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Abstract

Algorithms have become omnipresent, and advances in computer science have only
increased their reach, but their applications are limited to certain types of tasks. There
exist a large number of problems for which algorithmic solutions are insufficient. For
example, creative tasks involve aesthetic notions that come naturally to humans but are
meaningless to a machine. Thus, to undertake these problems, we consider combining a
human’s expert knowledge with the computing power of the machine through human-
in-the-loop algorithm design. We find that graph drawing is a natural application of
this paradigm, as it combines a strong focus on aesthetic optimization goals, with hard
computational problems. We choose two graph drawing problems to serve as a lens into
this investigation.

We first examine traditional node-link diagrams. One of the main goal when computing
a classic graph layout, is to create a drawing with a low number of crossings. While
drawing planar graphs is a well understood task, most graphs do not admit crossing
free drawings. Thus, there has been a lot of effort invested into finding techniques to
lessen the visual load induced by crossing in graph drawings. One such technique is
vertex splitting. The vertex splitting graph operation replaces a vertex by copies of
itself, and partitions the neighborhood of the split vertex between its copies. While
vertex splitting has seen some practical applications through straightforward heuristics,
its study is mostly limited to the splitting number problem in abstract graphs. In the
splitting number problem, the goal is to find a planar graph, using at most k splitting
operations on an input graph. We find that this known NP-complete problem is also
FPT when parameterized by the number of splits. We push the theoretical investigation
towards more practical motivations by first studying vertex splitting in general graph
drawings. We show that this problem is NP-complete, but that its subproblems are FPT
when parameterized by k. We additionally study vertex splitting in restricted graph
classes and for target properties other than planarity. We find that the problem is already
NP-complete for outerplanar graphs, but bipartite graphs can be solved efficiently when
vertex orderings are given in layered drawings. We also inspect these findings for more
empirical applications, and to understand how to better involve a user’s knowledge to
use vertex splitting to improve graph drawings through a vertex splitting pipeline, which
we evaluate quantitatively.

Our second axis focuses on a naturally interactive, aesthetic focused topic, word clouds.
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Word clouds are a popular text visualization technique that combines creative tasks
and challenging layout problems. Given an input text, one should compute a layout of
the words in the plane, in which only the main words of the text are represented and
scaled according to their frequency in the text. With semantic word clouds, beyond
computing just a compact layout of the word rectangles, we also assume that each word
is a node in an edge weighted graph. In that graph, each edge describes the semantic
relatedness of its two endpoints, meaning that high weight edges describe two words that
are strongly related in the input. The task then becomes for the layout we compute
to reflect the weights in that graph, by placing related words in close proximity. This
problem is strongly linked to contact graphs, a large category of graph problems in which
graphs are represented in the plane using geometric objects. While this problem is well
studied, it is computationally hard even for many restrictions on the objective function of
the input graph’s class. In this thesis, we first attempt to identify tractable restrictions
to this problem. We study a so-called layered layout, and find that we can maximize
realized contacts when the words are laid out on two layers. But our main focus is on
the human-in-the-loop question. As word clouds naturally invite human interaction, we
investigate layout algorithms that combine the machine’s computing abilities with the
user’s personal aesthetic preferences, develop a tool, and evaluate it through a user study.

In this thesis, we combine theoretical and practical considerations to design efficient
graph drawing algorithms. As we largely encounter NP-hard problems, we must combine
restricted problem definitions, separating hard tasks into efficiently solvable subproblems,
and heuristics for some cases.



Kurzfassung

Algorithmen sind allgegenwärtig und durch Fortschritte in der Informatik hat sich ihre
Reichweite nur noch erhöht. Ihre Anwendungen sind jedoch auf bestimmte Arten von
Aufgaben beschränkt. Es gibt eine große Anzahl von Problemen, für die algorithmische
Lösungen nicht ausreichend sind. Kreative Aufgaben zum Beispiel beinhalten ästhetische
Vorstellungen, die für Menschen natürlich, aber für eine Maschine bedeutungslos sind.
Deshalb betrachten wir die Kombination des Expertenwissens eines Menschen mit der
Rechenleistung der Maschine durch den Entwurf von Algorithmen, bei denen der Mensch
in den Prozess eingebunden wird. Wir stellen fest, dass die Darstellung von Graphen
eine natürliche Anwendung dieses Paradigmas ist, da sie eine starke Ausrichtung auf
ästhetische Optimierungsziele mit schwierigen Problemen verbindet. Wir untersuchen
dieses Paradigma anhand zweier Graphendarstellungsprobleme.

