
On the Potential of Structural
Decomposition of Database and

AI Problems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Davide Mario Longo, MSc
Registration Number 01529789

to the Faculty of Informatics

at the TU Wien

Advisor: Prof.Dr. Georg Gottlob
Second advisor: Prof.Dr. Reinhard Pichler

The dissertation has been reviewed by:

Francesco Calimeri Zoltan Miklos

Vienna, 14th June, 2023
Davide Mario Longo

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Davide Mario Longo, MSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Juni 2023
Davide Mario Longo

iii

Acknowledgements

I am deeply grateful to my advisor Georg Gottlob for guiding me through the challenges of
my Ph.D. and for teaching me the value of relentlessness in the pursuit of truth. I would
also like to thank my co-advisor Reinhard Pichler, whose expert help and mentorship
have helped me grow as a researcher.

I am indebted to the entire DBAI team and the LogiCS people for backing me up during
my doctoral studies. I am genuinely grateful to my co-authors for contributing to this
work and being good research partners. My sincere gratitude goes to my friends and
colleagues Matthias Lanzinger, Cem Okulmus, and Augusto B. Corrêa, who shared this
journey with me and made it a rewarding experience.

I thank the Austrian Science Fund (FWF) for financially supporting my research through
projects P30930-N35 and W1255-N23.

Finally, I would like to thank my family and friends for their constant love and encour-
agement. I am immensely grateful to my parents, Claudia and Carmine, for always
encouraging me to chase my aspirations. My heartfelt gratefulness belongs to Sandra,
who has been my anchor during the highs and lows of my Ph.D.

In conclusion, I am grateful to everyone who has played a significant role in my academic
journey and helped me reach this important milestone.

v

Kurzfassung

Datenbanktheorie und Künstliche Intelligenz gehören zu den weitreichendsten Forschungs-
gebieten der Informatik. Obwohl klassische Probleme in diesen Bereichen, wie die Be-
antwortung konjunktiver Anfragen (Conjunctive Queries oder CQs) und die Lösung
von Constraint Satisfaction Problemen (CSPs), oft natürlich auftreten, sind sie schwer
lösbar. Der Grund dafür liegt in der potentiell komplizierten Struktur von CQ- und
CSP-Instanzen, die durch Hypergraphen, eine Verallgemeinerung von Graphen, in denen
Kanten mehr als zwei Knoten verbinden können, erfasst werden kann. Im Gegensatz zu
den in polynomieller Zeit lösbaren Klassen von Instanzen mit einem zugrundeliegenden
azyklischen Hypergraphen, stellen zyklische Probleminstanzen in der Tat ernsthafte
Einschränkungen für Systeme dar. Die Einführung struktureller Zerlegungsmethoden, wie
generalized hypertree decompositions (GHDs), ermöglichte die Definition größerer Klassen
von effizient lösbaren CQ- und CSP-Instanzen. Diese Methoden klassifizieren den Grad
der Zyklizität von Hypergraphen durch das Konzept der Hypergraph Breite. Je geringer
die Breite des Hypergraphen ist, desto mehr ähnelt er einem azyklischen Hypergraphen.
Diese Ähnlichkeit spiegelt sich auch in der Komplexität des Problems wider: Je niedriger
die Breite, desto einfacher ist das zugehörige Problem zu lösen. Die Berechnung von
GHDs mit geringer Breite ist jedoch eine schwierige Aufgabe. Während die Theorie
dieser Dekompositionen gut verstanden ist, wurde die Anwendung von Dekompositionen
noch nicht hinreichend in die Praxis umgesetzt. Dieses Bestreben formt den Kern dieser
Dissertation.

Wir beginnen diese Arbeit mit einer Studie über die Berechnung von GHDs für poly-
nomiell lösbare Fälle. Die Berechnung von GHDs ist wünschenswert, weil sie geringere
Breiten als andere Zerlegungen bieten. Obwohl frühere Arbeiten gezeigt haben, dass die
Berechnung von GHDs für Hypergraphen mit begrenzter Kantenüberschneidung effizient
ist, wurden nur rudimentäre Algorithmen vorgeschlagen. So gibt es zwar empirische Tests,
um zu prüfen, ob eine GHD der Breite ≤ k eines Hypergraphen existiert, aber keinen
Algorithmus, der eine entsprechende GHD berechnet. Ein solcher Test verwendet balan-
cierte Separatoren, ein bekanntes Konzept der Graphentheorie, mit vielversprechenden
Ergebnissen. Leider fehlt bis heute eine theoretische Fundierung dieser Methode für die
Berechnung von GHDs. Daher entwickeln wir diesen Test zu einem neuen Algorithmus
namens BalSep, der bei einem Hypergraphen H eine GHD von H mit der Breite ≤ k
ausgibt, wenn sie existiert. Wir beweisen, dass BalSep korrekt und vollständig ist.

vii

Weiters, gehen wir der Frage nach, ob BalSep und andere GHD-Algorithmen Hypergra-
phen aus realen CQs und CSPs effizient zerlegen können. Einschlägige frühere Arbeiten
führten zur Erstellung von HyperBench, einer Sammlung von Hypergraphen von CQ-
und CSP-Instanzen, die aus verschiedenen Anwendungsbereichen stammen. Während
die Autoren von HyperBench zu dem Schluss kommen, dass sich reale Instanzen gut
für Dekompositionsalgorithmen eignen, stellen wir fest, dass die Zusammensetzung von
HyperBench nicht vielfältig genug ist, um diese Behauptungen allgemein zu stützen. In
der Tat besteht dieser Datensatz nur zu einem Drittel aus CQs. Außerdem handelt es sich
bei den meisten um einfache SQL-Abfragen, während komplexere Abfragen und andere
beliebten Sprachen wie SPARQL vernachlässigt wurden. Da die Umwandlung dieser
komplexen Anfragen in Hypergraphen eine neue Herausforderung darstellt, entwickeln
wir eine neuartige Methode zur Extraktion der “maximalen konjunktiven Komponenten”
aus einer Anfrage, die nicht rein konjunktiv ist. Dadurch erweitern wir HyperBench
um eine vielfältige Auswahl von SPARQL- und komplexen SQL-Abfragen. Mit diesem
erweiterten Datensatz durchgeführte Experimente zeigen, dass die Zerlegungsalgorithmen
und insbesondere BalSep tatsächlich in der Lage sind, auch komplexere CQs effizient zu
zerlegen.

Wir fahren mit der Untersuchung des Aktualisierens von GHDs in Reaktion auf Ände-
rungen in der Probleminstanz fort. Bei Problemen wie der inkrementellen Constraint
Satisfaction wird die Probleminstanz wiederholt verändert, um die schlussendliche Lösung
zu berechnen. In diesem Fall muss ein GHD-basierter Solver jedes Mal, wenn sich die
Instanz ändert, eine neue GHD berechnen. Auch wenn die Berechnung einer GHD mit
geringer Breite eine lohnende Aufgabe ist, so ist die sehr häufige Berechnung von GHDs
in diesem Szenario doch eine Herausforderung. Wir reagieren auf diese Herausforde-
rung, indem wir das Problem der Aktualisierung einer GHD als Reaktion auf allgemeine
Hypergraph-Modifikationen formalisieren. Leider erweist sich das Problem im Allgemei-
nen als genauso schwierig wie die Berechnung einer neuen Zerlegung. Dennoch entwickeln
wir einen neuen Algorithmus, der die Berechnung einer GHD für die aktualisierte Aufgabe
unter Verwendung der Kenntnis der alten Zerlegung erheblich beschleunigt. Ein Vergleich
mit einem naiven Algorithmus, der eine GHD von Grund auf neu berechnet, zeigt, dass
unsere Methode nicht nur extrem hohe Beschleunigungsfaktoren aufweist, sondern in den
meisten Fällen auch die Breite nicht erhöht.

Schließlich erforschen wir die Verwendung von GHDs zur Grundierung klassischer Pla-
nungsaufgaben. Diese Aufgaben werden üblicherweise in einem Formalismus basierend auf
Prädikatenlogik erster Ordnung formuliert. Da moderne Planer propositionale Aufgaben
effizient lösen, grundieren sie die prädikatenlogische Darstellung um sie in einer proposi-
tionelle Form zu bringen, bevor sie nach einer Lösung suchen. Wenn die Aufgaben immer
größer werden, wird hierbei jedoch die Grundierungsphase zu einem Engpass. Sogenannte
Planning Grounder, spezielle Systeme welche diese Grundierungsphase umsetzen, arbeiten
auf Basis von abgeschwächten Versionen der Aufgabe, in denen keine Negation auftritt.
Auf Basis dieser abgeschwächten Version kann ein effizienter Plan zur Grundierung mittels
Logikprogramme erzeugt werden. Bei großen Aufgaben haben diese Systeme allerdings

Schwierigkeiten, gute Auswertungspläne zu finden, um die Regeln des Logikprogramms
auszuwerten. Diese Schwierigkeit ergibt sich aus der Größe und der Struktur der Aufgabe.
Für Situationen wo diese Parameter für aktuelle Systeme zu hoch werden, entwickeln wir
einen neuartigen Algorithmus, der, geleitet von einer GHD, die ursprünglichen Regeln in
kleinere Regeln zerlegt, die leichter zu grundieren sind. Unsere empirische Evaluierung
zeigt, dass dieser Ansatz die notwendige Zeit zur Grundierung erheblich reduziert.

Abstract

Database Theory and Artificial Intelligence are among the most far-reaching research
areas in Computer Science. Although classical problems in these fields, like answering
conjunctive queries (CQs) and solving constraint satisfaction problems (CSPs), arise
naturally in a simple formulation, they are intractable. The reason lies in the intricacy of
the structure of CQ and CSP instances, which is neatly representable by hypergraphs, i.e.,
a generalization of graphs in which edges can connect more than two vertices. Indeed,
in contrast to polynomial-time solvable classes of instances with an underlying acyclic
hypergraph, cyclic problem instances pose severe limitations to systems. The introduc-
tion of structural decomposition methods, such as generalized hypertree decompositions
(GHDs), allowed the definition of larger classes of tractable CQ and CSP instances. These
methods classify the degree of cyclicity of hypergraphs through the concept of width. The
lower the hypergraph width, the more it resembles an acyclic hypergraph. The related
instance is then easier to solve. However, computing low-width GHDs is a difficult task.
While the theory of decompositions is well understood, the theoretical advantages of
using decompositions have not yet been transferred into practice. This quest constitutes
the central theme of this thesis.

We open this work with a study on the computation of GHDs for tractable cases. GHDs
are desirable because they provide lower widths than other decompositions. Even though
previous work demonstrated that computing GHDs for hypergraphs having bounded
intersection size is tractable, only a few interesting yet rudimentary algorithms have
been proposed. For instance, while empirical tests to check if a GHD of width ≤ k of a
hypergraph exists, no algorithm computing a GHD exists. One such test uses balanced
separators, a well-known concept in graph theory, with promising results. Unfortunately,
a theoretical underpinning of this method is missing to date. Therefore, we develop this
test into a new algorithm, called BalSep, that, given a hypergraph H, outputs a GHD
of H of width ≤ k if it exists. We thus prove that BalSep is sound and complete.

We progress by asking if BalSep and other GHD algorithms can efficiently decompose
hypergraphs from real-world CQs and CSPs. Relevant previous work led to the creation
of HyperBench, a collection of hypergraphs of CQ and CSP instances originating from
several applications’ domains. While the authors of HyperBench conclude that real-world
instances are well suited for decomposition algorithms, we recognize that the composition
of the HyperBench is not varied enough to sustain these claims in general terms. Indeed,

xi

this dataset is composed of only one-third of CQs. Moreover, most are simple SQL
queries, to the detriment of more complex queries and other popular languages such as
SPARQL. Since the transformation of these complex queries into hypergraphs presents
us with a new challenge, we develop a novel methodology for extracting the “maximal
conjunctive components” from a query that is not purely conjunctive. We thus extend
HyperBench by including a more diversified sample of SPARQL and complex SQL queries.
Experiments carried out on this extended dataset show that decomposition algorithms,
and especially BalSep, manage to decompose even more complex CQs.

We move forward into studying the update of GHDs in response to instance modifications.
In problems such as incremental constraint satisfaction, the solver repeatedly modifies
the instance while computing a solution. In this case, a GHD-based solver must compute
a new GHD every time the instance changes. Even though computing a low-width GHD
is a worthwhile task, it is challenging. We respond to this challenge by formalizing
the problem of updating a GHD in response to common hypergraph modifications.
Unfortunately, we prove the problem to be as hard as computing a new decomposition
anew. Yet, we develop a new algorithm that significantly speeds up the computation of
a GHD of the updated task using knowledge of the old decomposition. A comparison
against the naive algorithm computing a GHD from scratch reveals that not only our
method has extremely high speed-up factors, but in most cases, it does not increase the
width.

Finally, we research using GHDs to ground classical planning tasks. These tasks are
typically formulated in a first-order formalism. Since state-of-the-art planners efficiently
solve propositional tasks, they ground the first-order representation before searching for a
solution. Nevertheless, the grounding phase becomes a bottleneck as the tasks get larger
and larger. Planning grounders work on a logic program representing a relaxed version of
the task where no negation occurs. When tasks are large, they struggle to find good join
plans to evaluate the rules of the logic program. This difficulty is due to the number of
joins and the structure of these joins. Consequently, we develop a novel algorithm that,
guided by a GHD, splits the original rule into smaller rules that are easier to ground.
Empirical evaluation shows that rules decomposition significantly reduces the grounding
time if we perform the split judiciously.

Contents

Kurzfassung vii

Abstract xi

Contents xiii

1 Introduction 1
1.1 Difficult Problems in Databases and AI 1
1.2 Hypergraphs and Structural Decomposition Methods 3
1.3 Decompositions in Real Systems . 5
1.4 Research Questions and Main Results 6
1.5 Overview of the Study . 14

2 Preliminaries and Definitions 15
2.1 CQs, CSPs, and Hypergraphs . 16
2.2 Hypergraph Decompositions and Widths 18
2.3 The Complexity of Computing Decompositions 21
2.4 Top-Down Construction of GHDs . 23
2.5 Summary . 25

3 The Computation of GHDs through Balanced Separators 27
3.1 Tractable Cases of GHD Computation 28
3.2 A GHD Algorithm based on Balanced Separators 31
3.3 A Proof of Correctness for BalSep . 36
3.4 Summary . 39

4 Benchmarking Decomposition Algorithms 43
4.1 Translation of CQs and CSPs into Hypergraphs 45
4.2 Integration of Complex Queries into Hyperbench 51
4.3 Comparison of GHD Decomposition Algorithms 55
4.4 Summary . 66

5 Updating GHDs upon Instances’ Modifications 69
5.1 The GHD Update Problem . 71

xiii

5.2 A Framework for Handling Updates 76
5.3 Implementation of the δ-mutable Subtree Framework 81
5.4 Empirical Evaluation . 88
5.5 Proof of Theorem 5.1 . 93
5.6 Summary . 98

6 Grounding Planning Problems with Decompositions 101
6.1 Classical Planning Problems . 103
6.2 Grounding Planning Tasks . 107
6.3 Experiments . 112
6.4 Summary . 122

7 Conclusion 123
7.1 Contributions . 123
7.2 Outlook . 124

List of Figures 127

List of Tables 129

List of Algorithms 131

Bibliography 133

CHAPTER 1
Introduction

This chapter introduces the context necessary to understand our research on structural
decomposition methods. While we give a broad overview of the problems that most
benefit from these methods, we present the main limitations of the current studies. They
will lead us to our problem statement and allow us to formulate our research goal. As
this chapter is intended for a broader audience, the first part follows a not-too-rigorous
thread of narration. Later on, we will formally specify our research questions and enlist
our contributions.

We accomplished this work in collaboration with many valued colleagues, which we will
explicitly acknowledge in Section 1.4.

1.1 Difficult Problems in Databases and AI
Database Theory and Artificial Intelligence are two of the oldest and most fundamental
research areas in Computer Science. The problems related to these disciplines often arise
naturally and are simple to formulate, yet they are oftentimes difficult to solve. On this
account, answering of conjunctive queries and solving constraint satisfaction problems
constitute two relevant examples. Even though they are seemingly unrelated and indeed
studied by different communities, they share a common reason for their complexity, which
is related to the intricacy of the structure underlying instances of these problems. While
we will delve into technicalities later in the thesis, we clarify here that our focus is on the
structure underlying these problems and, thus, the connections between AI and Database
Theory. Nonetheless, we devote our attention to the problems themselves. Indeed, in
the last part of this thesis, we will show how we can proficiently use the techniques
developed at the intersection of these two disciplines. Therefore, our study ultimately
demonstrates that efficient algorithms exploiting the structural properties of instances
solve hard problems. Nevertheless, instead of immediately jumping to conclusions, we
first introduce our reader to the specific problems motivating this work.

1

1. Introduction

Database systems are a core component of nearly all computer applications. Thus, it
does not strike as surprising that extensive research has been done on them. While
these systems present several challenges, such as transaction processing [78, 10, 109],
distributing large-scale dataflows [41, 142], and producing interactive analytics from big
data [83, 9], we focus here on query answering, i.e., the task of retrieving data from
a database upon a user request. Following the standard database textbooks [5, 134],
we treat query answering as a decision problem: given a database and a query, we
want to know whether the result of the query is empty or not on the input database.
In this setting, a query is a logical formula. The simplest yet most studied kinds of
queries are conjunctive queries (CQs), i.e., formulae consisting only of a conjunction of
predicates, where neither disjunction nor negation appears. From a different perspective,
CQs correspond to SQL select-from-where queries in which the WHERE clause contains
only equalities between table attributes. These queries are often the target of query
optimization algorithms as they frequently appear at the core of several applications such
as query containment and incremental view maintenance [37, 34, 81]. Despite its formal
simplicity, answering CQs is a hard problem [35].

Artificial Intelligence is another prominent field of research in Computer Science. Its roots
trace back to the beginning of Computer Science with the long-term ambition of developing
a thinking machine. Even though AI researchers have not yet achieved this goal, the
discipline has developed into a research area where it is customary to find smart solutions
for difficult problems. Constraint Satisfaction Problems (CSPs) are a powerful formalism
that can capture many of the typical problems in AI. Indeed, CSPs have applications
to several well-studied problems such as planning and machine learning [29, 138, 120].
Moreover, as CSPs offer a practical formalism to express combinatorial problems, they
are widely used in Operations Research to solve problems such as scheduling and vehicle
routing [98, 128]. Graph combinatorial problems are also typically formulated as CSPs [30,
42]. In a CSP, we have a set of variables and a set of constraints. While each variable
has an associated domain, the constraints restrict the allowed combinations of values
that the variables can be assigned. A solution for a CSP is an assignment of values to
variables that does not violate any constraint. The price to pay for the high expressive
power is the hardness of the problem [42].

We typically distinguish between easy and hard problems. The former are tractable
because a computer can solve them in time polynomial in the input size. On the other
hand, no polynomial algorithm is known for the latter, so they are intractable. Easy
problems are grouped into the set P, while hard ones are categorized in the set N P.
This distinction relies on the widely-believed assumption that P ≠ N P and thus no
polynomial algorithm exists for hard problems, even though neither this claim nor its
negation has been yet proven. In their general form, answering CQs and solving CSPs
are N P-complete problems. Intuitively, they belong to the class N P and are among the
most difficult problems in this class.

Despite the differences in their formulations, these problems share more than it is possible
to appreciate at first glance. In [97], Kolaitis and Vardi proved that answering CQs

2

1.2. Hypergraphs and Structural Decomposition Methods

and solving CSPs are essentially the same problem; in particular, they can both be
reformulated as the algebraic problem of finding a homomorphism between two relational
structures. Moreover, we can translate these problems into logical formalism. In this
setting, we perform the model checking of particular first-order formulae where only the
existential quantifier and conjunction are allowed connectives while using the universal
quantifier, disjunction, or negation is forbidden.

We can now start treating CQs and CSPs more uniformly, especially when discussing their
complexity. It is well-known that not all CQs and CSPs are difficult. The tractability
of acyclic CQs has been established in [36] in continuation of the work done by Yan-
nakakis [140] and Qian [119] on query evaluation and containment for acyclic queries. On
the other hand, tractable fragments of CSPs have been obtained by imposing restrictions
on the constraints [103, 113]. Moreover, the complexity of evaluating acyclic boolean
conjunctive queries has been successively refined in [70], where Gottlob et al. show that
this problem is LOGCFL-complete, which means that this problem is highly parallelizable.
This result holds for the satisfiability of CSPs as well. The structure of instances plays a
crucial role in the tractability of these problems.

1.2 Hypergraphs and Structural Decomposition Methods
To better investigate acyclicity, we represent the structure of instances with hypergraphs,
which are a generalization of graphs where edges are not restricted to be binary. More
precisely, a hypergraph H is a pair (V (H), E(H)) where V (H) is a set of vertices and
E(H) ⊆ 2V (H) is a set of hyperedges over V (H). In the case of a conjunctive query Q,
the hyperedges correspond to the relation predicates in Q, while the vertices are defined
as the set of variables occurring in Q. A CSP P induces a hypergraph as follows: the
variables of P become vertices, and each constraint C of P is a hyperedge connecting all
vertices corresponding to variables in C.

In contrast to graphs, for which acyclicity is defined unequivocally, there are several
reasonable ways to define acyclicity for hypergraphs [45]. In order of increasing generality,
the most popular notions are γ-, β-, and α-acyclicity. In [31], Brault-Baron argued
that acyclicity is characterized in two ways: (1) by forbidding certain substructures like
cycles; and (2) through reducibility to the empty hypergraph by repeatedly applying
certain reduction rules. The author also showed that these two characterizations coincide.
Since the most fruitful notion of acyclicity in the database area has been proven to be
α-acyclicity, we focus on this here. A characterization of α-acyclicity close to the sense
of (1) has been given in [19], where the authors argued that acyclic database schemes
have desirable properties. Alternative characterizations of type (2) have been extensively
used to solve database problems proficiently. In [77, 141], Graham, Yu, and Özsoyoglu
independently introduced the GYÖ algorithm, which tests in polynomial time whether a
hypergraph is acyclic or not. Moreover, Yannakakis characterized CQ acyclicity based
on join trees [140]. The same paper showed that it is possible to compute a join tree in
polynomial time, but linear-time procedures exist as well [130]. Similarly, Dechter and

3

1. Introduction

Pearl gave an analogous tree-like characterization for CSPs [43].

The success of acyclicity as a structural tractability criterion motivated further research
on larger islands of tractability. In particular, researchers spent efforts on the tree-based
characterizations of acyclicity, which produced a variety of measures of the degree of
cyclicity of hypergraphs, mostly called widths. A proper generalization of graph acyclicity
is treewidth [123, 122], which is associated to tree decompositions. These are a tree-like
representation of a graph suggesting how to split the original problem into smaller
subproblems that can be solved independently from each other and whose solutions are
then combined to obtain a solution to the original problem. The lower the width of
the decomposition, the easier it is to solve the problem at hand. Acyclic graphs have a
treewidth equal to 1. Computing a tree decomposition of bounded width, say ≤ k, with
k constant, is feasible in linear time [24]. Even though the treewidth of a hypergraph can
be computed by decomposing its primal graph, treewidth does not properly generalize
hypergraph acyclicity. There are indeed classes of acyclic hypergraphs whose treewidth is
unbounded. A proper generalization of hypergraph acyclicity was proposed in [37] under
the name of query width. Nevertheless, computing a query decomposition of bounded
width is hard for any k > 3 [72].

At that point, a new width measure was introduced by Gottlob, Leone, and Scarcello
in [72], namely generalized hypertree width (ghw). Analogously to query width, ghw
generalizes hypergraph acyclicity, but it can be smaller than the query width of the same
hypergraph. Nonetheless, generalized hypertree decompositions (GHDs) are still hard
to compute for any k ≥ 2 [73, 53]. This limitation was overcome in the same article
by adding a structural constraint on the shape of GHDs. The resulting width is called
hypertree width (hw). It has been proved that computing a hypertree decomposition (HD)
of width ≤ k is tractable [72]. Moreover, given a conjunctive query Q and an HD, it is
possible to compute the answer of Q in polynomial time in combined complexity [137]
by using any algorithm for join trees like the Yannakakis algorithm [140]. Therefore,
hypertree width enjoys all the three desirable characteristics enlisted in [64]: queries of
hw ≤ k include the acyclic ones; queries of hw ≤ k can be identified in polynomial time
(for fixed k); and queries of hw ≤ k can be answered in polynomial time (for fixed k). The
drawback of HDs compared to GHDs is that for each hypergraph H, ghw(H) ≤ hw(H)
meaning that GHDs potentially lead to faster query answering.

Over time more widths have been proposed to generalize acyclicity even further. A notable
example is fractional hypertree width (fhw) [79], for which it holds that fhw(H) ≤ ghw(H),
for any hypergraph H. Nevertheless, computing a fractional hypertree decomposition of
width ≤ k is intractable for any rational k > 1 [53, 69]. Later, a more general notion of
width appeared: submodular width [106]. While queries enjoying bounded submodular
width are fixed-parameter tractable when considering query size as a parameter, whether
such queries are efficiently recognizable is unknown. All the widths introduced until now
are purely structural, which means that they only take into account the hypergraph
structure of the instance at hand. A hybrid width would also consider the database
on which the query must be answered. One such parameter is joinwidth [55], which

4

1.3. Decompositions in Real Systems

generalizes fhw, allows for tractable query answering, and fixed-parameter tractable
recognizability. In the same spirit of involving the database in the computation of an
appropriate hypertree decomposition, Ganian et al. [56] introduced the threshold hypertree
width. We focus, in this thesis, on purely structural widths, primarily on ghw and hw.

We deal with ghw and hw because efficient algorithms exist to compute the respective
decompositions. Since computing HDs of width ≤ k is tractable, many efficient im-
plementations are available. The first top-down algorithm for this problem appeared
in [76]. Contrary to the first bottom-up implementation in [71] computing optimal
HDs, this algorithm scales better with the increasing size of the input hypergraph. The
problem of computing an HD of optimal width is indeed more challenging. For this
case, Schidler and Szeider proposed some algorithms based on SMT solving and SAT
that work well in practice [125, 126]. In contrast to HDs, computing GHDs is hard in
general. Nevertheless, we already discussed that a GHD could potentially lead to better
decompositions, so research has been done to find tractable fragments of the problem of
computing a GHD of width ≤ k. In [53], Fischl et al. showed that by exploiting some
specific properties of hypergraphs concerning the intersection size between edges, it is
possible to compute GHDs efficiently for large classes of hypergraphs. This discovery led
to the implementation of several algorithms which produce GHDs. Fischl et al. proposed
a sequential implementation in [50]. Later, a parallel implementation has been made
available [75], which proved extremely suitable even for instances having a large width.
Also, the SMT solver approach proposed by Fichte et al. [47] can be adapted to compute
optimal GHDs. Consequently, the interest in using GHDs and HDs in practice is getting
higher.

1.3 Decompositions in Real Systems
Structural decomposition methods have been originally defined as a theoretical construct
to define larger classes of tractable conjunctive queries. Yet, the concept has become
so well-established that decompositions carved their way into applied research and
commercial systems. Here, we give examples of systems successfully using decompositions
to solve database and AI problems.

When using decompositions to solve real instances, there is more at hand than the bare
structure of the instance. For example, when answering a query on a database system, the
choice of a good query plan is based on quantitative information about the database, such
as the number of tuples contained in the tables involved in the query and other relevant
statistical data. In [124], Scarcello et al. introduced weighted hypertree decompositions
as an extension of HDs weighted by quantitative factors. These decompositions have been
used as a basis to produce optimal query plans in the system implemented by Ghionna
et al. [61, 62], where they proved the effectiveness of this approach for a narrow selection
of queries from the well-known TPC-H benchmark [132].

Decomposition-based techniques have also been implemented in commercial database
systems. LogicBlox [12] is a general-purpose database system challenging the belief that

5

1. Introduction

specialized systems are necessarily better than general-purpose ones. Motivated by the fact
that modern systems often need to integrate several specialized components, they decided
to design a new architecture for a general-purpose database system that uses the latest
research discoveries. Their implementation of novel worst-case optimal join algorithms
based on fractional hypertree decompositions [16, 94, 95, 112, 93] proved to be competitive
with more established commercial systems. The algorithms used in the system even
exploit submodular width [96]. Decomposition-based techniques have also been employed
in graph processing systems such as EmptyHeaded [3, 4]. In this system, the query
compiler produces query plans based on fractional hypertree decompositions [115, 133].
An extension of EmptyHeaded oriented to business intelligence and linear algebra is
LevelHeaded [2]. This system uses the same decomposition techniques as EmptyHeaded
but performs better in more specialized domains. GHDs have been used also to answer
queries in a distributed model a la MapReduce in [8].

To a lesser extent than database systems, decompositions have been used to solve
constraint satisfaction as well. In [11, 82], a forward-checking algorithm based on
hypertree decompositions was presented. With their implementation, the authors improve
on well-known memory problems due to the materialization of big constraint relations. In
a similar spirit, parallel algorithms based on HDs were introduced in [99]. Karakashian
et al. [91] proposed a rewriting technique based on hypertree decompositions introducing
redundant constraints to improve the performance of search algorithms.

1.4 Research Questions and Main Results
Based on solid theoretical foundations, the practice of computing and using structural
decomposition methods flourishes. Consequently, new questions about the relationship
between theory and the application of decompositions arise. In this section, we introduce
the ones addressed by this thesis and present the results of our investigation. This consists
of four thematic areas concerning the formalization of a new algorithm computing GHDs,
the significant extension of a benchmark for testing decomposition algorithms, the update
of GHDs upon changes to the original instance, and the use of GHDs to ground planning
tasks.

The contributions made by this thesis are the result of joint work with various colleagues.
The articles on which these results are based will be cited in the corresponding subsections,
as will the colleagues who contributed to this work.

1.4.1 The Computation of GHDs through Balanced Separators
This work was carried out in collaboration with Wolfgang Fischl, Georg Gottlob, and
Reinhard Pichler. The main contributions of this section are based on [52], published
in the ACM Journal of Experimental Algorithmics (JEA) in 2021. This article is an
extended version of [50], presented at the ACM Symposium on Principles of Database
Systems (PODS) 2019.

6

1.4. Research Questions and Main Results

In contrast to HDs, for which the Check(hw, k) problem is tractable for any fixed k ≥ 1,
computing a GHD of width ≤ k is a hard problem, for any k ≥ 2 [73, 53]. While bounded
hw implies bounded ghw and vice versa [7] and, thus, these two measures characterize the
same class of tractable CQs and CSPs, being able to use a decomposition of lower width
proved to be beneficial in practice [3]. It is indeed well known that for each hypergraph
H, ghw(H) ≤ hw(H), thus making the availability of a low-width GHD desirable.
Fischl, Gottlob, and Pichler accepted the challenge of identifying tractable fragments for
GHD computation and proved in [53] that the Check(ghw, k) problem is tractable for
all classes of hypergraphs enjoying the bounded multi-intersection property. In particular,
the problem is fixed-parameter tractable when parameterized by intersection size, defined
as the maximum intersection size between any two edges of a hypergraph. This property
has been used by Fischl et al. in [50] to implement several algorithms for computing
GHDs of bounded width efficiently.
Notably, Fischl proposed in [49] an empirical procedure to check, given a hypergraph H
and an integer k ≥ 1, whether H allows for the computation of a GHD of H of width
≤ k. This test based on so-called balanced separators has been proficiently used there for
numerous experiments. Later on, in [50], a similar procedure for the more general case of
computing a GHD was delineated. Unfortunately, a formal definition of this algorithm
and proof of its correctness are missing.

Research Challenge: Formalize the GHD algorithm based on balanced
separators and study its properties.

To this aim, we combine the idea of using intersection size for fixed-parameter tractable
GHD computation in [50] with the balanced-separators-based method by Fischl [49]. The
result is a revised version of the BalSep algorithm in [49, 50] that, given a hypergraph
H and an integer k ≥ 1, computes a GHD of H of width ≤ k in polynomial time.

Main Result 1: We formalize the BalSep procedure originally outlined
in [49, 50] and extend it to an algorithm for actually computing GHDs.

A rigorous formal analysis is necessary because of how BalSep constructs GHDs. Indeed,
this algorithm differs from the standard method of computing decompositions in that some
“artificial” edges, which were not present in the original hypergraph, are introduced during
the computation. Moreover, the subhypergraphs generated during the computation are
decomposed in a “sparse” order and must be assembled correctly into a GHD of the
original hypergraph. It is thus not clear whether BalSep is correct. These challenges
require a formal theory supporting and justifying the choices made in designing BalSep.

Main Result 2: We extend the definition of GHD to the case of extended
(sub)hypergraphs where certain “special edges” must adhere to specific rules.

Main Result 3: We prove that the BalSep algorithm is sound and complete.

7

1. Introduction

1.4.2 Benchmarking Decomposition Algorithms
This research was conducted with Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler.
The results presented in this section come from the article [52] published in the ACM
Journal of Experimental Algorithmics (JEA) in 2021. The experiments carried out here
expand the ones published in [50] and presented at the ACM Symposium on Principles
of Database Systems (PODS) 2019. They were also presented at the Alberto Mendelzon
International Workshop on Foundations of Data Management in 2019 [51]. This section
also contains novel methods for analyzing complex SQL queries, which appeared neither
in [50] nor in [49] and thus constitute original content. Related content about the
challenges of benchmarking decomposition algorithms also appeared in this survey [66],
published at the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research Conference (CPAIOR) 2020.

Designing a benchmark for evaluating decomposition algorithms is fundamental in bridging
the gap between the theory of structural decomposition methods and the practice of
answering queries and solving CSPs. In [50], Fischl et al. collected numerous real-world
CQs and CSPs to discover if their hypergraphs have favorable structural properties for
the use of decomposition algorithms. At the same time, they wanted to evaluate the
performance of the GHD algorithms they proposed in the same article. Their work led
to the creation of HyperBench, a collection of thousands of hypergraphs and algorithm
runs. The investigation on HyperBench provided conclusive evidence that real-world
hypergraphs have favorable properties for tractability and that the algorithms used are
well-suited for these instances.

Nevertheless, while HyperBench certainly contains good examples of real-world instances,
its composition is problematic. Only about a third of the hypergraphs originate from CQs,
most of which are SQL queries. Moreover, we recognized that most of these queries were
written in a simplified format using only a restricted subset of the language. Similarly,
other query languages are not well represented in the dataset. For instance, only about
7% of the total query hypergraphs in HyperBench come from SPARQL queries, a popular
query language for graph databases.

Research Challenge: Extend the HyperBench by providing a representative
view of the query answering landscape.

The main challenge with complex SQL queries is understanding which queries are
rewritable into a simple conjunctive form. Looking at the SQL language, we identify
as simple conjunctive queries those SELECT-PROJECT-JOIN queries where no nested
subqueries are present. The class of complex SQL queries is thus composed of all
those queries containing views, nested subqueries, and other advanced features. Since
the presence of these constructs does not necessarily make a query semantically non-
conjunctive, we can rewrite them into a simple form. Nevertheless, not all complex SQL
queries are conjunctive. Thus, we must determine how to handle them.

8

1.4. Research Questions and Main Results

Research Challenge: Devise a methodology for meaningfully translating
complex SQL queries into hypergraphs.

We propose to split complex SQL queries into a collection of one or more simple conjunctive
queries representing the original query. We achieve this goal by identifying maximal
conjunctive components, i.e., maximal conjunctive subqueries that can be evaluated
independently. Intuitively, given a collection of such simple queries, it should be possible
to obtain the result of the original query by combining the answers of the simpler
conjunctive parts. Furthermore, we provide an implementation of this method.

Main Result 4: We devise an algorithm to extract simple conjunctive
components from complex SQL queries.

Main Result 5: We implement a tool to transform complex SQL queries
into hypergraphs.

Searching for complex SQL queries, we direct our attention towards the TPC-DS bench-
mark [131]. This comprehensive set of industry-relevant queries was designed to bench-
mark modern general-purpose decision support systems and is therefore composed of
a collection of complex and carefully hand-crafted SQL queries. Our new algorithm
extracts 228 hypergraphs from the original 113 complex SQL queries. Additionally, we
work on the front of SPARQL queries by examining a vast array of queries posed to
Wikidata and released by Malyshev et al. [104]. These queries are particularly interesting
for this work, not only because they represent a different application domain than the
queries already in HyperBench, but they are also a mix of well-structured synthetic
queries and unpolished human queries. We examine the hypergraphs of these queries,
previously studied by Bonifati et al. in [28]. We identify 354 distinct hypergraphs from a
pool of 273947 unique queries. As a result of our efforts, we collect 578 new hypergraphs
from SPARQL and complex SQL queries.

Main Result 6: We provide an extended version of HyperBench that includes
hypergraphs originating from 1613 queries and 2035 CSPs.

We want to know if GHD algorithms perform well on real-world hypergraphs, particularly
our revised version of BalSep. However, given the different composition of HyperBench,
we question whether the conclusions drawn in [50] still hold. Indeed, the low width and
intersection sizes of CQs could follow from the simple structure of the queries in the
original dataset.

Research Challenge: Discover if the width and intersection sizes of the
new hypergraphs are low enough to use GHD algorithms in practice.

9

1. Introduction

We replicate the experiments conducted by Fischl in [49] on our extended version
HyperBench. To begin, we examine the structural properties of the new hypergraphs,
such as hw and (multi-)intersection sizes. Moreover, we aim to evaluate the performance
of GHD algorithms and assess the behavior of BalSep.

Main Result 7: We establish that the new hypergraphs have low width and
intersection sizes.

Main Result 8: We empirically prove that BalSep is well-suited for de-
composing hypergraphs.

1.4.3 Updating GHDs after Instances Modifications
This section is based on the work carried out in [65] with Georg Gottlob, Matthias
Lanzinger, and Cem Okulmus, published in the ACM Journal of Experimental Algorith-
mics (JEA) in 2023.

Solving CSPs as well as answering CQs with decompositions can be beneficial, especially
if the width of the decompositions used is low. For example, Aberger et al. [3] use
low-width GHDs to speed up query answering. It is thus worth investing resources
in computing a low-width GHD, with the additional advantage that a GHD can even
be reused several times to answer the same query over an updated database. On the
other hand, computing low-width GHDs is a hard task. Hence, we want to avoid the
computation of a new GHD whenever possible. Since a decomposition is tightly linked to
the hypergraph of the instance, unfortunately, any slight modification of the instance at
hand implies that the GHD computed using many precious resources must be recomputed
afresh. This results in a loss on the investment previously made.

Research Challenge: Understand how hypergraph changes affect its de-
compositions.

There are several problems where instances are frequently modified. For instance, to
solve incremental constraint satisfaction, the constraint solver needs to handle mutable
sets of variables [127] or constraints [54]. Similarly, a compositional modeling problem
consists in synthesizing the most appropriate model of a physical system for a given
analytical query [46]. The construction of the “best” model passes through several phases
in which the model is iteratively refined by modifying constraints. Here, support during
the modeling process is needed to better understand the impact of the modifications on
the complexity of solving the problem using the resulting model. Motivated by all these
applications, we study the problem of updating GHDs in response to instance updates in
the setting of constraint satisfaction.

Research Challenge: Examine the typical ways in which a CSP is modified.

10

1.4. Research Questions and Main Results

Main Result 9: We define a framework for constraint modification based
on elementary changes performable on CSPs. Moreover, we detail how these
modifications affect the hypergraph of the CSP at hand.

Changes to a CSP must be reflected on the GHD of the original instance. At first glance,
it is not obvious whether a simple update to the decomposition structure is enough or
whether more radical modifications are needed. At this point, it is even unclear if the
knowledge of the old GHD helps compute a decomposition for the updated instance.

Research Challenge: Formalize the problem of recomputing a GHD of a
modified instance and identify its complexity.

Main Result 10: We introduce the novel SearchUpdateGHD problem.

Main Result 11: We pinpoint the complexity of SearchUpdateGHD for
a set of relevant elementary modifications. The problem is not solvable in
polynomial time under standard assumptions for most modification classes.

Even though updating GHDs is difficult, we investigate ways to solve the problem in a
more practice-oriented way. When a hypergraph is modified, we look at the available
GHD and test whether some nodes are still valid considering the new hypergraph. If
a substantial portion of the tree is still legal after modifications, there is no reason to
discard this decomposition and compute a completely new one. It might be wiser to
recompute only the small parts that are not valid anymore. We, therefore, devise a
theory for updating GHDs.

Research Challenge: To what extent recompute an old GHD when the
related instance is modified?

Main Result 12: We introduce a general framework for updating GHDs
upon any kind of modification. This allows us to identify the minimal amount
of the original GHDs to be updated.

We now put into practice what we learned while formulating our theory. Therefore, we
analyze the existing algorithms for the computation of GHDs to understand whether we
can extend them to the case of GHD updates. Since most of these, such as [76, 52, 74],
follow the same top-down schema, we refine them to address the case where a partial
decomposition is given as input. We define a general schema addressing updates and
show that integrating these new techniques can be easily made.

11

1. Introduction

Research Challenge: Can we practically combine our theoretical framework
with the state-of-the-art algorithms for computing GHDs?

Main Result 13: We devise and implement an algorithmic update schema
for updating GHDs that can be instantiated with any top-down algorithm
for computing GHDs.

Main Result 14: Our implementation outperforms classical methods with
average speedups between factors 6 and 50.

