
go2async: A High-Level
Synthesis Tool for Asynchronous
Circuits Based on Click-Elements

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Sebastian Michael Wiedemann, BSc
Matrikelnummer 01425647

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Dipl.Ing. Dipl.Ing. Dr.techn. Jürgen Maier, BSc

Univ.Ass. Dipl.-Ing. Dr.techn. Florian Ferdinand Huemer, BSc

Wien, 26. September 2023
Sebastian Michael Wiedemann Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

go2async: A High-Level
Synthesis Tool for Asynchronous
Circuits Based on Click-Elements

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Sebastian Michael Wiedemann, BSc
Registration Number 01425647

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Assistance: Dipl.Ing. Dipl.Ing. Dr.techn. Jürgen Maier, BSc

Univ.Ass. Dipl.-Ing. Dr.techn. Florian Ferdinand Huemer, BSc

Vienna, 26th September, 2023
Sebastian Michael Wiedemann Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Sebastian Michael Wiedemann, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. September 2023
Sebastian Michael Wiedemann

v

Danksagung

An diesem Punkt bedanke mich herzlichst bei meinen Betreuern Andreas Steininger,
Florian Huemer und Jürgen Maier, die mich während der Erstellung meiner Diplomarbeit
begleitet haben. Mit regelmäßiger konstruktiver Kritik haben sie mich großartig und
essenziell unterstützt. Natürlich dient mein Dank auch meinen Studienkolleg:innen, mit
denen ich über viele Studienjahre einen prägenden Teil meines Lebens verbringen durfte.
Außerdem möchte ich tiefe Dankbarkeit meinen Eltern aussprechen, die mir mein Studium
ermöglicht haben, sowie meinen Geschwistern und Verwandten, die mich stets motivierten.
Sie, mein innerer Freundeskreis und meine Partnerin verdienen eine besondere Erwähnung:
Danke für das rege Feedback, die Übersetzungs- und Formulierungshilfen sowohl für die
Feiern und die schöne Zeit.

vii

Acknowledgements

At this point, I would like to express my sincere thanks to my supervisors Andreas
Steininger, Florian Huemer and Jürgen Maier, who accompanied me during the creation
of my thesis. With regular constructive criticism they have given me great and essential
support. Of course, I would also like to thank my fellow students, with whom I was able
to spend an important part of my life over many years of study. I would also like to
express my deep gratitude to my parents, who made my studies possible, as well as to my
siblings and relatives, who have always motivated me. They, my inner circle of friends
and my significant other deserve a special mention: thank you for the lively feedback,
the translation and formulation help as well as for the parties and the good times.

ix

Kurzfassung

Wir haben bereits die Sub-5nm-Technologie für Halbleiterschaltungen erreicht und schei-
nen die physikalischen Grenzen der kleinstmöglichen Transistorgrößen zu erreichen. Um
die Leistung von Computersystemen weiter zu steigern, kann versucht werden, spezielle
Hardware für bestimmte Softwareaufgaben zu entwickeln, um diese zu beschleunigen.
Dies ist eine äußerst riskante Aufgabe, da der Entwurfsprozess sehr kostspielig und
zeitaufwändig ist. Der Einsatz von FPGAs und die Verwendung formaler Beschreibungen
in Form von HDLs erleichtern diesen Prozess. Eine zusätzliche Abstraktionsebene und
HLS-Tools ermöglichen es sogar, dass Nicht-Hardware-Spezialist:innen Schaltungen zur
Beschleunigung von Computeraufgaben entwickeln können.

Grundsätzlich gibt es zwei Arten von digitalen Schaltungen: synchrone und asynchrone.
Synchrone Schaltungen stellen die alltägliche Hardware dar. Ein globaler Taktgeber steuert
eine Schaltung und bestimmt die Arbeitsgeschwindigkeit. Asynchrone Schaltungen haben
vielversprechende Vorteile im Vergleich zu ihrem getakteten Gegenstück in Bezug auf
Leistungseffizienz und physikalische Anpassungsfähigkeit. Der Entwurf von Schaltungen
ohne Taktgeber ist jedoch weitaus schwieriger und wird oft als nicht machbar angesehen,
sofern keine technischen Hilfsmittel zur Verfügung stehen.

Um dieses Problem in Angriff zu nehmen, wird in dieser Masterarbeit ein HLS-Tool
für asynchrone Schaltungen entwickelt: go2async. Go2async ist ein HLS-Tool, welches
eine Teilmenge der bekannten Programmiersprache Go parst. Die Hardware basiert auf
dem Prinzip der Syntaxbaum-gerichteten Übersetzung. Die erzeugte Hardware ahmt die
Funktionalität der Eingabesoftware nach und basiert auf vorverifizierten Click-Element-
Strukturen, die speziell mit Blick auf FPGAs entwickelt wurden. Go2async ermöglicht es
Go-Softwareentwickler:innen asynchrone Hardware zu erstellen, ohne viel Wissen über
die Entwicklung asynchroner Hardware zu benötigen.

Das vorgeschlagene HLS-Tool generiert VHDL-Code, das es ermöglicht, die erzeugten
asynchronen Schaltungen mit typischen Simulationsprogrammen zu simulieren. Diese
Masterarbeit verifiziert die generierten asynchronen Schaltungen mit Hilfe von ausge-
wählten Eingabe-Funktionen und zeigt, dass go2async in der Lage ist, automatisch und
erfolgreich asynchrone Schaltungen auf Basis von Click-Element-Strukturen zu generieren.
Zusätzlich, ist es für gängige Synthesewerkzeuge möglich, laufbare Hardware für FPGAs
zu erstellen, wodurch die Nutzung der von go2async generierten asynchronen Hardware
in einem realen Szenario ermöglicht wird.

xi

Abstract

We have already reached the sub 5nm technology for semiconductor circuits and seem to
reach physical limits on smallest possible transistor sizes. To further increase computer
system performance, we can try to create dedicated hardware for specific software tasks
to speed them up. This is an enormously risky task since the design process is very costly
and time-sensitive. The usage of FPGAs eases this problem by using HDLs to formally
describe hardware and allowing virtual prototyping. By using an additional abstraction
layer and HLS tools it is possible to enable non hardware-specialists to create hardware
to speed up computer tasks.

There are basically two types of digital circuits: synchronous and asynchronous. Syn-
chronous circuits represent the everyday hardware. A global clock governs a circuit
and determines the operating speed. Asynchronous circuits have promising benefits
in comparison to its clocked counterpart in regards to power efficiency and physical
adaptability. However, the design of clock-less circuits is way harder and often considered
unfeasible without tool support.

To tackle this problem, this thesis proposes a HLS tool for asynchronous circuits: go2async.
Go2async is an HLS tool that parses a subset of the well-known programming language
Go. The hardware creation is based on a syntax tree directed translation principle.
The created hardware mimics the functionality of the input software and is based on
preverified click-element structures which were specifically designed with FPGAs in mind.

Go2async enables Go software developers to create asynchronous hardware without
needing much knowledge about the asynchronous design process. The proposed HLS
tool generates VHDL code which makes it possible to simulate generated asynchronous
circuits with typical simulation programs. The thesis verifies generated asynchronous
circuits with the help of selected input functions and shows that go2async is able to
automatically and successfully generate asynchronous circuits based on click-element
structures. Additionally, it is possible for common synthesis tools to create downloadable
hardware for FPGAs thus enabling usage of go2async’s generated asynchronous hardware
in a real world scenario.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Description . 2
1.3 Research Questions & Expected Results 3
1.4 Methodological Approach . 3
1.5 Structure of this Work . 4

2 Methodology 7

3 Technical Background 11
3.1 Synchronous Circuits . 11
3.2 Asynchronous Circuits . 12
3.3 High-Level Synthesis Tools . 15
3.4 Asynchronous Pipelines . 16
3.5 Work on Click-Elements . 20
3.6 Conclusion of Pipeline Findings . 21
3.7 Programming Language Candidates 22

4 Key Challenges and Solution Concepts 25
4.1 Key Challenges . 25
4.2 Solution Concepts . 26

5 Implementation 35
5.1 Program Execution . 35
5.2 The Supported Go Subset . 36
5.3 Abstraction of Resulting Asynchronous Circuits 38
5.4 Data Structures . 40
5.5 Variable Handling . 46

xv

5.6 Handshake Connection handling . 48
5.7 Parsing Go with the built-in Go AST 52
5.8 Hardware Generation . 53
5.9 Generation Example . 54

6 Simulation & Exploration of Limits 59
6.1 Testing Requirements . 59
6.2 Simulation Workflow . 60
6.3 Exhaustive Simulation . 63
6.4 The High-Level Synthesis Tool in Practice 66
6.5 Limits of go2async . 68

7 Optimization & Design Decisions 71
7.1 The Initial Solution . 71
7.2 Array Support . 73
7.3 Recursive Blocks . 75
7.4 Calling Functions . 75
7.5 Nested Binary Expressions . 76
7.6 Optimizing Variable Handling . 76
7.7 Introduction of the Dataflow Model . 78

8 Conclusion & Outlook 81
8.1 Future Work . 82

List of Figures 85

Acronyms 89

Bibliography 91

CHAPTER 1
Introduction

The never ending urge for increased circuit performance while maintaining power, resource,
and cost efficiency will remain a challenge for the hardware industry [1, 2]. When looking
at the specifications of a computer they usually include data about its processing core:
the Central Processing Unit (CPU). Usually, there is a clock frequency associated with
the CPU that essentially determines the speed of the whole system (e.g. [3]).

However, questions whether a circuit really needs a clock and whether the clock signal
is necessary quickly arise. In fact, clock-less circuits, formally known as asynchronous
circuits, do exist. Generally, the clock frequency of synchronous circuits governs the
maximum time a signal can traverse through computation logic between flip-flops. The
asynchronous counterpart is able to operate without the toggling clock signal by employing
certain communication protocols between operation components (e.g. handshaking) [4].

Typical hardware structures contain some sort of pipeline. Instead of hardware solving
a problem in its entirety at once, so-called pipeline stages allow hardware to perform
calculations step-by-step. In synchronous circuits, a pipeline stage typically consists of
logic between two flip-flops. The slowest pipeline stage determines the speed of the whole
circuit. Usually, pipeline stages can be executed in parallel. A classic example of this
structure can be seen in CPUs [5]. A high-performance CPU is able to simultaneously
fetch a new instruction while the next pipeline stage can decode the previously fetched
instruction.

The asynchronous sibling relies on specific hardware structures to employ similar pipelining
capabilities which operate on a specific communication protocol. The click-element design
template is an example implementation style for data-driven circuits [6] which are able
to deploy pipelined asynchronous circuits operating step-by-step .

1

1. Introduction

1.1 Motivation

Synchronous circuits are basically everywhere with new hardware based on this communi-
cation style being released frequently. At a first glance, their counterpart, asynchronous
circuits, are basically unheard of in the mainstream and seems like a research-only field
with numerous advantages that come with a great price. However, on a closer look
asynchronous circuits were always vaguely in the back of the head of the industry. Power
efficiency, neuromorphic computing, and generally event-driven circuits given by the
rising neural network research field gave this type of circuit another attention spike (e.g.
IBM’s TrueNorth [7] and Intel’s Loihi [8]).

The work of [9, 10] shows that asynchronous hardware can be constructed by using
standard library components. This is ideal for Field Programmable Gate Array (FPGA)
implementations and thus enables simple testing of asynchronous circuits on broadly
available FPGA development boards. However, generating asynchronous circuits based
on click-elements is still a very cumbersome task to do manually. This is where the idea
of a High-Level Synthesis (HLS) tool for this type of circuit came into fruition.

1.2 Problem Description

Creating hardware to speed up certain software tasks is accompanied with a huge
overhead, especially in verification. The design flow from the specification of hardware to
an Application Specific Integrated Circuit (ASIC) is risky in regards to design, time to
market, and market adoption. In general, ASIC designs are very cumbersome and cost
extensive [11]. This makes custom hardware only advantageous if large quantities are
needed.

A solution to this problem is using Hardware Description Languages (HDLs) (e.g. Verilog
or Very High Speed Integrated Circuit Hardware Description Language (also VHDSIC)
(VHDL)) to formally describe hardware. This enables the creation of virtual prototypes
which can be simulated and tested virtually. If simulation results are satisfactory, it is
possible to load the tested hardware into an FPGA such that a circuit can be tested
physically. Besides creating a more convenient dynamic workflow this approach has
numerous cost saving aspects in comparison to creating and testing circuits with many
iteration cycles of ASICs.

However, the HDL approach still comes with a very complex design effort as well as an
extensive verification process and requires specially trained personnel. This problem is
hugely magnified when dealing with asynchronous circuits because the management of
every single communication channel between components is required. This makes the
manual design of large asynchronous circuits completely unfeasible without tool support.

2

1.3. Research Questions & Expected Results

1.3 Research Questions & Expected Results
The overall goal of this thesis is to reduce the complexity of hardware generation. In
that regard this project focuses on asynchronous circuits specifically. The main objective
is to create a HLS tool that allows untrained personnel to quickly create asynchronous
circuits without needing to know much about asynchronous circuits themselves.
To be more precise, the result of this theses shall be the HLS tool called go2async written
in the Go programming language [12] which parses a subset of Go itself with the help of
the built-in Go parser and Go Abstract Syntax Tree (AST). The supported subset of
Go consists of multiple sequentially occurring statements including common program
flow structures such as if-statements and for-loops as well as nested code scopes (block
statements). Other supported programming statements include arithmetic and binary
expressions as well as function calls. To ensure a degree of simplicity only binary and
integer variable types are allowed. Fixed size arrays can be used to ensure the usefulness
of the high-level synthesis tool.
The program takes Go functions as inputs and generates synthesizeable VHDL code
based on click-elements [9]. The resulting circuit functionally behaves the same as the
input functions. The function parameters are the inputs of the resulting components and
the function return variables are the circuit’s output. The previously mentioned function
call feature additionally enables interoperation with external circuits. The workflow
concept is illustrated in Fig. 1.1.

Go Code go2async VHDL Code Simulation
Tool

Synthesis
Tool FPGA

Figure 1.1: Workflow concept of go2async.

To achieve its goal, the thesis has to address following research questions:

• Is it possible to synthesize click-based asynchronous hardware from a high-level
design description in Go?

• How must the used capabilities of Go be restricted to keep the code synthesizable?

• Which measures can be taken to synthesize efficient asynchronous hardware?

1.4 Methodological Approach
The methodological approach of this thesis consists of the following steps:

3

1. Introduction

1. Problem description and extraction of challenges:
The first phase of this thesis involves the problem description. From there various
challenges are directly implied which will be tackled in the subsequent steps and
later chapters.

2. Literature study:
In the state of the art phase a review and analysis of related works and relevant
literature will be done to build a knowledge base and provide background context
for the work done in this thesis.

3. Exploration of existing options:
Here the results of the literature study will be discussed. In this step the thesis
will construct some design ideas.

4. Implementation:
The largest chapter will cover the implementation of the hardware generator. The
high-level synthesis tool is actually implemented in this step. The implementation
decisions, explanations, discussions and justifications are covered.

5. Assessment of the implemented concept and exploration of limits by simulation and
analysis:
In the simulation phase a specific state of the developed tool is analyzed. This will
be mostly done by applying certain testcases and monitoring testbenches to verify
generated hardware. Additionally, tool outputs will be synthesized on FPGAs and
thus even tested physically and practically to ensure usefulness.

6. Optimization and re-evaluation:
The last step of this thesis covers the optimization of the tool. Here the results
from the previous phase are evaluated. Depending on the requirement satisfaction
status the resulting feedback is collectively applied back to phase 4 restarting
an implementation cycle. This can either directly result in the optimization of
previously programmed concepts or spring a new feature idea.

The plan is to start with a lightweight version of the tool, which can be improved
one step at a time. Especially points 4 and onward can occur in repeating iterations
with feedback-loops. This results in a more structured approach and thus yields easier
verification.

1.5 Structure of this Work
Chapter 1 presented an introduction for the work of this thesis, containing the motivation,
problem description, expected results, as well as a teaser of the methodology which is
more thoroughly discussed in Chapter 2. The literature review is covered in Chapter 3

4

1.5. Structure of this Work

which covers circuit types in more detail, related works, and useful background knowledge.
Chapter 4 extracts challenges to be solved as well as drafts solution concepts for identified
problems.

The practical part of the thesis starts with the implementation and inner workings of
go2async explained in detail in Chapter 5. The thesis continues by showing simulations
and verifies go2async’s generated hardware by looking at a few examples before showcasing
physically used circuits on an FPGA. The chapter ends by naming a few hardware and
input software limits go2async has to deal with. The practical part of this thesis ends with
Chapter 7 by covering different major versions of the asynchronous HLS tool implemented
in this project starting with the initial solution which served as a proof of concept and
baseline. Subsequent versions, new features, and ideas are covered here until arriving at
the final version of this thesis’ project. The thesis ends by summarizing the completed
project and stating an outlook as well as ideas for future work in Chapter 8.

5

CHAPTER 2
Methodology

The applied methodology of this thesis can be seen in Fig. 2.1.

Extraction of Challenges

Literature Study

Exploration of Existing
Options

Implemenation

Theoretical Practical
Simulation & Analysis

Optimization
& Re-Evaluation

Figure 2.1: Methodology of this thesis.

It consists of the following six phases:

1. Problem description and extraction of challenges:

In the beginning phase of this thesis, the problems are described and the main
challenges are extracted from there. Challenges will mainly be directly implied
from the defined problems in the field. These can have a wide variety of complexity.
One or more solution approaches will be formed for each challenge which will be
handled in the later stages of this thesis.

7

2. Methodology

Generally, the tackling of these challenges will be preceded by discussions. The
purpose of the discussions is to find alternatives, analyze trade-offs and find the
best path leading to the desired solutions. The main goal is to be able to justify
the final approaches.

2. Literature study:
This part of this thesis will explore the current state of the art. The corresponding
chapter will establish a knowledge base and gather the needed technical background
to better understand the subject related to this work.
More precisely, the literature review will first introduce a discussion about syn-
chronous vs. asynchronous circuits. Especially the drawbacks and known pitfalls of
the well known synchronous space will be laid open, as well as how asynchronous
circuits can solve various problems while introducing completely different complica-
tions and why it might be useful to study asynchronous circuits more thoroughly.
The field of related high-level synthesis tools for both circuit types is explored
mentioning the benefits of using such programs. The general purpose behind such
tools is explained. A few practical examples and their usages in the industry will
be shown.
The title of this thesis reveals a focus on asynchronous circuits which of course
implies that relevant and important circuit structures of this field are also discussed,
namely asynchronous pipelines.
Related projects working on click-elements [9] will be reviewed which might be
useful for implementation approach decisions later on and might even be relevant
for comparisons or to draw parallels.
Since at the core of this thesis lies a software project the remaining puzzle piece
before the development can start is finding a suitable programming language. Thus
this chapter concludes by reviewing possible programming language candidates.

3. Exploration of existing options:
The findings of the previous phase will be discussed in this step. The assessment
of the literature will not be its own chapter in this thesis. It will take place in a
paragraph after findings and at the end of the relevant sections and subsections.
First design decisions and project ideas will be formed here. This includes the
reasoning on click-elements as choice in the field of asynchronous pipelines and the
two implementation concepts namely sequential vs. dataflow operation processing.
The discussion about the chosen programming language for this software project
takes place in this chapter. Especially why the final decision was made in favor of
Go [12].
This part of the thesis concludes with the analysis of the Go AST and the click-
element structures from the click-library [10]. In particular certain patterns and
possible parallels are searched which is required for the implementation part.

8

4. Implementation:
The implementation will be split into two different branches based on operation
processing. The first and simpler branch involves the sequential execution of the
instructions as defined in order by the code. This branch will be called sequential
branch.
The second significant branch of this project involves dataflow processing. Here
instructions and data-independent code-blocks are allowed to be executed in parallel.
This branch will be called dataflow branch.
The project starts with the implementation of the sequential branch. Mainly because
this will be much easier and straight forward since this is how single-threaded code
is executed and the reference work done on click-elements [10] is based on this
instruction processing style.
In the best case scenario the processing of the input code should work the same
in both branches. The big difference will be the internal processing of data
dependencies and component wirings.
Initially, the plan is to start small and gradually make the generator better and
more powerful. After the study of the Go AST and found click-element patterns
the choice of data structures and handling of component handshakes as well as
data-connections will be crucial. The plan is to have easily expandable code in
regards to the supported Go input code. Newly supported inputs should mainly
not affect previously supported implementation structures. This should make the
project seem brick-like where newly added features are independent bricks just
added to the program whenever possible.
This workflow implies that at the start, only a small subset of Go is supported as
input. After feedback from the simulation and re-evaluation phases is gathered
the supported subset can grow and the program can become more powerful. Al-
ternatively the current implementation can be optimized first (e.g. in regards of
hardware usage).

