU and calculate the transformation matrix
X = Us−1/2.

4. Take an initial guess of the coefficients C and thus the density matrix P .

5. Set up the Fock matrix F and transform it F̃ = X†FX.

6. Diagonalize F̃ to get C̃ and the orbital energies ϵ.

7. Do the back transformation C = XC̃ and calculate the new density matrix P .

8. Check for convergence of, for example, the density matrix. If convergence is not obtained, return to
step 5.

9. Calculate desired quantities, such as EHF .

After specifying the initial parameters, the one- and two-electron integrals arising in Ĥcore and Ŝ as well
as Ĵ and K̂ need to be calculated. If we assume e.g. a Gaussian basis set, as mentioned earlier, we
need to consider that the Gaussian functions are normalized, but not orthogonal. Therefore, the overlap
matrix must be transformed using a symmetric orthogonalization method or a canonical orthogonalization.
Before going into the SCF iteration, an initial guess for the coefficient matrix C is needed. More trivial
choices are just random numbers or even the zero matrix. However, there also exist more advanced choices
for the initial coefficients [29]. After this, in the SCF loop the Fock matrix is set up and transformed
according to the introduced orthogonal transformation. The diagonalization procedure of the Fock matrix
yields the transformed expansion coefficients and orbital energies. Then, the expansion coefficients are back-
transformed in order to update the density matrix, which is used to calculate the updated Fock matrix. The
SCF algorithm terminates when convergence is reached, and there are various options available for selecting
a convergence criterion. The change in energy of the lowest orbital, e.g. , turns out to be computationally
very efficient. However, more evolved criteria consider the change of the orbital wave functions or the
density matrix.

3.5 Implementation

The above listing provides the fundamentals for realistic molecule calculations. In our Hartree-Fock proce-
dure, we have a fixed number of electrons, namely two. At first, we set up the core Hamiltonian (s. Eq. 2.6).
Numerical calculations require the introduction of a finite grid, which we choose to have a linear spacing
between the grid points

xi = −xmin + i∆x, i = 0, 1, 2, . . . , N.
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Since we are working in the position space, the potential term is just a diagonal matrix. On the other
hand, the kinetic term is not, so we use the central finite difference method where the second derivative is
approximated by:

d2

dx2
Φ(x)

$$$$
x=i

=
Φ(xi+1)− 2Φ(xi) + Φ(xi−1)

∆x2
+O(∆x)2,

which can be represented as a tridiagonal matrix. Thus, the core Hamiltonian matrix is calculated by a
simple matrix addition. The eigenfunctions of Ĥcore, defined via the time-independent Schrödinger equation
⟨xi|Ĥcore|xj⟩ ⟨xj |Φp⟩ = Ep ⟨xi|Φp⟩, are obtained by diagonalization of the core Hamiltonian matrix with
already existing numerical packages. Special attention needs to be paid to the dimensionality of |Φp⟩.
Although the eigenvalue solver gives orthonormal eigenfunctions, the physical dimension is not considered.
Therefore, the eigenfunctions need to be additionally normalized:

⟨xj |Φ⟩norm =
⟨xj |Φ⟩√

∆x
,

In this way, the eigenfunctions represent also physically valid wave functions, i.e. expectation values such as
⟨Φp|Ĥ|Φp⟩ = E are of dimension energy. However, in the rest of the thesis we assume that this additional
normalization is implicitly in |Φp⟩.
Now, the steps which do not need to be repeated in the SCF algorithm (s. grey boxes in Fig. 1) are
completed. The obtained wave functions are used to construct the reduced density matrix. The density
operator reads:

ρ̂ =
"
pq

|Φp⟩ ⟨Φq| ,

with the generic spatial orbitals |Φp⟩. Introducing the reduced density matrix by taking the partial trace
of ρ̂ allows to look at the subsystem containing a sum only over the occupied spatial orbitals. Since in
the restricted closed-shell formalism each spatial orbital contains two electrons with opposite spin, the sum
goes to N/2. The reduced density in matrix form is

ρredij =

N/2"
ij

|Φi⟩ ⟨Φj | .

The eigenfunctions |Φi⟩ are already orthonormal and we don’t need to introduce a basis set. Consequently,
in contrast to the general procedure (s. Sec. 3.4), no overlap matrix needs to be set up and no unitary
transformation is needed either. In our case, we can immediately calculate the Coulomb and exchange
matrices in order to construct the Fock matrix. We calculate the Coulomb and exchange matrices according
to Eqs. 3.6 and 3.7 using the reduced density matrix:
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Jii =
"
j

∆x
ρredii

|xi − xj |+ σ
,

Kij =
"
j

∆x
ρredij

|xi − xj |+ σ
.

While the Coulomb operator is a diagonal matrix, the non-local exchange operator has also off-diagonal
elements. This is expressed via ρredij =

#N/2
ij |Φi⟩ ⟨Φj |. The Fock matrix results in Fij = Hcore

ij +2Jii−Kij .
For the case i = j, the Coulomb and exchange operator are the same, and therefore they cancel each other.
This case is especially interesting for our model since we only have two electrons. As discussed in section
3.1, the exchange operator only acts on electrons with the same spin. If both electrons are in the lowest
energy state |ΦHF ⟩, this could also be viewed as an interaction of the electron with itself. Nevertheless,
numerically we get the same contribution. Similar to the general case, we diagonalize the Fock matrix to
obtain the orbital energies as well as the orbital wave functions. In the last step of one SCF iteration (s.
yellow boxes in Fig. 1) we calculate the Hartree-Fock ground state energy and afterward for convergence
is checked (s. blue box in Fig. 1). As mentioned in the previous section, there are several ways to do so.
While the comparison of the orbital energies ϵp between two iterations is the computationally most efficient
way, we choose to look at the Hartree-Fock ground state energy EHF . Hence, we additionally calculate
EHF for each iteration according to Eq. 3.16 which is computationally more expensive, but due to the size
of our system irrelevant. Convergence is obtained if the condition

|(N)EHF − (N−1)EHF | < ϵ, (3.17)

between iteration N and N − 1 is fulfilled. Often not only the change in energy ∆EHF but also the
change of the reduced density matrix ∆ρred is considered. Since comparing two matrixes is more complex
than comparing two scalars like the energy, the threshold should be adapted accordingly. We choose the
maximum norm to compare the two matrices

||(N)ρredij − (N−1)ρredij ||max < ϵ. (3.18)

In our implementation we choose an accuracy of ϵ = 10−6 for both criteria, which is especially for the
comparison of the density matrices a rather strict condition. Finally, after the SCF algorithm is converged,
different expectation values can be calculated (s. green box in Fig. 1).

To summarize, we derive the canonical Hartree-Fock equations by applying the variational theorem on the
respective Lagrangian functional. The exact wave function is approximated by a single Slater determinant
which in turn we use to minimize the ground state energy. By introducing a basis, we are able to convert
the Hartree-Fock equation into a set of algebraic equations, solvable in terms of matrix techniques. Finally,
we specify the types of orbitals introducing the restricted closed-shell formalism.
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Specify number of electrons

Set up Hcore = 1
2∆x +

ω2x2

2

Diagonalize Hcore to get |Φp⟩

Build density matrix ρred =
#N/2

ij |Φi⟩ ⟨Φj |

Calculate the Coulomb operator matrix J

Calculate the exchange operator matrix K

Set up the Fock matrix F = Hcore + 2J −K

Diagonalize F and obtain ϵp and |Φp⟩

Calculate EHF

Check for convergence

Calculate desired quantities

YES

NO

Figure 1: Flowchart of the SCF algorithm.
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4 Post-Hartree-Fock Methods

We introduced the Hartree-Fock method based on the idea of approximating the electronic wave function by
a single Slater determinant. Thereby the electron correlation is treated in a mean-field manner which yields
inaccurate energies. Nevertheless, Hartree-Fock wave functions partly provide qualitative correct informa-
tion about trends of important quantities such as the energy with respect to certain system parameters.
Nowadays, post-Hartree-Fock methods are a standard and more accurate tool in computational chemistry to
describe a given system. The terminology post-Hartree-Fock covers a number of different methods sharing
the fact for being based on the results of the SCF algorithm. Møller Plesset, coupled cluster and equation
of motion coupled cluster theory are among the best-known representatives. All methods have in common
that, in contrast to Hartree-Fock, they no longer treat the electron-electron effects as an averaged field
but introduce actual electron correlations, which represents a more accurate way to describe the repulsion
between electrons. Thus, post-Hartree-Fock methods typically give more accurate results. However, the
gained accuracy comes with a significantly increased computational cost.

This chapter is divided into three parts. In the first part, we introduce Møller-Plesset perturbation theory,
which is justified by the fact that it is to some extent contained in the theory of coupled clusters. At
the same time, the Coulomb integrals, which are constructed using the orbital wave functions from the
Hartree-Fock method, are incorporated. In the second part, coupled cluster theory is discussed, where we
pay special attention to the formalism of singles and doubles. Hereby, we use the formalism of the second
quantization, introduced in chapter 2, to derive the set of coupled cluster equations for the implementation.
In the last part, we extend the coupled cluster formalism in order to be able to describe also excited states.
We briefly review this so-called equation of motion coupled cluster theory to go into detail about the singles
and doubles formalism. Also here, the equations which can be readily implemented into code are provided.

4.1 Møller-Plesset Perturbation Theory

The first natural step beyond Hartree-Fock is to employ perturbation theory in order to account for electron
correlations. In general, many-body perturbation theory is known as Rayleigh-Schrödinger perturbation
theory. The idea is to split the exact Hamiltonian Ĥ in an unperturbed Ĥ0 and perturbation V̂ part.
The concept of perturbation theory can be applied if the latter contribution V̂ is small compared to Ĥ0.
In the case of Ĥ0 being the Hartree-Fock Hamiltonian, the perturbation theory is called Møller-Plesset
perturbation theory (MPPT).

4.1.1 Theoretical Basics

We start with the general formulation of the Rayleigh-Schrödinger perturbation theory by constructing the
exact Hamiltonian operator as follows:

Ĥ = Ĥ0 + V̂ .

The goal is to solve the time-independent Schrödinger equation for this Hamiltonian

Ĥ |Φi⟩ = ϵi |Φi⟩ , (4.1)

which, however, becomes an unsolvable task for systems with more than two electrons. Therefore, one
exploits the fact that the eigenfunctions and eigenvalues of the unperturbed Hamiltonian Ĥ0 are known:
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Ĥ0 |ϕ(0)
i ⟩ = E

(0)
i |ϕ(0)

i ⟩ ,

where the superscript (n) refers to the n-th order of perturbation, i.e. (0) denotes 0-th order perturbation
or the unperturbed quantity, respectively. Assuming V̂ is small, we expect |ϕ(0)

i ⟩ to be close to |Φi⟩ as well
as E

(0)
i to ϵi. This small deviation is parameterized as follows:

Ĥ = Ĥ0 + λV̂ ,

where 0 ≤ λ ≤ 1 is the order parameter which will later be set equal to one. Now we can expand the exact
eigenfunctions and eigenvalues in a Taylor expansion:

ϵi = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . ,

|Φi⟩ = |ϕ(0)
i ⟩+ λ |ϕ(1)

i ⟩+ λ2 |ϕ(2)
i ⟩+ . . . .

(4.2)

We take the wave functions of Ĥ0 to be normalized, i.e. ⟨ϕ(0)
i |ϕ(0)

i ⟩ = 1 and choose the so-called intermediate
normalization for the exact wave functions ⟨ϕ(0)

i |Φi⟩ = 1 assuming that they are not orthogonal. By
comparing coefficients, we obtain:

⟨ϕ(0)
i |ϕ(n)

i ⟩ = 0 n = 1, 2, 3, . . . .

We insert the Taylor expanded expressions for the energy and the wave function (s. Eq. 4.2) into the exact
Schrödinger equation from Eq. 4.1 and are able to equate coefficients of λn to find a recursive system of
equations. For λ0 we get as expected just the unperturbed eigenvalue equation. The remaining expression
for the energy in the n-th order results in:

E
(n)
i = ⟨ϕ(0)

i |V̂ |ϕ(n)
i ⟩ n ≥ 1.

Finally, we want to determine the equations for the wave functions |ϕ(n)
i ⟩ in order to get an explicit energy

expression depending on known quantities only. By doing so, we see that we have to deal with integro-
differential equations. One ansatz is to expand the wave functions |ϕ(n)

i ⟩ with the complete set of the
eigenfunctions of Ĥ0 [24]

|ϕ(n)
i ⟩ =

"
j

c
(n)
ij ϕ

(0)
j ,

where the coefficients are defined as c
(n)
ij = ⟨ϕ(0)

j |ϕ(n)
i ⟩. The first few contributions to the energy are given

by
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E
(1)
i = ⟨ϕ(0)

i |V̂ |ϕ(0)
i ⟩ ,

E
(2)
i =

"
j ̸=i

⟨ϕ(0)
i |V̂ |ϕ(0)

j ⟩ ⟨ϕ(0)
j |V̂ |ϕ(0)

i ⟩
E

(0)
i − E

(0)
j

=
"
j ̸=i

$$$⟨ϕ(0)
i |V̂ |ϕ(0)

j ⟩
$$$2

E
(0)
i − E

(0)
j

,

E
(3)
i =

"
j,k ̸=i

⟨ϕ(0)
i |V̂ |ϕ(0)

j ⟩ ⟨ϕ(0)
j |V̂ |ϕ(0)

k ⟩ ⟨ϕ(0)
k |V̂ |ϕ(0)

i ⟩
(E

(0)
i − E

(0)
j )(E

(0)
i − E

(0)
k )

− E
(1)
i

"
j ̸=i

$$$⟨ϕ(0)
i |V̂ |ϕ(0)

j ⟩
$$$2

(E
(0)
i − E

(0)
j )2

.

(4.3)

Now we want to apply the general Rayleigh-Schrödinger perturbation theory to the Hartree-Fock model
yielding the MPPT. Starting point is the Hartree-Fock Hamiltonian from Eq. 3.13:

Ĥ0 =
"
i

f̂(i) =
"
i

ĥ(i) + vHF (i).

It is evident that the Hartree-Fock Hamiltonian, being an approximation to the exact electronic Hamiltonian
(s. Eq. 2.4), represents the unperturbed term Ĥ0 with the known solutions obtained from the SCF method.
At the same time, the perturbation V̂ reads

V̂ = Ĥ − Ĥ0 =
"
i<j

1

r⃗ij
−
"
i

vHF (i),

where
#

i<j r⃗
−1
ij contains the full two-electron interaction and vHF (i) =

#
j Ĵj − K̂j is the familiar Hartree-

Fock potential for the i-th electron. Here, we only study corrections to the ground state energy. The
zeroth-order energy correction is, again, just the expectation value of the unperturbed, i.e. the Hartree-
Fock Hamiltonian with the Hartree-Fock determinant |ΨHF ⟩

E
(0)
0 = ⟨ΨHF |Ĥ0|ΨHF ⟩ =

"
i

ϵi =
"
i

⟨i|ĥ|i⟩+
"
ij

⟨ij||ij⟩ .

