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Kurzfassung

Virtuelle Welten bieten unbegrenzte Möglichkeiten für die Erstellung von Lernszenarien
in verschiedenen Bereichen. Diese Welten werden oft mit verkörperten Agenten angerei-
chert, um menschliches Verhalten bei verschiedenen Interaktionen zwischen menschlichen
Benutzern und virtuellen Agenten zu simulieren. Allerdings verfügen diese Agenten in der
Regel nur über begrenztes Wissen und Verhalten und ihre Kommunikationsfähigkeiten
sind in der Regel vordefiniert oder sie sind überhaupt nicht in der Lage zu kommunizie-
ren. In dieser Arbeit untersuchen wir die Auswirkungen von verkörperten Agenten mit
Konversationsfähigkeiten und Situationsbewusstsein auf die menschliche Wahrnehmung
und Leistung in einem Trainingsszenario für Ersthelfer. Wir stellen eine neuartige Lösung
vor, um verkörperten Agenten ein Situationsbewusstsein zu ermöglichen, welches ihnen
erlaubt, Veränderungen in ihrer Umgebung und ihrem eigenen Zustand zu erfassen und
darauf zu reagieren. Die Agenten sind in der Lage, dieses erfasste Wissen durch umfassen-
de Konversationsfähigkeiten zu vermitteln, indem sie eine Kombination aus neuartigen
Methoden von NVIDIA für die automatische Spracherkennung und Sprachsynthese und
der industrieerprobten Konversations-Artificial Intelligence (AI) Rasa verwenden. Um
unsere konversationellen Agenten zu evaluieren, führten wir eine Between-Groups Nut-
zerstudie mit 24 Teilnehmern in einer Trainingsanwendung in der Unity Spiel-Engine
durch und untersuchten die Unterschiede zwischen Agenten mit vollständigen Konver-
sationsfähigkeiten und Agenten mit geskriptetem Audio. Während der Studie haben
wir verschiedene quantitative Metriken gemessen, darunter Präsenz, Kopräsenz, Aufga-
benleistung, Realismus, Lernerfolg, Informationspräsentation, Agenteninteraktion und
Trainingsdauer sowie qualitative Messungen in Form von offenen Fragen. Während unsere
quantitativen Ergebnisse keine signifikanten Unterschiede in allen gemessenen Metriken
aufzeigten, fanden wir einen signifikanten Unterschied zu Gunsten von Agenten mit
vollen Konversationsfähigkeiten in der Metrik Kopräsenz. Darüber hinaus fanden wir
signifikante Unterschiede zwischen den Geschlechtern in den Metriken subjektive Aufga-
benleistung und Trainingsdauer. Abschließend diskutierten wir das Nutzerfeedback zu
unseren konversationsfähigen Agenten und leiteten aus unseren qualitativen Ergebnissen
Richtlinien für die zukünftige Entwicklung und Forschung von Trainingsanwendungen
mit verkörperten konversationsfähigen Agenten mit Situationsbewusstsein in VR ab.
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Abstract

Virtual worlds offer unlimited possibilities for creating educational training scenarios
in various domains. These worlds are often enriched with embodied agents to simulate
human behavior in various interactions between human users and virtual agents. However,
these agents usually only have limited knowledge and behavior and their communication
skills are usually predefined or they are not able to communicate at all. In this thesis,
we investigate the impact of embodied agents with conversational abilities and situation
awareness in a first responder training scenario on human perception and performance.
We present a novel solution to enabling situation awareness for embodied agents which
allows them to capture and react to changes in their environment and their own state.
The agents are capable of conveying this captured knowledge through full conversational
capabilities by utilizing a combination of novel methods from NVIDIA for automatic
speech recognition and speech synthesis and the industry proven conversational Artificial
Intelligence (AI) Rasa. To evaluate our conversational agents, we conducted a between-
groups user study with 24 participants in a Virtual Reality (VR) training application
in the Unity game engine and investigated the differences between agents with full
conversational capabilities and agents with scripted audio. During the study we measured
several quantitative metrics including presence, co-presence, task performance, realism,
learning outcome, information presentation, agents interaction and training duration as
well as qualitative measurements in the form of open questions. While our quantitative
results did not indicate significant differences in all measured metrics, we found a
significant difference in favor of agents with full conversational capabilities in the metric
co-presence. In addition, we discovered significant differences between genders in the
metrics subjective task performance and training duration. Finally, we discussed user
feedback on our conversational enabled agents and derived guidelines for future research
and development of training applications with embodied conversational agents with
situation awareness in VR from our qualitative results.
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CHAPTER 1
Introduction

Disaster response training is an important educational exercise for first responders to
acquire knowledge and skills needed to be prepared for unexpected situations during
an actual disaster. However, traditional trainings, such as classroom courses or real-life
simulations may not be effective or cost-efficient enough for today’s challenges. Recent
advancements in computer and mixed reality technologies opened opportunities to use
these tools for training and exercise purposes [ALK+]. Specifically, Virtual Reality (VR)
based training can offer an immersive virtual scenario that is usually not present in
real-life simulations or classroom-based training. Moreover, VR training does not only
offer a unique experience that is hard to simulate in the real world, but is also considerably
more cost efficient compared to large-scale real-life exercises [HLB+13]. In real world
scenarios, communication with people on site is an important part for first responders
to get additional information about the actual situation and is also important to, e.g.
properly understand the state of injured people and decide on the best treatment for
them. Non-player Character (NPC)s can simulate the behaviour of real people in various
virtual situations where it would potentially endanger a real person in a real simulation.
These virtual characters paired with a humanoid body, also known as embodied agents,
play an important role in VR training applications [CW19], and have the potential to
improve realism and increase presence [SBS19]. Moreover, they can provide important
social cues, such as eye contact and turning towards the user to appeal more human to a
user. This human design can be perceived as appealing by user and make the interaction
with the agent feel natural [RHW20]. In addition, conversational capabilities can be
immensely beneficial to provide trainees with additional information, needed to solve
a given problem of the training. However, virtual agents in VR training applications
typically only have a limited set of predefined behaviours and their communication skills
are either also predefined and scripted or they are not able to communicate with a user
at all. Another important factor which is often missing in VR, is situation awareness.
Agents are often not able to capture and react to changes in their environment or their
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1. Introduction

own state and reliably communicate them to participants of the training. Figure 1.1
shows two training scenarios with virtual agents as bystanders of two incidents. The
agents in Figure 1.1a may have experienced the cause of the car crash and may be able
to provide important information that is not directly obvious to a trainee after just
arriving at the scene. If the agent inside of the car is conscious, he could be able to
report about his condition which may influence his rescue and medical treatment. The
virtual agents in Figure 1.1b may have knowledge on how the fire spread outside of the
fireplace and provide important hints to a trainee on how to extinguish the fire if there
were e.g. chemicals involved. Therefore, an investigation on the impact of embodied
conversational agents with situation awareness in a VR training scenario is needed to
gain more insights for future research and development of training applications in VR.

(a) A trainee in a VR first responder training
on the way to help the agent inside of the
crashed car with a first aid kit. One agent on
the right and one agent behind the car on the
left are acting as bystanders in this scenario.

(b) A trainee immersed in VR trying to put out
a the spread fire from the fireplace with a fire
extinguisher. Two agents, who may be involved
in this incident, are watching this scenario.

Figure 1.1: Figure 1.1a and Figure 1.1b show two VR training scenarios where a trainee
is immersed in VR and tries to help an agent inside a car and put out a fire. Both
scenarios include virtual agents as bystanders, who may have experienced the cause of
the incidents.

1.1 Motivation
As part of the Virtual Enhanced Reality for interoperable training of CBRN military and
civilian Operators (VERTIgO) project, we want to address the limited communication
problem with digital characters by proposing methods for the embodiment of Artificial
Intelligence (AI) chatbots into a virtual humanoid body. This thesis therefore investi-
gates and contributes to embodied conversational agents with advanced AI capabilities,
including natural language processing, speech synthesis and speech-to-text conversion.
Additionally, our developed AI agents use data about their surrounding environment
from a defined data source to enable situation awareness. We hypothesize, that the
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1.2. Aim of the Work

conversational capabilities paired with AI and situation awareness are beneficial for
training scenarios in VR due to higher immersion and therefore increases the learning
outcome and self-reported performance of trainees. While previous research already
studied the usage of embodied agents in VR [KBH+18, KdMN+20, SBS19, WSR19], they
suggest, that more studies are required to learn about the benefits and disadvantages
on metrics such as realism, learning outcome and task performance. In addition, more
research about the design of such agents will be beneficial for designing and implementing
future VR training applications that utilize conversational agents.

1.2 Aim of the Work
The main goal of the thesis is the connection of the Rasa [BFPN17, Ras] conversational
AI, see Section 2.4, and the novel NVIDIA Riva [Rivb] speech services, see Section 2.5,
to virtual humanoid bodies in 3D. In addition, a suitable model for talking about specific
training scenarios was trained for Rasa, which is able to get information from the Unity
3D [Uni] game engine to enable situation awareness. As part of the VERTIgO project, the
connection to Riva and Rasa services were implemented in Unity 3D. These components
were connected with 3D humanoid bodies in a training scenario to create a humanoid
agent with the ability to respond to users in a meaningful and situation aware way.
Speaking to a humanoid agent should be fluent by just looking at the agent and start
talking without e.g. the need to press a button. Each agent listens and responds to users
if the user is nearby, talks and looks at the agent. The virtual agents have fully rigged
models as bodies with basic animations. The agents shall also have basic facial expressions
such as mouth movements synchronised to their on-the-fly created spoken responses. To
enable situation awareness, the Unity application contains a server to provide dynamic
scene information to Rasa. Rasa was configured and specifically trained for disaster
training scenarios to help with proper intent extraction from the users spoken content.
These training scenarios include scenarios where medical aid is required and dangerous
substances, such as chemicals leak out and their removal is needed. To evaluate our
agents, we created one training scenario as a 3D-VR scene using Unity 3D and we allowed
users to move through the virtual world and approach virtual agents by looking and
talking. We are expecting that each agent is situation aware and can answer questions
such as "What happened?", "Does your leg hurt?", "How many people are inside this
house?" or "Do you know how many people are injured?". Compared to traditional NPCs,
we studied if our situation aware agents provide a higher level of immersion and a better
training outcome. We evaluated our training through a user study to investigate the
impact of our conversational agents on human perception.

1.3 Contribution
The main contribution of this thesis are embodied conversational agents with situation
awareness for a first responder training scenario. We propose and implement a novel
method for enabling full conversational capabilities on virtual agents by utilizing state
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1. Introduction

of the art Natural Language Processing (NLP) and novel speech services for Automatic
Speech Recognition (ASR) and Text to Speech (TTS) in Unity 3D [Uni]. We train
a suitable model for NLP to give agents a basic understanding of disaster situations
and allow them to answer first responder trainee’s questions. Additionally, we propose
a novel technique for enabling situation awareness for virtual agents, that is utilized
by the NLP service to provide situation dependent answers. To verify our proposed
method, we compared two conditions in a between-group user study: Conversation and
No-Conversation. The Conversation condition contains agents with full conversational
capabilities, i.e. participants can speak naturally with an agent and get answers to their
questions. The No-Conversation condition has agents that can only provide information
by speaking pre-build text and are not able to answer questions from participants. Both
conditions were applied on the exact same training scenario and participants could receive
the same information in both conditions. Situation awareness was also enabled for both
conditions, so the agents in both conditions reported actual information. Our goal was
to investigate the impact and benefit of using embodied agents with conversational
capabilities in comparison to agents that can only provide static information. Finally,
we performed a qualitative analysis of our study results and we provide guidelines that
together with the study results can be useful for future research and development of
training applications in VR with conversational embodies agents.

In summary, the main contributions of this thesis are:

1. A novel method for including embodied conversational agents with situation aware-
ness into a first responder training scenario in VR.

2. A user study, showing the impact of conversational agents in a first responder
training scenario in VR.

3. Guidelines based on our qualitative analysis of the study results for designing future
conversational agents and training applications in VR.

1.4 Outline
Chapter 2 introduces previous research done in the field of virtual training such as
disaster response training, rescue tasks and emergency evacuation. Furthermore, we
describe how embodied conversational agents were used in the past and how researchers
enabled the embodiment of AI conversational agents into virtual humanoid bodies and
present previous techniques for enabling situation awareness. In addition, we provide
some general background about AI chatbots, NVIDIA Riva speech services and the
conversational AI Rasa.

In Chapter 3, we explain the technical details behind our novel method for our embodied
conversational agents and how we enable situation awareness. We show how our pipeline
works by explaining how we connected NVIDIA speech services and Rasa to Unity and
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1.4. Outline

how the different parts of our pipeline communicate with each other. Finally, we explain
the configuration and training data we were using to train the language model for Rasa.

Chapter 4 presents the virtual environment we created as a training scenario for our user
study. We describe the environment including walkable buildings as well as the locations
of the agents and incidents. We are also explaining how locomotion, object interactions
and the interaction with the agents work and what tasks participants are asked to solve
for completing the training.

In Chapter 5, we present some general data about our participants and explain how
we conducted the user study and what data we collected during the study. We finish
the chapter by explaining the design of our study questionnaire and present all of the
questions from study questionnaire.

The results of the study are presented in Chapter 6 and we explain how we assessed
the data collected during the study. The chapter ends with a discussion of the study
results and presents guidelines based on our qualitative analysis for future research and
experiments on embodied conversational agents with situation awareness in VR training
scenarios.

In Chapter 7, we are reflecting on the limitations of our work and study and propose
solutions to overcome these limitations in future research and experiments. Finally, we
conclude this thesis with a summary of our work and results.
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CHAPTER 2
Background and Related Work

Virtual worlds offer a high potential for interactive experiences in a variety of genres
such as entertainment, education and training. There are unlimited ways to design and
build a world that users can explore and experience, e.g. navy personal can become
familiar with a ship and biology students can learn about anatomy while inside a human
body. These worlds that range from fantasy to factual and from past to future are often
enriched with intelligent virtual agents to make it more lively and to give users the
possibility for interactions and human like conversations. However, these interactions
are often very limited and scripted and do not offer users a natural way to carry on
a dialogue [Ric01, JRL00]. Striving away from these simple interactions to interactive
experiences with face-to-face communications is perhaps the greatest challenge when
designing virtual humans. Intelligent virtual agents must not only be concerned with
themselves but their surrounding, multiple characters and multiple conversations. They
should know when they are talked to and who is talking to them and give dynamic
answers dependent on the virtual world where they exist [TR02]. In this chapter,
we are exploring previous work and research of training in Virtual Reality (VR) and
embodied conversational agents in VR and Augmented Reality (AR) and provide technical
background for the reminder of this thesis.

