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Zusammenfassung

Die lineare Instabilität der achsensymmetrischen stationären Strömung in thermo-
kapillaren Flüssigkeitsbrücken mit hoher Prandtlzahl wurde numerisch untersucht.
Die Strömung wird primär durch den thermokapillaren Effekt angetrieben, welcher
Schubspannungen proportional zum Gradienten der Oberflächentemperatur erzeugt.
Die Flüssigkeitsbrücke ist von einem geschlossenen oder offenen Zylinder umgeben.
Im Falle eines offenen Zylinders wird die Flüssigkeitsbrücke einem axialen Gasstrom
mit vorgegebener Temperatur ausgesetzt. Im Grundzustand wird die deformierba-
re Grenzfläche zwischen der Flüssig- und Gasphase entweder als hydrostatisch be-
stimmt oder als dynamisch deformierbar angenommen, wobei die Deformation durch
die Flüssigkeits- und Gasströmung verursacht wird. Generell wird die Strömung in
beiden Phasen gekoppelt berechnet. Basierend auf dem achsensymmetrischen Grund-
zustand wird eine lineare Stabilitätsanalyse durchgeführt, um die kritische thermo-
kapillare Reynoldszahl in Abhängigkeit des Länge-zu-Radius Seitenverhältnisses, des
Flüssigkeitsvolumens, der Gravitationskraft und der Durchflussrate zu berechnen. Da-
bei werden verschiedene Näherungen der Grundgleichungen herangezogen, die von der
Oberbeck–Boussinesq Approximation bis hin zum realitätsnahen Modell reichen, bei
dem die Temperaturabhängigkeit aller thermophysikalischen Parameter berücksichtigt
wird. Unter allen Kontrollparametern ist die kritische Reynoldszahl besonders emp-
findlich gegenüber der Richtung der Gasströmung, da das Gas hauptsächlich die Grenz-
flächentemperatur beeinflusst, die für den thermokapillaren Antrieb entscheidend ist.
Sowohl für geschlossene als auch für offene Zylinder mit aufgedrängter axialer Gass-
trömung haben dynamische Oberflächenverformungen lediglich einen mäßigen Einfluss
auf die kritische Reynoldszahl. Für zu hohe Temperaturunterschiede innerhalb der
Flüssigkeitsbrücke führt die Oberbeck–Boussinesq Approximation aufgrund der star-
ken Viskositätsschwankungen zu ungenauen Vorhersagen.

Neben den Stabilitätsanalysen wird ein reduziertes Einphasenmodell für die flüssige
Phase entwickelt, welches herkömmliche Einphasenmodelle verbessert. Im verbesserten
Einphasenmodell wird die üblicherweise konstant angenommene Biotzahl durch eine
von der Höhe abhängige Biotfunktion ersetzt, die basierend auf zahlreichen Zweipha-
sensimulationen durch den räumlich aufgelösten Wärmestrom gewonnen wird. Durch
die Verwendung der Biotfunktion profitiert das neue Einphasenmodell zum einen von
zusätzlich gewonnener Genauigkeit (bedingt durch das Zweiphasenmodell) und zum
anderen von den reduzierten Rechenkosten bezogen auf Zweiphasenberechnungen.

Alle Berechnungen wurden mit dem Code MaranStable durchgeführt, welcher im
Rahmen dieser Arbeit entwickelt wurde. Der Code wurde einschließlich einer graphi-
schen Benutzeroberfläche als Open Source veröffentlicht, wofür umfangreiches Zusatz-
material wie z.B. Tutorials bereitgestellt wurde.





Abstract

Numerical calculations have been carried out to investigate the linear instability of the
axisymmetric steady flow in high-Prandtl-number thermocapillary liquid bridges cov-
ering a wide range of length-to-radius aspect ratios, liquid volumes and gravity levels.
The full two-phase problem is solved in which the liquid bridge and its support rods
are surrounded by an annular gas duct that can either be sealed or open. For an open
gas tube, the liquid bridge can be exposed to an axial gas flow of given temperature.
The deformed liquid–gas interface is treated either as hydrostatically determined, or
dynamically deformed by the liquid and gas flow (basic state only). Accurate criti-
cal data are provided for different approximations of the governing equations ranging
from the Oberbeck–Boussinesq approximation to the more realistic model in which the
full temperature dependence of all thermophysical parameters is taken into account.
Among all control parameters, the critical conditions are particularly sensitive to the
direction of the gas flow because the gas mainly affects the interfacial temperature,
which is crucial for the thermocapillary driving. Dynamic surface deformations were
found to have only a moderate influence on the critical conditions, even if the liquid
bridge is exposed to an axial gas flow. When the imposed temperature difference
between the two support rods is sufficiently large, the Oberbeck–Boussinesq approx-
imation yields inaccurate predictions because of the large viscosity variation of the
liquid.

Apart from the linear stability analyses, a reduced single-fluid model is devised for
the liquid phase, which improves on the standard single-fluid models that are based
on Newton’s law with a constant Biot number. In the improved single-fluid model, the
Biot number is replaced by a Biot function depending on the axial coordinate. The
Biot function is obtained by extracting the space-resolved heat flux from two-phase
simulations for a wide range of aspect ratios and Reynolds numbers by fitting a large
set of two-phase simulations. Since the flow instability is almost always triggered in
the liquid phase, the use of the Biot function inherits the accuracy of the two-fluid
model while requiring only a single-phase solver at much lesser computational cost.

All calculations have been carried out using the code MaranStable. It has been
developed as part of this thesis. The code, including a graphical user interface, has
been made publicly available as open-source, together with extensive documentation
and tutorial files.
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Panta rhei. – Everything flows.

Heraclitus of Ephesus
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I
General Introduction

During my research project at TU Wien, I progressed in understanding and modeling
the flow in thermocapillary liquid bridges. Thanks to the numerous papers I achieved
to publish, I was given the opportunity to compose my thesis as a cumulative dis-
sertation. Throughout the thesis, the wording “we” is used, which is justified by the
co-authorship.

Following the guidelines of TU Wien, the introductory Chapter I includes the
motivation for our research, our research objectives, the problem formulation, and
the methods for solving the given problem. Chapter I terminates with a summary of
the published (and submitted) research results and explains the scientific contribution
of the dissertation. The thesis is based on the publications which are presented in
Chapter II.

1 Motivation

1.1 The Role of Flow Stability in Fluid Mechanics

It was around 500 years BC when the Greek philosopher Heraclitus of Ephesus said
that nothing stays still but constantly changes in time, for which he used the words
Panta rhei meaning everything flows. This wisdom best applies to the field of fluid
dynamics, which deals with the motion of liquids and gases. In general, fluid mo-
tion can be classified into laminar and turbulent flows depending on the patterns and
characteristics of the flow. While laminar flows are smooth and predictable, turbulent
flows are chaotic and irregular. This behavior arises due to the nonlinearity of the
equations of fluid motion, namely the Navier–Stokes equations. Essentially, for small
driving forces, typically measured by a suitable Reynolds number Re, the nonlinear
terms become negligible such that the Navier–Stokes equations reduce to linear equa-
tions, for which the solution is unique. In contrast, multiple solutions may exist for
higher Re, not all of which must necessarily be known. However, a solution can only
be observed if it is stable and, thus, robust against perturbations. For many flow
configurations, the transition from a stable laminar to an unstable turbulent flow can
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(c)(b)(a)

Figure I: Sketch illustrating the concept of stability by means of equilibrium states
of point particles in different potentials. (a) Globally stable. (b) Conditionally or
linearly stable. (c) Unstable.

Figure II: Capillary break-up of a liquid jet in air after Van Dyke [61].

be described with the hydrodynamic stability theory, which deals with the stability or
the onset of instability of a fluid flow. Analyzing a flow regarding its stability starts
with computing the unique solution for small Re. We call this solution basic state or
basic flow. We then superpose the basic state with a perturbation to mimic possible
imperfections that may occur in the real flow for whatever reason. If the perturbation
decays for an infinite time t → ∞, the system is said to be asymptotically stable.
There exist different sub-categories subdividing the stability according to the tempo-
ral or spatial behavior of the perturbations. For a detailed description, the interested
reader is referred to one of the classical textbooks [see e.g. 5, 9, 35]. Different methods
exist to analyze the stability of the flow. We shall focus on the linear stability analysis
relying on the assumption of infinitesimally small perturbations. This method has the
advantage that the resulting so-called perturbation equations are linear. As a certain
drawback, the linear stability analysis can merely predict whether a system is unstable
or conditionally (linearly) stable, where the condition is related to the magnitude of
the perturbation. Figure I illustrates the difference between global and conditional
stability using a simple mechanical problem with one degree of freedom. However, the
linear stability theory sometimes fails to predict the onset of instability. One example
is circular pipe flow which is linearly stable for any pressure gradient. Despite its
apparent limitations, the linear stability analysis often agrees well with experimental
observations and is therefore used in the present thesis. Moreover, it provides a power-
ful tool not only for detecting critical thresholds but also for analyzing the mechanisms
leading to instability.

Flow instabilities occur everywhere, whether in nature or industrial applications.
Although different mechanisms are responsible for different types of instabilities, the
common characteristic among all flow instabilities is their ability to change the flow
structure. We shall demonstrate the significance of hydrodynamic instability for sys-
tem dynamics through two representative scenarios for both an industrial application
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Figure III: Photography of the von Kármán vortex street around the volcanic islands
of Cape Verde taken by NASA on December 20, 2020, from the International Space
Station.

and a natural phenomenon, respectively. In inkjet printing, the so-called Rayleigh
instability initiates the capillary break-up shown in Fig. II, which can be successfully
predicted by the linear stability theory. As an example of natural instabilities, we
show a picture of a wake instability named after Theodore von Kármán (see Fig. III).

1.2 Thermocapillary Flow in Liquid Bridges

The aim of this thesis is to study thermocapillary flows. Flows are termed thermocap-
illary flows if interfaces between two immiscible fluids are present in non-isothermal
systems. Now the question arises what is the driving force in multiphase systems when
fluidic interfaces come across temperature gradients? The answer can be given by
the temperature dependence of the interfacial free energy leading to a temperature-
dependent surface tension. Hence, the presence of temperature gradients produces
interfacial tension gradients that, if significant, can represent a major driving of the
multiphase system [19]. Thermocapillary flows are a special case of the more gen-
eral Marangoni flows, where the cause for the interfacial-tension gradients can also
be gradients of, e.g., the concentration of a dissolved species or the electrical po-
tential. The underlying Marangoni effect is named after the Italian physicist Carlo
Marangoni (1840–1925) [39], who discovered a fast spreading of oil droplets on the
surface of clean water [22]. Thermocapillary flows arise in several industrial applica-
tions. Examples are e.g. welding [25], combustion of fuels [46], droplets in microfluidics
[67], crystal growth from the melt [36], inkjet printing [30] or manipulation of fluid in
micro-electromechanical devices [11]. These flows are also relevant in space technology
because the thermocapillary effect provides one of the most efficient natural forces by
which fluid can be manipulated under weightlessness [29]. Regarding crystal growth
from the melt, the so-called floating-zone technique was developed to produce pure
crystals from the melt that are free of heterogeneous nucleation and to avoid contam-
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Figure IV: Simplification of the floating-zone (middle) to the half-zone (left) configu-
ration recovered from Leypoldt et al. [21]. Right: Surface temperature distribution of
the full-zone model.

inations due to the crucible [31]. In the course of this process, the melt is supported
by solid crystalline or poly-crystalline rods of temperatures close to the melting point.
However, the liquid–gas interface of the melt is exposed to radiation by means of a
coaxially mounted heat source, keeping the melt above its melting point. As Fig. IV
indicates, the heating ring is placed midway between the two supports, where the
interface temperature exhibits its maximum. Thus, the melt solidifies to a crystalline
structure at a certain distance from the heat source. During the solidification process,
it is essential to suppress the onset of time-dependent melt flow because it leads to
a time-dependent propagation of the solidification front, which is associated with an
uneven distribution of impurities (striations) in the desired single crystal [4]. In or-
der to prevent crystal growth from undesired inhomogeneous chemical composition, it
is important to understand the physical mechanism of flow instabilities. The desire
to better understand the thermocapillary flow in models of crystal growth raised the
researchers’ attention, who simplified the full-zone problem while retaining the essen-
tial flow physics. This led to the half-zone model, introduced by Schwabe et al. [38]
and shown on the left of Fig. IV. In his half-zone model, the upper crystalline rod
was replaced by a heating block inducing a temperature difference along the interface.
This temperature difference is directly proportional to the strength of the flow. Disre-
garding the solidification process and focusing on the fluid motion allowed to further
simplify the half-zone model by keeping the fluid volume bounded between two coaxial
cylindrical rods far above the pour point. Thus, the configuration of the differentially
heated liquid bridge was born, which has become one of the most popular paradigms
of thermocapillary flow [13]. From the 1970s until today, a large number of scientific
papers have been published devoted to thermocapillary liquid bridges.
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1.3 Literature Review

The numerical analysis of thermocapillary flows in crystal growth was first introduced
by Chang & Wilcox [2, 3], who addressed the original full-zone problem in which
the free surface is heated symmetrically with respect to the equator. However, the
simplified half-zone model turned out to be more appealing for researchers (especially
for experimentalists) since it enables a better control of the driving force, typically
measured by the thermocapillary Reynolds number. By today, the half-zone model
has emerged as the most crucial paradigm for studying thermocapillary convection [13].
Despite its simple geometry, the stability problem in thermocapillary liquid bridges
is highly complex owing to the coupling along the deformable interface between the
liquid and the gas phase, as well as to the number of independent parameters that
influence the basic state and the instability mechanisms of such a multiphase flow.
Therefore, simplifying assumptions have been made to make the problem theoretically
and numerically tractable.

A frequently used approximation is to consider only the liquid phase (single-fluid
model) by neglecting viscous stresses from the gas phase. This model requires the
heat transfer through the free surface to be modeled, commonly achieved by apply-
ing Newton’s cooling law with a suitable ambient reference temperature and a selected
constant Biot number or, even more restrictive, by neglecting the heat transfer into the
gas, assuming an adiabatic free surface [63]. The latter approach allowed Wanschura
et al. [63] to predict the onset of instability semi-quantitatively by means of linear
stability analyses. For small Prandtl numbers, the instability was found to be purely
inertial, while for high-Prandtl-number liquid bridges, Wanschura et al. [63] identified
the critical mode as a pair of azimuthally traveling hydrothermal waves, a concept
introduced by Smith & Davis [47] and first discovered for plane layers. However, the
results of Wanschura et al. [63] obtained for an indeformable adiabatic free surface
under zero gravity significantly deviate from the extensive measurements conducted
by Velten et al. [62], which indicates the need for a more realistic modeling. The
experiments of Kamotani et al. [10] revealed the impact of the heat transfer across the
liquid–gas interface for the critical Reynolds number. To better regulate the thermal
environment in the gas, the liquid bridge is, therefore, typically mounted inside a con-
centric shield cylinder, a setup first used by Preisser et al. [32]. The high sensitivity
concerning the thermal conditions in the ambient atmosphere stimulated new exper-
iments [60] and numerical investigations [66] where the liquid bridge is exposed to a
well-defined gas flow. This approach can be used to manipulate the system’s stability
and, thus, to control the onset of oscillations.

Another prevalent assumption is concerned with the dynamics of the free surface.
Early half-zone models assumed the free surface shape to be cylindrical, thus, free
of deformations [see e.g. 18, 20, 63]. This ansatz is justified for tiny liquid bridges
or microgravity environments, leading to negligible gravitational forces. Nevertheless,
even for millimetric liquid bridges under earth gravity conditions, static surface defor-
mations may affect the flow significantly and need to be taken into account. Assuming
an adiabatic free surface, the study of Nienhüser & Kuhlmann [28] represents a signifi-
cant advancement in stability analyses, as it extends beyond the previous limitation of
cylindrical bridges. Flow-induced interface deformations, however, have been studied
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numerically to a much lesser extent. Experiments revealed that the magnitude of the
dynamic (flow-induced) interfacial deformation due to the subcritical thermocapillary
flow close to the critical threshold is less than the static deformation [26, 42]. Moreover,
oscillatory deformations due to the supercritical three-dimensional flow were found to
be even smaller with an amplitude below micron size [6]. Surface deformations due
to supercritical flow may, however, cause surface-wave instabilities, potentially aris-
ing from shear flow caused by mechanical stresses from the gas phase. However, no
experimental observations of surface-wave instabilities have yet been made in the cur-
rent flow system. They are more likely to arise in form of long-wave instabilities [48].
Surface waves are expected to be stabilized by the finite length of the liquid bridge.
In fact, Carrión et al. [1] performed a linear stability analysis accounting for dynamic
deformations of both the basic state and the perturbation flow but disregarded the gas
flow and used Newton’s law of cooling. They found a very weak effect of the dynamic
deformations on the stability limits.

When investigating supercritical oscillatory flows in liquid bridges, experimentalists
typically seed small particles into the liquid in order to track their position. In the
three-dimensional oscillatory flow of a high-Prandtl-number liquid bridge, the particles
can de-mix rapidly and form closed line-like structures which rotate in the liquid [37].
This phenomenon is termed Particle Accumulation Structure (PAS). PAS may be
used to separate particles from a fluid when other methods, e.g. centrifugation, are
not applicable. With the approach of Romanò & Kuhlmann [33], it was possible to
predict coherent particle structures numerically for which expensive three-dimensional
simulations are required.

Depending on the size of the liquid bridge, a three-dimensional or time-dependent
flow state can require a relatively large temperature difference, where the temperature
dependence of the material properties is no longer negligible. Among all thermophysi-
cal fluid properties, the liquid’s viscosity typically suffers the most significant variation.
Therefore, the temperature dependence of the viscosity has been included in numerical
simulations [e.g. 23, 41, 43] and stability analyses [1, 12]. Except for the results of
Carrión et al. [1], the viscosity was taken to depend linearly on the temperature.

2 Open Questions and Research Objectives

Single-fluid models are still frequently used, especially for expensive three-dimensional
simulations for which a coupled two-phase simulation is not affordable. Three-
dimensional simulations are necessary to study the supercritical flow [see e.g. 16, 20].
However, applying Newton’s cooling law can lead to poor predictions of the real dy-
namics of the liquid flow, mainly because of two reasons. On the one hand, the
environmental reference temperature needs to be assumed, for which the heat transfer
coefficient remains unknown. On the other hand, Newton’s law does not accurately ac-
count for the spatial variation of the local heat transfer rate. The question arises: Can
the very complex two-phase stability problem be simplified to obtain the stability limits
in a more efficient but still reliable way by employing a single-fluid model? Hence, the
aim is to derive an improved single-fluid model combining Newton’s cooling law with
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a space-dependent heat-transfer coefficient or local Biot number based on accurate
two-fluid model calculations.

Owing to the limited availability of accurate numerical studies on high-Prandtl-
number liquid bridges, we shall perform linear stability analyses to understand the
effect of heat transfer through the liquid–gas interface on the onset of oscillatory
three-dimensional flow. To that end, different parameters that are important to ex-
perimentalists shall be varied, such as e.g. the length-to-radius aspect ratio and the
volume of the liquid bridge. Particular attention shall be paid to the influence of an
external gas flow on the linear stability limits, for which an extensive linear stability
analysis has never been carried out, except for the brief results of Shevtsova et al. [40].

To drive the forced gas flow, an additional imposed pressure gradient in the gas
tube is required that may lead to significant dynamic deformations of the liquid–gas
interface. However, the majority of previous numerical studies, including the linear
stability analysis of Shevtsova et al. [40], neglected dynamic, i.e. flow-induced surface
deformations. Since the findings of Carrión et al. [1], who reported a negligible effect
of dynamic surface deformations, are based on a single-fluid model, the open question
remains: To what extent do flow-induced surface deformations influence the linear
stability boundaries? Thus, the aim is to compare stability analyses obtained by first
neglecting and then including dynamic surface deformations. However, we focus solely
on interfacial deformations caused by the axisymmetric basic flow, which is motivated
by experimental evidence.

Most numerical results have been obtained for constant material properties or
in the framework of the well-established Oberbeck–Boussinesq approximation [e.g.
8, 20, 27, 28, 57]. More realistic approaches assumed a linearly temperature-dependent
viscosity of the liquid [12, 23]. By today, to the best of our knowledge, no numerical
investigations have accounted for the full temperature dependence of all thermophys-
ical parameters. Hence, the aim is to fill this gap by answering the question: How
much do critical Reynolds numbers obtained with either the Oberbeck–Boussinesq ap-
proximation or a linear temperature model deviate from more accurate data employing
a fully non-linear temperature dependence of the liquid and the gas?

It is well known that experiments on the ground can yield different stability bound-
aries than the ones under microgravity conditions. In order to study the pure ther-
mocapillary flow in the absence of a gravity-induced buoyant flow and hydrostatic
deformation, experiments under microgravity conditions are necessary. Therefore, the
JEREMI space experiment (Japanese European Research Experiment on Marangoni
Instability) has been developed, which was planned to be carried out in the Fluid
Physics Experiment Facility of the Japanese module KIBO on the ISS [40]. Since ex-
periments conducted on the ISS are very expensive, ground experiments are used for
predicting the instability under microgravity conditions despite the additional driving
force due to buoyancy. However, the question is: What error is incurred when stability
boundaries obtained experimentally under terrestrial buoyancy be used for predicting
the instability under microgravity conditions? Since buoyancy forces (measured by
the Grashof number) scale cubically with the liquid bridge’s height, the effect of buoy-
ancy on the flow and its stability diminishes strongly with decreasing size of the liquid
bridge. Hence, the aim is to perform a systematic analysis regarding the effect of buoy-
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Figure V: Schematic of the axisymmetric thermocapillary liquid bridge. The cylindri-
cal coordinate system originates in the center of the differentially heated liquid bridge.
The gravity vector g is always aligned with the negative z-axis. The thermocapillary
effect is illustrated schematically through velocity vectors close to the interface. The
sketch shows the situation when the liquid bridge is heated from above and exposed
to a hot gas stream with the mean value w̄g,in.

ancy on the stability limits to indicate how small the liquid bridge on the ground must
be to serve as a basis for reliable planning of the space experiment. Associated with
a decreasing importance of gravity, the importance of varying parameters increases.

3 Problem Formulation

3.1 Setup

We consider a droplet of an incompressible Newtonian fluid captured between two
coaxial, cylindrical rods of radius ri and heights dtop and dbottom, respectively, which
are axially separated by a distance d (see Fig. V). The droplet is kept in place by
forces due to the surface tension σ, forming a liquid bridge. Its volume Vl is typically
normalized by the volume πr2i d of an upright cylindrical liquid bridge, yielding the
volume ratio V = Vl/πr

2
i d. Depending on the wetting conditions, short liquid bridges

can be hydrostatically stable, even in a terrestrial gravity field. Gravity forces, when-
ever present, act parallel to the symmetry axis of the axisymmetric geometry. Owing
to the necessity of accounting for the ambient atmosphere [10], the liquid bridge is
mounted in a concentric shield cylinder of radius ro > ri and height dtop+d+dbottom,
radially confining the Newtonian gas, which surrounds the liquid bridge and the sup-
port rods. The gas tube can either be closed or open depending on the target of the
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investigation.

The support rods are assumed to be perfect thermal conductors and are kept at
different but constant temperatures Ttop = T̄ +ΔT/2 and Tbottom = T̄ −ΔT/2 around
the mean working temperature T̄ = (Ttop + Tbottom)/2, chosen as the reference tem-
perature T ∗ = T̄ . The temperature difference ΔT = Ttop − Tbottom can be either
positive or negative, indicating heating from above or below, respectively. As the im-
posed temperature difference affects the temperature-dependent surface tension σ(T ),
tangential interfacial stresses are induced via the thermocapillary effect driving a flow
in both the liquid and the gas phase [13], as sketched in Fig. V. Expanding σ(T ) by
means of a Taylor series yields the surface tension gradient

∇�σ(T ) =
∂σ

∂T
∇�T =

∂

∂T

�
σ∗ − γ∗

1 (T − T ∗) +
γ∗
2

2
(T − T ∗)2 + . . .

�
∇�T

=
�−γ∗

1 + γ∗
2 (T − T ∗) +O

�
(T − T ∗)2

��∇�T, (1)

where ∇� = t(t ·∇) is the Nabla operator in direction of the unit tangent vector to the
interface t, γ∗

1 = −∂σ/∂T |T=T∗ is the negative linear surface-tension coefficient, γ∗
2 =

∂2σ/∂T 2
##
T=T∗ is the quadratic surface-tension coefficient, and σ∗ = σ(T ∗) denotes

the surface tension at the reference temperature T ∗. Henceforth, all temperature-
dependent thermophysical properties marked with an asterisk indicate reference values
evaluated at T ∗. Although our model includes higher corrections to the commonly used
linear temperature dependence of σ(T ), accurate measurements of the full functional
dependence are available only for a few liquids. However, for liquid bridges made of
typical silicone oils, we must neglect quadratic and higher order contributions to σ(T ).

The conditions in the gas phase have a significant impact on the main thermocapil-
lary flow in the liquid phase. Open gas containers allow for passive flow control in the
liquid phase by adjusting parameters such as magnitude, temperature, and direction of
the forced gas flow. The forced gas flow modifies the thermal conditions at the interface
and induces mechanical shear stresses along the interface. Depending on the direction
of the through-flow, the mean value w̄g,in of the inlet velocity wg,in(r) can be positive
or negative. In addition to the thermocapillary flow and forced gas flow, a buoyancy-
driven flow occurs due to the temperature-dependent density of the liquid ρ(T ) and
the gas ρg(T ), respectively. Note that quantities related to the gas are indicated by
a subscript ‘g’, while quantities referring to the liquid carry no subscript. In the case
of tiny liquid bridges, surface forces typically outweigh volume forces. However, for
millimetric liquid bridges studied under normal terrestrial conditions, buoyancy can
significantly influence the shape of the interface and the fluid motion. Within our
modeling, we assume conditions far from phase-change critical points allowing us to
neglect the pressure dependence of all thermophysical fluid properties.

3.2 Governing Equations

General Transport Equations

The fluid motion in both the liquid and the gas phase is governed by the Navier–Stokes
and energy equations. For the problem at hand, it seems reasonable to consider the
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simplified version of the governing equations, namely the well-established Oberbeck–
Boussinesq (OB) equations [15, 24]. This approximation only considers density varia-
tions due to temperature differences if they lead to a buoyant flow. Thus, volumetric
variations due to the temperature-dependent densities are neglected, and other ther-
mophysical properties such as the dynamic viscosities µ and µg, the thermal conduc-
tivities λ and λg and the specific heat capacities cp and cpg are assumed constant.
While the OB approximation is adequate to predict a wide range of buoyancy-driven
flows, its validity range is certainly limited to sufficiently small temperature varia-
tions [7]. However, to properly take care of larger temperature differences, we include
the Full Temperature Dependence (FTD model) of all thermophysical properties in
the governing equations. To that end, we use the strong conservative form of the
Navier–Stokes and energy equations

∂ρ

∂t
+∇ · (ρu) = 0, (2a)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+ ρg +∇ · (µT ), (2b)

∂(ρcpT )

∂t
+∇ · (ρcpTu) = ∇ · (λ∇T ), (2c)

where t denotes time, u the flow velocity, T the temperature, p the pressure, and
T = ∇u+(∇u)T−2/3(∇·u)I is (twice) the deformation rate tensor with the identity
matrix I. The pressure work, the viscous dissipation, and the pressure contribution
to the enthalpy (p/ρ ≪ |cpT |) have been disregarded in the energy equation (2c),
which is well justified for liquid bridge problems [55]. To describe the gas motion, we
shall replace the fluid properties (ρ, µ, λ, cp) with (ρg, µg, λg, cpg) in (2a)–(2c) and
indicate the field quantities ug, pg and Tg by a subscript ‘g’. However, as long as the
formulation is formally identical for both phases, we do not distinguish between them.

Since the geometry is axisymmetric, we use cylindrical coordinates (r, ϕ, z) with
the corresponding unit vectors (er, eϕ, ez) centered in the middle of the liquid bridge,
within which the velocity field is represented by u = uer + veϕ + wez. To compute
the two-phase flow including the temperature fields, we need to solve the governing
transport equations subject to appropriate boundary and coupling conditions. On all
solid rods, we impose no-slip and no-penetration conditions. On the surface of the
support rods, we prescribe constant but different temperatures Ttop b= Tbottom, while
the outer shield is typically assumed adiabatic. In the case of an open gas tube, the gas
enters the system with a given velocity profile wg,in(r) and temperature, ensuring that
outflow conditions are met at the outlet. Conversely, sealed gas containers confine
the surrounding gas by either conductive or adiabatic annular walls. The detailed
mathematical formulation of the respective boundary conditions is given in [34, 53,
52, 54] for each problem separately. However, we shall pay particular attention to
the coupling conditions along the dynamically deformed liquid–gas interface. On the
a priori unknown location of the interface described by r = h(ϕ, z, t), three kinds of
coupling conditions have to be satisfied:

(i) The thermal coupling conditions

T = Tg and λn · ∇T = λgn · ∇Tg (3)
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ensure continuity of the temperature and the heat flux across the interface.

(ii) The kinematic coupling conditions

u = ug and u =
dh

dt
(4)

imply the no-slip condition at the interface and force material elements on the
interface to remain on the interface.

(iii) The dynamic coupling conditions

−(p− ρgz) + µn · T · n+ σ∇ · n = −(pg − ρggz) + µgn · T g · n, (5a)

µt · T · n− t · ∇σ = µgt · T g · n, (5b)

are decomposed into a normal and a tangential stress balance, respectively, and
express the continuity of stresses.

Note that the location of the interface h appears explicitly in (4) and also implicitly
in (3) and (5) via the outward-pointing unit vector

n =
1

N

�
er − 1

h

∂h

∂ϕ
eϕ − ∂h

∂z
ez

�
with N =

!
1 +

�
1

h

∂h

∂ϕ

�2

+

�
∂h

∂z

�2

(6)

and in any of the linearly independent orthogonal vectors t1,2 = t1,2(h) ⊥ n. Since h
is part of the solution, the governing equations (2) need to be solved simultaneously
with the coupling conditions (3)–(5).

A typical approach in scientific research is to non-dimensionalize the governing
equations in order to facilitate identifying and studying the key parameters that govern
the behavior of a system. In [53, 52, 54], we followed this approach for different
approximations of the governing equations, where all variables and coordinates have
been made dimensionless by using suitable scales derived from the relevant physical
quantities. Among all arising dimensionless parameters governing the problem, the
thermocapillary Reynolds, Prandtl and dynamic Bond numbers

Re =
ρ∗γ∗

1ΔTd

µ∗2 , Pr =
µ∗c∗p
λ∗ , Bd =

ρ∗gβ∗d2

γ∗
1

(7)

have the most significant influence on the flow structure. While Pr is a material param-
eter describing the ratio of viscous diffusion to heat diffusion, Re and Bd measure the
strength of different driving forces. More precisely, Re measures the relative strength
of the thermocapillary surface forces compared to the viscous forces per unit surface,
whereas Bd characterizes the strength of buoyancy forces relative to that of thermo-
capillary forces. Occasionally, the Marangoni number Ma = PrRe is used instead of
Re. Re and Ma can take positive and negative values correspondently to the imposed
temperature difference ΔT . Owing to the symmetries of the underlying problem, an
axisymmetric and time-independent solution can be stably realized for a sufficiently
low driving (small |Re|). In other words, if Re exceeds the critical Reynolds number
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Rec in magnitude, i.e. |Re| > |Rec|, the flow becomes unstable due to symmetry
breaking, meaning that the flow develops a time-dependent and/or three-dimensional
structure. In contrast, the subcritical basic flow is characterized by the symmetries
∂t(·) = ∂ϕ(·) = 0 resulting in v0 = vg0 = 0, where the index 0 indicates the basic state.
To obtain Rec, which is of key interest in our study representing the linear stability
boundary, we perform linear stability analyses, for which the equations are derived in
the following.

Linear Stability Equations

Let us decompose the general three-dimensional and time-dependent solution vector
q = (u, p, T, h) into an axisymmetric time-independent part q0 = (u0, p0, T0, h0) (in-
dex 0) and a three-dimensional time-dependent perturbation flow q̃ = (ũ, p̃, T̃ , h̃). In
component notation, the decomposition reads

u = u0(r, z) + ũ(r, ϕ, z, t), (8a)

v = 0 + ṽ(r, ϕ, z, t), (8b)

w = w0(r, z) + w̃(r, ϕ, z, t), (8c)

p = p0(r, z) + p̃(r, ϕ, z, t), (8d)

T = T0(r, z) + T̃ (r, ϕ, z, t), (8e)

h = h0(z) + h̃(ϕ, z, t). (8f)

Motivated by experimental observations revealing that interfacial deformations due
to the supercritical three-dimensional flow are very small [65], we assume that the
perturbation flow does not affect the interfacial shape, i.e. h̃ ≡ 0. By adopting this
approximation, surface-wave instabilities are excluded beforehand.

The linear stability analysis presumes slightly supercritical flow conditions justi-
fying the assumption of infinitesimally small perturbations. This assumption enables
linearizing the governing equations with respect to all perturbation quantities after in-
serting (8) into (2). However, the full temperature dependence of the fluid properties
in (2) induces additional non-linearities and, thus, requires the functional dependence
of ρ(T ), µ(T ), λ(T ) and cp(T ) to be Taylor expanded about the local basic state
temperature. Using ρ(T ) as a representative property, the expansion up to first order
yields

ρ(T ) = ρ(T0 + T̃ ) = ρ(T0) +
∂ρ

∂T

####
T=T0

T̃ +O(T̃ 2) = ρ0 + ρ�0T̃ +O(T̃ 2), (9)

where the prime indicates derivatives with respect to T and the index 0 denotes
scalar fields which depend continuously on the basic state temperature T0(r, z), i.e.
ρ0 = ρ(T0(r, z)). Inserting (8) and (9) into (2) and linearizing with respect to the
perturbation quantities, we finally arrive at the perturbation equations

ρ�0
∂T̃

∂t
+∇ ·

�
ρ0ũ

�
+∇ ·

�
ρ�0T̃u0

�
= 0, (10a)
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u0ρ
�
0

∂T̃

∂t
+ ρ0

∂ũ

∂t
+∇ ·

�
ρ�0T̃u0u0

�
+∇ ·

	
ρ0(u0ũ+ ũu0)

�
=

= −∇p̃+ ρ�0T̃g +∇ ·
�
µ�
0T̃T 0

�
+∇ ·

�
µ0T̃

�
, (10b)

	
T0(ρ

�
0cp0 + ρ0c

�
p0) + ρ0cp0

�∂T̃
∂t

+∇ ·
	
(ρ�0cp0 + ρ0c

�
p0)T0u0T̃

�
+∇ ·

�
ρ0cp0T̃u0

�
+∇ ·

�
ρ0cp0T0ũ

�
= ∇ ·

�
λ�
0T̃∇T0

�
+∇ ·

�
λ0∇T̃

�
, (10c)

where the beforehand computed basic state solution enters the equations parametri-
cally. Due to the homogeneity of the basic state in t and ϕ, the perturbations q̃ can
be further decomposed into normal modes with azimuthal wave number m ∈ N. The
superposition of all normal modes can be written as

q̃ =
"
j,m

q̂j,m(r, z)eψj,mt+imϕ + c.c., (11)

where ψj,m ∈ C denotes the complex growth rates of the normal modes with ampli-

tudes q̂ = (û, p̂, T̂ ). The index j enumerates the different solutions for a given wave
number m. The complex conjugate (c.c.) is needed to render the perturbations real.
Inserting (11) into (10a)–(10c) yields the equations for the perturbation amplitudes q̂

ψρ�0T̂ +∇ ·
�
ρ0û

�
+∇ ·

�
ρ�0u0T̂

�
+

ρ0iv̂m

r
= 0, (12a)

ψ
�
u0ρ

�
0T̂ + ρ0û

�
+∇ ·

�
ρ�0T̂u0u0

�
+∇ ·

	
ρ0(u0û+ ûu0)

�
+

ρ0iv̂mu0

r
=

= −∇p̂+ ρ�0T̂g +∇ ·
�
µ�
0T̂T 0

�
+∇ ·

�
µ0T̂

�
+

�
µ�
0T̂T 0 + µ0T̂ − p̂

� imeϕ
r

(12b)

ψ
	
T0(ρ

�
0cp0 + ρ0c

�
p0) + ρ0cp0

�
T̂ +∇ ·

	
(ρ�0cp0 + ρ0c

�
p0)T0u0T̂

�
+∇ ·

�
ρ0cp0T̂u0

�
+∇ ·

�
ρ0cp0T0û

�
+

ρ0cp0iv̂m

r
= ∇ ·

�
λ�
0T̂∇T0

�
+∇ ·

�
λ0∇T̂

�
− λ0T̂m

2

r2
, (12c)

which can be identified as a linear eigenvalue problem with an infinite number of
eigenmodes q̃ and eigenvalues ψ [52]. The flow is linearly stable if the real parts
of all complex growth rates ψj,m are negative (∀j,m�(µj,m) < 0), meaning that all
perturbation modes decay in time. On the other hand, the flow is unstable if at least
one growth rate exists with a positive real part (∃j,m�(µj,m) > 0). In this scenario,
the unstable perturbation flow will grow exponentially in time until finite-size effects
come into play and change the dynamics of the flow. The flow is said to be neutrally
stable if the perturbation mode with the largest real part neither grows nor decays
for a given wave number m, which is characterized by a vanishing real part of the
eigenvalue �(maxj ψj,m) = 0. The corresponding control parameter, typically Re, is
then called neutral Reynolds number Remn and is assigned to a specific wave number
m. The minimum neutral Reynolds number above which the flow becomes unstable
defines the critical Reynolds number Rec.
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Figure VI: Illustrative examples for the physical mesh (a) and the correspoding trans-
formed computational mesh (b) of the liquid (blue) and the gas (gray) phase. The
liquid–gas interface is indicated by green color.

4 Mathematical and Numerical Methods

All required numerical operations to solve the differential equations presented in
Section 3 are implemented in our Matlab code MaranStable, initially developed
by M. Lukasser within the project Engineering Marangoni Flows [14]. Years later,
within the SAJE project (Stability Analysis for the JEREMI experiment) [51], we
revised the code by removing several bugs and further developed the solver from
its initial version MaranStable 1.0, up to MaranStable 3.1 where we extended the
code by many features (concerning e.g. advanced heat transfer functions, Boussi-
nesq approximation, energy budgets, surface impurities, optical ray tracking). More-
over, we created a graphical user interface (GUI) for MaranStable 3.1, which we
recently introduced in [56] and made publicly available as open-source from https:

//github.com/fromano88/MaranStable. Although MaranStable uses the same dis-
cretization method for both the basic state and linear stability analysis, the discretized
equations require different solution techniques.

4.1 Basic Flow

The steady axisymmetric versions of (2)–(5) (together with the boundary conditions)
are discretized by second-order finite volumes on a structured and staggered grid,
which is refined towards all boundaries either by hyperbolic tangent or geometric
progression [59, 64]. MaranStable employs body-fitted coordinates (ξ,η), as shown
in Fig. VI, where the physical mesh fitted to the interface shape h0 is mapped to an

https://github.com/fromano88/MaranStable
https://github.com/fromano88/MaranStable
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orthogonal computational mesh. The corresponding coordinate transformation reads

ξ(r, z) =

��
r

h0(z)
Fl(r) for the liquid phase,�

1 +
r − h0(z)

ro − h0(z)

�
Fg(r) for the gas phase,

(13a)

η(z) =
z

d
G(z), (13b)

where Fl(r), Fg(r) and G(z) are inverse stretching functions that are applied to re-
arrange the cells equidistantly. Since h0 is computed simultaneously with the flow
field, MaranStable updates the physical and computational meshes after every itera-
tion step, which is described next. For a detailed description of the employed mesh
parameters, we refer to [52].

Discretizing the governing equations results in a set of nonlinear algebraic equations

that are solved iteratively by means of the Newton–Raphson method. If q
(k)
0 is a known

approximation of the solution q0 at the k-th iteration step, we obtain an improved
approximation

q
(k+1)
0 = q

(k)
0 + δq, (14)

by solving the set of linear equations

J
�
q
(k)
0

�
· δq = −f

�
q
(k)
0

�
(15)

for the increment δq, where J
�
q
(k)
0

�
is the Jacobian operator and −f

�
q
(k)
0

�
is the

nonlinear residual of the Navier–Stokes equations. In order to obtain (15), also the
fully temperature-dependent parameters need to be linearized. For e.g. the density,
the linearization reads

ρ
�
T

(k+1)
0

�
= ρ

�
T

(k)
0 + δT

�
≈ ρ

�
T

(k)
0

�
+

∂ρ

∂T

####
T

(k)
0

δT := ρ
(k)
0 + ρ

�(k)
0 δT, (16)

where the increment δT is contained in δq. After inserting ansatz (14) into the basic
state equations and linearizing with respect to small δq under consideration of (16),
we end up with

∇ ·
�
ρ
(k)
0 δu+ ρ

�(k)
0 u

(k)
0 δT

�
= −∇ ·

�
ρ
(k)
0 u

(k)
0

�
, (17a)

∇ ·
	
ρ
(k)
0

�
u
(k)
0 δu+ δuu

(k)
0

�
+ ρ

�(k)
0 u

(k)
0 u

(k)
0 δT

�
−∇ ·

�
µ
(k)
0 δT + µ

�(k)
0 T (k)

0 δT
�

+∇δp− ρ
�(k)
0 δTg = −∇ ·

�
ρ
(k)
0 u

(k)
0 u

(k)
0

�
−∇p

(k)
0 + ρ

(k)
0 g +∇ ·

�
µ
(k)
0 T (k)

0

�
, (17b)

∇·
	
ρ
(k)
0 c

(k)
p0

�
u
(k)
0 δT + T

(k)
0 δu

�
+
�
ρ
�(k)
0 c

(k)
p0 + ρ

(k)
0 c

�(k)
p0

�
T

(k)
0 u

(k)
0 δT

�
−∇·

�
λ
(k)
0 ∇δT

+λ
�(k)
0 δT∇T

(k)
0

�
= ∇ ·

�
λ
(k)
0 ∇T

(k)
0

�
−∇ ·

�
ρ
(k)
0 c

(k)
p0 u

(k)
0 T

(k)
0

�
, (17c)

where δT = ∇δu + (∇δu)T − 2/3(∇ · δu)I. Besides (17), the Newton–Raphson
iteration involves an additional iteration loop to update the surface shape h0(z) after
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each iteration step. To that end, the normal stress balance (5a) is linearized in an
analogous way, yielding

−(δp−δpg)+
�
ρ
�(k)
0 − ρ

�(k)
g0

�
gδTz+µ

�(k)
0 n(k)·T (k)

0 ·n(k)δT+σ
�(k)
0 δT∇·n(k)+σ

(k)
0 ∇·δn

− µ
�(k)
g0 n(k) · T (k)

g0 · n(k)δT + µ
(k)
0

�
n(k) · δT · n(k) + n(k) · T (k)

0 · δn+ δn · T (k)
0 · n(k)

�
− µ

(k)
g0

�
n(k) · δTg · n(k) − n(k) · T (k)

g0 · δn− δn · T (k)
g0 · n(k)

�
= −

�
ρ
(k)
0 − ρ

(k)
g0

�
gz

+ p
(k)
0 − p

(k)
g0 − µ

(k)
0 n(k) · T (k)

0 · n(k) − σ
(k)
0 ∇ · n(k) + µ

(k)
g0 n(k) · T (k)

g0 · n(k), (18)

where the surface increment

δh0 = h
(k+1)
0 − h

(k)
0 (19)

appears implicitly in the increment of the surface normal vector

δn = n(k+1) − n(k) (20)

with

δn = − 1

N (k)3

dh
(k)
0

dz

dδh0

dz
er − 1

N (k)

1− 1

N (k)2

�
dh

(k)
0

dz

�2
 dδh0

dz
ez (21)

and its divergence

∇ · δn =
1

h
(k)3

0 N (k)3



−h

(k)3

0

d2δh0

dz2

+

�
3h(k)3

N (k)2

d2h
(k)
0

dz2
− h

(k)2

0

�
dh

(k)
0

dz

dδh0

dz
− h

(k)
0 N (k)2δh0

�
. (22)

MaranStable solves the Newton iteration (15) using the parallelized Matlab operator

backslash, where the Jacobian operator J
�
q
(k)
0

�
and the nonlinear residual −f

�
q
(k)
0

�
can readily be identified from (17) and (18). We consider the basic state solution
converged as soon as both the L2 norm 4δq42 and the infinity norm 4δq4∞ of the
residual have dropped below 10−6.

4.2 Linear Stability Analysis

To perform a linear stability analysis of the previously computed basic state q0,
MaranStable numerically solves the linear perturbation equations (12) for the ampli-
tudes q̂ (and q̂g). Although MaranStable employs the same mesh and discretization
scheme used for the basic state, we now end up with a large complex eigenvalue prob-
lem. By introducing v̌ = iv̂, the complex eigenvalue problem turns into a generalized
eigenvalue problem with real matrices A and B [58], i.e.

A · q̂ = χB · q̂, (23)
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where the perturbation amplitudes q̂j,m and the decay rate χj,m = −µj,m repre-
sent the eigenvectors and eigenvalues, respectively. To solve the eigenvalue problem,
MaranStable makes use of the parallelized Matlab operator eigs, which relies on
the functions implemented in the ARPACK library [17] for linear algebra. A detailed
description for detecting neutral and critical Reynolds numbers is given in [52], where
we also elaborated on the arclength continuation method to track the neutral curves
under a parameter variation.

5 Summary of the Research Results

Table I provides an overview of our papers that are either published or submitted for
publication (see column ‘Status’). The blue-marked papers are included in Chapter II
and accompanied by graphical abstracts. In all publications, I performed all numerical
(and analytical) calculations and developed the software for paper 6. However, the
multi-stage fitting algorithm for the heat transfer model in paper 5 was developed by
F. Romanò, who is the first author of this paper. All authors contributed equally to
analyzing data, reaching conclusions, and writing the paper. We note that the papers
are not given in chronological order of appearance but are instead sorted by content.

Paper 1: Stability Boundary for Constant Material Parameters Paper 1
can be considered the starting point of our investigations. Owing to the large pa-
rameter space of our flow model, we defined a common reference case serving as an
origin for all quasi-continuous parameter variations not only for paper 1 but also for
more realistic flow models examined in papers 2 and 4. The common reference case
is characterized by the liquid–gas couple and the geometrical configuration given in
Table II (c.f. sketch in Fig. V). Starting our investigations in paper 1 with a sealed gas
tube, we assumed all material parameters to be constant, except for the density in the
buoyancy term, within the well-established framework of the Oberbeck–Boussinesq
(OB) approximation as commonly done when the temperature differences are small.
We further neglected flow-induced surface deformations, which allowed us to focus on
the leading order instability mechanisms. Originating from the reference case, we per-
formed linear stability analyses varying the aspect ratio Γ = d/ri and the volume ratio
V, one at a time. Also the gravity level was varied quasi-continuously investigating
the effect of buoyancy forces on the critical threshold, including conditions of weight-
lessness and liquid bridges that are heated from below (inverted gravity). The energy
transfer between the basic flow and the critical mode was investigated by means of
kinetic and thermal energy budgets to gain insights into the instability mechanism.
Except for liquid bridges heated from below under strong buoyancy forces, the axisym-
metric two-dimensional flow was found to become unstable to hydrothermal waves [47]
throughout the range of parameters considered.

Paper 2: Influence of a Coaxial Gas Flow on the Critical Point Although
the gas phase was found to play only a passive role for the instability, it strongly affects
the linear stability boundary Rec by the amount and structure of the heat transfer
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Table II: Working fluids (2 cSt silicone oil, air) and geometrical configuration of the
common reference case used in papers 1, 2 and 4. Values for d, ri, ro, dtop and dbottom
are given in mm.

Liquid Gas V d ri ro dtop dbottom

2 cSt Air 1 1.65 2.5 10 1 1

through the liquid–gas interface. Based on this finding, which Kamotani et al. [10]
and others noticed before, we dedicated paper 2 to the potential of controlling Rec
via an externally imposed axial gas flow, which has the same temperature at the an-
nular inlet as the adjacent support rod. Allowing the gas to enter the open gas tube
through the top or bottom open end, we established the linear stability boundary as
function of the gas flow rate for liquid bridges that are heated from either below or
above. Since the forced gas flow implies an additional imposed pressure gradient also
affecting the liquid–gas interface, we questioned the assumption of statically shaped
liquid bridges. To estimate the impact of flow-induced surface deformations on the
stability boundary, we carried out stability analyses for both cases, first neglecting
and then including dynamic surface deformations caused by the axisymmetric flow.
To properly take care of flow-induced deformations, we used an extended OB approx-
imation in which the density of both fluids depends linearly on the temperature in all
equations. Throughout, we found that neither the gas flow nor the thermocapillary
flow leads to significant deviations from the static shape for the setup given in Table II.
Thus, the influence of dynamic surface deformations on the critical thermocapillary
Reynolds number is relatively modest. However, our results for moderate gas flow
rates confirmed the potential of controlling the onset of oscillatory flow, where the
linear stability boundary strongly depends on the imposed gas flow rate and direction.
The sensitivity can be explained through the change of the thermal environment at
the interface caused by the hot or cold gas flow manipulating the surface temperature
profile, which is crucial for the structure of the basic vortex and temperature field.
This results in a modification of the energy supply to the perturbation mode, which
arises as a hydrothermal wave.

The critical data presented in papers 1 and 2 are in good qualitative agreement with
experimental measurements from the literature. However, despite the high accuracy
of our applied numerical method, we observed a quantitative difference in a few cases,
which can have several reasons. On the one hand, experimental measurements of
the critical Reynolds numbers for thermocapillary liquid bridges are challenging due
to the small liquid bridge size, possible interface contaminations, and the difficulty
in precisely controlling the thermal environment, all contributing to measurement
uncertainties. On the other hand, we must note that the validity range of the OB
approximation is limited to a certain imposed temperature difference, above which
the assumption of constant material parameters fails. This assumption is proped in
papers 3 and 4.
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Paper 3: Impact of Temperature-Dependent Material Parameters on the
Critical Onset The primary objective of paper 3 was the derivation of the full
closed-form kinetic and thermal energy budgets for variable material properties. Eval-
uating the budgets for critical conditions, it turned out that the temperature depen-
dence of the material parameters does not alter the general instability mechanism.
However, Melnikov et al. [23] reported a significant impact of a linearly temperature-
dependent viscosity on the linear stability boundary, which cannot be captured by the
OB approximation. Therefore, we first examined the validity range of the OB approx-
imation by considering a low- and high-Prandtl-number liquid bridge. Regarding the
former, which was represented by molten tin, it turned out that the OB approximation
is indeed sufficient to properly describe the flow. However, this was not the case for
the high-Prandtl-number liquid bridge made from 2 cSt silicone oil and surrounded
by air (see Table II, but V = 0.9) since the obtained critical temperature difference
provokes non-negligible changes of e.g. the thermal conductivities and the dynamic
viscosities. Extending the model of Melnikov et al. [23], we introduced a more realistic
model that accounts for the Linear Temperature Dependence (LTD) of all properties
and derived a formula to estimate its validity range. Although the validity range of
the LTD model is significantly larger compared to the OB approximation, it is still
bounded to relatively small temperature differences owing to the exponential variation
of the liquid’s viscosity. To properly take care of temperature differences beyond the
validity range of the LTD model, we further increased the complexity of the flow model
by taking the Full Temperature Dependence (FTD) of all material parameters into
account. For the considered high-Prandtl-number test case, we found a deviation of
almost 25% in the predicted critical Reynolds numbers between the OB and the FTD
model. This large deviation arises due to the reduced viscosity in the FTD model near
the hot wall and along the free surface, providing less resistance and thus leading to a
stronger basic vortex and subsequently to a less stable flow.

Paper 4: Stability Boundary for Fully Temperature-Dependent Fluid Prop-
erties For a more comprehensive comparison between the OB, LTD and FTD mod-
els, we performed in paper 4 quasi-continuously variations of the volume ratio, the
aspect ratio and the gas flow rates originating from the reference case from Table II
and exploiting all three flow models. Moreover, we varied the domain’s size to study
the impact of the length scale on the critical Reynolds number, which is affected by
the relative importance of buoyancy forces and by the range and character of the vari-
ability of the fluid’s properties. In general, the variability of the material parameters
increases with increasing ΔT . This means that for moderate critical temperature dif-
ferences (ΔTc � 10K), the OB approximation can be considered accurate enough to
predict the onset of instability since the critical conditions compare well with the ones
obtained by our reference FTD model. For higher ΔTc, the critical curve obtained
by the OB model may deviate significantly from the critical data resulting from the
FTD model. Since the OB approximation may either under or overestimate the crit-
ical threshold, it is difficult to establish a consistent correlation for the critical data
across larger ranges of aspect or volume ratios. As specific examples, we examined two
different volume ratios more closely, where the FTD model predicted almost the same
critical temperature difference of about 50K. Despite the similar thermal conditions,
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the OB approximation led to a good agreement in one case but to a severe overestima-
tion in the other case. This indicates that competing effects on the critical threshold
are at work that either compensate or reinforce each other. Thus, it is concluded
that the deviations in ΔTc (or Rec) among the different approximations are due to
subtle differences in the basic flow and the critical perturbation mode, which need to
be examined separately for each parameter setup. For parameter variations related
to the aspect ratio of the liquid bridge, we observe a qualitatively similar behavior of
the deviations but at a much lesser extent owing to the smaller ΔTc. If, instead, axial
gas flows with variable gas flow rates are imposed at the inlet of the open gas tube
(as in paper 2), the critical curve resulting from the OB approximation is not even
comparable in terms of its shape with the one obtained by the FTD model. The LTD
model, however, is able to qualitatively reproduce the critical threshold in all parame-
ter variations but typically underestimates the critical instability onset. Throughout,
the deviations in Rec between the LTD and FTD can reach up to 25%, whereas the
results obtained by the OB model can deviate by more than 100% from the data
obtained by the FTD model.

Paper 5: Heat Transfer Model with a Space-Dependent Biot Function For
high Prandtl numbers, it was shown that the gas phase mainly influences the critical
onset due to the amount and structure of the heat transfer through the liquid–gas inter-
face affecting the surface temperature, which is crucial for the thermocapillary driving.
Although the heat flux density exhibits sharp peaks, single-fluid models considering
only the liquid phase routinely model the heat flux by applying Newton’s cooling law
with a suitable ambient reference temperature and a constant Biot number Bi. This
assumption may lead to a poor numerical prediction of the real flow and its stabil-
ity. Still, the single-phase approach is appealing due to its computational efficiency,
especially for fully-resolved three-dimensional simulations. In paper 5, we present an
improved single-fluid model that combines the advantage of a standard single-fluid
model (computational cost) with the benefit of a two-fluid model (accuracy). In our
improved model, we replace the conventionally used constant Biot number Bi with a
Biot function Bi(z) to better represent the space-dependent heat flux density through
the interface. To that end, we extracted the space-resolved heat flux from two-phase
simulations for various aspect ratios and Reynolds numbers. The collected data was fed
to our derived multi-stage algorithm to establish closed-form expressions for the fitted
Biot functions that can subsequently be used in single-phase simulations. This way,
the correct thermal conditions are incorporated into the single-fluid model while the
(less important) viscous coupling is still being neglected. To analyze the performance
of the improved single-fluid model, we compared different heat transfer models re-
garding the linear stability boundaries with the reference two-fluid model. We showed
that this approach yields more accurate results than the classical Newton law with a
constant Biot number. Moreover, it has to be noted that an appropriate constant Biot
number is typically unknown a priori and needs to be guessed. However, our derived
model also provides improvement for the case of a constant Biot number, which was
found to be best approximated with the average of the Biot function over the free
surface excluding the thermal boundary layers. The linear stability analysis using this
constant but case-dependent Biot number also yields a good approximation to Rec.
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Paper 6: MaranStable All calculations have been carried out using the Matlab
code MaranStable, which has been made publicly available with paper 6. Operating
the software is facilitated by means of an easy-to-use graphical user interface, which has
been developed as part of this thesis. MaranStable computes steady two-dimensional
flows in canonical geometries and inspects their stability behavior by performing three-
dimensional linear stability analyses. MaranStable can deal with both cylindrical and
Cartesian coordinates and offers users a highly adaptable geometry setup, allowing
for a wide range of configurations, such as e.g. channels, annular pipes, cavities or
liquid bridges. Moreover, the user can select between the single-phase and multiphase
solvers. MaranStable stands out due to its numerous features compared to commonly
used solvers in the community of thermocapillary-driven flows, including three differ-
ent models for the interface deformations with increasing complexity: (i) straight inde-
formable surface shape, (ii) hydrostatic surface shape and (iii) dynamically deformed
surface shape. This allows for studying the impact of the often-neglected dynamic
interface deformations. Regarding the governing equations, three approximations to
the continuity, Navier–Stokes, and energy equations are implemented in MaranStable

for both single-phase and immiscible multiphase flows, which have already been intro-
duced and analyzed in papers 1–5. To summarize, the models are in increasing order
of complexity: (i) the well-known OB approximation, (ii) the LTD model, where all
fluid properties depend linearly on T and (iii) the FTD model accounting for the full
temperature dependence of all fluid properties. Using the FTD model, the user can
choose among over a hundred implemented liquids and gases, while for the OB and
LTD model, additional fluids can be defined by the user with custom fluid proper-
ties. MaranStable can be further customized by activating or deactivating Marangoni
stresses by using the Stokes flow approximation, where the inertia terms in the phys-
ical model are set to zero, or by skipping the energy equation. Apart from the basic
state computation and the linear stability analysis, MaranStable provides a module
to trace optical rays in the liquid, where the diffraction index N is non-homogeneous
owing to its temperature dependence N (T ). This tool can be especially useful for
experimentalists measuring particle trajectories in non-isothermal liquids.

6 Scientific Contribution of the Dissertation

The knowledge of the linear stability limit is of great interest for experiments. For
low-Prandtl-number liquids such as molten metal, the linear stability analysis allows to
predict the first transition from the two-dimensional basic flow to the three-dimensional
stationary flow [20]. For high-Prandtl-number liquids such as our primarily investi-
gated 2cSt silicone oil, the linear stability analysis is sufficient to describe the insta-
bility to hydrothermal waves [63]. Since high-Prandtl-number liquids are transparent
and easier to handle, they have been investigated experimentally to a greater extent
both on the ground and under zero gravity. The importance of critical data becomes
evident when considering the limited availability of accurate numerical studies on high-
Prandtl-number liquid bridges in the existing literature. With the present work, we
have accurately established the dependence of the linear stability boundary on pa-
rameters that are typically varied in laboratory experiments, namely the aspect and
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the volume ratio of the liquid bridge. Moreover, we have shown to which extent the
stability of the thermocapillary flow can be controlled via an externally imposed gas
flow.

As members of the JEREMI project, we have carried out linear stability analyses
to guide planning the upcoming space experiment. To that end, we have numerically
studied the dependence of the linear stability on the gravity level including conditions
of weightlessness. With the help of our critical data, the time-consuming search for
the critical point can be sped up, saving valuable time on the ISS. As additional
guidance for preparing the space experiment, we have conducted a systematic analysis
concerning the size of the liquid bridge. Our study reveals the length scale below which
the flow in the thermocapillary liquid bridge is practically unaffected by gravity forces,
even under terrestrial conditions. Thus, ground experiments following our restrictions
can serve as a basis for reliable planning of the space experiment.

Within the framework of this research project, we have systematically increased the
complexity of our computational model, starting from the well-established Oberbeck–
Boussinesq approximation with a solely hydrostatically deformed liquid–gas interface.
By this means, we were able to estimate the error made by routinely used assumptions
in numerical investigations. Inspecting flow-induced interface deformations, we found
a moderate impact on the instability threshold. Thus, we conclude that previously
reported critical data assuming a statically deformed surface are reliable. However, we
have proven that the Oberbeck–Boussinesq approximation may lead to poor numerical
predictions for sufficiently large critical temperature differences owing to the high
variability of the liquid’s viscosity. To get more accurate results, one may follow the
approach of Melnikov et al. [23] and account for a linearly temperature-dependent
viscosity. However, for very large temperature variations, we strongly recommend
using a model which accounts for the full nonlinear temperature dependence of at
least the viscosity.

Regarding single-phase solvers omitting the gas phase, we have analyzed standard
single-fluid models incorporating a constant Biot number in Newton’s cooling law. We
have shown that for high-Prandtl-number liquid bridges, this assumption may cause
unacceptable discrepancies from the actual flow, especially because the most suitable
Biot number is typically unknown and, therefore, needs to be guessed. As a remedy, we
have developed an improved single-phase model in which the heat transfer is still mod-
eled by Newton’s cooling law but with a space-dependent Biot function derived from
numerous two-phase simulations and fitted for a wide range of aspect and Reynolds
numbers. The resulting closed-form expressions are provided to the community under
https://github.com/fromano88/BiotFunction_LB.git. They can be implemented
in existing single-phase solvers to significantly improve their accuracy without increas-
ing the computational cost. For solvers restricted to constant Biot numbers, we also
provide a Matlab code that computes the best-suitable value based on the average
heat flux. Therefore, if the average heat flux would be measured in experiments in
addition to the critical Reynolds number, the Biot number based on the measured
heat flux should provide a good approximation to the proper constant Biot number
to be used in numerical single-fluid linear stability analyses. It would be interesting
to test this hypothesis in future investigations.

https://github.com/fromano88/BiotFunction_LB.git
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Despite all, our Matlab software MaranStable undoubtedly makes the most sig-
nificant scientific contribution. The extensively verified and validated software has
been made operable via a graphical user interface allowing usage by non-expert pro-
grammers. It is freely accessible to scientists and students under https://github.

com/fromano88/MaranStable, where we also provide many documentation and tuto-
rial files to help users get started with the software. Concerning the flow in liquid
bridges surrounded by gas, the user has the flexibility to set up the desired geome-
try parameters, gravity conditions, working liquid and gas, boundary conditions, etc.,
to compute the axisymmetric basic flow and its linear stability, or can seek for the
critical mode at the given set of parameters. Experimentalists can profit from the
results obtained with MaranStable when building the experimental design for exper-
iments conducted in space (e.g. JEREMI) or on Earth. They typically study the
thermocapillary flow in liquid bridges by seeding particles into the liquid in order to
track their position. The resulting measurements, however, might be misleading since
the index of refraction depends on the temperature field, which can exhibit strong
gradients especially in high-Prandtl-number liquids. MaranStable provides a tool to
correct the measured particle position by accounting for the temperature dependence
of the diffraction index. The true scientific value of MaranStable is understood when
considering that the software is not only restricted to liquid bridges but can deal with
a wide range of canonical geometries including both planar and cylindrical geome-
tries. Owing to the versatility of MaranStable, the user can carry out state-of-the-art
research in complex multiphase hydrodynamic stability. The computed data can be
visualized by the embedded visualization toolbox. Alternatively, the data can be ex-
ported in VTK or DAT, enabling external post-processing via software such as e.g.
Paraview, gnuplot or xmgrace. In view of the advanced capabilities, MaranStable
bears great potential to broaden the user community and facilitate advancements in
understanding multiphase flow instabilities.

Some of the implemented features of MaranStable are still in the beta version
and, thus, yet to be available in the GUI. This includes the computation of kinetic
and thermal energy budgets of the critical mode, and the improved heat transfer model
for single-fluid models. Apart from that, the computational model would benefit from
further extensions to account for other important influence factors. For large temper-
ature differences, evaporation may play an important role, which was found to have
a stabilizing effect for highly volatile liquids [45]. Regarding the future space experi-
ments where larger liquid bridges can be investigated, it would be useful to account for
dynamic surface deformations in the perturbation flow. This would allow the detec-
tion of surface wave instabilities, which have been exlcuded beforehand in the present
analysis. In general, experimental measurements may be affected by possible chemical
contaminations of the interface [44]. Hence, it would also be desirable to numerically
account for experimental errors related to surface contaminations by surfactants.

https://github.com/fromano88/MaranStable
https://github.com/fromano88/MaranStable


Bibliography

[1] Carrión, L. M., Herrada, M. A. & Montanero, J. M. 2020 Influence of
the dynamical free surface deformation on the stability of thermal convection
in high-Prandtl-number liquid bridges. Intl J. Heat Mass Transfer 146, 118831
(10pp).

[2] Chang, C. E. & Wilcox, W. R. 1975 Inhomogeneities due to thermocapillary
flow in floating zone melting. J. Crystal Growth 28, 8–12.

[3] Chang, C. E. & Wilcox, W. R. 1976 Analysis of surface tension driven flow
in floating zone melting. Intl J. Heat Mass Transfer 19, 355–366.
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The linear stability of the axisymmetric steady thermocapillary flow in a liquid bridge
made from 2 cSt silicone oil (Prandtl number 28) is investigated numerically in the
framework of the Boussinesq approximation. The flow and temperature fields in the
surrounding gas phase (air) are taken into account for a generic cylindrical container
hosting the liquid bridge. The flows in the liquid and in the gas are fully coupled across the
hydrostatically deformed liquid–gas interface, neglecting dynamic interface deformations.
Originating from a common reference case, the linear stability boundary is computed
varying the length of the liquid bridge (aspect ratio), its volume and the gravity level,
providing accurate critical data. The qualitative dependence of the critical threshold on
these parameters is explained in terms of the characteristics of the critical mode. The
heat exchange between the ambient gas and the liquid bridge that is fully resolved has an
important influence on the critical conditions.

Key words: thermocapillarity, instability, liquid bridge, gas/liquid flow

1. Introduction

The interfacial free energy between two immiscible fluids depends on the local
temperature. If the temperature varies along the interface, then the associated energy
gradients lead to variations of the line tension. This is the thermocapillary effect (Thomson
1855; Scriven & Sternling 1960; Levich & Krylov 1969), which can be a major driving
force for fluid motion in pure fluids. Thermocapillary flows are of great importance for
industrial applications such as welding (Mills et al. 1998), combustion (Sirignano &
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Glassman 1970), crystal growth (Schwabe 1981) and droplet manipulation in microfluidics
(Young, Goldstein & Block 1959).

To better understand thermocapillary flows, a number of paradigmatic configurations
have been investigated, ranging from flows in thin films (Smith & Davis 1983a, b; Oron,
Davis & Bankoff 1997; Diez & Kondic 2002; Craster & Matar 2009), flows in liquid-filled
cavities with a non-isothermal interface (Carpenter & Homsy 1989; Ohnishi, Azuma &
Doi 1992; Xu & Zebib 1998; Kuhlmann & Albensoeder 2008; Romanò & Kuhlmann
2017), and axisymmetric liquid bridges kept in place by the mean surface tension and
aligned with the gravity vector (Chun & Wuest 1979; Preisser, Schwabe & Scharmann
1983; Kuhlmann 1999; Kawamura & Ueno 2006; Schwabe 2014; Kumar 2015; Romanò &
Kuhlmann 2018). The canonical system of a liquid bridge is often employed to model the
fundamental transport processes in the floating-zone technique of crystal growth (Pfann
1962; Hurle & Jakeman 1981). A major aspect in floating-zone crystal growth is the onset
of time-dependent melt flow, because it is associated with a time-dependent propagation
of the solidification front, which leads to an uneven distribution of impurities (striations)
in the desired single crystal (Cröll et al. 1991).

In the floating-zone technique, the liquid bridge is supported by solid crystalline or
polycrystalline rods whose temperature near the melt zone is close to the melting point,
while the temperature of the interface, which is heated, exhibits a maximum midway
between the two supports. To simplify the problem while retaining the essential flow
physics, the half-zone model has been introduced by Schwabe et al. (1978). In their
half-zone model, two support rods of a material with a higher melting point than the
liquid are used and kept at different temperatures. The strength of the flow in the half-zone
depends on the applied temperature difference, often measured by a suitable Reynolds
number Re. As the Reynolds number is increased, the axisymmetric steady flow in the
half-zone becomes unstable. As these flow instabilities are related to the striations found
in crystals produced by the floating-zone technique, much effort has been devoted to flow
instabilities in the half-zone model (Kuhlmann 1999), which led to numerous experimental
(Preisser et al. 1983; Velten, Schwabe & Scharmann 1991; Takagi et al. 2001; Ueno,
Tanaka & Kawamura 2003; Kawamura & Ueno 2006; Gaponenko, Mialdun & Shevtsova
2012; Yano et al. 2017; Kang et al. 2019) and numerical (Wanschura et al. 1995; Leypoldt,
Kuhlmann & Rath 2000; Levenstam, Amberg & Winkler 2001; Lappa, Savino & Monti
2001; Nienhüser & Kuhlmann 2002; Shevtsova, Gaponenko & Nepomnyashchy 2013; Li
et al. 2015; Motegi, Fujimura & Ueno 2017a) investigations, only a few of which can be
cited here. Investigations of the full-zone problem are sparse (see, however, Wanschura,
Kuhlmann & Rath 1997a; Kasperski, Batoul & Labrosse 2000; Lappa 2003, 2004, 2005;
Hu, Tang & Li 2008; Motegi, Kudo & Ueno 2017b).