Consequently, the first-order correction is:

E
(1)
0 = ⟨ΨHF |V̂ |ΨHF ⟩ =

"
i<j

⟨ΨHF | 1
r⃗ij

|ΨHF ⟩ −
"
i

⟨ΨHF |vHF (i)|ΨHF ⟩ .

To get a feasible expression for E
(1)
0 , we again resort to the Slater-Condon rules (s. Eq. 2.20)

E
(1)
0 =

1

2

"
ij

⟨ij||ij⟩ −
"
ij

⟨ij||ij⟩ = −1

2

"
ij

⟨ij||ij⟩ .

At this point, we shall look at the energy obtained with first-order perturbation theory. Here, the expansion
is stopped after the second term of the perturbation series which results in
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E0 ≈ E
(0)
0 + E

(1)
0 =

"
i

⟨i|ĥ|i⟩+ 1

2

"
ij

⟨ij||ij⟩ = EHF
0 .

As a result, the first two energy contributions in the MPPT give exactly the Hartree-Fock energy defined
in Eq. 3.2. This means at the same time, that in order to improve the accuracy of our electronic structure
calculations beyond Hartree-Fock, we need to include higher-order corrections of the MPPT. These higher-
order terms are calculated using an expansion in excited states of the zeroth-order Hamiltonian. Due to
this, and because |ϕ(0)

i ⟩ = |ΨHF ⟩, most of the expectations values arising in the energy corrections of MPPT
are zero. On one hand expectation values with triple and higher excited determinants can be neglected
due to the two-electron nature of the many-body Hamiltonian, and on the other hand, expectation values
involving the Hartree-Fock ground state determinant and single excited vanish due to the Brillouin theorem
(s. Sec. 3.2). Therefore, the remaining quantities to calculate are the doubly excited determinants |Ψab

ij ⟩.
We further exploit the fact that double excitations |Ψab

ij ⟩ are eigenstates of the Hartree-Fock Hamiltonian

ĤHF |Ψab
ij ⟩ = (E

(0)
0 − ϵi − ϵj + ϵa + ϵb) |Ψab

ij ⟩ .

According to Eqs. 4.3 the second-order perturbation energy results in:

E
(2)
0 =

N"
i<j

"
a<b

|⟨ij||ab⟩|2
ϵi + ϵj − ϵa − ϵb

, (4.4)

where both sums are restricted in order to avoid double counting. As introduced in chapter 2, the indices
(i, j, . . . ) denote the occupied spin orbitals that’s why in the first sum it is summed over N electrons. The
second sum with the virtual spin orbitals (a, b, . . . ) is unrestricted.

The energy correction to the Hartree-Fock ground state energy is the so-called correlation energy. In the
formalism of MPPT we introduced the second order correction E

(2)
0 , also referred to as MP2 correlation

energy. However, it has become common practice that the MP2 energy denotes the total energy, i.e.
EMP2 = EHF + E

(2)
0 = EHF + EMP2

cor , introducing EMP2
cor as the correlation energy itself.

4.1.2 Implementation

Before going into the details of the coding, we shall investigate one crucial ingredient of the post-Hartree-
Fock methods and even more of this thesis. Until now, we have not dealt with the calculation and im-
plementation of two-electron integrals. They were formally introduced in chapter 2 and then also in the
Hartree-Fock method in chapter 3 at the definition of the Coulomb and exchange operator. In the im-
plementation of the SCF code, we escaped from the direct evaluation of these integrals by solving matrix
equations. Anyway, now we have to analyze the implementation of the two-electron integrals since we need
them as an important building block for the present and following sections.

Two-Electron Integrals

We begin with the general definition of the two-electron integrals according to Eq. 2.16
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(pq|rs) =
�

dx1

�
dx2 Φ

∗
p(x1)Φ

∗
q(x2)

1

|x1 − x2|+ σ
Φr(x1)Φs(x2), (4.5)

where from now on, we work with the two-electron potential from our model (s. Eq. 2.6) as well as with the
generic indices (p, q, . . . ). Further, we want to mention that in the context of electronic structure theory,
this type of two-electron integrals are also referred to as Coulomb integrals.
Note, that from now on the integration is over the one-dimensional x-axis, not be confused with the four-
dimensional spin orbital coordinate x⃗ = {r⃗, ω̄}. In addition, we immediately work with spatial orbitals.
The reason for this is that we are concerned with the restricted closed-shell Hartree-Fock method, where the
spatial wave functions for up- and down-spin electrons in the same shell are equal. Therefore, the main task
is to evaluate these spatial two-electron integrals and then account for both electrons. For the integration
itself, we make use of the trapezoidal integration rule in one dimension which states

� xf

x0

f(x) dx ≈
N"
k=1

f(xk−1) + f(xk)

2
∆xk,

where f(x) is an arbitrary function defined on [x0, xf ] and ∆xk represents the spacing between the points
f(xk−1) and f(xk). In our case we choose an equidistant grid (∆xk = ∆x) and the above expression
simplifies to:

� b

a
f(x) dx ≈ ∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xN−1) + f(xN )] .

It is straightforward to apply this rule in two dimensions

� xf

x0

� yf

y0

f(x, y) dx dy ≈ ∆x∆y

4



f(x0, y0) + f(x0, yf ) + f(xf , y0) + f(xf , yf )

+ 2 ·
Nx"
i=2

f(x0, yi) + f(xf , yi) + 2 ·
Nx"
j=2

f(xj , y0) + f(xj , yf )

+ 4 ·
Nx"
i=2

Ny"
j=2

f(xj , xi)

�
.

We can further simplify this expression by assuming an equal number of grid points and equal spacing

� xf

x0

� yf

y0

f(x, y) dx dy ≈ ∆2

4



f(x0, y0) + f(x0, yf ) + f(xf , y0) + f(xf , yf )

+ 2 ·
N"
i=2

f(x0, yi) + f(xf , yi) + 2 ·
N"
j=2

f(xj , y0) + f(xj , yf )

+ 4 ·
N"

i,j=2

f(xj , xi)

�
,

(4.6)
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with ∆x = ∆y = ∆ and Nx = Ny = N .
At this point we are able to evaluate the two-electron integral for a given set of parameters {p, q, r, s} by
identifying

f(x1, x2) �= Φ∗
p(x1)Φ

∗
q(x2)

1

|x1 − x2|+ σ
Φr(x1)Φs(x2).

In the following, we define the four-dimensional Coulomb tensor V pq
rs , which contains the two-electron

integrals for all possible combinations of four arbitrary generic indices:

V pq
rs ≡ ⟨pq|rs⟩ ∀ p, q, r, s ∈ NSO, (4.7)

where NSO is the number of spin orbitals.
In fact, we need all possible integrals from Eq. 4.5 to be able to evaluate expressions like E(2)

0 in MPPT (s. Eq.
4.4) with a sum over several indices efficiently. To also consider the spin dependency, we calculate the spatial
two-electron integral twice, according to the two possible spin states. We further must consider that only p
and r as well as q and s orbitals with the same spin contribute. The calculation of V pq

rs is computationally
expensive which is why only a small number of spin orbitals is investigated. The introduction of the four-
dimensional tensor V pq

rs makes it easier for us to deal with the coupled cluster algorithm, which requires
such types of objects as input. To be precise, the post-Hartree-Fock methods require the antisymmetrized
four-dimensional tensor:

V −pq
rs = ⟨pq|rs⟩ − ⟨pq|sr⟩ = ⟨pq||rs⟩ ∀ p, q, r, s ∈ NSO, (4.8)

where the minus in the superscript indicates the antisymmetrization. While the antisymmetrized integrals
⟨pq||rs⟩ are used for the derivation of the coupled cluster equations (s. Sec. 4.2.2), the analysis of the two-
electron, respectively Coulomb integrals ⟨pq|rs⟩ itself is presented in chapter 5.

MP2 Energy

Now we are at a point where we may use the antisymmetrized four-dimensional tensor to evaluate the
second-order energy expression of the MPPT. In our code, we use a slightly different formula for the MP2
energy compared to the derived Eq. 4.4:

E
(2)
0 =

1

4

N"
i,j=1

NSO"
a,b=N+1

⟨ij||ab⟩ ⟨ab||ij⟩
ϵi + ϵj − ϵa − ϵb

, (4.9)

where for the implementation the second sum runs from N +1 to the remaining number of unoccupied spin
orbitals. Eq. 4.9 follows directly from the fact that we do not constrain the sums (see Eq. 4.4). Accordingly,
we need to compensate for this with a factor of 1/4. Further, we are able to express the MP2 energy in
terms of V −pq

rs :
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E
(2)
0 =

1

4
V −ij

ab V
−ab
ij (E ij

ab)
−1, (4.10)

where we define (E ij
ab)

−1 as the orbital energy denominator from Eq. 4.9. In addition, this notation allows
us to readily evaluate the MP2 expression by means of tensor contraction. We elaborate more on tensor
contraction in chapter 5.

In the end, the MP2 code consists of four loops representing the sum over a set of indices {p, q, r, s}, where
for all values the antisymmetrized tensor V −pq

rs as well as the orbital energies ϵi, are evaluated according to
Eq. 4.9. We want to mention that in our case, the orbital energies are given by the diagonal elements of
the Fock matrix, i.e. ϵi = fii. A more elegant way to evaluate Eq. 4.9 is the mentioned tensor contraction,
where the NumPy package einsum may be used.

4.2 Coupled Cluster Theory

Similar to MPPT, also coupled cluster (CC) theory is introduced as an extension to the Hartree-Fock
method in a perturbative regime. The concept of coupled cluster theory relies on an exponential ansatz
with the cluster operator T̂ for the many-electron wave function. However, since in the exponential ansatz
the numerical cost increases dramatically with each order, the cluster operator must be truncated. For us,
the contributions up to the second order in T̂ , the so-called coupled cluster singles and doubles (CCSD),
are of particular interest.
In the upcoming sections, we first introduce the coupled cluster method conceptually. Building on this, we
derive the coupled cluster equations for the special case of CCSD. Our derivations follow closely those of
Ref. [30].

4.2.1 Theoretical Basics

We consider the time-independent non-relativistic Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ .

The coupled cluster wave function |ΨCC⟩ defined as:

|ΨCC⟩ ≡ eT̂ |ΨHF ⟩ , (4.11)

shall approximate the exact solution |Ψ⟩. We again take the reference state |ΨHF ⟩ as the Hartree-Fock
ground state wave function. The cluster operator can formally be written as

T̂ ≡ T̂1 + T̂2 + T̂3 + . . . . (4.12)

By specifying the order of excitation, T̂ can also be expressed via second quantization
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T̂n =

�
1

n!

�2 "
ij...ab...

tab...ij... â
†
aâ

†
b . . . âj âi, (4.13)

where tab...ij... are the so-called cluster amplitudes and n refers to the number of excitations. By the structure
of the cluster operator in Eq. 4.13 we see that when acting on a reference wave function by the creation
and annihilation operators excited states arise, which can be expressed by excited Slater determinants. For
illustration we consider the action of T̂1 and T̂2 on the reference state:

T̂1 |ΨHF ⟩ =
"
ia

tai â
†
aâi |ΨHF ⟩ =

"
ia

tai |Ψa
i ⟩ ,

T̂2 |ΨHF ⟩ = 1

4

"
ijab

tabij â
†
aâ

†
bâj âi |ΨHF ⟩ = 1

4

"
ijab

tabij |Ψab
ij ⟩ .

To truncate the exponential coupled cluster ansatz, we investigate the exponential operator itself:

eT̂ =
n"

k=0

1

k!
T̂ k = 1 + T̂ +

1

2
T̂ 2 + . . . , (4.14)

with the truncation up to the n-th order. Exploiting the definition of the cluster operator from Eq. 4.12,
we find

eT̂ = 1 + (T̂1 + T̂2 + T̂3 + . . . ) +
1

2
(T̂1 + T̂2 + T̂3 + . . . )2 + . . .

= 1 + T̂1 + (T̂2 +
1

2
T̂ 2
1 ) + (T̂3 +

1

3!
T̂1 + T̂2T̂1) + . . . .

In the last line the sequence of the cluster operators is sorted by the order of excitation. The exponential
ansatz of the CCSD theory reads

eT̂ ≈ eT̂1+T̂2 = 1 + T̂1 + (T̂2 +
1

2
T̂ 2
1 ) + . . . . (4.15)

Returning to the general coupled cluster theory, the main task remains to determine the energy and the
cluster amplitudes. Projecting ⟨ΨHF | on the approximated Schrödinger equation constructed with the
coupled cluster wave functions yields

⟨ΨHF |ĤeT̂ |ΨHF ⟩ = E ⟨ΨHF |eT̂ |ΨHF ⟩ = E, (4.16)
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where again intermediate normalization ⟨ΨHF |ΨCC⟩ = 1 is assumed. Similarly, we obtain the amplitude
equations by left projecting the excited determinants

⟨Ψab...
ij... |ĤeT̂ |ΨHF ⟩ = E ⟨Ψab...

ij... |eT̂ |ΨHF ⟩ . (4.17)

We refer to Eqs. 4.16 and 4.17 as the coupled cluster equations, where the former is also called the CC
energy equation and the latter the CC amplitude equations.
We further want to highlight, that the structure of Ĥ implies a natural truncation rather than the artificial
one like in Eq. 4.15. Assuming the Hartree-Fock single Slater determinant reference wave function, the
Slater-Condon rules (s. Eq. 2.5) state that matrix elements of the Hamiltonian between determinants that
differ by more than two spin orbitals are zero. As a result, the energy and amplitude equations simplify in
a natural manner, which is only due to the form of the Hamiltonian and depends neither on T̂ nor on the
number of electrons.

To obtain practical equations for the numerical implementation of Eq. 4.16 and Eq. 4.17 additional manip-
ulations are required. To do this, all terms must be expressed in the form of one-electron and two-electron
integrals derived from the Hamiltonian and cluster amplitudes.

4.2.2 Coupled Cluster Singles and Doubles

The formal starting point of the CCSD formalism is given by the truncation from Eq. 4.15 assuming
T̂ ≈ T̂1 + T̂2. Before we address the consequences of this truncation and the resulting CCSD equations,
we return to the results of Sec. 2.6, where the formalism of the second quantization was introduced. We
continue with the normal-ordered electronic Hamiltonian in the particle-hole formalism from Eq. 2.25. We
refer to the first expression as the normal-ordered two-electron potential V̂N and identify the second and
third term as the normal-ordered Fock operator f̂N as well as the last two terms as the Hartree-Fock energy.
With this, we may write the electronic Hamiltonian as follows:

Ĥ = f̂N + V̂N + ⟨ΨHF |Ĥ|ΨHF ⟩ ,
ĤN ≡ f̂N + V̂N = Ĥ − ⟨ΨHF |Ĥ|ΨHF ⟩ ,

(4.18)

where the subscript N stands for the normal-ordering.
We simultaneously introduce the normal-ordered Hamiltonian ĤN , which can be understood as a correlation
operator since the Hartree-Fock energy is subtracted. Furthermore, we introduce the similarity-transformed
Hamiltonian H̄ via projection of e−T̂ on the left of the Schrödinger equation (s. Eq. 4.16)

⟨ΨHF |e−T̂ ĤNeT̂ |ΨHF ⟩ = ⟨ΨHF |H̄|ΨHF ⟩ = ⟨ΨHF |e−T̂ eT̂ |ΨHF ⟩� �� �
=1

E. (4.19)

Note that in contrast to ĤN the similarity-transformed Hamiltonian H̄ is not Hermitian. We emphasize that
now the amplitude equations are decoupled from the energy equation, which is very convenient. Exploiting
the Baker-Campbell-Hausdorff formula yields:
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H̄ = ĤN + [ĤN , T̂1] + [ĤN , T̂2]

+
1

2

�
[[ĤN , T̂1], T̂1] + [[ĤN , T̂2], T̂2] + [[ĤN , T̂1], T̂2] + [[ĤN , T̂2], T̂1]

�
+

1

3!