1.4.4 Grounding Datalog programs in Classical Planning
The work presented in this section was conducted with Augusto B. Corrêa, Markus
Hecher, Malte Helmert, Florian Pommerening, and Stefan Woltran. It resulted in
the article [38], accepted at the International Conference on Automated Planning and
Scheduling (ICAPS) 2023. In addition to the tree-decomposition-based method to ground
classical planning tasks presented in the article, we propose an original algorithm using
generalized hypertree decompositions.
Query answering appears even in challenging AI problems such as classical planning.
Given an initial state of the world I and a set of action schemas A, we must compute an
action sequence π = ⟨A1, . . . , An⟩, where Ai ∈ A, to transform I into a desired goal state
G. The solution π is a plan. Given a planning task Π, deciding if Π admits a plan is
PSPACE-complete and thus extremely difficult [32]. A planning task is typically described
in a first-order formalism. If the planner searches for a plan on this representation, we talk
about lifted planning problems. Corrêa et al. proved that the lifted successor generation
problem is equivalent to query answering in a database setting [39]. Given a state of
the world s and a set of action schemas A, generating all successor states of s requires
checking which action schemas from A are applicable in s. Each action schema A has
a precondition pre(A), i.e., a logic formula that, if satisfied in s, establishes that A is
applicable in s.
Nonetheless, state-of-the-art planners ground the task into a propositional representation
before looking for a plan [26, 88, 86, 92]. In this case, we talk about grounded planning
problems. Searching for a plan on a grounded representation is exponentially easier than
in the lifted case [44]. Yet, the grounding phase remains an obstacle, as the size of the
grounding could be exponential in the size of the task. Perhaps the most used planning
grounder is Helmert’s algorithm [87] designed for his planner Fast Downward [86]. Helmert
reports that grounding consumes 70% of the total preprocessing time on well-established
benchmarks. As planning tasks get larger and larger, grounding becomes a performance
bottleneck. Since grounding involves solving the lifted successor generator problem
multiple times, we believe that database techniques can prove beneficial in this setting.

Research Challenge: Improve planning grounders using database-inspired
technology.

12

1.4. Research Questions and Main Results

Answer Set Programming (ASP) [17] is an example of the proficient use of grounders.
Two examples are relevant to our work. Morak and Woltran proposed in [110] a rewriting
method for logic programs based on tree decompositions obtaining promising results.
Calimeri et al. [33] improved this method for the DLV system [102]. Unfortunately,
examining this method outside its context is difficult since DLV tightly integrates the
grounding and search phases. On the other hand, Morak and Woltran’s approach is
abstract enough to be tested in planning.

Nevertheless, when grounding a planning task, we generate a logic program corresponding
to a relaxed version of the original task, which does not contain any negation and is
thus simpler than a typical ASP program. Since the tree decomposition method was
designed to ground full ASP programs and it is well-known that generalized hypertree
decompositions have lower upper bounds for the size of intermediate results, we believe
that a more tailored approach is desirable. Therefore, we transform each rule of the logic
program into a hypergraph and compute a GHD. Then, guided by the decomposition,
we split the original rule into smaller rules to reduce intermediate results.

Main Result 15: We devise a novel method based on GHDs to split the
rules of a logic program and reduce the size of intermediate results.

At this point, we empirically compare different rewriting methods based on rules decom-
position. Using the original logic program as a baseline, we compare our GHD method
against Morak and Woltran’s TD approach and against the cutting-edge decomposition
method used by Helmert in Fast Downward. Since the ghw of the rules is always lower
than their tw, we expect our method to perform best. Nonetheless, the experiments show
that the TD method performs best, but only slightly better than grounding the original
program. Surprised by these results, we investigate the reasons for this behavior.

Research Challenge: Determine the fundamental parameters for the success
of task decomposition.

Looking at the formulation of the logic program of the relaxed task, we notice that
the presence of the so-called action predicates artificially introduces a clique between
all vertices of the rule’s primal graph and an edge covering all vertices of the rule’s
hypergraph. While this makes the hypergraph trivially acyclic, it highly increases the
treewidth. For this reason, the program decompositions are too similar to the original
program and do not improve performance. On the other hand, action predicates are not
necessary for the grounding phase and can be safely removed.

Main Result 16: We significantly increase the number of grounded tasks
by removing action predicates from the grounding.

13

1. Introduction

Main Result 17: We considerably decrease the grounding time by combining
the tree decomposition split and the removal of action predicates.

While removing action predicates leads to more satisfactory results, we observe that,
counterintuitively, the TD method works better on average than our GHD method despite
the higher widths. However, there are two classes of instances where the performance
of our GHD method significantly deviates from that of the other methods. In the first
case, our method is two orders of magnitude faster than the others on average. Here,
our decomposition forces the grounder to compute highly selective joins early, speeding
up the whole grounding. In the second case, our method is two times worse than other
methods on average. Unfortunately, our decomposition forces the grounder to materialize
an expensive cartesian product otherwise avoided by other methods.

Main Result 18: We discover that join selectivity is a better predictor of
grounding time than width, regardless of the type of decomposition.

1.5 Overview of the Study
This thesis consists of six additional chapters conceptually divided into three parts.
In the first part, composed by Chapter 2, we present the essential concepts needed to
develop this thesis. This chapter contains a gentle yet formal introduction to hypergraphs,
various forms of decompositions, and a general top-down schema used by most previous
algorithms for decomposing hypergraphs.

The second part consists of Chapter 3, Chapter 4, Chapter 5, and Chapter 6, which detail
the work carried out to respond to the research challenges presented in the previous
section. The formalization of an algorithm computing GHDs based on balanced separators
is presented in Chapter 3. This algorithm is used in Chapter 4 to understand how difficult
are instances typically found in practice. This chapter also presents novel methods
to process complex queries which are not purely conjunctive yet can still be split into
conjunctive parts. The BalSep algorithm and the benchmark constructed in these first
two core chapters are used in Chapter 5 to study the problem of updating an already
computed GHD when the corresponding decomposed instance is modified. Chapter 6
shows how GHDs can be used to improve the performances of grounders in the context
of classical planning.

Chapter 7 constitutes the final part of this thesis. While recapitulating the results
achieved in this study, we offer a reflective evaluation of the performed work and suggest
in which direction further research could follow.

14

CHAPTER 2
Preliminaries and Definitions

In the introductory chapter we mentioned the research challenges we faced and presented
an overview of the results we achieved in this thesis. While we introduced the reader to
the research field and mentioned the problems motivating our study, we did not formally
define all the concepts we use in this work. Yet, a definition of the main terms and a
clarification of the differences between different constructs is necessary.

In this chapter, we provide the most important definitions necessary to proceed with
the thesis. We formally define hypergraphs and show how they stem from real-world
problems. We also present the concept of structural decomposition methods and introduce
two particular methods on which we extensively focus in this thesis, namely hypertree
decompositions and generalized hypertree decompositions. In doing so, we give additional
background for those concepts that require particular attention. Furthermore, important
results from the literature will also be presented where appropriate. All of these notions
will constitute the vocabulary we will use for the rest of the thesis.

Structurally, this chapter is divided into four sections. First, we define the classical
problems motivating this study, i.e, answering conjunctive queries and solving constraint
satisfaction problems. We also show how hypergraphs originate from the instances of
these problems. Next, we define the different kinds of structural decomposition methods
and the relative widths. An important part of this thesis concerns the computation of
decompositions, thus, we introduce a general top-down method of computing decom-
positions, which appears several times in practice. Finally, we recapitulate important
structural properties of hypergraphs that make the computation of generalized hypertree
decompositions polynomial.

15

2. Preliminaries and Definitions

a b c

d e

f g h

i

j

k

l

(a) Puzzle P .

W

d o g
o d d
g o d

(b) Relation W .

Figure 2.1: A crossword puzzle P and the relation W of possible words. We want to fill
every contiguous horizontal or vertical line of white cells with words from W . If two lines
intersect, the words assigned to these lines must intersect in the right positions.

2.1 CQs, CSPs, and Hypergraphs
Conjunctive queries (CQs) are the simplest, yet fundamental, kind of queries that can be
posed to a database. A query in this class can be easily represented as first-order logic
formula in which only the connectives {∃, ∧} are allowed and {∀, ∨, ¬} are disallowed. A
relational signature σ is a finite set of relation symbols, each of which is associated to an
arity. A database D over a signature σ consists of a finite domain Dom and a relation
RD for each relation symbol R in σ. Thus, using the comma to denote the logical AND,
a conjunctive query q is a conjunction of literals of the kind

q(y) ← R1(x1), . . . , Rm(xn).

where each Ri as a positive literal, x1, . . . , xn are sets of variables, and y is a set of free
variables such that y ⊆ �

i xi. We assume that the remaining variables �
i xi \ y are

existentially quantified. The relation q(y) thus denotes the answer of the query.

Example 2.1. Consider the database schema of a university containing the relational
symbols exams(cid, student, grade), enrolled(student, program), and mandatory(program,
cid). Assuming that a grade equals to zero is equivalent to a failure and abbreviating
attribute names, the query asking for the students who failed any mandatory course in
the program they are enrolled in can be expressed as follows

q(stud) ← exams(cid, stud, 0), enrolled(stud, prog), mandatory(prog, cid).

This simple fragment is found in many applications as it is equivalent to SELECT-
PROJECT-JOIN queries in SQL [5] and Basic Graph Patterns in SPARQL [116]. For a
more detailed study of CQs we refer to Abiteboul, Vianu, and Hull [5].

A constraint satisfaction problem (CSP) P is a triple ⟨V, D, Ct⟩, where V is a set of
variables, D is a set of values, and Ct is a set of constraints. A constraint (si, ri) ∈ Ct

consists of a tuple of variables si and a constraint relation ri containing valid combinations
of values for the variables si. A solution of P is a mapping ϕ : V → D, such that for each
(si, ri) ∈ Ct the variables in si are mapped to a legal combination of values in ri. For
further discussion of CSPs we refer the reader to [42].

16

2.1. CQs, CSPs, and Hypergraphs

Example 2.2. Consider a crossword puzzle such as the one in Figure 2.1, where
each contiguous horizontal or vertical line of white cells has to be filled with a word
chosen from a given set of words. Understandably, the words chosen for any pair of
intersecting lines must have the same letter in the right position. This puzzle can
be represented as a CSP P = ⟨V, D, Ct⟩. Each cell of the puzzle is a variable in V ,
which is defined as V = {a, b, c, d, e, f, g, h, i, j, k, l}. For simplicity, we assume that the
domain D only consists of letters of the alphabet. Given a relation of words W with
characters in D, the set Ct of constraints contains a constraint ci for each contiguous
horizontal or vertical line of white cells that can be filled with appropriate words in W .
In this case, the constraint c1 defined over the variables w1 = ⟨a, b, c⟩ can take values
in r1 = W . If W = {⟨d, o, g⟩, ⟨g, o, d⟩, ⟨o, d, d⟩} as in Figure 2.1b, then the assignment
⟨a, b, c, d, e, f, g, h, i, j, k, l⟩ = ⟨g, o, d, o, o, d, o, g, d, o, d, d⟩ is a solution.

A hypergraph H = (V (H), E(H)) is a pair consisting of a set of vertices V (H) and a
set of non-empty (hyper)edges E(H) ⊆ 2V (H). We assume w.l.o.g. that there are no
isolated vertices, i.e., for each v ∈ V (H), there is at least one edge e ∈ E(H) such that
v ∈ e. We will often use H to denote the set of edges E(H), with the understanding
that V (H) = �

e∈E(H) e. A subhypergraph H ′ of H is then simply a subset of (the edges
of) H. Given U ⊆ V (H) the induced subhypergraph of H w.r.t. U is the hypergraph
H[U] s.t. V (H[U]) = U and E(H[U]) = {e ∩ U | e ∈ E(H)} \ {∅}. The degree of
a hypergraph H is the maximum number of incident edges on any vertex, formally,
maxv∈V (H)|{e ∈ E(H) | v ∈ e}|. The rank of a hypergraph H is the size of the largest
edge of H, i.e., maxe∈E(H)|e|.

Given a formula Q representing a CQ, the hypergraph HQ corresponding to Q has
V (HQ) = vars(Q) and, for each atom a of Q, vars(a) ∈ E(HQ). On the other hand,
given a CSP P = ⟨V, D, Ct⟩, the hypergraph HP of P is defined with V (HP) = V and
E(HP) = {si | (si, ri) ∈ Ct}.

We are frequently dealing with sets of sets of vertices (e.g., sets of edges). For S ⊆ 2V (H),
we write �

S and �
S as a short-hand for taking the union or intersection, respectively,

of this set of sets of vertices, i.e., for S = {s1, . . . , sℓ}, we have �
S = �ℓ

i=1 si and�
S = �ℓ

i=1 si.

Example 2.3. The hypergraph representing the query of Example 2.1 is shown in
Figure 2.2a. It is worth noting that, since the attribute grade of the relation exams is
bound to be 0 in this query, the edge corresponding to the relation exams has only arity 2.

The hypergraph of the CSP of Example 2.2 is shown in Figure 2.2b. The set of vertices
of each hypergraph is the set of variables of the corresponding CSP, while the set of edges
matches the set of constraint scopes of the related CSP.

17

2. Preliminaries and Definitions

cid

studprog

ex

enr

mand

(a) Hypergraph HQ from Example 2.1.

a b c

d e

f g h

i

j

k

l

w1

w2

w3

w4 w5 w6

(b) Hypergraph HP from Example 2.2.

Figure 2.2: The hypergraphs corresponding to the CQ of Example 2.1 and the CSP of
Example 2.2.

2.2 Hypergraph Decompositions and Widths
We use B(E) to denote the set of vertices of H covered by a certain set of edges E of H.
More precisely, given a hypergraph H = (V (H), E(H)) and a set of edges E ⊆ E(H), we
define B(E) = �

e∈E e as the set of all vertices of H contained in the set of edges E.

A generalized hypertree decomposition (GHD) [72] of a hypergraph H = (V (H), E(H)) is
a tuple ⟨T, (Bu)u∈T , (λu)u∈T ⟩ where T = (N(T), E(T)) is a tree, every Bu is a subset of
V (H), every λu is a subset of E(H), and the following hold:

(1) For every edge e ∈ E(H), there is a node u in T , such that e ⊆ Bu, and

(2) for every vertex v ∈ V (H), {u ∈ T | v ∈ Bu} is a connected subtree in T , and

(3) for each u ∈ T , Bu ⊆ B(λu) holds.

By slight abuse of notation, we write u ∈ T to express that u is a node in N(T). We
refer to the vertex sets Bu as the bags of the GHD, while we call the edge sets λu edge
covers because Bu ⊆ B(λu). Condition (2) is also called the connectedness condition.

We use the following notational conventions. To avoid confusion, we will consequently
refer to the elements in V (H) as vertices of the hypergraph and to the elements in N(T)
as the nodes of the decomposition. For a node u ∈ T , we write Tu to denote the subtree
of T rooted at u. By slight abuse of notation, we will often write u′ ∈ Tu to denote that
u′ is a node in the subtree Tu of T . Finally, we also use B(Tu) = �

u′∈Tu
Bu′ .

The width of a GHD is defined as the largest size of any set λu over all nodes u ∈ T . The
generalized hypertree width of H (ghw(H)) is the minimum width over all GHDs of H.

Example 2.4. A GHD for the hypergraph HP of Figure 2.2b is shown in Figure 2.3. It
is easy to check that conditions (1)-(3) are satisfied. Since maxu∈T |λu| = 2, this GHD
has width 2. It is also possible to prove that ghw(HP) = 2. Indeed, the hypergraph HP

has a cycle and, thus, it cannot have width 1.

18

2.2. Hypergraph Decompositions and Widths

Bu c, e, h, i, k
λu w5, w3

Bu a, b, c, f, g, h
λu w1, w2

Bu a, d, f
λu w4

Bu j, k, l
λu w6

Figure 2.3: A GHD of width 2 for the hypergraph HP of Figure 2.2b.

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10

e8

e7e6

e5

e4

e3 e2

e1

Figure 2.4: Hypergraph H0 of Example 2.5 (taken from [7]).

In this work we consider also another class of decompositions, which is formally a subset
of all GHDs. A hypertree decomposition (HD) of H is a GHD satisfying the following
additional condition (referred to as the “special condition” in [72]):

(4) For each u ∈ T , B(Tu) ∩ B(λu) ⊆ Bu, where B(Tu) denotes the union of all bags
in the subtree of T rooted at u.

Because of condition (4), it is important to consider T as a rooted tree in case of HDs,
while the root of T can be arbitrarily chosen or simply ignored in GHDs. Similarly to
GHDs, the width of an HD is defined as the largest size of any set λu over all nodes
u ∈ T . The hypertree width of H (hw(H)) is the minimum width over all HDs of H.

Some relationships between ghw and hw are known. For instance, ghw(H) ≤ hw(H),
thus making GHDs better if we assume that smaller widths lead to faster solving times.
It also known that ghw(H) ≤ 3 · hw(H) + 1, for any hypergraph H [7]. Then, from a
theoretical point of view, ghw and hw are equivalent.

Example 2.5. Consider the hypergraph H0 of Figure 2.4 (this example is an adaptation
of [7, 73], which was in turn inspired from [6]). We now examine two decompositions
of H0, which we show in Figure 2.5. While Figure 2.5a is a GHD, Figure 2.5b is

19

2. Preliminaries and Definitions

Bu v3, v6, v7, v9, v10
λu e2, e6

Bu v3, v7, v8, v9, v10
λu e3, e7

Bu v1, v2, v3, v8, v9, v10
λu e2, e8

Bu v3, v4, v5, v6, v9, v10
λu e3, e5

(a) A GHD of H0 of width 2.

Bu v1, v2, v3, v6, v7, v9, v10
λu e1, e2, e6

Bu v3, v4, v5, v6, v9, v10
λu e3, e5

Bu v1, v7, v8, v9, v10
λu e7, e8

(b) An HD of H0 of width 3.

Figure 2.5: Comparison between a GHD and an HD of H0

an HD. It is easy to check that the two decompositions satisfy Conditions (1)-(3), but
only Figure 2.5b satisfies Condition (4). In fact, while Figure 2.5b is also a GHD (by
definition), Figure 2.5a is not an HD. Indeed, the edge cover λr of the root r of Figure 2.5a
contains the edge e2, which in turn contains the vertex v2. Nevertheless, this vertex does
not appear in the bag of the root. While this is allowed in a GHD, it violates Condition
(4) of HDs as v2 could have been “covered” already in the root, but it appears only in a
leaf of the decomposition. Moreover, the two decompositions have different widths. In
fact, it can be proved that ghw(H0) = 2 and hw(H0) = 3.

Given a hypergraph H = (V (H), E(H)) and a GHD D = ⟨T, (Bu)u∈T , (λu)u∈T ⟩ of H,
where T = (N(T), E(T)), we say that D is normal form if, for each r ∈ N(T), and for
each child s of r, the following conditions hold:

(5) There is exactly one [Br]-component Cr such that B(Ts) = Cr ∪ (Bs ∩ Br),

(6) Bs ∩ Cr ̸= ∅, where Cr is the [Br]-component satisfying Condition (5),

(7) B(λs) ∩ Br ⊆ Bs.

This normal form prevents redundancies to appear in a decomposition, such as two
adjacent nodes in T having identical bags and edge covers. Notably, it is always possible
to transform any decomposition into normal form without changing the width.

Theorem 2.1 ([72]). Given a GHD of width k of a hypergraph H, there exists a GHD
of width k of H in normal form.

In our work, we also discuss other forms of decompositions such as tree decompositions
and fractional hypertree decompositions.

A tree decomposition (TD) [123, 122] of a hypergraph H = (V (H), E(H)) is a tuple
⟨T, (Bu)u∈T ⟩ where T = (N(T), E(T)) is a tree, every Bu is a subset of V (H), and
conditions (1) and (2) are satisfied. In essence, a tree decomposition is a GHD where

20

2.3. The Complexity of Computing Decompositions

edge covers are ignored. In fact, GHDs generalize TDs. The width of a TD is defined as
w − 1, where w is the size of the largest bag Bu over all nodes u ∈ T . The tree width of
H (tw(H)) is the minimum width over all TDs of H.

Consider a hypergraph H = (V (H), E(H)) and an edge weight function γ : E(H) → [0, 1].
We define the set B(γ) of all vertices covered by γ and the weight of γ as

B(γ) =

v ∈ V (H) |
�

e∈E(H), v∈e

γ(e) ≥ 1

 ,

weight(γ) =
�

e∈E(H)
γ(e).

We call γ a fractional edge cover of a set X ∈ V (H) with edges in E(H) if X ⊆ B(γ).
We also consider an integral edge cover as a function λ : E(H) → {0, 1}, i.e., a fractional
edge cover with values in {0, 1}. Thus, an edge cover, or any set of edges, λ ⊆ E(H) can
be treated as an integral edge cover where λ(e) = 1, for each e ∈ λ, and the weight is the
cardinality of λ. In the following, to emphasize the nature of the function we are dealing
with, we will use γ for fractional edge covers and λ for integral edge covers.

A fractional hypertree decomposition (FHD) [79] of a hypergraph H = (V (H), E(H)) is
a tuple ⟨T, (Bu)u∈T , (γu)u∈T ⟩, such that ⟨T, (Bu)u∈T ⟩ is a TD of H and the following
condition holds:

(3a) For each u ∈ T , Bu ⊆ B(γu) holds, i.e., γu is a fractional edge cover of Bu.

Every GHD is an FHD where the edge covers λ are integral. Conversely, there exist
FHDs that are not GHDs. Thus, FHDs are a generalization of GHDs. The width of an
FHD is defined as the maximum weight of the functions γu over all nodes u ∈ T . The
fractional tree width of H (fhw(H)) is the minimum width over all FHDs of H.

The following relationship is known for any hypergraph H:

fhw(H) ≤ ghw(H) ≤ hw(H) ≤ tw(H)

It is also known that all of these widths are different, i.e., for each pair of widths (w1, w2)
such that w1(H) ≤ w2(H) for any hypergraph H, there is a class of hypergraphs H such
that w1 is bounded on H while w2 is not.

2.3 The Complexity of Computing Decompositions
We formally introduce the Check(w, k) problem of checking whether a given hypergraph
H has a decomposition of width w(H) ≤ k, for any fixed width function w and integer k.
It is understood that in the case of Check(ghw, k) the output has to be a GHD, while
in the case of Check(hw, k) we want to construct an HD.

21

2. Preliminaries and Definitions

Check(w, k)
Instance: hypergraph H
Output: decomposition of H of width w(H) ≤ k if it exists, no otherwise

We have already mentioned that the Check(hw, k) problem is tractable for any fixed
integer k [72]. On the contrary, the Check(ghw, k) problem is NP-complete for any
k ≥ 2 [53, 73]. However, there are some structural properties of hypergraphs that make
the Check(ghw, k) problem tractable for large classes of hypergraphs. Here we refer to
the terminology of [69] as it makes uniform the one originally introduced in [53].

Definition 2.1. For c ≥ 1, d ≥ 0, a hypergraph H = (V (H), E(H)) is a (c, d)-hypergraph
if the intersection of any c edges in E(H) has at most d elements, i.e., for every subset
E′ ⊆ E(H) with |E′| = c, we have |� E′| ≤ d.

Definition 2.2. A hypergraph H = (V (H), E(H)) has c-multi-intersection size d if H is
a (c, d)-hypergraph. In the special case of c = 2, we speak of intersection size of H, while
if we do not have a particular c in mind, we simply speak of multi-intersection size of H.

Definition 2.3. A class C of hypergraphs satisfies the bounded multi-intersection property
(BMIP), if there exist c ≥ 1 and d ≥ 0, such that every H in C is a (c, d)-hypergraph. As
a special case, C satisfies the bounded intersection property (BIP), if there exists d ≥ 0,
such that every H in C is a (2, d)-hypergraph.

Definition 2.4 ([136]). Let H = (V (H), E(H)) be a hypergraph, and X ⊆ V (H) a set of
vertices. Denote by E(H)|X = {X ∩e | e ∈ E(H)}. X is called shattered if E(H)|X = 2X .
The Vapnik-Chervonenkis dimension (VC dimension) of H is the maximum cardinality of
a shattered subset of V . We say that a class C of hypergraphs has bounded VC-dimension,
if there exists v ≥ 1, such that every hypergraph H ∈ C has VC-dimension ≤ v.

Note that a hypergraph H with degree bounded by δ is a (δ + 1, 0)-hypergraph. Similarly,
a hypergraph H with rank bounded by ρ is a (1, ρ)-hypergraph. Thus, bounded degree as
well as bounded rank implies the BMIP, which in turn implies bounded VC-dimension [53].

Example 2.6. The hypergraph H0 of Figure 2.4 has intersection size and 3-multi-
intersection size equal to 1. For any c ≥ 4, the c-multi-intersection size of H0 is 0.

The aforementioned properties help to solve the Check(ghw, k):

Theorem 2.2 ([53, 69]). Let C be a class of hypergraphs. If C has the BMIP, then the
Check(ghw, k) problem is solvable in polynomial time for any k ≥ 1. Consequently, this
tractability holds if C has bounded degree or the BIP (each of which implies the BMIP).

Additionally, if C has bounded VC-dimension, then the fhw can be approximated in
polynomial time up to a logarithmic factor.

22

2.4. Top-Down Construction of GHDs

Algorithm 2.1: A schematic top-down GHD algorithm.
Input: Hypergraph H
Output: A GHD of H with width ≤ k, or Nil if none exists
Parameter : Integer k ≥ 1

1 Function FindDecomp(H ′: Hypergraph)
2 for S ∈ Separators(H, k) do
3 compute U ⊆ V (H ′) such that U ⊆ B(S)
4 children ← ∅
5 for Hc ∈ [S]-components of H ′ do
6 D ← FindDecomp(Hc)
7 if D == Nil then
8 continue outer loop
9 end

10 children ← children ∪ {D}
11 end
12 return Hypertree(Bu ← U, λu ← S, Children ← children)
13 end
14 return Nil
15 end
16 begin /* Main */
17 return FindDecomp(H)
18 end

2.4 Top-Down Construction of GHDs
For a set U ⊆ V (H) of vertices, we define [U]-components of a hypergraph H through
the following steps.

• We define [U]-adjacency as a binary relation on E(H) as follows: two edges e1 and
e2 are [U]-adjacent, if (e1 ∩ e2) \ U ̸= ∅ holds.

• We define [U]-connectedness as the transitive closure of the [U]-adjacency relation.

• A [U]-component of H is a maximally [U]-connected subset C ⊆ E(H).

For a set of edges S ⊆ E(H), we say that C is [S]-connected as a short-cut for C is
[U]-connected with U = �

e∈S e. We also call S a separator and C an [S]-component. The
size of an [S]-component C is defined as the number of edges in C.

Many top-down GHD algorithms such as [52, 74, 76] can be described by the same
schema. Here we simply refer to a generic top-down schema with the understanding that
each implementation presents its own peculiarities. A pseudo-code description of such a
schematic top-down GHD algorithm is given in Algorithm 2.1.

23

2. Preliminaries and Definitions

a b c

d e

f g h

i

j

k

l

w1

w2w4

(a) Component C1.

a b c

d e

f g h

i

j

k

l

w6

(b) Component C2.

Figure 2.6: The two components C1, C2 of Example 2.7 obtained by removing {w5, w3}
from HP of Figure 2.2b.

For a fixed k ≥ 1, Algorithm 2.1 takes as input a hypergraph H and either builds a
GHD of H of width ≤ k or rejects if none can be found. The main algorithm is entirely
based on the function FindDecomp, which is initially called on the input hypergraph
H. Each call of FindDecomp is over a particular set of edges, referred to as H ′. This
recursive function forms the core of this schematic description. A recursive function is
chosen for notational simplicity, a real implementation could also just use nested loops or
other ways to implement iteration. The function FindDecomp iterates over all possible
edge separators of size ≤ k with edges from the original input hypergraph H, as seen in
line 2. Note that the particulars of how these edge separators are computed can vary
greatly between specific implementations. Given an edge set S, the algorithm computes
a suitable vertex set U such that U ⊆ B(S). Again, the specific way in which this set is
computed is implementation dependent. The two sets U and S will form the bag and
the edge cover of the root node u of the GHD found for the subhypergraph H ′.

Next, in line 5, the algorithm determines all [S]-components of H ′, which we denote
as C1, . . . , Cℓ. In order to be sure that this algorithm terminates, we assume that the
produced GHDs are in normal form. They always exist due to Theorem 2.1. Hence, the
algorithm recursively searches for a GHD of the subhypergraphs Hi with E(Hi) = Ci

and V (Hi) = �
Ci. We can see this inside function FindDecomp in lines 5-11. If all

recursive calls succeed, the function terminates by constructing a GHD with root u and
subtrees covering the components Ci, seen in line 12.

Example 2.7. We decompose the hypergraph HP of Figure 2.2b so to obtain the GHD
shown in Figure 2.3. We follow the generic top-down Algorithm 2.1, to which we refer
here as A. For k = 2, A takes as input HP and computes a GHD of HP of width 2, if it
exists. Firstly, A guesses a separator of size ≤ 2 with edges in C = E(HP), which will be
used as the edge cover λu for the root node u of the GHD. Suppose that λu = {w5, w3} and
Bu = {c, e, h, i, k} is a suitable choice for the bag. Then the root u of the decomposition
will be exactly the same of Figure 2.3. At this point, A computes the [λu]-components
C1, C2 ⊆ C with C1 = {w1, w2, w4}, C2 = {w6} (Figure 2.6). Each Ci is now recursively
decomposed. Since |C2| ≤ 2, it can be “covered” by a single node of the decomposition.
On the contrary, |C1| > 2, thus A starts a recursive call on C1 and guesses the separator
S = {w1, w2} and computes the new bag {a, b, c, f, g, h}. As the component C1 is split

24

2.5. Summary

w.r.t. S, we obtain a single component C3 ⊆ C1, with C3 = {w4}. This component can
be “covered” by a single node. Finally, all nodes are attached to their respective fathers
except for the root. The resulting decomposition is returned.

2.5 Summary
In this chapter we recapitulated the basic definitions and the main results that we will
need throughout the rest of this thesis. We gave formal definitions for CQs, CSPs and
hypergraphs. We also showed how to transform instances of this kind into hypergraphs.
Then, we defined HDs and GHDs and the corresponding measures of width hw and ghw.
While each HD is also a GHD, the contrary does not hold and we recalled one example
(hypergraph H0) where ghw(H0) < hw(H0). It is thus profitable to compute GHDs over
HDs. Nevertheless, computing a GHD of width ≤ k is harder than computing an HD of
width ≤ k. We thus summarized which properties of hypergraphs make the first problem
tractable. Finally, we sketched a generic top-down algorithm that is at the base of most
implementations for computing (G)HDs. This will help us understand the algorithms
presented later in this work.

25

CHAPTER 3
The Computation of GHDs

through Balanced Separators

In the previous chapter, we recalled the main definitions of hypergraphs and structural
decomposition methods. We introduced two kinds of decomposition, namely, hypertree
decompositions (HDs) and generalized hypertree decompositions (GHDs), and discussed
their quirks and differences. The main advantage of HDs over GHDs is that an HD of
width ≤ k can be computed in polynomial time for any fixed integer k [72], whereas
GHDs cannot be efficiently computed for any k ≥ 2, in general [73, 53, 69]. On the other
hand, for any hypergraph H, ghw(H) ≤ hw(H), meaning that algorithms answering
CQs or solving CSPs by exploiting low-width decompositions might not fully enjoy the
benefits brought by this kind of techniques.

Consequently, searching tractable fragments of GHD computation is still an active field.
Already in [53], Fischl, Gottlob, and Pichler identified numerous tractable cases of GHD
computation characterized by some intersection properties of hypergraphs. In particular,
they proved that the Check(ghw, k) problem is tractable for all classes of hypergraphs
enjoying the bounded multi-intersection property, which we defined in Chapter 2. Based
on this result, Fischl et al. proposed in [50] some fixed-parameter tractable algorithms
that compute GHDs efficiently for quite a few hypergraphs by exploiting the properties
defined above.

Notably, Fischl proposes in [49] a novel method to characterize “no”-instances of the
Check(ghw, k) problem. This algorithm, referred to in [49] as BalSep, is based on the
so-called balanced separators, which are a well-known concept in graph theory generalized
to hypergraphs. This procedure was used in [49] as an empirical test to determine whether
a hypergraph allows for a GHD of width ≤ k. However, neither a general algorithm
to compute GHDs nor a formal proof of correctness had not been provided there. An
algorithm based on this procedure has been delineated only in [50].

27

3. The Computation of GHDs through Balanced Separators

This chapter is devoted to the computation of GHDs for classes of hypergraphs having
bounded intersection size. Beginning with a summary of the efficient GHD algorithms
based on hypergraph intersection properties introduced in [50, 49], we provide a solid
background on the tractable cases of GHD computation. We thus turn our attention
to the BalSep procedure informally sketched in previous work. We turn BalSep into
a complete algorithm for computing GHDs in polynomial time by combining the ideas
of [50] regarding exploiting intersection size for efficient computation of GHDs with the
testing procedure in [49] utilizing balanced separators. In this algorithm, a hypergraph H
is decomposed by splitting H into components smaller than half the size of H . These are
recursively decomposed according to the same criterion until a base case is reached. This
way of constructing a GHD diverges slightly but significantly from the general schema
shown in Algorithm 2.1. Thus, it is not trivial to see whether the resulting algorithm
is correct. Therefore, we introduce the necessary formalism to prove that the revised
BalSep algorithm is sound and complete.

This chapter is structured into four sections. We initially recapitulate in Section 3.1
previous relevant work related to the computation of GHDs in tractable cases such as
the one of bounded intersection size. Section 3.2 reports on our extension of the BalSep
procedure delineated in [49] for computing a GHD. Here we also introduce the necessary
formalism which is needed to guarantee the correctness of this algorithm. We then
proceed in Section 3.3 with the proof of soundness and completeness of BalSep. We
summarize the results achieved in this chapter in Section 3.4.

The contents of this chapter are based on the papers published together with Wolfgang
Fischl, Georg Gottlob, and Reinhard Pichler [52]. Section 3.1 summarizes the main
contributions of Wolfgang Fischl [49].

3.1 Tractable Cases of GHD Computation

In this section we recapitulate some of the main contributions of Wolfgang Fischl [49],
on which the author of this thesis does not claim any ownership. It is however important
to present here the essential points of Fischl’s work as these will find full application in
our development of the algorithm based on balanced separators in Section 3.2.

Firstly, we provide the necessary theoretical background for the computation of GHDs for
classes of hypergraphs satisfying the Bounded Intersection Property (BIP). As mentioned
in Section 2, in this case the problem of computing a GHD of width ≤ k is tractable,
when k is fixed. Building on this first subsection, we present two implementations of
the general algorithm for computing GHDs in case of BIP, namely GlobalBIP and
LocalBIP. These variants differ in the time of the computation of certain sets of edges
which are added to the input hypergraph to make the computation efficient.

28

3.1. Tractable Cases of GHD Computation

3.1.1 Theoretical Background
Even though the Check(ghw, k) problem was proved to be intractable for any k ≥
2 in [53], Fischl, Gottlob, and Pichler identified tractable fragments of the problem
characterized by the bounded (multi-)intersection property (Definition 2.3). Indeed,
according to Theorem 2.2, classes of hypergraphs having bounded (multi-)intersection
size allow for GHD computation in polynomial time. In the following we focus on the case
of bounded intersection size, which is the maximum size of any intersection of two edges
of a hypergraph, and explain how this property leads to polynomial-time computation of
GHDs. The general theoretical algorithm will be simply called ghw-algorithm.

The ghw-algorithm consists of two phases. Given a hypergraph H = (V (H), E(H)), it
first computes a set f(H, k) of new edges obtained by intersecting certain combinations
of edges from E(H) which have non-empty intersection. This set of edges is thus
added to the original hypergraph H. It is important that f(H, k) can be computed in
polynomial time. Moreover, the set f(H, k) has the property that ghw(H) = k if and
only if hw(H ′) = k, where H ′ = (V (H), E(H) ∪ f(H, k)). Thus, it is possible to use
Check(hw, k) to solve Check(ghw, k) and achieve tractability. This is indeed the second
step of the ghw-algorithm. An HD of H ′ of width ≤ k is computed in polynomial time. If
the resulting HD makes use of any edge e′ ∈ f(H, k) in any edge cover, this is substituted
by some edge e ∈ E(H) such that e ⊇ e′. The result is a GHD of H of width ≤ k.

The set of edges f(H, k) is defined as follows.

f(H, k) =

e∈E(H)

e1,...,ej∈(E(H)\{e}), j≤k

2(e∩(e1∪···∪ej))

(3.1)

Informally, for each e ∈ E(H), all subsets of intersections of e with up to k edges
of H different from e are computed. Although f(H, k) could in general contain an
exponential number of elements, for fixed k and intersection size of H bounded by d,
the set e ∩ (e1 ∪ · · · ∪ ej) contains at most d · k elements and, therefore, |f(H, k)| is
polynomially bounded.

Since the ghw-algorithm relies on the computation of HDs, a new version of the hw-
algorithm in [76], called NewDetKDecomp, has been made available. This program
contains also the implementations of all the algorithms in this section, but we defer a
detailed discussion of the complete library to Chapter 4.

3.1.2 The GlobalBIP Algorithm
Given a hypergraph H = (V (H), E(H)) and an integer k ≥ 1, a straightforward imple-
mentation of the ghw-algorithm consists in initially computing the set f(H, k), creating
the hypergraph H ′ = (V (H), E(H) ∪ f(H, k)), and finally computing an HD of H ′ of
width ≤ k, if it exists. Since here the set f(H, k) is computed a priori globally for the
whole hypergraph, this algorithm is called GlobalBIP.

29

3. The Computation of GHDs through Balanced Separators

Algorithm 3.1: The GlobalBIP Algorithm.
Input: Hypergraph H
Output: A GHD of H with width ≤ k, or Nil if none exists
Parameter : Integer k ≥ 1

1 begin
2 compute f(H, k) as in Equation 3.1
3 H ′ ← (V (H), E(H) ∪ f(H, k))
4 D ← ComputeHD(H ′, k)
5 if D == Nil then
6 return Nil
7 end
8 foreach u ∈ T of D do
9 foreach e′ ∈ ((λu ∩ f(H, k)) \ E(H)) do

10 choose e ∈ E(H) such that e ⊇ e′

11 λu ← (λu \ {e′}) ∪ {e}
12 end
13 end
14 return HD
15 end

Algorithm 3.1 is a detailed description of how GlobalBIP works. The input consists
of a hypergraph H and a constant k, while the output is a GHD of H of width ≤ k, if
it exists, and Nil otherwise. In line 2, the computation f(H, k) as per Equation 3.1 is
performed and then, in line 3, the hypergraph H ′ is created. This is obtained by adding
the subedges in f(H, k) to H. In line 4, an external routine computing HDs is called on
H ′ and k as a black box and its output is stored in the variable D. If D is Nil, a GHD of
width ≤ k of H does not exist, therefore Nil is returned. Otherwise,the decomposition
needs to be “fixed” as described in lines 8-13. In particular, for each node u of D, and
for each edge of f(H, k) in λu, i.e., e′ ∈ (λu ∩ f(H, k)) that is not an edge in the original
hypergraph H , the edge e′ is substituted with an edge e ∈ E(H) such that e ⊇ e′. In this
way we obtain a new edge cover λ′

u such that Bu ⊆ B(λu) ⊆ B(λ′
u), but also |λu| = |λ′

u|.
Thus, the new decomposition still satisfies all the properties of a GHD and its width is
still ≤ k. Eventually, in line 14, D is returned.

3.1.3 The LocalBIP Algorithm
The main drawback of GlobalBIP is that the size of f(H, k), though polynomial, could
be huge even for relatively small-sized hypergraphs. On the other hand, not every edge
in f(H, k) is necessary at any given step of the GHD computation and some of them
might not be useful at all. Therefore, while adding all of the edges f(H, k) a priori is not
always a viable solution, restricting the computation only to those edges that might be
actually necessary in a given algorithmic step might be beneficial to reduce the number

30

3.2. A GHD Algorithm based on Balanced Separators

of edges to add to H. The approach used follows from an observation about the role
played by f(H, k) in the tractability proof in [53].

Recall that the proof uses Check(hw, k) on the hypergraph H ′ to answer Check(ghw, k)
for the hypergraph H. To do this in a sound way, the set f(H, k) has to contain all
the edges that could be used to cover possible bags of H ′ in an HD without changing
the width. Consider a top-down construction of a GHD of H. At some point we
might want to choose, for some node u, a bag Bu such that v /∈ Bu for some variable
v ∈ B(λu) ∩ V (Tu). This choice would violate condition (4) of HDs and would not be
allowed for the computation of an HD. In particular, there is an edge e with v ∈ e and
e ∈ λu. For this reason, the set f(H, k) contains an edge e′ such that e′ ⊂ e and v /∈ e′.
Hence, we can substitute e with e′ in the cover λu (i.e., e /∈ λu and e′ ∈ λu) to eliminate
the violation of condition (4). Moreover, because of the connectedness condition, there
is no need to look at the intersection of e with arbitrary edges in E(H), instead we
consider only the intersections of e with unions of edges that may possibly occur in bags
of Tu. In other words, for each node u of the decomposition, only an appropriate subset
fu(H, k) ⊆ f(H, k) is considered. More specifically, for the current node u, let Hu ⊆ H
be the component to be decomposed. Then, fu(H, k) is defined as follows:

fu(H, k) =

e∈E(H)

e1,...,ej∈(E(Hu)\{e}), j≤k

2(e∩(e1∪···∪ej))

(3.2)

The resulting algorithm is called LocalBIP because the set of edges fu(H, k) is computed
locally for each node u during the construction of the decomposition. This algorithms
follows closely the description of Algorithm 2.1, but it differs in the search of the separators
in line 2. In particular, while decomposing H, the algorithm first tries all possible ℓ-
combinations of edges in E(H) (with ℓ ≤ k) and only if the search does not succeed, it
tries ℓ-combinations of subedges in fu(H, k).

3.2 A GHD Algorithm based on Balanced Separators
So far we have presented two adaptations of the theoretical ghw-algorithm from [53].
While GlobalBIP and LocalBIP can be seen as an extension of NewDetKDecomp to
compute GHDs and, at the same time, exploiting bounded intersection size to achieve
tractability, they do not really introduce any significant algorithmic innovation. In the
following we describe a method for computing GHDs that makes use of particular sets of
edges called balanced separators. We first extend the terminology of Chapter 2 for our
purposes, then give a detailed description of the BalSep algorithm, and finally prove
that our algorithm is sound and complete.

3.2.1 Balanced Separators and Special Edges
Recall that a hypergraph is a pair H = (V (H), E(H)) consisting of a set V (H) of vertices
and a set E(H) of hyperedges (or, simply edges), which are non-empty subsets of V (H).

31

3. The Computation of GHDs through Balanced Separators

Since we assume that hypergraphs do not have isolated vertices, we can identify a
hypergraph H with its set of edges E(H). Then, a subhypergraph H ′ of H is a subset of
(the edges of) H.

