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Kurzfassung

In  dieser  Arbeit  wird  zuerst  ein  Überblick  über  die  wichtigsten  Grundlagen  zu  erhaltenen  Ladungen
und Symmetrien,  der  Thermodynamik  Schwarzer  Löcher,  Konformer  Feldtheorie  sowie  Konformer
Feldtheorie  für  verzerrte  Raumzeiten  als  auch  zur  Kerr/CFT-Korrespondenz  gegeben.
Anschließend  betrachten  wir  Erhaltungsgrößen  sowie  die  zentrale  Ladung des  ultrakalten  Grenzfalles
der  Kerr/dS-Lösung.  Nach  einem  Uplift  des  metrischen  Tensors  in  Analogie  zu  [15]  finden  wir  

Randbedingungen  mit  Ähnlichkeiten  zu  jenen,  welche  für  zwei-dimensionale  Schwarze  Löcher  in  

[1]  gefunden  worden  sind.  Die  zugehörige  Algebra ist  die  gewarpede  Wittalgebra mit  endlichen,
wohldefinierten  Ladungen  sowie  einer  verschwindenden  Zentralladung.



Abstract

This  thesis  will  first  review  fundamentals  on  conserved  charges  and  symmetries,  (black  hole)  ther-
modynamics,  (warped)  conformal  field  theory  as  well  as  the  Kerr/CFT-correspondence.  Afterwards,
we  study  the  conserved  charges  and  central  charge  of  the  ultracold  limit  of  the  Kerr/dS-solution.
After  uplifting the  metric  in  analogy  to what  was  done  in  [15],  we  find  boundary  conditions  similar
to the  two-dimensional  ones  studied  in  [1].  Their  algebra turns  out  to be  the  warped  Witt-algebra
and  we  find  associated  finite  conserved  charges  as  well  as  a vanishing central  charge.
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Introduction

Motivation

The  universe  we  live  in  contains  black  holes  that  are  solutions  to Einstein’s  equations

𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ  =  0, (0.0.1)

with  a positive  cosmological  constant Λ,  the  metric 𝑔𝜇𝜈 ,  the  curvature  tensor 𝑅𝜇𝜈 and  its  contraction
𝑅.[18]  The  solution  closest  to the  black  holes  found  in  our  reality  is  the  Kerr/dS-solution,[4]

𝑑s2 = −Δr

𝜌2 (𝑑t − 𝑎

Θ  

sin2 𝜃  𝑑𝜑)2 + 𝜌2

Δr
𝑑r2 + 𝜌2

Δ𝜃
𝑑𝜃2 +  

Δ𝜃

𝜌2 sin2 𝜃(𝑎𝑑t − r2 + 𝑎2

Θ 𝑑𝜑)2 (0.0.2)  

with  parameters

Δr =  (r2 + 𝑎2)(1 − r2

l2
) − 2𝑀  r, Δ𝜃 =  1 + 𝑎2 cos2 𝜃

l2
(0.0.3)

𝜌2 = r2 + 𝑎2 cos2 𝜃  , Θ  =  1 + 𝑎2

l2
. (0.0.4)

This  Kerr/dS  spacetime  contains  a class  of  rotating black  holes,  such  as  the  Kerr  solution  or  the
rotating Nariai  solution (0.0.12),  as  well  as  some  special  cases,  such  as  black  holes  whose  horizons
are  in  thermal  equilibrium  (lukewarm  black  holes)  or  the  so-called  cold  black  hole  solutions  that
additionally  have  degenerate  horizons,  see  [14]  and  chapter 7 for  more  details.  

The  limit  of  (7.1.1)  that  has  vanishing temperature  at  the  horizon r𝐶 ,

𝑑s2 =  Γ̃(𝜃)
(︁

− 𝑑t̃
2 + 𝑑r̃2 + �̃�(𝜃)𝑑𝜃2

)︁
+ 𝛾(𝜃)(𝑑𝜑 + k̃r̃𝑑t̃)2, (0.0.5)

for  which  all  three  horizons  (inner,  outer  and  cosmological  horizon)  coincide,  is  therefore  of  great
interest.  We  call  it  an  “ultracold” black  hole.  In  the  line  element (0.0.5), t̃ acts  as  the  time
coordinate, r̃ as  the  radial  coordinate  and 𝜃 and 𝜑 are  angular  coordinates.  All  other  expressions
are  functions  given  by
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𝜌2
𝑐 = r2

𝑐 + 𝑎2 cos 𝜃2, Γ̃(𝜃)  = 𝜌2
𝑐r𝑐

(𝑎2 + r2
𝑐 ) , (0.0.6)

�̃�(𝜃)  =  

(r2
𝑐 + 𝑎2)
r𝑐Δ𝜃

,  𝛾(𝜃)  =  

Δ𝜃(r2
𝑐 + 𝑎2)2 sin 𝜃2

𝜌2
𝑐Θ2 , (0.0.7)

k̃  = − 2𝑎r2
𝑐 Θ

(𝑎2 + r2
𝑐 )2 . (0.0.8)

A summary  of  the  metric’s (0.0.5) derivation  is  given  further  down  below  starting out  from  equation
(0.0.12).

This  special  black  hole  can  be  studied  by  e.g.  utilizing symmetries.  They  can  be  used  to naturally
constrain  our  theory  to a few  (possibly  unique)  solutions.  In  the  past,  such  a strategy  has  been
successful  a number  of  times  already  using asymptotic  symmetries,  which  constrain  the  phase  space
and  preserve  the  metric  only  in  a select  region,  e.g.  at  infinity.  Examples  of  such  successes  would  

e.g.  be  the  AdS3 or  BTZ-black  holes/solutions  or  also the  famous  Kerr/CFT-correspondence,  see
chapter 6 for  details,  which connects quantum theory  and gravitational  theory  by  finding that  the
entropy  obtained  from  the  both  of  them  matches.  The  latter  involved  a quantity  called  the  central
charge.  It  is  an  additional  term  in  the  charge  algebra up  to which  the  charges’  algebra matches  the
diffeomorphisms’  algebra appearing after  introducing a macroscopic  length  scale,  which  can  be  done
by  e.g.  using certain  boundary  conditions.[9, 13]  To be  precise,  given  a certain  diffeomorphism 𝜁

that  is  allowed  by  a set  of  boundary  conditions ℎ conserving the  given  metric 𝑔,  one  can  calculate  a
corresponding conserved  charge  [4]

𝑄𝜁(ℎ,  𝑔)  =
∫︁

𝑆
k𝜁 [ℎ; 𝑔] (0.0.9)  

over  a surface 𝑆.  Here,  a quantity  preserved  on-shell  called  the  surface  charge  [4]

k𝜁 [ℎ,  𝑔]  = −1
4𝜀𝛼𝛽  𝜇𝜈 [𝜁𝜈𝐷𝜇ℎ−𝜁𝜈𝐷𝜎ℎ𝜇𝜎+𝜁𝜎𝐷𝜈ℎ𝜇𝜎+1

2ℎ𝐷𝜈𝜁  𝜇−ℎ𝜈  𝜎𝐷𝜎𝜁𝜇+1
2ℎ𝜎  𝜈(𝐷𝜇𝜁𝜎+𝐷𝜎𝜁𝜇)]𝑑x𝛼∧𝑑x𝛽

(0.0.10)  

is  used.  The  charges’  algebra can  be  calculated  to be  [9]

{𝑄𝜁m ,  𝑄𝜁n} = 𝑄[𝜁m,𝜁n] + C𝜁m,𝜁n [Φ̄], (0.0.11)

with  beforementioned  central  charge C𝜁m,𝜁n [Φ̄].  A more  detailed  explanation  and  derivation  is  given
in  chapter 1.3.2.  

For  the  reasons  mentioned  above,  we  attempt  to find  answers  to the  following questions:
• What  are  the  asymptotic  symmetries  preserving the  ultracold  solution  (0.0.5)?
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• Do finite  and  well-defined  expressions  for  both  conserved  charges  and  central  charge  exist  for

a given  set  of  boundary  conditions?
• If  yes,  what  are  those  expressions  and  what  is  the  corresponding algebra?

Strategy  and results

At  first,  we  start  out  from  the  rotating Nariai-metric  in  static  coordinates

𝑑s2 =  Γ(𝜃)
(︁

− (1 − r2)𝑑t2 + 𝑑r2

1 − r2 + 𝛼(𝜃)𝑑𝜃2
)︁

+ 𝛾(𝜃)(𝑑𝜑 + k  r  𝑑t)2 (0.0.12)  

with

𝜌2
𝑐 = r2

𝑐 + 𝑎2 cos2 𝜃  , Γ(𝜃)  = 𝜌2
𝑐r𝑐

𝑏(𝑎2 + r2
𝑐 ) , (0.0.13)

𝛼(𝜃)  = 𝑏(r2
𝑐 + 𝑎2)
r𝑐Δ𝜃

,  𝛾(𝜃)  =  

Δ𝜃(r2
𝑐 + 𝑎2)2 sin2 𝜃

𝜌2
𝑐Θ2 , (0.0.14)

k = − 2𝑎r2
𝑐 Θ

𝑏(𝑎2 + r2
𝑐 )2 . (0.0.15)

This  is  an  extremal  limit  (meaning that  at  least  some  horizons  fall  together)  of  the  Kerr/dS-solution
for  which  outer  and  cosmological  horizon  coincide  and  we  use  it  to rederive  the  ultracold  solution
(0.0.5).  To do that,  we  first  reparametrize  radial  and  time  coordinates  [4]

r = r̃
√

𝑏,  t = t̃
√

𝑏 (0.0.16)  

as  well  as  some  functions,

k̃  = 𝑏 · k  , Γ̃(𝜃)  = 𝑏 · Γ(𝜃),  �̃� = 𝛼

𝑏
(0.0.17)

appearing in  the  metric.  Afterwards,  the  parameter 𝑏 ∝ (r𝑐 − r−) is  taken  to 0,  where r𝑐 denotes
the  cosmological  horizon  and r− the  inner  one.

We  ensure  that  the  equations  of  motions  are  still  fulfilled  by  this  metric  for  any  value  of  the  rotational
parameter 𝑎 and  horizon r𝑐.  Additionally,  a special  value  for  the  ultracold  solution’s  horizon,

r𝑈  𝐶 = l

√︃
−3 + 2 ·  

√
3

3 , (0.0.18)

can  be  found  by  setting 𝑎 to its  extremal  value 𝑎2 = r2
𝑐 (1−3 r2

𝑐
l2 )

1+ r2
𝑐

l2

,  which  was  found  for  the  Kerr/dS-

metric  by  employing the  extremality  conditions Δr |ℎor  iz  on=  0 and ∂rΔr |ℎor  iz  on=  0[4].
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We  then  attempt  utilizing the  generators,[4]

𝜁𝜀 = 𝜀(𝜑)∂𝜑 − r  𝜀′(𝜑)∂r,  𝜁  = ∂𝜏 (0.0.19)

in  order  to find  expressions  for  the  conserved  charges,  their  algebra and  central  extension.  After
expanding 𝜀n = −𝑒−in𝜑,  one  finds  that  their  Lie-bracket  generates  a copy  of  the  Witt  algebra

i[𝜁n,  𝜁m]  =  (n − m)𝜁n+m. (0.0.20)

The  algebra of  the  corresponding conserved  (quantized)  charges 𝐿m matches  this  algebra up  to a
central  extension 𝑐:

[𝐿n,  𝐿m]  =  (n − m)𝐿m+n + 𝑐

12(n3 − n)𝛿n+m,0. (0.0.21)

This  strategy  has  worked  for  finding the  Nariai-limit’s  as  well  as  NHEK’s  (near  horizon  extremal
Kerr)  [19]  conserved  charges  and  central  extension,  which  is  why  we  use  it  as  a first  attempt.  However,
the  resulting central  charge  for  the  ultracold  black  hole  diverges  as O(r2).  As  the  Nariai-metric’s
central  charge

𝑐 =  3 | k |
∫︁ 𝜋

0
𝑑𝜃

√︁
Γ(𝜃)𝛼(𝜃)𝛾(𝜃)  =  

12𝑎r2
𝑐

𝑏(𝑎2 + r2
𝑐 ) . (0.0.22)

is  proportional  to 1/𝑏,  the  divergence  was  expected.  This  is  because  we  had  arrived  at  the  ultracold
black  hole  by  taking the  limit 𝑏 → 0 for  the  Nariai  metric(0.0.12).

As  the  ultracold  solution (0.0.5) is  a “fibered  product  of  two-dimensional  Minkowski  space  and  the
two-sphere”[4],we  take  inspiration  from  Godet  and  Marteau’s  paper  on  boundary  conditions  for  

AdS2/Mink(1,1) [15]  and  change  our  strategy  to uplifting the  metric  after  a coordinate  change  to
Eddington-Finkelstein  coordinates.
For  this,  we  replace  the  flat  part  in (0.0.5), −𝑑t̃

2 + 𝑑r̃2,  by (𝑃 (u)r + 𝑇 (u))𝑑u2 − 2𝑑u𝑑r,with  two
functions  dependend  on  the  retarded  time u, 𝑇 (u) and 𝑃 (u).  This  is  called  the  “uplift”.  The  metric
then  reads

𝑑s2 =  Γ̃(𝜃)((𝑃 (u)r + 𝑇 (u))𝑑u2 − 2𝑑u𝑑r + 𝛼(𝜃)˜ 𝑑𝜃2) + 𝛾(𝜃)(𝑑𝜑 + k̃r  𝑑u)2. (0.0.23)  

From  this,  we  solve ℒ𝜉𝑔𝜇𝜈 = O(𝛿  𝑔𝜇𝜈) to find  the  diffeomorphisms

𝜉u = 𝜀(u)∂u,  𝜉r = −(r  𝜀′(u) − 𝜂′(u))∂r + O(1
r

),  𝜉𝜑 = −𝜂(u)∂𝜑 (0.0.24)

conserving the  uplifted  metric (0.0.23) asymptotically  under  the  conditions ℒ𝜉𝑔ur = ℒ𝜉𝑔r  r =  0 and
ℒ𝜉𝑔uu =  2Γ̃(𝜃)𝛿𝜉𝑃 (u)r + 𝛿𝜉𝑇 (u),  with  functions 𝜀(u) and 𝜂(u) periodic  in  the  time  coordinate u and
the  variation  of  the  metric  at  the  boundary 𝛿  𝑔𝜇𝜈 .  These  conditions  have  also already  successfully
been  used  for  just  the  flat  part (𝑃 (u)r + 𝑇 (u))𝑑2u − 2𝑑u𝑑r in  [3].  The  so found  diffeomorphisms
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are  similar  to the  ones  found  for  two-dimensional  flat  Rindler-type  metrics  described  in  [3].  The
diffeomorphism  algebra is  the  warped  Witt-algebra

[lm,  ln]  =  (m − n)lm+n, [lm,  𝑑n]  = −n𝑑m+n, (0.0.25)

with  generators lm,  𝑑m.  The  substructure  is  similar  to the  two-dimensional  counterpart  whose
diffeomorphisms  had  admitted  to the  BMS2-algebra [15]

[(𝜀1,  𝜂1), (𝜀2,  𝜂2)]  =  (𝜀1𝜀′
2 − 𝜀2𝜀′

1, (𝜀2𝜂2 − 𝜀2𝜂1)′). (0.0.26)  

Furthermore,  we  find  conserved  charges

𝑄𝑈  𝐶 = −
∫︁ 2𝜋  𝐿

0
𝑑u

(︁(𝑎2 + r2
𝑐 )𝜂(u)𝑃 (u)
4Θ𝜋

+ 𝑎r2
𝑐 𝑇 (u)𝜀(u)

2𝜋(𝑎2 + r2
𝑐 )

)︁
. (0.0.27)  

After  defining

𝐿m = 𝑄𝑈  𝐶 |𝜂=0,  𝑃m = 𝑄𝑈  𝐶 |𝜀=0, (0.0.28)

we  find  that  the  charge  algebra coincides  with  the  generator  algebra (0.0.25) and  we  therefore  have
a vanishing central  charge.



Chapter  1 

Symmetries  and  conserved  charges

In  this  section,  we  will  give  a brief  overview  over  symmetries,  conserved  charges  and  the  most
important  aspects  of  Noether’s  theorem.  It  states  that  to each  continuous  symmetry  of  the  action
corresponds  a conserved  quantity  and  vice-versa.  In  gravitational  theory,  symmetries  are  local  and
therefore  an  adequate  formulation  of  Noether’s  theorem  will  be  needed  that  we  will  also introduce.
We  will  then  see  that  this  leads  to conserved  charges  that  will  be  of  utmost  importance  in  describing
a black  hole’s  nature  and  inner  workings  as  well  as  its  thermodynamics  and  also,  in  later  sections,
to a correspondence  between  quantum  mechanics  and  gravity  theory.

1.1 Hamilton action principle  and Noether  theorem  for  classical  field theory

The  Hamilton  action  principle  that  the  action  is  extremal,  i.e.  that  for  any  well-defined  action 𝑆

that  depends  on  general  coordinates qi with  a Lagrangian 𝐿 we  find

𝛿  𝑆[qi]  =
∫︁

𝑑t𝛿  𝐿[qi,  qi̇ ]  =  0. (1.1.1)

Applying partial  integration  to (1.1.1) yields  the  well  known  Euler-Lagrange  equations  in  0+1
dimensions

∂  𝐿

∂  qi
− 𝑑

𝑑t  

∂  𝐿

∂  qi̇ 

=  0. (1.1.2)

We  can  generalize  this  to a field  theory  in  D+1 dimensions  by  making the  transition t → x𝜇,  qi →
Φi(x𝜇),  qi̇ → ∂𝜈Φi(x𝜇),  𝐿 → ℒ(Φ,  ∂𝜇Φ):

∂ℒ
∂Φi

− ∂𝜈
∂ℒ

∂  ∂𝜈Φi
=  0. (1.1.3)

Here,  the  Lagrangian 𝐿 has  become  a Lagrange  density ℒ and  the  generalized  coordinates qi have
become  continuous  scalar  fields Φi.

Now  assuming a symmetry  of  this  Lagragian,  meaning that  it  is  invariant  under  said  symmetry
transformation  up  to a partial  derivative, 𝛿ℒ = ∂𝜇𝐾𝜇,  using the  Lagragian’s  variation  in  combination
with  the  Euler-Lagrange  equations  (1.1.3),  yields  the  expression
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𝛿ℒ = ∂ℒ
∂Φi

𝛿Φi + ∂ℒ
∂  ∂𝜇Φi

∂𝜇𝛿Φi = ∂𝜇
(︀ ∂ℒ
∂  ∂𝜇Φi

𝛿Φi
)︀
. (1.1.4)  

We  can  use  this  to define  a conserved  current,  called  Noether  current

𝐽𝜇 = ∂ℒ
∂  ∂𝜇Φi

𝛿Φi − 𝐾𝜇, (1.1.5)  

by  substracting (1.1.4)  and 𝛿ℒ.  This  Noether  current  also obeys  the  continuity  equation

∂𝜇𝐽𝜇 =  0, (1.1.6)

making it  conserved  indeed  [17].  Additionally,  we  may  use  it  to define  a Noether  charge,  [22]

𝑄 =
∫︁

𝑑𝐷−1x0𝐽0(x), (1.1.7)  

which  we  can  verify  to be  conserved  as  well  by  applying its  derivative  [9]

∂t𝑄 =
∫︁

Σ
𝑑Σ∂0𝐽0 = −

∫︁
∂Σ

𝐽 · 𝑑𝑆 =  0. (1.1.8)  

Examples  of  conserved  charges  in  e.g.  Minkowski  space  would  be  [9]
• the  energy  of  the  system 𝑃 0 =

∫︀
Σ 𝑑Σ𝑇 00,  resulting from  homogenity  and  connected  to time

translations,
• the  system’s  momentum 𝑃 i =

∫︀
Σ 𝑑Σ𝑇 i0,  connected  to translations  in  space  and

• Lorenz  transformations 𝑀𝜇𝜈 =
∫︀

∂Σ 𝑑Σ(x𝜇𝑇 𝜈0 − x𝜈𝑇 𝜇0),  resulting from  the  isotropy  of
Minkowski  space  and  boost  invariance.