�
[[[ĤN , T̂1], T̂1], T̂1] + [[[ĤN , T̂1], T̂1], T̂2] + [[[ĤN , T̂1], T̂2], T̂1] + [[[ĤN , T̂2], T̂1], T̂1]

+ [[[ĤN , T̂1], T̂2], T̂2] + [[[ĤN , T̂2], T̂1], T̂2] + [[[ĤN , T̂2], T̂2], T̂1] + [[[ĤN , T̂2], T̂2], T̂2]
�

+ . . . ,

(4.20)

where the expansion naturally terminates at quadruply nested commutators.
We now are left evaluating the expectation values from the coupled cluster equations according to Eq. 4.16
and Eq. 4.17 with the similarity-transformed Hamiltonian H̄. In doing so, we look at a couple of examples,
however, due to the tedious formalism we do not derive all contributions stemming from Eq. 4.20. For
a more detailed documentation we refer to Ref. [30]. In passing, we want to mention that for the sake
of compactness in the remaining chapters the summation over the virtual and occupied orbitals indices
(a, b, c, . . . ) and (i, j, k, . . . ), respectively, is not specified. However, our shorthand notation implies

"
i,j,k,...

�= N"
i,j,k,...=1

;
"

a,b,c,...

�= NSO"
a,b,c,...=N+1

,

where N is the number of electrons and NSO the number of spin orbitals.

We begin our derivations by considering the commutator [f̂N , T̂1] arising from Eq. 4.20. In second quanti-
zation, the product of the normal-ordered Fock operator f̂N and the cluster operator T̂1 yields:

f̂N T̂1 =
"
pqia

fpqt
a
i {â†pâq}{â†aâi}

=
"
pqia

fpqt
a
i

�
{â†pâqâ†aâi}+ {â†pâqâ†aâi}+ {â†pâqâ†aâi}+ {â†pâqâ†aâi}

�
=

"
pqia

fpqt
a
i

�
{â†pâqâ†aâi}+ δpi{âqâ†a}+ δqa{â†pâi}+ δpiδqa

�
.

Here, fpq denotes the Fock matrix element. We further use normal-ordering as well as the generalized Wick
theorem, where the contractions between the two strings of operators are considered. Consequently, the
full commutator is given by:

[f̂N , T̂1] = f̂N T̂1 − T̂1f̂N

=
"
pqia

fpqt
a
i

�
{â†pâqâ†aâi}+ δpi{âqâ†a}+ δqa{â†pâi}+ δpiδqa − {â†aâiâ†pâq}

�
=

"
qia

fiqt
a
i {âqâ†a}+

"
pia

fpat
a
i {â†pâi}+

"
ia

fia,

(4.21)
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where the contribution {a†aaia†paq} of T̂1f̂N cancels out. Wick’s theorem for the first doubly nested com-
mutator in Eq. 4.20 reads

1

2
f̂N T̂ 2

1 =
1

2

"
pqiajb

fpqt
a
i t

b
j

�
{â†pâqâ†aâiâ†bâj}+ {â†pâqâ†aâiâ†bâj}+ {â†pâqâ†aâiâ†bâj}

+ {â†pâqâ†aâiâ†bâj}+ {â†pâqâ†aâiâ†bâj}+ {â†pâqâ†aâiâ†bâj}

+ {â†pâqâ†aâiâ†bâj}+ {â†pâqâ†aâiâ†bâj}+ {â†pâqâ†aâiâ†bâj}
�

=
1

2

"
pqiajb

tai t
b
j

�"
pq

fpq{â†pâqâ†aâiâ†bâj}+ 2
"
q

fiq{âqâ†aâiâ†b}

+ 2
"
p

fpb{â†pâ†aâiâj}+ 2fib{â†aâi}+ 2fja{âiâ†b}
�
.

For the last equality, we use the fact that several terms can be summarized by renaming the indices. The
main difference for the two remaining expressions of the commutator is that the sequence of the creation
and annihilation operators is exchanged according to the ordering of f̂N and T̂1. For brevity, we just give
the final results:

T̂1f̂N T̂1 =
"
aibj

tai t
b
j

�"
pq

fpq{â†aâiâ†pâqâ†bâj}+
"
q

fjq{â†aâiâqâ†b}+
"
p

fpb{â†aâiâ†pâj}+ fib{â†aâi}
�
,

1

2
T̂ 2
1 f̂N =

1

2

"
aibjpq

fpqt
a
i t

b
j{â†aâiâ†bâj â†pâq},

which leads to

1

2
[[f̂N , T̂1], T̂1] =

1

2
f̂N T̂ 2

1 − T̂1f̂N T̂1 +
1

2
T̂ 2
1 f̂N =

"
aibj

fjat
a
i t

b
j{âiâ†b}.

In this case, only one term of the whole commutator survives. However, without proof, we are able to make
an important generalization. The application of Wick’s theorem to the commutators of Eq. 4.20 entails
that only expressions in which the Hamiltonian ĤN has at least one contraction with each cluster operator
T̂N on its right-hand side are non-zero [30]. In other words, the Hamiltonian must share at least one index
with every cluster operator in the final result. Consequently, we are able to simplify Eq. 4.20 such that
only the so-called connected terms are displayed
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H̄ =

�
ĤN + ĤN T̂1 + ĤN T̂2 +

1

2
ĤN T̂ 2

1 +
1

2
ĤN T̂ 2

2 + ĤN T̂1T̂2

+
1

6
ĤN T̂ 3

1 +
1

2
ĤN T̂ 2

1 T̂2 +
1

2
ĤN T̂1T̂

2
2 +

1

6
ĤN T̂ 3

2 +
1

24
ĤN T̂ 4

1

+
1

6
ĤN T̂ 3

1 T̂2 +
1

6
ĤN T̂ 2

1 T̂
2
2 +

1

6
ĤN T̂1T̂

3
2 +

1

24
ĤN T̂ 4

2

�
c

,

(4.22)

where the subscript c stands for the connected terms. Eq. 4.22 is also referred to as the connected cluster
form of the similarity-transformed Hamiltonian [31], which we will use for the rest of this thesis. Further,
the natural truncation of the Baker-Campbell-Hausdorff formula is verified since the Hamiltonian contains
at most four creation and annihilation operators which in turn means that only four cluster operators can
be connected simultaneously.
Now we are at a point where we shall derive the CCSD equation for the energy. The energy results from
the expectation value of the similarity-transformed Hamiltonian

ECCSD
cor = ⟨ΨHF |H̄|ΨHF ⟩ − EHF .

In passing we mention that by construction of the normal-ordered Hamiltonian, the energy produced by the
CCSD method represents a correlation energy. By convention, however, the total CCSD energy is defined
as ECCSD = EHF + ECCSD

cor giving the ground state energy.
The leading term is just the expectation value of the normal-ordered Hamiltonian, for which by definition
⟨ΨHF |ĤN |ΨHF ⟩ = 0 holds. The remaining expressions may be evaluated by considering only the fully
contracted terms. We begin with the first non-vanishing term in Eq. 4.22

(ĤN T̂1)c = (f̂N T̂1)c + (V̂N T̂1)c,

where we have already evaluated the first expression in Eq. 4.21. However, with only one fully contracted
term this contribution gives

⟨ΨHF |(f̂N T̂1)c|ΨHF ⟩ =
"
ia

fiat
a
i .

Further, there are no fully contracted terms resulting from the expectation value with (V̂N T̂1)c. Similarly,
we find no fully contracted terms for (f̂N T̂2)c from the third expression in Eq. 4.22. The next non-zero
term is the two-electron component
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⟨ΨHF |(V̂N T̂2)c|ΨHF ⟩ = 1

16

"
pqrs

"
aibj

⟨pq||rs⟩ tabij ⟨ΨHF |{â†pâ†qâsâr}{â†aâ†bâj âi}|ΨHF ⟩

=
1

16

"
pqrs

"
aibj

⟨pq||rs⟩ tabij

{â†pâ†qâsârâ†aâ†bâj âi}+ {â†pâ†qâsârâ†aâ†bâj âi}

+ {â†pâ†qâsârâ†aâ†bâj âi}+ {â†pâ†qâsârâ†aâ†bâj âi}


=
1

16

"
pqrs

"
aibj

⟨pq||rs⟩ tabij (δpiδqjδraδsb + δpjδqiδrbδsa − δpjδqiδraδsb − δpiδqjδrbδsa)

=
1

4

"
aibj

⟨pq||rs⟩ tabij .

While 1
2(f̂N T̂ 2

1 )c again vanishes, 1
2(V̂N T̂ 2

1 )c produces four equivalent full contractions

1

2
⟨ΨHF |(V̂N T̂ 2

1 )c|ΨHF ⟩ = 1

8

"
pqrs

"
aibj

⟨pq||rs⟩ tai tbj ⟨ΨHF |{â†pâ†qâsâr}{â†aâi}{â†bâj}|ΨHF ⟩

=
1

8

"
pqrs

"
aibj

⟨pq||rs⟩ tai tbj

{â†pâ†qâsârâ†aâiâ†bâj}+ {â†pâ†qâsârâ†aâiâ†bâj}

+ {â†pâ†qâsârâ†aâiâ†bâj}+ {â†pâ†qâsârâ†aâiâ†bâj}


=
1

8

"
pqrs

"
aibj

⟨pq||rs⟩ tai tbj (−δpjδqiδraδsb + δpjδqiδrbδsa + δpiδqjδraδsb − δpiδqjδrbδsa)

=
1

2

"
aibj

⟨ij||ab⟩ tai tbj .

All other terms vanish since in all of them we find more creation and annihilation operators than in the
Hamiltonian. Therefore, no fully contracted products can be formed. This may also be interpreted in terms
of Slater-Condon rules which state that contributions with excitations of third order and higher are zero.
Finally, we arrive at the expression of the CCSD energy equation:

ECCSD
cor =

"
ia

fiat
a
i +

1

4

"
aibj

⟨pq||rs⟩ tabij +
1

2

"
aibj

⟨ij||ab⟩ tai tbj . (4.23)

The first term vanishes if the Brillouin theory applies. The second term confirms the obtained expressions
from the Møller-Plesset perturbation theory (s. Eq. 4.10). Thus, the last term in Eq. 4.23 may be viewed
as the next higher order in the perturbation scheme. However, the derived CCSD energy equation is
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exact, also for higher-order theories. This is because higher excitation cluster operators cannot produce
fully contracted terms with the Hamiltonian. The contribution of the higher excitations is only reflected
indirectly via the amplitude equations.

Now we shall investigate how to evaluate the matrix elements arising in the cluster amplitude equations (s.
Eq. 4.17). The restriction to singly and doubly excited determinants leaves us with two distinct equations

⟨Ψa
i |H̄|ΨHF ⟩ = 0,

⟨Ψab
ij |H̄|ΨHF ⟩ = 0.

(4.24)

The first line in Eq. 4.24 is also referred to as the T̂1 amplitude equation while the second line is denoted
the T̂2 amplitude equation. To be able to evaluate the fully contracted terms from Wick’s theorem, the
excited determinants need to be expressed in terms of the reference determinant |ΨHF ⟩:

⟨Ψa
i | = ⟨ΨHF | â†i âa,

⟨Ψab
ij | = ⟨ΨHF | â†i â†j âbâa.

(4.25)

In the following, we again only examine some expectation values. It is reasonable to start with the evaluation
of the bare normal ordered electronic Hamiltonian ĤN . For the T̂1 amplitude equation it holds:

⟨Ψa
i |f̂N + V̂N |ΨHF ⟩ =

"
pq

fpq ⟨ΨHF |{â†i âa}{â†pâq}|ΨHF ⟩+ 1

4

"
pqrs

⟨pq||rs⟩ ⟨ΨHF |{â†i âa}{â†pâ†qâsâr}|ΨHF ⟩ .

Obviously, the two-electron component does not lead to fully contracted terms. The one with the Fock
matrix, however, yields the following contribution:

⟨Ψa
i |f̂N |ΨHF ⟩ =

"
pq

fpq ⟨ΨHF |{â†i âa}{â†pâq}|ΨHF ⟩

=
"
pq

fpq{â†i âaâ†pâq} =
"
pq

fpqδiqδap

= fai.

The contributions of ĤN regarding the T̂2 amplitude equation is somewhat similar except in this case the
one-electron component vanishes while the two-electron component is fully contracted.
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⟨Ψab
ij |V̂N |ΨHF ⟩ = 1

4

"
pqrs

⟨pq||rs⟩ ⟨ΨHF |{â†i â†j âbâa}{â†pâ†qâsâr}|ΨHF ⟩ .

=
1

4

"
pqrs

⟨pq||rs⟩
{â†i â†j âbâaâ†pâ†qâsâr}+ {â†i â†j âbâaâ†pâ†qâsâr}

+ {â†i â†j âbâaâ†pâ†qâsâr}+ {â†i â†j âbâaâ†pâ†qâsâr}


=
1

4

"
pqrs

⟨pq||rs⟩ (δpaδqbδriδsj − δpbδqaδriδsj − δpaδqbδrjδsi + δpbδqaδrjδsi)

= ⟨ab||ij⟩ .

As our last example we investigate the contributions which are linear in T̂1 (second term in Eq. 4.22). For
both, the one-electron and two-electron operators, full contractions are possible. For the former we get:

⟨Ψa
i |(f̂N T̂1)c|ΨHF ⟩ =

"
pq

"
jb

fpq t
b
j ⟨ΨHF |{â†i âa}({â†pâq}{â†bâj})c|ΨHF ⟩ .

=
"
pq

"
jb

fpqt
b
j

�
{â†i âaâ†pâqâ†bâj}+ {â†i âaâ†pâqâ†bâj}

�
=

"
pq

"
jb

fpqt
b
j (δijδapδqb − δiqδabδpj)

=
"
b

fabt
b
i −

"
j

fjit
a
j ,

while the latter contribution simplifies to:

⟨Ψa
i |(V̂N T̂1)c|Ψ0⟩ = 1

4

"
pqrs

"
jb

⟨pq||rs⟩ tbj ⟨Ψ0|{â†i âa}({â†pâ†qâsâr}{â†bâj})c|Ψ0⟩ .