Zunächst untersuchen wir traditionelle Netzwerk-Diagramme. Ein Hauptziel bei der
Berechnung eines klassischen Graphenlayouts besteht darin, eine Zeichnung mit einer
geringen Anzahl von Kreuzungen zu erstellen. Das Zeichnen von planaren Graphen ist
gut verstanden, allerdings können die meisten Graphen nicht kreuzungsfrei gezeichnet
werden. Daher wurde viel Aufwand betrieben, um Techniken zu finden, die die, durch
Kreuzungen in Graphendarstellungen induzierte, visuelle Belastung verringern. Eine
solche Technik ist das Vertex Splitting. Die Vertex-Splitting-Graphenoperation ersetzt
einen Knoten durch Kopien von sich selbst und partitioniert die Nachbarschaft des
gespaltenen Knotens zwischen seinen Kopien. Obwohl in einigen praktische Anwendungen
bereits einfache Heuristiken für Vertex-Splitting existieren, ist die bisherige Forschung
größtenteils auf das Spaltungsnummernproblem in abstrakten Graphen beschränkt. Das
Ziel des Spaltungsnummernproblems ist es, ausgehend von einem gegebenen Graphen,
einen planaren Graphen mit höchstens k Spaltungsoperationen zu finden. Wir stellen
fest, dass dieses bekannte NP-vollständige Problem auch dann FPT ist, wenn es nach der
Anzahl der Teilungen parametrisiert ist. Wir fokussieren die theoretische Untersuchung
auf praktisch motivierte Ziele, indem wir zuerst das Vertex Splitting in allgemeinen Gra-
phendarstellungen untersuchen. Wir zeigen, dass dieses Problem NP-vollständig ist, aber
dass seine Teilprobleme FPT sind, wenn sie nach k parametrisiert sind. Wir untersuchen
auch das Vertex Splitting in eingeschränkten Graphenklassen und für Zielattribute, die
nicht planar sind. Wir stellen fest, dass das Problem bereits für äußerplanare Graphen
NP-vollständig ist, aber bipartite Graphen effizient gelöst werden können, wenn Knoten-
reihenfolgen in geschichteten Zeichnungen gegeben sind. Wir betrachten diese Ergebnisse
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auch für mehr empirische Anwendungen und um zu verstehen, wie man das Wissen
eines Benutzers besser einbinden kann, um das Vertex Splitting zur Verbesserung von
Graphendarstellungen zu nutzen, den wir quantitativ bewerten.

Unser zweiter Schwerpunkt liegt auf einem inhärent interaktiven, ästhetisch ausgerichteten
Thema, den Word Clouds. Word Clouds sind eine beliebte Textvisualisierungstechnik,
die kreative Aufgaben und anspruchsvolle Layoutprobleme kombiniert. Ausgehend von
einem Eingabetext sollte eine Platzierung der Wörter in der Ebene berechnet werden,
bei dem nur die Hauptwörter des Textes repräsentiert und entsprechend ihrer Häufigkeit
im Text skaliert werden. Bei semantischen Word Clouds geht es darüber hinaus nicht
nur darum, ein kompaktes Layout der Wortrechtecke zu berechnen, sondern es wird
auch angenommen, dass jedes Wort ein Knoten in einem kantengewichteten Graphen
ist. In diesem Graphen beschreibt jede Kante die semantische Beziehung ihrer beiden
Endpunkte, was bedeutet, dass Kanten mit hohem Gewicht zwei Wörter repräsentieren,
die im Eingabetext stark miteinander verbunden sind. Die Aufgabe besteht dann darin,
im von uns berechneten Layout die Gewichte in diesem Graphen wider zu spiegeln,
indem verwandte Wörter nah beieinander platziert werden. Dieses Problem ist eng mit
Kontaktgraphen verbunden, einer großen Kategorie von Graphenproblemen, bei denen
Graphen in der Ebene mit Hilfe von geometrischen Objekten dargestellt werden.

Obwohl dieses Problem gut untersucht ist, ist es selbst bei starken Einschränkungen der
Graphklasse des Eingabegraphens berechnungsaufwendig. In dieser Arbeit versuchen wir
zunächst, geeignete Einschränkungen für dieses Problem zu identifizieren. Wir untersu-
chen eine sogenannte gestufte Anordnung und stellen fest, dass wir die tatsächlichen
Kontakte maximieren können, wenn die Wörter auf zwei Ebenen angeordnet sind. Aber
unser Hauptaugenmerk liegt auf der Frage des menschlichen Eingreifens. Da Word Clouds
natürlicherweise zur menschlichen Interaktion einladen, untersuchen wir Layoutalgorith-
men, die die Rechenleistung der Maschine mit den ästhetischen Vorlieben des Benutzers
kombinieren. Wir entwickeln ein Werkzeug und evaluieren es anhand einer Benutzerstudie.