1.2  Noether  theorem  for  general  relativity

In  general  relativity,  usually  the  Einstein-Hilbert-action

𝑆[𝑔𝜇𝜈 ]  = − 1
2𝜅

∫︁
𝑑𝐷x

√−𝑔[𝑅 − 2Λ] (1.2.1)

is  used,  where 𝜅 is  inverse  proportional  to Newton’s  constant 𝐺, 𝑔𝜇𝜈 is  the  metric, 𝑅 = 𝑅𝜇𝜈𝑔𝜇𝜈 the
Ricci-scalar  and Λ the  cosmological  constant.  By  applying the  variational  principle  to (1.2.1),  we
find

𝛿  𝑆 =
∫︁

𝑑𝐷x
√−𝑔[(𝑅𝜇𝜈 − 1

2𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ)𝛿  𝑔𝜇𝜈 + 𝑔𝜇𝜈𝛿  𝑅𝜇𝜈 ]  =  0 (1.2.2)  

and  therefore  the  vacuum  Einstein  equations

𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ  =  0 (1.2.3)
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after  neglecting the  boundary  term 𝛿  𝑅𝜇𝜈 .
The  inhomogenous  Einstein  equations  may  be  found  from (1.2.3) by  adding matter  to our  the-
ory

𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ  = 𝜅𝑇𝜇𝜈 . (1.2.4)

Conservation  of  this  energy-momentum  tensor 𝑇𝜇𝜈 can  be  proven  by  taking the  covariant  derivative
of  both  sides,  leading to

∂𝜇𝑇 𝜇𝜈 =  0 (1.2.5)

due  to metric  compatibility ∂𝜇𝑔𝜇𝜈 =  0 and  conservation  of  the  Einstein  tensor ∂𝜇𝐺𝜇𝜈 = ∂𝜇(𝑅𝜇𝜈 −
1
2𝑔𝜇𝜈𝑅)  =  0 [18].
This  conserved  tensor 𝑇𝜇𝜈 is  connected  to the  conserved  Noether  current (1.1.5) and  thus  to the
Noether  charge  by  the  metric’s 𝑔𝜇𝜈 Killing vectors 𝜉𝜇

𝐽𝜇 = 𝑇 𝜇  

𝜈 𝜉𝜈 . (1.2.6)

However,  for  a theory  not  using Eucledian-  or  Minkowski-signature  as  it  was  used  in  the  previous
section,  it  is  important  to note  that  a term  previously  neglected  (due  to being equal  to 1)  will  now
appear  in  the  expression  for  the  charge  and  we  therefore  arrive  at

𝑄(t)  =
∫︁

∂Σ
𝑑𝐷−1x

√−𝑔  𝐽0(x𝜇)  =
∫︁

∂Σ
𝑑𝐷−1x

√−𝑔  𝑇 0
𝜇𝜉𝜇. (1.2.7)

For  a Killing-vector 𝜉0 = 𝜉t,  which  describes  symmetries  corresponding to time-translations,  this
charge  will  be  the  system’s  total  energy  [5].

1.2.1 Generalization

If  we  now  not  only  look  at  global  symmetries,  but  also consider  gauge  symmetries  and  transformations
x𝜇 → x𝜇 + 𝜁𝜇,  where 𝜁𝜇 is  some  diffeomorphism,  we  can  say  that  two global  symmetries  of  the
Lagrangian  are  equivalent  up  to said  gauge  transformation  and  an  additional  symmetry  that  has  a
vanishing generator  on  shell.  In  addition,  any  two conserved  currents  are  to be  seen  as  equivalent  if
their  only  difference  is  a trivial  current

𝐽𝜇 − 𝐽 �̃�
 = ∂𝜈k[𝜇𝜈] + t𝜇,  t𝜇 ≈ 0. (1.2.8)

Here,  should  the  equations  of  motion  be  fulfilled,  the  skew  (2,0)  tensor k[𝜇𝜈] = 1
2(k𝜇𝜈 − k𝜈  𝜇) can  

be  used  to arrive  at  an  alternative  expression  for  the  conserved  charges  when  integrating over  a
Cauchy-slice Σ

𝑄 =
∫︁

Σ
(𝑑𝐷−1x)𝜇𝐽𝜇 ≈

∫︁
∂Σ

(𝑑𝐷−2x)𝜇𝜈k[𝜇𝜈] (1.2.9)
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after  assuming ∂𝜇𝐽𝜇 ≈ ∂𝜇𝐽 �̃�.  However,  here,  we  have  not  invoked  any  constraints  on k[𝜇𝜈],  leaving
the  charge 𝑄 arbitary  and  leading to a vanishing current 𝐽𝜇 =  0 for  any  diffeomorphism  as  the
stress-energy  tensor  becomes  trivial  because 𝐽𝜇 = 𝑇 𝜇𝜈𝜉𝜈 ≈ 0.  Despite  that,  constraining the  skew
tensor k[𝜇𝜈] to (n − 2)-forms  that  uniquely  vanish  on  shell, 𝑑k =  0,  allows  for  the  definition  of  a
non-arbitrary  charge  conserved  across  surfaces 𝑆, 𝑄 =

∫︀
𝑆 k,  as  well  as  a generalization  of  Noether’s

theorem.  In  analogy  to mapping (global)  continuous  symmetries  of  the  action  to conserved  quantities  

or  currents,  we  therefore  now  have  a bijection  between  gauge  parameters 𝜆(x𝜇) that  cause  the  fields’
variations  to vanish  on-shell  and  the (n − 2)-forms k [9].

1.2.2 Noether’s  second  theorem  and  fundamental  theorem  of  the  phase  space  formal-
ism

Similarly  to (1.1.4),  for  a (n − 1)-form 𝑆𝜁 proportional  to the  equations  of  motion,  the  relation

𝑑𝑆𝜁 [ 𝛿  𝐿

𝛿Φ , Φ]  = 𝛿  𝐿

𝛿Φ𝛿𝜁Φ, (1.2.10)

holds,  where  the  Lagrangian 𝐿 is  an  n-form  and 𝜁𝜇 an  infitesimal  diffeomorphism.  This  is  called
“Noether’s  second  theorem” and  it  can  be  proven  for  e.g.  Einstein  gravity  with Φ  = 𝑔𝜇𝜈 by  explicit
computation.

We  now  further  define  the  variation 𝛿 = 𝛿Φi  

∂
∂Φi + 𝛿Φi

𝜇  

∂
∂Φi

𝜇
+ ... to be  a one  form  anticommuting 

with  the  exterior  derivative 𝑑 = 𝑑x𝜇∂𝜇,  where ∂𝜇 = ∂
∂  x𝜇 +  Φi

𝜇  

∂
∂Φi +  Φi

𝜇𝜈  

∂
∂Φi

𝜈
+ ....  This  together  

with  using the  total  derivative  of  a presymplectic  potential Θ(𝛿Φi, Φi)  = ∂𝜇𝛿Φi  

𝛿ℒ
𝛿  ∂𝜇Φi ,  which  is  a

boundary  term  in  the  Lagrangian’s  variation,  lets  us  write

𝛿ℒ = 𝛿ℒ
𝛿Φi

𝛿Φi − 𝑑Θ, (1.2.11)

labeling 𝛿Θ  = 𝜔 the  presymplectic  form.  Note  that  here,  the  presymplectic  potential Θ is  a
(n − 1, 1)-form  and  therefore  making the  presymplectic  form 𝜔 a (n − 1, 2)-form.  The  form  degrees
are  given  in  the  way  that  (spacetime  form  degree,  covariant  phase  space  form  degree).
In  a next  step,  we  can  find  an  expression  for  a conserved  current  by  using (1.2.11) to find  the
Lagrange-density’s  variation  along a diffeomorphism 𝜁𝜇 as  well  as  Noether’s  second  theorem (1.2.10)  

in  order  to obtain  the  expression 𝑑(𝜁𝜇∂𝜇ℒ)  = 𝑑𝑆𝜁 + 𝑑Θ and  therefore  allowing us  to find

𝐽𝜁 = 𝜁𝜇∂𝜇ℒ  − Θ,  𝑑𝐽𝜁 = 𝑑𝑆𝜁 ≈ 0. (1.2.12)

This  conserved  current’s  derivative  is  locally  exact  due  to a “fundamental  property  of  thr  covariant
phase  space”[9]  and  we  may  therefore  also express  it  as 𝐽𝜁 = 𝑆𝜁 + 𝑑𝑄𝜁 ,  by  virtue  of  which  we  find  

that  the  charge  now  reads

𝑄𝜁 = 𝐼𝜁(𝐽𝜁 − 𝑆𝜁), (1.2.13)
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with  the  operator 𝐼𝜁 = 1

n−k 𝜁𝛼  

∂
∂  ∂𝜇𝜁𝛼

∂
∂  𝑑x𝜇 . k denotes  the  form-degree  of  what 𝐼𝜁 is  acting on.

This  expression  for  the  charge (1.2.13) can  be  further  simplified  to the  Noether-Wald  surface
charge

𝑄𝜁 [Φ]  = −𝐼𝜁Θ (1.2.14)

seeing as  how  neither 𝑆𝜁 nor 𝜁𝜇∂𝜇ℒ contain  derivatives  in  the  diffeomorphism 𝜁𝜇 and  therefore  drop
out.  

We  can  further  connect  the (n − 2, 1)-form k𝜁 to the  presymplectic  form

𝜔 ≈ 𝑑k𝜁 . (1.2.15)  

It  can  further  (up  to a total  derivative)  be  expressed  as

k𝜁 = −𝛿  𝑄𝜁 + 𝜁𝜇∂𝜇Θ (1.2.16)

using (1.2.14).  We  therefore  find  the  theorem  of  the  covariant  phase  space  formalism  that  states  that
if  a unique  (up  to a total  derivative)  infitesimal  surface  charge k𝜁 exists  that  satisfies  the  relation
(1.2.15),  it  is  given  in  terms  of  the  Noether-Wald  charge (1.2.14) and  presymplectic  potential  as
given  above  in  equation  (1.2.16).

1.3  Surface  charges  and central  extension

1.3.1 Asymptotic  symmetries  and  asymptotic  symmetry  group

In  general,  diffeomorphisms 𝜁𝜇 preserving the  metric  can  be  found  by  solving the  so called  Killing’s
equation

ℒ𝜁𝑔𝜇𝜈 =  0, (1.3.1)

where ℒ𝜁 denotes  the  Lie-derivative  along some  vector  field 𝜁.  If  this  equation  is  only  satisfied  in
an  asymptotic  region,  e.g.  for r → ∞ with r being some  radial  coordinate,  the  diffeomorphism
preserving the  metric 𝑔𝜇𝜈 merely  asymptotically  is  called  an  asymptotic  symmetry  or  asymptotic
Killing-vector.
These  symmetries  may  be  constrained  by  a set  of  adequate  boundary  conditions  that  are  obeyed
by  some  set  of  field  configurations 𝜑,  yielding a set  of  allowed  diffeomorphisms {𝜁𝜇

𝑎 } that  contains
vectors  tangetial  to 𝜑 and  whose  elements  form  a Lie-algebra [𝜁𝑎,  𝜁𝑏]𝜇 = 𝐶𝑐  

𝑎𝑏𝜁
𝜇
𝑐 .

Merely  asymptotic  symmetries  whose  associated  conserved  charge 𝑄𝜁 is  non-zero have  an  effect  on
the  actual  physics  of  a system,  all  others  are  merely  gauge  transformations  generating coordinate
changes.  Therefore,  the  asymptotic  symmetry  group  can  be  defined  as  the  quotient  of  all  allowed
diffeomorphisms  over  all  trivial  gauge  transformations.
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1.3.2 Surface  charges  and  charge  algebra

We  next  define  a charge 𝑄𝜁 that  is conserved if  the  presymplectic  form vanishes on-shell 𝜔 ≈ 0 up
to a total  derivative  term  and  exists  if  the  surface  charge k𝜁 is  integrable  under  the  condition

𝛿1

∮︁
𝑆

k𝜁 [𝛿2Φ, Φ] − 𝛿2

∮︁
𝑆

k𝜁 [𝛿1Φ, Φ]  =  0. (1.3.2)  

Along some  curve 𝛾,  we  can  then  define

𝑄𝜁 = 𝑁𝜁 [Φ̄] +
∫︁

𝛾

∮︁
𝑆

k𝜁 (1.3.3)  

using some  reference  charge 𝑁𝜁 .

We  can  use  the  reference  field Φ̄ to derive  the  charge  algebra for  two different  asymptotic  diffeomor-
phisms  after  defining the  Lie-bracket  for  two infitesimal  diffeomorphisms  to be

{𝑄𝜁m ,  𝑄𝜁n} = 𝛿𝜁n𝑄𝜁m =
∮︁

𝑆
k𝜁m [𝛿𝜁nΦ; Φ] (1.3.4)  

and  thus

{𝑄𝜁m ,  𝑄𝜁n} = 𝛿𝜁n𝑄𝜁m =
∮︁

𝑆
k𝜁m [𝛿𝜁nΦ, Φ]  =  (

∮︁
𝑆

k𝜁m [𝛿𝜁nΦ, Φ] −
∮︁

𝑆
k𝜁n [𝛿𝜁mΦ, Φ]) (1.3.5)

+
∮︁

𝑆
k𝜁n [𝛿𝜁mΦ, Φ]  =

∫︁
𝛾

∮︁
𝑆

k𝜁m [𝛿𝜁nΦ, Φ] +
∮︁

𝑆
k𝜁m [𝛿𝜁nΦ̄, Φ̄]. (1.3.6)

Using the  integrability  condition  to see  that
∫︀

𝛾

∮︀
𝑆 k𝜁m [𝛿𝜁nΦ, Φ]  =

∫︀
𝛾

∮︀
𝑆 k[𝜁m,𝜁n] as  well  as  defining the

central  extension C𝜁m,𝜁n [Φ̄]  =
∮︀

𝑆 k𝜁m [𝛿𝜁nΦ̄, Φ̄] − 𝑁𝜁 ,  we  then  obtain  the  charge  algebra as  [9]

{𝑄𝜁m ,  𝑄𝜁n} =
∫︁

𝛾

∮︁
𝑆

k[𝜁m,𝜁n][𝛿𝜁nΦ, Φ] +
∮︁

𝑆
k𝜁m [𝛿𝜁nΦ̄, Φ̄]  = (1.3.7)

𝑄[𝜁m,𝜁n] + C𝜁m,𝜁n [Φ̄]. (1.3.8)

It  matches  the  diffeomorphism-algebra up  to a central  extension C𝜁m,𝜁n that  commutes  with  any  

surface  charge 𝑄𝜁m and  is  antisymmetric  under  the  exchange  of  the  diffeomorphisms 𝜁m,n.  It  

additionally  preserves  (anti)symmetry  properties  and  is  said  to be  non-trivial  if  it  “cannot  be
absorbed  into a normalization  of  the  charges” and  cannot  be  removed  by  a change  of  basis.[9]

We  can  also obtain  an  expression  for  the  conserved  charges  in  terms  of  the  metric  by  linearizing the
theory  around  some  background 𝑔𝜇𝜈 with  the  metric’s  variation ℎ𝜇𝜈 = 𝛿  𝑔𝜇𝜈 = 𝑔𝜇𝜈 − 𝑔𝜇𝜈 ,  defining
the  conserved  charge  as

𝑄𝜁 [𝑔  ,  𝑔]  =
∫︁ 𝑔  

𝑔

∮︁
𝑆

k𝜁 [𝑑𝑔′; 𝑔′] (1.3.9)
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and  its  variation  as

𝛿𝜁𝑄𝜁 [𝑔  ,  𝑔]  =
∫︁

Σ
k𝜁 [𝑑𝑔′; 𝑔′] (1.3.10)

for  all  asymptotic  symmetries 𝜁 that  preserve 𝑑k𝜁 =  0 on-shell.  Afterwards,  one  can  derive  an
expression  for  the  surface  charge  and  also the  conserved  charges  for  any  conformal  theory,  which  is
a theory  whose  metric  is  invariant  under  conformal  transformations  up  to a scale  factor,  see  chapter
3 for  details.

1.3.3 Conserved  charges  in  Einstein-gravity

For  the  Lagrangian ℒ = 1
16𝜋  𝐺

√−𝑔  𝑅,  where  the  only  field  is  the  metric 𝑔𝜇𝜈 ,  the  presymplectic
potential  previously  mentioned  is

Θ𝜇[ℎ,  𝑔]  =
√−𝑔

16𝜋 𝐺
(𝛻𝜈ℎ𝜇𝜈 −  𝛻𝜇ℎ𝜈  

𝜈). (1.3.11)  

For ℎ = 𝛿𝜁𝑔 = ℒ𝜁𝑔,  we  find  that

Θ𝜇 ≈  

√−𝑔

16𝜋 𝐺
𝛻𝜈(𝛻𝜈𝜁𝜇 −  𝛻𝜇𝜁𝜈) (1.3.12)  

and

𝑄𝜁 = −𝐼𝜁Θ  =
√−𝑔

8𝜋 𝐺
𝛻𝜇𝜁𝜈(𝑑n−2x)𝜇𝜈 , (1.3.13)  

leading to the  surface  charge  formula [9]

k𝜁 [ℎ,  𝑔]  =
√−𝑔

8𝜋 𝐺
(𝑑n−2x)𝜇𝜈(𝜁𝜇𝛻𝜎ℎ𝜈  𝜎 − 𝜁𝜇𝛻𝜈ℎ + 𝜁𝜎𝛻𝜈ℎ𝜇𝜎 +  

1
2ℎ𝛻𝜈𝜁𝜇 − ℎ𝜌𝜈𝛻𝜌𝜁𝜇). (1.3.14)

The  surface  charge  that  we  will  need  to use  is  called  the  Barnich-Brandt  charge,  which  differs  from
(1.3.14)  by  just  an  additional  boundary  term  and  for  Einstein  gravity  reads  [9]

k𝜁 [ℎ,  𝑔]  =
√−𝑔

8𝜋 𝐺
(𝑑n−2x)𝜇𝜈(𝜁𝜇𝛻𝜎ℎ𝜈  𝜎−𝜁𝜇𝛻𝜈ℎ+𝜁𝜎𝛻𝜈ℎ𝜇𝜎+1

2ℎ𝛻𝜈𝜁𝜇−1
2ℎ𝜌𝜈𝛻𝜌𝜁𝜇+1

2ℎ𝜈  

𝜎𝛻𝜇𝜁𝜎) (1.3.15)  

or  rather  [19]

k𝜁 [ℎ,  𝑔]  = −1
4𝜀𝛼𝛽  𝜇𝜈 [𝜁𝜈𝛻𝜇ℎ−𝜁𝜈𝛻𝜎ℎ𝜇𝜎+𝜁𝜎𝛻𝜈ℎ𝜇𝜎+1

2ℎ𝛻𝜈𝜁  𝜇−ℎ𝜈  𝜎𝛻𝜎𝜁𝜇+1
2ℎ𝜎  𝜈(𝛻𝜇𝜁𝜎+𝛻𝜎𝜁𝜇)]𝑑x𝛼∧𝑑x𝛽 .

(1.3.16)
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1.3.4 Charges  in  Topologically  Massive  Gravity

A big class  of  black  holes  can  be  described  using the  theory  of  Topologically  Massive  Gravity  (TMG),
where  higher  order  curvature  corrections  are  introduced  to the  action  in  the  form  of  an  additional
Chern-Simons  term,  see  below.  The  action  reads  [10]

𝑆𝑇  𝑀  𝐺 =  

1
16𝜋

∫︁
𝑑3x

√−𝑔(𝑅 + 2) − 1
96𝜋 𝜈

∫︁
𝑑3x

√−𝑔  𝜀𝜆𝜇𝜈Γr  

𝜆𝜎(∂𝜇Γ𝜎  

r  𝜈 +  

2
3Γ𝜎  

𝜇𝜏 Γr  

𝜈  r), (1.3.17)

the  surface  charge  will  have  a contribution  from  the  gravitational  side  denoted  by  the  Barnich-Brandt
charge  (1.3.15),  but  also a contribution  from  the  gravitational  Chern-Simons  term  [10]

k𝜇𝜈  

𝑔  𝐶  𝑆 [𝜁  ,  ℎ,  𝑔]  =  

1
3𝜈  

k𝜇𝜈  

𝐵  𝑎r  ni𝑐ℎ[𝜂  ,  ℎ,  𝑔] − 1
6𝜈  

𝜁𝜆(2𝜀𝜇𝜈  𝜌𝛿(𝐺𝜆𝜌) − 𝜀𝜇𝜈  𝜆𝛿  𝐺)+ (1.3.18)
1
6𝜈  

𝜀𝜇𝜈  𝜌[𝜁𝜌ℎ𝜆𝜎𝐺𝜎  𝜆 +  

1
2ℎ(𝜁𝜎𝐺𝜎  

𝜌 +  

1
2𝜁𝜌𝑅)],

with 𝜂𝜇 = 1
2𝜀𝜇𝜈  𝜌𝛻𝜈𝜁𝜌,  the  totally  antisymmetric  tensor 𝜀𝜇𝜈  𝜌 and  the  Christoffel  symbol Γ.