=
1

4

"
pqrs

"
jb

⟨pq||rs⟩ tbj

{â†i âaâ†pâ†qâsârâ†bâj}+ â†i âaâ
†
pâ

†
qâsârâ

†
bâj}

+ â†i âaâ
†
pâ

†
qâsârâ

†
bâj}+ â†i âaâ

†
pâ

†
qâsârâ

†
bâj}


=

1

4

"
pqrs

"
jb

⟨pq||rs⟩ tbj (−δpaδqjδrbδsi + δpjδqaδrbδsi + δpaδqjδriδsb − δpjδqaδriδsb)

=
"
bj

⟨ja||bi⟩ tbj .
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To complete the linear term in T̂1 from Eq. 4.22, the contributions to the T̂2 amplitude equations are still
to be found. The one-electron contribution

⟨Ψab
ij |(f̂N T̂1)c|ΨHF ⟩ =

"
pq

"
kc

fpq t
c
k ⟨ΨHF |{â†i â†j âbâa}({â†pâq}{â†câk})c|ΨHF ⟩ = 0, (4.26)

vanishes due to the missing connections of the cluster operator and the Hamiltonian elements. The two-
electron term reads:

⟨Ψab
ij |(V̂N T̂1)c|ΨHF ⟩ = 1

4

"
pqrs

"
kc

⟨pq||rs⟩ tck ⟨ΨHF |{â†i â†j âbâa}({â†pâ†qâsâr}{â†câk})c|ΨHF ⟩ .

=
1

4

"
pqrs

"
kc

⟨pq||rs⟩ tck

�{â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}

+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}

+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}

+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}

+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}

+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}+ {â†i â†j âbâaâ†pâ†qâsârâ†câk}

 
=

"
pq

"
kc

fpq t
c
k (δpaδqbδrcδsjδik − δpbδqaδrcδsjδik − δpaδqbδrcδsiδjk + δpbδqaδrcδsiδjk

− δpaδqbδrjδscδik + δpbδqaδrjδscδik + δpaδqbδriδscδjk − δpbδqaδriδscδjk

− δpaδqkδriδsjδbc + δpbδqkδriδsjδac − δpbδqkδrjδsiδac + δpaδqkδrjδsiδbc

+ δpkδqaδriδsjδbc − δpkδqbδriδsjδac − δpkδqaδrjδsiδbc + δpkδqbδrjδsiδac)

=
"
c

(⟨ab||cj⟩ tci − ⟨ab||ci⟩ tcj) +
"
k

(⟨ij||bk⟩ tak − ⟨ij||ak⟩ tbk).

The already rather tedious derivation of the second term in Eq. 4.22 shows the complexity of the coupled
cluster amplitude equations. Once all contributions are computed using Wick’s theorem we get the T̂1 and
T̂2 amplitude equations [30] (s. Appendix A).

In summary, the coupled cluster singles and doubles equations are derived by introducing the similarity-
transformed Hamiltonian H̄ allowing us to define three distinct CCSD equations. The first one describes the
CCSD energy (s. Eq. 4.23) while Eq. A.1 and Eq. A.2 give the T̂1 and T̂2 amplitude equations, respectively.
With this, we are now able to perform the CCSD method only by evaluating the Fock matrix elements
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fpq as well as the antisymmetrized two-electron integrals ⟨pq||rs⟩. In the following, we focus on the actual
implementation of the CCSD algorithm.

4.2.3 Implementation

While the implementation of the derived CCSD energy equation (s. Eq. 4.23) can be realized directly,
the CCSD amplitude equations (s. Eqs. A.1 and A.2) are not readily solvable at first glance. However,
rearranging the T̂1 and T̂2 equations leads to expressions that can be solved iteratively. Eq. A.1 may also
be written as:

0 = fai + faat
a
i − fiit

a
i +

"
c

(1− δca)fact
i
c −

"
k

(1− δik)fkit
a
k + . . . .

We extract the diagonal elements of the Fock matrix and define

Da
i ≡ fii − faa, (4.27)

in order to get the reformulated T̂1 amplitude equation:

Da
i t

a
i = fai +

"
c

(1− δca)fact
i
c −

"
k

(1− δik)fkit
a
k + . . . .

By defining

Dab
ij ≡ fii + fjj − faa − fbb, (4.28)

we similarly get the reformulated T̂2 amplitude equation:

Dab
ij t

ab
ij = ⟨ab||ij⟩+ P̂ab

"
c

(1− δbc)fbct
ac
ij − P̂ij

"
k

(1− δkj)fkjt
ab
ik + . . . .

In addition, we are able to reduce the computational cost by factorization of multiple terms in the CCSD
amplitude equations. The basic idea is to identify factors that require computationally expensive operations.
These can then be decomposed into a product of two or more terms by defining so-called intermediate
quantities. However, there is no unique set of such intermediates. The most efficient factorization of the
amplitude equations depends on both the structure of the code and the model under study. The latter
entails that for closed-shell Hartree-Fock methods different intermediates are used than, e.g. for open-shell
theories. We illustrate this factorization with one term in the T̂2 amplitude equation (s. last term in the
third line of Eq. A.2):

1

4

"
klcd

⟨kl||cd⟩ tcdij tabkl =
1

2

"
kl

tabkl
1

2

"
cd

⟨kl||cd⟩ tcdij = −P̂ab
1

2

"
kl

tabklX
kl
ij ,

where we introduce the X intermediate as:
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Xkl
ij =

1

2

"
cd

⟨kl||cd⟩ tcdij .

The original term scales with O(N4
oN

4
v ) with No and Nv being the number of the occupied and virtual spin

orbitals, respectively. The factorized term, in contrast, scales only with O(N4
oN

2
v ). This is due to the fact

that we are able to first construct Xkl
ij and then perform the contraction with the amplitudes tabkl . Thus,

we can conclude that the coupled cluster amplitude equations may be rewritten in terms of only linear
components in T̂ by factorizing every non-linear term. Consequently, the most expensive computations in
our CCSD algorithm scale at worst with O(N6

SO) where NSO is the number of spin orbitals.

In this work, we use the factorization scheme deduced in Refs. [32, 33]. Thereby, the one and two-particle
intermediates Fpq and Wpqrs are introduced. In the following, we provide the final equations of these
intermediates as well as the final CCSD equations for the implementation. For more details we refer to
aforementioned Refs. [32, 33]:

Fae = (1− δae)fae − 1

2

"
m

fmet
a
m +

"
mf

tfm ⟨ma||fe⟩ − 1

2

"
mnf

τ̃afmn ⟨mn|ef⟩ ,

Fmi = (1− δmi)fmi +
1

2

"
e

teifme +
"
en

ten ⟨mn||ie⟩+ 1

2

"
nef

τ̃ efin ⟨mn|ef⟩ ,

Fme = fme +
"
nf

tfn ⟨mn||ef⟩ ,

Wmnij = ⟨mn||ij⟩+ P̂ij

"
e

tej ⟨mn||ie⟩+ 1

4

"
ef

τ efij ⟨mn||ef⟩ ,

Wabef = ⟨ab||ef⟩ − P̂ab

"
m

tbm ⟨am||ef⟩+ 1

4

"
ef

τabmn ⟨mn||ef⟩ ,

Wmbej = ⟨mb||ej⟩+
"
f

tfj ⟨mb||ef⟩ −
"
n

tbn ⟨mn||ej⟩ −
"
nf

(
1

2
tfbjn + ff

j t
b
n) ⟨mn||ef⟩ .

(4.29)

Here, the effective two-particle excitation operators are introduced as:

τ̃abij = tabij +
1

2
(tai t

b
j − tbi t

a
j ),

τabij = tabij + (tai t
b
j − tbi t

a
j ).

In the end, we are able to provide the three CCSD equations which can readily be implemented:

taiD
a
i = fia +

"
e

teiFae −
"
m

tamFmi +
"
me

taeimFme −
"
nf

tfn ⟨na||if⟩

− 1

2

"
mef

tefim ⟨ma||ef⟩ − 1

2

"
men

taemn ⟨nm||ei⟩ .
(4.30)

45



Post-Hartree-Fock Methods

tabijD
ab
ij = ⟨ij||ab⟩+ P̂ab

"
e

taeij (Fbe − 1

2

"
m

tbmFme)− P̂ij

"
m

tabim(Fmj − 1

2

"
e

tejFme)

+
1

2

"
mn

τabmnWmnij +
1

2

"
ef

τ efij Wabef + P̂ijP̂ab

"
me

(taeimWmbej − tei t
a
m ⟨mb||ej⟩)

+ P̂ij

"
e

tei ⟨ab||ej⟩ − P̂ab

"
m

tam ⟨mb||ij⟩ .

(4.31)

We want to emphasize that the CCSD energy equation does not need to be expressed via intermediate
quantities and is therefore already provided by Eq. 4.23.

The derived CCSD equation system is a coupled non-linear problem, which as mentioned earlier may be
solved iteratively. Thus, we need to self-consistently update the T̂1 and T̂2 amplitudes till convergence is
reached. For the necessary initial guess, all amplitudes on the right-hand side of Eq. 4.30 are set to zero.
This allows us to calculate the T̂1 amplitude directly using the elements of the Fock matrix

tai =
fia
Da

i

.

Similarly, in the first iterative step the T̂2 amplitude reads:

tabij =
⟨ij||ab⟩
Dab

ij

.

The initial guess for the T̂2 amplitude equations is the same as the first-order wave function from the
Møller-Plesset perturbation theory. The T̂1 amplitude guess vanishes because the Fock matrix elements are
just the orbital energies.

The algorithm itself, as in MPPT, requires the Fock matrix fpq and the antisymmetrized two-electron
integrals given by the Coulomb tensor V −pq

rs (s. Eq. 4.8). Afterwards, the intermediates F and W as well as
the T̂ amplitudes, starting from the initial estimate, are iteratively updated. In addition, the CCSD energy
is calculated in each iteration. Convergence is reached when the energy no longer changes between two
iterations up to a certain tolerance. Similarly to our Hartree-Fock algorithm, the CCSD algorithm breaks
when the energy difference falls below 10−6.
Our algorithm relies on the repository pyqchem, which converts the equations described above from Ref. [32]
into code language which turned out to be useful when dealing with the tedious index notation of the Eqs.
4.29, 4.30 and 4.31.

4.3 Equation of Motion Coupled Cluster Theory

The Equation of Motion coupled cluster formalism (EOM-CC) is a powerful tool for the calculation of
excitation energies. In particular, very accurate and robust descriptions of excited states can be obtained,
with the only drawback that for large molecules the computational cost becomes significant. The EOM-
CC ansatz relies on the diagonalization of the similarity-transformed Hamiltonian H̄ in a chosen subspace
of the Fock space. Thereby, it is distinguished between excited electron, electron-attached and ionized
states. Since we focus exclusively on the excited electron formalism (EE EOM-CC) in the remainder of
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this chapter, we continue to use the term EOM-CC for simplicity. For this case, the number of electrons
remains unchanged.

4.3.1 Theoretical Basics

Starting point for the EOM-CC formalism is again the time-independent Schrödinger equation

ĤN |Ψ⟩ = E |Ψ⟩ ,

where we use the normal-ordered Hamiltonian ĤN introduced in Eq. 4.18. The EOM-CC ansatz for the
exact wave function |Ψ⟩ reads [16]:

|Ψ⟩ = R̂ |ΨCC⟩ = R̂eT̂ |ΨHF ⟩ ,

where R̂ is a linear excitation operator with the same properties as the cluster operator T̂ . The excitation
operator may be written as R̂ = R̂0 + R̂1 + R̂2 + . . . and can additionally be expressed in terms of creation
and annihilation operators

R̂n =

�
1

n!

�2 "
ij...ab...

rab...ij... â
†
aâ

†
b . . . âj âi,

where rab...ij... are the excitation amplitudes. Consequently, the Schrödinger equation reads:

ĤN R̂eT̂ |ΨHF ⟩ = ER̂eT̂ |ΨHF ⟩ .

Since R̂ and T̂ commute, we may express the Schrödinger equation in terms of the similarity-transformed
Hamiltonian H̄:

e−T̂ ĤNeT̂ R̂ |ΨHF ⟩ = H̄R̂ |ΨHF ⟩ = ER̂ |ΨHF ⟩ . (4.32)

H̄ is not Hermitian and therefore we must distinguish between left and right eigenvectors. Similarly, we
may define the de-excitation operator L̂:

L̂ = L̂0 + L̂1 + L̂2 + . . . ,

L̂n =

�
1

n!

�2 "
ij...ab...

lab...ij... â
†
i â

†
j . . . âbâa.

From the properties of the non-Hermitian eigenvalue problem, it follows that the two sets of solutions are
biorthogonal

⟨ΨHF L̂ie
−T̂ |eT̂ R̂jΨ

HF ⟩ = cδij .
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Choosing the constant c to be unity, leads to the EOM-CC normalization condition. Therefore, we can
express the EOM-CC energy as follows:

E = ⟨ΨHF L̂|H̄|R̂ΨHF ⟩ .

However, if one is only interested in the excitation energies it is sufficient to solve the right eigenvalue
problem with the R̂ operator. We may further subtract the ground state CC equation R̂H̄ |ΨHF ⟩ =
R̂ECC |ΨHF ⟩ from Eq. 4.32:

(H̄R̂− R̂H̄) |ΨHF ⟩ = (ER̂− R̂ECC) |ΨHF ⟩ ,
[H̄, R̂] |ΨHF ⟩ = ∆ER̂ |ΨHF ⟩ ,

(4.33)

where ∆E = E −ECC are the excitation energies which may again be seen as correlation energy since the
ground state energy of the coupled cluster theory is deducted. Accordingly, the full energy spectrum is
given by

Ei = ECC +∆Ei = EHF + ECC
cor +∆Ei. (4.34)

Unlike Eq. 4.33, we introduce the subscript i to explicitly emphasize the distinct energy levels. Moreover,
the form of Eq. 4.33 explains the name equation of motion because its structure is similar to the time-
dependent Heisenberg picture differential equation for the time evolution of an operator. We point out
that the commutator [H̄, R̂] can be simplified, like in the CCSD theory, such that only contributions from
connected terms need to be considered. Finally, we are left to solve:

(H̄R̂)c |ΨHF ⟩ = ∆ER̂ |ΨHF ⟩ . (4.35)

4.3.2 Equation of Motion Coupled Cluster Singles and Doubles

Applying the general theory of the EOM-CC method to the restriction to singles and doubles (EOM-CCSD)
implies, again, the truncation of the cluster as well as the excitation operator

T̂ ≈ T̂1 + T̂2,

R̂ ≈ R̂1 + R̂2.