2.1 Training in Virtual Reality
First responders are facing quiet unique challenges when disaster occur and therefore
need adequate training to operate safely in dangerous situations. Consequences of critical
incidents are high and experiments of highly dangerous situations are usually not carried
out for safety reasons and for being too resource intensive, i.e. firefighting training
often does not even include a real fire. Traditional classroom settings and low-fidelity
exercises are not always sufficient for training unforeseen incidents [LPL22, HZG+20].
With the advancements of modern technologies, training in a virtual world has a high
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2. Background and Related Work

potential to overcome these issues. Using VR, trainees can be fully immersed in a
virtual environment and practice the skills needed without being threatened of their
lives. Figure 2.1a shows a trainee getting instructed to an air monitor by a virtual
instructor and Figure 2.1b shows a room filled with smoke from a fire rescue scenario.
Immersive VR environments give trainees a sense of being physically there by creating a
sufficient believe that the environment is real. This sense can be created by using various
technologies such as haptic and force feedback and smell and taste replications. Fully
immersive environments are possible but very rare as the majority of existing trainings
do not incorporate all aspects such as haptic feedback and smell replications to create a
realistic experience [NJD19, SRD15].

(a) A virtual instructor of a fire brigade
explains to a trainee how an air monitor
works [HZG+20].

(b) A room filled with smoke due to a fire in
the building [LYXX20].

Figure 2.1: Figure 2.1a shows a virtual instructor explaining a tool to a trainee and
Figure 2.1b shows a room filled with smoke from a fire rescue scenario.

Previous research investigated how to utilize various aspects to create a fully immersive
training experience for first responders in VR. Mossel et al. [MFS+17] created a platform
called VROnSite that supports an immersive training for squad leaders of first responder
units. They use an entirely untethered Head Mounted Display (HMD) and created
two ways of navigation, abstract and natural, to simulate stress and exhaustion which
are important factors for decision making. The abstract navigation technique was a
simple two-handed gamepad and the natural navigation an omnidirectional treadmill
that enabled real walking. During a user study with real fire brigades, they evaluated the
difference of their two navigation methods using quantitative and qualitative measures.
Their measures included usability of the platform, perception and perceived task loads
of participants when assessing two virtual disaster sites with the different navigation
techniques. Quantitative and subjective measurement were collected using a 5-point
Likert [Lik32] scale and qualitative measures with open questions on a questionnaire
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2.1. Training in Virtual Reality

after the experiment. They also observed the physical stress level (sweating and faster
breading) of participants by encouraging participants to think aloud during the experiment.
Participants reported a high degree of presence and considered the platform highly suitable
for training of decision making in complex first responder scenarios, while not favoring any
of the two navigation methods. However, the quantitative data revealed the importance
of using a suitable navigation technique in this context due to a higher task load when
using the treadmill which more closely resembled real-life drills. The qualitative data
showed, that participants felt like free navigation, sound and interaction were the most
important aspects to train assessment of a disaster situation.

Velz et al. [VAG+14] studied the influence of interaction technologies on the learning
process with a focus on teaching industrial assemble tasks in VR. They developed a
training which can use one of four interaction methods: mouse-based, haptic system
and two configurations of motion capture systems where one configuration had 2D
hand tracking and the other had 3D hand tracking. In their user study, four groups of
participants were training using one of the interactions methods and a fifth group was
trained with a video tutorial, which was showing how to perform each step. The day
after the training a post-training test was carried out to evaluate the performance of the
participants on a real task. The goal of the experiment was, to study the efficiency and
effectiveness of each interaction technology for learning a task. In there evaluation they
considered both, quantitative measurements such as training time, real task performance,
evolution from the virtual task to the real one as well as qualitative data, i.e. user
feedback from a questionnaire. The results did not indicate any significant differences
in the final performance between the five groups. However, they found a significant
difference in the training time, where users trained with the mouse and 3D tracking
motion capture system finished significantly faster then the other groups. Using this
results, they conclude that motion capture based interactions can be a valid interaction
method for training assembly tasks and the perceived collisions of haptic interactions do
not necessarily increase the learning transfer from a virtual task to a real task.

Stansfield et al. [SSS98] presented a VR system for training medical first responders that
focuses on sorting injured people on the battlefield into groups, based on their need for
medical treatment, and treat them in order. Users are represented by an avatar and are
able to manipulate virtual instruments and carry out medial procedures. Since users
were seeing themselves in a virtual avatar, the avatar must be updated at real-time to
reflect immediate actions of the users and not cause discomfort. This real-time positional
update of body parts was accomplished by using several tracker input modules worn by
the users. A dynamic casualty simulation generated the state of various casualties and
provided realistic cues of patients conditions, e.g. changing blood pressure and pulse,
and let patients respond to the action of the trainee by, e.g. changing the color of the
skin. The focus of the training was rapid decisions making and situational assessment
in highly stressful situation. They also implemented voice recognition techniques to let
users request information such as vitals and give commands to patients that execute
certain actions such as evacuation. While evaluating their system, they found a high
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2. Background and Related Work

level of task complexity and that users want more visual and tactile cues, i.e. perceptual
anchors, prior to committing to a decision or commanding action.

In the domain of Chemical, Biological, Radiological, Nuclear (CBRN) hazards, first
responders need a high-quality training to avoid fatal errors. Exercises for CBRN
trainings are often expensive, require complex management and only reproduce an
approximation of a real hazard due to the need to preserve the trainees safety. To
cope with this issue, Laberti et al. [LLGPM21] developed a VR training platform, that
allowed trainees to train alone or in a team. Trainees are able to interact with Non-player
Character (NPC)s and NPCs are able to follow or guide the trainee. In a user study they
found a high sense of presence and users recognized the high potential of VR training
applications. Based on feedback they think, that machine learning techniques would be
beneficial to further improve the behaviour of the NPCs and boost believability of the
experience. The study also highlighted the need for a different system than controllers to
interact with virtual objects.

Search and Rescue (SAR) skills are important first responders in the firefighting domain
and therefore, Doroudian et al. [DWW+22] saw the need to improve VR training for
SAR tasks. They developed a system with immersive maps that have both, static
information about the 3D environment and real-time information collected from the
simulated environment. The collected real-time information included dynamic locations
of fires and persons to be rescued. In a user study, users were asked to use the dynamic
maps about the environment to solve some tasks. For locomotion they experimented with
free movement by character controller and teleportation. The free movement approach
caused motion sickness for some participants without VR experience, therefore they only
used teleportation for the user study. Participants could access the virtual map located
on their left hand at any time by raising the hand. The main focus of the study was on
the information levels from the virtual maps and the danger degree of the environment
that was controlled by the fire simulations. The results confirmed the advantage of using
real-time information for training and its effects on changes of locomotion behaviors. In
their system, they mainly used visual effects and suggest to also include sound effects for
a more realistic training.

Lorenzis et al. [LPL22] developed a VR training system for practicing the use of a blower
as a firefighting tool. The system aims to assists trainees in learning the procedure and
assessing their knowledge afterwards. To reproduce the weight of a real blower and
enhance realism, they modified a real tool so that it can be used as an interface to the
application. For the modification, the handle was replaced by a Vive Pro controller
and a Vive tracker was attached to the body of the blower to track the blower location.
They implemented a believable, though not physically accurate simulation of the blowers
behavior and the fire so that the blower affects fuel and fires in the scene. Flames could
spread across the scenes foliage when not correctly extinguished with the blower. The
application started with a guided mode where an NPC illustrated and explained via
voice recordings all the necessary information on how to properly use the blower as a
firefighting tool. After the user has completed the guided mode and learned how to

10
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correctly use the blower, the evaluation mode was started. In this mode, the trainee was
asked to use the blower without any guidance of the NPC. The feedback towards the
application was positive and users saw the potential of it being useful for training.
VRescure is a system to help trainees get used to various disaster circumstances. Nguyen
et al. [NJD19] developed a VR city scenario with an ambulance rescue agent and several
rescuees. The rescue agent was automatically searching for the optimal path to save all
of the rescuees and the trainee was able to interfere in this rescuing process by placing
obstacles or adding more rescuees along the way. Placing more rescuees caused the rescue
agent to re-route the initial calculated optimal path. Trainees could practice disaster
circumstances through observing the intelligent agent who maps the optimal path and
reacts to changes caused by the trainees.
Using VR environments has not only been recognized as an alternative to traditional
real-life trainings for first responders but also as an alternative for evacuation drills.
Sharma et al. [SRD15] proposed an application to create unique ways to train emergencies
for university campus safety. Similar to first responder trainings, campus trainings in VR
have a considerable cost advantage over large emergency evacuation trainings on a real
university campus. A quick evacuation of occupants in a building and the movement of
people in threat situations is very critical to save lives. Disorganized evacuation can not
only lead to injuries and confusion but also death. In the training application, Sharma
et al. [SRD15] wanted to gather data on human behaviour and emergency response in
an evacuation scenario. They created a virtual campus environment and implemented
three ways of crowd behaviour: Rules for computer simulated agents, controls for users
to navigate through the VR environment as autonomous agents and direct control
through keyboard/joystick along with an immersive VR HMD. They created a multi-user
evacuation drill on a virtual campus environment where multiple users could enter as
avatars through a HMD and take part in the evacuation drills. The environment also
contained computer controlled agents that were programmed to act as obstacles to users.
The behavior of the computer controlled agents was either defines through rules or could
be controlled through users.
Jin et al. [JBG+19] proposed an agent-based virtual interview training system to help
college students with high shyness level to improve their interview skill and reduce anxiety
before being exposed to a real interview. They developed three virtual agents with different
types of personalities and three kind of interview scenarios with a multidimensional
evaluation method to meet the most common demands. The interview scenarios included
interview trainings for the enterprise, civil servant and college domain. A user study
indicated, that the system can help shy college students cope with interview anxiety and
improve their interview training performance. During the study the system was evaluating
behavior, facial expressions and physiological signals of the participants [JBG+19].
Peretti et al. [PSSE21] experimented with a novel training solution for first responders
that utilizes a gamification aspect. First responders need to assess and act fast, therefore
they put the user in a stressful situation where a timer is running and they need to make
decisions quickly. The training scenario had several variables for adjustment to create
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a dynamic scenario where the user was presented with multiple choice questions and
object manipulation tasks which had to be solved under a time constraint. The questions
were created in collaboration with professionals and the object manipulation tasks were
executed with a controller or hand tracking technology. In an experiment with users,
they found that hand tracking is highly appreciated compared to more commonly used
controllers.

As first responders are put in highly stressful situations, they may experience multiple
stress levels such as fear, panic and collapse of clear thinking. To organize appropriate
support and avoid risk-taking, it is important to stay cognitively under control in these
circumstances. Using psychophysiological measurements, Paletta et al. [PSR+22] studied
levels of stress during training in real and virtual environments in the context of situation
reporting under realistically simulated mission conditions. They induced physical stress
in real-life by having participants run a 5-minute endurance run on the test site and
similar to Mossel et al. [MFS+17] used a VR-supported treadmill in VR. To simulate
real equipment, participants also wore heavy operational clothing and a 20kg backpack.
Cognitive strain was induced by having a operator watch the mission scenario video and
informing the participant to prepare a situation report within one minute. When the
report was ready, the participant had to report on the scenario within one minute. The
scenario was designed to follow a command scheme that relates to observing, considering
actions and communicate actions. The evaluation showed, that this was a promising
method to measure observation skills and that creating situation reports lead to a high
level of cognitive and emotional stress that must not be neglected in trainings.

Haskings et al. [HZG+20] studied requirements that first responder trainings have to
offer for a high quality training. In a typical classroom training, a trainer presents some
situation to a trainee who assesses the situation and responds with the most appropriate
action to take. The most appropriate action is usually what the trainee believes is right.
While this form of role-playing is valuable, it is mostly based on a verbal story and lacks
real visuals or sound that occur during real incidents. Since the situation description
is presented verbally, the trainer may give away important cues that the trainee might
not have noticed in a real situation. Understanding and noticing important cues in the
environment is often called situational awareness and defined by Endsley [End95] as
perceiving all the elements in the surrounding environment and knowing the relevant
information. Without situational awareness first responders might jump to conclusions
based on a bias and endanger themselves or other civilians on site. Another essential skill
for first responders is proper communication with either team members or civilians. First
responders often find themselves in unique, stressful, difficult and dangerous situations
were communication is essential to communicate the problem and find suitable solutions.

2.2 Conversational Agents in Mixed Reality
Conversational agents can be beneficial in VR and AR applications to aid in various
training scenarios such as interpersonal skill training, including sales pitching, negotiation
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and interviewing, as well as health care trainings. These agents provide a safe opportunity
to practice skills needed for real human to human communications by simulating different
persona, including guides, mentors, competitors, teammates and patients. Existing virtual
worlds are mostly based on military simulations and computer games and their focus is
more towards a photo realistic environment than on the human aspects of agents that
inhabit the virtual environment. It is important to embed a persona into conversational
agents so they can properly engage in a conversation and convey intelligence to provide
more than just a sufficient training. Embedding intelligent human behavior into virtual
characters can provide new possibilities regarding training and learning opportunities
for trainees that currently requires complex real-live exercises, role-playing or classroom
contexts. Realistic agents need to have enough realism and intelligence to create the
illusion of human-like behavior. The agents need to respond to human users and events
around them and they need to be interpretable by users through verbal and nonverbal cues
and gestures that people usually use to communicate and understand each other [CW19].
Designing intelligent embodied conversational agents is a complex task where several
technologies such as Automatic Speech Recognition (ASR), Text to Speech (TTS), Natural
Language Processing (NLP), Artificial Intelligence (AI), deep machine learning, 3D
computer graphics and animation have to be combined to create believable agents [CW19].
Multiple factors such as appearance, behaviour and responses of an agent play an
important role in how believable and trustworthy an agent appears to a user [SW18,
WSR19, KBH+18]. Furthermore, the agent can also improve social richness and social
presence [KBH+18] and help reduce the task load in virtual trainings [KdMN+20].

Mission rehearsal exercises are important for Army personnel to gain experience in
handling peacekeeping situations. For this purpose, Traum et al. [TR02] developed a
high-end VR training application with Hollywood storytelling techniques in a VR theatre
with immersive, spatialized sound. The virtual training scenario took place in a small
village in Bosnia with buildings, vehicles and virtual agents and the user took the role
of the lieutenant. The virtual characters had support for speech interactions that were
based on a script or dependent on the users actions, variations of that script. Figure 2.2
shows an example of the peacekeeping scenario where multiple conversations are possible.
The lieutenant could talk to the sergeant, the mother or to the medic and the medic
could e.g. talk to the mother. Furthermore, some agents could also simply listen to
conversations near them, e.g. the mother could listen to the conversation between the
sergeant and the medic. To handle these various conversation possibilities, the agents
had to be smart enough to figure out who is talking to whom and know when they are
addressed. In addition, they had to carry nonverbal cues such as looking at the person
who is approaching the agent to initiate a conversation.

Bersot et al. [BGGN98] found that users often prefer to say what they want rather
than "do it" by using traditional input devices such as a mouse. They developed a
conversational agent embedded in a virtual world with support for ASR and TTS. Users
could navigate through a complex virtual environment by talking to the virtual world
and the agent behind the scene would respond or move the user. Due to limitations of
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Figure 2.2: Traum et al. [TR02] explored embodied conversational agents in an interactive
peacekeeping scenario. The image shows a sergeant, a mother and a medic in the
foreground and soldiers and bystanders in the background.

the used speech recognition framework, users had to press a button to talk and could not
speak completely fluent but had to make a short pause between every word. With this
navigation method, users were able to say, e.g. "Go in front of the house" and the agent
would move the user towards this location.