Due  to this  additional  term  in  the  action (1.3.17),  the  vacuum  Einstein-equations  now  obtain  an
additional  term  and  change  to the  third  order  differential  equations  [16]

𝑅𝛼𝛽 − 1
2𝑔𝛼𝛽𝑅 + Λ𝑔𝛼𝛽 +  

1
𝜇  

𝐶𝛼𝛽 =  0, (1.3.19)

where 𝐶𝛼𝛽 = 𝜀𝛼  

𝜇𝜈𝛻𝜇(𝑅𝜈  𝛽 − 1
4𝑔𝜈  𝛽𝑅) is  the  Cotton-tensor  and 𝜇 the  mass  of  the  graviton.  All

“normal” solutions  of  Einstein-gravity  are  also solutions  of  these  equations,  but  there  will  also be
a new  set  of  solutions  appearing that  are  of  great  interest  to us,  namely  warped  spacetimes,  see
chapter 4.3 for  more  details.



Chapter  2 

Black  Hole  thermodynamics

This  section  will  give  a brief  summary  of  the  thermodynamics  of  black  holes  by  presenting brief
derivations and/or  proofs of  the  4 laws of  thermodynamics of  black  holes that  stand in analogy  to
the  laws  of  thermodynamics  from  classical  theory.

2.1  Zeroth law

We  start  by  defining a special  quantity  called  the  surface  gravity 𝜅 as  a “non-affine  parameter  of
the  null  geodesic” [18]

𝜉𝜇𝛻𝜇𝜉𝜈 |ℋ= 𝜅𝜉𝜈 , (2.1.1)

where 𝜉 denotes  a Killing vector  that  is  normal  to the  black  hole  horizon ℋ,  making it  a Killing
horizon.  After  using the  orthogonality  of 𝜉 on  the  horizon ℋ on (2.1.1),  we  get 𝜉[𝜇𝛻𝜈𝜉𝜌],  which  after
expansion  and  utilizing Killing’s  equation, 𝛻𝜇𝜉𝜈 + 𝛻𝜈𝜉𝜇 =  0,  becomes

𝜉𝜌𝛻𝜇𝜉𝜈 = −2𝜉[𝜇𝛻𝜈]𝜉𝜌. (2.1.2)

After  multiplying this  by 𝛻𝜇𝜉𝜈 and  using (2.1.1) as  well  as  Killing’s  equation  yields  an  explicit
expression  for  the  surface  gravity

𝜅2 = −1
2(𝛻𝜇𝜉𝜈)(𝛻𝜇𝜉𝜈) |ℋ . (2.1.3)  

Acting on  this  with 𝜉𝜇𝛻𝜇 yields  the  relations

𝜉mu𝛻𝜇𝜅2 |ℋ= −1
2𝜉𝜇𝛻𝜇[(𝛻𝛼𝜉𝜈)(𝛻𝛼𝜉𝜈)] |ℋ= −𝜉𝜇(𝛻𝛼𝜉𝜈)𝛻𝜇𝛻𝛼𝜉𝜈 |ℋ . (2.1.4)

Now,  we  introduce  the  curvature  tensor,  the  Riemann-tensor  defined  as [𝛻𝜇, 𝛻𝜈 ]𝜉𝜌 = 𝑅𝜌  

𝛼𝜇𝜈𝜉𝛼.  For
a Killing vector,  there  exists  the  Killing vector  lemma

𝛻𝜇𝛻𝜈𝜉𝜌 = 𝑅𝜌  

𝜈  𝜇𝛼𝜉𝛼. (2.1.5)

Using this  as  well  as  the  fact  that  the  Riemann-tensor  is  antisymmetric  in  its  last  two indeces  from
(2.1.4)  we  find
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𝜉𝜇𝛻𝜇𝜅2 |ℋ=  0. (2.1.6)

This  proves  that  the  surface  gravity 𝜅 is  constant  along orbits  of  the  Killing vector 𝜉 generating the
horizon.
Now,  imagine  a (n − 2)-dimensional  spacelike  hypersurface 𝑆 on  which 𝜉𝜇 |𝑆=  0,  making the  (null)
hypersurfaces  that  generate  the  Killing horizon  intersect. 𝑆 then  denotaes  a bifurcation  two-sphere.
Taking a tangent  vector  field s𝜇 to this  bifurcation  two-sphere  and  acting on (2.1.3) with s𝜇𝛻𝜇 as
well  as  using that 𝜉𝜇 |𝑆=  0 on 𝑆,  we  find

s𝜇𝛻𝜇𝜅2 |𝑆=  0. (2.1.7)  

Therefore,  the  surface  gravity 𝜅 is  constant  along the  bifurcation  sphere 𝑆.
With  this  we  proved  the  zeroth  law  of  black  hole  thermodynamics,  namely  that  the  surface  gravity
𝜅 is  constant  on  a bifurcate  Killing horizon ℋ.[18]

2.2  First  law

The  derivation  of  the  first  law  works  using conserved  charges 𝛿  𝑄𝜁 =
∫︀

𝑆∞ k𝜁 .  Because  of  the
uniqueness  condition 𝑑k𝜁 =  0 and  in  order  to have  integrability,  this  integral  must  be  the  same  as  

the  one  over  the  horizon 𝐻 and  therefore  for  a generator  of 𝐻 of  the  form 𝜁 = ∂t + Ω∂𝜑,  with  the
temporal  coordinate t and  angular  coordinate 𝜑,  we  have

∫︁
𝑆∞

k𝜁 =
∫︁

𝑆∞
k∂t + Ω𝐻

∫︁
𝑆∞

k∂𝜑
= 𝛿  𝑀 − Ω𝐻𝛿  𝐽 =

∮︁
𝐻

k𝜁 [𝑔𝜇𝜈 ,  𝛿  𝑔𝜇𝜈 ]. (2.2.1)

The  last  term  consists  of  the  two seperate  terms

−𝛿

∮︁
𝐻

𝐾𝜁 [𝑔𝜇𝜈 ]  = −𝛿( 𝜅𝐴

8𝜋 𝐺
) (2.2.2)  

and
∮︁

𝐻
𝐾𝛿  𝜁 [𝑔𝜇𝜈 ] −

∮︁
𝐻

𝜁Θ[𝑔𝜇𝜈 ,  𝛿  𝑔𝜇𝜈 ]  =
∮︁

𝐻

𝑑𝐴

8𝜋 𝐺  

𝛿  𝜅, (2.2.3)  

where

𝐾𝜁 [𝑔]  =
√−𝑔

16𝜋 𝐺
(𝛻𝜇𝜉𝜈 −  𝛻𝜈𝜉𝜇)(𝑑n−2x)𝜇𝜈 , (2.2.4)

Θ[ℎ,  𝑔]  =
√−𝑔

16𝜋 𝐺
(𝛻𝜈𝛿  𝑔𝜇𝜈 −  𝛻𝜇𝛿  𝑔)(𝑑n−1x)𝜇 (2.2.5)  

and  the  intergation  measure  for (n − 2)-forms

√−𝑔(𝑑2x)𝜇𝜈 =  

1
2(𝜉𝜇n𝜈 − n𝜇𝜉𝜈)𝑑𝐴 (2.2.6)
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were  used.  Putting all  together,  we  finally  arrive  at

∮︁
𝐻

k𝜁 [𝑔𝜇𝜈 ,  𝛿  𝑔𝜇𝜈 ]  = 𝜅

8𝜋 𝐺  

𝛿  𝐴 (2.2.7)  

and  therefore  the  first  law  of  black  hole  thermodynamics  [11]

𝛿  𝑀 − Ω𝐻𝛿  𝐽 = 𝜅

8𝜋 𝐺  

𝛿  𝐴. (2.2.8)

2.3  Second law

The  second  law  states  that  if  the  null  energy  condition, 𝑅𝛼𝛽𝜉𝛼𝜉𝛽 ≥ 0,  is  satisfied  for  any  future
directed  null  vector  field 𝜉,  a black  hole’s  area 𝐴 will  never  decrease

𝛿  𝐴 ≥ 0. (2.3.1)  

This  can  be  seen  to be  true  using the  null,  twist  free  version  of  Raychaudhuri’s  equation

𝑑𝜃

𝑑𝜆
= − 1

𝑑 − 1𝜃2 − 𝜎𝛼𝛽𝜎𝛼𝛽 − 𝑅𝛼𝛽𝜉𝛼𝜉𝛽 , (2.3.2)

where 𝑑 is  the  dimension  of  the  spacetime.  Because  this  law  only  holds  if  the  null  energy  condition
is  fulfilled,  the  inequality

𝑑𝜃

𝑑𝜆
≤  − 1

𝑑 − 1𝜃2, (2.3.3)  

implying

1
𝜃(𝜆) ≥ 1

𝜃0
+ 𝜆

𝑑 − 1 , (2.3.4)

must  hold  true.  Now  assuming that  the  congruence  is  at  first  converging,  i.e.  that 𝜃0 is  negative,  with
decreasing 𝜆, 𝜃 → −∞ at  some  point  in  time,  implying a signularity  of  the  congruence.  However,
an  event  horizon’s  generators  can  never  run  into such  a caustic  if  the  horizon  is  generated  by  "null
geodesics  without  future  end  points"[11]  and  therefore 𝜃 ≥ 0,  meaning that  the  area of  a black  hole
cannot  decrease  indeed.  [11]

2.4  Summary

To summarize,  we  also state  the  laws  of  classical  thermodynamics  as  an  analogy  to black  hole
thermodynamics:  [23]

Law Black  hole  dynamics Thermodynamics

0 𝜅 = 𝑐onst on  the  Killing horizon 𝐻
temperature 𝑇 = 𝑐onst. in  a body  that  is
in  thermal  equilibrium

1 𝛿  𝑀 − Ω𝐻𝛿  𝐽 = 𝜅
8𝜋  𝐺𝛿  𝐴 𝑑𝐸 = 𝑇  𝑑𝑆+work  terms

2 𝛿  𝐴 ≥ 0 𝛿  𝑆 ≥ 0



Chapter  3 

Conformal  Field  Theory

This  section  will  provide  a summary  of  the  basic  and  most  important  aspects  of  conformal  field
theories  (CFT).  A CFT  is  a theory  whose  metric  is  invariant  under  conformal  transformations  up
to a scale  factor.  

There  are  three  such  transformations:
• translations  in  time
• scaling transformations
• special  conformal  transformations.

We  can  derive  the  conformal  version  of  the  Killing equation  by  starting out  with  some  metric 𝑔𝜇𝜈

that  is  supposed  to remain  invariant  under  a conformal  transformation  and  making the  ansatz

𝑔𝛼𝛽
∂  x

′𝛼

∂  x𝜇

∂  x
′𝛽

∂  x𝜈
= 𝜆(x)𝑔𝜇𝜈 , (3.0.1)  

with  some  scale  factor 𝜆(x).  Now  we  insert  a finite  translation x
′𝜇 = x𝜇 + 𝜀𝜇(x𝜈) to find

∂𝜇𝜀𝜈 + ∂𝜈𝜀𝜇 = 𝜆(x)𝑔𝜇𝜈 . (3.0.2)

Taking the  trace  yields  the  remaining unknown  scaling factor 𝜆(x)  = 2
𝑑∂  𝜀 and  thus  the  conformal

Killing equation

∂𝜇𝜀𝜈 + ∂𝜈𝜀𝜇 =  

2
𝑑

(∂  𝜀)𝑔𝜇𝜈 . (3.0.3)  

If  we  let ∂𝜇 act  on  this  and  then  add  three  different  index  permutations  up,  we  arrive  at

2∂𝜇∂𝜈𝜀𝜌 =  

2
𝑑

(−𝑔𝜇𝜈∂𝜌 + 𝑔𝜌𝜇∂𝜈 + 𝑔𝜈  𝜌∂𝜈)(∂  𝜀). (3.0.4)

We  can use  this in order  to obtain the  CFT’s infitesimal  generators by  inserting different  ansaetze
for 𝜀𝜇 into it:

• after  taking inspiration  from  Poincare-transformations,  expanding and  inserting 𝜀𝜇 = 𝑎𝜇 +
𝑏𝜇𝜈x𝜈 + 𝐶𝜇𝜈  𝜌x𝜈x𝜌,  where 𝑎𝜇 is  some  constant  associated  with  translations  in  spacetime,  yields

𝑃𝜇 = −i∂𝜇. (3.0.5)
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We  also obtain 𝐶𝜇𝜈  𝜌 = 𝐶𝜇𝜌𝜈 as  a symmetric  tensor  in  its  last  two indeces.

• When  only  using the  middle  term  of  beforementioned  ansatz 𝜀𝜇 = 𝑏𝜇𝜈x𝜈 and  inserting it
into the  conformal  Killing equation (3.0.3),  we  obtain 𝑏𝜇𝜈 = m𝜇𝜈 + 𝛼  𝑔𝜇𝜈 ,  where m𝜇𝜈 is some
antisymmetric  tensor  that  generates  Lorenz  transformations

𝐿𝜇𝜈 = i(x𝜇∂𝜈 − x𝜈∂𝜇) (3.0.6)  

and  the  symmetric  part  of 𝑏𝜇𝜈 generates  dilatations

𝐷 = −ix𝜇∂𝜇. (3.0.7)

• Inserting 𝜀𝜇 = 𝜀𝜇𝜈  𝜌x𝜈x𝜌 into (3.0.4) yields  the  tensor 𝐶𝜇𝜈  𝜌 = 𝑔𝜇𝜌𝑏𝜈 + 𝑔𝜇𝜈𝑏𝜌 − 𝑔𝜈  𝜌𝑏𝜇 with
𝑏𝜇 = 1

𝑑𝐶𝜈
𝜈  𝜇.  Its  non-trivial  part  generates  special  conformal  transformations

𝐾𝜇 = −i(2x𝜇x𝜈∂𝜈 − x2∂𝜇). (3.0.8)  

These  generator’s  Lie  brackets  provide  us  with  the  conformal  algebra for 𝑑 ≥ 3 

[𝐷  ,  𝑃𝜇]  = i𝑃𝜇 [𝐷  ,  𝐾𝜇]  = −i𝐾𝜇 (3.0.9)
[𝐾𝜇,  𝑃𝜈 ]  =  2i(𝑔𝜈  𝜇𝐷 − 𝐿𝜇𝜈)  [𝐾𝜌,  𝐿𝜇𝜈 ]  = i(𝑔𝜌𝜇𝐾𝜈 − 𝑔𝜌𝜈𝐾𝜇) (3.0.10)
[𝑃𝜌,  𝐿𝜇𝜈 ]  = i(𝑔𝜌𝜇𝑃𝜈 − 𝑔𝜌𝜈𝑃𝜇) (3.0.11)

[𝐿𝜇𝜈 ,  𝐿𝜌𝜎]  = i(𝑔𝜈  𝜌𝐿𝜇𝜎 + ...). (3.0.12)

Together  they  make  up  the  conformal  group,  which  for  d-dimensional  Minkowski  space  is 𝑆  𝑂(𝑑, 2)
and 𝑆  𝑂(𝑑 + 1, 1) for  d-dimentional  Euclidean  space.  [21]

3.1  Conformal  group and representations

The  conformal  group (3.0.12) is  made  up  of (𝑑+1)(𝑑+2)
2 generators  in 𝑑 dimensions,  which  coincides

with  the  number  of  generators  of  the 𝑆  𝑂(𝑑 +  2)-type  algebra.  We  therefore  redefine  the  generators
as

𝐽𝜇𝜈 = 𝐿𝜇𝜈 (3.1.1)

𝐽−1𝜇 =  

1
2(𝑃𝜇 − 𝐾𝜇) (3.1.2)

𝐽0𝜇 =  

1
2(𝑃𝜇 + 𝐾𝜇) (3.1.3)

𝐽0−1 = 𝐷  , (3.1.4)  

yielding the  Lorenz-type  algebra
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[𝐽mn,  𝐽pq]  = i(𝑔m𝑎𝐽n𝑎 + ...), (3.1.5)  

where 𝑔m𝑎 = 𝑑i𝑎𝑔(−1, −1, 1, 1....1).

Representations: Let  us  now  consider  a field Φ on  which  we  use  a scaling transformation

Φ(𝜆x)  = 𝜆−ΔΦ(x), (3.1.6)

where  the  scaling dimension Δ is  an  eigenvalue  of  the  dilatation  operator.  Using the  Jacobian
| ∂  x′

∂  x |=  Λ(x)−𝑑/2 and  committing the  field  to a coordinate  transformation,  we  obtain

Φ′(x′)  =| ∂  x′

∂  x
|− Δ

2 Φ(x). (3.1.7)  

A field  that  transforms  in  this  way  is  called  a quasi-primary.  [21]

3.2  Witt  and Virasoro  algebra

In  order  to obtain  the  famous  Witt  algebra,  we  first  start  out  with  a holomorphic  transforma-
tion

z′ = 𝑓(z)  = z + 𝜀(z)  = z +
∑︁
n∈Z

𝜀n(−zn+1), (3.2.1)

where  the  last  equality  is  just  the  general  Laurent-expansion  for  an  arbitary  holomorphic  function.
The  infitesimal  generators  for  individual  Laurent-modes  in  2 dimensions  are

lm = −zm+1∂z, (3.2.2)  

and  their  Lie  algebra provides  us  with  the  Witt-algebra

[lm,  ln]  =  (n − m)ln+m, (3.2.3)  

which  is  infinite  dimensional.  

If  we  now  consider  a central  extension 𝑍(n,  m) of  the  algebra

[𝐿n,  𝐿m]  =  (n − m)𝐿n+m + 𝑍(n,  m), (3.2.4)

we  will  want  to check  whether  it  is  trivial.  To do this,  we  can  make  use  of  the  Jacobi  identities  to
obtain  conditions  on 𝑍.  Note  that  for  the  Virasoro algebra we  are  intending to derive  with  this,
the  central  extension  will  be  non-trivial  and  directly  proportional  to a central  charge 𝑐,  which  was
described  in  chapter 1.3.2.
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First  of  all,  we  will  commit  to a change  of  basis 𝐿n → 𝐿n + 𝐴(n),  𝑍 → 𝑍 − (n − m)𝐴(n + m)
which  helps  us  find 𝑍(n, 0)  = 𝑍(0,  m)  = 𝑍(1, −1)  =  0 as  well  as 𝑍(n,  m)  = −𝑍(m,  n) by  choosing
𝐴(n)  = 𝑍(n,0)

n and 𝐴(0)  = 𝑍(1,−1)
2 .  We  can  freely  choose  such  constraints  on 𝐴 since  it  does  not

change  the  fundamental  physics.  The  central  extension’s  antisymmetric  property  is  a result  of  the  

antisymmetry  of  the  commutator.  

By  now  computing the  generators’  algebra again,  we  find  the  global  subalgebra

[𝐿±1,  𝐿0]  = ±𝐿±1, [𝐿1,  𝐿−1]  =  2𝐿0, (3.2.5)

but  no central  extension.  However,  the  Jacobi  identity  still  has  to hold,  so we  can  use  it  to find
• For k =  0, n + m ̸=  0: (m + n)𝑍(m,  n)  =  0 and  therefore m = −n and 𝑍(n,  m)  = 𝑍(n)𝛿n+m,0.
• For k =  1: 𝑍(n)  = 𝑍(2)

6 (n3 − n),  which  is  a unique  central  extension  of  the  Witt  algebra to
the  Virasoro algebra.  