In contrast to the theoretical introduction, we don’t consider the R̂0 contribution, which is simply the
already calculated CCSD ground state solution. This may be viewed as a projection onto the singles and
doubles excitation manifold of the Hilbert space. Nevertheless, we need to solve the eigenvalue problem
derived in Eq. 4.35. This corresponds to the solution of the following matrix equations [16,34,35]:
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H̄SS H̄SD

H̄DS H̄DD

�
� �� �
H̄EOM−CCSD



R̂1

R̂2

�
= ∆E



R̂1

R̂2

�
, (4.36)

where H̄SS = ⟨Ψa
i |H̄|Ψc

k⟩ corresponds to the singles-singles block of the Hamiltonian matrix, H̄SD to the
singles-doubles block and so on. For convenience, we also introduce the matrix H̄EOM−CCSD = ⟨µ|H̄|ν⟩
with µ, ν = {Ψp

r ,Ψ
pq
rs} containing all four submatrices.

Thus, the determination of the EOM-CCSD equations is a very similar task to the one already discussed
in CCSD theory. Nevertheless, we want to give some exemplary calculations in order to convey the basic
idea behind it. We start by looking at the singles-singles block of the Hamiltonian matrix in Eq. 4.36.
Considering the form of the connected similarity-transformed Hamiltonian H̄ (s. Eq. 4.22), the lowest order
contributions read

⟨Ψa
i |ĤN + (ĤN T̂1)c + (ĤN T̂2)c + . . . |Ψc

k⟩ .

With the definition of the normal-order Hamiltonian ĤN , we may evaluate:

⟨Ψa
i |f̂N |Ψc

k⟩ =
"
pq

fpq ⟨ΨHF |{â†i âa}{â†pâq}{â†câk}|ΨHF ⟩

=
"
pq

fpq

�
{â†i âaâ†pâqâ†câk}+ {â†i âaâ†pâqâ†câk}

�
=

"
pq

fpq(δikδapδqc − δiqδacδpk)

= facδik − fikδac,

as well as

⟨Ψa
i |V̂N |Ψc

k⟩ =
1

4

"
pqrs

⟨pq||rs⟩ ⟨ΨHF |{â†i âa}{â†pâ†qâsâr}{â†câk}|ΨHF ⟩

=
1

4

"
pqrs

⟨pq||rs⟩
{â†i âaâ†pâ†qâsârâ†câk}+ â†i âaâ

†
pâ

†
qâsârâ

†
câk}

+ â†i âaâ
†
pâ

†
qâsârâ

†
câk}+ â†i âaâ

†
pâ

†
qâsârâ

†
câk}


=

1

4

"
pqrs

⟨pq||rs⟩ (−δpaδqkδrcδsi + δpkδqaδrcδsi + δpaδqkδriδsc − δpkδqaδriδsc)

= ⟨ak||ic⟩ .
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As our last example, we evaluate the f̂N T̂1 contribution. The only non-vanishing terms are:

⟨Ψa
i |(f̂N T̂1)c|Ψc

k⟩ =
"
pq

"
bj

fpqt
b
j ⟨ΨHF |{â†i âa}({â†pâq}{â†bâj})c{â†câk}|ΨHF ⟩

=
"
pq

"
bj

fpqt
b
j

{â†i âaâ†pâqâ†bâj â†câk}+ {â†i âaâ†pâqâ†bâj â†câk}


=
"
pq

"
bj

fpqt
b
j(−δijδacδpkδqb − δikδabδpjδqc)

= −fkbt
b
iδac − fjct

a
j δik.

For the remaining blocks, we only evaluate the first expectation value of H̄ due to the raising complexity
of the equations. For the H̄SD part, the contribution of the normal-ordered Fock operator reads:

⟨Ψa
i |f̂N |Ψcd

kl ⟩ =
"
pq

fpq ⟨ΨHF |{â†i âa}{â†pâq}{â†câ†dâlâk}|ΨHF ⟩

=
"
pq

fpq

{â†i âaâ†pâqâ†câ†dâlâk}+ {â†i âaâ†pâqâ†câ†kâlâk}


=
"
pq

fpqδikδadδplδqc = flcδikδad.

The contribution of f̂N to the doubles-singles block H̄DS vanishes similarly as in Eq. 4.26. The lowest order
term for the doubles-doubles block results in:

⟨Ψab
ij |f̂N |Ψcd

kl ⟩ =
"
pq

fpq ⟨ΨHF |{â†i â†j âbâa}{â†pâq}{â†câ†dâlâk}|ΨHF ⟩

=
"
pq

fpq

�{â†i â†j âbâaâ†pâqâ†câ†dâlâk}+ {â†i â†j âbâaâ†pâqâ†câ†dâlâk}

+ {â†i â†j âbâaâ†pâqâ†câ†dâlâk}+ {â†i â†j âbâaâ†pâqâ†câ†dâlâk}

 
=

"
pq

fpq (δjkδilδadδbpδqc − δjkδilδbdδapδqc + δjlδadδbcδiqδpk − δilδadδbcδjqδpk)

= fbcδjkδilδad − facδjkδilδbd + fkiδjlδadδbc − fkjδilδadδbc.

It is obvious that also in the case of the EOM-CCSD equations, Wick’s theorem can be applied. In this
case, the algebraic effort increases, since not only expectation values of operators between an excited state
and the ground state must be calculated, but expectation values of operators between two excited states.
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The increased amount of work is due to the fact that for each additional excitation, a pair of creation and
annihilation operators has to be added and then to be contracted as well.
Nevertheless, the matrix eigenvalue equation ansatz (s. Eq. 4.36) turns out to be a very powerful technique,
as it simplifies the task of evaluating the aforementioned expectation values. This means, that no iterative
procedure such as for the CCSD amplitude equations is needed. In the next section, we discuss the
implementation of the EOM-CCSD method, where we also provide the full set of the EOM-CCSD equations.

4.3.3 Implementation

For our model, we obtain the excitation energies by performing an exact diagonalization of the EOM-CCSD
Hamiltonian matrix. We want to mention that, due to the high computational expenses, for systems with
a large basis set and many electrons Eq. 4.36 is solved by means of the Davidson algorithm or variants
of it. Before we are able to diagonalize the full Hamiltonian in the singles and doubles subspace, we
need to construct the respective Hamiltonian matrix H̄EOM−CCSD. For this, all contributions to each
block in Eq. 4.36, presented in Appendix B, need to be taken into account. The final dimension of the
matrix H̄EOM−CCSD may be viewed as follows. The individual blocks HSS , HSD, HDS and HDD have the
dimensions NS × NS , NS × ND, ND × NS and ND × ND. Then H̄EOM−CCSD is obtained by vertically
stacking the first and last two submatrices, respectively. The resulting block matrix has accordingly the
dimension of (NS +ND)× (NS +ND).

Since the EOM-CC method does not require any self-consistent algorithm, there is no core part regarding
the implementation. However, it is important to note that the amplitudes tpr and tpqrs for single and double
excitations, respectively, are obtained by the CCSD algorithm. Moreover, our algorithm computes Eqs.
B.1-B.4 to build the final EOM-CCSD matrix. After that, the eigenvalue problem is solved by means of
a standard diagonalization package. Finally, the eigenvalues corresponding to the excitation energies are
obtained. It is worthwhile noting that the eigenvalues, due to the nature of the non-Hermitian matrix,
can also be complex. Complex eigenvalues have the interpretation of resonance or metastable states. The
imaginary part corresponds thereby to the inverse of the decay time, i.e. the decay rate. The real part
represents the actual energy. Thus, if the obtained eigenvalue has an imaginary part, it is an indication
that the corresponding state will eventually decay or transition to another state.
Our implemented code is again oriented to the repository pyqchem, which turned out to be useful due to
the error-prone formalism of the derived EOM-CCSD equations.

In summary, the investigated post-Hartree-Fock methods give more accurate results compared to the
Hartree-Fock method itself. Thereby, MPPT represents an intuitive extension by means of Rayleigh-
Schrödinger perturbation theory. We gain further accuracy by introducing the CC formalism. By evaluat-
ing the matrix elements concerning the similarity-transformed Hamiltonian with the Hartree-Fock reference
state, we derive the CC energy and amplitude equations. These are solved iteratively, whereby the first
iteration gives exactly the MPPT energy. Furthermore, we investigate not only ground state energies but
the entire energy spectrum. The EOM-CC theory provides a powerful tool for the calculation of the afore-
mentioned excited states energies. Thereby, by investigating only electronic excitations, the ansatz with
the excitation operator R̂ leads to a standard eigenvalue problem. In the subspace of the single and double
excitations this yields a matrix equation, which in our case is solved by means of exact diagonalization.
Similarly, to the CCSD method, expectation values between excited states with the similarity-transformed
Hamiltonian are evaluated in order to construct the EOM-CCSD Hamiltonian itself.
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5 Low-Rank Approximation

Besides the implementation of the Hartree-Fock, CCSD and EOM-CCSD theories for our model Hamilto-
nian, our major focus lies on the low-rank approximation of the two-electron integrals. One of the main
limiting factors of the coupled cluster methods is that they are computationally rather expensive. CCSD
and EOM-CCSD e.g. scale with O(N6

SO) with NSO being the number of molecular spin orbitals. Thereby,
the most expensive calculations represent the operations involving the two-electron integrals. In the fol-
lowing, we present two techniques allowing us to reduce the overall computational cost of these coupled
cluster methods to O(N5

SO) [36], namely the singular value decomposition (SVD) and the canonical polyadic
decomposition (CPD).

5.1 Motivation

We define an arbitrary tensor in the sense of multidimensional arrays

X ∈ ❘n1×n2×···×nk ,

where k denotes the order of the tensor and n1 × n2 × · · · × nk, with ni=1,2,...,k integers, its size. As can
readily be seen, the number of entries of a tensor increases exponentially with its rank for constant ni = n.
Therefore, high-dimensional objects lead to huge memory requirements. Alone a rank 15 tensor with n = 5
entries per dimension requires more than 2 gigabyte storage space. It is therefore inevitable to reduce the
rank of the tensor to be able to perform numerical calculations. Besides the storage, we also need to consider
the computation time. In general, the computational cost of an arbitrary tensor operation is proportional
to the number of floating point operations (FLOPs). The number of FLOPs depends on the size and the
rank of the involved tensors, as well as on the number of involved contractions. For example, two tensors
Ay

x and Bz
y are contracted along the particular dimension y eliminating the size of that dimension from the

resulting tensor

"
y

Ay
xB

z
y = Ay

xB
z
y = Cz

x,

where it is summed over all indices appearing more than once. In the second equality, the Einstein sum
convention is applied. The contraction of this example represents a simple matrix multiplication which
scales naively with O(NxNyNz). Further factors for increased computation times may be of numerical
nature such as the structure of the algorithm.

The goal of low-rank approximation techniques is to express a tensor of k-th order as a sum of tensors
m-th order, where m < k holds. This approximation allows not only to reduce the number of FLOPs
required for the specific tensor contractions but also saves storage. However, one must consider the tradeoff
of information loss, i.e., accuracy.

5.2 Singular Value Decomposition

We proceed from the definition of the Coulomb integral tensor V pq
rs in Eq. 4.7, being a tensor of fourth

order with dimension NSO × NSO × NSO × NSO. In the following, we investigate how to decompose the
Coulomb tensor in terms of the singular value decomposition.
The SVD as a generalization of the eigendecomposition allows the factorization of non-square matrices.
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Since a matrix is a tensor of rank two, we compress our Coulomb tensor by swapping the indices q and r
and defining the compound indices P ≡ {p, r} and Q ≡ {q, s}. Consequently, the SVD reads:

V P
Q = UP

Nσ
ΣNσ
Nσ

WNσ
Q , (5.1)

Nσ represents the dimension of the matrix Σ and thus denotes the number of singular values of the system.
Now, the Coulomb tensor is represented via two third-order tensors UP

Nσ
and WNσ

Q , and a second-order
tensor ΣNσ

Nσ
. We may exploit the fact that the singular values σ contained in Σ are in descending order and

decay super-exponentially. This allows us to truncate the SVD according to:

σi
σ0

> ϵ, (5.2)

where σ0 is the first, and therefore largest singular value. ϵ represents the threshold that determines
the number of remaining singular values Ñσ after the truncation. In addition, ϵ may also be viewed
as the accuracy describing how much information of the original tensor is retained. Since the singular
values decay super-exponentially, most information is contained in the first few singular values and vectors,
respectively. It is noteworthy that the SVD does not change the size of the involved dimensions but results
in a reduction of storage since the original tensor is represented with fewer values which in turn requires
fewer bits. Also, the computational cost scales as O(NPNÑσ

NQ). Therefore, the number of truncated
singular values Ñσ affects the computation time, which is a beneficial property. Thereafter, the Coulomb
tensor V pr

qs is reconstructed with the truncated quantities:

V̄ P
Q = UP

Ñσ
ΣÑσ

Ñσ
W Ñσ

Q . (5.3)

We call V̄ P
Q the SVD truncated Coulomb tensor and in the next section we analyze a further factorization

of it.

5.3 Canonical Polyadic Decomposition

Despite the fact that the SVD leads to a reduction of the rank of the original Coulomb tensor, it is
reasonable to decompose the obtained tensors further. We assume the Coulomb tensor V pr

qs to be already
SVD decomposed and continue therefore with the truncated Coulomb tensor V̄ pr

qs . First, we introduce the
so-called optimized auxiliary field Coulomb vertex [36]

Γpr

Ñσ
≡ Upr

Ñσ

�
ΣÑσ

Ñσ

�1/2
. (5.4)

This ansatz allows us to formally write the truncated Coulomb tensor as follows:

V̄ pr
qs ≈ Γpr

Ñσ
ΓÑσ
qs . (5.5)
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The exchanged lower and upper indices indicate the conjugate transpose of the Coulomb vertex. This
representation follows immediately from the relation U = W T from the singular value decomposition.
Similarly to the Coulomb tensor, we may apply also a tensor rank decomposition for the optimized auxiliary
field Coulomb vertex in Eq. 5.5. Thereby, Γpr

Ñσ
is represented as a product of three tensors of second order

Γpr

Ñσ
≈ Πp

RΠ
r
RΛ

R
Ñσ

. (5.6)

Here, ΛR
Ñσ

is called the Coulomb factor and Πr
R are referred to as the factor orbitals [36]. Furthermore, we

define NR as the number of vertex indices R. NR influences the dimension of the Coulomb factors and the
factor orbitals and may therefore be interpreted as a measure of accuracy. The factorization in Eq. 5.6 is
known as the canonical polyadic decomposition [37].

In the end, the CPD yields the desired approximate factorization of the Coulomb integrals. The final form
for the approximated Coulomb tensor reads:

V̄ pr
qs ≈ Γpr

Ñσ
ΓÑσ
qs ≈ Πp

RΠ
r
RΛ

R
Ñσ

ΛÑσ
S ΠS

qΠ
S
s . (5.7)

In summary, we are able to factorize the Coulomb integrals in such a way that the original fourth-order
tensor is represented by a sequence of matrices, whereas the scaling of the computational cost with the
system size does not exceed O(N4).