In dieser Arbeit kombinieren wir theoretische und praktische Überlegungen, um effizi-
ente Graphzeichnungsalgorithmen zu entwerfen. Da wir hauptsächlich auf NP-schwere
Probleme stoßen, müssen wir eingeschränkte Problemdefinitionen, die Aufteilung von
schwierigen Aufgaben in effizient lösbare Teilprobleme und Heuristiken für einige Fälle
kombinieren.
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CHAPTER 1
Introduction

Powerful computers are everywhere nowadays, even just our cell phones hold considerable
computing resources. The computer’s potential is unlocked through algorithms, they
allow us to find routes on maps, generate summaries of text, store and retrieve information
and much more. All of our software is made of a set of basic step by step instructions
which allow a machine to generate a desired output from an input. Algorithms can be
traced back to ancient Greece with Euclid’s formula, one of the first recorded example
of an algorithm. Modern advances in computer science have significantly expanded
their importance, and allowed us to automate daily tasks, finding subway connections or
shopping over the internet are some of the many processes now assisted by algorithms.
We are therefore constantly improving their design, efficiency and ability to solve new
problems, not only to make our lives more comfortable, but to also push our understanding
of informatics. Algorithms allow us to solve complex problems at scale, in a time efficient
manner and hence have significantly impacted the modern world.

Naturally, there exist limitations to the problems that can be solved by algorithms, and
not every task can be successfully automated. There are many problems that we, as
humans, solve using creativity or unconscious processes. While natural for us, they cannot
be easily translated into computer instruction. There have been attempts at emulating
human problem solving skills with machines, tools involving artificial intelligence (AI) and
machine learning have been developed for image recognition, translation, or even to create
art. Their applications are widespread, but these tools have generally been received poorly
by the general public [Hic13] and currently pose ethical and legal problems [Vin23]. While
automated solutions cannot not be universally applied, they nevertheless are often highly
desirable. They relieve us from repetitive tasks, and allow us to focus on complex problems.
Certain intricate tasks, such as design, depend on human expertise, which means they are
unsuitable for large-scale automation by algorithms or AI. As an alternative, we could
focus on developing solutions for specific sub-tasks by integrating expert knowledge with
the computing power of machines, with the aim of simplifying tasks for designers.
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1. Introduction

Ideally, one would desire to combine the knowledge of the human expert with the
capabilities of a machine, using algorithm engineering: the process of designing, evaluating
and refining algorithms to better suit our need. Humans are very capable at dealing with
tasks like pattern recognition, language and subtext, and are more apt at working with
incomplete data or instructions, but are also less reliable and more prone to errors than
machines. The notion is not novel, and the human-computer relationship is at the heart
of research on human-centered computing and human-computer interaction, but neither
field answers this need exactly. In human-centered computing, the human user acts as
an oracle in the resolution of the problem, and human computer interaction is focused
on the design of user interfaces. Our main question is how to exploit human knowledge
to refine our algorithms to create optimal results that consider human preferences.

More recently, the advent of machine learning has lead to attempts to emulate human
thinking through machine learning methods. These algorithms have a wide array of
applications that were previously limited to human problem solving abilities, but they act
as a black box. Understanding how these methods compute their outcome is a challenging
task, but it is also important to note that these methods are also not correct all of the
time: usually the quality of a machine learning algorithm has to be expressed through
the probability it will compute the correct outcome. Additionally, these methods are
highly depend on having a large quantity of high quality training data. Therefore, these
methods are hard to evaluate, and, like with heuristics, we are unable to provide exact
guarantees as to the quality of the solution they compute.

There exist many problems that require exact solutions, or solutions that are of sufficiently
high quality (i.e. close enough to the optimal result). While other criteria, like runtime or
memory usage, are important factors in judging the quality of an algorithm, we are first
and foremost concerned with its correctness, or the optimality of its result. More classic
algorithms are often based on formal mathematical models. We, as humans, are able,
using variables, to describe as many aspect of the input as we want, and often have some
quality metric which to evaluate the output. But when creating such a model, we have to
abstract reality to an extent, to be able to translate into machine instructions. Modelling
is necessary to describe an optimization problem, but it also creates a gap between the
real world problem and the problem solved by the machine. The more variables we
introduce to a model, the more difficult it becomes to understand, or evaluate it, and the
less variables we use, the more our problem becomes removed from reality. While we are
sometimes able to create a model that appropriately describes a problem, in other cases
we have to resort to simplifying our model, and can then rely on a human-in-the-loop
approach to let a human assist where the model deviates too much from its reality.