5. Assessment of implemented concept and exploration of limits by simulation and
analysis:
After reaching an implementation goal in the previous phase this step will analyze
the current implementation. The goal is to verify the functionality of the current
state of the tool and explore the limits of the program.
Firstly, feature exhausting input Go code (i.e inputs that will cover all features
or every newly implemented features of the current solution) is used to generate
example VHDL code. Afterwards the VHDL output will be put to test in a testbench
using ModelSim. Simulations allow to first look at the generated hardware as a
black box and whenever there are problems ModelSim makes it possible to look
deep into the system by observing single signals at certain timestamps. This process
is used to ensure correct and desired functionality of generated hardware. Note

9

2. Methodology

that the generated output makes it possible to even analyze some timing violations
by including non-synthesizable VHDL wait statements on relevant assignment
operations.
After satisfactory validation of the tool some outputs will be tested on actual
hardware. In this case, the used synthesis tool will be Quartus [13] and the target
development board will be a Terasic DE0-CV [14] board. This will be done to
physically verify the results of the simulation and ensure the usefulness of the
developed high-level synthesis tool go2async.

6. Optimization and Re-Evaluation:
In a last step before potentially circling back to the implementation phase, the
current state of the tool will be re-evaluated. Solution concepts for found problems
and limits of the tool are formed.
Based on results and findings of the simulation phase possible optimization ideas
will arise. This thesis’ work will mainly focus on generated hardware optimizations
(e.g. hardware exhaustion of target FPGA) rather than optimizing the generation
process itself.
Lastly, whenever problems are fixed and optimizations are completed, depending on
the functionality satisfaction of go2async the next implementation step is decided.
These are mainly the next to-be supported Go features which will be implemented
in the next version of the tool.

10

CHAPTER 3
Technical Background

This chapter covers the state of the art and related technical topics regarding this thesis.
Starting with the dissection of the title of this thesis the async part in go2async will
be tackled first by reviewing problems of synchronous circuits and their asynchronous
counterpart. The essence of this project - namely high-level synthesis tools - and similar
programs are discussed before diving into the low-level backbone and the inner workings
of this thesis’ project. This introduces the ’click-element’ segment of the title when
literature about asynchronous pipelines is reviewed.

Complete the dissection of the thesis project name and Go reveals itself as a chosen
programming language where 2 tells us that this certain language is transformed to
something async(hronous). Lastly, this chapter looks at alternative language candidates
for this thesis’ project.

3.1 Synchronous Circuits
Synchronous circuits make up the broadly established day-to-day hardware. Almost
any purchased hardware has some clock signal in its specification which determines its
operation speed. This type of circuit operates on a discrete time variable. Generally, the
clock speed is linked to the maximal allowed depth of computation logic between two
flip-flops. This is also known as the critical path in a circuit. That is the time a signal is
allowed to travel through logic gates between two neighboring flip-flops without violating
their setup and hold timings. Synchronous circuits have a centralized clock signal which
governs the whole circuit. This is already one of the disadvantages of synchronous circuits
as the clock is a single point of failure.

In this type of hardware the top speed is always only dependent on a single critical path
even though this path might not even be the most active part of the hardware and the
rest of a circuit allows narrower timings. This implies that synchronous circuits rely on

11

3. Technical Background

worst-case assumptions for their critical paths to ensure correctness at any time and
circumstance. This includes internal and external assumptions. Worst-case assumptions
are usually very pessimistic to cover (often rare) edge cases.

Another challenge bigger synchronous circuits face is managing their clock tree [15]
especially in modern multiple power designs [16]. Simply using the same clock source
in two different signal paths in a circuit means that this clock signal might arrive at
slightly different times on two different circuit components. These two signals might
merge paths at a later point in time. This time difference is called clock skew, which can
cause unforeseen timing violations, if not properly considered.

Synchronous circuits generally have to bother with unnecessary high power usage because
without special care the whole circuit is supplied with a toggling clock signal making the
whole circuit stay active even though there might be only few active relevant computation
paths. There are two types of power dissipation: Static and dynamic. Generally, static
power dissipation comes from leakage current through transistors whereas dynamic power
dissipation comes from switching current. Thus, dynamic power dissipation plays a big
part for synchronous circuits. Popular low power design techniques are:

• Clock gating: Ability to turn off the clock for parts of the circuit [17, 18].

• Power gating: Ability to turn off power for parts of the circuit [18].

• Variable voltage: Ability do supply lower voltage for lower performance parts of a
circuit [19].

Synchronous circuits’ very restricted adaptability to physical properties and technology
migration are disadvantageous for them. Whenever parts of a synchronous design change,
the whole circuit needs to be re-evaluated. Especially the critical path analysis has to be
done after every change. This also implies that it is generally not trivially possible to use
old and slower (albeit already verified) parts of hardware in new designs.

3.2 Asynchronous Circuits
Asynchronous circuits are self-timed and operate under a continuous time variable.
Instead of pessimistic timing assumptions for calculations between two flip-flops this
type of design requires calculation-complete detection to transfer valid data from one
node to another. Asynchronous circuits solve all previously mentioned problems of their
synchronous counterpart:

The speed is not dependent on some critical path. There are no scalability issues since
there is no centralized control unit. The major (dynamic) power usage occurs only in
the actively computing path. Asynchronous circuits are more-or-less plug-and-play and
thus compatible with similarly behaving hardware by design. However, they have their
own disadvantages as they require more delicate care and much more attention to detail

12

3.2. Asynchronous Circuits

regarding the dynamic state of the circuit to avoid potential hazards. Additionally, each
component of asynchronous circuits operates at the same time. The lack of discrete time
steps make it impossible to verify every possible behavior.

There are two big asynchronous design principles (and three protocols) which can also
be seen in Fig. 3.1:

Figure 3.1: The three asynchronous protocols used in practical asynchronous designs: (a)
the four-phase and the two-phase bundled data protocols and (b) the four-phase dual-rail
protocol. ([4], Fig. 6.)

• Bundled data/Bounded delay
Just like synchronous designs these asynchronous circuits use timing information in
some way to detect phase changes. The backbone of this approach is a handshaking
protocol between a source of information and an information consuming sink. The
goal is to ensure proper coordination between entities.

Typically, handshakes are initiated by the source to signal the sink that data is
stable and ready to be consumed. The sink is able to communicate consumption
completeness. The participating signals are usually request and acknowledgement
signals with an accompanying data vector. In the general case, the data vector and
request signal travel from a source to a sink at the same time. The data however
potentially traverses some processing circuit. A delay element has to be inserted
into the request signal path which at least matches the worst-case timing behavior
of the computation logic to remove a race condition. Recall that the request signal
notifies the sink that the data is stable and ready. These delays can be achieved
by e.g. inserting inverter chains. The arriving request signal is typically used as
a trigger to capture the data vector in a latch or flip-flop on the sink side of the
communication channel. After the sink captured the request signal it answers with
a corresponding acknowledgement which triggers the next phase on the source side
(i.e. ready for more data). These types of circuits need special care during the
physical design to ensure timing constraints.

13

3. Technical Background

Handshake protocols can either be a four-phase or two-phase protocol. The four-
phase (Return-To-Zero (RTZ)) handshake protocol only detects incoming events on
certain input state changes (depending on the initial state) and requires handshaking
signals to return to an initial state before triggering a new event (see Fig. 3.1 (a)
in the middle).

The two-phase (Non-Return-To-Zero (NRTZ)) handshake protocol listens for input
state changes only. Thus two-phase handshakes are simply faster but require
additional hardware to track the current phase state (see Fig. 3.1 (a) on the right)).

• (Quasi-)Delay insensitive

This design method does not need a sense of time. Instead of using (delayed)
handshakes the data vector between a sender and receiver gets encoded which
requires additional wires per bit sent. This eliminates the need of a request signal.
The simplest case is the 1 bit to 2 wires dual-rail encoding but it is possible to
get different levels of complexity and performance by using m-of-n codes [20] (see
Fig. 3.1 (b)).

In principle this method works by introducing valid and invalid (NULL or empty)
states for the data vector. The receiving side needs data validity (e.g. no NULL or
empty states) or completion detection. This can be done by expecting NULL-states
(empty information) on each data-rail after single transmissions. The next set of
inputs are only accepted after each rail of an incoming data vector returns to an
invalid state before each rail gets to a new valid state. This behavior is similar to
the RTZ pattern of four-phase handshaking and cannot be avoided here. While
these types of circuits are associated with high robustness they show substantial
area overhead [21].

It is obvious that handling communication channels between components individually
gets very complex for big circuits. The need of control logic for each calculation to ensure
ordered operation is simply solved by placing flip-flops in the synchronous counterpart.
This makes hardware design for asynchronous circuits unbearable without tool assistance.
The control logic of asynchronous circuits leads to large area usage [4].

Additionally, common Computer Aided Design (CAD) tools and most FPGAs are
optimized with synchronized circuits in mind, leaving the development of asynchronous
hardware even more disadvantageous [22].

Asynchronous circuits have caught the attention of hardware designers working on event-
driven circuits. Neuromorphic computing requires the processing of time and space sparse
spikes which make this type of circuit very useful and employ a more natural control
flow [23]. IBM’s TrueNorth [7] and Intel’s Loihi [8] are example projects which show
the usefulness of deploying asynchronous circuits to create power-efficient and scalable
Spiking Neural Networks (SNNs).

14

3.3. High-Level Synthesis Tools

3.3 High-Level Synthesis Tools
The everlasting need for ever more computation power is an endless challenge for the
computer industry. An obvious way to tackle this problem on systems that support
software execution is to make the heart of the system, the CPU, better and faster. One
could also use special acceleration hardware for specific tasks (e.g. Graphics Processing
Units (GPUs)) or get rid of the performance loss that software execution systems introduce
by designing special circuits for specific applications (also known as ASICs).

While the hardware optimization approach seems appealing, it introduces its own huge
overhead, especially in its verification process. Hardware needs to be bug free when it
gets to the market, since there usually is no way to fix bugs in the field in an efficient
way. Additionally, creating hardware requires highly educated and trained staff. Since
hardware solutions are economically risky, hard and very expensive [24], custom hardware
designs are only feasible if large quantities are demanded.

An easier and less risky approach to this challenge is using simulation and FPGAs for
prototyping. This creates a dynamic workflow by using HDLs (e.g. VHDL, Verilog) which
can be used to create simulatable virtual prototypes. After successfully testing a virtual
only prototype this approach allows to load the described hardware into an FPGA where
it can be physically verified. However, this design flow still requires specially trained
personnel and does not get rid of the extensive verification effort.

This is where high-level synthesis tools come into play. These tools are the interface
between software and hardware description. They allow untrained personnel to create
hardware without knowing anything about hardware design and enable them to quickly
achieve satisfying results. In general, an HLS tool takes some standard software code
and tries to generate hardware in form of an HDL. The supported inputs are usually
subsets of known software programming languages or can be graphical (e.g. flowcharts).

3.3.1 Synchronous High-Level Synthesis
A commercially active HLS tool for synchronous circuits is LegUp [25] (acquired by
Microchip[26] also known as SmartHLS) . LegUp’s design flow can be seen in Fig. 3.2.

LegUp synthesizes a processor/accelerator hybrid system. This program takes C code
inputs and generates Verilog HDL. Without intervention the software runs on a soft-core
MIPS processor on an FPGA. LegUp contains a self-profiler which is able to identify parts
in the code that could benefit from a hardware implementation. A software programmer
can then mark sections in the input code that should be hardware accelerated. LegUp
maps C code to an HDL with the help of LLVM Intermediate Representation (IR) [27]
instructions. A C statement might generate more than one IR instructions. These can
directly be synthesized in an HDL. This allows the tool to create hardware accelerators
for specific parts of the input software. The result is hardware on an FPGA where
unmarked code will run normally on the given MIPS processor while marked code is
hardware accelerated.

15

3. Technical Background

Figure 3.2: Design flow with LegUp. ([25], Fig. 1.)

3.3.2 Asynchronous High-Level Synthesis
In the world of asynchronous circuits many approaches for high-level synthesis, mainly
developed by universities, have been proposed in the past. Two big classes of asynchronous
HLS are trending. The first being syntax directed translation and second being de-
synchronization. Syntax directed translation is the most commonly used. These tools
essentially perform a one-to-one mapping of the syntax-tree of the input source into
corresponding handshake structure components [28].

A concrete example of a syntax directed translation tool is Fluid [29]. This tool basically
transforms C input code into an HDL with the help of LLVM IR [27] intructions and
Control Flow Graphs (CFGs). The result is a bundled data circuit implementing four-
phase handshakes using Muller-C elements [30].

De-synchronization aims as the name implies to convert a synthesized synchronous circuit
into an equivalent asynchronous sibling. This is done by employing specific transformation
rules for known structures. This method may not enable all advantages of asynchronous
circuits but results in a circuit that has the typical asynchronous power-saving properties
avoiding unnecessary power loss in inactive calculation paths and makes the circuit less
prone to variability [28, 31].

3.4 Asynchronous Pipelines
Pipelining is the essence of high-performance circuits. It vastly improves throughput and
parallelism of designed hardware. Synchronous circuits have a rather straight-forward
approach to this technique. A simple way is to just split up big computation hardware
into so called pipeline-stages which perform simple or parts of complex calculations in
each of the created stages. If this process is executed on the critical path it may enable a
synchronous circuit to run on a higher clock frequency [32].

16

3.4. Asynchronous Pipelines

For asynchronous circuits this technique is more complicated. A recent investigation of
asynchronous pipeline circuits based on bundled-data encoding [23] lists three big 2-phase
handshaking protocols: Micropipelines, Mousetrap and Click. Fig. 3.3 shows an abstract
view on asynchronous pipelines in linear form (e.g. no forks and joins). Consecutive
pipeline stages communicate via handshake channels, usually consisting of Req(uest)
and Ack(nowledgement) signals plus a data vector. In each stage a controller handles
storage containers and coordinates the handshake signal. The delay in the outgoing
Req(uest) signal path has to match the worst-case timing of the optional logic applied
on the outgoing data path [23].

Figure 3.3: An abstract structure of a linear asynchronous pipeline. ([23], Fig. 1)

3.4.1 Micropipelines

One of the first big and classic asynchronous circuits was deployed using Micropipelines
[33] which were introduced with Sutherland’s Turing Award lecture in 1988. The backbone
control of this circuit is the well-known Muller pipeline based on Muller C-elements [30,
9]. Also known as C-gate, it is a latch that has a state holding property. It changes its
output if and only if all its inputs reach the same state. This makes C-gates very useful
for synchronizing signal transitions in contrast to an AND-gate whose output is HIGH
if and only if all its inputs are HIGH and puts its output to LOW if at least one of its
inputs is LOW.

The drawback of this design is that C-elements are usually not supported by standard
cell libraries and thus need custom implementations with special care. Research on how
to implement hazard-free Muller Gates on common Lookup Table (LUT) based FPGAs
can be found in [34, 35].

An illustration of the workings of the Mircopipeline with data processing can be found in
Fig. 3.4. Each stage has a R(equest) input and an A(cknowledgment) output. Note that
ack-signals need to be inverted such that phase changes occur correctly. This gives the
circuit an oscillating behavior. The delay has to match the worst-case behavior of the
inner-stage control and logic as is usual for bundled-data circuits. The event controlling
latch is an unconventional capture-pass register. The input signals C(apture) and P(ass)
of the latch have corresponding done signals which deliver output events after the latch is
done with its action. State changes on C signals causes latches to capture data requiring
transitions on P signals to make latches transparent again. [33].

17

3. Technical Background

Figure 3.4: 3-stage micropipeline circuit. ([23], Fig. 5)

3.4.2 Mousetrap

Mousetrap [36] (minimal-overhead ultra-high-speed transition-signaling asynchronous
pipeline) aims to improve the performance of its predecessor Micropipelines by simplifying
the control of handshakes and thus significantly shortening the critical path. Additionally,
Mousetrap manages to mainly use standard components (latches and XNORs) which
makes this approach very convenient for automated designs or FPGA implementations.
However, for non-linear pipeline structures (fork, joins) this pipeline design needs a
fall-back to the unfortunate C-elements to synchronize diverged paths back to a single
line.

Figure 3.5: MOUSETRAP pipeline with logic processing. ([36], Fig. 4.)

The workings of this design scheme can be seen in Fig. 3.5. As is typical for the bundled
data scheme the request signal needs to be delayed such that the data (logic) path
successfully arrives at the next stage before the request signal does. XNOR gates are
used to create the En(able) signal for the data latches. Even though the event generation
behavior is similar to micropipeline’s capture-pass register this approach allows the usage
of more conventional single-rail blocks in the data-path as is standard for synchronous
circuits according to [36].

18

3.4. Asynchronous Pipelines

3.4.3 Click-Elements

The click-elements project’s goal was to improve on Mousetrap’s shortfalls. In particular
they managed to get entirely rid of C-elements and latches that are required in some
control and data paths. Instead this design uses edge triggered flip-flops as data storage
elements and also for the control circuits. The name click derives from the generation
of pseudo-clock signals for the used flip-flops as this pipeline style also tries to mimic
synchronous circuits as well as possible. In addition, this allows conventional tools to
perform optimizations which usually cannot be done on asynchronous circuits. Click-
element circuits operate near the speed of Mousetrap circuits [6]. The fact that only
standard library components are required makes this type of asynchronous pipeline
especially convenient for FPGA implementations.

Figure 3.6: A 3-stage pipeline circuit based on the Click template. ([23], Fig. 10)

Fig. 3.6 shows an example circuit based on click-elements. Each stage consists of a
controller circuit made out of simple standard library gates only. The control circuit
generates a click-signal which is used on the clock-input of the phase (P) and data (D)
flip-flops (FF). The changing edge of the control circuit signals a phase change of the
handshake state. In the data path, this leads to the capture of the new output of the
previous state whereas the state of the phase is simply encoded by inverting the output of
the phase flip-flop. The controller essentially implements an arbitrary Boolean function
which allows this pipeline scheme to deploy complex pipeline structures. This allows
click-elements to mimic the functionality of C-elements if needed [6, 23].

Remarkably, it is possible to make these types of circuits optionally and easily synchronous
and scan-testable. This allows for very convenient debugging of single states and stages
of this type of asynchronously pipelined circuit which is normally a cumbersome task for
this type of hardware. It can be done by OR-type gating a clock signal into the control
circuit and adding a multiplexer in the feedback of the phase flip-flop which governs the
scan feature. An example can be seen in Fig. 3.7 [6].

19

3. Technical Background

Figure 3.7: Scan-testable control circuit of Click pipeline stage ([6], Figure 18.)

3.5 Work on Click-Elements
Click-elements are the obvious choice for asynchronous HDL implementations on FPGAs.
Most importantly, they do not need C-elements and thus are just more convenient to
realize. Additionally, they near the performance of Mousetrap [6]. This thesis continues
reviewing work done on click-elements.

3.5.1 An Asynchronous Loop Structure Based on Click-Elements
An asynchronous loop structure based on click-elements is presented in [37]. An eight-bit
Micro-Control Unit (MCU) was implemented with the aim to verify the loop structures
based on click-elements. The designed circuit was simulated and compared against a
functionally equivalent synchronous counterpart.

The built MCUs successfully delivered the correct results. On one hand, the performance
analysis of the asynchronous version showed a substantially larger use of Logic Element
(LE)s than the synchronous counterpart (189%). On the other hand, for the same
instructions the asynchronous circuit had 37,5% less working time and it was found that
it consumed dramatically less power.

3.5.2 Low Power Asynchronous RISC-V Processor
An FPGA implementation of the Click-based RISC-V Processor is shown in [38]. Li et
al. realized an asynchronous RISC-V processor as well as a synchronous one with the
same architecture on the same FPGA. By using RISC-V test-tools they verified both
implemented CPUs.

20

3.6. Conclusion of Pipeline Findings

To obtain power consumption data, the synthesis tool Vivado is used. As expected
for asynchronous circuits, the result shows the asynchronous processor having up to
3x lower dynamic power consumption than synchronous core versions. On average a
200MHz synchronous implementation is 15% faster. However, the adaptive pipeline
of the asynchronous design can have the advantage on test cases with few Load/Store
operations like in the executed GCD test.

3.5.3 Async Click-library
The contribution of [9] includes the realization of the findings of the click-element proposal
in [6] with some additional ideas. The implementation is based on token rings. This work
provides FPGA-implementations of click-element pipeline structures in VHDL which can
be found in [10]. The implemented structures include the useful components: Register,
Join, Fork, Merge, MUX, DEMUX and Function Block. These elements allow to create
the functionality any typical software program can do in hardware.

The implemented components have a consistent interface consisting of in/out handshakes
plus a data vector, allowing to conveniently link them together in a block-like fashion as
needed. The Function Block needs special care since the delay of the outgoing handshake
request signal has to match the block’s combinational circuit. This is done by following
the guidelines of [39] which will be relevant for this thesis’ work as well.

So-called peephole optimizations reduce hardware costs by combining certain common
handshake components such as Register + Fork which are needed by for-loops [9].

3.6 Conclusion of Pipeline Findings
In addition to click-elements being the obvious choice for this project, the click structure
implementions of [10] are already functionally verified and successfully tested in simula-
tions as well as on actual FPGA boards by the authors. Thus, this pipeline structure is
even more useful and convenient for this thesis. Consequently this GitHub repository’s
work will be at the core of go2async. The example circuits (e.g. Greatest Common
Divisor (GCD)) presented in [9] whose implementations can also be found in [10] will act
as references for the results of this thesis’ project. First glances at the async-click library
allow this project to form ideas for the automatic generation of such structures.