5.4 Implementation

The SVD and CPD decomposed Coulomb integrals derived in Eq. 5.7 are now to be implemented numeri-
cally. Thereby, we want to point out that a tensor rank decomposition such as CPD has no unique solution.
On the contrary, there are infinitely many Coulomb factors and factor orbitals satisfying Eq. 5.6. Thus, we
are left with an optimization problem that is high dimensional, at least for realistic systems. The Coulomb
factors and factor orbitals may be fit in the following way:

(Λ,Π) = argmin
Λ,Π

||Πp
RΠ

r
RΛ

R
Ñσ

− Γpr

Ñσ
||2F , (5.8)

where || ||F denotes the Frobenius norm. There exist several ways to tackle this optimization problem in
Eq. 5.8. While local algorithms tend to require up to thousands of steps [38], global algorithms have turned
out to be more suitable for such problems. In this work we want to follow the ideas of Ref. [36] and use
a regularized alternating least squares (RALS) algorithm which represents an extension to the standard
alternating least squares (ALS) [39] algorithm defined via Eq. 5.8.
For simplicity, the following derivations are done with arbitrary tensors without Greek notation. We define
the third order tensor Tijk which shall be approximated by the matrices AiR, BjR and CkR. In contrast
to Eq. 5.8 where the factor orbitals appear quadratically, these three matrices are assumed to be distinct.
The ALS algorithm results in three minimization problems for the three matrices
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A(n+1) = argmin
A

||AiRB
(n)
jR C

(n)
kR − Tijk||2F ,

B(n+1) = argmin
B

||A(n+1)
iR BjRC

(n)
kR − Tijk||2F ,

C(n+1) = argmin
C

||A(n+1)
iR B

(n+1)
jR CkR − Tijk||2F .

(5.9)

Here n stands for the number of iterations. To obtain programmable equations, we can write the explicit
form for each matrix for the (n + 1)-th iteration. Here we take advantage of the fact that the argument
minimum appearing in each equation is equivalent to finding the roots. For the matrix A we may therefore
write:

0 =
∂

∂AiR
||AiRB

(n)
jR C

(n)
kR − Tijk||2F = −2B

(n)
jR C

(n)
kR Tijk + 2AiR

�
B

(n)
jR C

(n)
kR

�2
. (5.10)

With this, we are able to obtain the final equations for the implementation

A
(n+1)
iR = TijkB

jSCkS
�
G+

SR

�
A
,

(GRS)A = BjSCkSBjRCkR.
(5.11)

For brevity, we are omitting the iteration specification. G+
SR is the Moore-Penrose pseudo inverse [40, 41]

of the Gramian matrix GRS . For the matrices B and C the derivation is similar. In the final, we get:

B
(n+1)
jR = TijkA

iSCkS
�
G+

SR

�
B
,

(GRS)B = AiSCkSAiRCkR,

C
(n+1)
kR = TijkA

iSBjS
�
G+

SR

�
C
,

(GRS)C = AiSBjSAiRBjR.

(5.12)

Returning to our optimization problem, the computationally most expensive steps in Eqs. 5.11 and 5.12
are the calculation of G+ scaling with O(N3

R) and the contraction of Tijk with another matrix scaling as
O(N2

SOÑσNR).

Albeit the ALS algorithm guarantees the convergence of the product of the three second-order tensors A,
B and C to the third-order tensor T , we additionally consider the RALS algorithm [42]. The reason is that
there may be several similar minima for A in different regions. Then, updating B and C may change the
order of minima of A and hence the choice of the optimal A between iterations which significantly slows down
the convergence. Consequently, these fluctuations also occur when B and C are optimized. Such behavior
of slow convergence of the ALS algorithm is referred to as swamping [43]. To get a faster convergence to a
region for which each factor is globally minimized, an additional regularization is introduced. The extension
to the RALS algorithm is justified by the fact that considerably faster convergence has been observed for
real systems, such as for water adsorption on the hexagonal boron nitride monolayer [36]. For this ansatz,
the minimization problem reads
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A(n+1) = argmin
A

||AiRB
(n)
jR C

(n)
kR − Tijk||2F + λ

(n)
A ||AiR −A

(n)
iR ||2F ,

B(n+1) = argmin
B

||A(n+1)
iR BjRC

(n)
kR − Tijk||2F + λ

(n)
B ||BjR −B

(n)
jR ||2F ,

C(n+1) = argmin
C

||A(n+1)
iR B

(n+1)
jR CkR − Tijk||2F + λ

(n)
C ||CkR − C

(n)
kR ||2F ,

(5.13)

where λ denotes the regularization parameter.
The explicit solution is found by solving the minimization problem from Eq. 5.13 with the same approach
as in Eq. 5.10 for the ALS method. The final equations are

A
(n+1)
iR =

	
TijkB

jSCkS + λ
(n)
A A

(n)
iS

 �
G+

SR

�
A
,

(GRS)A = BjSCkSBjRCkR + λ
(n)
A δRS ,

B
(n+1)
jR =

	
TijkA

iSCkS + λ
(n)
B B

(n)
jS

 �
G+

SR

�
B
,

(GRS)B = AiSCkSAiRCkR + λ
(n)
B δRS ,

C
(n+1)
kR =

	
TijkA

iSBjS + λ
(n)
C C

(n)
kS

 �
G+

SR

�
C
,

(GRS)C = AiSBjSAiRBjR + λ
(n)
C δRS .

(5.14)

One central point in the RALS method is to determine the value of the regularization parameter λ. On
one hand, low values might not influence the behavior of the optimization algorithm enough and lead to
possible swamping like in the ALS method. On the other hand, too large values slow down the convergence
significantly. In the following, we make two assumptions as in Ref. [36], namely, the fit quality of the entire
problem, as well as the local change of the fit quality for each individual factor, do not change much between
two iterations. This allows us to define the so-called relative step size for each factor

s
(n)
X ≡ ||X(n) −X(n−1)||F

||X(n)||F
. (5.15)

For the sake of brevity, we define the relative step size by an arbitrary tensor X. Additionally, the relative
step size in each iteration is set to be approximately as large as a defined swamping threshold s0. This
estimation leads to the so-called estimated regularization parameter

λ̂
(n)
X ≡ λ

(n−1)
X

s2X
(n)

s0
, (5.16)

allowing to change the regularization between iterations according to the deviation of the relative step size
to the swamping threshold. Finally, the regularization parameter λ is given by a mixing of the estimated
regularization parameters and λ itself from the previous iteration
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λ
(n)
X ≡ αλ̂

(n)
X + (1− α)λ

(n−1)
X . (5.17)

Here the parameter α describes the weight of the estimated regularization parameter λ̂
(n)
X and the regular-

ization parameter λ
(n−1)
X from the previous iteration for the new λ

(n)
X .

In our code, we implement two main functions. The first one computes the singular value decomposition of
a given tensor of rank four and returns the truncated object. The second function executes the canonical
polyadic decomposition, where firstly the Coulomb tensor, given from the input, is again SVD truncated
and decomposed. The returned U and Σ tensors are used to build the optimized Coulomb vertex Γ (s. Eq.
5.4). Then, a tensor rank decomposition in terms of CPD of the optimized Coulomb vertex according to
Eq. 5.6 is performed. The latter optimization problem is consequently solved by means of the ALS or RALS
algorithm. To get an insight into the convergence behavior of our system both algorithms are implemented.
We formulate the convergence criterion of the underlying optimization problem as

||ABC − T ||F
||T ||F . (5.18)

This is the Frobenius norm of the difference between the matrices A, B and C and the tensor T normalized
with respect to the Frobenius norm of T . For brevity, we call Eq. 5.18 the normalized Frobenius norm.
Since ALS and RALS are iterative algorithms, we need to make initial guesses for the first iteration. While
the three matrices A(0), B(0) and C(0) are initialized as random matrices, the swamping threshold s0 and
the initial guess for the regularization parameter λ(0) are set to 1. The mixing parameter α is set to 0.8.
In our convergence analysis of the ALS and RALS algorithm, we modify also the values of s0 and λ(0) as
well as α to get insights of the system behavior.
After performing the low-rank approximation with the necessary input data, the coupled cluster energies
are analyzed. Our main focus lies in the analysis of the accuracy of the obtained energies using the low-rank
approximation with respect to the order of truncation and decomposition. Thereby, we explore the extent
to which utilizing low-rank approximated Coulomb integrals still give accurate results without losing too
much computational efficiency.

In summary, we present two low-rank factorization techniques. The SVD provides efficient treatment of
tensors by reducing storage requirements as well as computation time. This is accomplished with the
parameter Nσ giving the order of truncation. The second method discussed is the CPD, where we go a step
beyond by applying an additional tensor rank decomposition. In this case, the number of vertex indices
NR is the parameter determining the trade-off between computational efficiency and accuracy.
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6 Results and Discussion

In this chapter we present the results of the introduced methods for electronic structure calculations. We
analyze the Hartree-Fock algorithm and investigate its convergence with various system parameters. The
improvements in terms of electron correlations using the MP2 and CCSD methods are investigated. In
the final part, we give the main results of the calculations with the EOM-CCSD algorithm to obtain the
excited energy spectrum and analyze the impact of low-rank approximation techniques. Besides, we discuss
convergence criteria regarding our implemented tensor-rank decomposition algorithms.
All computations are performed with our model Hamiltonian according to Eq. 2.6. Further, if not specified,
all results are displayed in atomic units. We introduce the short forms HF and HO for Hartree-Fock and
harmonic oscillator, respectively.

6.1 Hartree-Fock Theory

We obtain the solutions of the Hartree-Fock equations using the introduced SCF algorithm (s. Sec. 3.5). The
first natural step is to investigate the change of the Hartree-Fock energy including two-electron interactions
compared to the non-interacting harmonic oscillator problem. The solution of the latter is well-known and
may be represented in the occupation number representation

EHO
n =

2"
i=1

$HO
n (i) = ω

�
n+

1

2

�
+ ω

�
n+

1

2

�
= ω (2n+ 1) .

Since Hartree-Fock theory solves for the ground state energy of the system including two-electron interac-
tions, most interest goes into the comparisons with EHO

0 = w. The comparison with the harmonic oscillator
turns out to be very useful, mainly to estimate the influence of the averaged electron-electron interaction
described by the Coulomb and exchange term. In addition, the ground state energy of the harmonic oscilla-
tor is used as a reference when it comes to changing the system parameters and analyzing the convergence
behavior of the algorithm.

Figure 2: Comparison between the HO and the HF ground state wave function and ground state energy.
The calculations are performed with ω = 1τ−1

0 and σ = 0.5 and with (a) Ngrid = 100 and (b) Ngrid = 5000.
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Fig. 2 shows the differences in energies and wave functions between the non-interacting (HO) and interacting
(HF) calculations. The first thing to recognize is that the ground state wave functions have a Gaussian-type
shape. In both plots the amplitude of the HF ground state wave function is smaller compared to the HO
one. In return, we find a slightly greater variance for the interacting model. Furthermore, we would like
to highlight two important points. The HF wave function does not change significantly with an increasing
number of grid points, however, the ground state energy EHF does. This follows from comparing the
Hartree-Fock energies obtained from 100 grid points (red) and 5000 grid points (green). The HF energy is
expected to converge with larger number of grid points Ngrid. As expected, the ground state energy of the
harmonic oscillator (blue) is less dependent on the grid size.

After the introductory comparison of the non-interacting and the interacting problem, we go into more
detail about the performed HF calculations. Thereby we want to take a closer look at the dependence of
EHF on the number of grid points and investigate the influence of the two system parameters ω and σ.

Figure 3: Dependence of the normalized Hartree-Fock energy on the number of grid points Ngrid. (a) The
energy is calculated with several σ values for ω = 1τ−1

0 . (b) Different ω values are used to compute the
energy with σ = 1. The energies are normalized with respect to EHF (Ngrid = 50) (s. Eq. 6.1). For small ω
values we adapt the grid to x ∈ [−100a0, 100a0] in order to obtain correct results.

In Fig. 3 we introduced the following normalization:

EHF (Ngrid) → EHF
N (Ngrid) =

EHF (Ngrid)

EHF (50)
, (6.1)

with the reasoning that we are at this point only interested in the qualitative behavior of our model with
respect to the system parameters. This gives not only a better understanding of our model but also allows
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us to identify the range of parameters most suitable for the upcoming coupled cluster calculations.
We first discuss Fig. 3a showing EHF (Ngrid) for different σ values. For small values like σ = 0.01,
EHF (Ngrid) converges significantly slower compared to larger values of σ. Even when increasing Ngrid

from 1000 to 2000 no convergence is observed. This suggests that for σ = 0.01 more grid points would be
required to obtain relatively accurate results because in general convergence of the energy with the number
of grid points is expected. However, such a large number of grid points significantly increases the numerical
cost due to the most demanding operations in our SCF algorithm, the computations of the Coulomb and
exchange term, which scale with O(N2

grid). We conclude that very small values for σ result in fluctuations
for small Ngrid and slow convergence.
For the remaining σ plots, we observe a faster convergence. However, for σ = 0.1 still a relatively slow
convergence is shown which can be attributed to the more amplified Coulomb potential. Thus, small σ
values still lead to slow convergence. Looking at the form of the Coulomb potential in our Hamiltonian,
we recall the 1/σ dependence. Thus, we may also argue that for small σ the Coulomb term is much larger
than the kinetic and harmonic potential one which is the reason for the strong deviations of the energy
compared to larger σ. On the other hand, for large σ values only small deviations are noticeable. Here
we argue similarly, namely the influence of the interaction term is vanishingly small. In summary, Fig. 3a
suggests reasonable results for σ values in the range of [0.1, 1] as well as a number of grid points equal or
greater than 500.
Fig. 3b shows a similar behavior of the energy as a function of the number of grid points for ω ∈
[0.01τ−1

0 , 1τ−1
0 ]. We start with the interpretation for the smallest value ω = 0.01τ−1

0 . Again, an increase
in the energy with Ngrid is recognizable. In this case, however, we find no convergence with the number
of grid points. We explain this behavior by investigating the Hamiltonian (s. Eq. 2.6). For small ω, the
harmonic potential term is strongly suppressed. This implies that the functional of the energy is dominated
by the 1/x Coulomb-like term. Numerically, small numbers of grid points, are not able to fully resolve this
behavior, similarly to the σ = 0.01 plot of the left graph. In this case, however, this is noticeable up to
Ngrid = 1000 due to the x2-dependence of the harmonic potential and the wider grid [−100a0, 100a0] used.
Only for Ngrid ≥ 2000 the suppression of the harmonic potential is captured correctly and consequently
convergence to lower energy values is expected. For ω = 0.1τ−1

0 smaller changes in the energy are seen due
to the consequences of the wider grid. Lastly, ω = 10τ−1

0 results in a big weight of the harmonic oscillator
potential as well as a strong electron correlation due to the narrowed harmonic potential. Thus, an increase
with Ngrid is expected up to a certain number of grid points. In our case it is 500, where we find enough
supporting points to fully represent the potential and to achieve convergence.