In this thesis, we apply this algorithmic methodology to the field of graph drawing, which
deals with the study of visualization of complex and large network data sets using the
simple structure of a graph. As data sets become increasingly large and complex, there is
a growing need to comprehend, analyze, and communicate their information effectively,
which motivates our investigation into good methods for graph drawing. Graph drawing
is especially interesting for this human-in-the-loop application. Graph drawing not only
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(a) (b)

(c)

Figure 1.1: Examples of graph drawings, (a) a software diagram where nodes are drawn
as boxes and edges are directed and rectilinear, (b) a VLSI integrated circuit where each
rectangular component can be modeled as a node in a graph and adjacency between two
components can be modeled by an edge, and (c), an example of a schematic map, the
Viennese metro system, edges can only be vertical, horizontal and diagonal to represent
the real world topology of the subway network.

involves constructing an accurate geometric representation of a network, but to also
create and aesthetically pleasing and intelligible image. These aesthetic and intelligibility
aspects are something that any human can intuit, but machines have no direct concept
of, unless we manage to model them appropriately. Graph drawing has a wide range
of applications, ranging from network analysis and software and database diagrams
(see Fig. 1.1(a)), to very large-scale integration (VLSI) for chip designs (see Fig. 1.1(b)),
schematic mappings (see Fig. 1.1(c)) and more.

Usually graph drawings have to conform to a set of drawing conventions (hard constraints),
for example technical diagrams more often use rectilinear edges, and cartograms use
particular shapes instead of points. To efficiently compare drawings that adhere to the
desired aesthetic conventions, a large set of optimization problems use additional soft

3



1. Introduction

(a) (b) (c)

Figure 1.2: (a) A graph drawn manually without crossings, (b-c) the same graph drawn
using a Schnyder realizer [Sch90], the automated method achieves a crossing free drawing
but has sharp angles and lacks the symmetry of the hand drawn version. The edges
drawn in light gray represent the edges added to compute the Schnyder realizer.

constraints. For example, given a graph that can be drawn without crossing, we would
look for such a drawing, while trying to minimize the overall area of the drawing. Other
important metrics that try to capture graph aesthetics are the angular resolution, the
edge-length ratio, the number of bends, or the symmetry of the drawing, and many more.

While algorithms that achieve these aesthetic goals have been designed, automated
methods cannot target every existing quality metric that has been defined at the same
time? Commonly a relevant subset of these criteria is selected for optimization, which
can often lead to sub-par layouts, as shown in Fig. 1.2. Additionally, automated methods
are largely non-interactive, meaning they can produce a layout but will not allow for fine
tuning, or for small changes to the objective function. In these areas, human interference
should be considered, as humans are largely able to incorporate minute changes to
optimize the aesthetic appeal of the graph. However, creating a good layout from scratch
for a large data set is a very challenging task for humans (see Fig. 1.3). Instead, humans
are more suited to edit an existing layout, for example by identifying which parts of an
existing drawing are more readable, better looking, and which ones need to be improved.
Thus, we often require automated methods like force-based algorithms Human perception
can handle many aesthetic criteria in parallel, but can usually not optimally target any
specifically. The abilities of the human, and those of the algorithms can theoretically
synergize to create graph drawings of high quality.

This makes graph drawing an ideal candidate field to study the question of human-in-
the-loop algorithmic design. This connection is fairly natural, and there has been a
large interest especially for more general graph drawing challenges like directed layered
graphs [dNE01], network diagrams or orthogonal layouts [DMW08] where the user
interacts with the drawing to produce visualizations of high quality. This problem has
also been used in more specialized settings [KDMW16], where the knowledge of human
designers was used to refine anatomical drawing labeling algorithms. As most general
graph drawing problems are highly complex and often can consider a very large number
of quality criteria, we choose here to study more specific problems.

Graph drawing offers a broad diversity of questions which each can be differently under-
stood through the lens of human-in-the-loop algorithm engineering. In this thesis, we will

4



1.1. Background

Figure 1.3: The KEGG metabolic pathway is a large manually created graph drawing.
Biological pathways are usually dense graphs and are challenging for automated layout
methods, therefore significant expert effort is required to create these layouts.

focus on two types of problems to better understand this paradigm. We will first look at
traditional node link graph visualization and crossing minimization, through the study
of vertex splitting, and later consider the highly interactive and playful problem of word
cloud layouts. We study these problems initially from a theoretical perspective through
the study of algorithms and complexity to familiarize ourselves with the challenges each
class of problem offers, and to understand what solutions currently exist. With this
knowledge, we then initiate the human-in-the-loop considerations. In this second step,
we study where our automated methods might be improved by the knowledge of a human
user, and develop our algorithms further to be able to consider this additional human
input. We will first properly introduce the two main topics of these thesis, namely vertex
spitting and semantic word clouds.

1.1 Background

In this section we define and motivate both the vertex splitting and semantic word cloud
problems more closely. We cover the related literature, focusing on both state-of-the-art
theoretical and algorithmic results, as well as relevant practical approaches.

5



1. Introduction

(a) (b)
Figure 1.4: (a) Drawing with ten crossings, and four instances of three edges crossing on
the same point due to symmetry, (b) the planar drawing obtained after two splitting
operations.