Fig. 3.8 is a colored version of the schematic of the GCD circuit presented in [9]. The
GCD of two input numbers (A, B) is calculated by alternatively subtracting the smaller
variable from the bigger one. The loop (and algorithm) ends if the two variables are equal.
In this case, either value of both variables can be used as result of the GCD calculation.
Conveniently, this circuit contains most important programming structures.

The colored outlines are common program structures. In a) a for-loop is marked. In [9,
10] a for-loop basically consists of a path controlling part (red) and a body (green). The
condition component is highlighted in purple. In b) an if-statement is marked. It also

21

3. Technical Background

Figure 3.8: Schematic of the GCD circuit. a) marks loop-flow-control (red), condition
(purple) and body of the for-loop. b) marks condition (purple) and if-flow-control (red)
of an if-statement as well as then (blue) and else (yellow) paths. (Adapted from[9], Fig.
14.)

consists of a path controlling part marked in red. The condition components (purple) are
highlighted as well. The bodies are marked in yellow (then-path) and blue (else-path).
The GCD circuit from Fig. 3.8 will be more thoroughly discussed in Section 4.2.3.

As is usual for asynchronous circuits it is very cumbersome to manually describe such
circuits in an HDL. However, the presence of common structures makes it seem possible
to implement a syntax-directed translation as mentioned in section 3.3 and thus automate
the generation of click-element circuits with the help of e.g. ASTs. This will be more
thoroughly analyzed and discussed in Chapter 4.

3.7 Programming Language Candidates
As previously mentioned this project aims to implement an HLS tool that deploys a
syntax-directed translation. One way to tackle this is by requiring the code parser to
abstractly represent the input code syntax. An AST is an example of an abstract
syntax representation usual code-parsers are able to generate. This enables mapping
of AST-nodes to the desired output format. An ideal language candidate would be a
commonly known programming language since the core idea of HLS tools is to allow
software-programmers to create hardware. Thus a well-known language is preferred
whereas self-made or proprietary input languages are not an option.

Preferably, language candidates have following properties:

1. There is a parser for the language that is able to create an AST from
source code.
This is the most important property a syntax-directed translation relies on.

2. The parser of the language is self-hosting.

22

3.7. Programming Language Candidates

That means the parser is written in the same language as it parses. This property
is very advantageous because it would make the development more convenient,
since there is no switching between two languages for development and hardware
generation.

3. The language is simple.
A simple language that is easy to parse and does not allow many alternative
variants of valid syntax for the same code is also preferred. This would get rid of
the requirement to implement the same output for various inputs that described
the same function anyway.

4. The language is well-known or similar to well-known ones.
This enables a lot of potential users and especially addresses the big selling points
of HLS tools whose goal it is to enable hardware design without much knowledge
about the design process.

With these three requirements in mind the following three programming language are
analyzed briefly: Python, Rust and Golang.

3.7.1 Python
Python [40] is an interpreted and dynamically typed programming language which was
found in 1991. It is often described as a scripting language. This allows Python programs
to skip the compilation step and thus make the edit-test-debug cycle fast. A Python
script is simply executed and in case of errors the interpreter raises an exception or prints
a stack-trace. Python is also known for its Rapid Application Development (RAD) ability
and the short code it requires for tasks in comparison to other languages [41]. According
to [42] Python was the #2 used programming language in 2022 on GitHub.

As wished, the Python interpreter can parse Python itself and process Python syntax
grammar. However the dynamic typing is rather unpleasant. For instance Python allows
to reassign variables with entirely different types later in the code. This property would
require additional effort if used in this HLS tool. Additionally, the syntax is relatively
complex which is rather disadvantageous with this project’s ’start small get bigger’
implementation style.

3.7.2 Rust
The Rust programming language [43] was first announced in 2010 by Mozilla. [42]
lists Rust as one of the fastest rising languages in recent times. It is most known for
its memory and type safety enforcement by employing special rules for dealing with
references without requiring a garbage collector. Rust is strongly and statically typed.
Thus, types must be known at compilation time and cannot change mid-program. Rust
defines built-in types with predefined sizes. This type knowledge is useful for hardware

23

3. Technical Background

generation since data-vectors between handshake components have constant sizes once
synthesized.

Rust also provides a Rust compiler and an explanation of its AST. However, Rust is a
very complex and new language whose concepts are not widely understood. It also allows
features from functional programming whose translations to hardware are not feasible
for the scope of this work.

3.7.3 Golang
Go is a compiled programming language created by Google with the first stable version
in 2012 [12]. The goal of the creators was to create a language that is lightweight, easy to
use and easy to parse. The language is statically typed. It also entails predefined types.
An analysis of programming languages deemed Go as a potential super-popular language
[44]. The compiled code uses a garbage collector.

Like the previous two languages Go ships with a self-hosting parser which is able to
generate ASTs. As it turns out Go’s clear, simple, and lightweight syntax makes this
language a very suitable candidate for this project. The provided AST and parser are
easy to work with. Go’s simple code structures force specific coding styles which make
even subsets of this language seem like ordinary Go code. This leads to few redundant
translation mappings other input languages would require. Another nice feature is Go’s
machine independence. The compiler entirely handles different environments.

Note that the Go language features goroutines. This is a way to concurrently run code.
Combining this with channels yields event-driven and asynchronous code behavior which
could potentially be translated into asynchronous hardware as the channels’ send/receive
functionalities mimic handshaking behavior.

The simple syntax of Go, while providing rich functionality, makes this language the
main choice for this project as long as no dynamically allocated memory is used.

24

CHAPTER 4
Key Challenges

and Solution Concepts

This chapter extracts challenges and uncovers tasks required for the creation of this thesis’
high-level synthesis tool go2async. Afterwards, rough solution concepts are drafted for
the aforementioned problems. This chapter also explains the project-relevant ins and
outs of the Go AST before drawing parallels to the click-library from [10]. The solution
concepts will be ultimately tackled in the following implementation section of this thesis
(Chapter 5).

4.1 Key Challenges
In general, an HLS tool for asynchronous circuits has to address the following classes of
challenges for the design of asynchronous hardware:

1. Timing and Hazard Analysis
The absence of a centralized clock in asynchronous circuits directly introduces
additional complexity in timing analysis compared to their synchronous counterpart.
It is necessary to eliminate the possibility of hazards such as glitches and race
conditions for each computation path.
Moreover, complex calculation paths (e.g. forks and joins) and the use of un-
conventional synchronization elements (C-elements) might cause further problems
(particularly on FPGAs) depending on the used asynchronous pipeline structures.

2. Protocol Design
Asynchronous circuits rely on handshaking or encoding protocols to ensure the
proper order of calculations. The key is defining an efficient and reliable protocol

25

4. Key Challenges and Solution Concepts

that can handle complex data dependencies and path synchronization require-
ments. Furthermore, verifying the correctness of the deployed inter-component
communication protocol is an additional huge challenge.

3. Productivity
Designing asynchronous circuits is cumbersome due to the complex analysis task
and the lack of standardized design methods. This makes it challenging for hardware
designers to develop asynchronous circuits.

4. Tool Support
Synchronous designs have received more attention in terms of tool support compared
to their clock-less sibling. The lack of tools and support for asynchronous circuits
can make timing analysis and optimization processes more tedious. Therefore, HLS
tools for asynchronous circuits need to take extra care for their results to alleviate
these challenges.

5. Hardware Design Automation
A system for the automated synthesis of asynchronous circuits must address all the
aforementioned challenges. Such a system would significantly improve productivity,
simplifying the complexity of asynchronous hardware design and even enabling
untrained personnel to develop clock-less circuits. The automation process should
be user-friendly to enable widespread usability.

6. Software Design
Lastly, a fresh implementation of an HLS tool is its own complex endeavor. Soft-
ware projects require a well-defined specification and careful planning. Functional
requirements should outline needed functionalities and features the resulting project
must possess. Non-functional requirements (such as usability, reliability and scal-
ability) ensure that a satisfying performance is met and allow a convenient way
for future and further development. This should serve as the foundation to ensure
that expectations are met.

4.2 Solution Concepts

4.2.1 Timing and Hazard Analysis & Protocol Design
As the title of this thesis already mentions, click-elements play a vital role in this thesis’
project. This kind of asynchronous pipeline with the help of [6, 9] and the click-elements
VHDL implementation of [10] allows go2async to solve the previously mentioned problems
1 & 2.

In more detail, the Click pipeline template defines three constraints that need to be
satisfied for the correct operation of such circuits [6]:

26

4.2. Solution Concepts

Figure 4.1: Click template two-phase pipeline implementation with feedback-loop based
on flip-flop (adapted from [6], Figure 3.)

Figure 4.2: Click implementation of simple pipeline stage. ([6], Figure 2.)

1. The click pulse width generated by the control function circuit needs to be larger
than the used registers require.

2. Input handshakes need to stay stable during an active clock phase.

3. Hazards such as glitches on handshake signals must be avoided.

The first problem can simply be solved by using common static timing analysis tools
to verify whether this condition is met or not since the same verification is needed for
synchronous circuits as well.

Fig. 4.1 and Fig. 4.2 show how the remaining constraints are overcome. The output
of the flip-flop is fed back into the control circuit, therefore handshake signals are only
allowed to toggle after the corresponding output handshake signal is stable. It is claimed
that handshake signals are driven by flip-flops, thus these are safe and free from glitches
[9].

27

4. Key Challenges and Solution Concepts

There are no problems with race conditions because of the construction of the handshake
control circuit. It can be verified that potential differences in arrival time of incoming
handshake signals do not affect the operation of a circuit using the click template.

The deployed handshaking protocol of the click template is of the two-phase bundled data
variant. The behavior of the pipeline design can be described as two-phase token-rings
with any number of tokens (often just a single one) where data (a token) is latched from
previous pipeline stages and passed to successor stages. Complex pipeline stages are
handled by designing a specific control circuit (see F() in Fig. 4.1).

4.2.2 Productivity & Tool Support
These two key challenges are at the core of this thesis’ project. Productivity gains for
asynchronous circuit designs are already vastly enhanced by using the predefined and
verified asynchronous pipeline implementations such as the click-library [10]. However, it
is still necessary to manually wire all handshakes and to keep track of parallel computation
paths. This is obviously a very time consuming and extremely complex process which
scales with the size of the target circuit. Maintainability problems will easily arise as an
additional challenge.

This thesis’ project will not only further improve productivity by completely removing
and abstracting the time-consuming process of VHDL implementations, but also take
away the need for timing analysis and optimization tools as go2async will deploy its own
design methodologies for certain computations.

The use of an easy and widespread user interface for hardware creation is key here. In
this case the target group are software developers who aim to speed up processes by
utilizing custom hardware. Go2async enables them to do that more conveniently and
exploit potential benefits that come with asynchronous hardware. As mentioned in the
previous chapter, this project opts to use the rising (C-like) programming language Go
and makes use of the light weight parser and its methods to create the target designs.

4.2.3 Hardware Design Automation
The solution concept for this challenge requires researching the available resources, namely
the target programming language (Go) and the click-library [10], and looking for patterns.
This project aims to develop a syntax-directed translation from Go to VHDL, thus
reviewing the Go language and its AST is the next obvious step. Afterwards, repeating
patterns in the click-library ([10]) will be searched for.

The Initially Supported Go Language Features and AST

This thesis focuses on Go language features that are relevant for the solution concept
and will be supported by the resulting HLS tool. In principle, a valid Go program
only requires some package name and a function (main function as an entry point for
executables). Go functions are declared with the keyword func followed by the function

28

4.2. Solution Concepts

name, function parameters in parentheses and the function result type. The result types
can be a named list just like the parameters. The function body in curly brackets contains
Go statements. The project only supports Go functions that contain exactly one return
statement to avoid unnecessary complexity during translation. Every function can be
converted to such form anyway. The accepted Go subset should at least include functions,
assignments, if-statements, for-loops, and binary expressions.

The initial solution supports at least the integer basic types as well as bool. In particular
this includes byte, int, int8, int16, int32, int64, and their unsigned counterpart. In
addition, it is able to also work with arrays, so that useful and powerful programs can be
written as well.

The initial concept considers simple Go input code only because many Go features
(especially syntax sugars) are expected to migrate without big complications into future
versions once basic implementations work successfully. For instance, if binary expressions
are well translated into hardware by go2async, a sum of three numbers will not be a
big problem since this particular example can be written in two binary expressions.
Additionally, if-statements and for-loops only consider Boolean binary expressions as
condition expressions for further simplicity.

1 package goexamples
2

3 func sum(a, b int) int {
4

5 a = a + b
6

7 return a
8 }

Listing 4.1: Simple sum function in Go.

Listing 4.1 depicts a short and simple example Go code implementing a sum function for
two integers. In Fig. 4.3 a slightly simplified AST of the sum function code can be seen.
The figure omits additional contents of the Go AST such as source file information since
they are not important in the context of this thesis. In general, a node’s name, or in
case of an array, the array index is followed by a semicolon. After that, the node type’s
name is written in angle brackets. The Go package name prefix of the node pointer types
(*ast.) and type hierarchy relations are dropped for readability.

The relevant root node of the shown Go AST in Fig. 4.3 is Decls. This node contains
an array of all declarations in the Go example which contains exactly one function.
The function declaration contains the expected name ("sum"), parameter fields, and
results fields. Note that the parameters are defined of type Ident (identifier) because
the parameters are named, as opposed to the function result type, which is simply an
integer (type int). The function declaration also contains a Body which is an array of
Stmt (statements). Similar arrays of statements also occur in trees of loop bodies, if-

29

4. Key Challenges and Solution Concepts

[0]: <FuncDecl>Name: "sum"

Body: <[]Stmt>

Results:
<[]Field>

Decls: <[]Decl>

[0]:
<AssignStmt>

[1]:
<ReturnStmt>

a: <Ident>
Lhs: <[]Expr> Rhs: <[]Expr>

[0]: a <Ident> [0]:
<BinaryExpr>

a<Ident>
+ b <Ident>

Params:
<[]Field>

[0]: a <Ident>

[1]: b <Ident>

[0]: int <Field>

Figure 4.3: Simplified Go AST of the sum function from Listing 4.1

statement bodies (then and else paths) as well as in general code blocks (code specifically
bracketed by additional curly brackets). Such commonly occurring AST structures are
very convenient for future processing purposes.

The body from Listing 4.1 consists of two statements, namely an assign statement and
a return statement (respectively AssignStmt and ReturnStmt in the tree). As usual
an assign statement has a Left-Hand Size (LHS) and a Right-Hand Size (RHS). The
RHS resolves as a binary expression (BinaryExpr) of the identifiers a and b with the +
operation. The return statement simply contains the identifier a.

If-statements and for-loops are represented in the AST as constructs that contain a
condition expression that resolves to a Boolean value and a body containing an array
of Stmt just like FuncDecl. As already mentioned, the thesis’ initial solution concept
focuses on simple binary expressions for the condition expression. For-loop statements
with "for clauses" (init statement, exit condition, and post statement) which are usually
used to increment a counter variable (often i), as well as if-conditions with assignments
are not supported.

The Click-library

The thesis focuses on and analyzes the construction of the click-structures from [9, 10].
For this purpose the GCD example circuit from Fig. 3.8 is used. Note that every arrow

30

4.2. Solution Concepts

depicts a two-phase handshake plus data from one element to another. The previous
chapter already explained parts of this.

Each component has one or more input channels (signals for handshakes and data) and
one or more output channels. Every component implements their own inner handshake
and data-control (see F() in Fig. 4.1). There are many important click-element pipeline
structures implemented in [10] (for instance register, fork, MUX, ...). Following relevant
big structures consist of and rely on one or more pipeline components:

1. Statement
A statement is simply a function structure that executes some operation(s) on its
input(s) and outputs the results. Remarkably, this component has non-constant
handshake delays, as opposed to all the other structures, because the handshake
management of this component depends on the used operation. For instance an
addition requires larger logic and thus more time than an assignment statement.
This time-delta has to be determined and dealt with in the handshake paths.

2. For-Loop
The for-loop in the example from Fig. 3.8 consists of an entry-multiplexer (MUX)
MX0, a for-loop state register (with fork) RF0, a loop-condition component (CL0), a
condition register (R0), and a loop-body. The body usually starts with a register but
the example was optimized so that it was replaced with a Register-Fork combination
(RF1) (the fork is actually part of the if-statement).
MX0 (in combination with R0) governs whether the loop should get data from
outside of the loop structure (e.g. by starting to process a new loop) or accept the
input from inside the loop body. Either way, data is passed to RF0 in which the
loop state is stored. The register forks its output to CL0 and DX0. CL0 calculates
the loop condition and forks its result again to MX0 (over R0 - this is explained
in the next paragraph in more detail) and DX0. Depending on the loop condition
result the loop either ends and outputs the current loop-state (R0) over DX0. In
this case MX0 waits for new input from outside the loop. In the event that the
loop condition allows the loop to continue, DX0 outputs the data from RF0 to the
loop body for further processing until it arrives on the "1" input of MX0 where
this triggers a new loop process.
R0 is special. It is specifically marked with a "0" in a circle at its beginning state
(see upper left component in Fig. 3.8) and operates on a different output phase
than the rest of the circuit. This is required since a MUX in [10] only accepts
inputs if each relevant request signal arrived (condition AND input paths). That
means that when initially there is an incoming handshake on the 0-input of MX0
it is only accepted if and only if the selector data is "0" and the request signal of
the handshake channel from the selector path is also already high. In token-ring
vocabulary this would translate to: There is a token at R0 at the beginning of the
operation and bubbles everywhere else.

31

4. Key Challenges and Solution Concepts

1 package goexamples
2

3 func GCD(a, b int) int {
4 for a != b /* a) purple */ {
5 // a) green
6 if a > b /* b) purple */ {
7 a = a - b // b) blue
8 } else {
9 b = b - a // b) yellow

10 }
11 }
12 return a
13 }

Listing 4.2: Golang implementation of a GCD algorithm.

3. If-Statement
An if-statement in the example from Fig. 3.8 consists of an entry-fork (combined with
the register RF1), an if-condition component (CL1), a path selector DEMUX (DX1),
two bodies, namely then-path and else-path (arbitrary click-element structures),
and an exit-merge (ME0).
In the beginning, incoming data is forked into the condition component and the
DEMUX. The condition component simply decides which path is activated on the
DEMUX. The merge component is another special click-element component with
two input channels. Instead of relying on a selector like the MUX, it just passes
the data of the first handshaking input channel.

4. Block
A block is a collection of one or many sequentially handshaking elements. A block’s
children can be any of the previously mentioned kinds or another block. Therefore,
Click-element circuits consist of recursive block structures. Blocks have exactly
one input and one output channel. This component usually occurs as loop and if
bodies.

The Go AST and Parallels to the Click-library

Fig. 3.8 shows the schematic of the GCD circuit from [9]. When looking at the Go
implementation of the applied GCD algorithm (Listing 4.2), some parallels and patterns
can be extracted. The for-loop a) contains the loop condition a!=b which is marked
purple in the previously referenced code and figure. The loop’s body is marked green.

Similarly, the if-statement’s b) condition a>b is marked purple as well. The bodies are
marked blue and yellow. The whole if-statement is marked red since the whole structure

32

4.2. Solution Concepts

is the if’s flow control (see next paragraph). Even the bodies play a vital role in the
flow control of an if-statement because the merge component simply outputs the first
incoming channel.

The red parts of Fig. 3.8 do not have an equivalent meaning in Go code. The red
structures are just a vital part for the constructions of correctly working if-statements
and for-loops in hardware. This does not lead to problems for the software to hardware
translation since only the condition and body contents are relevant in this regard.

The previous section already explained the click-element structures in a very code-friendly
manner (statement, if, for and block). The parallels to Go code are obvious. The
block’s recursive behavior is a very useful property. The Go AST, like trees in general,
can be recursively described as well. Additionally, click-element blocks also consist of
sequentially handshaking elements. This is similar to sequentially occurring statements
in Go code. These common features are the keys for the automated generation of of
hardware description. The only missing task is the actual code design for the software to
hardware mapping process of go2async.

4.2.4 Software Design Principle
The idea of the software concept is to program Go code that parses a subset of Go
with the built-in Go parser. This leads to a convenient coding environment with only
one programming language to deal with during the software development of go2async
and the testing of the HLS tool. Additionally, the machine independence of Go allows
migrating the project to other systems and enables go2async to be compiled and executed
on common machines without any major hassles.

This thesis project aims to implement two different hardware concepts (both also pitched
in [6]). First, a sequential hardware which behaves similarly to a single threaded program
in which each component has exactly one predecessor and successor. This approach is
similar to the examples of [9, 10]. There is one common data vector for each component
which acts like memory. No special processing overhead is needed for this straight-forward
approach. This approach is the first and main focus of this thesis.

The second concept implements a dataflow analysis. Depending on the needed input data,
each component waits for multiple predecessors to finish their computations. This results
in a hardware structure with many join and fork elements for path synchronizations that
needs to be dealt with. This approach is much more complex to implement compared to
the sequential concept. Data dependencies between all statements need to be resolved.
The resulting hardware exploits potential parallelism capabilities of the input code. This
design idea is implemented after the sequential approach works sufficiently well.

Data structures that save all the relevant information needed at runtime have to be
defined. For this purpose, this project will make good use of Go’s interfaces and struct
embedding feature called composition. The initial idea for variable handling simply
involves a single data vector which acts like Random Access Memory (RAM). Each

33

4. Key Challenges and Solution Concepts

component has the same input vector, performs some operation on it and passes it to its
successor. It is required to track and map variables to its space in the data vector.