In conclusion, we find that the computed HF energies are difficult to converge for small and large values
for σ and ω, respectively. Up to this point we were only concerned about the convergence of the energy
as a function of the number of grid points. We further want to investigate the convergence by means of
our SCF algorithm. We analyze the two numerical convergence conditions, namely the convergence of the
energy and the reduced density operator (s. Eq. 3.17 and Eq. 3.18). We find both convergence criteria are
fulfilled after a few steps for σ, ω ∈ [0.1, 1]. Thus, we are left investigating more extreme values. We present
one particular example with ω = 1τ−1

0 and σ = 0.01 while using 500 grid points (s. Fig 3).
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Figure 4: Degeneracy of the HF ground state for the parameters ω = 1τ−1
0 and σ = 0.01. The two possible

ground state wave functions using 500 grid points are shown.

The numerical results show that for this example convergence is not reached. However, it is important
to point out, that while EHF is converged with sufficient accuracy, the reduced density matrix, which as
mentioned in Sec. 3.5, fails to converge using the employed SCF algorithm. For this example, Eq. 3.18
converges to a constant value greater than our convergence criterion $ < 10−6. A constant change of the
reduced density matrix can be interpreted in a way that the algorithm jumps back and forth between
two solutions, which have non-vanishing off-diagonal Fock matrix elements. These convergence difficulties
together with the slow convergence of the energy with Ngrid have led us to conclude that this parameter
range will not be suitable for the purpose of the present study. Fig. 4 shows the two alternating states.
In consequence, it is reasonable to work within the range of values [0.1, 1] to obtain fast convergence, not
only with respect to the number of grid points Ngrid (s. Fig 3), but also with respect to the convergence
condition from our SCF algorithm itself. Through empirical investigations, it turns out that the value set
σ, ω = {0.5, 1τ−1

0 } as well as Ngrid = 500 are good choices. We will justify the specific choice of σ and ω in
the next chapter on coupled cluster theory in more detail.

We conclude our analysis of the Hartree-Fock theory by investigating the influence of the two-electron
interaction term. We define the parameter 0 ≤ g ≤ 1 describing the interaction strength of the system.
The modified Hamiltonian consequently reads:

Ĥ =

2"
i=1



−1

2

∂2

∂x2i
+

1

2
ω2x2i

�
+

g

|x1 − x2|+ σ
.
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Figure 5: HF energy as a function of the interaction strength g. For comparison, we additionally plot the
HO ground state energy. We choose ω = 1τ−1

0 , σ = 0.5 and 500 grid points.

As the interaction strength is reduced linearly, the Hartree-Fock energy shows a polynomial decrease (s.
Fig. 5). This implies that with decreasing g, the interaction strength and thus the repulsion between the
electrons becomes weaker leading to a reduction in the overall energy of the system. The non-linear behavior
of the energy can be attributed to the Coulomb-like potential term. The Fock matrix is set up with the
Coulomb and exchange matrices which are depending on g. In each SCF iteration, the wave function is
updated by diagonalization of the Fock matrix. This wave function is then used to compute the ground
state energy as well as the new reduced density matrix which in turn flows back into the calculation of the
J and K. Consequently, no linear behavior can be expected for 0 ≤ g ≤ 1.

6.2 Post-Hartree-Fock Theories

All post-Hartree-Fock methods require two precomputed quantities, the orbital energies $p and the anti-
symmetrized Coulomb tensor V −pq

rs . The orbital energies are obtained from the SCF algorithm and the
antisymmetrized Coulomb tensor is computed using the introduced trapezoidal integration method. In
passing, we mention that the calculation of V pq

rs by integration techniques can partly be verified such that:

�ΦHF |2Ĵ − K̂|ΦHF � =
�

dx1

�
dx2 Φ

∗
0(x1)Φ

∗
0(x2)

1

|x1 − x2|+ σ
Φ0(x1)Φ0(x2).

For the specific case with the set of generic indices {p = 1, q = 1, r = 1, s = 1}, the two-electron integral
gives the same result as the expectation value �2Ĵ − K̂� representing the interaction term in the Hartree-
Fock equations. Although the integral can only be verified with this combination of spin orbital indices, it
is an indication of the validity of our integration method.

Next, we analyze the energy dependence of our system with different parameters similar to the discussion
on the Hartree-Fock theory. Thereby we especially focus on the influence of ω and σ while taking a fixed
number of 500 grid points which has proven to be a favorable balance between accuracy and computational
cost (s. Fig. 3).
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Figure 6: Comparison of the HF, MP2 and CCSD energies with variation of (a) σ and (b) ω. In addition,
we plot the MP2 and CCSD correlation energies, respectively. The calculations are performed with 500
grid points and 4 spin orbitals.

First of all, the comparison of the two graphs in Fig. 6 shows that our system is much more sensitive to
changes in σ than for ω, i.e. the energies of the Hartree-Fock and post-Hartree-Fock methods differ most
for very small σ values (s. Fig. 6a). This means at the same time that the singularity behavior of the
Coulomb-like potential is favored. In other words, small σ enhance the electron-electron interaction term in
our Hamiltonian such that the kinetic and harmonic potential parts become less important. The difference
between the Hartree-Fock and post-Hartree-Fock energies becomes vanishingly small for larger σ, implying
a smaller and smaller electron-electron correlation. This is also in agreement with the MP2 and CCSD
correlation energies shown in the subplot of Fig. 6a where the correlation energies converge to zero as σ
increases. The difference between MP2 and CCSD is manifested best for small σ, where CCSD leads to
lower energies. This is consistent with the order of perturbation applied in MP2 compared to CCSD.
Fig. 6b shows the expected behavior of the energies with increasing ω. Bigger values imply a greater
contribution of the harmonic potential to the energy. Furthermore, in the subplot it is shown that the
correlation energy is again converging to zero as ω increases and the Coulomb potential is suppressed. In
contrast to the correlation energies of Fig. 6a, the values of ω do not influence the total energy that much.
We conclude that a reasonable choice of σ and ω has to be determined by the behavior of the algorithm.
Thereby, we are more flexible in designating a value for ω. The value for σ, however, has to be chosen
more carefully. The second criterion for the choice of these values is that our system, although it is just an
artificial model, should represent the same behavior as a real physical system. Commonly, the correlation
energies are in the percentage range of the total energies [44]. For our system we find that the value pair
{σ, ω} = {0.5, 1τ−1

0 } is a valid candidate. With this not only a smooth convergence of our algorithm is
guaranteed but also the behavior of real physical models can be simulated.

After the determination of the system-specific parameters we investigate the model-independent parameters
Ngrid and NSO, representing the number of grid points and the number of spin orbitals, respectively.
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Figure 7: (a) Energy dependence on the number of grid points Ngrid using 4 spin orbitals for the HF, MP2
and CCSD methods. (b) Energy dependence of the MP2 and CCSD methods on the number of spin oribtals
NSO for 500 grid points. In both cases, we use ω = 1τ−1

0 and σ = 0.5.

Fig. 7a shows the energy dependence of the Hartree-Fock and both post-Hartree-Fock methods on the
number of grid points. As Ngrid increases all three energies converge to a certain value. This behavior is
expected since the energy should only depend on Ngrid up to a rather low number of mesh points and then
be independent. Further, we see that the improvements in accuracy gained from the post-Hartree-Fock
methods result in a reduction of energy. It is expected that the CCSD corrections provide more accurate
results because the MP2 correction is just the first iteration of the CCSD algorithm. Furthermore, CCSD
is exact for two-electron systems.
Fig. 7b gives the energy dependence on the number of spin orbitals. Since Hartree-Fock assumes the lowest
energy configuration where the two electrons occupy the lowest spatial orbital, the first value corresponds
exactly to EHF . Thus, also with the MP2 and CCSD methods no improvements can be achieved when
considering only 2 spin orbitals. The more spin orbitals are involved, the better the accuracy. A larger
number of spin orbitals means at the same time that more excitations are considered and with this, we are
able to capture the real behavior of our system better and better. In passing we mention that formally
CCSD is exact for systems with two electrons since higher excitations do not contribute. Although a higher
NSO provides more accurate outcomes, we stick for the rest of this chapter to NSO = 4. This allows a lucid
and concise discussion of the EOM-CCSD results. Further, if not already precomputed, the computational
cost is kept within limits since the EOM-CCSD algorithm scales with O(N6

SO).

The last part of this section is dedicated to the EOM-CCSD calculations. Recall that our algorithm relies
on the direct diagonalization of the EOM-CCSD matrix. Depending on the considered number of spin
orbitals a different number of energies is obtained. As in the discussion of Fig. 7b, we restrict ourselves
to four spin orbitals, also for the reasoning that only the lowest few excited states are of interest. The
EOM-CCSD matrix has the dimension of (NS +ND)× (NS +ND) with NS = 4 and ND = 16. To justify
this, we look at the matrix elements of the singles-singles block of the EOM-CCSD matrix �Ψa

i |H̄|Ψc
k�.

Thereby, the orbitals i and a implicitly account for the two possible spin configurations. Thus, there are a
total of 22 possible single excitations. The same considerations apply to the doubly excited matrix elements
�Ψab

ij |H̄|Ψcd
kl �, where we find the 24 possible ways of two electrons to be excited according to the possible
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combinations of the indices i, j and a, b. Consequently, the EOM-CCSD matrix with dimension 20 × 20
yields twenty energies by its diagonalization.

Figure 8: Energy spectrum obtained by the EOM-CCSD algorithm for 4 spin orbitals. We are using
ω = 1τ−1

0 , σ = 0.5 and Ngrid = 500. The numbers in the brackets denote the degree of degeneracy.

In Fig. 8 we plot the energies resulting from the EOM-CCSD algorithm using four spin orbitals. The
corresponding values are shown in Tab. 1. Of the total of twenty energies, only six are distinctive. These
degeneracies stem from the possible spin configurations of a system with two electrons

S = 1 : MS = −1, 0, 1 ,

S = 0 : MS = 0,

where S denotes the total spin quantum number and MS the magnetic quantum number along a selected
axis. States attributed with S = 1 are the so-called triplet states and those with S = 0 are the singlet
states. In Fig. 8, e.g. , the ground state E0 is a triplet state with S = 1.

Table 1: Obtained energy values for the excited energy spectrum by the EOM-CCSD algorithm, rounded
to two decimal places.

i Ei [EH ]

0 -2.81
1 1.90
2 2.54
3 2.95
4 3.80
5 5.65

65



Results and Discussion

At this point, however, we need to further distinguish between physically possible and forbidden states.
The eigenvalues obtained by our EOM-CCSD code are built from the fact that each index associated with
an electron introduces a factor of 2 in terms of the possible spin orientations. But, we did not take into
account that for electrons the Pauli exclusion principle and the demand of antisymmetry must hold too.
That being said, the EOM-CCSD code also produces non-fermionic states, where e.g. two particles with
the same spin occupy the same spatial orbital. Despite this non-physicality, we are eager to look also at
the eigenvalues of the non-fermionic eigenstates to learn more about the low-rank factorization accuracy in
the upcoming section. The physically relevant states, however, are shown in Fig. 9.

Figure 9: Six allowed electron configurations for our model considering two spatial orbitals: Hartree-Fock
ground state singlet (red), triplet and singlet state arising from single excitations (blue) and singlet resulting
for the double excitation (black).

Fig. 9 shows on one hand the Hartree-Fock electron configuration describing the lowest spatial orbital
occupied by two spins with opposite orientations. On the other hand, four possible scenarios for an electron
to be excited in the orbital of higher energy arise. In Fig. 9, the first two configurations seen in blue
describe the triplet states for MS = 1 and MS = −1. The other two describe the triplet state with MS = 0
but also the singlet state with the same magnetic quantum number. Both form a superposition of these
two configurations, where the triplet state is symmetric, and the singlet state is antisymmetric. The last
configuration represents the only possibility for a doubly excited state with a total spin of zero.
To identify the allowed states from our EOM-CCSD outcomes, we do a further analysis of the eigenvectors
R and their components R1 and R2 from the EOM-CCSD equation (s. Eq. 4.35). The four possible single
excited states are found by demanding |R1|2 ≈ 1, i.e. states with almost zero R2 contribution. The doubly
excited state is found by applying the Pauli principle and the antisymmetry condition to every R2 vector.
We find that the lowest excited energy is the triplet with E = 2.54EH . The singlet arising from the single
excited state has an energy of E = 2.95EH and the singlet from the double excitation occupies the highest
state of these five with E = 3.80EH . The CCSD ground state energy E = 1.90EH remains unchanged since
our EOM-CCSD method only considers the subspace of single and double excitations. It is worth noting
that with a very small σ, the contribution of the electron interaction can be amplified to such an extent
that the triplet state becomes energetically more favorable compared to the ground state energy of CCSD.
This could also be the case with the inclusion of more spin orbitals, where the size of the basis set is
expanded allowing for a more accurate description of the electronic wave function.
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Table 2: Non-fermionic ground state energy E0 of the EOM-CCSD method for different numbers of spin
orbitals NSO.

NSO E0 [EH ]

4 -2.81
6 -4.78
8 -6.69
10 -8.61
12 -10.54

Tab. 2 shows the change of the non-fermionic ground state energy E0 with the inclusion of more and more
spin orbitals. We conclude that E0 decreases linearly by approximately the same magnitude as the CCSD
ground state energy for every additional two spin orbitals. This observation suggests that the additional
pair of spin orbitals captures a significant amount of the correlation energy. However, for an increasing
number of spin orbitals the ground state energy is expected to converge. The proper convergence behavior
may be explained in terms of the Kato cusp condition [45] which states that the electronic wave function
must satisfy a set of cusp conditions that prescribe the derivative discontinuity at the coalescence point of
two electrons. At zero interparticle separation, the Coulomb interaction diverges, necessitating the kinetic
energy also to diverge such that the sum of both is finite. The latter divergence is displayed as a cusp in the
electronic wave function at the point of collision. For a three-dimensional system, the Kato cusp condition
for two electrons reads:

∂Ψ̂

∂r⃗12

$$$$
r⃗12=0

=
1

2
Ψ(r⃗12 = 0),

where Ψ̂ is Ψ averaged over a small sphere about the singularity. In our case, we attained the electronic wave
function with single-particle orbitals giving very accurate energies. However, such finite linear combinations
are not capable of representing points of discontinuity in the wave function. In conclusion, smooth basis
functions slow down the rapid convergence due to the misrepresentation of the cusp. Due to the high
computational demand, it is not easy to predict the convergence of the system under study. We perform
our EOM-CCSD calculations exclusively for the NSO in Tab. 2. It is estimated that with around 100 spin
orbitals convergence might be reached. However, further investigations are required to confirm the exact
number of spin orbitals.

6.3 Low-Rank Approximation

In this section, the focus is on solving the CCSD and especially the EOM-CCSD algorithm by LRA meth-
ods. We put special focus on the thresholds where the description with the LRA-fed quantities leads to
unacceptable deviations. This gives us an estimate of how coarse our approximations can be made to still
obtain accurate results. Low-rank approximations approximate the Coulomb tensor V pq

rs by tensors of lower
rank. In the following, we primarily focus on the physical results rather than going into the details of con-
structing the approximated Coulomb tensors. However, we investigate the convergence of the RALS and
ALS algorithms. This is essential since particularly the RALS algorithm relies on system-specific parameters
which influence its convergence which in turn impacts the computation time and the accuracy of the results.
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As a first step, we consider the CCSD algorithm, which is solved with the approximated Coulomb tensor
Ṽ pq
rs , obtained by the singular value decomposition.