The health care domain can be very challenging, not only due to health related issues but
also due to violence and aggression from, e.g. relatives and friends of the patient, against
health care workers. VR simulations are cost effective ways to complement traditional
de-escalation trainings for health care workers worldwide. In the de-escalation trainer
developed by Moore et al. [MAB+22], the user takes the role of an emergency department
nurse and needs to de-escalate a situation where the son of a patient was distressed due
to the long waiting time. The son was represented by a conversation enabled agent that
was able to interpret voice from the user, generate an answer and give a verbal response
through Google TTS. Depending on what the user said to the agent, the agent responds
either positively or negatively which furthermore decreases or increases their level of
aggression and frustration. The scenario ended with a overview of the performance if
the user has either de-escalated the situation or the agents aggression level got too high.
Feedback to the application was positive and users liked that it was rather portable and
used an untethered HMD.

Job interviews can be very difficult to handle emotionally by some people due to being
nervous or anxious. Hartholt et al. [HFR+19] tried to tackle this issue by proposing
a framework with embodied conversational agents with support for ASR, NLP and
TTS. The framework supports room-scale VR as well as seated VR and mobile AR to
be accessible for the majority of people. With this framework, users can practice job
interview sessions with the agent as interviewer. Before the training starts, the user can
choose between a male and a female interviewer. The chosen interviewing agent will
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then ask the user common job interview questions. The framework measures eye contact,
blink rate and response delay using Magic Leap sensors. These metrics are presented at
the end of the interview to the user.

Griol et al. [GSMC19] developed enhanced conversational agents with the capability to
provide academic information and placed them into social virtual worlds such as Second
Life. Their agents were trained on a set of real and simulated dialogues and are able to
modify the dialogue strategy by detecting new answers that were not used during the
training. The results of their experiment showed, that the agents are able to fully adapt
their conversational behavior to the users interaction characteristics.

Sexual violence in colleges is a common problem which existing prevention programs
fail to address. This led Schlesener et al. [SLB+23] to develop a mobile AR game, that
aims to improve current sexual assault bystander intervention training. The training
includes a geolocated real campus and can be started from anywhere on the real campus
by opening the application on the mobile phone. A communicative agent informs users
of a specific harassment scenario while guiding them to the location where it takes place.
Through the mobile application users then see digital humans role-play as harassers and
victims. After watching the harassment scenario unfold, users are asked by the agent
to choose an intervention option. After they have chosen, users watch the consequence
of their decision and the agent explains them if their decision was good or why it was
not so good. If the decision was not the best option, users are able to choose a different
options. The game rewarded users with points to create a gamification aspect, creating a
motivation factor of getting all points. The agents used lip sync technology and were
fully animated with gestural animations such as waving and head nodding.

Previous research found that a natural appearance of virtual agents is preferred over more
simplistic versions [Unc, SWHK15, SWH18]. However, the closer an agent resembles
a real human, the more likely a user will notice small details that cause irritations,
negative emotions and distrust because it does not meet the users expectations of human
features [RHW20].

This effect is called the uncanny valley and was proposed by Mori [MMK12] and marks
a region of negative affinity towards an entity with human-like appearance on a graph
showing the relation between human likeness of an entity and the perceiver’s affinity for it.
Mori found that by changing the appearance of robots to more closely resemble a human
being also increases our affinity for them until we come to a valley, see Figure 2.3. This
phenomenon is not only limited to robots but can also appear with humans that have
physical disabilities and wear a prosthetic limb, i.e. an artificial hand. These artificial
hands are often indistinguishable from a real one, but when we touch it, we realize that it
is actually artificial and loose our sense of affinity for it, i.e. the hand becomes uncanny,
hence it is placed near the bottom of the valley in Figure 2.3. Movement further amplifies
the peaks and valleys of the graph since our affinity increases towards moving objects,
i.e. a turned off industrial robot is just a machine, but when it moves and grabs an item
like a human hand, our affinity for it starts to increase.
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While the theory of the uncanny valley may suggests, that virtual agents with a more
simplistic humanoid design are favored over hyper-realistic humanoid characters, the
study from Reinhart et al. [RHW20] contrasts this. They found that a carefully designed
realistic humanoid agent in AR increases social interaction, social presence and likability
compared to a more simplified version.

Figure 2.3: The graph is showing the hypothesized relation between the human likeness of
an entity and the perceiver’s affinity for it. The uncanny valley is the region of negative
affinity towards an entity with almost human-like appearance [MMK12].

A lot of people are interacting with intelligent virtual agents in the form voice assistants
such as Amazon Alexa and Apples Siri on a day to day basis. However, these agents
are only capable of reacting to voice commands through voice feedback and lack any
nonverbal cues such as eye contact and body movement which are important for social
interactions. Kim et al. [KBH+18] tried to overcome this issues by providing natural
social behavior and visual embodiment for virtual assistants in AR. The results of their
user study indicated that this led to an increase of the users confidence that the agent is
able to influence the real world by e.g. walking to a lamp and switch it off. It also led
to a higher confidence that the agent will respect the users privacy because the agent
left the room during the study when commanded to do so which closely matches the
behavior of real human behavior. In addition, they also found a positive effect on social
richness and social presence with the agent.

Techasarntikul et al. [TRO+19] explored two different styles of locomotion for conversa-
tional agents in a virtual guide context. An agent took on the role of a virtual guide,
who located interesting locations on a large piece of art. The agent then moved near
that location and used hand gestures to point to the location of interest. Since eye
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contact is important for a communicative relationship between the agent and the user,
the agent always faces the user and makes eye contact with a user. The guide narrative
to explain information for a specific part of the image was generated from a commercial
TTS software. In a user study, the authors compared locomotion through teleportation
and flying. The results indicated that participants preferred flying over teleportation as
it was easier to track the position of the agent.

In a mixed reality environment real humans are able to coexist with virtual agents in
the same virtually augmented physical space. Schmidt et al. [SNS19] researched such
boundary crossing agents, which are capable of changing physical properties such as object
locations and surface materials in this virtually augmented space. They used robotic
actuators to introduce physical interactions from the virtual agents and thermochromic
ink, which changes color based on temperature, for changing surface materials. The user
study was focused on perceived social and spatial presence for which they developed a
golf scenario. Participants had to interact with an agent who was capable of physical
manipulations such as hitting the golf ball and writing on a physical paper. The golf ball
was not a standard golf ball, but a robotic one that could move along a scripted path,
which simulated the interaction between the virtual agent and the golf ball. To enable
writing appear on a sheet of paper, a novel device that activated thermochromic ink on
a sheet of paper was used. The activation happened through temperature changes of
the device based on the golf scores. The possible scores were pre-defined on the paper
and mapped to a temperature. They synchronized the temperature change with the
agents animations such that it looked like the agent was really writing on the physical
paper. Quantitative results did not show any significant difference between boundary
crossing agents and virtual agents without these physical capabilities. However, the
qualitative results showed, that participants seemed to be more in favor of the physical
object manipulations since the boundary crossing agents improve realism and the user
experience.

Spatial presence, i.e. the ability to experience a sense of "being there" is an important
aspect to create an immersive virtual experience. Khenak et al. [KVB20] studied spatial
presence and related factors, including affordance, enjoyment, attention allocation and
cybersickness, in a within-subject study where users had to complete a navigation task
where they had to follow a route and avoid obstacles on the way. Their conditions for
the study included a real environment, a remote environment via a telepresence system
and a virtual simulation of a real environment. The evaluation was done through a
presence questionnaire and they also collected performance measurements regarding task
execution and environment recollection. The results did not show a significant difference
in spatial presence between the remote and the virtual condition but showed affordance
and enjoyment more in favor towards the virtual condition. The remote condition had a
higher degree of reality than the virtual condition and the number of collisions was also
lower in the remote condition. The authors also found, that the behavior of participants
in the remote conditions resembled more closely the behavior in the real environment.

Social and physical presence in VR can be experienced by all kinds of different people
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and regardless of age and gender. Felnhofer et al. [FKH+14] investigated this in an
experiment between a group of older people with an average age of 67 years and a group
of younger people with an average age of 25 years. Their scenario included a virtual
outside environment, where the participants started, including a virtual coffee shop.
Participants had to learn how to navigate outside and afterwards enter the coffee shop.
Inside of the coffee shop they had to order a drink from the waiter and interact with a
stranger. The results of their experiment did no indicate a significant difference in social
and physical presence between the older and the younger groups. However, they found
that male participants experienced a higher level of spatial presence than females which
supports past findings on gender differences regarding spatial presence.

Research on embodied conversational agents is mostly focused on the agents and ignored
the external environment, i.e. research is more focused on the believability aspect of
the conversation itself and the non-verbal communication cues such as gestures, gaze
and facial expressions. However, believable agents need to be able to also reason about
their environment, understand interaction capabilities of other participants, understand
their own goals and current state of the environment. Ijaz et al. [IBS11] labels this as
awareness believability, which can be described by the three components: environment
awareness, self-awareness and interaction-awareness. Awareness is an essential part
of conversational behaviors. In conversations we are typically aware of where we are
(environment awareness), who we are (self-awareness) and generally how the interaction
is progressing (interaction-awareness). Similar to this, agents should have up-to-date
knowledge of their surroundings and know where and what buildings and objects are
around them (environment awareness). They should be able to reflect on their own
state in the virtual world, explain reasons for performing certain actions or using certain
objects and have awareness of their own goals and plans (self-awareness). Finally, an
agent must understand its own opportunities when interacting with other participants in
the virtual world and predict possible actions others may perform (interaction-awareness).
To implement awareness believability, Ijaz et al. [IBS11] proposed two levels of environment
annotations: object annotation (annotation of object in the environment with names,
type and descriptions) and regulation annotations (annotation of social norms, interaction
protocols, roles and other kinds of regulations for interactions). When a user interacts
with a virtual agent in the virtual world, the agents are using a communication interface
connected to the two layers to generate intelligent responses, see Figure 2.4. When an
agent is asked about the environment, the object annotation layer is used to generate
object information. Whereas, for questions about the agent’s interactions and self-
awareness such as goals or plans, the regulation annotation layer is used. This layered
approach was primarily used as a generic solution, so some features could be used in a
new environment without modifying the core functionality. The annotation layers also
allow for dynamic environments, where objects, agents and buildings could be changed,
removed or inserted at any time. The approach was evaluated in a user study which
showed, that the perception of agents with this awareness approach are considered more
as believable.
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Figure 2.4: Ijaz et al. [IBS11] used a layered annotation architecture to achieve believability
awareness of virtual agents where objects and regulations are described by various
attributes.

Wang et al. [WSR19] found that users are more likely to gaze at human-like agents than
non-human agents and that users are gazing at an agent who is speaking to them or
while they are speaking to the agent. They also found that a user would wait a short
time for a response from the agent before looking away. Their tests included agents of
different appearance such as non-human, voice only and embodied with voice. The tests
were done in AR where users preferred embodied miniature human-like agents to full
size embodied human-like agents due to a reduced feeling of uncanniness towards the
miniature version.

Additionally to conversational embodiment, Kangsoo et al. [KBH+18] found that users
perceive an agent more believable when it also has natural social behaviors during
interaction. These behaviours create confidence in the agents awareness of events that
happen inside the world. Conversations with these agents are also treated more like a
real human to human conversation [BC05, KBH+18].

Schrammel et at. [SGST07] conducted experiments to research if an agent’s gaze can
guide the user’s attention towards designated locations. While talking, the agent would
look at certain locations which are mentioned in speech. This, however, had a negative
impact as users seemed to pay less attention to the agents words when eye contact was
broken. Since eye contact is often broken in real world human to human conversations,
this may also imply that users do not see the agent as human like as expected.

Finding solutions for complicated problems can be more effective in a group. However,
collaboration is not an easy task as it requires proper communication between group
members to be more effective than finding a solution alone. Kangsoo et al. [KdMN+20]
investigated the effects of conversational embodied virtual agents on collaborative decision
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making. They created a desert survival task with three conditions where participants
had to perform the task alone, work with a disembodied voice assistant and work with
a conversational embodied agent. The voice assistant and the agent used pre-recorded
audio for all the answers they were able to give. Using lip sync technology, the agent also
had the lips synchronized to the spoken audio for a more realistic appeal. The results
of a within-subject study showed a higher task performance for the conditions with the
disembodied assistant and the conversational embodied agent compared to working alone.
Furthermore, the agent had a significantly lower reported task load than the disembodied
voice assistant. Participants also experienced a higher level of social presence with the
embodied agent, supporting previous research findings that embodied agents help to
increase immersion. While the pre-recorded audio was fine for the small domain of the
authors experiment, intelligent virtual agents would need a learning approach to be able
to understand and respond to participants in a more dynamic way.

2.3 Chatbots
Research and experiments have shown, that AI chatbots embodied into virtual humanoid
bodies can have a major impact on how virtual agents are perceived by users [SW18,
WSR19, KBH+18]. These conversational systems need to process some input from the
user and create an appropriate response to be believable. Chatbots are usually constructed
by using retrieval-based models or generative models. Bots using a retrieval-based model
are able to respond to answers with correct grammar and spelling if they are in the
dataset that was used for the training. In contrast, bots using a generative model are able
to answer questions outside of the training dataset but these answers may contain spelling
or syntax errors. The training data of the bot determines the domain, a chatbot is
operating in: closed domain or open domain. Bots operating in a closed domain are only
able to answer questions in that specific domain, requiring typically a smaller training
dataset. Bots operating in an open domain are able to answer unrestricted questions,
therefore a very large amount of training data is needed to support this unrestricted
knowledge. There are various ways to build the different types of chatbots but each
needs to be able to handle classification and determining and extracting the intent that
a user expresses. Smart chatbots are also able to understand acronyms and misspelled
words [LLK20].

Serban et al. [SSG+17] developed a chatbot, called MILABOT, which allowed interaction
in both speech and text form. The chatbot used a deep reinforcement learning approach
which is a combination of multiple algorithms and neural networks. Their approach did
well in the Amazon Alexa price competition and they hypothesize that the bot could
perform better with more training since every component of the chatbot consists of a
trainable machine learning model. While they developed their own deep learning models
for natural language retrieval and generation, multiple researchers lean towards retraining
existing dialogue systems using Rasa, see Section 2.4.

Lam et al. [LLK20] created a closed domain chatbot with Rasa and trained its knowledge
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domain to the College of Information and Communication Technology of Can Tho
University in Vietnam. Their chatbot did quite well for questions belonging to the
trained intent but they found, that the answers were sometimes unnatural and the chatbot
could not answer question outside of the trained dataset. They used a limited training
data set and suggest that more data for training is needed to help the system answer
questions outside of the training dataset. Jiao [Jia20] compared Rasa Natural Language
Understanding (NLU) with a Neural Network (NN) system using Tensorflow [Ten] and
found that Rasa NLU has higher accuracy that the NN model.