Starting off with a hypergraph H , the BalSep algorithm has to deal with subhypergraphs
H ′ ⊆ H augmented by a set Sp of special edges. A special edge is simply a set of vertices
from H. Intuitively, special edges correspond to bags Bu in a GHD of H. Thus, an
extended subhypergraph of H is of the form H ′ ∪ Sp, where H ′ ⊆ H is a subhypergraph
and Sp is a set of special edges.

We now extend three crucial definitions from hypergraphs to extended subhypergraphs,
namely components, balanced separators and GHDs. We recall that, even though a
separator is a set of vertices, it can be defined as a set of edges. Then, for S ⊆ E(H), an
[S]-component is a [W]-component with W = �

e∈S e. In our algorithm we use the fact
that it is always possible to choose a separator λu such that B(λu) = Bu. This is due to
the fact that the edges f(H, k) are considered part of the input hypergraph [53]. Hence,
there will not be any need to distinguish between vertex and edge separators. We start
with components.

Definition 3.1 (Components of Extended Subhypergraphs). For a set U ⊆ V (H) of
vertices, we define [U]-components of an extended subhypergraph H ′ ∪ Sp of H as follows:

• We define [U]-adjacency as a binary relation on H ′ ∪ Sp as follows: two (possibly
special) edges f1, f2 ∈ H ′ ∪ Sp are [U]-adjacent, if (f1 ∩ f2) \ U ̸= ∅ holds.

• We define [U]-connectedness as the transitive closure of the [U]-adjacency relation.

• A [U]-component of H ′ ∪ Sp is a maximally [U]-connected subset C ⊆ H ′ ∪ Sp .

Hence, if C1, . . . , Cℓ are the [U]-components of H ′ ∪ Sp, then H ′ ∪ Sp is partitioned into
C0 ∪ C1 ∪ · · · ∪ Cℓ, such that C0 = {f ∈ H ′ ∪ Sp | f ⊆ U}.

We next define balanced separators. While we give a definition with respect to sets of
vertices U ⊆ V (H), they can be alternatively defined in terms of sets of edges S ⊆ E(H)
for the reason mentioned above.

Definition 3.2 (Balanced Separators). Let H ′ ∪ Sp be an extended subhypergraph of
a hypergraph H and let U ⊆ V (H) be a set of vertices of H. The set U is a balanced
separator of H ′ ∪ Sp if for each [U]-component Ci of H ′ ∪ Sp, |Ci| ≤ |H′∪Sp|

2 holds. In
other words, no [U]-component must contain more than half the edges of H ′ ∪ Sp.

Finally, we extend GHDs to extended subhypergraphs.

Definition 3.3 (GHDs of Extended Subhypergraphs). Let H be a hypergraph and H ′ ∪Sp

an extended subhypergraph of H. A GHD of H ′ ∪ Sp is a tuple ⟨T, (Bu)u∈T , (λu)u∈T ⟩,
where T = (N(T), E(T)) is a tree, and Bu and λu are labeling functions, which map to

32

3.2. A GHD Algorithm based on Balanced Separators

each node u ∈ T two sets, Bu ⊆ V (H) and λu ⊆ E(H) ∪ Sp. For a node u, we call Bu

the bag and λu the edge cover of u. The set B(λu) of vertices “covered” by λu is defined
as B(λu) = {v ∈ V (H) | v ∈ f, f ∈ λu}. The functions λu and Bu have to satisfy the
following conditions:

1. For each node u ∈ T , either
a) λu ⊆ E(H) and Bu ⊆ B(λu), or
b) λu = {s} for some s ∈ Sp and Bu = s.

2. If, for some u ∈ T , λu = {s} for some s ∈ Sp, then u is a leaf node.

3. For each e ∈ H ′ ∪ Sp, there is a node u ∈ T such that e ⊆ Bu.

4. For each vertex v ∈ V (H), {u ∈ T | v ∈ Bu} is a connected subtree of T .

The width of a GHD is defined as max{|λu| : u ∈ T}.

Clearly, also H itself is an extended subhypergraph of H with H ′ = H and Sp = ∅. It is
readily verified that the above definition of GHD of an extended subhypergraph H ′ ∪ Sp

and the definition of GHD of a hypergraph H coincide for the special case of taking H
as an extended subhypergraph of itself.

In [72], a normal form of hypertree decompositions was introduced. We will carry the
notion of normal form over to GHDs of extended subhypergraph. To this end, it is
convenient to first define the set of edges exclusively covered by some subtree of a GHD:

Definition 3.4. Let H ′ ∪ Sp be an extended subhypergraph of some hypergraph H and
D = ⟨T, (Bu)u∈T , (λu)u∈T ⟩ a GHD for H ′ ∪ Sp. For a node u ∈ T , we write Tu to denote
the subtree of T rooted at u. Moreover, we define the set of edges exclusively covered by
Tu as exCov(Tu) = {f ∈ H ′ ∪ Sp | ∃v ∈ Tu : f ⊆ Bv}.

Our normal form of GHDs is then defined as follows:

Definition 3.5 (GHD of Extended Subhypergraphs Normal Form). We say that a GHD
⟨T, (Bu)u∈T , (λu)u∈T ⟩ of an extended subhypergraph H ′ ∪ Sp is in normal form, if for the
root node r of T , the following property holds:

Let u1, . . . , uℓ be the child nodes of r in T and let Tu1 , . . . , Tuℓ
denote the subtrees in

T rooted at u1, . . . , uℓ, respectively. Then exCov(Tu1), . . . , exCov(Tuℓ
) are precisely

the [B(λr)]-components of H ′ ∪ Sp.

Intuitively, each subtree Ti below the root “covers” the edges of precisely one [Br]-
component of H ′ ∪ Sp.

The following lemma is an immediate extension of previous results for hypergraphs to
extended subhypergraphs.

33

3. The Computation of GHDs through Balanced Separators

Lemma 3.1. Let H ′ ∪ Sp be an extended subhypergraph of some hypergraph H and
suppose that there exists a GHD D of width ≤ k for H ′ ∪ Sp. Then there also exists a
GHD D′ in normal form of width ≤ k for H ′ ∪ Sp, such that Br is a balanced separator
of H ′ ∪ Sp for the root node r of D′.

Proof. The lemma combines two results from [72] and [7], respectively.

Our normal form relaxes the normal form of HDs introduced in Definition 5.1 in [72].
The transformation into normal form can be taken over almost literally from the proof of
Theorem 5.4 in [72] for establishing the normal form of HDs.

The existence of a balanced separator as the root of a GHD is implicit in the definition of
“hyperlinkedness” and Theorem 19 in [7]. Again, it can be easily taken over to our case of
an extended subhypergraph (i.e., to take also special edges into account). Actually, it can
also be easily proved directly by starting off at the root r of an arbitrary GHD of H ′ ∪ Sp

in normal form and checking if all the components covered by the subtrees below have size
at most |H′∪Sp|

2 . If so, we already have the desired form. If not, there must be one subtree
Tr′ rooted at a child r′ of r, such that exCov(Tr′) is greater than |H′∪Sp|

2 . We then apply
the normal form transformation also to Tr′ and check recursively if all the components
covered by the subtrees below all have size at most |H′∪Sp|

2 . By repeating this recursive
step, we will eventually reach a node u, such that Bu is a balanced separator. Then we
simply take this node as the root and again apply the normal form transformation of the
proof of Theorem 5.4 in [72] to this new root node and the subtrees immediately below
it.

3.2.2 The BalSep Algorithm
The BalSep algorithm, which computes GHDs through balanced separators, is presented
in Algorithm 3.2. For a fixed integer k ≥ 1, the procedure takes as input a hypergraph
H and computes a GHD of H of width ≤ k if it exists, otherwise Nil is returned. The
main body of the algorithm consists of a simple call to the Decompose function in line 35
with parameters H and an empty set of special edges. The result of this function is thus
returned after the recursion has been performed.

This recursive function constitutes the core of the algorithm and, given as input a
hypergraph H ′ and a set of special edges Sp, computes a GHD of H ′ ∪ Sp of width ≤ k
if it exists. Lines 2-11 deal with the two base cases of the algorithm. If H ′ ∪ Sp has
only one edge, we create a decomposition made of a single node u whose edge cover λu

contains the only edge of H ′ ∪ Sp and the bag Bu = V (H ′ ∪ Sp), i.e., all the vertices of
the extended subhypergraph, which are exactly the ones covered by λu. We deal with
the case of E(H ′ ∪ Sp) having two edges, where at most one is a special edge, in a similar
way. Here we create a decomposition composed of two nodes u, v, each of which “covers”
a single edge of H ′ ∪ Sp. The node v is then attached as a child of u and returned. Note
that, being a GHD undirected, the choice of the root is irrelevant.

34

3.2. A GHD Algorithm based on Balanced Separators

If the extended subhypergraph has at least three edges, we have to decompose it until
we reach one of the two base cases. In line 12, we initialize the object BalSepIt, which
is an iterator over the balanced separators of size ≤ k of H ′ ∪ Sp with edges in H. The
iterator BalSepIt produces, one by one, all the ℓ-combinations of edges in H, for each
ℓ ≤ k, to find a balanced separator for H ′ ∪ Sp. Moreover, if all the combinations of
full edges fail, the function uses subedges of H to generate separators corresponding to
elements of the set f(H, k) as per Equation 3.1.

In the while loop of lines 13-30, we recursively decompose H ′ ∪ Sp. We start by fixing
the edge cover and the bag for the current node u of the GHD. Then, we take the next
balanced separator of H ′ ∪ Sp as λu and compute Bu = B(λu) for the reasons discussed
above. Moreover, initially the node u has no children. At this point we want to compute
a GHD for each [Bu]-component of H ′ ∪ Sp. These components have to be decomposed in
such a way that it will be possible to attach each decomposition of theirs to the current
node u as children without violating any condition of Definition 3.3. We describe this
process in a separate function, called by the Decompose function in line 17.

Algorithm 3.3 computes the set of extended subhypergraphs corresponding to [Bu]-
components of H ′ ∪ Sp and introduces, in each of them, a new special edge Bu to keep
a connection to H ′ ∪ Sp and, ultimately, to the other nodes in the decomposition. We
assume here the existence of a function ConnectedComponents which, given a hypergraph
H, computes the connected components of H in the standard way. First, Algorithm 3.3
computes the hypergraph Hu = (Vu, Eu) resulting from the removal of all vertices in
Bu from H ′ ∪ Sp. Then, in lines 5-12, for each connected component of Hu, a new
subhypergraph of H ′ ∪ Sp is created. The new subhypergraph is stored in a variable
c, which is a pair consisting of a hypergraph H and a set Sp of special edges. For a
single subhypergraph, the new set of special edges c.Sp is composed of the edges of Sp

intersecting the current component comp plus a new special edge s = Bu corresponding
to the separator Bu. We can then construct the hypergraph c.H as follows. Its set of
edges E contains the edges of H ′ intersecting the current component comp, while its set
of vertices is the union of E and c.Sp. We then add c to the set of results C, which we
finally return in line 13.

Back in the Decompose function, in lines 17-25, we recursively compute a GHD for each
extended subhypergraph returned by Algorithm 3.3. If the decomposition D returned in
line 18 is not Nil, we add it to the set subDecomps of the children of the current node
u, otherwise, we set subDecomps to Nil and break the loop. This means that a GHD
of width ≤ k of the current subhypergraph could not be found. At the end of the loop,
we check whether subDecomps itself is Nil. If this is the case, it means that one of the
recursive calls of the Decompose function was unsuccessful. We then have to continue
the while loop of lines 13-30 and try the next balanced separator. Nevertheless, in case
all the recursive calls of the Decompose function were successful, Algorithm 3.4 builds
the resulting GHD and returns it in line 29. If the algorithm exhausts all the choices of
balanced separators for H ′ ∪ Sp and exits the while loop of lines 13-30, it means that it
is impossible to create a GHD of width ≤ k for H ′ ∪ Sp and we return Nil in line 31.

35

3. The Computation of GHDs through Balanced Separators

Finally, we describe Algorithm 3.4 that, given a bag Bu, an edge cover λu, and a set
children of GHDs, returns a GHD with root u and children children. This function has
the important task to reroot the subdecompositions before attaching them to the current
node u. Without rerooting the resulting GHD could possibly be wrong. We start off
creating the node u with labels Bu and λu. Then, for each child D ∈ children, let T be
the tree structure of D. We identify the node r̂ ∈ T having Br̂ = Bu and designate it
as the new root of T . Now, for each child cr̂ of r̂, we attach cr̂ as a child of u. In other
words, we attach every subtree rooted at a child node of r̂ to u. In the end, we return
the resulting decomposition.

3.3 A Proof of Correctness for BalSep

In this section we prove that Algorithm 3.2 is sound and complete. The correctness of
Algorithm 3.3 and Algorithm 3.4 is immediate and thus omitted.

Theorem 3.1. Let H be a hypergraph and k ≥ 1 an integer. Algorithm 3.2 called on H
with parameter k returns a GHD of H of width ≤ k if and only if ghw(H) ≤ k.

We prove the soundness and the completeness of Algorithm 3.2 separately. Nevertheless,
we want to point out that the main procedure of the algorithm consists of a call to
Decompose function with input H and an empty set of special edges. Thus, in the next
proofs, we will actually prove that Decompose function called on (H ′, Sp) with parameter
k returns a GHD of H ′ ∪ Sp of width ≤ k if and only if ghw(H ′ ∪ Sp) ≤ k with respect
to Definition 3.3. Note that in case of a hypergraph H and a set of special edges Sp = ∅,
Definition 3.3 coincides with the usual definition of GHD.

Proof. (Soundness) We show that if the Decompose function called on (H ′, Sp) with
parameter k returns a GHD of H ′ ∪ Sp of width ≤ k, then such a decomposition actually
exists and ghw(H ′ ∪ Sp) ≤ k. We proceed by induction over the size of H ′ ∪ Sp, i.e.,
|E(H ′ ∪ Sp)|. For the base case, we assume |H ′ ∪ Sp| ≤ 2. In case |H ′ ∪ Sp| = 1, we
return a GHD made of a single node whose edge cover λ consists of the only edge H ′ ∪ Sp,
which also cover all of the vertices of the hypergraph. Such a decomposition has width 1
and clearly satisfies all the conditions of Definition 3.3. In case |H ′ ∪ Sp| = 2, we create
two nodes u, v, each one corresponding to an edge of H ′ ∪ Sp and we attach v as a child
of u. Note that both u and v are leaf nodes. It is easy to verify that also in this case we
return a valid GHD of H ′ ∪ Sp.

For the induction step, suppose that the recursive function Decompose correctly returns
a GHD of H ′ ∪ Sp of width ≤ k for each H ′ ∪ Sp such that |H ′ ∪ Sp| ≤ j, for some
j ≥ 2. Now suppose that |H ′ ∪ Sp| = j + 1 ≥ 3 and that Decompose(H ′, Sp) returns a
GHD of H ′ ∪ Sp of width ≤ k. We have to show that then there indeed exists such a
decomposition of H ′ ∪ Sp.

In this case, Algorithm 3.2 only returns a GHD in line 29. The program successfully
reaches this line only if the following happens:

36

3.3. A Proof of Correctness for BalSep

• In line 14, a balanced separator λu of H ′ ∪ Sp is chosen.

• In line 17, the extended subhypergraphs of H ′ ∪ Sp with respect to Bu = B(λu)
are computed; each extended subhypergraph corresponds to a [Bu]-component of
H ′ ∪ Sp plus a new special edge s = Bu.

• For each extended subhypergraph c.H ∪ c.Sp, the recursive call to Decompose
function in line 18 is successful, i.e., it returns a GHD of c.H ∪ c.Sp of width ≤ k.

We are assuming that |H ′ ∪ Sp| ≥ 3 and that λu is a balanced separator of H ′ ∪ Sp. Let
C1, . . . , Cℓ be the ℓ [Bu]-components of H ′ ∪ Sp. All extended subhypergraphs Ci ∪ {Bu}
are strictly smaller than j. Hence, by the induction hypothesis, for each i ∈ {1, . . . , ℓ},
there indeed exists a GHD Di = ⟨Ti, (Bi,u)u∈T , (λi,u)u∈T ⟩ of width ≤ k for the extended
subhypergraph Ci ∪ {Bu}.

It is left to show that Algorithm 3.4 correctly constructs a GHD of width ≤ k of H ′ ∪ Sp.
For each Di, let r̂i be the node of Ti with Bi,r̂i = Bu and λi,r̂i = {Bu}. By construction,
we know that the node r̂i exists in every Di, it is always a leaf, and it has the same bag
and edge cover λ in every decomposition. Let Ti = (N(Ti), E(Ti)) be the tree structure
of Di and, w.l.o.g., assume that the node sets N(Ti) are pairwise disjoint. We define the
tree structure T = (N(T), E(T)) and the functions Bu and λu of D as follows:

• N = (N(T1) \ {r̂1}) ∪ · · · ∪ (N(Tℓ) \ {r̂ℓ}) ∪ {r}, where r is a new (root) node.

• For the definition of E(T) recall that each r̂i is a leaf node in its decomposition.
Let ei denote the edge between r̂i and its parent. Then we define E(T) as E(T) =
(E(T1) \ {e1}) ∪ · · · ∪ (E(Tℓ) \ {eℓ}) ∪ R with R = {[r, r̂1], . . . , [r, r̂ℓ]}.

• λr = λu and Br = Bu.

• For every v ∈ N \ {r}, there exists exactly one i, such that v ∈ N(Ti). We set
λv = λi,v and Bv = Bi,v.

Intuitively, the GHD D is obtained by taking in each GHD Di the node r̂i as the root
node and combining all GHDs Di into a single GHD by merging their root nodes to a
single node r. This is possible since all nodes r̂i have the same edge cover λ and bags. It
is easy to verify that the resulting GHD is indeed a GHD of width ≤ k of the extended
subhypergraph H ′ ∪ Sp.

Proof. (Completeness) For any hypergraph H ′ and set of special edges Sp, we prove that
if ghw(H ′ ∪ Sp) ≤ k, then the Decompose function on input (H ′, Sp) returns a GHD of
width ≤ k of H ′ ∪ Sp. Again, we proceed by induction on |H ′ ∪ Sp|.
The base case of |H ′ ∪ Sp| ≤ 2 is dealt with in lines 2-11 of Algorithm 3.2. In this case,
we simply construct a GHD of width 1 for |H ′ ∪ Sp| and return it.

37

3. The Computation of GHDs through Balanced Separators

For the induction step, suppose |H ′ ∪ Sp| ≤ j, for some j ≥ 2, and ghw(H ′ ∪ Sp) ≤ k.
Then, the Decompose function on input (H ′, Sp) returns a GHD of width ≤ k of H ′ ∪ Sp.
Now assume that |H ′ ∪ Sp| = j + 1 ≥ 3 and that ghw(H ′ ∪ Sp) ≤ k. We have to show
that the Decompose function on input (H ′, Sp) returns a GHD of width ≤ k of H ′ ∪ Sp.

By Lemma 3.1, we may assume, w.l.o.g., that the GHD D = ⟨T, (Bu)u∈T , (λu)u∈T ⟩ is in
normal form and that Br is a balanced separator of H ′ ∪ Sp for the root node r of D.
Let S ⊆ E(H) denote the edge cover λ of r, i.e., λr = S.

When the Decompose function is called on input (H ′, Sp), the while loop in lines 13-30
eventually generates all possible balanced separators of size ≤ k of H ′ ∪ Sp, unless it
returns on line 29 before the end of the loop. Remember that the object BalSepIt not
only generates edge separators with edges in E(H), i.e., the original hypergraph on
which Algorithm 3.2 is called, but it also uses edges in f(H, k), i.e., subedges of edges in
E(H). Thus, at some point, in line 14, we will choose the separator λu = S, equivalently,
Bu = Br.

Let C1, . . . , Cℓ denote the [Bu]-components of H ′ ∪ S. Since D is in normal form, we
know that the root node r has ℓ child nodes such that Ci = exCov(Ti), where Ti is the
subtree in T rooted at ni for i ∈ {1, . . . , ℓ}. Recall from Definition 3.4 that we write
exCov(Ti) to denote the set of edges exclusively covered by Ti.

Now consider the extended subhypergraph Ci ∪ {Bu}, for an arbitrary i ∈ {1, . . . , ℓ}.
Since Br is a balanced separator of H ′ ∪ Sp, we have that |Ci ∪ {Bu}| ≤ j. Moreover,
there exists a GHD Di of Ci ∪ {Bu}, namely the subtree of D induced by the nodes in
Ti plus r. Hence, by the induction hypothesis, calling the Decompose function with the
input corresponding to the extended subhypergraph Ci ∪ {Bu} returns a valid GHD.
This means that, in our call of the function Decompose with input (H ′, Sp), we have the
following behavior:

• On line 18, the Decompose function is called recursively for all extended subhyper-
graphs Ci ∪ {Bu}.

• Each call of the Decompose function returns a GHD for each respective extended
subhypergraph.

• The results of these recursive calls are collected in line 20 in the variable subDecomps.

• Hence, after exiting the loop of lines 17-25, the return statement in line 29 is
executed.

The call to Algorithm 3.4 correctly produces the desired GHD as discussed in the
soundness proof. Finally, the Decompose function indeed returns a GHD of width ≤ k of
H ′ ∪ Sp.

We end this section with a note on the complexity of Algorithm 3.2. Since the set of edge
separators explored in BalSep correspond to the set of edges f(H, k) of Equation 3.1, it

38

3.4. Summary

follows that, for any fixed k ≥ 1, BalSep is a fixed-parameter tractable algorithm with
respect to the intersection size of the input hypergraph H. Indeed, it has been proven
in [53] that in the case of BIP, the size of f(H, k) is bounded by mk+1 · 2k·i, where m is
the number of edges of H and i is the intersection size of H as defined in Definition 2.2.

3.4 Summary
In this chapter, we dealt with the problem of computing GHDs in tractable cases. We
offered a review of the most significant properties of classes of hypergraphs allowing for
fixed-parameter tractable computation of GHDs and described some algorithms based on
these ideas. We learned how GlobalBIP and LocalBIP exploit bounded intersection
size to compute GHDs efficiently.

Furthermore, we built on the ideas developed in [50, 49] to extend the simple BalSep
procedure for checking “no”-instances of the Check(ghw, k) problem to a complete
algorithm for constructing GHDs in polynomial time. Because of the elaborate way
in which BalSep constructs a GHD, we developed a theory based on the concept of
extended subhypergraphs, which allows us to compute GHDs when some “special edges”
are introduced into a hypergraph during the decomposition procedure.

Finally, we concluded the chapter by proving the correctness of the revised BalSep
algorithm. We added a powerful instrument to our toolkit for decomposing hypergraphs.
The benefits derived from this algorithm will be evident in the next chapter, where we
will demonstrate the capabilities of BalSep in decomposing hypergraphs stemming from
real-world problems.

39

3. The Computation of GHDs through Balanced Separators

Algorithm 3.2: The BalSep Algorithm.
Input: Hypergraph H
Output: A GHD of H with width ≤ k, or Nil if none exists
Parameter : Integer k ≥ 1

1 Function Decompose(H ′: Hypergraph, Sp: Set of special edges)
2 if |E(H ′ ∪ Sp)| == 1 then
3 return Hypertree(Bu ← V (H ′ ∪ Sp), λu ← E(H ′ ∪ Sp))
4 end
5 if (|E(H ′ ∪ Sp)| == 2) ∧ (|Sp| ≤ 1) then
6 Let e1, e2 be the two edges of H ′ ∪ Sp

7 u ← Hypertree(Bu ← e1, λu ← {e1})
8 v ← Hypertree(Bv ← e2, λv ← {e2})
9 u.Children ← {v}

10 return u;
11 end
12 BalSepIt ← InitBalSepIterator(H, H ′, Sp, k)
13 while HasNext(BalSepIt) do
14 λu ← Next(BalSepIt)
15 Bu ← B(λu)
16 subDecomps ← ∅
17 foreach c ∈ Separate(H ′, Sp, Bu) do
18 D ← Decompose(c.H, c.Sp)
19 if D ≠ Nil then
20 subDecomps ← subDecomps ∪ {D}
21 else
22 subDecomps ← Nil
23 break
24 end
25 end
26 if subDecomps == Nil then
27 continue
28 end
29 return BuildGHD(Bu, λu, subDecomps)
30 end
31 return Nil
32 end
33 begin /* Main */
34 Make H and k globally visible
35 return Decompose(H, ∅)
36 end

40

3.4. Summary

Algorithm 3.3: The Separate Function used by BalSep.
Input: Hypergraph H ′, Set of special edges Sp, Set of vertices Bu.
Output: The set of subhypergraphs of H ′ ∪ Sp w.r.t. Bu.

1 begin
2 Vu ← V (H ′) \ Bu

3 Eu ← {e ∩ Vu | e ∈ E(H ′ ∪ Sp)}
4 C ← ∅
5 foreach comp ∈ ConnectedComponents(Vu, Eu) do
6 c ← initialize pair (H = Nil, Sp = Nil)
7 c.Sp ← {s ∈ Sp | s ∩ comp ̸= ∅} ∪ {Bu}
8 E ← {e ∈ E(H ′) | e ∩ comp ̸= ∅}
9 V ← V (E) ∪ V (c.Sp)

10 c.H ← (V, E)
11 C ← C ∪ {c}
12 end
13 return C
14 end

Algorithm 3.4: The BuildGHD Function used by BalSep.
Input: Set of vertices Bu, Set of edges λu, Set of GHDs children.
Output: A GHD with root u and children children.

1 begin
2 u ← Hypertree(Bu ← Bu, λu ← λu)
3 foreach D ∈ children do
4 Let T be the tree structure of D
5 r̂ ← Reroot(T, Bu)
6 foreach cr̂ ∈ r̂.Children do
7 u.Children ← u.Children ∪ {cr̂}
8 end
9 end

10 return u

11 end

41

CHAPTER 4
Benchmarking Decomposition

Algorithms

In Chapter 3, we presented our novel BalSep algorithm, which, given a hypergraph H
and an integer k, computes a GHD of H of width ≤ k in polynomial time, if it exists.
Even though this is a powerful instrument in our toolbox of hypergraph decomposition
algorithms, the performance of BalSep is highly influenced by the width and the
intersection size of the input hypergraph, which are the crucial parameters involved in
the time complexity of the algorithm. It is therefore seen as desirable for these two
numbers to be low. Nevertheless, this limitation is exclusively justified if the hypergraphs
stemming from real-world CQs and CSPs have these characteristics.

Fischl et al. gave a convincing affirmative answer with their work on HyperBench [50].
This benchmark comprises thousands of hypergraphs deriving from as many CQs and CSPs
for assessing the characteristics of real hypergraphs and the capability of decomposition
algorithms to decompose them. The analysis of these hypergraphs revealed that most
have low width and intersection sizes, thus providing a compelling argument in favor of
decomposition algorithms. On the other hand, the benchmark composition is slightly
unbalanced towards CSPs. Indeed, out of the 3070 hypergraphs collected by Fischl et al.,
only 1035 originated from CQs, which is just about a third of the total. Giving a closer
look at these instances, we also realized that, except for the 70 SPARQL queries obtained
from Bonifati et al. [27], the rest are all SQL queries, some of which preprocessed to
adhere to a “flat” and simplified subset of the language corresponding to pure conjunctive
queries. Consequently, we decided to improve the work initiated in [50] by providing a
more representative and inclusive view of the query-answering instances landscape.

On the one hand, we wanted to solve the problem of the under-representation of SPARQL
queries. Therefore, we looked at the literature for query sources and found out that
an immense amount of SPARQL queries originating from Wikidata had been released

43

4. Benchmarking Decomposition Algorithms

by Malyshev et al. [104] and had been successively studied by Bonifati et al. in [28].
These queries are particularly interesting because of their provenance. Indeed, they
include human-generated queries and “synthetic” ones generated by algorithms, further
categorized into queries for which an answer was provided within a given timeout and
queries that timed out. In a pioneering effort, Bonifati et al. analyzed the over 200
million queries in this repository by examining their structural properties, including
hypertree width. Their study revealed that 273974 unique queries have hw ≥ 2. However,
other hypergraph structural properties such as ghw and the various intersection sizes
have not been examined there.

On the other hand, we wanted to enlarge the set of SQL queries by including queries
from different applications and having a complex structure. In this case, we turned
our attention to the TPC benchmarks, which are well-established in the database
community. While the TPC-H benchmark [132] has been included in [50], the TPC-DS
benchmark [131], which contains a variety of industry-relevant queries to test general
purpose decision support systems, is missing there. This benchmark contains 113 queries
with a complex structure that does not immediately correspond to a linear form of a
SELECT-PROJECT-JOIN conjunctive query. Furthermore, the tools provided in [50]
cannot parse them. Nevertheless, most of these queries can be converted into a purely
conjunctive form. When this is impossible, we can still analyze their conjunctive parts
separately.

The benchmarking of efficient decomposition algorithms on complex queries is the theme
of this chapter. We begin our study by clearly distinguishing between simple and complex
SQL queries. The latter intuitively correspond to those queries using views, nested
subqueries, and other features of the SQL language “hiding” the conjunctive nature of
a query. Being able to distinguish these two classes of queries, we define an algorithm
to transform complex SQL queries into a collection of simple ones. Indeed, while some
queries are irreducible in a purely conjunctive form, it is still possible to analyze their
conjunctive parts separately. In this case, we split the original query into maximal
conjunctive components, which we then transformed into simple queries and, eventually,
hypergraphs. The resulting algorithm, referred to as hg-tools, has been implemented
and made publicly available at https://github.com/dmlongo/hgtools. We then
analyze the TPC-DS benchmark and the Wikidata SPARQL queries from [104, 28]. In
analogy with the original work on HyperBench [50], our goal is twofold: while we want to
test the hypothesis that the various GHD algorithms described in the previous chapter are
still adequate for the new hypergraphs coming from complex SQL queries and SPARQL
queries, we also benchmark their performances. We conclude that this is indeed the case:
even complex SQL queries as well as SPARQL queries typically have low width.

This chapter proceeds with four sections. First, we present our methodology to translate
complex SQL queries into hypergraphs in Section 4.1. Here we also give additional
information about the translation of CSPs. Next, in Section 4.2, we discuss the new
hypergraphs from the TPC-DS benchmark and the Wikidata SPARQL queries and the
integration of these new instances into the old dataset. Then, Section 4.3 reports on

44

https://github.com/dmlongo/hgtools

4.1. Translation of CQs and CSPs into Hypergraphs

the experiments performed on the integrated dataset. Here, we analyze the structural
properties of the hypergraphs we collected and test the efficient GHD algorithms exploiting
intersection size. Finally, Section 4.4 summarizes the results presented in this chapter.

The contents of this chapter are based on the article [52] published together with
Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. Moreover, related content about
the challenges of benchmarking decomposition algorithms appeared in [66]. While the
translation strategy proposed in Section 4.1 and the successive collection and translation
of the TPC-DS queries using this method are an original contribution of the author of
this thesis, a note on the contents of Section 4.2 and Section 4.3 is necessary. These two
sections present experiments carried out on a version of HyperBench which integrates
the original version presented in [50] with the new instances described above. Since
similar experiments had been already carried out by Wolfgang Fischl in [49] on the
original version of HyperBench, we do not claim any ownership over the design of the
experiments nor on the collection and translation of the instances already present in [49].
On this note, we also acknowledge that the hypergraphs of the Wikidata SPARQL queries
have been kindly provided to us by Angela Bonifati, Wim Martens, and Thomas Timm.
Nevertheless, both the original HyperBench instances from [50] and the hypergraphs
of the Wikidata SPARQL queries from [28] have undergone some preprocessing before
being integrated. In particular, where applicable, the old queries from [50] have been
retranslated with our new parser hg-tools. This operation led to the discovery of some
mistakes in the previous translation of the TPC-H queries, which we fixed in the new
version of HyperBench. Moreover, we filtered the hypergraphs of the 273947 unique
SPARQL queries from [28] by removing duplicates on the hypergraph level. Consequently,
we recognized that 99, 87% of the instances were duplicates, which we did not integrate
into the new dataset. This procedure left us with 354 unique hypergraphs. We provide
a detailed account of these processes in Section 4.2. Finally, the reiteration of the
experiments in [49, 50] carried out in Section 4.3 on the new dataset constitutes a “test of
replicability” of the results in [49, 50] that, at the same time, strengthens them. Indeed,
we reach the same conclusion of [49, 50] even on a more varied dataset.

4.1 Translation of CQs and CSPs into Hypergraphs

Since all decomposition algorithms work on hypergraphs, the translation of CQs and
CSPs into this representation is essential. However, there are many languages that are
used to define instances of these problems and each of them requires a specific translation
algorithm. In this section, we focus on the SQL language for queries and the XCSP3
language for constraint satisfaction problems. While motivating the choices made in
designing the translation process, we describe a new methodology for translating complex
SQL queries. The algorithms described here have been implemented and made publicly
available at https://github.com/dmlongo/hgtools.

45

https://github.com/dmlongo/hgtools

4. Benchmarking Decomposition Algorithms

4.1.1 From Simple to Complex SQL Queries
The SQL language comes with a varied set of different features, some of which are even
system dependent. This offers users many ways to express the same query, but it is a
problematic aspect when it comes to the translation of a query into a hypergraph. As
seen in Chapter 2, only pure conjunctive queries can be transformed into hypergraphs
and this form of CQs corresponds to basic SELECT-PROJECT-JOIN queries in SQL.
Therefore, we need to differentiate between simple queries, which can be immediately
translated into hypergraphs, and complex queries, which require some manipulation
before they can be translated.

We say that an SQL query is simple if it is a SELECT-FROM-WHERE statement in
which the WHERE clause is only allowed to be a conjunction of join conditions, i.e.,
equality conditions between columns of different tables. More explicitly, such a query
must not contain any comparison, negation, disjunction, or subqueries, such as nested
SELECT statements, neither in the FROM nor in the WHERE clauses.

Example 4.1. Recall the excerpt of a university schema with relations exams(cid, student,
grade), enrolled(student, program), and mandatory(program, cid) of Example 2.1. The
query asking for the students who took at least one exam in any mandatory course of the
program they are enrolled in is naturally stated in SQL as follows.

SELECT exams . s t u d e n t
FROM exams , e n r o l l e d , mandatory
WHERE exams . c i d = mandatory . c i d

AND exams . s t u d e n t = e n r o l l e d . s t u d e n t
AND e n r o l l e d . program = mandatory . program ;

It is easy to verify that this is a simple query and it can be straightforwardly translated
into a hypergraph (details will follow).

In our efforts to develop an algorithm that transforms more general forms of SQL queries
into hypergraphs, we prioritize preserving the fundamental structure of the query. While
this approach may require us to neglect certain features that are necessary for answering
the query, we believe it is a reasonable trade-off. As a result, we introduce the concept of
a quasi simple query, which is an SQL query that does not contain nested subqueries
and can be simplified by removing any number of conditions in the WHERE clause.

Moreover, we point out that the SELECT clause of a query is not relevant in constructing
its hypergraph. Therefore, we allow the substitution of the original SELECT clause with
the alternative “SELECT *” clause, which denotes the list of all attributes of tables in
the FROM clause. Once again, we emphasize that this step simplifies the study of more
general queries at the minor cost of changing the actual answers to the original query,
which is for our purposes, anyway, irrelevant.

46

4.1. Translation of CQs and CSPs into Hypergraphs

Example 4.2. Consider the following modification of the query of Example 4.1 over the
same university schema.

SELECT exams . s tuden t , exams . c i d
FROM exams , e n r o l l e d , mandatory
WHERE exams . c i d = mandatory . c i d

AND exams . s t u d e n t = e n r o l l e d . s t u d e n t
AND e n r o l l e d . program = mandatory . program
AND e n r o l l e d . program = ’ Psycho logy ’
AND exams . grade ̸= 0 ;

This query asks for the pairs (s, e) of students and exams such that s has passed e
(grade ≠ 0) and e is mandatory for the Psychology program, where s is enrolled. This
query is quasi-simple in that it becomes simple by removing the last two conditions.

Queries containing nested subqueries deserve a special treatment. In SQL a subquery
is defined via a nested SELECT statement. Although the presence of subqueries auto-
matically makes the whole query non-conjunctive, their inner structure might still be of
interest and, hence, it can be extracted and analyzed separately. We call complex SQL
queries all those queries containing any number of subqueries. However, whereas some
subqueries can be evaluated separately from the outer query, there are some that cannot.
In order to distinguish between the two, we classify subqueries into two types: simple
subqueries, which can generate their results independently of the statement they are
embedded in, and correlated subqueries, which need data from their outer query in order
to be executed. In our translation algorithm, we discard correlated subqueries and retain
simple ones. These will be then extracted from the outer query and the two of them
analyzed separately.

Example 4.3. For every exam, the following SQL query asks for the students, along
with course and grade information, who achieved the highest grade in that exam.

SELECT e . s tuden t , e . c id , e . grade
FROM exams e
WHERE e . grade = (

SELECT MAX(grade)
FROM exams e2
WHERE e2 . c i d = e . c i d

) ;

This formulation contains a correlated subquery which has the task of finding the maximum
grade for the exam currently inspected by the outer query. This reference from the subquery
to the instance of the exams in the outer query makes the independent evaluation of the
subquery impossible.

47

4. Benchmarking Decomposition Algorithms

On the other hand, the following SQL query asking for the names of all programs that do
not have the course with id ’CS101’ as a mandatory course contains a simple subquery
that can be executed separately from the outer query.

SELECT program
FROM e n r o l l e d
WHERE program NOT IN (

SELECT program
FROM mandatory
WHERE c i d = ’ CS101 ’

) ;

Depending on the kind of subquery and on the part of the query in which it appears, we
propose different treatments:

• If a query is of the form q1 ◦ · · · ◦ qn, where each qi is a query and ◦ ∈ {∪, ∩, \}, we
extract the single subqueries qi and process them separately.

• If a subquery appears in the FROM clause, we convert it into a logical view.

• If a subquery contains a reference to an outer query, it must be discarded.

Regarding the second point, the presence of logical views in a query does not necessarily
make it complex. This depends on the content of the view. Therefore, when a query
contains a view, we expand it into the main body of the query with the standard methods.

4.1.2 Extracting Simple Queries from Complex Ones
When examining an SQL query containing subqueries, we are faced with two options:
we either extract them or integrate them into the main body. Depending of the kind of
subquery, the integration is not always possible and, in this case, we must extract the
subquery and analyze it separately. In order to do it in a way that preserves the structure
of the original query as much as possible, we build a graph representing dependencies
between subqueries. At the end of the process, we extract queries which are independent
and eliminate those which are mutually dependent.

We say that a subquery s1 depends on a subquery s2 if the result of s1 can be computed
only after computing the result of s2. The dependency graph of a query Q is a directed
graph G = (S, D) where the set S contains the nodes corresponding to subqueries of Q
and (s1, s2) ∈ D is an arrow, for s1, s2 ∈ S, if s1 depends on s2. Given a query Q, we
create its dependency graph G as follows:

1. Create a node q ∈ S representing the outer query.

2. For each nested query si of q, create a new node si ∈ S and an edge (q, si) ∈ D.

48

4.1. Translation of CQs and CSPs into Hypergraphs

q

s1 s2

Figure 4.1: Dependency graph of the query in Example 4.4.

3. If si references a table defined in any ancestor sj , create an edge (si, sj).

4. Recursively examine si for nested queries.

Once we have built the graph, we identify the nodes which are involved in cycles and
eliminate them. In particular, we consider q as a root and navigate the graph. Whenever
we find a node having an edge pointing at an ancestor, we eliminate it together with all
of its incoming and outgoing edges. Eventually, we end up with a forest in which we
extract a query from each node.

Example 4.4. The following query retrieves, for each exam that is not mandatory in
the Computer Science program, all students, along with course and grade information,
who achieved the highest grade in that exam.

SELECT e . s tuden t , e . c id , e . grade
FROM exams e
WHERE e . c i d NOT IN (

SELECT c i d
FROM mandatory
WHERE program ̸= ’ Computer␣ Sc i ence ’)

AND e . grade = (
SELECT MAX(grade)
FROM exams e2
WHERE e2 . c i d = e . c i d) ;

The dependency graph G of this query is shown in Figure 4.1. The node q, which is the
root of G, represents the outer query. The nodes s1 and s2 in G represent the first and
second subquery, respectively. As the result of the outer query can be computed only after
computing the results of the subqueries, the two edges (q, s1) and (q, s2) are in G. Since
s2 references the table t1 defined in q, G contains also the edge (s2, q).

After the creation, we look for cycles in the graph. In this case, we see that there is no
way to evaluate s2 independently from q. Then, we remove s2 and all of its incident
edges. Finally, we extract a simple query from each node of the remaining graph.

49

4. Benchmarking Decomposition Algorithms

4.1.3 Converting Simple Queries into Hypergraphs
Once we have extracted and simplified subqueries, we are left with simple SQL queries of
the type

SELECT ri1 .Aj1 , . . . , riz .Ajz FROM r1, . . . , rm WHERE cond (4.1)

such that cond is a conjunction of conditions of the form ri.A = rj .B or ri.A = c, where
c is a constant. Such queries are equivalent to conjunctive queries, thus it is easy to draw
a connection to a CQ and transform it into a hypergraph. Nevertheless, in our case it
makes more sense to go directly from an SQL query to the hypergraph.

Let Q be an SQL query of the form (4.1), then the hypergraph HQ = (V (HQ), E(HQ))
corresponding to Q is obtained as follows. We first build the hypergraph induced
by the FROM clause. Consider a relation r(A1, . . . , Aℓ) in the FROM clause. For
each attribute Ai of r, we create a vertex vAi ∈ V (HQ). Then, we create the edge
r = {vA1 , . . . , vAℓ

} ∈ E(HQ). Now, we modify the hypergraph according to the conditions
in the WHERE clause. Let cond be such a condition. It can be of two forms:

• If cond is of the form ri.A = rj .B, we merge vertices vA and vb and modify their
incident edges. W.l.o.g. assume vA itself becomes the merged vertex. For each
edge r ∈ {e ∈ E(HQ) | vB ∈ e}, we remove r from E(HQ) and add a new edge
r′ = (r \ {vB}) ∪ {vA}.