1.1.1 Vertex Splitting

One of the main challenges of network visualization, is to compute high quality layouts
of dense data sets. Large graphs, or "hairball"-like graphs, are often difficult to display,
as they contain a lot of visual clutter like edge crossings [vLKS+11]. Plane (or almost
plane) drawings on the other hand are simpler to read and preferable for any audience:
Edge crossings are known to be highly detrimental to the readability of a graph [Pur00,
PCA02, PPP12]. Therefore, it is important to find a drawing of a graph with a low
number of crossings. If the graph is planar then finding a plane drawing is simple, but
in the general case, computing a graph drawing with a minimal number of crossings is
NP-complete [GJ83].

This issue has motivated a lot of research into efficient ways of dealing with crossings in
non-planar graph drawing [Nö20, Lie01, Sch18]: some methods attempt to find drawings
which achieve a small number of crossings [PT97, DLM19], while others focus on limiting
the negative visual impact of the crossing on the readability of the drawing. This can
be achieved by, for example, bundling edges [LHT17, FHSV16, ZXYQ13]. With edge
bundling, some edge segments running close to one another in a similar direction are
drawn together in a bundle, and when those bundled edges cross an edge, multiple
crossings then appear as a singular crossing. Alternatively, one can also focus on
improving the crossing angle [Oka20], usually striving for right angle crossings [Sch21],
which make the pair of crossing edges easier to distinguish and make paths in the
graph easier to follow [DEL11, AFK+12]. Other methods attempt to obtain planar
drawings from non planar ones, by for example removing edges or vertices, as with vertex
deletion [MS12, LY80] or the problem of finding a maximal planar subgraph [JM96].
Analogously, when considering graph thickness or simultaneous embeddings, we attempt
to partition a non planar drawing into a set of plane graphs that share vertices. We
chose in this thesis to investigate a method known as vertex splitting to facilitate the
visualization of non planar graph drawings: Considering an input graph G = (V, E), a
vertex split of vertex v ∈ V is done by removing v from V and inserting instead two
new vertices v1, v2 to V , the copies of v. The previous neighborhood N(v) of v is then
partitioned between v1 and v2.
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As an operation, vertex splitting can be used to achieve many graph properties: consider
a graph that lacks a specific property Π (e.g. cycle-free, planar, admits a tension-free
layout) we can apply a vertex splitting procedure repeatedly until we obtain a graph with
property Π. Splitting vertices has also been studied in practical setting. For example,
when visualizing large graphs, in biology with metabolism networks [NOM+19, WNSV19,
WNV20], social networks [HBF08], or set membership [HRD10].

In our case, we focus on the resolution of edge crossings Fig. 1.4. This application is not
novel, it is strongly linked with the splitting number graph invariant. The splitting number
of a graph G is the minimum number of vertex splitting operations that are required on
G to obtain a planar graph. Splitting number was introduced as a method to measure
how close a graph was to a planar graph. When dealing with graph drawings, the idea of
vertex splitting for crossing minimization is intuitively sound. Crossings are not desirable,
therefore splitting vertices to remove those crossings allows us to achieve a more readable
drawing that still retains all of the original embedding’s information. On the other hand,
every split adds an additional vertex to the drawing, this increases the number of objects
to keep track off and creates clutter. Additionally, the connectivity of the graph becomes
partially hidden as some paths become harder to follow. Therefore, our main task in
this thesis was to understand how vertex splitting extends to graph drawings. One of
the main questions we asked ourselves was, when given a drawing, how many splits are
required to obtain a plane drawing, and how to obtain this plane drawing. Computing
the splitting number is known to be NP-complete for general graphs (even with maximum
degree 3) [FdFdMN01], and bipartite graphs [AKK22]. For some restricted graph classes
the splitting number is known, namely for the complete graph [HJR85], the complete
bipartite graph [JR84] and the 4-Cube [FdFdMN98]. The splitting number has also been
studied beyond the plane, on different surfaces [Har86, Har87]. Intuitively, one could
guess that the additional information given by the drawing in the embedded setting could
give sufficient hints to find the necessary splits to obtain a plane drawing, but we find
that the task also presents an additional set of challenges. Vertex splitting on a drawing
can be realized through the five following steps (see Fig. 1.5):

i Choosing a set of vertices to be split,

ii Choosing how many times each vertex should be split,

iii Choosing a partitioning of the original vertex’s neighborhood,

iv Choosing an embedding for each copy in the remaining drawing,

v Routing the edges between the copies and their neighborhood partition.

Note that step (iii) and (iv) are interchangeable, and in the case where we aim to achieve
planarity rather than crossing minimization, step (v) can be trivial. Additionally, once
the neighborhood of a copy is known, if planarity is the goal then the embedding question
for that copy should to be solved easily. However, for multiple copies one must carefully
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(ii)(i) (iii)

(v)(iv)

Figure 1.5: The five steps of the vertex splitting pipeline, the vertex drawn as a blue
disk in the first drawing is split twice into the three copies drawn as blue circles. One
copy is placed in the outer face and has four neighbors, the two other copies have degree
one and are connected to inner vertices.

consider how they interact with one another and prevent new crossings from being induces
by edges incident to copies.