Baccinellli et al. [BvdBR+22] created a virtual health coach called Perfect Fit which is
also build on Rasa. Their chatbot is trained in the health domain and they configured
Rasa to get data from a database which stores user information and can be updated
with new user information without re-training the model used for data extraction.
Similar to Windiatmoko et al. [WHR20] with their Facebook chatbot using Rasa and
Nenciu [NCD20] with their conversational agent for the Romanian language they show
that Rasa has great accuracy when enough data for training is available. Linders et
al. [LVA+22] used Rasa for dialogue management in their health care domain agent since
Rasa is an often used open source conversational AI.

2.4 Rasa

Previous research showed, that Rasa is often a popular choice among researchers from
multiple domains [BvdBR+22, LVA+22, Jia20, WHR20, NCD20] to enable a believable
conversational system. Rasa provides easy to use open source tools for building conversa-
tional systems. It consists of the two modules Rasa Natural Language Understanding
(NLU) and the dialogue management part Rasa Core. The NLU module is responsible
for understanding what a user wants by analyzing a message from the user. This process
usually splits the text into tokens based on some rules and annotates them using a model
trained for the domain of the system. Rasa Core manages the state and history of the
conversation so that the system always knows, how the conversation progressed. The
basic architecture of Rasa can be seen in Figure 2.5. When Rasa receives a message
from the user, it is passed to an Interpreter for the extraction of intent, entity and other
structured information. The dialogue state is saved in the tracker which is the only
stateful component in the system and there is only one tracker per conversation session.
The tracker stores slots and a log of events that led to the state and occurred during
a conversation. The state of the conversation can be reconstructed by replaying all of
the saved events inside the tracker. The current state of the conversation is sent to the
policy, which chooses the next action based on that state. The chosen action is logged by
the tracker and executed. The executed action performs some user defined tasks and
may send back a message to the user [BFPN17].
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Figure 2.5: 1. The received message from the user is passed to an Interpreter for intent
and entity extraction. 2. The state of the conversation is stored inside the tracker. 3.
The policy receives the current state and 4. chooses the next action to take. 5. The
tracker logs the chosen action. 6. The chosen action is executed and may send back a
message to the user.[BFPN17]

2.5 NVIDIA Riva
Different solutions were used in the past to add speech input and/or output to conversation
enabled agents. In our research, we are interested in a natural user-agent conversation
and therefore see the need for real-time speech recognition and text-to-speech technologies.
In 2022, NVIDIA introduced a novel GPU-accelerated Software Development Kit (SDK)
called Riva [Rivb] for building multilingual speech applications with real-time performance
and support for Automatic Speech Recognition (ASR) and Text to Speech (TTS) and
neural machine translation. The SDK can be deployed in clouds, data centers or on
embedded devices and streamlines the end-to-end process of developing speech AI services
with real-time performance. Riva achieves a latency of under 300 ms to interact with users
naturally and provide a human-like interaction. It includes pretrained speech models,
trained and evaluated on wide variety of real-world datasets including telecommunications
and healthcare vocabulary, and tools to customize and build new models for specific use
cases. ASR, also known as speech-to-text, speech recognition or voice recognition is the
process of converting a raw audio signal of spoken content into text. In contrast, TTS,
also known as speech synthesis, takes some text and converts it to an audio signal, i.e.
it generates human-like speech from plain text. Riva services are exposed through an
Application Programming Interface (API) operations which are accessible via Remote
Procedure Call (RPC) [RPC] endpoints to hide the complexity of the services. The RPC
API is exposed to client applications through a API server running inside a Docker [Doc]
container. Figure 2.6 shows the Docker encapsulated Riva services on the left and client
applications on the right. The services are responsible for processing all the speech
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incoming and outgoing data [Riva].

Figure 2.6: Riva services are exposed to client applications through RPC calls and are
responsible for processing all of the incoming and outgoing data. ASR converts speech
audio signal into text and TTS turns text into a verbal, audio form. [Riva]
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CHAPTER 3
Methodology

The main goal of this thesis is to explore agents embodied in a 3D humanoid body in
Virtual Reality (VR) with speech capabilities that know about their surrounding and are
able to have a natural conversation with a human user. There are several challenges to
achieve this goal. First we need to define agents with certain properties and knowledge
acquiring capabilities, so that they can observe their own state and their surroundings
including other agents, objects, buildings, incidents and human participants. The agents
then need to be able to process spoken content coming from the user and respond
accordingly. To process and analyze spoken content, we need to create a transcript out
of it, which is where we use use the Automatic Speech Recognition (ASR) service from
NVIDIA Riva. The created transcript is sent to Rasa for Natural Language Processing
(NLP) which uses scene specific information from our Unity application to generate a
suitable response for the user. This response is synthesized into speech again with the
Text to Speech (TTS) service from NVIDIA Riva and output through the speakers to the
user. In this chapter we are first giving an overview of the speech pipeline and how the
Unity application, Riva and Rasa communicate with each other. The remainder of this
chapter explains how our scene is represented and stored to enable situation awareness
followed by how we use Riva and how we configured and trained a suitable model with
Rasa.

3.1 Speech Pipeline
The voice of the user is recorded through the default microphone input and audio is played
back through the default audio output configured on the computer. For convenience
reasons and to make the whole setup easy for the users, we are using the microphone
and the speakers of the HTC Vive Pro [HTC] Head Mounted Display (HMD), therefore
the user only needs to wear the HMD and no external headset or microphone. Since the
microphone of the HMD is not located directly in front of the mouth, it is by default
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more sensitive than other microphones and we found that it is easy to record unwanted
noise in the background even when the user is not speaking. This unwanted background
noise, combined with the static noise that nearly every microphone has, would also
be used for speech recognition if we directly route the incoming voice to Riva. We
choose to route the incoming audio through Voicemeeter Banana [Voi] and add a noise
gate to suppress the unwanted noise when nobody is speaking. Therefore in the Unity
application, we are able to sent any input that passed through the noise gate to Riva and
do not need to filter out noise by ourselves. Though Riva would be able to handle and
ignore some amount of noise, pre-filtering the microphone input also reduces the number
of Application Programming Interface (API) calls to Riva and therefore also reduces
Graphics Processing Unit (GPU) load since the GPU is not tasked with analyzing and
transcribing noise.

Figure 3.1 shows the pipeline for one agent, e.g. in the real application, the pipeline is
executed for every agent that received voice input from the user. The incoming voice input
in Figure 3.1 to the Unity block is therefore already the filtered input that passed through
the noise gate, which is packed into a bytestream and send via Remote Procedure Call
(RPC) [RPC] to the Riva ASR service for processing. Riva will send back a transcript
of the received audio data which the Unity application will send to Rasa for language
processing. Rasa will analyze the transcript, extract relevant data and determine an
intent. Depending on the determined intent, it may need further information from the
Unity application and make a HTTP request to get it from the webservice on the Unity
side. The webservice handles the request and queries a SQLite [SQL] database, that
stores the information, and sends the data in json format back to Rasa. With the received
information, Rasa can create a suitable response and send the response to the Unity
application where it is queued for speech synthesis. The response queue is checked every
frame and if it contains a transcript for speech synthesis, the transcript is de-queued
and send via RPC call to the Riva TTS service. The audio data returned from Riva is
queued into another queue for playback. Audio data is de-queued every frame except if
there is already audio playing on the audio source of the agent, i.e. the agent is currently
speaking. This insures that the agent will respond to multiple quick questions in order
and the agent will not say two or more responses at the same time. The audio, i.e. the
voice of the agents will be played back through the default speakers of the computer, e.g.
in our case the integrated speakers of the HTC Vive Pro.

3.2 Unity

Rescue training scenarios can have multiple different events, incidents, objects and agents
with various attributes that take part in the scenario. One challenge is to design the
scene in a way to have a structured representation of all the important objects and events,
so that our agents can talk about them. We also want to keep scene creation flexible
and therefore decided on a component based system similar to the one used in Unity,
where objects and agents are composed of different components to give them attributes,
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Figure 3.1: Overview of the speech pipeline. The Unity application receives voice input
through the microphone and uses the Riva ASR service to convert it into text. The
text is send to Rasa for language processing, which will callback the Unity application
to receive scene specific information. The received information about the scene is used
to create a proper response to the user and send back to the Unity application which
will send the response to the Riva TTS service for text to audio conversion. The audio
response is played back through an AudioSource on the responding agent.

capabilities or personality. The goal of this is to make it easy to compose a variety of
objects in the Unity editor to create multiple scenarios without changing any code.

The virtual world is divided into multiple parts using invisible bounding boxes which
represent named areas or locations. Hence the enclosing bounding box for a factory
building has the name of the factory. With the location name, we also define a description
where in the scene the location is located so agents can help users find a location. Just
like in the real world, all objects and agents in the scene must be inside a certain location.
We use this location division to give agents limited knowledge, so by default, they do
not know about the whole scene. By default agents only knows about their enclosing
location but we can add additional locations and therefore knowledge about locations
in the Unity editor. Defining different locations throughout the scene enables questions
such as "What happened in the factory?", "Where is the car?" or "How many people are
injured inside the hotel?".

We define incidents as an object that has a name, e.g. fire, a description how it happened
and a description how to resolve the incident, e.g. use a fire extinguisher. This definition
enables questions such as "How did the fire start?" or "What can I do against the fire?".
Incidents can also affect agents, such as when an agent is locked away, e.g. inside a room.

All of the incidents can be resolved by using a tool such as a fire extinguisher or an axe.

27



3. Methodology

We give these tools a name and a description what the tool can be used for. Resolving
an incident happens by either touching the incident with the tool, e.g. touching a closed
door with an axe, or by pointing a particle effect towards the incident, e.g. pointing the
water beam of a fire extinguisher towards the flames.

A simple agent in our scene is defined by the attributes first name, last name, age and
gender and can be enhanced by adding more components in the Unity editor. The gender
also defines which voice the agent will use for speech synthesis. Since NVIDIA, at the
time of writing this thesis, only provides two voices: one male and one female voice, for
Riva, our gender selection is limited to these two genders. We enrich the agents visually
by giving them a humanoid body from the Rocketbox Avatar Library [GFOP+20, roc]
created by Microsoft. The library provides realistic looking, fully rigged avatars optimized
for VR. Despite the realistic look of the Rocketbox avatars, the meshes are relatively
low-poly, making them perfect for real-time embodiment in VR.

The avatars also come with a couple of animations where we use one of the breathing idle
animations when no agent-user interaction happens, the turning animations so that the
agents face the user when the user gets close and one of the listening animations when
the user is talking with the agent. While the animations are rather simple and not very
complex, we found these animations gave the agents a more realistic looking appearance
and made them more human. An agent starts listening to the users voice as soon as the
user gets within a range of about 3 meters and looks at the agent. When this condition
is satisfied, the agent automatically starts the listening animation and stops it, as soon
as the user leaves the range of about 3 meters. As long as the user is within the range
and looked at the agent once, the agent will listen, e.g. it is not required to always look
straight at the agent.

The agents gain speech and Artificial Intelligence (AI) capabilities, through a separate
component that communicates with Riva and Rasa. Each agent also receives a Unity
AudioSource, which will play back the responses to the user. We also enable 3D spatial
audio on these AudioSources so that the user perceives the audio output dependent on
the location and head rotation differently. Since the Rocketbox avatars are fully rigged,
we integrated Oculus Lipsync [Ocu] for Unity, which analyzes the synthesized audio from
the TTS service and creates lip movements that correspond to the particular spoken
sound during playback.

Agents can have zero or multiple conditions that represent the agents physical or mental
state, e.g. head ache or ankle pain. We define a condition as a description, a cause
describing how it happened, if the condition disables movement of the agent and which
body part is affected. Conditions are healed with the first aid kit, that can be found in
the scene. For ease of use, the user just has to touch the agent with the first aid kit to
heal all of the conditions. Our Unity application needs a modern NVIDIA GPU with
support for Riva and about 1GB of main memory during runtime.
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3.2.1 Situation-Awareness
Enabling situation awareness for the agents means we need a way to store and access the
state of all the components defined in the scene in real-time. We use a SQLite [SQL]
database as it is used by several web browsers and mobile phones, serverless and designed
to be light-weight and fast. At application startup, all the data from our defined objects
(agents, conditions, locations, etc.) in the Unity scene are collected and written into the
database. Every object also receives a unique id, that uniquely identifies it and can be used
by Rasa to fetch, e.g. conditions for an agent. Figure 3.2 shows the Entity-Relationship
diagram of our database. Storing the data inside a database greatly simplifies accessing
scene specific information as, e.g. getting conditions for an agent is a simple SELECT
SQL-statement instead of a scene or game object traversal. This also provides some
flexibility in where the data is stored as the database can be on the same computer as
the application or on different computer. Since all our services are running on the same
computer for the experiment, we store the database file with the Unity application. The
database is exposed to Rasa through a HTTP server that handles incoming requests and
returns the result of the database query in json format.

3.3 NVIDIA Riva
NVIDIA Riva provides GPU accelerated services for speech recognition and speech
synthesis. We deploy these services as a docker image and interface with them through
RPC [RPC] calls. The configuration parameters are unchanged to the ones from the
riva_quickstart package from Riva release 2.8.1, as we found they provided sufficient
performance for our case. Hence, for speech recognition we are using the Conformer-
CTC [GQC+20] model with voice activity detection algorithms and for speech synthesis,
we use the out-of-the-box FastPitch [RRT+19] English language female and male voice
models. The riva service needs about 12GB of GPU memory during runtime. The
average response time of the agents is around 32ms. This time was measured from the
start of the audio recording until the response audio playback is started.

3.3.1 Automatic Speech Recognition (ASR)
There are two modes for sending audio to the Riva ASR service, offline and streaming. In
offline mode, the full audio signal is first captured from the microphone and the send to
Riva for processing. Depending on the length of the full audio clip, this could introduce
high latency, as the audio processing only begins after the full audio signal has been
captured and received by Riva. In streaming mode, small audio chunks are send to
Riva and processing starts as soon as the chunks arrive on the Riva side. We are using
streaming mode and send audio chunks every frame after encoding the captured segment
into a bytestream to achieve low-latency. Riva expects uncompressed 16-bit signed little
endian samples as a bytestream, e.g. we need to convert the float samples which we get
from Unity to a bytestream. Riva will respond with a partial transcript of the received
audio signal as soon as an intermediate transcript is available. The response from Riva
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Figure 3.2: Entity-Relationship diagram for saving scene specific data in a structured
way. Agents have a gender, can have a condition, knowledge about certain locations and
be affected by incidents. Conditions are related to a bodypart and have a description,
a cause and an indicator if the agent is able to move the bodypart with the condition.
Incidents have a name, a description of what happened, a description on how to resolve
the incident and must be in a location. Player tools have a name, a description for what
the tool can be used and must be in a location. Locations have a name and a description
of where the location is located.

contains the transcript and a flag, indicating if the transcript is final or not. As long
as we are not receiving the final transcript, the whole transcript could change due to
the model deciding to change words after receiving more audio signals from the spoken
sentence. Since we need the full sentence to make intent recognition easier for Rasa, we
are not using the partial transcripts and wait for the final one. This unfortunately adds
a small amount of latency but avoids getting wrong answers from Rasa and conveying
them to the user.