Defining 𝑍(2)  = 𝑐
2 ,  we  therefore  find  the  Virasoro algebra [21]

[𝐿n,  𝐿m]  =  (n − m)𝐿m+n + 𝑐

12(n3 − n)𝛿n+m,0. (3.2.6)

3.3  (Quasi-)Primary  fields  and OPEs

3.3.1 Primaries  and  quasi-primaries

We  again  consider  a field 𝜑(z , z) under  a scaling transformation z → 𝜆z:

𝜑′(z , z)  = 𝜆ℎ𝜆
ℎ
𝜑(𝜆z , 𝜆z) (3.3.1)

with  the  (anti-)holomorphic  scaling dimensions ℎ, ℎ.  If 𝜑 transforms  under  the  local  conformal
transformation z → 𝑓(z) as

𝜑′ =
(︀∂  𝑓

∂  z

)︀ℎ(︀∂  𝑓

∂z

)︀ℎ
𝜑(𝜆z , 𝜆z), (3.3.2)

and  this  holds  for  all 𝑓  , 𝑓 ,  then 𝜑 is  called  a primary  field.  Note  that  while  not  all  quasi-primary
fields  are  primaries,  all  primary  fields  are  trivially  quasi-primaries.
Example:  For 𝑓(z)  = z + 𝜀(z),  we  have (∂  𝑓

∂  z )ℎ =  1 + ℎ∂z𝜀(z) + O(𝜀2) and  therefore  the  transforma-
tion[21]

𝛿𝜀𝜑 =  (ℎ∂z𝜀 + 𝜀∂z + ℎ∂z𝜀 + 𝜀∂z)𝜑. (3.3.3)

3.3.2 Operator  product  expansions  and  Ward  identity

Ward  identities: The  ward  identities  describe  how  the  invariance  of  the  action  of  a theory  under  a
continuous  symmetry  constraints  the  correlation  functions’  forms.
Given  the  general  form  of  a path  integral  as 𝑍 =

∫︀ D𝜑𝑒−𝑆(𝜑),  one  may  write  correlation  functions
as
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⟨𝑂1(x1)...𝑂n(xn)⟩ =  

1
2

∫︁
D𝜑𝑒−𝑆(𝜑)Πi𝑂i(xi). (3.3.4)

Now  doing an  infitesimal  transformation 𝜑′ = 𝜑+Σ(x𝜇)𝛿  𝜑,  with  some  coordinate  dependend  function
Σ,  the  path  integral  changes  to

∫︁
D𝜑′𝑒−𝑆(𝜑′) =

∫︁
D𝜑𝑒−𝑆(𝜑−

∫︀
𝐽𝛼∂𝛼Σ𝑑x) ≈

∫︁
D𝜑𝑒−𝑆(𝜑)(1 −

∫︁
𝐽𝛼∂𝛼Σ𝑑x) (3.3.5)

with  a current 𝐽𝛼.  Integration  by  parts  yields  the  quantum  mechanic  analogue  of  the  continuity
equation  (and  we  now  also have  a quantum  version  of  Noether’s  theorem)

⟨∂𝛼𝐽𝛼⟩ =  0. (3.3.6)

Now,  adding an  operator  transformed  under  the  transformation  done  before 𝑂′
n = 𝑂n + Σ(x𝛼)𝛿  𝑂n,

with Σ chosen  so that  only  for x = xn, Σ(xn)  =  0 (meaning that  support  is  away  from  the  operator
insertion xn),  will  lead  to 𝑂′

n = 𝑂n after  inserting x𝛼 = xn.  The  operator’s  expectation  value  will
then  become

∫︁
D𝜑𝑒−𝑆(𝜑)𝑂n(xn) ≈

∫︁
D𝜑𝑒−𝑆(𝜑)(1 −

∫︁
𝐽𝛼∂𝛼Σ𝑑x)𝑂n(xn) (3.3.7)  

We  therefore  find ⟨∂𝛼𝐽𝛼(x)𝑂n(xn)⟩ =  0 ∀x ̸= xn,  which  can  be  generalized  to

⟨∂𝛼𝐽𝛼(x)Πi𝑂i(xi)⟩ =  0 ∀x ̸= xi. (3.3.8)

If Σ  = 𝑐onst in  a support  including x = xi and  0 otherwise,  again  the  same  procedure  will  in  the
end  yield  the  Ward  identities

∂𝜇⟨𝐽𝜇(y)⟨𝑂1(x1)...𝑂n(xn)⟩ =
n∑︁

i=1
𝛿(y − xi)⟨𝑂1(x1)..𝑂i(xi)..𝑂n(xn)⟩. (3.3.9)

OPEs: An  operator  product  expansion  or  OPE  describes  "what  is  happening when  two local  

operators  approach  each  other",  meaning that  if  we  insert  two local  operators  at  points  close  to
each  other  they  can  be  approximated  by  a "sting"  of  operators  at  one  of  these  two points.  This  is
valid  within  correlation  functions.  The  OPE  shows  a singular  behaviour  as  the  two points  approach  

each  other,  which  is  also its  only  non-trivial  part.  This  can  be  seen  to be  true  when  considering the  

Ward  identities (3.3.9):  writing the  correlation  function  on  the  left  hand  side  out  as  an  integral  and
applying the  residue  formula at  the  singular  point  will  yield  a non-vanishing expression  for  that
point  only.  

The  OPE  is  generally  given  by

𝑂1(z , z)𝑂2(𝜔  , 𝜔)  =
∑︁

j

𝐶12j(z − 𝜔  , z − 𝜔)𝑂j(y). (3.3.10)
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For  the  OPE  between  an  operator 𝑂 and  the  stress  tensor 𝑇 (z),  its  singular  part  describes  how  the
operator  acts  under  a conformal  transformation  and  we  therefore  are  interested  in  calculating it.[11]  

To do so,  let  us  start  out  with  a 2d  CFT  that  contains  symmetries  of  the  form x𝜇 → x𝜇 + 𝜀𝜇(x) and  

therefore  currents j𝜈 = 𝑇𝜇𝜈𝜀𝜈 .  For  consistency,  the  energy-stress  tensor 𝑇𝜇𝜈 has  to be  trace-free  and
fulfill  the  conservation  equation,  which  can  be  expressed  in  complex  coordinates  as

𝑇zz =  0,  ∂z𝑇z  z =  0 = ∂z𝑇z  z, (3.3.11)

from  which  also follows  that  the  tensor  is  holomorphic 𝑇z  z = 𝑇z  z(z)  = 𝑇 (z).  Since  we  have  

symmetries,  we  are  also provided  with  an  infinite  set  of  conserved  charges,  one  corresponding to
each  appearing symmetry,

𝑄 =
∫︁

𝑑xj0 =  

1
2𝜋 i

∮︁
𝐶

[𝑑z 𝜀(z)𝑇 (z) + ℎ.𝑐.], (3.3.12)

with  the  conserved  current j0 = 𝑇 𝜇0𝜀0,  which  generates  symmetry  transformations  of  the  form

𝛿  𝑂 =  [𝑄,  𝑂] (3.3.13)

for  a given  operator 𝑂.  Similarly  we  therefore  find  that  an  infitesimal  transformation  for  the
fields

𝛿𝜀𝜑(m, n)  =  

1
2𝜋 i

∮︁
𝐶

𝑑z[𝜀(z)𝑇 (z),  𝜑(𝜔  , 𝜔)] + ℎ.𝑐.. (3.3.14)

Now  reinterprating the  commutator  appearing here  as  a radial  ordering instead  of  a time  ordering of  

the  contour  integral
∮︀

𝐶(𝜔) 𝑅(𝐴(z)𝐵(𝜔)) in  order  to end  up  with  a radial  quantization,  see  subsection
3.4 for  details,

𝑅(𝐴(z)𝐵(𝜔))  = 𝐴(z)𝐵(𝜔) ∀  | z |⟩  | 𝜔 |  ∨ 𝐵(𝜔)𝐴(z) ∀  | z |  ⟨| 𝜔 | (3.3.15)  

leads  to the  transformation

𝛿𝜀𝜑(𝜔  , 𝜔)  =  

1
2𝜋 i

∮︁
𝐶(𝜔)

𝑑z 𝜀(z)𝑅[𝑇 (z)𝜑(𝜔  , 𝜔)] + 𝑎nti. − ℎol  .. (3.3.16)

Comparing this  to the  infitesimal  transformation (3.3.3) leads  to an  example  of  an  OPE  valid  for
any  primary  field

𝑅(𝑇 (z)𝜑(𝜔  , 𝜔))  = ℎ

(z − 𝜔)2 𝜑(𝜔  , 𝜔) + ∂𝜔𝜑

z − 𝜔
+ r  𝑒𝑔  ul  𝑎r  iz 𝑎tion. (3.3.17)  

Next,  let  us  expand

𝑇 (z)  =
∑︁

n

z−n−2𝐿n, (3.3.18)
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with

𝐿n =  

1
2𝜋 i

∮︁
𝑑z zn+1𝑇 (z), (3.3.19)

which  leads  us  to the  mode  algebra for  the  stress-energy  tensor 𝑇𝜇𝜈 ,  the  Virasoro algebra (3.2.6).
Let  us  further  expand 𝜀(z)  = −𝜀nzn+1 to its n-th  Laurent  mode.  This  yields  the  charges  [21]

𝑄n =
∮︁

𝑑z

2𝜋 i  

𝑇 (z)𝜀(z)  = −𝜀n𝐿n. (3.3.20)

3.3.3 Sugawara construction

Let  us  define  the  field 𝜑(z , z) as  a field  describing a free  boson  with  currents j(z)  = i∂𝜑 and j = i∂𝜑.
Expanding these  currents  to

j(z)  =
∑︁

n

z−n−1𝐽n (3.3.21)  

and  using their  Heisenberg commutator  yields  an  affine  (Kac-Moody)  algebra

[𝐽n,  𝐽m]  = k  n𝛿n+m,0, (3.3.22)

with  some  normalization  constant k,  where  we  demand  that  the  vacuum  condition 𝐽n | 0⟩ =  0 is
fulfilled.  The  Sugawara stress  tensor’s  modes  are  bilinear  in  the  currents 𝐽n and  given  by

𝐿n =  

1
2k

:
∑︁

p

𝐽n+m−p𝐽p : . (3.3.23)

This  form  is  obtained  by  seeking an  energy-momentum  tensor  that  has  the  classical  form 1
2k

∑︀
𝑎 𝐽𝑎𝐽𝑎,  

but  with  a normal  ordering,  meaning that  all  creation  operators  are  left  to the  annihilation  operators.
[13]  These  modes’  and  currents’  commutator  is

[𝐿n,  𝐽m]  = −m𝐽n+m. (3.3.24)

It  is  now  also straight  forward  to calculate  the  modes’  bracket  algebra (where  we  are  skipping a few
steps)

[𝐿n,  𝐿m]  = n − m

2k
(
∑︁
p≥0

𝐽n+m−p𝐽p +
∑︁
p⟨0

𝐽p𝐽n+m−p) + (3.3.25)

1
2𝜅

n−1∑︁
p=0

(n − p)[𝐽p,  𝐽n+m−p]  = (3.3.26)

(n − m)𝐿n+m +  

1
12(n3 − n)𝛿n+m,0, (3.3.27)
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which  is  just  the  Virasoro algebra (3.2.6)  for 𝑐 =  1.  

Since  therefore 𝑇 (z) obeys  the  Virasoro algebra,  the  OPE  [13]

𝑇 (z)𝑇 (𝜔)  = 𝑐/2
(z − 𝜔)4 +  

2𝑇  𝜔

(z − 𝜔)2 + ∂𝜔𝑇 (𝜔)
z − 𝜔  

. (3.3.28)

is  implied,  since  this  is  uniquely  fixing the  constant  appearing in (3.3.23) to be 1/(2k),  just  as  we
had  chosen,  since  otherwise  we  would  not  end  up  with  a proper  energy-momentum  tensor.[13]  In
addition,  from  this  we  see  that 𝑇 (z) is  not  a primary  after  comparison  to (3.3.17),  but  rather  a
quasi-primary,  as  explained  below.
Since  we  are  now  equipped  with  an  OPE  between 𝑇 (𝜔) and 𝑇 (z),  we  have  all  the  tools  needed  to
calculate 𝑇 (𝜔)’s  transformation  behaviour  under  a conformal  transformation z → z + 𝜀(z):

𝛿𝜀𝑇 = − 1
2𝜋 i

∮︁
𝐶z

𝑑z 𝜀(z)𝑇 (z)𝑇 (𝜔)  =

− 𝑐

12𝜀
′′′(𝜔) − 2𝜀′(𝜔)𝑇 (𝜔) − 𝜀(𝜔)∂  𝑇 (𝜔) (3.3.29)

for  infitesimal  and

𝑇 ′(𝜔)  =  (𝑑𝜔

𝑑z
)2[𝑇 (z) − 𝑐

12{𝜔  ,  z}] (3.3.30)  

for  finite  transformations,  where {𝜔  ,  z} is  the  Schwarzian  derivative  [11]

{𝜔  ,  z} = 𝜔
′′′

𝜔′ − 3
2

(︁𝜔
′′

𝜔′
)︁
. (3.3.31)

Here, 𝜔′ denotes  the  derivative  of 𝜔 with  respect  to z.  From 𝑇 ′s transformation  behaviour  under
the  global  part  of  conformal  transformations,  we  also see  that  it  is  in  fact  a quasi-primary.

3.4  Radial  quantization

Considering a 2 dimensional  Euclidean  cylinder  with  parametrization 𝜔 = 𝑍 + i𝜑,  where 𝜑 is
2𝜋-periodic,  and  the  conformal  transformation

z = 𝑒
2𝜋  𝜔

𝐿 , (3.4.1)

we  can  now  conformally  map  constant 𝑍 slices  on  the  cylinder  to constant | z | slices  on  the  planar
circle,  giving a correspondence  between  the  time  and  radial  evolution  of  those  two respectively.  

In  addition,  by  having such  a conformal  map,  we  are  enabled  to understand  the  theory  on  the
plane/cylinder  by  understanding the  theory  on  the  cylinder/plane.
The  stress  tensor’s  transformation  behaviour  under  this  map  is  given  by (3.3.30) and  results  in
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𝑇𝑐y  l  in𝑑𝑒r(𝜔)  =
(︀2𝜋

𝐿

)︀2
z2[𝑇pl  𝑎n𝑒(z) − 𝑐

24z2 ]. (3.4.2)

Since  the  only  scale  invariant  function  depending on z is 𝑓(z)  = z−2,  the  ground  state  energy  on
the  plane  vanishes.  However,  due  to not  being translation  invariant,  the  ground  state  on  the  circle
has  a Casimir  energy

⟨𝑇𝑐y  l⟩ = − 𝑐

24
(︀2𝜋

𝐿

)︀2
. (3.4.3)

Now  expanding the  stress  tensor  on  the  plane  as  in (3.3.18) and  the  one  on  the  cylinder  as
𝑇𝑐y  l = ∑︀∞

m=−∞ 𝐿𝑐y  l
m 𝑒−m𝜔 with  the  modes  given  by (3.3.19),  the  energy  on  the  cylinder  will  be

𝑇𝑐y  l(𝜔)  =
∑︁
m

𝐿pl  𝑎n𝑒  

m z−m − 𝑐

24 

=
∑︁
m

𝐿𝑐y  l  

m 𝑒−m𝜔, (3.4.4)  

leading to

𝐿𝑐y  l
0 = 𝐿pl  𝑎n𝑒

0 − 𝑐

24 . (3.4.5)  

Since  time  translations  are  given  by  translations  of 𝑍,  the  system’s  energy  is

𝐻 =
2𝜋∫︁
0

𝑑𝜑𝑇𝑍  𝑍 =
∫︁

𝑑𝜑(𝑇 (𝜔) + 𝑇 (𝜔))  = 𝐿𝑐y  l
0 + 𝐿

𝑐y  l
0 , (3.4.6)  

and  analogously,  the  angular  momentum  is  given  by

𝐽 = i(𝐿𝑐y  l
0 − 𝐿

𝑐y  l
0 ). (3.4.7)  

On  the  plane  the  vacuum  groundstates  will  be  trivial  and  on  the  cylinder  they  are

𝐿v  𝑎𝑐
0 = − 𝑐

24 , 𝐿
v  𝑎𝑐
0 = − 𝑐

24 . (3.4.8)

From  that  the  vacuum  ground  state  energy  and  angular  momentum  can  be  easily  obtained  by
insertion.[11]



Chapter  4 

Warped  conformal  field  theory

This  section  very  closely  follows  [10]  and  summarizes  its  most  important  and  basic  aspects.

In  order  to define  a Warped  Conformal  Field  Theory/WCFT,  consider  the  symmetry  structure  

of  a 2 dimensional  Lorentzian  type  of  theory  that  is  invariant  under  global 𝑆  𝐿(2,  𝑅)𝑅 × 𝑈(1)𝐿

transformations.  In  the  "nontrivial  minimal  case"  [10]  of  this,  we  talk  about  a WCFT.  In  general,
warping corresponds  to a deformation  that  results  reduces  the  isometry  group  of  the  deformed
metric  to 𝑆  𝐿(2,  𝑅)𝑅 × 𝑈(1)𝐿 and  changes  its  asymptotics.

4.1  WCFT  algebra  and transformations

We  start  out  by  defining the  right  moving energy  momentum  tensor

𝑇𝜁 = − 1
2𝜋

∫︁
𝑑x−𝜁(x−)𝑇 (x−) (4.1.1)

that  generates  infitesimal  coordinate  transformations  in x− and  the  right  moving Kac-Moody
current

𝑃𝜒 = − 1
2𝜋

∫︁
𝑑x−𝜒(x−)𝑃 (x−) (4.1.2)

that  generates  gauge  transformations  in x+,  where x± denotes  left/right  moving coordinates.  We
further  demand  the  ground  state’s  invariance  under  the  global  symmetries.
Applying the  coordinate  change x− = 𝑒i𝜑,  with  test  functions 𝜁n =  (x−)n,  as  well  as  defining
𝐿n = i𝑇𝜁n+1 and 𝑃n = 𝑃𝜒n leads  to the  commuator  algebra

[𝐿n,  𝐿m]  =  (n − m)𝐿n+m + 𝑐

12(n3 − n)𝛿n+m (4.1.3)

[𝑃n,  𝑃m]  = k

2n𝛿n+m (4.1.4)

[𝐿n,  𝑃m]  = −m𝑃m+n. (4.1.5)

Defining 𝛿𝜀+𝛾 = 𝛿𝜀 + 𝛿  𝛾,  from  the  WCFT  algebra one  can  guess  that 𝑇 and 𝑃 ’s  infitesimal
transformations  are
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𝛿𝜀𝑇 (x−)  = −𝜀(x−)∂−𝑇 (x−) − 2∂𝜀(x−)𝑇 (x−) − 𝑐

12∂3
−𝜀 (4.1.6)

𝛿𝛾𝑇 (x−)  = −∂−𝛾(x−)𝑃 (x−) (4.1.7)
𝛿𝜀𝑃 (x−)  = −𝜀(x−)∂−𝑃 (x−) − ∂−𝜀(x−)𝑃 (x−). (4.1.8)  

The  finite  transformations  are  then

x− = 𝑓(𝜔−) x+ = 𝜔+ + 𝑔(𝜔−), (4.1.9)

and  are  denoted  by  arbitary  functions 𝑓(𝜔−) and 𝑔(𝜔−).  They  will  reduce  to two quantities  used  here,
𝜀(𝜔−)  = −𝛿  𝜔− and 𝛾(𝜔−)  = −𝛿  𝜔+,  and  in  general  the  currents’ (4.1.2) and  stress-energy  tensor’s
(4.1.1) finite  transformation  behaviour  can  be  uniquely  fixed  by  demanding the  finite  coordinate  

transformations’(4.1.9) reduction  to the  infitesimal  version (4.1.8).  In  both  transformation  laws,
there  will  be  an  anomaly k appearing due  to the  mixing of  both  generators.  The  energy-momentum
tensor  transforms  as

𝑇 ′(𝜔−)  =
(︁ ∂  x−

∂  𝜔−
)︁2{𝑇 (x−) − 𝑐

12
[︁𝜔−′′′

𝜔−′ − 3
2(𝜔−′′

𝜔−′ )2}
]︁

+ x−′
x+′

𝑃 (x−) − k

4 (x+′)2 (4.1.10)  

and  the  current  as

𝑃 ′(𝜔−)  = x−′(︁
𝑃 (x−) + k

2𝜔+′)︁
, (4.1.11)  

where  we  denoted  partial  derivatives  of 𝜔± along x− and x± along 𝜔− with  a ′ respectively.