• If cond is of the form ri.A = c, with c constant, we remove vA from V (HQ) and,
for each edge r ∈ {e ∈ E(HQ) | vA ∈ e}, we remove r from E(HQ) and add a new
edge r′ = r \ {vA}.

At the end of this procedure, we eliminate empty edges and multiple edges. Since
SELECT clauses do not contribute to the query structure, we simply ignore them.

4.1.4 From CSPs to Hypergraphs
An important part of our benchmark consists of instances of Constraint Satisfaction
Problems. The collected set presents different characteristics with respect to the ones
found in CQs, thus their analysis offers a more varied picture of the hypergraphs
encountered in applications. For this reason, the collected CSP instances have a significant
practical aspect.

Most of the CSPs come from the XCSP [15] website. XCSP3 is an XML-based format
used to represent constraint satisfaction problems. The language offers a wide variety of
options to represent the most common constraints and frameworks, making it a solid
intermediate format between different solvers. The collected XCSP instances are also
used as a benchmark in solver competitions that are periodically organized.

From XCSP, there have been selected a total of 1953 instances with less than 100
extensional constraints such that all constraints are extensional, i.e., they are provided

50

4.2. Integration of Complex Queries into Hyperbench

in the form of a relation. The choice on the number of constraints allows us to have
an adequate number of instances of increasing difficulty. Moreover, algorithms which
use GHDs to solve CSPs typically need the constraints in a relational form. Therefore,
we picked only CSPs such that all constraints are extensional. These instances are
divided into CSPs from concrete applications, called CSP Application in the sequel (1090
instances), and randomly generated CSPs, called CSP Random below (863 instances).

The instances fetched from the website are written in well-structured XML files in which
variables and constraints are explicitly defined through the use of specific XML tags. The
transformation of these instances into hypergraphs did not require a specific methodology
since the authors of the XCSP3 format provide an extensive library for parsing the
instances where most of the process is already automatized. Obviously, we still had to
convert the object in memory into a hypergraph. To this end, we have reimplemented
the behavior of some callback methods in such a way that, whenever the program reads a
variable, it adds a vertex to the hypergraph, and, whenever it reads a constraint, it adds
an edge containing the vertices corresponding to the variables affected by the constraint.

Our collection of CSPs also includes a third class, which we call CSP Other. These
instances have been used in previous hypertree width analyses available at https://
www.dbai.tuwien.ac.at/proj/hypertree. This set contains interesting examples
coming from industry and a variety of different test examples [57]. In particular, a
part of the hypergraphs is obtained from Daimler Chrysler and represents circuits and
systems. A second part is a hypergraph translation of the circuits belonging to the well-
known benchmark library of the IEEE International Symposium on Circuits and Systems
(ISCAS). Finally, some hypergraphs correspond to grids extracted from pebbling problems.
Since the instances are provided already as hypergraphs, no additional processing was
necessary to incorporate them.

4.2 Integration of Complex Queries into Hyperbench
In this section, we describe the new version of HyperBench, which is composed of a
benchmark and a web tool. Here we introduce the system and test environment used for
the experiments and describe the CQs and CSPs in the benchmark.

4.2.1 System and Test Environment
Our system is composed of two libraries. A C++ library with the implementations
of the GHD algorithms described in Chapter 3 was originally develop by Wolfgang
Fischl for the work in [49] and successively improved by the author of this thesis.
The code is available at https://github.com/dmlongo/newdetkdecomp. This
library contains an extended version of the original DetKDecomp algorithm from [76],
which is now called NewDetKDecomp. While the underlying hw algorithm is still the
one from [76], the new implementation makes use of modern C++ constructs such as
smart pointers for better memory management and maintainability. The code itself

51

https://www.dbai.tuwien.ac.at/proj/hypertree
https://www.dbai.tuwien.ac.at/proj/hypertree
https://github.com/dmlongo/newdetkdecomp

4. Benchmarking Decomposition Algorithms

has also been optimized in several parts, thus improving overall performance w.r.t. the
previous release. The software now also goes beyond the computation of HDs and it
has been expanded to compute GHDs through the algorithms presented in Chapter 3.
Moreover, NewDetKDecomp can also compute an approximated form of FHDs which
will be described in Section 4.3.5.

We designed a second Java library, called hg-tools, for analyzing SQL queries, XCSP
instances, and collecting hypergraph statistics. In particular, this software implements
all the functionalities presented in Section 4.1 and is thus able to transform simple and
complex SQL queries as well as CSPs in the XCSP format into hypergraphs. These features
have been implemented with the support of the open source libraries JSqlParser [139]
for SQL processing and JGraphT [108] to deal with graph data structures. The software
have also been extended to compute some hypergraph statistics we used for experiments.
This code is available at https://github.com/dmlongo/hgtools.

All the experiments reported in this paper were performed on a cluster of 10 workstations
each running Ubuntu 16.04. Every workstation has the same specification and is equipped
with two Intel Xeon E5-2650 (v4) processors each having 12 cores and 256-GB main
memory. Since all algorithms are single-threaded, we could run several experiments in
parallel. For all upcoming runs of our algorithms we set a timeout of 3600s.

4.2.2 Hypergraph Benchmark
Our benchmark contains 3648 hypergraphs, which have been converted from CQs and
CSPs collected from various sources. Out of these 3648 hypergraphs, 3142 hypergraphs
have never been used in a hypertree width analysis before. The hypertree width of 424
CQs and of 82 CSPs has been analyzed in [76], [22], and/or [27, 28]. In particular, the
hypergraphs of the SPARQL queries from [27, 28] have been kindly shared with us by
the authors and their hw has already been analyzed in those papers. An overview of all
instances of CQs and CSPs is given in Table 4.1. They have been collected from various
publicly available benchmarks and repositories of CQs and CSPs. In the first column,
the names of each collection of CQs and CSPs are given together with references where
they were first published. In the second column we display the number of hypergraphs
extracted from each collection. The hw of the CQs and CSPs in our benchmark will be
discussed in detail in Section 4.3.1. To get a first feeling of the hw of the various sources,
we mention the number of cyclic hypergraphs (i.e., those with hw ≥ 2) in the last column.
When gathering the CQs, we proceeded as follows: of the huge benchmark reported
in [27], we have only included CQs, which were detected as having hw ≥ 2 in [27]. Of
the other huge repository reported in [28], we included the hypergraphs corresponding to
the 273974 unique SPARQL queries with hw ≥ 2. Even though the queries are unique,
most of them share the same hypergraph structure. Thus, after removing duplicates on
the hypergraph level, we ended up with 354 unique hypergraphs with hw ≥ 2. Of the big
repository reported in [90], we have included those CQs, which are not trivially acyclic
(i.e., they have at least 3 atoms). Of all the small collections of queries, we have included
all. It follows a detailed description of the different benchmarks.

52

https://github.com/dmlongo/hgtools

4.2. Integration of Complex Queries into Hyperbench

Table 4.1: Overview of benchmark instances.

Benchmark No. instances hw ≥ 2

C
Q

s
SPARQL [27] 70 (out of 26157880) 70
Wikidata [28] 354 (out of 273947) 354
LUBM [21, 80] 14 2
iBench [21, 13] 40 0
Doctors [21, 60] 14 0
Deep [21] 41 0
JOB (IMDB) [101] 33 7
TPC-H [20, 132] 29 1
TPC-DS [131] 228 5
SQLShare [90] 290 (out of 15170) 1
Random [118] 500 464

C
SP

s Application [15] 1090 1090
Random [15] 863 863
Other [76, 22] 82 82
Total: 3648 2939

Our benchmark contains 1113 CQs from five main sources [20, 21, 27, 28, 90] and a set of
500 randomly generated queries using the query generator of [118]. In the sequel, we shall
refer to the former queries as CQ Application, and to the latter as CQ Random. The CQs
analyzed in [27] constitute a big repository of CQs – namely 26157880 CQs stemming
from SPARQL queries. The queries come from real-users of SPARQL endpoints and their
hypertree width was already determined in [27]. Almost all of these CQs were shown to
be acyclic. Our analysis comprises 70 CQs from [27], which (apart from few exceptions)
are essentially the ones in [27] with hw ≥ 2. In particular, we have analyzed all 8 CQs
with highest hw among the CQs analyzed in [27] (namely, hw = 3). Bonifati et al. carried
on this line of work and examined a bigger repository of SPARQL queries coming from
Wikidata in [28]. This repository of 208215209 SPARQL queries was originally released
by Malyshev et al. with the study in [104]. Bonifati et al. kindly sent us the unique
273947 SPARQL queries with hw ≥ 2 examined in [104]. We extracted 354 different
hypergraphs and all of them have hw = 2.

The LUBM [80], iBench [13], Doctors [60], and Deep scenarios have been recently used
to evaluate the performance of chase-based systems [21]. Their queries were especially
tailored towards the evaluation of query answering tasks of such systems. Note that
the LUBM benchmark [80] is a widely used standard benchmark for the evaluation of
Semantic Web repositories. Its queries are designed to measure the performance of those
repositories over large datasets. Strictly speaking, the iBench is a tool for generating
schemas, constraints, and mappings for data integration tasks. However, in [21], 40
queries were created for tests with the iBench. We therefore refer to these queries

53

4. Benchmarking Decomposition Algorithms

as iBench-CQs here. In summary, we have incorporated all queries that were either
contained in the original benchmarks or created/adapted for the tests in [21].

The goal of the Join Order Benchmark (JOB) [101] was to evaluate the impact of a good
join order on the performance of query evaluation in standard RDBMSs. Those queries
were formulated over the real-world dataset Internet Movie Database (IMDB). All of the
queries have between 3 and 16 joins. Clearly, as the goal was to measure the impact of a
good join order, those 33 queries are of higher complexity, hence 7 out of the 33 queries
have hw ≥ 2.

The Transaction Processing Performance Council (TPC) is a well-known non-profit
organization that develops benchmarks for the evaluation of DBMSs. Given their
broad industry-wide relevance and since they reflect common workloads in decision
support systems, we included the TPC-H [132] and the TPC-DS [131] benchmarks.
The TPC-H queries analyzed in [50, 49] were downloaded from the GitHub repository
originally provided by Michael Benedikt and Efthymia Tsamoura [20] for the work on [21].
Nevertheless, for this paper we downloaded the original dataset from [132] and extracted
the queries according to the methodology introduced in Section 4.1. From the original
set of 22 complex queries, we extracted 29 simple queries. The TPC-DS benchmark is
more complex than TPC-H and it contains more queries. Indeed, from the original set of
113 complex queries, we extracted 228 simple queries.

From SQLShare [90], a multi-year SQL-as-a-service experiment with a large set of real-
world queries, we extracted 15170 queries by considering all queries in the log files. These
were divided into two sets: materialized views and usual queries which could possibly
make use of the materialized views. Also, the whole dataset gathers data from different
databases and the link between queries and databases is not explicitly defined. In order
to execute the experiments, we had to clean the queries from trivial errors impeding the
parsing, link the queries to the right database schema, incorporate the materialized views
and resolve ambiguities in the query semantics. After removing queries with complex
syntactical errors, we obtained 12483 queries. As a next step we used the algorithm from
Section 4.1.2 to obtain a set of CQs and, after removing duplicates, we got a collection
of 6086 simple SQL queries. From this set we eliminated 5796 queries with ≤ 2 atoms
(whose acyclicity is immediate) and ended up with 290 queries.

The random queries were generated with a tool that stems from the work on query answer-
ing using views in [118]. The query generator allows three options: chain/star/random
queries. Since the former two types are trivially acyclic, we only used the third option.
Here it is possible to supply several parameters for the size of the generated queries. In
terms of the resulting hypergraphs, one can thus fix the number of vertices, number of
edges and arity. We have generated 500 CQs with 5–100 vertices, 3–50 edges and arities
from 3 to 20. These values correspond to the values observed for the CQ Application
hypergraphs. However, even though these size values have been chosen similarly, the
structural properties of the hypergraphs in the two groups CQ Application and CQ
Random differ significantly, as will become clear from our analysis in Section 4.3.1.

54

4.3. Comparison of GHD Decomposition Algorithms

Table 4.2: Properties of all benchmark CQs.

CQ Application
i Deg IS 3-MIS 4-MIS VC
0 0 74 394 647 72
1 74 721 673 456 484
2 320 286 45 10 557
3 253 17 1 0 0
4 181 6 0 0 0
5 73 9 0 0 0

>5 212 0 0 0 0

CQ Random
i Deg IS 3-MIS 4-MIS VC
0 0 1 16 49 0
1 1 17 77 125 20
2 15 53 90 120 133
3 38 62 103 74 240
4 31 63 62 42 106
5 33 71 47 28 1

>5 382 233 105 62 0

Our benchmark currently contains 2035 hypergraphs from CSP instances, out of which
1953 instances were obtained from xcsp.org (see also [15]). These instances, in turn,
were divided into CSPs from concrete applications, called CSP Application in the se-
quel (1090 instances), and randomly generated CSPs, called CSP Random below (863
instances). In addition, we have included 82 CSP instances, which were already used in
previous hw experiments [57, 76]. These instances, which we refer to as CSP Other, are
provided also provided at https://www.dbai.tuwien.ac.at/proj/hypertree.

Our HyperBench benchmark consists of the hypergraphs of these CQs and CSPs. In
Figure 4.2, we show the number of vertices, the number of edges and the arity (i.e., the
maximum size of the edges) as three important metrics of the size of each hypergraph.
The smallest are those coming from CQ Application (most of them have up to 10
edges), while the hypergraphs coming from CSPs can be significantly larger (up to 2993
edges). Although some hypergraphs are very big, more than 50% of all hypergraphs
have maximum arity less than 5. In Figure 4.2 we can easily compare the different types
of hypergraphs, e.g. hypergraphs of arity greater than 20 only exist in the application
classes; the CSP Other class contains the largest number of big hypergraphs.

The hypergraphs and the results of our analysis can be accessed through our web tool,
available at http://hyperbench.dbai.tuwien.ac.at.

4.3 Comparison of GHD Decomposition Algorithms

We now present the empirical results obtained with the HyperBench benchmark. While
getting an overview of the hypertree width of the various types of hypergraphs in our
benchmark, we want to find out how realistic the restriction to low values for certain
hypergraph invariants is. After this first analysis of structural properties, we compare
the different ghw algorithms presented in Chapter 3. Finally, we propose and evaluate
two algorithms for computing approximated FHDs.

55

xcsp.org
https://www.dbai.tuwien.ac.at/proj/hypertree
http://hyperbench.dbai.tuwien.ac.at

4. Benchmarking Decomposition Algorithms

CSP Other

CSP Random

CSP Application

CQ Random

CQ Application

0% 25% 50% 75% 100%

1−10
11−20
21−30
31−40
41−50
>50

Vertices

CSP Other

CSP Random

CSP Application

CQ Random

CQ Application

0% 25% 50% 75% 100%

1−10
11−20
21−30
31−40
41−50
>50

Edges

CSP Other

CSP Random

CSP Application

CQ Random

CQ Application

0% 25% 50% 75% 100%

1−5
6−10
11−15
16−20
>20

Arity

Figure 4.2: Hypergraph Sizes.

56

4.3. Comparison of GHD Decomposition Algorithms

Table 4.3: Properties of all benchmark CSPs.

CSP Application
i Deg IS 3-MIS 4-MIS VC
0 0 0 596 597 0
1 0 1030 459 486 0
2 596 59 34 7 1064
3 1 0 1 0 26
4 1 0 0 0 0
5 2 0 0 0 0

>5 490 1 0 0 0

CSP Random
i Deg IS 3-MIS 4-MIS VC
0 0 0 0 0 0
1 0 200 200 238 0
2 0 224 312 407 220
3 0 76 147 95 515
4 12 181 161 97 57
5 8 99 14 1 71

>5 843 83 29 25 0
CSP Other

i Deg IS 3-MIS 4-MIS VC
0 0 0 1 6 0
1 0 7 36 39 0
2 1 36 23 16 50
3 5 29 20 21 25
4 19 10 2 0 0
5 4 0 0 0 0

>5 53 0 0 0 0

4.3.1 Hypergraph Properties
In [53, 68], several invariants of hypergraphs were used to make the Check(ghw, k) and
Check(fhw, k) problems tractable or, at least, easier to approximate. We thus investigate
the following properties defined in Chapter 2:

• Deg: the degree of the underlying hypergraph.

• IS : the intersection size of two edges.

• c-MIS : the c-multi-intersection size for c ∈ {3, 4}.

• VC : the VC-dimension.

The results obtained from computing Deg, IS, 3-MIS, 4-MIS, and VC for the hypergraphs
in the HyperBench benchmark are shown in Table 4.2 and Table 4.3.

These tables have to be read as follows. In the first column, we distinguish different values
of the various hypergraph metrics. In the columns labeled “Deg“, “IS“, etc., we indicate
for how many instances each metric has a certain value. For instance, the last row in the
second column shows that only 212 non-random CQs have degree > 5. Actually, for most
CQs, the degree is less than 10. Moreover, already with intersections of 3 edges, we get
3-MIS ≤ 2 for almost all non-random CQs. The VC-dimension is ≤ 2 for all hypergraphs.

57

4. Benchmarking Decomposition Algorithms

Table 4.4: Exact number of CQ instances in the HW analysis of Figure 4.3.

CQ Application
k Yes No T/O
1 673 440 0
2 432 8 0
3 8 0 0

CQ Random
k Yes No T/O
1 36 464 0
2 68 396 0
3 70 326 0
4 59 167 100
5 54 55 158
10 206 0 7
15 7 0 0

For CSPs, all properties may have higher values. However, we note a significant difference
between randomly generated CSPs and the rest. For hypergraphs in the groups CSP
Application and CSP Other , 543 (46%) hypergraphs have a high degree (>5), but nearly
all instances have IS or MIS of less than 3. And most instances have a VC-dimension of
at most 2. In contrast, nearly all random instances have a significantly higher degree
(843 out of 863 instances with a degree > 5). Nevertheless, many instances have small IS
and MIS. For nearly all hypergraphs (838 out of 863) we have 4-multi-intersection size
≤ 4. For 7 instances the computation of the VC-dimension timed out. For all others, the
VC-dimension is ≤ 5 for random CSPs. Clearly, as seen in Table 4.2 and Table 4.3, the
random CQs resemble the random CSPs a lot more than the CQ and CSP Application
instances. For example, random CQs have similar to random CSPs high degree (382,
corresponding to 76%, with degree > 5), higher IS and MIS. Nevertheless, similarly to
random CSPs, the values for IS and MIS are still small for many random CQ instances.

To conclude, for the proposed properties, in particular IS/MIS and VC-dimension, most
of the hypergraphs in our benchmark indeed have low values.

4.3.2 Hypertree Width

We have systematically applied the hw-computation from [76] to all hypergraphs in the
benchmark. The results are summarized in Figure 4.3. The exact number of instances for
each stage of the experiments is reported in Table 4.4 for CQs and Table 4.5 for CSPs.
The acronym “T/O” stands for “Timeout”. In our experiments, we proceeded as follows.
We used the same classification of instances we used in the previous experiments, i.e.,
we distinguished the following classes: CQ Application, CQ Random, CSP Application,
CSP Random, and CSP Other. For every hypergraph H, we first tried to solve the
Check(hw, k) problem for k = 1. In case of CQ Application, we thus got 673 yes-answers
and 440 no-answers. The number in each bar indicates the average runtime to find these
yes- and no-instances, respectively. Here, the average runtime was “0” (i.e., less than 1
second). For CQ Random we got 36 yes- and 464 no-instances with an average runtime
below 1 second. For all CSP-instances, we only got no-answers.

58

4.3. Comparison of GHD Decomposition Algorithms

0s

0s

0s

0s

0s0

300

600

900

1 2 3
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CQ Application

0s

0s

0s

0s

0s

32s

0s

544s

0s

610s

5s

0s0

100

200

300

400

500

1 2 3 4 5 10 15
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CQ Random

0s

0s

0s

0s

736s

18s

707s
13s

0s

0s
0s

0s0

300

600

900

1 2 3 4 5 10 15 25 50
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CSP Application

0s

0s

1s

0s

1319s

42s

1332s 59s

0s

0

250

500

750

1 2 3 4 5 10
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CSP Random

1s

0s

219s

0s

1257s
0s

943s 0s
0s

0s

1s

10s

0s
0s

0

20

40

60

80

1 2 3 4 5 10 15 25 50 75
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CSP Other

Figure 4.3: HW analysis (labels are avg. runtimes in s).

59

4. Benchmarking Decomposition Algorithms

Table 4.5: Exact number of CSP instances in the HW analysis of Figure 4.3.

CSP Application
k Yes No T/O
1 0 1090 0
2 29 1061 0
3 116 802 143
4 283 62 600
5 231 0 431
10 261 0 170
15 12 0 158
25 118 0 40
50 40 0 0

CSP Random
k Yes No T/O
1 0 863 0
2 47 816 0
3 111 602 103
4 39 160 506
5 136 0 530
10 530 0 0

CSP Other
k Yes No T/O
1 0 82 0
2 19 55 8
3 5 11 47
4 5 2 51
5 6 1 46
10 24 0 23
15 6 0 17
25 7 0 10
50 5 0 5
75 4 0 1

In the second round, we tried to solve the Check(hw, k) problem for k = 2, for all
hypergraphs that yielded a no-answer for k = 1. Here the picture is a bit more diverse:
432 of the remaining 440 CQs from CQ Application yielded a yes-answer in less than 1
second. For the hypergraphs stemming from CQ Random, only 68 instances yielded a
yes-answer (in less than 1 second on average), while 396 instances yielded a no-answer
in less than 7 seconds on average. The hypergraphs relative to CSPs tell a different
story. The classes CSP Application, CSP Random and CSP Other have 29, 47 and 19
yes-instances, respectively. Only 8 instances from CSP Other gave rise to a timeout (i.e.,
the program did not terminate within 3,600 seconds), while all the other instances gave a
no-answer within the timeout. Interestingly, the hw-algorithm gave a no-answer for 1877
instances of CSP Application and CSP Random in less than 1 second, while it took the
algorithm 219 seconds on average to answer “no” for 55 instances of CSP Other. This
shows that the class CSP Other contains instances which are difficult to decompose, in
fact much more than the hypergraphs in the other classes.

This procedure was iterated by incrementing k and running the hw-computation for all
those instances that either yielded a no-answer or a timeout in the previous round. For
instance, for queries from CQ Application, one further round was needed after the second
round. In other words, we confirm the observation of low hw, which was already made
for CQs of arity ≤ 3 in [27, 28, 117]. For the hypergraphs stemming from CQ Random
(resp. CSPs), 396 (resp. 1940) instances were left in the third round, of which 70 (resp.
232) yielded a yes-answer in less than 1 second on average, 326 (resp. 1415) instances
yielded a no-answer in 32 (resp. 988) seconds on average and no (resp. 293) instances
yielded a timeout. Note that, as we increased k, the average runtime and the percentage
of timeouts first increased up to a certain point and then they decreased. This is due to
the fact that, as we increase k, the number of combinations of edges to be considered in
each edge cover λ (i.e., the function λu at each node u of the decomposition) increases. In
principle, we have to test O(nk) combinations, where n is the number of edges. However,

60

4.3. Comparison of GHD Decomposition Algorithms

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

IS

Vertices

Edges

Arity

Degree

3-MIS

4−MIS

VC−Dim

HW

Vertices Edges Arity Degree IS 3-MIS 4-MIS VC-Dim HW

Figure 4.4: Correlation analysis of hypergraph properties.

if k increases beyond a certain point, then it gets easier to “guess” an edge cover λ since
an increasing portion of the O(nk) possible combinations leads to an HD of desired width.

Looking at the results of these experiments, we conclude that for a big number of
instances, the hypertree width is small enough to allow for efficient evaluation of CQs or
CSPs: all instances of non-random CQs have hw ≤ 3 no matter whether their arity is
bounded by 3 (as in case of SPARQL queries) or not; and a large portion (at least 1027,
i.e., ca. 50%) of all 2035 CSP instances have hw ≤ 5. In total, including random CQs,
2427 (66.5%) out of 3648 instances have hw ≤ 5. And, out of these, we could determine
the exact hypertree width for 2356 instances; the others may even have lower hw.

4.3.3 Correlation Analysis
Finally, we analyzed the pairwise correlation between all properties. Of course, the
different intersection sizes (IS, 3-MIS, 4-MIS) are highly correlated. Other than that, we
observe quite a strong correlation of the arity with number of vertices and hypertree
width. Moreover, there is a significant correlation between number of vertices and arity
and between number of vertices and hypertree width. Clearly, the correlation between
arity and hypertree width is mainly due to the CSP instances and the random CQs since,
for non-random CQs, the hw never increases beyond 3, independently of the arity.

A graphical presentation of all pairwise correlations is given in Figure 4.4. Large dark
circles indicate a high correlation, while small light circles stand for low correlation. Blue

61

4. Benchmarking Decomposition Algorithms

Table 4.6: GHW algorithms with avg. runtimes in s.

hw → ghw Total GlobalBIP LocalBIP BalSep
yes (s) no (s) yes (s) no (s) yes (s) no (s)

3 → 2 310 - 128 (537) - 195 (162) - 307 (12)
4 → 3 386 - 137 (2809) - 54 (2606) - 249 (54)
5 → 4 427 - - - - - 148 (13)
6 → 5 459 13 (162) - 13 (60) - - 180 (288)

circles indicate a positive correlation while red circles stand for a negative correlation. It
has been argued in [53] that Deg, IS, 3-MIS, 4-MIS and VC are non-trivial restrictions to
achieve tractability. It is interesting to note that, according to Figure 4.4, these properties
have almost no impact on the hypertree width of our hypergraphs. This underlines the
usefulness of these restrictions in the sense that (a) they make the GHD computation and
FHD approximation easier [53], but (b) low values of degree, (multi-)intersection-size, or
VC-dimension do not pre-determine low values of the widths.

4.3.4 Comparison of ghw Algorithms
Here we report on empirical results for the three ghw-algorithms described in Chapter 3.
We have run the programs on each hypergraph from the HyperBench up to hypertree
width 6, trying to get a smaller ghw than hw. We have thus run the ghw-algorithms
with the following parameters: for all hypergraphs H with hw(H) = k (or hw ≤ k and,
due to timeouts, we do not know if hw ≤ k − 1 holds), where k ∈ {3, 4, 5, 6}, try to
solve the Check(ghw, k − 1) problem. In other words, we just tried to improve the
width by 1. Clearly, for hw(H) ∈ {1, 2}, no improvement is possible since, in this case,
hw(H) = ghw(H) holds.

In Table 4.6, for each algorithm, we report on the number of “successful” attempts to
solve the Check(ghw, k − 1) problem for hypergraphs with hw = k. Here “successful”
means that the program terminated within 1 hour. For instance, for the 310 hypergraphs
with hw = 3 in the HyperBench, GlobalBIP terminated in 128 cases (i.e., 41%) when
trying to solve Check(ghw, 2). The average runtime of these “successful” runs was 537
seconds. For the 386 hypergraphs with hw = 4, GlobalBIP terminated in 137 cases
(i.e., 35%) with average runtime 2809 when trying to solve the Check(ghw, 3) problem.
For the 886 hypergraphs with hw ∈ {5, 6}, GlobalBIP only terminated in 13 cases (i.e.,
1.4%). Overall, it turns out that the set f(H, k) may be very big (even though it is
polynomial if k and i are constants). Hence, H ′ can become considerably bigger than H.
This explains the frequent timeouts in the GlobalBIP column in Table 4.6.

The results obtained with LocalBIP are shown in the corresponding column. Interest-
ingly, for the hypergraphs with hw = 3, the “local” computation performed significantly
better (namely 63% solved with average runtime 162 seconds rather than 41% with
average runtime 537 seconds). In contrast, for the hypergraphs with hw = 4, the “global”

62

4.3. Comparison of GHD Decomposition Algorithms

Table 4.7: GHW of instances with average runtime in s.

hw → ghw Yes No T/O
3 → 2 0 309 (10) 1
4 → 3 0 262 (57) 124
5 → 4 0 148 (13) 279
6 → 5 18 (129) 180 (288) 261

computation was significantly more successful. For hw ∈ {5, 6}, the “global” and “local”
computations were equally bad. A possible explanation for the reverse behavior of “global”
and “local” computation in case of hw = 3 as opposed to hw = 4 is that the restriction
of the “global” set f(H, k) of subedges to the “local” set fu(H, k) at each node u seems
to be quite effective for the hypergraphs with hw = 3. In contrast, the additional cost of
having to compute fu(H, k) at each node u becomes counter-productive, when the set
of subedges thus eliminated is not significant. It is interesting to note that the sets of
solved instances of the global computation and the local computation are incomparable,
i.e., in some cases one method is better, while in other cases the other method is better.

If we look at the number of solved instances in Table 4.6, we see that the recursive
algorithm via balanced separators (reported in the last column labeled BalSep) has the
least number of timeouts due to the fast identification of negative instances (i.e., those
with no-answer), where it often detects quite fast that a given hypergraph does not have
a balanced separator of desired width. As k increases, the performance of the balanced
separators approach deteriorates. This is due to k in the exponent of the running time
of our algorithm, i.e. we need to check for each of the possible O(nk+1) combinations
of ≤ k edges if it constitutes a balanced separator. Note that the balanced separators
approach only terminated in case of no-answers.

We report in Table 4.7 whether ghw ≤ k − 1 could be verified, for all hypergraphs with
hw ≤ k and k ∈ {3, 4, 5, 6}. We thus run the three algorithms (GlobalBIP, LocalBIP
and BalSep) in parallel and stopped the computation as soon as one terminated (with
answer “yes” or “no”). The number in parentheses refers to the average runtime needed
by the fastest of the three algorithms. A timeout occurs if no algorithm terminates within
3600 seconds. It is interesting to note that in the vast majority of cases, no improvement
of the width is possible when we switch from hw to ghw: in 97% of the solved cases with
hw ≤ 6, which form 65% of all instances, hw and ghw have identical values. Actually, we
think that the high percentage of the solved cases gives a more realistic picture than the
percentage of all cases for the following reason: our algorithms (in particular, the “global”
and “local” computations) need particularly long time for negative instances. This is due
to the fact that in a negative case, “all” possible choices of edge covers λ for a node u in
the GHD have to be tested before we can be sure that no GHD of H (or, equivalently,
no HD of H ′) of desired width exists. Hence, it seems plausible that the timeouts are
mainly due to negative instances. This also explains why our new BalSep algorithm,
which is particularly well suited for negative instances, has the least number of timeouts.

63

4. Benchmarking Decomposition Algorithms

A closer comparison of Table 4.6 and Table 4.7 makes clear that BalSep is superior
to GlobalBIP and LocalBIP in solving negative instances. Indeed, the combined
approach summarized in Table 4.7 relies almost completely on the runs of BalSep. The
algorithms GlobalBIP and LocalBIP managed to solve only 15 out of 571 negative
instances for k ∈ {3, 4}, while they could not give any negative answer for k ∈ {5, 6}. On
the other hand, GlobalBIP and LocalBIP solved 18 positive instances, while BalSep
did not terminate at all. Nevertheless, this does not significantly diminish the strength
of BalSep as a powerful tool for negative instances.

We conclude with a final observation: in Figure 4.3, we had many cases, for which
only some upper bound k on the hw could be determined, namely those cases, where
the attempt to solve Check(hw, k) yielded a yes-answer and the attempt to solve
Check(hw, k − 1) gave a timeout. In several such cases, we could get (with the balanced
separator approach) a no-answer for the Check(ghw, k − 1) problem, which implicitly
gives a no-answer for the problem Check(hw, k − 1). In this way, our new ghw-algorithm
is also profitable for the hw-computation: for 827 instances with hw ≤ 6, we were not
able to determine the exact hypertree width. Using our new ghw-algorithm, we closed
this gap for 297 instances; for these instances hw = ghw holds.

To sum up, we now have a total of 2356 (64.5%) instances for which we determined the
exact hw and a total of 1984 instances (54.4%) for which we determined the exact ghw.
Out of these, 1968 instances had identical values for hw and ghw. In 16 cases, we found
an improvement of the width by 1 when moving from hw to ghw, namely from hw = 6
to ghw = 5. In 2 further cases, we could show hw ≤ 6 and ghw ≤ 5, but the attempt to
check hw = 5 or ghw = 4 led to a timeout. Hence, hw = ghw in 54.4% of the cases if we
consider all instances and in 68.2% of the cases (1968 of 2886) with small width (hw ≤ 6).
However, if we consider the fully solved cases (i.e., where we have the precise value of hw
and ghw), then hw and ghw coincide in 99.2% of the cases (1968 of 1984).

4.3.5 Fractionally Improved Decompositions
Computing FHDs is very expensive even in tractable cases, as the result in [53] involves a
double exponential “constant”. Here we propose two algorithms for computing an FHD of
a hypergraph when we already have a GHD: ImproveHD and FracImproveHD. They
differ in the compromise between computational cost and quality of the approximation.

The first algorithm we present is based on a simple observation: given a GHD, we
could substitute its integral edge covers with fractional edge covers and obtain an FHD.
Formally, let D = ⟨T, (Bu)u∈T , (λu)u∈T ⟩ be either a GHD or an HD. Our algorithm
ImproveHD computes an FHD D′ = ⟨T ′, (B′

u)u∈T ′ , (γu)u∈T ′⟩ where:

• The tree T ′ is the same as T .

• For each node u ∈ T ′, the bag B′
u = Bu.

• For each node u ∈ T ′, γu is a minimum-weight fractional edge cover of B′
u.

64

4.3. Comparison of GHD Decomposition Algorithms

Table 4.8: Instances solved with ImproveHD.

hw ≥ 1 [0.5, 1) [0.1, 0.5) No T/O
2 0 136 40 419 0
3 12 104 25 169 0
4 9 55 11 311 0
5 20 14 11 382 0
6 12 60 80 307 0

Table 4.9: Instances solved with FracImproveHD.

hw ≥ 1 [0.5, 1) [0.1, 0.5) No T/O
2 0 194 46 353 2
3 14 116 21 135 24
4 11 81 2 8 284
5 18 126 59 2 222
6 28 149 95 4 183

To obtain the FHD D′, we iterate over the nodes of D and, for each Bu, we compute a
minimum-weight fractional edge cover of Bu. Since computing such a fractional edge
cover is polynomial and we assume to have already computed an HD to start with, the
whole algorithm is efficient. Nevertheless, it is clear that there is a strong dependence on
the starting HD. This is unsatisfactory and so we devised a more sophisticated algorithm.

The algorithm we describe here gets rid of the dependence on a particular HD and
computes a fractionally improved (G)HD with a fixed improvement threshold. We call
this algorithm FracImproveHD. It searches for an FHD D′ with D′ = ImproveHD(D)
for some HD D of H with width(D) ≤ k and width(D′) ≤ k′. Here, k is an upper bound
on the hw and k′ the desired fractionally improved hw. In other words, this algorithm
searches for the best fractionally improved HD over all HDs of width ≤ k. Hence, the
result is independent of any concrete HD.

The algorithm FracImproveHD is built on top of the GHD construction described in
Chapter 2. Recall that, given a hypergraph H, this algorithm maintains a set of edges
C ⊆ E(H) which represents the current component to decompose. While searching for a
separator λu of C, we do not only want that |λu| ≤ k, but we also require that, among all
possible choices of λu, we choose one such that weight(γu) ≤ k′, where γu is a fractional
edge cover of B(λu). This guarantees that the output is the desired FHD.

The experimental results with these algorithms for computing fractionally improved HDs
are summarized in Table 4.8 and Table 4.9. We have applied these algorithms to all
hypergraphs for which hw ≤ k with k ∈ {2, 3, 4, 5, 6} is known from Figure 4.3. The
various columns of these tables are as follows: the first column (labeled hw) refers to
the (upper bound on the) hw according to Figure 4.3. The next 3 columns, labeled ≥ 1,

65

4. Benchmarking Decomposition Algorithms

[0.5, 1), and [0.1, 0.5) tell us, by how much the width can be improved (if at all) if we
compute an FHD by one of the two algorithms. We thus distinguish the 3 cases if, for
a hypergraph of hw ≤ k, we manage to construct an FHD of width k − c for c ≥ 1,
c ∈ [0.5, 1), or c ∈ [0.1, 0.5). The column with label “No” refers to the cases where no
improvement at all or at least no improvement by c ≥ 0.1 was possible. The last column
counts the number of timeouts.

For instance, in the first row of Table 4.8, we see that (with the ImproveHD algorithm
and starting from the HD obtained by the hw-computation of Figure 4.3) out of 595
hypergraphs with hw = 2, no improvement was possible in 419 cases. In the remaining
176 cases, an improvement to a width of at most 2 − 0.5 was possible in 40 cases and an
improvement to k − c with c ∈ [0.1, 0.5) was possible in 136 cases. For the hypergraphs
with hw = 3 in Figure 4.3, almost half of the hypergraphs (141 out of 310) allowed at
least some improvement, in particular, 104 by c ∈ [0.5, 1) and 12 even by at least 1. The
improvements achieved for the hypergraphs with hw ≤ 4 and hw ≤ 5 are less significant.

The results obtained with our FracImproveHD implementation are displayed in Table 4.9.
We see that the number of hypergraphs which allow for a fractional improvement of the
width by at least 0.5 or even by 1 is often bigger than with ImproveHD – in particular in
the cases where k′ ≤ k with k ∈ {4, 5} holds. In the other cases, the results obtained with
the naive ImproveHD algorithm are not much worse than with the more sophisticated
FracImproveHD algorithm.

4.4 Summary
In this chapter, we studied the problem of benchmarking decomposition algorithms,
emphasizing the nature and structure of the instances to decompose. We based our study
on HyperBench, a preexisting collection of hypergraphs originating from real-world CQs
and CSPs. We recognized that HyperBench lacked CQ hypergraphs, as most instances
came from CSPs. Moreover, the CQs consisted of simple SQL queries to the detriment of
more complex SQL queries and queries written in different languages, such as SPARQL.
Therefore, we collected a more varied sample of complex SQL and SPARQL queries to
balance this dataset.

The extraction of hypergraphs from complex SQL queries proved to be a complicated task.
Since using existing methods for non-basic SQL queries was impossible, we developed
a new methodology for transforming complex SQL queries into hypergraphs. At first,
we distinguished between simple and complex SQL queries. The latter are those using
constructs of the SQL language hiding the essential conjunctive structure. Nevertheless,
it is not always possible to rewrite a query in conjunctive form, but it is often meaningful
to extract “maximal conjunctive components” and analyze them separately. We proposed
and implemented an algorithm for this case. On the front of SPARQL queries, we
integrated an existing dataset of hypergraphs stemming from Wikidata queries. In the
end, we rebalanced the partition between CQs and CSPs in the new HyperBench.

66

4.4. Summary

It followed a thorough analysis of the structural properties of the new HyperBench, which
revealed that these hypergraphs typically have low width and (multi-)intersection sizes.
Hence, real-world problems tend to have suitable characteristics for being solved via
decompositions. Moreover, we performed an extensive benchmarking of BalSep and
other GHD algorithms presented in Chapter 3. These experiments provide empirical
evidence that GHD algorithms are highly effective in decomposing real-world hypergraphs.
In particular, BalSep performed substantially better than other algorithms. To conclude,
decomposition algorithms were able to successfully decompose real-world hypergraphs
independently from the structure of CQs and CSPs and their nature.

67

CHAPTER 5
Updating GHDs upon Instances’

Modifications

In Chapter 3 and Chapter 4, we proved that the BalSep algorithm is theoretically sound
and can efficiently compute GHDs for a rich and varied set of hypergraphs. This fact
makes BalSep an effective tool for decomposing hypergraphs in a typical static scenario
where the input is given at the beginning of the computation and does not change over
time. Indeed, the same decomposition is reusable several times to answer the same query
over different databases or over the same database updated over time. Likewise, we can
reuse an already computed decomposition for a CSP where the constraint relations, but
not the constraint scopes, have been modified. This feature of GHDs makes it worth
investing additional computational resources in finding a low-width GHD to reuse for
future occasions.

Nevertheless, there are problems where the structure of an instance changes during the
computation, then a solving approach based on structural decomposition methods would
fail. For instance, incremental constraint satisfaction is a problem where the constraint
solver needs to handle mutable sets of variables [127] or constraints [54]. If we were to
solve this problem through decompositions, we would need to compute a new GHD of
the instance every time it is modified, even slightly. While such a strategy could still be
feasible for small hypergraphs with low width, where BalSep performs efficiently, we
observed in Chapter 4 that especially the hypergraphs stemming from CSPs tend to have
a higher number of edges and higher width in comparison to hypergraphs deriving from
query answering problems. In this case, using the decomposition algorithms available in
the literature like [76, 52, 75, 126] to compute low-width decompositions in response to
every modification of the input would be detrimental for the performance. Indeed, these
algorithms were not designed for a dynamic scenario where the hypergraph is repeatedly
modified. In fact, to the best of our knowledge, this problem has not yet received any
attention from the research community.

69

5. Updating GHDs upon Instances’ Modifications

a b c

d e

f g

i

j

k

l

(a) Puzzle P .

a b c

d e

f g h

i

j

k

l

(b) Puzzle P ′.

Figure 5.1: Two similar crossword puzzles P and P ′. Given a set of words W , we want
to fill every contiguous horizontal or vertical line of white cells with words from W . If
two lines intersect, the words assigned to these lines must intersect in the right positions.

a b c

d e

f g

i

j

k

l

w1

w2

w3

w4

w′
5

w6

(a) Hypergraph HP of P .

a b c

d e

f g h

i

j

k

l

w1

w2

w3

w4 w5 w6

(b) Hypergraph HP ′ of P ′.

Figure 5.2: The hypergraphs corresponding to the two puzzles P, P ′ of Figure 5.1.

To exemplify the issues encountered in a dynamic decomposition scenario, we introduce
the following example, which we will use for the rest of the chapter.

Example 5.1. Recall that a crossword puzzle, as introduced in Example 2.2, has to be
filled with words belonging to a specific set. Each word must be inserted either horizontally
or vertically so that the length of the word corresponds precisely to the number of contiguous
white cells in a horizontal or vertical line. Also, intersecting lines must be filled with
words having the same letter in the intersecting position. We model such a problem as a
CSP where each cell is a variable and a constraint is defined over each contiguous line of
white cells.