The stability of the flow in a thermocapillary liquid bridge is a complex problem,
because the flow and temperature fields in the gas and the liquid phase are coupled via
a deformable interface. For this reason, most of the theoretical and numerical studies
have made simplifying assumptions. The most popular approximation is to consider the
interface indeformable (Shevtsova & Legros 1998; Nienhüser & Kuhlmann 2002) or
even cylindrical (see e.g. Neitzel et al. 1993; Wanschura et al. 1995). Furthermore, the
ambient atmosphere is often considered a passive gas that does not exert any viscous
stresses on the interface and which may even be considered adiabatic. In this way, the
two-phase problem is approximated by a single-phase problem that depends on only a few
non-dimensional parameters. Within the single-fluid model, the dependence on the Prandtl
number of the critical Reynolds number at which the instability arises has been established
numerically by Wanschura et al. (1995) and Levenstam et al. (2001): for large Prandtl
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Stability of liquid–gas thermocapillary flow

numbers (Pr � 1), the axisymmetric flow becomes unstable to hydrothermal waves upon
increasing the Reynolds number, while the first instability at low Prandtl numbers (Pr � 1)
is three-dimensional but steady.

The stationary three-dimensional instability was discovered by Levenstam & Amberg
(1994, 1995) using numerical simulation, and by Wanschura et al. (1995) using linear
stability analysis. The instability has been compared with the instability of vortex rings,
and its mechanics was further detailed by Wanschura et al. (1995) who noted that the
instability is purely inertial, while the temperature field serves only to drive the basic
flow. Leypoldt, Kuhlmann & Rath (2002) carried out numerical simulations and explained
the second instability at low Prandtl numbers when the steady three-dimensional flow
becomes time-dependent. The second critical Reynolds number was further investigated
by Motegi et al. (2017a) using a numerical Floquet stability analysis. Further investigation
of the low-Prandtl-number instabilities are due to Takagi et al. (2001), Imaishi et al. (2001),
Li et al. (2007, 2008) and Fujimura (2013).

For high Prandtl numbers, Wanschura et al. (1995) identified numerically the critical
mode as a hydrothermal wave, a concept first introduced by Smith & Davis (1983a).
Hydrothermal waves are characterised by locally strong temperature extrema in the bulk
while the thermal wave is very weak on the interface. At the onset, a weak perturbation
flow is driven primarily by azimuthal temperature gradients (thermocapillary stresses).
The associated return flow transports basic state temperature in the bulk, which leads to
the large internal perturbation temperature extrema that feed back on the free surface.
Preisser et al. (1983) found experimentally the approximate correlation m ≈ 2.2/Γ for the
dependence of the critical wavenumber m on the length-to-radius aspect ratio Γ = d/R
at the onset of oscillations. This dependence was confirmed within the linear stability
analysis of Wanschura et al. (1995) and others. However, the results of Wanschura et al.
(1995) were obtained for moderate Prandtl numbers, zero gravity and an indeformable
adiabatic free surface. Therefore, they deviate from the extensive measurements of Velten
et al. (1991), indicating that much finer and more realistic modelling is necessary.

The effect of the shape (slender/fat) of high-Prandtl-number liquid bridges on the
critical Reynolds number has been investigated experimentally by Hu et al. (1994), Masud,
Kamotani & Ostrach (1997) and Sakurai, Ohishi & Hirata (2004). Shevtsova & Legros
(1998) carried out numerical simulations. Using the assumption of an adiabatic free
surface, Nienhüser & Kuhlmann (2002) and Nienhüser (2002) calculated numerically the
impact of the static shape of the liquid bridge and of buoyancy forces on the linear stability
of an axisymmetric flow. Their study overcame the limits of stability analyses, which
were restricted before to cylindrical bridges. For volumes of liquid of approximately 90 %
of the straight cylindrical volume, the high-Prandtl-number axisymmetric steady flow is
remarkably stable (see e.g. Sakurai, Ohishi & Hirata 1996; Chen & Hu 1998).

Even though Fu & Ostrach (1985) computed rudimentarily a coupled liquid–gas flow,
early numerical attempts to model the heat transfer across the interface were typically
based on Newton’s law of heat transfer (see e.g. Shen 1989; Neitzel et al. 1993; Nienhüser
& Kuhlmann 2001; Fujimoto et al. 2019; Carrión, Herrada & Montanero 2020). A recent
study by Romanò & Kuhlmann (2019) has shown, however, that modelling the heat transfer
across the interface by Newton’s law tends to underestimate the thermocapillary driving,
except very close to the cold rod. Motivated by the experimental evidence of the strong
impact of the heat transfer across the interface (Kamotani et al. 2003; Yano et al. 2017),
and with improved computing capabilities, more recent numerical approaches take into
account the flow and heat transport in the surrounding gas phase (Shevtsova et al. 2014;
Watanabe et al. 2014). Also, the possibility of imposing an external gas flow shows
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promise for a control of the onset of hydrothermal waves. This perspective stimulated
new experiments (Ueno, Kawazoe & Enomoto 2010; Irikura et al. 2005; Gaponenko et al.
2021) and numerical investigations (Yasnou et al. 2018) with imposed axial gas flow.

The present work is aimed at a linear stability analysis of the flow in a thermocapillary
liquid bridge including the gas phase. To that end, we use our linear stability code
MaranStable, which has been significantly extended and improved since its earlier version
(see e.g. Shevtsova et al. 2014). Owing to the large parameter space, a liquid bridge
made of 2 cSt silicone oil is considered (Pr = 28), which has often been employed
in experiments (Yano et al. 2018c), fully coupled to the surrounding air. The material
parameters are assumed constant, and the interface is indeformable. Stability analyses
are carried out quasi-continuously varying the aspect ratio, the volume fraction and the
gravity level. The relevance of such data is understood when considering that accurate
numerical studies in such high-Prandtl-number liquid bridges are hardly reported in
the literature, even though they are of great interest for experiments on stability and
particle accumulation studies on the ground and under zero gravity. On the ground
buoyancy-driven flow is always coupled to and interferes with a thermocapillary flow.
Under zero gravity, however, buoyancy can be eliminated. This property is utilised in space
experiments like MEIS (Kawamura et al. 2012), Dynamic Surf (Yano et al. 2018b) and
JEREMI (planned; Barmak, Romanò & Kuhlmann 2021).

To compute the linear stability of the axisymmetric flow and its dependence on the
parameters, we first formulate the governing equations and boundary conditions in § 2.
Thereafter, in § 3 the linear stability approach and the post-processing are described. The
results are presented and discussed in § 4, interpreting the stability boundaries in the light
of the multi-phase energy budgets. We close with a discussion and conclusions in § 5.

2. Problem formulation

2.1. The setup
We consider an axisymmetric liquid bridge of a Newtonian liquid captured between two
coaxial cylindrical rods both of length drod. The liquid bridge has axial length d and is
assumed to be pinned to the sharp circular edges of the rods of radius ri, as shown in
figure 1. The rods are aligned parallel to the acceleration of gravity g = −gez, where ez
is the axial unit vector, and mounted coaxially in a closed cylindrical chamber of radius
ro > ri and height 2drod + d filled with a gas. We use cylindrical coordinates (r, ϕ, z)
centred in the middle of the liquid bridge, and corresponding unit vectors (er, eϕ, ez) such
that the position vector is x = rer + zez, and the velocity field is represented by u = uer +
veϕ + wez. The characteristic geometrical parameters are

Γ = d
ri

, Γrod = drod

ri
, η = ro

ri
, (2.1a–c)

where Γ and Γrod are the aspect ratio of the liquid bridge and of the rods, respectively, and
η is the radius ratio of the chamber.

While the cylindrical sidewall and the annular top and bottom walls of the chamber are
assumed to be adiabatic, the cylindrical support rods are kept at different but constant
temperatures Thot = T0 + �T/2 and Tcold = T0 − �T/2, respectively, where T0 =
(Thot + Tcold)/2 is the mean temperature, hereinafter used as the reference temperature.
The enforced temperature variation across the liquid bridge creates a variation of the
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g

d

z

r

h(z)

Liquid
Gas

drod

drod
Thot

Tcold

ri
ro

Figure 1. Schematic of the problem set-up and coordinates. The hot (red) and cold (blue) solid rods supporting
the liquid bridge (light blue) are mounted coaxially in a closed cylindrical gas container (grey, hatched). Gravity
acts in the negative z direction and leads to the hydrostatic shape h(z) of the liquid bridge. The system is
axisymmetric with respect to the dash-dotted line (r = 0).

surface tension that can be described, to first order, by the linear dependence

σ(T) = σ0 − γ (T − T0) + O[(T − T0)
2], (2.2)

where σ0 = σ(T0) is the surface tension at the mean temperature, and γ = −∂σ/∂T|T=T0
is the negative surface tension coefficient. The resulting surface tension gradients induce
tangential shear stresses via the thermocapillary effect, which lead to an axisymmetric
thermocapillary flow on both sides of the interface (Kuhlmann 1999).

In addition to the thermocapillary stresses, the flow in the liquid is driven by buoyancy
forces due to the temperature dependence of the density of the liquid:

ρ(T) = ρ0{1 − β(T − T0) + O[(T − T0)
2]}, (2.3)

where ρ0 = ρ(T0) is the liquid density at the reference temperature, and β =
−ρ−1

0 (∂ρ/∂T)p is the thermal expansion coefficient. Buoyancy forces also act in the
gas phase due to the temperature-induced density variation of the gas in contact with
the liquid–gas interface. For short liquid bridges employed in terrestrial laboratories,
thermocapillary surface forces typically dominate over buoyant volume forces.

2.2. Governing equations
To compute the axisymmetric flow and temperature fields, and to investigate the
hydrodynamic stability of the flow, the governing transport equations must be solved
subject to the respective boundary conditions.

2.2.1. Transport equations
To non-dimensionalise the governing equations, we adopt the thermocapillary diffusive
scaling given in table 1 (see e.g. Kuhlmann 1999), where ν is the constant kinematic
viscosity of the liquid at the reference temperature. The temperature dependence of the
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Variable x t u p T

Scale d d2/ν γ �T/ρ0ν γ �T/d �T

Table 1. Scaling.

density in the liquid and in the gas is taken into account within the Oberbeck–Boussinesq
approximation (Landau & Lifschitz 1959; Mihaljan 1962). In this formulation, the
Navier–Stokes, continuity and energy equations for the liquid phase read

∂u
∂t

+ Re u · ∇u = −∇p + ∇2u + Bd ϑez, (2.4a)

∇ · u = 0, (2.4b)

∂ϑ

∂t
+ Re u · ∇ϑ = 1

Pr
∇2ϑ, (2.4c)

where ϑ = (T − T0)/�T is the normalised deviation from the reference temperature.
The fluid motion depends on the thermocapillary Reynolds, Prandtl and dynamic Bond
numbers defined as

Re = γ �T d
ρ0ν2 , Pr = ν

κ
, Bd = ρ0gβd2

γ
, (2.5a–c)

where κ is the constant thermal diffusivity of the liquid at the reference temperature.
Instead of Re, the Marangoni number Ma = Re Pr can be used.

Using the same scaling, the flow in the gas phase is governed by

∂ug

∂t
+ Re ug · ∇ug = − 1

ρ̃
∇pg + ν̃ ∇2ug + β̃ Bd ϑgez, (2.6a)

∇ · ug = 0, (2.6b)

∂ϑg

∂t
+ Re ug · ∇ϑg = κ̃

Pr
∇2ϑg, (2.6c)

where the non-dimensional field quantities are indicated by the subscript g. The additional
non-dimensional parameters are the gas-to-liquid ratios of the density ρ̃ = ρg/ρ0,
the kinematic viscosity ν̃ = νg/ν, the thermal diffusivity κ̃ = κg/κ , and the thermal
expansion coefficient β̃ = βg/β. Introducing

α = �
αρ, αν, ακ , αβ

� =
�

(1, 1, 1, 1), for the liquid phase,
(ρ̃, ν̃, κ̃, β̃), for the gas phase,

(2.7)

allows us to refer to both phases at the same time, while keeping the notation succinct.

2.2.2. Boundary conditions
(i) Support rods. To be able to control experimentally the temperatures imposed on
the liquid bridge, the heating rods are typically made from good thermal conductors.
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Stability of liquid–gas thermocapillary flow

Accordingly, the surfaces of the rods are modelled as isothermal, no-slip and
no-penetration walls,

hot rod: u = ug = 0, ϑ = ϑg = 1/2, (2.8a,b)

cold rod: u = ug = 0, ϑ = ϑg = −1/2, (2.8c,d)

being in contact with the liquid along the faces of the rods and with the gas phase along
the cylindrical surface.

(ii) Chamber walls. The outer cylindrical wall and the top and bottom walls of the closed
chamber are considered as no-slip and adiabatic boundaries satisfying

r = η/Γ : ug = 0,
∂ϑg

∂r
= 0, (2.9a,b)

z = ± (1/2 + Γrod/Γ ) : ug = 0,
∂ϑg

∂z
= 0. (2.9c,d)

(iii) Liquid–gas interface. The contiguous non-axisymmetric liquid–gas interface is
described by a unique radial position r = h(ϕ, z, t) on which coupling conditions for u
and ϑ must be provided. The continuity of temperature and heat flux requires

r = h(ϕ, z, t) : ϑ = ϑg and n · ∇ϑ = κ̃n · ∇ϑg, (2.10a,b)

where n is the local unit vector normal to the interface directed from the liquid into the
gas phase. The kinematic coupling

r = h(ϕ, z, t) : u = ug and u = 1
Re

∂h
∂t

+ v

r
∂h
∂ϕ

+ w
∂h
∂z

, (2.11a,b)

forces material elements on the interface to remain on the interface. Finally, the dynamic
condition provided by the tangential stress balance

r = h(ϕ, z, t) : n · S · t = −∇ϑ · t + ρ̃ν̃n · Sg · t (2.12)

must be satisfied, where S = ∇u + (∇u)T and ρ̃ν̃Sg are the viscous stress tensors in the
liquid and the gas, respectively. The vector t can be any of the two orthogonal unit vectors
tangent to the interface.

2.3. Solution structure

2.3.1. Shape of the interface
The non-dimensional radial position r = h(ϕ, z, t) of the interface is part of the solution
and therefore a priori unknown. Motivated by the very small capillary numbers
Ca = γ �T/σ0 in typical experiments, we consider the limit of asymptotically large mean
surface tension σ0 in which Ca → 0. In this limit, dynamic free-surface deformations
can be neglected, and the problem of determining the liquid–gas interface decouples
from solving (2.4) and (2.6) together with (2.8)–(2.12). These circumstances allow for
an axisymmetric and stationary interface h(ϕ, z, t) → h(z) that is determined solely by
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M. Stojanović, F. Romanò and H.C. Kuhlmann

the normal-stress balance, yielding the Young–Laplace equation

�ph = ∇ · n
Ca

+ Bo
Ca

z, (2.13)

where n = (1, 0, −hz)
T/

�
1 + h2

z is the outward surface normal vector, �ph is the
hydrostatic (subscript h) pressure jump across the liquid–gas interface, and

Bo = (ρ0 − ρg0)gd2

σ0
(2.14)

is the static Bond number. Note that the ratio λ = Bd/Bo = ρ0βσ0/[γ (ρ0 − ρg0)] is a
material parameter. The Young–Laplace equation (2.13) for h is of second order in z and
ϕ, and needs to be closed by additional conditions. The pinned contact lines require

h (z = ±1/2) = 1
Γ

. (2.15)

Owing to these constraints, (2.13) has an axisymmetric solution h(z), which we consider
within its stability limits (Slobozhanin & Perales 1993). To determine h(z) and the pressure
jump ph uniquely, (2.13) is solved subject to the volume constraint

Γ 2
� 1/2

−1/2
h2(z) dz = V, (2.16)

where V = Vl/V0 is the liquid volume Vl normalised by the volume V0 = πr2
i d of an

upright cylindrical liquid bridge. Within the range of V considered, the contact angle is a
bijective function of V (Nienhüser & Kuhlmann 2002).

2.3.2. Basic flow
For a given axisymmetric hydrostatic shape h(z) of the liquid bridge, the symmetries of
the problem allow for a steady axisymmetric flow (∂t = ∂ϕ = 0) with v0 = vg0 = 0, which
is denoted q0(r, z) = (u0, w0, p0, ϑ0) (liquid phase) and qg0(r, z) = (ug0, wg0, pg0, ϑg0)

(gas phase). The pressure fields pg0 and p0 are flow-induced and add, respectively, to the
ambient pressures pa (gas) and pa + �ph (liquid).

The flows q0 and qg0 are obtained by solving the steady axisymmetric versions of the
differential equations (2.4) and (2.6), subject to the steady axisymmetric versions of the
boundary conditions. On r = 0, axisymmetry requires

u0 = ∂w0

∂r
= ∂ϑ0

∂r
= 0, (2.17)

while on the free surface we obtain, from (2.11a,b),

u0

w0
= hz. (2.18)
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Stability of liquid–gas thermocapillary flow

2.3.3. Linear stability analysis
For small Reynolds numbers Re, the basic flow (q0, qg0) is stable. When Re exceeds a
critical Reynolds number Rec, the basic flow becomes unstable. In order to calculate
the critical threshold, a linear stability analysis is carried out. To that end, the general
three-dimensional time-dependent flow q = (u, v, w, p, ϑ) and qg = (ug, vg, wg, pg, ϑg)
is written as

u = u0(r, z) + u�(r, ϕ, z, t), ug = ug0(r, z) + u�
g(r, ϕ, z, t), (2.19a,b)

v = 0 + v�(r, ϕ, z, t), vg = 0 + v�
g(r, ϕ, z, t), (2.19c,d)

w = w0(r, z) + w�(r, ϕ, z, t), wg = wg0(r, z) + w�
g(r, ϕ, z, t), (2.19e,f )

p = p0(r, z) + p�(r, ϕ, z, t), pg = pg0(r, z) + p�
g(r, ϕ, z, t), (2.19g,h)

ϑ = ϑ0(r, z) + ϑ �(r, ϕ, z, t), ϑg = ϑg0(r, z) + ϑ �
g(r, ϕ, z, t), (2.19i,j)

where deviations from the basic flow are indicated by a prime (�). Inserting this
decomposition into (2.4) and (2.6), and linearising with respect to the perturbation
quantities, yields the linear stability equations that have the same form,

∂u�

∂t
+ Re(u0 · ∇u� + u� · ∇u0) = − 1

αρ

∇p� + αν ∇2u� + αβ Bd ϑ �ez, (2.20a)

∇ · u� = 0, (2.20b)

∂ϑ �

∂t
+ Re(u0 · ∇ϑ � + u� · ∇ϑ0) = ακ

Pr
∇2ϑ �, (2.20c)

for both phases. The subscript ‘g’ (for the gas phase) no longer appears, because the
distinction between the two phases is made, henceforth, by the set of coefficients α defined
in (2.7).

Due to the homogeneity of (2.20) in ϕ and t, the general solution q� = (u�, v�, w�, p�, ϑ �)
of (2.20) can be written as a superposition of normal modes

q� =
 
j,m

q̂j,m(r, z) exp(μj,mt + imϕ) + c.c., (2.21)

where μ = μj,m ∈ C is a complex growth rate, and m ∈ N0 is the azimuthal wavenumber.
The index j numbers the discrete part of the spectrum, and c.c. denotes the complex
conjugate. Inserting the ansatz (2.21) into the linear perturbation equations (2.20), one
obtains linear differential equations for the perturbation amplitudes q̂ = (û, v̂, ŵ, p̂, ϑ̂) that
depend only on r and z:

μû + Re
��

1
r

+ ∂

∂r

�
(2u0û) + u0iv̂m

r
+ ∂(u0ŵ + ûw0)

∂z

�
= − 1

αρ

∂ p̂
∂r

+ αν

�
1
r

∂

∂r

�
r

∂ û
∂r

�
− (m2 + 1)

û
r2 − 2

r2 iv̂m + ∂2û
∂z2

�
, (2.22a)
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M. Stojanović, F. Romanò and H.C. Kuhlmann

m = 0 :

m = 1 :

m > 1 :

û = 0

∂ û/∂r = 0

û = 0

v̂ = 0

∂v̂/∂r = 0

v̂ = 0

∂ŵ/∂r = 0

ŵ = 0

ŵ = 0

∂ϑ̂/∂r = 0

ϑ̂ = 0

ϑ̂ = 0

Table 2. Boundary conditions for the perturbation flow on r = 0.

μv̂ + Re
��

2
r

+ ∂

∂r

�
(u0v̂) + ∂(v̂w0)

∂z

�
= − 1

αρ

1
r

p̂im + αν

�
1
r

∂

∂r

�
r

∂v̂

∂r

�
− (m2 + 1)

v̂

r2 + 2
r2 iûm + ∂2v̂

∂z2

�
, (2.22b)

μŵ + Re
�

1
r

∂(w0û + ŵu0)

∂r
+ w0iv̂m

r
+ 2

∂w0ŵ
∂z

�
= − 1

αρ

∂ p̂
∂z

+ αν

�
1
r

∂

∂r

�
r

∂ŵ
∂r

�
− m2 ŵ

r2 + ∂2ŵ
∂z2

�
+ αβ Bd ϑ̂, (2.22c)

1
r

∂(rû)

∂r
+ 1

r
iv̂m + ∂ŵ

∂z
= 0, (2.22d)

μϑ̂ + Re


1
r

∂(ϑ0û + ϑ̂u0)

∂r
+ ϑ0iv̂m

r
+ ∂(ϑ0ŵ + ϑ̂w0)

∂z

�

= ακ

Pr


1
r

∂

∂r

�
r

∂ϑ̂

∂r

�
− m2 ϑ̂

r2 + ∂2ϑ̂

∂z2

�
. (2.22e)

Using polar coordinates, the perturbation flow must satisfy boundary conditions on the
axis r = 0. These are provided in table 2 and can be derived from uniqueness conditions
for ∂u/∂ϕ and ∂ϑ/∂ϕ as r → 0 (Batchelor & Gill 1962; Xu & Davis 1984). Since the
imposed constant temperatures on the cylindrical rods are taken care of by the basic flow,
all perturbation quantities must vanish on the support rods:

û = ûg = 0 and ϑ̂ = ϑ̂g = 0. (2.23a,b)

Like the basic flow, the velocity and heat flux of the perturbations must vanish on the solid
adiabatic walls of the gas container:

ûg = 0 and n · ∇ϑ̂g = 0. (2.24a,b)

In the limit Ca → 0 considered, the liquid–gas interface is indeformable. From
(2.10a,b)–(2.12), the coupling on the axisymmetric interface at r = h(z) between the
liquid- and gas-phase perturbations is provided by

û = ûg, ϑ̂ = ϑ̂g, n · ∇ϑ̂ = κ̃n · ∇ϑ̂g and n · Ŝ · t = −∇ϑ̂ · t + ρ̃ν̃n · Ŝg · t,
(2.25a–d)

with Ŝ = ∇û + (∇û)T.
For each azimuthal wavenumber m, (2.22)–(2.25a–d) represent a linear eigenvalue

problem with an infinite number of eigenmodes q�. The eigenmodes and the corresponding
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Stability of liquid–gas thermocapillary flow

eigenvalues

μj,m = μ(j, m; Re, Γ,V, Pr, λ, ρ̃, ν̃, κ̃, β̃) (2.26)

depend on a number of parameters. Neutral values Ren (using subscript n) of
the Reynolds number associated with each mode (j, m) are characterised by a
vanishing real part (Re) of the eigenvalue, Re[μj,m(Ren)] = 0. These conditions
define neutral hypersurfaces Rej,m

n (Γ,V, Pr, λ, ρ̃, ν̃, κ̃, β̃) in the parameter space. The
envelope of all neutral hypersurfaces Rec = minj,m Rej,m

n is the critical Reynolds number
Rec(Γ,V, Pr, λ, ρ̃, ν̃, κ̃, β̃). For slightly supercritical Reynolds numbers with � = (Re −
Rec)/Rec � 1, the basic flow is guaranteed to be unstable, because at least one eigenmode
exists that has a positive growth rate Re(μ) > 0. This does not preclude the rare case of
isolated islands in parameter space for larger Reynolds numbers (Re/Rec > 1) for which
the basic flow can be linearly stable, i.e. for which ∀j,m Re(μj,m) < 0. However, within
the present linear stability approach, which does not take care of nonlinear effects in the
perturbation flow, it cannot be decided if the basic flow q0 is stable to finite-amplitude
perturbations, either in these linearly stable islands or for Re < Rec. Experimental and
numerical evidence (Velten et al. 1991; Leypoldt et al. 2000; Sim & Zebib 2002) suggests,
however, that the first instability of the basic flow is typically supercritical.

2.4. Post-processing
Analysing the energy transfer between the basic flow and the neutral mode can provide
insights regarding the instability mechanism and helps us to understand the underlying
physics. To that end, we build on the energy analysis derived in Nienhüser & Kuhlmann
(2002) for a non-cylindrical axisymmetric liquid bridge, where the gas phase was
neglected, and extend the equations to the present two-phase model. Multiplying the
linearised momentum equation (2.20a) by the perturbation velocity vector u�, the resulting
equations for the liquid and gas are integrated over the volumes Vl and Vg, respectively,
occupied by each phase. After splitting all terms into volume and surface integrals by
means of Green’s theorem, we obtain the balance

dEkin

dt
= 1

Dkin

d
dt

�
Vi

u�2

2
dV = −1 + Mr + Mϕ + Mz +

5 
j=1

Ij + B, i ∈ [l, g], (2.27)

for the (normalised) rate of change of the kinetic energy Ekin, where all terms on the
right-hand side have been normalised by the mechanical dissipation rate Dkin. Similarly,
multiplication of (2.20c) by ϑ � and integration over the volume occupied by each phase
yields the thermal energy balance

dEth

dt
= 1

Dth

d
dt

�
Vi

ϑ �2

2
dV = −1 +

2 
j=1

Jj + Hfs, i ∈ [l, g], (2.28)

where all terms now have been scaled by the thermal dissipation rate Dth. Thus the
scaled dissipation rates Dkin = Dth = 1 are constant. The subscripts l and g have been
omitted for all terms arising in (2.27) and (2.28) with the understanding that the balances
are valid separately for both the liquid and gas phases. Detailed expressions for the
individual terms are provided in Appendix A. The terms

!
Ij = !�

ij dV and
!

Jj =! �
jj dV (see (A2)) represent the scaled total production rates of kinetic and thermal
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M. Stojanović, F. Romanò and H.C. Kuhlmann

Fluid ρ (kg m−3) ν (m2 s−1) κ (m2 s−1) σ0 (N m−1) γ (N m−1 K−1) β (K−1)

2 cSt 871 2.00 × 10−6 7.14 × 10−8
18.3 × 10−3 7 × 10−5 1.24 × 10−3

Air 1.184 1.56 × 10−5 2.22 × 10−5 3.38 × 10−3

Table 3. Thermophysical properties of the working fluids 2 cSt silicone oil KF96L-2cs and air at 25 ◦C.

energy, respectively, which is transferred between the basic and perturbation flows, with
corresponding local production densities ij and jj. The terms Mr, Mϕ and Mz in the kinetic
energy balance (2.27) represent the work done per unit time by Marangoni forces in the
respective spatial directions. Furthermore, the contribution B (see (A4)) accounts for the
work done per unit time by buoyancy forces. In the thermal budget (2.28), Hfs (see (A5))
denotes the heat transferred through the liquid–gas interface. It appears in the budgets for
both the liquid and gas phases, albeit with opposite signs.

It is generally accepted to refer to Eth and Eth,g as thermal energies, even though it
contradicts the definition of the thermodynamic thermal energy. Hence, what we call
thermal energy is rather a measure for the temperature deviation from the axisymmetric
temperature field.

2.5. Reference case and parameter variation
Due to the large number of parameters governing the linear stability problem, it is
computationally too demanding to cover the whole parameter space. Therefore, we
consider the liquid–gas couple made of 2 cSt silicone oil (KF96L-2cs, Shin-Etsu Chemical
Co., Ltd., Japan) and air with constant material parameters, evaluated at T0 = 25 ◦C for
both fluids. This selection determines the non-dimensional material parameters Pr, λ, ρ̃,
ν̃, κ̃ and β̃. The thermophysical properties of both working fluids are listed in table 3.

Furthermore, we keep the aspect ratio of the support rods as well as the chamber radius
ratio constant at Γrod = 0.4 and η = 4, respectively. This configuration corresponds to
the experiments carried out by Romanò et al. (2017). We are left with the important
geometrical parameters V and Γ representing the volume of liquid and the geometric
aspect ratio of the liquid bridge, respectively. Finally, the gravity level can be varied via
the Bond number Bd.

The origin of all parameter variations is a common reference case. It is based on
the experimental geometry investigated by Romanò et al. (2017) with support rods of
radius ri = 2.5 mm and terrestrial gravity. Different from our objectives, however, Romanò
et al. (2017) kept the temperature difference constant at �T = 10 K < �Tc, which is far
subcritical. We define the reference case by Γref = 0.66, Vref = 1 and Bdref = 0.41. All
reference parameters are collected in table 4. Starting from the reference case, we perform
three parameter variations.

(i) A first variation, which is typically made in laboratory experiments, is a variation of
the length d of the liquid bridge (Velten et al. 1991; Monti, Savino & Lappa 2000;
Nienhüser & Kuhlmann 2003; Melnikov et al. 2015), corresponding to a variation
of Γ . Owing to the dependence of Bd ∼ d2, we simultaneously vary Bd such that
Bd = Bdref (Γ/Γref )

2, corresponding to a constant acceleration of gravity. The range
of variation is Γ ∈ [0.5, 1.8] and Bd ∈ [0.236, 3.07].
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Stability of liquid–gas thermocapillary flow

Γref Vref Bdref Pr λ ρ̃ ν̃ κ̃ β̃

0.66 1 0.41 28 0.32 1.36 × 10−3 7.80 310.16 2.73

Table 4. Constant non-dimensional parameters; Γ , V and Bd are varied around the reference values given.

(ii) In a second series of calculations, we vary V ∈ [0.65, 1.3] for Γ = Γref and Bd =
Bdref . This type of variation has also been used in experiments (Hu et al. 1994;
Sakurai et al. 1996; Tang & Hu 1999; Nienhüser & Kuhlmann 2002; Yano et al.
2016).

(iii) In a third step, we vary the acceleration of gravity for Γ = Γref and V = Vref . In this
series of calculations, the Bond number is varied in the range Bd ∈ [−1.25, 1.25].
This variation is intended to show how the instabilities for heating from above
(reference case) and below are related to each other and to the case of zero gravity in
which buoyancy forces and hydrostatic pressure are eliminated (Velten et al. 1991;
Wanschura, Kuhlmann & Rath 1997b; Kawamura et al. 2012).

3. Numerical methods

To compute the basic state and its linear stability, a revised version of the numerical code
MaranStable (Kuhlmann, Lukasser & Muldoon 2011; Stojanovic & Kuhlmann 2020b) is
used. It is based on an earlier version developed by M. Lukasser (see § 4.2 of Shevtsova
et al. 2014).

3.1. Shape of the interface
In a first step, the static axisymmetric shape h(z) of the liquid–gas interface is computed.
To that end, the Young–Laplace equation (2.13) is reformulated as a system of two ordinary
differential equations:

hzz = (1 + h2
z )

�
1
h

− (Ca �ph − Bo z)
�

1 + h2
z

�
, (3.1a)

�ph,z = 0, (3.1b)

where the subscript z denotes differentiation with respect to z. These equations, together
with the pinning conditions (2.15), represent a boundary value problem, which is
discretised by central finite differences on a uniform mesh. The pressure jump �ph
is determined by the volume constraint (2.16). The discretised set of nonlinear equations
is solved using the Newton–Raphson method. The iteration is terminated as soon as both
the L∞ and L2 norms of the residual have dropped below 10−6.

3.2. Basic flow
The steady axisymmetric versions of the nonlinear equations (2.4) and (2.6) determining
the basic state are discretised on a structured and staggered grid using second-order
finite volumes (Wesseling 2009). In order to implement the boundary conditions on
the liquid–gas interface, the grid is body-fitted to the interface, transforming the radial
coordinate to ξ = r/h(z). To perform this transformation, the previously determined
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�min,a
�min,l

�max,l

�
m

in
,l �min,g

�min,c

�
m

in
,c

�max,g

1.0

0.5

−0.5

−1.0

0 1 2 3
r

z

4 5 6

Figure 2. Example for the physical mesh inside the liquid (light blue) and the gas (grey). For better
visualisation, the total number of nodes was reduced to Ntot = 18 852, which is a reduction of more than 80 %
compared to the mesh used for the calculations.

h(z) is interpolated to the current grid using splines. Furthermore, the grid is refined
towards all boundaries using a hyperbolic-tangent profile (Thompson, Warsi & Mastin
1985). Inside the liquid, a minimum cell width of �min,l = 5 × 10−5 was chosen for the
wall-bounded cells and along the interface in order to guarantee that thermal boundary
layers will be resolved for all calculations. On the axis of symmetry (subscript a),
moderate temperature and velocity gradients are expected, justifying the larger minimum
cell width in radial direction �min,a = 10−3. The spatial resolution in the gas phase was
set to �min,g = 3�min,l along the interface, and �min,c = 10−3 × Γrod/Γ close to the
adiabatic chamber walls (subscript c). The cells are stretched towards the interior with
a stretching factor f = 1.15 until maximum cell widths �max,l = 0.0075 = 150 �min,l and
�max,g = 0.02(η − 1)/Γ = 150 �min,c ≈ 600 �min,g are reached in the bulk of the liquid
and the gas, respectively. These conditions lead to a total of Ntot = 103 613 cells, of which
Nr × Nz = 244 × 197 cells belong to the liquid, and Nr × Nz = 115 × 483 cells belong to
the gas phase. Figure 2 shows the physical mesh, but at much lower resolution than used
for the actual calculations.

The nonlinear algebraic equations resulting from the discretisation are solved by
Newton–Raphson iteration:

J(q(k)
0 ) · δq = −f (q(k)

0 ), (3.2a)

q(k+1)
0 = q(k)

0 + δq, (3.2b)

where δq is the increment of the approximation of the basic flow from the kth to the
(k + 1)th iteration step. Inserting (3.2b) into the steady axisymmetric versions of (2.4)
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Stability of liquid–gas thermocapillary flow

and (2.6) yields the equations governing δq:

Re(δu · ∇u(k)
0 + u(k)

0 · ∇δu) + 1
αρ

∇δp − αν ∇2δu − αβ Bd δϑ ez

= −Re u(k)
0 · ∇u(k)

0 − 1
αρ

∇p(k)
0 + αν ∇2u(k)

0 + αβ Bd ϑ
(k)
0 ez, (3.3a)

∇ · δu = −∇ · u(k)
0 , (3.3b)

δu · ∇ϑ
(k)
0 + u(k)

0 · ∇δϑ − αk

Ma
∇2δϑ = −u(k)

0 · ∇ϑ
(k)
0 + αk

Ma
∇2ϑ

(k)
0 , (3.3c)

where the nonlinear terms have been linearised with respect to δq. The Jacobian operator
J(q(k)

0 ) and the nonlinear residual − f (q(k)
0 ) are identified readily from (3.3). The Newton

iteration (3.2) is considered converged as soon as both the infinity norm �δq�∞ and the L2

norm �δq�2 of the residual have dropped below 10−6.

3.3. Linear stability of the basic flow
Once the basic state q0 is computed, it parametrically enters the linear stability equations
(2.22), which are discretized on the same mesh using the same finite volume method. The
resulting large generalised complex eigenvalue problem is converted into a generalised
eigenvalue problem with real matrices by introducing v̌ = iv̂ (Theofilis 2003). Defining
the decay rate χ = −μ, the generalised real eigenvalue problem has the form

A · q̂ = χB · q̂, (3.4)

where B is singular. For a Reynolds number Re ≈ Ren close to a neutral stability boundary
(subscript n), the most dangerous modes (numbered by i) belong to the eigenvalues χi with
the smallest real parts, satisfying Re(χi) ≈ 0. To find the most dangerous eigenvalue, i.e.
the one with the smallest real part of χ , twelve eigenvalues χ̃i with the smallest absolute
value are computed, in a first step, via an implicitly restarted Arnoldi method implemented
in ARPACK (Lehoucq, Sorensen & Yang 1998) and available under MATLAB. A Krylov
subspace of dimension K = 100 is employed. Based on the eigenvalue χ̃sr with the
smallest real part among the twelve eigenvalues χ̃i, i.e. χ̃sr : Re(χ̃sr) = min[Re(χ̃i)], we
adopt the method proposed by Meerbergen, Spence & Roose (1994) to validate that the
eigenvalue χ̃sr is indeed the one with the smallest real part among all the eigenvalues χi
and not only among the twelve eigenvalues χ̃i with the smallest absolute value. To that end,
17 eigenvalues ζ = (χ − a2)(χ − a1) with the largest magnitude of the Cayley transform

(A − a2B) · q̂ = ζ(A − a1B) · q̂ (3.5)

are computed, as described in Meerbergen et al. (1994). The parameters a1 and a2 are
determined by the five real eigenvalues with the smallest absolute value and a user-defined
parameter b = |(χi − a2)/(χi − a2)| = 1.2, where χi is one of the eigenvalues with the
smallest real part. The resulting 17 eigenvalues containing the most dangerous mode are
then sorted according to the magnitudes of their real parts.

At the neutral Reynolds number Ren, the real part of the eigenvalue of the most
dangerous mode, identified from the above procedure, crosses zero. To determine Ren for
a given azimuthal wavenumber m, the Reynolds number is varied in small steps, typically
by approximately 5 % of its value, until the sign of mini Re(χi)|m changes, signalling
that at least one root exists within this interval of Re. The root Ren is then computed
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M. Stojanović, F. Romanò and H.C. Kuhlmann
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Figure 3. Streamlines and temperature fields ϑ0 and ϑg0 (colour) of the basic state for the reference case
(Γ = 0.66, V = 1, Bd = 0.41) at criticality Rec = 731. Streamline levels differ in the liquid and the gas, but
they are drawn equidistantly in each phase.

by the bisected direct quadratic regula falsi as described in Gottlieb & Thompson (2010),
using the convergence condition |mini Re(χi)|m| < 10−5, i.e. a sufficiently small absolute
value of the growth rate’s real part. Repeating this procedure for a series of wavenumbers
m = 0, 1, 2, . . . , M allows us to detect the critical Reynolds number Rec as the envelope
gathering the lowest neutral Reynolds numbers over all Ren(m).

In order to track the neutral curves under a variation of one of the parameters Γ , V or Bd,
a natural continuation technique is used. The converged basic state and neutral Reynolds
number are used as initial conditions for the Newton iteration to compute the basic state
for the incremented parameter, followed by solving the new eigenvalue problem. The step
change of the parameter is typically 1 % of its value. If necessary, the parameter variation
is refined, e.g. near intersection points of neutral curves or when Ren depends sensitively
on the parameter varied.

The numerical code has been tested extensively. Grid convergence, verification and
validation are described in detail in Appendix B.

4. Results

4.1. Reference case

4.1.1. Basic flow
Since the basic two-dimensional flow enters the linear stability analysis parametrically,
it is important to examine its characteristics closely. Figure 3 shows the streamlines and
the temperature field at criticality for the reference case (Γ = 0.66, V = 1, Bd = 0.41).
The hydrostatic shape of the interface deviates only slightly from the cylindrical shape.
The thermocapillary stresses along the interface, directed from the hot corner to the cold
one, lead to a streamline crowding at the interface and drive a clockwise vortex in the
liquid phase (figure 3). Even though the absolute Rayleigh number for the liquid phase
is |Ra| = |Pr Bd Re| = 8392, buoyancy forces do not cause the instability, because of the
overall stable thermal stratification (see also Wanschura et al. 1997b). Buoyancy forces
are, however, responsible for the vortex in the liquid, which is more slender than under
zero gravity, because the hot fluid transported near the free surface to the cold wall has
the tendency to rise in the bulk. This causes the large separation bubble on the cold wall
(Romanò & Kuhlmann 2018), also visible in figure 3.

Owing to the geometry of the gas space, a much larger vortex is created in the gas phase
(counterclockwise in figure 3). Because the thermal diffusivity of the gas is much higher
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Stability of liquid–gas thermocapillary flow
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Figure 4. Tangential velocity ut0 = t · u0 (solid blue lines) and temperature distribution ϑ0 (solid red lines) of
the basic flow along the free surface (parametrised by z) for the reference case at criticality (Γ = 0.66, V = 1,
Bd = 0.41, Re = Rec = 731). Also shown, as dashed lines, are the corresponding profiles for the single-fluid
model at the same Reynolds number, and for an adiabatic free surface, neglecting viscous stresses from the
gas. (a) Profiles along the whole free surface. (b) Zoom into the red rectangle shown in (a). The black curve
indicates the shape h(z) of the interface.

than that of the liquid (table 4), the convective effect on the temperature distribution in
the gas phase is very weak. The temperature distribution along the interface (figure 4),
being larger than T0 on average, causes a mean temperature ϑg0 > 0 in the gas phase
far away from the liquid bridge. Furthermore, a weak flow arises in a large separation
bubble, while much smaller viscous eddies can be identified close to all four corners of the
annular gas container. Buoyancy in the gas phase is even weaker than in the liquid phase.
The ratio Rag/Ra = β̃d̃3/(ν̃κ̃) ≈ 10−2, where d̃ = 1 + 2Γrod/Γ , suggests that buoyancy
is negligible in the gas.

The distributions of the velocity (blue) and temperature (red) on the free surface are
shown in figure 4(a) for the reference case (solid lines). Also shown are the profiles for the
single-fluid model with an adiabatic free surface (dashed lines), neglecting viscous stresses
from the gas. For both models, the boundary layer character is obvious from the steep
variation of the temperature near the hot and cold corners. Associated with the temperature
gradients are peaks of the surface velocity very close to the hot and cold corners. Of
these, the cold-corner peak is particularly sharp, because the fluid at the interface is
accelerated towards the wall, where it must get decelerated to zero. Since the finite volume
method employed does not require any regularisation of the boundary conditions near
the corners, the velocity peaks are fully resolved (zoom in figure 4b). The temperature
is almost constant along the free surface midway between the two surface velocity peaks
(figure 4b) as well as inside the main vortex in the liquid (figure 3). The two-fluid model
exhibits a lower surface temperature in the plateau region than the adiabatic single-fluid
model. This indicates that the two-fluid model exhibits a heat loss, i.e. a net heat flux
outwards through the free surface (free-surface Nusselt number Nufs < 0 defined in (B2)),
a stronger thermocapillary driving along the hotter part of the interface as compared to the
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Figure 5. Distances �i of the surface velocity peaks of the basic flow from the cold corner (blue dots, i = cold)
and the hot corner (red dots, i = hot) compared to the theoretical scalings of the respective thermal boundary
layer thicknesses (lines).

single-fluid model, and thus a larger surface velocity along most parts of the free surface.
As a consequence, the flow obtained with the adiabatic single-fluid model is approximately
twice as stable than the one obtained with the two-fluid model for the same conditions; cf.
figure 29 in § B.1.

For high-Prandtl-number flows, the thermal boundary layers in the liquid near the hot
and cold corners, i.e. on the circular rigid end walls and at the interface, are more relevant
than the viscous boundary layers. For pure thermocapillary flow in the single-fluid model
with contact angle α = 90◦, the thermal boundary layer thickness on the cold wall near
the contact line is expected to scale ∼ Ma−1 in the viscous convective limit (Ma → ∞,
Re � Ma) (Canright 1994). On the hot wall, the thermal boundary layer thickness should
scale ∼ Ma−1/2 in this limit (Kamotani & Ostrach 1998). The thickness of the thermal
boundary layers can be measured by the distances �hot and �cold of the velocity peaks
from the hot and cold corners, respectively. Both distances are shown in figure 5 as
functions of Ma for the present two-fluid model. The locations of the velocity peaks
�hot(Ma) and �cold(Ma) exhibit the same scaling with Ma as predicted theoretically for
the single-fluid model in the viscous convective limit.

4.1.2. Hydrothermal wave instability
At Rec = 731, the basic flow becomes unstable with respect to a pair of azimuthally
propagating modes with ωc = Im(γc) = ±14.85 and m = 3. One of the two critical modes
is illustrated in figure 6. The global temperature distribution in the horizontal plane at
z = 0.20 shown in figure 6(a) indicates that the temperature perturbations arise essentially
in the liquid phase, while the gas phase temperature perturbations are weak. A close-up,
including the velocity vector field, is shown figure 6(b). It reveals the characteristic
structures of the internal perturbation temperature field and axial vortices known from
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Stability of liquid–gas thermocapillary flow
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Figure 6. Critical velocity field (black arrows) and critical temperature field (colour) for the reference case
(Rec = 731, mc = 3) in the horizontal plane z = 0.20 in which the local thermal production ϑ �u� · ∇ϑ0 takes
its maximum in the bulk of the liquid. The grey arrow indicates the rotation direction of the mode. (a) Complete
domain. (b) Close-up of the liquid phase.

smaller Prandtl numbers (Wanschura et al. 1995). The perturbation vortices are driven
in the azimuthal direction by the mainly azimuthal temperature gradients on the free
surface (figure 7). These vortices transport cold (hot) fluid (note the basic state temperature
distribution shown in figure 3) from the interior (from the free surface) just ahead of the
cold (hot) interior perturbation temperature extrema, thus feeding the existing extrema
and determining the azimuthal direction of propagation (indicated by the grey arrow) of
the wave. The perturbation flow, on the other hand, is maintained by radial conduction
of perturbation temperature from the internal extrema to the free surface such that the
(mainly axial) perturbation vortices seen in figure 6(b) are driven by (mainly azimuthal)
thermocapillary stresses. The structure of the perturbation flow confirms its character as a
hydrothermal wave (Smith & Davis 1983a; Wanschura et al. 1995).
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Figure 7. Critical mode (black arrows, colour) for the reference case evaluated on the free surface and
projected radially (Rec = 731, mc = 3). The arrow indicates the direction of propagation.
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Figure 8. Thermal energy budget of the critical mode for the reference case (Rec = 731, mc = 3). (a) Liquid
phase. (b) Gas phase.

The relevance of the temperature transport described is also confirmed by the total
thermal energy budgets shown in figure 8. From figure 8(a), thermal perturbation energy
in the liquid phase is produced mainly by J1 (production due to radial convection of basic
state temperature; see (A2b)) and dissipated in the bulk. Note that the instability cannot be
due to axial temperature gradients, because their total contribution to the thermal energy
budget is negative: J2 < 0. Only a very small fraction of thermal perturbation energy
(Hfs) is lost to the gas phase (in accordance with figure 6a), which appears as the major
source term Hfs,g = −Hfs(Dth/Dth,g) in the gas phase (figure 8b) and which gets dissipated
readily. In the present two-phase system with a cylindrical gas confinement, the gas phase
thus merely plays a passive role when it comes to the instability mechanism. Moreover, due
to the very high Prandtl number, inertial effects are not causing the instability (Wanschura
et al. 1995). Likewise, buoyancy is not of key importance for the instability for the
reference case (for stronger buoyancy, see Wanschura et al. 1997b).

The three-dimensional structure of the travelling temperature perturbation field and of
the total thermal energy production is shown by isosurfaces in figure 9. A cross-section
at an azimuthal angle at which the local thermal energy production in the bulk reaches
its maximum is shown in figure 10. It is seen that the thermal energy production is
strong where large interior gradients of the basic temperature field arise, i.e. near the
region ϑ0 ≈ 0 (white colour in figure 3), which is aligned with the streamlines on the
interior side of the basic vortex in the liquid phase. Further, from figure 9, one can
notice that the perturbation temperature isosurfaces and those for the energy production
form an approximate spiral around the basic vortex. The phase relation between the
internal temperature perturbations and the thermal energy transfer rate j is shown in
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Stability of liquid–gas thermocapillary flow
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Figure 9. (a) Contours of the perturbation temperature ϑ � in the liquid. The isosurface values are
±0.25 × max |ϑ �| (light colours) and ±0.75 × max |ϑ �| (dark colours). (b) Contours of the local thermal
production rate j1 + j2 = ϑ �u� · ∇ϑ0 shown at the isosurface values 0.1 × max |ϑ �u� · ∇ϑ0| (light red) and
0.7 × max |ϑ �u� · ∇ϑ0| (dark red).
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Figure 10. Critical mode mc = 3 for the reference case at Rec = 731. Shown are streamlines of the basic flow,
the critical velocity field (arrows) and the critical temperature field (colour) in the (r, z) plane in which the
local thermal production ϑ �u� · ∇ϑ0 takes one of its maxima in the bulk.

figure 11 for z = 0.20. Similar to the Pr = 4 case (Wanschura et al. 1995), the thermal
perturbation energy is created just ahead of the instantaneous perturbation temperature
extrema, consistent with the clockwise propagation of the hydrothermal wave.

We find that the critical Reynolds number for the single-fluid model and Γ = 0.66, V =
1, Bo = 0.41 is more than twice that for the present two-fluid model (see also figure 29 in
§ B.1). The basic flow for the single-fluid model with adiabatic interface exhibits a higher
surface temperature than the two-fluid model. This might suggest that the radial basic state
temperature gradients are higher for the single-fluid model, thus providing a better source
of energy for the instability. This effect, however, is counteracted by the lower surface and

949 A5-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss
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Figure 11. Isolines of the positive (red) and negative (blue) perturbation temperature, and of the local
production density j = j1 + j2 (black) in the horizontal plane z = 0.20. Dashed lines are central lines through
the maxima of the perturbation temperature (red) and of the related energy transfer (black). The grey arrow
indicates the rotation direction of the mode.

return-flow velocity (figure 4), which tends to reduce the radial temperature gradients at
midplane. While we cannot pinpoint exactly the reason for the large difference in Rec,
we notice that the critical temperature field in case of the single-fluid model is distinct
from that of the present two-fluid model, exhibiting a finer structure with a much more
pronounced spiral character (not shown, but similar to the mode for Pr = 68 reported in
Stojanovic & Kuhlmann 2020a). It is thus expected that the relative importance of the
thermal dissipation for the critical mode in the single-fluid model is considerable larger
than for the critical mode of the two-fluid model, resulting in a considerable stabilisation
of the basic flow in the single-fluid model.

4.2. Dependence of the linear stability boundary on the length of the liquid bridge
Figure 12 shows the dependence of the critical Reynolds number Rec (figure 12a) and
the critical oscillation frequency ωc (figure 12b) on the length of the liquid bridge,
expressed by the aspect ratio Γ . The relative volume of the liquid bridge is kept constant
at V = Vref = 1 and Bd = Bdref × (Γ/Γref )

2. In addition, neutral Reynolds numbers
and associated neutral frequencies are displayed as thin lines for Re > Rec. The critical
azimuthal wavenumber m is coded by colour.

Within the range of Γ considered, only critical modes with m = 1, m = 3 and
m = 4 arise. The aspect ratios at which the critical mode changes are Γ 3,4 =
0.5590 (m = 3 ↔ 4) with Rec(Γ

3,4) = 643.1, and Γ 1,3 = 0.9020 (m = 1 ↔ 3) with
Rec(Γ

1,3) = 1645.9. We find the basic flow to be particularly stable near Γ 1,3. The
variation of the critical wavenumber with Γ follows the well-known trend according
to which mc decreases as Γ increases (as the liquid bridge becomes longer). For
Pr = 7, Preisser et al. (1983) found experimentally that mc ≈ 2.2/Γ (for Pr = 28; see
also Ueno et al. (2003), and others). A mode with m = 2 does not become critical in
the range of Γ . But near Γ = 0.9, the many neutral Reynolds numbers do not differ
much, with Ren(m = 1) = 1690, Ren(m = 2) = 1681 and Rec(m = 3) = 1635, such that a
complicated supercritical dynamics can be expected near this aspect ratio.
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Stability of liquid–gas thermocapillary flow
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Figure 12. (a) Neutral Reynolds numbers (thin lines) and critical Reynolds numbers Rec (thick lines) as
functions of the aspect ratio Γ for V = 1 and Bd = Bdref × (Γ/Γref )

2. (b) Corresponding neutral (thin lines)
and critical (thick lines) frequencies ω. The wavenumbers (colour), symbols and abbreviations are explained in
the legend, with TFM meaning two-fluid model, SFM meaning adiabatic single-fluid model, Ueno10 meaning
Ueno & Torii (2010), and Yano16 meaning Yano et al. (2016).

In addition to the critical mode for the reference case Γ = 0.66 with mc = 3 discussed
above, two other critical modes are visualised in figures 13 and 14 for a short (Γ = 0.51,
mc = 4) and a long (Γ = 1.66, mc = 1) liquid bridge, respectively. These aspect ratios are
indicated in figure 12(a) by vertical thin lines. Note that the interface is deformed in both
cases. However, the static surface deformation is hardly visible for Γ = 0.51 (figure 13),
because the liquid bridge is much shorter and lighter than for the longer bridge with Γ =
1.66 (figure 14), because the radius is the same in both cases. Even though the flow for
Γ = 1.66 is affected much more strongly by the hydrostatic deformation of the liquid
bridge and by buoyancy forces for the present parameter variation, all critical modes show
the generic structure of axial vortices and internal perturbation temperature extrema of
hydrothermal waves. The instability mechanism is qualitatively the same for all modes,
and similar arguments hold as for the reference case discussed in § 4.1. In particular, from
figure 15, the energy budgets do not change very much with Γ . While there is a visible
jump of the energy terms in the liquid at Γ 1,3, as expected for a modal change, the jump
at Γ 3,4 is hardly visible. The jump at Γ 1,3 is related to the particular structure of the
m = 1 mode, which admits a flow across the axis of symmetry (cf. table 2) representing a
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Figure 13. Critical velocity (black arrows) and temperature (colour) fields for Γ = 0.51, Rec = 597, Bd =
Bdref × (Γ/Γref )

2 and mc = 4. (a) Horizontal cross-section at z = 0.03 in which the local thermal production
ϑ �u� · ∇ϑ0 (isolines) takes its maximum (white crosses) in the bulk. (b) Vertical (r, z) plane in which the
local thermal production ϑ �u� · ∇ϑ0 (not shown) takes its maximum (white cross) in the bulk. Lines indicate
isotherms of the basic state. (c) Perturbation velocity and temperature fields on the free surface. The grey
arrows in (a,c) indicate the direction of propagation of the critical mode. The black dashed lines represent the
locations of the corresponding cuts. The green circle in (a) indicates the diameter of the support rods.

qualitative difference compared to all other three-dimensional modes. Due to this property,
the role of the radial transport of basic state temperature, hence J1, is more important for
m = 1 and Γ > Γ 1,3, associated with a particularly strong stabilising effect by J2 in the
liquid (figure 15a). As Γ increases beyond Γ 1,3, the critical Reynolds number reduces
drastically due to the geometrical constraint that rules the wavenumber selection, and the
stabilising effect of J2 diminishes. For Γ > 1.66 (liquid) and Γ > 1.24 (gas), both J1 and
J2 become positive (not shown).

Also shown in figure 12(a) is a critical Reynolds number (green square) for Γ = 1
obtained by Yano et al. (2016) for the same volume, and a similar radius ratio and Bond
number. Note, however, that the thermal conditions on r = η/Γ differ in that Yano et al.
(2016) have imposed a constant temperature T(r = η/Γ ) = 20 ◦C on the outer cylindrical

949 A5-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss
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Figure 14. Same as figure 13, but for Γ = 1.66, Rec = 492, Bd = Bdref × (Γ/Γref )
2, mc = 1 and z = 0.23.

wall of the gas container, and fixed Tcold = 14 ◦C. These conditions lead to a cooling of
the liquid bridge from the outer shield as soon as Thot � 26 ◦C, which is indeed the case
in the reported experiments. Also, the aspect ratio Γrod = 4.8 of the support rods in Yano
et al. (2016) is much larger than the present value Γrod = 0.4. In view of the importance
of the gas phase for the critical Reynolds number (orange and white squares in figure 12,
see also Kamotani et al. 2003), it is not surprising that Rec and mc obtained by Yano et al.
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Figure 15. Normalised contributions J1, J2 and Hfs to the thermal energy budget as functions of Γ for the
critical conditions shown in figure 12(a). The vertical dotted lines indicate Γ 1,3 and Γ 3,4 where mc (indicated
by labels) changes. (a) Liquid phase; throughout −0.0037 < Hfs < 0. (b) Gas phase.

(2016) differ from the present critical data. The deviation of the critical Reynolds number
obtained by Ueno et al. (2010) for Γ = 0.64 (bright blue square in figure 12a) from the
present data may be due to similar reasons. These comparisons demonstrate the important
influence of the geometrical and thermal properties of the gas phase on the critical onset.

The effect on the critical Marangoni number of a partial confinement of the gas
phase by partition disks was investigated experimentally by Irikura et al. (2005) in a
geometry similar to the present one, also using the same working fluids. Since the critical
temperature difference was always less than 17 ◦C, the thermal properties of the gas phase
near the onset are comparable to the present ones. However, the geometry was slightly
different: in our computations, the gas phase is radially confined by an adiabatic rigid
wall, whereas it was open to the ambient in the experiments of Irikura et al. (2005).
In their experiments, the effective length of the hot support rod was varied by axially
moving a partition disk on the rod. For comparison, we adapted our geometry accordingly
by selecting Γ = 1, η = 6.55 and drod,c = 1 mm, and computed the critical Marangoni
number as a function of the length drod,h of the hot (upper) support rod for the data
provided by Irikura et al. (2005). The result is shown as a line in figure 16. In qualitative
agreement with Irikura et al. (2005) (circles in figure 16), we find a reduction of the critical
Marangoni number (line) as the length of the hot rod drod,h is increased. The systematically
larger numerical critical Marangoni numbers are attributed mainly to the different radial
boundary conditions: an adiabatic wall in the numerics versus a gas phase open to the
ambient atmosphere in the experiment. The coupling of the gas phase to the ambient air in
the experiment may have caused mechanical and thermal perturbation, which may explain
the scatter of the experimental data.

4.3. Effect of the volume ratio
The influence of the volume ratio V on the stability of the basic flow with Γref = 0.66
and Bdref = 0.41 is shown in figure 17. The critical curve is made of segments of neutral
Reynolds number belonging to all wavenumbers from m = 0 to m = 4. The critical modes
change at the codimension-two points given in table 5. The well-known strong stabilisation
of the flow near V = 0.9 for 2 and 10 cSt silicone oils found by Sakurai et al. (1996) and Hu
et al. (1994), respectively, is confirmed (see also Tang & Hu 1999). We find the maximum
stabilisation at V0,1 = 0.8917 with Rec = 2319. The experimental critical data of Sakurai
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Figure 16. Critical Marangoni number Mac = Pr Rec (m = 1, line) as a function of the length drod,h of the
upper (hot, subscript h) supporting rod. The length of the lower (cold, subscript c) support rod was kept constant
at drod,c = 1 mm, corresponding to the experiment of Irikura et al. (2005) whose data are reproduced as circles.
The liquid bridge has length d = 2.5 mm and aspect ratio Γ = 1. The radius ratio η = 6.55 is estimated from
figure 1 of Irikura et al. (2005).

et al. (1996) for 2 cSt silicone oil, with Γ = 1, Bd = 0.95 and otherwise uncontrolled
ambient conditions, are shown in figure 17 as crosses. They agree qualitatively (despite
the deviation in Γ and Bd), but differ quantitatively.

Surprisingly, a very small window of the volume ratio exists within which the critical
mode is axisymmetric with m = 0. A similar axisymmetric oscillatory mode near the
so-called gap region was found by Xun, Li & Hu (2010) near V ≈ 0.8 by a linear stability
analysis, although for a single-fluid model with Pr = 68.6 (5 cSt silicone oil) and an
adiabatic free surface.

Similarly to before, the contribution to the thermal energy budget is dominated by
J1 (building on radial gradients of ϑ0) for all critical modes, with J2 (building on
axial gradients of ϑ0) being small or negative (stabilising; figure 18). This indicates the
predominance of axial vorticity in the critical mode, except for the axisymmetric mode.
As another observation, the critical wavenumber does not depend monotonically on V .
Considering the structure of the neutral modes, it is possible to understand qualitatively
the non-monotonic dependence of the critical Reynolds number on V : for a small volume
fraction V = 0.8 (mc = 2; figure 19), the internal temperature extrema of the hydrothermal
wave are located quite close to the free surface. This facilitates the coupling between
the temperature and velocity perturbations, because the free-surface temperature spots
are more easily created by the internal temperature extrema. Hence the critical Reynolds
number is relatively small for small V . As V increases, the internal temperature extrema
must be stronger to be able to heat/cool the more distant free surface and to generate the
perturbation flow (V = 0.87, mc = 1; figure 20). This may explain the increase of the
critical Reynolds number with V before reaching its maximum. However, as the volume
gets very large (V = 1.3, mc = 3; figure 21), the basic flow and the perturbation flow suffer
less viscous dissipation, because the liquid volume is bounded mainly by a free surface,
only coupled to the gas phase. As a result, the critical Reynolds number decreases again
after V has exceeded the point of maximum stabilisation (for V > 0.8917).

Near the volume ratio V > 0.8917 at which the maximum stabilisation is observed, a
small window arises in which the critical mode is axisymmetric. Contrary to the other
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Figure 17. (a) Neutral Reynolds numbers (thin lines) and critical Reynolds numbers Rec (thick lines) as
functions of the volume ration V for Γ = 0.66 and Bd = 0.41. Crosses indicate data taken from Sakurai et al.
(1996) for Γ = 1 and Bd = 0.95. (b) Corresponding frequencies ω. The yellow square indicates the reference
case.

m 1 ↔ 2 0 ↔ 1 0 ↔ 4 3 ↔ 4

Vm1,m2 0.8296 0.8917 0.8983 0.9286
Rec(Vm1,m2 ) 1264 2319 2268 1662

Table 5. Codimension-two points where critical curves for constant m intersect, with Γ = 0.66, Bd = 0.41.

modes, the axisymmetric mode mc = 0 draws its thermal energy from both axial and radial
temperature gradients, with both J1 and J2 being positive (figure 18). The mode arises as a
toroidal vortex (V = 0.8939; figure 22) whose sense of rotation oscillates with ωc(m = 0).
The total nonlinear flow in an experiment would thus appear as a toroidal vortex whose
strength, position and size change periodically in time.

4.4. Effect of buoyancy
The linear stability boundary and oscillation frequency as functions of the dynamic Bond
number for Γref = 0.66 and Vref = 1 are displayed in figure 23 for heating from above
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Figure 18. Normalised contributions J1, J2 and Hfs to the thermal energy budget as functions of V along the
critical curve shown in figure 17(a). The vertical dotted lines indicate V1,2, V0,1, V0,4 and V3,4 at which mc
(indicated by labels) changes. (a) Liquid phase; throughout −0.007 < Hfs < 0. (b) Gas phase.

(Bd > 0) and heating from below (Bd < 0). The crossover points at which the wavenumber
of the critical mode changes are listed in table 6. It should be noted that a quiescent liquid
bridge of Γ = 0.66 and V = 1 would break mechanically due to the capillary instability
at Bo = ±31.75 (Slobozhanin & Perales 1993). For the present working fluid, this limit
corresponds to Bd = ±10.31. Therefore, the range shown in figure 17 is safely within the
mechanical stability limits of the liquid bridge, even if dynamic surface deformations were
taken into account.

In the range −0.25 � Bd � 0.35, buoyancy has only a small effect on the shape of the
liquid bridge and on the magnitude of the critical Reynolds number. Since the governing
equations are not invariant under Bd → −Bd, the slope of the critical curve at zero gravity
(Bd = 0) does not vanish. This was also found by Wanschura et al. (1997b) for small values
of Bd and a cylindrical liquid bridge with Pr = 4, Γ = 1 and an adiabatic free surface.
For weak stabilising buoyancy and Bd > Bd2,3, the critical mode has mc = 3 (yellow),
whereas for Bd < Bd2,3 and for destabilising buoyancy, the critical wavenumber is mc = 2
(red). The Bond numbers corresponding to the gravity levels on the Moon, Mars and Earth
are indicated by yellow vertical dashed lines. For zero gravity conditions, the critical mode
with mc = 2 is illustrated in figure 24. The basic flow in an upright cylindrical liquid
bridge, exclusively driven by thermocapillarity, is a standard case within the single-fluid
model. Here, however, the flow is modified by the presence of the ambient gas phase.
The properties of the hydrothermal wave are similar to those discussed in § 4.1.2 for the
reference case, which differs by the Bond number.

As the Bond number is increased beyond Bd > 0.41 (Earth gravity level), the critical
Reynolds number increases significantly. This seems to be consistent with a more
stable density stratification as Bd increases. However, for Bd > Bd1,5 ≈ 0.91, the critical
Reynolds number decreases again, mainly due to an m = 2 mode. A possible explanation
is that the hot fluid transported downward along the free surface by the thermocapillary
surface flow has a strong tendency to rise in the bulk, owing to its buoyancy. As a result,
the basic thermocapillary-driven vortex has little radial extent, and the internal temperature
gradients, which provide the source of the thermal perturbation energy, arise in the close
vicinity of the free surface. This can be seen in figure 25, which shows the critical mode
for Bd = 1.1. Since the thermocapillary flow does not penetrate very much inwards from
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Figure 19. Same as figure 13, but for Γ = 0.66, V = 0.8, Rec = 995, mc = 2 and z = 0.12.

the free surface, the free-surface temperature perturbations of the critical mode are much
easier to create as compared to lower Bond numbers, in particular as compared to Bd ≈ 0
(figure 24). This facilitates the coupling between temperature and velocity perturbations,
and leads to a reduction of the critical Reynolds number despite the nominally stabilising
buoyancy forces.

The critical mode for Bd = 1.1 is also affected by buoyancy. To analyse this effect, we
separate the buoyancy effect on the critical mode from the buoyancy effect on the basic
flow, by using the same basic state solution (Bd = 1.1), but artificially setting Bd ≡ 0 in
the perturbation equations. Compared to figure 25, the spatial structure of the perturbation
temperature ϑ � remains similar, while the vertical perturbation velocity is very small
everywhere (w� ≈ 0), except close to the free surface (not shown). Due to the nearly

949 A5-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Stability of liquid–gas thermocapillary flow

z
0.5

–0.5
–π –π /2 0 π /2

ϕ
π

(c)
ϑ'

Hot

Cold

ϑ'z

0.5

0

–0.5

(b)

r
1/Γ0

1/Γ

0

–1/Γ

Hot

Cold

Pe
rtu

rb
at

io
n 

te
m

pe
ra

tu
re

ϑ
', 

ϑ
' g

0
x

–1/Γ 1/Γ

y

(a)

Figure 20. Same as figure 13, but for Γ = 0.66, V = 0.87, Rec = 1664, mc = 1 and z = −0.06.

horizontal velocity perturbation in the bulk (axial vorticity), more thermal perturbation
energy is generated, which would destabilise the basic state. This means that for Bd = 1.1,
the action of buoyancy in the perturbation flow has a stabilising effect on the basic state.
Therefore, the destabilising trend for increasing Bond number for Bd > Bd1,5 = 0.9083 is
caused by the facilitated feedback between internal and surface temperature extrema due
to the structure of the basic flow, and not by the action of buoyancy on the perturbation
flow.

Contrary to what one would expect for destabilising buoyancy (heating from below,
Bd < 0) the critical Reynolds number also increases as Bd is decreased. This effect is
related to a similar mechanism as discussed before: the hot fluid that is transported to the
cold wall along the free surface has little tendency to return to the hot wall in the bulk due
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Figure 21. Same as figure 13, but for Γ = 0.66, V = 1.3, Rec = 356, mc = 3 and z = 0.01.

to buoyancy. As a result, the thermocapillary basic state vortex (not shown) has a larger
radial extension and the energy source for the hydrothermal wave arises closer to the axis
of the liquid bridge. Therefore, the internal perturbation temperature extrema cannot easily
heat/cool the distant free surface to drive the velocity field necessary for the hydrothermal
wave feedback mechanism. As a result, Rec increases.

The black dotted curve in figure 23(a) indicates a Rayleigh number Ra = 1700,
where Ra = −Pr Bd Re is defined in agreement with the usual convention for pure
buoyancy-driven flows. This is roughly the Rayleigh number at which the flow
becomes buoyantly unstable in a cylindrical adiabatic liquid bridge in the absence of
thermocapillarity (Wanschura, Kuhlmann & Rath 1996). To the left of it, destabilising
buoyancy forces get even stronger. However, pure buoyant instabilities are absent here,
mainly because the basic thermocapillary flow significantly deforms the basic temperature
field that would be conducting in the absence of thermocapillarity. Nevertheless,
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Figure 22. Axisymmetric critical mode for V = 0.8939, Rec = 2301 and mc = 0. Shown are the basic state
isotherms (lines), the critical velocity field (arrows) and the critical temperature field (colour).

destabilising buoyancy is expected to promote the instability of the basic flow for
decreasing Bd. Such destabilisation is not seen, however, until Bd = Bd1,2.