4.1.1 Map  to the  cylinder

We  can  now,  analogously  to an  ordinary  CFT,  construct  a map  from  the  plane  to the  cylinder  where
we  map x− → 𝜑 by  adding a tilt 𝛼 and  choosing

𝑓(𝜔−)  = 𝑓(𝜑)  = 𝑒i𝜑,  𝜔+ = t,  𝑔(𝜔−)  = 𝑔(𝜑)  =  2𝛼  𝜑. (4.1.12)

We  will  see  that  this  change  of  coordinates  will  lead  to additional  anomalous  terms  as  opposed  to
the  usual  transformation  of  partial  derivatives.  

Now,  just  as  we  did  for  an  ordinary  CFT,  we  can  again  define  modes  on  the  cylinder,

𝑃 𝛼  

n = − 1
2𝜋

∫︁
𝑑𝜑𝑃 𝛼(𝜑)𝑒in𝜑 (4.1.13)  

and

𝐿𝛼  

n = − 1
2𝜋

∫︁
𝑑𝜑𝑇 𝛼(𝜑)𝑒in𝜑, (4.1.14)



4.2 Representations  and  vacuum  energies  33
that  are  connected  to the  modes  used  in  the  WCFT  algebra (4.1.5)  by

𝑃 𝛼  

n = 𝑃n + k  𝛼  𝛿n,  𝐿𝛼  

n = 𝐿n + 2𝛼  𝑃n + (k  𝛼2 − 𝑐

24)𝛿n (4.1.15)  

and  where

𝑃 𝛼 = ix−𝑃 (x−) − k  𝛼  , (4.1.16)

𝑇 𝛼 = − 1
x2 𝑇 (x−) + 𝑐

24 

+ 2i𝛼  x−𝑃 (x−) − k  𝛼2. (4.1.17)

The  above  expression  is  obtained  by  using the  finite  transformations (4.1.9) with  the  functions  as
defined  in (4.1.12).  One  then  obtains (4.1.15) by  inserting the  mode  expansion  for  energy  momentum
tensor  and  the  right-moving Kac-Moody  current.  

This  additionally  yields  an  expression  for  the  generators’  finite  transformation  behaviours

𝑃 ′(𝜑′)  =  

1
𝜆

(𝑃 (𝜑) − k  𝛾) (4.1.18)  

and

𝑇 ′(𝜑′)  =
(︁ 1

𝜆

)︁2
(𝑇 (𝜑) + 2𝛾  𝑃 (𝜑) − k  𝛾2), (4.1.19)

after  changing the  size  as  well  as  tilt  parameter,  which  leads  to the  coordinate  change 𝜑 = 𝜑′
𝜆 and

t = t′ + 2𝛾
𝜆𝜑′,  and  then  inserting for  the  coordinates x± and  the  transformation  rules (4.1.11) and

(4.1.10).  We  then  also find  expressions  for  the  conserved  charges

𝑄∂′
t

= 𝑄∂t + k  𝛾  ,  𝑄∂𝜑′ =  

1
𝜆

(𝑄∂𝜑
+ 2𝛾  𝑄∂t + k  𝛾2). (4.1.20)

4.2  Representations  and vacuum  energies

Now,  in  order  to obtain  unitary  representations  of  the  algebra (4.1.5),  we  will  also demand  hermicity
in  compatibility  to unitarity.  For  hermicity,  we  demand 𝐿−n = 𝐿†

n and 𝑃−n = 𝑃 †
n.  In  order  to also

obtain  unitarity,  we  first  require  that  the  primary  states  obey 𝑃n | p,  ℎ⟩ =  0,  𝐿n | p,  ℎ⟩ =  0 for  all
n  > 0 and  define  the  ground  states  as

𝑃0 | p,  ℎ⟩ = p | p,  ℎ⟩,  𝐿0 | p,  ℎ⟩ = ℎ | p,  ℎ⟩, (4.2.1)

where  the  states’  positivity  puts  constraints  on  the  constants  used: 𝑐,  k  > 0,  ℎ ≥ 0.  These  constraints
can  be  further  specified  by  defining the  modes

𝐿′
n = 𝐿n − 1

k

∑︁
m

: 𝑃n+m𝑃−m :, (4.2.2)
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as  it  was  similarly  done  for  an  ordinary  CFT  in  section 3.3.3,  and  then  calculating their  norm  to
give

ℎ ≥ p2

k  

,  𝑐 ≥ 1. (4.2.3)

This  achieves  unitarity  in  compatibility  with  hermicity.  Furthermore,  note  that  the  modes (4.2.2)  

obey  the  Virasoro algebra

[𝐿′
n,  𝐿′

m]  =  (n − m)𝐿′
n+m + 𝑐 − 1

12 n(n − 1)(n + 1)𝛿n+m. (4.2.4)

We  can  further  use (4.2.2) for n =  0 with 𝐿0 := − 𝑐
24 or  also the  norms  of  the  descendants  of 𝑃n and

𝐿n to find  the  constraint

𝐿0 ≥ 𝑃 2
0

k
− 𝑐

24 (4.2.5)

necessary  for  unitarity.  Using this  in  combination  with 𝑃 2
0 = k2𝛼2,  which  we  can  obtain  from

(4.1.15)  for n =  0 and  by  setting 𝑃0 =  0,  we  find  the  vacuum  states

𝑃 𝛼,v  𝑎𝑐
0 = k  𝛼  ,  𝐿𝛼,v  𝑎𝑐

0 = k  𝛼2 − 𝑐

24 , (4.2.6)  

which  also holds  true  in  non-unitary  theories,  see  [10]  for  details.

4.3  Thermodynamics  of  warped black  holes  in TMG

WCFTs  also play  a role  in  the  theory  of  TMGs:  Among the  solutions  of  the  TMG-Einstein  equations
(1.3.19) are  also warped  spacetimes  with  local 𝑆  𝐿(2,  𝑅) × 𝑈(1) symmetries,  like  Warped  AdS,  to
which  spacelike  stretched  black  holes  with 𝜈  > 1 count.  Globally,  they  are  different  from  the  global
spacelike  WAdS-metric

𝑑s2 =  

1
𝜈2 + 3[− cosh2 𝜎  𝑑𝜏2 + 𝑑𝜎2 +  

4𝜈2

𝜈2 + 3(𝑑u + sinh 𝜎  𝑑𝜏)2], (4.3.1)

as  the  isometries  are  broken  to 𝑈(1)×𝑈(1) by  an  identification,  but  locally  they  look  like  a spacelike
stretched  version  of  global  WAdS.  The  metric  for  these  warped  black  holes  is

𝑑2s = 𝑑2t + 𝑑2r

(𝜈2 + 3)(r − r+)(r − r−) − (︀
2𝜈  r −

√︁
r+r−(𝜈2 + 3)

)︁
𝑑t𝑑𝜑 + (4.3.2)

r

4[3(𝜈2 − 1)r + (𝜈2 + 3)(r+ + r−) − 4𝜈
√︁

r+r−(𝜈2 + 3)]𝑑2𝜑, (4.3.3)

where r+ and r− are  the  outer  and  inner  Killing horizon  respectively, 𝜈 is  a parameter  of  the  

action (1.3.17) and  the  rest  are  coordinates.  In  the  extremal  case, r+ = r− =  0,  this  becomes  an
identification  of
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𝑑2s = 𝑑2t + 𝑑2r

r2(𝜈2 + 3) − 2𝜈  r  𝑑t𝑑𝜑 +  

3
4(𝜈2 − 1)r2𝑑2𝜑, (4.3.4)  

which  is  Poincare  spacelike  WAdS,  covering a patch  of  global  WAdS.

In  order  to be  able  to derive  the  thermodynamics  of  this  warped  black  hole,  we  will  first  need  to find
out  what  partition  function  is  the  right  one  to consider.  We  can  use  the  coordinate  identifications
(t,  𝜑) ∼ (t + i𝛽  ,  𝜑 + i𝛽Ω),  with  the  inverse  Hawking temperature 𝛽 = −2𝜋

3k (1 + 𝑇𝐿
𝑇𝑅

) and  angular
potential 𝛽Ω  = 1

𝑇𝑅
and  parameters.

𝑇𝐿 = 𝜈2 + 3
8𝜋

(︀
r+ + r− − 1

𝜈

√︁
r+r−(𝜈2 + 3)

)︁
(4.3.5)

𝑇𝑅 = 𝜈2 + 3
8𝜋

(r+ − r−) (4.3.6)

We  can  use  them  to make  a coordinate  change  to Poincare  WAdS (4.3.4) near  the  boundary

𝜑′ = − 1
2𝜋 𝑇𝑅

𝑒−2𝜋  𝑇𝑅𝜑 + O(1/r2) (4.3.7)

t′ = t +  

2
k

ℳ𝜑 + O(1/r) (4.3.8)

in  a compact  form.  With  this  coordinate  change,  the  generators’  transformation  behaviour  takes
the  form

𝑃 ′(𝜑)  = −2𝜋 𝑇𝑅𝜑′𝑃 (𝜑′) − k  𝛼 (4.3.9)  

and

𝑇 ′(𝜑)  =  (2𝜋 𝑇𝑅𝜑′)2𝑇 (𝜑′) − 4𝜋 𝑇𝑅𝛼  𝜑′𝑃 (𝜑′) − k  𝛼2 − 𝑐

6𝜋2𝑇 2
𝑅, (4.3.10)  

when  choosing 𝛼 = ℳ
k .  The  zero modes  then  are

𝑃0 = ℳ = k  𝛼  ,  𝐿0 = −ℒ = 𝑐

6𝜋2𝑇 2
𝑅 + k  𝛼2. (4.3.11)

These  are  the  black  hole’s  mass  and  angular  momentum  respectively  that  can  also be  calculated  as
described  in  chapter 1.3.4 using the  boundary  conditions  with  associated  asymptotic  symmetries
as  proposed  in  [8].  In  the  primed  plane,  the  thermal  identification  is (t′,  𝜑′) ∼ (t′ + i𝛽0,  𝜑′),  with
𝛽0 = −2𝜋

3k .  

If  we  now  also introduce  an  exponential  map  for  the  coordinate t similar  to that  of 𝜑,

t′ → 1
2𝜋 𝑇𝐿

𝑒2𝜋  𝑇𝐿( k
2ℳ t+𝜑), (4.3.12)
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we  arrive  at  a Minkowski  vacuum  in  the  primed  plane.  In  order  to get  rid  of  the  conserved  charge
contained  within  the  coordinate  transformation,  we  define  the  new  deformed  BTZ-coordinates

t𝑅 = 𝜑,  t𝐿 = k

2ℳ t + 𝜑, (4.3.13)  

and  therefore  the  infitesimal  charges

𝛿  𝑄∂𝐿
=  

2ℳ
k  

𝛿ℳ,  𝛿  𝑄∂𝑅
= −𝛿ℒ  − 2ℳ

k  

𝛿ℳ. (4.3.14)  

The  partition  function  would  be  given  by

𝑍 = 𝑇  r(𝑒−𝛽𝑅𝑄𝑅−𝛽𝐿𝑄𝐿), (4.3.15)

as  the  charges  just  simply  correspond  to the  conserved  quantities  mass  and  angular  momentum
that  we  usually  see  in  it,  and  integrated  the  charges  read

𝑄𝐿 = 𝑃 2
0

k  

,  𝑄𝑅 = 𝐿0 − 𝑃 2
0

k  

. (4.3.16)

We  have  therefore  found  a partition  function  that  fits  our  black  hole,  where  the  inverse  temperatures
𝛽𝐿,𝑅 are  given  by  the  parameters 𝑇𝐿,𝑅 we  had  introduced  earlier.
As  we  have  already  used  coordinates  that  can  be  defined  on  a deformed  BTZ  black  hole (4.3.13),  we
will  use  the  opportunity  to make  a coordinate  change  to the  deformed  BTZ  metric

𝑑s2 = 𝑑s2
𝐵  𝑇  𝑍 +  

1
48(𝜈2 − 1)𝜉𝜇𝜉𝜈𝑑x𝜇  

𝑏 𝑑x𝜈  

𝑏 , (4.3.17)  

with  the  AdS3 BTZ  black  hole  metric  with  AdS-radius l𝑏 = 2√
3+𝜈2

𝑑s2
𝐵  𝑇  𝑍 =  (8𝑀𝐵  𝑇  𝑍 − r2

𝑏

l2𝑏
)𝑑2t𝑏 + 𝑑2r𝑏

−8𝑀𝐵  𝑇  𝑍 + r2
𝑏

l2
𝑏

+ 16𝐽2
𝐵  𝑇  𝑍

r2
𝑏

− 8𝐽𝐵  𝑇  𝑍𝑑t𝑏𝑑𝜑𝑏 + r2
𝑏 𝑑𝜑2

𝑏 (4.3.18)  

and  the  Killing vector  responsible  for  the  deformation 𝜉 = 1
ℳ(l𝑏∂t𝑏

+ ∂𝜑𝑏
).  

The  needed  coordinate  change  is

t𝑅 = 𝜑 = 𝜑𝑏 − t𝑏

l𝑏
t𝐿 = 𝜑𝑏 + t𝑏

l𝑏
(4.3.19)

r2
𝑏 =  3ℳ(2r − 1

𝜈

√︁
r+r−(𝜈2 + 3)) +  4l𝑏𝐽𝐵  𝑇  𝑍 (4.3.20)

and  the  conserved  charges  of  the  BTZ  black  hole  and  the  warped  black  hole  parameters  are  related
by  the  expressions
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ℳ =  

1
6

√︃
8(𝑀𝐵  𝑇  𝑍 − 𝐽𝐵  𝑇  𝑍

l𝑏
) (4.3.21)

ℒ = −𝑀𝐵  𝑇  𝑍

3𝜈
− 1 + 3𝜈2

𝜈(𝜈2 + 3)
𝐽𝐵  𝑇  𝑍

l𝑏
. (4.3.22)

To find  the  ground  state,  we  try  using deformed  global  AdS  instead  of (4.3.13),  which  can  be
achieved  by  inserting 𝑀𝐵  𝑇  𝑍 = −1

8 ,  𝐽𝐵  𝑇  𝑍 =  0 and  yields

ℳv  𝑎𝑐 = − i

6m −  ℒv  𝑎𝑐 = − 𝑐

24 − 1
36k  

. (4.3.23)

This  matches  with  the  form  of  the  ground  state  defined  in  equation (4.2.6).  Note  that  this  is  the
ground  state  indeed  as  the  deformed  BTZ  metric (4.3.17) minimizes 𝑄𝑅 and  is  smooth  for  our
chosen  values  of  parameters.  One  then  finds  the  Wald-like  entropy,

𝑆 = −2𝜋

3k
ℳ + 2𝜋

√︃
𝑐

6(−ℒ  −  

ℳ2

k
), (4.3.24)

see  [11],  which  matches  the  entropy  found  in  [11]  by  conventional  means.[10]  It  can  also be  derived
by  the  means  of  a WCFT  using the  Warped  Cardy  formula we  will  discuss  in  the  next  chapter,  see
5.2.14.

4.4  WCFT  and the  BMS2-algebra

WCFT  can  be  connected  to a special  algebra first  introduced  by  Afshar  et  al.  in  [2],  which  will  be
briefly  summarized  here  and  be  of  further  importance  in  section 7.3.  

For  a metric  of  the  general  form

𝑑s2 =  2𝑉 (u,  r)𝑑u2 − 2𝑑u𝑑r, (4.4.1)

in  Eddington-Finkelstein  coordinates  the  asymptotic  Killing-vectors  preserving this  metric  are

𝜉 = 𝜀(u)∂u − (𝜀′(u)r − 𝜂(u))∂r, (4.4.2)

where 𝜂(u) and 𝜀(u) are  arbitary  functions  dependend  on  the  retarded  time u.  They  preserve  the
conditions  that ℒ𝜉𝑔ur = ℒ𝜉𝑔r  r =  0 [1],  where  for  e.g.  Rindler-type  black  holes  one  may  also use  the
condition that  additionally ℒ𝜉𝑔uu = 𝛿𝜉𝑃 (u)r + 𝛿𝜉𝑇 (u),  where 𝑃 (u) and 𝑇 (u) are  conserved  charges
contained  within 𝑉 (u,  r)[3].  They  form  the  infinite-dimensional  BMS2-algebra with  commutators
[2]

[(𝜀1,  𝜂1), (𝜀2,  𝜂2)]  =  (𝜀1𝜀′
2 − 𝜀2𝜀′

1, (𝜀1𝜂2 − 𝜀2𝜂1)′). (4.4.3)  

When  expanding into Laurent-modes 𝜀 = −un+1,  𝜂 =  0,  one  obtains  the  Witt-algebra
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[lm,  ln]  =  (n − m)ln+m, (4.4.4)

with lm = 𝜉m |𝜂=0 and  for 𝜀 =  0,  𝜂 = un−1,  the  commutator  vanishes  and  we  therefore  call
𝜒m = 𝜉m |𝜀=0 a spin-0 supertranslation.  Also,  the  mixed  commutator  of  these  two cases  reads
[2]

[lm,  ln]  = −(n + m)𝜒n+m. (4.4.5)  

Additionally,  this  algebra corresponds  to finite  coordinate  transformations

u′ = 𝐹 (u),  r′ =  

1
𝐹 (u)′ (r + 𝐺′(u)), (4.4.6)  

with  arbitary  periodic  functions 𝐺(u).[15]  

The  conserved  currents 𝑃 (u) and 𝑇 (u) then  transform  as

𝛿𝜉𝑃 = 𝜀𝑃 ′ + 𝜀′𝑃 + 𝜀′′,  𝛿𝜉𝑇 = 𝜀𝑇 ′ + 2𝜀′𝑇 + 𝜂  𝑃 − 𝜂′. (4.4.7)

By  defining modes 𝐿n =  (−i𝑒inu, 0),  𝐽n =  (0, −i𝑒inu),  one  obtains  the  BMS2-algebra that  can  be
centrally  extended  to [1]

[ℒn, ℒm]  =  (n − m)ℒn+m + 𝑐

12n3𝛿n+m,0 (4.4.8)

[ℒn, Jm]  = −(m + n)Jn+m + (𝜆n − ik)𝛿n+m,0 (4.4.9)
[Jn, Jm]  =  0. (4.4.10)  

For  a WCFT  with  coordinates t and 𝜑,  after  applying a coordinate  change

t → t + 𝐺(𝜑),  𝜑 → 𝐹 (𝜑), (4.4.11)

one  finds  the  same  transformation  behaviour  as  well  as  the  same  mode-algebra as  just  described.[15]  

Furthermore,  one  can  use  the  metric (4.4.2) in  its  most  general  form  with 𝑉 (u,  r)  = − r2

2 +𝑃 (u)r+𝑇 (u)
to uplift  metrics  that  contain  a flat  part  but  replacing said  part  with (4.4.2).  When  taking the  flat
limit,  this  reduces  to 𝑉 (u,  r)  = 𝑃 (u)r + 𝑇 (u) [1].

In  the  case  of  a higher  dimensional  metric  that  is  to be  uplifted,  one  will  have  to additionally
transform  e.g.  the  azimuthal  angle 𝜑 to [15]

𝜑 → 𝜑 − 𝐺(u), (4.4.12)

which  will  also result  in  an  additional  Killing-vector 𝜉𝜑 = 𝐺(u)∂𝜑.  When  taking the  retarded  time
u to be  periodic u ∼ u +  2𝜋 𝐿,  with  some  length  scale 𝐿,  one  is  able  to obtain  the  mode  algebra as
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the  algebra (4.4.10) after  expanding the  functions 𝜂(u) and 𝜀(u) in  Fourier-modes  similar  to 𝐿n and
𝐽n instead.[3]



Chapter  5 

Cardy formula

For  this  short  section,  we  will  start  out  by  deriving the  Cardy  formula for  the  ordinary  CFTs
described  in  chapter 3 and  afterwards  derive  the  Warped  Cardy  formula for  the  theories  described
in  the  previous  section 4.