3.3.2 Text to Speech (TTS)
We send the full transcript of the response to the Riva TTS server deployed as a docker
container. Similar to ASR, the audio data can either be received for the whole transcript
once or in small chunks as it becomes available. While the streaming method would
introduce less latency, we choose to wait for the whole transcript to be converted as
latency was not an issue and it avoids having the agents potentially speak chopped of
words or sentences. The TTS service returns the audio samples as a bytestream which
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we need to convert back to float samples for usage in Unity’s audio source. Similar to
ASR, the returned audio data has a sample rate of 16Khz and a bit depth of 16bit, e.g.
we need to pack 2 bytes from the bytestream into one float sample until every byte of the
bytestream was used. The resulting array of float samples can then be used as an input
to the audio source of an agent. The audio source on each agent is also configured to
support spatial audio, so that the user perceives the talking agents with changing volume
on both ears, dependent on distance and rotation to the agent.

3.4 Rasa
Rasa provides tools for dialogue management, a Natural Language Understanding (NLU)
part that detects intents and extracts entities from user utterances and a action server
that provides actions that the NLU part can use to handle detected intents. We deploy
all parts inside a single docker [Doc] container with open ports for the communication
between Rasa and the Unity application. Our application will submit user utterances
to Rasa as a HTTP POST request and Rasa will fetch scene specific information as a
HTTP GET request. In this section, we give insights into how our training data, stories
and actions are defined and how the pipeline for our model is configured. Our Rasa
configuration needs about 1.1GB of main memory during runtime.

3.4.1 Training Data
The training data for the NLU pipeline consists of example utterances that a user would
say to the agents. These example utterances are categorized by intents and also contain
example entities that the model should extract from these utterances. Intents relate to
which task a user wants the agent to perform and entities are pieces of information that
are needed to accomplish this task. For example, if the user input to the model is the
question "What happened in the factory?", we want the model to detect it as the intent
what_happened with the location entity set to factory. We also include synonyms for
certain entities in the training utterances so that the model learns to map multiple words
to one common representation, e.g. we want "you", "your" and "yourself" to be always
mapped to "self" for the subject entity because they are referring to the same meaning
and that is we want to know something about the agent we are having a conversation
with. Defining these synonym mappings makes it easier to know which data is requested
for which entity. Our training data set contains 492 example sentences such as "What
happened here?", "Where is the fire?" and "How can I help you?" for 27 intents with 7
entities that can be extracted.

3.4.2 Actions
After receiving a user utterance, the model will predict an action that will be executed.
Actions can be simple responses which sends text to the user or custom actions that can
run any python code. We are using simple responses as an answer to, e.g. "Hello", and
use custom actions any time, scene specific information is requested such as conditions of
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agents or incidents at locations. Requesting scene specific information is done through a
HTTP Get request with parameters that define the type of the request to the webservice of
the Unity application. The webservice will parse the sent parameters, query the database
and return the request data in json format. Each custom action is then responsible
for parsing the json data and building a response out it. For building the response we
have defined 33 template response messages such as "Great, thank you for healing my
bodypart", "I have description at my bodypart" and "My name is firstname lastName".
Our custom actions replace the identifier inside the curly braces with the data received
from the Unity application. We defined multiple template messages for each intent to
have some variety in the answers. Rasa will randomly select one of the template messages
during runtime so agents may, e.g. respond to the utterance "I have extinguished the
fire" with "Great, thank you", "Good job" or "Thank you". In total, we have 17 custom
actions that request and build responses for the agents.

3.4.3 Stories
Stories are example conversation representations between a user and an agent that are
needed for training the dialogue management part of the model so it is able to either
follow an example story or generalize to unseen conversation paths. Stories are a list
of steps where user inputs are expressed as intents and the responses are expressed as
actions. If an entity is extracted for an intent, it should also be listed in the story because
the model learns to predict the next action based on the combination of the intent and
the entities. In the stories we also need to make sure that we have converging paths
dependent on entities that are set. For example, every story path where a subject entity
is extracted during intent recognition we need to determine if the agent actually knows
who is meant. Consider: "What happened to you?", you is recognized as a subject and
mapped to self. Every agent can answer questions about itself, therefore the agent will
not have to ask who is meant by you. Now consider "What happened to him?": If this
is the first question a user asks an agent, the agent has no idea who the user is talking
about, so a story which asked for the agent the user is talking about must exist. If there
was already some conversation between the user and the agent and they already talked
about another agent, therefore it is defined who is meant by him, another story that does
not ask "Who are you talking about?" must exist. We defined 45 different stories with
various conversation paths.

3.4.4 Pipeline
When Rasa tries to identify intent and entities in a user utterance, the data flows through
a pipeline which is performing a sequence of operations. The basic steps of a pipeline
are tokenization, featurization and training or inference. Tokenization extracts a list
of words (tokens) from the utterance, e.g. "What happened here" is extracted to the
tokens "What", "happened" and "here". Featurization transforms words into meaningful
numbers that can be used by a training algorithm. Training is where the algorithm
learns from the derived user utterance and inference is when the trained model is used to
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make predictions for any user utterance. When a trained model is used, a user utterance
follows the same path as during training, e.g. utterances are tokenized, features extracted
and used to predict intent and entities. Figure 3.3 shows our pipeline configuration for
Rasa which will now be described.

The WhitespaceTokenizer separates the words by white spaces and the CountVectorsFea-
turizer is configured to recognize combinations of letters in a word so even if there are a
few miss spellings in the text after ASR, the model can still predict the correct intent.
The first CountVectorFeaturizer creates a bag-of-words representation of user utterances,
intents and responses. The second looks at sub-word sequences of characters.

The DIETClassifier receives sparse features from the CountVectorsFeaturizers, where
sparse means that all values in a vector are 0 except for one which is 1. During training,
boundaries between groups of data points are learned so every utterance in the training
data is represented in a vector space. The position is calculated from the features and
the algorithm must learn where the separation between all groups of utterances (intents)
is. The model should also be able to generalize, meaning it should apply what it learned
from the training data to unseen user utterances. We choose 200 epochs since our training
dataset is not that big and using more increased the time to train and created overfitting
where it did perform worse on unseen data. use_masked_transformer_layers helps the
classifier to obtain additional domain knowledge by adding context to embeddings which
helps to differentiate subtle nuances between intents. constrain_similarities applies a
sigmoid cross entropy loss over all similar terms which helps in better generalization of
the model to user utterances.

During training, the DIETClassifier knows from the provided training data which tokens
of the training utterances are entities. At inference time, it will go through all tokens
of an utterance and evaluate if a token belongs to an entity. If there are two or more
neighboring tokens that belong to the same entity, the token sequence is tagged as the
entity. To evaluate if a token belongs to an entity, the algorithm looks at the features of
the token being evaluated and the tokens before and after the current evaluated token:
e.g. "What happened to your head" where head is a bodypart entity. If the current
evaluated token is head, the token before is your and there is no token after. The model
learns that every token following your has a likelihood of being a bodypart entity.

LexicalSyntacticFeaturizer creates features for entity extraction by moving a sliding
window over every token of the user utterance. We use default configuration which
defines features for the token before, the current token and the token after. These
features are used to check if, i.e. a token is at the beginning or end of a sentence, if the
token is lower or upper case or if the token is a title or contains just digits.

The EntitySynonymMapper will map values of detected entities to predefined synonyms
if the mapping is defined in the training data, e.g. we have defined to map the subject
entities you, your, yourself to self so that our custom actions only need to check for the
word self in the subject entity when they want to know if they are processing information
on the asked agent or someone else.
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ResponseSelector follows a similar architecture as the DIETClassifier and is used to
directly predict a response from a set of candidate responses to handle single-turn
interactions better.

FallbackClassifier classifies an utterance with the intent nlu_fallback if the NLU was
not able to classify an intent with a confidence greater or equal to the defined threshold
of the classifier. We also define the ambiguity_threshold so that the FallbackClassifier
will also predict nlu_fallback if the confidence score difference between the two highest
ranked intents is smaller that the threshold of 0.1.

Figure 3.3: Rasa pipeline

3.4.5 Policies

At each step in a conversation between the user and an agent, the conversational model
will utilize policies to decide which actions will be chosen next. Figure 3.4 shows our
policy configuration. Every turn, each defined policy will predict the next action with
a certain confidence level. Policies have a default priority, in case two or more policies
predict an action with equal confidence. In our case, RulePolicy has a higher priority
than MemoizationPolicy which has a higher priority than TEDPolicy.

The MemoizationPolicy is able to remember stories from the training data and performs
checks if a conversation matches one of them. If a story matches, it predicts the next
action from the matching story. E.g. The user has asked agent A for the state of another
agent and agent A asked who the user is talking about. If the user answers with the
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name of an agent, the policy is able to predict the action that gets the state for that
agent.

Transformer Embedding Dialogue Policy (TEDPolicy) predicts actions and recognizes
entities. We configure the epochs to be 200 where one epoch is equal to one forward
and on backward pass of all the training examples. We found, that more epochs did
not improve performance and only made training slower and a lower number of epochs
resulted in worse performance. With the parameter max_history we control the number
of dialogue history used by the model to decide which action is chosen next. We limited
the history to 5 as we do not have very long dialogues with each agent where the history
is important for enough. A higher history count also did not improve action prediction
since we defined short stories for every possible dialogue we could think of. Similar to
the DIETClassifier, constrain_similarities helps with model generalization to real world
user utterances.

RulePolicy handles parts of a conversation that follow a fixed pattern and makes predic-
tions based on rules in the training data. We only define one rule (Figure 3.4) which is for
the fallback if a user says unexpected messages, leading to unknown conversation parts.
TEDPolicy is optimized to handle unknown paths but predicts the actions with low NLU
confidence. If this confidence is lower than the core_fallback_threshold, a fallback action
is predicted. We found that a threshold of 0.3 was suitable for our model. The fallback
action is defined to return a default answer such as "I did not understand that, could
you please rephrase?" to inform the user that an agent did not understand the utterance
and prompting the user to try again with a rephrased sentence. Similar to the template
messages in Subsection 3.4.2, we defined multiple of these messages to have some variety
in the response from the agents.

Figure 3.4: Rasa policies

3.4.6 Limitations
The training data consists mainly of sentences from the authors knowledge and research
on how first responders would respond and ask questions which is a limited representation
of what real first responders would ask. Since there is also a near unlimited variety in
how different users would ask questions, the model will have some difficulty to predict the
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right intent for some users and ask the user to rephrase their sentence. The responses to
utterances are either pre-made or template sentences where Rasa just fills in the received
information from Unity. We tried to give the agent a small variety of pre-made sentences
to every utterance, e.g. the bot will randomly select between "Hey", "Hi", and "Hello" to
an utterance of "Hello" or "Hi". We expect this to feel more natural when not every agent
is responding with the exact same message. An example of a template response is, e.g. "I
have description at my bodypart", where Rasa will fill in the variables in the curly braces
with the information received from Unity. We tried to formulate the description in Unity
so that it fits every template response that we have, but we do recognize that this is not
the optimal solution for bigger scenarios. As a future work, we think connecting Rasa to
some kind of Natural Language Generation (NLG) service to create a natural sounding
answer with the given information would enhance immersion.
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CHAPTER 4
Training Scenario

The purpose of the study is to explore training and task solving guidance in Virtual
Reality (VR) through virtual agents with different interaction methods. Throughout the
study the user will wear a Head Mounted Display (HMD) and traverse a virtual world
using teleportation with controllers and solve several tasks. We want to compare our
speech enabled agent interaction method with a static spoken text interaction, where
the agent just tells the user what is happening in the environment. In this chapter we
describe the virtual environment that a user will traverse during the study, the mechanics,
interactions and the tasks to solve. We are also explaining how the two different agent
interaction modes work.

4.1 Virtual Environment
The virtual environment was created by the authors in the Unity game engine, using assets
from the Unity Asset Store and the Quixel megascans [Qui] library. Our requirement for
the scene was, that the user cannot immediately see all the agents and incidents, but
has some space to navigate and explore using the agents as a travel guide, e.g. since the
agents are aware of their location and surroundings, they know the answer to questions
such as "Where is the first aid kit?", "What can I do about the fire?" and "How can I help
you?". Figure 4.1 shows an overview of our created environment. Agents are marked
with a person symbol, which is purple if they are injured or green if they are healthy.
Incidents are marked with a red symbol. There is a locked car door, chemicals, fire and a
locked room door. The yellow keys indicate locked doors to an empty room. The blue
symbols mark the tools first aid kit, tongs, sand bag, fire extinguisher and axe, which
are needed to resolve the incidents and heal the agents. The user is represented by the
orange glasses at the top and starts at the beginning of a one-way street, surrounded by
large buildings. To prevent the user from leaving the environment, the street is blocked
by an ambulance at the top. The building on the left side, where the roof is visible in the
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top-down view, is not accessible to the user. The big building in the middle represents a
factory and is accessible through an open entrance at the bottom where the two agents
are located. The size of the virtual environment is 62x54 meters with a walkable area of
approximately 1688m2.

Figure 4.1: An overview of the virtual environment with symbols marking starting
position, tools, incidents and agents. The user starts at the position of the orange glasses
symbol at the top. Agents are marked with a person symbol, which is purple if they are
injured or green if they are healthy. Incidents are marked with a red symbol. There is a
locked car door, chemicals, fire and a locked room door. The yellow keys indicate locked
doors to an empty room. The blue symbols mark the tools first aid kit, tongs, sand bag,
fire extinguisher and axe, which are needed to resolve the incidents and heal the agents.

Figure 4.2 shows different views from the street. Figure 4.2a shows the view from the
top left corner with the user starting location and the ambulance and the first aid kit on
the left and the street down to the factory entrance. On the street are two agents and a
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(a) View of the street down to the factory.
On the left is an ambulance and on the right
are two agents and a car cash.

(b) View of the factory entrance with the car
crash to the left and the street to the hotel
on the right.

(c) View of the street leading to the hotel on
the right. To the left is the factory building.

(d) View of the area in front of the hotel with
the entrance on the left and an agent.

Figure 4.2: Figure 4.2a shows two agents, a car crash and the street to the factory
entrance. Figure 4.2b shows the car crash on the left and the factory building with the
entrance in the middle. Figure 4.2c shows the street going along to the hotel. Figure 4.2d
shows the area in front of the hotel, reachable through the street on the right.

smoking car that crashed into the factory. Inside of the car is an injured agent and near
the car door are the tongs to cut open the car doors.

Figure 4.2b shows the view from the bottom left corner towards the factory in Figure 4.1.
On the left is the car and near the right side are two agents with the factory entrance.
The user needs to walk around a few corners to see what is actually happening inside the
factory. The factory contains one injured agent and chemical waste from the barrels that
fell due to the car crash.