Only for Bd < Bd1,2 = −0.5645, a critical mode with mc = 1 (blue) arises that seems
to be affected by destabilising buoyancy. The critical mode for Bd = −1.25 < Bd1,2 is
shown in figure 26. At a first inspection of figures 26(a,c), the critical mode seems to
be driven by an azimuthal thermocapillary effect. The associated radial flow in the bulk
crosses the axis and creates a cold spot and a hot spot very close to the axis, since this
is the region of largest radial gradients of the basic temperature field. However, in the
absence of the action of buoyancy on the perturbation flow, there would be no obvious
reason why the perturbation flow should not be essentially horizontal near the axis, as
for Bd = 0 (figure 24b). Instead, we find a strong vertical upward (downward) flow near
the hot (cold) near-axis perturbation temperature spots. This leads to a localised convection
role in the plane of maximum thermal energy production shown in figure 26(b). Artificially
switching off the Bond number in the perturbation equation only (setting Bd ≡ 0), while
keeping Bd = −1.25 for the basic state, reveals (not shown) that the perturbation flow
in this artificial case is indeed horizontal near the axis. Thus the vertical component
of the velocity of the perturbation vortex near the axis must be driven essentially by
buoyancy acting on the perturbation mode. The buoyancy effect on the perturbation mode
should be particularly high in this case, because the horizontal temperature gradient
of the perturbation flow (generated by the thermocapillary return flow) is particularly
large when the perturbation temperature spots arise over a very small distance close to
the axis.

This interpretation is confirmed by inspecting the major terms of the kinetic energy
budget. These terms, corresponding to the work per time driving the perturbation flow,
are given in table 7. Compared to Bd = 0.41, the work done by buoyant forces in case
of Bd = −1.25 is more than ten times as large and amounts to approximately 14 % of
the total kinetic energy production. But the major driving of the perturbation flow field
is still caused by the work done by thermocapillary forces Mz and Mϕ . Among these,
the production Mz due to axial thermocapillary stresses for Bd = −1.25 is surprisingly
more important than the azimuthal production. This might be related to the strong vertical
component of the perturbation flow near the axis.
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Figure 23. (a) Neutral Reynolds numbers (thin lines) and critical Reynolds numbers Rec (thick lines) as
functions of the dynamic Bond number Bd for Γref = 0.66 and Vref = 1. (b) Corresponding neutral and critical
frequencies ω.

m 1 ↔ 2 2 ↔ 3 3 ↔ 4 4 ↔ 5 1 ↔ 5 1 ↔ 2

Bdm1,m2 −0.5645 0.0483 0.5214 0.8457 0.9083 0.9162
Rec(Bdm1,m2 ) 1257 650 935 1420 1455 1419

Table 6. Codimension-two points where critical curves for constant m intersect, with Γref = 0.66, Vref = 1.

The thermal energy budget as function of the Bond number is shown in figure 27. As in
the previous cases, the thermal energy per time Hfs,g supplied to the gas phase through the
interface is essentially dissipated, with the thermal energy production rates J1,g and J2,g
being insignificant. Therefore, the instability is always triggered in the liquid phase. While
for Bd < Bd2,3 ≈ 0.05 both J1 and J2 are positive and contribute to the destabilisation
of the basic flow, J2 is negative for Bd > Bd2,3, which, on the stability boundary, is
compensated by a much larger positive value of J1. This indicates the dominant role for
the instability of radial temperature gradients of the basic state when the liquid bridge
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Figure 24. Same as figure 13, but for Γ = 0.66, Bd = 0, Rec = 635, mc = 2 and z = 0.04.

is heated from above (buoyancy forces are opposing basic state thermocapillarity forces
on the free surface, Bd > 0), consistent with the above-described small radial penetration
depth of the basic flow when buoyancy forces are large. For heating from below (buoyancy
forces are augmenting the basic state thermocapillary forces on the free surface, Bd < 0),
the perturbation flow can also extract thermal energy from the axial gradients of the basic
temperature field via J2 > 0, albeit radial temperature gradients of the basic state remain
more important.

For heating from below and in the absence of thermocapillary effects, Wanschura
et al. (1996) found that the onset of thermal convection in cylindrical liquid bridges is
always non-axisymmetric. Nevertheless, steady axisymmetric solutions exist for Rayleigh
numbers Ra = g β �Td3/νκ larger than the neutral stability boundary for m = 0. These
axisymmetric flows have either up- or down-flow at the free surface. Thermocapillary
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Figure 25. Same as figure 13, but for Γ = 0.66, Bd = 1.1, Rec = 900, mc = 2 and z = −0.26.

forces can either augment or oppose the buoyant flow on the free surface. To illustrate the
resulting buoyant-thermocapillary flows, the coefficient γ = −3.828 × 10−7 N m−1 K−1

is selected small due to e.g. impurities or surfactants dissolved in the liquid. For
Γ = 0.66, V = 1, Ra = 3200, Re = 0.5 and Bd = −229, the augmenting and opposing
axisymmetric flows are illustrated in figures 28(a) and 28(b), respectively. For the
opposing case (figure 28b), the direction of the surface flow is reversed near each of the
two triple-phase contact lines such that a small eddy arises in the hot as well as in the cold
corner. In addition to these two states, an intermediate weak state exists (figure 28c) in
which the velocity field near the liquid–gas interface is very weak and which is unstable
with respect to two-dimensional perturbations. This result is similar to the behaviour in
adiabatic cylindrical liquid bridges using the single-fluid model (Wanschura et al. 1997b).
We find that the flow in the augmenting case (strong solution; figure 28a) is linearly stable
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Stability of liquid–gas thermocapillary flow
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Figure 26. Same as figure 13, but for Γ = 0.66, Bd = −1.25, Rec = 804, mc = 1 and z = 0.12. Note that for
Bd < 0, the hot wall is located at the bottom (heated from below).

with respect to all modes, with m ∈ [0, 5], the most dangerous mode having m = 3 and a
growth rate μ = −0.03 + 0i. The flow in the opposing case (weak solution; figure 28b) is
stable with respect to m ∈ [0, 2], but unstable for m ∈ [3, 5], with the most dangerous
mode m = 4 and μ = 0.15 + 0i. Finally, the third weak state (figure 28c) is unstable
to all modes with m ∈ [0, 5], the most dangerous having the wavenumber m = 4 with
μ = 0.53 + 0i.

5. Discussion and conclusions

The linear stability of axisymmetric steady flow in liquid bridges of silicone oil with
Pr = 28 in air has been investigated numerically. This pair of fluids is used also in
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M. Stojanović, F. Romanò and H.C. Kuhlmann

Bd Mr Mϕ Mz B

+0.41 0.002 0.531 0.481 0.013
−1.25 0.040 0.185 0.521 0.142

Table 7. Main contributions to the kinetic energy production at the critical point for Γref = 0.66 and
Vref = 1.

Bd

m = 2

J1

J1,g
J2,g
Hfs,g

J2

m = 3 m = 4

m = 4m = 3m = 25 2

−0.5 0 0.5

1

1

1.0
Bd

−0.5 0 0.5 1.0

5 2
1

1
0

0.5

–0.5

1.0

0

0.5

1.0

–1.0

1.5

(b)(a)

Figure 27. Normalised contributions J1, J2 and Hfs to the thermal energy budget at criticality (figure 23a)
as functions of Bd for Γref = 0.66 and Vref = 1. The vertical dotted lines indicate Bd1,2, Bd2,3, Bd3,4, Bd4,5,
Bd1,5 and Bd1,2 where mc (indicated by labels) changes. (a) Liquid phase; throughout −0.0035 < Hfs < 0.
(b) Gas phase.

many experimental investigations (see e.g. Ueno et al. 2003; Irikura et al. 2005; Tanaka
et al. 2006; Yano, Hirotani & Nishino 2018a). While taking into account the hydrostatic
deformation of the liquid bridge, the liquid and gas flows are treated in Boussinesq
approximation in order to reduce the large parameter space. Furthermore, the radii of the
support cylinders and the cylindrical gas container relative to the radius of the liquid bridge
were kept fixed. This set-up allowed us to investigate the effects of the relative length of
the liquid bridge (Γ ), the relative volume of liquid (V), and buoyancy forces (Bd) on the
threshold for the onset of three-dimensional flow. The linear stability boundary of the basic
axisymmetric flow was calculated quasi-continuously varying these three parameters. All
parameter variations originated from a common reference case, defined by Γref = 0.66,
Vref = 1 and Bdref = 0.41.

Throughout the range of parameters considered, the flow becomes unstable to
hydrothermal waves, except for sufficiently strong heating from below when the critical
mode arises as a convection roll in the centre of the liquid bridge. Quite generally, the
hydrothermal waves exhibit 2m strong azimuthally periodic temperature extrema in the
bulk of the liquid. As expected for hydrothermal waves, inertia effects are insignificant for
the critical mode, which can hardly extract momentum from the basic vortex flow. On the
other hand, advection of basic state temperature by the weak perturbation flow is of key
importance for the creation of the characteristic internal temperature extrema. Considering
the thermal energy budget of the critical mode, and its spatial structure, allowed us to
understand the global trends of the critical Reynolds number Rec.

The critical wavenumber m is found to depend on Γ , V and Bd. Within the parameter
space considered, the critical wavenumber cannot be predicted based on a simple
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Figure 28. Three different axisymmetric flows for Γ = 0.66, V = 1, Ra = 3200, Re = 0.5 and Bd = −229.
(a) Thermocapillarity is augmenting the buoyant flow. (b,c) Thermocapillarity is opposing the buoyant flow
with the strong state shown in (b) and the weak state shown in (c).

correlation like mc ≈ 2.2 × Γ proposed by Preisser et al. (1983) for the instability in
NaNO3 (Pr ≈ 7), normal gravity and V ≈ 1, because the Preisser et al. (1983) correlation
does not include the gravity level and the volume fraction of the liquid. For Pr = 28
and including the surrounding air in the analysis, we find that the critical wavenumber
increases with decreasing Γ (for V = 1 and Bd = 0.41 × (Γ/Γref )

2), but misses out
mc = 2. The dependence of mc on V does not exhibit any monotonic trend, while the
critical wavenumbers are well ordered from mc = 1 to mc = 5 when the Bond number
is increased from Bd = −1.25 (heating from below) to Bd = 0.9083 (heating from
above). Interestingly, we find an axisymmetric oscillatory instability (m = 0) for Γ = 0.66
and Bd = 0.41 within a small window of V ∈ [0.8917, 0.8983] where the basic flow is
extremely stable with a critical Reynolds number of approximately Rec ≈ 2300.

As a major result, the gas phase has a strong effect on the stability boundary. For
instance, the critical Reynolds number taking into account the gas phase can be less
than one-half of the critical Reynolds number for a single-fluid model with a passive
adiabatic interface (cf. figures 12a and 29). This effect is caused primarily by the change
of the thermal environment of the liquid bridge, i.e. by the heat exchange characteristics
between the liquid and the gas. The gas phase, however, does not play an active role for the
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M. Stojanović, F. Romanò and H.C. Kuhlmann

instability, because neither mechanical nor thermal perturbation energy is produced from
the velocity or temperature gradients of the basic state in the gas phase.

Since the Prandtl number of the liquid is quite large, the basic flow exhibits pronounced
thermal boundary layers. The scalings of the boundary layer thicknesses on the cold and
hot walls that we find in our numerical calculations for the reference case (Γref = 0.66,
Vref = 1, Bdref = 0.41) are in excellent agreement with theoretical scalings predicted for
a contact angle α = 90◦ and the single-fluid model. This finding is particularly notable for
two reasons. First, in the presence of gravity, the hydrostatic free surface exhibits a contact
angle α = 84◦ for the reference case. Second, in our model the liquid bridge is surrounded
by a gaseous phase, which was excluded in the theoretical investigations.

The mathematical model employed (Oberbeck–Boussinesq approximation) is based
on the assumption of constant thermophysical properties of the fluids, evaluated at
T0 = 25 ◦C, except for ρ, ρg and σ , which are linearised around T0. Despite the
relatively moderate critical temperature differences �Tc found throughout our numerical
investigation, the peak values reach �Tc ≈ 36 ◦C, 70 ◦C and 44 ◦C when varying Γ , V
and Bd, respectively. Additional preliminary computations taking into account the full
temperature dependence of all thermophysical properties of the fluids indicate that the
temperature dependence can become important near sharp peaks of the critical curve,
because it can suffer a certain shift with respect to the parameters varied (Γ , V or Bd).
But the linear stability boundaries computed for V ≥ 1.05 using temperature-dependent
fluid properties deviate only less than 1 % from the present results. Taking into account
temperature-dependent fluid properties affects the linear stability boundary in a non-trivial
way. Therefore, it deserves a comprehensive analysis that is beyond the scope of this
paper. A dedicated study of the linear stability analysis for a multiphase liquid bridge
with variable fluids properties is currently underway and will be reported in the future.

The 2 cSt silicone oil used in our study has a pour point below −120 ◦C and boiling
temperature 88 ◦C (Shin-Etsu 2004). All critical temperatures found in the present
investigation go into this range. For �T close to the highest critical values computed
(�Tc ≈ 70 ◦C), evaporation, which is not included in our model, may play a significant
role. In fact, Simic-Stefani, Kawaji & Yoda (2006) found a strong stabilising effect due to
evaporation using the highly volatile liquid acetone (Pr = 4.3). On the other hand, Yano
et al. (2016) claim that the effect of evaporation for the 2 cSt silicone oil is negligible
for typical critical temperature differences found in their experiments. Their statement is
confirmed by figure 31, as our estimate of the linear stability boundary is in agreement with
their experimental data. Nevertheless, the numerical model would benefit by including
the mass exchange between the liquid and gas phases, in particular, for large critical
temperature differences.

An experimental measurement of the critical Reynolds number for thermocapillary
liquid bridges is usually quite error-prone due to the small size of the bridge in terrestrial
laboratories, possible chemical contaminations of the interface, and the difficulty to
control accurately the thermal environment. The current results provide accurate numerical
stability data (Rec, mc, ωc) for a particular geometrical setting, and the dependence of
these data on the important control parameters Γ , V and Bd. Since the critical onset is
affected by the gas phase due mainly to the amount and structure of the heat transfer
through the liquid–gas interface, a variation of the relative geometry of the axisymmetric
gas space (radius, height) is expected to have only a minor influence on the critical data
as long as the heat transfer characteristics are not much affected. This can be expected,
for example, if only the radius is increased from the current value. If, however, the heat
transfer between the liquid and the gas phase is changed – e.g. by a forced axial gas flow
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Stability of liquid–gas thermocapillary flow

with a given temperature (Gaponenko et al. 2021), or by natural convection in a cold gas
(Kamotani et al. 2003) – then the critical Reynolds number can be modified strongly.
While the control of the critical onset by an imposed gas flow is the objective of ongoing
work in the framework of the JEREMI project (Shevtsova et al. 2014), a systematic study
of the effect of the temperature contrast between the liquid bridge and the gas environment
would be an interesting problem for future investigations.
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Appendix A. Kinetic and thermal energy budgets of the perturbation flow

Here, we present all terms entering the kinetic (2.27) and the thermal energy budget (2.28).
The structures of the budgets for the liquid and gas phases are identical, i.e. formally the
same terms arise. However, the budgets are obtained by integration over different volumes
that the liquid and the gas occupy. In the following equations, the distinction between the
liquid and gas phases is taken care of by using the integration volume Vi occupied by the
liquid or the gas, i ∈ [l, g], and by using the corresponding set of coefficients α (see (2.7)).
Furthermore, the integrals over the free surface carry different signs, where the lower sign
applies to the gas phase.

The viscous and thermal energy dissipations can be expressed as

Dkin = αν

2

�
Vi

|S�|2 dV = αν

�
Vi

(∇ × u�)2 dV ± 8παν

� 1/2

−1/2
(hhzzŵ2 − v̂2)dz (A1a)

where S� = ∇u� + (∇u�)T and

Dth = ακ

Pr

�
Vi

(∇ϑ �)2 dV, (A1b)

respectively. Since the neutral modes are determined only up to an arbitrary factor, Dkin
and Dth are used to normalise all terms in the respective kinetic and thermal energy
balances. This allows us to determine the relative importance of each term in the budget
for the instability mechanism.

The normalised mechanical and thermal production terms in (2.27) and (2.28),
respectively, are defined as

5 
j=1

Ij = − Re
Dkin

�
Vi

�
v�2 u0

r
+ u�2 ∂u0

∂r
+ u�w� ∂u0

∂z
+ u�w� ∂w0

∂r
+ w�2 ∂w0

∂z

�
dV, (A2a)

2 
j=1

Jj = − Re
Dth

�
Vi

ϑ �
�

u� ∂ϑ0

∂r
+ w� ∂ϑ0

∂z

�
dV, (A2b)
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with j consecutively numbering the individual integrals Ij and Jj of the sums. The works
done per unit time by thermocapillary forces acting at the liquid–gas interface are obtained
as

Mr = ±4παν

Dkin

� 1/2

−1/2
hhzû

�
∂ŵ
∂r

− ∂ û
∂z

�
dz, (A3a)

Mϕ = ±4παν

Dkin

� 1/2

−1/2
hv̂

�
∂v̂

∂r
− v̂2

h
− hz

∂v̂

∂z

�
dz, (A3b)

Mz = ±4παν

Dkin

� 1/2

−1/2
hŵ

�
∂ŵ
∂r

+ hzŵ − hz
∂ŵ
∂z

�
dz. (A3c)

The quantity

B = αβ Bd
Dkin

�
Vi

w�ϑ � dV (A4)

represents the work done per unit time by buoyancy forces. Further, the heat transfer across
the liquid–gas interface can be written as

Hfs = ± 2πακ

Dth Pr

� 1/2

−1/2
h

�
∂ϑ̂2

∂r
− hz

∂ϑ̂2

∂z

�
dz. (A5)

The sign of the rate of change of the total kinetic (and thermal) energy is related directly
to the growth rate of the normal mode for which the energy budget is evaluated. Thus
if one of the integral terms in (2.27) or (2.28) is positive (negative), then it contributes
to a destabilisation (stabilisation) of the basic flow. Since each of the above integrands
describes a particular local transport process, each term can be associated with a particular
physical mechanism, either stabilising or destabilising the basic flow.

As in Nienhüser & Kuhlmann (2002), the normalised residuals of the kinetic and
thermal energy budgets are defined as

δEkin :=
,,,,,,−dEkin

dt
− 1 + Mr + Mϕ + Mz +

5 
j=1

Ij + B

,,,,,, , (A6a)

δEth :=
,,,,,,−dEth

dt
− 1 +

2 
j=1

Jj + Hfs

,,,,,, , (A6b)

respectively. They serve as an additional verification for the numerics. Since (2.27) and
(2.28) must be satisfied exactly, the residuals must vanish. We typically find δEkin < 0.03
and δEth < 0.01.

For the high Prandtl number Pr = 28 investigated, we find the inertial terms to be
always small with Ij < 0.05. Therefore, the velocity field of the basic flow does not enter
practically the energy budget of the linear mode, and the work done by thermocapillary
stresses Mr, Mϕ and Mz is almost perfectly balanced by the viscous dissipation. The basic
velocity field merely serves to create a basic temperature field from which temperature
perturbations can gain thermal energy via J1 and J2.
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Figure 29. Critical data Rec (blue symbols) and ωc (red symbols) as functions of the grid size N for the
reference case with Pr = 28, Γref = 0.66, Vref = 1 and Bdref = 0.41. (a) Single-fluid model with adiabatic
free surface, disregarding viscous stresses in the gas phase. The linear extrapolated critical data, using the four
finest grids (dashed curves), are (Rec, ωc)

extra = (1560, 28.62). (b) Reference case (two-fluid model) including
the gas phase. The critical data extrapolate quadratically (dashed curves) to (Rec, ωc)

extra = (733.5, 14.89).
The solid symbols in (b) indicate the resolution used for production runs.

Appendix B. Numerical tests

B.1. Grid convergence
To prove grid convergence, we carry out a linear stability analysis for the reference
case defined in § 2.5 – i.e. for Pr = 28, Γref = 0.66, Vref = 1 and Bdref = 0.41 – and
monitor the dependence of the critical Reynolds number Rec and the critical frequency
ωc = Im(μc) as functions of N = √

Ntot, where Ntot is the total number of finite volumes
employed. For a second-order numerical scheme, the critical Reynolds number Rec should
scale ∼ N−2 for large N. This behaviour is confirmed for the single-fluid model in which
viscous stresses in the gas phase are neglected and the free surface is assumed to be
adiabatic. The critical data for this simplified model (mc = 4) are shown in figure 29(a).
It should be noted that the difference between Rec(m = 4) and the closest neutral
Reynolds number Ren(m = 3) is less than 1 %. Linear regression of the data for the four
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Figure 30. (a) Comparison of the catenoid profile hcat(z) (line) according to (B1) with the numerical solution
h(z) (red dots) of (3.1) for Γ = 1 and h0 = 0.848 using an equidistant grid with Nz = 34 grid points. (b) L2
and L∞ norms of the deviation � of the numerical solution from the exact catenoid as functions of the number
of grid points Nz.

finest grids (dashed lines in figure 29a) yields the extrapolated values (Rec, ωc)
extra =

(1560, 28.62). These extrapolated values deviate by only (0.4 %, 0.4 %) from the critical
data (Rec, ωc)

N=305 = (1554, 28.52) obtained on the finest mesh.
For the present two-fluid model that takes into account the gas phase, the critical

wavenumber changes to mc = 3 and the Reynolds number is remarkably lower. The data
do not show a linear convergence (figure 29b), because the grid is not homogeneous
and involves grid points in the gas as well as in the liquid phase that are refined
differently. Nevertheless, a regression with a polynomial of second order (dashed lines
in figure 29b) yields (Rec, ωc)

extra = (733.5, 14.89). Since the finest mesh used in
figure 29(b) is numerically too expensive for the intended quasi-continuous parameter
variations, production runs were carried out using the resolution N = 322 (solid symbols
in figure 29b). The error is estimated by comparison of the extrapolated values
(Rec, ωc)

extra with the result (Rec, ωc)
N=322 = (730.5, 14.85). Again, we arrive at an error

estimate of at most 0.4 % for both the critical Reynolds number and the critical frequency.
From these results, we conclude grid convergence and proceed using the grid N = 322 for
all stability analyses.

B.2. Code verification
In a first verification step the interfacial shape is considered. In the case of weightlessness
(Bo = 0) the Young–Laplace equation (3.1) has the closed-form solution of a catenoid
(Kenmotsu 1980; Langbein 2002):

hcat(z) = h0 cosh
�

z
h0

�
, (B1)

where h0 = h(0) is related to Γ by h0 cosh(1/2h0) = 1/Γ (cf. (2.15)). In figure 30(a), we
compare the numerically computed shape of the free surface with the catenoid profile for
Γ = 1 and h0 = 0.848. The L2 and L∞ norms of the deviation � = h(z) − hcat(z) of the
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Stability of liquid–gas thermocapillary flow

Grid/ Re = 3000 Re = 5000 Re = 7000

Reference ψ̃max log(|δNu|) ψ̃max log(|δNu|) ψ̃max log(|δNu|)
121 × 121 2.1093 −12.3 2.0274 −12.2 1.9567 −12.4
160 × 160 2.1171 −12.2 2.0306 −12.2 1.9622 −12.4
260 × 260 2.1188 −13.1 2.0321 −12.9 1.9632 −12.5
360 × 360 2.1193 −12.3 2.0324 −12.3 1.9634 −12.4
Leypoldt et al. (2000) 2.09 — 1.97 — 1.86 —
Nienhüser (2002) — — 2.03 −2.52 — —
Romanò et al. (2017) 2.1783 — 2.0605 — 1.9735 —

Table 8. Scaled maximum absolute value of the Stokes stream function ψ̃max = max |ψ | × 103 and relative
(logarithmic) error δNu = !

i Nui/ max |Nui| of the total Nusselt number for the flow in a cylindrical liquid
bridge with Γ = 1, V = 1, Pr = 4, Bd = 0 and an adiabatic free surface for different grid resolutions. The
comparison is made with Leypoldt et al. (2000), Nienhüser (2002) and Romanò et al. (2017).

numerical solution h(z) from the analytical counterpart hcat(z) are displayed in figure 30(b)
as functions of the number of grid points Nz, distributed uniformly over the height of the
liquid bridge. From the graphs, a second-order convergence is obvious.

To verify the computations of the basic flow, the maximum absolute value of the Stokes
stream function ψ arising in the centre of the thermocapillary vortex is compared with
literature data of Leypoldt et al. (2000), Nienhüser (2002) and Romanò et al. (2017) for the
single-fluid model. Data for different grids Nr × Nz and Reynolds numbers are provided
in table 8 for Γ = 1, V = 1, Bd = 0 and an adiabatic free surface. As can be seen, the
present results are in good agreement with the literature data.

Apart from this local test, we checked the energy preservation by computing the total
heat flux through the liquid bridge in non-dimensional form: 

i

Nui = −
 

i

�
Si

ni · ∇ϑ dS = 0, (B2)

where Nui is the Nusselt number for the circular hot and cold walls in contact with
the liquid, and for the free surface (i ∈ [h, c, fs]). Since the free surface is adiabatic,
Nufs = 0 and the heat flux through the cold wall must balance the heat flux through
the hot wall. The relative error in the energy preservation of the basic state expressed
by δNu = !

i Nui/ max |Nui| is also provided in table 8. We find that the thermal energy
of the basic state is conserved up to δNu < 10−12 for all presented calculations. The same
order of magnitude of δNu was also obtained for cases with a non-vanishing heat flux
through the free surface (Nufs /= 0, not shown).

Finally, the linear stability analysis is verified by comparing with the critical parameters
for the common benchmark of a cylindrical liquid bridge with Γ = 1, Pr = 4, Bd = 0 and
adiabatic free surface. Table 9 shows that our results for Rec and ωc, and a resolution of
N = 176 × 197 grid points in the radial and axial directions, respectively, deviate less than
0.2 % from the data of Levenstam et al. (2001) and Carrión et al. (2020). The deviation
of Rec by 0.8 % from the result of Levenstam et al. (2001) for Pr = 7 is slightly larger.
The somewhat larger deviation by 4.5 % of Rec from the result of Wanschura et al. (1995)
for Pr = 4 can be explained by the regularisation of the thermocapillary stresses within
10 % of d from each corner employed by Wanschura et al. (1995). Since the regularisation
tends to reduce the driving force, a higher critical Reynolds number was obtained by these
authors. Furthermore, the deviation of Rec by 2.8 % with respect to the result of Shevtsova,
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Pr = 4 Pr = 7

Authors Resolution Rec ωc Rec ωc

Present 176 × 197 (FV) 1002 28.43 876 22.91
Wanschura et al. (1995) 20 × 80 1047 27.9 — —

(Spectral, FD)
Shevtsova et al. (2001) (Nr, Nϕ, Nz) = (25, 16, 21) 1030 28.72 — —

(FV simulation)
Levenstam et al. (2001) 41 × 41 (FE) 1002 28.5 869 22.9
Carrión et al. (2020) 91 × 91 (FD) 1000 28.45 — —

Table 9. Critical data for common benchmarks (Pr = 4 and 7) of a cylindrical liquid bridge with Γ = 1,
adiabatic free surface, zero gravity, and negligible viscous stresses from the gas phase. A comparison is made
with Wanschura et al. (1995), Shevtsova et al. (2001), Levenstam et al. (2001) and Carrión et al. (2020). Here,
FV indicates finite volumes, FD indicates finite differences, and FE indicates finite elements.

V
0.850.80 0.90 0.95 1.00 1.05 1.10

m = 1
m = 2

m = 2

Ma

m = 1
m = 1&2

10

8

6

4

2

0

(×104)

Figure 31. Neutral Marangoni numbers (lines) as function of the volume ratio V for Pr = 28, Bd = 0.92,
Γ = 1, Γrod = 4.8 and η = 5. A comparison is made with the experimental critical Marangoni numbers
(symbols) extracted from figure 6(a) of Yano et al. (2016) for zero gas flow rate in the ambient air. The
wavenumbers are m = 1 (blue symbols) and m = 2 (red symbols).

Melnikov & Legros (2001) could be related to their method of determining the critical
onset by numerical simulation and by using a coarser mesh (25 × 21) in the (r, z) plane.
In view of these comparisons, we consider our code verified.

B.3. Code validation
For the purpose of validation, we also compared our linear stability analysis for Pr = 28,
Γ = 1 and Bd = 0.92 with the experimental data measured by Yano et al. (2016). To
match with the experimental geometry, we adopted not only Γ and Bd, but also η = 5
and Γrod = 4.8. Figure 31 shows the neutral and critical Marangoni numbers as functions
of the volume ratio V . As can be seen, the numerical critical Marangoni numbers, using
resolution N = 322, agree with the experimental data within the experimental error bar.
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Stability of liquid–gas thermocapillary flow

Only for V = 0.95 does some deviation exist. This can be explained, however, by the
nearby codimension-two points at which the azimuthal wavenumber of the critical mode
changes from m = 1 to m = 2. Near these points, the dynamics of the supercritical flow
can be complicated. In fact, for V = 0.95, Yano et al. (2016) found what they called a
mixed mode with m = 1 and m = 2, which must be a result of supercritical nonlinear
interactions. Moreover, the critical curve for m = 1 has a large slope with respect to V
such that small uncertainties in V result in large deviations of the critical data. When
comparing with the experiments, one has to keep in mind that the detailed experimental
conditions may deviate to some degree from the numerical ones, and that the effect of
temperature-dependent material parameters is not taken into account within the present
modelling (except for ρ, ρg and σ ). Given the remaining differences between experiment
and numerics, and the relatively large error bar for the experimental critical Marangoni
numbers measured by other authors, our code can also be considered validated.
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The linear stability of the axisymmetric steady flow in a thermocapillary liquid bridge made
from 2-cSt silicone oil (Pr = 28) is investigated numerically. The liquid bridge is heated
either from above or below and exposed to an axial air flow which is confined to a concentric
tube surrounding the bridge. At the annular inlet, the air flow is fully developed and has
the same temperature as the adjacent support rod. Using an extended Oberbeck–Boussinesq
approximation in which the density of both fluids depends linearly on the temperature in all
equations, critical thermocapillary Reynolds numbers are obtained depending on the strength
of the imposed axial air flow. The critical conditions are sensitive with respect to the direction
of a weak air flow, because the air flow changes plateau value of the interfacial temperature
midway between the hot and cold ends. For stronger air flow the critical thermocapillary
Reynolds number almost saturates at moderate values. Throughout, the instability arises as a
hydrothermal wave with the gas phase being passive. The dynamic interface deformations for
axisymmetric flow caused by the thermocapillarity flow in the liquid and by the stresses from
the air flow are considered separately. Apart from turning points of the critical curve, the
impact of dynamic surface deformations on the critical thermocapillary Reynolds number is
moderate.

Key words: Liquid bridges; Thermocapillarity; Instability; Gas/liquid flow

1. Introduction
When the temperature varies along the interface between two immiscible fluids, the
thermocapillary effect generates a tangential shear stress that drives a motion in both
fluids. This effect is important in many systems like, e.g., welding (Mills et al. 1998) or
crystal growth from the melt (Hurle 1994). Crystals grown by the floating-zone technique
(Pfann 1962) can exhibit impurity inhomogeneities caused by the onset of a time-dependent
flow in the opaque melt. To understand the underlying physics, the model problem of a
liquid bridge between coaxial cylindrical solid support rods has been devised. The original
full-zone problem in which the cylinder-like free surface is heated symmetrically with
respect to the equator (Chang & Wilcox 1975) was further simplified to a half-zone problem
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Figure 1: Schematic of a differentially heated liquid bridge (cyan) with a deformed
interface h(z) between the support rods (both with the same radius ri and length drod)

which are concentrically mounted in a tube (radius ro, gray, hatched). The sketch shows
the situation when the liquid is heated from above (Ttop > Tbottom, red) and an imposed
gas flow (bright blue) with velocity profile wg(r) enters the annular region from below
with a temperature Tbottom (blue). The polar coordinate system is centred in the liquid

bridge and the gravity vector is always directed in the negative z direction.

(Schwabe et al. 1978). In the half-zone problem, which is more amenable to experimentation,
the liquid bridge is differentially heated via the support rods. A sketch is shown in figure
1. Basic numerical models assuming a fixed cylindrical interface were able to qualitatively
predict the instability of the steady axisymmetric basic flow. For low Prandtl numbers, the
first instability is inertial and leads to a steady three-dimensional flow (Levenstam & Amberg
1995; Wanschura et al. 1995), while for high Prandtl numbers, the first instability arises as a
pair of azimuthally travelling hydrothermal waves (Wanschura et al. 1995), first discovered
for plane layers by Smith & Davis (1983a). Parallel to numerical investigations, experiments
have been carried out, mainly for transparent high-Prandtl-number liquids. By today, the
half-zone problem, or the thermocapillary liquid bridge, has become the most important
paradigm for thermocapillary convection (Kuhlmann 1999). Apart from the Prandtl number
Pr, the thermocapillary Reynolds number Re, or the Marangoni number Ma = PrRe, is the
most important parameter measuring the strength of the driving force, which is proportional
to the total variation of the surface tension along the interface.

Some features of real experiments have been very difficult to implement in numerical
analyses. These are the dynamics of the free surface and the heat (and mass) transfer across
it. The importance of the heat transfer for the critical Reynolds number has been pointed
out by Kamotani et al. (2003). Its significance is also reflected by the scatter of critical
Reynolds numbers for the onset of hydrothermalwaves in high-Prandtl-number liquid bridges
obtained in different experiments and by different investigators. The sensitivity with respect
to the thermal conditions in the ambient atmosphere has been proposed to be utilised for
controlling the onset of oscillations by exposing the liquid bridge to a well-defined gas flow
(Yasnou et al. 2012; Shevtsova et al. 2014).

In early numerical investigations, the heat transfer across the interface has been treated by
Newton’s law of cooling (Neitzel et al. 1992; Kuhlmann & Rath 1993). Even for an adiabatic-
free surface, this model was successful in qualitatively describing the instability and its
mechanism (Wanschura et al. 1997). Melnikov & Shevtsova (2014) calculated the critical
Marangoni number for the onset of hydrothermal waves for different variants of Newton’s
law. They tested models using different ambient reference temperatures: (a) the temperature
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of the hot wall, (b) the temperature of the cold wall and (c) an ambient temperature linearly
depending on the axial coordinate. The critical Marangoni numbers as a function of the Biot
number strongly depended on the heat transfer model used because neither the heat transfer
coefficient for an assumed environmental reference temperature is known nor does Newton’s
law correctly capture the spatial dependence of the local heat transfer rate.

The sensitivity of the critical conditions on the unknown model parameters thus calls
for a more accurate treatment of the problem by including the flow in the gas phase into
the analysis. The present work is intended to understand how a gas flow affects the critical
Reynolds number and the instability mechanism. To that end a numerical linear stability
analysis of the axisymmetric steady basic two-phase flow is carried out. In addition, the
influence of the dynamic deformability of the liquid–gas interface on the critical conditions
is studied.

Axisymmetric two-phase flow
The typical setup enabling a better control of the heat transfer is to mount the liquid bridge
inside of a concentric shield cylinder (Preisser et al. 1983). But even if the shield cylinder
is closed, sealing the gas phase, the critical Marangoni number and the modal structure
depend on the wall temperature of the shield cylinder (Yano et al. 2017). For high-Prandtl-
number liquids Romanò & Kuhlmann (2019) demonstrated the strong dependence of the
local interfacial heat flux density on the axial coordinate. Moreover, by carrying out a large
number of calculations of the steady axisymmetric thermocapillary flow in the presence of the
surrounding gas, being confined to an adiabatic sealed cylindrical container, they developed
fit functions for the true local interfacial heat flux valid for a wide range of Reynolds
numbers and height-to-radius ratios of the liquid bridge (aspect ratio Γ). The fit function can
be implemented in a single-fluid model using Newton’s law with a space-dependent Biot
function. This approach promises a significant reduction of the numerical effort as compared
to the two-phase approach, while the thermal conditions are accurately represented.

When the shield tube has open ends, the liquid bridge can be exposed to a defined gas flow
without swirl, which has the same temperature at the inlet as the adjacent support rod. In this
case, the radius ratio η = ro/ri (figure 1) becomes important: For large η, viscous stresses
exerted on the interface by the gas flow are small and may be negligible. In this case, the
effect of the gas flow on the liquid flow is mainly thermal. If, on the other hand, the air gap
η − 1 is small, viscous stresses become important and may even dominate.

Gaponenko et al. (2012) investigated the effect of viscous stresses from the gas flow
experimentally and numerically by considering the isothermal problem in which a toroidal
vortex is solely driven by a gas flow through a relatively narrow annular gap with η = 1.6̄.
Depending on the strength of the gas flow, they found the axisymmetric toroidal vortex
slightly displaced. Furthermore, when the dynamic viscosity of the liquid is more than 100
times that of the gas, the strength of the vortex scales linearly with the gas flow Reynolds
number Re′g, based on the mean gas velocity and twice the width of the air gap. Similar
results were reported by Gaponenko et al. (2011b). Gaponenko et al. (2011a) used the same
isothermal setup, but concentrated on the effect of the gas flow on the shape of the liquid
bridge. For all cases considered, the gas-flow-induced deformation of the liquid bridge was
much smaller than the one due to the hydrostatic pressure difference.

The same setup, but now with differentially heated support cylinders to include the
thermocapillary effect, was considered by Shevtsova et al. (2013). Using Fluent, they
numerically simulated the axisymmetric flow in liquid bridges made from n-decane and
5-cSt silicone oil in air, which had a temperature identical to the upstream support rod. For
a tight gap with η = 1.6̄, Re′g � 100, and a liquid bridge with an indeformable interface and
twice as long as its radius, the strength and structure of the flow in the liquid are strongly
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affected by viscous stresses from the gas, even leading to multiple flow separations on the
interface such that the surface flow is locally directed opposite to the thermocapillary stress.
Furthermore, they found axisymmetric instabilities for large gas flow rates, leading to a time
dependent flow. When the air comes from the cold side, the axisymmetric waves propagate
to the cold side, i.e. upstream of the gas flow. Even though the mechanical shear stress was
large, the waves were interpreted as being due to a modification of the Pearson mechanism
(Pearson 1958), because the gas is cooling the interface, potentially leading to Marangoni
rolls superimposed to the basic flow which could be advected by the basic surface flow.
Part of these results have been published earlier by Gaponenko & Shevtsova (2012). Also
Gaponenko et al. (2011c) reported similar results.

In their numerical study using STAR-CCM+, Yano & Nishino (2020) considered the
axisymmetric flow in a thermocapillary liquid bridge for a moderately wide gap with η = 3.
The gas at the inlet had the same temperature as the adjacent support rod. They found
viscous stresses have a negligible effect on the flow in the liquid. But the flow direction
and the temperature of the shield cylinder (which was varied) had a strong influence on the
interfacial heat transfer and thus on the flow, even deep inside of the liquid.

Instability of the axisymmetric two-phase flow
In one of the first experimental investigations of the effect of an axial gas flow on the onset
of hydrothermal waves, Ueno et al. (2010) used a 2-cSt liquid bridge heated from above in
air with a shield tube of η = 5 and a gas temperature equal to the temperature of the support
rod upstream of the airflow. They found a significant and almost linear dependence of the
critical parameters on the mean gas flow rate measured by the gas flow Reynolds number
Re′g ∈ [−100, 100]. For the wide air gap used, the change of the critical onset is mainly due
to thermal effects, because the gas temperature differs from that of the surface of the liquid.
For the same wide air gap, Yano et al. (2016) carried out experiments with liquid bridges
heated from above under a weak airflow and an air temperature as in Ueno et al. (2010).
The temperature of the cylindrical shield was kept constant. Likewise, the critical Marangoni
numbers depended sensitively on the gas flow rate. The critical Marangoni numbers Mac
obtained could be well correlated by the normalised total heat flux through the interface,
which was obtained by numerically computing the basic axisymmetric flow for the measured
values of Mac . However, in terms of the total normalised heat flux through the interface, the
critical Marangoni number can be extremely sensitive. This indicates, once again, that the
total heat flux is not a suitable parameter to characterise the onset conditions and that the
heat flux must be considered space resolved.

As a first step towards a three-dimensional linear stability analysis, Ryzhkov & Shevtsova
(2012) simplified the problem by considering an indeformable infinitely long liquid bridge
similar as in (Xu & Davis 1984), but with an axial gas flow inside an annulus. An additional
thermocapillary flow is driven by an imposed linear variation of the axial temperature in
the whole system, while a zero axial mean flow was enforced in the liquid phase. A linear
stability analysis shows that a gas flow parallel to the thermocapillary stress (co-flow) acts
destabilising. A counter-flow can act stabilising or destabilising, depending on its strength.
The first three-dimensional linear stability analysis for the two-phase flow in a system of finite
length is reported in Shevtsova et al. (2014). For a 5-cSt liquid and an air gap with η = 2, it was
demonstrated that the linear stability boundaries in the plane made by the thermocapillary and
the gas Reynolds numbers (Re,Re′g) can be quite complex. For the same liquid, argon gas and
η = 3, Stojanovic & Kuhlmann (2020b) obtained linear stability boundaries for moderate co-
and counter flow. A representative critical hydrothermal wave which exhibits a strong spiral
character was characterised and discussed by Stojanovic & Kuhlmann (2020a). The first
more comprehensive linear stability analysis of the two-phase flow is due to Stojanovic et al.
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(2022). They carried out a linear stability analysis of the flow in a liquid bridge of 2-cSt
silicone oil inside of a sealed adiabatic air-filled shield tube with a radius ratio η = 4.

Targeting the supercritical behaviour, Gaponenko et al. (2021) carried out experiments on
the fully developed three-dimensional flow in a liquid bridge of n-decane (Pr = 14) in nitrogen
using a narrow gap with η = 1.6̄. Certain cases were also numerically simulated taking into
account the cooling of the interface due to evaporation of the liquid. The distinguished
feature of their experiments was a constant gas flow rate with a mean velocity of 0.5 m/s
(Re′g = const.) from the cold to the hot side of the liquid bridge, but the inlet temperature
of the gas was varied. This was accomplished by the heating and cooling devices of the
liquid bridge being realised by very thin plates mounted on the end faces of the support
rods. Depending on the inlet gas temperature travelling and standing waves were found, as
well as periodic and different quasi-periodic states. An isolated window of stability of the
axisymmetric flow was detected when the gas flow was considerably hotter (28 ◦C) than the
mean temperature of the liquid bridge (25 ◦C) which was kept constant. Hysteresis was not
observed. Practically the same results have been reported earlier by Yasnou et al. (2018) who
used the same setup and the same conditions. They also measured stability boundaries as a
function of the gas temperature. A similar study was undertaken by Gaponenko et al. (2023)
using the same setup and methods, but for the smaller mean gas velocity of 0.1 m/s.

Dynamic deformations and surface waves
The interest in dynamic surface deformations of thermocapillary liquid bridges was
partly stimulated by Kamotani & Ostrach (1998), who proposed that the onset of flow
oscillations in high-Prandtl-number liquid bridges is due to the coupling between the flow
and the flow-induced dynamic surface deformations via an essentially two-dimensional
mechanism. Today, however, it is generally accepted that the very small dynamic surface
deformations in the oscillatory supercritical flow are only passive in the absence of a gas flow
(Kuhlmann & Nienhüser 2002), merely reflecting the hydrothermal wave which is created
by a different mechanism (Smith & Davis 1983a; Wanschura et al. 1997), independent of
dynamic deformations.

In a series of publications Ferrera et al. (2008), Montanero et al. (2008) and
Shevtsova et al. (2008) experimentally studied dynamic surface deformations due to the
thermocapillary flow for a 5-cSt liquid (Pr = 68) for sub- and supercritical conditions. The
magnitude of the dynamic (flow-induced) interfacial deformation due to the thermocapillary
flow was found to be less than the static deformation at the threshold, and the oscillatory
deformations in the supercritical flow were below micron size. Very small supercritical
oscillatory dynamic deformations with amplitudes of the order of 0.1 microns were also
measured for large liquid bridges (ri = 5.15 mm) of high Prandtl numbers under microgravity
conditions by Yano et al. (2018b).

These results established that interfacial deformation induced by the liquid flow is typically
small compared to the size of the liquid bridge (mm scale). In fact, the linear stability analysis
of Carrión et al. (2020) including dynamic deformations due to the perturbation flow, but
in the absence of a gas flow and using Newton’s law of cooling, has shown that dynamic
deformations have very little effect on the eigenvalues and eigenvectors resulting from the
linear stability problem. But the presence of a gas flow may change this picture and surface
wave instabilities may be triggered by the gas flow. Surface waves have been observed in
low-Prandtl-number thermocapillary layers (Smith & Davis 1983b; Bach & Schwabe 2015)
and in two-dimensional shallow droplets with low surface tension migrating on a flat wall
under a constant temperature gradient (Hu et al. 2023). Surface waves in the plane return
flow have a rather long wavelength when the surface tension is small (Davis 1987). Based
on the analysis of Smith & Davis (1983b) surface waves are not expected to become critical
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for high-Prandtl-number liquid layer and, in particular, not in axially confined liquid bridges
of high Prandtl number.

Except for the brief results of Shevtsova et al. (2014) and Stojanovic & Kuhlmann (2020b)
for liquids with Pr = 67, a numerical linear stability analysis of the flow in thermocapillary
liquid bridges under the influence of an axial gas flow has never been carried out. The present
work intends to fill this gap and compute the influence of the gas flow on the stability of a
set of typical parameters. In section 2, the problem is formulated. The popular combination
of 2-cSt silicone oil and air is selected and the case of a wide gap with η = 4 is considered.
Section 3 explains the numerical methods employed. Results are presented in section 4. First,
the influence of the axial gas flow rate on the linear stability boundary and the critical modes
is presented and analysed. Thereafter, free surface deformations due to the basic flow are
discussed and their effect on the linear stability boundary is established. We close with a
discussion of the results in section 6.

2. Problem Formulation
2.1. Setup

We consider a liquid bridge between two coaxial cylindrical rods, both of lengths drod = 1 mm
and radius ri = 2.5 mm, which are separated by a distance d = 1.65 mm, as shown in figure
1. The rods are aligned parallel to the acceleration of gravity g = −gez with g = 9.8 m/s2.
The liquid bridge is surrounded by an ambient gas which is confined to a cylindrical tube
of radius ro = 10 mm > ri (i: inner, o: outer). The geometry is characterised by the aspect
ratio of the liquid bridge Γ, the rod aspect ratio Γrod and the radius ratio η which are defined,
respectively, as

Γ =
d
ri
= 0.66, Γrod =

drod
ri
= 0.4 and η =

ro
ri
= 4. (2.1)

These geometry parameters are identical to the ones of the experimental setup used by
Romanò et al. (2017) and they are kept constant throughout.

The liquid bridge is made of 2-cSt silicone oil KF96L-2cs produced by Shin-Etsu Chemical
(Japan), while the surrounding gas is air. Both are considered Newtonian fluids. The liquid
bridge is kept in place by capillary forces due to the surface tension between the liquid and the
gas and by pinning of the three-phase contact lines to the sharp circular edges of the support
rods. The support rods are assumed to be perfect thermal conductors and are kept at different
but constant temperatures Ttop = T0 +ΔT/2 and Tbottom = T0 −ΔT/2 with ΔT = Ttop −Tbottom
and T0 = (Ttop + Tbottom)/2. The temperature difference ΔT can accept positive or negative
values corresponding to heating from above or from below, respectively. Since the imposed
temperature difference leads to a surface tension variation along the interface, tangential
interfacial stresses are induced via the thermocapillary effect. These thermocapillary stresses
drive a flow both in the liquid and in the gas phase (Kuhlmann 1999).

The dependence of the surface tension

σ(T) = σ0 − γ(T − T0) +O
�(T − T0)2

�
(2.2)

on the temperature T is considered up to first order in T −T0, where σ0 = σ(T0) is the surface
tension at the reference temperature T0 and γ the negative surface tension coefficient. Apart
from thermocapillary surface forces, the flow is also driven by body forces caused by the
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Property Dimension KF96L-2cs Air
density ρ0 [kg/m3] 871 1.184
dynamic viscosity µ [Pa s] 1.742 × 10−3 1.846 × 10−5

thermal conductivity λ [W/(mK)] 0.11 2.637 × 10−2

specific heat cp [J/(kgK)] 1768.1 1005.7
thermal expansion coefficient β [1/K] 1.24 × 10−3 3.38 × 10−3

surface tension σ0 [N/m] 18.3 × 10−3

surface tension coefficient γ [N/(mK)] 7 × 10−5

Table 1: Thermophysical properties of the working fluids 2-cSt silicone oil KF96L-2cs
and air at 25◦C.

thermal expansion of the liquid and the gas. Therefore, the densities

ρ(T) = ρ0
�
1 − β (T − T0) +O

�(T − T0)2
�
, (2.3a)

ρg(T) = ρg0
�
1 − βg (T − T0) +O

�(T − T0)2
�
, (2.3b)

of the liquid and the gas, respectively, are also considered up to first order in the temperature
deviation from its algebraic mean T0, where ρ0 = ρ(T0) and ρg0 = ρg(T0) are the reference
densities at the mean temperature. The respective thermal expansion coefficients are β =
−ρ−1

0 (∂ρ/∂T)p and βg = −ρ−1
g0 (∂ρg/∂T)p.

A third driving force of the fluid motion is an imposed axial pressure difference between
the inlet and the outlet of the gas (figure 1). The pressure difference leads to a forced flow
in the annular gap between the rods and the shield tube. The direction of the mean gas flow
depends on the sign of the pressure difference. Here we assume that the gas enters the annular
space with a temperature equal to the rod temperature upstream of the gas flow.

For millimetric liquid bridges of the above silicone oil which can be realised under
terrestrial gravity the main driving force is thermocapillarity. As long as the imposed
temperature difference and the gas flow rate are small the flow in the liquid and in the
gas will be axisymmetric and steady, reflecting the symmetry of the problem. Here we are
interested in the stability of this steady axisymmetric flow and the dependence of its stability
boundary on the forced flow in the gas phase. In order to keep this problem manageable we
assume the dynamic viscosities of both fluids µ and µg as well as their thermal conductivities
λ and λg and their specific heat capacities cp and cp,g to be constant. Moreover, the mean
temperature is kept constant at T0 = 25◦C. All physical properties for both working fluids
are given in table 1.

2.2. Governing equations and boundary conditions
2.2.1. Transport equations
The flow in both, the liquid and the gas phase, is governed by the Navier–Stokes,
continuity and energy equations. For the problem at hand it seems reasonable to
simplify the governing equations and consider the Oberbeck–Boussinesq approximation
(Landau & Lifschitz 1959; Mihaljan 1962) which takes into account density variations
only in the buoyancy term. However, a proper treatment of flow-induced deformations
of the liquid–gas interface requires higher-order corrections to the Oberbeck–Boussinesq
approximation (Simanovskii & Nepomnyashchy 1993). Therefore, we consider the linear
temperature dependence of the densities not only in the buoyancy term, but also in the entire
momentum equations, the continuity equations and in the energy equations for both the liquid
and the gas.
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ρ̃ µ̃ λ̃ c̃p β̃

1.359 × 10−3 0.010597 0.23973 0.5688 2.7258

Table 2: Ratios of the thermophysical parameters between air and 2-cSt silicone oil as
defined in (2.6).

Within this approximation we consider the following equations for the velocity u, pressure
p and temperature field T for the liquid phase

ρ
∂u

∂t
+ ρu · ∇u = −∇p − ρgez + µ∇ · T , (2.4a)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.4b)

ρ
∂T
∂t
+ ρu · ∇T =

λ

cp
∇2T, (2.4c)

where t is the time and

T = ∇u + (∇u)T − 2
3
(∇ · u)I (2.5)

is (twice) the deformation rate tensor with the identity matrix I = δi j . In the energy
equation (2.4c), the pressure contribution to the enthalpy is neglected, assuming p/ρ≪ |cpT |.
Likewise, we neglect the pressure work and the heat due to viscous dissipation in (2.4c).

Formally the same equations (2.4) hold for the gas phase, merely with the material
parameters of the gas. To distinguish between liquid and gas we follow Stojanovic et al.
(2022) and introduce the set of coefficients

α =
�
αρ, αµ, αλ, αcp, αβ

$
=

�
(1, 1, 1, 1, 1) for the liquid phase,
(ρ̃, µ̃, λ̃, c̃p, β̃) for the gas phase,

(2.6)

where ρ̃ = ρg0/ρ0, µ̃ = µg/µ, λ̃ = λg/λ, c̃p = cp,g/cp and β̃ = βg/β denote the ratios of the
reference densities, dynamic viscosities, thermal conductivities, specific heat capacities and
the thermal expansion coefficients between the gas and the liquid. Numerical data are given
in table 2.

Scaling lengths, time, velocity, pressure and temperature by d, d2ρ0/µ, γΔT/µ, γΔT/d
and ΔT , respectively, and using the same notation as for the dimensional variables, we arrive
at the dimensionless version of (2.4) for both fluids

(1 − αβεϑ)∂u
∂t
+ Re(1 − αβεϑ)u · ∇u = − 1

αρ
∇p + αβBdϑez + αµ∇ · T , (2.7a)

−αβε
Re
∂ϑ

∂t
− αβε∇ · (ϑu) + ∇ · u = 0, (2.7b)

(1 − αβεϑ)∂ϑ
∂t
+ Re(1 − αβεϑ)u · ∇ϑ = αλ

αcpPr
∇2ϑ, (2.7c)

where we made use of the coefficients defined in (2.6). We use cylindrical coordinates
(r, ϕ, z) centred in the middle of the liquid bridge and a polar representation of the velocity
field u = uer + veϕ + wez . In (2.7), the reduced temperature and the reduced pressure are
respectively defined as ϑ = (T −T0)/ΔT and p = (d/γΔT)(P − ρ0gz), where P indicates the
dimensional pressure. Furthermore, the temperature dependence of the density is taken into
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account up to linear approximation with the (small) parameter ε = βΔT (and εg = βgΔT)
measuring the magnitude of the density variation in the liquid (and in the gas).

The flow is characterised by the thermocapillary Reynolds number Re, the Prandtl number
Pr and the dynamic Bond number Bd, respectively defined as

Re =
ρ0γΔTd
µ2 , Pr =

µcp
λ
= 28, Bd =

ρ0gβd2

γ
= 0.41. (2.8)

For the present silicone oil Pr = 28. Assuming terrestrial gravity conditions with g =
9.81 m/s2 and a length d = 1.65 mm of the liquid bridge, the dynamic Bond number is
Bd = 0.41. Since ΔT can accept both, positive and negative values, the thermocapillary
Reynolds number Re, the Marangoni number Ma = PrRe as well as the Rayleigh number
Ra = BdMa have a sign. As most investigations of the flow in liquid bridges consider
heating from above, this configuration will be associated with (Re,Ma,Ra) > 0, while
(Re,Ma,Ra) < 0 indicates heating from below, even though this is an unusual convention for
pure buoyancy convection.

2.2.2. Linear stability equations
The steady axisymmetric solution u0 = u(r, z)er +w(r, z)ez of (2.7) is called the basic flow.
For sufficiently small driving forces the basic flow is stable. We are interested in the linear
stability boundary of the basic flow when the thermocapillary Reynolds numbers Re exceeds
a certain threshold. For Reynolds numbers larger in magnitude than the critical Reynolds
number, i.e. Re > Rec > 0 for heating from above, or Re < Rec < 0 for heating from below,
the flow is either time-dependent, three-dimensional or both. In order to find the critical
Reynolds numbers Rec a linear stability analysis is carried out. To that end the general
three-dimensional time-dependent solution q = (u, v,w, p, ϑ) and qg = (ug, vg,wg, pg, ϑg) of
(2.7) is decomposed into an axisymmetric time-independent basic flow (subscript 0) and
deviations from this basic flow (indicated by a prime ′)

q = q0(r, z) + q′(r, ϕ, z, t), qg = qg0(r, z) + q′g(r, ϕ, z, t). (2.9)

Inserting this decomposition into (2.7) and linearising the equations with respect to the
perturbation quantities yields the set of linear equations

(1 − αβεϑ0)∂u
′

∂t
+ Re(1 − αβεϑ0)(u0 · ∇u′ + u′ · ∇u0) − αβεReϑ′u0 · ∇u0 =

= − 1
αρ

∇p′ + αβBdϑ′ez + αµ∇ · T ′, (2.10a)

−αβε
Re
∂ϑ′

∂t
− αβε∇ · (ϑ′u0) − αβε∇ · (ϑ0u

′) + ∇ · u′ = 0, (2.10b)

(1 − αβεϑ0)∂ϑ
′

∂t
+ Re(1 − αβεϑ0)(u0 · ∇ϑ′ + u ′ · ∇ϑ0) − αβεReϑ′u0 · ∇ϑ0 =

=
αλ
αcpPr

∇2ϑ′, (2.10c)

which describe the dynamics of the infinitesimal perturbation flow. Again (2.10) is valid for
both phases, distinguished by α. Both phases are coupled through the boundary conditions
on the interface.

Since the basic state is homogeneous in time t and in the azimuthal coordinate ϕ, the
perturbations q′ and q′g can be decomposed into normal modes with azimuthal wave number
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m ∈ N
q′ =

-
j,m

q̂ j,m(r, z)eψj,m t+imϕ + c.c., q ′
g =

-
j,m

q̂g; j,m(r, z)eψj,m t+imϕ + c.c., (2.11)

where the complex conjugate (c.c.) renders the perturbations real. The complex growth rates
of the normal modes with amplitudes q̂ = (û, v̂, ŵ, p̂, ϑ̂) and q̂g = (ûg, v̂g, ŵg, p̂g, ϑ̂g) are
denoted ψ = ψj,m ∈ C, where the index j numbers the different solutions for given wave
number m.

Inserting the ansatz (2.11) into (2.10), we obtain linear differential equations in r and z for
the perturbation amplitudes

ψ(û − αβεu0ϑ̂) + Re
� 

1
r
+
∂

∂r

'
(2u0û) + mu0 ˆ̂v

r
+
∂(u0ŵ + ûw0)

∂z

�
− αβεRe

� 
1
r
+
∂

∂r

'
(ϑ′u2

0) +
∂(ϑ′u0w0)
∂z

�
= − 1
αρ

∂ p̂
∂r
+ αµ

�
2
r
∂

∂r

 
r
∂û
∂r

'
−(m2 + 2) û

r2 + m
 
1
r
∂

∂r
− 3

r2

'
ˆ̂v +

 
∂

∂z
+
∂

∂r

'
∂u′

∂z
− 2

3
αβεζ

′
�
, (2.12a)

ψ ˆ̂v + Re
� 

2
r
+
∂

∂r

'
(u0 ˆ̂v) + ∂(

ˆ̂vw0)
∂z

�
=

1
αρ

m
r

p̂ + αµ

�
−m

 
3
r2 +

∂

∂r

'
û

+
1
r
∂

∂r

 
r
∂ ˆ̂v
∂r

'
− (2m2 + 1)

ˆ̂v
r2 +

∂

∂z

 
∂ ˆ̂v
∂z

− mŵ

r

'
− 2

3
αβεζ

′
�
, (2.12b)

ψ(ŵ − αβεw0ϑ̂) + Re
�
1
r
∂[r(w0û + ŵu0)]

∂r
+

mw0 ˆ̂v
r
+ 2
∂w0ŵ

∂z

�
− αβεRe

� 
1
r
+
∂

∂r

'
(ϑ′u0w0) +

∂(ϑ′w2
0)

∂z

�
= − 1
αρ

∂ p̂
∂z
+ αβBdϑ̂

+ αµ

�
1
r
∂

∂r

 
r
∂ŵ

∂r

'
− m2 ŵ

r2 +
∂

∂z

 
1
r

û
∂r
+

1
r

ˆ̂v + 2
∂ŵ

∂z

'
− 2

3
αβεζ

′
�
, (2.12c)

αβε

�
−ψϑ̂

Re
− 1

r
∂(rϑ̂u0)
∂r

− ∂(ϑ̂w0)
∂z

�
+

1
r
∂[(1 − αβεϑ0)rû]

∂r
+

m − αβεϑ0

r
ˆ̂v+
∂[(1 − αβεϑ0)ŵ]

∂z
= 0,

(2.12d)

ψ(ϑ̂ − αβεϑ0) + Re

�
1
r
∂[r(ϑ0û + ϑ̂u0 − αβεϑ0u0ϑ̂)]

∂r
+

mϑ0 ˆ̂v
r

+
∂(ϑ0ŵ + ϑ̂w0 − αβεϑ0w0ϑ̂)

∂z

�
=
αλ
αcpPr

�
1
r
∂

∂r

 
r
∂ϑ̂

∂r

'
− m2 ϑ̂

r2 +
∂2ϑ̂

∂z2

�
. (2.12e)

In these equations, the amplitudes of the azimuthal velocities have been transformed
according to ˆ̂v = iv̂ and ˆ̂vg = iv̂g in order to render the coefficient matrix real and thus save
computational memory for the numerical solution (Theofilis 2003). For the sake of brevity
we have abbreviated the term ∇ · u′ arising in the rate-of-strain tensor for the perturbation
flow by ∇ · u ′ = αβεζ ′. These terms represent the deviation from a solenoidal perturbation
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m = 0 :
m = 1 :
m > 1 :

û = 0
∂û/∂r = 0

û = 0

v̂ = 0
∂v̂/∂r = 0

v̂ = 0

∂ŵ/∂r = 0
ŵ = 0
ŵ = 0

∂ϑ̂/∂r = 0
ϑ̂ = 0
ϑ̂ = 0

Table 3: Boundary conditions for the perturbation flow on r = 0.

flow. As can be seen from (2.10b) they are of the orders of O(ε) and O(εg) for the liquid and
gas phase, respectively.

2.2.3. Boundary conditions
To solve the two-dimensional version of (2.7) for the basic flow and of (2.12) for the three-
dimensional perturbation flow suitable boundary conditions must be defined for both flows.

Solid walls
The velocity fields must satisfy the no-slip boundary conditions

u0 = ug0 = 0 and û = ûg = 0 (2.13)

on all solid walls, namely the support rods and the cylindrical tube confining the gas radially.
Since the support rods are always made from good thermal conductors (e.g. Romanò et al.
2017; Gotoda et al. 2019), constant temperatures are imposed on the rods for the basic
flow, while the perturbation temperature must vanish. The shield tube, on the other hand, is
typically made from a good thermal insulator to keep its thermal effect on the gas flow at a
minimum. Therefore, the heat fluxes due to both the basic and the perturbation temperature
field are required to vanish on the shield tube. This leads to the thermal boundary conditions

hot rod: ϑ0 = ϑg0 = 1/2 and ϑ̂ = ϑ̂g = 0, (2.14a)
cold rod: ϑ0 = ϑg0 = −1/2 and ϑ̂ = ϑ̂g = 0, (2.14b)

shield tube: ∂ϑg0/∂r = 0 and ∂ϑ̂g/∂r = 0. (2.14c)

Axis of symmetry
On the axis of symmetry at r = 0 the axisymmetric steady basic flow must satisfy

u0 =
∂w0
∂r
=
∂ϑ0
∂r
= 0. (2.15)

The boundary conditions for the perturbation flow can be derived from uniqueness conditions
for ∂u/∂ϕ and ∂ϑ/∂ϕ as r → 0 (see also Batchelor & Gill 1962; Xu & Davis 1984) and
depend on the wave number m. They are given in table 3.

Liquid–gas interface
The flow in the liquid and in the gas phase are coupled through the interface. Since the

location of the interface, described by r = h(ϕ, z, t), is part of the solution, the flow and
the location h must be computed in a coupled manner. In the following we consider the
axisymmetric steady basic flow and the corresponding time-independent shape function
h0(z).

Regardless of the shape of the interface, continuity of the temperature and of the heat flux
across the interface at r = h0(z) require the thermal boundary conditions

r = h0: ϑ0 = ϑg0 (2.16a)
r = h0: n · ∇ϑ0 = λ̃n · ∇ϑg0, (2.16b)
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where

n =
er − (∂zh0)ez

N
, with N =

+
1 + (∂zh0)2, (2.17)

is the unit vector on the interface directed from the liquid into the gas. The tangent vector is
defined as t = [(∂zh0)er + ez]/N .

The velocity fields must satisfy kinematic and dynamic boundary conditions. The
kinematic boundary conditions

r = h0: u0 = ug0 and
u0
w0
= ∂zh0, (2.18)

ensure the continuity of the velocity and guarantee that a fluid element on the interface
remains on the interface. The dynamic boundary condition is decomposed into a normal and
a tangential stress balance by projecting the equilibrium of forces onto the normal (n) and
tangential (t) directions. The normal stress balance

− (p0 − pg0)+ n · T0 · n +
 

1
Ca

− ϑ0

'
∇ · n = −Bo

Ca
z − (ϑ − ρ̃ β̃ϑg0)Bdz + µ̃n · Tg0 · n, (2.19)

must be satisfied on r = h0(z). It is affected by the static Bond number Bo and the Capillary
number Ca defined as

Bo =
(ρ0 − ρg0)gd2

σ0
, Ca =

γΔT
σ0
. (2.20)

They measure the relative importance of static and of hydrodynamic pressure differences,
respectively, to the characteristic capillary pressure σ0/d. Note that the ratio τ = Bd/Bo =
ρ0βσ0/[γ(ρ0 − ρg0)] is a material constant and almost a proportionality factor between ε
and Ca, since ε = (1 − ρ̃)τCa and typically ρ̃ ≪ 1. In addition to (2.19) the tangential stress
balance

t · T0 · n = −t · ∇ϑ0 + µ̃t · Tg0 · n (2.21)
must also hold on r = h0(z). The thermocapillary stresses are represented by −t · ∇ϑ0.

The stationary axisymmetric version of the differential equations (2.7) and the above
boundary conditions for the basic state must be solved in a coupled way to yield the basic
flow including the interfacial shape h0(z). The numerical solution is described in section 3. To
be able to solve the problem two additional constraints for h0 are required, because the normal
stress balance is second order in z. These are provided by the interface h0 (z = ±1/2) = 1/Γ
being pinned to the sharp edges of the heated rods. In addition, for a non-volatile liquid
the mass of the liquid bridge must be conserved. Since 2-cSt silicone oil is slightly volatile,
accurate experiments (e.g. Yano et al. 2016; Yasnou et al. 2018; Gotoda et al. 2019) control
the volume of the liquid rather than the mass. Therefore, we impose the volume constraint

Γ2
∫ 1/2

−1/2
h2

0(z)dz = V, (2.22)

where V = Vl/V0 is the liquid volume Vl normalised by the volume V0 = πr2
i d of an upright

cylindrical liquid bridge. Throughout this investigation the liquid volume V is prescribed,
not the mass of the liquid M =

∫
Vl
ρ(x)dV .

In order to identify the flow-induced contribution to the surface shape resulting from (2.19),
and of its effect on the flow stability, we also consider the hydrostatic case (u0 = ug,0 = 0)
in which (2.19) becomes the Young–Laplace equation

Δph =
∇ · n
Ca
+

Bo
Ca

z, (2.23)
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where Δph is a constant overpressure (Kuhlmann 1999). The resulting static surface shape
is denoted h0,s (subscript s: static). As long as the effect of the flow on the shape of the
interface is weak, h0,s represents a good approximation to the true dynamic surface shape
h0,d (subscript d: dynamic) which results from (2.19). To assess the influence of the flow
on the shape of the interface we define the dynamic surface deformation Δh0 = h0,d − h0,s
as the difference between both surface shapes. Similarly, Rec,s and Rec,d denote the critical
Reynolds numbers assuming a static or a dynamic interfacial shape, respectively, for the
basic flow.

Finally, interfacial coupling conditions must be provided for the perturbation flow. To
reduce the computational effort, and motivated by the results of Carrión et al. (2020), we
neglect interfacial deformations due to the perturbation flow. In this approach the interfacial
conditions

û = ûg, ϑ̂ = ϑ̂g, n · ∇ϑ̂ = λ̃n · ∇ϑ̂g and t · T̂ · n = −t · ∇ϑ̂ + µ̃t · T̂g · n, (2.24)

where T̂ = ∇û + (∇û)T − 2/3(∇ · û)I, are imposed at r = h0(z). This approximation a
priori precludes surface-wave instabilities which could possibly be triggered by the shear
flow due to thermocapillary and/or mechanical stresses from the gas phase. However, such
surface-wave instabilities have not yet been observed experimentally in the present flow
system.

Inlet and outlet
The gas enters the annular duct through the inlet located at z = zin with a dimensional mean

inlet velocity w̄g,in. It leaves the chamber through the outlet at z = zout on the opposite side.
The oriented mean value w̄g,in can be either positive or negative depending on the direction
of the through flow. To measure the intensity of the gas flow we define the gas flow Reynolds
number

Reg =
ρ0w̄g,ind
µ

. (2.25)

It can take positive and negative values. The Reynolds number (2.25) describes the forcing
of the liquid flow due to the gas motion. As shown in Appendix A, Reg is better suited to
correlate the effect of the gas motion on the liquid phase than the conventional Reynolds
number Re′g based on the gap width ro − ri and the kinematic viscosity of the gas µg/ρg0.