We briefly consider a different optimization problem, where rather than minimizing
the number of splitting operations, one instead focuses on minimizing the number of
input vertices that will be split. In essence, in this setting, each vertex selected to
be split can be split δ(v) many times, where δ(v) is the degree of the split vertex v,
with no additional detriment to the optimization function. This operation is sometimes
referred to as a vertex explosion. We find that this setting closely resembles the vertex
deletion problem, where we want to decide whether a given graph can be made planar
by deleting at most k vertices, and to related problems of hitting graph minors by
vertex deletions. Given the smallest set of vertices to be removed from a graph G to
obtain a planar subgraph G′, we only need to reinsert δ(v) many copies of each removed
vertex to the graph, which does not disturb planarity as those vertices have degree one.
Additionally, we note here that the subproblem of reinserting vertices into planar graphs
also shares similarities with drawing extension problems, where a subgraph is drawn
and the missing vertices and edges must be inserted in a (near-)planar way into this
drawing [ADBF+15, CGMW09, CH16, EGH+20a, EGH+20b]. In extension problems,
the set of vertices to be inserted, as well as their precise neighborhood, is usually known,
unlike in the vertex splitting problem setting. To our knowledge, vertex deletion has
not been studied when the input is a drawing, therefore the complexity question of the
vertex minimization problem formulation is not trivial, but we note here that many graph
extension problems are NP-hard when crossing minimization is a consideration [AKP+20].

There exist similar problems to splitting number that rely on vertex splits: one close
example is the split thickness of graphs [EKK+18], also called the folded covering
number [KU16]. In this setting, any number of vertices can be split, and they can be split
at most k times. One must then find the smallest k that will result in a planar graph.
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1.1.2 Semantic Word Clouds

Word clouds are a classical information visualization technique through which textual
data is displayed in an aesthetically pleasing and engaging manner. In a word cloud
visualization, a set of words extracted from an input text are displayed in a compact
fashion, and each word’s font size is scaled according to its frequency in the input text. It
is a standard method to abstract, visualize and compare textual data [VWF09]. It was
initially known under the name tag clouds [VW08], and was often used to summarize
web pages. Word clouds were also used to analyse and compare speeches of political
candidates [Sch08], shortly before gaining traction with the general public with the tool
Wordle [Fei09, VW08]. Wordle is an automated word cloud layout web hosted system,
that heavily popularized word clouds. It also generated a lot of research interest, initially
within the visualization community [KLKS10, WCB+18, CWL+10], which later extended
towards graph drawing and computational geometry [BFK+14, BCL+16].

Most initial algorithms to compute word cloud layouts focused on creating tightly packed
visualizations, using forced based systems or spiral placement [VWF09]. New tools were
later introduced that were aimed at integrating interactions. Users could to color, move
and rotate words to create more desirable visualizations [KLKS10, WCB+18]. While their
popularity was notable, word clouds were also criticised as a information visualization
technique, and found to not be effective at delivering the underlying information of the
input text [HPP+20]. While a word cloud informs its audience about term frequency, it
does not reflect the connections of the different words. Hearst et al. [HPP+20] found that
while regular word cloud did not display and communicate the text data well, semantically
grouped layouts were significantly more effective, meaning one should strive to represent
related words by embeddings these words closely together in the plane.

The criticisms of the classic compact word cloud layout motivated a new class of layout
algorithms, namely, semantic word cloud layouts. In such a layout, the relative positioning
of the words to one another is meant to carry meaning. The first algorithm that encoded
these relationships within the display was proposed by Cui et al. [CWL+10]. They
proposed multiple methods to evaluate semantic relatedness and used them to lay out the
words in the plane. With their methods, similarity vectors were created for each word, that
described the word’s relationships with all other words. Using multi-dimensional scaling
(MDS) and this set of vectors, the words were laid out in the plane. As compactness
remained a concern to obtain aesthetically pleasing layouts, a force system was used to
finalize the drawing by bringing the words closer together in a tight packing.

More theoretical approaches were also considered: Barth et al. [BFK+14] introduced the
Compact Representation of Word Network (CROWN) problem to create algorithms with
quality guarantees for these layout problems. They described a new optimization metric
to capture semantic relatedness by requiring that two strongly correlated words touch
in the representation. The CROWN problem takes as input an edge weighted graph,
where the edge weight between two nodes corresponds to how strongly related the two
corresponding words are. For every edge that is realized as a proper contact between two
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SpainPortugal
FranceItaly

AustriaSwitzerland
Germany

NetherlandsBelgium

Figure 1.6: The graph and its representation as a contact graph, the word "Switzerland"
can only realize three out of its four adjacencies due to the fixed aspect ratio.

axis aligned rectangular boxes, a profit equivalent to the weight of the edge is gained.
The task is to find a layout of the rectangular word boxes that maximises the total profit
of the layout, as shown in Fig. 1.6. They found that this problem was NP-hard, but
proposed many approximations for restricted classes of graphs.