Figure 4.3 shows a view from a corner inside the factory with the agent, the chemicals
and the sand bag to resolve the chemical issue. Figure 4.2c shows the view from the last
corner of the street leading towards a small area with an injured agent. Figure 4.2d shows
the small area with the agent from the opposite side. On the left side of Figure 4.2d is
the entrance to the second accessible building, a hotel. Figure 4.4 shows view from inside
of the hotel. Walking from the entrance into the hotel, there is a room on the left which
contains a fire hazard and the fire extinguisher to extinguish the flames, see Figure 4.4a.
On the right side of Figure 4.4a is the axe to destroy wooden doors and a entrance into a
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Figure 4.3: View inside the factory, showing an agent, the sand bag and chemical waste
on the ground.

small maze with 5 closed doors, where the user has to find the room where an injured
agent is locked away. Figure 4.4b shows the beginning of the maze, Figure 4.4c, the
corridor leading to the locked door with the agent behind and Figure 4.4d an empty
room. We choose to put the tools needed to resolve an incident near the actual incident,
so users do not need to search for them. Consider a real rescue scenario, where first
responders probably have the tools needed with them.

4.2 Locomotion
Locomotion is an important part of a VR application and involves multiple considerations
such as realistic movement and motion sickness. Since we have access to the Cyberith
Virtualizer [vir], a device where the user is strapped into a machine that allows movement
in all directions by sliding the feet over sensors in the ground plate of the device, we
considered using it for traversing our scene. Due to real feet movement it has a more
realistic walking feel than, e.g. teleportation and users are not as prone to motion sickness.
However, after having a few test runs with people and getting early feedback, we found
that people who are not familiar with the device have difficulties using it. This is due to
the need of leaning into the direction they want to go which quickly becomes exhausting.
We want to measure the time it takes a user to complete the rescue scenario and compare
these times between the two groups with different agent interaction methods. With the
Virtualizer we are measuring how familiar the user is with the Virtualizer instead of
how long it takes to complete the scenario. Therefore, we decided to use the classic
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4.3. Object Interaction

(a) View from the hotel entrance on an axe
and the community room with a fire extin-
guisher and a fire incident.

(b) View from the entrance of the hotel to
the corridor inside the hotel leading to the
rooms.

(c) View from the corridor inside of the hotel.
The exit is to the left.

(d) View from a room inside of the hotel with
a table and a chair towards the corridor.

Figure 4.4: Various views from the inside of the hotel. Figure 4.4a shows a community
room with a fire incident. Figure 4.4b and Figure 4.4c show a corridor leading to the
rooms of the hotel and Figure 4.4d shows one of the rooms.

teleportation method, since it is easy to learn and also not as prone to motion sickness.
The teleportation is initiated by pressing down the Trigger Button on the back side of
the left hand controller. While pressing the button, a beam shoots out of the controller
in an arc and ends in a ball, see Figure 4.5b. Dependent on the area or surface, the ball
on the end of the arc is hitting, the beam will either be red or white. A red beam means
the desired area is not accessible, therefore teleportation to that area is not allowed. A
white beam means, teleportation to that area is possible by releasing the trigger button.
In our virtual environment, movement is only possible on flat surfaces on the ground,
hence no teleportation onto objects is possible.

4.3 Object Interaction

The virtual environment contains several objects that the user can interact with by
moving the right hand controller near them. To pick them up, the user must press
and hold one or both of the Side Buttons of the controller. 5 of these objects are tools
necessary to complete all of the tasks. The tools are the following:
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4. Training Scenario

(a) The left hand controller shows the number
of injured people and incidents left to solve at
every time.

(b) Pressing the trigger button of the controller
on the left hand side controller triggers a beam
which shows the teleportation destination as
a ball.

Figure 4.5: Figure 4.5a shows the left hand and right hand controllers of the user. The
left hand controller shows a task counter and is used for teleportation. Figure 4.5b shows
a ray out of the left hand controller, indication the teleportation destination.

1. First-aid kit

2. Sand bag

3. Axe

4. Tongs

5. Fire extinguisher

There are two ways to resolve an issue with a tool, by touching the issue and by pointing
a special effect from the tool onto the issue, see Figure 4.6. When picking up the fire
extinguisher or the sand bag, a particle effect will start and the corresponding issue can
be solved by pointing the particle effect onto the issue, i.e. point the water jet from the
fire extinguisher onto a fire, see Figure 4.6b. The particle effect will also disappear when
the user let go of the tool. When picking up the axe, tongs or first-aid kit, the objects
interactable with the tool will get an orange outline. To solve issues with these tools, the
outlined objects must be touched with the tool until the outline disappears. Figure 4.6a
shows an injured agent with an orange outline while the user is holding the first aid kit.
The agent is outlined as long as the agent is injured or the user is holding the first aid
kit.
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4.3. Object Interaction

(a) When the user holds the first aid kit, injured
agents get a orange outline, indicating that they
are healable by the first aid kit.

(b) The fire extinguisher shots out a hose of
water as soon as it is picked up by the user. To
extinguish a fire, the hose must be pointed at
the fire.

Figure 4.6: Figure 4.6a shows a injured agent, indicated by the orange outline and the
first aid kit in the users hand. Figure 4.6b shows the fire extinguisher shooting out a
hose of water to extinguish a fire.

(a) When the user holds the tongs, the car
doors get a orange outline, indicating that
they are destroyable by the tongs.

(b) When the user holds the axe, the interactable
doors get a orange outline, indicating that they
are destroyable by the axe.

Figure 4.7: Figure 4.7a and Figure 4.7b show a orange outline on a door and the car
doors when the tongs or the axe is in the users hand, indicating that the user can interact
with the door and car doors.
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4. Training Scenario

Figure 4.8: Message shown when all of the incidents have been resolved and all of the
agents are healed.

4.4 Tasks
Users are instructed to solve 8 tasks to successfully complete the rescue scenario. 4 of
these tasks will be to heal some condition on injured agents and 4 will be incidents. The
first incident visible to the user after the start will be a car crash, where an agent is
trapped inside the car. The user will need to use the tongs to cut open the front left car
door to help the agent out of the car. The agent inside the car also has some injuries
from the crash, making him one of the agents where the first aid kit is required for
healing. From the street it is also possible to see that the car is stuck inside the wall of
the factory. While not visible from the outside, behind this wall is another incident to
solve. The car impact, damaged barrels containing a chemical substance and the user
needs to use the sandbag to pour sand over the chemicals to resolve the issue. Inside
the factory is also another injured agent, that tried to resolve the chemical incident but
got injured in doing so. The agent at the end of the one-way street is injured due to
a fire inside the hotel, another incident to solve. To extinguish the fire, the user must
use the fire extinguisher. Besides the fire, the hotel contains another incident, where an
agent is locked away because an earthquake moved the door angles out of position. To
get to the agent, the user must use the axe to destroy the door. The locked away agent
is also injured and must be healed with the first aid kit. The controller in the left hand
of the user will display an up to date number of tasks left to solve at all time. In case
one gets solved, the number of tasks showing is also reduced. The task display can be
seen in Figure 4.5a, showing injured agents and incidents as separate numbers. After
solving every task, a text explaining that all tasks are completed (Figure 4.8) will appear
in front of the users vision. This text marks the end of the VR-Experience and means,
the user can put down the controllers and remove the HMD.

4.5 Agent Interaction
The default interaction with the agents is through a speech based conversation between
the user and the agents. To interact with an agent, the user has to walk towards the
agent. When the user gets in the range of about 3 meters to the agent, the agent will
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4.5. Agent Interaction

(a) One of the male agents talking. (b) One of the female agents talking.

Figure 4.9: Figure 4.9a shows one of the male agents and Figure 4.9b shows one of
the female agents talking to the user. The avatars are from the Rocketbox [GFOP+20]
library.

perform a turn animation to face the user. If the user is looking towards the agent withing
this range, the agent will start to listen to the microphone of the user, i.e. a user-agent
conversation is started. Figure 4.9 shows two agents facing and talking to the user. At
this point, the user is free to look anywhere else and can have a natural conversation
with the agent. The conversation is stopped if the user moves away, outside of the 3
meter range or looks at another agent who is also within 3 meters to the user. If the
user looks at another agent within range, the conversation between the other agent and
the user is started. During an agent-user conversation, the user is able to ask the agents
any question that concerns the scenario, such as What is your name?, What happened
here? or How many people are injured?. Figure 4.9a and Figure 4.9b show a male and
a female agent facing the user and talking. We compare this to the second interaction
mode, with the same interaction range and interaction switching as just mentioned but
where the agent will not listen to the users microphone but just start to talk. In this
mode the agent will tell the user everything that the agent has knowledge about. This
will essentially be the same information that can also be obtained by asking the agent
questions in the other mode but more limited as the user cannot only ask for specific
details. After the agent finishes to tell the user all the information, the agent will repeat
everything again as long as the user stays within range. If a task is solved, the agent will
also stop mentioning the incident or injured people concerning that specific task.
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CHAPTER 5
User Study

The user study was conducted using between-groups design in the Virtual Reality (VR)-
Lab at TU Wien. In the room, we prepared a freely movable space of about 3x3
meters and used the HTC Vive Pro as a Head Mounted Display (HMD) (Figure 5.1)
for immersing our participants in VR. For convenience and comfort reasons, we used
the integrated microphone and speakers of the HTC Vive Pro as the default audio and
communication channel. The HMD was connected to a computer which was running our
Unity application, as well as NVIDIA Riva and Rasa containers. Table 5.1 lists the whole
hardware setup, including a more detailed specification of the computer that was used to
run our Unity application, NVIDIA Riva and Rasa. Figure 5.2 shows the author of the
thesis wearing the HMD and using the setup in the room we prepared for the user study.

Hardware Type
CPU Intel Core i9-11900K 3.50GHz
GPU NVIDIA RTX 3090 12GB VRAM
RAM 32GB
HMD HTC Vive Pro + Controller

Microphone HTC Vive Pro
Speakers HTC Vive Pro

Table 5.1: The table shows the hardware we were using for the study.

In the study we wanted to investigate how embodied conversational agents with situation
awareness are perceived by trainees during a first responder training in VR. We choose a
between-group design with two groups of the same size and have each group experience
one of the two following conditions:

1) Conversation: The embodied agents in the training scenario are capable of having
a speech conversation with the participants. This allows participants to obtain
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5. User Study

Figure 5.1: The HTC Vive Pro with controllers used during the user study.

information regarding the environment, incidents and conditions of agents by asking
questions in natural language. Obtaining this information was intended to help the
participant in discovering and solving all of the open tasks.

2) No-Conversation: In this condition, the agents also had speech capabilities
but were not able to have a natural conversation with the participants. When
participants approaches an agent, e.g. walk within a certain range, the agents reveal
all their available information by speech. This was a monologue from an agent
towards the participant, e.g. the agent would not listen to questions or utterances
of a participant.

Both of the conditions were experienced in the same virtual environment, e.g. the
placement of the agents, tools incidents and buildings was as described in Chapter 4 for
both conditions, allowing for a proper comparison. Compared to within-group design,
having the exact same scenario avoids a potentially unfair comparison by creating two
different scenarios where one of them could be easier to solve than the other. We
decided to have each participant experience only one of the two conditions to avoid the
learning factor where participants learn too much about the scenario and tasks, hence
making them complete the second condition faster. To compare both conditions, we were
measuring various metrics, see Section 5.3, to determine how our agents are perceived by
participants. Our main hypotheses in the user study was:

H1: The Conversation condition will achieve overall better scores in the measured
metrics compared to the No-Conversation condition.

5.1 Participants
The invitation to the study stated, that the purpose of the study is to explore first
responder training and task solving guidance in Virtual Reality VR through virtual
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5.1. Participants

(a) The author of the thesis from the side im-
mersed VR.

(b) The author the thesis from the front im-
mersed in VR.

Figure 5.2: Figure 5.2a and Figure 5.2b show the author of the thesis using the setup
that was used during the user study.

agents. We did not inform participants, that there are two conditions as that could have
an impact on the answers during the study. In total, 24 people freely volunteered for
the study, knowing that they could quit the experiment at any time. The participants
included 16 males and 8 females with an average age of 32.5 in the range of 24 to 65. Most
of them had a technical university background or work at a university as a researcher or
post-doc. Their VR experience ranged from "Never" to "Every Day", see Figure 5.3. We
divided the participants into two groups, each containing 8 males and 4 females. One
group was assigned to experience the Conversation condition and one was assigned to
experience the No-Conversation condition.

Figure 5.3: The participants VR experience ranged from Never to Every Day.
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5.2 Procedure
In this section, we describe the procedure of the study for each participant. Before and
after every user, we opened the windows of the room for a couple of minutes to fill the
room with fresh air and cool it down to a comfortable temperature since it can get quite
warm during the procedure with the computer running and the effort made in VR. In
addition, this was to minimize health related risks due to bad air quality in the room.
During the procedure the windows and door were closed to make it as quiet as possible
for the user to not get distracted by outside noises. We also cleaned the HMD and the
controllers with antibacterial tissues after every user. While the participants were using
the VR setup, we took care that they do not bump into a something or fall over the
cable of the HMD. The procedure was split into the following steps:

1. Study information

2. Consent form

3. Simulator sickness questionnaire

4. Introduction scenario

5. Main training scenario

6. Simulator sickness questionnaire

7. Study questionnaire

First, we have the participants read an information paper which explains what the
study is about, what they will do, how the controls and the agent interaction work. We
prepared one information sheet for each condition, where the only difference was the
description of the agent interaction. After reading through the information sheet, we
have the participant read and sign a consent form, informing them of health related
issues with VR, data collection and stating that they can quit at any time. Before we let
them put on the HMD we had them fill out a demographics questionnaire, asking for
their age, gender, job and how often they have used VR. After that, participants filled
out a Simulator Sickness Questionnaire (SSQ) that was from Kennedy et al. [KLBL93].

The first part of the VR experience was a small introduction scenario where a participant
could get familiar with the mechanics used in the main scenario, teleportation, and with
all of the tools that are necessary to complete the main scenario. The introduction
scenario was just a small area containing the 5 tools, 1 agent with speech capabilities
(either with speech input or just spoken text, depending on the condition), 1 locked
room and a 1 fire. This was especially useful for participants, who have never or rarely
used VR previously so they could get used to grabbing virtual objects and teleportation.
During the introduction we let users ask any question regarding movement, interaction
and what they can do.
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When the participant indicated to be familiar with the mechanics we started the main
rescue scenario. During this part, questions regarding what to do and how to solve
certain tasks were not allowed as it was part of the study to get that information from
the agents. We allowed questions regarding movement and object interaction but no
one was asking such questions due to learning everything in the introduction scenario.
Participants had unlimited time to complete the rescue scenario but were allowed to stop
anytime for any reason. If a participant decided to abort the training early, i.e. before
every task was completed, we counted the try as not completed. None of the participants
decided to stop early and everyone was able to complete all the tasks and finish the
training. The average time to complete all the tasks was 7 minutes and 3 seconds. The
shortest completion time was 3 minutes and 47 seconds and the longest 14 minutes and
54 seconds.

After completing every task, users were informed through there HMD, that they can put
down the controllers and remove the HMD, see Figure 4.8. The participant was asked
to fill out the same SSQ as before the exposure to VR again before filling out the main
study questionnaire.