For Reg > 0 (Reg < 0) the forced flow is directed in positive (negative) z direction.
Accordingly, the locations of the inlet and the outlet

zin = ± (1/2 + Γrod/Γ) = −zout for Reg ≶ 0. (2.26)

are determined by the sign of Reg. To avoid entrance-length effects we assume a fully
developed annular Poiseuille flow at z = zin

ug0(r) =
Reg

Re
2 ln(η)�

η2 + 1
&
ln(η) − η2 + 1

�
1 − Γ2r2 +

�
η2 − 1

$ ln(Γr)
ln(η)

�
ez, (2.27)

where the factor Re−1 arises due to the scaling. At the outlet z = zout, kinematic outflow
conditions

∂ug0

∂z
=
∂vg0

∂z
=
∂wg0

∂z
= 0 (2.28)

are imposed. Since the in- and outflow boundaries in a planned space experiment are realised
by thermally conducting metallic porous media in contact with the support cylinders (S.
Matsumoto, private communication), the gas enters/leaves the chamber with a homogeneous
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temperature

z = ± (1/2 + Γrod/Γ) : ϑg0 = ±1/2 sgn(Re), (2.29)

corresponding to the temperature of the rod next to the inlet/outlet. In the limit Reg ↑↓ 0
(2.27) and (2.28) are replaced by rigid boundary conditions.

Since the in- and outflow conditions are taken care of by the basic flow, the amplitudes of
the perturbation flow must satisfy the homogeneous conditions

z = zin: ûg = v̂g = ŵg = ϑ̂g = 0, (2.30a)
z = zout: ∂ûg/∂z = ∂ v̂g/∂z = ∂ŵg/∂z = ϑ̂g = 0. (2.30b)

2.3. Energetics
The instability mechanism is investigated by the a posteriori energy analysis of the
perturbation flow (Wanschura et al. 1995). The equations for the rates of change of the
normalised kinetic and thermal perturbation energies in the liquid and in the gas phase

dEkin
dt
=

1
Dkin

d
dt

∫
Vi

u′2

2
dV = −1 + Mr + Mϕ + Mz +

5-
j=1

Ij + B + Kg + Λρ, (2.31a)

dEth
dt
=

1
Dth

d
dt

∫
Vi

ϑ′2

2
dV = −1 +

2-
j=1

Jj + Hfs + Kth,g + Πρ, (2.31b)

can be derived by multiplying (2.10a) and (2.10c) with u′ and ϑ′, respectively, integrating
separately over the volume occupied by the liquid and by the gas, and normalising by the
dissipation Dkin and Dth, respectively. In contrast to the perturbation energy budget resulting
from the OB approximation (Nienhüser & Kuhlmann 2002), the additional terms

Λρ = −αβε Re
2Dkin

∫
Vi

ϑ′u′ · (u0 · ∇u0)dV + αβε
1

Dkin

∫
Vi

p′ζ ′dV − (αβε)2 1
3Dkin

∫
Vi

ζ ′2dV,

(2.32a)

Πρ = −αβε Re
Dth

∫
Vi

ϑ0u0 · ∇ϑ′2dV − (αβε)2 Re
2Dth

∫
Vi

ϑ′2u0 · ∇ϑ2
0dV (2.32b)

arise in the energy budgets, accounting for non-Oberbeck–Boussinesq effects due to the
temperature dependence of the fluid densities in all terms. The expressions Λρ and Πρ

represent the rates of change of kinetic and, respectively, thermal perturbation energy, caused
by the non-uniform density distribution in the weakly compressible flow. Both terms are of
the order of O(αβε) and small compared to the other O(1) terms in (2.31). In the presence
of an external gas flow, the additional terms

Kg = −2πRe
Dkin

η/Γ∫
1/Γ

ŵ2
g(zout)wg0(zout)dr, (2.33a)

Kth,g = −2πRe
Dkin

η/Γ∫
1/Γ
ϑ̂2

g(zout)wg0(zout)dr (2.33b)

appear in the kinetic and, respectively, thermal energy budget. For open gas tubes, Kg
represents the loss of kinetic energy of the perturbation flow by transport out of the gas
domain. For a closed gas container (Reg = 0), Kg = 0 vanishes. Similarly, Kth,g can
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only be non-zero for open gas tubes. However, owing to the prescribed temperatures at
the in- and outlet, ϑ̂g(zout) = 0 (2.30). Thus Kth,g = 0 vanishes also for open gas tubes.
Detailed expressions and descriptions of the remaining terms appearing in (2.31) can be
found in Stojanovic et al. (2022), who used the same notation. For a derivation of (2.31) for
a full temperature dependence of all thermophysical parameters, we refer to Stojanović et al.
(2023a).

To monitor the conservation of perturbation energy, we consider the normalised residuals
of the kinetic and thermal energy balances as given in Nienhüser & Kuhlmann (2002),
supplemented with the new terms,

δEkin :=
����−dEkin

dt
− 1 + Mr + Mϕ + Mz +

5-
j=1

Ij + B +Λρ + Kg

����, (2.34a)

δEth :=
����−dEth

dt
− 1 +

2-
j=1

Jj + Hfs + Πρ

����. (2.34b)

Throughout, we find δEkin = O(10−2) and δEth = O(10−3), signaling conservation of kinetic
and thermal perturbation energy.

3. Numerical Methods
3.1. Basic flow

The computation of the steady axisymmetric basic flow depends on the treatment of the
liquid–gas interface (see section 2.2.3). In the simplified approach in which the shape of the
liquid–gas interface is independent of the flow, the static surface shape h0,s(z) is computed
beforehand by solving the Young–Laplace equation (2.23). Thereafter, the volume equations
are solved using finite volumes and body-fitted coordinates (ξ = r/h0, z) as described in
Stojanovic et al. (2022). In the case of flow-induced free surface deformations, the volume
equations are discretized by the same method, but now the normal stress balance (2.19) is
solved fully coupled to the basic flow. After each iteration the body-fitted coordinates are
updated, since the transformed coordinate ξ is based on the current surface shape.

Regardless of the treatment of the interface, the nonlinear algebraic equations resulting
from the discretisation of the Navier–Stokes equations (2.7) are solved iteratively using the
Newton–Raphson method. If q

(k)
0 is a known approximation to the solution of (2.7) at the

k-th iteration step, an improved approximation is

q(k+1)
0 = q(k)0 + δq, (3.1)

where the increment δq satisfies

J
�
q(k)0

$
· δq = − f

�
q(k)0

$
, (3.2)

with J
�
q(k)0

&
being the Jacobian operator and f

�
q(k)0

&
the nonlinear residual of the Navier-

Stokes equations. Equation (3.2) is obtained by inserting the ansatz (3.1) into the steady
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axisymmetric version of (2.7) and linearising with respect to δq. We obtain

Re
�
1 − αβεϑ(k)0

$ �
δu · ∇u(k)

0 + u(k)
0 · ∇δu

$
−αβεReu(k)

0 ·∇u(k)
0 δϑ+

1
αρ

∇δp−αβBd δϑez

− αµ∇δT = −Re
�
1 − αβεϑ(k)0

$
u(k)

0 · ∇u(k)
0 − 1

αρ
∇p(k)0 + αβBd ϑ(k)0 ez + αµ∇T (k)

0 ,

(3.3a)

∇·δu−αβε∇·
�
u
(k)
0 δϑ

$
−αβε∇·

�
ϑ
(k)
0 δu

$
= −∇·u(k)

0 +αβε∇·
�
ϑ
(k)
0 u

(k)
0

$
, (3.3b)

�
1 − αβεϑ(k)0

$ �
δu · ∇ϑ(k)0 + u(k)

0 · ∇δϑ
$
− αβεu(k)

0 · ∇ϑ(k)0 δϑ −
αλ
αcpMa

∇2δϑ

= −
�
1 − αβεϑ(k)0

$
u
(k)
0 · ∇ϑ(k) + αλ

αcpMa
∇2ϑ(k). (3.3c)

In case of dynamic surface deformations the general solution vector of the basic flow q0 =
(u0, 0,w0, p0, ϑ0, h0) also contains the free surface shape h0. Therefore, the linearised version
of the normal stress balance (2.19)

−(δp−δpg)+n(k) ·δT ·n(k)+n(k) ·T (k)
0 ·δn+δn ·T (k)

0 ·n(k)+
 

1
Ca

− ϑ(k)0

'
∇·δn−∇·n(k)δϑ

+ (δϑ − ρ̃β̃δϑg)Bdz − µ̃
�
n(k) · δTg · n(k) + n(k) · Tg0 · δn + δn · Tg0 · n(k)

$
= p(k)0 − p(k)g0

− n(k) · T (k)
0 · n(k) −

 
1

Ca
− ϑ(k)0

'
∇ · n(k) +

Bo
Ca

z−
�
ϑ(k) − ρ̃β̃ϑ(k)g0

$
Bdz+ µ̃n(k) · T (k)

g0 · n(k)

(3.4)

enters the Newton–Raphson method, where the increment

δh = h(k+1)
0,d − h(k)

0,d (3.5)

appears implicitly in the increment of the normal vector

δn = n(k+1) − n(k) (3.6)

with

δn = − 1
N (k)3

dh(k)
0,d

dz
dδh
dz

er − 1
N (k)

1 − 1
N (k)2

#"!
dh(k)

0,d

dz
*)(

2
dδh
dz

ez (3.7)

and its divergence

∇ · δn =
1

h(k)3
0,d N (k)3

−h(k)3
0,d

d2δh
dz2 +

#"!
3h(k)3

0,d

N (k)2
d2h(k)

0,d

dz2 − h(k)2
0,d

*)(
dh(k)

0,d

dz
dδh
dz

− h(k)
0,dN (k)2δh

 . (3.8)

The iteration is considered converged after both, the infinity norm �δq0�∞ and the L2
norm �δq0�2 of the residual, have dropped below 10−6. Using a standard initialisation
(u0 = w0 = ϑ0 = 0 and h0 = 1/Γ), this typically requires around twelve Newton iteration
steps.
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3.2. Linear stability analysis
To carry out a linear stability analysis of the basic flow, the set of linear equations (2.12) for
the amplitudes of the normal modes q̂ and q̂g (2.11) are discretized exactly as for the basic
state. The resulting large system of algebraic equations is a generalised eigenvalue problem,
where the eigenvalues are identified as the complex growth rates ψj,m. The perturbation
amplitudes q̂ j,m and q̂g; j,m represent the corresponding eigenvectors. For a given wave
number m, a vanishing growth rate ℜ(ψj,m) = 0 defines a neutral hypersurface in parameter
space. With respect to a variation of Re, this condition provides a neutral Reynolds number
Re j,mn . Minimisation with respect to j and m then yields the critical Reynolds number Rec =
min j,m�0 Rej,mn . The imaginary part of the growth rate represents the angular frequency
ωc = ℑ[ψj,m(Rec)] of the critical mode. To find the eigenvalues with the largest real part we
follow the method described in Stojanovic et al. (2022), using an implicitly restarted Arnoldi
method provided by ARPACK (Lehoucq et al. 1998).

As we are interested in the dependence of the critical thermocapillary Reynolds number
Rec on the gas flow Reynolds number Reg, the envelope of the neutral curves in the (Re,Reg)
plane are constructed by arclength continuation (Keller 1977) for prescribed step sizes
ΔReg = 10 and ΔRe = 15.

3.3. Implementation
All necessary numerical operations are implemented in the Matlab code MaranStable
which was initially developed by M. Lukasser (Kuhlmann et al. 2011). It is available
from https://github.com/fromano88/MaranStable. Early results have been published in
Shevtsova et al. (2014) and Stojanovic & Kuhlmann (2020b). Here we employ a revised
version of the code to solve for the basic state, perform the linear stability analysis
and to evaluate the perturbation energy balances. For statically deformed liquid bridges,
the grid convergence of MaranStable has been extensively tested by Stojanovic et al.
(2022), who also verified and validated the code for closed chambers. Additional
verifications of MaranStable regarding the dynamic interface shape and the coaxial
through flow in the gas phase, are provided in Appendices C and D. The solver has
recently been introduced by Stojanović et al. (2023b). Further documentation is shared on
https://github.com/fromano88/MaranStable/tree/main/docs.

4. Results
The linear stability problem involves numerous parameters. Here we focus on the dependence
of the critical thermocapillary Reynolds number Rec = Rec(Reg) on the through flow in the
gas phase, parameterised by Reg. The gas flow Reynolds number is varied in the range
Reg ∈ [−3500, 1500], including the closed chamber configuration (Reg = 0). All other
non-dimensional parameters are kept constant at values of the reference case defined in
Stojanovic et al. (2022), namely, Pr = 28, τ = Bd/Bo = 0.32, Γ = 0.66, Γrod = 0.4, η = 4
andV = 1. The liquid bridge is heated from above or below under terrestrial gravity such that
Bd = 0.41, corresponding to the radius ri = 2.5 mm used in the experiments of Romanò et al.
(2017) and others (e.g. Yano et al. 2018a; Oba et al. 2019).

We consider two models: (a) A simplified model in which the shape of the liquid bridge
is independent of the flow and given by its static shape, and (b) a model in which the flow-
induced interfacial deformations are taken into account for the basic flow, but not for the
perturbation flow. For both models the effect of the forced gas flow on the critical Reynolds
number and the critical mode is computed and analysed. Furthermore, both models are
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Rem1,m2
g Rec(Rem1,m2

g )
m static dynamic static dynamic

3 ↔ 2 −2618 −2625 1765 1753
2 ↔ 1 −2670 −2672 1952 1932
1 ↔ 0 −2547 −2564 2094 2068
0 ↔ 2 −2113 −2114 2319 2311
2 ↔ 1 −1997 −1898 2260 2207
1 ↔ 0 −131 −123 2043 2046
0 ↔ 1 −78 −74 1993 1998
1 ↔ 2 −70 −65 1981 1986
2 ↔ 3 −61 −57 1951 1957

Table 4: Codimension-two points (Reg,Rec)m1,m2 for heating from above (Re > 0). Data
are given for a static as well as for a dynamically deformed free surface of the basic flow.

compared with each other and the relevance of dynamic surface deformations in the basic
state is assessed.

4.1. Hydrostatic surface shape
4.1.1. Linear stability boundary
The dependence of the neutral and critical Reynolds numbers and oscillation frequencies on
the gas flow Reynolds number Reg for a static interface shape are shown in figure 2. The
wave number of the critical mode is colour coded. For zero gravity conditions (Bd = 0)
the critical Reynolds numbers must be symmetric with respect to (Reg,Rec) → −(Reg,Rec)
and ωc(Reg) = −ωc(−Reg) (not shown). For the present Bond number Bd = 0.41 this
symmetry is broken. Due to the combined effect of thermocapillarity, buoyancy and gas flow
the critical Reynolds number exhibits a complex behaviour. Throughout, the instability is
time-dependent.

For heating from above (Re > 0) and if the liquid bridge is exposed to a cold, upward
gas flow opposing the thermocapillary-driven surface flow (first quadrant in figure 2(a)),
the critical wave number is mc = 3 and Rec decreases from Rec(Reg = 0) = 616 when
Reg is increased. Except for a very shallow minimum of Rec at Reg = 450, the critical
Reynolds number Rec(Reg) almost saturates near Rec ≈ 390, already for Reg � 100. If,
on the other hand, Reg is decreased from zero (hot, downward gas flow parallel to the
thermocapillary surface flow, second quadrant in figure 2(a)), the critical Reynolds number
strongly increases up to Rec ≈ 2000 for Reg = −60. For a stronger flow of the hot gas
(Re < −60) different modes become critical and the critical curve is made of segments
of neutral modes with different azimuthal wave numbers. This is illustrated in figure 3 by
zooming into the region (Reg,Rec) ∈ [−200, 20] × [1700, 2200]. Most notable is the local
minimum of Rec at Reg = −414 for wave number m = 1 (blue). A similar local minimum
of Rec for hot co-flow and a mode with m = 1 arises for long liquid bridges with Γ = 1.8 of
Pr = 68 under zero gravity (Stojanovic & Kuhlmann 2020b). The mode with m = 1 (blue)
is critical in the range Reg ∈ [−1850,−100]. The codimension-two points (Reg,Rec)m1,m2 at
which two neutral curves for different wave numbers m1 and m2 intersect are listed in table
4 (columns labelled ’static’). Interestingly, the critical Reynolds number for strong gas flow
is not a unique function of Reg in the range Reg ∈ [−2672,−1920]. In this region the most
dangerous mode has a wave number m = 3 (green). For even larger downward flow rates
(Reg < −2672), the critical Reynolds number saturates near Rec ≈ 400, within the range of
Reg considered.
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Figure 2: (a) Neutral (thin lines) and critical (thick lines) Reynolds numbers Ren,s as
functions of the gas flow Reynolds number Reg. The neutral and critical wave numbers are
coded by colour (legend). The region of linear stability is filled in gray. The insets serve to
symbolise the direction and the temperature (hot/cold) of the mean gas flow. The vertical
dashed line indicates a vanishing gas flow (closed chamber) and the circles represent the

associated critical points. (b) Corresponding neutral and critical frequencies ωs (for
modes propagating in the negative ϕ direction). Full and dashed lines correspond to

Ren,s > 0 and Ren,s < 0, respectively.
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Figure 3: Neutral Reynolds numbers Ren,s (thin solid lines) and neutral frequencies (thin
dashed lines) as functions of the gas flow Reynolds number Reg ∈ [−200, 20] for heating
from above (Ren,s > 0). Critical Reynolds numbers Rec,s and frequencies ωn,s as shown

as thick lines.

In case of heating from below (Rec < 0 in figure 2(a)) the critical Reynolds number for
a closed chamber is Rec(Reg = 0) = −811 with mc = 2. Like for heating from above,
the critical threshold near Reg ≈ 0 is very sensitive with respect to a variation of the gas
flow rate. When the liquid bridge is exposed to a cold gas flow from above opposing the
thermocapillary flow direction (third quadrant in figure 2(a)), the basic flow is destabilised
and the critical Reynolds number readily saturates near Rec ≈ −580. For a hot gas flow
from below (Reg > 0, co-flow direction, fourth quadrant in figure 2(a)), the basic flow ist
strongly stabilised, the critical wave number changes to mc = 1 at Reg = 58.5 and, for
1000 � Reg � 1500, the critical Reynolds number seems to saturate near Rec ≈ −1800.

For an open shield tube and outflow boundary conditions (2.28) for the basic flow we
find slightly different critical Reynolds numbers as Reg = 0 is approached from above or
from below. For heating from above, for instance, we obtain Rec(Reg → 0−) = 622 and
Rec(Reg → 0+) = 620. Both these values deviate less than 1% from the critical Reynolds
number Rec(Reg ≡ 0) = 616 for a closed tube, using rigid boundary conditions (ug0 = 0) at
the outlet. Therefore, and due to the practical relevance of a truly closed ambient gas space,
we used rigid boundary conditions only for Reg ≡ 0. Graphically, the minute discontinuity
at Reg = 0 is not visible with the bare eye in fig. 3 (see dashed lines close to Reg = 0).
Moreover, the discontinuity disappears for Γrod → ∞, which is consistent with the critical
Reynolds numbers being rather insensitive with respect to increasing Γrod. In Appendix B
it is shown that for |Reg | > 90, the critical Reynolds number varies by less than 2% when
Γrod is increased from 0.4 to 8. The results obtained are thus applicable for a wide range of
experimental designs with different Γrod.

4.1.2. Sensitivity of Rec with respect to the direction of the gas flow
Basic state

In order to understand the strong sensitivity of the critical Reynolds number with respect
to the direction and strength of a weak axial gas flow we inspect the basic flows for four
cases, each in one of the four quadrants of figure 2(a). For heating from above we consider
(Reg,Re) = (±40, 616), where Re = Rec(Reg = 0) = 616. For heating from below we
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(a) (Reg,Re) = (−40, 616) (stable) (b) (Reg,Re) = (+40, 616) (unstable)

rr

z

001/Γ 1/Γ

0.5

−0.5

0.5

0

−0.5

ϑ
0,
ϑ

g0
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Figure 4: Streamlines and temperature fields of four basic states for Reynolds numbers Re
and Reg as indicated. Streamlines are drawn equidistantly. The steps size Δψ is pairwise

identical in the liquids of (a,b) and in the gases of (a,b). The same applies to (c,d), but with
different levels due to the different Reynolds number Re. Note the flow separates from the

cold wall in (a,b).

similarly select (Reg,Re) = (±40,−811), where Re = Rec(Reg = 0) = −811. The basic
flows for the four parameter sets are shown in figure 4. For the counterflow configurations in
figures 4(b,c) a weak recirculation zone is created in the gas phase next to the free surface,
visible by the separation streamline shown. This type of separated flow in the gas phase has
been confirmed experimentally by Irikura et al. (2005) and Ueno et al. (2010).

For the present Prandtl number Pr = 28 the thermal conditions in the gas phase are much
more important for the stability than the viscous stresses exerted on the interface by the gas
flow. In particular, the flow along the free surface is primarily driven by thermocapillary
forces near the hot corner (Kamotani & Ostrach 1998; Kuhlmann 1999). The cold corner
region is of lesser importance, because the strong gradients of the surface temperature near
the cold corner are located very close to the rigid wall. Therefore, they cannot contribute
significantly to the global flow.

Figure 5(a) shows velocity (blue) and temperature profiles (red) of the basic flow along
the free surface for the case of heating from above (Re > 0). The direction of the gas flow
is distinguished by line type. For a hot (cold) gas flow the interface is heated (cooled) for
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(a) Re = 616
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Figure 5: Tangential velocity ut0 = t · u0 (blue) and temperature distribution ϑ0 (red) of
the basic flow along the free surface (parameterised by z). (a) Heating from above with

Re = 616. (b) Heating from below with Re = −811. The gas Reynolds number is
distinguished by line type: Reg = −40 (dashed lines), Reg = 0 (full lines) and Reg = 40

(dotted lines). The insets resolve the velocity peaks near the cold wall.

Reg = −40 (Reg = 40) as compared to the case of a closed chamber (Reg = 0, full line). For
a hot downward flow with Reg = −40 (dashed lines), the plateau temperature is increased.
This reduces the thermocapillary stresses near the hot corner. As a result, the magnitude
of the surface velocity decreases. The cooling of the interface for Reg = 40 (dotted lines),
on the other hand, reduces the surface temperature in the plateau region and increases the
thermocapillary stresses near the hot corner. This gives rise to a larger surface velocity as
compared to Reg = 0. Viscous stresses from the gas phase would have the opposite effect,
but for Reg = ±40 they are of minor importance compared to thermocapillary stresses. The
stronger flow for Reg = 40 as compared to Reg = 0 (both at Re = 616) is equivalent to a
stronger effective thermocapillary driving and can thus be identified as the reason for the
instability of this flow (shown in figure 4(b)). Likewise, the weaker thermocapillary driving
is responsible for the stability of the flow for (Reg,Re) = (−40, 616) (figure 4(a)).

Apart from the strength of the surface flow, the whole structure of the vortex in the liquid
phase and the associated temperature field changes: the radial extent of the stronger vortex
(cold upward counter-flow, Reg = 40, figure 4(b)) is significantly larger than that of the
weaker vortex (hot downward co-flow, Reg = −40, figure 4(a)). This effect results from the
interplay between buoyancy and inertia forces. Heating the liquid bridge from above, hot
liquid is transported downward along the free surface and returns upward in the bulk. Since
the upward motion in the bulk is assisted by buoyancy forces, the radial extension of the
vortex is reduced compared to the case of zero gravity. This effect is most pronounced when
the thermocapillary-driven vortex flow is weak Reg = −40 (figure 4(a)). For the stronger
basic flow at Reg = 40, inertia prevents a premature buoyant rise of the liquid in the bulk and
the vortex has a larger extent in the radial direction (figure 4(b)). Associated with this change
of the vortex structure, the region of large (mainly radial) internal temperature gradients is
displaced radially inward for Reg = 40 (figure 4(b)) and radially outward for Reg = −40
(figure 4(a)). This structural change has implications for the respective critical mode and the
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stability boundary, because a hydrothermal wave draws its energy primarily from the internal
basic state temperature gradients (Wanschura et al. 1995; Smith & Davis 1983a).

For heating from below (figure 4(c,d) and figure 5(b)) similar arguments hold. For example,
for Reg = 40 > 0 (figure 4(d)), the free surface is heated (dotted red line in figure 5(b)),
which reduces the thermocapillary driving near the hot wall. As a result, the flow for
Reg = 40 is much weaker and more stable than the one for Reg = 0 and Reg = −40 (both at
Re = −811). While the structure of the basic vortices is similar for both directions of the gas
flow (Reg = ±40, figures 4(c,d)) and heating from below, they differ markedly from those for
heating from above: For heating from below buoyancy is assisting the upward free surface
flow but tends to prevent the hot return flow from descending. This leads to a much larger
radial width of the vortices (figures 4(a,b)) associated with a further inward displacement of
the internal temperature gradients than for heating from above (figures 4(a,b)).

In summary, for a weak gas flow, the basic flow is stronger in the counter-flow configuration,
due to the heat transfer between liquid and gas. Furthermore, buoyancy forces cause the flow
structures to be located closer to the free surface for heating from above, while they are
displaced radially inward for heating from below.

Critical modes
The instability for Reg = 0 is due to hydrothermal waves (Smith & Davis 1983a;

Wanschura et al. 1995). They are generated in the liquid phase and depend on the structure of
the flow in the liquid. Taking into account the gas phase, Stojanovic et al. (2022) have shown
that the temperature amplitude of the hydrothermal wave is very weak in the gas phase.
Therefore, the gas phase only plays an indirect role for the instability process by affecting
the basic velocity and temperature fields in the liquid phase. Since the hydrothermal waves
depend on the particular basic flow structure, we consider representative critical modes with
ωc > 0, corresponding to waves propagating in the negative ϕ direction.

Let us compare the critical mode for heating from above and Rec(Reg = −40) = 1786 (hot
downward gas co-flow) with the one for Rec(Reg = 40) = 431 (cold upward gas counter-
flow). Both modes have the wave number mc = 3. From figure 6(a,b) the location of the
regions of high basic state temperature gradients is qualitatively similar as in figure 4(a,b) for
Re = 616. However, for cold upward gas counter-flow (figure 6(b), (Reg,Rec) = (40, 431)),
the temperature gradients of the basic flow from which the hydrothermal wave draws its
energy are located more distant from the free surface than for hot downward gas co-flow
(figure 6(a), (Reg,Rec) = (−40, 1786)). This provides more space for the evolution of the
perturbation vortices which feed the perturbation temperature extrema by advecting basic
state temperature (Wanschura et al. 1995). Figures 6(a–d) show that the perturbation vortices
at criticality are well developed for Reg = 40, whereas they are more confined to the free
surface region for Reg = −40. Therefore, the critical mode for (Reg,Rec) = (40, 431) can
draw its energy from a larger region of high basic state temperature gradients than the critical
mode for (Reg,Rec) = (−40, 1786) and the perturbation temperature field for Reg = 40 is
more compact, presumably suffering less thermal dissipation than the less compact one for
Reg = −40. While the structures of the two critical modes differ in the bulk, their footprints
on the free surface are very similar (figure 6(e,f)).

For heating from below the critical modes for (Reg,Rec) = (−40,−686) and (Reg,Rec) =
(40,−1348) are shown in figure 7(a,c,e) and figure 7(b,d,f), respectively. In contrast to heating
from above, both critical modes have wave number mc = 2 and they may appear very similar
for Reg = ±40 (figure 4(c,d)). But the stronger basic vortex at constant Re for Reg = −40
as compared to Reg = 40 explains why the former is more unstable than the latter. Another
contributing factor, visible from figure 4(a–d), is the radial temperature gradients of the basic
flow arise closer to the axis for Reg = 40 as compared to Reg = −40. Therefore, the coupling



24
(a) (Reg,Rec) = (−40, 1786) (b) (Reg,Rec) = (40, 431)
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Figure 6: Critical velocity (black arrows) and temperature fields (colour) for heating from
above and hot co-flow (Reg,Rec) = (−40, 1786) (a,c,e) and cold counter-flow

(Reg,Rec) = (40, 431) (b,d,f). The critical wave number is mc = 3. (a,b) Vertical (r, z)
planes in which the local thermal production (not shown) takes its maximum (white cross)
in the bulk. Lines in (a,b) indicate equidistant isotherms of the basic state. (c,d) Horizontal

cross sections in the planes z = −0.36 (c) and z = 0.03 (d) in which the respective total
local thermal production −ϑ′u′ · ∇ϑ0 (isolines) takes its maximum (white crosses) in the

bulk. (e,f) Radial projections of the free surface velocity and temperature. The gray
arrows in (c,d,e) indicate the direction of propagation of the critical mode. The dashed

lines represent the location of the vertical and horizontal cut planes.
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(a) (Reg,Rec) = (−40,−686) (b) (Reg,Rec) = (40,−1348)
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Figure 7: Critical modes for heating from below and for (Reg,Rec) = (−40,−686) (a,c,e)
and for (Reg,Rec) = (40,−1348) (b,d,f). Lines, arrows and colours as in figure 6. The

horizontal cuts are located at z = 0.04 (a,e) and z = 0.1(b,f). The critical wave number is
mc = 2.

between internal temperature extrema and the surface temperature fluctuations driving the
perturbation velocity field is weaker for Reg = 40.

The thermal energy budgets for the four critical modes considered are presented in figure
8. From figure 8(a) all critical modes are hydrothermal waves for which the perturbation
energy is mainly created by radial advection of basic state temperature, represented by the
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Figure 8: Thermal energy budgets of the critical modes for Reg ∈ {−40; 0; 40}. Full bars:
heating from above with Rec ∈ {1786; 616; 431} and mc = 3. Checkered bars: heating
from below with Rec ∈ {−686; −811; −1348} and mc = 2. (a) Liquid phase. (b) Gas

phase.

total normalised production term J1 := −ReD−1
th

∫
Vi

j1dV = −ReD−1
th

∫
Vi
ϑ′u′∂rϑ0dV . The

thermal production by axial advection J2 := −ReD−1
th

∫
Vi

j2dV = −ReD−1
th

∫
Vi
ϑ′w′∂zϑ0dV

plays a minor role. For heating from above (solid colours) the critical mode for Reg = −40,
which is confined to the very vicinity of the free surface, has the smallest production J1 =
0.778 (full red bar) and deviates the most from the reference value of J1 for Reg = 0 (full
orange bar). It is also seen that the heat loss of the liquid phase through the free surface, i.e.
the thermal coupling, is generally vanishingly small compared to the thermal production due
to advection (J1, J2) in the liquid (figure 8(a)). This small heat loss of the perturbation flow in
the liquid Hfs := 2πD−1

th Pr−1
∫ 0.5
−0.5 h(∂r ϑ̂2−∂zh0∂zϑ̂

2)dz appears as a heat gain Hfs,g = −λ̃Hfs
of the perturbation flow in the gas phase. There it is the main source of thermal energy. But
this gain is almost completely balanced by the thermal dissipation in the gas phase Dth,g. This
proves quantitatively the gas phase does not play an active role in the instability mechanism.
As a side, the relative thermal production rates Πρ < 0.1% and Πρ,g < 1% associated with
the density variations in the liquid and in the gas, respectively, are negligible.

In conclusion, we find the sensitivity of the critical Reynolds number with respect to a
weak axial gas flow is mainly related to the changed strength of the basic flow, caused by
the heating or cooling of the free surface by the gas flow. The strength of the basic flow
affects the strength of the basic state temperature gradients and thus the stability boundary.
The critical wave numbers differ for heating from above (mc = 3) and from below (mc = 2).
But the spatial structures of the critical modes do not change very much, except for heating
from above with Reg < 0 in which the weaker vortex is also radially more confined to the
interface as a result of buoyancy.
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Figure 9: Isosurfaces of the critical perturbation temperature ϑ′ in the liquid for heating
from above: (a) Rec = 404, (b) Rec = 1733, (c) Rec = 1786, (d) Rec = 431, (e)

Rec = 389. The isosurface values are ±0.25 × max|ϑ′ | (light colours) and
±0.75 × max|ϑ′ | (dark colours). A single isosurface of the total local thermal production

rate at j1 + j2 = ϑ′u′ · ∇ϑ0 = 0.7 × max |ϑ′u′ · ∇ϑ0 | is shown in gray.

4.1.3. Critical modes for large gas flow rates: Heating from above
Three-dimensional views of the critical modes for heating from above are shown in figure 9(a–
e) by isosurfaces of the perturbation temperatureϑ′ for Reg = (−3000,−1000,−40, 40, 1000),
covering the full range of gas flow Reynolds numbers. All waves propagate in clockwise,
i.e., in the negative ϕ direction. Since the dynamic Bond number is constant with Bd = 0.41,
buoyancy forces are proportional to the thermocapillary forces. The critical wave number
of the modes shown is mc = 3, except for Reg = −1000 for which mc = 1. Throughout,
the temperature perturbations exhibit the typical behaviour of a hydrothermal wave. Merely,
for Reg = −1000 (b) and Reg = −40 (c) where the critical Reynolds numbers are relatively
large with Rec ≈ 1750, the critical modes differ. In these cases buoyancy forces are strong as
well, while the surface flow is weakened due to the hot gas co-flow (Reg < 0). In these cases
the Rayleigh number Ra = 11.48 × Re can reach values of the order of O(104) (stabilising
thermal stratification). Thus buoyancy shapes the basic vortex close to the free surface to
have a much smaller radial extend (for Reg < 0) than for smaller Reynolds (and Rayleigh)
numbers and the temperature extrema of the hydrothermal wave for Re = −1000 and −40
arise much closer to the free surface (see e.g., figure 6(a,c)). These perturbation modes also
have a more spiral behaviour such that the perturbation temperature field exhibits a more
complex structure in a plane ϕ = const. with temperature minima and maxima, visible in
figure 6(a).

For a discussion of the saturation of the critical Reynolds numbers seen in figure 2(a), we
note that the viscous stress from the gas phase has very little influence on the basic flow for the
range of gas Reynolds numbers considered. Estimating the magnitude of the thermocapillary
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Figure 10: Dimensional axial velocity component w(r, z = 0) at midplane for different
thermocapillary Reynolds numbers (colours) and for gas flow Reynolds numbers

Reg = 40 (dashed lines) and Reg = 1000 (full lines). The inset serves to show the scale of
the gas flow relative to the liquid flow for Re = 1000. The location of the interface is at

h0(z = 0) = 2.5 mm.

stress by γΔT/d and the viscous stress due to the gas flow by µgw̄g/(ro − ri), the order of
magnitude of the ratio of the viscous gas stress to the thermocapillary stress is Γµ̃(Reg/3Re).
For Reg = 3000 and Re = 500 this amounts to about 1%. Therefore, within the range of Reg,
the effect of the gas flow on the basic state is essentially a thermal one.

For heating from above and cold counter-flow (Reg > 0) the critical Reynolds number
saturates at relatively small gas flow rates of Reg ≈ 100 at a value of Rec ≈ 390. For
this Reynolds number the basic vortex flow and temperature field in the liquid are almost
independent of the gas Reynolds number in the range Reg ∈ [100, 500]. This can be explained
by two opposing thermal effects of the gas flow on the strength of the vortex which nearly
balance each other at Re = 390. To understand these effects, radial profiles of the vertical
velocity w(r) at midplane z = 0 are shown in figure 10 for several thermocapillary Reynolds
numbers (colour coded) and Reg = 40 (dashed lines) and 1000 (full lines).

For a vanishing thermocapillary Reynolds number Re = 0, the flow in the liquid is only
driven by the gas (orange lines) and the interface moves in the positive z direction with
w(r = h0(0)) > 0. As Re is increased the surface flow becomes readily dominated by
thermocapillary forces and for Re = 100 the direction of the surface velocity is downward
with w(r = h0(0)) < 0 (red lines). For Re = 100 and weak gas counter-flow (Reg = 40,
dashed red line) a sizable separation bubble exists in the gas phase next to the free surface
(see e.g. figure 4(b)), visible in figure 10 by the downward gas flow between the free surface
(r ≈ 2.50 mm) and the zero of wg0(r) in the gas phase at r ≈ 2.53 mm. For the stronger gas
counterflow (Reg = 1000, full red line) the region in which wg0 < 0 in the gas phase adjacent
to the free surface has become very thin due to the higher shear stress in the gas phase. The
zero ofwg0 has moved very close to the free surface (almost invisible on the scale shown) and
wg0 (full red line) increases nearly vertically for r > h0(0). As expected, the stronger gas flow
has a retarding effect on the downward surface flow due to the increased viscous stresses
from the gas on the interface. Associated with the reduced surface velocity is a weaker
vortex in the liquid. As the thermocapillary Reynolds number is increased to Re ≈ 400
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Figure 11: Radial basic temperature profiles ϑ0(r, z = 0) for Re = 400 and different gas
Reynolds numbers Reg = 20, 50, 100, 200, 500 (full lines colour coded, see legend). In
addition, the temperature profiles are shown for Reg = 500 and Re = 200 (black dashed)

and Re = 600 (black dash-dotted). The vertical dotted line marks the free surface.

(blue lines), which roughly coincides with the saturation of Rec(Reg), the retardation of the
surface velocity diminishes. And for Re � 400 the gas flow has an augmenting effect on
the magnitude of the interfacial velocity, despite of the retarding action of the viscous shear
stresses from the gas side. As a result, the magnitude of the surface velocity for Re = 1000 is
larger for Reg = 1000 (full green line) than for Reg = 40 (dashed green line). The reason for
the augmenting action of the counterflow is related to the characteristic surface temperature
profile when the thermocapillary Reynolds number is large and the flow is mainly driven
near the hot corner (the argument was used above in explaining the velocity profiles in figure
5): The gas has a cooling effect such that the plateau temperature for large-thermocapillary-
Reynolds-number flows is decreased. Along with a decrease of the plateau temperature the
thermocapillary driving force near the hot wall increases and reinforces the thermocapillary
flow, overcompensating the viscous retardation effect. For Re � 400 the increase of the
surface velocity at midplane by the cooling effect is larger than the decrease of the surface
velocity due to viscous stresses from the gas side which, on the other hand, dominates for
Re � 400.

The Reynolds number Re ≈ 400 at which both effects on the surface velocity w(r =
h0(0), 0) balance seems to be almost independent of Reg ∈ [100, 500]. Therefore, the whole
basic flow for Re ≈ 400 is almost independent of Reg in this range, and a critical Reynolds
number Rec ≈ 400 will also be independent within Reg ∈ [100, 500]. In fact, the radial
temperature gradients for Re = 400 from which the hydrothermal-wave instability draws its
energy are almost independent Reg ∈ [100, 500]. This is demonstrated in figure 11 which
shows basic temperature profiles ϑ0(r, z = 0) at midplane for Re = 400 (≈ saturation level of
Rec) and different gas Reynolds numbers Reg = 20, 50, 100, 200, 500. In the region r � 1.1
of largest slopes, the temperature profiles are almost identical, regardless of the temperature
gradients in the gas phase. This indicates the perturbation mode finds the same basic-flow
conditions for the major energy production term J1 which builds on ∂rϑ0 in the liquid phase,
independent of Reg. On the other hand, the slopes for Reg = 500 and Re = 200 (black dashed
line) is smaller, while the one for Reg = 500 and Re = 600 (black dash-dotted) is larger.
These flow states are stable and unstable, respectively. From figure 11 one can also identify
the continuous decrease of the surface temperature as Reg is increased.

The major integral (global) energy production terms J1 and J2 for the liquid phase are
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Figure 12: (a) Normalised global energy production rates J1 (full lines) and J2 (dashed
lines) of the critical (and neutral) modes in the liquid phase for heating from above shown

as functions of Reg. The colour indicates the wave number. The vertical dotted lines
indicate the codimension-two points listed in table 4. (b) Zoom into the grey rectangle

shown in (a).

displayed in figure 12 as functions of Reg. For the major critical modes with mc = 1
(blue), mc = 2 (red) and mc = 3 (green), the thermal energy is mainly produced by radial
advection of basic state temperature J1 (full lines). The axial advection (dashed lines) is
almost negligible or even acts stabilising. This applies to both gas flow directions. Hence,
the instability mechanism as such is not much affected by the direction of the gas flow, i.e. by
the heating or cooling of the liquid through the gas in the basic flow. The peak values of the
total local energy production j1 + j2 are located inside the grey isosurfaces shown in figure
9. Typically, the production maxima are azimuthally displaced from the temperature extrema
with the displacement direction determining the direction of propagation of the wave.

For all Reg considered, |Πρ | < 0.002 and −0.007 < Hfs < 0 in the liquid phase. The
greatest impact of the density variation on the thermal energy budget is observed in the
gas phase and for heating from above with Πρ,g = −0.021 for mc = 2, Reg = −2114,
Rec = 2311. This conditions corresponds to ΔT = 70 K and ε = 0.087. For heating from
below, the maximum impact of Πρ,g on the thermal energy is found to be even smaller (not
shown).

4.1.4. Critical modes for large gas flow rates: Heating from below
Figure 13 shows temperature isosurfaces of the critical modes for heating from below and for
the same gas flow Reynolds numbers as in figure 9. Now the dominant critical wave number is
mc = 2 and most critical modes have the expected structure with strong internal temperature
extrema in the shear layer of the return flow of the basic vortex. Only for stronger hot co-flow
from below with Re = 1000 the wave number changes to mc = 1 and the critical mode is very
different from the others with a pronounced spiral character and temperature extrema very
close to the axis. In this case the basic flow is affected by the gas flow in an opposite manner
than for hot co-flow when heating from above: Instead of a small radial extent of the basic
vortex for heating from above, the basic vortex is radially extended for heating from below,
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Figure 13: Isosurfaces of the critical perturbation temperature ϑ′ in the liquid for heating
from below: (a) Rec = −515, (b) Rec = −615, (c) Rec = −686, (d) Rec = −1348, (e)

Rec = −1778. Colours and isosurface values as in figure 9.

because the hot fluid transported upward along the free surface has the tendency to stay
near in the upper half of the liquid bridge such that the return flow arises closer to the axis.
This facilitates an mc = 1 mode with a flow across the axis to extract thermal energy from
the basic temperature field. The trend that the temperature extrema move closer to the axis
(following the location of high basic temperature gradients) is already visible for Reg = 40
in figure 13(e).

The critical modes for Reg = 40 and Reg = 1000 are displayed in figure 14. It can be seen
that the critical velocity field for Reg = 1000 is oblique to the basis state isotherms near the
point of maximum thermal energy production (white cross). Therefore, the critical mode can
also gain energy from the vertical temperature gradients such that J2 has a bigger share in
the thermal energy budget, which is shown in figure 15. Remarkable is the spiral character
of the isosurfaces of the perturbation temperature near the upper cold wall in figure 13(e).
These spiral arms show in figure 14(b) as a sequence of hot and cold spots in the upper part
of the region with high temperature gradients. A similar hydrothermal wave with an even
more pronounced spiral character arises in liquid bridges with the still higher Prandtl number
Pr = 68 (Stojanovic & Kuhlmann 2020a).

4.2. Dynamic surface shape
In this section we first discuss the causes for and the properties of the dynamic surface shape
of the liquid bridge in the basic state. Thereafter, the influence of the dynamic deformability
of the interface on the linear stability is discussed.
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Figure 15: Normalised global energy production rates J1 (full lines) and J2 (dashed lines)
of the critical mode in the liquid phase for heating from below shown as functions of Reg.
The colour indicates the wave number. The vertical dotted line marks the codimension-two
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4.2.1. Static surface shape and dynamic deformation due to the gas flow alone
Static shapes h0,s of an isothermal liquid bridge, i.e. solutions of (2.23), are shown in figure
16(a) for different filling factors V (colour) and gravity levels (line type) in the absence of
any flow. When an axial flow is imposed in the gas phase, with the liquid bridge still being
isothermal (Re = 0), the dynamic pressure and the normal stresses along the interface modify
the static shape. The dynamic deformationΔh0 of the static shape under zero gravity (0g) due
to a vertically upward gas flow with Reg = 825 is shown in figure 16(b) for an underfilling
(V � 1) and in figure 16(c) for an overfilling (V > 1) of the liquid bridge. It can be seen
that a constant gas flow rate induces a dynamic deformation which is more than ten times
larger in case of an overfilling as compared to an underfilling. Nevertheless, for this gas flow
rate and volume ratios up to V = 1 (full blue line figure 16(a)) the dynamic deformationΔh0
is at least three orders of magnitude smaller than the axial variation h0,s(z, 1g) − h0,s(z, 0g)
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Figure 16: (a) Hydrostatic shape h0,s − 1/Γ of a liquid bridge for the present geometry,
different liquid volumes V (colour), zero gravity (0g, dashed lines) and normal gravity

(1g, full lines). (b,c) Dynamic surface deformation Δh0 of the static shape in zero gravity
due to a gas flow in positive z direction with Reg = 825 (Re = 0). Colours and line types

as in (a). (b) V � 1. (c) V > 1.

of the hydrostatic shape due to gravity. A gas flow with Reg = 825 thus hardly perturbs
the interface. For an upright cylindrical liquid bridge (V = 1 and zero gravity, blue dashed
line in figure 16(a)) the shape perturbation Δh0 (dynamic deformation) is caused by the
streamwise pressure drop in the gas flow and leads to a constriction of the bridge in the
upstream half and a bulging in the downstream half. The same holds true under gravity
conditions. Due to the hydrostatic surface deformation for normal gravity (1g), the isobars
in the gas phase shown in figure 17(a) are more distorted than for zero gravity (0g). As the
volume ratio deviates from V = 1, the contact angles change and the pressure in the gas in
the immediate vicinity of the liquid bridge can be strongly affected (figure 17). Typically, a
local minimum and a local maximum of the pressure arise. For a large volume (V > 1) with
contact angles α > π/2 on the liquid side, these pressure extrema lead to qualitatively the
same dynamic deformation as expected from the pressure drop in the gas far from the liquid
bridge: bulging in the downstream half of the liquid bridge and necking in the upstream half
(figure 16(c)). For small volume ratios (V < 1) with contact angles α < π/2 on the liquid
side, the locations of the maximum and minimum pressures in the gas are approximately
exchanged and the resulting dynamic deformation Δh0 exhibits the opposite behaviour: the
interface is bulging upstream and constricting downstream (figure 16(b)). The gravity level
does not play an important role for the dynamic deformation, but moderately changes the
hydrostatic shape of the bridge.

For contact angles α < π/2 on the liquid side (contact angles αg > π on the gas side)
the pressure distribution in the gas is strongly affected by the flow singularities which arise
due to the sharp corners. The singularity of the pressure along the inner boundary of the gas
space is clearly seen in figure 18. While a detailed analysis would have to include also the
liquid phase, we note that the pressure distribution does not change much if the liquid phase
is artificially replaced by an indeformable solid with the same shape as the hydrostatic shape
(not shown). The reason is viscosity of the liquid (µ̃ = 0.010597) is almost a hundred-times
higher than that of the gas. This observation suggests a comparison with the local flow over a
corner with opening angle αg > π made by two plane rigid walls. The pressure which results
from the Stokes flow asymptotics close to the corner (Moffatt 1964) diverges and makes a
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Figure 18: Profiles of the pressure pg along the free surface and the solid rods for a
dynamically deformable liquid bridge. The parameters are: 0g, Re = 0, Reg = 825 and

volume ratios V as indicated.

jump when the corner is passed. For the present liquid bridge, we find qualitatively the same
behaviour for αg > π. The signs of the pressure divergence near the contact lines obviously
determine the pressure gradient in the gas and along the interface leading to the pressure
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extrema shown in figure 17. The pressure variation in the gas flow due to the expansion of
the cross-section of the gas flow contributes as well.

For large volume ratios V > 1 with αg < π, the corner flow analysis of Moffatt (1964)
does not yield corner singularities. In fact, the flow over the contact lines for V > 1 is smooth
(figure 18), except for a small indentation in the pressure profile for V = 1.2 at the upper
corner. Therefore, the pressure distribution is mainly due to the gas flow deceleration near
the upstream half of the liquid bridge and the acceleration near the downstream half. While
these considerations can explain the gross features of the pressure distribution and thus the
qualitative shape of the dynamic deformation Δh0, the details are also affected by the liquid
flow (driven by the gas flow) and the pressure singularities which exist on the liquid side as
the contact lines are approached.

An overview of the dynamic deformation Δh0 due to the isothermal gas flow over a liquid
bridge with V = 1 in the absence of the thermocapillary effect (Re = 0) and for normal
gravity condition (1g) is shown in figure 19. For downward gas flow (Reg < 0) parallel to the
acceleration of gravity the dynamic deformation leads to a very slight necking tendency of
the liquid bridge for z � 0 and slight bulging tendency for z � 0, since the pressure gradient
in the gas phase along the interface (not shown) has the same sign as the pressure difference
between the inlet and the outlet. Upon a reversal of the gas flow direction, the slight necking
tendency arises for z � 0 and the bulging for z � 0. The black lines in figure 19 indicate the
locus zmax of the maximum of the dynamic deformation Δh0 and its projection to the (z,Reg)
plane. The line is interrupted near Reg = 0, where the maximum dynamic deformation drops
below Δh0(z) < 5× 10−6, which marks the precision by which the dynamic deformation can
be computed by the present numerical approach.

Even though the dynamic deformation is insignificant on the scale of the hydrostatic
deformation in the gravity field, the dynamic deformation forV = 1 and 1g slightly amplifies
the static deformation for Reg < 0 such that max h0,d > max h0,s and min h0,d < min h0,s.
For Reg > 0 the reverse holds true (see also figure 16).
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Figure 20: Dynamic surface deformation Δh0 in the absence of an imposed gas flow
(Reg = 0), for V = 1, normal gravity (1g) and different Re as indicated. (a) Heating from

above. (b) Heating from below.

4.2.2. Dynamic surface deformation due to the thermocapillary flow alone
The dynamic surface shape h0,d strongly depends on both, Re and Pr, examples are given
in figure 30 in Appendix B. For the present liquid with Pr = 28, Re � 0, zero gravity (0g),
V = 1 and neglect of the gas phase (single phase flow) the dynamic shape h0,d = h0,s +Δh0
is always S-shaped, i.e., the dynamic deformation Δh0 is negative (positive) close to the hot
(cold) corner with the extrema of h0,d depending on the magnitude of the Reynolds number
Re (not shown).

Here we investigate the influence of the thermocapillary flow alone on the dynamic surface
deformation Δh0 under normal gravity (1g) and in the presence of the gas phase (two-phase
flow), but for Reg = 0, i.e. for a closed gas container. The dynamic surface deformation is
shown in figure 20 for heating from above (Re > 0, figure 20(a)) and for heating from below
(Re < 0, figure 20(b)). The dynamic deformation amplifies (reduces) the static deformation
for heating from above (below). For heating from above (Re > 0, figure 20(a)), the dynamic
deformation has a sinusoidal shape and its strength, measured by its maximum value, depends
approximately linearly on Re. The maximum of Δh0 arises near the lower cold wall. For
heating from below (Re < 0, figure 20(b)) the maximum of Δh0 also arises near the cold
wall, which is now the upper wall. But the extrema of Δh0 arise much closer to the wall
such that the dynamic deformation for large absolute values of Re < 0 takes a more complex
shape.

The maximum dynamic deformation due to the thermocapillary flow for Reynolds numbers
of the order of O(2000) and heating from above is approximately four times larger than the
maximum dynamic deformation when the heating is from below. For heating from above
with Re = O(2000) the thermocapillary-flow-induced dynamic deformation for Reg = 0 is
also about four times larger than the dynamic deformation due to a downward gas flow alone
with Re = 0 and |Reg | = O(2000) (figure 19).
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4.2.3. Dynamic surface deformation: Dependence on Re and Reg

Both the flow in the liquid and in the gas contribute to the flow-induced interfacial shape
deformation Δh0. To quantify this dynamic deformation we show in figure 21 the absolute
maximum of the dynamic deformation Δh0,max = maxz(Δh0) > 0 for V = 1 and normal
gravity (1g). The minimum dynamic deformation Δh0 = minz(Δh0) < 0 is not monitored.
From figure 19 the locus zmax of the maximum dynamic deformation can jump upon a
variation of Reg. Therefore, first derivative ∂[Δh0,max]/∂Reg is discontinuous at this locus.
As will become clear later, this discontinuity is not visible by the eye in figure 21. As expected
from the foregoing, the Reynolds number Re has a larger influence on Δh0 than Reg. While
this depends on the definition of the Reynolds numbers, such behaviour is expected because
the density of the liquid, which enters the pressure scale, is much higher than that of the gas
(ρ̃ = 1.359 × 10−3). From figure 21 the maximum dynamic deformation Δh0,max depends
approximately linearly on Re for Re > 0 (heating from above). Moreover, Δh0,max depends
monotonically on Reg for Re > 0, except near Reg ≈ 0 where a wiggle arises which can
be smoothly resolved. The wiggle on the isolines of Δh0,max(Reg) near Reg = 0 becomes
more pronounced as Re increases. It arises due to the sensitivity of the thermal conditions
in the gas phase due to a weak gas flow. Depending on the direction of the gas flow the
interface is heated or cooled, where the heating/cooling effect on the surface temperature
rapidly saturates for increasing |Reg | when the gas temperature changes from a conductive
to a convective regime (see e.g. section 4.1.3).

The maximum dynamic surface deformation Δh0,max is smaller for heating from below
(Re < 0) than for heating from above (Re > 0), as already observed for the closed
chamber in figure 20. For heating from above (Re > 0), the dynamic deformation due
to the thermocapillary flow is dominant and the dynamic deformation caused by the gas flow
for comparable Reynolds numbers |Re| ≈ |Reg | can be considered a small perturbation of
the already small deformation due to the thermocapillary flow. This is illustrated in figure
22 for heating from above with Re = 1700 and different gas flow rates. For Re = 1700, the
smallest value which the maximum positive deformation takes arises for Reg = −19 (full red
line in figure 22(b)). This marks the above mentioned transition from the conductive to the
convective regime in the gas phase.

For heating from below (Re < 0) the dynamic surface deformation due to the
thermocapillary flow and the one due to the gas flow have comparable magnitudes. This
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Figure 22: Dynamic surface deformations Δh0 for Re = 1700 and different Reg with a
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leads to qualitatively different dynamic surface deformation profiles as compared to heating
from above. This is demonstrated in figure 23(a) for heating from below with Re = −1700
and different gas flow rates in the range Reg ∈ [−3500, 1500]. For a weak heating from
below with Re = −100, a strong gas flow from above leads to a bulging near the hot and the
cold corner, where the two relative maxima arise with comparable magnitudes. Figure 23(b)
shows typical profiles for Re ≈ −1605 at which the locus zmax of Δh0,max makes a jump.
Comparing figures 22(a) and 23(a), we notice that Δh0 is considerably more sensitive to the
strength of the gas flow when heating from below as compared to heating from above.

The vertical coordinate zmax at which the maximum surface deformation Δh0,max arises is
shown in figure 24 as a function of the gas flow Reynolds number Reg for V = 1 and normal
gravity (1g). The black lines correspond to the projected black lines in figure 19 for Re = 0,
taking into account the gas flow alone. The effect of the thermocapillary-buoyant flow on
zmax is shown by coloured lines for different values of Re. For heating from above (full
coloured lines), we observe a small smooth wiggle near Reg ≈ 0 that is related to the already
discussed transition from the conductive to the convective regime in the gas phase. Besides,
for small Reynolds numbers 0 < Re � 50 (blue and red full lines) a strong gas flow from
below sizably affects zmax, because the dynamic deformations due to the thermocapillary and
the gas flow are of comparable magnitude, but of different shape. For heating from below
(coloured dashed lines), the locus zmax makes a jump from near the upper cold wall to near
the lower hot wall when the cold counter-flow is intensified. For Re = −100 this jump occurs
near Reg ≈ −1605, as illustrated in figure 23(b). The stronger the thermocapillary flow (the
larger |Re|), the stronger the cold downward counter-flow of the gas (Reg < 0) must be for
the maximum bulging to occur on the lower (hot) side of the liquid bridge.

4.2.4. Linear stability of the basic flow with a dynamically deformed free surface
The linear stability boundary for a static interface Rec,s as function of the gas flow rate Reg
for heating from above and from below has been presented in figure 2(a). Since the dynamic
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Figure 23: Dynamic surface deformations Δh0 for V = 1, normal gravity (1g) and
different Reg as indicated. Heating is from below with Re = −1700 (a) and Re = −100 (b).

Reg

zmax

0.4

0.2

−0.2

−0.4 −3000 −2000 −1000

0

0 1000

Re = 0
Re = ±25
Re = ±50
Re = ±100
Re = ±200
Re = ±2500

Figure 24: Axial position zmax of the maximum dynamic surface deformation
Δh0,max = maxz(Δh0) for V = 1 and normal gravity (1g) as function of Reg for several

Re (indicated by colour and line type).

deformations are small, they are expected to have only a weak influence on the linear stability
boundary. This was already noticed for the test case considered during the code validation
(figure 33) in Appendix C.4.

Two regions within which the critical Reynolds number for a static interface Rec,s(Reg)
deviates the most from the one for a dynamically deformed interface Rec,d(Reg) are shown
in figure 25. To quantify the small difference between the two critical curves we define the
deviations

ǫ̂(Reg) := Rec,d(Reg) − Rec,s(Reg), (4.1a)

ǫ̌(Re) := Rec,dg (Re) − Rec,sg (Re), (4.1b)

where Rec,dg and Rec,sg are the critical gas Reynolds numbers for given Re and dynamic and
static interface, respectively. The meaning of ǫ̂ and ǫ̌ is graphically indicated in figure 25.
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Figure 25: Critical Reynolds numbers for V = 1 and normal gravity (1g). Shown are
Rec,s (blue, static interface) and Rec,d (red, dynamic deformable interface) for heating

from above and Reg ∈ [−2500; −1800] (a) and Reg ∈ [−1000; 0] (b). The deviation ǫ̂ and
ǫ̌ between the two critical curves are defined graphically in (a).

We also define the relative deviation

�ǫ(Reg) :=
ǫ̂(Reg)

Rec,s(Reg) . (4.2)

We do not the corresponding relative deviation ˇ̌ǫ(Re), because the normalising denominator
Rec,sg (Re) would vanish at the critical point Re = Rec,s(Reg = 0), i.e. for a closed container.
The deviations �ǫ (blue) and ǫ̌ (red) are shown in figure 26 over the full range of gas Reynolds
numbers considered, where ǫ̌(Re) is evaluated as ǫ̌[Rec,s(Reg)]. Naturally, �ǫ becomes largest
when the slope of the critical curve ∂Rec,s/∂Reg → ∞ diverges. The deviation of �ǫ at such
points, which is also illustrated in figure 25(a) for Reg = −1921, can be larger than 10%.
Similarly, ǫ̌ becomes large at extrema of the critical curve, i.e. when ∂Rec,s/∂Reg → 0.
An example is shown in figure 25(b) for Reg = −424. Near extrema of Rec,d the deviation
normal to the critical curve represents the meaningful measure. From figure 26, the relative
deviation �ǫ typically amounts to a few percent, except possibly at the mentioned extrema.
Since the deviation �ǫ can take positive and negative signs for either heating direction, the
dynamic surface deformation can act slightly stabilising or slightly destabilising. The absolute
deviation ǫ̌ is typically less than 25, a value which must be compared with the gas Reynolds
number which varies over a much wider range (O(103)). The weak effect of a dynamically
deformable interface in the basic flow on the stability boundary is also reflected in the minute
displacement of the codimension-two points seen from table 4.

5. Summary and Conclusions
The thermocapillary flow in a liquid bridge made from 2-cSt silicone oil (Pr = 28) has been
investigated for heating from above and from below under axial gravity. The thermal and
mechanical coupling between the liquid bridge and the surrounding air is fully accounted
for, including the hydrostatic shape of the liquid–gas interface and its flow-induced dynamic
deformation. The flow in the liquid is driven by three mechanisms: (a) the thermocapillary
stress on the liquid–gas interface, (b) buoyancy forces in the bulk, and (c) an axial gas flow
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Figure 26: Relative deviation of the critical Reynolds number �ǫ = (Rec,d − Rec,s)/Rec,s
(blue lines) and absolute deviation of the critical gas Reynolds number

ǫ̌ = Rec,dg (Re) − Rec,sg (Re) (red lines), both as functions of Reg. Full and dashed lines
correspond to heating from above (Rec > 0) and from below (Rec < 0), respectively.

imposed on the annular inlet of the gas space which is confined between the liquid bridge
and an out shield cylinder. Thermocapillary and buoyancy forces (a,b) depend on the applied
temperature difference, while the gas flow (c) can be imposed independently. The steady
axisymmetric multiphase flow problem is solved numerically, fully taking into account the
dependence of the density on the temperature. Thereafter, this basic flow is analysed with
respect to its linear stability.

The linear stability boundary of the axisymmetric flow for Pr = 28 and V = 1 has been
established as a function of the gas flow rate, which can take positive or negative values,
and for both heating from above and from below. Throughout, the instability is due to
hydrothermal waves (Smith & Davis 1983a; Wanschura et al. 1995; Stojanovic et al. 2022).
The waves can have different wave numbers and exhibit different structures. For a moderate
gas flow the linear stability boundary depends sensitively on the imposed gas flow in the
range of gas flow Reynolds numbers Reg ∈ [−50, 50]. This sensitivity was noted before
by Kamotani et al. (1996), Kamotani et al. (2003) and, more recently, by Yano et al. (2016)
and Gaponenko et al. (2021). The sensitivity results from the heating or cooling of the free
surface due to the gas flow such that the plateau temperature near midplane changes. This
affects the strength and structure of the basic vortex, and thus the basic temperature field from
which the hydrothermal wave extracts its energy. These changes modify the energy supply to
the temperature field of the hydrothermal wave via the advection of basic state temperature
by the perturbation flow. Typically, radial advection of basic state temperature is by far the
most important instability mechanism. The heat exchange through the free surface between
the liquid and the gas due to the perturbation flow itself is unimportant.

For larger gas flow rates, but still within Reg ∈ [−3500, 1500], the linear stability boundary
approximately saturates, independent of its direction. In all cases, the reason for the saturation
of the critical Reynolds number is an insensitivity of the flow and temperature field inside
the liquid phase with respect to an increase of the gas flow rate. The critical thermocapillary
Reynolds number for large gas flow rates is of the order of Rec = O(500), except for heating
from below and a hot co-flow of the gas, for which the stability boundary saturates at
Rec = O(1800). The saturation of the critical Reynolds number is reached monotonically
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with an increase of the strength of the gas flow, except for heating from above and a hot co-
flow of the gas. In this case the basic flow is very stable up to about Rec ≈ 2000 in the range
approximately Reg ∈ [−2000,−100] before saturation occurs for Reg � −2000. In the range
Reg ∈ [−2672,−1921] and heating from above the linear stability boundary is not unique.
Therefore, the unstable basic flow is possibly stabilised again at higher Reynolds numbers
within a certain range of Re. In the full range of gas flow rates considered the mechanical
driving of the flow in the liquid phase by viscous stresses on the interface exerted by the gas
motion is insignificant.

The linear stability boundaries have been computed for a constant volume fraction V = 1
and a liquid–gas interface which is statically determined by the mean surface tension and
by the hydrostatic pressure. In addition, the stability boundaries have been computed taking
into account the flow-induced dynamic interface deformation due to the basic flow, while
neglecting the dynamic deformation due to the perturbation flow. Dynamic deformations of
the interface are caused by the variation of the surface tension with temperature, viscous
normal stresses from the gas and the liquid, and by the dynamic pressure in the gas and the
liquid. The dynamic deformation of an isothermal liquid bridge caused by the gas flow alone
was found to be consistent with the pressure distribution in the gas near the interface. The
distribution of the pressure in the gas is mainly determined by the shape of the static interface
and the corner singularities which arise in the gas flow when the liquid contact angle is less
than π/2. For non-isothermal liquid bridges and heating from above the dynamic surface
deformation due to the thermocapillary forcing is typically dominant over the gas-flow-
induced deformation and leads to a sinusoidal dynamic deformation supporting bulging near
the cold wall and necking near the hot wall, superimposed to the static shape. But for heating
from below, the dynamic deformation due to the thermocapillary flow can have the same
order of magnitude as the one due to the gas flow (for comparable Reynolds numbers).
Therefore, the shape of the dynamic deformation can be more complicated. Regardless of
the shape of the dynamic surface deformation, its effect on the critical threshold is weak.

With the present study we have accurately established the dependence on a forced gas flow
of the linear stability boundary of the axisymmetric thermocapillary flow in liquid bridge
of Pr = 28. We have incorporated in the analysis static and dynamic interface deformations,
the presence of a gas phase, a forced flow in the gas phase, and non-Oberbeck–Boussinesq
effects due to the linear dependence of the density on temperature in all terms. Even though
the Bond number was considered constant, the analysis should guide the interpretation of
data measured or computed in future investigations of similar flow problems.

As was already pointed out by Shevtsova et al. (2014), the sensitivity of the critical onset
of three-dimensional hydrothermal wave on the flow rate and direction of the hot or cold gas
bares the potential to controlling the critical onset of flow oscillations. Their linear stability
boundaries for 5-cSt silicone oil, η = 2 and zero gravity (figure 7 of Shevtsova et al. (2014))
are similar to the present stability boundaries (figure 2(a)) for heating from above: a very
stable basic flow for a certain range of Reg < 0 and an approximate saturation of Rec for
Reg > 0. The details, however, are more complicated. In particular, we did not find the
stationary mc = 1 mode at very low Reynolds number of the order of 200 for Reg > 0. This
may partly be related to the relatively tight air gap with η = 2 considered by Shevtsova et al.
(2014). Probably for the same reason the two-dimensional instability found for η = 1.6̄ by
Shevtsova et al. (2013) for Reg > 0 does not arise in the present system. We also did not
find indications for a classical Marangoni instability (different from Shevtsova et al. 2013),
even though the production of thermal perturbation energy is dominated by radial advection
of basic state temperature (J1): The region below the free surface in the plateau region of
the surface temperature profile is found to be almost isothermal. For the Pearson mechanism
(Pearson 1958) to arise the basic temperature field should exhibit a significant temperature
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gradient next to the interface. But for the range of parameters investigated, as in the classical
hydrothermal wave (Wanschura et al. 1995), the radial temperature gradients arise only deep
inside the liquid bridge due to the return flow of the basic toroidal vortex which is absent in
the Pearson problem.

Owing to the large parameter space, other important influence factors have not been
included in the present analysis. Among these are the dependence of the viscosity on the
temperature (Kozhoukharova et al. 1999; Shevtsova et al. 2001) and evaporative cooling for
large ΔT (Yano et al. 2016; Simic-Stefani et al. 2006). Also, an extension of the analysis
to other Prandtl numbers and volume fractions of the liquid would be of interest. With
respect to future space experiments which allow for larger liquid bridges it would also be
desirable to take into account dynamic surface deformations in the perturbation flow. The
would allow for surface wave instabilities which have been found to become critical for pure
thermocapillary flow in plane layers of low Prandtl number (Smith & Davis 1983b) and in
flat migrating droplets (Hu et al. 2023). At higher gas flow rates, for which the shape of the
liquid bridge is sizably affected by dynamic deformations, surface waves can also be triggered
by the Kelvin–Helmholtz mechanism. These effects suggest corresponding extensions of the
present work.
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Appendix A. Reynolds number for the gas motion
The motion of the gas resembles the flow through an annular pipe for which the Reynolds
number is usually defined as Re′g = 2w̄g,inρg0(ro − ri)/µg, based on the kinematic viscosity
of the gas and the width of the annular gap. In the thermocapillary liquid bridge under
investigation, however, the flow instability is triggered in the liquid phase, while the gas
phase is mainly passive. Therefore, the effect of the gas motion on the liquid phase is better
represented by using the kinematic viscosity of the liquid µ/ρ0 and the length scale d of the
liquid phase, leading to Reg = w̄g,indρ0/µ. Both Reynolds numbers are related to each other
by

Re′g =
2(η − 1)
Γ

ρ̃

µ̃
Reg, (A.1)

through the ratio of the kinematic viscosities ρ̃/µ̃ and twice the ratio of the length scales
2(η − 1)/Γ.