As already mentioned, this thesis makes use of the VHDL click-element structure im-
plementations of [10]. A big challenge of the software project is to extract components
from the Go input code, automatically handle dependencies between each component
and automatically wire them together as needed.

The concept of go2async’s processing consists of parsing Go code (and walking of the Go
AST) and mapping it to hardware (described by VHDL). The Go parsing part needs to
deal with the recursive structure of the AST, which is done by implementing recursive
parsing functions. During this operation, relevant data structures and connections between
them are formed. Afterwards, the hardware mapping process checks for potential errors
in the built data structures of the parsing part. Lastly, the hardware mapper generates a
VHDL file that represents an asynchronous circuit based on click-elements. The resulting
hardware has the same functionalities as the input Go code. The implementation is
explained in detail in the next chapter.

34

CHAPTER 5
Implementation

The chapter covers the implementation of the asynchronous HLS tool go2async in depth.
Go2async is a program written in the Go programming language. It parses inputs that
are a subset of Go and generates asynchronous hardware based on click-elements in the
form of VHDL code.

The following sections present software implementation relevant topics of go2async. The
chapter starts with general facts around the software environment including the program
execution usage, discussion about the supported input Go subset, and illustration of
the resulting asynchronous circuit. Afterwards, the inner workings of the program are
explained. This entails used data structures, variable handling, connection handling of
the generated components, and how the Go input code is parsed. Lastly, it is explicated
how the components of the resulting hardware are generated.

5.1 Program Execution
It is suggested to run go2async in a Command Line Interface (CLI) environment. The
program usage for standard asynchronous hardware generation is as follows:

go2async generate GO_FILE [OUT_FILE] ... Minimal syntax with optional output file
[- - sequential] ... Enable sequential mode
[- - intSize INTEGER] ... Set size of int type
[- - debug] ... Enable debug output
[- - verbose] ... Enable operational output
[- - help] ... Print usage

35

5. Implementation

For normal operation, go2async expects the generate keyword after the executable name
followed by a required Go input file. Optionally, a user can specify an output file to write
the generated hardware (VHDL code) to. Without output file specification the program
writes everything to stdout.

Go2async’s VHDL output contains architectures and definitions of every single generated
component. With the addition of third-party components consisting of click-element
structures from [10] it is possible to synthesize hardware with only two files. However,
it might be useful to include another VHDL file containing the usual top component
wrapper which is common in typical VHDL projects.

Go2async defaults to the dataflow operation mode (see Section 5.6.2). The so-called
sequential mode (see Section 5.6.1) can enabled by using the - - sequential argument.

Additionally, it is possible to set the size of Go’s int type in hardware. This is important
for enabling smaller integer types which are represented in vectors in VHDL (more details
are in section 5.5). For instance a typical seven segment display driver, which is very
common on FPGA development boards, requires a 4-bit wide input which has no trivial
representational type in Go.

A debug mode can be turned on enabling the program to print runtime state data which
aids in development and debugging. The verbose option prints useful information during
operation such as function parameter locations in the output’s VHDL-vectors.

5.2 The Supported Go Subset
The goal of go2async is to parse a sufficiently large Go subset so that useful programs
can be written. A programming language is useful if it can simulate a turing machine,
thus can do everything a turing machine [45] can do. This is fairly quick to accomplish
by simply supporting conditional branches (such as if-statements and for-loops) and
arbitrary memory read/writes (for instance variables and arrays). The second requirement
is in theory physically impossible to fulfill because it would require unlimited memory.
However, for turing-completeness [45] a bounded memory model suffices, which is very
convenient for this thesis’ project.

With this in mind go2async requires a Go input file with a package name and at least
one function. The function should have at least one return variable (Go allows functions
to return multiple values). Additionally, the following Go features are supported by
go2async:

1. The supported types are most of the Go primitives with constant size

Most important is the constant size property of supported types during runtime of
go2async. Hardware stores variables in data vectors which cannot be dynamically
sized. In particular the supported basic types are: bool, signed and unsigned

36

5.2. The Supported Go Subset

integers (int/uint and their 8, 16, 32, and 64-bit siblings) as well as byte. As already
mentioned the sizes of int and uint can be altered via program arguments.
The default size of the int (as well as uint) type in go2async is 4-bit. The reason
is simply a smaller resulting circuit in the common case. The default size can be
easily overwritten. This fact needs to be kept in mind when debugging on the
software side since 4-bit values overflow very easily.

2. Fixed-sized arrays of every supported type
This feature is very important to enable usefulness of the resulting asynchronous
circuits.

3. Multiple variable declarations at once via var keyword without value
assignments.

4. Single variable declarations via := but only with single value assignments
That means one LHS and one RHS variable (or constant) but without binary
expressions on the RHS.

5. Assignment expressions using =
One LHS-variable and an expression on the RHS. Nested binary expressions are
allowed.

6. Addition and subtraction operations
Only addition (+) and subtraction (-) calculations are allowed. Multiplications
(*), divisions (/), and modulo-operations (%) cannot be trivially implemented
in hardware, thus are not supported by go2async. If needed, these operations
can be subsidized by programming a loop of allowed operations. Note that it is
possible to write functions for this task, thus the Go input code does not need to
get ridiculously bloated if multiple multiplications or divisions are required.
Allowed bitwise operators are or (|) as well as and (&).

7. Basic comparators
These include equals (==), not-equals (!=), smaller (<), smaller-equals (<=),
greater (>), and greater-equals (>=).

8. If-statements with a simple binary expression that results in a boolean
value
No nested binary expressions in conditions are supported. An empty or omitted
else code block is allowed. Else if blocks are not supported. The alternative are
cascading if-statements.

9. For-loops with a simple binary expression that results in a boolean value
No nested binary expressions in conditions are supported.

37

5. Implementation

10. Exactly one return statement at the end of a function

11. Multiple function definitions in a single Go file

Each function generates an independent asynchronous circuit. Go2async supports
multiple parameters and mulitple result variables. These are encoded in the in and
out data vectors respectively.

12. Non-recursive function calls

Two different types of function calls are implemented in go2async. It is permitted
to call another function that is defined in the same Go input file. This is possible
because every click-element component has the same interface, implying that even
an asynchronous circuit, which was translated from software to hardware via
go2async, has the same interface as any other internal statement component. This
allows using any circuit resulting from go2async inside click-element components
just like any other.

Additionally, it is possible to provide a function pointer in the function parameter
list. The resulting circuit’s interface gets extended by an additional typical click-
element-like interface. This enables the asynchronous circuit, which results from
the given function, to call external interfaces. The external circuits are required
to conform with the click-element interface (input/output handshakes and data
vectors) whose data vector semantics are defined via the function pointer type.

Note that the result of a function cannot be used in binary expressions. One needs
to store the function result in a variable (see assignment rule). Arrays of function
pointers are not supported.

5.3 Abstraction of Resulting Asynchronous Circuits
In principle, asynchronous circuits generated by go2async are composed of following
components:

• Binary Expression-Component
These components represent assignments and expressions of any kind. Binary
Expression-Components expect one or more relevant input values. An operation on
given values is performed and the result is stored in given memory space (basically
the output vector of the component). Nested binary expressions are implemented
by chaining binary expression components.

• Selector-Component
These components are a special case of binary expression components. The result
is always a single bit. They are needed for if-statements and for-loops.

38

5.3. Abstraction of Resulting Asynchronous Circuits

• Block
A general Block is a collection of all previously mentioned components as well as
other Blocks. The components inside a Block are called children. Concurrently,
every component has a parent Block. This implies that every Block type can be a
parent and child at the same time. The result is a recursive tree-like Block-structure.
A single parent-less root-Block exists. Children handshake with each other as is
usual with click-element structures. The communication behavior is extracted by
the input Go code. The inputs of a Block component are all variables read by at
least one (grand-)child. Block outputs consist of at least every written variable of
each child.

• If-Block
If-Blocks are a special kind of Blocks. They represent if-statements in click-
element fashion (see previous chapter). All the variables that are read in condition
component, the then, and the else path-Blocks have to be defined as an input of
such a Block. Coincidentally, the outputs need to be at least every written variable
of the then and else paths combined. Because of internal structuring both paths
need to output the same values. This is trivially solved by wiring variables, that are
used in one path but not the other, from input to output without any operations.

• Loop-Block
Loop-Blocks are special kinds of Blocks. They represent for-loops in click-element
fashion (see previous chapter). The inputs of such components are required to be
at least all read variables of the condition-component and body-Block. The outputs
of for-loop components are required to be at least all variables the body-Blocks
write to.

• Scope
Scope components represent the Go input function in hardware. In practice they
are simply wrapper components for Blocks combined with a register for some of the
Block outputs. In particular, the inputs of a Scope component are the Go input
function’s parameters encoded in a single data vector. Similarly, the outputs are
the input function’s result variables encoded into a single data vector. Usually, a
Block outputs more variables as needed by a Scope component. Therefore, a Scope
component filters irrelevant outputs and stores relevant Block outputs in registers.
Thus a Scope component can be seen as a wrapper for Block components with
registers for outputs. Usually, the wrapped Block is the parent-less root-Block.

• Call-Block
A Call-Block’s purpose is to call another function of the same Go input file. It
basically instantiates the Scope component of the called function. The biggest
challenge is to make sure the data inputs and outputs are wired correctly. The
Call-Block is essentially a wrapper around a Scope component which filters the
Scope’s I/O.

39

5. Implementation

• Function-Block

This Block is responsible for wiring a black-box that conforms with the click-element
structure interface with the variable inputs and outputs defined by the function
pointer in the parameter list.

Block

Functionin_req
in_ack out_req

out_ack

data_out

Block
in_req
in_ack

out_req
out_ack

data_in data_out

For-loop
in_req
in_ack

out_req
out_ack

data_indata_in data_out

out_ack

out_req

in_ack

in_req

data_in data_out

Figure 5.1: An illustration of an example go2async circuit.

An illustration of an example structure of the mentioned components can be seen
in Fig. 5.1. The figure contains a root-Block with the usual click-element interface
(input/output handshakes and data vectors). The insides of the root-Block consist of
three different Block structures including another general Block. The insides of the
children are not specified in greater detail to illustrate that Blocks can act as a black-box.
Only the consistent interface is important for all used structures in this project.

5.4 Data Structures
This section primarily explains the data structures which describe the resulting hardware
of go2async. Typical Object Oriented Programming (OOP) languages have a feature
called inheritance. This allows sub-classes to use all methods and fields of its super-class
(at least the public parts). Golang does not have classes, thus cannot implement the
traditional inheritance functionality per se. However, Go keeps its OOP language status
by using a method called composition. Instead of inheriting features from a super-class,
Go relies on embedding structs (objects) in one another to allow a struct to gain all the
functionalities of its embedded structs. Basically, the embedded struct gets to be a part of
the embedding struct and the embedding struct extends the embedded. Similar technique
can be applied to interfaces. Embedding interfaces into a struct forces implementing the
interface’s methods on the struct. This is similar to typical OOP interfaces and also
allows structs to be references via multiple (interface) types.

Data strucures are used to represent the resulting asynchronous circuit based on click-
element in memory during runtime of go2async. There are four big base struct types
defined in the project: BodyComponent, HandshakeChannel, VariableInfo, and Dat-
aChannel. Additionally, various interface types are defined to enforce specific struct
properties. The most important ones are Component, BodyComponentType, BlockType,
and VariableDef. Based on these structs and interfaces the thesis’ software project makes
good use of Go’s composition, interface, and typing features.

40

5.4. Data Structures

5.4.1 Interfaces
The interfaces are mostly intertwined. BlockType embeds BodyComponentType. Body-
ComponentType embeds Component. The Component interface’s main job is to enforce
low-level properties which are especially needed for the resulting circuit. This entails
properties such as a component’s name, its architecture name and methods for the
actual VHDL representation including VHDL-component, entity, and architecture strings.
These interfaces are used to enable using generalized component types in internal pro-
cessing functions. Otherwise, frequent duplicated code would be required for the various
component and block types.

The BodyComponentType interface contains all methods needed for variable handling
and connection handling (see next sections) as well as various general setters and getters
which are required for the internal representation of a component. BlockType defines
methods needed for the representation for blocks including functions for child/parent
relationships. Additionally, blocks also play a part in variable handling and connection
handling (especially for its children), thus the interface ensures required functions are
implemented in blocks as well.

VariableDef is the main interface for variable representations. In general, variables are
encoded in the single data vector between one component to another. This interface
enforces variable objects to implement methods needed for valid variable encoding and
decoding. Details regarding variable handling are discussed in Section 5.5.

5.4.2 Variable Structs
Variable structs are used to handle variable declarations as well as functionalities for
encoding and decoding into and from a data vector. VariableDecl is the base variable
struct used for a variable’s basic definition needs. It contains a variable’s name, size
(bitwidth), length (in case of arrays), and type.

VariableInfo extends VariableDecl to include data for the encoding and decoding process
as well as information about its kind of variable. For instance a variable may be a
temporary variable, a constant value, a function pointer, or used as an index in an array.
If the variable is stored in a data vector, information about its position in the data vector
is included.

ScopedVariables is a struct that represents named variables in a data vector as a collection.
It includes a map as well as a list of all variables in the data vector for named and
positional accesses. This struct also has methods to help in variable handling.

5.4.3 Connection Structs
There are two different connection structs in go2async, namely DataChannel and Hand-
shakeChannel. Each component is the owner of at least one of those structs to represent
incoming and outgoing connections. As the names imply they either represent the data
vectors or handshake signals of hardware components.

41

5. Implementation

The DataChannel contains direction information (in or out), a reference to its owner, the
name of its signal, the variables (in form of ScopedVariables) it represents, the references
to its targets, and miscellaneous information about its connection state.

The HandshakeChannel contains direction information (in or out), a reference to its
owner, the references to its targets as well as connection state information.

5.4.4 Component Structs
BodyComponent is the most important data structure of this thesis for the internal
representation of a circuit translated from high-level source code. In principle, Body-
Component is the base struct of every component and Block, which is explained in the
previous section. The struct implements the BodyComponentType interface’s methods
and contains all required data to fulfill this task. The member variables entails infor-
mation for the Component interface implementations, connection information arrays,
variable informations, and pointers to predecessor as well as successor components. The
implemented methods act as default implementation. This is because other structs which
embed BodyComponent might need to override (it is not exactly OOP overriding but
behaves similarly) the defaults. A BodyComponent on its own is not sufficient for the
representation of a valid click-element structure. This base struct only acts as the basis
for all previously mentioned components and Blocks. It needs to be embedded into
another component struct which more accurately defines a click-element structure. The
base struct includes a reference to a parent Block and the representation of a component’s
interface. Each component is responsible for its connections to potential predecessors and
successors. However, a parent Block can help provide vital information for the connection
of its children (for more information see Section 5.6).

Simple BodyComponents

The simplest BodyComponent embedding objects are all control-flow and register structs.
These are most of the components defined in the async-click-library [10]. Important
examples are Fork, Join, MUX, DEMUX -components as well as the decoupled handshake
register. The purpose of these implementations is to enable easy coupling with other
internal BodyComponents and Blocks. Their functional potential is exactly what their
names imply. For instance a Fork component takes one handshake channel and data
channel and splits (forks) them into an arbitrary number of output channels (at least
one). In principle, since the BodyComponentType interface enforces methods for VHDL
implementations, the Go implementation of these structures translates the functional
needs that were determined during go2async’s runtime to parameters that the async-
click-library components need to fulfill various requirements.

The Binary Expression-Component embeds the base BodyComponent. It represents
a binary expression in asynchronous click-element hardware. Constructing a Binary
Expression-Component requires operand and result variable information, the operation
to be performed on given operands, and a reference to the parent block (for more details

42

5.4. Data Structures

see Section 5.5). This object’s most important ability is to construct the VHDL process
which describes the given operation on given operands. Additionally, this object handles
different handshake-delays depending on the used operation. The Selector-Component
is very similar. The main difference are the single bit result value and used operations
(arithmetic/boolean vs. comparators).

Blocks

A general Block component is basically a BodyComponent extended by the BlockType
interface. The software equivalent is a code block in curly brackets. A Block can
be described as a black-box of operations with the usual click-element input/output
interface. That results in a Block struct being able to store and manage its children
via a slice of BodyComponentTypes and contain various maps to store vital variable
information for its scope. A Block’s responsibility is to manage the resources its children
need. In addition a Block governs the handshake connections of its children. These
obligations lead to a complex VHDL architecture construction task to represent a Block
component. The architecture has to contain every single child component’s definition
in addition to all the information required for wiring everything together. This entails
signal definitions for every single handshake signal and data vectors. The connection and
variable handling process is more accurately described in Sections 5.6 and Section 5.5
respectively. Additionally, Blocks also gain the ability to handle external interfaces (see
Section 5.4.4)

An If-Block is a special case of the Block component. Firstly, it embeds the basic Block
component to gain all its methods and variables. The peculiar task of this Block is
to accommodate and wire the control flow components to realize a valid click-element
if-statement. Thus, it contains the children: Selector-Component, DEMUX, merge as
well as then-Block and else-Block. The If-Block is non-extendable and the only parent
of the aforementioned components. However, it has the usual Block responsibilities of
its children, especially the variable handling of its two Block children. In principle, an
If-Block’s task is to handle the predefined architecture of an if-statement in hardware.
The signal definition and connection handling is easier here because every component is
already known at construction of this component.

The For-Block is another special Block component very similar to the If-Block. The
For-Block also extends the basic Block struct. It has a predefined structure and children
including a MUX, a loop-state register, a Selector-Component, a MUX register, a DEMUX,
a body Block, a body register, as well as various control flow components (such as Forks).
The structure itself is more complex than the If-Block. However, this Block does not need
to handle variables for two different scopes (body Blocks) as it only has one loop body.
Remarkably, this component contains two differently operating decoupled handshake
registers. As already mentioned in the previous chapter (as well as in [9]) the MUX
register needs to operate on a different out-phase than the rest of the for-loop circuit to
figuratively kick-start this sub-circuit.

43

5. Implementation

A Call-Block is a simple extension of the Block component. Its only purpose is to
instantiate the Scope component of another function defined in the same Go input file as
well as handle variable and handshake connections to ensure correct functionality.

Lastly, the Scope component is a trivial extension of the Block struct. The functionality
was already described in the previous section. It is a wrapper around a Block and a
register component.

The Special Function-Block

A Function-Block is principally similar to the call-block since it represents a Go func-
tion call in hardware. However, instead of instantiating another Scope component it
instantiates a named component defined by the name of the function parameter of the
Go input code method it is used in. It is expected that the VHDL project contains the
named component which also conforms with the usual click-element structure interface
(handshake and data channels). Go2async cannot verify this external dependency, thus
simply generates the previously mentioned component and delegates further responsibility
to the user and hardware synthesis tools.

This Block has a very complex side-effect. In hardware a simple function call (Call-Block)
basically needs to initiate a request handshake with the representing component and wait
for outgoing handshakes to complete a transaction (as usual for click-element structures).
However, a Function-Block intends to call an already existing external component. Instead
of instantiating the component to call, this component communicates with the external
component interface directly. An example visualization of the Function-Block object can
be seen in Fig. 5.2.

Block

Functionin_req
in_ack out_req

out_ack

data_out

Block

func
in_req
in_ack

out_req
out_ack

data_in data_out

For-loop
in_req
in_ack

out_req
out_ack

data_in

g_in_req g_out_ack

g_data_in g_data_out

data_in data_out

out_ack

out_req

in_ack

in_req

g(a int) int

in_ack

in_req

data_in

out_ack

out_req

data_out

g_in_ack g_out_req

data_in data_out

Figure 5.2: An illustration of an example go2async circuit with external function call.
(Fig. 5.1 extended)

The illustration extends Fig. 5.1 by including a Function-Block inside the inner Block of
the root-Block. The Function-Block represents Go code that calls g(a int) int (a method

44

5.4. Data Structures

g that takes an integer and returns one). It can be seen that the external component
g(a int) int conforms with the click-element structure interface. The Function-Block
requires the usual click-element interface with addition of an inverted interface of the
external component. That means that from the perspective of a Function-Block the
communication signals to the external component are reversed, such that the Function-
Block can call the external component. In this asynchronous hardware-context, calling
translates to sending a request signal to the called component. Data vectors to and
from the external component have to be inverted too. The Function-Block’s default I/O
are the usual handshake and data channels to communicate with other click-element
structures (for instance the parent Block).

In the example from Fig. 5.2, the Function-Block calls the function-pointer g(a int) int.
It has to handle both integer inputs as well as outputs and delegate results of the external
interface further to its parent Block. The illustration also shows that the external interface
is passed through the root-Block as well as through the inner Block before it arrives at
the Function-Block. Thus, the affected interfaces have to be extended as well.

Type hierarchy illustration

Fig. 5.3 shows the type hierarchies of the relevant data structures used in go2async.
Interfaces are illustrated as rounded squares. The figure only shows the type hierarchy.
No inner variables and objects are described. As explained in the previous subsections,
BlockType embeds BodyComponentType and is thus drawn inside the embedding interface.
Whenever a struct implements a given interface (noted by a colon in the illustration)
each child (elements inside a square) also implements the interface (thus the type) by
construction.