5.3 Study Questionnaire
We designed our study questionnaire to investigate user perception of embodied conver-
sational agents with situation awareness in a first responder training in VR. Our main
interest was in the impact on the sense of presence, co-presence, perceived realism, learn-
ing outcome, subjective task performance, training duration and the quality how relevant
information was presented. We measured the responses to the perception-oriented metrics
using the post-experiment questionnaire in Table 5.2. All metrics, except open questions,
were measured using a 7-point Likert scale [Lik32] ranging from 1 - "Strongly Disagree" to
7 - "Strongly Agree". The statements about presence were inspired by previous research
from Vorderer et al. [VWG+04] and Witmer et al. [WS98]. Open questions were designed
to give participants the freedom to express their own opinions and suggestions, hence
they were answered in plain text. The training duration was measured automatically by
our application from the start of the training until all of the tasks are solved.

In addition to the questions from Table 5.2, the questionnaire from the Conversation
condition had three more questions regarding the conversational part of the agents, see
Table 5.3. These questions were answered using the same 7-point Likert scale as the
perception-oriented metrics. As our contribution are conversational agents with situation
awareness, we were interested how participants felt towards talking to our agents.
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Metric Statement/Question
Presence I could concentrate on the assigned tasks rather than

focusing on the mechanisms used to perform the task.
I felt like I was part of the virtual environment.
I felt that I was physically present in the virtual
environment.
I felt that I actually took part in the rescue scenario.
Even now, I could still find my way around in the
virtual environment.
I didn’t really pay attention to the existence of errors
or inconsistencies in the virtual environment.

Subjective task performance I think my task solving performance was good.
Learning outcome This training scenario helped me to learn about han-

dling rescue situations.
Agents interaction The agents gave me the feeling, that I could interact

with them.
The interaction with the agents was pleasant.

Information presentation The agents were helpful and the information provided
by them was useful.
The information was presented in an understandable
way.

Realism The agents seemed realistic.
Co-presence The agents gave me the impression, that someone else

was in the scene.
Open questions What did you like/dislike about the training?

What is your opinion about the agents?
How would you improve the training? What would
have helped you improving your performance?

Table 5.2: Responses of participants to given metrics were measured after exposure to our
VR training using this questionnaire. Open questions were answered in plain text and
all the statements were answered using a 7-point Likert scale ranging from 1 - "Strongly
Disagree" to 7 - "Strongly Agree". The presence statements were inspired by previous
research from Vorderer et al. [VWG+04] and Witmer et al. [WS98].
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Metric Statement/Question
Conversational agents related questions I would like to talk to the agents again.

The communication with the agents felt nat-
ural.
Talking to an agent felt like I was talking to
a real person

Table 5.3: Additional questions on the questionnaire for the Conversation condition
created by us to get feedback regarding our conversational agents. The questions were
answered using a 7-point Likert scale ranging from 1 - "Strongly Disagree" to 7 - "Strongly
Agree".
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CHAPTER 6
Evaluation and Results

In this chapter, we present the results and evaluation methods of our conducted user
study at TU Wien. All participants successfully completed the first responder training in
Virtual Reality (VR) and were able to solve all of the eight tasks. First, we discuss the
results between the two conditions (1) Conversation and (2) No-Conversation and the
results between genders by investigating the statistical significance of differences between
the compared groups using Mann-Whitney U test. Then we analyze the simulator sickness
questionnaire between the pre- and post-experiment measurements using Wilcoxon signed-
rank test and present our qualitative analysis of the open questions from the main study
questionnaire (Table 5.2). Furthermore, we present the results between genders to the
speech related questions we added to the questionnaire of the Conversation condition
(Table 5.3). Since the additional questions were answered on a 7-point Likert scale, we also
investigate statistical significance of differences between genders for these questions. We
finish the chapter with a discussion of the user study results and provide guidelines based
on our qualitative analysis for future training applications with embodied conversational
agents with situation awareness in VR.

6.1 Comparison between Conditions
The main study questionnaire in Table 5.2 contains multiple questions that belong to the
same metric. To measure metrics with multiple questions, we took the average over all
the answers to the corresponding questions. The answers of the participants to the main
study questionnaire can be seen in the box plots in Figure 6.1. The x-Axis shows our
metrics with two box plots for the two conditions and the y-Axis shows the measured
values using the Likert scale. The box plots show the data values of the mean value
marked by a x symbol inside the Interquartile Range (IQR), which shows were 50% of
the data points lie. The minimum and maximum values of the data points are at the
end of the whiskers. For the Conversation condition, the data values for lower or first
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quartile (Q1) and upper or second quartile (Q2) and the median are placed on the left
side, while for the No-Conversation condition they are placed to the right side. Outliers
are shown as circles. In Figure 6.1 we can observe that, the IQR is relatively small for

Figure 6.1: The results of subjective responses of participants to our study questionnaire.
The x-Axis shows our metrics with two box plots for the two conditions and the y-Axis
shows the values of the Likert scale. The mean value is marked by a x symbol and the
median by a bar inside of the IQR. The values on the end of the whiskers show the
minimum and maximum values of each plot and the numbers on the side of a box plot
show the Q1, Q2 and median values. The box plots for the Conversation condition have
its numbers on the left and the box plots for the No-Conversation condition on the right.

the metrics presence and information presentation for both conditions and co-presence
for the Conversation condition. This means that most of the data points have similar
values compared to the metrics task performance, realism, learning outcome and agents
interaction for both conditions and co-presence for the No-Conversation condition where
the range over which the values are spread is larger. We can also observe whiskers
reaching over the whole value range of the 7-point Likert scale for the metric realism on
both conditions and task performance on the Conversation condition, indicating a high
standard deviation and variance for these metrics. We hypothesize the high variation for
the realism metric results from different expectations that our participants had when
starting the training. As can be seen in Chapter 5, the VR experience of our participants
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was also spread between "Never" and "Almost Every Day", which could explain different
expectations leading to this high variation. The median of the metric co-presence for the
Conversation and the median of the metric agents interaction for the No-Conversation
condition is relatively close to Q1, indicating a right- or positively-skewed distribution
of the data points. The median for the metric presence for the No-Conversation and
the median for the metric information presentation for the Conversation condition is
relatively close to Q2, indicating a left- or negatively-skewed distribution of the data
points. We can observe a balanced distribution for the No-Conversation condition in the
metrics co-presence, realism and learning outcome. All of the other metrics are either
slightly right- or left-skewed. If the mean value is greater than the median, most data
points are small and few are very large compared to the smaller values. We can observe
this for the No-Conversation condition in the metric agents interaction, indicating that
most of the participants rated agents interaction lower. In contrast, if the median is
greater than the mean value, most data points are larger and few are very small compared
to the large values. This can be seen for the Conversation conditions in the metrics
task performance, information presentation and agents interaction, indicating that these
metrics were rated higher by participants. For the metric Co-presence, we observe the
median line of the Conversation condition to be equal to Q2 of the the No-Conversation
condition, indicating that there is likely to be a difference between both conditions.

We used Mann-Whitney U test to calculate significance differences between our two
compared groups (two conditions) which can be seen in Table 6.1. To interpret significance,
a – value of 0.05 is typically used, meaning there is a 5% likelihood of accepting a false-
positive result. However, previous research [Ric89, Mil12, CM00] showed, that tests
for statistical differences are often biased and wrongly reject a true null hypothesis, i.e.
declaring a difference statistically significant when it actually is not. This likelihood
of discovering a false-positive is called Type I error and rises the more comparisons
are made during the calculation of significance differences with dependent variables.
A common way to reduce the risk of Type I error, is to use a Bonferroni adjusted
significance threshold by dividing – by the number of dependent variables, i.e. the
number of comparisons made. In contrast, overzealous use of Bonferroni adjustments
lead to an increase of Type II errors, i.e. accepting the null hypotheses even though it is
actually false. Cabin et al. [CM00] found, there is no clear indication of when to use and
when to not use Bonferroni correction, thus leaving the choice of considering Bonferroni
correction and determining dependent groups to authors. Although our hypothesis was,
that the Conversation condition will achieve higher values across all metrics, we consider
all of our metrics as independent variables for the test, i.e. only one comparison per
metric is performed: Conversation vs. No-Conversation. Hence, we do not see the need
to Bonferroni adjust our – and therefore use the significance threshold – = 0.05 which
means we accept of having a Type I error rate of 5%, i.e. In 5% of the time we will
accept a false-positive result.

Using this alpha we see co-presence as statistically significant, supporting what we
observed in the box plot where the median of the Conversation condition was equal to Q2
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of the No-Conversation condition. Hence participants of the Conversation group rated
the co-presence of embodied conversational agents more favorable than participants of the
No-Conversation group (p ≠ value = 0.035). In addition to co-presence, the Conversation
condition achieved higher scores in the metrics realism and agents interaction. In all the
other metrics, including presence, subjective task performance, learning outcome and
information presentation the No-Conversation condition achieved slightly higher scores.
However, none of these differences were statistically significant.

The average completion time of the training was 7 minutes and 39 seconds with a
Standard Deviation (SD) of 3 minutes and 28 seconds for the Conversation condition and
6 minutes and 28 seconds with a SD of 2 minutes and 10 seconds for the No-Conversation
condition. This difference was not statistically significant as can be seen in Table 6.1.

Metric U-value p-value
Presence 60.5 0.52
Co-presence 36 0.035
Task performance 68.5 0.87
Realism 60 0.5
Learning outcome 70 0.94
Information presentation 56.5 0.38
Agents interaction 55 0.34
Duration 61 0.55

Table 6.1: Significance of differences between our two compared conditions, calculated
by Mann-Whitney U test. Using an – value of 0.05 for interpreting the significance,
co-presence can be interpreted as statistically significant, hence participants of the Conver-
sation group rated co-presence more favorable than participants of the No-Conversation
group (p ≠ value = 0.035).

6.2 Comparison between Genders
Additionally to our main hypothesis, we were interested in differences across genders.
The results for our metrics grouped by gender can be seen in Figure 6.2. Similar to the
previous section, the x-Axis shows our metrics with two box plots for the two genders
and the y-Axis shows the measured values using the Likert scale. We can observe a
relatively small IQR and therefore a small amount of data spread for the metrics presence,
task performance and information presentation, though information presentation has
some outliers. The median is close to Q1 for females in the metrics task performance
and realism, meaning the data distribution is positively-skewed. We can see a highly
negatively-skewed distribution for females in the metrics co-presence where the median
is even equal to Q2. For males, we can see data points with a balanced distribution in
the metrics co-presence, realism, learning outcome and agents interaction. Females have
a balanced distribution in the metrics learning outcome and agents interaction. The
metric realism of the female group has a mean value greater than the median, indicating
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that most data points are small, i.e. females rated realism rather lower. The metrics
co-presence and information presentation for males and the metrics presence, co-presence
and information presentation for females have a median greater value compared to the
mean value, i.e. participants rated these metrics rather higher. As previously mentioned,
the median for females in the metric co-presence is even equal to Q2. We can observe
that for males, the median line for the metric task performance is significantly higher
than Q2 of the same metric for females, i.e. there is a high likely-hood, that there is a
significant difference for this metric between the two genders. Like in the previous section,

Figure 6.2: The results of subjective responses of participants to our study questionnaire
between genders. The x-Axis shows our metrics with two box plots representing the two
genders and the y-Axis shows the values of the Likert scale. The mean value is marked
by a x symbol and the median by a bar inside of the IQR. The values on the end of the
whiskers show the minimum and maximum values of each plot and the numbers on the
side of a box plot show the Q1, Q2 and median values. The box plots for males have its
numbers on the left and the box plots for females on the right.

we used Mann-Whitney U test to calculate the significance values that can be seen in
Table 6.2. For a similar reason as in the last section, we used a significance threshold
of – = 0.05 since we are only having one comparison for each metric: male vs. female.
Using this – we can see, that males rated subjective task performance significantly higher
than females (p ≠ value = 0.001), supporting what we saw in the box plot. Males also
finished the training in a significantly lower duration than females (p ≠ value = 0.02).
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The other metrics did not show statistically significant differences.

The completion time was on average 6 minutes and 28 seconds with SD of 3 minutes and
6 seconds for males and 8 minutes and 15 seconds, with a SD of 2 minutes and 18 seconds
for females. This difference was statistically significant, i.e. males were significantly faster
in finishing the training than females (p ≠ value = 0.02).

Metric U-value p-value
Presence 55.5 0.62
Co-presence 60.5 0.084
Task performance 13.5 0.001
Realism 42.5 0.19
Learning outcome 53.5 0.52
Information presentation 54.5 0.58
Agents interaction 47.5 0.32
Duration 27 0.02

Table 6.2: Significance differences between genders, calculated by Mann-Whitney U test.
Using an – value of 0.05 for interpreting the significance, we see that males rated task
performance significantly higher than women (p ≠ value = 0.084). In addition, males
were significantly faster in finishing the training (p ≠ value = 0.02).

6.3 Simulator Sickness Questionnaire
We analyzed simulator sickness by using a Simulator Sickness Questionnaire (SSQ)
from Kennedy et al. [KLBL93]. Each participant filled out the SSQ twice, once before
and once after the exposure to our VR application. Our SSQ included all of the 16
items proposed by Kennedy et al. and we accumulated the items into the four factors
proposed by the authors: Disorientation (D), Oculomotor (O), Nausea (N) and Total
Severity (TS). A weight of 1 is assigned to each of the symptom variables. The total
weighted score [1] for Disorientation was calculated by summing the weights for difficulty
focusing, nausea, fullness of head, blurred vision, dizzy (eyes open), dizzy (eyes closed)
and vertigo. The total weighted score [2] for Disorientation was calculated by summing
the weights for general discomfort, fatigue, headache, eyestrain, difficulty focusing,
difficulty concentrating, blurred vision. The total weighted score [3] for Disorientation
was calculated by summing the weights for general discomfort, increased salivation,
sweating, nausea, difficulty concentrating, stomach awareness, burping. The final scores
D, O, N, TS are then obtained by using the formulas given in Equation 6.1.

D = [1] ú 13.92
O = [2] ú 7.58
N = [3] ú 9.54

TS = ([1] + [2] + [3]) ú 3.74

(6.1)
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The results of the accumulated scores can be seen in Figure 6.3 and Table 6.3. We can
observe that there is not a lot of difference between the two exposure points. The median
is zero or near zero for almost all of the factors and outliers after VR exposure are either
the same or lower than before VR exposure. None of the box plots show signs of a
significant difference. With the SSQ, we have the same measurement at two different time

Figure 6.3: The results of the responses to the SSQ questionnaire from both conditions.
The x-Axis shows the metrics according to Kennedy et al. and the y-Axis a scale between
0 and 100. The mean value is marked by a x symbol and the median by a bar inside of
the IQR. The values on the end of the whiskers show the maximum values of each plot
and the numbers on the side of a box plot show the Q2 and median values. Outliers are
represented by black circles. The box plots for "Before VR" have its numbers on the left
and the box plots for "After VR" on the right. We can see that the difference between
the two observations is not significantly different in any of the four metrics.

points, hence, we used Wilcoxon signed-rank test to investigate statistical significance of
the difference in SSQ scores between the two VR exposure points. The results of the test
can be seen in Table 6.3. Using an – of 0.05 for interpreting the significance, we can see
that none of the differences were statistically significant.
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Metric Before VR After VR Z p
Disorientation 14.5 19.72 -1.35 0.18
Oculomotor 12.32 11.05 -0.05 0.96
Nausea 8.35 9.54 -0.68 0.5
Total Severity 9.51 10.75 -1.29 0.2

Table 6.3: The SSQ scores according to Kennedy et al. before and after exposure to
VR with the Z and p values of the Wilcoxon signed-rank test. Using an – of 0.05 for
interpreting the significance, we can see that none of the differences are statistically
significant.