Word cloud layouts are similar to rectangular contact graphs, where a graph must be
represented as a set of rectangles that touch if they share an edge. Similarly, in area
universal rectangular layouts, a rectangle is partitioned into a set of interior-disjoint
rectangles. The dual of this representation is called a rectangular dual, and such a graph
is necessarily planar and has no separating triangle [KK85]. The areas of the rectangles to
be realized in the representation are also part of the input. These layouts find application
in cartograms, floor plans or VLSI design. However, in the case of semantic word clouds,
not only does the area of the boxes have to be respected, but their aspect ratio is set as
well. Additionally, the graphs representing semantic relatedness can be obtained using
natural language processing (NLP) from input texts are often very dense, heavily non
planar, thus realizing all contacts is usually impossible.

While semantic word clouds have been well studied, they have surprisingly not been
considered in an interactive or human-in-the-loop setting, unlike traditional word cloud
layouts. Barth et al. outlined several different optimization tasks for the CROWN problem,
and found that they often were hard to optimize [BFK+14], therefore, finding efficient-
human-in-the-loop algorithms for the semantic word cloud problem is a challenging task
that should provide good insight into our paradigm.

1.2 Thesis Outline

The main body of the thesis is centered around the two themes introduced above, which
each require a different approach to our human-in-the-loop consideration. As previously
stated, in the first part we will study the vertex splitting graph operation and in the
second part, we will look at semantic word clouds. In both sections, our discussion is
initiated with a theoretical investigation. We first present algorithmic and complexity
results, then explore how to extend this knowledge to human-in-the-loop algorithmic
considerations.
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Part I - Vertex Splitting Vertex splitting has been studied mainly through the lens
of the splitting number. While results are known for the splitting number of specific
graph classes, there exists currently no algorithm to compute it or approximate it. There
exist limited algorithmic results that use vertex splitting, these have mostly been used
heuristically in the context of tension layouts or in the context of biological network
visualization.

Chapter 3 - General Graph Drawings The splitting
number of a graph G = (V, E) is the minimum number of
vertex splits required to turn G into a planar graph. It is
known to be NP-complete for abstract graphs. In this chapter
we provide a non-uniform fixed-parameter tractable (FPT)
algorithm for this problem. We then shift focus to the splitting
number of a given topological graph drawing in R2, where the
new vertices resulting from vertex splits must be re-embedded
into the existing drawing of the remaining graph. We show
NP-completeness of this embedded splitting number problem,
even for its two subproblems of (1) selecting a minimum subset
of vertices to split and (2) for re-embedding a minimum number of copies of a given set
of vertices. For the latter problem we present an FPT algorithm parameterized by the
number of vertex splits. This algorithm reduces to a bounded outerplanarity case and
uses an intricate dynamic program on a sphere-cut decomposition.

Chapter 4 - Planar Drawings As many problems in
graph drawings are hard, we choose to restrict them to a
limited input, often by considering special graph classes. A
natural question that arises from Chapter 3 is to wonder if
there exists a class of graphs that can be split to achieve
a certain property in polynomial time. Here we study how
to minimize the number of splits to turn a plane graph in
graph class G into an outerplane one. We tackle this problem
by establishing a direct connection between splitting a plane
graph to outerplanarity, finding a connected face cover, and
finding a feedback vertex set in the graph’s dual. We prove
NP-completeness when G consists of plane biconnected graphs,
while we show that a polynomial-time algorithm exists for the
class of maximal planar graphs. Additionally, we provide upper and lower bounds on the
minimum number of splits required for certain families of maximal planar graphs. Lastly,
we propose a SAT formulation that computes an optimal set of splits to be applied to
an instance to transform any abstract graph into an outerplanar graph, and gives an
ordering of vertices for its outer face.
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Chapter 5 - Bipartite Graphs Bipartite graphs model
the relationships between two disjoint sets of entities and are
naturally drawn as 2-layer graph drawings. In such drawings,
the two sets of entities (vertices) are placed on two parallel
lines (layers), and their relationships (edges) are represented
by segments connecting vertices. Methods for constructing
2-layer drawings often try to minimize the number of edge
crossings, and this minimization question is also the focus of
the chapter. Indeed, while planar drawings have often very useful properties, vertex
splits introduce significant noise to a drawing. Thus, we focus on the following question:
given a fixed budget of splits, can we minimize the number of crossings of a bipartite
graph where the vertex ordering of one of the bipartitions is given. We find again that
this problem is NP-complete, but propose an XP-time algorithm to solve the problem.