Component

BodyComponent: BodyComponenType

Block: BlockType

IfBlock ForBlock

FuncBlockCallBlock

BinaryExpression

Selector

VariableDecl: VariableDef

VariableInfo

HandshakeChannel

DataChannel

BodyComponentType

BlockType

VariableDef

Interfaces Structs

ScopedVariables

Figure 5.3: Type hierarchy of go2async’s interfaces (rounded) and structs (not rounded).

Note that in Go code the definitions of the shown hierarchies are built from the bottom
up. An inner drawn square actually embeds the parent square instead of extending it (as
is usual for typical OOP languages). However, the illustration would become way bigger
and the type hierarchy stays the same anyway.

45

5. Implementation

5.5 Variable Handling

The Go programming language has variable scopes. Scopes are domains in which variables
may or may not be valid. These are basically given by curly brackets and as usual for
many other programming languages it is possible to have nested scope structures. Each
variable is valid after its declarations in the scope in which it was declared and in every
nested inner scope thereafter. Variables are not valid outside the scope it was declared in
as well as before they were declared.

Go2async’s Block component’s very convenient construction allows to mimic these scopes
nearly perfectly. In further context, a Block component is deemed equivalent to Go
blocks. Thus, Blocks play the initial vital part in go2async’s variable handling.

In principle, variables are encoded in the input and output data vectors of various
BodyComponents. A data vector contains a collection of many variables. The usual
approach in a go2async circuit for this collection is to pass through various components
(operations) in which parts of the collection (one or more variables) get altered. The
collection may grow and shrink (temporary variables/end of scopes) during this process.
In the end, a Scope component filters out the correct output variables. Data is passed as
binary values.

The most important struct for variable handling is ScopedVariables. As already mentioned
this struct represents the data vectors of various click-element components. Particularly,
each BodyComponent contains two ScopedVariables structs: One for the input data
vector and one for the output data vector. To recall, ScopedVariables is a collection of
many variables. It maps unique variable names to variable information. In addition,
this object keeps the order in which variables were added. VariableInfo contains its size
and position in the data vector, thus the ScopedVariables struct alone can be used to
encode and decode variables from and to a BodyComponent’s data vector. Basically, a
BodyComponent’s input and output data vector sizes are defined by the variables defined
in its ScopedVariables structs.

Blocks contain a variable owner map. This data structure maps unique variable names
to an owner BodyComponent. An owner is either the Block itself or a child of the Block.
The owner map basically contains all the variables that are local to a Block. Initially, the
Block owns every variable that is defined in its input ScopeVariable struct. For instance
the root-Block is the owner of the input Go code’s function parameters. Whenever a
component (usually a binary expression component) writes to a variable in an operation,
it claims ownership of the result variable. On variable declarations without assignment
(via var keyword in Go) the Block claims ownership. On declaring assignment statements
(:= in Go) the Block immediately declares the statement executing component as owner.
In any case, declared variables in a Block do not get added to any ScopedVariables structs
of the Block. The variable is local to the declaring Block and thus no input variable.
The ownership process is especially important for more complex and optimized hardware
generation and its use is more accurately discussed in Section 5.6.2).

46

5.5. Variable Handling

Whenever a BodyComponent needs to access a variable (for instance a binary expression
needs to read an operand), the component can request the variable from its parent Block.
The parent Block first searches its owner map. If no owner inside the parent Block
is found, the parent Block searches its own parent Block where the same procedure is
executed as well. These recursive calls stop successfully if one of the (grand-)parents
(aka outer scopes) finds the requested variable. In this case, all the affected Blocks of the
call tree add the variable to their input data vector since the variable came from outside
their scopes. In addition, ownership of the variable is claimed by the innermost Block.
The requesting component adds the variable to its input and connects itself to the owner
component of the variable. This simply extends the affected data inputs by the size of
the variable. If no owner of the variable is found, an invalid state is reached and go2async
panics with an adequate error message. This implies invalid Go input code beforehand.
This variable dependency search also handles predecessor and successor definitions of
involved BodyComponents.
Remarkably, variable dependencies of extended Blocks, like For-Blocks and If-Blocks, are
trivially handled by this recursive variable search. For instance a For-Block is simply the
parent of its body-Block. Thus, whenever the body requests a variable outside a for-loop,
the For-Block simply delegates the search to its parent Block. The variable is added to
the For-Block’s and body-Block’s inputs implicitly.
A successfully fetched variable potentially passes through multiple components. As
already mentioned, the VariableInfo contains the information to extract the variable
from the source data vector. The exact location of a variable in a data vector might
not be the same as in input data vectors of other components. Binary Expression and
Selector-Components are one of the few components that actually need to decode a
variable during their execution. These components extract relevant variable information
from their inputs. They interpret the binary values as defined by the operation and
additional information provided in the VariableInfo struct (for instance whether the
variable is signed or not). The decoding of input variables takes place in the calculation
VHDL-process with the help of VHDL-aliases. These aliases map a VHDL-variable to
a specific part of a data vector. This way the decoded variables can be named, thus
the decoding is abstracted for the actual operation execution. The output variable is
encoded (aliased) in a similar way into the output data vector. With the help of these
aliases the operation process is conveniently generated in an easy-to-read way.
For further convenience, outputs of BodyComponents are usually all the variables defined
in the input ScopedVariables struct. With the exception of the Binary Expression/Selector-
Components, root-Blocks, and Scopes. They overwrite the default behavior by specifically
defining relevant output variables.
Fig. 5.4 shows an illustration of an example variable handling in go2async. The example
contains a Binary Expression-Component with the operation a=b+1. Thus, the Binary
Expression-Component needs access to the variables a and b. The constant 1 is trivially
handled by the calculation process. The direct parent Block of the example Binary
Expression-Component does not declare any variables and therefore has to delegate the

47

5. Implementation

RootBlock

BlockA

BlockB

BinaryExpression

a = b + 1Parent has a?

add a to input

Parent has b?

add b to input

add a to output

a not found -
Ask Parent

add a to input

b found

b not found -
Ask Parent

add b to input

var b int

a not found-
Ask Parent

add a to input

var a int

a found

Figure 5.4: Variable handling in go2async.

variable search recursively to its parent. As intended, whenever a variable is found,
the variable information travels the arrow path backwards. This process adds the
found variable to each input of every affected component which had no prior access and
knowledge of the searched variable. Lastly, the Binary Expression-Component adds the
variable a specifically to its output because it is the result variable of the expression.

5.6 Handshake Connection handling
Handshaking is handled by the HandshakeChannel struct. This struct handles the
handshake signals of click-element structures, specifically req and ack in both directions.
Each BodyComponent has at least one input HandshakeChannel and at least one output
HandshakeChannel (for instance a fork component requires at least two output Hand-
shakeChannels). The actual handling of these channels vastly differs depending on the two
big differently operating modes of go2async, namely Sequential and Dataflow branches.
The two branches generate completely differently operating hardware. However, the
semantic functionality stays the same.

5.6.1 Sequential Operating Mode

The sequential operating mode of go2async generates hardware in which each operation
and component in a Block sequentially handshakes in order of occurrences in the Go input
code. This makes the resulting hardware operate successively instruction by instruction.
This behavior is more or less like the input software would be executed on a CPU. The
generated hardware mimics software executions with a single thread. This is the default
behavior of go2async.

The order of operation in an asynchronous circuit based on click-elements is given by
the connections of the HandshakeChannels of each component. A component only
starts operating when it receives an incoming request signal. The component outputs

48

5.6. Handshake Connection handling

an outgoing request signal when it is done. This can be used to enforce an order of
operation.

In this operation mode, a Block handles the order of operation of its children. Initially, a
Block connects its incoming request signal directly to its outgoing request signal. This
means that if there are no children (operations) in a Block, it is immediately done. The
first added child of a Block gets the Block’s input HandshakeChannel as its own input
and analogously the child connects its outgoing handshakes to the Block’s output. The
last added child is important for the next component additions. Each new child gets the
last previously added child component’s output handshake signals as inputs and replaces
the Block’s output handshakes with its own. Data dependencies, which are extracted
as described in Section 5.5, are completely ignored and ignored in this operating mode.
The order of operation is entirely defined by the Block’s handling of its children.

5.6.2 Dataflow Operating Mode
The goal of the dataflow operating mode is to make use of a hardware’s ability to exploit
as much parallelism as possible. To achieve this, the data and variable dependency
evaluations described in Section 5.5 are applied. This mode removes a Block’s singular
responsibility for operations ordering of its children.

The resulting hardware contains components which make use of their predecessors and
successors defined by data dependencies. These dependencies are given by read and
written variables of components. Successors are components which need to access (read
or write) an owned variable. Reversely, predecessors are components which own needed
(read or write) variables. Whenever a variable is written to, the writing components
claim ownership of the variable.

Recall that a Block’s output variables are also its inputs per default. In this operation
mode, it is important for a Block to adopt ownership of variables their children have
written to. This is because a Block represents a Go code scope. This implies that through
the eyes of a Block’s parent-Block, the Block is the component that has written to a
variable because the parent-Block does not see a child-Block’s inner components.

The handshakes to successors and from predecessors of a component are handled via
Join and Fork components. A Join component is able to handle arbitrarily many input
handshakes (predecessors) and merges them into one outgoing request if all incoming
request signals have the same phase. In practice, the Join component’s click-function is
similar to the and-reduce function (see F() in Fig. 4.1). The Join component is used if
multiple dependencies from different sources are needed or for general synchronizations.

Conversely, a Fork component translates a single input request handshake into many
outgoing requests (successors). Here an and-reduce is used to merge the acknowledge-
ment signals of the outgoing requests to a single one that is used to acknowledge the
single original input request handshake. The Fork component is used to start multiple
components which are data-independent to each other.

49

5. Implementation

This leads to a circuit which operates according to data dependencies. Instead of waiting
for all previous operations to finish before being able to execute, an operation now
only waits for its predecessors. In the best case, the resulting circuit has operations
only dependent on function parameters (the root-Block), thus each operation can start
simultaneously. The worst case is that all computations in a function depend on each
other. Therefore, the worst case converges into the sequential operation mode.

The dataflow approach allows faster circuit operation obviously enabled by parallelism.
The downside is greater hardware area usage precipitated by the additionally required
Fork and Join components.

5.6.3 Visualization of both Approaches

1 package goexamples
2

3 func g(a,b int) int {
4 c := 0
5 a = a + 1
6 {
7 c = c + 1
8 }
9 b = b + 1

10 c = c + c
11 a = a + b + c
12 return c
13 }

Listing 5.1: Example Go function: Variable additions.

Listing 5.1 shows an example Go code of random variable additions. In Fig. 5.5, a
visualization of the two aforementioned operating methods which were extracted from
the Go code example can be seen. The sequential approach is straightforward. Here the
components and operations simply are calculated as expected in the order of occurrences
of the Go example code. The arrows indicate the handshake direction. Acknowledgment
signals are omitted. The code block which includes the instruction c = c + 1 generates
a child Block. The child Block simply propagates its handshakes to its inner binary
expression component. Note that the operation a = a + b + c is recognised as nested
binary expression and is therefore split into two binary expressions.

The dataflow operating mode exploits parallelism by executing data independent opera-
tions. In this case, operations c := 0 , a = a + 1, and b = b + 1 can be executed
in parallel when starting the Block and thus save time. Fork1 forks the root-Block’s
request signal into each relevant component. Operations requiring only c default into a
sequential-like behavior.

50

5.6. Handshake Connection handling

RootBlock: g(a,b int) int

c = c + ca = a + 1 b = b + 1c := 0

BlockA

c = c + 1 a = a + b a = a + c

RootBlock: g(a,b int) int

c = c + c

a = a + 1

b = b + 1

c := 0

BlockA

c = c + 1

Fork1 Fork2

Join1
Join2

a = a + c

Join3

a = a + b

Dataflow approach

Sequential approach

Figure 5.5: Sequential and Dataflow approach visualization example extracted from
Listing 5.1.

The nested binary expression a = a + b + c triggers a chain of different processing
events. Just like in the sequential approach, the operation is split into two binary
expressions namely a = a + b and a = a + c. The first part of the original expression
is independent from c and can thus be executed before the upper path of the Dataflow
visualization in Fig. 5.5 finishes but obviously after the preceding operations on a and b
(synchronized via Join1). Operation a = a + c has to wait for every other operation
to finish before it can correctly calculate its intended result.

On one end, Fork2 forks the path calculating c to its successor, which happens to be the
root-Block, because the component calculating c = c + c is the owner of result variable c.
On the other end, Fork2 forks its outgoing handshake to Join2 which synchronizes the
two big independent calculation paths to allow the last instruction to be executed.

Note that Join3 cannot be omitted even though the last instruction is completely
irrelevant for the result of the function. It is important to synchronize every path at the
end of a Block. The last join is responsible to generate the handshake acknowledgement
signal for each path ending with components with no successors. If omitted, these paths
would get stuck in a phase, therefore unable to accept more inputs and thus deadlock
the asynchronous circuit.

51

5. Implementation

Remarkably, the arrows in the Dataflow approach of Fig. 5.5 are equivalent to the
data-connections in both operating modes and can be seen as a data dependency graph.

5.7 Parsing Go with the built-in Go AST
Go2async parses Go with the built-in Go AST and performs the source code-to-hardware
mapping by constructing relevant components simultaneously on the fly. The adapted Go
parser of go2async needs two parameters to do its job: The size of the int type (default 4;
adaptable via program parameters), and the path of the Go input file. The parsing starts
by fetching all declared functions in the file and saving them in memory. This is needed,
in case any function calls another. Afterwards, the generations of Scope components per
function already begins.

As previously mentioned the Scope component consists of a Block (more precisely: a
root-Block) and registers. Therefore, the root-Block is constructed. Parsing a function’s
signature provides everything we need to know about a root-Block’s interface. The
inputs are a function’s parameters, and the outputs are the function’s result variables. A
method for parsing the Go AST’s variable expressions is provided to translate its various
fields into a uniform variable struct usable for go2async’s components. Subsequently,
the function body can be parsed to construct the root-Block’s children. As mentioned
in Section 5.2, exactly one return statement at the end of a function is expected. Its
existence is checked before it is deleted from the statement list of the function body for
the children generation.

The Go AST’s function body basically consists of a list of statements. The Block
generating method loops over a slice of statements to generate its children. The big
benefit of using interfaces and type hierarchies comes into the spotlight. Each statement
is translated into some component which implements the BodyComponentType interface.
A statement could potentially generate any of the components defined in Section 5.4.
However, the Block does not care which struct type a child has, as long as the generated
child implements the BodyComponentType interface. A child is generated for assign-
statements, for-statements, if-statements, and block-statements. Declare-statements do
not generate a child. These statements basically register a variable of a given type and
size for later use in the parent-Block. Any other Go statements lead to an error-state.

A Block-statement just contains a list of statements. This statement simply triggers a
recursive call to the same Block-generating method as before. The parent of the new
Block is the Block this statement resides in.

The assign-statement is the main driver for a Block’s input and output data vector. An
assign-statement (=) triggers the variable search of Blocks. As described in Section 5.5,
whenever the parent Block cannot find a variable, it searches its (grand-)parents and
adds the variable to its input. In the default case, an assign-statement generates a binary
expression component. There are two different outcomes: In the case that the RHS
is a single variable, constant, or array, the constructed Binary Expression-Component

52

5.8. Hardware Generation

simply assigns one of its inputs directly to its result with no operation. In the case of
the RHS being a binary expression, a Binary Expression-Component is constructed that
mimics the software’s behavior in hardware. In the complicated case of nested binary
expressions, this process is done recursively and multiple chained Binary Expression-
Components are generated. An additionally allowed RHS expression is the call-expression.
In this scenario a CallBlock or FunctionBlock is generated instead of the usual Binary
Expression-Component.

A for-statement generates a For-Block component. The Selector-Component for the
For-Block is constructed by parsing the condition expression of the for-statement. A
Block is generated by parsing the loop’s body statements. This calls the same Block
generating method as before. Thus this process is recursive. The parent of the block
generated by the body statement is the For-Block. The For-Block already handles its
inner components itself.

An if-statement generates an If-Block component. Similarly to the for-statement, the
condition expression is responsible for the generation of the Selector-Component. A Block
component for the then-path is generated by the usual Block generating method. The
else-path is optional. Therefore, the default BodyComponentType for the else-path is a
binary expression with no operation (this cannot be omitted and has to be done for valid
handshaking). In case an else-path exists it generates a Block just like for the then-path.

Each component generated by this recursive parsing process is saved in a list in memory.
The parsing process also handles numerous errors. Whenever unsupported or erroneous
Go input is given, go2async’s parser part prints the exact location (line and column in
the input Go code) in which the unexpected input resides. The error message is also
accompanied by an input rejection reason.

5.8 Hardware Generation
This is the last program execution step of go2async and is responsible for the VHDL
output generation. As previously mentioned, components described in 5.4 are saved in a
list while walking the Go AST. The VHDL generating process iterates through this list
to generate hardware.

The Component interface enforces methods for VHDL-entity, component, and architecture
generations for each component. The generation is split into three parts. First, the
output contains library definitions and miscellaneous constant definitions. Afterwards,
each generated component’s entity is written. An entity is the primary definition of a
hardware component. The last step generates various VHDL architectures describing
hardware for the previously written entities.

A component’s architecture defines its hardware functionality. Many components have a
predefined architecture structure with predefined components and connections. These
components’ architecture is trivial. A few exceptions make this process complicated.
The Binary Expression-Component and Selector-Component need to generate a VHDL

53

5. Implementation

process which decodes its inputs into usable variables, executes a operation, and writes
the result to an output variable.

The basic Block needs to describe the variable and data dependencies of its children.
Even though the Block is not necessarily responsible for its children handshake and data
connections (as described in previous sections), a Block’s architecture needs to instantiate
any child component and thus implement and finalize each connection nonetheless. This
process entails signal definitions of each handshake and data signal, handshake signal
assignments, data/variable signal assignments, and children component instantiating.
The signal definitions can be directly fetched from the affected child component. Signal
assignments are given by the HandshakeChannel and DataChannel structs of the Block
itself as well as its children.

Finally, go2async generates Scope architectures at the end of its output. The generated
VHDL code, in addition to third-party definitions consisting of click-element structures
from [10], can be used to synthesize asynchronous circuits based on click-elements.

5.9 Generation Example
This chapter concludes by showing VHDL of generated hardware for a given Go example
input with the dataflow model of go2async. Go2async’s outputs get very large very fast.
Therefore, the shown VHDL parts are abbreviated and a simple Go input function is
used. For this purpose asynchronous hardware corresponding to a short sum function
(see Listing 5.2) is generated.

1 package goexamples
2

3 func sum(a,b int) int {
4 a = a + b
5 return a
6 }

Listing 5.2: Example Go function: Calculate sum of two integers.

Essentially, go2async generates one Binary Expression-Component corresponding to a
= a + b, a Block, and a Scope component. The single (root-)Block is inside the Scope
component where it neighbors a register which holds the output value a.

Listing 5.3 shows the generated Binary Expression-Component which calculates a = a
+ b. First the discussed variable alias mappings in the I/O data vectors are defined.
Information about variable locations can be extracted here. For instance the location of
a in the output vector is 3 downto 0 (line 8). With the alias mappings the calculation
process is able to calculate the desired result (lines 21-28). The process casts the required
signals according to the types as defined in the Go input code. The Binary Expression-
Component also contains a delay component responsible for delaying the input request
signal as required by the used operation (lines 12-19).

54

5.9. Generation Example

1

2 architecture beh_BEP_0 of binExprBlock_bep_0 is
3 alias x : std_logic_vector(4 - 1 downto 0)
4 is in_data(4 - 1 downto 0);
5 alias y : std_logic_vector(4 - 1 downto 0)
6 is in_data(8 - 1 downto 4);
7 alias result : std_logic_vector(4 - 1 downto 0)
8 is out_data(4 - 1 downto 0);
9 begin

10 in_ack <= out_ack;
11

12 delay_req: entity work.delay_element
13 generic map(
14 NUM_LCELLS => ADD_DELAY -- Delay size
15)
16 port map (
17 i => in_req,
18 o => out_req
19);
20

21 calc: process(all)
22 begin
23 result <= std_logic_vector(
24 resize(signed(x) + signed(y),
25 result’length))
26 after ADDER_DELAY;
27 end process;
28 end beh_BEP_0;

Listing 5.3: Binary Expression-Component corresponding to a = a + b.

Listing 5.4 contains an abbreviated architecture of the root-Block generated from Listing
5.2. The goal of this example is to primarily show the data I/O wirings of the Binary
Expression-Component child. Signal definitions and assignments of the aggressively gen-
erated Join and Fork components are omitted. Remarkably, the data vector connections
are in the same general directions as the handshake connections in go2async’s dataflow
model.