Now consider the two crossword puzzles in Figure 5.1 and the respective hypergraphs in
Figure 5.2. Suppose we first want to solve the puzzle P and then the slightly modified
puzzle P ′ with the help of GHDs. Can we reuse the already-computed GHD of P and
adjust only the parts affected by the modification to solve P ′?

Although the puzzles of Example 5.1 closely resemble each other, using a GHD of P to
solve P ′ is impossible. Thus, even if the hypergraphs of P and P ′ are almost identical,
we must compute a new GHD to solve P ′ from scratch. On the other hand, obtaining
a GHD of P ′ by slightly modifying the GHD of P already in our possession should be
intuitively possible, if we have information about the difference between P and P ′.

In this chapter, we discuss the problem of updating a GHD consequently to changes to
the original hypergraph for which it was computed. Since the CSP area offers relevant
applications for this problem, we develop our theory in a CSP context yet keep in mind

70

5.1. The GHD Update Problem

that we can translate all of our findings into a database setting. We first develop a
framework for constraint modifications and describe how these affect the underlying
hypergraph. Here the focus is on capturing elementary modifications of CSPs, i.e., changes
such as binding a variable to a constant, introducing a new constraint, and enforcing
equality between a set of variables. We also define their dual operations. We then
define the SearchUpdateGHD problem, i.e., the problem of updating a GHD when the
original hypergraph changes w.r.t. the set of elementary modifications previously defined.
Moreover, we study the complexity of the SearchUpdateGHD problem. The problem
turns out to be not solvable in polynomial time for most modifications. Therefore,
theoretically, updating a GHD is just as difficult as computing a new GHD for the
modified hypergraph from scratch. Despite the hardness of the problem, we develop a
practical method to deal with instance updates. Thus, we formulate a framework for
efficient GHD updates that work with any modification. We back up this framework with
an implementation strategy for adapting any existing top-down algorithm for computing
GHDs to encompass also the update case. Finally, we extensively compare our method
to classical algorithms. Given a modification, we use our algorithm to update an existing
decomposition and compare it to a classical algorithm computing a new GHD for the
modified instance. The results of these experiments show that our algorithm outperforms
existing methods. In particular, we achieve mean speed-ups between a factor of 6 and 50
over the reference algorithm.

The rest of the chapter proceeds as follows. In Section 5.1, we define and study the
SearchUpdateGHD problem. Here we first delineate a set of elementary modifica-
tions for CSPs and point out how the underlying hypergraph structure reflects these
modifications. Then we investigate the complexity of the SearchUpdateGHD under
the modifications previously defined. Next, we introduce a theoretical framework for
handling instances updates and accordingly recompute only parts of a GHD affected by
the update in Section 5.2. This framework of δ-mutable subtrees serves as a basis for
defining a practical implementation strategy, which we discuss in Section 5.3. Here we
focus on a high-level description of how to extend a top-down algorithm for computing
GHDs to the update case. In Section 5.4, we implement this strategy for a reference
algorithm and compare its performances against the original version with no support
for updates. Here we show the results of our experiments. Finally, we summarize our
findings in Section 5.6.

The contents of this chapter are based on the article [65], written by the author of this
thesis in collaboration with Georg Gottlob, Matthias Lanzinger, and Cem Okulmus.

5.1 The GHD Update Problem

In this section, we propose relevant classes of elementary modifications of CSPs and
describe their effect on both the CSP and the hypergraph. Then, we formally define the
GHD update problem and settle its complexity.

71

5. Updating GHDs upon Instances’ Modifications

5.1.1 Elementary Constraint Modifications
The modification of a CSP affects its underlying hypergraph and consequently its GHDs.
We define a framework that allows us to update the GHD of a CSP in the face of
constraint modifications. First of all, we define modifications.

Definition 5.1. Given a hypergraph H, a modification is a function mapping hypergraphs
to hypergraphs.

We identify three fundamental hypergraph objects for the computation of a GHD: vertices,
edges, and intersections between edges. As modifying a CSP typically implies the
modification of these objects, we define six classes of modifications that reflect elementary
changes on a hypergraph. In this sense, the proposed classes of modifications are natural,
even though not necessarily minimal. We show the effect of these modifications on the
hypergraph and intuitively explain their correspondence with the related CSP. On the
other hand, we ignore all those CSP modifications that do not change the hypergraph.
For instance, changing constraint relations does not affect the CSP structure, therefore
the same GHD can be reused to solve the modified CSP again.

Hypergraph vertices can be either added or removed. We capture these possibilities in
the following two classes for vertex modifications.

Definition 5.2. AddVar is the class of modifications δ s.t. for every hypergraph H,
given a new vertex w /∈ V (H):

• V (δ(H)) := V (H) ∪ {w},

• E(δ(H)) := E ∪ {e′ ∪ {w} | e′ ∈ E′}, where (E, E′) is a partition of E(H) with
E′ ̸= ∅.

DelVar is the class of modifications δ s.t. for every hypergraph H, given an existing
vertex v ∈ V (H), V (δ(H)) := V (H) \ {v} and E(δ(H)) := {e \ {v} | e ∈ E(H)}.

On the CSP level, DelVar functions bind a CSP variable to a constant value and could
possibly simplify its hypergraph. On the other hand, AddVar functions remove such
binding, i.e., replace a constant with a variable. Alternatively, AddVar modifications
can be seen as simply adding a new variable to an arbitrary number of constraints.

Analogously to the case of vertices, two classes for edge insertion and removal are now
introduced.

Definition 5.3. AddConstr is the class of modifications δ s.t. for every hypergraph
H, δ(H) := H ∪ {f}, where f /∈ E(H) is a new edge. DelConstr is the class of
modifications δ s.t. for every hypergraph H, δ(H) := H \ {e}, where e ∈ E(H).

72

5.1. The GHD Update Problem

a b c

d e

f g h

i

j

k

l

w1

w2

w3

w4 w5 w6

w7

(a) HP2 obtained using δ ∈ AddConstr.

a c

d e

f g h

i

j

k

l

w1

w2

w3

w4 w5 w6

(b) HP3 obtained using δ ∈ AddEq.

Figure 5.3: Hypergraphs obtained by applying to HP ′ the modifications described in
Example 5.2.

AddConstr and DelConstr modifications correspond to alterations of the set of
constraints Ct of a CSP. In particular, δ ∈ AddConstr introduces a new constraint in
Ct, while δ ∈ DelConstr removes a constraint from Ct.

Finally, we present classes to modify intersections between edges. Let H be a hypergraph.
Given U ⊆ V (H), we denote with EU = {e ∈ E(H) | e ∩ U ̸= ∅} the edges incident on U .

Definition 5.4. AddEq is the class of modifications δ s.t. for every hypergraph H, some
vertices U ⊆ V (H) are merged into w ∈ V (δ(H)) and the edges in EU are incident on w.
DelEq is the class of modifications δ s.t. for every hypergraph H, a vertex w ∈ V (H) is
split into a set U ⊆ V (δ(H)) and the edges in E{w} are arbitrarily distributed on U .

Intuitively, an AddEq modification introduces an equality constraint between some
variables of the CSP. In other words, a new AllEqual constraint is defined over a set
of variables of the CSP. On the other hand, DelEq modifications remove this kind of
constraint and thus all equalities between a specific set of variables.

Example 5.2. The hypergraph HP ′ of Figure 5.2b is obtained by applying a modification
δ ∈ AddVar to HP in Figure 5.2a. In particular, δ adds a new vertex h in the edges
{f, g} and {c, e} as well as in V (HP). Note that HP can be obtained from HP ′ via a
modification δ ∈ DelVar removing h from V (HP ′).

Figure 5.3 shows two additional modifications of HP ′ . The hypergraph HP2 of Figure 5.3a
is the result of a modification δ ∈ AddConstr introducing a new edge {c, i}, while HP3

of Figure 5.3b shows the effect on HP ′ of a δ ∈ AddEq adding an AllEqual constraint
between the variables b, g (b is merged into g). Finally, HP ′ can be obtained through an
appropriate inverse modification δ to HP2 and HP3 with δ ∈ DelConstr and δ ∈ DelEq,
respectively.

Note that the set of all considered elementary modifications is complete, i.e., given any two
hypergraphs H, H ′, there always exists a sequence of elementary modifications δ1, . . . , δℓ

such that H ′ = δℓ(· · · (δ1(H))).

73

5. Updating GHDs upon Instances’ Modifications

5.1.2 The Complexity of Updating GHDs
Recall that checking ghw(H) ≤ k, and therefore computing a width k GHD of H, is
N P-hard even when k > 1 is constant [53, 73, 69]. In the context of modifications
this naturally presents the question of the complexity of the following task: given a
hypergraph H together with a minimal width GHD, as well as a modification δ, find a
GHD for δ(H) with the same width if one exists, or correctly identify that the width
increased. Intuitively, the knowledge of a witness for H could make the problem easier,
in particular if δ is a simple modification. Formally, we extend the standard problem
of checking ghw(H) ≤ k for constant k (see e.g., [53]) by simply adding a modification
(from some class of modifications ∆) and a GHD of the original hypergraph to the input.

SearchUpdateGHD(∆)
Instance: hypergraph H, modification δ ∈ ∆, a minimal width GHD of H
Output: A GHD of δ(H) with width ≤ ghw(H) if it exists

or answer ’no’ otherwise.

In the future it might be of interest to further generalise the SearchUpdateGHD
to decide whether a modification increases the width of H only up to some constant
threshold c, i.e., whether ghw(δ(H)) ≤ ghw(H) + c. However, note that of the elementary
modifications introduced above, only DelConstr can actually increase the ghw of the
hypergraph by more than 1. Thus, for all introduced modifications except DelConstr
this generalised problem is trivially true for any c > 0. For DelConstr the increase
in width can depend fully on the structure that was "hidden" by the deleted constraint.
We therefore focus on the analysis of SearchUpdateGHD in this paper and leave the
generalised version open for future work on settings with more complex modifications.

Importantly, SearchUpdateGHD is a search problem rather than a decision problem.
This is motivated from two sides. Our primary motivation stems from practical situation
in which small, iterative updates are consistently made to some CSP and for which we
want to maintain a low width GHD. Since the GHD is necessary to possibly exploit
low width for solving the CSP, we are interested in the search problem rather than the
decision problem.

The second motivating factor comes from the possibility of certain classes of modifications
capturing other classes, i.e., if one can express some modification in a class ∆ via a
sequence of modifications from another class ∆′. Focusing purely on the decision problem
makes it problematic to consider the complexity of sequences of updates, since we have
no information on the complexity of obtaining the new input GHDs along the sequence
of updates. By studying the search problem instead we can make strong statements for
such cases.

The complexity of search problems (see [18]) is a complex topic and the full theoretical
framework is not necessary in our context here. Instead, we will be content with showing

74

5.1. The GHD Update Problem

that even for the simple classes of atomic updates that were discussed previously (except
DelVar), SearchUpdateGHD can not be solved in polynomial time. Note that
SearchUpdateGHD trivially reduces to the problem of finding an optimal GHD of
δ(H) and all negative results therefore extend also to finding optimal GHDs under
modifications.

Theorem 5.1. For ∆ ∈ {AddEq, DelEq, AddVar, AddConstr, DelConstr},
SearchUpdateGHD(∆) cannot be solved in polynomial time (assuming P ̸= N P).

Proof Idea. The basic strategy for each modification class ∆ is simple. We show how to
decide an N P-hard decision problem by finding an initial hypergraph H0, which can be
modified by some sequence of δ1, δ2, . . . , δℓ ∈ ∆ to some target H. The decision problem
will be equivalent to the question whether ghw(H) ≤ ghw(H0). However, this strategy
presents us with two technical challenges. First, the initial H0 needs to be chosen in such
a way that a minimal width GHD can be constructed in polynomial time. Second, there
can be no index i such that after applying the first i modifications to H0, we get a Hi

with ghw(H0) < ghw(Hi) even when ghw(H) ≤ ghw(H0). That is, the sequence can not
increase the width at intermediate hypergraphs before decreasing again.

To tackle these issues, we do not reduce from ghw checking because the second challenge
is particularly problematic. Indeed, our operations are not monotonic (w.r.t. ghw) in
general. Instead, we reduce from 3-Sat by building on the proof of N P-hardness of
ghw checking (for constant width) given by Gottlob et al. [69]. There, a hypergraph is
constructed that has ghw 2 exactly if some 3-Sat instance is satisfiable and has ghw 3
otherwise. Using this specific hypergraph we give concrete H0 and modification sequences
as described above for each ∆. We defer the full proof for each ∆ to Section 5.5.

Updating GHDs is computationally difficult for all of the natural atomic operations that
we considered, except for DelVar1 (where the problem is trivial as DelVar cannot
increase width and a new GHD is trivial to construct). As part of the proof of Theorem 5.1
we discuss how to decide 3-Sat via sequences of modifications, as long as those sequences
adhere to certain conditions. Using this observation we can strengthen the statement
from Theorem 5.1 to all modification classes that capture any of the hard atomic cases
in the following formal sense.

For a sequence of modifications δ1, δ2, . . . , δℓ let us write δn
1 (H) as a shorthand for

δn(δn−1(· · · (δ1(H)) · · ·)). Let ∆, ∆′ be two sets of modifications. We say that ∆
polynomially captures ∆′ if for every hypergraph H and δ′ ∈ ∆′ there exists a sequence
δ1, δ2, . . . , δℓ of modifications in ∆ such that ghw(δi

1(H)) ≤ ghw(δi+1
1 (H)) for 1 ≤ i < ℓ,

δℓ
1(H) = δ′(H) and ℓ is polynomially bounded in the size of H. In plain terms, every

modification in ∆′ can equivalently be reached via a polynomial sequence of modifications
from ∆.

1A DelVar modification results in an induced subhypergraph, which is well known to never increase
in width (see e.g., [69]).

75

5. Updating GHDs upon Instances’ Modifications

Corollary 5.1. Let ∆ be a class of modifications that polynomially captures at least
one class among AddEq, DelEq, AddVar, AddConstr, or DelConstr. Then
SearchUpdateGHD(∆) cannot be solved in polynomial time (assuming P ̸= N P).

5.2 A Framework for Handling Updates
We have seen that SearchUpdateGHD is difficult in general. In the following we
thus focus on making the first steps towards practical solutions for the problem. In
this section we present the theoretical framework of mutable subtrees for the uniform
treatment of GHD updates under arbitrary modifications. Moreover, we briefly discuss
how our approach extends to sequences of elementary modifications.

5.2.1 The δ-mutable Subtrees of a Decomposition

We lay the theoretical foundations of δ-mutable subtrees, a notion that will let us treat up-
dates uniformly. We first introduce some convenient notation. Let ⟨T, (Bu)u∈T , (λu)u∈T ⟩
be a GHD of a CSP P and let T ′ be a subtree of T . We write T \ T ′ for the forest created
by removing the nodes of T ′ from T . Since we are interested in the hypergraph structure,
we write H[T ′] for the subhypergraph of H induced by the vertices �

u∈T ′ Bu.

We are now ready to introduce the central notion of our framework, δ-mutable subtrees.
Intuitively, these subtrees (of a decomposition) represent a kind of local neighborhood
of the modification δ, i.e., the segment of the decomposition that corresponds to those
parts of the hypergraph that are changed by δ. Note that the definitions and results in
this section apply not only to the previously discussed elementary modifications but to
arbitrary modifications in the sense of Definition 5.1.

Definition 5.5 (δ-mutable subtree). Let G be a GHD of hypergraph H with tree T ,
and let δ be a modification. A subtree T ∗ of T is a δ-mutable subtree if the following
conditions hold:

• H[T \ T ∗] = δ(H)[T \ T ∗],

• and no v ∈ V (δ(H)) \ V (H) is adjacent (in δ(H)) to a vertex in B(T \ T ∗).

Thus, we split our existing decomposition in two parts: the mutable subtree T ∗, where
the corresponding part of the hypergraph has changed, and the outer subtrees which
correspond to those subhypergraphs that remain unchanged by the modification. An
important reason for considering mutable subtrees is captured by the following Lemma 5.1,
namely that all the trees outside of T ∗ are still correct GHDs for their respective parts of
the new hypergraph. Hence, it is possible to reuse these partial decompositions for δ(H)
and save the effort of decomposing those parts of the hypergraph again.

76

5.2. A Framework for Handling Updates

Lemma 5.1. Let ⟨T, (Bu)u∈T , (λu)u∈T ⟩ be a GHD of hypergraph H with tree T , let δ be
a modification, and let T ∗ be a δ-mutable subtree. For every tree T ′ in the forest T \ T ∗

it holds that ⟨T ′, (Bu)u∈T ′ , (λu)u∈T ′⟩ is a GHD of δ(H)[T ′].2

Proof. Since we assume that T ′ is a tree in the forest T \ T ∗ we also have that B(T ′) ⊆
B(T \ T ∗). Hence, it must also hold that H[T ′] = δ(H)[T ′] by assumption that T ∗ is
δ-mutable.

We now argue that ⟨T ′, (Bu)u∈T ′ , (λu)u∈T ′⟩ is a GHD of H [T ′] and thus, by the previous
argument, also of δ(H)[T ′]. First, observe that the connectedness condition is clearly
still satisfied in T ′ since we never change the bags. For the covers it is clear that if
e ∈ E(H), then e ∩ B(T ′) is an edge in H[T ′]. Since Bu ⊆ B(T ′) we clearly also have
that Bu ⊆ �

e∈λu
e ∩ B(T ′). What is left, is to verify that every edge e of H [T ′] is covered

in T ′. Let e′ be one of the edges in H such that e = e′ ∩ B(T ′). Since we start from a
GHD of H, there must be a node u where e′ is covered. Hence, all the vertices of e are
in Bu. Hence, all of the subtrees induced by the vertices in e touch by the connectedness
condition. Since all of the vertices of e are in B(T ′) all those subtrees must have a
common node in T ′. Hence, ⟨T ′, (Bu)u∈T ′ , (λu)u∈T ′⟩ is a GHD of H[T ′] and therefore
also of δ(H)[T ′].

Example 5.3. In Example 5.2, a δ ∈ AddConstr is used to create the hypergraph
HP2 from HP ′ , as in Figure 5.3a. We now consider reverting this modification, i.e., the
modification δ−1 ∈ DelConstr that removes the edge {c, i}, i.e., we have δ−1(HP2) =
HP ′ (recall, the hypergraph of P ′ is shown in Figure 5.2b). As input for our update
example, we use the width 2 GHD ⟨T, (Bu)u∈T , (λu)u∈T ⟩ of HP2 given in Figure 5.4a.
The two highlighted nodes in Figure 5.4a represent a δ−1-mutable subtree T ∗ of T .
Observe that T \ T ∗ consists of two trees that correspond to the induced subhypergraphs in
Figure 5.4b. By Lemma 5.1, these parts remain correct GHDs for their respective induced
subhypergraphs.

We could update the overall decomposition by changing the bag {c, e, i, k} to {e, i, k} while
removing w7 from the λ label to update the decomposition to fit P ′. Mechanically this
can be checked by searching for a GHD of δ−1(HP2)[{a, b, c, e, i, h, k}] that is consistent
with the surrounding trees in a certain way that will be discussed below.

Since we want to reuse as much of the old decomposition as possible, it naturally becomes
interesting to have T \ T ∗ as large as possible. Hence, we are interested in finding
minimal δ-mutable subtrees, i.e., those δ-mutable subtrees with the least number of
nodes. Fortunately, it is relatively easy to find minimal mutable subtrees. The full tree
T is trivially a δ-mutable subtree. We can then start from T0 = T and greedily eliminate
leaves as long as the property from Definition 5.5 remains valid. Once no more leaves
can be removed, the procedure will have reached a minimal δ-mutable subtree.

2Technically every edge e in every edge cover λu is replaced by the edge e∩ (
�

u∈T ′ Bu) of the induced
subhypergraph.

77

5. Updating GHDs upon Instances’ Modifications

Bu1 a, b, c, e, h
λu1 w1, w5

Bu2 c, e, i, k
λu2 w3, w7

Bu4 j, k, l
λu4 w6

Bu3 a, d, f, g, h
λu3 w2, w4

(a) The bags of a GHD of H ′ with width
2. The minimal δ-mutable subtree is high-
lighted.

a

d

f g h

j

k

l

(b) Hgs induced by T \ T ∗.

Figure 5.4: Example 5.3.

Lemma 5.2. For any GHD G of a hypergraph H and any modification δ there exists
a unique minimal δ-mutable subtree. Moreover, there exists an algorithm with input
(G, H, δ(H)) that computes the minimal δ-mutable subtree in polynomial time.

Proof. We first prove the uniqueness of minimal δ-mutable subtrees. Suppose towards a
contradiction that there are two distinct minimal δ-mutable subtrees T1 and T2 of a GHD
⟨T, (Bu)u∈T , (λu)u∈T ⟩. Recall, in the argument for Lemma 5.1 it was already argued that
for every tree T ′ in T \ T1 or T \ T2, we have that H[T ′] = δ(H)[T ′].
Now, from the assumption that both T1 and T2 are minimal but distinct there has to
exist a tree T ′ ∈ T \ T1 such that T ′ ∩ T2 ̸= ∅. If this were not true, then T2 would be a
subtree of T1 and we are done. Fix such a T ′ and let X be the set of nodes that are in
T ′ and T2. Since H[T ′] = δ(H)[T ′], and X ⊆ T ′, also H[X] = δ(H)[X] and it becomes
easy to see that

H[T \ (T2 \ X)] = H[B(X) ∪ B(T \ T2)] = δ(H)[B(X) ∪ B(T \ T2)] = δ(H)[T \ (T2 \ X)]

Thus, T2 \ X is also a δ-mutable subtree and smaller than T2, contradicting our initial
assumption of minimality. Note that the second condition of Definition 5.5 cannot become
unsatisfied by removing nodes from T2.
The algorithm from the statement is given in Algorithm 5.1. The algorithm clearly
starts with a δ-mutable subtree and throughout the iterative elimination the working
tree T ′ remains a δ-mutable subtree. Note that the argument from before can be seen
as a method to create a smaller δ-mutable subtree from any disjoint pair of δ-mutable
subtrees. Hence, if no more leaves can be removed from T ′ in the algorithm, then every
smaller tree must not be disjoint. But if the minimal subtree were to be a proper subtree
of T ′, then removal of some leaf must be possible since the induced subhypergraphs of
T \ T ′ grow monotonically. Thus, there can be no smaller δ-mutable subtree that is a
subtree of T ′ and none that has disjoint vertices from T ′. It follows that the returned T ′

is minimal and the algorithm is therefore correct.

78

5.2. A Framework for Handling Updates

Algorithm 5.1: Finding Minimal δ-mutable Subtrees.
Input: Hypergraph H, Hypergraph δ(H), GHD ⟨T, (Bu)u∈T , (λu)u∈T ⟩ of H
Output: A minimal δ-mutable subtree T ′

1 begin
2 T ′ ← T
3 Vnew ← V (δ(H)) \ V (H)
4 repeat
5 foreach Leaf u of T ′ do
6 T ′−u ← T ′ \ {u}
7 A ← H[T \ T ′−u]
8 B ← δ(H)[T \ T ′−u]
9 Adj ← all vertices adjacent to B(T \ T ′−u) in δ(H)

10 if A = B and Vnew ∩ Adj = ∅ then
11 T ′ ← T ′−u

12 break
13 end
14 end
15 until T ′ did not change
16 return T ′

17 end

5.2.2 Updating GHDs using δ-mutable Subtrees

By Lemma 5.1 we can use the old decomposition to derive correct GHDs for certain
induced subgraphs of δ(H). It is not guaranteed that the minimal width GHD of δ(H)
can be constructed in such a way that these pre-solved induced subgraphs correspond
to parts of the decomposition. However, the possibility of only having to recompute a
decomposition for some small subgraph δ(H)∗ is promising in practice. In particular, we
are interested in δ(H)∗ which is the part of δ(H) that contains δ(H)[T ∗] for the minimal
δ-mutable subtree T ∗, plus any possible new vertices and edges introduced by δ. Ideally,
we want a new GHD for δ(H)∗ with which we can replace T ∗ ⊆ T to arrive at a valid
generalized hypertree for δ(H). This way we can fully reuse the T \ T ∗ parts of the
old GHD. To replace the new decomposition of δ(H)∗ in place of T ∗ in T we need to
enforce some additional constraints on the GHD of H∗. Therefore, we introduce the
notion of bag constraint as a set γ ⊆ V (δ(H)∗). A bag constraint γ is satisfied by a GHD
⟨T, (Bu)u∈T , (λu)u∈T ⟩ if there exists a node u ∈ T , s.t., γ ⊆ Bu. In particular, given such
a GHD and a mutable subtree T ∗, let {u1, . . . , uq} be the set of nodes in T \ T ∗ that have
a neighbor in T ∗. We call the set {γi | γi = Bui ∩ (�u∈T ∗ Bu), 1 ≤ i ≤ q} the T ∗-induced
bag constraints.

Theorem 5.2. Let G be a width k GHD of a hypergraph H with tree T , let δ be a
modification and let T ∗ be a δ-mutable subtree of T . If δ(H)∗ has a GHD of width ≤ k

79

5. Updating GHDs upon Instances’ Modifications

that satisfies all T ∗-induced bag constraints, then ghw(δ(H)) ≤ k.

Proof. We prove the statement by constructing the required new width k GHD of δ(H)
from the GHD of δ(H)∗ and the subtrees T \ T ∗. Hence, not only is the width of δ(H)
at most k, but a GHD of δ(H) can be efficiently constructed by only computing a GHD
(with bag constraints) for δ(H)∗.

Suppose D∗ is a width k GHD of H∗ that satisfies all T ∗-induced bag constraints. Let
γ1, . . . , γℓ be T ∗-induced bag constraints and recall that every bag constraint is associated
one-to-one to a node in T that neighbors a node in T ∗. Let ui be the node associated to
the constraint γi in this way for all i ∈ [ℓ].

The final decomposition ⟨T ′, (B′
u)u∈T ′ , (λ′

u)u∈T ′⟩ is now constructed as follows starting
from D∗. For each bag constraint γi, identify the subtree Ti ∈ T \ T ∗ that contains ui

as well as any node u∗
i in D∗ that satisfies γi. Then, attach the tree Ti at node ui to

D∗ at u∗
i . By attaching subtrees for each bag constraint this way we obtain our final

⟨T ′, (B′
u)u∈T ′ , (λ′

u)u∈T ′⟩.
We now argue that ⟨T ′, (B′

u)u∈T ′ , (λ′
u)u∈T ′⟩ is indeed a width k GHD of δ(H). Indeed,

width k follows immediately from the construction since D∗ and ⟨T, (Bu)u∈T , (λu)u∈T ⟩
both have width k and none of their λ-labels are modified. For connectedness, recall
that by our definition of bag constraints the tree Ti is attached to a node u∗

i whose bag
contains Bui ∩ B(T ∗). Hence, every vertex in B(T ∗), and thus also every vertex in bags
of D∗, that also occurs in B(Ti) must be in Bui . We see that connectedness can not be
violated by the attaching step of our construction. By Lemma 5.1, all the individual
parts that are attached to D∗ already satisfy the connectedness condition and it therefore
holds also for all of ⟨T ′, (B′

u)u∈T ′ , (λ′
u)u∈T ′⟩.

Finally, we verify that all edges of δ(H) are covered by some bag of ⟨T ′, (B′
u)u∈T ′ , (λ′

u)u∈T ′⟩.
We partition the set of edges in two sets, edges that are in δ(H)∗ and those that are not. If
an edge is in δ(H)∗, then it must be covered by D∗ and thus also in ⟨T ′, (B′

u)u∈T ′ , (λ′
u)u∈T ′⟩.

In the latter case, observe that if an edge e is in δ(H) but not in δ(H∗), then e is in H
and thus covered by some node of T \ T ∗. Note that there is a T ∗-induced bag constraint
for every tree in T \ T ∗. Hence, by Lemma 5.1 and the above construction reattaching
the subtree in which e is covered, e is also covered in ⟨T ′, (B′

u)u∈T ′ , (λ′
u)u∈T ′⟩.

Note that we made no explicit use of the second condition in Definition 5.5. The condition
effectively enforces that any edges that contain new vertices will be in H∗ and in this
way implicitly factors into the above argument.

It is possible for no T ∗-induced bag constraints satisfying GHD of δ(H)∗ with width
at most k to exist, even if ghw(δ(H)) ≤ k. Thus, while the discussions of this section
– and in particular the ideas of Theorem 5.2 – form the foundation of our practical
implementation, some adaptations are necessary to efficiently deal with those cases. This
will be the topic of the following section.

80

5.3. Implementation of the δ-mutable Subtree Framework

5.3 Implementation of the δ-mutable Subtree Framework
We now focus on using the concept of δ-mutable subtrees to update GHDs systematically.
The idea is to speed up the computation of a new GHD for an updated hypergraph by
exploiting information that can be inferred from an old GHD of the original instance,
even if parts of the old GHD need to be recomputed. We achieve this by devising a
data structure that can then be maintained throughout a sequence of successive updates
to speed up the computation even further. We define an algorithmic framework that
is implementation agnostic in the sense that only a few adaptations are required to
extend the capabilities of handling GHD updates to virtually any existing top-down
algorithm computing GHDs for the classical case. While here we just provide the abstract
version of this framework, in Section 5.4 we implement it into an existing state-of-the-art
decomposition algorithm. There we also report on its performance in various update
tasks.

5.3.1 Reusable Subtrees and Scene Mappings

The goal of our implementation is twofold: we want a strategy built on top of the
framework of δ-mutable subtrees, and we want it to encompass existing algorithms
for computing GHDs. In the following, we make use of the basics of top-down GHD
construction, as explained in Section 2.4. Before we proceed with explaining our im-
plementation, we introduce a way of referring to how bags and edge covers of the old
GHD are affected by an update δ when we want to use the old GHD with the modified
hypergraph δ(H). We first define a function sδ : E(H) → E(δ(H)) ∪ ∅, which maps
edges e ∈ E(H) to their corresponding equivalent e′ ∈ E(δ(H)), if it exists, or ∅, if δ
actually deleted that edge. By slight abuse of notation, given a subset X ⊆ E(H), we
shall use δ(X) = {sδ(e) | e ∈ X}. In this same vein, we also introduce for a vertex
set Y ⊆ V (H), the notation δ(Y) = Y ∩ V (δ(H)). Another notational choice we make
throughout this section is how to refer to the input of an algorithm dealing with updated
hypergraphs. Since all algorithms we present only deal with a single updated hypergraph
and its subgraphs and never need the original hypergraph, we omit the use of the δ
function for hypergraphs. So instead of δ(H), we just write H, with the understanding
that H has already been updated. We will still need a δ-mutable subtree, but we assume
that it has been computed and provided to the algorithm as an input.

The idea behind our framework is to try to update the minimal δ-mutable subtree T ∗

and reuse as many of the outer subtrees as possible. If this is not possible, due to the
way the modification has changed the hypergraph, we still want to return a GHD of the
updated hypergraph quickly. Bag constraints from Theorem 5.2 encode the properties
necessary for parts of T ∗ to be reused. As mentioned, however, it is possible that in order
to successfully find a new GHD of low width, we need to forgo some of them. For our
implementation we think of them as soft constraints: we make an effort to find GHDs
that reuse T ∗ if they exist, and if they do not, use them as a starting point in the search
space. We realize this behavior via the concept of a scene.

81

5. Updating GHDs upon Instances’ Modifications

Definition 5.6 (Scene). Let ⟨T, (Bu)u∈T , (λu)u∈T ⟩ be a normal-form GHD of a hyper-
graph H. A scene mapping σ : 2E(H) → N(T) is a partial mapping from a subhypergraph
H ′ ⊆ H to a node u ∈ T . The co-domain element of σ is denoted as a scene. Given
a modification δ and a δ-mutable subtree T ∗, we call σ(H) out-scene if σ(H) ̸∈ T ∗ or
in-scene if σ(H) ∈ T ∗.

Scenes are used to avoid decomposing again parts of the hypergraph for which we already
know a GHD. Lemma 5.1 implies that out-scenes are reusable for a new GHD. Using
in-scenes is more complex, thus, we try to utilize them at most once to see if they help
in finding a GHD of the updated instance. If this leads to a reject case, we know that
the scene will not be used again. Therefore, in-scenes do not invalidate the correctness of
our approach. We compute a scene mapping via a two-phase traversal of the old GHD
G. Without loss of generality (see Theorem 2.1), we require G to be in normal form
so that we can determine which subtrees of the GHD “cover” certain components of
the new hypergraph H. Recall that this step can be performed in polynomial time [72].
Additionally to G and H , we also need to know which nodes of G belong to the δ-mutable
subtree of H. We assume that this tree has been computed prior to the start of the
computation of the scene mapping and is referred to as T ∗. The pseudocode of our
procedure is split into Algorithm 5.2 and Algorithm 5.3, each detailing one of the two
phases. We proceed to give an informal explanation below.

The downward phase, called SceneCreationDown, is executed first. In Algorithm 5.2,
the old GHD is traversed top-down as the bags of the nodes encountered along the
traversal are used to “replay a decomposition procedure”. The first call of the algorithm is
performed on the root n of the old GHD, the updated hypergraph H , and the δ-mutable
subtree T ∗. In lines 2–9, we check whether the current node n trivially cannot be reused
for a new decomposition of H. In this case, we proceed with the second phase of our
procedure. Otherwise, if the previous checks are passed, we create a new mapping H → n
for the current hypergraph H as seen in line 10. The next step consists in computing a
mapping between the [δ(Bn)]-components C1, . . . , Cℓ of H and the child nodes u1, . . . , uℓ

of n (line 11). Here we assign each child ui to a component Ci where we have that
δ(Bui) ∩ Ci ̸= ∅. Due to the properties of GHDs in normal form, we know that each
[δ(Bn)]-component matches with exactly one child node ui. If not, then the downward
phase stops jumping to line 13. This can only happen when considering nodes of T ∗.
However, if a mapping exists and is unique, we make a recursive call on each pair (ui, Ci)
in line 16 and subsequently collect the returned scenes. Finally, the resulting scene
mapping σ is returned.

The upward phase, called SceneCreationUp, is started by Algorithm 5.2 anytime this
stops at a non-leaf node, as seen in lines 3, 8 and 13. While traversing the remaining
nodes of the old GHD, Algorithm 5.3 skips all those nodes belonging to T ∗ and tries to
produce new scenes for any subtree Tn attached below T ∗. This is done by recursively
calling the function on the children of n until a leaf is reached, as seen between lines 3 – 7.
Since SceneCreationUp is called only on nodes n ∈ T such that n /∈ T ∗ and T ∗ is

82

5.3. Implementation of the δ-mutable Subtree Framework

Algorithm 5.2: The SceneCreationDown Algorithm.
Input: Node n ∈ T , Hypergraph H, δ-mutable subtree T ∗, Modification δ
Output: A scene mapping σ

1 begin
2 if δ(Bn) ⊈ B(δ(λn)) then
3 return SceneCreationUp(n, H, T ∗)
4 end
5 X ← [δ(Bn)]-components of H
6 Y ← children of n
7 if |X | ̸= |Y| then
8 return SceneCreationUp(n, H, T ∗)
9 end

10 σ ← {H → n}
11 compute mapping θ such that ∀u, C ∈ Y × X , θ(u) = C iff

V (C) \ (δ(Bn) ∩ δ(Bu)) ̸= ∅
12 if θ does not exists or θ is not unique then
13 return SceneCreationUp(n, H, T ∗)
14 end
15 foreach u, θ(u) ∈ θ do
16 σ′ ← SceneCreationDown(u, θ(u), T ∗)
17 σ ← σ ∪ σ′

18 end
19 return σ

20 end

a tree, hence a connected set of nodes, the check in line 8 is sufficient to skip all and
only those nodes belonging to T ∗. At this point, the algorithm creates new scenes by
going back through the calls in a bottom-up fashion and at every node n it looks at the
subtree Tn to create the mapping {e ∈ E(H) | e ∩ B(Tn)} → n. To this end, the edges
of H “covered” by the subtrees rooted in the children of Tn are collected through the
calls (line 6). The algorithm proceeds by computing the edges covered by the bag of
n in line 9. The union of this set of edges with {e ∈ E(H) | e ∩ B(Tn)} represent all
the edges constituting H[Tn]. We thus map H[Tn] to n, as seen in line 12. This upward
phase ensures we can make full use of Lemma 5.1 by considering all subtrees below T ∗

that are not affected by the modification at hand.

Example 5.4. We shall consider here as our initial hypergraph HP2 , seen in Figure 5.3.
A GHD of HP2 is provided in Figure 5.4a, we shall refer to it as G in the sequel. We will
use the same modification δ−1 ∈ DelConstr as introduced in Example 5.3. Thus, using
δ−1(HP2) and G we will create the scene mapping. We start with the downward phase.

Looking at the root node u1 of G, we create a scene mapping δ−1(HP2) → u1. Next, we

83

5. Updating GHDs upon Instances’ Modifications

Algorithm 5.3: The SceneCreationUp Algorithm.
Input: Node n ∈ T , Hypergraph H, δ-mutable subtree T ∗

Output: A scene mapping σ, a hypergraph H[Tn]
1 begin
2 Y ← children of n
3 for u ∈ Y do
4 σ′, H[Tu] ← SceneCreationUp (u, H, T ∗)
5 σ ← σ ∪ σ′

6 H[Tn] ← H[Tn] ∪ H[Tu]
7 end
8 if n /∈ T ∗ then
9 H[Tn] ← H[Tn] ∪ {e ∈ E(H) | e ⊆ Bn}

10 X ← [Bn]-components of H[Tn]
11 if |X | = |Y| then
12 σ ← σ ∪ {H[Tn] → n}
13 end
14 end
15 return σ, H[Tn]
16 end

consider the [Bu1]-components of δ−1(HP2), yielding components, C2 = {w3, w6} and
C3 = {w2, w4}. We look for unique matching pairings of child nodes of u1 and [Bu1]-
components. We see that (Bu2 \Bu1)∩V (C2) = {i, k} and (Bu3 \Bu1)∩V (C3) = {d, f, g}.
Since all components were matched, we proceed on the pairings (C2, u2) and (C3, u3).
Next we consider the node u2, and create the mapping C2 → u2. We consider now
the [Bu2]-components of C2. We get one component, C4 = {w6} and we have that
(Bu4 \ Bu2) ∩ V (C4) = {j, l}. Thus we proceed on the pairing (C4, u4). We create the
mapping C4 → u4. We note that there are no [Bu4]-components of C4, since Bu4 already
covers the entire component C4. We continue with (C3, u3). We create the mapping
C3 → u3. As before, we note that there are no [Bu3]-components of C3, as Bu3 already
fully covers C3. Since the downward phase never stopped at a non-leaf node, we do
not proceed to the upward phase. To summarize, we get the following scene mapping:
{(δ−1(HP2) → u1), (C2 → u2), (C3 → u3), (C4 → u4)}. We will see in Algorithm 5.4 how
this scene mapping can be used to speed up GHD computation under updates.

Lemma 5.3. The SceneCreationUp function, detailed in Algorithm 5.3, has a time
complexity of O(N2 · E · V) where N is the number of nodes of the input tree T , and V
and E are the number of vertices and edges of the input hypergraph H, respectively.

Proof. Here we assume that the nodes of T belonging to T ∗ have been explicitly marked
and, thus, for any n ∈ T , checking whether n ∈ T ∗ or not takes constant time.

84

5.3. Implementation of the δ-mutable Subtree Framework

Let us first consider a call of Algorithm 5.3 on a leaf node of n ∈ T such that n /∈ T ∗.
Hence, lines 3-7 are skipped, while lines 8-13 are all executed. The first salient operation
of this call is the construction of the current induced subhypergraph H[Tn]. Here, the
computation of the set {e ∈ E(H) | e ⊆ Bn} roughly costs O(E · V · N) by subset
checking. The next relevant operation is the computation of the connected components of
H[Tn] separated by Bn. The algorithm from [129] computing the connected components
of graphs can be adapted to the case of hypergraphs3, thus contributing with a O(V + E)
cost. Then, the check in line 10 requires counting the number of components X and the
number of children Y of n, the cost of which can be overestimated with O(V + N). The
cost of such a call is thus dominated by O(E · V · N).

Conversely, in a general call to SceneCreationUp, lines 3-7 execute only constant time
operations except for the recursive call to SceneCreationUp. It is easy to see that
SceneCreationUp is executed exactly once per each node of Tn. Therefore, the total
cost of Algorithm 5.3 is O(N · (E · V · N)).

Lemma 5.4. The SceneCreationDown function, detailed in Algorithm 5.2, has a
time complexity of O(N2 · E · V + N2 · E2 + N · V 2) where N is the number of nodes of the
input tree T , and V and E are the number of vertices and edges of the input hypergraph
H, respectively.

Proof. Let us first consider the case of a run of Algorithm 5.2 that never makes a subcall
to Algorithm 5.3. Here, it is easy to see that SceneCreationDown is executed once
per each node of the input tree T and it is thus called N times. Therefore, the total
cost of such a run is N · cost(SceneCreationDown). We shall now calculate the cost
of executing lines 2-11. Assuming that δ(Bn) and δ(λn) are part of the input, checking if
δ(Bn) ⊈ B(δ(λn)) costs O(V 2) since these are both subsets of V (H). We then proceed to
the computation of the [δ(Bn)]-components of H, which costs O(V + E) as discussed in
the complexity proof of SceneCreationUp. The next check |X | ̸= |Y| costs O(E + N).
The computation of the mapping between children of the current node n and [δ(Bn)]-
components of H can be performed by comparing the N ·E pairs of elements from Y and X .
For each pair, we then check whether the condition V (C)\(δ(Bn)∩δ(Bu)) ̸= ∅ holds or not,
which can be performed in O(E + 2V) time. The total cost of the mapping computation
is thus O(N · E · (E + 2V)). Finally, the total cost of a run of SceneCreationDown is
O(N · (V 2 + (V + E) + (E + N) + N · E · (E + 2V))) = O(N · (N · E · V + N · E2 + V 2)).