The relevance of Reg for the flow instability can also be inferred from table 5 which shows
the critical thermocapillary Reynolds number Rec,d when the liquid–gas interface of the
basic state is dynamically deformable (subscript d). Based on the reference case (ref) for
Reg = −40 and Re′g = −46.65, we consider the deviation of the critical Reynolds number
δ̂ = Rec − Reref

c from the reference value Reref
c,d = 1786 when the dimensional radius of the

gas tube ro, and thus the gap width η, is varied. Keeping Reg constant (data shown in blue)
the critical Reynolds numbers deviate much less from the reference value than when Re′g is
kept constant (data shown in red). For that reason we used Reg to characterise the strength
of the gas flow.
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case ro [mm] η w̄g,in [mm/s] Reg Re′g Rec,d δ̂[%]
ref 10 4 −48.48 −40 −46.65 1786 –
1 17.5 7 −24.24 −20 −46.65 1215 −31.9
2 6.25 2.5 −96.97 −80 −46.65 2212 23.9
3 17.5 7 −48.48 −40 −93.29 1605 −10.1
4 6.25 2.5 −48.48 −40 −23.32 1952 9.3

Table 5: Critical thermocapillary Reynolds number Rec,d for different tube radii ro and
mean inlet velocities w̄g,in under zero gravity. The remaining parameters correspond to the
reference parameters specified in section 4. Also given are the gas flow Reynolds numbers
Re′g and Reg and the percentage deviation δ̂ of the critical Reynolds number from the one
for the reference case (denoted ’ref’). Equal values of Re′g (Reg) are shown in red (blue).

Appendix B. Dependence of the critical Reynolds number on the rod length Γrod
The temperatures at the in- and outlet of the gas space as well as the inlet velocity profile are
prescribed. To estimate the length l over which the downstream boundary conditions affect
the velocity field upstream the equilibrium between momentum advection and diffusion over
the influence length l can be estimated by the condition

Pe =
w̄g,inρg0l
µg

≈ 1 (B.1)

for the Peclet number Pe. Expressed by the gas flow Reynolds number Reg, this yields
l
d
≈ µ̃

ρ̃Reg
≈ 7.8

Reg
. (B.2)

Thus, in order that the dimensionless influence length l/d is less than the dimensionless rod
length drod/d = Γrod/Γ = 0.606, the gas flow Reynolds number should satisfy |Reg | � 13.
With Prg = µgcpg/λg = 0.704 a similar estimate, |Reg | � 13/Pr = 18, holds for the thermal
influence length. Thus the critical Reynolds number should not be affected by the relatively
short length of the rods with Γrod = 0.4, except for very small gas flow rates.

This is confirmed by figure 27 which shows the critical Reynolds number as a function
of Γrod is independent of Γrod for Γrod > 0.4 and Reg = ±500 with heating from above
(full lines) and heating from below (dashed lines). The deviations of Rec(Γrod = 0.4) from
Rec(Γrod = 8) are less than 1%. Even for Reg = 0 and heating from above independence
from Γrod is achieved for Γrod � 0.5 with Rec(Γrod = 0.4) deviating from Rec(Γrod = 8) by
less than 8%. For Reg = 0 and heating from below, however, the critical Reynolds number
exhibits a strong dependence on Γrod with changes of the critical mode (dashed orange lines
in figure 27). The critical mode for small Γrod is due to a hydrothermal wave in the liquid
with mc = 2 (see figure 2(a)). The critical mode changes at Γrod = 1.77 to a stationary mode
with mc = 2 which is triggered in the gas phase. At Γrod = 2.85 a further change is found
to another stationary mode with mc = 1. Since the latter instabilities were the only ones
found where the flow becomes unstable in the gas phase, the instability for Γrod = 8 is briefly
described.

The critical Reynolds number for Γrod = 8 is Rec = −146 (corresponding toΔTc = −4.4K).
The basic state and a cross section of the critical mode are shown in figure 28. The critical
mode involves a large-scale circulation in the full annular gas space (figure 28(b)). The air
rises on one side of the annular pipe and descends on the other side. The critical velocity
and temperature fields in the liquid are much weaker than in the gas phase. Obviously, the
instability is due to buoyancy. To estimate the magnitude of the buoyancy in the gas phase we
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Figure 27: Dependence of the critical Reynolds numbers Rec,d for V = 1 and 1g on the
dimensionless rod length Γrod for Reg ∈ {−500; 0; 500} and heating from above (full

lines) and heating from below (dashed lines). The gray stripes indicate an error of ±5%
with respect to Rec,d(Γrod = 8). The vertical dotted line marks the rod aspect ratio

Γrod = 0.4 employed.

evaluate the Rayleigh number in the gas based on the height of the gas tube. For the present
reference parameters the Rayleigh number is

Rag =
ρ̃2 β̃c̃p
µ̃λ̃

 
1 + 2

Γrod
Γ

'3
PrBdRe ≈ 1.30 × 10−2 (1 + 3.03 × Γrod)3 Re. (B.3)

For the rod aspect ratio Γrod = 8 and for |Re| = |Rec,d(Γrod = 8)| = 146, the Rayleigh
number is Rac = Ra(Rec,d) ≈ 30500 which is of the same order of magnitude as the critical
value of Rac ≈ 51000 according to the correlation of D’Orazio et al. (2004) for the onset
of convection in a rectangular two-dimensional container heated from below with adiabatic
sidewall and the same aspect ratio (d + 2drod)/(ro − ri) = 5.55.

The presence of the buoyant instability in the gas phase shows that the above estimate
based on advection and diffusion is incomplete to estimate the effect of Γrod in the presence
of gravity. Therefore, we compare in figure 29 the neutral curves Ren(Reg) for Γrod = 0.4
(dashed lines) with those for Γrod = 8 (full lines) for both heating from above (red curves)
and below (blue curves). For sufficiently strong gas flow, the rod aspect ratio (up to Γrod = 8)
does not significantly affect the instability. For weak gas flow in the range Reg ∈ [−80, 20]
and for heating from below (blue lines, Ren,d < 0), however, stationary buoyant instabilities
(as in figure 28) can arise in the gas phase and break the axisymmetry before hydrothermal
waves become unstable.

Considering Γrod = 8 sufficiently large to suppress effects due to the inlet and outlet
length on the basic flow, we define a tolerance of ±2% for the critical Reynolds number
for hydrothermal waves (gray shaded region in figure 27). Comparing Rec,d(Γrod = 0.4)
(dashed lines) with Rec,d(Γrod = 8) (full lines), we find that using Γrod = 0.4 provides a
good approximation of the critical Reynolds number for hydrothermal waves in the axially
extended system with Γrod = 8, if |Reg | > 17 in case of heating from below (blue lines).
For heating from above (red lines) the restriction is similar with Reg > 21 for hot downward
co-flow, whereas for cold upward counter-flow the restriction is more severe and Reg < −90
must be satisfied. Since the length of the support rods in typical experiments is limited and
the heating is usually from above, buoyant instabilities like the one shown in figure 28 do not
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Figure 28: (a) Basic state at criticality Rec,d = −146 for Γrod = 8, V = 1, 1g, Reg = 0
and heating from below. (b) Corresponding stationary critical mode with m = 1, shown in

the plane ϕ = const. in which the local thermal energy production has its maximum.

arise. Therefore, Γrod = 0.4, also employed by Romanò et al. (2017), is a reasonable choice
for the length of the support rods, if one keeps in mind that the critical Reynolds numbers
for weak gas flows depends on Γrod.

Appendix C. Verification and validation of the dynamic surface deformation
To check the implementation of dynamic free-surface deformation the surface shapes
obtained using the code MaranStable are compared with available experimental and
numerical results. Some comparisons are made for the single-fluid model in which viscous
stresses from the gas phase are absent. In most tests a quantitative agreement is found.

C.1. Comparison with Kuhlmann & Nienhüser (2002)
Kuhlmann & Nienhüser (2002) have carried out an asymptotic expansion of the
thermocapillary flow and interface shape for the limit Ca → 0. The same approach was used
by Shevtsova et al. (2008). For a comparison with the results of Kuhlmann & Nienhüser
(2002) we consider a liquid bridge with Γ = 1, V = 1, an adiabatic free surface, zero
gravity and a Capillary number Ca = 10−6. Under zero gravity (Bd = Bo = 0) the static
shape is cylindrical with h0,s(z) ≡ 1/Γ. Figure 30 shows the deviation Δh0 of the surface
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Figure 29: Neutral Reynolds numbers as functions of Reg for Γrod = 0.4 (dashed lines)
and Γrod = 8 (full lines). Results are shown for heating from above (red lines, left axis)

and for heating from below (blue lines, right axis, Ren,d < 0). The neutral wave numbers
m = 1, m = 2 and m = 3 are indicated by labels. The gray region indicates a deviation of

±2% with respect to the neutral curves for Γrod = 8. The blue square indicates the
conditions of figure 28.

shape from cylindrical obtained by MaranStable (lines) in comparison with the first-order
correction h(1)Ca to the cylindrical shape computed by Kuhlmann & Nienhüser (2002) (dots)
for different combinations of Re and Pr. Our results agree very well with the literature data,
particularly for the viscous–conductive case Re = 10−4, Pr = 0.02 (blue). Deviations among
the two results slightly increase for larger Marangoni numbers, i.e. for Re = 2130, Pr = 0.02
(red, near the hot wall at z = 1/2) and for Re = 951, Pr = 4.38 (orange near the midplane).
A plausible reason for these minor deviations is the absence of higher-orders corrections in
Ca of the interface shapes provided by Kuhlmann & Nienhüser (2002).

C.2. Comparison with Montanero et al. (2008)
To validate the dynamic deformations obtained by MaranStable for larger dynamic surface
deformations we also compare with the experimental results obtained by Montanero et al.
(2008). While the experimental data are obtained in the presence of the gas phase, it is
neglected in our calculations. The reason is Montanero et al. (2008) did not provide any
information about the ambient gas and the complimentary numerical computations by
Carrión et al. (2020) were made for a single-fluid model. Following Carrión et al. (2020)
we assume the thermal boundary condition can be modelled by Newton’s law of cooling

n · ∇ϑ = −Bi
 
ϑ +

1
2

'
, (C.1)

with a Biot number Bi = hqd/λ = 0.15, where hq is the heat-transfer coefficient between
the liquid and the gas.

We consider a liquid bridge of length d = 3.69 mm made from 5-cSt silicone oil (Pr = 67)
for Γ = 1.23 and V = 0.82 (underfilling) under normal gravity and heated from above.
Figure 31(a) shows the static surface shape computed using MaranStable. The horizontal
axes show both the dimensional (h0,s − ri) and the non-dimensional deviation (h0,s − 1/Γ) of
the static surface shape from cylindrical. The (additional) flow-induced dynamic deformation
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Figure 30: Comparison of the scaled dynamic surface deformations Δh0 (lines) with the
first-order correction h(1)Ca of Kuhlmann & Nienhüser (2002) (dots, taken from their

figure 2(a)) for Γ = 1, V = 1, Bd = Bo = 0, Ca = 10−6, adiabatic free surface and
(Pr,Re) = (0.02, 10−4) (blue), (0.02, 2130) (red) and (4.38, 951) (orange). Viscous stresses

from the gas phase are neglected.
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Figure 31: (a) Static surface shape h0,s of a tall liquid bridge made from 5-cSt silicone oil
under normal gravity with length d = 3.691 mm, aspect ratio Γ = 1.23 and volume
V = 0.82. (b) Dynamic surface deformation Δh0 for the same liquid bridge for

ΔT = 11.05 K (Re = 113.9, blue) and ΔT = 21.76 K (Re = 224.4, red). Lines show results
of MaranStable, while squares represent experimental data of Montanero et al. (2008).

The experimental error bars (±1 µm) were estimated by Montanero et al. (2008).
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Δh0 = h0,d − h0,s is shown in figure 31(b). The results obtained with MaranStable are in a
reasonable agreement with the experimental data.

Deviations between our numerical results (lines) and the experimental data (solid squares)
are expected. Notwithstanding the measurement error, the heat flux through the interface is
not correctly described by (C.1) when using a constant Biot number (Romanò & Kuhlmann
2019).

C.3. Comparison with Matsunaga et al. (2012)
Dynamic surface deformations arise not only due to a temperature gradient along the
interface, but also due to viscous shear stresses from the gas phase. To test the dynamic
surface deformation caused solely by an axial gas flow, we also compare with the experimental
results of Matsunaga et al. (2012). Again, we consider a liquid bridge of 5-cSt silicone oil,
but with nitrogen as the ambient gas. Moreover, the geometry of the setup was adapted to that
of Matsunaga et al. (2012) by selecting Γ = 1, Γrod = 2/3 and η = 5/3. The liquid bridge of
length d = 3 mm and relative volume V = 0.8 is isothermal, and the gas enters the shield
tube from below (Reg > 0).

Figure 32(a) shows the deviation h0,s − 1/Γ of the static shape from cylindrical. The flow
induced dynamic part of the deformation Δh0 = h0,d − h0,s is shown in fig. 32(b) for Re = 0.
Shown are profiles computed by MaranStable for Reg = 600 (blue line), 900 (red line)
and 1200 (orange line). For Reg = 600 and 900 an excellent agreement is found with the
corresponding experimental results (symbols).

Even though Matsunaga et al. (2012) estimated the measurement error of h0,d as ±0.1 µm,
we show error bars for ±0.6 µm. The reason is Matsunaga et al. (2012) found that the
deviation between their measured static interfacial shape h0,s for Reg = 0 and their numerical
solution of the Young-Laplace equation (our solution is shown in figure 32(a)) was ±0.6 µm
on average, with a maximum deviation of ±1.5 µm. Since only the total dynamic shape h0,d
is observed experimentally, the dynamic part of the deformation Δh0 is also affected by the
error in the static shape h0,s. This may explain the large deviation between our result and the
measured data of Matsunaga et al. (2012) for Reg = 1200 (orange in figure 32(b)).

C.4. Code validation regarding the critical Reynolds number with and without dynamic
surface deformation of the basic flow

Finally, we validate MaranStable in terms of the critical onset of three-dimensional flow by
comparison with the measurements of Yano et al. (2016) for a liquid bridge of 2-cSt silicone
oil in air with length ri = d = 2.5 mm and Pr = 28, Bd = 0.41, Γ = 1, Γrod = 4.8 and η = 5.
Figure 33 shows the neutral and critical Marangoni numbers as functions of the volume ratio
V for a mean gas inlet velocity of w̄g,in = −20 mm/s corresponding to a gas flow Reynolds
number of Reg = −25 (cold counter-flow, heating from above, 1g). The numerical neutral
curves obtained for a static (h0,s, dashed lines) and for a dynamic surface shape (h0,d, full
lines) do not deviate much from each other, indicating the weak influence of the dynamic
deformability on the critical Marangoni number for such a weak gas flow.

Both numerical results are in good agreement with the experimental data for all volume
ratios V sampled. The only exception is the volume V = 1.05 for which the critical wave
numbers deviate qualitatively. Given the experimental error bar, a possible reason could be
the large slope of the neutral curve for m = 1 with respect to V, such that small deviations
of V cause a large change of the critical Marangoni number. Also a subcritical instability at
V = 1.05 cannot currently be ruled out.
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Figure 32: (a) Deviation h0,s − 1/Γ of the static interface shape from cylindrical for a
liquid bridge of length d = 3 mm made from 5-cSt silicone oil in nitrogen. The essential
non-dimensional parameters are: Γ = 1, V = 0.8, Bo = 4.075 (ground condition) and
Re = 0 (see the text for the remaining geometry parameters). (b) Dynamic part of the

interfacial deformation Δh0 computed using MaranStable (lines) in comparison with the
measurements of Matsunaga et al. (2012) (squares) for different through flows:

w̄g,in = 1 m/s (Reg = 600, blue), w̄g,in = 1.5 m/s (Reg = 900, red) and w̄g,in = 2 m/s
(Reg = 1200, orange). Error bars show an uncertainty of ±0.6 µm.
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Figure 33: Neutral Marangoni numbers Man (lines) as functions of the volume ratio V for
a liquid bridge of 2-cSt silicone oil in air with length d = 2.5 mm and Pr = 28, Γ = 1,

Bd = 0.41 and η = 5. Dashed lines: Static surface shape h0,s , full lines: Dynamic surface
shape h0,d . A comparison is made with experimental data of Yano et al. (2016) (their

figure 6(a)) for a gas inlet velocity of −20 mm/s (Reg = −25). Colour indicates the neutral
wave number: m = 1 (blue) and m = 2 (red).
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Figure 34: Volumetric flow rate density (left, blue) and mass flow rate density (right, red)
at the inlet (full lines) and at the outlet (dashed lines) of the gas tube for Re = 400 and a

hot downward flow (Reg = −200). The horizontal lines represent averaged values over the
cross section.

Appendix D. Verification of the density variation
Different from the OB approximation, our code takes into account a linear variation of the
density with temperature in all terms. To verify the correct implementation we consider the
present standard configuration with Pr = 28. The liquid bridge is heated from above with
Re = 400 and exposed to a hot downward flow with Reg = 200. In figure 34 we show the
volume flow density wg (left axis, blue) and the mass flow density ρgwg (right axis, red) as
functions of r at the in- and outlet. The incoming hot air slows down from an averaged value
of w̄g = −0.242 m/s (full horizontal blue line) to w̄g = −0.233 m/s (dashed horizontal blue
line). As expected, the volume flux cannot be constant and independent of z, since the gas
must have cooled down at the outlet. The total mass flux �m = ∫

A
ρgwgdA, however, must be

independent of z. The almost invisible discrepancies between the mass flow densities at the
inlet (full red curve) and the outlet (dashed red curve) arise, because the gas leaves the tube
with a velocity profile which is slightly perturbed due to the thermocapillary flow along the
liquid–gas interface. However, the total mass balance long the tube is satisfied up to machine
precision: The average mass flow densities ρgwg = −0.281 [kg/m2s] (red horizontal line)
deviate by less than 10−12% from each other.
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Abstract
In numerical linear stability investigations, the rates of change of the kinetic and thermal energy of the perturbation
flow are often used to identify the dominant mechanisms by which kinetic or thermal energy is exchanged between
the basic and the perturbation flow. Extending the conventional energy analysis for a single-phase Boussinesq fluid,
the energy budgets of arbitrary infinitesimal perturbations to the basic two-phase liquid–gas flow are derived for an
axisymmetric thermocapillary bridge when the material parameters in both phases depend on the temperature. This
allows identifying individual transport terms and assessing their contributions to the instability if the basic flow and
the critical mode are evaluated at criticality. The full closed-form energy budgets of linear modes have been derived
for thermocapillary two-phase flow taking into account the temperature dependence of all thermophysical param-
eters. The influence of different approximations to the temperature dependence on the linear stability boundary of
the axisymmetric flow in thermocapillary liquid bridges is tested regarding their accuracy. The general mechanism
of symmetry breaking turns out to be very robust.

1. Introduction
Thermocapillary flow in axisymmetric liquid bridges which are heated differentially represents one of
the most popular paradigms of thermocapillary flow [8]. It originated from the desire to better understand
the formation of striations in crystals grown by the floating-zone method [18]. One intriguing aspect
is the spontaneous breaking of the steady axisymmetric flow and the relevant physical mechanisms
at work. The onset of the three-dimensional flow in high-Prandtl-number liquids is characterised by
a thermocapillary Reynolds number Re ∼ �Td/μ2 which scales linearly with the length of the liquid
bridge d and the temperature difference �T applied between the supporting rods or, equivalently, with
the total variation of the surface tension. Since the length d under normal gravity is limited by the
Rayleigh–Plateau instability causing a mechanical breaking of the bridge, driving the system into a
three-dimensional flow state can require a relatively large temperature difference �T , in particular if
the dynamic viscosity μ is large. Hence, the temperature dependence of the material properties, like the
dynamic viscosity, may not be negligible. For that reason, a temperature-dependent viscosity has been
taken into account in stability analyses [7] and numerical simulations [22, 23]. However, most numerical
results have been obtained for constant material properties [4, 9, 12, 14, 15, 16, 29].
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Figure 1. Sketch of the thermocapillary liquid bridge held in place between the hot rod at temperature
T̄ + �T/2 and the cold rod at temperature T̄ − �T/2. The flow is driven by (i) the thermocapillary
effect, (ii) buoyancy forces in the gravity field g and (iii) a gas flow with a given inlet velocity wG,in.
Afs and Aout denote the liquid–gas interface and the outlet section, respectively. Polar coordinates are
indicated.

Since the work of Reynolds [19], Orr [17] and, for thermocapillary flows, Smith [25], the balance of
kinetic and thermal perturbation energies of the (infinitesimal) perturbation flow has proven a valuable
tool to determine the total amount and the spatial distribution of the energy production and dissipation.
Knowledge of these properties can be key to understanding the physical mechanisms of linear instability
of the flow. For instance, the thermocapillary instability for low-Prandtl-number liquids is caused by the
lift-up mechanism in the free surface shear layer [10, 33], similar to the vortex-ring instability [34], while
the temperature field is passive with respect to the instability. The temperature field is only required to
drive the basic flow. For large Prandtl numbers, on the other hand, the temperature field is important and
the flow instability arises in form of a pair of azimuthally propagating hydrothermal waves [33], similar
as for plane layers [26]. The hydrothermal waves draw their energy from temperature gradients of the
basic flow in the bulk. The strong internal temperature gradients arise due to the basic recirculation,
driven by thermocapillary forces, which transports hot fluid from the free surface over the cold wall
deep into the bulk.

Uncertainties in the computation of the critical Reynolds number are mainly caused by (a) discreti-
sation errors, (b) neglect of the temperature dependence of the material properties and (c) simplifying
assumptions about the ambient conditions like the assumption of Newtons’s law of heat transfer. As
numerical capabilities have improved, the discretisation errors can be well controlled. Moreover, it has
become feasible to take into account temperature-dependent material properties as well as the flow in the
ambient atmosphere. Due to its usefulness for the understanding of the physical instability mechanics as
well as for a check of the energy preservation of the numerically computed critical mode, we establish
the Reynold–Orr equations governing the temporal evolution of the kinetic and thermal energy budgets
of the critical perturbation mode of the linear theory for an axisymmetric liquid bridge surrounded by a
gas. The energy balances obtained take into account the temperature dependence of all thermophysical
material properties and are valid both in the liquid and in the gas phase, of which the latter is confined
to a concentric tube surrounding the liquid bridge.

2. Geometrical configuration
The flow in a liquid droplet suspended between two coaxial cylindrical rods is considered, assuming
that the physical properties of the liquid and gas phases are temperature-dependent (Figure 1). The two
rods are kept at constant temperatures with Thot = T̄ + �T/2 (hot rod) and Tcold = T̄ − �T/2 (cold rod),

https://doi.org/10.1017/S0956792523000189 Published online by Cambridge University Press
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where T̄ = (Thot + Tcold)/2 denotes the arithmetic mean temperature which is assumed as reference tem-
perature. The liquid bridge is surrounded by a gas confined to a coaxial cylindrical tube, intended to
prevent uncontrollable circulations from the ambience in experiments. The flow is driven (i) by thermo-
capillary forces acting on the interface due to a variable surface tension σ (T), (ii) buoyancy forces in the
presence of the acceleration of gravity which is assumed to be directed in the negative axial direction
(Figure 1) and (iii) by an externally imposed gas flow (wG,in in Figure 1), assumed to be axisymmetric
and non-swirling. The external gas flow affects the flow in the liquid phase via viscous shear stresses
acting on the liquid–gas interface and by the thermal coupling between liquid and gas.

On all solid walls of the support rods and the tube, we assume no-slip boundary conditions. On the
surfaces of the rods, the temperatures Thot and Tcold are imposed as indicated by colour in Figure 1,
while the cylindrical tube is assumed adiabatic. Gas may enter the system with a given axial velocity
profile wG,in(r) and a given temperature, also satisfying outflow conditions at the outlet (denoted Aout in
Figure 1). Alternatively, the gas tube may be closed (wG,in ≡ wG,out ≡ 0) and confined by either adiabatic
or conductive walls. The thermocapillary flow is driven along the interface Afs by the thermocapillary
effect which creates the tangential stress [11]

∇�σ (T) = ∂σ

∂T
∇�T = ∂

∂T

�
σ (T̄) − γ (T − T̄) + δ(T − T̄)2 + . . .

� ∇�T

= �−γ + 2δ(T − T̄) + . . .
� ∇�T , (2.1)

where ∇� denotes the tangential Nabla operator. For the overwhelming majority of liquids, the surface
tension decreases with temperature (γ > 0). Therefore, the thermocapillary effect will typically generate
a flow which is directed along the interface away from the hot rod (low surface tension) and towards
the cold rod (high surface tension). The usual approximation is to neglect quadratic terms in the Taylor
expansion of the surface tension leading to ∇�σ (T) ≈ −γ∇�T . We note that the present analysis is inde-
pendent of the exact functional dependence of σ (T). While the Taylor coefficients γ , δ, etc. in (2.1)
crucially affect the flow fields by coupling the velocity and temperature fields on the interface, they do
not explicitly appear in the energy budgets of a given linear instability mode.

3. Governing equations
The general flow problem is governed by the Navier–Stokes and energy equations in both the liquid and
the gas phase. We consider the strong conservative forms

∂tρ + ∇ · �ρÛ
� = 0, (3.1a)

∂t

�
ρÛ

� + ∇ · �ρÛÛ
� = −∇P̂ + ρg + ∇ · T , (3.1b)

∂t

�
ρcpT̂

� + ∇ · �ρcpT̂Û
� = ∇ · �λ∇T̂

�
, (3.1c)

where Û, P̂ and T̂ are the velocity, pressure and temperature fields. Henceforth, the hat ( ˆ ) indicates
the total flow fields, including a basic flow and a perturbation. Equations (3.1a)–(3.1c) describe the
transport in both the liquid and the gas phase. As long as the formulation for both phases is the same,
we do not distinguish between them. We assume the fluids are Newtonian with stress tensor

T = μ
�
∇Û + �∇Û

�T
�
− 2

3
μ

�∇ · Û
�
I, (3.2)

where I is the identity matrix. The temperature-dependent density, dynamic viscosity, thermal conduc-
tivity and specific heat at constant pressure are denoted ρ(T̂), μ(T̂), λ(T̂) and cp(T̂), respectively. Since
the density is treated as temperature-dependent, the velocity field is not solenoidal. The formulation
used for the temperature equation (3.1c) neglects the pressure work and the viscous dissipation. These
assumptions are justified, respectively, if the conditions

χ
T̄

�T
≤ 0.1 and χPr ≤ 0.1 with χ = β̄gd

c̄p

(3.3)
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are satisfied, where Pr = μ̄c̄p/λ̄ is the Prandtl number and β = −ρ−1(∂ρ/∂T)p is the thermal expansion
coefficient [3]. The overbar indicates reference values at the reference temperature T̄ . Similarly, we
disregard the pressure contribution to the enthalpy in (3.1c) assuming p/ρ  |cpT|. In Section 6, we
verify the conditions (3.3) for two different cases, confirming the validity of (3.1c).

For equations (3.1a)–(3.1c) and for the assumed steady axisymmetric boundary conditions a steady
axisymmetric basic flow (u0, T0, p0, h0) exists. The axisymmetric shape function h0(z) marks the radial
coordinate of the location of the liquid–gas interphase in the axisymmetric steady flow which is assumed
to be pinned to the sharp circular edges of the supporting rods. The shape h0(z) is determined by the
flow-induced normal stresses and the Laplace pressure, which also depends on the full surface tension
σ (T̂) and the hydrostatic pressure difference.

Here we are not concerned with computing the basic flow. We assume it has been obtained numer-
ically, taking into account the full temperature dependence of the material properties. Therefore, the
exact form of the boundary conditions and forcing terms for the basic flow does not enter the present
problem. Furthermore, we assume a linear stability analysis has been carried out by solving the asso-
ciated eigenvalue problem (see e.g. Stojanović et al. [27]) such that the neutrally stable linear mode
(u, T , p, h) is available as well. We consider the formal decomposition

Û = u0(r, z) + u(r, ϕ, z, t), (3.4a)
T̂ = T0(r, z) + T(r, ϕ, z, t), (3.4b)
P̂ = p0(r, z) + p(r, ϕ, z, t), (3.4c)
Ĥ = h0(z) + h(ϕ, z, t), (3.4d)

of the total flow (ˆ) into the basic state (index 0) and a perturbation (u, T , p, h). All flow fields are
described using cylindrical coordinates (r, ϕ, z) and associated velocity components (u, v, w) such that
u = uer + veϕ + wez, where e denotes a unit vector.

The neutral mode is typically obtained by a linearisation of the governing equations which requires the
perturbation quantities to be asymptotically small. We do not explicitly introduce a smallness parameter
�, but keep in mind that the perturbation quantities (u, T , p, h) are all of the order of O(�) in the sense
of the linearisation required for the linear stability analysis. For convenience, we shall not express the
perturbation quantities by normal modes. This is easily accomplished a posteriori.

In order to keep the effort required in deriving the energy budgets for the neutral mode at a meaningful
level, we make the ad hoc assumption that the perturbation flow does not affect the interfacial shape. This
is motivated by the experimental observations that the interfacial deformations due to the supercritical
three-dimensional flow are very small under typical laboratory conditions [36]. We note, however, that
this simplification precludes surface waves from the range of critical modes. With the assumption h = 0,
the outward pointing unit vector normal to the free surface is

n = 1

N

�
er − h0zez

�
, (3.5)

with the normalising denominator N = �
1 + h2

0z, where we use the notation h0z = dh0/dz. Likewise, we
define h0zz = d2h0/dz2.

Let us assume the basic flow has been computed from the axisymmetric steady version of (3.1a)–
(3.1c). Furthermore, we assume the perturbation flow has been computed by solving (3.1a)–(3.1c)
linearised about the basic state. Within a postprocessing step, we are then interested in the temporal
evolution of the kinetic and thermal perturbation energy densities

εkin(x, t) = 1

2
ρ(T0)u2, (3.6a)

εtherm(x, t) = 1

2
ρ(T0)cp(T0)T2, (3.6b)

in the liquid and the gas phase. These energy densities must be considered measures of the perturbation
flow in the sense of Joseph [5]. With the perturbations being of O(�), the above energy densities are
of O(�2). The aim is to express ∂tεkin(x, t) and ∂tεtherm(x, t) by a sum of contributions which describe

https://doi.org/10.1017/S0956792523000189 Published online by Cambridge University Press



European Journal of Applied Mathematics 5

individual transport processes and can be interpreted in physical terms. While the local rates of change
of the energy densities (3.6a) and (3.6b) are generally non-zero and depend on x, the total change rates
obtained by integration over the volume occupied by the respective fluid must vanish, if the perturbation
flow field represents a critical or a neutral mode for which the growth rate vanishes.

In the following, we assume that the fluid properties depend solely on the temperature and not on
the pressure. This simplifying assumption is commonly made by the manufacturers of batch liquids
employed for silicone oil liquid bridges [24] and for liquids in general far from their phase-change crit-
ical points. To take into account the temperature dependence of the material parameters, we assume
the parameters, as well as their first and second derivatives ρ �(T̂), μ�(T̂), λ�(T̂), c�

p(T̂) and ρ ��(T̂), μ��(T̂),
λ��(T̂), c��

p(T̂), respectively, are available in closed-form expressions as functions of the temperature T̂ . The
functional dependence on T̂ could be established, for instance, by fitting discrete data by suitable ansatz
functions (polynomials, exponentials, etc.) or spline functions. With this information available, all mate-
rial parameters can be expanded about the local temperature T0(r, z) of the basic flow and up to second
order

ρ
�
T̂
� = ρ(T0 + T) ≈ ρ(T0) + ∂Tρ|T0

T + 1

2
∂2

Tρ
,,

T0
T2 := ρ0 + ρ �

0T + 1

2
ρ ��

0 T2, (3.7a)

μ
�
T̂
� = μ(T0 + T) ≈ μ(T0) + ∂Tμ|T0

T + 1

2
∂2

Tμ
,,

T0
T2 := μ0 + μ�

0T + 1

2
μ��

0T2, (3.7b)

λ
�
T̂
� = λ(T0 + T) ≈ λ(T0) + ∂Tλ|T0

T + 1

2
∂2

Tλ
,,

T0
T2 := λ0 + λ�

0T + 1

2
λ��

0T2, (3.7c)

cp

�
T̂
� = cp(T0 + T) ≈ cp(T0) + ∂Tcp

,,
T0

T + 1

2
∂2

Tcp

,,
T0

T2 := cp0 + c�
p0T + 1

2
c��

p0T2. (3.7d)

The Taylor coefficients (ρ0, μ0, λ0, cp0), (ρ �
0, μ

�
0, λ�

0, c�
p0) and (ρ ��

0 , μ��
0, λ��

0, c��
p0) are scalar fields which

depend continuously on the basic temperature T0. Note all the above thermophysical properties and
coefficients depend on the phase.

Before deriving the rates of change of the kinetic energies, it is useful to consider the continuity
equation. Inserting expansions (3.7a)–(3.7d) into the continuity equation (3.1a) and neglecting quadratic
terms yields

∂t(ρ
�
0T) + ∇ · (ρ0u0) + ∇ · (ρ0u) + ∇ · (ρ �

0Tu0) = 0. (3.8)

As this equation involves different orders of magnitude, the terms of each order of magnitude in this
equation must vanish separately,

O
�
�0

�
: ∇ · (ρ0u0) = 0, (3.9a)

O
�
�1

�
: ρ �

0∂tT + ∇ · (ρ0u) + ∇ · (ρ �
0Tu0) = 0. (3.9b)

The terms of order O(�0) arise in the equations for the basic flow and thus do not enter the equations of
order O(�1) for the perturbation flow. Equation (3.9b), on the other hand, balances the terms of O(�1)
and thus represents the continuity equation in linear order entering the linear stability analysis.

4. Thermal energy budget
The basic flow (u0, T0, p0, h0) is assumed stationary and of order O(�0). Since the perturbation flow is of
order O(�1), it has no effect on the energy budget of the basic flow which is also O(�0). Nevertheless, the
rates of change of the perturbation energies (3.6a) and (3.6b), which are of order O(�2), contain terms
which describe an energy exchange with the basic flow.

To derive the local thermal energy budget, we first derive the linear equation governing the evolution
of the perturbation temperature. To that end, the flow decomposition (3.4a)–(3.4d) is inserted into the
temperature equation (3.1c) to obtain

∂t(ρcpT0) + ∂t(ρcpT) + ∇ · �ρcp(T0 + T)(u0 + u)
� = ∇ · (λ∇T0) + ∇ · (λ∇T), (4.1)

https://doi.org/10.1017/S0956792523000189 Published online by Cambridge University Press



6 M. Stojanović et al.

which contains both the basic state and the perturbation flow. Neglecting terms of order O(�2) yields

∂t(ρcpT0) + ∂t(ρcpT) + ∇ · (ρcpT0u0) + ∇ · (ρcpT0u) + ∇ · (ρcpTu0) = ∇ · (λ∇T0) + ∇ · (λ∇T). (4.2)

Inserting the Taylor expansions (3.7a)–(3.7d) of ρ, cp and λ we obtain, after linearisation,

T0 ∂T(ρcp)
,,

T0
∂tT + ρ0cp0∂tT + ∇ · (ρ0cp0T0u0) + ∇ · (ρ �

0cp0T0u0T) + ∇ · (ρ0c
�
p0T0u0T) (4.3)

+ ∇ · (ρ0cp0Tu0) + ∇ · (ρ0cp0T0u) = ∇ · (λ0∇T0) + ∇ · (λ�
0T∇T0) + ∇ · (λ0∇T),

where the coefficients, like λ0 = λ(T0), are functions of the basic state temperature field T0. Separating
the orders of magnitude, the terms of order O(�0) enter the basic state equation for T0

∇ · (ρ0cp0T0u0) = ∇ · (λ0∇T0), (4.4)

while the terms of order O(�1)�
T0(ρ �

0cp0 + ρ0c�
p0) + ρ0cp0

�
∂tT + ∇ · (ρ �

0cp0T0u0T) + ∇ · (ρ0c
�
p0T0u0T)

+ ∇ · (ρ0cp0Tu0) + ∇ · (ρ0cp0T0u) = ∇ · (λ�
0T∇T0) + ∇ · (λ0∇T) (4.5)

constitute the linear perturbation equation for T .
To obtain the rate of change of the thermal energy density (3.6b), equation (4.5) is multiplied by T

to yield

ρ0cp0T∂tT� �� �
T1

= −(ρ �
0cp0 + ρ0c�

p0)T0T∂tT� �� �
T2

− T∇ · (ρ �
0cp0T0u0T)� �� �
T3

− T∇ · (ρ0c
�
p0T0u0T)� �� �

T4

− T∇ · (ρ0cp0Tu0)� �� �
T5

− T∇ · (ρ0cp0T0u)� �� �
T6

+ T∇ · (λ�
0T∇T0)� �� �

T7

+ T∇ · (λ0∇T)� �� �
T8

. (4.6)

As far as the transport mechanisms are concerned, we recognise that the term T1 represents the rate
of change of thermal perturbation energy density ∂tεtherm. Moreover, the term T2 describes an addi-
tional rate of change of thermal perturbation energy density due to the dependence of ρ and cp on the
temperature T0.

The remaining divergence terms describe the rates of change of thermal perturbation energy den-
sity due to the divergence of thermal perturbation energy flux densities. These thermal perturbation
energy flux densities are caused by the basic state velocity u0 and the thermal energy densities given
by (ρ �

0T0)cp0T in T3, (c�
p0T0)ρ0T in T4 and ρ0cp0T in T5, where the first and second terms are due to

the variation with T0 of ρ and cp, respectively. The term T6 is due to the thermal perturbation energy
flux density which is caused by the transport of basic state thermal energy ρ0cp0T0 by the perturbation
velocity u.

Finally, the term T8 describes the dissipation of thermal energy due to Fourier’s diffusive perturbation
heat flux −λ0∇T , and T7 is due to the diffusive heat flux caused by gradients of the basic temperature
in combination with the temperature dependence of λ which is not taken care of in the O(�0) equations
for the basic state.

To arrive at the total, that is integral, thermal energy budget for each fluid phase, the rate of change of
the thermal energy density (4.6) must be integrated over the volume Vi occupied by the respective phase
(liquid or gas), where the subscript i ∈ [L, G] indicates the phase. Moreover, we define the coefficient

αi =
�

1 i = L,

−1 i = G.
(4.7)

Since the integration is rather technical, the derivation of the integral thermal energy budget is made in
Appendix A. As a result, we obtain the total rate of change of thermal energy ∂tET = ∂t

�
Vi

εtherm dV in
the phase i

∂tET = −Dth + J + Hfs + KG,th + �ρ + �cp + �λ − ∂tE
�
T , (4.8)
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with the abbreviations

Dth =
�

Vi

λ0(∇T)2 dV , (4.9a)

J =
2 

j=1

Jj = −
�

Vi

ρ0T
�
u∂r(cp0T0) + w∂z(cp0T0)

�
dV , (4.9b)

Hfs = αi

�
Afs

λ0T∇T · n dS, (4.9c)

KG,th = −1 − αi

4

�
Aout

ρ0cp0T2w0 dS, (4.9d)

�ρ =
�

Vi

ρ �
0cp0T0u0 · ∇T2 dV − 1

2

�
Vi

�
ρ �2

0

ρ0

− ρ ��
0

�
cp0T2u0 · ∇T2

0 dV

− 1 − αi

2

�
Aout

ρ �
0cp0T0T

2w0 dS, (4.9e)

�cp = 1

2

�
Vi

ρ0c�
p0T0u0 · ∇T2 dV − 1

2

�
Vi

ρ0c�
p0T2u0 · ∇T0 dV

− 1 − αi

2

�
Aout

ρ0c�
p0T0T

2w0 dS, (4.9f)

�λ = αi

�
Afs

λ�
0T

2∇T0 · n dS − 1

2

�
Vi

λ�
0∇T0 · ∇T2 dV , (4.9g)

∂tE
�
T = 1

2

�
Vi

T0ρ0c�
p0∂tT

2 dV , (4.9h)

where the index i has been suppressed for the thermophysical properties of the two phases.
The terms (4.9a)–(4.9c) are well known from the energy budget for constant material properties (see

e.g. Nienhuser and Kuhlmann [16]). The surface integrals in (4.9d)–(4.9f) represent rates of change of
thermal energy of the gas phase (αi = −1) due to convective heat fluxes through the outlet boundary Aout

of the gas container. These fluxes vanish if the gas container is closed (w0|Aout = 0) or if the temperature
is prescribed at the outlet (T|Aout = 0). Since we assume the gas enters the container with a prescribed
(basic state) temperature, no perturbation energy is introduced through the inlet. The terms �ρ , �cp and
�λ arise due to the temperature dependence of the material parameters. They vanish, respectively, if
ρ = const., cp = const. or λ = const. Similar to the thermal perturbation energy density (3.6b), the term
(4.9h) also depends on the temporal evolution of the perturbation temperature.

5. Kinetic energy budget
The rate of change of the kinetic energy density ∂tεkin is derived by linearising the momentum equa-
tion with respect to the perturbation quantities followed by a scalar multiplication of the linearised
momentum equation with the perturbation velocity u. Inserting (3.4a) and (3.4c) in (3.1b), we obtain

∂t(ρu0) + ∂t(ρu) + ∇ · [ρ(u0 + u)(u0 + u)] = −∇p0 − ∇p + ρ0g + ρ �
0Tg (5.1)

+ ∇ · �μ �∇u0 + (∇u0)T
� 
 − 2

3
∇ · [μ(∇ · u0)I] + ∇ · �μ �∇u + (∇u)T

� 
 − 2

3
∇ · [μ(∇ · u)I] .

Linearising this equation with respect to the perturbation quantities by neglecting terms of O(�2) yields

∂t(ρu0) + ∂t(ρu) + ∇ · (ρu0u0) + ∇ · [ρ(u0u + uu0)] = −∇p0 − ∇p + ρ0g + ρ �
0Tg (5.2)

+ ∇ · �μ �∇u0 + (∇u0)T
� 
 − 2

3
∇ · [μ(∇ · u0)I] + ∇ · �μ �∇u + (∇u)T

� 
 − 2

3
∇ · [μ(∇ · u)I] .
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Now the Taylor expansion of the material parameters (3.7a)–(3.7d) is inserted in (5.2) to obtain, after
linearisation,

u0 ∂Tρ|T0
∂tT + ρ0∂tu + ∇ · (ρ0u0u0) + ∇ · (ρ �

0Tu0u0) + ∇ · [ρ0(u0u + uu0)] (5.3)

= −∇p0 − ∇p + ∇ · �μ0

�∇u0 + (∇u0)T
� 
 − 2

3
∇ · [μ0(∇ · u0)I] + ∇ · �μ�

0T
�∇u0 + (∇u0)T

� 

+ ρ0g + ρ �

0Tg − 2

3
∇ · �μ�

0T(∇ · u0)I
� + ∇ · �μ0

�∇u + (∇u)T
� 
 − 2

3
∇ · [μ0(∇ · u)I] .

Separating again the orders of magnitude yields the basic state momentum equation at O(�0)

∇ · (ρ0u0u0) = −∇p0 + ρ0g + ∇ · �μ0

�∇u0 + (∇u0)T
� 
 − 2

3
∇ · [μ0(∇ · u0)I] , (5.4)

and the momentum perturbation equation at O(�1)

u0ρ
�
0∂tT + ρ0∂tu + ∇ · (ρ �

0Tu0u0) + ∇ · [ρ0(u0u + uu0)] (5.5)

= −∇p + ρ �
0Tg + ∇ · �μ�

0T
�∇u0 + (∇u0)

T
� 
 − 2

3
∇ · �μ�

0T(∇ · u0)I
�

+ ∇ · �μ0

�∇u + (∇u)T
� 
 − 2

3
∇ · [μ0(∇ · u)I] .

Finally, the scalar product between the momentum perturbation equation (5.5) is taken with the
perturbation velocity field u, yielding

ρ0u · ∂tu� �� �
K1

= −ρ �
0u0 · u∂tT� �� �

K2

− u · {∇ · [ρ0(u0u + uu0)]}� �� �
K3

− u · �∇ · (ρ �
0Tu0u0)

�� �� �
K4

− u · ∇p� �� �
K5

+ ρ �
0Tu · g� �� �

K6

+ u · �∇ · �μ0

�∇u + (∇u)T
� 



� �� �
K7

− 2

3
u · �∇ · [μ0(∇ · u)I]



� �� �

K8

+ u · �∇ · �μ�
0T

�∇u0 + (∇u0)
T
� 



� �� �
K9

− 2

3
u · �∇ · �μ�

0T(∇ · u0)I
� 


� �� �
K10

. (5.6)

Equation (5.6) represents the balance of kinetic energy density at order O(�2). The first term K1 is
recognised as the rate of change of the kinetic energy density of the perturbation flow ∂tεkin. The physical
processes leading to the change of energy density appear on the right-hand side of (5.6). Similar to the
thermal budget, the term K2 describes a rate of change of the kinetic perturbation energy density due to
the temperature dependence of the density. This term is conservative in the sense that it vanishes when
integrated over the volume, as explained in Appendix B.

The terms K3 and K4 describe the rate of change of kinetic perturbation energy density due to the
divergence of kinetic perturbation energy flux densities. These fluxes arise due to the transfer of momen-
tum between the basic and the perturbation flow (K3) and due to the second-order density dependence
on the temperature (K4), after evaluation of the divergence (∇ρ �

0 = ρ ��
0 ∇T). The term K5 describes the

work per volume and time done by pressure forces which is enabled by the weak compressibility of
the perturbation flow due to spatial variation of ρ. The term K6 represents the work done by buoyancy
forces. It also arises in the framework of the Oberbeck–Boussinesq approximation.

The remaining terms K7 to K10 describe the rate of change of kinetic perturbation energy density due
to viscous dissipation of the perturbation flow (K7), corrected by the effects due to the spatial variation
of the density (K8), the spatial variation of the dynamic viscosity (K9) and the spatial variation of both,
density and dynamic viscosity (K10).

As for the thermal energy budget, the integral kinetic energy budget is detailed in Appendix B.
Integration over the volume occupied by the liquid and the gas separately yields the total rate of change
of kinetic energy ∂tEkin = ∂t

�
Vi

εkin dV in the phase i

∂tEkin = −Dkin + Mr + Mϕ + Mz + I + B + KG + �ρ + �μ + �ρμ, (5.7)
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where we introduced the abbreviations

Dkin =
�

Vi

μ0(∇u):(∇u) dV + αi

�
Afs

μ0(h0h0zzw
2 − v2) dϕ dz, (5.8a)

Mr = αi

�
Afs

μ0h0h0zu (∂rw − ∂zu) dϕ dz, (5.8b)

Mϕ = αi

�
Afs

μ0h0v

�
∂rv − v

h0

− h0z∂zv

�
dϕ dz, (5.8c)

Mz = αi

�
Afs

μ0h0w (∂rw + h0zzw − h0z∂zw) dϕ dz, (5.8d)

I =
5 

j=1

Ij = −
�

Vi

ρ0

�
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

�
dV , (5.8e)

B = −
�

Vi

ρ �
0Tgw dV , (5.8f)

KG = −1 − αi

4

�
Aout

ρ0w2w0 dS, (5.8g)

�ρ = −
�

Vi

ρ �
0Tu · (u0 · ∇u0) dV +

�
Vi

ζ

�
p − 1

3
μ0ζ

�
dV , (5.8h)

�μ =
�

Vi

μ�
0u · [S + (∇u)T] · ∇T0 dV +

�
Vi

(μ�
0 + μ��

0T0)u · [S0 + (∇u0)
T] · ∇T dV

−
�

Vi

μ�
0T(∇u0):(∇u) dV + αi

�
Afs

μ�
0wT

�
N2∂rw0 − N2h0z∂zw0 − h2

0zh0zzw0

�
dϕ dz, (5.8i)

�ρμ = −
�

Vi

μ�
0ζ0

�
1

3
Tζ + u · ∇T

�
dV −

�
Vi

�
μ�

0ζ + μ��
0T

�
u · ∇T0 dV , (5.8j)

and

ζ0 = ∇ · u0 = −ρ �
0

ρ0

u0 · ∇T0, (5.9a)

ζ = ∇ · u = − 1

ρ0

�
ρ �

0u · ∇T0 + ρ �
0∂tT + ∇ · (ρ �

0u0T)
�

, (5.9b)

S0 = ∇u0 + (∇u0)
T, (5.9c)

S = ∇u + (∇u)T. (5.9d)

As before, the index i indicating the phase (liquid or gas) has been suppressed for the thermophysical
properties.

The terms (5.8a)–(5.8e) are the known terms for an incompressible flow and constant material prop-
erties [16]. Dkin denotes the viscous dissipation, I the kinetic energy production including effects like,
for example, the lift-up process, and Mr, Mϕ and Mz represent the work per time done by thermocapil-
lary forces on the interface Afs in the radial, azimuthal and axial direction, respectively. The well-known
buoyancy production term B also enters the kinetic energy budget within the Boussinesq approximation.
KG represents the advection with the basic flow of perturbation kinetic energy through the outlet of the
gas Aout. It vanishes for a closed container holding the gas (w0|Aout = 0). Note we assume that no pertur-
bation momentum is introduced by advection through the inlet of the gas. The new terms (5.8h)–(5.8j)
arise due to the temperature dependence of the material parameters. �ρ and �μ vanish, if ρ = const. or
μ = const., respectively, while �ρμ vanishes if either ρ = const. or μ = const.
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6. Discussion
The orders of magnitude of the terms arising in the energy budgets (4.8) and (5.7) depend on the physic-
ochemical properties of the two fluids as well as on their variability. To estimate the effect of fully
temperature-dependent (FTD) properties on the linear stability boundary, we compare the results com-
puted with those obtained using the Oberbeck–Boussinesq approximation (OB) in which all material
parameters are assumed constant except for the density in the buoyancy term ρg of (3.1b), which is
considered up to first order in T̂ − T̄ .

By considering a Taylor expansion up to first order around the reference values, Gray and Giorgini [3]
found that a deviation of 5% of the thermophysical parameters from the value at the reference temper-
ature is an acceptable tolerance to use the OB approximation. Here we make the same assumption, but
keep the higher-order terms of the Taylor expansion. The condition that the absolute relative deviation
of any quantity f ∈ {ρ, λ, cp, μ} from its value at the reference temperature is less than or equal to the
threshold value ξ/2 = 0.05 leads to,,,,, f (T̂) − f (T̄)

f (T̄)

,,,,, =
,,,, f �(T̄)

f (T̄)
(T̂ − T̄) + 1

2

f ��(T̄)

f (T̄)
(T̂ − T̄)2 + . . .

,,,, ≤ ξ

2
, (6.1)

where T̂ can be any temperature arising in the system, bounded by T̄ ± �T/2. Assuming f (T̂) is a
monotonic function and using the algebraic mean temperature T̄ as the reference temperature (as in Gray
and Giorgini [3]), we consider the extreme case when T̂ − T̄ = ±�T/2. Then we get the restriction of
the maximum tolerable relative deviation from the reference value

ψf := max

,,,,± f �(T̄)

f (T̄)
�T + 1

4

f ��(T̄)

f (T̄)
�T2 ± . . .

,,,, ≤ ξ . (6.2)

In lowest order and for ξ = 0.1, we recover the criterion of Gray and Giorgini [3]. If the series is truncated
at second order, we obtain (�T > 0)

ψf = ψ I
f + ψ II

f =
,,,, f �(T̄)

f (T̄)

,,,, �T + 1

4

,,,, f ��(T̄)

f (T̄)

,,,, �T2 ≤ ξ . (6.3)

Therefore, if the second-order contribution ψ II
f is significant, the criterion of Gray and Giorgini [3] is

tightened.
If, instead of the OB approximation, a linearised model for a quantity f is used, it makes sense to

ensure that the relative deviation of the quantity f due to its second-order variation from the linear
model is sufficiently small. Assuming a threshold of ξ/2 = 0.05 as in Gray and Giorgini [3], this leads
to the condition ,,,,,,

f (T̂) −
�
f (T̄) + f �(T̄)(T̂ − T̄)

�
f (T̄) + f �(T̄)(T̂ − T̄)

,,,,,, = 1

2

,,,,, f ��(T̄)(T̂ − T̄)2 + . . .

f (T̄) + f �(T̄)(T̂ − T̄)

,,,,, ≤ ξ

2
. (6.4)

Assuming a monotonic variation with T̂ , by setting T̂ − T̄ = ±�T/2 as above, and by neglecting cubic
terms, we obtain

1

4

,,,, f ��(T̄)�T2

f (T̄) ± f �(T̄)�T

,,,, = 1

4

,,,, [f ��(T̄)/f (T̄)]�T2

1 ± [f �(T̄)/f (T̄)]�T

,,,, = ψ II
f,,1 ± [f �(T̄)/f (T̄)]�T

,, ≤ ξ , (6.5)

Maximising the left-hand side, we get the condition

ψ II
f,,1 − ψ I

f

,, ≤ ξ . (6.6)

It is well known that in experiments on thermocapillary liquid bridges even the first-order bound
ψ I ≤ 0.1 provided by Gray and Giorgini [3] can be violated by the viscosity (f = μ). Therefore, the
dependence of the liquid viscosity on the temperature has already been taken into account up to first order
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Table 1. Thermophysical reference quantities of 2-cSt silicone oil and air at 25◦C
Property Dimension KF96L-2cs Air
density ρ̄ [kg/m3] 873.25 1.1837
dynamic viscosity μ̄ [Pa s] 1.7465 × 10−3 1.8460 × 10−5

thermal conductivity λ̄ [W/(mK)] 0.10904 2.6374 × 10−2

specific heat c̄p [J/(kgK)] 1800.8 1005.7
surface tension σ̄ [N/m] 18.3 × 10−3

surface tension coefficient γ [N/(mK)] 7 × 10−5

in the stability analysis of Kozhoukharova et al. [7] (PrL = μ̄Lc̄pL/λ̄L = 4). In their numerical simulations
for PrL ∈ [1, 5] Melnikov et al. [13] found a significant impact of the linear temperature dependence of
the viscosity on the linear stability boundary.

Since the functional dependence of the thermophysical properties on the temperature is not restricted
in our investigation, also the effect of a higher-order temperature dependence is of interest. It is difficult,
however, to quantify the effect of the FTD approach on the stability boundary without specifying the
fluids, owing to the wide range of different fluids employed for liquid bridges. Therefore, we focus on
two different cases: a high- and a low-Prandtl-number liquid bridge being heated from above.

6.1 High-Prandtl-number instability

Linear stability analyses have been carried out for the following setting. The length and radius of the
liquid bridge are d = 1.65 mm and R = d/�, respectively, where � = 0.66 is the aspect ratio. The liquid
is 2-cSt silicone oil (KF96L-2cs, Shin-Etsu Chemical, Co., Ltd., Japan) which has a Prandtl number of
PrL = 28.84 at the arithmetic mean (reference) temperature T̄ = 25◦C. The discrete data of ρL, λL and
cpL for 2-cSt silicone oil provided by Shin-Etsu [24] have been fitted by least-squares to polynomials
of second order. A low polynomial order is used to avoid non-physical oscillations. Since the manufac-
turer does not specify the temperature dependence of the surface tension, we have to stick to the linear
dependence provided in Romanò et al. [20] (see Table 1). The function μL(T̂) is constructed from the
exponential temperature dependence of the kinematic viscosity as in Ueno et al. [31] and by a quadratic
fit of the density. The volume ratio of the liquid is kept constant at V = VL/πR2d = 0.9. The liquid bridge
is placed in a wide test chamber filled with air and confined by no-penetration (wG ≡ 0) adiabatic walls.
The temperature dependence of the properties of the gas is based on explicit formulae of VDI Heat Atlas
[32]. The reference values of all physical properties are given in Table 1 for both working fluids. The
geometry of the test chamber (subscript tc) is defined through the radius ratio η = Rtc/R = 4, and the
total height of the gas space is dtc = 3.65 mm within which the liquid bridge is positioned coaxially and
vertically centred. Further details on the numerical methods and the explicit temperature dependence of
the fluid properties will be provided in Stojanović et al. [28].

Fixing T̄ = 25◦C, the condition (6.3) can be rewritten in terms of maximum allowable temperature
differences for the OB approximation. Truncating (6.2) after the first and second order, we define the
temperature thresholds (symmetric about T̄), respectively, as

�T I
OB := ξ

,,,,, f̄

f̄ �

,,,,, and �T II
OB := 2

�
|f̄ �|2 + ξ |f̄ ��||f̄ | − |f̄ �|

|f̄ ��| , (6.7)

where f̄ = f (T̄), f̄ � = f �(T̄) and f̄ �� = f ��(T̄). Similarly, the temperature limit of validity for a model
accounting for linearly temperature-dependent (LTD) properties can be derived by solving (6.6) for
�T to yield
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Table 2. Maximum allowable temperature differences �T I
OB, �T II

OB and �TLTD based on a
tolerance of ξ = 0.1 and a reference temperature of T̄ = 25◦C for different thermophysical
parameters. �T I

OB and �T II
OB represent the validity thresholds for the applied temperature

difference when using the OB approximation and assuming a first-order (up to linear) or,
respectively, a second-order (up to quadratic) dependence of the thermophysical quantity on
the temperature. �TLTD is the validity threshold when using the linear temperature model
(LTD). All temperature differences are given in Kelvin for 2-cSt silicone oil (L) and air (G)
f i �T I

OB �T II
OB �TLTD i �T I

OB �T II
OB �TLTD

ρ L 91.9 89.3 395.7 G 29.8 28.5 106.8
λ L 38.4 38.4 365.5 G 35.1 34.7 218.3
cp L 121.8 121.6 1096 G 1601 578.0 706.9
μ L 4.8 4.6 20.2 G 37.9 37.4 213.8

�TLTD :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2ξ

|f̄ �|
|f̄ ��| + 2

�
ξ

|f̄ |
|f̄ ��| + ξ 2

|f̄ �|2

|f̄ ��|2
, ψ I

f < 1,

2ξ
|f̄ �|
|f̄ ��| − 2

�
−ξ

|f̄ |
|f̄ ��| + ξ 2

|f̄ �|2

|f̄ ��|2
, ψ I

f > 1.

(6.8)

The temperature differences �T I
OB, �T II

OB and �TLTD are assigned to each thermophysical property of
each phase, and they are given in Table 2 for ξ = 0.1. The most severe restriction of �T for the validity
of the OB approximation is imposed by the condition ψ I

μL + ψ II
μL < 0.1, not allowing �T to exceed

�T II
OB = 4.6 K. Furthermore, temperature differences greater than 20.2 K would violate condition (6.6)

on the viscosity of the liquid. In this case, assuming a linear dependence μL(T̂) ∼ (T̂ − T̄) would not
be sufficient to accurately describe the flow inside the liquid bridge. Besides, the criteria ψ II

f on cpL and
cpG get violated for �T > 121.6 K and �T > 578 K, respectively. The latter condition is unrealistic and
could only be realised by a phase change.

In addition, a minimum temperature difference �Tmin = 10χ T̄ can be obtained from the first condition
of (3.3), which is required to justify the omission of the pressure work in (3.1c). For the present liquid and
gas, this condition certainly holds true at T̄ = 25◦C, since the minimum required temperature differences
are negligibly small with �Tmin,L = 2 × 10−6 K and �Tmin,G = 10−5 K, respectively. The second condition
of (3.3) does not involve �T , but rather turns into a condition for the length of the liquid bridge, which
is d ≤ 585 m in the present case. Thus, neglecting viscous dissipation in (3.1c) is also reasonable for
liquid bridges, which confirms the validity of (3.1c).

In Table 3, we compare the critical temperature differences of the linear stability analyses for different
approximations of the governing equations. The linear stability boundary for the onset of hydrothermal
waves obtained by the present FTD approach is taken as a reference. It is compared with the result
obtained using the OB approximation. To demonstrate the effect of the temperature dependence on the
stability boundary of a single thermophysical property, we also combine the OB approximation with the
temperature dependence of only one property at a time, keeping the remaining thermophysical properties
at their reference values. For instance, within the approximation ‘OB + ρ(T̂)’ the temperature depen-
dence of the fluid densities is taken into account in all the governing equations (3.1a)–(3.1c). From
Table 3, it is seen that critical Reynolds number Rec = Mac/PrL = γ d�Tcρ̄L/μ̄

2
L for the OB approx-

imation deviates strongly (by �c = 24.7%) from the reference result (FTD). The main reason is that
the relatively large change of the liquid viscosity in the range T̄ ± �Tc/2 is not taken care of by the
OB approximation, resulting in strongly violated conditions with ψ I

μL = 1.16 and ψ I
μL + ψ II

μL = 1.59.
Given the exponential behaviour of μL(T̂), also condition (6.6) gets violated for �Tc = 55.5 K with
ψ II

μ
/|1 − ψ I

μ
| = 2.8. Other than that, the OB approximation slightly fails to satisfy the conditions for

ψ I
λL = 0.14, ψ I

λG = 0.16, ψ I
ρG = 0.19 and ψ I

μG = 0.15. This explains why the critical Reynolds number
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Table 3. Critical temperature difference �Tc and critical Reynolds number Rec =
γ ρ̄L�Tcd/μ̄2

L for a slender liquid bridge with � = 0.66 and V = 0.9 made of 2-cSt
silicone oil (see text). Results are given for different approximations. For all models,
the critical wave number is mc = 3. The relative deviation �c = (Rec − ReFTD

c )/ReFTD
c

is given in [%]
Approximation �Tc [K] Rec �c [%]
FTD 44.49 1471 0
OB 55.50 1835 24.7
OB + ρ(T̂) 54.63 1806 22.8
OB + λ(T̂) 54.33 1797 22.1
OB + cp(T̂) 54.28 1795 22.0
OB + μ(T̂) 45.60 1509 2.5

(a) (b)

Figure 2. Temperature and velocity distributions of the basic state for �T = 44.49 K along the free
surface (a) and across the midplane at z = 0 mm (b). Solid lines: FTD approach. Dashed lines: OB
approximation. In (a), ut0 = t · u0 denotes the tangential velocity, where t is the unit vector tangent to the
interface. The vertical black dashed line in (b) represents the position of the interface h0(z = 0).

for the case ‘OB + μ(T̂)’ is the best approximation to the reference value ReFTD
c . The small deviation

of 2.5% from FTD is due to the remaining approximations made. In contrast, the relative error in Rec

of �c ≈ 22% with respect to the FTD model is very large if, instead, the model accounts for the full
temperature dependence of only ρ, λ or cp at a time.

The question arises as to why the critical Reynolds number using the OB approximation is larger than
the one for the FTD approach. Inspecting both basic flows in Figure 2, it seems that the dimensional
basic flow fields for �T = 44.49 K do not differ much. The main differences concern the higher plateau
temperature (full red line in Figure 2(a)) and the faster surface velocity (full blue line in Figure 2(a),
in particular for z > 0) for the FTD model as compared to the OB approximation. These deviations are
caused by a liquid viscosity μ[T0(r, z)] which is reduced in the hotter regions with T0(r, z) > T̄ from the
constant reference viscosity μ̄L in the OB approximation. The relative local viscosity deviation in the
liquid (subscript L)

�μL = μL[T0(r, z)] − μ̄L

μ̄L
. (6.9)

is illustrated by colour in Figure 3(a). In the FTD model, the local viscosity is more than 60% larger than
nominal near the cold wall, whereas near the hot wall and the free surface it is up to 30% smaller than
nominal. The reduced viscosity near the hot wall and along the free surface provides less resistance to
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(a) (b)

Figure 3. Basic state (a) and critical mode (b) for �T = 44.49 K using the FTD model. (a) Local devi-
ation of the viscosity �μL = [μL(r, z) − μ̄L]/μ̄L (colour) and streamlines (full white lines) in the liquid.
The dashed white lines show streamlines obtained with the OB approximation. (b) Critical velocity field
(arrows) and critical temperature field (colour) for mc = 3 in the (r, z) plane in which the local ther-
mal production j1 + j2 = −ρ0Tu · ∇(cp0T0) takes one of its maxima (white crosses in (a, b) located at
(r, z) = (1.73, 0.28) mm) in the bulk. Black lines indicate isotherms of the basic state.

the flow such that the basic vortex for the FTD model is stronger than for the OB approximation. This is
confirmed by the equidistant streamlines in Figure 3(a), where the full/dashed white lines correspond to
the FTD/OB model obtained for the same temperature difference. From Figure 3(b), the critical mode
arises in the region where the basic temperature gradients are large, and extends further into the region
μL < μ̄L of lower viscosity. This is confirmed by the loci of maximum thermal production (white crosses
in Figure 3) in a region of slightly reduced viscosity μL < μ̄L.

These properties favour the instability by two mechanisms: (a) The stronger basic vortex leads to
larger internal temperature gradients in the upper half of the liquid bridge. Therefore, the hydrothermal
wave can extract more energy from the basic temperature field than in the case of the OB model. (b)
The perturbation vortices which created the temperature perturbations of the hydrothermal wave arise
in a region of reduced viscosity and experience less resistance. For these reasons, the critical Reynolds
number for the FTD model is significantly lower than for the OB approximation.

To study the instability mechanism itself, we investigate the budget of the thermal perturbation energy
which is crucial for the present hydrothermal wave instability and typical for high-Prandtl-number liq-
uids [25, 27, 33]. Figure 4 shows the main contributions to the integral thermal energy budget of the
critical mode for the liquid phase (a) and for the gas phase (b). The tilde indicates that the quantities have
been normalised by the dissipation term Dth, as usual. The integral rates of change of thermal energy
by the most important transfer processes are almost identical among the FTD method (red) and the OB
approximation (blue). This is consistent with the integral contributions �̃ρ , �̃cp and �̃λ to the thermal
energy budget being very small in the present FTD approximation (Table 4). They are thus negligi-
ble. Within the OB approximation, they vanish by definition. Therefore, the temperature dependence
of the material parameters does not alter the general instability mechanism discussed, for example, in
Stojanović et al. [27]. Note the close agreement of the energy budgets between the FTD and OB mod-
els on the stability boundary does not preclude different critical Reynolds numbers, as the terms in the
energy budgets are only relative (normalised) quantities.

6.2 Low-Prandtl-number instability

For low-Prandtl-number liquids, the instability mechanism is inertial and the critical mode is stationary
[33]. In that case, the kinetic energy budget of the perturbation flow is relevant for the instability. As an
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Table 4. Minor contributions to the thermal energy budgets of the critical mode for the
FTD approach

i �̃ρ �̃λ �̃cp ∂tẼ�
T

L 1.5 × 10−4 −3.1 × 10−4 −1.2 × 10−4 −1.8 × 10−8

G −1.4 × 10−3 4.0 × 10−3 3.6 × 10−5 −2.2 × 10−11

(a) (b)

Figure 4. Main contributions to the thermal energy budget of the critical mode in the liquid phase
(a) and the gas phase (b). Results are given for the OB approximation (blue) and FTD approach (red).
J1 and J2 are defined in (4.9b).

example, we consider a liquid bridge made of molten tin and use the reference temperature T̄ = 250◦C
which is slightly above the melting temperature Tm = 231.97◦C [21]. Thus, the Prandtl number is PrL =
0.0185. The functional dependence of the thermophysical properties of molten tin on the temperature is
taken from Gancarz et al. [1] and Savchenko et al. [21], either through explicitly given correlations or
by fitting quadratic polynomials to tabulated data. Since buoyancy plays a lesser role for low-Prandtl-
number liquids [16], we assume weightlessness conditions. Moreover, we select � = V = 1 which allows
for a comparison of the critical parameters with data from the literature. The length of the liquid bridge,
the chamber geometry, the boundary conditions, and the gas are the same as for the high-Prandtl-number
liquid bridge from Section 6.1.

The main contributions, normalised by Dkin, to the kinetic energy budgets of the critical modes are
shown in Figure 5 for both approximations FTD (red) and OB (blue). The tilde sign is here employed to
denote the terms of the kinetic energy budget normalised by Dkin. Both methods yield almost the same
result, which is consistent with the kinetic energy budget obtained by Wanschura et al. [33]. This is
consistent with Table 5 , where the obtained critical temperature differences safely fall into the validity
range of the OB approximation given in Table 6. Note that increasing the reference temperature to
T̄ = 500◦C leads to an extension of the validity range as the variability of the viscosity decreases for
higher reference temperatures. Owing to the extremely small dynamic surface deformations, the radial
Marangoni production terms M̃r, M̃r,G < 10−4 are negligible. The production due to buoyancy B̃ vanishes
by definition and, for the closed chamber considered, K̃G = 0. It is clear from Figure 5(a) that most
kinetic energy is produced by the inertial process described by Ĩ4 with the work done by Marangoni
forces (mainly M̃ϕ) being very small. As can be seen from Figure 5(b), practically no inertial energy
production takes place in the gas phase (Ĩ1,G, . . . , Ĩ5,G < 10−2). The perturbation flow in the gas is driven
by axial (M̃z,G) and mainly azimuthal thermocapillary forces (M̃ϕ,G), but the produced kinetic energy is
readily dissipated (D̃kin,G). Thus, in the present two-phase system, the gas phase only plays a passive
role for the instability mechanism. This also holds true for high-Prandl-number liquids [27]. Owing
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Table 5. Critical temperature differences and Reynolds numbers for the first instability in
a liquid bridge made from tin at T̄ = 250◦C with PrL = 0.0185, � = 1 and V = 1. For the
other parameters, see the text. Results are given for different approximations. The critical
Reynolds number of Wanschura et al. [33] was obtained by linear interpolation of their data
for different PrL (their table 3)
Approximation �Tc [K] Rec

FTD 7.06 2033
constant properties (OB) 7.15 2057
[33] 2038

Table 6. Validity ranges �T ≤ �T I
OB(T̄) and �T ≤ �T II

OB(T̄) of the OB approximation for
each thermophysical property of molten tin at T̄ = 250◦C and at T̄ = 500◦C, respectively,
using ξ = 0.1. All temperature differences are given in K
f �T I

OB(250◦C) �T II
OB(250◦C) �T I

OB(500◦C) �T II
OB(500◦C)

ρL 1074 1074 1049 1049
λL 100.8 100.8 125.8 125.8
cpL 311.7 242.1 1223 574.4
μL 30.3 28.8 66.2 62.2

(a) (b)

Figure 5. Main contributions to the kinetic energy budgets of the critical modes assuming constant
properties (OB approximation) and fully temperature-dependent fluid properties (FTD). (a) Liquid
phase. (b) Gas phase. I1 to I5 are defined in (5.8e).

to the small critical temperature difference �Tc, the new contributions (5.8h)–(5.8j) remain negligibly
small.