5.1  Cardy  formula  for  an ordinary  CFT

For  an  ordinary  CFT,  we  start  by  using a partition  function

𝑍(q  ,  q̄)  = 𝑇  rℋq𝐿0q𝐿0̄ , (5.1.1)

where q = 𝑒2𝜋  i𝜏 .  Here, 𝜏 = 1
2𝜋 (𝜃 + i𝛽) is  a modular  parameter,  meaning that  it  is  a parameter  that

can  be  used  in  order  to specify  the  (complex)  structure  on  our  space.  [20]  

Using

𝐻 = 𝐿0 + 𝐿0̄ (5.1.2)
𝐽 = 𝐿0 − 𝐿0̄, (5.1.3)

we  can  express  the  generators 𝐿0,  𝐿0̄ in  terms  of  the  vacuum  charges 𝐻 and 𝐽 .  Therefore,  the
partition  function  becomes

𝑍 = 𝑇  rℋ exp(i𝜃  𝐽 − 𝛽  𝐻). (5.1.4)

Now,  assuming the  theory  is  defined  on  a cylinder,  we  define  a torus  by  identifying the  thermal
correlators’  periodicity  on  the  spatial  and  thermal  circle  as

(t,  𝜑) ∼ (t,  𝜑 + 2𝜋) ∼ (t + i𝛽  ,  𝜑 + 𝜃) (5.1.5)  

will  lead  to

𝑍(𝜏  ,  𝜏)  = 𝑇  rℋ exp(−2𝜋 𝐽)  = 𝑍(𝛽  ,  𝜃). (5.1.6)  

After  making the  coordinate  transformation x± = 𝜑 ± it,  we  find  the  relation



5.1 Cardy  formula for  an  ordinary  CFT  41

(t,  𝜑) → (x+,  x−) ∼ (𝜑 + 𝜃 + i(t + 𝛽),  𝜑 + 𝜃 − i(t + 𝛽))  =  (x+ + 2𝜋 𝜏  ,  x− + 2𝜋 𝜏). (5.1.7)

As  we  are  in  an  ordinary  CFT,  we  can  use  its  symmetries  to independently  rescale  the  coordinates
x± → x

′± = 𝜆±x±.  Therefore,  (5.1.7)  becomes

(x′+,  x
′−) ∼ (x′+ + 2𝜋 𝜆+,  x

′− + 2𝜋 𝜆−) ∼ (x′+ + 2𝜋 𝜏  𝜆+,  x
′− + 2𝜋 𝜏  𝜆−). (5.1.8)

We  can  use  this  relation  to exchange  the  spatial  and  thermal  cycles  by  identifying 𝛽
′ = −2𝜋 𝜏  i𝛽  𝜆±

from (5.1.7) as  well  as  imposing t ≥ 0,  𝛽
′

> 0,  leading to the  simplest  choice  of 𝜏  𝜆± = −1 and
therefore

(x′+,  x
′−) ∼

(︁
x

′+ − 2𝜋

𝜏  

,  x
′− − 2𝜋

𝜏

)︁
(5.1.9)  

as  well  as

𝑍(𝜏  ,  𝜏)  = 𝑍
(︁

− 1
𝜏  

, −1
𝜏

)︁
. (5.1.10)  

The  latter  equality  is  called  the  S-transformation  of  the  theory’s  partition  function.
Plugging 𝜏 ′ = − 1

𝜏 = −2𝜋(𝜃−i𝛽)
𝜃2+𝛽2 and 𝛽′ = 4𝜋2𝛽

𝜃2+𝛽2 into the  partition  function (5.1.4),  after  some
simplification  we  find  the  entropy

𝑆(𝛽  ,  𝜃)  = − 8𝜋2

𝜃2 + 𝛽2 (𝐻v  𝑎𝑐𝛽 + i𝐽v  𝑎𝑐𝜃), (5.1.11)  

where  we  have  applied  the  limit 𝛽 → 0 as  we  wish  to calculate  it  for  the  vacuum  state.
If  we  now  perform  a Legendre-transformation  to 𝑆(𝐻  ,  𝐽) and  simplify  again,  we  find  the  Cardy-
formula for  an  ordinary  CFT

𝑆(𝐿0,  𝐿0̄ )  =  2𝜋
(︁√︂

𝑐

6𝐿0 +
√︂

�̄�

6𝐿0̄
)︁
. (5.1.12)

5.1.1 Entropy  and  central  charge  for  a BTZ-Black  Hole

We  will  briefly  show  an  example  of  the  application  of  the  Cardy  formula on  a black  hole  referred  to
as  BTZ-black  hole  with  metric

𝑑s2 =  (8𝐺𝑀 − r2

l2
)𝑑t2 + 𝑑r2

(8𝐺𝑀 − r2
l2 + 16𝐺2𝐽2)

r2

+ 8𝐺𝐽  𝑑t𝑑𝜑 + r2𝑑𝜑2, (5.1.13)

where l is  the  AdS-radius  and 𝐽 and 𝑀 are  the  black  holes’  angular  momentum  and  mass  given
by
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𝑀 = 𝑄∂t = 𝐿2
+ + 𝐿2−
8𝐺l2

(5.1.14)

𝐽 = 𝑄∂𝜑
= −𝐿+ + 𝐿−

4𝐺l  

, (5.1.15)

where 𝐿± are  constants.  The  black  hole  has  horizons  at  the  values

r± =
√︁

2𝐺l(l  𝑀 + 𝐽) ±
√︁

2𝐺l(l  𝑀 − 𝐽) (5.1.16)  

and  its  Bekenstein-Hawking entropy  is  given  by

𝑆 = 𝐴

4𝐺
= 𝜋 r+

2𝐺  

. (5.1.17)  

The  central  charge  obtained  using Brown-Hennaux  boundary  conditions  is

𝑐+ = 𝑐− =  

3l

2𝐺  

. (5.1.18)

By  using this  on  the  expression  for  the  black  hole’s  outer  horizon r+, (5.1.16),  we  find  the  en-
tropy

𝑆 =  

2𝜋

2𝐺

(︁√︁
𝐺l  𝐿+  

0 +
√︁

𝐺l  𝐿−
0

)︁
, (5.1.19)

with 𝐿±
0 = 𝑄∂± = l  𝑀±𝐽

2 .  We  then  also see  that  the  Cardy-formula exactly  reproduces  the
Bekenstein-Hawking entropy  after  insertion  of  (5.1.18).  [11]

5.2  Cardy  formula  for  a  warped Conformal  Field Theory

In  order  to derive  the  warped  Cardy  formula,  we  start  out  by  looking at  a WCFT  with  coordinates
(t,  𝜑) and  thermal  correlators  periodic  under  a complex  shift  with (t+ i𝛽  ,  𝜑+𝜃) as  well  as  symmetries
𝜙 → 𝑓(𝜑),  t → t − 𝑔(𝜑).  The  shift 𝜃 is  related  to the  shift  used  in  section 4.3 by 𝜃 = i𝛽Ω.
We  therefore  have  two conserved  charges,  namely  the  energy 𝑃0 = 𝑄[∂t] and  angular  momentum
𝐿0 = 𝑄[∂𝜑].  Putting this  theory  on  a circle  with 𝜑 ∼ 𝜑 +  2𝜋 and  finite  temperature  as  well  as
angular  potential  will  result  in  the  partition  function

𝑍(𝛽  ,  𝜃)  = 𝑇  r(𝑒−𝛽  𝑃0+i𝜃  𝐿0). (5.2.1)

In  order  to exchange  the  thermal  and  angular  cycle  just  as  we  did  for  an  ordinary  CFT  in  the
previous  section,  we  choose  the  ansatz

𝜑′ = 𝜆𝜑  t′ = t − 2𝛾  𝜑, (5.2.2)  

which  leads  to the  identifications
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(t′,  𝜑′)  =  (t − 2𝛾  𝜑,  𝜆𝜑) ∼ (t′ + i𝛽 − 2𝛾  𝜃  ,  𝜑′ + 𝜆𝜃). (5.2.3)

As  we  are  looking at  the  full  circle,  we  set 𝜃 =  2𝜋,  resulting in (t′,  𝜑′) ∼ (t′ − 4𝜋 𝛾  ,  𝜑′ +  2𝜋 𝜆),  which
can  be  used  to identify −4𝜋 𝛾 = i𝛽 − 2𝛾  𝜃  , 2𝛾  𝜃 = i𝛽,  leading to

𝛾 = i𝛽

2𝜃  

,  𝜆 =  

2𝜋

𝜃  

. (5.2.4)  

After  insertion  we  find

(t′,  𝜑′) ∼
(︁
t′ − 4𝜋 

i𝛽

2𝜃  

,  𝜑′ + 2𝜋
2𝜋

𝜃

)︁
=

(︁
t′ − 2𝜋 i𝛽

𝜃  

,  𝜑′ +  

4𝜋2

𝜃

)︁
= (5.2.5)

(t′ + i𝛽′,  𝜑′ + 𝜃′) (5.2.6)

and  therefore  the  warped  modular  transformation

𝛽′ = −2𝜋

𝜃  

𝛽  ,  𝜃′ =  

4𝜋2

𝜃  

. (5.2.7)  

Using (4.1.18)  we  then  find

𝑃 ′ =  

4𝜋2

𝜃2 𝑇 ′(𝜑′) + 𝜃′i𝛽′

4𝜋2 𝑃 ′(𝜑′) + k  𝛽2

4𝜃2 , (5.2.8)  

and,  after  simplifying the  middle  term,  the  partition  function

𝑍(𝛽  ,  𝜃)  = 𝑇  r
(︁

exp[−𝛽  𝑃 ′
0 + i𝜃  𝐿′

0]
)︁

= 𝑇  r
(︁

exp[−2𝜋 𝛽

𝜃  

𝑃0 + k  𝛽2

4𝜃2 𝜃  i − 4𝜋2i𝜃

𝜃2 𝐿0]
)︁
. (5.2.9)  

For  small 𝜃 we  can  replace (𝐿0,  𝑃0) → (𝐿v  𝑎𝑐
0 ,  𝑃 v  𝑎𝑐

0 ),  leading to the  entropy  [19]

𝑆 = −2𝜋 𝛽

𝜃  

𝑃 v  𝑎𝑐
0 − 8𝜋2i

𝜃  

𝐿v  𝑎𝑐
0 . (5.2.10)

Now  using 𝜃 = i𝛽Ω and  applying a Legendre  transformation  from (𝑃0,  𝐿0) to (𝑃 v  𝑎𝑐
0 ,  𝐿v  𝑎𝑐

0 ),  [12]

𝐿0 = −i  

∂ ln 𝑍

∂  𝜃
= −2𝜋 i𝛽

𝜃2 𝑃 v  𝑎𝑐
0 − k  𝛽2

4𝜃2 +  

4𝜋2

𝜃2 𝐿v  𝑎𝑐
0 = (5.2.11)

− 𝛽

4𝜃2 (8𝜋 i𝑃 v  𝑎𝑐
0 + k) +  

4𝜋2

𝜃2 𝐿v  𝑎𝑐
0 , (5.2.12)

𝑃0 = −∂ ln 𝑍

∂  𝛽
=  

2𝜋

𝜃  

𝑃 v  𝑎𝑐
0 − k  𝛽

2𝜃  

i, (5.2.13)  

we  find  the  Cardy-formula for  a WCFT

𝑆 = −4i𝑃0𝑃 v  𝑎𝑐
0 𝜋

k
+ 4𝜋

√︃
−(𝐿0 − 𝑃 2

0
k

)(𝐿v  𝑎𝑐
0 − 𝑃 v  𝑎𝑐2

0
k

) (5.2.14)
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after  expressing 𝛽 and 𝜃 in  terms  of 𝑃0,  𝐿0,  𝐿v  𝑎𝑐

0 ,  𝑃 v  𝑎𝑐
0 ,  which  are  given  by (4.2.6).  Plugging in  for

𝐿v  𝑎𝑐
0 and 𝑃 v  𝑎𝑐

0 from  (4.2.6),  we  find  that  the  Cardy-formula becomes

𝑆 = −4𝜋 i𝛼  𝑃0 + 2𝜋

√︃
𝑐

6
(︁
𝐿0 − 𝑃 2

0
k

)︁
, (5.2.15)

where 𝑐 ≥ 1,  k  > 0 and 𝐿0 is  assumed  to be  bounded  from  below.  In  the  case  of  a unitary  theory
where 𝑃0 is  hermitian,  the  first  term  in (5.2.15) vanishes  because k  𝛼 → 0 and  therefore,  the  entropy
has  no negative  contributions.  However,  if  the  theory  is  not  unitary, (5.2.15) is  not  an  entropy  as  it
does  have  a negative  contribution.



Chapter  6 

Kerr/CFT  correspondence

This  chapter  serves  as  a small  introduction  to the  Kerr/CFT  correspondence,  which  finds  a
correspondence  between  gravity  and  quantum  theory.

6.1  Central  Charge  for  extremal  Kerr

We  start  out  with  the  Kerr-metric

𝑑ŝ2 = − Δ
𝜌2 (𝑑t̂ − 𝑎 sin2 𝜃  𝑑�̂�)2 +  

sin2 𝜃

𝜌2
(︀
(r̂2 + 𝑎2)𝑑�̂� − 𝑎𝑑t̂

)︀2 + 𝜌2

Δ 𝑑r̂2 + 𝜌2𝑑𝜃2, (6.1.1)

where Δ  = r̂2 − 2𝑀  r + 𝑎2,  𝜌2 = r̂2 + 𝑎2 cos2 𝜃  . The  metric  corresponding to the  region  near  the
extreme  horizon r̂  = 𝑀 can  from  this  be  obtained  by  defining the  near-horizon  coordinates

t = 𝜆t̂

2𝑀  

,  y = 𝜆𝑀

r̂ − 𝑀  

,  𝜑 = �̂� − t̂

2𝑀  

, (6.1.2)  

and  another  change  to global  coordinates (r,  𝜏  ,  𝜙)

y =  (cos 𝜏
√︀

1 + r2 + r)−1,  t = y sin 𝜏
√︀

1 + r2,  𝜑 = 𝜙 + ln  

cos 𝜏 + r sin 𝜏

1 + sin 𝜏
√

1 + r2 (6.1.3)  

yields  the  global  Near  Horizon  Extremal  Kerr  (NHEK)-metric

𝑑s2 =  2𝐽Ω2
(︁

− (1 + r2)𝑑𝜏2 + 𝑑r2

1 + r2 + 𝑑𝜃2 + Ψ2(𝑑𝜙 + r  𝑑𝜏)2
)︁

(6.1.4)

that  covers  the  whole  of  the  NHEK  geometry.  It  contains  the  angular  momentum 𝐽 = 𝑀2 as  well
as  the  functions Ω2 = 1+cos2 𝜃

2 , Ψ  = 2 sin 𝜃
1+cos2 𝜃

.

In  order  to obtain  the  boundary  charges,  we  next  choose  the  boundary  conditions

ℎ𝜇𝜈 ∼  O

⎛ ⎜⎜⎜⎜⎜⎝
r2 1 1

r
1
r2

1 1
r

1
r

1
r

1
r2
1
r3 ,

⎞ ⎟⎟⎟⎟⎟⎠ (6.1.5)
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with ℎ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑔.  The  asymptotic  symmetry  group’s  bracket  algebra can  be  obtained  by  variation
of  the  charges  and  then  reads

{𝑄𝜁m ,  𝑄𝜁n}𝐷  .𝐵  . = 𝑄[𝜁m,𝜁n] +  

1
8𝜋 𝐺

∫︁
∂Σ

k𝜁m [𝐿𝜁n𝑔,  𝑔] (6.1.6)  

The  diffeomorphisms  allowed  by  the  boundary  conditions  (6.1.5)  obey  the  algebra

i[𝜁m,  𝜁n]  =  (m − n)𝜁m+n, (6.1.7)  

the  first  term  is

𝑄[𝜁m,𝜁n] =  (m − n)𝑄𝜁m+n . (6.1.8)  

With  the  integral  in  (6.1.6)  resulting in −i(m3 + 2m)𝛿m+n𝐽 and  defining

𝐿n = 𝑄𝜁n +  

3𝐽

2 𝛿n, (6.1.9)  

we  see  that  the  left  term  in  (6.1.6)  becomes 𝑄𝜁m+n = 𝐿m+n − 3𝐽
2 𝛿m+n and  therefore  find

[𝐿m,  𝐿n]  =  [𝑄𝜁m ,  𝑄𝜁n ] +  

3𝛽

2 

([𝑄𝜁m ,  𝛿n] + [𝛿m,  𝑄𝜁n ])  = (6.1.10)

(n − m)𝐿m+n + (m3 − m)𝐽  𝛿m+n. (6.1.11)

This  is  the  Virasoro algebra (3.2.6)  with  the  central  charge

𝑐𝐿 =  12𝐽. (6.1.12)

6.2  Temperature  and entropy

Expanding the  quantum  field Φ in  eigenmodes  of  the  asymptotic  energy 𝜔 and  angular  momentum
m results  in

Φ  =  Σ𝜔  ,m,l𝜑𝜔  ml𝑒
−i𝜔  t̂+im�̂�𝑓l(r,  𝜃). (6.2.1)

When  changing the  coordinates  to t = 𝜆t̂
2𝑀 and 𝜑 = �̂� − t̂

2𝑀 ,  we  find  that  the  expansion’s (6.2.1)  

Boltzmann-weighing factor  can  be  expressed  in  these  coordinates  as

𝑒
− 𝜔−Ω𝐻  

m

𝑇𝐻 = 𝑒
−

𝜔− 𝑎m
2𝑀  r+

r+−𝑀
4𝜋  𝑀  r+ = 𝑒

− 2𝜋
r+−𝑀

(2𝑀  r+𝜔−𝑎m) (6.2.2)

after  defining n𝑅 = 2𝑀  𝜔−m
𝜆 ,  n𝐿 = m.  Since 𝛼 ∝  − 2𝜋  𝜆r+

r+−𝑀 ⇒ 2𝜋  𝑎m𝜆r+
r+−𝑀 gets  left  over  as  well  as

𝛽 = 2𝜋(r+−𝑎)
r+−𝑀 ,  we  find  the  right-  and  left-moving temperatures
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𝑇1 := − 1
𝛼  

,  𝑇2 :=  

1
𝛽

(6.2.3)

lim
𝑒xtr

𝑇1 → 0,  𝑇2 → 1
2𝜋 

, (6.2.4)

because 𝑀2 → 𝐽 and r+ = 𝑀 +
√

𝑀2 − 𝑎2 → 𝑀 +
√︁

𝑀2 − 𝐽2
𝑀2 = 𝑀 +

√︁
𝑀2 − 𝑀4

𝑀2 → 𝑀  ,  𝑎 →
𝑀 .  

From  the  Cardy-formula we  know  that  the  entropy  is  given  by

𝑆 = 𝜋2

𝛽  

𝑐𝐿𝑇𝐿 = 𝜋2

3 · 12𝐽

2𝜋
=  2𝜋 𝐽, (6.2.5)  

which  is  the  same  as  the  Bekenstein-Hawking entropy  [19]

𝑆𝐵  𝐻 = 𝑎r  𝑒𝑎

4 

=  

8𝜋 r+𝑀

4𝐺
→ 2𝜋 𝑀2 =  2𝜋 𝐽. (6.2.6)

We  therefore  see  that  the  entropy  resulting from  gravitational  theory (6.2.6) matches  the  one
obtained  when  using quantum  theory (6.2.5),  therefore  establishing a correspondence  between  the
two.



Chapter  7 

Kerr/dS  solution

In  this  section,  we  will  first  very  briefly  review  a few  important  aspects  about  the  Kerr/dS  solution,
including its  thermodynamics,  and  then  have  a short  look  at  the  special  case  of  Nariai,  where  the
cosmological  horizon  coincides  with  the  outer  horizon, r𝑐 = r+.  [4]  Afterwards,  we  will  study  the
ultracold  solution  of  Kerr/dS,  for  which  all  three  horizons  coincide.