Let us now take into account the possible calls to SceneCreationUp. We observe that
for each node n ∈ T either SceneCreationDown of SceneCreationUp is called unless
n is a “frontier” node, i.e., a node where one of the checks in SceneCreationDown
fails and SceneCreationUp is called. Nevertheless, once SceneCreationUp starts,
the recursion of SceneCreationDown ends. It is thus reasonable to overestimate the
general cost of Algorithm 5.2 with the cost of a call to SceneCreationDown where

3While the cited article deals with (strongly) connected components of directed graphs, a trivial
reduction to the undirected setting exists. We can then consider a hypergraph as an undirected graph.

85

5. Updating GHDs upon Instances’ Modifications

SceneCreationUp is never called plus the cost of call to SceneCreationUp on the
original input of Algorithm 5.2. Then, the total cost is O(N2 ·E ·V +N2 ·E2 +N ·V 2).

We conclude this section with a final note on the complexity of transforming an existing
GHD into normal form. Algorithm 5.2 and Algorithm 5.3 require that the input GHD
is in normal form. Theorem 5.4 in [72] shows a polynomial-time algorithm to perform
this transformation on HDs, but it can straightforwardly be applied to GHDs as well.
Intuitively, given a hypergraph H and a GHD T , this procedure visits every node n of
the GHD and checks whether the conditions (5), (6), and (7) enlisted in Section 2.2 are
satisfied or not. If not, the [Bn]-components of the subtree are computed and separated
from one another by creating a distinct subtree for each component. The cost of these
operations is roughly O(N · (V + E)), where N is the number of nodes of T , while V
and E are the number of vertices and edges of H, respectively.

5.3.2 Practical Recomputation of GHDs
Algorithm 5.4 is a pseudo-code representation of our framework. As input we expect four
items:

1. a GHD G of the original hypergraph,

2. the updated hypergraph H,

3. the δ-mutable subtree T ∗, and lastly,

4. a decomposition algorithm D, which we call decomposer.

The output is a GHD of H of width ≤ k, or a reject if none can be found. The
decomposer D takes as input a hypergraph and a scene mapping and it produces a GHD
of H of width ≤ k, or rejects if none exists. Our algorithm initially computes a scene
mapping σ, in line 15, using the aforementioned procedures. Then, the recursive function
DecompUpdate is called on H and σ. At line 2, the function checks if a scene σ(H ′)
exists for the current subhypergraph H ′. Here it is important to distinguish between
out-scenes and in-scenes. Indeed, while the first can be reused without any restriction,
the latter are used only once. We can thus think of this check as a stateful operation
that changes the contents of σ in the following way: in-scenes will be removed from σ
after the first time they have been checked and returned; for out-scenes, no such removal
takes place. If the check has succeeded, then at line 3, the algorithm immediately fixes
the current node of the GHD with σ(H ′) and avoids the use of the decomposer, which
would start an expensive search for a new bag. At line 4, we separate H ′ into the same
[Bu]-components we encountered while computing the old GHD. Now we make a recursive
call on each of these components in lines 6 to 9, adding each freshly computed GHD to
the set of children of u. We then return the resulting GHD with u as its root. Line 12 is
executed only if H ′ has never been encountered while building the old GHD. In this case,
the decomposer D is called to find a GHD of H ′ of width ≤ k.

86

5.3. Implementation of the δ-mutable Subtree Framework

Algorithm 5.4: GHD Recomputation with Scene Mappings.
Input: GHD G, Hypergraph H, δ-mutable subtree T ∗, Decomposer D
Output: A GHD of H with width ≤ k, or Nil if none exists
Parameter : Integer k

1 Function DecompUpdate(H ′: Hypergraph, σ: Scene Mapping)
2 if σ(H ′) is out-scene or σ(H ′) not yet used then
3 u ← σ(H ′)
4 X ← [Bu]-components of H ′

5 u.Children ← ∅
6 for c ∈ X do
7 Y ← DecompUpdate(c, σ)
8 u.Children ← u.Children ∪ {Y}
9 end

10 return u

11 end
12 return D(H ′, σ)

13 end
14 begin /* Main */
15 σ ← SceneCreationDown(Root r of G, H, T ∗)
16 return DecompUpdate(H, σ)

17 end

This design ensures that in either case, whether the δ-mutable subtree can be simply
updated, or an entirely new GHD needs to be computed, we can use the same strategy.
Moreover, in both cases we exploit the information provided by the old GHD. The
decomposer itself can be any existing GHD algorithm, which just needs to be adapted to
make use of scene mappings.

To demonstrate that our framework can be applied to existing combinatorial algorithms
for finding GHDs, we decided to modify BalancedGo [74] to make use of the δ-mutable
framework. Our extension supporting GHD updates is available at https://github.
com/dmlongo/BalancedGoUpdate. It is notable that the original code had to be
modified only in a few lines to fit the model of our decomposer D handling scene mappings,
even though additional code had to be written for extracting the δ-mutable subtree
from a given decomposition with respect to an updated hypergraph and for creating the
scene mapping. The actual use of the scene mapping inside the general algorithm is
straight-forward and we believe that almost any existing or future approach computing
GHDs via a combinatorial process can make use of it.

87

https://github.com/dmlongo/BalancedGoUpdate
https://github.com/dmlongo/BalancedGoUpdate

5. Updating GHDs upon Instances’ Modifications

Table 5.1: A breakdown of the instances used for the empirical evaluation by their widths
prior to modification. In addition to the number of original instances, we also show the
number of updated hypergraphs that originated from the relative original hypergraphs.

Category Hypergraphs of Width Total2 3 4 5 6 7 8 9 10
Original 95 232 325 354 355 254 117 49 17 1798
Updated 2375 5800 8125 8850 8875 6350 2925 1225 425 44950

5.4 Empirical Evaluation
We now explore the potential of updating GHDs with the methods of Section 5.3. We
describe our experiments, show their results and discuss the implications of our findings.

5.4.1 Methodology & Synthetic Update Generation
We compared multiple approaches for updating GHDs upon elementary modifications:
Update, ClassicGo, and ClassicLeo. Update consists in our implementation of the general
strategy of Section 5.3 built on top of the BalancedGo program from [74]. ClassicGo
uses the original BalancedGo program to compute a GHD of the modified hypergraph
from scratch. Finally, ClassicLeo uses htdLEO from [126] to similarly compute a GHD
for the modified hypergraph from scratch.

More precisely, given a hypergraph H and a GHD G of H of width k, we applied an
elementary modification δ to H and compared the times taken by Update, ClassicGo and
ClassicLeo to output a GHD of δ(H) of width ≤ k, if it exists. Recall that Update first
computes the minimal δ-mutable subtree T ∗ from G and then tries to build a GHD of
δ(H) of width ≤ k by reusing the parts of G that were not affected by δ.

We conducted our experiments on the HyperBench dataset [52]. HyperBench is a large
collection of hypergraphs from applications, benchmarks, and random generation that has
been successfully used in a variety of hypergraph decomposition experiments. By using
the LocalBIP implementation of BalancedGo and the results of [74], we determined
the optimal ghw of 1798 out of the 2035 CSPs of HyperBench within a timeout of 1 hour
per instance. Indeed, updating a GHD of optimal width is the hardest case. We thus
used these 1798 hypergraphs, their GHDs, and their ghw as a basis for our experiments.

For each hypergraph H, we randomly generated five elementary modifications per each
class from Section 5.1.1 as follows. For AddVar we introduce a new vertex into ℓ
randomly chosen edges, where ℓ is the average (rounded up) degree of the original
hypergraph. We generate AddEq modifications by merging two random vertices and
DelEq modifications by splitting a vertex x into two vertices y1, y2: in half of the edges
incident to x, we replace x by y1 and in the other half we replaced x by y2. Notably,
AddConstr adds an edge with average (rounded up) rank such that all vertices in
the new edge are already part of some existing edge. That means that we generate

88

5.4. Empirical Evaluation

Table 5.2: Statistics for ClassicGo, Update, and ClassicLeo shown separately for each
modification. Mean ClassicGo, Mean Update, and Mean ClassicLeo are in milliseconds.
All mean times were rounded to the closest integer, all other non-integer numbers were
rounded to two decimal places. Timeout was set to 30 minutes.

Operation Positive Better Mean Mean Mean Mean Timeout
(%) (%) ClassicGo Update ClassicLeo Speedup ClassicGo Update ClassicLeo

AddConstr 85.07 81.23 1106 27 55027 40.28 1269 757 3657
DelConstr 99.48 88.12 553 10 60826 53.78 534 105 3480

DelEq 95.59 73.2 714 82 58177 8.66 776 386 3677
AddEq 90.34 85.67 534 12.52 69843 42.68 675 336 3268

AddVar 85.76 65.73 1339 223 64166 5.99 1330 952 3807
Total 91.26 78.8 795 37 61239 21.77 4584 2536 17889

challenging cases while avoiding the easy case where most vertices in the new edge have
no effect. For DelConstr a random edge is removed from the hypergraph. Note that
updating a GHD of optimal width in case of δ ∈ DelVar is trivial. Indeed, let v ∈ V (H)
be the vertex removed by δ and consider a GHD G of H of width k. A GHD of δ(H)
of width ≤ k can be easily obtained by removing v from all bags Bu of G. In total, this
process produces 44950 instances, each consisting of the original hypergraph H with a
known minimal GHD and a modification δ.

A breakdown of the widths of the instances before modifications is shown in Table 5.1.
The row marked “Original” shows how many original instances have minimal width k,
for each k ∈ [2, 10], while the “Updated” row shows how many updated hypergraphs
stemmed from the original hypergraphs by performing the modifications in the way
described above, for each width k ∈ [2, 10]. Finally, the column “Total” reports on the
total number of instances in each category. We can see that the most hypergraphs have
width k ∈ [3, 7].

5.4.2 Updating GHDs
We compare our methods in the task of updating GHDs after a hypergraph modification
happens using the dataset described above. To reduce the effect of variance, we only
report on the 26013 instances for which it took ClassicGo more than 15 milliseconds to
compute a decomposition. In the “easier” cases, it is reasonable to just use ClassicGo
instead of the more sophisticated Update. If we move the threshold to any t > 15, the
superiority of Update becomes even clearer. This suggests that our approach is even more
fruitful when applied to “hard” cases.

Since our Update approach is built on top of ClassicGo, we will use only the latter as a
baseline for our experiments. As it will be evident, this is also justified by the fact that
ClassicGo performs better than ClassicLeo on average.

The results for each class of modification are shown in Table 5.2. The column Positive
contains the percentage of cases where the width of the hypergraph did not increase due

89

5. Updating GHDs upon Instances’ Modifications

to the modification. The column Better contains the percentage of instances in which
Update outperformed ClassicGo. In the next three columns we record the geometric
means (in milliseconds) for ClassicGo, Update, and ClassicLeo. We then report on the
speedup, which is defined as the ratio between ClassicGo and Update runtimes, via the
geometric mean of all speedups. In the last columns, we compare the number of exclusive
timeouts for each solver. For instance, the column ClassicGo reports on the number of
instances that timed out for ClassicGo, but neither for Update nor ClassicLeo. Finally,
for each operation, we show the number of instances that timed out for all methods.
Since computing T ∗ takes far less than a millisecond for all of our instances, the time is
not reported explicitly.
In order to compare the different approaches, we adopt the same methodology that was
adopted in [52], i.e., we compare mean running times and number of instances that timed
out. Overall, Table 5.2 clearly demonstrates the significant benefits of using Update.
For every modification class, the Update mean time is significantly lower than the other
approaches. The mean speedups are very high throughout all modifications even in the
most difficult cases, i.e., DelEq and AddVar. We also see that ClassicLeo seems to
have a hard time with most of the test instances, and has by far the most timeouts and
the larger mean times in comparison with the other two methods.
Interestingly, Update seems to be particularly well suited for DelConstr and AddEq
modifications. In theory, DelConstr is problematic since the deleted edge could have
covered an arbitrarily complex structure. However, it seems that this occurs rarely in
practice and deleting an edge simplifies the hypergraph instead. This is clearly apparent
in the observation that 99.48% of DelConstr instances were positive, i.e., the width
did not increase by deleting a constraint.
The Better column shows that Update is faster than ClassicGo in 78.8% of cases on
average. This is despite the fact that many instances were solvable by ClassicGo in
less than 40 milliseconds and Update has an additional overhead because of the scene
mapping creation. Another source of slowdowns are negative instances (ghw(δ(H)) > k),
where the entire search space needs to be explored. In this case, the scene mapping is of
little use and its creation only causes delays. Moreover, the Timeout columns show that
Update solves ≈ 94% of the instances, while ClassicGo and ClassicLeo solve 89.2% and
60.2% of them, respectively.
The Positive column shows that elementary modifications do not change the width of the
hypergraph in 91.26% of cases. This is somewhat surprising as some of the modifications
(e.g., AddConstr, AddEq) can lead to severe structural changes that intuitively increase
how connected parts of the hypergraph are. Despite this, we observe that all modifications
increase ghw only rarely. We believe that this is because the width of a hypergraph
effectively captures only the most structurally complex part. With higher width and
larger hypergraphs it becomes more common that large parts of the hypergraph are less
complex than the width suggests. Even if a modification makes such a simpler part of the
hypergraph more complex, our observations illustrate that this rarely affects the overall
width.

90

5.4. Empirical Evaluation

Table 5.3: Statistics for ClassicGo, Update, and ClassicLeo shown by the width of
the update instances. Mean ClassicGo, Mean Update, and Mean ClassicLeo are in
milliseconds. All mean times were rounded to the closest integer, all other non-integer
numbers were rounded to two decimal places.

Width Count Positive Better Mean Mean Mean Mean
(%) (%) ClassicGo Update ClassicLeo Speedup

2 732 27.87 34.29 906 784 59227 1.16
3 1582 66.81 70.29 773 191 220364 4.05
4 3511 97.09 80.03 762 24 29063 31.17
5 2241 100.00 88.26 866 13 9624 69.20
6 4055 100.00 82.22 1049 34 142452 30.71
7 1056 100.00 85.61 251 17 201694 14.86
8 28 100.00 60.71 794 148 773108 5.35
9 3 100.00 66.67 6336 54 1559313 118.41

Table 5.4: Statistics for ClassicGo, Update, and ClassicLeo shown by the width of the
positive update instances. All mean times were rounded to the closest integer.

Width Count Better Mean Mean Mean Mean
(%) ClassicGo Update ClassicLeo Speedup

2 204 55.39 54 26 103151 2.05
3 1057 83.73 122 15 176450 8.20
4 3409 81.93 609 18 30376 34.62
5 2241 88.26 866 13 9624 69.20
6 4055 82.22 1049 34 142452 30.71
7 1056 85.61 251 17 201694 14.86
8 28 60.71 794 148 773108 5.35
9 3 66.67 6336 54 1559313 118.41

Some evidence for these intuitions can be seen in Table 5.3 where we can observe a clear
trend that the width increase is less common when the width gets higher (which itself
strongly correlates with hypergraph size, see [52]). This leads to higher Positive %. Note
that the problem is not trivial even though the positive rate approaches 100% for the
most complex hypergraphs. Even if the width stays the same, a minimal width GHD
for the new hypergraph may be entirely different than the input GHD (cf., the Better
% column). As we ultimately need a GHD to algorithmically exploit low width, the
high rate of positive instances therefore does not simplify the problem. Moreover, these
percentages are obtained by running our experiments on a vast number of hypergraphs,
thus showing that our formulation of the problem is realistic and relevant in practice as
it is supported by the data. Table 5.4 and Table 5.5 give additional insights into positive
and negative update instances, respectively.

91

5. Updating GHDs upon Instances’ Modifications

Table 5.5: Statistics for ClassicGo, Update, and ClassicLeo shown by the width of the
negative update instances. All mean times were rounded to the closest integer.

Width Count Better Mean Mean Mean Mean
(%) ClassicGo Update ClassicLeo Speedup

2 528 26.14 2695 2910 47800 0.93
3 525 43.24 31951 32648 344718 0.98
4 102 16.67 1337066 1434802 6633 0.93

2 3 4 5 6 7 8 9 10

102

103

104

1,
38

0

1,
48

1

1,
55

8 2,
46

9

2,
05

1

1,
06

2 1,
79

5

1,
86

5

98
8

1,
15

0

35
6

67

38

65 67

20
6

12
3

10
5

Generalized hypertree width

M
ea

n
ru

nt
im

e
(m

s)
,r

ou
nd

ed ClassicGo
Update

Figure 5.5: Geometric mean runtimes (log. scale) of ClassicGo and Update w.r.t. ghw.

We also investigated how our approach behaves with increasing ghw of the input decom-
position as well as in relation to hypergraph size (in number of constraints and vertices,
separately). The results of both studies are summarized in Figure 5.5 and Figure 5.6.
In creating these plots, we partitioned the x-axis into intervals of similar size. Note
that the runtimes are given on a logarithmic scale. Since ClassicLeo is more than one
order of magnitude slower than the other two methods, we do not report on it. We see
that beginning from width 3, Update provides significantly better mean runtimes than
ClassicGo, and the speedup generally increases as well.

We observe that the superiority of Update becomes more pronounced as the input
hypergraphs become larger. Intuitively, this is explained by the fact that the modification
usually affects a smaller fraction of the hypergraph as the size increases. Hence, if it is
possible to replace the δ-mutable subtree and reuse much of the old decomposition, as
shown in Section 5.3, then the strengths of Update are emphasized. In practice, this is
particularly promising since the recomputation of a GHD is problematic especially for
larger instances.

92

5.5. Proof of Theorem 5.1

[1, 41] [42, 54] [55, 58] [59, 75] [76, 85] [86, 94] [95, 98] ≥ 99

102

103

104

3,
68

0

1,
02

8

48
2

87
1 1,

65
7

1,
40

2 2,
86

8 5,
98

8

19
6

40

56

35 39

10
1 15

9

50
6

Number of constraints

M
ea

n
ru

nt
im

e
(m

s)
,r

ou
nd

ed

ClassicGo
Update

[1, 23] [24, 26] [27, 38] [39, 40] [41, 61] [62, 87][88, 150]≥ 151

101

102

103

104

67
2

74
1

55
2

2,
09

9

2,
92

2

82
7

3,
08

0

11
,7

53

13

20

47

24

36
4

17
7

53
3

47
1

Number of variables

M
ea

n
ru

nt
im

e
(m

s)
,r

ou
nd

ed

ClassicGo
Update

Figure 5.6: Geometric mean runtimes (log. scale) of ClassicGo and Update w.r.t. instance
size.

5.5 Proof of Theorem 5.1

The argument will require details of the reduction of 3-Sat to checking whether a
hypergraph has ghw at most 2 by Gottlob et al. [69]. The reduction is highly technical
and we recall the construction and key facts here for convenience. For full details we
refer to [69]. It will be convenient to use [n] for integer n to refer to the set {1, 2, . . . , n}.

93

5. Updating GHDs upon Instances’ Modifications

5.5.1 Reducing 3-Sat to Checking ghw ≤ 2

We want to construct a hypergraph H consisting of three main parts: two versions of a
gadget introduced below and a subhypergraph encoding the clauses of the 3-Sat instance.
We first fix some notation. We write [n] for the set {1, . . . , n}. Extending this common
notation, we write [n; m] for the set of pairs [n] × [m]. Furthermore, we refer to the
element (1, 1) of any set [n; m] as min and to (n, m) as max.

For two disjoint sets M1, M2 and M = M1 ∪ M2 the construction makes use of a gadget
with vertices V = {a1, a2, b1, b2, c1, c2, d1, d2} ∪ M and edges EA ∪ EB ∪ EC as follows:

EA = {{a1, b1} ∪ M1, {a2, b2} ∪ M2, {a1, b2}, {a2, b1}, {a1, a2}}
EB = {{b1, c1} ∪ M1, {b2, c2} ∪ M2, {b1, c2}, {b2, c1}, {b1, b2}, {c1, c2}}
EC = {{c1, d1} ∪ M1, {c2, d2} ∪ M2, {c1, d2}, {c2, d1}, {d1, d2}}

Let φ = 	m
j=1(L1

j ∨ L2
j ∨ L3

j) be an arbitrary instance of 3-Sat with m clauses and
variables x1, . . . , xn. In addition to the vertices for two of the aforementioned gadgets,
the reduction uses the following sets to construct the target hypergraph H:

Y, Y ′, Yℓ, Y ′
ℓ : The sets Y = {y1, . . . , yn} and Y ′ = {y′

1, . . . , y′
n} will encode the truth

values of the variables of φ. Yℓ (Y ′
ℓ) are the sets Y \ {yℓ} (Y ′ \ {y′

ℓ}).

A, A′, Ap, A′
p: We have sets A = {ap | p ∈ [2n + 3; m]} and A′ = {a′

p | p ∈ [2n + 3; m]}
with the following important subsets:

Ap = {amin, . . . , ap} Ap = {ap, . . . , amax}
A′

p = {a′
min, . . . , a′

p} A′
p = {a′

p, . . . , a′
max}

S: First define Q = [2n + 3; m] ∪ {(0, 1), (0, 0), (1, 0)}. Then, S is defined as Q × {1, 2, 3}.
The elements in S are pairs, which we denote as (q | k). The values q ∈ Q are
themselves pairs of integers (i, j).

Sp: For p ∈ [2n + m; m] we write Sp for the set {(p, 1), (p, 2), (p, 3)}. And Sk
p for the

singleton {(p | k)} for k ∈ {1, 2, 3}.

The vertices of H are as follows.

V (H) = S ∪ A ∪ A′ ∪ Y ∪ Y ′ ∪ {z1, z2} ∪
{a1, a2, b1, b2, c1, c2, d1, d2, a′

1, a′
2, b′

1, b′
2, c′

1, c′
2, d′

1, d′
2}.

The edges of H are defined below. First, we take two copies of the gadget H0 described
above:

94

5.5. Proof of Theorem 5.1

• Let H0 = (V0, E0) be the hypergraph of the lemma described at the beginning of the
section with V0 = {a1, a2, b1, b2, c1, c2, d1, d2} ∪ M1 ∪ M2 and E0 = EA ∪ EB ∪ EC ,
where we set M1 = S \ S(0,1) ∪ {z1} and M2 = Y ∪ S(0,1) ∪ {z2}.

• Let H ′
0 = (V ′

0 , E′
0) be the corresponding hypergraph, with V ′

0 = {a′
1, a′

2, b′
1,

b′
2, c′

1, c′
2, d′

1, d′
2} ∪ M ′

1 ∪ M ′
2 and E′

A, E′
B, E′

C are the primed versions of the edge
sets M ′

1 = S \ S(1,0) ∪ {z1} and M ′
2 = Y ′ ∪ S(1,0) ∪ {z2}.

Beyond the gadget, H contains the following edges.

• ep = A′
p ∪ Ap, for p ∈ [2n + 3; m]−,

• eyi = {yi, y′
i}, for 1 ≤ i ≤ n,

• For p = (i, j) ∈ [2n + 3; m]− and k ∈ {1, 2, 3}:

ek,0
p =

�
Ap ∪ (S \ Sk

p) ∪ Y ∪ {z1} if Lk
j = xℓ

Ap ∪ (S \ Sk
p) ∪ Yℓ ∪ {z1} if Lk

j = ¬xℓ,

ek,1
p =

�
A′

p ∪ Sk
p ∪ Y ′

ℓ ∪ {z2} if Lk
j = xℓ

A′
p ∪ Sk

p ∪ Y ′ ∪ {z2} if Lk
j = ¬xℓ.

• e0
(0,0) = {a1} ∪ A ∪ S \ S(0,0) ∪ Y ∪ {z1}

• e1
(0,0) = S(0,0) ∪ Y ′ ∪ {z2}

• e0
max = S \ Smax ∪ Y ∪ {z1}

• e1
max = {a′

1} ∪ A′ ∪ Smax ∪ Y ′ ∪ {z2}

The key GHD. The hypergraph construction above is such that only certain (if any)
width 2 GHDs are possible for Hφ. In particular, in [69] it is shown extensively that any
width 2 GHD of Hφ needs to be a line, i.e., it has no branching. Furthermore, the gadget
construction is used to specify two blocks of nodes that need to be at the two ends of the
line, indirectly fixing the possible nodes between them. Here it is enough to consider the
standard GHD that can be constructed when a satisfying assignment σ for φ is known.
Recall, x1, . . . , xn are the variables of φ and let

Z = {yi ∈ Y | σ(xi) = 1} ∪ {y′
i ∈ Y ′ | σ(xi) = 0}.

The following line graph, together with Bu and λu labels from Table 5.6, describes a
width 2 GHD Dφ for φ.

uC − uB − uA − umin ⊖1 − u(1,1) − · · · − u(2n+3,m−1) − umax − u′
A − u′

B − u′
C

In the following arguments we will make use of this basic structure to argue the existence
of width 2 GHDs for other cases.

95

5. Updating GHDs upon Instances’ Modifications

Table 5.6: Definition of Bu and λu for GHD of H.

u ∈ T Bu λu

uC {d1, d2, c1, c2} ∪ Y ∪ S ∪ {z1, z2} {c1, d1} ∪ M1, {c2, d2} ∪ M2
uB {c1, c2, b1, b2} ∪ Y ∪ S ∪ {z1, z2} {b1, c1} ∪ M1, {b2, c2} ∪ M2
uA {b1, b2, a1, a2} ∪ Y ∪ S ∪ {z1, z2} {a1, b1} ∪ M1, {a2, b2} ∪ M2

umin ⊖1 {a1} ∪ A ∪ Y ∪ S ∪ Z ∪ {z1, z2} e0
(0,0), e1

(0,0)
up∈[2n+3;m]− A′

p ∪ Ap ∪ S ∪ Z ∪ {z1, z2} e
kp,0
p , e

kp,1
p

umax {a′
1} ∪ A′ ∪ Y ′ ∪ S ∪ Z ∪ {z1, z2} e0

max, e1
max

u′
A {a′

1, a′
2, b′

1, b′
2} ∪ Y ′ ∪ S ∪ {z1, z2} {a′

1, b′
1} ∪ M ′

1, {a′
2, b′

2} ∪ M ′
2

u′
B {b′

1, b′
2, c′

1, c′
2} ∪ Y ′ ∪ S ∪ {z1, z2} {b′

1, c′
1} ∪ M ′

1, {b′
2, c′

2} ∪ M ′
2

u′
C {c′

1, c′
2, d′

1, d′
2} ∪ Y ′ ∪ S ∪ {z1, z2} {c′

1, d′
1} ∪ M ′

1, {c′
2, d′

2} ∪ M ′
2

5.5.2 Adapting the Argument to Updates
We now show how to use the construction for the reduction from 3-Sat to checking
ghw ≤ 2 to the update problem restricted to the stated classes of atomic updates. Recall
that for an instance φ of 3-Sat, the constructed hypergraph Hφ has ghw(Hφ) = 2 if φ is
satisfiable, and width 3 otherwise. Our plan is to manipulate Hφ in such a way that we
can efficiently construct a width 2 GHD of H ′ = δ−1(Hφ) (and H ′ is not acyclic) for δ in
the respective classes. If such a modification δ ∈ ∆ always exists, then the satisfiability
of φ many-one reduces to the decision version of SearchUpdateGHD(∆) for inputs H ′,
δ, and the width 2 GHD of H ′. We are able to give such a reduction for the DelConstr
and DelEq case. We will describe below how to handle the other operations using a
slightly more involved strategy.

DelConstr. Here our goal is easy to reach. To obtain H ′ it is sufficient to add a large
edge e∗ = V (H) \ {d1} to Hφ is sufficient. Since d1 has at least two distinct edges to
other vertices (which are in e∗) we see that the resulting H ′ is not acyclic. Clearly then
ghw(H ′) = 2 and it is trivial to construct an appropriate width 2 GHD.

DelEq. Let H ′ be the hypergraph performing a AddEq modification on vertices z2 and
a′

1 in Hφ, (using a′
1 to represent the vertex after the join). In particular this will merge

edges containing M ′
1, M2 and M ′

2 in the two gadgets as well as all edges of form ek,1
p (as

well as some linking edges in the gadget). The resulting edge e∗ is of the form

e∗ = S ∪ Y ∪ Y ′ ∪ A′ ∪ {a′
1, a′

2, b′
1, b′

2, c′
2, d′

2, b2, c2, d2, z1}

The GHD Dφ given above can then be adapted in the following manner to yield a GHD
of width 2 for H ′. Replace all edges that contained z2 or a′

1 in covers λu by the new
e∗. Note that this affects all nodes in the GHD. Then add e∗ to the bag of every node.
Clearly, all edges of Hφ are still covered and our new edge e∗ is covered in every node.
Finally, H ′ is not acyclic as some cycles in the gadgets remain untouched by the merge.
For example, the edges {c1, d2}, {c1, c2} form an α-cycle with e∗ (note that e∗ does not
contain c1).

96

5.5. Proof of Theorem 5.1

5.5.3 The Complex Cases – AddVar, AddConstr, and AddEq
For the other modification classes we will now slightly change our strategy and instead
show how to decide satisfiability of 3-Sat via a polynomial number of calls to SearchUp-
dateGHD. Note that we use the returned new decompositions from the calls and thus
can not directly derive N P-hardness by Turing reduction of the SearchUpdateGHD
decision problem. Formally, for a class C of updates, instead of a single H ′ we construct
a sequence H ′

0, . . . , H ′
ℓ with H ′

ℓ = Hφ, ℓ polynomial in the size of φ, and for each i ∈ [ℓ]
there is a δi ∈ C such that δi(H ′

i−1) = H ′
i. We will show that for all 0 ≤ i ≤ ℓ,

ghw(Hi) ≤ 2 if and only if φ is satisfiable.

Suppose now that we can construct such H ′
0, sequence of modifications δ1, δ2, . . . , δℓ, as

well as a width 2 GHD for H ′
0 efficiently. If SearchUpdateGHD(C) were feasible in

polynomial time, then we could verify ghw(Hφ) ≤ 2 in polynomial time by iteratively
constructing a GHD for it from successive calls to SearchUpdateGHD, starting from
the known GHD of H ′

0. As stated previously, φ is satisfiable if and only if ghw(Hφ) ≤ 2
and thus this would yield a polynomial procedure for solving 3-Sat.

AddVar. The desired sequence of hypergraphs and modifications is defined via δ−1
i being

the modification that removes vertex y′
i from H ′

i. Thus, ℓ = n and all δi ∈ AddVar.
Observe that AddVar modifications can never decrease ghw, that is ghw(H ′

i−1) ≤
ghw(H ′

i) for all i ∈ [ℓ]. This can be easily observed since their inverse, the modifications
of DelVar, produce an induced subhypergraph and thus can not increase ghw. Thus,
we see that if ghw(H ′

0) = 2 and ghw(H ′
ℓ) = 2 (which is equivalent to φ being satisfiable),

then ghw(H ′
ℓ) = 2 for all 1 ≤ i ≤ ℓ. We therefore see that this gives us a sequence of

modifications as described above.

Recall that in the original GHD Dφ given above, the set Z is derived from a satisfying
assignment for φ. For H ′

0 we can simply set Z = ∅ (and remove all y′
i from the bags)

to obtain a width 2 GHD. Only the edges eyi relied on Z to be covered in Hφ, but in
H ′

0 they are all singletons {yi} and thus always covered in the first gadget. Hence, we
can construct a width 2 GHD for H ′

0 (which is cyclic) and as described above, a linear
number of calls to SearchUpdateGHD(AddVar) are sufficient to decide whether φ is
satisfiable.

AddConstr. We again argue via a sequence H ′
0, . . . , H ′

ℓ of hypergraphs and modifica-
tions δ1, . . . , δℓ ∈ AddConstr with δi(H ′

i−1) = H ′
i. In contrast to the AddVar case,

AddConstr modifications can decrease ghw and our use of such a sequence thus depends
on particular properties of our choice of modification sequence.

We define our sequences via δ−1
i being the modification (in DelConstr) that deletes

edge eyi from Hφ. The construction of a width 2 GHD for H ′
0 is the same as for Dφ

above but with Z = ∅. The function of Z is only to connect umin ⊖1 and umax in a way
such that every eyi is covered in either one of the respective bags. Since H ′

0 no longer
contains those edges, this is still satisfied with Z = ∅. It is not difficult to verify that Z
was not used to cover any other edges in Hφ and therefore the correctness of the resulting
GHD. Now, suppose that ghw(Hφ) = 2, then there exists some width 2 GHD Dφ of the

97

5. Updating GHDs upon Instances’ Modifications

form shown above. Note that no eyi edge is used in a λu set for this GHD but all of them
are covered in some bag. In consequence, Dφ is also a GHD for every hypergraph H ′

i

in our sequence, meaning every hypergraph in the sequence has ghw 2 iff ghw(Hφ) = 2.
Note that while it is hard to find Dφ, the key point here is that a width 2 GHD for the
special case H ′

0 can always be found easily.

We can now proceed as in the AddVar case. Start from input H ′
0, δ1, and the width

2 GHD of H ′
0 as described above and call SearchUpdateGHD(AddConstr) to find

a width 2 GHD for H ′
1. Iterating this process, we either arrive at some H ′

i for which
ghw(H ′

i) > 2 and reject or we show that ghw(Hφ) ≤ 2. In the former case, we have by
the argument above that then also ghw(Hφ) > 2. Thus, we can correctly decide whether
ghw(Hφ) ≤ 2 – and therefore also 3-Sat – using linearly many calls of SearchUp-
dateGHD(AddConstr).

AddEq. We construct the initial hypergraph H ′
0 from Hφ, by replacing every edge

eyi = {yi, y′
i} by the edge e∗

i = {yi, ⋆i}. Consider the sequence δ1, . . . , δn such that
δi ∈ AddEq merges ⋆i into y′

i, i.e., ⋆i is replaced in every edge by y′
i. It is easy to see

that H ′
n = Hφ and if ghw(H ′

i) = 2 for all i ∈ [n], then ghw(Hφ) = 2. We will first argue
that H ′

0 has ghw 2 and that witnessing GHD can be found easily. Then we show that if
ghw(Hφ) = 2, then ghw(H ′

i) = 2 for all i ∈ [n]. All together this again means that it is
possible to decide 3-Sat using a linear number of calls to SearchUpdateGHD(AddEq).

The decomposition for H ′
0 is again based on Dφ with Z = ∅. Observe that Dφ does not

use any eyi as a cover and thus the only concern with adapting it for H ′
0 is making sure

that every e∗
i is covered in some bag. To that end, add nodes u∗

i , for i ∈ [n] as children of
umin ⊖1 with Bu∗

i
= e∗

i and cover λu∗
i

= {e∗
i }. The connectedness condition is clearly not

violated by these new nodes and every e∗
i is now covered. Let D0 be the GHD described

here and note it clearly has width 2 (and H ′
0 is not acyclic).

To see that every H ′
i for 1 ≤ i ≤ n has ghw(H ′

i) = 2, if ghw(Hφ) = 2, we now proceed in
similar fashion to the argument for AddConstr. Since we assume that ghw(Hφ) = 2,
there exists a satisfying assignment σ for the variables of φ. Let Z = {yi | σ(xi) =
1} ∪ {y′

i | σ(xi) = 0} be the set as in the original definition of Dφ. Let Di be the GHD
obtained from Dφ using this Z and for all j s.t. i < j ≤ n, add nodes u∗

j as children of
umin ⊖1 as in the construction of D0 above. By construction, H ′

i contains the edges eyj

for j ≤ i and edges e∗
j for j > i. It is then straightforward to verify that Di indeed is

a width 2 GHD for H ′
i. Thus, as described above, we can use a linear number of calls

to SearchUpdateGHD(AddEq) to decide 3-Sat. Consequently, if P ̸= N P, then
SearchUpdateGHD (AddEq) can not be solvable in polynomial time.

5.6 Summary
In this chapter, we dealt with the problem of updating a GHD when the original hy-
pergraph for which it was computed changes. After describing classes of elementary
hypergraph modifications, we defined the SearchUpdateGHD and studied its complex-

98

5.6. Summary

ity. We proved that this problem is as hard as computing a new decomposition of the
modified hypergraph anew for almost all of our modifications classes.

Despite this strong theoretical result, we proposed the notion of δ-mutable subtrees,
intending to clearly define which portion of a GHD is affected by a hypergraph modification
and must be recomputed. Based on this notion, we devised a framework for the practical
recomputation of GHDs in the face of hypergraph modifications that reuses those parts
of the GHD that are still valid for the modified hypergraph. This method mitigates
the costs of a total recomputation and is easily implementable in existing top-down
decomposition algorithms.

Finally, we extended one classical algorithm with our techniques to handle GHD updates
and extensively compared it against two classical algorithms in recomputing a GHD after
a hypergraph modification. Even though the problem is theoretically hard, the results of
our study point out that our approach, on average, greatly speeds up the computation of
GHDs in response to elementary modifications.

99

CHAPTER 6
Grounding Planning Problems

with Decompositions

In previous chapters, we investigated the problem of computing GHDs from different
angles. After developing a novel algorithm to compute GHDs efficiently for a large class
of hypergraphs, which we called BalSep, we used it to study the structural properties
of real-world CQs and CSPs. We discovered that we could compute GHDs efficiently for
most of them. Furthermore, we extended BalSep to deal with a dynamic scenario where
given a hypergraph H and a GHD of H, we want to update the input GHD in response
to a modification to H. The resulting algorithm exploiting the old GHD is faster than
computing a new GHD from scratch. Yet we did not use GHDs to solve the database
and AI problems we are interested in.

The opportunity arises in the intersection between these two fields. Corrêa et al. estab-
lished a close connection by using query optimization techniques to solve the successor
generation problem in lifted planning problems [39]. Planning problems are a typical
example of AI problems. Here, given an initial state of the world, an appropriate sequence
of actions has to be selected to reach the desired world state. Typically, users describe
a planning task using a first-order formalism. If the search for a solution is performed
directly on this representation, we talk about lifted planning problems. The decision
version of this problem is EXPSPACE-complete and thus extremely difficult [44]. In con-
trast, grounded planning problems are first grounded into a propositional representation.
Asking whether a plan exists on a grounded representation is PSPACE-complete [32].
The successor generation problem refers to the computation of the world states reachable
from the current state by applying a single action. Since an action A can be applied
to the current state of the world s only if its precondition pre(A) is satisfied in s, the
challenge lies in performing this check efficiently. Corrêa et al. point out that checking if
a precondition pre(A) is satisfied in a state s and computing all possible action instantia-

101

6. Grounding Planning Problems with Decompositions

tions is equivalent to query answering. This fact is self-evident when we consider s as a
database and pre(A) as a query to answer on s.

On the other hand, most planners ground planning tasks before searching for a solution.
While the grounding phase might produce an exponential blowup, this procedure is
typically worth it because it makes the search exponentially easier. The state-of-the-art
planners work on grounded representations [26, 88, 86, 92]. Nevertheless, this approach
limits the practical applicability of planning to cases where the grounded representation
is “small enough” [100] and planners struggle as planning tasks become larger and
harder [84, 107]. The size of the grounding is just one problem. Grounding a planning
task requires solving the successor generation problem multiple times. Since this is
equivalent to query answering, a grounder incurs the problem of finding a join plan
minimizing the size of intermediate results. Fortunately, it is necessary to ground a
relaxed version of the task where all queries are CQs, thus making the problem easier [87].
Yet it does not disappear.

The problem of grounding first-order representations has been extensively studied for
Answer Set Programming (ASP) [17]. Solving a problem with ASP means encoding it
into a logic program whose answer sets correspond to solutions. Similarly to planners, the
most popular ASP solvers ground the first-order representation of the problem into a set
of propositional atoms before searching for a solution. In systems like lparse/smodels [111]
or gringo/clasp [59], the grounder is strictly separated from the search component while
the DLV system [102] integrates these two phases. Morak and Woltran proposed a
decomposition method of ASP non-ground rules based on tree decompositions [110],
which helped in some cases where too many variables are present in a single logic rule.
Even though planning problems could benefit from this method, Morak and Woltran
designed it for the much more complex case of ASP rules where negation and disjunction
possibly appear. Calimeri et al. [33] improved this method for the DLV system. They
split rules heuristically using tree decompositions, but only if this reduces the estimated
cost of grounding. In this case, decompositions are not directly accessible as their
computation is tightly intertwined with the resolution phase, making it complicated to
analyze this method in a different context. Nevertheless, in theory, GHDs are more
general than TDs and have lower widths. This fact translates into an increased potential
of reducing intermediate results. Additionally, a more tailored method of grounding the
logic programs corresponding to simplified planning tasks would be desirable.

The theme of this chapter is the grounding of planning problems using structural
decomposition methods. We propose a novel method based on generalized hypertree
decompositions to split non-ground rules of logic programs corresponding to relaxed
planning tasks. These programs have the characteristic that the body of every rule
is a conjunctive query. Therefore, GHDs perfectly cover this case. For every rule
of the logic program, we generate the corresponding hypergraph and decompose it.
Following the structure of the decomposition, we split the original rule into several smaller
rules to avoid the explosion of intermediate results. Their size is indeed exponentially
bounded by the width of the decomposition. Afterward, we measure the grounding

102

6.1. Classical Planning Problems

performances of different logic program decompositions. We compare our approach against
two other methods: the rule decomposition used by the state-of-the-art planner Fast
Downward [86, 87], and the tree-decomposition-based split by Morak and Woltran [110].
Moreover, we use the results of grounding the original logic program as a baseline. This
analysis shows that decomposing logic programs improves the grounding running time
for planning tasks. While GHDs outperform other methods in a few notable cases,
the tree-decomposition-based method performs better on average, even if GHDs are a
generalization of TDs. We hypothesize that this is caused by the decomposition shape
and that low width as a parameter is insufficient to determine a decomposition’s quality.
This fact highlights the necessity of investigating what “good” decompositions are, i.e.,
which parameters are crucial for this assessment.

The rest of the chapter is structured as follows. In Section 6.1, we outline classical
planning problems giving intuitions about the complexity and the way planners solve them.
Section 6.2 introduces the problem of grounding in planning problems. We pay particular
attention to decomposition methods designed to avoid blowup of intermediate results
during grounding. Additionally, we propose our novel algorithm based on GHDs. We
describe our experiments in Section 6.3, where we empirically evaluate the decomposition
methods presented in the previous section. Finally, Section 6.4 summarizes our findings.