The root-Block starts by defining all required signals. These signals follow a certain
naming scheme. The architecture starts with a signalAssignments process in which all
the signal of the Block are assigned. The convenient usage of VHDL processes allows to
define default signal assignments which can be overwritten in later lines of a process (see
line 15 and 23). The process contains all handshake and data connections. Listing 5.4

55

5. Implementation

1 architecture beh_b_0 of BlockC_0 is
2 signal bep_0_in_req : std_logic;
3 signal bep_0_in_ack : std_logic;
4 signal bep_0_in_data : std_logic_vector(8 - 1 downto 0);
5 signal bep_0_out_data : std_logic_vector(4 - 1 downto 0);
6

7 -- Additional signal definitions (fork/joins - omitted)
8 begin
9 signalAssignments: process(all)

10 begin
11 -- Handshake assignments (omitted)
12 ------------------------
13

14 -- Default block out_data is in_data
15 out_data <= in_data(out_data’length - 1 downto 0);
16

17 -- Data signal assignments for bep_0
18 bep_0_in_data (4 - 1 downto 0)
19 <= in_data (4 - 1 downto 0);
20 bep_0_in_data (8 - 1 downto 4)
21 <= in_data (8 - 1 downto 4);
22

23 out_data (4 - 1 downto 0)
24 <= bep_0_out_data (4 - 1 downto 0);
25 end process;
26

27 bep_0: entity work.binExprBlock_bep_0(beh_BEP_0)
28 port map (
29 -- Input channel
30 in_req => bep_0_in_req,
31 in_ack => bep_0_in_ack,
32 in_data => bep_0_in_data,
33 -- Output channel
34 out_req => bep_0_out_req,
35 out_ack => bep_0_out_ack,
36 out_data => bep_0_out_data
37);
38

39 -- Additional management components (fork/joins - omitted)

Listing 5.4: Conceptual root-Block architecture.

56

5.9. Generation Example

1 architecture sum of Scope is
2 -- signal definitions following a naming scheme
3 begin
4 -- Scope input to block
5 b_0_in_req <= in_req;
6 in_ack <= b_0_in_ack;
7 b_0_in_data <= in_data;
8

9 -- Block output to register
10 r_0_in_req <= b_0_out_req;
11 b_0_out_ack <= r_0_in_ack;
12 r_0_in_data <= b_0_out_data;
13

14 -- Register output to Scope output
15 out_req <= r_0_out_req;
16 r_0_out_ack <= out_ack;
17 out_data <= r_0_out_data;
18

19 -- block b_0 instantiation
20

21 -- register r_0 instantiation
22 end sum;

Listing 5.5: Conceptual Scope component.

shows the data connections of the operation a = a + b in lines 18-24. Afterwards all
children components of the Block are instantiated to complete the signal wirings.

Listing 5.5 depicts the conceptual workings of a Scope component. As usual, the Scope’s
architecture starts with signal definitions following a certain naming scheme. The
architecture’s body starts by assigning signals to realize the required signal directions.
The Scope’s inputs are wired to the Block’s inputs. The Block’s outputs are wired to the
register’s inputs. Lastly, the register communicates with the Scope’s output.

The project source code, along with VHDL and Go examples, can be be found on GitHub
[46].

57

CHAPTER 6
Simulation & Exploration of

Limits

This chapter explores practical usages of go2async. Asynchronous hardware is generated
from some Go code examples and simulated with VHDL testbenches in ModelSim. The
simulation workflow for verification is explained by looking at generated hardware for a
well known algorithm. An extensive testcase is also presented to showcase that go2async
is capable of generating rather big and very complex circuits. Generated hardware is
also downloaded onto an actual FPGA to highlight physical working usage.

6.1 Testing Requirements
Verifying go2async’s generated asynchronous hardware requires testing of the features
which were described in Chapter 5. This can be done by simulating go2async’s results
with the help of a simulation program (e.g. ModelSim). To be more precise, the following
details need to be addressed in a testbench environment:

• Certain Go input maps to dedicated hardware components
Expressions generate Binary-Expression components, if-statements map to If-Blocks,
for-loops in the Go input code lead to generated For-Blocks, and block statements
generate Blocks.

• The general operation order is preserved
This includes correct handshaking and data connections. The dataflow mode needs
components to handshake according to data dependencies.

• Variable Scoping

59

6. Simulation & Exploration of Limits

Components only get variables which they are required to read and write. This
verifies the optimized variable handling.

• Correct results are generated
Hardware components need to mimic the functionality of their software counterpart.

These bullet points will be addressed by the following sections. This chapter tests the
final version of go2async and the dataflow mode only since the sequential approach only
represents a more trivial components handshaking approach with the same data depen-
dencies. The general simulation workflow is presented, which showcases the debugging
and testing process of go2async with the help of the simple yet demanding greatest
common divisor example. The presence of loops shows that generated asynchronous
hardware is capable of a dynamic runtime depending on the input.

Furthermore, the exhaustive quicksort example is used to test every feature of go2async
at once. This large testcase contains a huge amount of variables as well as multiple
cascading scopes in form of blocks, loops and if statements with a network of variable
dependencies. While simulation capabilities might be limited in this case it is shown that
certain feature verification can still be done.

Additionally, successfully tested hardware is synthesized and downloaded onto an FPGA
which enables testing in a physical setting.

6.2 Simulation Workflow
This section describes the general workflow on hardware simulations to test and verify
asynchronous circuits based on click-elements generated by go2async. For this purpose,
a simple example is chosen to simulate generated hardware. The GCD of two numbers
will be calculated. Usually, this is done by solving the term 6.1 (Euclidean algorithm).

rk−2 = qk ∗ rk−1 + rk with rk−1 > rk ≥ 0. (6.1)

qk = ⌊rk−2
rk−1

⌋ (6.2)

In principle, this term depicts a division with remainder. The variable rk is the remainder
of the division rk−2

rk−1
. The initial state k = 2 can be solved by setting r0 = a and r1 = b.

This recursive term stops when some rX = 0 is reached. In this case rX−1 = GCD(a, b).

Listing 6.1 shows Go code for calculating the GCD of the two input variables a and b.
The code is written in a way such that go2async accepts it as input. If b = 0 at the
beginning, the function returns a which is the default GCD in this scenario. Otherwise
the main loop (line 4) iterates as long as b is not equal to 0. The temporary variable t
saves the old state of b (line 5). The typical modulo operation needed in this algorithm

60

6.2. Simulation Workflow

1 package goexamples
2

3 func GCD(a, b int) int {
4 for b != 0 {
5 t := b
6 //b = a % b
7 c := a
8 for c >= b {
9 c = c - b

10 }
11 b = c
12 a = t
13 }
14

15 return a
16 }

Listing 6.1: Example Go function: Calculate the greatest common divisor of a and b.

(line 6) is not directly allowed according to the rules mentioned in Chapter 5. Therefore
an inner loop has to be used to calculate the desired result (line 7-11). The outer loop
ends by assigning the previous value of b to a and the remainder of the division in b
(lines 11 and 12). Altogether this algorithm is equivalent to the recursive term from 6.1.
Especially lines 11 and 12 in addition to the outer loop condition b ̸= 0 conform with
the stop requirement rX = 0. In the algorithm particularly rX = b(from line 11) = 0
and therefore rX−1 = a(from line 12) = GCD(a, b). The function returns the GCD by
returning a (line 15).

Fig. 6.1 contains a simulation of a testbench on an asynchronous click-element circuit
generated from Listing 6.1. The hardware is a result of go2async’s Dataflow mode. The
testbench calculates the GCD of 15 and 6 (see Input divider). The inputs and result
are shown on the upper part of the figure. The simulated hardware outputs 3 (see
Result divider at the far right) as result which is in fact the easily verifiable solution to
this example. In principle, at this point the structural verification process of resulting
hardware structures generated by a particular go2async version is mostly done. The
complex handshaking nature of asynchronous circuits operating on the 2-phase bundled
data protocol (token rings) used by click-element structures makes it extremely unlikely
that a circuit randomly terminates as expected by construction. This is especially the
case if results of testbenches conform with results of software executions of the input
Go input code. This trend manifests even more if the input Go code gets increasingly
complex (see Section 6.3). However, an extensive functional verification process is
required for computational components such as the Binary Expression-Component and
Selector-Component because of the vast amount of possible calculations, especially if

61

6. Simulation & Exploration of Limits

arrays with variable indexing are involved. This is done by executing multiple typical
software debugging techniques like edge-case testing in addition to manually inspecting
generated hardware for a given input.

Figure 6.1: Simulation of an asynchronous click-element circuit generated from Listing
6.1 calculating the GCD of (15,6).

If further circuit inspection is required or desired the testbench in Fig. 6.1 also aids in
this regard. As already mentioned, generated signal delays are very conservative. Their
purpose is purely to generate simulations which enable to functionally verify generated
hardware in a convenient manner. The delays ensure order between each component
and make sure that there is a significant time difference between incoming and outgoing
request signals of a component. The figure contains dividers between different components
for better visualization. The dividers have a title describing the operation and component
type. Below each divider are the incoming and outgoing request signal of the component
described by the divider title. In particular each divided section does not contain other
inner signals or data vectors with the exception of the outer loop (see loopBlock_b
!= 0 divider). Initially, the hardware is reset and the inputs (15,6) are applied. The
asynchronous circuit starts operation on an incoming request signal (uut_in_req) on the
Unit Under Test (UUT) which is a generated Scope component (see Scope divider). This
input request signal is directly wired to the root-Block. The outgoing request signal of
the UUT is the last phase changing signal as expected.

Note that the result is valid if and only if the Scope component phase changes its output
request signal. The time difference between the data change, root-Block outgoing phase
change, and outgoing phase change of the Scope in the testbench figure originates from
the additional time delta generated by a register in the Scope component. The signal
prefix reveals that components of the same kind are called similarly. The prefix numbers

62

6.3. Exhaustive Simulation

of these components are in order of occurrence in the input code. For example, t:=b is
the first binary expression in the input thus its component is named bep_0.

The exciting part occurs between the phase change of the root-Block’s incoming request
signal and phase change of its output signal. During this time all its children take their
turns for their operations. First, it can be traced that the outer loop (see loopBlock_b
!= 0 divider) has the same I/O phase changes as its parent-Block (conveniently the
root-Block). This is because the outer-loop is basically the only instruction in the input
function’s main code block (return statements only define outputs). The outer loop’s
divider also contains the Loop-Block’s I/O data-vector to visualize the inner state of the
loop. The data vector includes two 4-bit wide integer variables (a, b). The convenient
hexadecimal radix setting helps to distinguish these variables in the data vectors. Careful
readers might realize that the output data of the Loop-Block does not exactly conform
with the state register of the loop. However, the output data vector is basically a delayed
version of that (it also has to go through the loop’s exit-DEMUX).

This visualization principle further shows that simulations are a form of abstraction of the
tested circuit. If at any point an outer signal appears wrong, one can simply dig further
into the circuit by displaying even more signals. Each layer of circuit inspection depth
obviously leads to a increasingly complex simulation. As expected, the first executed
instruction is the first instruction of the outer loop: t := b. The incoming request
signal of the affected component occurs rather late because the signals have to traverse
the outer loop’s various register and controlflow components.

The dataflow mode of go2async allows the resulting hardware to execute the independent
instruction c := a automatically and concurrently in parallel even though it appears
later in code. After c := a is executed, the inner loop can start calculating the remainder
of a

b . Additionally, the loop’s last operation a = t can start concurrently with the loop,
because it only depends on t := b. This leads to the last remaining instruction of the
outer-loop being b = c, which has to wait for the remainder calculating inner loop. The
divider for the binary expression c := c - b reveals that this instruction is executed
twice which is indicated by two phase changes in the request signal paths.

If the implemented Euclidean algorithm is followed carefully, it is possible to verify even
more operations. After the inner-loop’s outgoing request signal changes its phase the
instruction b = c does so next as expected. Some time after that the out_data changes
from F6 to 63 (hexadecimal). F6 indicates the initial state of a, b = 15, 6. After the
first iteration a is assigned b and since 15 − 6 − 6 = 3 = 15%6 the second vector value
conforms with the first GCD algorithm values. The rest of the signals can be traced
similarly to verify the calculation GCD(15, 6) = 3.

6.3 Exhaustive Simulation
Large and tricky Go examples are used to assess a state of go2async. The used testcases
are a combination of many smaller ones. Functionally unnecessary code blocks and

63

6. Simulation & Exploration of Limits

cascaded if-statements are used to test the recursive hardware generation process. In this
case, if a certain code block scope depth generates a valid result and so does an input
version with an additional scope depth it can be inferred that the generation process is
working correctly for an arbitrary scope depth by construction.

A convenient way to test go2async’s dataflow mode is to input a GCD calculation version
in which the example from the previous section (Listing 6.1) contains multiple independent
GCD calculation loops. After the sequential approach verifies correct functionality, these
loops should operate in parallel in the dataflow mode, which can be verified with the use
of a simulation.

However, these assessment methods are only useful for functional testing for the thesis’
author and usually not practically relevant and interesting. It is obviously more exciting
to test go2async with a big useful exhaustive input code. For this purpose a quicksort
implementation is showcased.

Listing 6.2 contains the go-to state assessment input Go code. The listing shows a
non-recursive implementation of quicksort for quickly sorting an array consisting of
six integers. In principle, queues in the form of arrays are used to save left and right
bounds in which the input array has yet to be partitioned. The initial bounds encompass
the whole input array (lines 4-7). According to the current queue bounds the input
array is partitioned around the pivot element (lines 17-47). After each partitioning,
potentially new sorting bounds are determined (lines 50-60). The algorithm stops when
the bound queues are processed. This testcase is obviously very complex and contains
every functional Go feature which go2async supports.

Figure 6.2: Simulation of an asynchronous click-element circuit generated from Listing
6.2 sorting the array [5, 4, 6, 7, 1, 7].

Fig. 6.2 depicts a simulation of quicksort code from Listing 6.2. In the simulation the
array [5, 4, 6, 7, 1, 7] is sorted in a descending fashion. Since the input code is obviously
rather complex the simulation is so too. Just like in the previous section, if the desired
result is encountered most of the structural verification step is completed. At the top
left of the figure we see the input array (a vector with six 4-bit wide integers). The
right side of the Results divider reveals the correctly sorted array [7, 7, 6, 5, 4, 1]. Out of
curiosity, a few more internal signals are simulated. The loop_d != n divider contains

64

6.3. Exhaustive Simulation

1 package goexamples
2
3 func Quicksort(x [6]int) [6]int {
4 var l, r [15]int // Recursive bound states (left bound, right bound)
5 var n, d int // Queue states
6 l[0] = 0 // First left bound: leftmost element
7 r[0] = 6 - 1 // First right bound: rightmost element
8
9 d = 0 // Current queue position

10 n = 1 // Occupied queue elements
11 for d != n { // loop until all queue elements are processed
12 li := l[d]
13 re := r[d]
14 i := li
15 j := re
16
17 p := j // Pivot position
18
19 // Partitioning
20 for i <= j {
21 {
22 pivot := x[p]
23
24 for x[i] < pivot {
25 i = i + 1
26 }
27
28 for x[j] > pivot {
29 j = j - 1
30 }
31 }
32
33 if i <= j {
34 if i < j {
35 tmp := x[i]
36 x[i] = x[j]
37 x[j] = tmp
38 }
39
40 if i < 5 {
41 i = i + 1
42 }
43 if j > 0 {
44 j = j - 1
45 }
46 }
47 }
48
49 // Determine left and right bounds for further partioning
50 if li < j {
51 l[n] = li
52 r[n] = j
53 n = n + 1 // Increment queue element number
54 }
55
56 if i < re {
57 l[n] = i
58 r[n] = re
59 n = n + 1 // Increment queue element number
60 }
61
62 d = d + 1 // Increment queue position
63 }
64
65 return x
66 }

Listing 6.2: Example Go function: Iterative quicksort for six integers.

65

6. Simulation & Exploration of Limits

the I/O request signals of the outermost loop in addition to its I/O data vectors. Here it
can be seen how enormous internal data vectors can get depending on a component’s
data dependencies. Whenever debugging of such large vectors is required, go2async’s
debug flag can be used to help with variable locations of an inner component’s I/O data
vectors. In this case, the x input array is located at the start of the vector. This allows
to easily see what happens after each iteration of the outer loop. It is possible to infer
that six iterations were needed to sort the input array. Additionally, Fig. 6.2 contains the
input request signals of the if-statements from Listing 6.2 (lines 40-45) to show that the
dataflow mode of go2async generated hardware is capable of executing these two deeply
nested independent if-statements in parallel.

6.4 The High-Level Synthesis Tool in Practice
It is possible to practically use and test go2async’s generated asynchronous hardware
based on click-elements with a given FPGA. To prove this, the DE0-CV [14] development
board is used to download generated hardware. This thesis presents the two previously
explained algorithms in a practical setting. In particular, hardware for the GCD algorithm
from Listing 6.1 is generated and shown. Afterwards, six integers will be quickly sorted
with hardware derived from the Go code from Listing Listing 6.2.

Figure 6.3: Calculating the GCD of 9 and 12 on the DE0-CV.

Fig. 6.3 contains the GCD calculation of 9 and 12. In this setting, 4-bit wide integers
can be input via the first eight switches from the left. Four switches are needed for the
first input, the next four for the second. Again from the left, the first two seven segment
displays show the first input. The next two displays show the second input. The two most
right switches are used to handshake with the asynchronous circuit. The right most one
is mapped to the input request signal and thus responsible for calculation initialization.

66

6.4. The High-Level Synthesis Tool in Practice

The two most right LEDs are the input acknowledgement and output request output
signals of the circuit to signal input acceptance and calculation completeness. All in all,
Fig. 6.3 shows that the input request switch is turned on, the circuit acknowledged the
input, requests an output, and the GCD result of 9 and 12, which is 3, can be seen.

Figure 6.4: DE0-CV displaying an unsorted array.

Figure 6.5: DE0-CV displaying a quickly sorted array.

Fig. 6.4 shows six unsorted numbers. These are some input numbers for the quicksort
algorithm from Listing 6.2. The handshake interface is the same as before. After toggling

67

6. Simulation & Exploration of Limits

the rightmost switch, the status LEDs indicate input acceptance and output request
(thus sort completion). The result can be seen in Fig. 6.5.

6.5 Limits of go2async
Remarkably, go2async’s goal is to generate asynchronous hardware that functionally
mimics its Go input code. However, there are some Go code structures for which no
feasible asynchronous click-element circuit equivalent exists. The following list contains
Go features which are not accepted by the current version of go2async and most likely
never will be in future versions:

• Multiple returns in functions
The implementation of this feature is simply not reasonable. It would require some
sort of context and scope breaking in each Block up to the root-Block with output
managing multiplexers for each possible scenario. The complexity would increase
enormously for each additional return-statement and scope depth.

• Goto-statements
Theoretically, this feature might be reasonably implementable if the goto-statement
jumps to a label which is defined in the same scope. However, this case can only
lead to endless loops and unnecessary forward jumps (code skipping). In case
the jump label is in another scope this feature would become either impossible to
implement or at least just as unreasonable as the multiple return feature.

• Loop continue and break-statements
The loop continue and break-statements are very similar to goto-statements that
jump forward to the end of the loop. However, as previously mentioned, the context
breaking from a potentially very deep scope is simply unfeasible.

• Switch-statements
Switch-statements themselves without break and fallthrough are basically the same
as the already working if/else-statements. Thus, the current version of go2async
simply expects if/else-statements instead.
Go also supports the break and fallthrough keywords to either jump out of the
switch or execute an additional (the neighboring/next) switch case also. Again, this
requires complicated scope management. Especially the fallthrough case requires
principally independent code blocks to be merged or duplicated. However, this idea
is disregarded since potential solutions have too many structural disadvantages.

Luckily, each previously mentioned Go feature deemed unreasonable for direct asyn-
chronous hardware generation has alternative Go code which is accepted by go2async’s
supported Go subset mentioned in Chapter 5.

68

6.5. Limits of go2async

One go2async pitfall are array index overflows. The Go input code programmer has
to make sure that array index variables are never greater than an array’s size and
never smaller than zero. See Listing 6.2 where the code makes sure that i, j are never
overstepping x’s size and makes sure that j is never smaller than 0 (lines 6,7, 40-45). If
at any point this is potentially the case, a simulation would most likely stop, crash, or
abort and the hardware would yield undefined behavior on an FPGA.

Recursive functions are in theory possible with some limitations. However, as even Listing
6.2 shows, it is usually possible to rewrite recursive code into an iterative version and
thus not deemed a desirable goal for early versions of go2async. The async-click library
[10, 9] contains the idea on what recursive click-element hardware would look like. For
this purpose a Fibonacci circuit is showcased.

It is not forbidden to input Go code containing an endless loop. However, Go code
programmers have to decide for themselves whether their Go code makes sense and
allows go2async to generate useful hardware. For instance, if an external interface in an
endless loop is used (recall: function pointer parameter) it is actually possible to gain a
potentially useful circuit.

69

CHAPTER 7
Optimization & Design Decisions

In this part of the thesis the main program states are discussed. Starting by explaining
the initial solution which serves as a proof of concept for this project the ensuing major
versions, which are given by substantial challenges, are presented. Go2async grew bit by
bit via carefully chosen design decisions which entails adding big functional features and
optimizing generated hardware leading up to the final state of go2async as presented in
Chapter 5.

7.1 The Initial Solution
The first working solution acted as a proof of concept to verify that generating asyn-
chronous hardware operating on the two-phase bundled data protocol using click-element
structures based on work of [9, 10] works in principle. Differences to the final version
is how hardware was generated as well as the supported Go subset was simpler. In
particular, the input is restricted by following features:

1. A single function with a single parameter and single return value
Exactly one function is expected in the Go input file. This implies that no function
calls are possible yet.