6.4 Qualitative Analysis
Our study questionnaire from Table 5.2 contained three open questions, which were
answered by each participant in plain text. The intent behind these open questions
was to give participants some freedom in expressing their feelings about the training
scenario and the agents as well as give us valuable feedback to see further enhancements
for future first responder training scenarios in VR. We focused the first of these questions
on the training itself and asked participants what they liked and disliked about the
training. The second question asked about the opinion a participant had towards our
agents, giving us specifically opinions on both agents with communication capabilities
and agents with predefined voice output only. The third question was designed to let
participants state what they would change to improve the training and what they think
would have improved their performance. For our qualitative analysis, we summarized all
of the answers with similar meaning and extracted categories from these answers to get a
list of positive and negative judgements from the participants. The results of this analysis
can be seen in Table 6.4. Some of the categories are either very similar or the same for
positive and negative effects, revealing the different expectations our participants had
towards a first responder training with agents in VR when participating in the training.
Comments with a positive effect highlight the benefits of agents and the favourably
aspects of our training scenario and comments with negative effect underline the need for
improvements in these categories when creating future first responder training scenarios
with embodied agents.

6.5 Speech Related Analysis
In Addition to the difference between the two conditions, we were also interested in
how participants of the Conversation condition felt towards talking to our agents. We
therefore included three additional questions in the questionnaire, see Table 5.3. All
three of these questions were also answered on a 7-point Likert scale. The results of
these questions can be seen in Figure 6.4. The data distribution is negatively-skewed for
males for the first question and normally distributed for females for second question. For
males, the median to the first question is smaller than the mean value, indicating that

62



6.5. Speech Related Analysis

Effect Category Description
Positive Realism The agents and the environment were seen as realistic

by most of the participants.
Gamification Participants liked the gamification aspect and saw it as

an advantage.
VR experience The scenario on training and the user experience was

enjoyable.
Agent interaction The speech interaction with agents was seen as useful

and a more realistic approach to interact with virtual
humans.

Tools Participants liked the usage of tools to solve incidents
in the virtual environment.

Helpfulness Agents were seen as helpful due to providing information
about the environment and situation related information
needed to solve the tasks.

Animation Turn animations to the participant when getting close
to an agent and lip animations while talking were rated
positively.

Negative Realism The agents were perceived as unnatural, unresponsive
and with insufficient conversation skills by some partici-
pants.

Agent interaction Limited and repeated answers to the same question as
well as responses to every statement of the participant
was seen as unnatural in a conversation.

Locomotion Teleportation felt unnatural and caused a loss of orien-
tation.

Tool Interaction The interaction between tool and object felt unnatural
due to the simple "touch to solve" mechanic.

Animation Agents were seen as stiff and unresponsive because they
did not move around and could not react according
to their situation or express there pain through body
language.

Tools Participants did not like that they could only carry one
tool with them.

Emotions Agents showed no emotions and injured agents did not
express their feelings and pain with through a different
tonal pitch in their voice.

Table 6.4: The results of our qualitative analysis to the three open questions of the
main study questionnaire from Table 5.2. We summarized all of the answers with similar
meaning and extracted categories to get a list of positive and negative judgements.
Positive judgements highlight the benefits of agents and the favourable aspects of out
training and negative judgements underline the need for improvement in these categories.
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Figure 6.4: The results of subjective responses of participants to our study questionnaire
between genders. The x-Axis shows our metrics with two box plots representing the two
genders and the y-Axis shows the values of the Likert scale. The mean value is marked
by a x symbol and the median by a bar inside of the IQR. The values on the end of the
whiskers show the minimum and maximum values of each plot and the numbers on the
side of a box plot show the Q1, Q2 and median values. The box plots for males have its
numbers on the left and the box plots for females on the right.

the answers were rather lower than higher. We cannot observe a statistically significant
difference between genders in the box plots. We also calculated significance differences
between genders using Mann-Whitney U test, which can be seen in Table 6.5. Using
an – of 0.05 without Bonferroni adjustment for interpreting the significance, as there
is only one comparison: male vs. female, we can see that none of the differences were
statistically significant.

6.6 Discussion
The main hypothesis, we defined in Chapter 5 was that, the Conversation condition
achieves higher scores than the No-Conversation condition across all metrics. We can see
in Table 6.1 that only co-presence was statistically significant, i.e. participants of the
Conversation group rated co-presence higher than participants of the No-Conversation
group. Therefore, our hypothesis was only partially supported by the results of our study.

64



6.6. Discussion

Question U-value p-value
I would like to talk to the agents again 15 0.93
The communication with the agents felt natural 13.5 0.76
Talking to an agent felt like I was talking to a real person 15 0.95

Table 6.5: Significance differences between male and female for speech related questions
from the questionnaire in Table 5.3 for the Conversation condition. The values were
calculated using Mann-Whitney U test. Using an – value of 0.05 for interpreting the
significance, we can see that none of the differences can be interpreted as statistically
significant.

Additionally, some of the other metrics such as realism and agents interaction showed
trends towards supporting our hypothesis. We hypothesize, that these metrics would have
been more significant with a richer conversational model and more participants in the
study. In contrast, some of the metrics achieved lower scores in the Conversation condition
and were more in favor of the No-Conversation condition, namely general presence, task
performance, learning outcome and information presentation. We can observe that in
our experiment, the trends of general presence and co-presence do not correlate. Our
participants might have felt less present due to the limited conversation model and
behaviour of the agents, but perceived a higher co-presence due to the conversation
enabled embodied agents. Similar to the metrics realism and agents interaction, we
hypothesize that we could steer the trend of general presence towards supporting our
hypothesis by improving the conversational model and the static behaviour of our
agents. Interestingly the Conversation condition achieved slightly lower scores in the
metric information presentation even though both conditions used speech to convey
information to the participants. We hypothesize, that this is due to participants of the
Conversation conditions receiving the exact same answer again after asking the same
question. Participants might have only asked the question again because they did not
clearly understand what the agent meant during the first time and expected a different
and maybe more clear answer. We can also see, that the training duration was on average
longer for the Conversation condition. This does not necessarily mean, that participants
of the Conversation condition were slower in performing the task of the training but
spend more time talking to the agents since they could have a real conversation with
the agents compared to the No-Conversation condition where the interaction between
participant and agent was more like a monologue of the agent.
In addition to the differences between the Conversation and No-Conversation conditions,
we were also interested in differences between genders across the same metrics. In
Table 6.2, we can see that females rated subjective task performance significantly lower
than male participants. Furthermore, the training duration of female participants
was significantly longer compared to male participants. The significance in these two
metrics might be related and females rated their task performance significantly lower
due to thinking that it took too much time to complete the training. These findings
complement previous research about gender influence on various metrics such as the
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sense of presence [FKH+14] and task performance [NG22]. While females rated Realism
on average a bit higher than males, none of the other metrics were statistically significant
or showed favorable trends towards significance.
We investigated simulator sickness in our VR training application by using an existing
Simulator Sickness Questionnaire (SSQ) [KLBL93] before and after the VR experiment
and observed 5.22 as the highest increase in simulator sickness. This value can be
categorized as minimal increase [BWK20]. Furthermore, we analyzed statistical differences
between the pre-experiment and post-experiment answers and did not found any significant
differences in SSQ scores. I.e. Our VR training scenario did not have a negative impact
on the participants.
We added three additional questions to the main study questionnaire of the Conversation
condition to receive additional feedback from participants to our conversational agents.
Since only one of the two conditions contained these questions, we only investigated
differences between genders. Figure 6.4 indicates that on average, participants of both
genders rated all three of the statements rather low. Interestingly, males were more in
favor to talking to the agent again and that the communication felt natural but did
not thought that talking to an agent felt like talking to a real person. Based on our
qualitative analysis in Table 6.4, we hypothesize that this is mainly due to the agents
stiffness, limited answers and lack of emotions. In Table 6.5 we can see, that none of
differences between genders were statistically significant, indicating that neither males
nor females are more in favor of talking to our agents again, felt that the conversation
was natural and similar to talking with a real person.

6.7 Guidelines for VR trainings with embodied
conversational agents

In Table 6.4 we summarized similar answers to the open questions on our main study
questionnaire into categories to get a list of positive and negative judgements. Based
on this qualitative analysis, we provide the following guidelines for future research and
development of VR training applications which include embodied conversational agents
with situation awareness:

Realism is important: While participants rated the realism of the training scenario
positively, they also highlighted the need for some improvements in this aspect. Realism
does not only concern visual realism but also emotions, decisions, conversations and
situation dependent animations. A believable and more realistic training simulation
through agents that show emotions through their voice and body language is desired by
participants. E.g. It is expected, that agents do not stay in place and speak calmly when
they are involved in a car accident or other disasters. Agents are expected to express
their emotions, e.g. show panic or happiness, through tonal voice changes and moving
their body accordingly.

Richness of conversation is required: The conversation ability of the agents was
seen as helpful, but participants were sensitive to noticing conversational mistakes and
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unexpected conversational behaviours. They disliked, that an agent responded to the
same question with the same answer every time and wanted to hear some variety in the
answers. Participants also disliked when an agent responded to every statement that
they said out loud. Agents should know when they are addressed and realize when a
participant is just saying thoughts out loud. Therefore, the richness of the conversational
model as well as smart decision making of when an agent is actually addressed and should
speak is desired.

Situation awareness is beneficial: The agents were seen as helpful due to providing
information about the environment and situation related information needed to solve the
tasks. While our agents responded to the same question with the same answer, which was
seen as unnatural, they always provided situation or location related information that
helped participants in solving all of the tasks and complete the training. The provided
information was updated as the participants progressed through the training scenario, i.e.
agents knew when something changed around them. We see a great benefit in further
developing situation awareness to provide even more detailed information.

Autonomy of agents is expected: Agents were expected to be autonomous, active
and behave believable according to events in their environment. While participants liked
that our agents turn towards them when they get close, they expected more animations
and locomotion to reflect their current situation. E.g. An agent with a broken ankle
is not expected to stand straight but to sit or lie on the floor and maybe holding their
hands around their injury.

Natural user locomotion and object interaction is desired: While our teleportation
locomotion system did not lead to simulator sickness on any of the participants and
allowed for the training to be completed in a smaller room than the actual walkable
area in VR, participants would have preferred a real walking locomotion. Therefore,
mapping the virtual walkable area onto a real area of equal size is beneficial for future
experiments. According to some participants, real walking and turning would have
also avoided some disorientation in the virtual environment caused by teleportation. In
addition, participants disliked the simplicity of grabbing objects by pressing a button
and solving incidents by touching. A more natural way, i.e. grabbing objects with bare
hands and having a real interaction between tool and incident to solve it, is desired.
Participants also wanted the capability of carrying multiple items at once, e.g. carrying
the first aid kit and the axe, like it is possible in the real world.

Gamification is advantageous: The gamification aspect of our training scenario
was seen as advantageous for training in VR. The sense of achieving something and
progressing could be a motivational aspect in future training applications or serious
games for training purposes. This may not only increase the motivation but also the
learning outcome. Previous work by Palmas et al. [PLPK19] and Ulmer et al. [UBC+22]
already showed the positive impact of gamification in VR trainings.
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CHAPTER 7
Conclusion and Future Work

In this chapter, we are first reflecting on the limitations of our conversational agents and
user study. Based on our discoveries during the user study and our qualitative analysis of
user feedback, we propose solutions to overcome these limitations in future research and
experiments. Finally, we conclude this thesis with a summary of our work and discoveries
during our user study.

7.1 Limitations and Future Work
While our study participants considered conversational agents as helpful, there is room
for improvements in future experiments. Participants criticised that the agents responded
with a limited set of predefined answers with injected entities and they also disliked, that
the answer to the same question is always the same. The model used in our training was
only trained on the authors knowledge about some first responder trainings. Therefore, we
see a high potential in improving the richness of the conversation by using larger language
models or Natural Language Generation (NLG) to generate more natural answers with
a greater variety of words for conveying the requested information. Dependent on the
gender, the agents used one of the two default language models provided by NVIDIA
Riva [Rivb] with a static voice tone. To have more realism when listening to an agent,
different voice tones dependent on the current emotions of the agent could be used.
Additionally, intelligent decision-making of when to respond or not is necessary to avoid
unwanted responses from the agent to i.e. thoughts that a trainee is saying out loud.

Our agents had mostly static spatial behaviour with on-place body animations. Par-
ticipants liked that the agents turned towards them on approach and moved their lips
according to the spoken content but a more realistic scenario would require advanced
animations and spatial movement capabilities. In future training applications agents
could move around, follow directions if asked by the first responder, e.g. to walk to a save
place. When asked what happened to them, agents could point to the injured bodypart,
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e.g. to a sprained ankle or wound. Additionally, agents could also point to locations
when asked where something is.

The results of our user study showed interesting trends in the metrics Realism and Agents
interaction, but these results were not statistically significant. Our study had a limited
number of participants and more participants may be needed in future experiments
to increase the statistical power of the experiment. Most of our participants had a
technical or academic background which may have set certain expectations towards our
agents. A few participants tried asking our agents answers outside of the first responder
domain because they expected some answer to every question similar to chatbots such
as ChatGPT [Cha]. Since our main goal of the user study was to explore the benefit of
embodied conversational agents with situation awareness in a first responder scenario in
VR, we did not evaluate the learning outcome on defined pedagogic objectives. Therefore,
in addition to more participants with different backgrounds, we think future studies
with a well defined pedagogic scenario and experts in rescuing people such as real first
responders are needed to validate the learning outcome of VR trainings compared to real
trainings.

7.2 Conclusion
In this thesis, we presented a methodology for first responder training in VR using
embodied conversational agents. We implemented and demonstrated a novel solution to
enabling situation awareness for embodied agents with AI and speech capabilities in VR.
In addition, we conducted a user study to investigate the impact of conversational abilities
of embodied agents by comparing the two conditions Conversation and No-Conversation.
During the user study, we investigated various metrics such as presence, co-presence, task
performance, realism, learning outcome, information presentation, agents interaction and
training duration. The only difference between these conditions was that the Conversation
condition had conversation enabled agents and the No-Conversation had monologue-only
agents. Our results suggest that co-presence is rated significantly higher for conversational
agent interaction compared to monologue-only interaction. In addition, we discovered a
significant difference in subjectively reported task performance and duration between
genders. After the experiment, we offered participants from the No-Conversation group
to also try out the Conversation condition if they are interested. Since the training is
the same for both conditions, we did not record and asses any data but only asked them
how they feel about the conversational agents compared to the monologue-only agents.
Most of these participants had a positive reaction and preferred the conversational part
as it felt more realistic and natural. Based on our qualitative analysis on the answers
from participants to open questions, we provided guidelines for future research and
development of training applications in VR with embodied conversational agents with
situation awareness.
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