7. Conclusions
Variable material properties are important in high-Prandtl-number liquid bridges, because the temper-
ature difference is typically large such that the viscosity can vary over a wide range. This variation
is particularly important for very small-scale liquid bridges for which the critical temperature dif-
ference �Tc ∼ d−1 must be even larger. In that case, there is some ambiguity (through the reference
temperature) in defining the Reynolds, Prandtl and Marangoni numbers, and the critical Reynolds
numbers for different approximations of the governing equations may deviate significantly. The
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dependence of the critical Marangoni number on the choice of the reference temperature has already
been noted by Melnikov et al. [13] who demonstrated that using the cold wall temperature as the refer-
ence temperature, T̄ = Tcold, leads to a significant reduction of the critical Marangoni number (depending
on the amount of variation of the viscosity) as compared to when the mean temperature is used as a ref-
erence. While using T̄ = Tcold is convenient from an experimental point of view, because �Tc is initially
unknown and the reference Prandtl number does not depend on the (varying) temperature difference, it
is not so well suited to correlate the critical Marangoni numbers for different experimental realisations
with different critical temperature differences.

Another aspect is the use of the OB approximation beyond its strict range of validity. Even when using
the algebraic mean temperature to define the reference material parameters [7], the critical Reynolds
number can still significantly depend on the approximation made. It was shown that in the high-Prandtl-
number case considered, higher-order variations of the liquid’s viscosity need to be taken into account
beyond a certain value for �T . On the other hand, it is more than sufficient to assume a linear dependence
of ρ and λ on T̂ for silicone oil and for air near room temperature. Moreover, the temperature dependence
of cpL and cpG is negligible. Finally, we note that the free surface temperature depends on the thermal
conditions in the gas phase. For instance, a weak forced axial gas flow can strongly affect the critical
conditions [2, 6, 30, 35, 37].

In the future, it would be interesting to investigate the linear stability of very small-scale liquid bridges
under extreme temperature gradients. In this case, the model needs to be extended by including the effects
of evaporation to correctly describe the physics close to the liquid’s boiling temperature.
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Appendix A: Integral thermal energy budget
The integral version of the rate of change of thermal energy is obtained by integrating all terms of (4.6),
T1 through T8, over the volume Vi.

T1
Integrating T1 over the volume yields�

Vi

T1 dV =
�

Vi

ρ0cp0T∂tT dV = 1

2

�
Vi

ρ0cp0∂tT
2 dV := ∂tET . (A1)

T2
The term T2 can be written as

T2 = 1

2
(ρ �

0cp0 + ρ0c�
p0)T0∂tT

2. (A2)
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Since the first term on the r.h.s. of (A2) is compensated by the same term but with the opposite sign in
T6, we are left with �

Vi

T2’ dV = 1

2

�
Vi

T0ρ0c�
p0∂t(T

2) dV := ∂tE
�
T , (A3)

where T2’ represents T2 except for the cancelled term.

T3
With

T3 = T∇ · (ρ �
0cp0T0u0T) = ∇ · �ρ �

0cp0T0u0T2
� − ρ �

0cp0T0u0T · ∇T (A4)

the volume integral yields�
Vi

T3 dV =
�

∂Vi

ρ �
0cp0T0T2u0 · n dS −

�
Vi

ρ �
0cp0T0Tu0 · ∇T dV . (A5)

Taking advantage of the coefficient αi defined in (4.7), we obtain�
Vi

T3 dV = 1 − αi

2

�
Aout

ρ �
0cp0T0T2w0 dS − 1

2

�
Vi

ρ �
0cp0T0u0 · ∇T2 dV . (A6)

Note that the velocity and temperature perturbations vanish at the chamber inlet owing to the prescribed
velocity and temperature profile for the basic state.

T4
Integrating

T4 = T∇ · (ρ0c�
p0T0u0T) = ∇ · �ρ0c�

p0T0u0T2
� − ρ0c�

p0T0u0T · ∇T (A7)

over the volume yields�
Vi

T4 dV =
�

∂Vi

ρ0c�
p0T0T2u0 · n dS −

�
Vi

ρ0c
�
p0T0Tu0 · ∇T dV

= 1 − αi

2

�
Aout

ρ0c
�
p0T0T2w0 dS − 1

2

�
Vi

ρ0c
�
p0T0u0 · ∇T2 dV . (A8)

T5
The term T5 can either be written as

T5 = T∇ · (ρ0cp0Tu0) = ∇ · (ρ0cp0T2u0) − ρ0cp0Tu0 · ∇T

= ∇ · (ρ0cp0T2u0) − ρ0Tu0 · ∇(cp0T) + ρ0T2u0 · ∇cp0 (A9)

or as

T∇ · (ρ0cp0Tu0) = cp0T2∇ · (ρ0u0)� �� �
=0

+ρ0Tu0 · ∇(cp0T), (A10)

where the first term on the r.h.s. vanishes because of (3.9a). Combining (A9) and (A10) leads to

2T∇ · (ρ0cp0Tu0) = ∇ · (ρ0cp0T2u0) + ρ0T2u0 · ∇cp0. (A11)

Making use of the chain rule yields

T∇ · (ρ0cp0Tu0) = 1

2
∇ · (ρ0cp0T2u0) + 1

2
ρ0c�

p0T2u0 · ∇T0. (A12)
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Finally, by integrating over the volume, we obtain�
Vi

T5 dV = 1

2

�
∂Vi

ρ0cp0T2u0 · n dS + 1

2

�
Vi

ρ0c�
p0T2u0 · ∇T0 dV

= 1 − αi

4

�
Aout

ρ0cp0T2w0 dS + 1

2

�
Vi

ρ0c�
p0T2u0 · ∇T0 dV

= −KG,th + 1

2

�
Vi

ρ0c�
p0T2u0 · ∇T0 dV . (A13)

T6
Transforming the term T6 to

T6 = T∇ · (ρ0cp0T0u) = ρ0Tu · ∇(cp0T0) + cp0T0T∇ · (ρ0u) (A14)

and inserting (3.9b) into (A14) gives us

T∇ · (ρ0cp0T0u) = ρ0Tu · ∇(cp0T0) − cp0T0T∇ · (ρ �
0Tu0) − cp0ρ

�
0T0T∂tT

= ρ0T
�
u∂r(cp0T0) + w∂z(cp0T0)

� − cp0T0T∇ · (ρ �
0Tu0)

− 1

2
cp0ρ

�
0T0∂tT

2, (A15)

where the last term in (A15) cancels with the same term but with the opposite sign in (A1). Integrating
over the volume, we remain with�

Vi

T6’ dV =
�

Vi

ρ0T
�
u∂r(cp0T0) + w∂z(cp0T0)

�
dV −

�
Vi

cp0T0T∇ · (ρ �
0Tu0) dV

= −J −
�

Vi

cp0T0T∇ · (ρ �
0Tu0) dV

= −J −
�

Vi

cp0ρ
��
0 T0T2u0 · ∇T0 dV −

�
Vi

cp0ρ
�
0T0T2∇ · u0 dV

−
�

Vi

cp0ρ
�
0T0Tu0 · ∇T dV , (A16)

where T6’ represents T6 except for the cancelled term. Using (3.9a), we finally find�
Vi

T6’ dV = −J +
�

Vi

�
ρ0

�2

ρ0

− ρ ��
0

�
cp0T0T2u0 · ∇T0 dV − 1

2

�
Vi

ρ �
0cp0T0u0 · ∇T2 dV . (A17)

T7
Integrating

T7 = T∇ · (λ�
0T∇T0) = ∇ · (λ�

0T
2∇T0) − λ�

0T∇T0 · ∇T (A18)

over the volume yields�
Vi

T7 dV = αi

�
As

λ�
0T

2∇T0 · n dS − 1

2

�
Vi

λ�
0∇T0 · ∇T2 dV . (A19)

T8
Finally, integrating

T8 = T∇ · (λ0∇T) = ∇ · (λ0T∇T) − λ0(∇T)2 (A20)
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over the volume, we obtain�
Vi

T8 dV = αi

�
Afs

λ0T∇T · n dS −
�

Vi

λ0(∇T)2 dV := Hfs − Dth. (A21)

Appendix B: Integral kinetic energy budget
As done for the thermal energy budget, the ten terms identified in the rate of change of the kinetic energy
density (5.6) are integrated over the volume one by one.

K1
Integrating the term

K1 = ρ0u∂tu = 1

2
ρ0∂tu2 (B1)

over the volume Vi yields �
Vi

K1 dV = 1

2

�
Vi

ρ0∂tu2 dV := ∂tEkin. (B2)

K2
The term

K2 = ρ �
0u0 · u∂tT (B3)

cancels with the first term on the r.h.s. of (B6).

K3
Using the Einstein notation (l, m, n) for expanding the terms in braces of K3, we get

∇ · [ρ0(u0u + uu0)]

= ∂m(ρ0u0lum + ρ0ulu0m) = ∂m(ρ0u0lum) + ∂m(ρ0ulu0m)

= u0l∂m(ρ0um) + ρ0um∂mu0l + ul∂m(ρ0u0m) + ρ0u0m∂mul

= u0∇ · (ρ0u) + ρ0u · ∇u0 + u ∇ · (ρ0u0)� �� �
=0

+ρ0u0 · ∇u, (B4)

where the second-last term vanishes due to the continuity equation (3.9a) at O(�0). Inserting (3.9b) into
(B4) leads to

∇ · [ρ0(u0u + uu0)] = −ρ �
0u0∂tT − u0∇ · (ρ �

0Tu0) + ρ0u · ∇u0 + ρ0u0 · ∇u. (B5)

Scalar multiplication with u yields

K3 = u · {∇ · [ρ0(u0u + uu0)]} = −ρ �
0u0 · u∂tT − (u · u0)∇ · (ρ �

0Tu0) (B6)
+ ρ0u · (u · ∇u0) + ρ0u · (u0 · ∇u),
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where the first term on the r.h.s. is compensated with K2. Furthermore, the second term on the r.h.s.
cancels with the last term in (B13) for K4. It remains

K3’ = ρ0u · (u0 · ∇u) + ρ0u · (u · ∇u0)

= 1

2
ρ0u0 · ∇u2 + ρ0u · (u · ∇u0)

= 1

2
∇ · (ρ0u0u2) − 1

2
u2 ∇ · (ρ0u0)� �� �

=0

+ρ0u · (u · ∇u0), (B7)

where K3’ represents K3 without the cancelled terms. The second term in K3’ vanishes due to the
continuity equation in O(�0). Expressing

∇u0 =
⎛⎝∂ru0 0 ∂zu0

0 u0/r 0
∂rw0 0 ∂zw0

⎞⎠ (B8)

through the components of basic velocity field, we obtain

K3’ = 1

2
∇ · (ρ0u0u2) + ρ0

�
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

�
. (B9)

By integration over the volume, we get�
Vi

K3’ dV = 1

2

�
∂Vi

ρ0u2u0 · n dS

+
�

Vi

ρ0

�
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

�
dV . (B10)

Finally, using αi from (4.7), we arrive at�
Vi

K3’ dV = 1 − αi

4

�
Aout

ρ0w
2w0 dS

+
�

Vi

ρ0

�
u0

v2

r
+ u2∂ru0 + uw∂zu0 + uw∂rw0 + w2∂zw0

�
dV

:= −KG −
5 

j=1

Ij := −KG − I. (B11)

K4
We use the index notation for expanding the part in square brackets of K4

∇ · (ρ �
0Tu0u0) = ∂m(ρ �

0Tu0lu0m) = u0l∂m(ρ �
0Tu0m) + ρ �

0Tu0m∂mu0l

= u0∇ · (ρ �
0Tu0) + ρ �

0Tu0 · ∇u0. (B12)

After taking the dot product with u, we obtain

u · �∇ · (ρ �
0Tu0u0)

� = ρ �
0Tu · (u0 · ∇u0) + (u · u0)∇ · (ρ �

0Tu0). (B13)

As aforementioned, the last term in (B13) compensates with one of the terms of K3 in (B6). Using
u0 · ∇u0 in components

u0 · ∇u0 =
⎛⎜⎝∂ru0 0 ∂zu0

0
u0

r
0

∂rw0 0 ∂zw0

⎞⎟⎠ ·
⎛⎝u0

0
w0

⎞⎠ =
⎛⎝ u0∂ru0 + w0∂zu0

0
w0∂zw0 + u0∂rw0

⎞⎠ , (B14)
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and integrating over the volume yields�
Vi

K4’ dV =
�

Vi

ρ �
0Tu · (u0 · ∇u0) dV

=
�

Vi

ρ �
0u0 (u∂ru0 + w∂rw0) dV +

�
Vi

ρ �
0w0 (u∂zu0 + w∂zw0) dV . (B15)

K5
The term K5 can be written as

K5 = u · ∇p = ∇ · (pu) − p∇ · u. (B16)

Using the continuity equation in O(�) (3.9b), we can express

∇ · u = − 1

ρ0

�
u · ∇ρ0 + ρ �

0∂tT + ∇ · (ρ �
0u0T)

�
= − 1

ρ0

�
ρ �

0u · ∇T0 + ρ �
0∂tT + ∇ · (ρ �

0u0T)
�

:= ζ , (B17)

where the abbreviation ζ indicates the deviations from a solenoidal perturbation flow, which is primarily
determined by the temperature dependence of ρ. Inserting (B17) in (B16) gives�

Vi

K5 dV =
�

∂Vi

pu · n dS� �� �
=0

−
�

Vi

ζp dV . (B18)

Note that the integrand in the first integral of (B18) vanishes at the chamber outlet because of the van-
ishing pressure perturbation. It also vanishes on the walls, at the inlet and along the axis because of the
vanishing normal velocity perturbation.

K6
Integrating

K6 = ρ �
0Tu · g = −ρ �

0Tgw (B19)

over the volume yields �
Vi

K6 dV = −
�

Vi

ρ �
0Tgw dV := B. (B20)

K7
Considering the terms in the braces of K7

∇ · {μ0

�∇u + (∇u)T
�} = μ0∇ · �∇u + (∇u)T

� + �∇u + (∇u)T
� · ∇μ0 (B21)

and using the index notation, the first term on the r.h.s. of (B21) can be written as

∇ · �∇u + (∇u)T
� = ∂l (∂lum + ∂mul) = ∂l∂lum + ∂m∂lul = �u + ∇(∇ · u). (B22)

Thus, (B21) turns into

∇ · {μ0

�∇u + (∇u)T
�} = μ0�u + μ0∇(∇ · u) + �∇u + (∇u)T

� · ∇μ0. (B23)
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Scalar multiplication of (B23) with the perturbation velocity field u, we can express the term K7 as

K7 = u · �∇ · �μ0

�∇u + (∇u)T
� 



= μ0u · �u� �� �
K7a

+ μ0u · ∇(∇ · u)� �� �
K7b

+ u · �∇u + (∇u)T
� · ∇μ0� �� �

K7c

. (B24)

The three terms K7a, K7b and K7c are considered separately. Using the index notation, the integral over
the term K7a can be written as�

Vi

K7a dV =
�

Vi

μ0ul∂m∂mul dV

= αi

�
Afs

μ0ulnm∂mul dS� �� �
:=M

−
�

Vi

μ0(∂mul)
2 dV +

�
Vi

ul(∂mμ0)(∂mul) dV

= −
�

Vi

μ0(∂mul)
2 dV + M +

�
Vi

ul(∂mul)(∂mμ0) dV

= −
�

Vi

μ0(∂mul)
2 dV + Mr + Mϕ + Mz

− αi

�
Afs

μ0(h0w2h0zz − v2) dϕ dz +
�

Vi

μ�
0u · (∇u)T · ∇T0 dV . (B25)

Identifying the terms that characterise the kinetic energy dissipation Dkin and the energy transfer due to
thermocapillary stresses in r-, ϕ- and z-direction (see Mr, Mϕ , and Mz, respectively), we obtain�

Vi

K7a dV = −Dkin + Mr + Mϕ + Mz + 1

2

�
Vi

μ�
0 · (∇u2) · ∇T0 dV , (B26)

with

Dkin =
�

Vi

μ0(∂lum)2 dV + αi

�
Afs

μ0(h0h0zzw
2 − v2) dϕ dz, (B27)

which reads in component notation

Dkin =
�

Vi

μ0


(∂ru)2 +

�
1

r
∂ϕu − v

r

�2

+ (∂zu)2 + (∂rv)2 +
�

1

r
∂ϕv + u

r

�2

+(∂zv)2 + (∂rw)2 + (∂ϕw)2

r2
+ (∂zw)2

�
dV + αi

�
Afs

μ0(h0w2h0zz − v2) dϕ dz. (B28)

The integral production terms of kinetic energy by thermocapillary stresses are

Mr = αi

�
Afs

μ0h0u(∂rw − ∂zu)h0z dϕ dz, (B29a)

Mϕ = αi

�
Afs

μ0h0v

�
∂rv − v

h0

− h0z∂zv

�
dϕ dz, (B29b)

Mz = αi

�
Afs

μ0h0w (∂rw + wh0zz − h0z∂zw) dϕ dz. (B29c)
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Expanding the term K7b and integrating over the volume results in�
Vi

K7b dV =
�

Vi

μ0ul∂l∂nun dV =
�

Vi

μ0∂l(ul∂nun) dV −
�

Vi

μ0(∂nun)(∂lul) dV

=
�

∂Vi

μ0(∂nun)(nlul) dS� �� �
=0

−
�

Vi

μ�
0(∂nun)ul∂lT0 dV

−
�

Vi

μ0(∂nun)(∂lul). (B30)

Note that the first integral on the r.h.s. vanishes, because the normal vector n is perpendicular to the
velocity vector u along the interface such that n · u = 0. Using (B17), we find�

Vi

K7b dV = −
�

Vi

μ0ζ
2 dV −

�
Vi

μ�
0ζu · ∇T0 dV . (B31)

Finally, expanding the term K7c and integrating over the volume we get�
Vi

K7c dV =
�

Vi

u · �∇u + (∇u)T
� · ∇μ0 dV =

�
Vi

μ�
0u · S · ∇T0 dV , (B32)

where the stress tensor of the perturbation velocity field reads

S = ∇u + (∇u)T =

⎛⎜⎜⎜⎜⎝
2∂ru

1

r
∂ϕu − v

r
+ ∂rv ∂zu + ∂rw

1

r
∂ϕu − v

r
+ ∂rv

2

r
∂ϕv + 2u

r
∂zv + 1

r
∂ϕw

∂zu + ∂rw ∂zv + 1

r
∂ϕw 2∂zw

⎞⎟⎟⎟⎟⎠ . (B33)

K8
The l-th component of ∇ · [μ0(∇ · u)I] reads�

∇ · [μ0(∇ · u)I]
	

l
= ∂m(μ0∂nun)δml, (B34)

where δml = δlm is the symmetric Kronecker delta. Taking the scalar product with u, we obtain

u · �∇ · [μ0(∇ · u)I]

 = ul∂m(μ0∂nun)δml

= ∂m(μ0ulδlm∂nun) − μ0∂nun∂m(ulδlm)

= ∂m(μ0um∂nun) − μ0(∂nun)(∂mum)

= ∇ · [μ0(∇ · u)u] − μ0(∇ · u)2. (B35)

Integrating the term K8 over the volume, we find�
Vi

K8 dV = 2

3

�
∂Vi

μ0(∇ · u)(u · n) dS� �� �
=0

−2

3

�
Vi

μ0ζ
2 dV . (B36)

The first term vanishes for the same arguments as in (B30) during the treatment of K7b.

K9
Similarly to (B23), for the terms in braces of K9 we have

∇ · �μ�
0T

�∇u0 + (∇u0)
T
� 
 = μ�

0T�u0 + μ�
0T∇(∇ · u0) + �∇u0 + (∇u0)

T
� · ∇(μ�

0T). (B37)
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Scalar multiplication with u yields

u · �∇ · �μ�
0T

�∇u0 + (∇u0)
T
� 

 = μ�

0Tu · �u0� �� �
K9a

+ μ�
0Tu · ∇(∇ · u0)� �� �

K9b

(B38)

+ u · �∇u0 + (∇u0)T
� · ∇(μ�

0T)� �� �
K9c

.

The three terms K9a, K9b and K9c are treated separately. The term K9a can be written as�
Vi

K9a dV =
�

Vi

μ�
0Tul∂m∂mu0l dV = αi

�
Afs

μ�
0Tulnm∂mu0l dS −

�
Vi

(∂mu0l)(∂mμ�
0Tul) dV

= αi

�
Afs

μ�
0Tulnm∂mu0l dS −

�
Vi

μ�
0T(∂mu0l)(∂mul) dV +

�
Vi

ul(∂mu0l)(∂mμ�
0T) dV

= αi

�
Afs

μ�
0Tulnm∂mu0l dS −

�
Vi

μ�
0T(∂mu0l)(∂mul) dV

+
�

Vi

ul(∂mu0l)(μ
�
0 + μ��

0T)∂mT dV . (B39)

Expressing the tensor ∂mu0l in cylindrical coordinates yields

∂mu0l = (er∂r + ez∂z) (u0er + w0ez)

= er(∂ru0er + ∂rw0ez) + eϕ

r
u0eϕ + ez(∂zu0er + ∂zw0ez). (B40)

This is projected onto nm = N−1(er − h0zez) to obtain

nm∂mu0l = 1

N
(∂ru0er + ∂rw0ez) − h0z

N
(∂zu0er + ∂zw0ez). (B41)

Further projection onto ul yields

ulnm∂mu0l = 1

N
(u∂ru0 + w∂rw0 − h0zu∂zu0 − h0zw∂zw0). (B42)

On the liquid–gas interface, we can use the relations

u = h0zw, (B43a)
∂ru = h0z∂rw, (B43b)

∂zu = h0zzw + h0z∂zw, (B43c)
u0 = h0zw0, (B43d)

∂ru0 = h0z∂rw0, (B43e)
∂zu0 = h0zzw0 + h0z∂zw0, (B43f)

to obtain

ulnm∂mu0l = w

N
(N2∂rw0 − N2h0z∂zw0 − h2

0zh0zzw0). (B44)

Combining the above relations, the integral over the term K9a reads�
Vi

K9a dV = αi

�
Afs

μ�
0Tw(N2∂rw0 − N2h0z∂zw0 − h2

0zh0zzw0) dϕ dz (B45)

−
�

Vi

μ�
0T(∇u0):(∇u) dV +

�
Vi

(μ�
0 + μ��

0T0)u · [(∇u0)
T · ∇T] dV .
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We now focus on the term K9b. Its integral over the volume is expressed as�
Vi

K9b dV =
�

Vi

μ�
0Tul∂l∂nu0n dV =

�
Vi

μ�
0T∂l(ul∂nu0n) dV −

�
Vi

μ�
0T(∂nu0n)( ∂lul����

=ζ

) dV

=
�

∂Vi

μ�
0T(∂nu0n)(ulnl) dS� �� �

=0

−
�

Vi

(∂nu0n)ul∂l(μ
�
0T) dV −

�
Vi

μ�
0Tζ (∂nu0n) dV

= −
�

Vi

(∂nu0n)(μ�
0ul∂lT + μ��

0Tul∂lT0) dV −
�

Vi

μ�
0Tζ (∂nu0n) dV . (B46)

Considering the O(�0) continuity equation, one can recast the divergence of u0 as

∇ · u0 = − 1

ρ0

u0 · ∇ρ0 = −ρ �
0

ρ0

u0 · ∇T0 := ζ0. (B47)

Analogous to (B17), we define ζ0 to be an indicator for the deviation of the basic state velocity field
from being solenoidal. Thus, the integral over K9b is obtained as�

Vi

K9b dV = −
�

Vi

ζ0(μ�
0u · ∇T + μ��

0Tu · ∇T0) dV −
�

Vi

μ�
0Tζ0ζ dV . (B48)

Finally, the term K9c reads

u · �∇u0 + (∇u0)
T
� · ∇(μ�

0T) = (μ�
0 + μ��

0T)u · �∇u0 + (∇u0)
T
� · ∇T . (B49)

Integrating over the volume, we obtain�
Vi

K9c dV =
�

Vi

(μ�
0 + μ��

0T)u · S0 · ∇T dV , (B50)

with

S0 = ∇u0 + (∇u0)
T =

⎛⎝ 2∂ru0 0 ∂zu0 + ∂rw0

0 2u0/r 0
∂zu0 + ∂rw0 0 2∂zw0

⎞⎠ . (B51)

K10
Similarly to (B35), the term K10 can be expressed as

u · �∇ · �μ�
0T(∇ · u0)I

� 
 = ∇ · �μ�
0T(∇ · u0)u

� − μ�
0T(∇ · u)(∇ · u0). (B52)

Integrating over the volume yields�
Vi

K10 dV = 2

3

�
∂Vi

μ�
0T(∇ · u0)(u · n) dS� �� �

=0

−2

3

�
Vi

μ�
0Tζ ζ0 dV . (B53)
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The axisymmetric steady two-phase flow of a differentially heated thermocapillary liquid
bridge in air and its linear stability is investigated numerically, taking into account dynamic
interfacial deformations in the basic flow. Since most experiments require a high temperature
difference to drive the flow into the three-dimensional regime, the temperature dependence of
the material properties must be taken into account. Three different models are investigated for
a high-Prandtl number thermocapillary liquid bridge with nominal Prandtl number Pr = 28.8:
the Oberbeck–Boussinesq approximation, a linear temperature dependence of all material
properties, and a full nonlinear temperature dependence of all material properties. For all
models critical Reynolds numbers are computed as functions of the volume of the liquid
bridge, its aspect ratio, its dimensional size and as a function of the strength of a forced axial
flow in the ambient air. Under most circumstances the Oberbeck–Boussinesq approximation
over-predicts and the linear model under-predicts the critical Reynolds number, compared to
the model based on the full temperature dependence of the material properties. Among the
main influence factors are the proper selection of the reference temperature and, at larger
temperature differences, the temperature dependence of the viscosity of the liquid.

Key words: Liquid bridges; Thermocapillarity; Instability; Gas/liquid flow

1. Introduction
Thermocapillary flows are driven by tangential shear stresses acting on non-isothermal
liquid–gas interfaces. They are due to the thermocapillary effect which describes the variation
of the surface tension with temperature (Scriven & Sternling 1960). These flows are important
in a number of applications, like crystal growth from the melt (Schwabe 1981), welding
(Amberg & Do-Quang 2008) or droplet evaporation from inkjet printing (Ristenpart et al.
2007). The flow in thermocapillary liquid bridges, originally devised as a model system
for the floating-zone crystal-growth process (Pfann 1962) has evolved as a paradigm. In
particular, the critical conditions for the onset of a time-dependent flow in transparent
high-Prandtl-number liquids has received considerable interest (Kuhlmann 1999), since an
oscillator flow is known to cause crystal striation (Cröll et al. 1991). In these model systems,
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an axisymmetric liquid bridge between two coaxial support rods is heated differentially from
the rods such that axial thermocapillary stresses drive a toroidal vortex in the liquid.

Transparent liquids with a moderate Prandtl, but still Pr > 1, tend to be volatile which
makes experimental investigations difficult (Simic-Stefani et al. 2006). Therefore, molten
salts (Preisser et al. 1983) or silicone oils with a high Prandtl number Pr = 28 or larger
(Ueno et al. 2003; Kamotani et al. 2003) are frequently used in experiments. Since the
viscosity of silicone oils increases with Prandtl number, the required temperature difference
ΔT = Thot − Tcold to drive the flow into the time-dependent regime increases. For length
scales of millimetres and a Prandtl number of Pr = 28 the critical temperature difference can
easily amount to ΔTc = 30 K or larger. Under such temperature variation the thermophysical
properties of the liquid may vary considerably and the often used assumption of constant
material parameters may no longer yield reliable numerical results for the critical Reynolds
number. The present work is intended to overcome the limitations imposed by assuming
constant material properties by taking into account the full, in general nonlinear, dependence
of all material properties of the liquid and the gas on the temperature.

The first linear stability analysis of the flow in single-phase adiabatic thermocapillary
liquid bridges for variable material properties is due to Kozhoukharova et al. (1999). For
a liquid bridge with Pr = 4 under zero gravity and a radius-to-height ratio of one, they
numerically computed the critical Reynolds number for the onset of three-dimensional (and
oscillatory) flow, assuming a linear variation with temperature of the kinematic viscosity
ν(T) = ν∗+ζ(T −T∗), with reference viscosity ν∗ = ν(T∗) and ζ = (∂ν/∂T)T∗ . Evaluating the
reference viscosity ν∗ at the arithmetic mean temperature of the heaters T∗ = (Thot −Tcold)/2,
they found the critical temperature difference ΔTc, or the critical Reynolds number Rec ∼
ΔTc/ν∗2, is typically reduced in liquids (ζ < 0) as compared to the case of a constant
kinematic viscosity (ζ = 0). The reduction of ΔTc (or Rec) for ζ < 0 was interpreted to
be due to a reduction of the effective viscosity which was taken as the kinematic viscosity
averaged over the interface νS(ζ < 0) < ν∗. Under the hypothesis that a modified Reynolds
number .Rec = ΔTc/ν2S using the effective kinematic viscosity (mean surface viscosity)
would be almost independent of ζ , they suggested a correction factor (νS/ν∗)2 to estimate
the variable viscosity effect as Rec(ζ) = (νS/ν∗)2Rec(ζ = 0). While this correction always
yields a reduction of the critical Reynolds number with Rec(ζ < 0) < Rec(ζ = 0), the
estimate (νS/ν∗)2Rec(ζ = 0) can over- or under-predict the exact result Rec(ζ < 0) by about
10%.†

Shevtsova & Melnikov (2000) and Shevtsova et al. (2001) investigated the effect of a linear
temperature dependence of the kinematic viscosity on the critical temperature difference
through numerical simulation for a liquid bridge with Pr = 35. They also found a reduction
of the critical temperature difference. Different from Kozhoukharova et al. (1999), however,
they defined the Reynolds number Re ∼ ΔT/ν2cold using a reference kinematic viscosity
evaluated at the cold-wall temperature νcold = ν(Tcold). This leads to a much larger reduction
of the critical Reynolds number with ζ , because the correction of Rec(ζ = 0) is much
stronger with 1 < (νS/ν∗)2 < (νS/νcold)2 for ζ < 0. In other words, the kinematic viscosity
νcold is not a good estimate of the effective viscosity, which is much better approximated
by the mean viscosity ν∗. Regardless of the viscosity contrast, both Kozhoukharova et al.
(1999) and Shevtsova & Melnikov (2000) found the instability arises as a hydrothermal wave
(Smith 1986; Wanschura et al. 1995). Owing to the influence of the viscosity variation on the
critical temperature difference a linear dependenceof ν onT was also employed in succeeding
simulations (see e.g. Melnikov et al. 2004; Shevtsova et al. 2009). Also Saifi et al. (2022) and

† The right hand side of (34) in Kozhoukharova et al. (1999) is lacking a factor ν−2
0 .
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Shitomi et al. (2019) used a temperature-dependent viscosity, albeit assuming an exponential
dependence on T .

On the experimental side Ueno et al. (2003), as well as most other investigators (see e.g.
Nishino et al. 2015; Yano et al. 2015), took into account an exponential variation of the
kinematic viscosity in order to determine the reference viscosity for the definition of the
Reynolds or the Marangoni number. Like Kozhoukharova et al. (1999) they selected the
reference viscosity ν0, evaluated at the algebraic mean temperature.

While the critical Reynolds number of the thermocapillary flow in liquid bridges depends
on the temperature dependence of the kinematic viscosity, the critical Rayleigh number in
the Rayleigh–Bénard problem does not, because the basic flow is at rest. However, the sign
of ζ has a qualitative influence on the planform of the supercritical convection. This was
demonstrated experimentally by v. Tippelskirch (1956) who found polygonal convection cells
in open layers of liquid sulfur heated from below. In temperature ranges in which ∂T µ < 0
the cells had upflow in their centres, whereas for temperature ranges with ∂T µ > 0 the flow
in the cell centres was directed downwards. His findings confirmed the earlier observations
of Graham (1933) for water and air according to which the flow in the centre of the cells is
always directed towards increasing viscosity. The flow direction in the convection cells has
been explained theoretically by Palm (1960) and Segel & Stuart (1962). According to Busse
(1978) and Busse & Frick (1985) the flow direction minimizes the viscosity in the highly
strained region near the cell centres.

Except for Kozhoukharova et al. (1999) and Carrión et al. (2020) most stability analyses
have been carried out assuming a constant viscosity (e.g. Wanschura et al. 1995; Chen & Hu
1998; Nienhüser & Kuhlmann 2002; Stojanović et al. 2022). Therefore, the influence of the
temperature dependence of the material properties on the critical conditions has not been
thoroughly investigated. In this work we extend the previous analyses by carrying out linear
stability analyses for the two-phase flow of a commonly used liquid–gas combination (2-
cSt silicone oil and air) confined to a cylindrical tube. The full (nonlinear) temperature
dependence of all thermophysical properties in the liquid and in the gas phase is taken into
account. The critical Reynolds numbers obtained are then compared with results for a linear
dependence of all thermophysical parameters and with those for the Oberbeck–Boussinesq
approximation. For all calculations the basic state is computed for a dynamically deforming
interface.

In § 2 the geometry is described and the mathematic problem is formulated. The numerical
methods to solve the governing equations are discussed in § 3. In § 4 the reference parameters
are defined and the temperature-dependence of the fluid properties are provided. Results are
presented in § 5. In a first step the linear stability is computed for a sealed cylindrical tube
surrounding the liquid bridge. The effects of the volume ratio of the liquid, the aspect ratio
of the liquid bridge, and the length scale are discussed separately. Thereafter, the effect of an
imposed axial flow in the gas phase on the linear stability boundary is considered. Finally,
the results obtained are summarised in § 6 and conclusions are drawn.

2. Problem Formulation
2.1. Setup

We consider a droplet of an incompressible Newtonian silicone oil captured between two
coaxial, cylindrical rods of radius ri and length drod. The rods supporting the liquid bridge
are separated axially by a distance d as shown in figure 1. Short liquid bridges can be
hydrostatically stable, even in a terrestrial gravity field, depending on the wetting conditions
and the geometry. Here we consider an axisymmetric geometry with the axial acceleration of
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Figure 1: Schematic of the axisymmetric thermocapillary liquid bridge including the
coordinate system. The sketch shows the situation when the liquid bridge is exposed to a

hot gas stream with mean axial velocity W̄g,in. The gravity vector g is always aligned with
the negative z-axis. The thermocapillary effect is illustrated schematically through

velocity vectors close to the interface.

gravity g = −gez , where ez is the axial unit vector, while the liquid is heated from above. We
assume the liquid bridge is pinned to the sharp circular edges of the two support rods. The
gas phase (air) is Newtonian as well and it is bounded radially by a cylindrical tube of radius
ro > ri and height 2drod + d, placed coaxially around the liquid bridge and the support rods.
The shield cylinder was first used in experiments by Preisser et al. (1983) and, more recently,
by e.g. Simic-Stefani et al. (2006) and Gaponenko et al. (2021). To a good approximation, it
can be considered thermally insulating. Thus the geometry of the problem is characterised
by

Γ =
d
ri
, Γrod =

drod
ri
, η =

ro
ri
, (2.1)

where Γ and Γrod describe the aspect ratios of the liquid bridge and the rods, respectively,
and η is the radius ratio of the annular space between the tube and the support rods.

The support rods are kept at different but constant temperatures Thot = T̄ + ΔT/2 and
Tcold = T̄ − ΔT/2, respectively, where ΔT = Thot − Tcold > 0 is an imposed temperature
difference. The mean temperature T̄ = (Thot + Tcold)/2 is used as the reference temperature
T∗ = T̄ . Owing to the imposed temperature difference the surface tension σ(T) varies along
the interface. Tangential surface tension gradients create surface stresses (Levich 1962) which
drive a flow on both sides of the interface via the thermocapillary effect, as sketched in figure
1. Taylor expansion of σ(T) about T∗ yields the surface tension gradient

∇�σ(T) = ∂σ
∂T

∇�T =
∂

∂T
[σ∗ − γ∗(T − T∗) + . . . ] ∇�T

= {−γ∗ +O [(T − T∗)]} ∇�T (2.2)

where ∇� = t(t · ∇) is the Nabla operator in the plane tangent to the interface, t an arbitrary
unit tangent vector, γ∗ = −∂σ/∂T |T=T ∗ is the negative linear surface-tension coefficient and
σ∗ = σ(T∗) is the reference (mean) surface tension. The asterisk indicates reference values
of temperature-dependent thermophysical properties evaluated at T∗. The Taylor expansion
in (2.2) is truncated after the linear term, since literature data on the coefficients of the higher-
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order-terms for silicone oil in air are lacking. Within our modelling, we take into account the
full temperature dependence of all other thermophysical properties and neglect the pressure
dependence, assuming reference conditions far from phase-change critical points.

The flow in the liquid phase is driven by surface stresses which depend on the conditions
in the gas phase. Thus, imposing a gas flow allows to passively control the flow in the liquid
phase by varying the temperature and velocity (magnitude, profile) of the forced gas flow at
the inlet, which is located either at the upper or the lower end of the tube. Owing to the low
viscosity of gases under standard conditions, the gas flow affects the motion in the liquid
phase primarily by altering the surface temperature and thus the thermocapillary stresses, and
to a lesser degree by mechanical stresses on the interface. In addition, buoyancy forces drive
the flow due to horizontal density gradients. For very small liquid bridges (thermocapillary)
surface forces typically dominate (buoyant) volume forces. But for millimetric liquid bridges
investigated under terrestrial conditions, buoyancy can significantly affect the interfacial
shape and the fluid motion.

2.2. Governing equations and boundary conditions
2.2.1. Transport equations
Due to the axisymmetric geometry, we use cylindrical coordinates (r, ϕ, z) with the
corresponding unit vectors (er, eϕ, ez), and an origin centred in the middle of the liquid
bridge. The velocity field is represented as u = uer + veϕ + wez .

The fluid motion inside the liquid bridge is governed by the Navier–Stokes, continuity,
and energy equations. For a Newtonian fluid with variable properties, they read in strong
conservative form

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇P + ρgez + ∇ · (µT), (2.3a)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.3b)

∂(ρcpT)
∂t

+ ∇ · (ρcpuT) = ∇ · (λ∇T), (2.3c)

where t is time, P is the pressure and T = ∇u + (∇u)T − (2/3)(∇ · u)I the deformation rate
tensor with the identity matrix I. In contrast to most previous numerical studies on liquid
bridges, we consider the dynamic viscosity µ(T), the density ρ(T), the specific heat capacity
cp(T), and the thermal conductivity λ(T) to be fully temperature-dependent and call this
the FTD approach (Fully Temperature-Dependent material properties) in contrast to, e.g.,
the Oberbeck–Boussinesq approximation (OB). The equations governing the gas phase are
formally identical to (2.3). The material parameters relating to the gas phase ρg, µg, λg and
cpg are indicated by the subscript ’g’.

Using the reference material parameters of the liquid (superscript ’*’) evaluated at the
reference temperature T∗, equations (2.3) are made dimensionless by the length, time,
velocity, pressure and temperature scales d, d2ρ∗/µ∗, γ∗ΔT/µ∗, γ∗ΔT/d andΔT , respectively.
This yields

∂(αρu)
∂t

+ Re∇ · (αρuu) = −∇p − Bd
αρ − α∗ρ
ε

ez + ∇ · (αµT), (2.4a)

∂αρ

∂t
+ Re∇ · (αρu) = 0, (2.4b)

∂(αραcpϑ)
∂t

+ Re∇ · �αραcpuϑ& = 1
Pr

∇ · (αλ∇ϑ), (2.4c)
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where p = (d/γ∗ΔT)(P − ρ∗gz) is the reduced pressure and

ϑ =
T − T∗

ΔT
(2.5)

the reduced temperature. The Reynolds, Prandtl, and dynamic Bond numbers are respectively
defined as

Re =
ρ∗γ∗ΔTd
µ∗2 , Pr =

µ∗c∗p
λ∗
, Bd =

ρ∗gβ∗d2

γ∗
. (2.6)

Equations (2.4) hold for both the liquid and the gas phase. They are distinguished by the
functions α(ϑ) and the parameter ε. The parameters ε = β∗ΔT and εg = β∗gΔT measure the
magnitude of the density variation in the respective phase, where β∗ = −(1/ρ∗)(∂ρ/∂T)∗P
and β∗g are the thermal expansion coefficients of the liquid and the gas, respectively, evaluated
at ϑ∗ = 0. As in Stojanović et al. (2022) the phase is distinguished by selecting the respective
set of thermophysical shape functions

α =
�
αρ(ϑ), αµ(ϑ), αλ(ϑ), αcp(ϑ)

�
=

������������

�
ρ(ϑ)
ρ∗
,
µ(ϑ)
µ∗
,
λ(ϑ)
λ∗
,

cp(ϑ)
c∗p

�
for the liquid phase,�

ρg(ϑ)
ρ∗
,
µg(ϑ)
µ∗
,
λg(ϑ)
λ∗
,

cpg(ϑ)
c∗p

�
for the gas phase,

(2.7)
which represent the temperature dependent material parameters, normalised by the values
which the parameters take in the liquid at the reference temperature. A shape function
evaluated at the reference point is indicated by an asterisk, i.e., α∗ρ = αρ(ϑ∗) = 1 for the
liquid and α∗ρ = ρ∗g/ρ∗ for the gas. The shape functions αj with j ∈ [ρ, µ, λ, cp] used will
be specified in section 4. Note that in (2.4a) (αρ − α∗ρ)/ε = −ϑ + O(ϑ2), recovering the
buoyancy term in Boussinesq approximation at linear order. In a model assuming constant
material parameters

α =

������
[1, 1, 1, 1] for the liquid phase,�
ρ∗g
ρ∗
,
µ∗g
µ∗
,
λ∗g
λ∗
,

c∗pg

c∗p

�
for the gas phase,

(2.8)

and the bulk equations only depend Re, Pr and Bd.

2.2.2. Linear stability equations
For sufficiently small driving forces, measured either by the Reynolds number Re or the
Marangoni number Ma = RePr, an axisymmetric and time-independent solution q0(r, z) =
(u0, 0,w0, p0, ϑ0) (liquid) and qg0(r, z) = (ug0, 0,wg0, pg0, ϑg0) (gas) of (2.4) exists. This basic
flow is indicated by a subscript ’0’. The shape of the interface h0(z), separating the gas from
the liquid phase, is part of the basic flow solution.

To investigate the linear stability of the basic flow the dynamics of small deviations from
the basic solution must be considered. These deviations also concern the interfacial shape.
Recent experiments (Yano et al. 2018b) revealed that the dynamic interfacial deformation
caused by the perturbation flow is negligible. Therefore, we only consider perturbations of
q0 and qg0 within their domains separated by the phase boundary h0(z). To carry out the
linear stability analysis the general three-dimensional and time-dependent solution [q, qg] of
(2.4) is decomposed into

q = q0(r, z) + q̃(r, ϕ, z, t) and qg = qg0(r, z) + q̃g(r, ϕ, z, t). (2.9)
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separating the perturbation flow [q̃, q̃g] (indicated by a tilde) from the basic flow [q0, qg0].
The linear dynamics is obtained by inserting (2.9) in (2.4) and linearising all terms with

respect to all perturbation quantities, in particular, with respect to ϑ̃. This requires linearising
the shape functions αj(ϑ) about their local values αj[ϑ0(r, z)] determined by the basic flow.
Taylor expansion about the local basic state temperature ϑ0(r, z) yields

αj(ϑ) = αj(ϑ0 + ϑ̃) = αj(ϑ0) +
∂αj

∂ϑ

����
ϑ0

ϑ̃ + O(ϑ̃2) = αj0 + α′j0ϑ̃ +O(ϑ̃2), (2.10)

where the zeroth- and first-order Taylor coefficients αj0[ϑ0(r, z)] and α′
j0[ϑ0(r, z)] are scalar

fields that depend continuously on (r, z) through the basic temperature field ϑ0(r, z). Using
(2.10) we obtain the linearised version of (2.4) as

αρ0
∂ ũ

∂t
+ α′ρ0u0

∂ϑ̃

∂t
+ Re∇ ·

�
αρ0u0 ũ + αρ0ũu0 + α

′
ρ0u0u0ϑ̃

$
= −∇p̃ − Bd

ε
α′ρ0ϑ̃ez + ∇ ·

�
αµ0T̃ + α′µ0T0ϑ̃

$
, (2.11a)

α′ρ0
∂ϑ̃

∂t
+ Re∇ ·

�
αρ0ũ + α

′
ρ0u0ϑ̃

$
= 0, (2.11b)�

αρ0αcp0 + ϑ0(α′ρ0αcp0 + αρ0α
′
cp0)

� ∂ϑ̃
∂t
+ Re∇ · �αρ0αcp0u0ϑ̃ + αρ0αcp0ϑ0 ũ

+α′ρ0αcp0ϑ0u0ϑ̃ + ∇ · αρ0α
′
cp0ϑ0u0ϑ̃

$
=

1
Pr

∇ · �α′λ0ϑ̃∇ϑ0 + αλ0∇ϑ̃
&
, (2.11c)

where T̃ = ∇ũ + (∇ũ)T − (2/3)(∇ · ũ)I and T0 = ∇u0 + (∇u0)T − (2/3)(∇ · u0)I. The basic
state solution enters parametrically in the linear disturbance equations for q̃.

Since (2.11) is linear in q̃ with coefficients which do not depend on ϕ and t, the general
solution q̃ of (2.11) can be constructed by a superposition of normal modes

q̃ =
-
j,m

q̂ j,m(r, z) exp(ψj,mt + imϕ) + c.c., q̃g =
-
j,m

q̂gj,m(r, z) exp(ψj,mt + imϕ) + c.c.,

(2.12)
where the complex conjugates terms (c.c.) render the solution real. The normal modes are
harmonic in ϕ with wave number m ∈ N0. The time dependence of each mode is exponential
with the complex growth ψj,m ∈ C. The index j numbers the discrete set of solutions for
fixed m which arise due to the finite domain in r and z. Inserting the ansatz (2.12) into (2.11)
yields partial differential equations for the complex amplitudes q̂ j,m and q̂gj,m

ψ
�
u0α

′
ρ0ϑ̂ + αρ0 û

$
+ Re∇ ·

�
α′ρ0ϑ̂u0u0 + αρ0(u0 û + ûu0)

�
+ Re

αρ0iv̂mu0

r
=

= −∇p̂ − Bd
ε
α′ρ0ϑ̂ez + ∇ ·

�
α′µ0ϑ̂T0 + αµ0T̂

$
+
�
α′µ0ϑ̂T0 + αµ0T̂ − p̂

$ imeϕ

r
(2.13a)

ψα′ρ0ϑ̂ + Re∇ ·
�
αρ0 û + α

′
ρ0u0ϑ̂

$
+ Re

αρ0iv̂m
r

= 0, (2.13b)

ψ
�
ϑ0(α′ρ0αcp0+αρ0α

′
cp0)+αρ0αcp0

�
ϑ̂+Re∇·

�
(α′ρ0αcp0 + αρ0α

′
cp0)ϑ0u0ϑ̂ + αρ0αcp0ϑ̂u0

+ αρ0αcp0ϑ0 û
�
+ Re

αρ0αcp0iv̂m
r

=
1
Pr

∇ ·
�
(α′λ0ϑ̂∇ϑ0 + αλ0∇ϑ̂) − αλ0ϑ̂m2

r2

�
. (2.13c)

Discretisation of (2.13) leads to a large linear eigenvalue problem which must be solved to
determine the stability boundary (section 3).
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m = 0 :
m = 1 :
m > 1 :

û = 0
∂û/∂r = 0

û = 0

v̂ = 0
∂v̂/∂r = 0

v̂ = 0

∂ŵ/∂r = 0
ŵ = 0
ŵ = 0

∂ϑ̂/∂r = 0
ϑ̂ = 0
ϑ̂ = 0

Table 1: Boundary conditions for the perturbation flow on r = 0.

2.2.3. Boundary conditions
The equations for the steady two-dimensional basic flow q0 satisfying (2.4) and those for the
perturbation amplitudes q̂ according to the linear stability equations (2.11) must be solved
subject to boundary and coupling conditions.

Solid walls: On all solid walls, the liquid and the gas must satisfy the no-slip conditions

u0 = ug0 = 0 and û = ûg = 0, (2.14)

In contrast to the outer shield, which is thermally insulated in the radial direction, the
cylindrical support rods are assumed to be perfect heat conductors, leading to

hot rod: ϑ0 = ϑg0 = 1/2 and ϑ̂ = ϑ̂g = 0, (2.15a)
cold rod: ϑ0 = ϑg0 = −1/2 and ϑ̂ = ϑ̂g = 0, (2.15b)

shield tube: ∂ϑg0/∂r = 0 and ∂ϑ̂g/∂r = 0. (2.15c)

The amplitudes of the temperature perturbations vanish on the hot and cold walls since the
imposed constant temperatures are taken care of by the basic state.

Axis of symmetry: On the axis r = 0 the symmetry of the basic state requires

u0 =
∂w0
∂r
=
∂ϑ0
∂r
= 0. (2.16)

The boundary conditions for the perturbation amplitudes depend on the azimuthal wave
number m and are given in table 1.

Liquid–gas interface: The liquid and the gas flow are coupled via the interface at r = h0(z)
which is assumed to be determined by the basic flow only. Therefore, we first consider the
basic flow. The continuity of the basic temperature and the basic heat flux requires

r = h0: ϑ0 = ϑg0, (2.17a)
r = h0: αλ0n · ∇ϑ0 = αλg0n · ∇ϑg0, (2.17b)

where

n =
1
N

 
er − dh0

dz
ez

'
with N =

,
1 +

 
dh0
dz

'2
, (2.18)

is the outward-pointing unit normal vector to the interface. The kinematic coupling conditions

r = h0: u0 = ug0 and
u0
w0
=

dh0
dz

(2.19)

guarantee no slip on the interface and also enforce the basic streamlines to be parallel to the
interface h0(z).

The dynamic coupling condition is represented by the stress balance on the interface. It is
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decomposed into a normal stress balance

−(p0 − pg0) + αµ0n · T0 · n +
 

1
Ca

− ϑ0

'
∇ · n = −(αρ0 − αρg0)Bo

Ca
z + αµg0n · Tg0 · n,

(2.20a)
and a tangential stress balance

αµ0t · T0 · n = −t · ∇ϑ0 + αµg0 t · Tg0 · n, (2.20b)

where t ⊥ n is the unit tangent vector, and the basic-state shape functions, like αµg0(r, z),
depend on (r, z). In these non-dimensional equations

Ca =
γ∗ΔT
σ∗ and Bo =

ρ∗gd2

σ∗ (2.21)

denote the capillary number and the static Bond number, respectively. Since the term (αρ0 −
αρg0) in (2.20a) takes care of the static pressure distribution in the gas phase, the reference
density of the gas ρ∗g does not enter Bo. This way, the non-dimensional material parameter

τ =
ρ∗β∗σ∗

γ∗
=

Bd
Bo
=
ε

Ca
(2.22)

serves as a proportionality factor between the dynamic and static Bond numbers and also
between ε and Ca.

Since the location h0(z) is part of the basic flow solution it is obtained iteratively by solving
simultaneously the Navier–Stokes equations for both phases and imposing the coupling and
boundary conditions. To that end, we assume the contact lines are pinned to the edges of the
support rods, h0(±1/2) = 1/Γ, and impose the volume constraint

Γ2
∫ 1/2

−1/2
h0(z)2dz = V, (2.23)

where V = V/πr2
i d is the ratio between the volume V occupied by the liquid and the upright

cylindrical volume between the two support rods.
To assess the influence of the dynamic deformability of a dynamic interface (DI), we also

consider a static interface (SI) whose shape h(z), instead of the normal stress balance (2.20a),
is determined by the solution of the Young–Laplace equation

Δph =
∇ · n
Ca
+

Bo
Ca

z, (2.24)

where Δph is a constant pressure jump across the interface. For more details, see
Stojanović et al. (2022).

Once the interface shape h0(z) and the basic state are computed, the coupling conditions
for the perturbation amplitudes

ϑ̂ = ϑ̂g, αλ0n · ∇ϑ̂ = αλg0n · ∇ϑ̂g, û = ûg (2.25)

and
αµ0t · T̂ · n = −t · ∇ϑ̂ + αµg0 t · T̂g · n (2.26)

can readily be imposed to solve the perturbation equations (2.13).
Inlet and outlet conditions: The boundary conditions at the ends of the shield tube,

z = ± (1/2 + Γrod/Γ), depend on whether the tube is sealed or open. In the case of a sealed
tube, we prescribe no-slip and adiabatic conditions on both plane end walls

ug0 = ûg = 0 and ∂ϑg0/∂z = ∂ϑ̂g/∂z = 0. (2.27)
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For an open tube, up-flow in the positive z direction and down-flow in the negative z direction
are distinguished by the sign of the Reynolds number Reg = W̄g,inρ

∗d/µ∗, defined as in
Stojanović et al. (2023a), which is taken positive for up-flow and negative for down-flow.
The inlet (zin) and outlet locations (zout) are thus defined as

zin = ± (1/2 + Γrod/Γ) = −zout for Reg ≶ 0. (2.28)

At the inlet, we prescribe a fully developed axial velocity profile

wg,in(r) =
Reg

Re
2 ln(η)�

η2 + 1
&
ln(η) − η2 + 1

�
1 − Γ2r2 +

�
η2 − 1

$ ln(Γr)
ln(η)

�
, (2.29)

where the factor Re−1 arises due to the scaling. At the outlet, outflow conditions are used
such that

z = zin: wg0 = wg,in(r) and ug0 = ûg = v̂g = ŵg = 0, (2.30a)
z = zout: ∂ug0/∂z = ∂wg0/∂z = 0 and ∂ûg/∂z = ∂ v̂g/∂z = ∂ŵg/∂z = 0. (2.30b)

Following Stojanović et al. (2023a), constant temperatures are imposed at both ends of the
tube

z = ± (1/2 + Γrod/Γ) : ϑg0 = ±1/2 and ϑ̂g = 0, (2.31)
which are equal to the temperature of the respective adjacent support rod.

3. Numerical Methods
All numerical calculations required to compute the basic flow and its linear stability are
carried out using the code MaranStable (Stojanović et al. 2023b). It is written in Matlab
and is available as open source from https://github.com/fromano88/MaranStable. The
stability analysis implemented in MaranStable has been verified and validated extensively
for statically and dynamically deformed liquid bridges, for single and two-phase flows where
the gas phase is confined to a cylindrical tube about the liquid bridge being either closed or
subject to through flow (Stojanović et al. 2022; Stojanovic et al. 2023). Grid convergence of
MaranStable has been proven for a Boussinesq fluid of Pr = 28 (Stojanović et al. 2022).
Additional verifications and validations of MaranStable regarding the fully temperature-
dependent properties (FTD) are provided in Appendix B.

3.1. Basic flow
In MaranStable the governing equations (2.4) and the boundary and coupling conditions are
discretised by finite volumes using body-fitted coordinates. The physical mesh fitted to the
interface shape is mapped to an orthogonal computational mesh using the surface shape h0(z).
It is computed together with the flow field updating the physical and computational meshes
after every iteration step. The resulting set of nonlinear algebraic equations is linearised
and solved iteratively using the Newton-Raphson method. At the k-th iteration the known
approximation q(k)0 is updated by the increment δq to obtain the improved approximation

q(k+1)
0 = q(k)0 + δq. (3.1)

Within the present fully temperature-dependent parameter approach, the nonlinear shape
functions as well need to be linearised about their basic state value according to

αj

�
ϑ
(k+1)
0

$
= αj

�
ϑ
(k)
0 + δϑ

$
≈ αj

�
ϑ
(k)
0

$
+
∂αj

∂ϑ

����
ϑ
(k)
0

δϑ := α(k)
j0 + α

′(k)
j0 δϑ, (3.2)
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where the increment δϑ is contained in δq. Inserting (3.1) and (3.2) into (2.4) yields the set
of linear equations

J
�
q
(k)
0

$
· δq = − f

�
q
(k)
0

$
, (3.3)

where J
�
q(k)0

&
and f

�
q(k)0

&
are the Jacobian operator and the nonlinear residual of the Navier–

Stokes equations, respectively. This leads to the linearised momentum, continuity and energy
equations

Re∇ ·
�
α
(k)
ρ0

�
u(k)

0 δu + δuu
(k)
0

$
+ α

′(k)
ρ0 u(k)

0 u(k)
0 δϑ

�
+ ∇δp + Bd

ε
α
′(k)
ρ0 δϑ − ∇ ·

�
α
(k)
µ0 δT − α′(k)

µ0 T(k)
0 δϑ

$
= −Re∇ ·

�
α
(k)
ρ0 u

(k)
0 u(k)

0

$
− ∇p(k)0 − Bd

ε

�
α
(k)
ρ0 ez − α∗ρ

$
+ ∇ ·

�
α
(k)
µ0T(k)

0

$
, (3.4a)

∇ ·
�
α
(k)
ρ0 δu + α

′(k)
ρ0 u(k)

0 δϑ
$
= −∇ ·

�
α
(k)
ρ0 u

(k)
0

$
, (3.4b)

Ma∇ ·
�
α
(k)
ρ0 α

(k)
cp0

�
u(k)

0 δϑ + ϑ
(k)
0 δu

$
+
�
α
′(k)
ρ0 α

(k)
cp0 + α

(k)
ρ0 α

′(k)
cp0

$
ϑ
(k)
0 u(k)

0 δϑ
�

− ∇ ·
�
α
′(k)
λ0 δϑ∇ϑ(k)0 + α

(k)
λ0 ∇δϑ

$
= ∇ ·

�
α
(k)
λ0 ∇ϑ(k)0

$
− Ma∇ ·

�
α
(k)
ρ0 α

(k)
cp0u

(k)
0 ϑ

(k)
0

$
, (3.4c)

where δT = ∇δu + (∇δu)T − (2/3)(∇ · δu)I. An additional iteration loop arising from the
normal stress balance (2.20a) is embedded in the Newton-Raphson iteration that updates the
surface shape h0(z) after each iteration step. Neglecting terms of order O(ϑ2) in σ(ϑ), the
linearised normal stress balance becomes

− (δp − δpg) + α(k)µ0 n
(k) · δT · n(k) + α(k)

µ0 n
(k) · T (k)

0 · δn + α(k)
µ0 δn · T (k)

0 · n(k)

+ α
′(k)
µ0 n(k) · T (k)

0 · n(k)δϑ +
 

1
Ca

− ϑ(k)0

'
∇ · δn − ∇ · n(k)δϑ +

�
α
′(k)
ρ0 − α′(k)

ρg0

$ Bo
Ca
δϑz

− α(k)
µg0n

(k) · δTg · n(k) − α(k)
µg0n

(k) · T (k)
g0 · δn − α(k)

µg0δn · T (k)
g0 · n(k)

− α′(k)µg0n
(k) · T (k)

g0 · n(k)δϑ = p(k)0 − p(k)g0 −
�
α
(k)
ρ0 − α(k)ρg0

$ Bo
Ca

z − α(k)µ0 n
(k) · T (k)

0 · n(k)

−
 

1
Ca

− ϑ(k)0

'
∇ · n(k) + α(k)µg0n

(k) · T (k)
g0 · n(k), (3.5)

where the surface increment
δh0 = h(k+1)

0 − h(k)
0 (3.6)

is contained implicitly in the increment of the surface normal vector

δn = n(k+1) − n(k) (3.7)

with

δn = − 1
N (k)3

dh(k)
0

dz
dδh0
dz

er − 1
N (k)

1 − 1
N (k)2

�
dh(k)

0
dz

%2
dδh0
dz

ez (3.8)

and its divergence
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∇ · δn =
1

h(k)3
0 N (k)3

�
−h(k)3

0
d2δh0

dz2 +

�
3h(k)3

N (k)2
d2h(k)

0
dz2 − h(k)2

0

%
dh(k)

0
dz

dδh0
dz

− h(k)
0 N (k)2δh0

�
. (3.9)

3.2. Linear stability analysis
MaranStable executes a linear stability analysis of the basic flow by discretising the linear
perturbation equations (2.13) for the amplitudes q̂ j,m and q̂g; j,m on the same grid and
employing the same numerical scheme as used for the basic state. The resulting large system
of algebraic equations represents a generalised eigenvalue problem for the spatial structure
of the perturbation flow (eigenvector) and the complex growth rate ψj,m (eigenvalue) for a
given wave number m. The real growth rateℜ(ψj,m) determines the stability of the respective
mode, whereas its imaginary part ωc = ℑ[ψj,m(Rec)] represents the angular frequency. The
mode whose real growth rate vanishes at a particular Reynolds number is called neutral mode
and the corresponding Reynolds number is identified as the neutral Reynolds number Rej,mn .
The minimum value Rec = min j,m�0 Rej,mn defines the critical Reynolds number Rec . To
identify the eigenvalues with the largest real part, we follow Stojanović et al. (2022) and use
an implicitly restarted Arnoldi method provided by ARPACK (Lehoucq et al. 1998). The
neutral curves are obtained by arclength continuation (Keller 1977) for moderate step sizes
of the dependent (Re) and independent parameters (V, Γ, d or Reg).

3.3. Postprocessing: Energetics
The Reynolds–Orr type of equations for the kinetic and thermal energies of the perturbation
flow can be obtained in the usual way. For variable material properties Stojanović et al.
(2023a) have derived the rates of change of the total kinetic (dEkin/dt) and the total thermal
energy (dEth/dt) in the form

dEkin
dt
= −1 + Mr + Mϕ + Mz +

5-
j=1

Ij + B + Kg +Λρ + Λµ +Λρµ������������������������������������, (3.10a)

dEth
dt
= −1 +

2-
j=1

Jj + Hfs + Kg,th − dE ′
th

dt
+ Πρ + Πcp + Πλ����������������������������������������������������������, (3.10b)

providing explicit expressions in dimensional from for all terms appearing on the right
hand sides. Since the non-dimensionalisation of the energy budgets is straightforward,
we refrain from reproducing all expression here. Most terms in (3.10) also arise in
the Oberbeck–Boussinesq (OB) approximation. They have the usual meaning (see e.g.
Nienhüser & Kuhlmann 2002; Stojanović et al. 2022). The additional terms arising in the
FTD model are indicated by the underbraces in (3.10).

All terms in (3.10) are volume integrals over the space occupied by the liquid or the gas,
or surface integrals over the interface or the inlet for the gas. The integrands represent local
production/dissipation rates of kinetic or thermal energy of the perturbation flow which are
often useful to understand the local physical mechanisms by which energy is exchanged
between the basic state and the perturbation. The spatial distribution of the integrands thus
serve a better understanding of the overall instability mechanism (see e.g. Wanschura et al.
1995; Nienhüser & Kuhlmann 2002). Stojanović et al. (2023a) have shown that the instability
mechanism for Pr = 28.8 is that of a hydrothermal wave and that the mechanism as such
is hardly influenced by the temperature dependence of the material parameters. However,
the critical Reynolds numbers can be significantly affected. We shall make use of (3.10) to
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identify the regions of largest perturbation energy production and for the analysis of a new
instability in the gas phase in section 5.1.2.

4. Geometry, fluids and temperature-dependence of their properties
Owing to the high-dimensional parameters space we consider a common reference geometry
as the origin of all parameter variations to be made. Therefore, we adopt the same geometry
as in Romanò et al. (2017) with rod radius ri,ref = 2.5 mm, Γref = 0.66, Γrod,ref = 0.4, ηref = 4,
Vref = 1, Reg = Reg,ref = 0 and Bdref = 0.363. Note the origin for the parameter space made
by the geometry and forcing parameters is indicated by the subscript ’ref’, while the reference
point for the temperature-dependent material properties is denoted by the superscript ’*’.

Owing its importance for experiments (Majima et al. 2001; Tanaka et al. 2006; Yano et al.
2018a; Ueno 2021) we consider a liquid bridge made from 2-cSt silicone oil (KF96L-
2cs, Shin-Etsu Chemical Co., Ltd., Japan) in air under typical experimental conditions for
T∗ = T̄ = 25 ◦C. The functions ρ(T), µ(T), λ(T) and cp(T) required in (2.3) can be obtained
either through explicitly given correlations or by fitting tabulated data to suitable ansatz
functions. The functional dependencies used herein are provided in Appendix A for each
property of both the working fluids. Once the continuous functions have been constructed,
the reference quantities are evaluated (table 2) and the non-dimensional shape function αj(T)
defined in (2.7) are obtained for both phases. Finally, the shape functions are expressed in
terms of the reduced temperature: αj(T) → αj(ϑ) such that α∗j = αj(ϑ = 0). For the present
liquid–gas couple, the shape functions read

αρ(ϑ) =
����
ξI − ξIICaϑ + ξIIICa2ϑ2,
ζI

1 + ζIICaϑ
,

(4.1a)

αµ(ϑ) =
�
(ξI − ξIICaϑ + ξIIICa2ϑ2) exp[ξIVCaϑ/(ξV + Caϑ)],
ζI + ζIICaϑ + ζIIICa2ϑ2 + ζIVCa3ϑ3 + ζVCa4ϑ4,

(4.1b)

αλ(ϑ) =
�
ξI + ξIICaϑ + ξIIICa2ϑ2,

ζI + ζIICaϑ + ζIIICa2ϑ2 + ζIVCa3ϑ3 + ζVCa4ϑ4,
(4.1c)

αcp(ϑ) =
�
ξI + ξIICaϑ + ξIIICa2ϑ2,

ζI + (ζII − ζI)G2(ϑ)
�
1 − F(ϑ)

�
ζIII + ζIVG(ϑ) + ζVG2(ϑ) + ζVIG3(ϑ)

$�
,

(4.1d)

where the first line of each subequation specifies the property of the liquid, while the second
line represents the property of the gas. The coefficients ξn and ζn (n = I, II, III, ...) in (4.1)
are constants specific to the respective thermophysical property, and

G(ϑ) = cI + Caϑ
cII + Caϑ

, F(ϑ) = cII − cI
cII + Caϑ

, (4.2)

with cI = 1.14046 and cII = 10.89048. All constant coefficients are collected in tables 3
and 4 for the liquid and the gas, respectively. Except for αcp for the gas, all coefficients ζI
represent the reference quantities, e.g., ζI = α∗ρ = αρ(0) = ρg(25◦C)/ρ(25◦C).

The shape functions αj of the four thermophysical parameters for the liquid and the gas are
shown in figure 2(a) and 2(b), respectively. Shown is the relative variation within each fluid
phase of the density, viscosity, thermal conductivity and specific heat as function of ϑ for a
relatively large temperature difference of ΔT = 50 K. For this temperature difference, most
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Property KF96L-2cs air Dimension

ρ∗ 873.25 1.1837 [kg/m3]
µ∗ 1.7465 × 10−3 1.8460 × 10−5 [Pa s]
λ∗ 0.10904 2.6374 × 10−2 [W/(mK)]
c∗p 1800.76 1005.70 [J/(kgK)]
β∗ 1.0879 × 10−3 3.3540 × 10−3 [1/K]
σ∗ 18.3 × 10−3 [N/m]
γ∗ 7 × 10−5 [N/(mK)]
Pr 28.84 0.704

Table 2: Reference quantities evaluated at T∗ = 25◦C.

αj ξI ξII ξIII ξIV ξV

αρ 1 0.2844 0.049714
αµ 1 0.2844 0.049714 -5.892 1.1405
αλ 1 −0.6807 −0.004936
αcp 1 0.2147 0.001134

Table 3: Coefficients ξn appearing in the shape functions for 2-cSt silicone oil.

αj ζI ζII ζIII ζIV ζV ζVI

αρ 0.001356 0.876838
αµ 0.010570 0.007286 −0.001378 0.00033808 −0.00003712
αλ 0.241886 0.180413 −0.026150 0.00627974 −0.00066962
αcp 0.561961 −0.101493 −3.4281 49.8238 −120.3466 98.8658

Table 4: Coefficients ζn appearing in the shape functions for air.

parameters vary almost linearly with a variation of about ≈ 10%. An exception is the shape
function αµ for the viscosity of the silicone oil (figure 2(a)). It varies by ≈ 100% relative to
α∗µ = 1 and has significant nonlinear contributions. This observation indicates the need to
take these variations into account.