The research presented in this chapter is partially based on the article [38], written in
collaboration with Augusto B. Corrêa, Markus Hecher, Malte Helmert, Florian Pommeren-
ing, and Stefan Woltran. In particular, we repropose here the grounding experiments
carried out with the tree decomposition method by Morak and Woltran [110] adapted
to the planning setting. Additionally, we present a novel contribution consisting of the
decomposition of Datalog programs guided by GHDs.

6.1 Classical Planning Problems

In this section, we use first-order languages defined over a function-free logical vocabulary
over an infinite set of variables V , a finite set of constants C, and a set of predicate symbols
P . We recall that an atom P (t) is composed of a predicate symbol P ∈ P and a z-tuple
of terms t (variables or constants), where z is the arity of P . We often refer to P just
as an atom. We use vars(t) to denote the set of variables in t. With a slight abuse
of notation, we often treat t as a set, even though it is formally an order sequence of
variables or constants. Finally, we say that P (t) is a ground atom if vars(t) = ∅.

In its general meaning, a planning problem consists in selecting a sequence of actions that,
given an initial state of the world, leads to a desired world state called goal. Typically, the
high-level description of the world is provided in a logical formalism such as first-order
logic. The environment is represented as a set of states, where each state is a complete
description of the world at a particular time. A state is a set of ground atoms. We deal
with first-order classical planning problems defined as follows.

103

6. Grounding Planning Problems with Decompositions

Definition 6.1 (Planning Task). A first-order planning task is a tuple Π = ⟨P, C, A, I, G⟩
where:

• P is a set of predicate symbols.

• C is a set of objects, or constants.

• A is a set of action schemas, where each action schema A ∈ A consists of three
sets of atoms: a precondition pre(A), an add list add(A), and a delete list del(A).

• I is a state referred to as initial state.

• G is a set of ground atoms called goal condition.

An agent can change the current state of the world s through an action obtained by
instantiating an action schema A ∈ A. The set of possible action schemas A is fixed
and given as input. Using vars(A) to denote the variables appearing in any of the
atoms in pre(A) ∪ add(A) ∪ del(A), we say that A is a ground action if vars(A) = ∅.
Moreover, a task where all actions are ground is a ground task. Not all actions can be
performed in a certain state of the world s. Indeed, a ground action A is applicable
in s if pre(A) ⊆ s. The current state of the world evolves according to the following
relationship. The application of a ground action A in a state s leads to the successor state
succ(s, A) = (s \ del(A)) ∪ add(A). A sequence of ground actions π = ⟨A1, . . . , An⟩ is
applicable in a state s0 and has succ(s0, π) = sn if there are states s1, . . . , sn−1 where Ai

is applicable in si−1 and succ(si−1, Ai) = si for all i ≤ n. At this point, we can formally
define a solution for a planning problem. Given a goal condition G, we call goal states all
those states s such that G ⊆ s. A plan is a sequence of ground actions π applicable in I
such that succ(I , π) is a goal state.

Example 6.1. The Blocks World consists of a table where some boxes with same shape
but different colors are arranged in a random configuration. In this world, a robotic arm
has to move the boxes from the initial configuration to a given one. Some simplifying
rules hold: location on the table as well as location on a block do not matter. Moreover,
at most one block may be below or on top of a block. The robotic arm can hold only one
block at a time and only one block can be moved at a time. Therefore, only a “clear”
block can be moved, i.e., one that has no other block on top.

This scenario can be modeled using four actions:

• pickup(x), lift clear block x from the table.

• putdown(x), place the held block x directly onto the table.

• unstack(x , y), pick up clear block x from block y.

• stack(x , y), place block x onto clear block y.

104

6.1. Classical Planning Problems

Table 6.1: Action’s preconditions and effects for the Blocks World (Example 6.1).

Action Precondition Add Delete

pickup(x)
clear(x) holding(x) clear(x)

on_table(x) on_table(x)
arm_empty() arm_empty()

putdown(x)
holding(x) clear(x) holding(x)

on_table(x)
arm_empty()

stack(x , y)
clear(y) clear(x) clear(y)

holding(x) on(x , y) holding(x)
arm_empty()

unstack(x , y)
on(x , y) holding(x) on(x , y)
clear(x) clear(y) clear(x)

arm_empty() arm_empty()

and five predicates:

• on(x , y), block x is on block y.

• on_table(x), block x is on the table.

• clear(x), block x has nothing stacked on top.

• holding(x), the arm holds block x.

• arm_empty(), the arm holds no block.

Table 6.1 shows the preconditions and effects for each action using the given predicates.

Let us use the following symbols for colors: blue (b), green (g), and red (r). Suppose we are
given the initial state shown in the leftmost part of Figure 6.1a, where (r) and (g) are on the
table and (b) is on top of (g). We want to reach the goal state depicted in the rightmost part
of Figure 6.1a, where a tower is formed by orderly piling up (g), (r), and (b). Then, the
action sequence ⟨unstack(b, g), putdown(b), pickup(r), stack(r, g), pickup(b), stack(b, r)⟩
is a plan. Figure 6.1b shows the transition from the initial state to the goal. For ease of
representation, we show the effects of two actions at a time.

We can represent a planning task by its transition graph, i.e., a graph where vertices
represent states of the world and edges represent the actions leading from one state to
another. Then, a solution to a classical planning task is a path from the initial state
I to a goal state sG ⊇ G in the transition graph. A naive way of finding a plan would
be to perform state-space search by generating the transition graph and then using

105

6. Grounding Planning Problems with Decompositions

unstack(b, g)
putdown(b)

pickup(r)
stack(r, g)

pickup(b)
stack(b, r)

(a) Illustration of a plan (adapted from [1]).

arm_empty()
on_table(r)
clear(r)
on_table(g)
on(b, g)
clear(b)

on_table(r)
clear(r)
on_table(g)
clear(g)
on_table(b)
clear(b)
arm_empty()

on_table(g)
on_table(b)
clear(b)
clear(r)
on(r, g)
arm_empty()

on_table(g)
on(r, g)
on(b, r)
clear(b)
arm_empty()

unstack(b, g)
putdown(b)

pickup(r)
stack(r, g)

pickup(b)
stack(b, r)

(b) State transitions during the execution of the plan.

Figure 6.1: A plan example in the Blocks World (Example 6.1).

any shortest-path algorithm to find a path from I to any sG. While this algorithm
is polynomial in the number of states, this number is exponential in the number of
state atoms. Hence, it is exponential in the size of the input. Since constructing the
transition graph is infeasible, planning algorithms avoid it by using concise descriptions
of transition systems, such as first-order logic. Unfortunately, the problem does not
get any easier. Given a lifted planning task Π, checking if there exists a plan for Π is
an EXPSPACE-complete problem [44], while the same check problem for a grounded
planning task is still PSPACE-complete problem [32].

Despite its hardness, several approaches to planning work well in practice. The most
common is heuristic search planning which consists in searching the state space of the
planning task with the help of a heuristic function h extracted from the planning task
Π. A common approach consists in solving a simplified version of the original planning
task known as delete relaxation. For grounded planning tasks, the delete-relaxed task
is solvable in polynomial time [26, 88]. All actions’ delete effects are removed in the
delete-relaxed task. Solving such a task gives insightful information about the original
task. Since no action removes any atom, the set of possible states of the relaxed task
is an over-approximation of the set of possible states of the original task. If the goal is
unreachable in the delete-relaxed task, it is also unreachable in the original task. Else,
the heuristic guides the search for the goal as if no delete effects existed. This strategy
proves to be quite successful in practice. Most state-of-the-art planners such as Fast
Downward [86], FF [88], and LAMA [121] solve planning tasks by performing heuristic
search on grounded representations.

106

6.2. Grounding Planning Tasks

6.2 Grounding Planning Tasks
Planning with grounded representations is exponentially easier than planning with lifted
representations [44]. Grounding has an exponential cost because it consists of instantiating
every action schema using every object. The hardness of planning is thus unavoidable.
Nevertheless, more sophisticated algorithms can restrain the grounding size. Here we
present several logic program decompositions designed to reduce the cost of grounding.
After introducing the two decompositions by Helmert [87] and Morak and Woltran [110],
we describe our grounding method based on generalized hypertree decompositions.

6.2.1 From Planning Tasks to Logic Programs
First-order planning tasks are often defined in a first-order modeling language called
PDDL [85], which allows encoding complex features much more powerful than the ones
in Definition 6.1. Perhaps the most used algorithm to transform a PDDL planning task
into its grounded representation is the one proposed by Helmert in [87]. This four-step
procedure executes the following tasks: normalization, invariant synthesis, grounding,
and task generation. While each step could potentially slow the translation, Helmert
reports that grounding typically consumes about 70% of the running time, thus being
the most critical task.

A fundamental step in the translation is the definition of a Datalog program [134, 135]
equivalent to the delete-relaxed version of the original planning task. Since this version
does not use the full power of the PDDL formalism, we provide a simplified exposition of
the translation based on our definition of first-order planning tasks.

Definition 6.2 (Datalog Programs [87]). A Datalog rule is a first-order formula h(t) ←
p1(t1), . . . , pm(tm), where pi(ti) and h(t) are atoms. The atom h(t) is the rule head,
while the conjunction of atoms p1(t1), . . . , pm(tm) is the rule body. We assume that
Datalog rules are universally quantified. Therefore, for a given Datalog rule r with free
variables free(r) = {v1, . . . , vn}, we define r∀ = (∀v1, . . . , vn : r). Similarly, for a set of
Datalog rules R, we define R∀ = {r∀ | r ∈ R}.

A Datalog program is a pair ⟨F , R⟩, where F is a set of ground atoms called facts and
R is a set of Datalog rules called just rules.

The canonical model of a Datalog program ⟨F , R⟩ is the set of all ground atoms φ such
that F ∪ R∀ |= φ.

The Datalog program encodes the atom reachability problem for the planning task.
Computing only “reachable” atoms avoids the unnecessary blowup of the naive algorithm.
An atom is reachable if it is derivable by applying an appropriate action sequence from
the initial state. Nevertheless, checking if a given atom is satisfied in any reachable state
is as difficult as planning. Indeed, in general, grounding a Datalog program is intractable
as the number of reachable atoms and actions might be exponential in the size of the
program [137, 89, 40]. In practice, a conservative but tight approximation is computed.

107

6. Grounding Planning Problems with Decompositions

Such an approximation must include all reachable facts and exclude as many unnecessary
facts as possible. The delete-relaxed task [88] satisfies these conditions. Computing
the set of reachable facts of the delete-relaxed task is easier than computing the set of
reachable facts of the original task.

The delete-relaxed planning task assumes that inferred atoms will be true forever. This
result follows from removing negative literals in action preconditions, effects, and goal
conditions. Additionally, delete effects are ignored. Helmert efficiently computes the
relaxed-task’s set of reachable atoms with an algorithm called Datalog Exploration [87],
which we will briefly describe in the next section.

Given a planning task Π = ⟨P, C, A, I, G⟩, reachability in the delete-relaxed task Π+ is
represented as a Datalog program as follows. The idea is that a ground atom is reachable
in Π+ if and only if either it is true in the initial state or can be reached through an
appropriate sequence of actions. Modeling this process as a Datalog program consists
of the following steps. First, the set of all facts has to correspond to the initial state I.
Then, rules are defined to model how actions allow the state to evolve. Finally, we need
a rule checking that the goal of the relaxed task is reachable. Since Π+ contains all the
reachable atoms of Π, if Π+ is unsolvable, then also Π must be unsolvable. In this case,
we stop here since the search phase is unnecessary. Let us use p+ to denote the positive
literals in the rule’s body. The Datalog program is constructed as follows.

• Facts: The set of facts F = I includes all ground atoms in the initial state.

• Actions: For each action schema A ∈ A with vars(A) = t and precondition
pre(A) = {p+

1 (t1), . . . , p+
m(tm)}, we generate the action applicability rule

A-applicable(t) ← p+
1 (t1), . . . , p+

m(tm).

and for each atom q(t′) ∈ add(A) we generate the effect rule

q(t′) ← A-applicable(t).

where t = �
i ti and t′ ⊆ t.

• Goal: For G = {p+
1 (t1), . . . , p+

m(tm)}, we generate the goal rule

goal() ← p+
1 (t1), . . . , p+

m(tm)

where each p+
i is ground.

The normalization step preceding the generation of the Datalog program guarantees
that these rules are safe. The action applicability rules serve the additional purpose of
avoiding the recomputation of common subexpressions. If absent, each effect rule body
would repeat all action preconditions.

108

6.2. Grounding Planning Tasks

Example 6.2. Recall the Blocks World described in Example 6.1. To obtained the relaxed
version of the task described there, we need to translate the intial state and the goal
condition into facts. Moreover, we need to remove all negative literals from actions’
preconditions and effects. Since no negative literals appear in the preconditions, it is
sufficient to ignore the delete effects. Then, the Datalog program of this task is:

arm_empty().
on_table(r).
clear(r).
on_table(g).
on(b, g).
clear(b).

pickup-applicable(x) ← clear(x), on_table(x), arm_empty().
holding(x) ← pickup-applicable(x).

putdown-applicable(x) ← holding(x).
clear(x) ← putdown-applicable(x).
on_table(x) ← putdown-applicable(x).
arm_empty() ← putdown-applicable(x).

stack-applicable(x , y) ← clear(y), holding(x).
clear(x) ← stack-applicable(x , y).
on(x , y) ← stack-applicable(x , y).
arm_empty() ← stack-applicable(x , y).

unstack-applicable(x , y) ← on(x , y), clear(x), arm_empty().
holding(x) ← unstack-applicable(x , y).
clear(y) ← unstack-applicable(x , y).

goal() ← on_table(g), on(r, g), on(b, r), clear(b).

6.2.2 Project-Join Decomposition
Helmert’s grounding algorithm [87] consists of three steps: generation of the logic program,
translation to normal form, and computation of the canonical model. The algorithm
focuses on computing the canonical model of the Datalog program efficiently. To do
so, Helmert defines a normal form based on rule decompositions that split rules into

109

6. Grounding Planning Problems with Decompositions

smaller ones with a maximum of two atoms in the body. The intuition behind this is
that rules with fewer variables are expected to be easier to ground and produce smaller
intermediate results. We refer to this decomposition as Project-Join Decomposition.

Definition 6.3 (Project-Join Decomposition [87]). A first-order logic atom is variable-
unique if it does not contain two occurrences of the same variable. A Datalog rule is
variable-unique if its head and all atoms in its body are variable-unique.

A Datalog rule is a projection rule if it is variable-unique and of the form h(t′) ← p(t) with
vars(t′) ⊆ vars(t). In other words, projection rules are unary rules where all variables in
the head occur in the body.

A Datalog rule is a join rule if it is variable-unique and of the form h(t) ← p1(t1), p2(t2)
with vars(t1) ∪ vars(t2) = vars(t) ∪ (vars(t1) ∩ vars(t2)). In other words, join rules are
binary rules where all variables in the head occur in the body. Additionally, all variables
in the body but not in the head occur in both atoms.

A Datalog program is in normal form if all rules are projection or join rules.

The names of these rules recall the projection and join operators of relational algebra
and have similar semantics. Rules of the original Datalog program are decomposed by
progressively applying two transformations.

• Projection: Given a rule h(t) ← p1(t1), . . . , pi(ti), . . . , pm(tm), pick an atom pi(ti)
with i ∈ [1, m], such that there is a variable v ∈ ti not occurring in any tj with
j ̸= i nor in t. Then, substitute the original rule with the following two:

temp(ti \ v) ← pi(ti).
h(t) ← p1(t1), . . . , temp(ti \ v), . . . , pm(tm).

• Join: Given a rule h(t) ← p1(t1), . . . , pi(ti), pj(tj), . . . , pm(tm), pick two atoms
pi(ti), pj(tj) and substitute the original rule with the following two using t to denote
all variables in ti ∪ tj occurring in any other tz with z ̸= i, j:

temp(t) ← pi(ti), pj(tj).
h(t) ← p1(t1), . . . , temp(t), . . . , pm(tm).

A crucial point of the project-join decomposition is the selection of the atoms to project
or join. The problem of choosing a good join order that minimizes the size of intermediate
results is equivalent to the query optimization problem in a database setting. Therefore,
computing a sequence of binary joins that minimizes the size of intermediate results is
hard. Helmert uses a greedy algorithm to project away unnecessary variables as early
as possible and to join atoms with many common variables first. This technique works
well in many cases but fails in some important domains, as will be presented in the

110

6.2. Grounding Planning Tasks

experimental section. Note that different decompositions lead to a diverse number of
temporary predicates. This is one of the sources of the overhead of rule rewriting.
Starting from the normal form of the Datalog program, the algorithm proceeds by
computing the canonical model of the program. This algorithm is reminiscent of the
seminaive evaluation for computing the canonical model of a Datalog program [5]. In
this phase, it is preferable to use an incremental approach that does not recompute sets
of known facts. The algorithm maintains a set of derived facts, which is initially empty,
and a queue of new facts, originally containing the atoms in I. At this point, a new fact
is extracted from the queue and matched against all rules. Only preconditions containing
that predicate symbol in the body will be evaluated. If a precondition is satisfied, a new
fact is added to the queue unless it has been reached already. This loop terminates when
the queue of new facts is empty. This means that a fix-point has been reached and no
new derivations are possible. Finally, the grounded task is straightforwardly obtained
from the canonical model.

6.2.3 Tree-decomposition-based Rules’ Splitting
Helmert’s algorithm does not consider the structure underlying the rules of the Dat-
alog program. Morak and Woltran exploited the rule structure for grounding ASP
programs [110], showing that logic programs of bounded treewidth can be grounded
efficiently. Given a rule r, their method extracts the primal graph Gr from r, including
the head of r. The vertex set V (Gr) contains a vertex for each variable in r, while for
each pair of vertices v1, v2 ∈ V (Gr), (v1, v2) ∈ E(Gr) if and only if the variables v1, v2
appear together in the same predicate in r. Then, it computes a tree decomposition of
Gr used to rewrite the original logic program by introducing several temporary rules.
Given a rule r, a tree decomposition ⟨T, (Bn)n∈T ⟩, where T = (N(T), E(T)), of r
is computed. Ideally, a decomposition of minimum treewidth is desirable because it
corresponds to a rule with fewer variables. However, computing a minimum-treewidth
decomposition is a hard problem. Then, approximate solutions are computed. Without
loss of generality, the head predicate is assumed to be in the root of T . Subsequently,
new rules are generated by visiting T in a bottom-up fashion. For each node n ∈ N(T)
with parent n′, and thus except for the root, a new rule is created:

tempn(Yn) ← {p ∈ body(r) | vars(p) ⊆ Bn} ∪ {tempm(Ym) | (n, m) ∈ E(T)}.

where Yn = Bn ∪ Bn′ and Ym = Bm ∪ Bn.
For the root node, a similar rule is generated, but the head temproot(Yroot) is substituted
by head(r). Additionally, all ground atoms in the body of the original rule are added
here. This rule has the form:

head(r) ←{p ∈ body(r) | vars(p) ⊆ Bn}
∪ {p ∈ body(r) | p is ground}
∪ {tempm(Ym) | (root, m) ∈ E(T)}.

where Ym = Bm ∩ Broot. These rules have the same instantiations of the original head(r).

111

6. Grounding Planning Problems with Decompositions

6.2.4 Generalized Hypertree Decompositions and Grounding
In contrast to tree decompositions, GHDs offer more guarantees on the size of intermediate
results. Being |r| the size of the biggest relation, the maximum size of intermediate
results is |r|k, where k is the ghw of the hypergraph. A Datalog program can be seen as
a database. The facts can be grouped by predicate and become relations. Then, checking
if a rule is triggered and computing all instantiations correspond to answering a query
on a database. We are therefore interested in using GHDs for grounding.

Given a rule r : h(t) ← p1(t1), . . . , pm(tm), the hypergraph Hr = (V (Hr), E(Hr)) of r con-
sists of V (Hr) = vars(r) and E(Hr) = {h(t), p1(t1), . . . , pm(tm)}, where we slightly abuse
notation and use h(t) to denote the set of variables t. This hypergraph has an edge for
each atom appearing in r, including its head. Then, given a GHD ⟨T, (Bu)u∈T , (λu)u∈T ⟩
of Hr of width k, we split r by navigating the GHD in a bottom-up fashion. While we do
not require that h(t) ∈ λroot explicitly, it is important that all t variables are maintained
during the bottom-up traversal of the GHD. We obtain this effect by preserving these
variables in the head of the temporary rules generated along the path. First, for every
edge cover λu, we create an additional rule

covu(t′) ← e1, . . . , ek.

where t′ = {Bu ∪ (B(λu) ∩ t)}, and e1, . . . , ek ∈ λu.

Then, the GHD is traversed. Keep in mind that the definition of GHD requires that for
each e ∈ E(Hr) there exists u ∈ T such that e ⊆ B(λu). However, it is not necessary for
e to explicitly appear in any λu as long as it is covered by some λu. To enforce early
projection and reduce the overall number of temporary rules generated by our algorithm,
every time we visit a node u, we add all those atoms e ∈ E(Hr) such that ∀n ∈ T : e /∈ λn

yet e ⊆ B(λu) but e has not been already added to any other n ̸= u. We add these
predicates as soon as possible. It is also important that, given a node u, all the head
predicates of the rules generated by the children of u appear in the body of ru. This is
necessary to keep the values of the variables until the top. Then, the general rule is

hu(t′′) ←covu(t′)
∪ {e ∈ E(Hr) | e ⊆ B(λu) ∧ e is uncovered}
∪ {hw(tw) | (u, w) ∈ E(T)}.

where t′ = {Bu ∪ (B(λu) ∩ t)} and t′′ = {t′ ∪ (�(u,w)∈E(T) tw ∩ t)}.

6.3 Experiments
In this section, we test our hypothesis that using structural decomposition methods,
particularly GHDs, to ground Datalog programs leads to faster runtimes and more
grounded instances for planning problems. After describing our experimental setting, we
report on our experiments and discuss our findings.

112

6.3. Experiments

6.3.1 Methodology
We want to know how the form of a Datalog program affects the grounding time and
the number of grounded instances. We thus compare three different Datalog program
rewritings using the relaxed planning task as a starting point. We recapitulate here the
four Datalog variants described in the previous section:

• original: it refers to the Datalog program generated as described in Section 6.2.1.

• fd: it refers to Helmert’s Project-Join Decomposition [87] described in Section 6.2.2.

• lpopt: it refers to Morak and Woltran’s tree-decomposition-based rewriting [110]
described in Section 6.2.3.

• htd: it refers to our rewriting method based on GHDs described in Section 6.2.4.

Except for original, all the decomposition methods introduce temporary predicates that
do not appear in original and are unnecessary to solve the related planning tasks. While
they could potentially lead to higher running times due to the evaluation of unnecessary
rules, they also guide the grounder, which should benefit from them. These methods
thus differ in the number of temporary predicates and the rules decomposition.

We generate both original and fd using the Fast Downward planner [86] available
at https://github.com/aibasel/downward. This planner implements Helmert’s
grounding algorithm [87]. We recall that fd is a Datalog program consisting of “projection
rules” projecting away unnecessary variables as soon as possible and “join rules” defining
sequences of binary joins. Fast Downward’s grounder computes these sequences greedily
by joining atoms sharing the most variables. For each rule of original, we generate
the hypergraph corresponding to the conjunction of atoms in the body of the rule.
Recall that no negative atom appears in original since it models the relaxed planning
task. We then decompose this hypergraph with different methods. To generate the
lpopt Datalog program, we use tree decompositions computed by lpopt [23], which
is available at https://dbai.tuwien.ac.at/proj/lpopt. This software uses
heuristic methods to compute low-width tree decompositions. Nevertheless, the output
comes without any guarantee of optimality: a tree decomposition of lower width might still
exist. Finally, our htd Datalog program is based on GHDs generated by BalancedGo [75],
which implements a parallel version of the BalSep algorithm presented in Chapter 3.
In this case, we enforce that the computed GHDs have the lowest width. Our code is
available at https://github.com/dmlongo/decomp-grounding-planning.

We use gringo [58] to ground our various Datalog programs. This program is a grounder
for ASP problems using several optimization methods, such as on-the-fly join ordering
based on selectivity estimates. This feature gives us some flexibility in the definition of
our programs: we do not need to worry about the order of atoms in the rules. Only the
splitting of the rules matters. On the contrary, the grounder used in Fast Downward was
optimized for the specific fd decompositions giving it an unfair advantage over the other

113

https://github.com/aibasel/downward
https://dbai.tuwien.ac.at/proj/lpopt
https://github.com/dmlongo/decomp-grounding-planning

6. Grounding Planning Problems with Decompositions

representations. Therefore, we exclude it from the comparison. On the other hand, the
generality of gringo penalizes our methods because this grounder has been designed for
a more general class of problems. In any case, all methods are penalized in the same way.

Our experiments use the hard-to-ground (HTG) data set by Lauer et al. [100] containing
862 tasks, divided into 8 different domains. This dataset is available at https://
github.com/abcorrea/htg-domains. All experiments were run on Intel Xeon
Silver 4114 processors running at 2.2 GHz. We use a time limit of 30 minutes and a
memory limit of 16 GiB per task.

6.3.2 Results and Discussion
In our first experiment, we measured the treewidth and generalized hypertree width of
the original Datalog program rules for each hard-to-ground planning domain [100]. We
present the results in Table 6.2 aggregated per domain. Column A indicates whether
action predicates are present in the Datalog program (✓) or not (✗). Except for the case
of genome-edit-distance, these predicates involve all variables appearing in a rule, so their
presence or absence influences both tw and ghw. We will provide more detail about this
column later. Column N denotes the number of rules in a given domain and ✓/✗ variant.
The following columns contain statistical information about tw and ghw, respectively.
A “range” value of min–max shows that w ∈ [min, max] where w is the width while an
“average” value of M ± σ denotes that M is the standard mean and σ is the standard
deviation of the width values.

Overall, Table 6.2 shows that treewidth is low for most domains except for organic-
synthesis, pipesworld-tankage, and childsnack. We emphasize that the widths pf the
tree decompositions reported here are not necessarily minimal as tree decompositions
of lower width might exist. Indeed, the program lpopt computes tree decompositions
heuristically without any minimality guarantee on the width. However, it is reasonable
to assume that for low widths, the computed tree decompositions are close to having
minimal width. On the other hand, we computed exact ghw. Hence, we conclude that
almost all rules are acyclic. When they are not, the width is exactly 2. It is worth noting
that at least one rule in the genome-edit-distance domain has a width equal to 0. This
fact means that one rule is fully propositional, i.e., there are no variables to ground and
no hypergraph to decompose. While we will return to this issue later, let us anticipate
that removing action predicates has opposite effects on the width measures. The absence
of these predicates generally leads to an increase in ghw. On the contrary, tw decreases,
sometimes even drastically, as in the case of organic-synthesis. For the next experiment,
we focused on the case described in Section 6.2 where action predicates are in the original
Datalog program. In conclusion, since ghw is much lower than tw in all domains, we
expect our method to perform better than others.

We proceeded with a direct comparison of original, fd, lpopt, and htd in the number
of grounded instances and grounding time. For this experiment, we used the grounder
gringo to ground the four different Datalog rewritings. We refer to the combination

114

https://github.com/abcorrea/htg-domains
https://github.com/abcorrea/htg-domains

6.3. Experiments

Table 6.2: Widths (tw and ghw) computed for the original Datalog rules. Column A
shows if action predicates are present. Column N shows the number of rules.

Domain A N
tw ghw

range average range average

blocksworld ✓ 13 1–2 1.54±0.52 1–1 1±0.00
✗ 9 1–2 1.33±0.50 1–1 1±0.00

childsnack ✓ 9 2–10 4.89±2.52 1–1 1.0±0.00
✗ 5 2–6 2.8±1.30 1–2 1.2±0.45

genome-edit-distance ✓ 48 0–5 2.21±0.60 0–2 1.02±0.17
✗ 35 1–5 1.9±0.48 1–2 1.04±0.14

logistics ✓ 12 3–4 3.17±0.39 1–1 1±0.00
✗ 6 2–3 2.83±0.41 1–2 1.83±0.41

organic-synthesis ✓ 134 3–22 10.55±3.99 1–1 1.0±0.00
✗ 117 2–3 2.1±0.29 1–2 1.1±0.29

pipesworld-tankage ✓ 26 9–12 10.62±1.53 1–1 1±0.00
✗ 22 3–4 3.64±0.49 2–2 2±0.00

rovers ✓ 26 2–6 4.23±1.27 1–1 1±0.00
✗ 17 2–3 2.35±0.49 1–2 1.12±0.33

visitall-multidimensional ✓ 12 4–6 5.17±0.00 1–1 1.0±0.00
✗ 8 4–6 5.17±0.00 2–2 2.0±0.00

Table 6.3: Number of grounded instances per domain for different Datalog rewritings.
Timeout was set to 30 minutes. We abbreviate gringo with G, lpopt with L, and htd
with H. Next to each domain we write the number of planning tasks. We separate the
results into two blocks according to the presence or absence of action predicates. We
mark in bold the best result for each block and domain.

Domain Action Predicates No Action Predicates
G G+FD G+L G+H G G+FD G+L G+H

blocksworld (40) 40 40 40 40 40 40 40 40
childsnack (144) 130 130 130 130 144 144 144 144
genome-edit-dist. (312) 312 312 312 312 312 312 312 312
logistics (40) 40 40 40 40 40 40 40 40
organic-synthesis (56) 21 21 22 21 41 55 56 54
pipesworld-tankage (50) 42 42 42 42 50 50 50 50
rovers (40) 40 22 40 40 40 40 40 40
visitall-multidim. (180) 174 168 174 168 180 168 180 168
Total (862) 799 775 800 793 847 849 862 848

115

6. Grounding Planning Problems with Decompositions

of gringo with the rewritings as gringo+R, where R is one of fd, lpopt, and htd. For
simplicity, we omit the original flag and refer to this combination as gringo. Table 6.3
presents the number of grounded instances for these four combinations. In the Domain
column, we list the domains with their number of tasks. Note that all planning tasks
in one domain share the same Datalog rules but the amount of facts changes. In
particular, these tasks are increasingly harder. We separate the results into two blocks:
including action predicates and excluding them. In each block, we present the number
of instances grounded by gringo, gringo+fd, gringo+lpopt, and gringo+htd,
where we denote them by their initials. For each block, we bold-mark the highest number
of grounded instances per domain. In the last row, we sum the results over all domains.

Let us first discuss the “Action Predicates” block. We see that no algorithm managed
to ground all 862 tasks. Moreover, none of them is clearly superior to the others.
Even though gringo+lpopt grounds the most tasks (800), gringo and gringo+htd
ground a similar number. Only gringo+fd grounds slightly fewer tasks than the others
(775). We notice a considerable difference in the rovers domain, where gringo+fd
manages to ground only 22 tasks within the given timeout while other algorithms ground
all 40 tasks. As already noticed in [87], project-join decompositions struggle to produce
good decompositions for rovers. This case is one example where the heuristic of greedily
joining predicates that share the most variables fails. The fact that plain gringo is the
runner-up might suggest that decomposing Datalog programs is ineffective. Nonetheless,
the situation changes when considering programs without action predicates.

We recall that given an action schema A ∈ A with vars(A) = t and precondition
pre(A) = {p1(t1), . . . , pm(tm)}, we generate an action applicability rule

A-applicable(t) ← p1(t1), . . . , pm(tm).

and for each atom q(t′) ∈ add(A) we generate the effect rule

q(t′) ← A-applicable(t).

where t = �
i ti and t′ ⊆ t. We refer to A-applicable(t) as action predicate.

Since an action predicate contains all variables occurring in a rule, we immediately see
how their presence influences all the examined methods. Intuitively, a predicate with
many variables is more difficult to ground because it has an exponential number of
instantiations. When it comes to tw and ghw they play an additional role. Given a
rule r, the action predicate A-applicable(t) of r is represented in the primal graph
Gr as a clique over the variables in t and clique vertices must appear together in a
bag of any tree decomposition of Gr [25]. Consequently, if Gr has a clique of |V |
vertices, tw(Gr) ≥ |V | − 1. Conversely, the same action predicate A-applicable(t) is
represented as a single edge over t in the hypergraph Hr of r. Therefore, Hr is trivially
acyclic. This is evident in Table 6.2, where hw is always 1 when action predicates are
present, whereas tw is higher. A notable exception occurs in the genome-edit-distance
domain, where there is a rule of ghw 2 even though action predicates are considered.

116

6.3. Experiments

Our domains are based on the STRIPS language [48], where defining action schemas
with effects utilizing variables not appearing in the precondition is disallowed. On the
contrary, the tasks in genome-edit-distance are defined in the ADL language [114], where
this is possible. However, this has no consequences on the examined methods.

Action predicates are not strictly necessary for the grounding phase. Nevertheless, most
state-of-the-art planners use them to speed up the search for a plan. We suspected that
action predicates have dramatic consequences on the grounding time. Therefore, we
decided to remove them and compare the performances of Datalog rewritings. If necessary,
these predicates can be computed later by simply joining the relevant atoms according
to the precondition of the rule. Given an action schema A ∈ A with vars(A) = t and
precondition pre(A) = {p1(t1), . . . , pm(tm)}, we avoid generating action applicability
rules by explicitly repeating the precondition for each effect atom in add(A)

eff1 (t′
1) ← p1(t1), . . . , pm(tm).

...
effℓ(t′

ℓ) ← p1(t1), . . . , pm(tm).

where t′
j ⊆ �

i ti. We see in Table 6.2 that Datalog programs without action predicates
have fewer rules than their counterpart. In particular, the simplified program has one
rule less for each task action schema. We also notice the opposite effect that removing
these predicates has on treewidth and generalized hypertree width. While tw decreases,
ghw increases. Indeed, the treewidth lower bound based on clique size is lower because
big cliques disappear from the primal graph. On the contrary, cyclic structures previously
hidden in the hypergraph now emerge, leading to higher generalized hypertree width.

Moreover, removing action predicates affects the number of grounded instances, as shown
in Table 6.3. All algorithms benefited from the removal as they grounded more tasks
than before. Notably, gringo+fd shows the highest relative increase (9, 55%) in the
number of grounded tasks followed by gringo+lpopt (7, 75%), gringo+htd (6, 94%),
and gringo (6%). This is mostly due to the rovers tasks, which were all grounded by
gringo+fd in this experiment. The algorithm that grounded more tasks is once again
gringo+lpopt with 862 grounded tasks, while plain gringo has the worst performance
(847). Even though there is a greater difference in contrast to the case where action
predicates are present, this consists of only 15 instances. The utility of decompositions
remains questionable, but a closer look at the grounding times reveals a different story.

Figure 6.2 relates the number of ground instances with grounding time in seconds for
each algorithm. The y-axis follows a logarithmic scale. We plot this relation for both the
“Action Predicates” and “No Action Predicates” cases. In the first case, we notice that
all algorithms perform similarly. Interestingly, not only gringo and gringo+lpopt
ground almost the same number of tasks (799 versus 800), but they also do it with
similar running times. There are, however, slight variations that are imperceptible in the
plot. It seems that lpopt does not decompose most of the rules: only 0, 7% of them
are decomposed. We attribute this behavior to the presence of action predicates, which

117

6. Grounding Planning Problems with Decompositions

500 550 600 650 700 750 800

100

101

102

Ground Programs

T
ot
al

ti
m
e
in

se
co
n
d
s

Ground Programs per Time – Version with Action Predicates

gringo
gringo+fd
gringo+htd
gringo+lpopt

640 660 680 700 720 740 760 780 800 820 840 860

100

101

102

103

Ground Programs

T
ot
al

ti
m
e
in

se
co
n
d
s

Ground Programs per Time – Version without Action Predicates

gringo
gringo+fd
gringo+htd
gringo+lpopt

Figure 6.2: Number of ground programs per grounding time (in seconds).

118

6.3. Experiments

Table 6.4: Average grounding runtimes per domain for different Datalog rewritings. The
average is computed as the geometric mean of the grounding time of the tasks that
completed within 30 minutes. We abbreviate gringo with G, lpopt with L, and htd
with H. Next to each domain we write the number of planning tasks. We separate the
results into two blocks according to the presence or absence of action predicates. We
mark in bold the best result for each block and domain.

Domain Action Predicates No Action Predicates
G+L G+H G+L G+H

logistics (40) 8.93 20.87 0.87 13.50
rovers (40) 10.24 0.45 0.41 0.40
Total (80) 9.55 3.18 0.60 2.37

hinder the tree decomposition algorithm with their high number of variables. On the
contrary, 100% of the rules are decomposed in the htd Datalog programs. Apparently,
BalancedGo decomposes the rules despite the action predicates. The effect of the rules
split is seen on the “Action Predicates” plot in Figure 6.2. While in the majority of the
cases it leads to equal or slightly worse performance as gringo, the htd split is extremely
successful on the rovers instances, which are the fastest in the plot. The situation
drastically changes when considering the “No Action Predicates” case. Figure 6.2 shows
that decomposing the Datalog programs results in lower grounding times. This fact is
evident when looking at gringo+lpopt, which is now clearly superior to plain gringo.
The lpopt program now decomposes about 64% of the rules. While also gringo+fd
benefits from removing action predicates, gringo+htd suffers from it. Intuitively, this
makes sense. The htd method was the only that could better handle action predicates
and was thus favored. However, without action predicates, the hypergraphs of the rules
become more cyclic, while the cliques in their primal graphs become smaller. After all, hw
increases when action predicates are removed whereas tw decreases, as seen in Table 6.2.

Altogether, these results leave us with some dismay. Technically, each TD is also a GHD.
Theoretically, GHDs have lower widths and, thus, sharper upper bounds on the grounding
time. Yet our experiments showed that the TDs computed by lpopt lead to much lower
grounding times than the GHDs computed by BalancedGo. We further investigated
this issue by examining the two domains where gringo+htd performed best and worst:
rovers and logistics. The running times of other domains are quite homogeneous and
not informative. Table 6.4 shows the average grounding times of gringo+htd and
gringo+lpopt on rovers and logistics. The results are split again into two blocks
indicating the presence or absence of action predicates. We compute the running times
as a geometric mean of the running times of the domain tasks. When action predicates
are present, gringo+htd is faster on average thanks to the runtimes achieved on the
rovers domain. This is because htd contains some split rules, while lpopt does not. On
the other hand, when we remove action predicates and lpopt decomposes some rules,

119

6. Grounding Planning Problems with Decompositions

p r x y l

have_rock_analysis [0–0] at [1–1] visible [10510–55016] at_lander [1–1]

communicate_rock_data

Figure 6.3: Hypergraph of Rule 6.1. For each edge, we indicate the range of facts
contained in the initial state across the domain.

gringo+lpopt is faster. In this case, the decompositions paint an instructive picture.

In the rovers domain, a certain number of rovers navigate a planet’s surface to find
samples. Their analysis has to be communicated to a lander. The predicate visible(x , y)
defines the planet surface by saying that a waypoint y is visible from a waypoint x. A
rover navigates the planet’s surface by moving through sequences of visible waypoints.
In a given time instant, the position of a rover r at a waypoint x is encoded by the
predicate at(r , x). Likewise, the position of a lander l at a waypoint y is denoted by
the predicate at_lander(l, y). Contrary to a rover, a lander cannot move. Therefore,
it will always stay at the same point fixed in the initial state. While navigating the
planet, a rover r might collect a rock sample at a waypoint p and thus infer the predicate
have_rock_analysis(r, p). At this point, a rover r at waypoint x tries to communicate a
rock analysis obtained at waypoint p to a lander l located at waypoint y. This action is
possible only if y is visible from x. A simplified rule encoding this precondition follows:

communicate_rock_data(r , l, p, x , y) ←
at(r , x), at_lander(l, y), have_rock_analysis(r , p), visible(x , y). (6.1)

Figure 6.3 shows the hypergraph associated with this rule. For each edge name, we report
on the range of facts contained in the initial state across the domain instances. Since
this hypergraph is small and trivially acyclic, BalancedGo computes a width 1 GHD
effortlessly. On the contrary, lpopt does not decompose the rule leaving it as is. In any
case, it is easy to see that the associated primal graph has treewidth 4 due to the action
predicate. In this scenario with action predicates, splitting the rule is the best choice, as
shown in Table 6.4. In particular, our split is extremely beneficial:

temp(x , y, l) ← visible(x , y), at_lander(l, y).
communicate_rock_data(r , l, p, x , y) ← at(r , x), have_rock_analysis(r , p), temp(x , y, l).

The relation associated with the visible(x, y) predicate is huge because it encodes the
whole planet’s surface. Likewise, even if the rover starts in one waypoint o, the at(r, x)

120

6.3. Experiments

t l1 c l2

at [13–17] in_city [1000–4000] in_city [1000–4000]

drive_truck

Figure 6.4: Hypergraph of Rule 6.2. For each edge, we indicate the range of facts
contained in the initial state across the domain.

relation will eventually contain a tuple for each waypoint reachable from o. This number
might get as big as the number of waypoints on the planet. On the other hand, the
temp(x , y, l) predicate encodes all positions from which the lander can be seen. Since
there is only one lander and it never moves, joining visible(x, y) with at_lander(l, y)
results in filtering a great number of tuples from the visible(x, y) relation. Therefore, in
the next step, the join temp(x , y, l) ▷◁ at(r, x) can be computed efficiently. Note that
even though the relation have_rock_analysis(r, p) starts with zero tuples, it ends up
having one tuple for each waypoint containing a rock. This number varies across instances
between 10–49% of the waypoints, which is always 5499. In case of no action predicates,
lpopt makes the same splits as BalancedGo, and the average grounding times become
similar. Even though the runtimes of Table 6.4 are not only due to this specific rule,
we observed that similar splits occurred for other rules. Moreover, we implemented a
grounder prototype and measured that this is the most triggered rule of the domain and
the one where the grounder spends the most time. Indeed, by just splitting this one rule
as above and leaving the others intact, gringo’s grounding time improves by 95%.