Figure 10: (a) Computation of the CCSD energy with the SVD truncated Coulomb tensor for several
numbers of singular values Nσ or equivalently for several accuracies $. (b) Singular values of the Coulomb
tensor V P

Q (s. Eq. 5.1). We use ω = 1τ−1
0 , σ = 0.5, Ngrid = 500 and 4 spin orbitals.

Fig. 10a shows the ground state energy resulting from our CCSD algorithm computed with the approx-
imated Coulomb tensor. Thereby, different accuracies $ are chosen which determine how many singular
values are kept (s. Eq. 5.2). The number of total singular values available is determined by the size of the
SVD decomposed quantities according to Eq. 5.1 yielding Nσ = pr = qs. Thus, choosing four spin orbitals
implies that the maximum number of singular values is 4 · 4 = 16. Fig. 10a indicates that the truncation
of the original Coulomb tensor up to 3 singular values (Ñσ = 3 in Eq. 5.3), corresponding to an accuracy
of $ = 10−5 − 10−15, gives reasonably accurate results. This suggests that we can truncate the Coulomb
tensor by more than 3/4 without losing any relevant information. With this, both computation time and
storage are reduced.
Fig. 10b gives the connection between the accuracies $ shown in Fig. 10a and the singular values σi. It
is clear that high accuracies are achieved with a small number of singular values since they decay super-
exponentially. The subplot shows the range σi ∈ [3, 15] where the logarithmic y-axis confirms the explained
behavior. This also underlines why three singular values are kept for a relatively wide range of $, allowing
one to freely choose the lowest accuracy, here $ ≈ 10−5, without losing information. Finally, we want to
mention that the choice of the perfect Nσ is not only system specific but also depends on the considered
number of spin orbitals and desired accuracy.
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We apply the same considerations to the EOM-CCSD method.

Figure 11: Energy spectrum obtained by the EOM-CCSD algorithm for 4 spin orbitals with the SVD
truncated Coulomb tensor as a function of Nσ. We are using ω = 1τ−1

0 , σ = 0.5 and Ngrid = 500.

Fig. 11 shows the already familiar energy spectrum from Fig. 8. To be precise for Nσ = 16, exactly the
same plot is shown. Now, with decreasing number of singular values, the energies are slightly shifted. While
E0, E1 and E5 remain relatively constant, the energies levels E2-E4 vary, especially for Nσ ≤ 2. The latter
observation is consistent with the behavior observed in the CCSD method. In addition, with only one
singular value retained, there seem to be more degeneracies as E2 and E3 merge.

In the next part of this section, we focus on the convergence analysis of the ALS and RALS algorithms,
respectively. As mentioned earlier, this is a rather numerically motivated analysis, but it is essential for the
CPD especially when it comes to realistic systems with large basis sets.
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Figure 12: Convergence analysis of the ALS algorithm. The normalized Frobenius norm with respect to
the number of ALS iterations is shown. We perform five independent simulations with the Coulomb vertex
Γpr
Nσ

as input.

Fig. 12 shows the convergence criterion defined by Eq. 5.18 with respect to the number of self-consistent ALS
iterations for five individual simulations. It is shown for all simulations that the normalized Frobenius norm
fluctuates strongly in the first 20 iteration steps. Afterwards, all simulations show a common convergence
which, however, oscillates around a certain value. The initial guess for the matrices denoted by A, B and
C is random. This suggests that certain guesses yield more accurate results than others. We want to
mention that empirical studies showed that, due to the nature of the random initial matrices, also less
accurate simulations with ||ABC − T ||F / ||T ||F ≈ 10−11 are possible. Also, some simulations showed no
fluctuations in the first 20 iteration steps resulting in instant convergence. In summary, for large enough
values of NALS convergence can be achieved independent of the initial guesses for the matrices. Further,
depending on the initial guess, one may immediately find a minimum and obtain instant convergence.
However, such behavior is only expected for relatively small systems. In general, the convergence of the
ALS algorithm usually requires several hundreds of steps.

70



Results and Discussion

Figure 13: Convergence analysis of the RALS algorithm. The normalized Frobenius norm with respect to
the number of RALS iterations is shown. We specifically investigate the convergence behavior by varying
(a) the swamping threshold s0, (b) the regularization parameter λ(0) and (c) the mixing factor α. As input
the Coulomb vertex Γpr

Nσ
is used.
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We now turn to the discussion of the implemented RALS algorithm. Fig. 13 shows the convergence behavior
for different choices of the three tunable parameters in our RALS algorithm. Thereby, one parameter is
varied while the others are kept fixed. The values of the fixed parameters are chosen to be the default ones
introduced in Sec. 5.4. The variation of s0 and λ in Fig. 13a and Fig. 13b, respectively, looks quite similar.
The swamping threshold s0 influences the estimated regularization parameter λ̂ (s. Eq. 5.16) in such a way
that values greater than one result in a bigger contribution of λ(n−1) to λ(n) and vice versa for values smaller
than one. The influence of λ(0)-values greater than one may be viewed as a bigger contribution from the
old matrix, e.g. A(n) (s. Eq. 5.14). Otherwise, small λ(0)-values lead to a smaller contribution of A(n) from
the previous iteration. For both cases, the quantities of the previous iteration are more weighted in the
present iteration for values greater than one and less weighted for values smaller than one. Furthermore,
both figures have in common that in the first 7-8 steps a monotonic convergence is observed. After that,
however, the normalized Frobenius norm increases again to find convergence after the mentioned 20 steps.
This behavior can be understood as the algorithm trying to find a local minimum but overshooting it and
thus having to find a new one, which in turn causes the norm to increase.
Fig. 13c on the other hand depicts the dependence of the convergence on the variation of α. Again, local
minima are found after a few iterations, but the algorithm seems to have more trouble finding and staying
at a minimum, unlike for the other two parameters. For α = 1, the contribution of λ(n−1) vanishes and for
values of the mixing parameter greater than one, λ(n) is even diminished by the amount of λ(n−1). Very
small values like α = 0.1 lead to slow convergence. This suggests that the contribution of λ(n−1) to λ(n)

should be small compared to the one of λ̂(n) (s. Eq. 5.17).
In summary, the default values of the three investigated parameters seem to be also suitable for our system.
Especially for the reason that the change of one parameter, in the end, influences the other two, which
makes their determination even more extensive. Further, we want to point out, that also for the RALS
algorithm, the random nature of the initialized matrices A, B and C may lead to different convergence
behaviors for different simulations. Nevertheless, the obtained accuracy is again sufficient for our purposes
to compute of the energy spectrum.

After the confirmation that the default values of the RALS parameters are also suitable for our model,
we want to go further and extend the discussed LRA obtained with the SVD by the CPD. Thereby, the
SVD truncated Coulomb tensor Ṽ pq

rs is further decomposed. At this point, the accuracy ϵ of the SVD
can be chosen arbitrarily, however, we continue with the found truncation to 3 singular values since it is
computationally efficient while yielding accurate results.
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Figure 14: Energy spectrum obtained by the EOM-CCSD algorithm for 4 spin orbitals with the CPD
truncated Coulomb tensor as a function of the number of vertex indices NR. As the starting point for the
CPD algorithm, we choose Nσ = 3 corresponding to an SVD accuracy of $ = 10−5. The RALS algorithm
is executed with a total of 5 iterations. In addition, we plot another set of the five energy levels (each in
a light color and with dotted lines) but with 100 iteration steps. The parameters ω = 1τ−1

0 , σ = 0.5 and
Ngrid = 500 are set.

In Fig. 14 the EOM-CCSD energy spectrum as a function of the number of vertex indices NR is displayed.
NR is linked to the dimension of the Coulomb factor and the factor orbitals (s. Eq. 5.6) which are deter-
mined by the RALS algorithm. At this point, however, the choice of NR is arbitrary. Fig. 14 shows, starting
from the SVD approximated energies with Nσ = 3, that for NR ≥ 10 no visible change in the energy is
present. Similarly, to the energy spectrum obtained with the SVD, we can conclude that with NR = 10
reasonable accurate results are still obtained. For a lower number of vertex indices, all energy levels, except
E1, change.
It is important to note that in Fig. 14 our RALS algorithm stops after five iterations. We justify this choice
by the fact that for sufficiently large NR, in our case 10, the normalized Frobenius norm introduced in
Eq. 5.18 converges very fast. Therefore, for these cases, on the one hand, we do not need a convergence
condition that breaks the RALS algorithm, since convergence is guaranteed anyway. On the other hand, if
there are only a few iterations, the speed of convergence is more apparent. For the case of smaller NR, we
found empirically that even for 100 iterations the accuracy as for larger NR is not achieved. In this case the
Frobenius norm is on the order of 10−1. The latter finding therefore justifies our choice of a few iterations.
Still, Fig. 14 also shows the results obtained with 100 iterations in the respective light color and dotted
lines. For NR ≥ 10 there is no visible difference between both calculations. For smaller numbers of vertex
indices slight deviations are recognizable, but sufficient accuracy is not guaranteed. Accordingly, due to
the random nature of the initialized matrices and since convergence is not reached, every CPD simulation
results in slightly different energies for small NR. We want to emphasize here that for real systems the
RALS algorithm with the convergence condition and not with a fixed number of iterations is recommended
due to the probable slower convergence.
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In conclusion, with Nσ = 3 and NR = 10 accurate results compared to the reference results are obtained.
More generally speaking, we found a low-rank approximation of the Coulomb tensor using a combination
of SVD and CPD obtained by a RALS algorithm. As a result, while the overall computational cost of
an iterative EOM-CCSD calculation could be substantially reduced by employing such a LRA, the same
results up to a certain accuracy from the reference EOM-CCSD algorithm can be acquired.
Furthermore, while initially taking the choice of NR arbitrarily, it turns out that NR ≈ 5 ·Nσ represents a
reasonable estimation. This is in agreement with Ref. [36], where NR was found to be an order of magnitude
lower than the number of real space grid points of the original factors of the Coulomb integrals.
More generally, we have found that the interplay between Nσ and NR can be used to systematically reduce
the computational cost while obtaining arbitrary accurate results.
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7 Conclusion and Outlook

This work presents the application of low-rank approximation (LRA) techniques to improve correlated wave
function-based theories, focusing primarily on the equation of motion coupled cluster singles and doubles
(EOM-CCSD) theory. We examine, as a proof of principle, a system with two interacting electrons confined
in a one-dimensional harmonic potential.

To achieve our main objective, we initially set up a closed-shell Hartree-Fock algorithm that provides the
Hartree-Fock ground state energy and orbital energies by treating the electron-electron interaction in a
mean-field approximation. In addition, we investigate the convergence behavior of the algorithm with
respect to various system parameters, allowing us to obtain a balance between accuracy and computational
cost. The Hartree-Fock wave functions are employed to compute the two-electron (Coulomb) integrals, based
on which the Coulomb tensor is constructed. The Hartree-Fock orbital energies and the antisymmetrized
Coulomb tensor serve as the starting point for the post-Hartree-Fock methods. By applying the second-order
Møller Plesset perturbation (MP2) and coupled cluster singles and doubles (CCSD) theories, we achieve
improvements in the ground state energy by incorporating a portion of the electronic correlation energy.
Similarly to the analysis of the Hartree-Fock method, also for the CCSD method a convergence analysis is
carried out enabling us to vary our system parameters such that the behavior of real molecular systems can
be simulated. Through the EOM-CCSD algorithm, not only the ground state energies but also the excited
state energies are obtained. The code requires the same input as the other two post-Hartree-Fock methods,
along with the additional singles and doubles amplitudes calculated by the CCSD algorithm itself. The
results of the EOM-CCSD algorithm reveal the presence of singlet and triplet states; they are however not
only restricted to the fermionic case. The further requirement of antisymmetry and the Pauli principle
yields the physically allowed solutions for the two interacting electrons.
In the final part of this thesis, we analyze the impact of employing the LRA to the Coulomb integrals on
the outcomes of the aforementioned algorithms. Initially, we focus on the singular value decomposition
(SVD) technique. Our findings demonstrate that, for our model, a substantial truncation of the Coulomb
tensor is feasible while still maintaining accurate results within a given threshold. Subsequently, we go a step
further and utilize the results of the SVD-decomposed and truncated Coulomb tensor to perform a canonical
polyadic decomposition (CPD). This tensor factorization is obtained using a regularized alternating least
squares algorithm (RALS) where the Coulomb tensor is approximated by six matrices, allowing us to
potentially further reduce computational costs of EOM-CCSD calculations without sacrificing accuracy.
We investigate the resulting energy spectrum for both the SVD and CPD methods and observe that the
truncation of the Coulomb tensor in SVD, as well as its decomposition in CPD, influences the accuracy.
This flexibility enables us to strike a balance between numerical efficiency and physical accuracy, depending
on the specific problem at hand. However, the computation time and the memory footprint pose significant
bottlenecks for most molecular systems making it essential to select the aforementioned interplay to achieve
optimal computational efficiency.

In summary, we have successfully achieved the primary objective of this thesis, which is the application of
LRA techniques to the Coulomb integrals in EOM-CCSD theory. The discussion and implementation of
the methods leading to the development of the EOM-CCSD theory are crucial and constitute a significant
portion of our work. We are able to confirm that the two tensor decomposition methods introduced herein
have the potential to reduce the computational cost while maintaining the desired level of accuracy. The
trade-off between computational efficiency and accuracy can thereby systematically be varied by the two
parameters Nσ and NR. This permits an efficient computation using the EOM-CCSD algorithm, facilitating
the investigation of excited energy spectra.
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Potential future work could include the extension of the presented equation of motion algorithm to the
perturbative triplets regime, EOM-CCSD(T), which is recognized as the current benchmark (gold stan-
dard) in computational chemistry. Moreover, many opportunities arise when it comes to the reduction of
computational expenses by means of the LRA of the Coulomb integrals. This includes exploring alternative
tensor decomposition techniques, such as the Cholesky decomposition, as well as improving and extending
the presented approaches. One possible enhancement to the presented RALS algorithm, as proposed in
Ref. [36], could involve the additional treatment of doubly occurring factor orbitals. Another avenue worth
considering is the accelerated RALS technique [46] as one of several potential extensions.
A further very interesting topic arises regarding the ab inito prediction of electronically and vibrationally
excited state properties for real materials employing time-dependent EOM-CCSD theory.
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Appendices

A CCSD Amplitude Equations

T̂1 amplitude equation:
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T̂2 amplitude equation:
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Here, P̂pq denotes the permutation operator which action is defined as:

P̂pqfpq = fpq − fqp.
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B Contributions to the EOM-CCSD Matrix

Singles-singles block:
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