Ideally, the full temperature dependence of all parameters as shown in figure 2 is taken into
account (FTD model). A less demanding approach is the LTD model (Linear Temperature
Dependence) in which all thermophysical parameters are approximated by linear functions

αj(ϑ)
α∗j

= 1 +
α′j

∗

α∗j
ϑ +O(ϑ2) (4.3)

and terms of O(ϑ2) are neglected. Within the well-known Oberbeck–Boussinesq model (OB)
only the density ρ(ϑ) in the buoyancy term is approximated according to (4.3) while all the
other parameters are assumed constant. At times, we also investigate the influence of a
single parameter only on the stability boundary, as in Stojanović et al. (2023a), keeping the
remaining parameters constant.
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Figure 2: Normalised shape functions αj/α∗j for 2-cSt silicone oil (α∗j = 1) (a) and for air
(b) evaluated at the reference temperature T∗ = 25 ◦C and for ΔT = 50 K. The reference

parameters α∗j for air are shown as subcaptions in (b).

A systematic quantification of the variability of the thermophysical parameters has
been provided by Stojanović et al. (2023a), in particular their tables 1 and 2. In linear
approximation (4.3), a maximum relative deviation of c/2 of a particular thermophysical
parameter leads to the requirement (ϑ ∈ [−0.5, 0.5])�����α′j∗α∗j

����� < c. (4.4)

The most severe restriction on ΔT is posed by the viscosity of the liquid. To satisfy (4.4) with
c = 0.1 (Gray & Giorgini 1976), for instance, restricts the allowable temperature difference
to ΔT = cµ∗/(∂µ/∂T)∗ � 4.8 K.

5. Results
Originating from the reference values of the geometry and driving parameters (subscript ref)
the critical thermocapillary Reynolds number Rec is calculated as function of the relative
volume V of the liquid bridge, the aspect ratio Γ, the size of the system (length scale d) and
the gas flow Reynolds number Reg. These parameters are varied over the following ranges.

(i) The volume ratio is varied within V ∈ [0.66, 1.3] for Γ = Γref, Reg = Reg,ref and
Bd = Bdref.

(ii) The aspect ratio of the liquid bridge is changed in the range Γ ∈ [0.5, 1.8] by varying
the distance d between the rods for V = Vref and Reg = Reg,ref. The change of d also
affects the dynamic Bond number Bd ∼ d2. In order to enable a comparison of the numerical
results with laboratory experiments, by varying d we do not keep the dynamic Bond number
constant but simultaneously vary Bd ∈ [0.208, 3.70] such that Bd = Bdref(Γ/Γref)2.

(iii) The size of the system is varied by changing d ∈ [0.1, 3]mm for Γ = Γref, V = Vref
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and Reg = Reg,ref. As for the variation of Γ, the dynamic Bond number varies ∼ d2 and we
vary the Bond number accordingly in the range Bd ∈ [0.016, 1.20].

(iv) The strength of the gas flow is varied within Reg ∈ [−3500, 1500] for Γ = Γref,
V = Vref and Bd = Bdref.
While the first, second, and fourth variations are often conducted in experiments (see
e.g. Melnikov et al. 2015; Yano et al. 2016; Gaponenko et al. 2021), the third variation is
intended to reveal the length scale below which the flow in the thermocapillary liquid bridge
becomes independent of buoyancy forces under terrestrial conditions.

5.1. Liquid bridge inside a sealed tube
5.1.1. Effect of the volume ratio on the stability boundary
Figure 3 shows the dependence of the critical Reynolds number Rec (a) and frequencyωc (b)
as a functions of the volume ratioV taking into account a dynamically deforming interface in
the basic flow. Three different flow models are considered: (a) full temperature dependence
of all parameters (FTD, full lines), (b) linear temperature dependence of all parameters (LTD,
dashed lines) and (c) the Oberbeck–Boussinesq approximation (OB, dash-dotted lines). In
addition, the black dash-dotted curves are reproduced from Stojanović et al. (2022) who
used the OB model, but for slightly different reference parameters and an indeformable,
hydrostatic interface according to (2.24) (see Section 5.1.2). Note that this line does not
distinguish between different wave numbers.

The larger the temperature difference the larger are the deviations among the three models.
Based on the usual criterion c = 0.1 the OB approximation should be valid only for
temperature differences up to ΔT � 4.8 K (due to the variability of µ). Nevertheless, the
OB approximation yields critical Reynolds numbers Rec which deviate less than ±5% (grey
region in figure 3(a)) from those obtained using the FTD model as long as ΔT � 28 K.
The linearised model (LTD, dashed) compares overall better with the FTD model, yet the
dashed line (LTD) leaves the grey 5% tolerance region in the range V ∈ [0.752, 0.785] at
ΔT ≈ 27 K. The difference in Rec between the linearised (dashed) and the FTD model (full)
becomes more significant in the range V ∈ [0.842, 0.898] for ΔT � 45 K.

The volume ratio V has a strong effect on the stability boundary. The slope of Rec(V) is
particularly large and changes its sign at the peak nearV = 0.85. Moreover, the wave number
and the structure of the critical mode changes along the critical curve. This indicates the
value of Rec is sensitive with respect to small variations of V in this region. This sensitivity
exists in addition to the sensitivity of Rec with respect to the model (OB, LTD or FTD)
used. For most volume ratios the critical Reynolds number for the OB model ReOB

c > ReFTD
c

is larger than the one of the FTD model which itself is slightly larger than the one of the
LTD model. To the right of the peak the critical oscillation frequencies in figure 3(b) exhibit
a similar trend as critical Reynolds number. For lower volume ratios, however, the critical
frequencies are much lower.

As an example we consider V = 0.88 (green square in figure 3) for which mc = 3 for all
models. We find that the structure of the basic flow (full and dashed lines in figure 4) and of
the respective most dangerous modes (comparison not shown) for all three parameter models
are almost identical for V = 0.88. The higher critical Reynolds number for the OB model
in comparison to the ones for the FTD and LTD models in this case might be related to the
strong variation of the local viscosity, more precisely, the local kinematic viscosity. Owing
to the relatively weak variation of αρ compared to αµ (c.f. blue and green curve in figure
2(a)) for the liquid, we focus on the local kinematic viscosity

ν(ϑ) = µ
ρ
=
αµ

αρ
ν∗. (5.1)
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Figure 3: (a) Critical Reynolds number Rec (left side) and critical temperature difference
ΔTc (right side) as functions of the volume ratio V for Γ = 0.66, Bd = Bdref and a sealed

tube: FTD model (full lines), OB model (dash-dotted lines) and LTD model (dashed
lines). The gray-shaded region indicates a deviation of ±5% from the FTD model. Critical
wave number are indicated by colour (see legend). Inserts show zooms into the regions in

which mc = 0. (b) Critical frequencies.

Its relative deviation from the nominal value ν∗ = 2 × 10−6 m2/s is given by

ǫν(ϑ) = ν − ν
∗

ν∗
=
αµ

αρ
− 1. (5.2)

From figure 4(a) the local kinematic viscosity ν near the cold wall is larger by more than
60% than the nominal value, while near the hot wall and the free surface it is more than 20%
smaller than nominal, due to the high surface temperature ϑ > 0. As a result the azimuthal
perturbation temperature variations associated with the hydrothermal wave (HTW) lead to
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Figure 4: Basic state streamlines (a) and isotherms (b) for (Γ,Reg,Bd) = (Γ,Reg,Bd)ref
and V = 0.88 at Rec = 1680 using the FTD model. In (b) also the critical velocity field
(arrows) and the critical temperature field (colour) for mc = 3 is shown in the (r, z) plane
in which the local thermal production αρ0ϑ̃ũ · ∇ϑ0 takes one of its maxima (white crosses
in (a,b) at (rmax, zmax) = (1.05, 0.19)). Colour in (a) indicates the local viscosity deviation
ǫν (ϑ0). The dashed lines show basic state streamlines and isotherms for the same set of

parameters, but using the OB approximation.

larger azimuthal velocity gradients compared to those in the OB model in which the kinematic
viscosity on the interface is ν∗, or ǫν = 0. Since the azimuthal perturbation velocity drives
the HTW (Wanschura et al. 1995), this effect enhances the velocity field of the critical mode
and thus may explain the lower critical Reynolds number for the FTD model as compared to
the OB model for V = 0.88.

The slightly lower critical Reynolds number of the LTD model in comparison to the FTD
model for V = 0.88 is consistent with the effective kinematic viscosity

νeff =

	∫
V

ρ[T0(x)]û2dV
�−1 ∫

V

ν[T0(x)]ρ[T0(x)]û2dV, (5.3)

which is defined as kinematic viscosity weighted by the kinetic energy density of the critical
mode (see appendix C). We find that the ordering of the critical Reynolds numbers ReLTD

c <
ReFTD

c < ReOB
c coincides with the one of the effective viscosities νLTD

eff < νFTD
eff < νOB

eff ,
namely 0.853ν∗ < 0.880ν∗ < ν∗ at the respective critical points of each model. Comparing
the three models for a constant Reynolds number at e.g. Re = ReFTD

c = 1680 yields the same
ordering with 0.832ν∗ < 0.880ν∗ < ν∗.

While the above interpretation seems plausible for V = 0.88, this argument cannot
generally proven valid, because the critical curves for the OB approximation of the FTD
model intersect. Thus for certain ranges of V the basic flow is slightly more stable within
the FTD model than within the OB model. This indicates that the influence of the changed
volume is much more important, not only changing the critical Reynolds number, but also
the structure and wave number of the critical mode. Regardless of the explanation of the
mechanisms at work, the results in figure 3 show that it is important to take into account the
variation of the thermophysical parameters (in particular that of the viscosity of the liquid)
in order to arrive at accurate critical data when the temperature difference is large, here
approximately in the range V ∈ [0.75, 0.95].

In table 5 we compare the critical data obtained for V = 0.88 using different
approximations. Within the OB + ρ(T) model, the temperature dependence of the fluid
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Approximation Rec ΔTc [K] ǫc [%]

FTD 1679 50.79 0
LTD 1572 47.53 −6.4
OB 2263 68.45 34.8

OB + ρ(T) 2218 67.09 32.1
OB + µ(T) 1716 51.89 2.2

OB + µL(T) 1717 51.93 2.2

Table 5: Critical Reynolds numbers Rec and critical temperature differences ΔTc for
V = 0.88 and different model equations (approximations). The relative deviation

ǫc = (Rec − ReFTD
c )/ReFTD

c is given in [%].

densities is taken into account in all the governing equations (2.4) according to (2.10),
whereas the OB + µ(T) model combines the OB approximation with a fully temperature
dependent dynamic viscosity, while the OB + µL(T) model indicates that only the liquid’s
viscosity is fully temperature dependent. The OB + µ(T) and OB + µL(T) models yield the
smallest deviation of the critical Reynolds number from the one of the FTD model. This
confirms the importance of taking into account the temperature dependence of µ(T) of the
fluids, in particular that of the liquid.

5.1.2. Comparison with the results of Stojanović et al. (2022)
Stojanović et al. (2022) have also computed the linear stability boundary Rec(V) using the
OB approximation and the same geometry parameters. However, there are small differences
compared to the present investigation: (a) Stojanović et al. (2022) neglected dynamic surface
deformations and (b) the reference quantities αj differ slightly: In the present work they are
determined by quadratic least-squares fits of the discrete manufacturer’s data (cf. section
4), while Stojanović et al. (2022) implemented the discrete values specified for the reference
temperature, except for the thermal expansion coefficient which was taken from Romanò et al.
(2017), because it is not contained in the data sheet provided by the manufacturer.

Tests have shown that the dynamic surface deformation Δh0 = h0,d − h0,s in the basic
flow, where h0,d and h0,s are the dynamic and static surface shapes, respectively, has a
weak influence on the critical Reynolds number near the peak of Rec(V) at V ≈ 0.9. For
these volume ratios, differences between the present results using the OB approximation
and those of Stojanović et al. (2022) are mainly due to the different reference values αj
used, in particular due to the difference in β∗ for the liquid phase: Stojanović et al. (2022)
used the same value for β∗ as did Romanò et al. (2017). This value is 11.4% larger than the
current value used (table 2). The impact is visible from figure 3, where the critical Reynolds
number obtained by Stojanović et al. (2022) (black dash-dotted) significantly deviates from
current result using the OB approximation (coloured dash-dotted) for V � 1. In particular,
an axisymmetric m = 0 mode is critical in the present investigation in the narrow range
V ∈ [0.8663, 0.8712] (brown dash-dotted line, upper inset of figure 3(a)), whereas the
axisymmetric critical mode arises for V ∈ [0.8917, 8983] in Stojanović et al. (2022) (full
black line in their figure 17(a)). The different thermophysical reference parameters are
also responsible for the significant reduction of the volume ratio range within which the
wave number m = 4 is critical: V ∈ [0.871, 0.874] (orange dotted line in figure 3(a)) as
compared to V ∈ [0.898, 0.929] (full purple line in figure 17a of Stojanović et al. (2022)).
The changes indicate the sensitivity of the critical Reynolds number on the thermophysical
reference parameters αj , not only for the OB approximation but in general.
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Figure 5: Critical Reynolds number Rec (left axis) and critical temperature difference ΔTc
(right axis) as functions of the aspect ratio Γ for V = 1, Bd = Bdref × (Γ/Γref)2 and a
closed chamber. The curves related to the left and right vertical axis, respectively, are

indicated by the additional label in the right corner of the graph. Shown are the results for
FTD (full lines), LTD (dashed lines), and OB (dash-dotted lines) models. The gray shaded

region indicates a deviation of ±5% from the reference FTD model.

5.1.3. Effect of the aspect ratio on the stability boundary
The aspect ratio Γ = d/ri can easily be adjusted in experiments and is an important parameter
determining the critical wave number. Therefore, we vary the length d, as in experiments,
keeping ri = ri,ref constant. The Bond number is adjusted accordingly Bd = Bdref ×(Γ/Γref)2.
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Figure 6: Same as figure 4 but for (V,Reg) = (V,Reg)ref, Γ = 0.93 and Rec = 1438

The dependence of the critical conditions on d is displayed in figure 5(a), where the critical
Reynolds number Rec is shown as a function of the aspect ratio Γ for V = 1 and the three
models employed (OB, LTD, FTP). Figure 5(b) shows the corresponding critical frequencies.
While the critical frequencies increase with the critical Reynolds number to the left of the
peak of Rec (small Γ), the opposite behaviour is found for the frequency of the critical m = 1
mode to the right of the peak of Rec (larger Γ). In addition, we reproduce in figure 5 Rec(Γ)
and ωc(Γ) (black dash-dotted curves) obtained by Stojanović et al. (2022) for the OB model,
but for slightly different reference parameters and an indeformable interface. Since for the
present parameter variation ΔTc ∼ Rec/d scales differently from Rec , straight grey lines in
5(a) refer to constant values of ΔT .

For most aspect ratios all present critical Reynolds numbers lie within the 5% tolerance
level about the result for the FTD model (full line). However, similar as for the variation ofV
above, the OB model (coloured dash-dotted lines) overestimates the critical Reynolds number
by more than 5% in the range Γ ∈ [0.806, 1.086]. The sensitivity of the critical Reynolds
number on the reference parameters αj is again confirmed when comparing the OB model
of Stojanović et al. (2022) (black dash-dotted) with the current OB model results (coloured
dash-dotted). In Stojanović et al. (2022), buoyancy forces have been overestimated due to
the larger selected β∗. This also explains the increasing discrepancy of Rec for long liquid
bridges (large Γ). Numerical tests have shown including dynamic surface deformations in
the model of Stojanović et al. (2022) have only a very minor effect on the black dash-dotted
curves. The comparison thus underlines that the selection of the reference quantities (here
β∗) has a profound effect on Rec which can be large when the slope of Rec(Γ) is large.

As a minor detail, the OB approximation predicts the critical wave number mc = 2 (red)
within a very small window of Γ at the peak of Rec (inset of figure 5(a)), whereas the FTD
model yields mc = 3 (green). Likewise, the critical mode with mc = 2 does not arise in the
OB model used by Stojanović et al. (2022), but from their calculations neutral modes with
different wave numbers arise at very close Reynolds numbers near the peak of Rec(Γ).

Close to the peak of Rec which coincides with a maximum of the critical temperature
difference the distribution of the kinematic viscosity ν(x) exhibits a similar structure as for
(Γ,Reg,Bd) = (Γ,Reg,Bd)ref and V = 0.88. This is evident when comparing figure 6(a)
for Γ = 0.93 (green square in figure 5) with figure 4(a). Despite of quantitative differences
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of ν, the effective viscosities based on the result for Re = ReFTD
c (Γ = 0.93) = 1438 are

ordered with νLTD
eff = 0.911 < νFTD

eff = 0.923 < νOB
eff = 1, just like the Reynolds numbers are

(ReLTD
c < ReFTD

c < ReOB
c ). The impact of the effective viscosity is demonstrated in figure

6(b), where the basic state isotherms of the FTD model (full black lines) are compared
with the ones obtained by the OB model (dashed black lines) at the same Reynolds number
Re = ReFTD

c = 1438. At this Reynolds number the most dangerous mode of the OB model
(not shown) is linearly stable. The slightly stronger basic flow in the FTD model compared to
the OB model (c.f. dashed and full white lines in figure 6(a)) yields a slightly stronger basic
state thermal advection (c.f. dashed and full black isotherms in figure 6(b)). This enhances
the energy supply from the basic state to the perturbation flow, which destabilises the flow.

5.1.4. Effect of the length scale on the linear stability boundary
The size of a liquid bridge, parameterised by the length scale d, is perhaps the most
important design parameter for experiments. It affects the static shape of the liquid bridge
through the hydrostatic pressure difference and determines its mechanical stability (see
e.g. Meseguer et al. 1995). Apart from these mechanical aspects, the size affects the
critical thermocapillary Reynolds number, because (a) the strength of buoyancy forces to
thermocapillary forces depends on size, and (b) the range of variation of the material
parameters depends on size through the size-dependence of the critical temperature
difference.

To investigate these influence factors we consider Γ = 0.66, Γrod = 0.4, η = 4, V = 1 and
take into account the dynamic surface shape of the liquid bridge in the basic state. While
the FTD model is the most realistic one, it is instructive to compare the size dependence
of the critical Reynolds number of the different models with the OB approximation under
zero gravity conditions (OB-0g). For zero gravity and the absence of a forced flow in the gas
phase deviations of the shape from cylindrical are only due to the basic flow (DI). If dynamic
deformations are suppressed (SI), the length scale and the temperature difference would only
appear in the Reynolds number Re ∼ ΔTd. Therefore, the stability boundary for the OB-0g
model and a static interface (SI) is simply Rec(d) = 627 = const with ΔTc ∼ d−1. In the
present case of a dynamic interface (DI) the effect of the dynamic surface deformation in the
basic state only becomes relevant for small values of d, thus large values of ΔTc , because a
high temperature difference significantly increases the capillary number entering the normal
stress balance (2.20a), which makes the interface more deformable dynamically. The effect
is visible in figure 7 by the minute reduction of ReOB-0g

c (black curve, DI) from Re = 627
(SI) for d � 0.25 mm. The critical wave number for the case OB-0g is mc = 2 in the full
range of d investigated.

The critical Reynolds number ReOB-0g
c (d) for OB-0g represents the reference. The grey

strip indicates a ±5% deviation from ReOB-0g
c . The effect of the terrestrial gravity level and of

the full temperature dependence of the material parameters on the critical Reynolds number
when the length scale d is varied is shown in figure 7 for the OB and FTD models and for 0g
and 1g.

In the framework of the OB approximation (OB-1g) the buoyancy force in the liquid phase
in (2.4) becomes in our scaling

− Bd
αρ − α∗ρ
ε

=
ρ∗gβ∗d2

γ∗
ϑ =

Udiff
UTC

Raϑ, (5.4)

where Udiff = λ
∗/(ρ∗c∗pd) and UTC = γ

∗ΔT/µ∗ are the characteristic velocity scales for
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Figure 7: Critical Reynolds number as function of the size of the setup expressed through
d for constant geometrical proportions Γ = 0.66, Γrod = 0.4, η = 4 and V = 1. Different

gravity conditions and flow models are considered (see the legend). The gray hatched
region corresponds to inaccessible critical temperature differences with ΔTc > 126 K. The
gray shaded region indicates a deviation of 5% from the zero-gravity reference case (blue
lines). Full lines: critical Reynolds numbers. Dashed line: neutral Reynolds numbers close
to the intersection of critical curves. The wave number m is given for each segment of the

critical curve.

thermal diffusion in the liquid and for thermocapillary convection, respectively, and

Ra =
gβ∗ΔTd3

(λ∗/ρ∗c∗p)(µ∗/ρ∗) (5.5)

is the Rayleigh number. Due to the dependence Ra ∼ d3, buoyancy forces rapidly diminish in
the liquid phase as the length scale d is reduced and if approximatelyΔT ∼ d−1. Therefore, the
critical Reynolds number Rec under terrestrial gravity within the OB approximation (OB-1g,
green in figure 7) approaches the zero gravity case (OB-0g, black) in the limit of vanishing
d. As d increases beyond d ≈ 0.4 mm, the basic flow first becomes slightly stabilised due to
buoyancy within the OB-1g model. The change of the critical wave number from mc = 2 to
mc = 3 at d = 0.65 mm leads to a slight reduction of the critical Reynolds number below
the one for the case OB-0g until, for d � 1.6 mm, buoyancy forces again strongly stabilise
the basic flow. Further increasing d the critical Reynolds number grows significantly and a
more complicated switching of critical modes arises. Based on the OB approximation, the
influence of buoyancy forces on the critical Reynolds number for the present couple of fluids
and geometry remains less than ≈ 4.5% as long as d < 1.6 mm. A relation similar to (5.4)
holds for the buoyancy force in the gas phase. However, the Rayleigh number would not scale
like ∼ d3 for the present parameter variation with constant values of Γrod and η.

The picture changes when the full temperature dependence of the material parameters
are taken into account. Under zero gravity, the FTD model (FTD-0g, blue) yields a critical
Reynolds number larger than ReOB-0g

c for d � 0.37 mm. Figure 8 shows the critical mode
using the FTD-0g model (a) and the OB-0g model (b) for d = 1 mm. The isotherms of
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Figure 8: Linear stability results for (V, Γ,Reg) = (V, Γ,Reg)ref, Bd = 0 and d = 1 mm
using the FTD model (a) and the OB model (b). Shown are the critical velocity field
(arrows) and critical temperature field (colour) in the (r, z) plane in which the local

production αρ0ϑ̃ũ · ∇ϑ0 takes one of its maxima (white crosses) in the bulk. Black lines
indicate isotherms of the basic state. (a) Rec = 676, mc = 2. (b) Rec = 627, mc = 2.

the basic state (black lines) indicate again a higher temperature close to the free surface for
FTD-0g. However, in contrast to the case shown in figure 4, the FTD-0g model is more stable
than the OB-0g model, i.e. ReFTD-0g

c > ReOB-0g
c . This finding is consistent with figure 3 (for

V = 1) in the presence of buoyancy forces.
The difference between OB-0g and FTD-0g vanishes asymptotically as d becomes larger,

because the critical temperature difference decreases∼ d−1, provided Rec ≈ const. Therefore,
the material properties hardly vary anymore within their respective domains. This also
becomes clear when taking the limit ΔT → 0 in (2.7) in which the shape functions for the
liquid reduce to αj ≡ 1. Asymptotically, Ca ∼ d−1 such that the Laplace pressure dominates
and the liquid bridge takes a perfect cylindrical shape. If, on the other hand, the size of the
bridge is reduced, the critical wave number for the FTD-0g model changes from mc = 2
to mc = 3 at d = 0.84 mm. For even smaller sizes the basic flow is strongly destabilised
for d < 0.25 mm within the FTD-0g model. This effect is due to the increased range of
variation of the material properties when the critical temperature difference increases due to
the reduction of the length scale. In this region (gray hatched in figure 7) other effects like
evaporation become important which are not taken into consideration here. In any case, the
maximum theoretical temperature difference is bounded by the pour point and the boiling
temperature which, for 2-cSt silicone oil, are −120◦C and 88◦C, respectively. The latter
restricts the experimentally realisable temperature differences to ΔT < 2 × (88 − 25)◦C =
126◦C, assuming that the mean temperature is kept at 25◦C. Temperature differences above
this threshold fall into the gray hatched region.

For small length scales 0.35 mm � d � 0.5 mm, deviations of Rec from the reference
case ReOB-0g

c are primarily caused by the temperature dependence of the material properties
and neither by buoyancy nor dynamic deformations of the interface. Therefore, the critical
Reynolds number under terrestrial gravity conditions for the FTD model (FTD-1g, red)
hardly deviates from Rec under zero gravity (FTD-0g, blue) for d � 0.5 mm with mc = 3.
For larger system sizes the critical Reynolds number for FTD-1g remains closer to the results
for OB-0g and OB-1g and the critical wave number mc = 3 for the FTD-1g model does not
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change before Rec for the terrestrial conditions (red, green) starts increasing strongly from
the 0g cases (black, blue) for d � 1.6 mm.

In summary, the critical data (Rec and mc) under terrestrial gravity modelled by the
FTD-1g model (red) is comparable (up to 5%) to the OB-1g model (green) as long as
d � 0.69 mm. For smaller lengths, the OB-1g model yields a different critical wave number
mc. For zero gravity conditions, the critical Reynolds numbers of the FTD-0g model (blue)
can be predicted by the simpler OB-0g model (black) with an accuracy better than 5% if
d � 1.64 mm. Moreover, in the range d ∈ [0.35, 1.5]mm, all four models yield comparable
results since Rec is almost constant and bounded by Rec ∈ [615, 683]. It is remarkable that for
d � 1.64 mm the large critical Reynolds numbers and the mode switching leading to the peak
of Rec for the OB-1g and FTD-1g models are essentially caused by the increasing buoyancy
forces in the bulk when heating from above and by the increasing static shape deformation
(Bo ∼ d2). Dynamic deformation are of minor importance for increasing d, indicated by the
small deviation of ReOB-0g

c (black in figure 7) from the constant value ReOB-0g,SI
c = 627.

5.2. Effect of temperature-dependent thermophysical properties in the presence of an axial
gas flow

A concentric circular tube about the liquid bridge, originally designed to minimise ambient air
effects on the flow in the liquid, can be utilised to impose an axial flow in the gas phase which
bears some potential to control the onset of a time-dependent and/or three-dimensional flow
in the liquid phase (Shevtsova et al. 2013, 2014; Yano et al. 2016, 2017; Yasnou et al. 2018;
Stojanovic & Kuhlmann 2020; Gaponenko et al. 2021). Following Stojanovic et al. (2023),
we impose an axial gas flow at the inlet of the annular space around the liquid bridge. The
velocity profile wg,in(r) is fully developed according to (2.29) and its strength is measured
by the gas flow Reynolds number Reg = W̄g,inρ

∗d/µ∗ as defined in Stojanović et al. (2022).
The gas at the inlet has a homogeneous temperature corresponding to that of the adjacent
support rod. Thus for an upward flow with Reg > 0 the gas is cold (ϑ0,in = −0.5), while for
a downward flow with Reg < 0 it is hot (ϑ0,in = 0.5).

Critical Reynolds numbers Rec and frequencies ωc as functions of the gas flow Reynolds
number Reg are shown in figure 9(a,b) for the FTD (solid), LTD (dashed) and OB model
(dash-dotted line). The sensitivity of the critical Reynolds number with respect to the gas
flow for small values |Reg | � 50 has been explained by Stojanovic et al. (2023). The critical
curves for all models behave qualitatively similar as reported in figure 2(a) of Stojanovic et al.
(2023) for an extended OB model which almost agrees with the current standard OB model.
Also for upward flow (Reg � 50) and strong downward flow (Reg � −2000) the critical
Reynolds numbers are almost independent of Reg and in the range of Rec ≈ 400. For these
conditions, the three models yield comparable results well within the 5% tolerance margin
(grey). However, for downward flow in the intermediate range of −2000 � Reg � −50 the
three material parameter models yield very different results. This is due to the large critical
temperature difference for which the dependence of the thermophysical parameters on the
flow becomes important.

The critical Reynolds numbers obtained using the OB approximation (dash-dotted) are
typically much larger in the range −2000 � Reg < −50 than the reference data for FTD.
An exception is the m = 1 OB mode which is responsible for a local minimum ReOB

c (m =
1) = 1727 of the critical Reynolds number at Reg = −480. Within Reg ∈ [−767,−345] the
critical Reynolds number for the OB model is even slightly less than the one for the FTD
model, ReOB

c < ReFTD
c . Despite of similar critical Reynolds numbers near Reg = −480 the

wave numbers, oscillation frequencies and flow structures of the critical modes of the two
models differ. The linear LTD model (dashed) represents a better approximation to the FTD
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Figure 9: Left panel: Critical Reynolds number Rec (black axis labels) and critical
temperature difference ΔTc (purple axis labels) as functions of the gas flow Reynolds

number Reg for Γ = 0.66, V = 1 and Bd = Bdref. Results are shown for the FTD model
(full lines), the LTD model (dashed lines), and the OB approximation (dash-dotted lines).
The gray-shaded region indicates a deviation of ±5% from the reference FTD model. The

wave numbers are coded by colour. Right panel: Full neutral Reynolds numbers for
individual wave numbers.

model (full) than the OB model (dash-dotted). Like for the FTD model, the critical curve
ReLTD

c (Reg) is unique and has the same shape as ReFTD
c (Reg). However, the LTD model

underestimates the critical threshold by more than 10% in the range Reg ∈ [−1705, −32].
Noteworthy, there exists a considerable range of Reg around Reg ≈ −500 in which the most
dangerous mode of the FTD model is axisymmetric (brown line). Furthermore, a critical
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Reg ReFTD
c ReLTD

c ReOB
c ǫLTD

c [%] ǫOB
c [%]

−1500 1616 1351 2185 −16.4 35.2
−500 1853 1670 1728 −9.9 −6.7
−250 1813 1642 1860 −9.4 2.6

Table 6: Critical Reynolds number Rec and critical temperature difference ΔTc for
Reg = −1500, Reg = −500 and Reg = −250. Results are given for different

approximations. The relative deviation ǫc = (Rec − ReFTD
c )/ReFTD

c is given in [%].

Reg LTD FTD OB
|ψ̌min | νeff/ν∗ |ψ̌min | νeff/ν∗ |ψ̌min | νeff/ν∗

−250 1.147 0.8320 1.084 0.9135 0.9746 1
−500 1.123 0.8444 1.058 0.8406 0.9450 1
−1000 1.155 0.8219 1.083 0.8981 0.9498 1
−1500 1.263 0.8124 1.178 0.8499 0.9995 1

Table 7: Scaled streamfunction extrema |ψ̌min | = |ψmin | × 103 of the basic flow and
effective viscosities νeff for Re = 1500 and different Reg for the three models LTD, FTD,

and OB.

mode with wave number mc = 4 can be critical within the FTD model, but not for the other
models.

The larger critical Reynolds numbers for the OB model (except for the m = 1 mode) and
the smaller ones for the LTD model as compared to ReFTD

c are caused by the considerable
viscosity variation for large ΔT . For most values of Reg, we find the effective kinetic-energy-
weighted viscosity (5.3) is ordered like νLTD

eff < νFTD
eff < νOB

eff . Therefore, it is reasonable to
assume that the perturbation flow experiences the most dissipation for the OB model and the
least for the LTD model. But also the magnitude of the stream function extrema of the basic
flows for a constant Reynolds number Re = 1500 provided in table 7 show the same ordering.
Thus a higher Reynolds number is required in the OB model to establish the characteristic
internal temperature gradients by advection, from which the hydrothermal wave can draw its
thermal perturbation energy. This effect is assisted by the lower surface temperature in the
OB model as compared to the FTD model at the same thermocapillary Reynolds number as
shown in figure 10.

Figure 11 shows the most important integral thermal energy production terms J1 (blue) and
J2 (red) for the FTD model as functions of the gas flow Reynolds number. We note the heat
transfer through the interface is always negligible compared to the bulk thermal production
rates J1 and J2, since −1.3 × 10−3 < Hfs < 0. For Reg < −1750 and for Reg > 0 the critical
Reynolds number is low and the thermal perturbation energy is almost entirely provided by
radial advection of basic state temperature described the term J1 (blue). The variation of the
relative importance of J1 and J2 indicates changes of the model structure or the critical wave
number. The changes of the critical mode along Rec(Reg) are illustrated in the supplementary
video for the FTD model: For strong downward flow of the hot gas (Reg = −3500) the region
of basic state temperature gradients (full black lines) is located at about one half of the radius
of the liquid bridge (r ≈ 1/2Γ). The temperature perturbations spots extend from top to
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Figure 10: Tangential velocity ut0 = t · u0 (blue) and temperature distribution ϑ0 (red) of
the basic flow along the free surface (parameterised by z) for (Reg,Re) = (−1500, 1616).
The models FTD, LTD and OB are distinguished by line type (see legend). The insets

show the velocity peaks near the hot and cold corners.

bottom and the perturbation flow arises in form of six vortices (m = 3) which are almost
aligned with the z axis. In this region the temperature perturbation spot are almost exclusively
created by the radial perturbation flow sucht that J1 ≈ 1 and J2 ≈ 0. Increasing Reg from
−1750 to −1500 the basic flow becomes more stable (figure 9(a)). Due to the larger critical
temperature difference at the critical point the hot fluid transported along the free surface
downward to the cold end of the bridge has an increasing tendency to rise due to buoyancy.
As a result the basic state temperature gradients move closer to the interface and becomes
thinner. This is accompanied with a structural change of the critical mode (see also figure
11) such that the temperature perturbations increasingly spiral about the axis. In the cross
section shown in the video this is visible by the temperature spots of alternating sign which
seem to grow out of the cold corner as Reg increases.

In the plateau region of Rec, approximately for Reg ∈ [−1500,−300], the basic temperature
field does not change much. But the critical wave number changes monotonically from m = 3
to m = 0. With each reduction of m the importance of J2 (axial advection) over J1 grows
(figure 11). Due to the radially quite localized basic state temperature gradients also the
critical modes are confined to this radial region. The radial confinement of the critical modes
may explain why the azimuthal wave number (if not too large) is not very important for
the instability such that the segments of the critical curve in figure 9(a) merge relatively
smoothly. In the range Reg ∈ [−300, 230], the region of basic state temperature gradients
becomes wider again and the perturbation flow undergoes a reverse evolution as for the
transition region Reg ∈ [−1750,−1500]. This is due to the reduced heating from the free
surface (even cooling for Reg > 0) and a reduction of the buoyant rise of the return flow in
the bulk.

We shall now focus on the region between Reg ≈∈ [−2000, 0], where most of the deviations
between the OB, LTD and FTD models are observed. For a given Reg, the basic flow structure
remains qualitatively very similar upon a change of the model (either OB, LTD, or FTD),
however the critical thermocapillary Reynolds number can be significantly different. The
difference in Rec between the FTD and LTD model can be explained via the effective
viscosity for all modes, except for the m = 1 mode of the OB model. In this sense the m = 1



Thermocapillary liquid bridges with temperature-dependent material properties 29

Reg

J1
J2

11

1

2
2

3
3m = 3 4

−2000 −1000

0
0

0

0.5

Figure 11: Normalised thermal perturbation energy production rates J1 (blue) due to radial
advection and J2 (red) due to axial advection in the liquid phase according to (3.10b) as
functions of Reg along the critical curve of the FTD model (full lines in figure 9(a)). The

vertical dotted lines indicate changes of the critical wave number mc as indicated.

(a) m = 0 (FTD) (b) m = 1 (FTD) (c) m = 2 (FTD)

(d) m = 3 (FTD) (e) m = 4 (FTD) (f) m = 1 (OB)

Figure 12: Basic state isotherms (black lines), perturbation temperature field (colour) and
perturbation velocity field (arrows) in the plane ϕ = const. in wich the local thermal

production αρ0ϑ̃ũ · ∇ϑ0 is maximised (white crosses). Shown are (a) the critical mode
with m = 0 of the FTD model for (V, Γ,Bd) = (V, Γ,Bd)ref, Reg = −500 and Rec = 1853

(brown square in figure 9(a)). Also shown for the same parameters are the stable modes
with m = 1 to m = 4, in (b) to (e)), and the unstable most dangerous mode with m = 1 for
the OB model in (f). The dashed black lines indicate horizontal cuts shown in figure 13.
The green lines represent the isosurfaces ϑ̃ = 0.5 × max(ϑ̃) projected onto the respective

plane.

OB mode is atypical and has a much lower frequency than all other modes. To investigate
more in depth the difference between the OB m = 1 instability and the peculiar plateau of the
critical stability curve for the FTD and LTD models, figures 12 and 13 compare the basic state
isotherms (lines) and the perturbation velocity (arrows) and temperature (colour) fields of the
OB for m = 1 and the FTD model for m = 0 (at criticality) and for m ∈ [1, 4] at Reg = −500
and Re = Rec = 1853 (brown square in figure 9(a)). It is observed that the most dangerous
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(d) m = 3 (FTD) (e) m = 4 (FTD) (f) m = 1 (OB)

Figure 13: Same as figure 12 but for constant z. The grey arrows in indicate the direction
of propagation of the mode.

mode for the OB model (m = 1) is qualitatively different from the other modes observed for
the fully-temperature dependent perturbations. The most dangerous m = 1 mode of the OB
model is promoted by a radially narrow perturbation vortex near the top right corner of the
liquid bridge. This cannot well exploit the basic state temperature gradient, hence it requires a
perturbation temperature developed over a thicker annular region in order to produce enough
energy to feed the mc = 1 HTW perturbation (see figure 12(f)). On the other hand, for
FTD (as well as for LTD, not shown), the velocity perturbation is strongest where the basic
state temperature gradient is most intense. This allows the most dangerous perturbation to
concentrate its temperature peaks in a thin toroidal blade (see figs. 12(a–e)). The radial
confinement of the temperature perturbation is illustrated by the green lines in figures 12
and 13 indicating the projection of the isosurfaces ϑ̃ = 0.5 × max(ϑ̃) onto the respective
planes. As the radial extension of the production region for FTD and LTD (not shown) is
relatively small, the instability mechanism becomes almost insensitive to the perturbation
wave number. This explains the plateau of the neutral stability curves (see panels on the
right of figure 9) for the FTD and LTD models, that signifies that the flow in the liquid
bridge can be driven towards an unstable state at Re ≈ 1850 for FTD and Re ≈ 1700 for
LTD for all azimuthal wave numbers m considered. The supplementary video confirms this
interpretation.

6. Discussion and Conclusions
The linear stability of a differentially heated thermocapillary liquid bridge has been
investigated numerically. Three distinct models were analysed for a silicone oil liquid bridge
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in air: the Oberbeck–Boussinesq approximation (OB), a linear temperature dependence of
all material properties (LTD), and a full nonlinear dependence of all material parameters
on temperature (FTD). The critical stability curves have been computed as functions of the
volume ratio V of the liquid bridge, its aspect ratio Γ, it size d and for a forced axial flow
in the surrounding air measured by Reg. The Oberbeck–Boussinesq approximation tends to
overestimate the critical Reynolds number, while the linear model underestimated it. This
trend can be explained by an effective viscosity νeff, because the viscosity is by far the most
temperature-dependent material property. If the effective viscosity rules the critical onset,
then the modified Reynolds number of the FTD model (ν∗/νeff)2 ReFTD

c ≈ ReOB
c should

be comparable to the one of the OB model. This correlation holds true approximately if
νeff is defined as the perturbation kinetic-energy-weighted kinematic viscosity of the FTD
model at criticality. Defining νeff this way was found to be more suitable than the surface-
averaged viscosity proposed by Kozhoukharova et al. (1999), because the surface averaged
viscosity only accounts for the driving of the basic and perturbation velocity fields, but
does not take care of the thermal perturbation energy production of the HTW due to the
advection across basic-state temperature gradients in the bulk. Unlike Kozhoukharova et al.
(1999) and Shevtsova & Melnikov (2000) who have reported a reduction of Rec due to the
linearly temperature-dependent viscosity, we have found parameter ranges where this general
conclusion is not valid. Therefore, a Reynolds number based on the effective viscosity cannot
correlate the critical points for all governing parameters, but it represents a rough estimate
in most cases considered.

The variable material properties have a particular strong effect on the critical Reynolds
number when the liquid bridge is heated or cooled from the gas phase by an imposed axial
gas flow. For a hot downward gas flow in the range Reg ∈ [−1750, −250] the critical curves
for all three models exhibit broad maxima. The maximum values differ significantly due to
the high critical temperature difference. In range of Reg the segments of the critical curve
which belong to different azimuthal wave numbers merge almost smoothly. This can be
explained by the production of the thermal perturbation energy of the hydrothermal wave
being confined to a narrow radial zone. Therefore, the neutral Reynolds numbers for different
(not too large) azimuthal wave numbers do not vary much. Owing to the crowding of neutral
modes in this range of Reg a complex interplay between these modes can be expected slightly
supercritically. The only exception to the smooth merging of critical modes is the m = 1 mode
of the OB model within Reg ∈ [−1960, −250]. This perturbation mode is extended towards
the liquid bridge axis and the energy production is more widespread inside the (r, z)-plane
travelling at untypical low rotational frequencies.

From a practical perspective, the dependence of the critical Reynolds numbers on the
length scale d, shown in figure 7 for various models, could be useful for experimentalists
who aim to predict Rec and mc for zero gravity conditions by conducting experiments on the
ground. Our results show that a reliable prediction of the critical wave number under zero
gravity by using the same experimental setup on the ground requires the size of the liquid
bridge not to exceed d = 0.8 mm (for the parameters selected). Based on the FTD model this
size restriction should also keep the deviation between the critical Reynolds numbers for 1g
and 0g below 5%, e.g., for d = 0.75 mm ΔTc(1g) = 40.6 K, while ΔTc(0g) = 42.7 K. For
smaller length scales d the relative deviations diminish, but the large absolute value of ΔTc

may lead to technical or safety issues for 0g space experiments and create undesired side
effects. For this reason and for a better optical access space experiments are typically carried
out using large liquid bridges (d > 3 mm). Due the dependence of the material properties
on T similarity cannot be exploited for predictions by small scale terrestrial experiments.
According to our linear stability analysis, the HTW instability for FTD-0g for d > 3 mm
cannot be predicted by simply employing smaller liquid bridges on the ground (FTD-1g):
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The wave number of the critical mode under 0g is mc = 2 for d � 0.84 mm, while on ground
the critical wave number is mc = 3 for d � 2.1 mm.

With increasing temperature difference the deviations among Rec for the three
thermophysical models (OB, LTD, FTD) become larger. Large temperature difference,
furthermore, typically require an increased maximum temperature Thot. Under these
conditions evaporation of the liquid can become significant. Using acetone (Pr = 4.3) as
the liquid phase evaporative cooling can strongly stabilise the basic flow by reducing radial
temperature gradients in the liquid phase (Simic-Stefani et al. 2006). Therefore, it is expected
that including evaporative cooling in the modelling will reduce the difference between the
OB, LTD and FTD models. Since the FTD model accounts for higher-order corrections of
all thermo-physical properties, it would be desirable to also include higher-order terms in the
temperature dependence of the surface tension (for an example, see Villers & Platten 1988).
To do so, corresponding accurate measurements of σ(T) for the present fluids are required.
Finally, it would be of interest to extend the present models to include dynamic surface
deformation due to the perturbation flow. It is expected that dynamic deformation due to the
perturbation flow lead to only small corrections to the hydrothermal wave instabilities, but
this approach would be more general, also allowing for surface wave instabilities. To date,
surface wave instabilities in thermocapillary flows have been only observed in plane layers of
low-Prandtl-number liquids (Smith & Davis 1983) and in flat migrating droplets (Hu et al.
2023).

Appendix A. Temperature dependence of the working fluids
Polynomials of second order have been fitted to the discrete data of ρ, λ and cp for 2-cSt
silicone oil provided by Shin-Etsu (2004) using least-squares. The low polynomial order was
employed to avoid non-physical oscillations of the fit function. The functional dependence
of µ(T) is constructed from the quadratic fit of the density and an exponential temperature
dependence of the kinematic viscosity (as in Ueno et al. 2003). The explicit functions read

ρ(T) = ρ∗ �1 − β∗(T − T∗) + 7.27 × 10−7(T − T∗)2� kg/m3, (A 1a)
µ(T) = µ∗e−5.892(T−T ∗)/(T+273.15) �1 − β∗(T − T∗) + 7.27 × 10−7(T − T∗)2� Pa s, (A 1b)
λ(T) = λ∗ �1 − 0.0026(T − T∗) − 7.22 × 10−8(T − T∗)2� W/m K, (A 1c)

cp(T) = c∗p
�
1 + 0.000821(T − T∗) + 1.66 × 10−8(T − T∗)2� J/kg K, (A 1d)

where T is measured in ◦C. The reference quantities for T∗ = 25◦C denoted by the asterisk
are given in table 2. Since the manufacturer does not specify the temperature dependence of
the surface tension σ, we assume the linear dependence

σ(T) = σ∗ − γ∗(T − T∗) (A 2)

provided by Romanò et al. (2017) and also specified in table 2. The functional dependence
of the gas properties

ρg(T) = ρ∗g
T∗ + 273.15
T + 273.15

kg/m3, (A 3a)

µg(T) = µ∗g
�
1 + 0.0026(T − T∗) − 1.9 · 10−6(T − T∗)2
+1.78 · 10−9(T − T∗)3 − 7.51 · 10−13(T − T∗)4� Pa s, (A 3b)

λg(T) = λ∗g
�
1 + 0.0028(T − T∗) − 1.58 × 10−6(T − T∗)2
+1.28 × 10−9(T − T∗)3 − 5.91 × 10−13(T − T∗)4� W/m K, (A 3c)
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Figure 14: Temperature dependence of the thermophysical properties of the working
liquid (a) and working gas (b). The coloured horizontal dashed lines represent the
reference values specified in table 2. The vertical black dashed lines represent the

reference mean temperature T∗ = 25◦C.

cpg(T) = 1011.96 − 1194.72G2 [1 − F (−3.428 + 49.824G

−120.35G2 + 98.867G3
$�

J/kg K, (A 3d)

are based on explicit formulae of VDI e.V. (2010), where

G(T) = T + 273.15
T + 2822.08

, and F(T) = 2548.93
T + 2822.08

. (A 4)

In figure 14, all functions (A 1) and (A 3) are evaluated and plotted in the range T ∈
[−20, 70] ◦C.

Appendix B. Verification and validation of the linear stability analysis for
temperature-dependent material properties

For the verification of the LTD model, we adopt the setup of Melnikov et al. (2002), where
the liquid’s viscosity αµ(ϑ) = α∗µ+α′∗µ ϑ is assumed to be a linear function of the temperature.
The remaining thermophysical properties ρ, λ and cp are assumed to be constant. In figure
15, a comparison is made between the critical data Rec and ωc obtained by MaranStable
(circles) and Melnikov et al. (2002) (squares). Results are given as functions of the non-
dimensional viscosity variation α′∗µ . A good agreement is found for all α′∗µ considered. The
critical Reynolds numbers Rec reported by Melnikov et al. (2002) (blue squares) are about
5% larger than those obtained by MaranStable (blue circles), but the slopes with respect to
α′∗µ agree very well. The maximum deviation of 2% in ωc is even smaller than for Rec . The
slightly higher critical Reynolds numbers found by Melnikov et al. (2002) might be related
to their numerical treatment of the problem, using a three-dimensional time-dependent
simulation rather than a stability analysis. Their mesh of 24×16 grid points in the (r, z) plane
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Figure 15: Critical Reynolds numbers Rec (blue symbols) and critical oscillation
frequencies ωc (red symbols) as functions of α′∗µ under weightlessness conditions with
Γ = 1, V = 1 and Pr = 4. Squares: data taken from Melnikov et al. (2002); circles: results

of MaranStable. The critical wave number is mc = 2.

was much coarser than the one used in MaranStable. Furthermore, some regularization of
the thermocapillary stresses near the hot and cold corners might have been applied, as was
done by Wanschura et al. (1995).

We are not aware of numerical investigations taking into account the full temperature
dependence of all thermophysical parameters. Therefore, we compare the results from
MaranStable for the basic flow with the ones from the code of Romanò et al. (2017)
in which only the full temperature dependence of the kinematic viscosity (main effect) and
of the thermal diffusivity were taken into account. Figure 16 shows the basic temperature ϑ0
(a) and the basic axial velocity component w0 (b) on the free surface. The parameters have
been selected according to Barmak et al. (2021), i.e. d = 5 mm, Γ = 1, Γrod = η = 3 mm,
T∗ = 25◦C, ΔT = 40 K and a closed gas tube. The present results are shown as red dots,
while those of Romanò et al. (2017) are represented by black lines. Both results agree up to
the line’s thickness, even when using different grid resolutions in the z direction. Also shown
are the surface quantities obtained using the OB approximation (blue dots). Their deviation
from the FTD approach demonstrates the importance of taking into account the temperature
dependence of the material properties.

To validate the linear stability analysis for the FTD approach the geometry was adapted
to match the experimental setup of Yano et al. (2016). We consider two liquid bridges made
of 2-cSt and 5-cSt silicone oil, but the same geometry with d = 2.5 mm and Γ = 1. Both
liquid bridges are surrounded by air in a tube with Γrod = 4.8 and η = 5. Figure 17 shows the
neutral and critical Marangoni numbers as functions of the volume ratio V for a closed tube
(figure 17(a)) and for a hot vertically downward gas flow through an open tube (figs. 17(b,c)).
In the experiments of Yano et al. (2016) the air enters the tube through a porous medium.
Therefore, we prescribe in the numerics a constant gas velocity at the inlet with the same
mean velocity wg(r) ≡ w̄g = −35 mm/s as in the experiment, corresponding to Reg = 43.75.
To demonstrate the importance of using the FTD model (full lines), we also include in figure
17 the results of the LTD (dashed lines) and the OB models (dash-dotted lines).

Considering the 2-cSt liquid bridge (figure 17(a,b)), the numerical critical Marangoni
numbers obtained with the linearised model and with the FTD model agree very well with
the experimental data within the experimental error bar for both, closed and open gas tubes.
Merely for V = 1 some deviations exist owing to the huge slope of the critical curve for
m = 1 with respect to V. For moderate temperature differences ΔT , the OB approximation
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Figure 16: Basic-state surface temperature ϑ0 (a) and axial component of the surface
velocity w0 (b) for d = 5 mm, Γ = 1, Γrod = η = 3 mm, T∗ = 25◦C, ΔT = 40 K, a closed

gas tube and an indeformable upright cylindrical interface. Sown are results of
Romanò et al. (2017) (full line), present FTD results (red dots) and present OB results

(blue dots).

is sufficient to predict the critical Marangoni number. However, for the largest measured ΔT
in figure 17(a), i.e. ΔT ≈ 27◦C for V = 0.95, the critical Marangoni number predicted by
the OB approximation would be too large.

For the 5-cSt liquid bridge, the critical temperature differences are larger (see figure 17(c)),
resulting in more significant deviations among the critical Marangoni numbers obtained using
different material laws. For V < 1 the FTD yields results closest to the experimental data.
However, for V � 0.97 the FTD model predicts a critical mode with m = 2, whereas m = 1
is found in the experiments. This indicates that certain influence factors are not accounted for
within the FTD model. Possible candidates are evaporative cooling effects or experimental
imperfections (a slightly non-axisymmetric gas flow could have also favoured an m = 1
mode).

In view of the very good agreement with the results of Melnikov et al. (2002) and
Romanò et al. (2017) our code can be considered verified. Despite of the relatively large
error bar of the experimental data of Yano et al. (2016) our code can be also considered
validated for 2-cSt silicone oil which is used as the working liquid in the present work.

Appendix C. Correlation between the variable-material-property effect and an
effective kinematic viscosity

Since the dynamic viscosity of the liquid phase has the largest range of variation in the FTD
calculations, it is tempting to correlate the difference between the critical Reynolds numbers
for the FTD and the OB approaches with a suitably defined effective kinematic viscosity νeff
of the liquid, similar as in Kozhoukharova et al. (1999). It is based on the assumption that
the modified Reynolds number .Re based on the critical temperature difference ΔTFTD

c and
on the effective kinematic viscosity νeff yields the same critical Reynolds number as the OB
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Figure 17: Neutral Marangoni numbers (lines) and temperature difference ΔT as functions
of the volume ratio V for a liquid bridge of 2-cSt (a,b) and 5-cSt (c) silicone oil in air with
d = ri = 2.5 mm, drod = 12 mm and ro = 12.5 mm under normal gravity conditions. The

gas tube is closed in (a) and open in (b,c) with w̄g = −35 mm/s. Shown are the
experimental data taken from figs. 6(a) and 6(b) of Yano et al. (2016) (dots) in

comparison to the FTD model (full lines), the LTD model (dashed lines) and the OB
model (dash-dotted lines). Color indicates the neutral wave number: m = 1 (blue) and

m = 2 (red).

approach. This leads to the hypothesis

.Rec :=
γ∗d
ρ∗
ΔTFTD

c

ν2eff
=

 
ν∗

νeff

'2
ReFTD

c
!
= ReOB

c . (C 1)

From the space-dependent variable viscosity ν[T0(x)] of the of the liquid in the basic flow
at the critical point ReFTD

c different mean kinematic viscosities can be constructed. Among
these are the volume-averaged viscosity νV , the volume-averaged viscosity with kinetic-
energy weighting νE , and the surface averaged viscosity νS (used by Kozhoukharova et al.
1999), defined as

νV =
1
V

∫
V

ν[T0(x)]dV, (C 2a)

νE =

	∫
V

ρ[T0(x)]û2dV
�−1 ∫

V

ν[T0(x)]ρ[T0(x)]û2dV, (C 2b)
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νS =
1
S

∫
S

ν[T0(x)]dS. (C 2c)

The corresponding relative mean liquid viscosities νi/ν∗ (i ∈ [V, E, S]) are shown in figure
18 for three parameter variations carried out in the main text. Quite generally, we find νV > ν∗
and νE, νS < ν∗.

Given ReFTD
c and ReOB

c equation (C 1) can be tested using the above effective viscosities.
Since typically ReOB

c > ReFTD
c the effective viscosity should satisfy νeff < ν

∗. Therefore,
νV does not qualify for an effective viscosity. Using νeff = νS we find the shift of ReFTD

c is
too large. The modified Reynolds number based on the kinetic-energy-weighted kinematic
viscosity .Rec = γ∗dΔTFTD

c /(ρ∗ν2E) is shown in figure 19 for the volume variation. The
general trend and the order of magnitude of the shift .Rec − ReFTD

c is well captured in some
ranges of V, while the correction is too strong in other ranges of V (e.g. where mc = 1).
Obviously, other factors like the temperature dependence of other thermophysical parameters,
the dependence of the basic flow on ΔT or the structure of the perturbation flow on r and
ϕ are not taken into account. The qualitative agreement between .Rec and ReOB

c suggests,
however, that an important reason for the difference between the critical Reynolds number is
the reduced dissipation the perturbation flow experiences in regions where the perturbation
flow is significant, i.e. where the kinetic-energy-weighting factor in (C 2)(b) is large.

We mention that the correction factor (ν∗/νeff)2 has the right order of magnitude also in the
case of an imposed flow in the gas phase (not shown), except for the range of Reg in which the
critical m = 1 mode arises for the OB model (figure 9(a)). In this range the structures of the
critical curves ReFTD

c (Reg) and ReOB
c (Reg) are too different to allow for the simple correlation

according to (C 1). Regarding the aspect ratio variation the correction .Rec −ReFTD
c (Γ) is too

large for Γ � 0.95 but fits nicely for Γ � 0.95.
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Scaling and modeling of the heat transfer across

the free surface of a thermocapillary liquid bridge

Abstract

Purpose – A reduced-order model for the heat transfer across the interface between a millimetric
thermocapillary liquid bridge from silicone oil and the surrounding ambient gas is derived.
Design/methodology/approach – Numerical solutions for the two-fluid model are computed
covering a wide parametric space, making a total of 2800 numerical flow simulations. Based on
the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat
transfer between the liquid and the gas is modeled by Newton’s law of heat transfer, albeit with
a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.
Findings – An explicit robust fit of Bi(z) is obtained covering the whole range of parameters
considered. The single-fluid model together with the Biot function derived yields very accu-
rate results at much lesser computational cost than the corresponding two-phase fully-coupled
simulation required for the two-fluid model.
Practical implications – Using our novel Biot function approach instead of a constant Biot
number, the critical Reynolds number can be predicted much more accurately within single-phase
linear stability solvers.
Originality/value – The Biot function for thermocapillary liquid bridges is derived from the full
multiphase problem by a robust multi-stage fit procedure. The Biot function derived reproduces
very well the theoretical boundary layer scalings.
Keywords Biot number, Heat transfer, Liquid bridge, Multiphase flow, Boundary layer, Multi-
stage polynomial fit
Paper type Research paper

1. Introduction

When the temperature varies along a fluid–fluid interface a surface stress is created due to the
thermocapillary effect and a fluid motion tangential to the interface is established [1]. In non-
isothermal two-phase microfluidic systems surface forces are often more important than volume
forces. Examples are small droplets [2] or thin films [3], where thermocapillary forces can drive
significant steady flows. These flows may become unstable to symmetry-breaking perturbations
from which hydrothermal waves can evolve [4]. Beside the scientific interest, thermocapillary
convection is also relevant for several industrial applications involving fluid interfaces and large
temperature gradients. Examples are crystal growth from the melt [5], welding [6] and combustion
of fuels [7]. Therefore, quite a large body of publications exists devoted to thermocapillary
convection. To study the physical mechanisms of flow instabilities, simple geometries have been
investigated, such as liquid bridges [8], liquid films [3], annular pools [9] and open liquid-filled
cavities [10, 11, 12].

Schwabe et al. [13] and Hurle and Jakeman [14] proposed to model the floating-zone crystal-
growth process considering one half of the full liquid zone. Many subsequent theoretical and
numerical studies, aiming at further simplifying the model or at reducing the computational cost,

Preprint submitted to International Journal of Numerical Methods for Heat and Fluid Flow July 31, 2023



considered only the liquid phase and neglected its coupling to the surrounding gas. Typically, the
mechanical stresses from the gas phase acting on the liquid–gas interface are neglected owing to
the small viscosity of the gas, while the more important thermal coupling between the two phases
was treated by Newton’s law of heat transfer. Within this approach the flow in the gas phase
does not need to be computed.

Although the single-phase approach is appealing from a computational economy or theoretical
point of view, it might only be reasonably accurate. This conjecture is supported by experimental
investigations which indicated that the surrounding gas has an important effect on the flow in
the liquid phase. For instance, the critical Reynolds number for the onset of three-dimensional
flow and the azimuthal structure (mode) of the flow above the threshold depends on the thermal
environment [26, 28]. Nevertheless, current numerical investigations are routinely assuming an
adiabatic free surface [15], a given heat transfer [16], or a fictitious temperature distribution in
the gas phase together with a constant Biot number [17]. The same simplified modeling approach
is currently used to deal with particle-laden flow in liquid bridges and cavities [18, 19, 20, 21].
We shall demonstrate the deficits of such approximations and propose a more refined single-phase
model which includes the leading-order (i.e. axisymmetric) thermal coupling derived from a two-
phase model. To that end the investigation of [22] is extended, following their modeling approach
and methodology.

For typical experimental parameters, numerical simulations of the liquid and gas flow are
carried out in the framework of the half-zone model using a full coupling between both phases.
Within the multiphase computations, the heat transfer across the liquid–gas interface is part
of the solution and can be evaluated a-posteriori. Based on a post-processing of the data a new
heat-transfer model is proposed, recasting the interfacial heat flux in the form of Newton’s cooling
law, but with a space-dependent Biot number, the Biot function Bi(z). The Biot function Bi(z)
is evaluated for a large parameter set and an explicit heat-transfer model based on fitting all Biot
functions computed is proposed and tested using a single-phase solver.

The paper is structured as follows. Section 2 defines the mathematical model of the multiphase
flow, Sec. 3 presents the discretization employed to numerically solve the Navier–Stokes system
and Sec. 4 explains the method to derive a robust heat transfer model. The results, including the
boundary layer scaling and the fitting procedure for the Biot function, are presented and tested
in Sec. 5. Finally, in Sec. 6 the results are summarized and conclusions are drawn.

2. Two-phase flow: Problem formulation

The geometry of the problem is shown in fig. 1. Two thermally conducting rods of radius
R are placed coaxially at a mutual distance d. A liquid bridge, surrounded by a gas, is formed
in the gap between the two rods. The liquid is kept in place by surface tension and by contact
lines pinned to the sharp circular edges of the rods. The liquid is Newtonian with temperature-
dependent density ρ(T ), and dynamic viscosity µ(T ), specific heat capacity cp(T ) and thermal
conductivity λ(T ). The top and the bottom rods are kept at different constant temperatures
Thot = T0 + ΔT/2 and Tcold = T0 −ΔT/2, respectively, where ΔT is the temperature difference
between the two rods and T0 the arithmetic mean, kept constant at T0 = 25 ◦C. For ΔT b= 0 an
axial temperature gradient is created along the free surface of the liquid bridge, which leads to a
varying surface tension σ(T ) with gradient

∇∥σ(T ) =
∂σ

∂T
∇∥T =

∂

∂T
[σ(T0)− γ(T − T0) + . . .]∇∥T

= [−γ +O(T − T0)]∇∥T, (1)
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Figure 1: Schematics of the liquid bridge held in place between the hot and cold rods and surrounded by an ambient
gas in an adiabatic mantel chamber. The blue arrows symbolize an imposed gas flow (here at the bottom), while
the red arrows represent the resulting outflow.

where ∇∥ = t(t · ∇) is the nabla operator in direction of the unit vector tangent to the interface
t, γ = −∂σ/∂T |T=T0

is the negative surface-tension coefficient and σ0 = σ(T0) denotes the
surface tension at the mean temperature T0. Owing to the thermocapillary effect, the varying
surface tension leads to a tangential stress which acts on the liquid–gas interface and generates a
thermocapillary flow in both phases.

The gas phase is made by a Newtonian gas (air or argon). As for the liquid, the density
ρg(T ) of the gas, its thermal conductivity λg(T ), its dynamic viscosity µg(T ) and its specific heat
capacity cpg(T ) are assumed temperature-dependent. The gas is confined to an annular mantel
chamber of outer radius Rtc and height dtc = dcold + d+ dhot (see fig. 1), where the subscript ‘tc’
stands for ‘test chamber’ and the length of the rods dcold = dhot = d equals the length of the liquid
bridge. The cylindrical chamber wall at Rtc is either assumed thermally insulating or perfectly
conducting, and the bottom and top boundaries of the test chamber are either non-penetration
adiabatic walls or open boundaries on which a fully developed axial inlet flow wg(r) is imposed
with a constant inlet temperature Tg on one side and convective boundary conditions on the other
side. In case of gravity, the acceleration of gravity g = −gez is aligned axially and in the negative
z direction (fig. 1).

The steady flow in the liquid phase is governed by the non-dimensional Navier–Stokes, conti-
nuity, and energy equations

Re∇ ·


ρ(T )

ρ0
uu

�
= −∇p− Bd

ε

ρ(T )

ρ0
ez +∇ ·



µ(T )

µ0
T
�
, (2a)

∇ ·


ρ(T )

ρ0
u

�
= 0, (2b)

Ma∇ ·


ρ(T )cp(T )

ρ0cp0
uθ

�
= ∇ ·



λ(T )

λ0
∇θ

�
, (2c)
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where u, p and θ = (T −T0)/ΔT represent the velocity vector field, the pressure and the reduced
temperature, respectively. The non-dimensional parameter ε is defined as ε = βΔT , where β is
the thermal expansion coefficient of the liquid, i.e. β = −ρ−1

0 (∂ρ/∂T )p. The deformation rate
tensor is denoted T = [∇u+ (∇u)T − 2

3
(∇ · u)I], where I is the identity matrix.

All variables have been made dimensionless using the length, velocity, pressure and tempera-
ture scales d, γΔT/µ0, γΔT/d and ΔT , respectively, where µ0 = µ(T0) is the reference dynamic
viscosity, ρ0 = ρ(T0) the reference density, λ0 = λ(T0) is the reference thermal conductivity and
cp0 = cp(T0) the reference specific heat at constant pressure, all evaluated at the mean temperature
T0. For the gas phase corresponding equations hold. Here we use cylindrical coordinates (r, ϕ, z)
centered in the middle of the liquid bridge and represent the velocity field as u = uer+veϕ+wez

where er, eϕ and ez are the polar unit vectors.
From equations (2) governing the liquid phase it is useful to define the conventional non-

dimensional thermocapillary Reynolds number Re, Marangoni number Ma and dynamic Bond
number Bd

Re =
ρ0γΔTd

µ2
0

, Ma =
ρ0cp0γΔTd

µ0λ0
, Bd =

ρ0gβd
2

γ
, (3)

where Pr = Ma/Re = µ0cp0/λ0 is the reference Prandtl number of the liquid. As is common in
the literature on thermocapillary flows in liquid bridges, the pressure contribution to the enthalpy
(p/ρ ≪ |cpT |), the pressure work and the viscous dissipation have been neglected in the energy
equation (2c). The two latter assumptions are justified, respectively, if the conditions

χ
T

ΔT
� 0.1 and χPr � 0.1 with χ =

βgd

cp
(4)

are satisfied [35]. After selecting the working fluids at the end of this section, we verified the
conditions (4), confirming the validity of (2c).

The geometry (fig. 1) is characterized by the four aspect ratios

Γ =
d

R
, Γtc =

Rtc

d
, Λhot =

dhot
d

, Λcold =
dcold
d

, (5)

where we select Λhot = Λcold = 1, being constant throughout. In order to keep the Bond number
constant upon a change of the geometry, we fix d = 1.7 mm (see e.g. [23]) and vary the radius of
the rods. This corresponds to varying the aspect ratio of the liquid bridge which is set to Γ = 0.5,
0.66 and 1, values frequently considered in the literature (see e.g. [24, 25]). Furthermore, two
radial aspect ratio of the test chamber are considered Γtc = 3 and 10.

The a-priori unknown location of the free surface at r = h(ϕ, z) is part of the solution of
the problem. In the limit of asymptotically large mean surface tension σ0, the capillary number
Ca = γΔT/σ0 → 0 tends to zero and dynamic perturbations of the interface induced by the fluid
flow vanish. Hence, the problem of determining the liquid–gas interface decouples from (2) and
h(z) is determined by the Young–Laplace equation

Δpfs = ∇ · n+ Boz, (6)

where Δpfs is the static pressure jump across the liquid–gas interface, n the unit normal vector
on the free surface directed from the liquid to the gas phase, and

Bo =
ρ0gd

2

σ0
(7)

4



the static Bond number. Considering the axisymmetric problem the surface normal vector n is
a function of z [8, 15]. The resulting second-order problem for h(z) is closed by two boundary
conditions. For the present setup with sharp edges of the cylindrical rods suitable boundary
conditions are pinned contact lines h(z = ±1/2) = 1/Γ. Furthermore, h(z) must satisfy the
volume constraint � 1/2

−1/2

h2(z)dz = V, (8)

where V = V/(πR2d) with the volume V of the liquid bridge. Here we confine ourselves to V = 1.
For this volume ratio and in the absence of gravity (Bo = 0) the liquid–gas interface is cylindrical
with h(z) = 1/Γ.

After determining h, axisymmetric solutions (∂ϕ = 0) of (2) are sought. These solutions are
required to satisfy constant-temperature, no-slip and no-penetration boundary conditions along
the support rods

hot rod: u = ug = 0, θ = θg = 1/2, (9a)

cold rod: u = ug = 0, θ = θg = −1/2. (9b)

Regarding the chamber boundary conditions, four cases are considered.