Unfortunately, some splits are detrimental to the grounding phase. In the logistics
domain, some trucks, airplanes, and parcels are located in one or two cities, each having
different locations. The parcels have to be moved by trucks and airplanes to designated
locations, with the constraint that while airplanes can fly between cities, trucks can drive
only between locations of the same city. Once again, we measured that the following
simplified rule is the most challenging of the domain:

drive_truck(t, l1 , l2 , c) ← at(t, l1), in_city(l1 , c), in_city(l2 , c). (6.2)

This rule models the drive of a truck t from a location l1 to a location t2 in the same
city c. Figure 6.4 shows the hypergraph of this rule. Even in this case, it is trivially
acyclic, while the primal graph of the rule has treewidth 3. For the analysis of this case,
it is worth knowing that across all instances the number of trucks and cities is at most
two whereas the number of locations varies between 1000 and 4000. We observed that

121

6. Grounding Planning Problems with Decompositions

BalancedGo splits the rule in the following way:

temp(l1 , l2 , c) ← in_city(l1 , c), in_city(l2 , c).
drive_truck(t, l1 , l2 , c) ← at(t, l1), temp(l1 , l2 , c).

This split is poor because the temp(l1 , l2 , c) predicate forces the grounder to compute,
for all cities, a cartesian product of the locations. On the contrary, in the case of no
action predicates, lpopt performs a different split:

temp(t, l1 , c) ← at(t, l1), in_city(l1 , c).
drive_truck(t, l1 , l2 , c) ← in_city(l2 , c), temp(t, l1 , c).

In this case, the temp(t, l1 , c) predicate computes the locations l1 reachable by a truck
t in the same city c, which results in filtering out several unreachable locations from
in_city(l1, c). This split proves better, as seen in Table 6.4.
In conclusion, these two examples demonstrate that even though rules have low tw and
ghw, using the width as the only parameter for quality assessment is unsatisfactory.
On the contrary, considering quantitative measures when computing a decomposition
substantially improves performance. In particular, join selectivity seemed decisive for
the performance of gringo+htd. In the rovers domain, choosing to perform early a
highly selective join allows gringo+htd to be the best grounding method among the
analyzed ones. On the other hand, forcing the grounder to materialize what essentially is
a cartesian product in logistics makes gringo+htd pay a prohibitive price.

6.4 Summary
In this chapter, we studied the problem of grounding Datalog programs for classical
planning. While recapitulating the essential concepts in planning, we emphasized how
state-of-the-art planners need to ground a planning task before searching for a solution.
In particular, we showed how the grounded task is obtained by formulating a Datalog
program corresponding to a relaxed version of the task where no negation occurs.
Since grounding is expensive, we devised a novel method using GHDs to split Datalog
rules and produce a new Datalog program equivalent to the original one but easier
to ground. We compared our approach against similar decomposition techniques on a
well-known benchmark of planning tasks. The results of our experiments showed that,
contrary to our expectations, a similar method based on TDs grounds the most tasks in
a smaller amount of time on average. This result was counterintuitive because the ghw
of all Datalog rules is much lower than their tw.
Finally, we investigated the reasons for this unexpected behavior. We looked into two
significant cases: one where our approach outperformed the competitors and one where it
performed the worst. This analysis revealed that executing highly selective joins early and
avoiding unnecessary expensive joins is key to obtaining an effective rule decomposition.
Therefore, using the width as the only parameter for assessing the decomposition’s quality
is unsatisfactory. Quantitative measures such as join selectivity are essential.

122

CHAPTER 7
Conclusion

In this final chapter, we recapitulate our main contributions by putting them in perspective
with the state of the field before our work. Additionally, we indicate directions for further
research based on our work.

7.1 Contributions
We opened this work in Chapter 3 by tackling the problem of computing GHDs for
tractable cases. Combining previously proposed ideas, we formalized the BalSep al-
gorithm computing GHDs of width ≤ k for the tractable case of hypergraphs having
bounded intersection size. Furthermore, we made up for the shortcomings of previous
work by proving that BalSep is sound and complete.

This new algorithm brings into practice the tractability results obtained by Fischl,
Gottlob, and Pichler [53] for the computation of GHDs. Our formal analysis makes
BalSep a reliable tool for decomposing hypergraphs.

We proceeded in Chapter 4 with an investigation on how to benchmark decomposition
algorithms. While turning our attention to HyperBench, a preexisting collection of
hypergraphs stemming from real-world CQs and CSPs, we recognized that the dataset
composition was non-representative of the query-answering realm. Therefore, we rebal-
anced the partition between CQ and CSP hypergraphs by adding new complex queries
with relevant features. Since examining these complex queries was nontrivial, we devised
a novel method to extract hypergraphs from non-purely conjunctive queries by identifying
their “maximal conjunctive components”. Eventually, we studied the structural proper-
ties of the extended HyperBench and compared BalSep against other decomposition
algorithms. We showed that width and (multi-)intersection sizes are small enough to use
decomposition algorithms in practice, even for complex queries. Moreover, we observed
that BalSep is the fastest algorithm for computing GHDs on average.

123

7. Conclusion

This study further motivates the use of decompositions in practical problems. Our
comparison proved that not only BalSep can decompose real-world hypergraphs, but
it is also an efficient algorithm. The extension of HyperBench also encourages the
development of new algorithms since it is now a representative dataset for comparison.
Our novel method for hypergraph extraction from complex queries pushes further the
limits of the applicability of decomposition algorithms.

In Chapter 5, we studied the problem of recomputing a GHD upon hypergraph modifica-
tions. After defining typical hypergraph modifications, we formalized the SearchUp-
dateGHD problem. We proved that, for most modifications, SearchUpdateGHD is
not polynomial-time solvable. Thus, in theory, knowing a decomposition of the original
hypergraph does not make the computation of a GHD for the modified hypergraph
easier. Nevertheless, we tackled the problem from a practical perspective proposing a
new algorithm that, given as input a decomposition D of the original hypergraph H and
a modified hypergraph H ′, uses knowledge inferred from D for quickly computing a new
decomposition of H ′. Our empirical evaluation showed that our algorithm has speed-up
factors between 6 and 50 over the reference algorithm.

The definition of the SearchUpdateGHD opens the door to using decompositions in a
previously unexplored setting. That is a dynamic scenario where an instance is repeatedly
modified while computing a solution. The results obtained with our prototype suggest
that the problem might be easier than the theory establishes.

We finally moved our focus from computing decompositions to using them in Chapter 6,
where we use GHDs to ground classical planning tasks. We proposed a novel GHD-guided
method to split the rules of a logic program corresponding to a planning task. Through
empirical assessment, we showed that rules decompositions help reduce the grounding
time, regardless of the type of decomposition used. Nevertheless, we observed that
quantitative parameters are equally important, if not more, than structural parameters.

Even though our study shows that using decompositions reduces grounding time, it
reveals that existing algorithms do not always produce “good” decompositions. While
they aim at computing low-width decompositions, they overlook other quantitative
measures. Our experiments suggest that join selectivity is essential to solving a specific
instance efficiently. Nevertheless, a more thorough study of other decisive parameters
and a quantitative analysis of how they improve performances is necessary.

7.2 Outlook
Our investigation answered many of the open questions posed at the beginning of this
thesis. Yet, it raises new ones that we illustrate here.

The first line of research concerns computing decompositions. While our BalSep
algorithm efficiently computes GHDs in case of bounded intersection size, the tractability
results of Fischl, Gottlob, and Pichler [53] also hold for bounded multi-intersection

124

7.2. Outlook

size. Since our work on HyperBench showed that most hypergraphs enjoy small multi-
intersection size, new algorithms exploiting this parameter could be developed.

Furthermore, Gottlob et al. [69] reduce the Check(fhw, k) problem to Check(ghw, k)
for classes of hypergraphs of bounded multi-intersection width. However, no efficient
implementation of this reduction is available. This line of research could be rewarding.

The study on HyperBench revealed that hypergraphs stemming from real-world CQs and
CSPs have favorable properties for decomposition algorithms. Yet, decompositions find
their use also in other domains, as our research on grounding planning tasks revealed.
Likewise, hypergraphs appear also in probabilistic graphical models [14] and combinatorial
auctions [63]. Collecting and analyzing instances from these domains might provide
additional insight into using structural decomposition methods.

In defining the SearchUpdateGHD problem, we wanted to capture the most typical
hypergraph modifications. The complexity study revealed that this problem is hard to
solve for these classes. Nevertheless, our algorithm for GHD recomputation achieves
tremendous speed-ups over classical GHD algorithms. These results suggest that the
problem is much easier in practice than in theory. Restricting the type of allowed
modifications might lead to discovering some tractable cases.

A second line of research concerns using decompositions to solve database and AI problems.
Our work regarding grounding classical planning tasks showed that a decomposition-
guided split of logic program rules is enormously advantageous if it considers the quantita-
tive parameters of the instance. On the other hand, splitting rules naively could seriously
hinder the grounding performance instead. While we mainly focused on computing
low-width decompositions, it became clear that low width is insufficient to assess a
decomposition’s goodness. On the contrary, quantitative measures such as join selectivity
seemed more effective than width alone for grounding. The effects of other parameters
such as join width [55] remain unknown. Moreover, questions concerning the effective
improvement such parameters can achieve remain unanswered. Therefore, we deem
urgent an investigation into the parameters making decompositions useful for grounding,
answering CQs, and solving CSPs.

Moreover, it is insufficient to understand the parameters leading to a decomposition’s
success: algorithms computing successful decompositions are necessary. Scarcello et
al. [124] proposed an algorithm that, given a hypergraph and a tree aggregating function
ϕ, outputs an HD of width ≤ k maximizing ϕ. However, this algorithm performs an
exhaustive search, which is impractical for larger hypergraphs such as the ones stemming
from CSPs. A more scalable approach would be desirable, even if just heuristic.

Systems effectively utilizing hypertree decompositions are missing to date. For instance,
in grounding planning tasks, we first decomposed the corresponding logic program
and then gave it as input to an external grounder. Splitting the rules requires the
definition of unnecessary temporary predicates unused by the successive search for a
plan. Unfortunately, the number of temporary predicates is an additional obstacle for

125

7. Conclusion

grounders because they must instantiate them. Integrating hypertree decompositions
directly in the grounder would solve this problem and improve overall performance.

In principle, we could use the same idea to answer queries on databases. Indeed,
mainstream database systems struggle to find good join plans for queries joining dozens
of tables [105]. On the other hand, GHDs provide a flexible way of splitting such queries,
especially if they are cyclic. Preliminary work suggests this direction is promising [67].

Finally, we could also solve CSPs using hypertree decompositions. In this case, the
challenge lies in the mix of extensional and intensional constraints. While the firsts are
represented in relational form, the latter is defined through logical formulas. Explicitly
computing a relation has an exponential cost, in general. Therefore, classical GHDs
are not powerful enough to deal with these constraints. Developing smarter algorithms
dealing with these constraints without instantiating them is deemed necessary.

126

List of Figures

2.1 A crossword puzzle P and the relation W of possible words. 16
2.2 The hypergraphs corresponding to the CQ of Example 2.1 and the CSP of

Example 2.2. 18
2.3 A GHD of width 2 for the hypergraph HP of Figure 2.2b. 19
2.4 Hypergraph H0 of Example 2.5 (taken from [7]). 19
2.5 Comparison between a GHD and an HD of H0 20
2.6 The two components C1, C2 of Example 2.7 obtained by removing {w5, w3}

from HP of Figure 2.2b. 24

4.1 Dependency graph of the query in Example 4.4. 49
4.2 Hypergraph Sizes. 56
4.3 HW analysis (labels are avg. runtimes in s). 59
4.4 Correlation analysis of hypergraph properties. 61

5.1 Two similar crossword puzzles P and P ′. Given a set of words W , we want to
fill every contiguous horizontal or vertical line of white cells with words from
W . If two lines intersect, the words assigned to these lines must intersect in
the right positions. 70

5.2 The hypergraphs corresponding to the two puzzles P, P ′ of Figure 5.1. . . 70
5.3 Hypergraphs obtained by applying to HP ′ the modifications described in

Example 5.2. 73
5.4 Example 5.3. 78
5.5 Geometric mean runtimes (log. scale) of ClassicGo and Update w.r.t. ghw. 92
5.6 Geometric mean runtimes (log. scale) of ClassicGo and Update w.r.t. instance

size. 93

6.1 A plan example in the Blocks World (Example 6.1). 106
6.2 Number of ground programs per grounding time (in seconds). 118
6.3 Hypergraph of Rule 6.1. For each edge, we indicate the range of facts contained

in the initial state across the domain. 120
6.4 Hypergraph of Rule 6.2. For each edge, we indicate the range of facts contained

in the initial state across the domain. 121

127

List of Tables

4.1 Overview of benchmark instances. 53
4.2 Properties of all benchmark CQs. 55
4.3 Properties of all benchmark CSPs. 57
4.4 Exact number of CQ instances in the HW analysis of Figure 4.3. 58
4.5 Exact number of CSP instances in the HW analysis of Figure 4.3. 60
4.6 GHW algorithms with avg. runtimes in s. 62
4.7 GHW of instances with average runtime in s. 63
4.8 Instances solved with ImproveHD. 65
4.9 Instances solved with FracImproveHD. 65

5.1 A breakdown of the instances used for the empirical evaluation by their widths
prior to modification. In addition to the number of original instances, we also
show the number of updated hypergraphs that originated from the relative
original hypergraphs. 88

5.2 Statistics for ClassicGo, Update, and ClassicLeo shown separately for each
modification. Mean ClassicGo, Mean Update, and Mean ClassicLeo are in
milliseconds. All mean times were rounded to the closest integer, all other
non-integer numbers were rounded to two decimal places. Timeout was set to
30 minutes. 89

5.3 Statistics for ClassicGo, Update, and ClassicLeo shown by the width of the
update instances. Mean ClassicGo, Mean Update, and Mean ClassicLeo are
in milliseconds. All mean times were rounded to the closest integer, all other
non-integer numbers were rounded to two decimal places. 91

5.4 Statistics for ClassicGo, Update, and ClassicLeo shown by the width of the
positive update instances. All mean times were rounded to the closest integer. 91

5.5 Statistics for ClassicGo, Update, and ClassicLeo shown by the width of the
negative update instances. All mean times were rounded to the closest integer. 92

5.6 Definition of Bu and λu for GHD of H. 96

6.1 Action’s preconditions and effects for the Blocks World (Example 6.1). . . 105
6.2 Widths (tw and ghw) computed for the original Datalog rules. Column A

shows if action predicates are present. Column N shows the number of rules. 115

129

6.3 Number of grounded instances per domain for different Datalog rewritings.
Timeout was set to 30 minutes. We abbreviate gringo with G, lpopt with
L, and htd with H. Next to each domain we write the number of planning
tasks. We separate the results into two blocks according to the presence or
absence of action predicates. We mark in bold the best result for each block
and domain. 115

6.4 Average grounding runtimes per domain for different Datalog rewritings. The
average is computed as the geometric mean of the grounding time of the tasks
that completed within 30 minutes. We abbreviate gringo with G, lpopt
with L, and htd with H. Next to each domain we write the number of planning
tasks. We separate the results into two blocks according to the presence or
absence of action predicates. We mark in bold the best result for each block
and domain. 119

130

List of Algorithms

2.1 A schematic top-down GHD algorithm. 23

3.1 The GlobalBIP Algorithm. 30

3.2 The BalSep Algorithm. 40

3.3 The Separate Function used by BalSep. 41

3.4 The BuildGHD Function used by BalSep. 41

5.1 Finding Minimal δ-mutable Subtrees. 79

5.2 The SceneCreationDown Algorithm. 83

5.3 The SceneCreationUp Algorithm. 84

5.4 GHD Recomputation with Scene Mappings. 87

131

Bibliography

[1] Blocks world example. https://ai.dmi.unibas.ch/_files/teaching/
hs22/po/slides/po-b01.pdf. Accessed: 2023-04-23.

[2] C. R. Aberger, A. Lamb, K. Olukotun, and C. Ré. Levelheaded: A unified engine
for business intelligence and linear algebra querying. In 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018,
pages 449–460. IEEE Computer Society, 2018.

[3] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded:
A relational engine for graph processing. ACM Trans. Database Syst., 42(4):20:1–
20:44, 2017.

[4] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. Old techniques for new join algo-
rithms: A case study in RDF processing. In 32nd IEEE International Conference
on Data Engineering Workshops, ICDE Workshops 2016, Helsinki, Finland, May
16-20, 2016, pages 97–102. IEEE Computer Society, 2016.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[6] I. Adler. Marshals, monotone marshals, and hypertree-width. J. Graph Theory,
47(4):275–296, 2004.

[7] I. Adler, G. Gottlob, and M. Grohe. Hypertree width and related hypergraph
invariants. Eur. J. Comb., 28(8):2167–2181, 2007.

[8] F. N. Afrati, M. R. Joglekar, C. Ré, S. Salihoglu, and J. D. Ullman. GYM: A
multiround distributed join algorithm. In M. Benedikt and G. Orsi, editors, 20th
International Conference on Database Theory, ICDT 2017, March 21-24, 2017,
Venice, Italy, volume 68 of LIPIcs, pages 4:1–4:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[9] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:
queries with bounded errors and bounded response times on very large data. In
Z. Hanzálek, H. Härtig, M. Castro, and M. F. Kaashoek, editors, Eighth Eurosys
Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013, pages
29–42. ACM, 2013.

133

https://ai.dmi.unibas.ch/_files/teaching/hs22/po/slides/po-b01.pdf
https://ai.dmi.unibas.ch/_files/teaching/hs22/po/slides/po-b01.pdf

[10] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control performance modeling:
Alternatives and implications. ACM Trans. Database Syst., 12(4):609–654, 1987.

[11] K. Amroun, Z. Habbas, and W. Aggoune-Mtalaa. A compressed generalized hyper-
tree decomposition-based solving technique for non-binary constraint satisfaction
problems. AI Commun., 29(2):371–392, 2016.

[12] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L.
Veldhuizen, and G. Washburn. Design and implementation of the logicblox system.
In T. K. Sellis, S. B. Davidson, and Z. G. Ives, editors, Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 1371–1382. ACM, 2015.

[13] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller. The ibench integration
metadata generator. PVLDB, 9(3):108–119, 2015.

[14] A. S. Arun, S. V. M. Jayaraman, C. Ré, and A. Rudra. Hypertree decompositions
revisited for pgms. CoRR, abs/1807.00886, 2018.

[15] G. Audemard, F. Boussemart, C. Lecoutre, and C. Piette. XCSP3: an XML-based
format designed to represent combinatorial constrained problems, 2016.

[16] N. Bakibayev, T. Kociský, D. Olteanu, and J. Zavodny. Aggregation and ordering
in factorised databases. PVLDB, 6(14):1990–2001, 2013.

[17] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2010.

[18] P. Beame, S. A. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative
complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.

[19] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. J. ACM, 30(3):479–513, 1983.

[20] M. Benedikt. CQ benchmarks, 2017. Personal Communication.

[21] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti, D. Santoro,
and E. Tsamoura. Benchmarking the chase. In E. Sallinger, J. V. den Bussche,
and F. Geerts, editors, Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA,
May 14-19, 2017, pages 37–52. ACM, 2017.

[22] J. Berg, N. Lodha, M. Järvisalo, and S. Szeider. Maxsat benchmarks based on
determining generalized hypertree-width. MaxSAT Evaluation 2017: Solver and
Benchmark Descriptions, B-2017-2:22, 2017.

[23] M. Bichler, M. Morak, and S. Woltran. lpopt: A rule optimization tool for answer
set programming. Fundam. Informaticae, 177(3-4):275–296, 2020.

134

[24] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[25] H. L. Bodlaender and A. M. Koster. Treewidth computations ii. lower bounds.
Information and Computation, 209(7):1103–1119, 2011.

[26] B. Bonet and H. Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):5–33,
2001.

[27] A. Bonifati, W. Martens, and T. Timm. An analytical study of large SPARQL
query logs. PVLDB, 11(2):149–161, 2017.

[28] A. Bonifati, W. Martens, and T. Timm. Navigating the maze of wikidata query logs.
In L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates,
and L. Zia, editors, The World Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019, pages 127–138. ACM, 2019.

[29] K. E. C. Booth, T. T. Tran, G. Nejat, and J. C. Beck. Mixed-integer and constraint
programming techniques for mobile robot task planning. IEEE Robotics Autom.
Lett., 1(1):500–507, 2016.

[30] S. C. Brailsford, C. N. Potts, and B. M. Smith. Constraint satisfaction problems:
Algorithms and applications. Eur. J. Oper. Res., 119(3):557–581, 1999.

[31] J. Brault-Baron. Hypergraph acyclicity revisited. ACM Comput. Surv., 49(3):54:1–
54:26, 2016.

[32] T. Bylander. Complexity results for planning. In J. Mylopoulos and R. Reiter,
editors, Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence. Sydney, Australia, August 24-30, 1991, pages 274–279. Morgan Kaufmann,
1991.

[33] F. Calimeri, S. Perri, and J. Zangari. Optimizing answer set computation via
heuristic-based decomposition. Theory Pract. Log. Program., 19(4):603–628, 2019.

[34] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance.
In G. M. Lohman, A. Sernadas, and R. Camps, editors, 17th International Confer-
ence on Very Large Data Bases, September 3-6, 1991, Barcelona, Catalonia, Spain,
Proceedings, pages 577–589. Morgan Kaufmann, 1991.

[35] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In J. E. Hopcroft, E. P. Friedman, and M. A. Harrison,
editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
May 4-6, 1977, Boulder, Colorado, USA, pages 77–90. ACM, 1977.

[36] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In F. N.
Afrati and P. G. Kolaitis, editors, Database Theory - ICDT ’97, 6th International
Conference, Delphi, Greece, January 8-10, 1997, Proceedings, volume 1186 of
Lecture Notes in Computer Science, pages 56–70. Springer, 1997.

135

[37] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theor.
Comput. Sci., 239(2):211–229, 2000.

[38] A. B. Corrêa, M. Hecher, M. Helmert, D. M. Longo, F. Pommenering, and
S. Woltran. Grounding planning tasks using tree decompositions and iterated
solving. In Proceedings of the Thirty-Third International Conference on Automated
Planning and Scheduling, ICAPS 2023, Prague, July 8-13, 2023, 2023.

[39] A. B. Corrêa, F. Pommerening, M. Helmert, and G. Francès. Lifted successor
generation using query optimization techniques. In J. C. Beck, O. Buffet, J. Hoff-
mann, E. Karpas, and S. Sohrabi, editors, Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling, Nancy, France, October 26-30,
2020, pages 80–89. AAAI Press, 2020.

[40] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

[41] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

[42] R. Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[43] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artif. Intell.,
38(3):353–366, 1989.

[44] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artif. Intell., 76(1-2):75–
88, 1995.

[45] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J.
ACM, 30(3):514–550, 1983.

[46] B. Falkenhainer and K. D. Forbus. Compositional modeling: Finding the right
model for the job. Artif. Intell., 51(1-3):95–143, 1991.

[47] J. K. Fichte, M. Hecher, N. Lodha, and S. Szeider. An SMT approach to fractional
hypertree width. In J. N. Hooker, editor, Principles and Practice of Constraint
Programming - 24th International Conference, CP 2018, Lille, France, August
27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science,
pages 109–127. Springer, 2018.

[48] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971.

[49] W. Fischl. Generalized and Fractional Hypertree Decompositions From Theory to
Practice. PhD thesis, TU Wien, 2018.

136

[50] W. Fischl, G. Gottlob, D. M. Longo, and R. Pichler. Hyperbench: A benchmark and
tool for hypergraphs and empirical findings. In D. Suciu, S. Skritek, and C. Koch,
editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019, pages 464–480. ACM, 2019.

[51] W. Fischl, G. Gottlob, D. M. Longo, and R. Pichler. Hyperbench: A benchmark
and tool for hypergraphs and empirical findings. In A. Hogan and T. Milo, editors,
Proceedings of the 13th Alberto Mendelzon International Workshop on Foundations
of Data Management, Asunción, Paraguay, June 3-7, 2019, volume 2369 of CEUR
Workshop Proceedings. CEUR-WS.org, 2019.

[52] W. Fischl, G. Gottlob, D. M. Longo, and R. Pichler. Hyperbench: A benchmark
and tool for hypergraphs and empirical findings. ACM J. Exp. Algorithmics,
26:1.6:1–1.6:40, 2021.

[53] W. Fischl, G. Gottlob, and R. Pichler. General and fractional hypertree decom-
positions: Hard and easy cases. In J. V. den Bussche and M. Arenas, editors,
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 17–32. ACM,
2018.

[54] B. N. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint
solver. Commun. ACM, 33(1):54–63, 1990.

[55] R. Ganian, S. Ordyniak, and S. Szeider. A join-based hybrid parameter for
constraint satisfaction. In T. Schiex and S. de Givry, editors, Principles and
Practice of Constraint Programming - 25th International Conference, CP 2019,
Stamford, CT, USA, September 30 - October 4, 2019, Proceedings, volume 11802
of Lecture Notes in Computer Science, pages 195–212. Springer, 2019.

[56] R. Ganian, A. Schidler, M. Sorge, and S. Szeider. Threshold treewidth and hypertree
width. J. Artif. Intell. Res., 74:1687–1713, 2022.

[57] T. Ganzow, G. Gottlob, N. Musliu, and M. Samer. A csp hypergraph library.
techreport, TU Wien, 2005.

[58] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot ASP solving
with clingo. Theory Pract. Log. Program., 19(1):27–82, 2019.

[59] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp : A conflict-
driven answer set solver. In C. Baral, G. Brewka, and J. S. Schlipf, editors, Logic
Programming and Nonmonotonic Reasoning, 9th International Conference, LPNMR
2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, volume 4483 of Lecture
Notes in Computer Science, pages 260–265. Springer, 2007.

137

[60] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping and cleaning. In
I. F. Cruz, E. Ferrari, Y. Tao, E. Bertino, and G. Trajcevski, editors, IEEE 30th
International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014, pages 232–243. IEEE Computer Society, 2014.

[61] L. Ghionna, L. Granata, G. Greco, and F. Scarcello. Hypertree decompositions
for query optimization. In R. Chirkova, A. Dogac, M. T. Özsu, and T. K. Sellis,
editors, Proceedings of the 23rd International Conference on Data Engineering,
ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 36–45.
IEEE Computer Society, 2007.

[62] L. Ghionna, G. Greco, and F. Scarcello. H-DB: a hybrid quantitative-structural sql
optimizer. In C. Macdonald, I. Ounis, and I. Ruthven, editors, Proceedings of the
20th ACM Conference on Information and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011, pages 2573–2576. ACM, 2011.

[63] G. Gottlob and G. Greco. Decomposing combinatorial auctions and set packing
problems. J. ACM, 60(4):24:1–24:39, 2013.

[64] G. Gottlob, G. Greco, N. Leone, and F. Scarcello. Hypertree decompositions:
Questions and answers. In T. Milo and W. Tan, editors, Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 57–74. ACM,
2016.

[65] G. Gottlob, M. Lanzinger, D. M. Longo, and C. Okulmus. Incremental updates of
generalized hypertree decompositions. ACM J. Exp. Algorithmics, 27, mar 2023.

[66] G. Gottlob, M. Lanzinger, D. M. Longo, C. Okulmus, and R. Pichler. The
hypertrac project: Recent progress and future research directions on hypergraph
decompositions. In E. Hebrard and N. Musliu, editors, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 17th International
Conference, CPAIOR 2020, Vienna, Austria, September 21-24, 2020, Proceedings,
volume 12296 of Lecture Notes in Computer Science, pages 3–21. Springer, 2020.

[67] G. Gottlob, M. Lanzinger, D. M. Longo, C. Okulmus, R. Pichler, and A. Selzer.
Structure-guided query evaluation: Towards bridging the gap from theory to
practice. CoRR, abs/2303.02723, 2023.

[68] G. Gottlob, M. Lanzinger, R. Pichler, and I. Razgon. Complexity analysis of
generalized and fractional hypertree decompositions. CoRR, abs/2002.05239, 2020.

[69] G. Gottlob, M. Lanzinger, R. Pichler, and I. Razgon. Complexity analysis of
generalized and fractional hypertree decompositions. J. ACM, 68(5):38:1–38:50,
2021.

138

[70] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. J. ACM, 48(3):431–498, 2001.

[71] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions: A survey. In
J. Sgall, A. Pultr, and P. Kolman, editors, Mathematical Foundations of Com-
puter Science 2001, 26th International Symposium, MFCS 2001 Marianske Lazne,
Czech Republic, August 27-31, 2001, Proceedings, volume 2136 of Lecture Notes in
Computer Science, pages 37–57. Springer, 2001.

[72] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

[73] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized hypertree decompositions:
Np-hardness and tractable variants. J. ACM, 56(6):30:1–30:32, 2009.

[74] G. Gottlob, C. Okulmus, and R. Pichler. Fast and parallel decomposition of con-
straint satisfaction problems. In C. Bessiere, editor, Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020 [scheduled
for July 2020, Yokohama, Japan, postponed due to the Corona pandemic], pages
1155–1162. ijcai.org, 2020.

[75] G. Gottlob, C. Okulmus, and R. Pichler. Fast and parallel decomposition of
constraint satisfaction problems. Constraints An Int. J., 27(3):284–326, 2022.

[76] G. Gottlob and M. Samer. A backtracking-based algorithm for hypertree decompo-
sition. ACM Journal of Experimental Algorithmics, 13:1:1.1–1:1.19, 2008.

[77] M. H. Graham. On the universal relation. Technical report, University of Toronto,
1979.

[78] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of locks and
degrees of consistency in a shared data base. In G. M. Nijssen, editor, Modelling in
Data Base Management Systems, Proceeding of the IFIP Working Conference on
Modelling in Data Base Management Systems, Freudenstadt, Germany, January
5-8, 1976, pages 365–394. North-Holland, 1976.

[79] M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM Trans.
Algorithms, 11(1):4:1–4:20, 2014.

[80] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. J. Web Semant., 3(2-3):158–182, 2005.

[81] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally.
In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, DC, USA, May
26-28, 1993, pages 157–166. ACM Press, 1993.

139

[82] Z. Habbas, K. Amroun, and D. Singer. A forward-checking algorithm based on a
generalised hypertree decomposition for solving non-binary constraint satisfaction
problems. J. Exp. Theor. Artif. Intell., 27(5):649–671, 2015.

[83] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes
efficiently. In H. V. Jagadish and I. S. Mumick, editors, Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996, pages 205–216. ACM Press, 1996.

[84] P. Haslum et al. Computing genome edit distances using domain-independent
planning. 2011.

[85] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise. An Introduction to the
Planning Domain Definition Language. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2019.

[86] M. Helmert. The fast downward planning system. J. Artif. Intell. Res., 26:191–246,
2006.

[87] M. Helmert. Concise finite-domain representations for PDDL planning tasks. Artif.
Intell., 173(5-6):503–535, 2009.

[88] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. J. Artif. Intell. Res., 14:253–302, 2001.

[89] N. Immerman. Relational queries computable in polynomial time. Inf. Control.,
68(1-3):86–104, 1986.

[90] S. Jain, D. Moritz, D. Halperin, B. Howe, and E. Lazowska. Sqlshare: Results from
a multi-year sql-as-a-service experiment. In F. Özcan, G. Koutrika, and S. Madden,
editors, Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 281–293. ACM, 2016.

[91] S. Karakashian, R. J. Woodward, and B. Y. Choueiry. Reformulating r(*, m)c with
tree decomposition. In M. R. Genesereth and P. Z. Revesz, editors, Proceedings of
the Ninth Symposium on Abstraction, Reformulation, and Approximation, SARA
2011, Parador de Cardona, Cardona, Catalonia, Spain, July 17-18, 2011., pages
62–69. AAAI, 2011.

[92] M. Katz and J. Hoffmann. Mercury planner: Pushing the limits of partial delete
relaxation. IPC 2014 planner abstracts, pages 43–47, 2014.

[93] M. A. Khamis, R. R. Curtin, B. Moseley, H. Q. Ngo, X. Nguyen, D. Olteanu, and
M. Schleich. Functional aggregate queries with additive inequalities. ACM Trans.
Database Syst., 45(4):17:1–17:41, 2020.

140

[94] M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. Joins via geometric resolutions:
Worst case and beyond. ACM Trans. Database Syst., 41(4):22:1–22:45, 2016.

[95] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions asked frequently. In
T. Milo and W. Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, pages 13–28. ACM, 2016.

[96] M. A. Khamis, H. Q. Ngo, and D. Suciu. What do shannon-type inequalities,
submodular width, and disjunctive datalog have to do with one another? In
E. Sallinger, J. V. den Bussche, and F. Geerts, editors, Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 429–444. ACM, 2017.

[97] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. In A. O. Mendelzon and J. Paredaens, editors, Proceedings of the Sev-
enteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 1-3, 1998, Seattle, Washington, USA, pages 205–213. ACM Press,
1998.

[98] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím. IBM ILOG CP optimizer for
scheduling - 20+ years of scheduling with constraints at IBM/ILOG. Constraints
An Int. J., 23(2):210–250, 2018.

[99] M. Lalou, Z. Habbas, and K. Amroun. Solving hypertree structured CSP: sequential
and parallel approaches. In M. Gavanelli and T. Mancini, editors, Proceedings of
the 16th RCRA workshop on Experimental Evaluation of Algorithms for Solving
Problems with Combinatorial Explosion, RCRA@AI*IA 2009, Reggio Emilia, Italy,
December 11-12, 2009, volume 589 of CEUR Workshop Proceedings. CEUR-WS.org,
2009.

[100] P. Lauer, Á. Torralba, D. Fiser, D. Höller, J. Wichlacz, and J. Hoffmann. Polynomial-
time in PDDL input size: Making the delete relaxation feasible for lifted planning.
In Z. Zhou, editor, Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 4119–4126. ijcai.org, 2021.

[101] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and
T. Neumann. Query optimization through the looking glass, and what we found
running the join order benchmark. VLDB J., 27(5):643–668, 2018.

[102] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log., 7(3):499–562, 2006.

[103] A. K. Mackworth and E. C. Freuder. The complexity of constraint satisfaction
revisited. Artif. Intell., 59(1-2):57–62, 1993.

141

[104] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. Getting the
most out of wikidata: Semantic technology usage in wikipedia’s knowledge graph.
In D. Vrandecic, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino,
M. Sabou, L. Kaffee, and E. Simperl, editors, The Semantic Web - ISWC 2018 -
17th International Semantic Web Conference, Monterey, CA, USA, October 8-12,
2018, Proceedings, Part II, volume 11137 of Lecture Notes in Computer Science,
pages 376–394. Springer, 2018.

[105] R. Mancini, S. Karthik, B. Chandra, V. Mageirakos, and A. Ailamaki. Efficient
massively parallel join optimization for large queries. In Z. G. Ives, A. Bonifati, and
A. E. Abbadi, editors, SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 122–135. ACM, 2022.

[106] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. J. ACM, 60(6):42:1–42:51, 2013.

[107] R. Matloob and M. Soutchanski. Exploring organic synthesis with state-of-the-art
planning techniques. In Proc. SPARK Workshop, pages 52–61, 2016.

[108] D. Michail, J. Kinable, B. Naveh, and J. V. Sichi. Jgrapht—a java library for graph
data structures and algorithms. ACM Trans. Math. Softw., 46(2), May 2020.

[109] C. Mohan, B. G. Lindsay, and R. Obermarck. Transaction management in the r*
distributed database management system. ACM Trans. Database Syst., 11(4):378–
396, 1986.

[110] M. Morak and S. Woltran. Preprocessing of complex non-ground rules in answer set
programming. In A. Dovier and V. S. Costa, editors, Technical Communications of
the 28th International Conference on Logic Programming, ICLP 2012, September 4-
8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 247–258. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2012.

[111] I. Niemelä and P. Simons. Smodels-an implementation of the stable model and well-
founded semantics for normal logic programs. In Proceedings of the 4th international
conference on logic programming and non-monotonic reasoning, volume 1265, pages
420–429. Springer Berlin, 1997.

[112] D. Olteanu and J. Závodný. Size bounds for factorised representations of query
results. ACM Trans. Database Syst., 40(1):2:1–2:44, 2015.

[113] J. Pearson and P. G. Jeavons. A survey of tractable constraint satisfaction problems.
Technical report, Technical Report CSD-TR-97-15, Royal Holloway, University of
London, 1997.

[114] E. P. D. Pednault. ADL: exploring the middle ground between STRIPS and the
situation calculus. In R. J. Brachman, H. J. Levesque, and R. Reiter, editors,

142

Proceedings of the 1st International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’89). Toronto, Canada, May 15-18 1989, pages
324–332. Morgan Kaufmann, 1989.

[115] A. Perelman and C. Ré. Duncecap: Compiling worst-case optimal query plans. In
T. K. Sellis, S. B. Davidson, and Z. G. Ives, editors, Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages 2075–2076. ACM, 2015.

[116] J. Pérez, M. Arenas, and C. Gutiérrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

[117] F. Picalausa and S. Vansummeren. What are real SPARQL queries like? In R. D.
Virgilio, F. Giunchiglia, and L. Tanca, editors, Proceedings of the International
Workshop on Semantic Web Information Management, SWIM 2011, Athens, Greece,
June 12, 2011, page 7. ACM, 2011.

[118] R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries
using views. VLDB J., 10(2-3):182–198, 2001.

[119] X. Qian. Query folding. In S. Y. W. Su, editor, Proceedings of the Twelfth
International Conference on Data Engineering, February 26 - March 1, 1996, New
Orleans, Louisiana, USA, pages 48–55. IEEE Computer Society, 1996.

[120] L. D. Raedt, T. Guns, and S. Nijssen. Constraint programming for data mining
and machine learning. In M. Fox and D. Poole, editors, Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, July 11-15, 2010. AAAI Press, 2010.

[121] S. Richter and M. Westphal. The LAMA planner: Guiding cost-based anytime
planning with landmarks. J. Artif. Intell. Res., 39:127–177, 2010.

[122] N. Robertson and P. D. Seymour. Graph minors. III. planar tree-width. J. Comb.
Theory, Ser. B, 36(1):49–64, 1984.

[123] N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects of tree-
width. J. Algorithms, 7(3):309–322, 1986.

[124] F. Scarcello, G. Greco, and N. Leone. Weighted hypertree decompositions and
optimal query plans. J. Comput. Syst. Sci., 73(3):475–506, 2007.

[125] A. Schidler and S. Szeider. Computing optimal hypertree decompositions. In
G. E. Blelloch and I. Finocchi, editors, Proceedings of the Symposium on Algorithm
Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, January
5-6, 2020, pages 1–11. SIAM, 2020.

143

[126] A. Schidler and S. Szeider. Computing optimal hypertree decompositions with SAT.
In Z. Zhou, editor, Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 1418–1424. ijcai.org, 2021.

[127] R. Seidel. A new method for solving constraint satisfaction problems. In P. J.
Hayes, editor, Proceedings of the 7th International Joint Conference on Artificial
Intelligence, IJCAI ’81, Vancouver, BC, Canada, August 24-28, 1981, pages 338–
342. William Kaufmann, 1981.

[128] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In M. J. Maher and J. Puget, editors, Principles and Practice of
Constraint Programming - CP98, 4th International Conference, Pisa, Italy, October
26-30, 1998, Proceedings, volume 1520 of Lecture Notes in Computer Science, pages
417–431. Springer, 1998.

[129] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[130] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13(3):566–579, 1984.

[131] Transaction Processing Performance Council (TPC). TPC-DS decision support
benchmark, 2006.

[132] Transaction Processing Performance Council (TPC). TPC-H decision support
benchmark, 2014.

[133] S. Tu and C. Ré. Duncecap: Query plans using generalized hypertree decompositions.
In T. K. Sellis, S. B. Davidson, and Z. G. Ives, editors, Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 2077–2078. ACM, 2015.

[134] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I,
volume 14 of Principles of computer science series. Computer Science Press, 1988.

[135] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume II.
Computer Science Press, 1989.

[136] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability & Its Applications,
16(2):264–280, jan 1971.

[137] M. Y. Vardi. The complexity of relational query languages (extended abstract).
In H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. H. Landweber, editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May
5-7, 1982, San Francisco, California, USA, pages 137–146. ACM, 1982.

144

[138] H. Verhaeghe, S. Nijssen, G. Pesant, C. Quimper, and P. Schaus. Learning optimal
decision trees using constraint programming. Constraints An Int. J., 25(3-4):226–
250, 2020.

[139] T. Warneke. Jsqlparser, 2019.

[140] M. Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases,
7th International Conference, September 9-11, 1981, Cannes, France, Proceedings,
pages 82–94. IEEE Computer Society, 1981.

[141] C. T. Yu and M. Z. Ozsoyoglu. An algorithm for tree-query membership of a
distributed query. In The IEEE Computer Society’s Third International Computer
Software and Applications Conference, COMPSAC 1979, 6-8 November, 1979,
Chicago, Illinois, USA, pages 306–312. IEEE, 1979.

[142] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.
Dryadlinq: A system for general-purpose distributed data-parallel computing using
a high-level language. In R. Draves and R. van Renesse, editors, 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2008, De-
cember 8-10, 2008, San Diego, California, USA, Proceedings, pages 1–14. USENIX
Association, 2008.

145

	Kurzfassung
	Abstract
	Contents
	Introduction
	Difficult Problems in Databases and AI
	Hypergraphs and Structural Decomposition Methods
	Decompositions in Real Systems
	Research Questions and Main Results
	Overview of the Study

	Preliminaries and Definitions
	CQs, CSPs, and Hypergraphs
	Hypergraph Decompositions and Widths
	The Complexity of Computing Decompositions
	Top-Down Construction of GHDs
	Summary

	The Computation of GHDs through Balanced Separators
	Tractable Cases of GHD Computation
	A GHD Algorithm based on Balanced Separators
	A Proof of Correctness for BalSep
	Summary

	Benchmarking Decomposition Algorithms
	Translation of CQs and CSPs into Hypergraphs
	Integration of Complex Queries into Hyperbench
	Comparison of GHD Decomposition Algorithms
	Summary

	Updating GHDs upon Instances' Modifications
	The GHD Update Problem
	A Framework for Handling Updates
	Implementation of the -mutable Subtree Framework
	Empirical Evaluation
	Proof of Theorem 5.1
	Summary

	Grounding Planning Problems with Decompositions
	Classical Planning Problems
	Grounding Planning Tasks
	Experiments
	Summary

	Conclusion
	Contributions
	Outlook

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