7.1  Basic aspects

The  Kerr-dS  metric  is  [4]

𝑑2s = −Δr

𝜌2

(︁
𝑑t − 𝑎

Θ  

sin2 𝜃  𝑑𝜑
)︁2

+ 𝜌2

Δr
𝑑2r + 𝜌2

Δ𝜃
𝑑2𝜃 +  

Δ𝜃

𝜌2 sin2 𝜃(𝑎𝑑t − r2 + 𝑎2

Θ 𝑑𝜑)2 (7.1.1)  

with  parameters

Δr =  (r2 + 𝑎2)
(︁
1 − r2

l2

)︁
− 2𝑀  r, Δ𝜃 =  1 + 𝑎2 cos2 𝜃

l2
(7.1.2)

𝜌2 = r2 + 𝑎2 cos2 𝜃  , Θ  =  1 + 𝑎2

l2
(7.1.3)

and  coordinates (t,  r,  𝜃  ,  𝜑).  The  horizons  can  be  calculated  from  the  zeros  of  the  Killing norm Δr,
which  gives  the  equation r4 −r2(l2 −𝑎2)+2𝑀  l2r − l2𝑎2 =  0.  The  radius’  extrema can  be  found  when
holding 𝑎 = 𝑎m𝑎x = 𝑀

4

√︁
6
√

3 + 9 fixed,  which  yields  new  equations  for  the  extremal  radius

2r𝐻 + m ∓
√︀

m2 + 8r𝐻m − 2r3
𝐻

l2
=  0. (7.1.4)

From  this,  now  fixing the  dS  radius l = lm𝑎x = 𝑀
4 (2

√
3 + 3)3/2,  one  finds  the  extremal  radius

rm𝑎x =  (3
4 

+
√

3
2 

)𝑀  , (7.1.5)

for  which  all  three  horizons  coincide r+ = r− = r𝑐 = rm𝑎x[14],  as  it  is  the  case  for  the  ultracold
solution  [4]  we  will  tackle  later.
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However,  using the  original  equation r4 − r2(l2 − 𝑎2)  +  2𝑀  l2r − l2𝑎2 =  0 and  taking l → ∞ will
yield  the  usual  Kerr  event  horizon

r𝐾 = 𝑀 +
√︀

𝑀2 − 𝑎2, (7.1.6)

and  taking 𝑎 → 0 instead  will  result  in  an  equation  that  yields  the  Schwarzschild-event  horizon r𝑆

and  the  cosmological  horizon r𝑐

r3

l2
− r + 2𝑀 =  0. (7.1.7)  

On  the  other  hand,  for  large  parameters 𝑎,  one  obtains  pure  dS.

By  introducing the  mass  parameter m𝑁 = l
3
√

3 ,  we  can  also differentiate  between  a number  of  classes
of  black  holes:

• m𝑁 >  𝑀  > 0 will  result  in  a black  hole  in  dS  spacetime,
• coinciding parameter m𝑁 and 𝑀 will  result  in the  Nariai-solution with coinciding event  and

cosmological  horizon  and
• a naked  singularity  is  described  when 𝑀  >  m𝑁 .  [14]

Furthermore,  for 𝑔tt =  0,  one  finds  two ergoregions,  namely  one  associated  with  each  of  the  two 

largest  roots  of Δr =  0,  the  cosmological  horizon r𝐶 and  the  outer  horizon r𝐻 .  On  the  horizons,
the  stationary  Killing field 𝜁𝜇 =  (1, 0, 0, 0) corresponding to the  time  coordinate t is  spacelike  since
𝑔tt > 0 at  that  location.  Therefore,  for  some  points  away  from  the  horizons, 𝜁𝜇 must  be  null,  and,
because  there  is  a region  between  the  outer  and  cosmological  horizons  where 𝜁𝜇 is  timelike,  there
must  be  two ergospheres.[6]

7.1.1 Thermodynamics

The  horizon’s  angular  velocity  can  be  calculated  to be

Ω𝐻 = − 𝑔t𝜑

𝑔𝜑𝜑
|r=r𝑐= 𝑎

r2
𝑐 + 𝑎2 . (7.1.8)

For  symmetries,  we  have  the  stationary 𝜁𝜇 Killing vector  we  have  already  used  to discuss  the  metric’s
ergoregions  and  an  axial  Killing vector 𝜓𝜇 =  (0, 0, 0, 1) [14],  where  the  first  one  is  associated  with
the  conserved  charge  corresponding to the  mass  [4]

ℳ = 𝑄∂t = − 𝑀

Θ2 (7.1.9)  

and  the  latter  to the  second  conserved  quantity,  the  angular  momentum

𝐽 = 𝑄∂𝜑
= −𝑎𝑀

Θ2 . (7.1.10)
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The  expressions  for  the  parameters 𝑎 and 𝑀 appearing in  them  can  be  obtained  from  the  black
hole’s  horizons  using the  extremality  conditions Δr |ℎor  iz  on=  0,  ∂rΔr |ℎor  iz  on=  0 that  yield  a system
of  equations  that  can  be  solved  to find  [4]

𝑎2 =
r2

𝑐 (1 − 3 r2
𝑐

l2 )
1 + r2

𝑐
l2

,  𝑀 =
r𝑐(1 − r2

𝑐
l2 )2

1 + r2
𝑐

l2

. (7.1.11)

The  two Killing vectors  combined  give  a Killing vector  that  is  normal  to the  horizon r𝑐, 𝜒𝜇 =
𝜁𝜇 + Ω𝐻𝜓𝜇 and  can  be  used  to calculated  the  surface  gravity  [14]

𝜅 =
√︂

−1
2(𝛻𝜇𝜒𝜈)2 =  

1
2(r2

𝑐 + 𝑎2)Θ
𝑑Δr

𝑑r
|r=r𝑐 . (7.1.12)

The  Bekenstein-Hawking entropy  can  be  easily  calculated  from  the  black  hole  horizon’s  area
𝐴 =  4𝜋 r2

𝑐 +𝑎2

Θ to give  [4]

𝑆 = 𝜋 

r2
𝑐 + 𝑎2

Θ . (7.1.13)  

This  satisfies  the  first  law  of  black  hole  thermodynamics  (2.2.8)  with

𝛿ℳ = 𝑇𝐻𝛿  𝑆 + Ω𝐻𝛿  𝐽, (7.1.14)  

with  the  inverse  Hawking temperature  [14]

𝛽𝐻 =  

1
𝑇𝐻

=| 2𝜋

𝜅
|=  

2𝜋(r2
𝑐 + 𝑎2)(l2 + 𝑎2)

| 2r3
𝑐 + r𝑐(𝑎2 − l2) + 𝑀  l2 | . (7.1.15)

7.2  Nariai  limit

In  the  Nariai  limit r𝑐 = r+ =
3𝑀+

√︁
9𝑀2−8𝑎2(1− 𝑎2

l2 )

2(1− 𝑎2
l2 )

,  the  conserved  charges  remain  unchanged,  but

for  non-rotating Nariai 𝑎 → 0,  the  Hawking temperature  will  approach  [14]

𝑇𝐻 = r3
𝑐 − 𝑀  l2

2𝜋 r2
𝑐 l2

, (7.2.1)  

but  is  otherwise  obtained  by  using the  usual  relation 𝑇𝐻 = 𝜅
2𝜋 .  [18]

In  this  limit,  the  chemical  potential  associated  to the  angular  momentum,  the  left  moving temperature
𝑇𝐿,  defined  as

1
𝑇𝐿

= 𝛿  𝑆

𝛿  𝐽  

, (7.2.2)  

after  inserting the  expressions  (7.1.11),  can  be  found  to be  [4]

𝑇𝐿 =  

(r2
𝑐 + 𝑎2)

4𝜋 𝑎r𝑐Θ  

(6 r2
𝑐

l2 + 3 r4
𝑐

l4 − 1)
1 + r2

𝑐
l2

. (7.2.3)
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7.2.1 Rotating Nariai

The  rotating Nariai  metric  can  now  be  obtained  by  first  defining a non-extremality  parameter
𝜏 = r𝑐−r+

r𝑐
,  which  can  be  taken  to be  small  since r𝑐 = r+ for  this  class  of  solutions.  [4]  Because  of

its  coinciding horizons,  the  Nariai  black  hole  is  also in  a state  of  thermal  equilibrium  since  the  two
horizons  have  the  same  temperature  [14],  which,  with  the  help  of 𝜏 ,  can  be  approximated  to

𝑇𝐻 ≈ 𝑏𝜏

4𝜋 

. (7.2.4)

Introducing a parameter 𝑏 = r𝑐(r𝑐−r−)(3r𝑐+r−)
l2(𝑎2+r2

𝑐 ) together  with  the  cosmological  angular  velocity
Ω𝑐 =  Ω𝐻 · Θ,  we  can  now  define  the  near  horizon  coordinates

t = 𝑏𝜆t̂,  r = r𝑐 − r̂

𝜆r𝑐
,  𝜑 = �̂� − Ω𝑐t̂. (7.2.5)

Inserting these  into the  metric (7.1.1) and  then  taking the  limits (𝜆,  𝜏) → 0 with  fixed 𝜏
𝜆 ,  t,  r,  𝜑 lets

us  arrive  at  the  rotating Nariai  metric

𝑑2s =  Γ(𝜃)
(︁
r(r − 𝜏)𝑑2t − 𝑑2r

r(r − 𝜏)  

+ 𝛼(𝜃)𝑑2𝜃
)︁

+ 𝛾(𝜃)(𝑑𝜑 + k  r  𝑑t)2. (7.2.6)  

The  new  functions  used  for  simplification  are

𝜌2
𝑐 = r2

𝑐 + 𝑎2 cos 𝜃2, Γ(𝜃)  = 𝜌2
𝑐r𝑐

𝑏(𝑎2 + r2
𝑐 ) , (7.2.7)

𝛼(𝜃)  = 𝑏(r2
𝑐 + 𝑎2)
r𝑐Δ𝜃

,  𝛾(𝜃)  =  

Δ𝜃(r2
𝑐 + 𝑎2)2 sin 𝜃2

𝜌2
𝑐Θ2 , (7.2.8)

k = − 2𝑎r2
𝑐 Θ

𝑏(𝑎2 + r2
𝑐 )2 . (7.2.9)  

An  additional  coordinate  change

r → 𝜏

2 (r + 1),  t → 2
𝜏  

t,  𝜑 → 𝜑 − k  t (7.2.10)

will  lead  to 𝑑t2  

2
𝜏 − (r + 1)( 𝜏

2 (r + 1) − 𝜏) ̂︀=𝑑t2(r2 − 1) (and  analoguely  for  the  other  coordinates)  and  

therefore  the  rotating Nariai  metric  in  static  coordinates  with  isometry  group 𝑈(1)×𝑆  𝐿(2,  𝑅)[4]

𝑑s2 =  Γ(𝜃)
(︁

− (1 − r2)𝑑t2 + 𝑑r2

1 − r2 + 𝛼(𝜃)𝑑𝜃2
)︁

+ 𝛾(𝜃)(𝑑𝜑 + k  r  𝑑t)2. (7.2.11)  

The  corresponding generators  are
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𝐾0 = ∂t,

𝐾0 = ∂𝜑,  

𝐾1 = r sinh t√
1 − r2 ∂t + cosh t

√︀
1 − r2∂r − k sinh t√

1 − r2 ∂𝜑,

𝐾1 = r cosh t√
1 − r2 ∂t + sinh t

√︀
1 − r2∂r − k cosh t√

1 − r2 ∂𝜑. (7.2.12)

7.2.2 Boundary  conditions,  asymptotic  symmetries  and  charges

The  boundary  conditions  chosen  are  analogous  to the  ones  used  for  NHEK  in  chapter 6 and  are

ℎ𝜇𝜈 ∼  O

⎛ ⎜⎜⎜⎜⎜⎝
r2 1 1

r
1
r2

1 1
r

1
r

1
r

1
r2
1
r3 ,

⎞ ⎟⎟⎟⎟⎟⎠ (7.2.13)

with  the  additional  condition 𝑄∂t =  0 to ensure  finite  charges.  These  allow  for  the  left-moving
diffeomorphisms

𝜁𝜀 = 𝜀(𝜑)∂𝜑 − r  𝜀′(𝜑)∂r,  𝜁  = ∂t (7.2.14)  

that  generate  a copy  of  the  Witt  algebra

i[𝜁n,  𝜁m]  =  (n − m)𝜁n+m (7.2.15)  

after  expanding 𝜀n = −𝑒−in𝜑.  Using these,  the  conserved  charges

𝑄𝜁(ℒ𝜁m𝑔  ,  𝑔)  =
∫︁

k𝜁m [ℒ𝜁m𝑔  ,  𝑔] (7.2.16)

can  again  be  found  using the  Barnich-Brandt  surface  charge (1.3.15) and  the  algebra of  asymptotic
symmetries  is  again  given  by  (6.1.6).  The  Lie  derivatives  of  the  metric  (7.2.11)  are

ℒ𝜁𝑔tt = −2i𝑒−im𝜑mr2
(︁
Γ(𝜃) + k2 · 𝛾(𝜃)

)︁
(7.2.17)

ℒ𝜁𝑔r  r = −2i𝑒−im𝜑mΓ(𝜃)
(1 − r2) ·

(︁ r2

(1 − r2)  

+ 1
)︁

(7.2.18)

ℒ𝜁𝑔𝜑r = −𝑒−im𝜑m2rΓ(𝜃)
(1 − r2) (7.2.19)

ℒ𝜁𝑔𝜑𝜑 =  2i𝑒−im𝜑m𝛾(𝜃). (7.2.20)

Using (6.1.9) to obtain  the  modes 𝐿m after  calculating the  charges’  algebra and  comparing to the
Virasoro algebra (3.2.6)  will  result  in  the  central  charge
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𝑐 =  3 | k |
∫︁ 𝜋

0
𝑑𝜃

√︁
Γ(𝜃)𝛼(𝜃)𝛾(𝜃)  =  

12𝑎r2
𝑐

𝑏(𝑎2 + r2
𝑐 ) . (7.2.21)

After  using the  cardy  formula and  plugging in  for  the  parameters 𝑏, 𝑎(7.1.11) and 𝑇𝐿(7.2.3),  we  

see  that  the  entropy  is  the  same  as  the  Bekenstein-Hawking entropy  we  had  calculated  before  in
equation  (7.1.13).[4]
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7.3  Ultracold solution

This  section  concerns  itself  solely  with  the  ultracold  solution,  an  extremal  limit  of  the  Kerr/dS-metric,
for  which r+ = r− = r𝑐.  Note  that  for  this  solution,  the  left  moving temperature (7.2.3) will  vanish.
Additionally,  it  belongs  to the  class  of  so called  “cold” solutions,  whose  horizons  have  the  same  

temperature  and  additionally,  some  of  them  coincide,  as  was  also the  case  with  the  Nariai  limit
discussed  in  the  last  section 7.2.  [7]
We  can  obtain  from  the  Nariai  metric  in  static  coordinates (7.2.11) by  rescaling the  coordinates  

in  order  to avoid  difficulties  with  the  parameter 𝑏 now  vanishing: r = r̃
√

𝑏,  t = t̃
√

𝑏.  The  new
coordinates  can  then  be  expressed  as

r̃  = r𝑐 − r̂

(𝑎2 + r2
𝑐 )2 ,  t̃ = 𝑏√

𝑏  

𝜆t̂. (7.3.1)  

Therefore,  some  of  the  functions  (7.2.9)  will  also be  rescaled:

k̃  = 𝑏 · k = − 2𝑎r2
𝑐 Θ

(𝑎2 + r2
𝑐 )2 , Γ̃(𝜃)  = 𝑏 · Γ(𝜃). (7.3.2)  

The  first  term  in  (7.2.11)  will  then  be Γ(𝜃)˜
𝑏

(︁
− (1 − r̃2𝑏)𝑑2t̃𝑏 + 𝑑2r̃𝑏

1−r̃2𝑏
+ 𝛼(𝜃)𝑑2𝜃

)︁
,  giving us

�̃� = 𝛼

𝑏
(7.3.3)

as  well  as,  when  disregarding terms  of O(𝑏) and  after  inserting for  the  other  parts  of (7.2.11),  the
ultracold  solution’s  metric  [4]

𝑑s2 =  Γ̃(𝜃)
(︁

− 𝑑t̃
2 + 𝑑r̃2 + �̃�(𝜃)𝑑𝜃2

)︁
+ 𝛾(𝜃)(𝑑𝜑 + k̃r̃𝑑t̃)2. (7.3.4)

7.3.1 Thermodynamics

From  the  metric  (7.3.4)  we  can  again  calculate  the  Bekenstein-Hawking entropy

𝑆 =  

(r2
𝑐 + 𝑎2)𝜋

Θ . (7.3.5)  

The  horizon’s  angular  velocity  is

Ω𝐶 = −2k̃r̃ |r𝑐 (7.3.6)  

and  with  the  Killing vector 𝜉 = 1
Θ(∂t̃ − 2k̃r̃∂𝜙),  the  surface  gravity  can  be  calculated  to be

𝜅 =  

1
Θ(k̃  + r̃𝑑k̃) |r𝐶 . (7.3.7)

The  Hawking temperature  will  vanish  at  the  special  value  of  the  horizon (7.3.8),  as  described  in  the
following subsection 7.3.2.
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7.3.2 Equations  of  motions

The  ultracold  solution (7.3.4) fulfills  Einstein’s  equations  of  motion  with  a positive  cosmological
constant Λ  =  3/l2.  We  should  mention  that  since  we  took  the  limit 𝑏 → 0,  for 𝑎 fixed  to what  was
given  in  (7.1.11),  this  is  only  true  for

r𝐶 = l

√︃
−3 + 2 ·  

√
3

3 . (7.3.8)

This  is  a saddle  point  of  the  Killing-metric,  which  therefore  makes  it  a horizon.  This  also results  in
the  surface  gravity  (7.3.7)  becoming

𝜅 =  

1
Θ k̃. (7.3.9)

However,  changing 𝑎 also changes  the  value  of r𝐶 ,  so the  metric (7.3.4) does  in  fact  solve  Einstein’s
equations  for  any  value  of r𝐶 .

7.3.3 Central  charge  from  the  Witt  generators

Since  they  have  worked  in  determining the  boundary  charges  for  NHEK 6.2.6 and  Nariai 7.2 before,
we  attempt  using the  generators  (7.2.14).  One  obtains  the  Lie-derivatives

ℒ𝜁𝑔tt = −2i𝑒−im𝜑mr2𝛾(𝜃)k̃2 (7.3.10)
ℒ𝜁𝑔r  r = −2i𝑒−im𝜑mΓ̃(𝜃) (7.3.11)
ℒ𝜁𝑔𝜑r = −𝑒−im𝜑m2rΓ̃(𝜃) (7.3.12)
ℒ𝜁𝑔𝜑𝜑 =  2i𝑒−im𝜑m𝛾(𝜃). (7.3.13)

The  central  charge  obtained  from  utilizing the  variation  of  the  conserved  charges (1.3.8) and
extracting the  anomolous  term  would  then  turn  out  to be

𝑐 =  

12𝑎r2
𝐶

𝑎2 + r2
𝐶

r2 + O(1/r) (7.3.14)

and  therefore  diverge  at  the  boundary,  suggesting that  we  need  a different  set  of  boundary  conditions.
Finding this  set  will  be  the  topic  in  the  next  subsection 7.3.4.