(i) Closed axially-adiabatic, wide test chamber with outer cold wall at T = 0◦C

r = Γtc: ug = 0, θg = −T0/ΔT, (10a)

z = −1/2− Λcold, 1/2 + Λhot: ug = 0, ∂zθg = 0. (10b)

(ii) Closed adiabatic test chamber

r = Γtc: ug = 0, ∂rθg = 0, (11a)

z = −1/2− Λcold, 1/2 + Λhot: ug = 0, ∂zθg = 0. (11b)

(iii) Open test chamber with cold axial flow and adiabatic outer wall

r = Γtc: ug = 0, ∂rθg = 0, (12a)

z = −1/2− Λcold: ug = wg(r)ez, θg = −1/2, (12b)

z = 1/2 + Λhot: ∂zug = 0, ∂zθg = 0. (12c)

(iv) Open test chamber with hot axial flow and adiabatic outer wall

r = Γtc: ug = 0, ∂rθg = 0, (13a)

z = −1/2− Λcold: ∂zug = 0, ∂zθg = 0, (13b)

z = 1/2 + Λhot: ug = −wg(r)ez, θg = 1/2, (13c)

where all quantities with subscript ’g’ refer to the gas phase. In cases (iii)

and (iv) the inlet velocity w ≥ 0 is assumed to be fully developed with

wg(r) =
Reg
Re

2 ln(η)

(η2 + 1) ln(η)− η2 + 1

�
1− Γ2r2 +

�
η2 − 1

� ln(Γr)
ln(η)

�
, (14)

where η = Rtc/R = ΓtcΓ, Reg = W gρ0d/µ0, and W g is the mean inlet velocity. Finally, the
kinematic, mechanical and thermal boundary conditions

t · ∇θ + t · T · n = [µg(T )/µ(T )]t · T g · n, (15a)
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u = ug, (15b)

n · ∇θ = [λg(T )/λ(T )]n · ∇θg, (15c)

θ = θg, (15d)

are enforced on the free surface r = h(z).
We are targeting experimental conditions corresponding to Shin-Etsu silicone fluids with

Prandtl numbers Pr = 28.8 and Pr = 69.2. Under normal gravity conditions (1g) when
g = 9.81 m/s2. The corresponding static and dynamic Bond numbers for Pr = 28.8 are Bo = 1.27
and Bd = 0.40, while for Pr = 69.2 these are Bo = 1.24 and Bd = 0.49. The notation ‘0g’
refers to conditions of weightlessness for which Bd = Bo = 0. Finally, the temperature-dependent
properties of the Shin-Etsu silicone oils are represented by functions

ρ(T ) = ξ1[1 + ξ2(T − T0) + ξ3(T − T0)
2] kg/m3, (16a)

µ(T ) = ξ1e
−ξ4(T−T0)/(T+273.15)[1 + ξ2(T − T0) + ξ3(T − T0)

2] kg/m s, (16b)

λ(T ) = ξ1[1 + ξ2(T − T0) + ξ3(T − T0)
2] W/mK, (16c)

cp(T ) = ξ1[1 + ξ2(T − T0) + ξ3(T − T0)
2] J/kgK, (16d)

where T is measured in ◦C and the coefficients represent fits to the tabulated data of the manu-
facturer for T0 = 25◦C. The coefficients ξi for i = 1, 2, 3, 4 are listed in table 1. Note that the
coefficients ξ1 represent the reference values of each property. The properties of the gas phase

ρg(T ) =
ζ1

T + 273.15
kg/m3, (17a)

µg(T ) = ζ1 + ζ2(T − T0) + ζ3(T − T0)
2 + ζ4(T − T0)

3 + ζ5(T − T0)
4 kg/m s, (17b)

λg(T ) = ζ1 + ζ2(T − T0) + ζ3(T − T0)
2 + ζ4(T − T0)

3 + ζ5(T − T0)
4 W/mK, (17c)

cpg(T ) = ζ2 + (ζ3 − ζ2)

�
T + 273.15

ζ1 + T + 273.15

�2

×

1− ζ1

ζ1 + T + 273.15

�
ζ4 + ζ5

T + 273.15

ζ1 + T + 273.15
+

ζ6

�
T + 273.15

ζ1 + T + 273.15

�2

+ ζ7

�
T + 273.15

ζ1 + T + 273.15

�3
 J/kgK, (17d)

are taken from [36]. The coefficients ζi for i = 1, ..., 7 are given in table 2.

3. Numerical solution method

The solution procedure follows the one of Romanò et al. [25] and starts with solving (6) by
means of a second-order finite difference method to compute the axisymmetric interface shape
h(z). To find the axisymmetric solution of (2) for a given surface shape h(z), the differential
equations are discretized on a body-fitted stretched grid of finite volumes which are formally of
second order. The grid consists of Nr × Nz = 366 × 366 and 202× 702 grid points in the liquid
and the gas phase, respectively, as in [25].

With y = (u, w, p, θ)T, where the vector y contains all field variables of the liquid and the gas
phase, the discretized equations are solved using Newton–Raphson iteration

J
�
yk

� · δy = −f
�
yk

�
, (18a)
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yk+1 = yk + δy, (18b)

where f
�
yk

�
is the nonlinear residual at the k-th iteration step, J

�
yk

�
the Jacobian operator at

the k-th step and δy the solution increment from the k-th to the (k + 1)-th iteration.
Inserting (18b) into (2) and linearizing the equations with respect to δy yields

Re∇ ·


ρ(T k)

ρ0
(δuuk + ukδu) + ΔT

∂ρ

∂T

#####
T k

ukukδθ

�
+∇δp+

ΔT
∂ρ

∂T

#####
T k

Bd

ερ0
δθez −∇ ·



µ(T k)

µ0

δT +ΔT
∂µ

∂T

#####
T k

T kδθ

�
=

−Re∇ ·


ρ(T k)

ρ0
ukuk

�
−∇pk − Bd

ε

ρ(T k)

ρ0
ez +∇ ·



µ(T k)

µ0
T k

�
, (19a)

∇ ·


ρ(T k)

ρ0
δu+ΔT

∂ρ

∂T

#####
T k

ukδθ

�
= −∇ ·



ρ(T k)

ρ0
uk

�
, (19b)

Ma∇ ·


ρ(T k)cp(T

k)

ρ0cp0
(ukδθ + θkδu) +

ΔT

ρ0cp0

�
cp(T

k)
∂ρ

∂T

#####
T k

+

ρ(T k)
∂cp

∂T

#####
T k

�
ukθkδθ

�
−∇ ·



λ(T k)

λ0

∇δθ +
ΔT

λ0

∂λ

∂T

#####
T k

�
=

∇ ·


λ(T k)

λ0

∇θk

�
−Ma∇ ·



ρ(T k)cp(T

k)

ρ0cp0
ukθk

�
(19c)

where

δT = [∇δu+ (∇δu)T − 2

3
(∇ · δu)I], (20a)

T k = [∇uk + (∇uk)T − 2

3
(∇ · uk)I]. (20b)

In (19) all quadratic term have been linearized by, e.g.,

∇ · �uk+1uk+1
� ≈ −∇ · �ukuk

�
+∇ · �uk+1uk

�
+∇ · �ukuk+1

�
, (21)

while the temperature dependence of all material parameters was approximated by, e.g.,

ρ(T k+1) = ρ(T k + δT ) ≈ ρ(T k) +
∂ρ

∂T

#####
T k

δT, (22)

where δT = ΔTδθ. The same holds for the remaining thermophysical properties. For additional
details on the initial guess y0, the computational grid, the finite-volume discretization and the
convergence of the solver, we refer to [25].

4. Heat-transfer in the single-fluid model

4.1. Thermal boundary conditions at the interface

The two-fluid system defined in section 2 includes the full thermal and mechanical coupling
between the liquid and the gas phase through the free-surface conditions (15). As a result, the
heat transfer across the free surface is part of the solution and does not need to be modelled.
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In a surrogate single-fluid model in which only the flow in the liquid phase is computed, only
half of the boundary conditions (15) can be imposed. Since the gas velocity ug and the gas
temperature θg are not defined in the single-fluid model the boundary conditions (15b) and (15d)
must be omitted. The no-penetration condition u ·n = 0 is implicitly related to the indeformable
interface. Since the viscosity ratio µg0/µ0 ≈ O(10−2), the viscous stresses Sg from the gas phase
in (15a) plays a minor role for the flow inside the liquid bridge and is neglected within the single-
fluid model. However, the heat flux through the interface −∂nθ = −n · ∇θ in (15c) must be
modelled.

To that end we make an ansatz for ∂nθ

Bi(z) = − ∂nθ

θ − θref

#####
r=h(z)

, (23a)

suggested by Newton’s law of heat transfer, where the reference temperature θref = θcold = −1/2
is assumed to be the cold-rod temperature. The right hand side of this equation depends on z
and is a priori unknown within the single-fluid model. The quantities θ and ∂nθ can be obtained,
however, from a two-fluid simulation. This defines a Biot function Bi(z). Once the Biot function
is known, Newton’s law can be employed for the single-fluid model, in which the conventional
Biot number is replaced by

Bi(z) =
hg(z)d

λ
, (23b)

where hg(z) now is a z-dependent heat-transfer coefficient between the liquid and the gas phase
and λ the thermal conductivity of the liquid. The modified cooling law (23) will yield the same
heat flux through free surface as does the two-fluid model, up to small corrections caused by the
neglected viscous stresses from the gas phase.

4.2. Ansatz for the Biot function

In order for the above approach to make sense, it is required that the “exact” Biot function
Bi(z), numerically determined by the two-fluid model, can be accurately approximated by a simple
functional dependence B̃i(z) ≈ Bi(z) defined by a few characteristic constants and valid for a wide
range of parameters. Here and in the following the tilde (˜) stands for the approximation of a
given quantity. It is indeed possible to find universal fit functions B̃i(z,Γ,Re) approximating
Bi(z,Γ,Re) for a given set of Pr, Bd, Bo, and given thermophysical properties of the surrounding
gas.

An example for the exact Biot function Bi(z) from the two-fluid model is shown in fig. 2. Owing
to its variation with z, the conventional assumption of a constant Biot number obviously represents
a poor approximation. All Biot functions show the same characteristic shape: Since temperature
gradient ∂nθ diverges for z → ±0.5 due to the imposed temperature at the geometrical cusp
point, also the Biot function Bi(z) diverges at these end points.

Furthermore, the Biot function for high Prandtl and Marangoni numbers exhibits a shallow
relative minimum and a sharp relative maximum. For the high Prandtl numbers considered, these
extrema are located near the hot and the cold wall, respectively, and reflect the thermal boundary
layers on these walls [32, 33, 27]. As shown later (figs. 8 and 9), the dependence of the extremum
values Bimin and Bimax of the Biot function and their locations zmin and zmax on the Reynolds
number Re can be excellently represented by the empirical fit

{zmin,Bimin, zmax,Bimax} ≈ A†
0 + A†

1Re + A†
2/Re

A†
3 + A†

4

�
1− eA

†
5Re

�
, (24)
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Figure 2: Local Biot number, or Biot function Bi(z), shown as a black dashed line for case (i) defined in (10) for
Pr = 69.2, Γ = 0.5, Re = 117, Bd = 0.49, Bo = 1.24 and air as the ambient gas. Power-law fits for the thermal-
boundary-layer regions near the hot and the cold supports are depicted as colored lines. The relative maximum
and minimum of the Biot function are indicated by circles. The mean temperature is T0 = 25◦C. Different regions
for the fit are indicated by shading.

where the superscript † stands for extremum value and denotes zmin, Bimin, zmax, or Bimax. The
rational behind (24) relies on the expected asymptotic trends of the thermal boundary layers. In

fact, the power-law term A†
2/Re

A†
3 is introduced because of the power-law scaling expected for the

boundary layer thickness at high Marangoni numbers. The linear terms A†
0+A†

1Re are motivated
by the leading-order linear growth (decay) expected for Bimax (Bimin) at high Ma, when zmax

(zmin) vary slowly with Ma, whereas the distance between Bimax and Bimin is supposed to scale

linearly with ΔT . Finally, the exponential term A†
4

�
1− eA

†
5Re

�
is employed to account for the

discrepancies between the asymptotics and the exact Biot function extrema at low Ma, where the
asymptotic trends do not hold. Furthermore, we find that the six coefficients A†

i (Γ) ≈ Ã†
i (Γ) =

α†
i + β†

iΓ, i = 0, 1, 2, 3, 4, 5, for each of the four characteristic variables (zmin,Bimin, zmax, and
Bimax) depend linearly on the aspect ratio Γ. Therefore, the dependence on Re and Γ of each of
the four above characteristic quantities of Bi(z) is determined by its own set of twelve parameters
(α†

i , β
†
i ) with i = 0, 1, 2, 3, 4, 5.

Once the locations zmin and zmax of the extrema have been numerically computed, the full
range z ∈ [−1/2, 1/2] is subdivided into different regions (shaded in fig. 2), and the Biot function
Bi(z) is approximated separately within each region by

region H, z ∈ [zmin, 0.5] : Bi ≈ B̃i
H
= ah0 + ah1(0.5− z)a

h
2 , (25a)

region M, z ∈ �
zc*, zmin

�
: Bi ≈ B̃i

M
= am0 + am1 z, (25b)

region C2, z ∈ �
zmax, z

c*
�
: Bi ≈ B̃i

C2
= ac20 + ac21 (0.5 + z)a

c2
2 , (25c)

region C1, z ∈


zmax − 0.5

2
, zmax

�
: Bi ≈ B̃i

C1
= ac10 + ac11 (0.5 + z)a

c1
2 , (25d)
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Table 3: Parameter sets for the two-phase simulations. ⋆ Note that for case (ii) with Γtc = 10 only air was
considered as the gas.

Case Pr Gas g Γtc # tests Γ

(i) 28.8, 69.2 air 0g, 1g 10 4 0.5, 0.66, 1
(ii) 28.8, 69.2 air, argon 0g, 1g 3, 10 8 + 4⋆ 0.5, 0.66, 1
(iii) 69.2 air, argon 0g, 1g 3 4 1
(iv) 69.2 air, argon 0g, 1g 3 4 1

region E, z ∈


−0.5,

zmax − 0.5

2

�
: extrapolated from region C1, (25e)

where the superscripts ‘h’ and ‘m’ indicate that regions H and M are fitting domains close to the
hot rod and in the middle of the liquid bridge, respectively. The superscripts ‘c1’ and ‘c2’ refer
to the fitting regions C1 and C2 closest to the cold rod. The region between the two extrema is
split into two at z = zc* = −0.2, because it robustly approximates the boundary between regions
C2 and M for all parameters of our study. Furthermore, region C1 covers one half of the range
between the cold wall and zmax. The other half (region E, see fig. 2) is not used for fitting the
simulation data, because the fit in region C1 already captures the divergence of Bi for z → −0.5
and because the fit of a diverging function (in region E) is an ill-conditioned operation which can
deteriorate the robustness of the global fit. Therefore, the fit in region C1 is simply extrapolated
to region E.

Since the values of the extrema of Bi and their locations can be very well represented by the
ansatz (24), it is expected that the power laws (25) will admit coefficients which also scale like (24).
Therefore, the fit parameters a‡j in (25), where the superscript ‡ ∈ [h,m, c1, c2] indicates the region,
are enforced to have the same type of functional dependence (24) on Re and Γ as Bimin, Bimax, zmin

and zmax with associated individual twelve parameters (α‡
i,j, β

‡
i,j), i.e. a

‡
j ≈ ã‡j(Re,Γ) = α‡

i,j +β‡
i,jΓ

(‡: region, i = 0, 1, 2, 3, 4, 5: dependence on Re, j: sequential index). Finally, to provide a
smooth differentiable fit function over the full range z ∈ [−0.5, 0.5] the fits valid in each region
are smoothly blended as described in Sec. 4.4.

4.3. Range of parameters

Two-phase simulations have been carried out for 24 different parameter sets (called tests in
the following). They are listed in table 3. For each test the Reynolds number was varied in
50 equidistant steps over a range depending on the parameters but within Ma = Re × Pr ∈
[850, 42750] (specified further below). Three values of Γ ∈ [0.5, 0.66, 1] commonly employed in
the literature were considered for cases (i) and (ii), while only Γ = 1 was tested for cases (iii) and
(iv). This amounts to a total of 2800 two-phase flow calculations. Note that case (ii) is the only
case, for which we employ two different chamber aspect ratios, i.e. Γtc = 3 and 10. For the latter
one, Γ = 10, we only considered a chamber filled with air in order to compare with case (i).

Once all data, i.e. all 2800 Biot functions Bi(z) were obtained, they were fitted by B̃i(z,Γ,Re).
For each Biot function, i.e. for each test, the following fit procedure is carried out.

4.4. Representation of the global Biot function

In a first step the boundaries of the different regions ‡ must be found within which the power-
law approximations (25) are made. To that end zmin, Bimin, zmax and Bimax are numerically
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determined. Thereafter, regions C1, C2 and E are combined into a compound region C. Moreover,
the additional point zh* = (0.5+zmin)/2 is introduced. The points zh* and zc* (see fig. 2) are used
to smoothly blend the individual local approximations to Bi(z) which are obtained strictly within
the regions H, M and C. Moreover, in order to provide an explicit form for the Biot function fit,
zmin, Bimin, zmax and Bimax are approximated by the corresponding least-squares-fitted explicit
functions z̃min, B̃imin, z̃max and B̃imax, and employed in the compound function B̃i(z).

Assuming all coefficients a‡i have been obtained and fitted to the corresponding least-squares-
fitted explicit functions ã‡i , the final form of the Biot function approximation is constructed by

smoothly blending B̃i
H
, B̃i

M
and B̃i

C
at zh* and zc* to cover the full range z ∈ [−0.5, 0.5] such

that

B̃i(z) = B̃i
H
(z)B(z − zh*, C1) + B̃i

M
(z)B(zh* − z, C1)B(z − zc*, C2)

+ B̃i
C
(z) +K(z), (26)

where the blending functions are defined as

B(z − Ẑ, Ci) :=
tanh[2πCi(z − Ẑ)] + 1

2
, (27)

Ẑ ∈ [zc*, zh*, z̃max] is any of the characteristic collocation points and the blending parameters are
C1 = 102 and C2 = 103. In the above sum the individual local contributions according to (25) are

B̃i
H
(z) = ãh0 + ãh1(0.5− z)ã

h
2 , (28)

B̃i
M
(z) = ãm0 + ãm1 z, (29)

B̃i
C1
(z) = ãc10 + ãc11 (z + 0.5)ã

c1
2 , (30)

B̃i
C2
(z) = ãc20 + ãc21 (z + 0.5)ã

c2
2 . (31)

The last two regional contributions are smoothly combined to yield

B̃i
C
(z) = B̃i

C1
(z)B(z̃max − z, C1) + B̃i

C2
(z)B(z̃ − z̃max, C3), (32)

where C3 = 2× 102. Finally, the correction term in (26)

K(z) =
	
B̃imax −max

�
B̃i

C
��

× exp



−(z̃max − z)2

C4

�
(33)

takes care of reproducing the explicit fit of the maximum of the Biot function B̃imax, and C4 =
5× 10−7. Note that the form of the coefficients in region M

ãm0 =
	
ãc20 + ãc21 (zc* + 0.5)ã

c2
2

�
− ãm1 z

c*, (34)

ãm1 =
1

zh* − zc*

�	
ãh0 + ãh1(0.5− zh*)ã

h
2

�
−

	
ãc20 + ãc21 (zc* + 0.5)ã

c2
2

��
(35)

results from linearly matching the values of the explicit Biot function fit at z = zh* and z = zc*.
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Bi(z, ✁, Re)
given Pr, g and the Case ID

Figure 3: Flowchart of the fitting for the extrema of the Biot function, i.e. zmin, Bimin, zmax, and Bimax.

Figure 4: Flowchart of the first fitting stage for the Biot function.
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4.5. Fit procedure

All coefficients required for the approximation of Bi(z) are obtained by minimizing the sum of
the squared distances between the data and the respective fit function. Since the fit functions are
nonlinear, a Newton method is employed to solve the non-linear equations governing the least-
squares minimization operation. This procedure requires to provide an initial guess sufficiently
close to the solution, and to define a termination criterion for the iteration. The iteration is
considered converged when the residual of the fit coefficients is less than 10−8 in absolute norm.
In each of the regions H, C1 and C2 the fit consists of four stages.

I. In the first step each numerical simulation is post-processed independently for each tuple
(Γ,Re) with Γ according to table 3 and Ma = Re × Pr ∈ [850, 42750]. In order to find the
power-law coefficients ahi , a

c1
i , ac2i (i = 0, 1, 2) appearing in (25)(a,c,d) and their dependence

on Γ and Re for each region H, C1 and C2 it is necessary to first determine numerically
the boundaries of these regions. Their corresponding fits, used in (26), are obtained by the
two-stage fitting of the ansatz (24) to the data for each simulation (tuple). The algorithm
is explained in form of a flow chart in fig. 3. Once the regions boundaries are known the
ansatz functions in (25)(a,c,d) are fitted to the numerically obtained Biot function Bi(z) for
each tuple. This is symbolically illustrated in fig. 4.

II. In a second step only the coefficients a‡0 (‡ ∈ {h, c1, c2}) obtained in step (I) are employed
to carry out a secondary fit such to determine the corresponding approximations ã‡0 that
explicitly depend on Re and Γ following (24). In this step all simulation data for a given set
of Pr, g, Γtc, boundary conditions (case) and type of gas are involved. To that end three
sets of coefficients A‡

i,0, i = 0, 1, 2, 3, 4, 5, (as in (24)) are introduced, one set per each region

‡ ∈ {h, c1, c2}. The coefficients A‡
i,0 are approximated by enforcing a linear dependence on

Γ as previously done for the extrema (shown in fig. 3): A‡
i,0 ≈ Ã‡

i,0 = α‡
i,0 + β‡

i,0Γ.

The explicit fits ã‡0, which now have the required dependence on Re and Γ, are inserted into
(25)(a,c,d). The remaining six coefficients, a‡1 and a‡2, (‡ ∈ {h, c1, c2}), obtained in step
(I) are replaced by again fitting the numerical Biot function Bi(z) in each respective region
and separately for each combination of Γ ∈ {0.5, 0.66, 1} and Ma = Re× Pr ∈ [850, 42750]
(see the flowchart depicted in fig. 5). It remains to enforce the required dependence on Re
and Γ which is achieved in the next steps.

III. In a third step the coefficients a‡1 are fitted as done for a‡0 in step (II) such that the cor-
responding fits ã‡1 explicitly depend on Re and Γ. This involves the numerical data for all
tuples (Re,Γ). The fit is achieved by making an ansatz for Re dependence of a‡1 as in (24).
This yields the corresponding three sets of six coefficients A‡

i,1 with i = 0, 1, 2, 3, 4, 5 for the

three regions ‡. Thereafter, the coefficients A‡
i,1 are fitted linearly in Γ to determine the

coefficients (α‡
i,1, β

‡
i,1), i = 0, 1, 2, 3, 4, 5, such that A‡

i,1 ≈ Ã‡
i,1 = α‡

i,1+β‡
i,1Γ. The explicit fits

ã‡1 with the correct dependence on Re and Γ are then inserted into (25)(a,c,d) together with
the corresponding a‡0 from stage (II). The remaining coefficients a‡2 are then determined a
third time by fitting to the numerical Biot function Bi(z) separately for each combination
of Γ ∈ {0.5, 0.66, 1} and Ma = Re× Pr ∈ [850, 42750] (see the flowchart depicted in fig. 6).

IV. Finally, the coefficients a‡2 are fitted by the ansatz in Re (24) for all Re involved. This
yields the corresponding three sets of six coefficients A‡

i,2 with i = 0, 1, 2, 3, 4, 5 for a‡2 which

14



Figure 5: Flowchart of the second fitting stage for the Biot function.

are subsequently fitted linearly in Γ to obtain the corresponding coefficients (α‡
i,2, β

‡
i,2),

i = 0, 1, 2, 3, 4, 5, such that A‡
i,2 ≈ Ã‡

i,2 = α‡
i,2 + β‡

i,2Γ. The resulting coefficients lead to the

explicit functions ã‡2 with the targeted dependence on Re and Γ (see the flow chart depicted
in fig. 7).

Summarizing, by this procedure, a first set of coefficients a‡i (where ‡ ∈ {h, c1, c2}) is obtained
in step (I) by fitting the ansatz to the simulation data for each combination (Re,Γ) separately.
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Figure 6: Flowchart of the third fitting stage for the Biot function.
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The dependence of a‡i on Re and Γ is then subsequently introduced in steps (II), (III), and (IV)
leading to ã‡0, ã

‡
1 and ã‡2, respectively.

Whenever we find that changing the first sensitive digit (first non-zero decimal place) of a
coefficient A‡

i,j (A†
i ), where j = 0, 1, 2, does not affect the second relevant digit (second non-

zero decimal place) of the other coefficients A‡
k,j (A†

j), the fit is repeated enforcing A‡
i,j = 0

(A†
i = 0). After having carried out the above four steps for all three power-law ansätze, ãhi (Re,Γ),

ãc1i (Re,Γ) and ãc2i (Re,Γ) are known and inserted into (26). All fit coefficients can be downloaded
from https://github.com/fromano88/BiotFunction_LB.git, together with a Matlab code that
plots the original Biot function and the corresponding fits.

5. Results

5.1. Extrema of Bi

The typical structure of the Biot function Bi(z) has been shown in fig. 2. Its approximation
hinges on the locations zmin and zmax of the two extrema of Bi(z). Figure 8 shows the distance
δmax = zmax + 0.5 of the maximum of the Biot function from the cold wall (a) and the maximum
of the Biot function Bimax (b) as functions of the Reynolds number for a liquid Prandtl number
Pr = 69.2, normal gravity (1g) and three aspect ratios Γ (distinguished by type and color of
the symbols), before introducing the continuous linear dependence on Γ. The corresponding
dependence on Re of the distance of the locations of the minimum Biot function from the hot
wall δmin = 0.5 − zmin and the minimum Biot function Bimin are shown in fig. 9(a,b). It can be
seen that the approximations according to the ansatz (24) for the dependence on Re (lines in figs.
8 and 9) allow for excellent comparisons with the numerical data from the two-fluid simulations
(symbols) in the range Re ∈ [25, 250]. These fits have been carried out in a single stage for fixed
Γ.

A successive fit operation is then carried out assuming the ansatz A†
i ≈ Ã†

i = α†
i +β†

iΓ. These
fits (lines) are shown in the inset panels in figs. 8 and 9, and they correspond to the lines depicted
in the main panels of figs. 8 and 9. It can be seen that the linear dependence of A†

i on Γ is a good
approximation to the numerical data (dots) in the range Γ ∈ [0.5, 1]. The same fits are therefore
employed in (26) for approximating the extrema of the Biot function. Whenever a coefficient Ai

†

for some i is not included in the fit, the plot appears in solid gray. Likewise, a solid gray plot
indicates that the coefficients Ai,j

‡ of ai‡ are not included in the fit.
Figure 10 shows the dependence on the Reynolds number of the fitted stationary points of

δ̃min = 0.5− z̃min, δ̃max = −0.5− z̃max, B̃imin, and B̃imax for Γ = 0.5. Both our Prandtl numbers are
included in this comparison (left column: Pr = 28.8, right column: Pr = 69.2). Cases (i) and (ii)
have been considered for two chamber aspect ratios Γtc = 3 and 10 and air as the surrounding gas.
Argon is considered for Γtc = 3. The respective cases are coded by color and the gravity conditions
are indicated by line type (full lines: 0g, dashed lines: 1g). Figure 11 displays the dependence
on the Reynolds number of the stationary points for cases (i) to (iv), fixing Pr = 69.2, Γ = 1,
Γtc = 3. Both the gravity conditions are included in the comparison, considering both, hot and
cold blowing. All these parameters are tested for air and argon as surrounding gas.

The locations of the Biot function extrema δ̃min and δ̃max scale very similar as the boundary
layer thicknesses δ̃min ∼ Re−1/2 (on the hot wall) and δ̃max ∼ Re−1 (on the cold wall) predicted by
[33] and [27], respectively, for the single-fluid model with an adiabatic interface. Corresponding
least-squares fits of the bundles for δ̃min and δ̃max are included in figs. 10 and 11 as red dotted
lines. The functions δ̃min(Re) and δ̃max(Re) for different cases and parameters remain remarkably
coherent for all the conditions considered in figs. 10 and 11. However, a change of the boundary
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Figure 7: Flowchart of the fourth fitting stage for the Biot function.
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Figure 8: Fits of the location δmax (a) and the value Bimax (b) of the local maximum of the Biot function with
respect to Re and Γ for case (ii) and (Pr = 69.2, Γtc = 10, air, 1g). The markers denote the simulation data and
the lines the corresponding fits: Γ = 0.5 (circles, full blue line), 0.66 (squares, dashed green line) and 1 (triangles,
dash-dotted red line).

conditions on the outer wall of the gas space at r = Γtc from an adiabatic (cases (ii)–(iv)) to a
cold isothermal wall (case (i)), has a strong influence on the minimum Biot number (see the blue
curves in the top panels of fig. 10). The deviation becomes most pronounced for small Reynolds
numbers. Also the type of the surrounding gas, air or argon, has a significant impact on B̃imin, as
well as on B̃imax. The minimum Biot number is found to be almost insensitive to the gravity level
(0g or 1g). The maximum Biot number as well as its location B̃imax, however, depend slightly on
gravity. The reason is discussed in Sec. 6.

A similar behavior as for cases (i) and (ii) is found for cases (iii) and (iv) when the liquid
bridge is exposed to a forced axial mean flow in the gas phase. However, independent of the
direction of the forced mean flow in the gas phase, the minimum Biot number varies considerably,
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Figure 9: Fits of the location δmin (a) and value Bimin (b) of local minimum of the Biot function with respect
to Re and Γ for case (ii) and (Pr = 69.2, Γtc = 10, air, 1g). The markers denote the simulation data and the
lines the corresponding fits: Γ = 0.5 (circles, full blue line), 0.66 (squares, dashed green line) and 1 (triangles,
dash-dotted red line).

and its location (near the hot rod) becomes sensitive for small Reynolds numbers. These are also
the only quantities which depend sensitively on the magnitude and direction of the forced mean
flow (not shown).

5.2. Evolution of fit coefficients during the multi-stage procedure

Building on the location of the extrema of Bi(z), a robust Biot-function model is derived by
means of the multistage fitting algorithm described in Sec. 4.5. Figures 12, 13 and 14 show the
coefficients ac20 (Γ,Re), ac21 (Γ,Re) and ac22 (Γ,Re) for stages I, II and III, as well as the corresponding
explicit fits ãc20 (Γ,Re), ãc21 (Γ,Re) for stages III and IV, for Pr = 69.2, case (ii), Γtc = 10, 1g and
air as surrounding gas. The main graphs show the simulation data as markers, while the fits are
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Figure 10: Comparison of the fits of the local minimum and maximum of the Biot function B̃imin and B̃imax,
respectively, and their location δ̃min and δ̃max for Γ = 0.5 and closed chambers. The theoretical fits for δmin and
δmax are indicated by dotted red lines with C̃0 = 0.000289, C̃1 = 1.40574, D̃0 = −0.01573, and D̃1 = 2.38955 for
Pr = 28.8, and C̃0 = 0.000762, C̃1 = 0.580549, D̃0 = −0.004265, and D̃1 = 1.32588 for Pr = 69.2.
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Figure 11: Comparison of the fits of the local minimum and maximum of the Biot function B̃imin and B̃imax,
respectively, and their location δ̃min and δ̃max for Γ = 1, Pr = 69.2 for open and closed chambers. The theoretical
fits for δmin and δmax are indicated by dotted red lines with C̃0 = 0.000771, C̃1 = 0.580637, D̃0 = −0.02057, and
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represented by lines. Depicted are fits for constant aspect ratio, i.e. Γ = 0.5 (circles, full line),
Γ = 0.66 (squares, dashed line) and Γ = 1 (triangles, dash-dotted line). The inset panels collect
the fit coefficients Ac2

i,j (bullets) and a correcting linear fit in Γ of the coefficients Ãc2
i,j = αc2

i,j+βc2
i,jΓ

(full lines).
The trends observed for the three fitting coefficients ac20 , ac21 and ac22 as a function of the

Reynolds number are dominated by two main contributions. We observe, in fact, a power-law
decay of the absolute value of ac20 , ac21 and ac22 at low and moderate Re, while the coefficient ac20
becomes linear in Re at high-enough Reynolds numbers (and potentially at asymptotic regimes).
At low and moderate Reynolds numbers, the thickness of the boundary layer decays as a power
law of Re (see δmax in fig. 8(a)) on the cold wall. This implies that a power-law regime must
be present, and turns out to be dominant, for the three fitting coefficients ac20 , ac21 and ac22 . In
fact, they must fit the function Bi(z) in region C2, with the length of such a region that expands
along z as a power law in Re because zc

∗
is fixed and zc

∗ − zmax = 0.7 − δmax. On the other
hand, at high-enough Reynolds numbers, the rate of change of δmax is low and the quasi-linear
growth of Bimax with Re (see fig. 8(b)) becomes dominant. Owing to the self-similarity of the
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Figure 12: (a) Fit of the coefficient ac20 (Re,Γ) for Case (ii), Pr = 69.2, Γtc = 10, air, 1g (stage II, z ∈
[zmax, zmax + 0.1]) obtained processing the fits of the Biot function Bi(z) (stage I). The fit of ac20 depends on Re
(lines) for Γ = 0.5 (circles, dashed line), 0.66 (squares, dashed line) and 1 (triangles, dashed line). The linear fits
(solid lines) of the coefficients Ac2

i,0 (gray-filled circles) with respect to Γ are reported in the insets. The panels (b)

and (c) report ac21 and ac22 at stage I.

boundary layer, the Biot function in region C1 shall experience a stretching that leads to a shift
of the matching condition at Bimax in region C2. Considering the only region C2, this leads to an
effective shift of the function Bi(z), which must be proportional to the quasi-linear trend of Bimax

with Re. This explains why a linear trend is observed for the shifting coefficient of the fit B̃i
C2
,

i.e. ac20 has an Ac2
0,1 b= 0, and the coefficients Ac2

1,1 and Ac2
1,2 are null. Further considering that, at

high-enough Reynolds numbers, the length of region C2 changes very slowly upon an increase of
Re, the power-law effect due to the change of the matching location between C1 and C2 is not
dominant and a saturation of the fitting coefficients ac21 and ac22 is observed.
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Figure 13: See next page for figure caption.
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Figure 13: (a) Fit of the coefficient ac21 (Re,Γ) for Case (ii), Pr = 69.2, Γtc = 10, air, 1g (stage III). The
markers denote the coefficients resulting from the fits of the Biot function for Γ = 0.5 (circles), 0.66 (squares)
and 1 (triangles) after fixing ac20 = ãc20 (solid lines in (b)). The dashed lines denote the power-law fits which are
employed for ac21 , while the insets show the linear fits (solid lines) of the coefficients Ac2

i,1 (gray-filled circles) with

respect to Γ. The panel (c) depicts ac22 at stage II.

5.3. Accuracy of the Biot function approximation

A comparison between the “exact” Biot function Bi(z) determined numerically from the two-
fluid model (full black line) and the Biot function B̃i(z) resulting from the above fitting procedure
(full brown line) is shown in fig. 15(a) for case (ii), Γ = 0.5, Γtc = 10, Bd = Bo = 0, and
Pr = 28.8. The same comparison, but for Pr = 69.2, is provided in fig. 15(b). In both cases, air
is considered as a surrounding gas. Throughout, the Biot function approximation B̃i(z) is in very
good agreement with the “exact” Biot function Bi(z) obtained from the numerical two-phase flow
simulation. The good agreement is found to hold true for all Reynolds numbers considered (right
subfigures of 15). The left parts of fig. 15(a,b) show the z-dependence of Bi and B̃i in more detail
for (Pr,Re) = (28.8, 383) (a) and (Pr,Re) = (69.2, 51) (b). On the global z scale both functions
are almost identical. The zoom into the region near the cold wall (insets in fig. 15) reveal minor
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deviations. Also shown as colored dash-dotted lines are the local fits to regions H, C2, and C1.
Note the local fits in fig. 15 result from the final stage (IV) of the algorithm, whereas the local
fits depicted in fig. 2 have not undergone a multistage fit in Re and Γ and resulted from stage
I of the algorithm. For that reason, the latter is more accurate. For a detailed analysis of the
structure of the Biot function, we refer to the supplementary material.

(a) Case (ii), Pr = 28.8, Bd = Bd = 0, Γ = 0.5, Γtc = 10, air. Left: Re = 383
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(b) Case (ii), Pr = 69.2, Bd = Bd = 0, Γ = 0.5, Γtc = 10, air. Left: Re = 51
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Figure 15: Biot function Bi(z) resulting from the multiphase simulation (black solid line), compared with the fit
B̃i(z) obtained by the multi-stage approach of sec. 4 (orange solid line) according to (26) for Case (ii), Bd = Bo = 0,
Γ = 0.5, Γtc = 10, Pr = 28.8 (a) and Pr = 69.2 (b), assuming air as surrounding gas. Power-law fits for the
individual regions resulting after the four-stage fitting operation are shown as colored dash-dotted lines. The left
sides show the profiles for Re = 383 (a) and Re = 51 (b), while the right sides compare Bi(z,Re,Γ = 0.5) and

B̃i(z,Re,Γ = 0.5). The bumps observed at the maximum of B̃i are due to the blending between B̃i
C1

and B̃i
C2

performed by the hyperbolic tangent blending function B(z).
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Figure 16: Critical Reynolds number for case (ii) with Pr = 28.8, Bd = 0, Γtc = 3, and Γ = [0.5, 1]. Different
numerical models (color) and wave numbers m (symbol) according to the legend are explained in the text.

5.4. Application of the Biot function approximation

The heat transfer across the free surface due to the axisymmetric flow has a profound
impact of the onset of three-dimensional oscillatory flow [26]. Therefore, the quality of the
heat transfer model can be well assessed by comparing the linear stability boundaries of the
two-dimensional axisymmetric steady flow obtained by different heat transfer models. Here
we use the linear stability analysis code of Stojanović et al. [39] which is freely available at
https://github.com/fromano88/MaranStable.git [37]. For the details of the linear stability
analysis we refer to [39] and [38]. However, for the specific case of the Biot function we use an
in-development version of the code not yet available for download. All other cases can be obtained
by the version available on GitHub.

Linear stability analyses have been carried out for case (ii) with Pr = 28.8, Bd = 0, Γtc = 3,
and Γ = [0.5, 1]. The analysis with respect to general three-dimensional perturbations is per-
formed for different axisymmetric steady basic states and for different boundary conditions. The
analysis yields the critical Reynolds number, critical frequency, critical azimuthal wave number
and the critical mode. Here we only consider the results for the critical Reynolds number. It is
shown as a function of the aspect ratio in fig. 16 for the different models employed. The following
basic state models have been tested.

[TFM] Fully resolved two-fluid model (TFM). The TFM serves as the benchmark (blue).

[SFM-Bi] Single-fluid model (SFM) using Newton’s law of heat transfer with the current Biot
function approximation B̃i(z,Γ,Re) instead of a constant Biot number (green).

[SFM-0] Single-fluid model with adiabatic boundary conditions on the free surface, i.e. Bi = 0
(red).

[SFM-av] Single-fluid model using Newton’s law with a constant average Biot number Biav =

(1/2 − ẑ)−1
� 1/2

ẑ
Bi(z)dz (yellow). The lower boundary ẑ = −0.49 serves to exclude the

strong singularity of Bi associated with the cold corner.
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[SFM-c] Single-fluid model with Newton’s law and a constant Biot number selected as Bic =
ãm0 (Γ,Re) (magenta).

Regarding the boundary conditions for the three-dimensional perturbation flow the following
conditions were employed. For the reference case [TFM] we used the same boundary conditions
as provided in [39]. In case of the single-fluid model the free surface boundary conditions result
from (15) by neglecting the viscous stress from the gas phase and by linearizing the boundary
conditions with respect to small deviations from the basic flow.

From fig. 16 the reference case [TFM] (blue) shows the instability of the basic flow arises
with an azimuthal wave number m = 3 for Γ > 0.66 while the most dangerous mode has a wave
number m = 2 for Γ > 0.66. Use of the Biot function fit B̃i [SFM-Bi] (green) is able to very
accurately reproduce the benchmark result (blue). Deviations between [SFM-Bi] and the [TFM]
reference results become largest near the end points of the fitting range at Γ = 0.5 and Γ = 1.
Nevertheless, the error in Rec remains always less than 5%.

Owing to its simplicity, very often a single-fluid model together with an adiabatic free surface
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Figure 17: See next page for figure caption.
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(c) surface velocity ut
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Figure 17: Heat flux density −∂nθ (a), temperature θ (b) and tangential velocity ut on the free surface for case
(ii) at the critical Reynolds number for the two-fluid model Re = Rec[TFM ] = 771 for Pr = 28.8, Bd = 0, Γtc = 3
and Γ = 1. Different numerical models are coded by color. [TFM] (blue), [SFM-Bi] (green), [SFM-0] (red) and
[SFM-c] with c = 0.1043 (magenta).

has been employed [e.g. 40, 15]. However, the [SFM-0] model (purple) strongly overestimates the
true [TFM] critical Reynolds number for all Γ analyzed, even though the aspect ratio at which a
transition between the critical modes with m = 3 and m = 2 arises is reasonably well reproduced.
Alternatively, using the constant part of the Biot function fit from region M to estimate the
constant Biot number Bic = ãm0 of the classical Newton’s law ([SFM-c]), the stability boundary
(yellow triangles down) is remarkably well reproduced. Merely, towards Γ = 1 deviations from the
benchmark become significant, as was the case for [SFM-Bi]. Nevertheless, the result indicates
that a good guess of an appropriate constant Biot number can yield rather accurate predictions
of Rec. Finally, the model [SFM-av], using a constant Biot number obtained by averaging the
Biot function over the length of the liquid bridge strongly underestimates the critical Reynolds
number Rec (red markers). This result, in comparison to [SFM-c], underlines that the correct
value of the constant is essential. The use of a constant Biot number based on an average value
has been proposed before by Gaponenko et al. [29]. They have also computed the heat flux based
on a two-fluid model and suggested a Biot number based on the average temperature difference
between the free surface and some ambient temperature. However, since both the Biot number
and the fictitious ambient temperature difference remained unknown in their investigation, they
could only estimate the Biot number. On the other hand, we base the Biot number on the actual
heat flux (or quantities derived from it) and we are thus able to specify a corresponding average
Biot number derived as an explicit function from our fits. We further stress the difference that
they propose to use the unknown ambient temperature, while we rather suggest to employ the
known cold-wall temperature as the reference temperature θref (see (23)).

To understand which influence the different heat-transfer laws have on the surface temperature
θ and the tangential surface velocity ut, these quantities are shown in fig. 17 together with
the free-surface heat flux density −∂nθ at the critical Reynolds number for the two-fluid model
Re = Rec[TFM] = 771 for case (ii), Pr = 28.8, Bd = 0, Γtc = 3. The data are shown for Γ = 1 at
which the deviations of the different models from the reference case are the largest. The general
characteristic shape of the surface temperature (fig. 17(b)) and the surface velocity (fig. 17(c))
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are reproduced by all models. The single-phase solver supplied with the present Biot-function
model (SFM-Bi, green) almost perfectly reproduces the surface temperature and velocity (TFM,
blue) over the whole range of z. The slight mismatch seems to be due to the heat flux density of
[SFM-Bi] not perfectly reproducing the heat flux dictated by the [TFM]. Apparently, the reason
is the remaining error in matching the location and amplitude of the maximum Biot number
near the hot wall (minimum heat flux in fig. 17(a)) by the fit function. The differences in the
surface flow data are much larger for a constant Biot number, in particular for Bi = 0 [SFM-0].
Assuming an adiabatic free surface [SFM-0] (purple) the free surface temperature in the central
plateau region is too high and the magnitude of the free surface velocity is too low. If the Biot
number is selected constant [SFM-c] with Biot number Bi = Bic = 0.1043 (orange) the deviations
from the reference data are not as large, except for the surface velocity near z ≈ −0.35. Obviously
this is accomplished by the positive non-zero Biot number having a similar effect as the positive
heat flux density for z � 0.2 in the [TFM] reference model (blue in fig. 17(a)). The fact that the
velocity peaks for [SFM-0] and [SFM-c] at z ≈ −0.498 near the cold wall are slightly stronger
than for the reference case [TFM] (inset in fig. 17(c)) seems to be irrelevant due to the small
distance from the solid wall.

The critical Reynolds numbers in the range Γ ∈ [0.9, 1] in fig. 16 are ordered according to the
surface temperature or surface velocity magnitude in the plateaus region near midplane z ≈ 0 for
Γ = 1 (fig. 17). As shown by [30] the stabilization of the basic flow that is seen when defining the
Reynolds number using the thermophysical data at the reference temperature (fig. 16) is due to a
reduced effective viscosity in the flow due to the elevated free surface temperature in the plateau
region, which is most pronounced here for [SFM-0] (adiabatic free surface).

Similar linear stability results as in fig. 16 for Γtc = 3 are obtained for the cases (i) with
Pr = 28.8 and Bd = 0 shown in fig. 18(a) and case (ii) with Pr = 28.8 and Bd = 0 shown in fig.
18(b), both for a gas container geometry with Γtc = 10 (radius ratio η = ΓtcΓ). The results of
the Biot function model [SFM-Bi] compare well to the reference case [TFM] independent from
the gas space (compare figs. 16 and 18(b)), as the level of tolerance is � 5% for the whole range
of Γ. However, in case (i), when the gas container is kept at the cold wall temperature at its
radial boundary, the deviation between [SFM-Bi] and [TFM] is > 5% for Γ ∈ [0.52, 0.81] but still
remains � 8%. Regardless of the considered case, [SFM-Bi] yields more accurate predictions than
[SFM-c].

The above comparison shows that the Biot function approach [SFM-Bi] can almost perfectly
reproduce the benchmark [TFM] and it comes with a great flexibility with respect to a variations
of the aspect ratio and the Reynolds number. Using a constant Biot number [SFM-c] the bench-
mark results can possibly be matched to some degree, but the value for Bic is not known a priori
as Bic depends on the aspect ratio and Reynolds number. However, selecting the constant Biot
number as ãm0 from matching region M provides a rationale for finding a good approximation
in case a constant Biot number is to be used. As a by-product of the present fitting proce-
dure for the (variable) Biot function it is, in fact, possible to construct a constant Biot number
B̃i ≈ Bic = ãm0 (Re,Pr,Γ,Γtc,Bd,Bo, gas,Case) which is a function of all major parameters gov-
erning the flow. A corresponding Matlab code that provides Bic = ãm0 can be downloaded at
https://github.com/fromano88/BiotFunction_LB.git.
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Figure 18: Linear stability boundary of the basic steady flow for Pr = 28.8, Bd = 0, Γtc = 10, and Γ = [0.5, 1].
(a) case (i), (b) case (ii). Different numerical models are indicated by color (see legend) and explained in the text.

6. Discussion and conclusion

The heat transfer across the interface between a thermocapillary liquid bridge from silicone
oil and the surrounding ambient gas has been investigated by means of fully-resolved, fully-
coupled multiphase numerical simulations. Steady axisymmetric flow and temperature fields
have been computed for two different liquids, 2- and 5-cSt silicone oil, and for zero and normal
gravity conditions. The length of the liquid bridge was kept fixed at 1.7mm. Calculations have
been carried out for all tests and aspect ratios Γ listed in table 3, and for Marangoni numbers
Ma ∈ [850, 42750], covering three orders of magnitude, resulting in a total of 2800 simulations.

The computed surface temperature and heat flux across the free surface were then intro-
duced in Newton’s law of cooling assuming the cold-wall temperature as the ambient refer-
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ence temperature. This yields the local heat flux density in form of a local Biot number, the
Biot function. The Biot function Bi(z) exhibits two extrema, one near the hot and one near
the cold wall, which reflect the boundary-layer character of the flow. Based on its extrema
the numerically computed Biot function Bi(z) for all Γ and Re has been fitted by a function
B̃i using a robust multistage algorithm to arrive at closed form expressions for B̃i(z,Re,Γ)
for two frequently employed high-Prandtl-number silicone oils and given geometries of the
gas cavity hosting the liquid bridge. Explicit fit functions of these data are available under
https://github.com/fromano88/BiotFunction_LB.git.

The knowledge of B̃i allows to employ a single-fluid model to capture the true (multiphase)
local heat flux with high fidelity for a wide range of Reynolds numbers and aspect ratios. This
approach yields more accurate results than the classical Newton law with a constant Biot number.
Moreover, for the configurations considered, the use of the Biot function is computationally less
demanding, because the computational effort for the single-fluid model typically amounts to only
30% of the effort required for the two-fluid model.

The conventional approach using a constant Biot number yields temperature and velocity
profiles on the free surface qualitatively similar to those obtained by the full two-fluid model.
The reason is the boundary layer structure is dominated by the thermocapillary convection in the
liquid phase. But deviations from the multi-phase reference results can amount to more than 10%
in the L2-norm of the tangential velocity and temperature at the liquid–gas interface (see fig. 17),
and deviations of the critical Reynolds number for the onset of three-dimensional oscillatory flow
can be even larger. The sensitivity of the critical Reynolds number calls for a test of different heat
transfer models. It is possible to obtain an accurately prediction of the critical Reynolds number
by a single-phase model with a constant Biot number. The ’correct’ Biot number is typically
unknown a priori and needs to be guessed. However, selecting Bi = ãm0 , i.e. the average of the
Biot function over the free surface excluding the thermal boundary layers (region M), yields a
good approximation to Rec within the single-fluid model. Therefore, if the average heat flux in
region M would be measured in experiments in addition to the critical Reynolds number, the
Biot number based on the measured heat flux should provide a good approximation to the proper
constant Biot number to be used in numerical single-fluid linear stability analyses. It would be
interesting to test this hypothesis in future investigations.

The selection of the ansatz functions for the present Biot function approximation B̃i(z,Γ,Re)
and the fit procedure introduce small deviations from the numerical Biot function Bi(z) obtained
from the two-phase flow simulations. But even Bi(z) deviates from the Biot function of a more
precise physical model because flow-induced dynamic deformations of the interface have been
neglected. However, these fine details do not have a notable effect on the heat transfer [22].
Therefore, it is hoped that the present Biot-function model will prove useful for future stability
analyses. The method presented should be easily adaptable to the case of an imposed axial flow
in the gas phase, which is one means of controlling the onset of three-dimensional flow [34] and
which is planned to be investigated in the forthcoming space experiment JEREMI [28].
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1. Motivation and significance
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of the flow in nature and in engineering applications. Three
scenarios demonstrate the crucial importance of hydrodynamic
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instability for the system dynamics: (a) The capillary break-
up of a liquid jet initiated by the Rayleigh instability is rele-
vant to inkjet printing. (b) Shear-flow instabilities related to the
laminar–turbulence transition significantly affect the drag forces.
(c) Buoyancy-driven instabilities are largely employed in thermal
management of buildings with floor heating or ceiling cooling and
drive geophysical circulations. While the physical mechanisms
changing the flow character by instability are different, they
all derive from the nonlinear character of the Navier–Stokes
equations.

MaranStable computes the parameters (e.g. the Reynolds
number) at which the flow changes by instability. The code
can deal with different canonical geometries (channels, annular
pipes, cavities, etc.). It thus computes the essential instability
phenomenon which might be hidden by excessive details in a
comprehensive engineering model. For instance, the thermocapil-
lary instabilities of the flow in a generic liquid bridge is the origin
of striation imperfections in floating-zone crystal growth.

With this paper we make MaranStable publicly available and
thus provide the mathematics, physics, and engineering commu-
nities with software capable of computing basic two-dimensional
immiscible multiphase flows involving capillary and Marangoni
stresses, and static and dynamic interface deformations. The
solver can also compute the most dangerous mode and the critical
parameter (e.g. the Reynolds number) beyond which the mode
grows exponentially in time.

2. Software description

The governing equations are discretized by second-order finite
volumes on a staggered grid. Primitive variables are used to solve
the Navier–Stokes equations. Discrete pressure and temperature
values are located at the cell centers, while the velocities are
defined normal to and in centers of the cell faces which facili-
tates balancing the convective fluxes. The computational mesh is
generated using a MaranStable tool capable of combining mul-
tiple tensorial grids (blocks), face-matched at their boundaries.
Whenever curved boundaries are present, the solver body-fits the
grid to the boundaries to avoid errors associated with geometric
approximations at the order of accuracy of the discretization.
For multiphase flows all blocks across the interface are body-
fitted to the sharp interface. Thus the correct thermophysical
properties are assigned to each phase with pressure and shear
stress discontinuities across the interface due to capillary and
Marangoni stresses, respectively. The curved interface location is
solved either employing a static or a dynamic stress balance. Each
block of the mesh is refined along its coordinate lines either by
hyperbolic tangent or geometric progression, controlled by spec-
ifying the maximum and minimum grid sizes in each tensorial
direction.

The basic flow state is an equilibrium solution of the steady
two-dimensional Navier–Stokes equations. It is computed by the
Newton–Raphson method using the Matlab operator backslash
which requires a good initial guess. A computed basic state can
serve as an initial guess for consecutive basic state computations
in the sense of a natural continuation. Once the sought basic
state is obtained, its stability is computed from the linearized
equations governing small perturbations. These are represented
by Fourier modes in the homogeneous spatial direction (spanwise
or azimuthal) and by an exponential behavior in time. This ansatz
yields a generalized eigenvalue problem for the complex growth
rate (eigenvalue) and the spatial structure of the perturbation
flow (eigenvector). The eigenvalue problem is solved using the
Matlab operator eigs, which relies on the functions imple-
mented in the ARPACK library [1] for linear algebra, and a Cayley
transform implemented in MaranStable. MaranStable either

returns the normalized perturbation flow of the most dangerous
mode together with its growth rate and frequency at the given
set of parameters or seeks the critical mode whose growth rate
vanishes at a particular value of the control parameter. The user
can opt to either search for the most dangerous or the critical
mode. The latter is found by an automatic variation of one of
the controlling parameters which is stepwise ramped up or down
until the sign of the growth rate changes. The zero of the growth
rate is then determined by a regula falsi [2] and the critical mode
is obtained. More details on the mathematics, implementation
and validation can be found in [3]. A corresponding simulation-
resuming and parameter continuation algorithm is provided in
MaranStable and is automatically called whenever required.

2.1. Software architecture

Running the script main.m, the GUI of MaranStable is
launched and guides the user through all steps to set up a
simulation. This same GUI is accessible by installing the exe-
cutable for Windows or Linux and launching MaranStable by
double clicking on the desktop icon without the need of installing
Matlab. The architecture of MaranStable is summarized in
Fig. 1. Four macro-modules can be identified: (i) solver selection
(green box in Fig. 1), (ii) initialization (blue boxes), (iii) sim-
ulation (red boxes), and (iv) visualization and post-processing
(yellow boxes). A single- or a two-phase flow can be selected
(i). During the initialization (ii), the user specifies the thermo-
physical properties of the fluids, the geometry, the parameters for
the mesher, the approximation of the Navier–Stokes equations
and the boundary conditions for the flow. Thereafter (iii), the
simulation parameters shall be set, including the convergence
criteria, the initial guess and the type of simulation (basic state,
linear stability analysis, optical ray tracing). A comprehensive
post-processing/visualization tool (iv) is included in the GUI. The
data can be exported in VTK or DAT. The latter format is suitable
for external line plotting. When a simulation is resumed, the
macro-modules (ii) – (iv) work independently: Instead of going
through (ii), the user can either load a previous initialization data
set, a previously computed basic state, or a previously computed
perturbation flow (see ‘Load’ button in Fig. 1). If the basic state
has already been computed, the user can either skip (ii) and
perform a stability analysis in (iii) or also skip (iii) and visualize
the results in the macro-module (iv). The user may also change
the parameters in (ii) and use the loaded flow field as an initial
guess for a subsequent basic state computation. If the loaded file
contains a computed perturbation flow, it can also be directly
transferred to the post-processing (iv). Saving and resuming is
done via the GUI, which grants high flexibility in the file naming.
The resuming option is implemented only for states saved in
mat-format.

2.2. Software capabilities

MaranStable provides the user with a highly flexible ge-
ometry set-up, of which only a few representative combinations
are illustrated as examples in Fig. 2. However, we limit the
solver to the case in which g is parallel to the axis of symme-
try (symmetry plane) whenever gravitational forces are present.
Regarding the governing equations, three versions of the conti-
nuity, Navier–Stokes, and energy equations are implemented in
MaranStable for immiscible multiphase flows which are, with
ascending complexity,

OB: Oberbeck–Boussinesq approximation

∇ · u = 0, (1a)

2
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Fig. 1. Flowchart of MaranStable, only shown for the two-fluid model. For the single-fluid model, the flowchart is formally identical apart from the missing ‘Gas
Phase’. The four macro-modules are coded by color. Green: solver selection (i). Blue: initialization (ii). Red: simulation (iii). Yellow: visualization and post-processing
(iv). Colored frames (blue and red) constitute the main tabs of the GUI. Black full frames indicate subordinated tabs or buttons. Black dashed frames represent source
files.

Fig. 2. Schematics of possible setups and coordinates: (a, c) cylindrical, (b, d) Cartesian. All geometrical parameters, as well as the volume ratio V = Vliquid/Vgap ,
are adjustable, where Vgap is the upright gap between the two rods/blocks of radius ri (or blocks of width xi). Light blue: liquid phase. Beige: gas phase. (a, b):
single-fluid model. (c, d): two-fluid model.

∂tu + u · ∇u = − 1
ρ0i

∇p + µ0i

ρ0i
∇2u − gαρi(T − T0), (1b)

∂tT + u · ∇T = λ0i

ρ0icp0i
∇2T , (1c)

LTD: Linearly Temperature-Dependent properties

−ρ0iαρi∂tT + ∇ · (ρiu) = 0, (2a)

ρi (∂tu + u · ∇u) = −∇p + ∇ · (µiτ) − gαρi(T − T0),
(2b)

ρicpi (∂tT + u · ∇T ) = λi∇2T + λ0iαλi (∇T )2 , (2c)

FTD: Fully Temperature-Dependent properties

∂tρi + ∇ · (ρiu) = 0, (3a)

∂t (ρiu) + ∇ · (ρiuu) = −∇p + ∇ · (µiτ) + ρig, (3b)

∂t (ρicpiT ) + ∇ · (ρicpiTu) = ∇ · (λi∇T ), (3c)

where the index i = 1, 2 denotes the phase (only for the two-fluid
model), t is the time, u, p and T denote the velocity, pressure
and temperature fields, τ = ∇u + (∇u)T − 2(∇ · u)I/3 and I
are (twice) the deformation rate tensor and the identity matrix,
respectively. The thermo-physical properties ρ, µ, cp and λ are
the temperature-dependent density, dynamic viscosity, specific
heat at constant pressure and thermal conductivity, respectively.

3
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The physical model among OB, LTD and FTD is selected in the
macro-module (ii) inside the main tab ‘General’.

In the Boussinesq approximation OB all thermo-physical ma-
terial parameters are assumed constant and evaluated at a refer-
ence temperature T0 (subscript ‘0’), except for the linear depen-
dence of the density in the buoyancy term. Within the LTD model,
the material parameters

µi = µ0i
[
1 − αµi(T − T0)

]
, (4a)

ρi = ρ0i
[
1 − αρi(T − T0)

]
, (4b)

λi = λ0i [1 + αλi(T − T0)] , (4c)

cpi = cp0i
[
1 + αcpi(T − T0)

]
, (4d)

depend linearly on T , where cp0αcp, λ0αλ, −ρ0αρ and −µ0αµ

are the linear coefficients of the Taylor expansions about T =
T0. Finally, within the FTD model, the user can choose among
various implemented fluids, whose material properties depend
nonlinearly on T . When choosing the OB or the LTD model, the
user has the possibility to create a new fluid with custommaterial
properties.

At the interface between two fluids, the balance of tangential
and normal stresses, as well as the heat transfer across the
interface is imposed. The capillary and Marangoni stresses are
included in the interfacial conditions. Concerning the location of
the interface h, we neglect dynamic surface deformations due
to the three-dimensional perturbation flow, i.e., the stationary
surface shape h of the basic state is prescribed while solving
the perturbation equations. In that case, the interface location
h depends only on the vertical coordinate (y for Cartesian and
z for cylindrical coordinates, see Fig. 2). Within this constraint,
three approximations are implemented in MaranStable with
ascending complexity which can be selected in the macro-module
(ii) inside ‘Boundary Conditions’:

RI: Straight indeformable surface shape (Rigid Interface) and
linearized surface tension σ

h ≡
{
xi for Cartesian coordinates,
ri for cylindrical coordinates,

(5a)

σ = σ0 − γ (T − T0), (5b)

SI: Indeformable hydrostatic surface shape (Static Interface)
(limit of asymptotically large surface tension at reference
temperature σ0) and linearized surface tension

∆ph = σ0∇ · n + ∆ρhgz, (6a)

σ = σ0 − γ (T − T0), (6b)

DI: Dynamically deformed surface shape (Dynamic Interface)
and full temperature-dependent surface tension

∆ph = σ∇ · n + ∆ρhgz + µ1n · τ1 · n − µ2n · τ2 · n, (7a)

σ = σ (T ). (7b)

Here γ = −∂Tσ |T0 is the negative surface tension coefficient
evaluated at the reference temperature T0, ∆ph the interfacial
pressure jump, ∆ρh the interfacial density jump and n = n(h)
the unit normal vector directed from phase 1 to phase 2. Selecting
SI, the general stress balance on the interface (7a) reduces to the
Young–Laplace Eq. (6a) which can be solved independently from
the flow field [3]. However, in DI, the interface shape h is part
of the numerical solution, since flow-induced deformations are
taken into account in the basic state. This is taken care of by
an additional iteration loop embedded in the Newton—Raphson
iteration for the basic state.

A dedicated tab of the GUI guides the user through the bound-
ary conditions. They can be chosen among: ‘no-penetration’

(free-slip or no-slip boundary with either adiabatic conditions
or a given temperature profile), ‘free-surface’ (free-slip with
user-specified heat flux, only for single-phase simulations) and
‘outflow’ (constant-pressure with homogeneous Neumann con-
ditions for velocity and temperature). Under the ‘inflow’ con-
ditions, the user can define a combination of non-homogeneous
Dirichlet and homogeneous Neumann conditions allowing for
case-specific inlet velocity and temperature profiles. Finally,
MaranStable provides a module dedicated to optical ray trac-
ing in axisymmetric, non-homogeneous diffraction index fields
N . This is coupled with the Navier–Stokes solver, as the user
can provide a temperature-dependent N (T ) index and trace the
optical path in the liquid of a ray with normal incidence on a
(transparent) wall.

2.3. Visualization, post-processing and customization

Several visualization and data post-processing features are im-
plemented in MaranStable. The GUI provides a dedicated button
for a post-processing of the data (velocity, pressure, and tem-
perature fields) and visualization of the two-dimensional basic
state and the three-dimensional critical mode. The computation
of the Stokes stream function is implemented for planar and
axisymmetric basic states. Beside of the embedded visualization
toolbox, an export feature is available to save the flow in VTK and
DAT formats. The exported data can be readily imported in third-
party software for a more advanced graphical post-processing,
like ParaView (VTK) or, for line graphs, gnuplot, xmgrace, etc.
(DAT).

MaranStable can be further customized. One can switch
from planar to axisymmetric geometries (Fig. 2). Moreover, by
box-ticking one can select the physical model, activate/deactivate
Marangoni stresses, use the creeping flow approximation (inertia
terms in the OB, LTD and FTD models are set to zero) or skip
the energy equation. Several fluids with their thermo-physical
properties are already implemented in MaranStable. Additional
fluids can be defined, but ρ(T ), cp(T ), λ(T ), and µ(T ) must either
be constant or depend linearly on T . Fluids can also be defined as
to enable a fully non-dimensional formulation, cf. Section 3.1.

3. Illustrative examples

3.1. Rayleigh-Bénard instability

In an infinitely extended layer of a Boussinesq fluid heated
from below the conducting basic state becomes unstable due to
buoyancy forces when a critical Rayleigh number is exceeded. To
set up this problem, we use a single-fluid model governed by the
OB model in a finite Cartesian domain with free-slip conditions
on the horizontal top and bottom walls which are heated from
below with a temperature difference ∆T . The domain (layer) has
a thickness of d = 1 mm and the acceleration of gravity g =
−gey acts in the negative y direction. Since convection in plane
layers arises in form of stationary periodic counter-rotating rolls
with rectangular cross-section, periodic boundary conditions are
equivalent, in this case, to adiabatic free-slip conditions on the
cell boundaries. These conditions are thus imposed on the side
walls of the present finite domain, whose length represents one
wavelength 2π/k of the flow pattern, where k is the wave number
in units of d−1. The control parameter is the Rayleigh number
Ra = gαρ∆Td3ρ2

0cp0/µ0λ0.
Neutral Rayleigh numbers Ran are defined by a vanishing

growth rate. Results for Ran are shown in Fig. 3(a) as function of
the wave number k. For the selected range of k, MaranStable
(red crosses) reproduces the exact solution Raexactn = (k2 +
π2)3/k2 [4,5] (full line) up to 0.01% using a uniformly distributed

4
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Fig. 3. (a) Neutral curve for the Rayleigh-Bénard problem with free-slip con-
ditions at the top and bottom boundaries; crosses: MaranStable, line: exact
solution. (b) Streamlines and temperature field T ′ (color) of the critical mode
(k = kc = 2.2214).

grid with 28300 grid points. The critical wave number kc (mini-
mum of Ran) found by MaranStable deviates by less than 10−4 %
from kexactc = π/

√
2. The critical mode obtained by MaranStable

is shown in Fig. 3(b).

3.2. Thermocapillary liquid bridge with a coaxial gas flow

An example for a multiphase problem with temperature-
dependent fluid properties is the flow instability in an axisym-
metric liquid bridge from silicone oil, which is treated using
cylindrical coordinates. The liquid bridge is heated differentially
with ∆T via cylindrical support rods and surrounded by air which
is concentrically confined by a cylindrical tube. The basic flow
is driven along the liquid–gas interface by the thermocapillary
effect and by a steady forced nominally axial flow in the air. For
more information, the reader is referred to [6].

Results of linear stability analyses are shown in Fig. 4.
MaranStable can visualize the eigenvalue spectrum (left), where
ω is the frequency and s the growth rate of the critical mode. The
temperature field of one of the two oscillatory critical modes is
shown on the right. Figures 4(a) and 4(b) are obtained for the
same parameters, but for flow models OB and FTD, respectively,
which yields different critical temperature differences ∆Tc . In
both cases the critical mode is a wave, but it travels azimuthally
with m = 1 for the OB model, while it is axisymmetric (m = 0)
traveling axially for the FTD model.

3.3. Optical ray tracing

Finally, we demonstrate the ray tracing capability of
MaranStable. The axisymmetric basic flow in a thermocapillary
liquid bridge made from 2-cSt silicone oil with volume ratio
V = 0.9 and aspect ratio Γ = d/ri = 0.5 is computed using the
two-fluid model FTD for a temperature difference ∆T = 70 ◦C
(T0 = 25 ◦C) under weightlessness. This corresponds to typical
experimental conditions [8] for tracking particles in the liquid
bridge through a transparent top rod. MaranStable can correct

Fig. 4. Leading eigenvalues (left) and critical temperature field (right) for
the same parameters, but different computational models. (a) Oberbeck–
Boussinesq approximation OB with mc = 1 and ∆Tc = 52.2 ◦C. (b) Full
temperature-dependent properties FTD with mc = 0 and ∆Tc = 56.1 ◦C.

the hypothetical particle position (along the straight dashed line
in Fig. 5) for a constant index of refraction N of the liquid to take
into account the temperature dependence of N (T ) (red line).

4. Impact and conclusions

MaranStable aims to provide the mathematics, physics and
engineering community with a flexible and easy-to-use GUI-
integrated code for performing linear stability analyses in immis-
cible multiphase flows.

The canonical geometries implemented in MaranStable cover
many paradigmatic setups used to investigate flow instabilities.
Examples were presented in Section 3. The range of Navier–
Stokes (OB, LTD, FTD) and interfacial models (RI, SI, DI) im-
plemented provides a large flexibility for carrying out state-of-
the-art research in complex multiphase hydrodynamic stability.
Several articles based on MaranStable have recently been pub-
lished by the authors who developed the software [3,9,10]. This
paper aims at broadening the user community to foster progress
in multiphase flow instabilities.

The software enables new research opportunities. To the best
of our knowledge, no other open-source linear stability solver is
capable of directly comparing the three Navier–Stokes models OB,
LTD and FTD implemented. This enables, e.g., an assessment of the
accuracy and the validity of the Oberbeck–Boussinesq approxi-
mation OB, which is an active research topic [11]. Moreover, the
three interface models RI, SI and DI allow to study the role of
dynamic interface deformations, which are often neglected. In on-
going work [6] regimes have been identified near the mechanical
stability limit in which the flow-induced interface deformations
have a significant impact on the basic state, hence on the sta-
bility of the system. The nonlinear temperature-dependence of
the surface tension, implemented in DI, is important for large
temperature differences. It allows users to investigate the effect
of Marangoni stresses beyond the classic approximation SI.

MaranStable bears a great potential for significant exten-
sions of its already advanced capabilities. Including evaporation
and phase change would be of great interest. Moreover, including
dynamic deformations caused by the perturbation flow would

5
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Fig. 5. Ray tracing in a non-isothermal liquid bridge: (a) Spatial distribution of the index of refraction N (T ) [7] and optical path (red line) of a ray which enters or
leaves the liquid perpendicular to the top (hot) transparent wall at r = 2.9 mm (blue dashes). (b) Close-up of the optical path.

allow the detection of surface wave instabilities. Adding the com-
putation of the kinetic and thermal energy budgets of the criti-
cal mode to the post-processing tools would considerably sup-
port the physical understanding of the instabilities. Future exten-
sions of MaranStable concern embedding implicit and explicit
reduced-order models for heat transfer and wetting, including
surfactant dynamics in the bulk and on the interface, and a
generalization of the optical module.
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