2. No nested scopes
This rule disallows the usage of additional code scopes (block statements).

3. Single scope if-else-statements
If-statements have to include an else-path. Nested if-statements cannot be used.

4. Single scope for-loops
Similarly to if-statements nested for-loops are not allowed either.

71

7. Optimization & Design Decisions

5. Variable declarations via := only
The var keyword is not allowed.

6. Binary expressions only
In particular, no nested binary expressions are supported. Using constants is
allowed.

7. Int is the only allowed type.
This is out of pure simplicity. In particular, arrays are not supported yet.

The goal of these rules was to enable an as easy as possible Go code parsing experience
with the help of the Go AST. Obviously, the data structures of the initial solution are
not as sophisticated as in the final version (explained in Section 5.4). However, they
are similar enough such that a revisit of them is not in the interest of this section.
Remarkably, non-nested scopes imply that Blocks were not part of the initial solution.
An important fact is that the data structure state of the initial solution fit its simple
parsing style and enables go2async to generate its first asynchronous hardware.

The initial solution concept implemented the sequential mode only. Generated components
sequentially handshake in the order of the given Go input. The key difference to future
versions of go2async is how variables are handled. The initial solution has a rather
trivial concept: Gather all variable information used in every scope (main scope, if-
statement-scopes, and for-loop-scopes in this case) and use a single data width for each
component’s input and output data vector. In principle, each component passes its
potentially enormous input to its output. Binary Expression-Components are the only
components performing operations on the input and thus have the ability to alter a
data vector’s state. Binary Expression-Components had to pick the correct spaces for
corresponding operation variables in its input vector and determine where to alter data
in the output vector.

Scope components are the only components with different I/O vector widths to more
accurately represent the Go input function in hardware. The Scope component’s input
is as wide as the input function’s parameter are and its output data vector’s width is
as wide as the input function’s return values. That’s also where the Scope component
originally got its name. The Scope component consists of sequentially handshaking
Binary Expression-Components and components representing if-statements and for-loops
(there are no Blocks yet). The input vector of a Scope’s first component is initialized
with 0-values but the spaces that correspond to the input function’s parameter variables.
The parameter variable spaces are wired to the Scope’s input vector. Similarly, the part
of a Scope’s last component’s output vector which corresponds to the input function’s
return variable is wired to the Scope’s output vector.

Fig. 7.1 shows a visualization of how hardware of Listing 7.1 generated by the initial
solution conceptually looks like. As mentioned before, the initial solution generates a

72

7.2. Array Support

1 package goexamples
2

3 func g(a int) int {
4 b := 0
5 c := 0
6 a = a + 1
7 c = c + c
8 return c
9 }

Listing 7.1: Example Go function: Simple variable additions.

Block

c = c + cc := 0 a = a + 1b := 0
ca,b,ca,b,c a,b,c a,b,c a,b,c

Initial Solution

a

Figure 7.1: Initial solution hardware visualization of Listing 7.1.

sequentially handshaking asynchronous hardware as illustrated by the arrow direction.
The figure shows that the Block’s I/O is small in comparison to the I/O of the inner
components. The Scope’s input a is first merged into the input of the component
calculating b := 0. The data vector between the Block’s inner components carries all
three (a, b, c) occurring variables at all times. The data vectors stays the same inside the
Block. Lastly, the return variable c is picked out of the big inner data vector.

The initial concept turns out to be a successful proof of concept that generates correctly
operating asynchronous hardware based on click-elements. This should act as a foundation
for future versions of go2async.

7.2 Array Support

The first major improvement of the initial solution is increasing go2async’s type support
and most importantly the capability to handle array variables. For this to work the
VariableInfo and ScopedVariables were extended and improved (see Section 5.4) as well
as Binary Expression-Components and Selector-Components needed broader variable
and data vector understanding. This feature enables go2async to parse turing-complete
Go input software and thus generates more interesting asynchronous hardware for given
inputs.

73

7. Optimization & Design Decisions

It turns out that arrays are basically just multiple variables of the same type stuck
together into one variable. The size of an array is its base type size times the number of
its elements. Accessing an array element requires an index. Hardware requirements force
go2async to only support fixed-sized array because hardware needs to know a type’s
exact size. In the data vector between hardware components an array variable occupies
its whole space in one big continuous package. In general, this quickly leads to rather
big data vectors if arrays are used in the input code. Array elements are located from an
element’s index +1 times the array’s base type’s size downto the element’s index times
the array’s base type’s size. Equation 7.1 shows how array indexing is done in VHDL.

array_element <= array((index + 1) ∗ type_size downto index ∗ type_size); (7.1)

Remarkably, Binary Expression-Components and Selector-Components are the only
components that need to deal with variables. Additional complexity is added because
these components need to fetch an array’s position inside their data I/O vectors before
they can start indexing an array to use certain elements for their computations.

01 01 10 10 00 11 00 10

data_in : std_logic_vector(15 downto 0)

x int[3] y int

10decimal: 5 3 1

int size = 4

0481215

Figure 7.2: Example data vector containing one integer array and one integer variable.

Fig. 7.2 visualizes an example input data vector of a component. The data vector contains
two variables: An integer array x which is 3 integers long and the integer y. The int size
is set to 4 thus the vector is 16 bit wide. For example to access x[2] equation 7.1 has to
be executed with an additional consideration that the array in the data_in vector starts
with an offset equal to 4. In this example x[2] = 10.

The biggest challenge here is to get go2async to support non-constant (variable) indexing.
It is possible to solve this purely in the VHDL hardware description with the help of
process variables to extract the current value of a the index variable from the input data
vector as well as variable aliases (see Section 5.4). For example to access x[y] in Fig. 7.2
a Binary Expression-Component would have to first decode x with offset from data_in
as before and then also decode and fetch the value of y. The value of y can be stored in
a process variable (for instance by declaring index as non-constant in equation 7.1). In
this example x[y] can be calculated to be decimal 5.

74

7.3. Recursive Blocks

7.3 Recursive Blocks
This feature enables great programming conveniences for input files. It is finally possible
to write nested for-loops, if-statements, and code scopes. For this to work, the Block
component was introduced. The Scope component now only deals with the root-Block.
The Block-parent and its children behavior of components is implemented. This feature
also introduces the more sophisticated components For-Block and If-Block representing
for-loops and if-statments respectively. The general theme "Every code scope is a Block"
is implemented. Additionally, the parent-Block and children-components scheme is
introduced.

Recursive Blocks brought a few additional advantages. Instead gruesomely tracking and
declaring signal variables for component connections a Block allows to govern its children
connections and VHDL signal handling with ease by applying certain signal naming
schemes.

Blocks also introduced a more structured hardware. The nested layers of Blocks enable a
more satisfying simulation workflow. It is now possible to peel the resulting hardware
simulation like an endless onion which also greatly aids in debugging.

It turns out that the recursive Block structure is also a very convenient and natural
fitting design principal for many future feature implementations of go2async.

7.4 Calling Functions
Before implementing function calls go2async added support for multiple function param-
eters and return values as well as mulitple Go functions in the input file. As explained in
Chapter 5 there are two different components introduced to handle function calls:

1. Call-Block
The goal of this feature was mainly to mitigate duplicated code in the input file
and to get rid of for-loops required to implement the multiplication and modulo
operator functionalities. In theory, this component’s implementation is almost
trivial. Simply instantiate the Scope component generated from a function declared
in the same input file. The current variable handling (single width across all
components) made it inconvenient to handle the instantiated Scope’s I/O data
vectors. Luckily, the click-element handshaking behavior allows this feature to just
work from the moment a Call-Block generates valid VHDL code.

2. Function-Block
Recall a Function-Block’s purpose is to call an external interface conforming with
the click-element interface. The big challenges with this feature is the capability
to parse function pointers in a input function’s parameter list. This requires a
recursive form of variable parsing which is bug-prone. Additionally, this feature

75

7. Optimization & Design Decisions

requires Blocks to extend their interfaces by an additional inverted click-element
interface (see Fig. 5.2).
While this feature was complex and tedious to implement it again can be considered
to work correctly from the moment it generates valid VHDL code. This fact greatly
shows the advantage of using the already verified and working click-element interface
and structures from [9, 10] this thesis’ project is based on.
This feature enables go2async’s generated hardware to make use of existing external
hardware. For instance it is now possible to communicate with asynchronous
RAM or even synchronous hardware (although synchronization techniques are
recommended) to make use of a synthesis tool’s Intellectual Property (IP)-Catalog
(i.e. library of predefined and preverified hardware structures).

7.5 Nested Binary Expressions
Up until now it was only possible to write binary expressions. This often lead to an
annoying restructure need of the Go input file. The Nested binary expression support
yields a better Go programming experience for input files. This feature requires rewriting
parts of go2async’s parser and AST handling and thus also triggers a larger refactor
process of this thesis’ project.

In practice, nested binary expressions are expressions that consist of more than one
operator and more than two operands. Such expressions still need to be decoded into
multiple interdependent binary expressions (compare Fig. 5.5). For this to work, the
parser either needs to chain binary expressions or/and introduce new temporary variables
for intermediate results. The first method can be done if a nested binary expression
contains only one operator between its operands. To be more exact, the operator needs
to be commutative. However, this is the case for all supported operations.

Intermediate results (and thus temporary variables) might be needed if multiple operators
are in use in an expression. The main issue here is, that the introduction of additional
temporary variables requires the single width data vector to be expanded for the whole
circuit even though the new variables might not be relevant for the majority of the circuit.
This is especially unfortunate if the circuit consists of many components which contain
registers (e.g. For-Blocks). Temporary variables might unnecessarily waste numerous
hardware components, especially registers which is typically a scarce resource on FPGAs.

7.6 Optimizing Variable Handling
Nested binary expressions triggered the need of a different variable handling technique
because of the introduction of temporary variables which unnecessarily widens the
uniformly sized internal data vector most of the time. The main goal is to get rid of the
single width data vector across all components. The idea is to implement dynamically
sized vector depending on the accessible variables of a code scope and code lines (Blocks

76

7.6. Optimizing Variable Handling

1 package goexamples
2

3 func g(a int) int {
4 a = a + 1
5 b := 5
6 {
7 c := 1
8 a = a + c
9 }

10 d := b + a
11 return d
12 }

Listing 7.2: Example Go function: More variable additions.

and components in hardware). Up until now variable handling happened globally. An
object available at any time during runtime tracked the available variables, defined the
size of the single width data vector, and governed variable positions.

The optimization idea is to move the global variable tracking into the very conveniently
placed Blocks. As mentioned before Blocks represent a code scope. As it happens, typical
programming languages (Go included) introduce variable scopes and lifetimes. Thus
Blocks are a near perfect match for this responsibility. Now Blocks govern all variables
declared in their direct scope (excluding Block children) and thus define their children’s
data vector sizes. Blocks start with a data vector given by all variables which come from
outside its scope. The vector grows with each variable declaration on the component
responsible for the variable declaration (the variable space is prepended to the vector).
Blocks only output variables they also input since these are the ones a Block’s children
potentially alter and thus are the variables interesting for the parent-Block. A Block does
not have any insights of newly defined variables in its children Blocks. The parent-Block
needs to merge child-Block outputs into its current data vector. The root-Block is capable
of only outputting the variables defined in the return statement of the input function.
This approach generally vastly improves hardware resource usage.

This approach allows certain tricks for optimised hardware usage. For instance, a
nested binary expression coded in its own scope generates a Block which contains the
temporary data vector growth in a substantially smaller area. Listing 6.2 contains a
similar optimization in Lines 21-31 (pivot variable is gone after the code scope).

Fig. 7.3 depicts an illustration of the growing and shrinking data vector given by Listing
7.2. The root-Block’s initial data vector is given by the input function’s parameter a.
The second instruction introduces a new variable, thus the data vector grows with the
size of the new variable b. The child-Block Block_A is generated for the nested code
scope. The only read and written variable is a which conforms with Block_A’s input

77

7. Optimization & Design Decisions

Growing and shrinking data vector

a

RootBlock: g(a int) int

b := 5a = a + 1
a,b

Block_A: g(a int) int

a = a + cc := 1
a,ca,c a aa

d := b + a

a,b,d

b

d d

Figure 7.3: Growing and shrinking data vector illustrated for Listing 7.2.

in the figure. Block_A grows its internal vector by the size of c given by operation c
:= 1. Its output is only a as intended and the root-Block never gets access to c. After
Block_A’s termination the root-Block needs to merge its data vector. In particular, a
from Block_A needs to overwrite its corresponding space in the root-Block’s data vector.
Additionally, another new variable d is needed for the last component. At this point the
data vector is at its biggest. Lastly, d is the only variable output of the root-Block which
is given by the return statement.

A very convenient side effect is that existing variable handling (e.g. variable decoding
of Binary Expression-Components) does not have to be altered at all. Each component
still has to deal with the same variable handling data structures internally. The only
difference are their sizes. Additionally, this feature fixed a substantial bug. Before, it
was not possible to redefine variables in nested scopes. This would simply generate an
error since the variable was already registered in the global variable tracker. However,
Go actually allows this and so does this new variable handling technique.

7.7 Introduction of the Dataflow Model
The last major version of go2async introduced the dataflow model. The state of this
version was explained in Chapter 5. The idea’s origin comes from an additional urge to
improve variable handling. The growing and shrinking data vector improved go2async’s
generated hardware a lot. However, variables were still often unnecessarily put into
registers and wired, especially if variables were used in deeply nested scopes.

The first optimization idea was to introduce the variable ownership scheme. The work of
the previous sections (especially 7.3 and 7.6) did numerous preparation in this regard.
The handling of a Block’s input and output in addition to the data vector merging of
a child-Block’s output did a decent preparation for this endeavour. The key was that
Blocks not only track declared variables of their scope but also their origins. In principle,
before the implementation of this feature a Block could only tell whether a variable is
available or not. After the extension a Block is capable of returning a variable’s owner
component if asked. Instead of trivially wiring a data vector from and to the sequentially
handshaking components in the order defined by the Go input code, this approach allows

78

7.7. Introduction of the Dataflow Model

a component to task its parent-Block to find a needed variable’s owner and directly
connect its input to the variable’s owner component’s output. Additionally, it is possible
for a component to take ownership of a variable if the component writes to it. The
variable finding and connection process is covered in Section 5.5 in more detail.

As before, existing inner-component variable handling (e.g. variable decoding of Binary
Expression-Components) does not have to be altered at all. Each component still has
to deal with the same variable handling data structures internally. The only difference
are their sizes. Even more so since Binary Expression-Components now only usually
get exactly two input variables. Block’s now handle complex data vector connections
between its children. Components have to track their predecessors and successors. This
approach further vastly improved FPGA hardware usage as data is never unnecessarily
passed around.

Remarkably, this chapter still only described the design decisions and optimizations
of the original sequential mode of go2async. Handshake behaviors did not need any
significant changes at all yet. What is left is the actual dataflow model. The variable
ownership feature essentially generates hardware with data connections conforming with
the data dependency graph of the input code. This is exactly what is left for the dataflow
implementation. The only truly untouched process of go2async is the handshake signal
generation. This has to change.

The dataflow model requires asynchronous hardware that handshakes in the same di-
rections as the data flows. The handshake management requires components to simul-
taneously wait for predecessor to finish their work and signal its successors operation
completions. As covered in Section 5.6.2 this is done by special Fork and Join components.
Luckily, these were basically already provided by [9, 10]. The given components only
needed to be extended to accept multiple successors or predecessors generically.

This challenge basically changed go2async’s connection handling completely. Before a
Block was capable of generating connections of its children on demand with the help
of its children’s parameters. As described in Section 5.6.2, new connection handling
objects have to be implemented which are able to generate the needed signals for its
parent component. With this feature implemented go2async is capable of generating
asynchronous hardware based on click-elements which exploits as much parallelism as the
hardware allows coming from the data dependency graph given by the input Go code.

79

CHAPTER 8
Conclusion & Outlook

This thesis is essentially motivated by two driving factors. First there is a general urge
to increase performance of current systems. One solution concept for this problem is
to speed up specific tasks by creating dedicated hardware for them. However, this is a
very risky endeavor which requires huge design efforts and specialised knowledge. The
usage of HDLs and FPGAs hugely reduces design struggles and enables virtual testing.
However, specialised knowledge is still required. The next step is to apply an additional
abstraction layer to the design process to enable untrained personnel to create desired
results by using HLS-tools. This thesis opts to use the Go programming language as
interface for hardware creation.
The second big motivation driver are asynchronous circuits. The everyday hardware is
synchronous. A global clock governs the circuit and determines its speed. The designs are
fairly well researched. However, the design seems unnatural for event-driven or inherently
asynchronous environments (e.g. real world) scenarios. Additionally, synchronous circuits
are struggling with power efficiency. Asynchronous circuits solve typical problems of their
clocked counterpart. Nonetheless, this type of circuit suffers from an enormous design
and verification effort which is not viable without tool support.
This thesis presents go2async, an HLS tool to ease the development of asynchronous
circuits. Go2async generates asynchronous hardware based on the preverified click-
element pipeline structures [6]. Click-elements are one of the few structures which do
not rely on Muller-C elements and are thus perfect for FPGA implementations. In
principle, click-element circuits are composed of sequentially handshaking components.
The deployed asynchronous handshaking protocol is known as the two-phase bundled
data protocol. With the additional help of the click-library [9, 10] go2async is able to
generate asynchronous hardware by parsing a subset of Go code. The generated hardware
mimics the functionality of the input software. This enables Go software developers to
generate asynchronous hardware without much knowledge about this type of hardware.
The supported Go subset contains multiple functions, assignments, block statements,

81

8. Conclusion & Outlook

if-statements, for-loops, as well as function calls. Most of Go’s basic types are supported
including arrays. This enables Go software designers to write Turing-complete and thus
useful programs as a base for asynchronous hardware generation.

Go2async’s development journey and choices were presented. The project started with a
small proof of concept which only accepted the most basic Go input. After tests of the
first version were successful the subsequent versions of go2async extended the supported
Go subset. Many thoughts went into optimizing hardware results especially in regards
to variable handling and register usage. A few syntax sugars were implemented such as
nested binary expressions.

In the end, go2async now has two operating modes which are able to generate two
different types of asynchronous hardware. The sequential mode generates sequentially
handshaking hardware from the Go input code in a more direct fashion. Each sequentially
occurring statement maps to a sequentially handshaking hardware component. Go2async’s
dataflow mode generates hardware in which components handshake depending on data
dependencies. The dataflow approach exploits numerous parallelization possibilities while
introducing hardware area overhead required for synchronization efforts.

Generated hardware was successfully tested. The simulation workflow was presented
by showing simulations of a simpler input example (GCD) which enabled a complete
overview and visualization of the inner workings of go2async’s generated asynchronous
hardware with the help of ModelSim. A quicksort implementation was used to edge
test go2async’s capabilities. This showed that go2async is able to successfully generate
hardware for complicated inputs. Additionally, these two testcases were synthesized
and downloaded onto an FPGA to showcase that the generated asynchronous hardware
indeed works in a physical and real world setting.

With respect to the initially provided research questions, this gives a clear evidence that
high-level synthesis from Go to asynchronous hardware is possible (question 1). The
required restrictions of the Go functionality have been laid out in the thesis (question
2), and several measures for optimizing the resulting hardware have been introduced
(question 3).

8.1 Future Work
Further work ideas mainly regard a larger supported Go subset. Some of the ideas
potentially enable go2async to generate optimized hardware. The following list contains
Go features which would be interesting for go2async to support in the future:

• Struct support
Structs are essentially a cluster of multiple variables at once. This feature most
likely will not improve generated hardware. However, this is a very useful software
coding feature and should not be too hard to implement.

82

8.1. Future Work

• Assignment lists

Go supports multiple variable assignments in one line. For instance a,b := 1,2
declares a, b and assigns 1 to a and 2 to b in one line. Go2async’s dataflow mode
actually already parallelizes such assignments automatically. However, it would be
beneficial to allow the responsible component to realize these single line assignment
lists in one go to save further resources.

• Variable declarations in conditions

Go allows declaring and assigning a variable before writing the condition of an
if-statement or for-loop. This is relevant for go2async because in the current version
it is required to declare the condition variable before the condition it is used in. The
condition variable is visible in the scope it was declared in and therefore potentially
wastes precious resources.

• Complex conditions

The current version of go2async only supports simple boolean expressions as
conditions in if-statements and loops. Complex conditions are basically chained
expressions and should be straight forward to implement in click-element struc-
tures. Complex Selector component chains should be perfectly fine in loops and
if structures since the relevant MUX/DEMUX components wait for click-element
structure typical handshakes from the Selector components. Therefore a longer
path in the selector path would not destroy existing structures.

• Goroutines

In software, goroutines spawn a thread. In asynchronous click-element hardware
this would translate to an independently additional handshaking computation path.
Sounds easy in principle. However, goroutines run in the same address space as
the main thread. This means goroutines should be able to access variables of their
parent scopes. Code in goroutines can theoretically alter variables declared in
their parent scopes at the same time. Usually, software developers include some
synchronization techniques for atomic variable accesses. This would be quite hard
to do in asynchronous click-element hardware.