7.3.4 New  boundary  conditions  from  uplifting the  metric

7.3.4.1 Uplifting the  metric

In  order  to be  able  to find  adequate  new  boundary  conditions  for  the  metric (7.3.4) in  the  hope  of
getting a finite  central  extension,  we  use  a similar  approach  to the  one  Godet  and  Marteau  used  for
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the  NHEK  geometry  in  [15].  The  basic  procedure  was  described  in  setion 4.4.  We  are  therefore
looking for  diffeomorphisms  corresponding to a coordinate  change  of  the  form  [15]

u → 𝐹 (u),  r → 1
𝐹 ′(u)

(︁
r + 𝐺′(u)

)︁
,  𝜑 → 𝜑 − 𝐺(u) (7.3.15)

where 𝐺(u) is  some  periodic  function  dependend  on  the  retarded  time u and 𝐹 (u) is  a reparametriza-
tion  of  the  circle.
As  a first  step,  we  do a coordinate  change  to Eddington-Finkelstein  coordinates u = t − r,  after
which  the  metric  (7.3.4)  reads

𝑑s2 =  Γ̃(𝜃)(𝑑u2 − 2𝑑u𝑑r + 𝛼(𝜃)˜ 𝑑𝜃2) + 𝛾(𝜃)(𝑑𝜑 + k̃r  𝑑u)2. (7.3.16)

Now  we  replace  the  flat  part 𝑑u2 − 2𝑑u𝑑r with 2
(︁
𝑃 (u)r + 𝑇 (u)

)︁
𝑑u2 − 2𝑑u𝑑r [2]  to receive  the

uplifted  ultracold  metric

𝑑s2 =  Γ̃(𝜃)
(︁
2
(︀
𝑃 (u)r + 𝑇 (u)

)︀
𝑑u2 − 2𝑑u𝑑r + 𝛼(𝜃)˜ 𝑑𝜃2

)︁
+ 𝛾(𝜃)(𝑑𝜑 + k̃r  𝑑u)2. (7.3.17)

From (7.3.17),  we  can  now  calculate  the  diffeomorphisms  conserving this  metric  by  solving the
asymptotic  Killing equation ℒ𝜉𝑔𝜇𝜈 = O(𝛿  𝑔𝜇𝜈) under  the  conditions ℒ𝜉𝑔ur = ℒ𝜉𝑔r  r =  0 and ℒ𝜉𝑔uu =
2Γ̃(𝜃)𝛿𝜉𝑃 (u)r + 𝛿𝜉𝑇 (u),  with  the  charges’  variations  given  as  in (4.4.7).  From  the ur-component,  

one  obtains ∂u𝜉u = −∂r𝜉r and  the u𝜑 and uu-components  together  give 𝜉r = −(∂r𝑔u𝜑)−1(∂u𝜉𝜑 +
∂u𝜉u) − (∂r𝑔uu)−1(2𝑔uu∂u𝜉u + 2𝜉u∂u𝑔uu + 2∂u𝜉u) + (∂r𝑔uu)−1(2Γ(𝜃)˜ 𝛿𝜉𝑃 (u)r + 𝛿𝜉𝑇 (u)).  We  therefore
find

𝜉u = 𝜀(u)∂u,  𝜉r = −(r  𝜀′(u) − 𝜂′(u))∂r + O(1
r

),  𝜉𝜑 = −𝜂(u)∂𝜑 (7.3.18)

with  some  functions 𝜀(u) and 𝜂(u).  Since  we  found  diffeomorphisms (7.3.18) corresponding to a
WCFT-algebra,  we  can  take u to be  periodic[3, 15]

u ∼ u + 2𝜋 𝐿, (7.3.19)

with  some  length  scale 𝐿.  This  can  be  understood  in  terms  of  a WCFT,  where  the  (boundary)  time
coordinate u is  exchanged  with  the  azimuthal  angle 𝜑,  see  section 4.4.  We  can  therefore  also take
the  functions 𝜀(u) and 𝜂(u) to be  periodic  in u.  Expanding either  of  these  two functions  in  Fourier
modes  will  lead  to the  same  result  as  expanding in  Laurent  modes  and  taking u to be  complex
instead.  [3]  As  we  can  see,  these  diffeomorphisms  share  similarities  with (4.4.2) and (7.3.15).  After
defining a set  of  generators

lm = 𝜉 |𝜀(u)=−𝑒−inu,𝜂(u)=0,  pm = 𝜉 |𝜀(u)=0,𝜂(u)=−𝑒−inu , (7.3.20)  

we  find  that  their  bracket-algebra is

[lm,  ln]  =  (m − n)lm+n, [lm,  pn]  = −npm+n, [pn,  pm]  =  0. (7.3.21)
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Therefore,  for 𝜀 =  0,  one  finds  that  a spin-0 supertranslation,  for 𝜂 =  0 one  finds  the  Witt-algebra.
We  also see  that  our  algebra admits  to the  warped  Witt-algebra.
Furthermore,  the  diffeomorphisms (7.3.18) also show  similarities  to the  ones  preserving the  quasi-
Rindler  boundary  conditions  found  in  [3],  that  is  dual  to a warped  CFT[3],  namely (4.4.2) with  the
additional  Killing-vector  as  described  in  section 4.4.  The  difference  is  that  the  algebra one  obtains
in  two dimensions  turns  out  to be  the  BMS2-algebra instead.  It  is  however  interesting to note  that
we  do obtain  a similar  substructure  in  four  dimensions.  

The  metric’s  Lie-derivatives  are  given  by

ℒ𝜉𝑔uu = −2𝜀(u)mr  ik̃𝛾(𝜃) + 2i𝜀(u)m(1 − r)(Γ̃(𝜃)𝑃 (u) + k̃
2
𝛾(𝜃)r) + 2i𝜀(u)m(︀

r2k̃
2
𝛾(𝜃) + 2Γ̃(𝜃)(r  𝑃 (u) + 𝑇 (u))

)︀ − 2Γ̃(𝜃)(−𝜀(u)m2r + 𝜂′′(u)) − 2Γ̃(𝜃)(r  𝑃 (u) + 𝑇 (u)) (7.3.22)

and

ℒ𝜉𝑔u𝜑 = 𝜀(u)𝛾(𝜃)
(︁
im + k̃r(1 − im) + k̃m

)︁
(7.3.23)

. (7.3.24)

7.3.4.2 Conserved  charges  and  central  charge

We  find  finite  charges

𝑄𝑈  𝐶 = −
∫︁ 2𝜋  𝐿

0
𝑑u

(︃
(𝑎2 + r2

𝑐 )𝜂(u)𝑃 (u)
4Θ𝜋

+ 𝑎r2
𝑐 𝑇 (u)𝜀(u)

2𝜋(𝑎2 + r2
𝑐 )

)︃
(7.3.25)

by  integration  over  a constant r,  𝜑 surface.  The  functions 𝑃 (u) and 𝑇 (u) used  for  the  uplift (7.3.17)  

can  now  also be  understood  as  the  conserved  currents  of  this  spacetime.[15].
The  central  charge  can  now  be  calculated  by  comparing the  charge  algebra of  the  charges (7.3.25)
with  the  generator  algebra (7.3.21) and  finding possible  anomalous  terms.  For  that,  we  define

𝐿m = 𝑄𝑈  𝐶 |𝜂=0,  𝑃m = 𝑄𝑈  𝐶 |𝜀=0 (7.3.26)

in  analogy  to the  generators (7.3.20).The  charge  algebra then  exactly  coincides  with  the  generator
algebra (7.3.21)  and  therefore  the  central  charge  vanishes.



Conclusion  and  Outlook

In  conclusion,  starting from  the  Nariai  metric  in  static  coordinates (7.2.11),  we  rederive  the  ultracold
limit (7.3.4) of  the  Kerr/dS-metric  by  taking the  parameter 𝑏 appearing in (7.2.11) to 0,  after  

reparametrization  of  time  and  radial  coordinates  and  associated  functions.  This  is  the  extremal
limit  in  which  all  three  horizons  of  the  Kerr/dS-solution  coincide  and  we  check  that  the  equations  

of  motions  are  fulfilled  for  any 𝑎 and  horizon r𝐶 .
Using the  value (7.1.11) found  for  the  parameter 𝑎 for  the  Kerr/dS-solution  yields  a special  value
for  the  single  ultracold  horizon

r𝑈  𝐶 = l

√︃
−3 + 2 ·  

√
3

3 ≈ 0.39. (7.3.27)

Furthermore,  implementing the  boundary  conditions (7.2.14) used  for  the  Nariai-case  to obtain  the
central  charge,  leads  to a divergence  of  the  central  extension  quadratic  in  the  radial  coordinate
r.  This  is  why  we  changed  our  strategy  to uplifting the  metric  after  a coordinate  change  to 

Eddington-Finkelstein  coordinates,  as  was  done  by  Godet  and  Marteau  for  the  NHEK  geometry  

in  [15],  and  calculate  appropriate  boundary  conditions  and  associated  charges  from  there.  We  

find  the  diffeomorphisms (7.3.18) that  are  similar  to the  ones  found  for  the  flat  two dimensional  

counterpart  in  [3],  with  an  additional  periodic  term  in  the  radial  component  and  an  additional
angular  component.  Their  algebra turns  out  to be  the  warped  Witt-algebra

[lm,  ln]  =  (m − n)lm+n, [lm,  pn]  = −npm+n, [pn,  pm]  =  0 (7.3.28)  

with  a similar  substructure  as  was  found  in  two dimensions  albeit  not  the  same  overall  structure.  

Using these  boundary  conditions,  we  find  finite,  non-trivial,  well  defined  charges

𝑄𝑈  𝐶 = −
∫︁ 2𝜋  𝐿

0
𝑑u

(︃
(𝑎2 + r2

𝑐 )𝜂(u)𝑃 (u)
4Θ𝜋

+ 𝑎r2
𝑐 𝑇 (u)𝜀(u)

2𝜋(𝑎2 + r2
𝑐 )

)︃
, (7.3.29)

containing the  finite  conserved  currents 𝑇 (u) and 𝑃 (u) that  were  used  for  uplifting the  metric  as
well  as  periodic  functions  appearing in  the  generators, 𝜀(u) and 𝜂(u).  We  also find  that  charge  and
generator  algebra exactly  match,  meaning that  the  central  charge  vanishes  and  the  charges  therefore
admit  to a centerless  WCFT-algebra.
The  next  step  would  have  been  to see  whether  it  would  be  possible  to find  a matching type  of
Cardy  formula,  which  would  be  complicated  since  usually  that  would  require  a non-vanishing central
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charge.  If  it  is  possible,  however,  it  would  be  interesting to see  whether  that  generates  a matching
entropy  to (7.3.5).



Bibliography

[1] Hamid  Afshar  and  Blagoje  Oblak.  “Flat  JT  gravity  and  the  BMS-Schwarzian”.  In: JHEP 11
(2022),  p.  172. doi: 10.1007/JHEP11(2022)172.  arXiv: 2112.14609 [hep-th].

[2] Hamid  Afshar  et  al.  “Flat  space  holography  and  the  complex  Sachdev-Ye-Kitaev  model”.  In:
Physical  Review  D 101.8 (Apr.  2020). doi: 10.1103/physrevd.101.086024. url: https: 

//doi.org/10.1103%2Fphysrevd.101.086024.
[3] Hamid  Afshar  et  al.  “Near-horizon  geometry  and  warped  conformal  symmetry”.  In: Journal

of  High  Energy  Physics 2016.3 (Mar.  2016). doi: 10.1007/jhep03(2016)187. url: https: 

//doi.org/10.1007%2Fjhep03%282016%29187.
[4] Dionysios  Anninos  and  Thomas  Hartman.  “Holography  at  an  extremal  De  Sitter  horizon”.  In:

Journal  of  High  Energy  Physics 2010.3 (Mar.  2010). doi: 10.1007/jhep03(2010)096. url:
https://doi.org/10.1007%2Fjhep03%282010%29096.

[5] Sinya Aoki,  Tetsuya Onogi,  and  Shuichi  Yokoyama.  “Conserved  charges  in  general  relativity”.
In: International  Journal  of  Modern  Physics  A 36.10 (Apr.  2021),  p.  2150098. doi: 10.1142/ 

s0217751x21500986. url: https://doi.org/10.1142%2Fs0217751x21500986.
[6] Sourav  Bhattacharya.  “Kerr-de  Sitter  spacetime,  Penrose  process,  and  the  generalized  area

theorem”.  In: Physical  Review  D 97.8 (Apr.  2018). doi: 10.1103/physrevd.97.084049. url:
https://doi.org/10.1103%2Fphysrevd.97.084049.

[7] I.  S.  Booth  and  R.  B.  Mann.  “Complex  Instantons  and  Charged  Rotating Black  Hole  Pair  

Creation”.  In: Physical  Review  Letters 81.23 (Dec.  1998),  pp.  5052–5055. doi: 10.1103/ 

physrevlett.81.5052. url: https://doi.org/10.1103%2Fphysrevlett.81.5052.
[8] Geoffrey  Compere  and  Stephane  Detournay.  “Semi-classical  central  charge  in  topologically

massive  gravity”.  In: Class.  Quant.  Grav. 26 (2009).  [Erratum:  Class.Quant.Grav.  26,  139801
(2009)],  p.  012001. doi: 10.1088/0264-9381/26/1/012001.  arXiv: 0808.1911 [hep-th].

[9] Geoffrey  Compère  and  Adrien  Fiorucci.  “Advanced  Lectures  on  General  Relativity”.  In:  (Jan.
2018).  arXiv: 1801.07064 [hep-th].

[10] Stéphane  Detournay,  Thomas  Hartman,  and  Diego M.  Hofman.  “Warped  conformal  field
theory”.  In: Physical  Review  D 86.12 (Dec.  2012). doi: 10.1103/physrevd.86.124018. url:
https://doi.org/10.1103%2Fphysrevd.86.124018.

[11] Stéphane  Detournay  and  Quentin  Vandermiers.  “Lecture  notes  on  Advanced  GR”.  In:  (Oct.
2017).

[12] Stéphane  Detournay  et  al.  “Warped  flatland”.  In: Journal  of  High  Energy  Physics 2020.11 

(Nov.  2020). doi: 10.1007/jhep11(2020)061. url: https://doi.org/10.1007%2Fjhep11% 

282020%29061.

https://doi.org/10.1007/JHEP11(2022)172
https://arxiv.org/abs/2112.14609
https://doi.org/10.1103/physrevd.101.086024
https://doi.org/10.1103%2Fphysrevd.101.086024
https://doi.org/10.1103%2Fphysrevd.101.086024
https://doi.org/10.1007/jhep03(2016)187
https://doi.org/10.1007%2Fjhep03%282016%29187
https://doi.org/10.1007%2Fjhep03%282016%29187
https://doi.org/10.1007/jhep03(2010)096
https://doi.org/10.1007%2Fjhep03%282010%29096
https://doi.org/10.1142/s0217751x21500986
https://doi.org/10.1142/s0217751x21500986
https://doi.org/10.1142%2Fs0217751x21500986
https://doi.org/10.1103/physrevd.97.084049
https://doi.org/10.1103%2Fphysrevd.97.084049
https://doi.org/10.1103/physrevlett.81.5052
https://doi.org/10.1103/physrevlett.81.5052
https://doi.org/10.1103%2Fphysrevlett.81.5052
https://doi.org/10.1088/0264-9381/26/1/012001
https://arxiv.org/abs/0808.1911
https://arxiv.org/abs/1801.07064
https://doi.org/10.1103/physrevd.86.124018
https://doi.org/10.1103%2Fphysrevd.86.124018
https://doi.org/10.1007/jhep11(2020)061
https://doi.org/10.1007%2Fjhep11%282020%29061
https://doi.org/10.1007%2Fjhep11%282020%29061


Bibliography  61
[13] Philippe  Francesco,  Pierre  Mathieu,  and  David  Senechal. Conformal  Field  Theory.  Springer

New  York,  NY,  2012. doi: https://doi.org/10.1007/978-1-4612-2256-9.
[14] A.  M.  Ghezelbash  and  R.  B.  Mann.  “Entropy  and  mass  bounds  of  Kerr–de  Sitter  spacetimes”.

In: Physical  Review  D 72.6 (Sept.  2005). doi: 10.1103/physrevd.72.064024. url: https: 

//doi.org/10.1103%2Fphysrevd.72.064024.
[15] Victor  Godet  and  Charles  Marteau.  “New  boundary  conditions  for  AdS2”.  In: Journal  of  

High  Energy  Physics 2020.12 (Dec.  2020). doi: 10.1007/jhep12(2020)020. url: https: 

//doi.org/10.1007%2Fjhep12%282020%29020.
[16] Daniel  Grumiller.  “Gravity  in  three  spacetime  dimensions”.  In: Gravity  and  Holography  in  

Lower  dimensions  1 (2022). url: https://tuwel.tuwien.ac.at/course/view.php?id= 

50794.
[17] Daniel  Grumiller.  “Lagrangeformulierung”.  In: Lecture notes  on  Electrodynamics  2 (2021).

url: https://tiss.tuwien.ac.at/course/educationDetails.xhtml?courseNr=136018& 

semester=2021W&dswid=2099&dsrid=273.
[18] Daniel  Grumiller  and  Mohammad  Mehdi  Sheikh-Jabbari. Black Hole Physics:  From  Collapse

to  Evaporation.  Grad.Texts  Math.  Springer,  Nov.  2022. isbn:  978-3-031-10342-1,  978-3-031-
10343-8. doi: 10.1007/978-3-031-10343-8.

[19] Monica Guica et  al.  “The  Kerr/CFT  correspondence”.  In: Physical  Review  D 80.12 (Dec.  

2009). doi: 10.1103/physrevd.80.124008. url: https://doi.org/10.1103%2Fphysrevd. 

80.124008.
[20] Mikio Nakahara. Geometry,  Topology  and  Physics.  CRC  Press,  2003.
[21] Joshua D.  Qualls. Lectures  on  Conformal  Field  Theory.  2015. doi: 10.48550/ARXIV.1511. 

04074. url: https://arxiv.org/abs/1511.04074.
[22] Mark  Srednicki.  “Quantum  Field  Theory”.  In:  (2006).
[23] Robert  M.  Wald. General  Relativity.  Chicago,  USA:  Chicago Univ.  Pr.,  1984. doi: 10.7208/ 

chicago/9780226870373.001.0001.

https://doi.org/https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1103/physrevd.72.064024
https://doi.org/10.1103%2Fphysrevd.72.064024
https://doi.org/10.1103%2Fphysrevd.72.064024
https://doi.org/10.1007/jhep12(2020)020
https://doi.org/10.1007%2Fjhep12%282020%29020
https://doi.org/10.1007%2Fjhep12%282020%29020
https://tuwel.tuwien.ac.at/course/view.php?id=50794
https://tuwel.tuwien.ac.at/course/view.php?id=50794
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?courseNr=136018&semester=2021W&dswid=2099&dsrid=273
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?courseNr=136018&semester=2021W&dswid=2099&dsrid=273
https://doi.org/10.1007/978-3-031-10343-8
https://doi.org/10.1103/physrevd.80.124008
https://doi.org/10.1103%2Fphysrevd.80.124008
https://doi.org/10.1103%2Fphysrevd.80.124008
https://doi.org/10.48550/ARXIV.1511.04074
https://doi.org/10.48550/ARXIV.1511.04074
https://arxiv.org/abs/1511.04074
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.7208/chicago/9780226870373.001.0001

	1 Symmetries and conserved charges
	1.1 Hamilton action principle and Noether theorem for classical field theory
	1.2 Noether theorem for general relativity
	1.2.1 Generalization
	1.2.2 Noether's second theorem and fundamental theorem of the phase space formalism

	1.3 Surface charges and central extension
	1.3.1 Asymptotic symmetries and asymptotic symmetry group
	1.3.2 Surface charges and charge algebra
	1.3.3 Conserved charges in Einstein-gravity
	1.3.4 Charges in Topologically Massive Gravity


	2 Black Hole thermodynamics
	2.1 Zeroth law
	2.2 First law
	2.3 Second law
	2.4 Summary

	3 Conformal Field Theory
	3.1 Conformal group and representations
	3.2 Witt and Virasoro algebra
	3.3 (Quasi-)Primary fields and OPEs
	3.3.1 Primaries and quasi-primaries
	3.3.2 Operator product expansions and Ward identity
	3.3.3 Sugawara construction

	3.4 Radial quantization

	4 Warped conformal field theory
	4.1 WCFT algebra and transformations
	4.1.1 Map to the cylinder

	4.2 Representations and vacuum energies
	4.3 Thermodynamics of warped black holes in TMG
	4.4 WCFT and the BMS2-algebra

	5 Cardy formula
	5.1 Cardy formula for an ordinary CFT
	5.1.1 Entropy and central charge for a BTZ-Black Hole

	5.2 Cardy formula for a warped Conformal Field Theory

	6 Kerr/CFT correspondence
	6.1 Central Charge for extremal Kerr
	6.2 Temperature and entropy

	7 Kerr/dS solution
	7.1 Basic aspects
	7.1.1 Thermodynamics

	7.2 Nariai limit
	7.2.1 Rotating Nariai
	7.2.2 Boundary conditions, asymptotic symmetries and charges

	7.3 Ultracold solution
	7.3.1 Thermodynamics
	7.3.2 Equations of motions
	7.3.3 Central charge from the Witt generators
	7.3.4 New boundary conditions from uplifting the metric