• Channels

Channels are a way to send and receive data from and to different threads. They
inherently behave in an asynchronous fashion. The sending and receiving of data is
blocking which is similar to handshaking behavior. However, channels only make
sense if go2async also supports goroutines.

In addition to better Go support, the following aspects would be beneficial to improve
the current state of go2async and the generated hardware:

83

8. Conclusion & Outlook

• Optimize delays
Currently, the used delays are very pessimitic. An obvious hardware improvement
path would be to study the needed delays for given operations in more detail. This
would help synthesis tools a lot.

• Sequential mode → Pipelined mode
As already mentioned, the sequential mode generates sequentially handshaking
components in order given by the Go input code. It would be very interesting to see
if it’s possible to put registers after some elements to enable a pipelined operation
mode. This could potentially vastly improve the throughput of a circuit.
The dataflow approach could also make use of this. However, this would require
analyzing the dataflow graph for nodes in which all dependencies meet. These
meeting points could be generated artificially (e.g. annotations in Go code).

• Hardware optimization via data dependency graph analysis
In the current version go2async generates almost everything that is specified in the
input software without any additional processing. If programmers write unnecessary
or bad performing software the hardware might contain useless components. How-
ever, the dataflow graph has the potential to allow go2async to analyze and omit
irrelevant computation parts. For instance it would be possible for the example
of Fig. 5.5 to determine that each computation in the lower part of the figure is
completely irrelevant for the result of the function.

• Dataflow mode: Fork/Join usage improvement
In the current version the usage of Forks and Joins is very aggressive. Each
component always gets a Join component for its input handshakes and a Fork
component for its output handshakes. However, there are many scenarios where
this is simply not necessary. For instance, a circuit containing one Block which has
only one child does not have to fork and join inner handshake signals at all.

84

List of Figures

1.1 Workflow concept of go2async. 3

2.1 Methodology of this thesis. 7

3.1 The three asynchronous protocols used in practical asynchronous designs:
(a) the four-phase and the two-phase bundled data protocols and (b) the
four-phase dual-rail protocol. ([4], Fig. 6.) 13

3.2 Design flow with LegUp. ([25], Fig. 1.) . 16
3.3 An abstract structure of a linear asynchronous pipeline. ([23], Fig. 1) . . 17
3.4 3-stage micropipeline circuit. ([23], Fig. 5) 18
3.5 MOUSETRAP pipeline with logic processing. ([36], Fig. 4.) 18
3.6 A 3-stage pipeline circuit based on the Click template. ([23], Fig. 10) . . 19
3.7 Scan-testable control circuit of Click pipeline stage ([6], Figure 18.) 20
3.8 Schematic of the GCD circuit. a) marks loop-flow-control (red), condition

(purple) and body of the for-loop. b) marks condition (purple) and if-flow-
control (red) of an if-statement as well as then (blue) and else (yellow) paths.
(Adapted from[9], Fig. 14.) . 22

4.1 Click template two-phase pipeline implementation with feedback-loop based
on flip-flop (adapted from [6], Figure 3.) 27

4.2 Click implementation of simple pipeline stage. ([6], Figure 2.) 27
4.3 Simplified Go AST of the sum function from Listing 4.1 30

5.1 An illustration of an example go2async circuit. 40
5.2 An illustration of an example go2async circuit with external function call.

(Fig. 5.1 extended) . 44
5.3 Type hierarchy of go2async’s interfaces (rounded) and structs (not rounded). 45
5.4 Variable handling in go2async. 48
5.5 Sequential and Dataflow approach visualization example extracted from Listing

5.1. 51

6.1 Simulation of an asynchronous click-element circuit generated from Listing
6.1 calculating the GCD of (15,6). 62

6.2 Simulation of an asynchronous click-element circuit generated from Listing
6.2 sorting the array [5, 4, 6, 7, 1, 7]. 64

85

6.3 Calculating the GCD of 9 and 12 on the DE0-CV. 66
6.4 DE0-CV displaying an unsorted array. 67
6.5 DE0-CV displaying a quickly sorted array. 67

7.1 Initial solution hardware visualization of Listing 7.1. 73
7.2 Example data vector containing one integer array and one integer variable. 74
7.3 Growing and shrinking data vector illustrated for Listing 7.2. 78

86

Listings

4.1 Simple sum function in Go. 29
4.2 Golang implementation of a GCD algorithm. 32
5.1 Example Go function: Variable additions. 50
5.2 Example Go function: Calculate sum of two integers. 54
5.3 Binary Expression-Component corresponding to a = a + b. 55
5.4 Conceptual root-Block architecture. 56
5.5 Conceptual Scope component. 57
6.1 Example Go function: Calculate the greatest common divisor of a and b. 61
6.2 Example Go function: Iterative quicksort for six integers. 65
7.1 Example Go function: Simple variable additions. 73
7.2 Example Go function: More variable additions. 77

87

Acronyms

ASIC Application Specific Integrated Circuit. 2, 15

AST Abstract Syntax Tree. 3, 8, 9, 22, 24, 25, 28–30, 33, 34, 52, 53, 72, 76, 85

CAD Computer Aided Design. 14

CFG Control Flow Graph. 16

CLI Command Line Interface. 35

CPU Central Processing Unit. 1, 15, 48

FPGA Field Programmable Gate Array. xi, xiii, 2, 4, 5, 10, 14, 15, 17–21, 25, 36, 59,
60, 66, 69, 76, 79, 81, 82

GCD Greatest Common Divisor. 21, 22, 30, 32, 60–64, 66, 67, 82, 85, 86

GPU Graphics Processing Unit. 15

HDL Hardware Description Language. xi, xiii, 2, 15, 16, 20, 22, 81

HLS High-Level Synthesis. xi, xiii, 2, 3, 5, 15, 16, 22, 23, 25, 26, 28, 33, 35, 81

IP Intellectual Property. 76

IR Intermediate Representation. 15, 16

LE Logic Element. 20

LHS Left-Hand Size. 30, 37

LUT Lookup Table. 17

MCU Micro-Control Unit. 20

NRTZ Non-Return-To-Zero. 14

89

OOP Object Oriented Programming. 40, 42, 45

RAD Rapid Application Development. 23

RAM Random Access Memory. 33, 76

RHS Right-Hand Size. 30, 37, 52, 53

RTZ Return-To-Zero. 14

SNN Spiking Neural Network. 14

UUT Unit Under Test. 62

VHDL Very High Speed Integrated Circuit Hardware Description Language (also VHD-
SIC). xi, xiii, 2, 3, 9, 10, 28, 34–36, 41–44, 47, 53–55, 57, 59, 74–76

90

Bibliography

[1] Vivienne Sze et al. „Hardware for machine learning: Challenges and opportunities“.
In: 2017 IEEE Custom Integrated Circuits Conference (CICC). 2017, pp. 1–8. doi:
10.1109/CICC.2017.7993626.

[2] Matthias Maiterth et al. „Power Aware High Performance Computing: Challenges
and Opportunities for Application and System Developers — Survey & Tutorial“.
In: 2017 International Conference on High Performance Computing & Simulation
(HPCS). 2017, pp. 3–10. doi: 10.1109/HPCS.2017.11.

[3] Wikipedia ESP32. https://en.wikipedia.org/wiki/ESP32. Accessed:
2023-09-26.

[4] L.S. Nielsen and J. Sparso. „Designing asynchronous circuits for low power: an
IFIR filter bank for a digital hearing aid“. In: Proceedings of the IEEE 87.2 (1999),
pp. 268–281. doi: 10.1109/5.740020.

[5] Aneesh Raveendran et al. „A RISC-V instruction set processor-micro-architecture
design and analysis“. In: 2016 International Conference on VLSI Systems, Architec-
tures, Technology and Applications (VLSI-SATA). 2016, pp. 1–7. doi: 10.1109/
VLSI-SATA.2016.7593047.

[6] Ad Peeters et al. „Click Elements: An Implementation Style for Data-Driven
Compilation“. In: 2010 IEEE Symposium on Asynchronous Circuits and Systems.
2010, pp. 3–14. doi: 10.1109/ASYNC.2010.11.

[7] Filipp Akopyan et al. „TrueNorth: Design and Tool Flow of a 65 mW 1 Million
Neuron Programmable Neurosynaptic Chip“. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 34.10 (2015), pp. 1537–1557. doi:
10.1109/TCAD.2015.2474396.

[8] Mike Davies et al. „Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning“. In: IEEE Micro 38.1 (2018), pp. 82–99. doi: 10.1109/MM.2018.
112130359.

91

https://doi.org/10.1109/CICC.2017.7993626
https://doi.org/10.1109/HPCS.2017.11
https://en.wikipedia.org/wiki/ESP32
https://doi.org/10.1109/5.740020
https://doi.org/10.1109/VLSI-SATA.2016.7593047
https://doi.org/10.1109/VLSI-SATA.2016.7593047
https://doi.org/10.1109/ASYNC.2010.11
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359

[9] Adrian Mardari, Zuzana Jelčicová, and Jens Sparsø. „Design and FPGA-implementation
of Asynchronous Circuits Using Two-Phase Handshaking“. In: 2019 25th IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC). 2019,
pp. 9–18. doi: 10.1109/ASYNC.2019.00010.

[10] Async-Click-Library. https : / / github . com / zuzkajelcicova / Async -
Click-Library. Accessed: 2023-09-26.

[11] Olga Melnikova, Irina Hahanova, and Karina Mostovaya. „Using multi-FPGA
systems for ASIC prototyping“. In: 2009 10th International Conference - The
Experience of Designing and Application of CAD Systems in Microelectronics. 2009,
pp. 237–239.

[12] Go Programming Language. https://golang.org/. Accessed: 2023-09-26.

[13] Synthesis tool Quartus. https : / / www . intel . de / content / www / de /
de/products/details/fpga/development-tools/quartus-prime/
resource.html. Accessed: 2023-09-26.

[14] DE0-CV Hardware design platform. https://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&No=921. Accessed: 2023-09-26.

[15] C.J. Alpert, A. Devgan, and S.T. Quay. „Buffer insertion with accurate gate
and interconnect delay computation“. In: Proceedings 1999 Design Automation
Conference (Cat. No. 99CH36361). 1999, pp. 479–484. doi: 10.1109/DAC.1999.
781363.

[16] Deokjin Joo and Taewhan Kim. „Managing clock skews in clock trees with local
clock skew requirements using adjustable delay buffers“. In: 2015 International SoC
Design Conference (ISOCC). 2015, pp. 137–138. doi: 10.1109/ISOCC.2015.
7401696.

[17] Minh Huan Vo. „The Merged Clock Gating Architecture For Low Power Digital
Clock Application On FPGA“. In: 2018 International Conference on Advanced
Technologies for Communications (ATC). 2018, pp. 282–286. doi: 10.1109/ATC.
2018.8587596.

[18] Harekrishna Kumar, Anjan Kumar, and Vinay Kumar Deolia. „Enabling Concurrent
Clock and Power Gating in 32 Bit ROM“. In: 2018 9th International Conference
on Computing, Communication and Networking Technologies (ICCCNT). 2018,
pp. 1–6. doi: 10.1109/ICCCNT.2018.8493779.

92

https://doi.org/10.1109/ASYNC.2019.00010
https://github.com/zuzkajelcicova/Async-Click-Library
https://github.com/zuzkajelcicova/Async-Click-Library
https://golang.org/
https://www.intel.de/content/www/de/de/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.intel.de/content/www/de/de/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.intel.de/content/www/de/de/products/details/fpga/development-tools/quartus-prime/resource.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=921
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=921
https://doi.org/10.1109/DAC.1999.781363
https://doi.org/10.1109/DAC.1999.781363
https://doi.org/10.1109/ISOCC.2015.7401696
https://doi.org/10.1109/ISOCC.2015.7401696
https://doi.org/10.1109/ATC.2018.8587596
https://doi.org/10.1109/ATC.2018.8587596
https://doi.org/10.1109/ICCCNT.2018.8493779

[19] Priti Gosatwar and Ujwala Ghodeswar. „Design of voltage level shifter for multi-
supply voltage design“. In: 2016 International Conference on Communication and
Signal Processing (ICCSP). 2016, pp. 0853–0857. doi: 10.1109/ICCSP.2016.
7754267.

[20] W.J. Bainbridge et al. „Delay-insensitive, point-to-point interconnect using m-of-n
codes“. In: Ninth International Symposium on Asynchronous Circuits and Systems,
2003. Proceedings. 2003, pp. 132–140. doi: 10.1109/ASYNC.2003.1199173.

[21] Shanlin Xiao et al. „A Data-Driven Asynchronous Neural Network Accelerator“. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
40.9 (2021), pp. 1874–1886. doi: 10.1109/TCAD.2020.3025508.

[22] A. Kondratyev and K. Lwin. „Design of asynchronous circuits by synchronous
CAD tools“. In: Proceedings 2002 Design Automation Conference (IEEE Cat.
No.02CH37324). 2002, pp. 411–414. doi: 10.1109/DAC.2002.1012660.

[23] Yu Zhou. „Investigation of asynchronous pipeline circuits based on bundled-data
encoding: Implementation styles, behavioral modeling, and timing analysis“. In:
Tsinghua Science and Technology 27.3 (2022), pp. 559–580. doi: 10.26599/TST.
2021.9010089.

[24] Olga Melnikova, Irina Hahanova, and Karina Mostovaya. „Using multi-FPGA
systems for ASIC prototyping“. In: 2009 10th International Conference - The
Experience of Designing and Application of CAD Systems in Microelectronics. 2009,
pp. 237–239.

[25] Andrew Canis et al. „From software to accelerators with LegUp high-level synthesis“.
In: 2013 International Conference on Compilers, Architecture and Synthesis for Em-
bedded Systems (CASES). 2013, pp. 1–9. doi: 10.1109/CASES.2013.6662524.

[26] Microchip LegUp. https://www.microchip.com/en-us/products/fpgas-
and-plds/fpga-and-soc-design-tools/smarthls-compiler. Ac-
cessed: 2023-09-26.

[27] Wikipedia LLVM. https://en.wikipedia.org/wiki/LLVM. Accessed: 2023-
09-26.

[28] Jens Sparsø. „Current trends in high-level synthesis of asynchronous circuits“. In:
2009 16th IEEE International Conference on Electronics, Circuits and Systems -
(ICECS 2009). 2009, pp. 347–350. doi: 10.1109/ICECS.2009.5411011.

93

https://doi.org/10.1109/ICCSP.2016.7754267
https://doi.org/10.1109/ICCSP.2016.7754267
https://doi.org/10.1109/ASYNC.2003.1199173
https://doi.org/10.1109/TCAD.2020.3025508
https://doi.org/10.1109/DAC.2002.1012660
https://doi.org/10.26599/TST.2021.9010089
https://doi.org/10.26599/TST.2021.9010089
https://doi.org/10.1109/CASES.2013.6662524
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://en.wikipedia.org/wiki/LLVM
https://doi.org/10.1109/ICECS.2009.5411011

[29] Rui Li et al. „Fluid: An Asynchronous High-level Synthesis Tool for Complex Pro-
gram Structures“. In: 2021 27th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC). 2021, pp. 1–8. doi: 10.1109/ASYNC48570.
2021.00009.

[30] Idan Schwartz et al. „Near-threshold 40nm Supply Feedback C-element“. In: 2011
3rd Asia Symposium on Quality Electronic Design (ASQED). 2011, pp. 74–78. doi:
10.1109/ASQED.2011.6111705.

[31] J. Cortadella et al. „Desynchronization: Synthesis of Asynchronous Circuits From
Synchronous Specifications“. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 25.10 (2006), pp. 1904–1921. doi: 10.1109/
TCAD.2005.860958.

[32] Argyrios Sideris, Theodora Sanida, and Minas Dasygenis. „High Throughput
Pipelined Implementation of the SHA-3 Cryptoprocessor“. In: 2020 32nd Inter-
national Conference on Microelectronics (ICM). 2020, pp. 1–4. doi: 10.1109/
ICM50269.2020.9331803.

[33] I. E. Sutherland. „Micropipelines“. In: Commun. ACM 32.6 (June 1989), pp. 720–
738. issn: 0001-0782. doi: 10.1145/63526.63532. url: https://doi.org/
10.1145/63526.63532.

[34] Cuong Pham-Quoc and Anh-Vu Dinh-Duc. „Hazard-free Muller Gates for Imple-
menting Asynchronous Circuits on Xilinx FPGA“. In: 2010 Fifth IEEE International
Symposium on Electronic Design, Test & Applications. 2010, pp. 289–292. doi:
10.1109/DELTA.2010.40.

[35] Quoc Thai Ho et al. „Implementing Asynchronous Circuits on LUT Based FPGAs“.
In: Field-Programmable Logic and Applications: Reconfigurable Computing Is Going
Mainstream. Ed. by Manfred Glesner, Peter Zipf, and Michel Renovell. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 36–46. doi: 10.1007/3-540-
46117-5_6.

[36] Montek Singh and Steven M. Nowick. „MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines“. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 15.6 (2007), pp. 684–698. doi: 10.1109/TVLSI.
2007.898732.

[37] Yuxuan Liu et al. „An asynchronous loop structure based on the click element“.
In: 2017 International Conference on Electron Devices and Solid-State Circuits
(EDSSC). 2017, pp. 1–2. doi: 10.1109/EDSSC.2017.8126448.

94

https://doi.org/10.1109/ASYNC48570.2021.00009
https://doi.org/10.1109/ASYNC48570.2021.00009
https://doi.org/10.1109/ASQED.2011.6111705
https://doi.org/10.1109/TCAD.2005.860958
https://doi.org/10.1109/TCAD.2005.860958
https://doi.org/10.1109/ICM50269.2020.9331803
https://doi.org/10.1109/ICM50269.2020.9331803
https://doi.org/10.1145/63526.63532
https://doi.org/10.1145/63526.63532
https://doi.org/10.1145/63526.63532
https://doi.org/10.1109/DELTA.2010.40
https://doi.org/10.1007/3-540-46117-5_6
https://doi.org/10.1007/3-540-46117-5_6
https://doi.org/10.1109/TVLSI.2007.898732
https://doi.org/10.1109/TVLSI.2007.898732
https://doi.org/10.1109/EDSSC.2017.8126448

[38] Zhiyu Li et al. „A Low-Power Asynchronous RISC-V Processor With Propagated
Timing Constraints Method“. In: IEEE Transactions on Circuits and Systems
II: Express Briefs 68.9 (2021), pp. 3153–3157. doi: 10.1109/TCSII.2021.
3100524.

[39] Jon Neerup Lassen. „FPGA prototyping of asynchronous networks-on-chip“. In: M.
Sc. thesis (2008).

[40] Python Programming Language. https://www.python.org/. Accessed: 2023-
09-26.

[41] Arun Kumar and Supriya.P. Panda. „A Survey: How Python Pitches in IT-World“.
In: 2019 International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon). 2019, pp. 248–251. doi: 10.1109/COMITCon.
2019.8862251.

[42] The Top Programming Languages. https://octoverse.github.com/2022/
top-programming-languages. Accessed: 2023-09-26.

[43] Rust Programming Language. https://www.rust-lang.org/. Accessed:
2023-09-26.

[44] Dongdong Lu et al. „Analysis of the popularity of programming languages in open
source software communities“. In: 2020 International Conference on Big Data and
Social Sciences (ICBDSS). 2020, pp. 111–114. doi: 10.1109/ICBDSS51270.
2020.00033.

[45] Wikipedia Turing Machine. https://en.wikipedia.org/wiki/Turing_
machine. Accessed: 2023-09-26.

[46] go2async GitHub page. https://github.com/SeWiede/go2async. Accessed:
2023-09-26.

95

https://doi.org/10.1109/TCSII.2021.3100524
https://doi.org/10.1109/TCSII.2021.3100524
https://www.python.org/
https://doi.org/10.1109/COMITCon.2019.8862251
https://doi.org/10.1109/COMITCon.2019.8862251
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://www.rust-lang.org/
https://doi.org/10.1109/ICBDSS51270.2020.00033
https://doi.org/10.1109/ICBDSS51270.2020.00033
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://github.com/SeWiede/go2async

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Description
	Research Questions & Expected Results
	Methodological Approach
	Structure of this Work

	Methodology
	Technical Background
	Synchronous Circuits
	Asynchronous Circuits
	High-Level Synthesis Tools
	Asynchronous Pipelines
	Work on Click-Elements
	Conclusion of Pipeline Findings
	Programming Language Candidates

	Key Challenges and Solution Concepts
	Key Challenges
	Solution Concepts

	Implementation
	Program Execution
	The Supported Go Subset
	Abstraction of Resulting Asynchronous Circuits
	Data Structures
	Variable Handling
	Handshake Connection handling
	Parsing Go with the built-in Go AST
	Hardware Generation
	Generation Example

	Simulation & Exploration of Limits
	Testing Requirements
	Simulation Workflow
	Exhaustive Simulation
	The High-Level Synthesis Tool in Practice
	Limits of go2async

	Optimization & Design Decisions
	The Initial Solution
	Array Support
	Recursive Blocks
	Calling Functions
	Nested Binary Expressions
	Optimizing Variable Handling
	Introduction of the Dataflow Model

	Conclusion & Outlook
	Future Work

	List of Figures
	Acronyms
	Bibliography