Chapter 6 - Practical Consideration When visualizing
complex graphs, a large consideration is placed on dealing
with crossings. While a lot of attention has been given to
aggregation techniques to compute legible visualizations, these
techniques largely do not allow for a close reading of the un-
derlying data they represent. Vertex splitting, on the contrary,
allows for such a view, while similarly being a powerful tool
for crossing reduction in drawings. Although it has a strong
theoretical foundation, it has, to our knowledge, not yet been
closely studied for practical applications. In this chapter, our
goal is to begin this discussion, by introducing novel metrics to evaluate vertex splitting
algorithms, as well as defining design guidelines and outlining algorithmic considerations
for this problem. As vertex splitting is a complex operation, we focus on three main
subproblems, selecting which vertices should be split, computing the neighborhood of the
split vertices’ copies and embedding the copies into a given drawing. We present a set
of efficient algorithms for each step of this pipeline, that encapsulate different drawing
considerations, and are compatible with constraints set by the user.

Part II - Semantic Word Clouds Word clouds naturally invite the human-in-the-
loop considerations. There have been many interactive tools developed that let a user
design their own word clouds. Classical word clouds though, have limited interest when
it comes to designing algorithms with guarantees as they are limited to considerations of
compactness in terms of optimization. We instead focus on semantic word clouds, which
provide us with many interesting questions to solve.
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Chapter 7 - Layered Semantic Word Clouds First,
we consider a restriction on the input graph to the CROWN
problem (Compact Representation of Word Network) by con-
sidering layered, embedded planar graphs. We investigate two
optimization problems on area-proportional rectangle contact
representations for these graphs. We represent the vertices as
interior-disjoint unit-height rectangles of prescribed widths, grouped in one row per layer,
and each edge is ideally realized as a rectangle contact of positive length. In this chapter,
we want to maximize the number of realized rectangle contacts or minimize the overall
area of the rectangle contact representation, while avoiding any false adjacencies. We
present a network flow model for area minimization, a linear-time algorithm for contact
maximization of two-layer graphs, and an ILP model for maximizing contacts of k-layer
graphs.

Chapter 8 - Interactive Semantic Word Clouds In this
chapter we present MySemCloud, a new human-in-the-loop
tool to visualize and edit semantic word clouds. MySemCloud
lets users perform computer-assisted local moves of words,
which improve or at least retain the semantic quality. To
achieve this, we construct a word similarity graph on which
a system of forces is applied to generate a compact initial
layout with good semantic quality. The force system also
allows us to maintain the compactness and semantic quality of
the layout after each user interaction, as well as preserve the
user’s mental map. The tool provides algorithmic support for
the editing operations to help the user enhance the semantic quality of the visualization,
while adjusting it to their personal preference. We show that MySemCloud provides
high user satisfaction as well as permits users to create layouts of higher quality than
state-of-the-art semantic word cloud generation tools.
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CHAPTER 2
Preliminaries

In this chapter, we will introduce the fundamental notions that will be used throughout
this thesis. We start by defining some core notions of graph theory, and graph drawing
in Section 2.1. With these definitions, we introduce in Section 2.2, the main classes
of graphs that will be used in later chapters. Lastly in Section 2.3 we will cover some
general notions of algorithmic complexity, as well as algorithm design.

This chapter is not an exhaustive introduction of each of the covered themes, but rather
focused on the topics that are relevant to this thesis. We refer to more comprehensive
literature in each of the following sections.

2.1 Graphs and their Drawings

A graph G = (V, E) consists of a set of vertices V and edges E. An edge e ∈ E corresponds
to a pair of vertices u, v ∈ V . We write V (G) for the set of vertices of graph G, and we
similarly write E(G) for G’s edges. For e ∈ E, e = (u, v) we call u and v the endpoints
of e, and we say that e is incident to its endpoints. Additionally, we say that two edges
are adjacent if they share an endpoint, or two vertices u, v are adjacent if (u, v) ∈ E.
In the case of a directed graph, an edge (u, v) is an ordered pair, and u is adjacent to
v, but the reverse is only true if and only if the edge (v, u) exists. In the general case,
when an edge (u, v) is an unordered pair, we call the graph undirected. For a vertex
v ∈ V we call the degree of v the number of edges that are incident to v. We refer to the
neighborhood of v as the set of vertices that v is adjacent to, and write NG(v) for the
neighborhood of v in G, or drop the subscript when G is clear from context. Consider
H = (VH , EH), we call H a subgraph of G if VH ⊆ V and EH ⊆ E and (u, v) ∈ EH if and
only if u, v ∈ VH . We call the graph G′ = (V ′, E′) an induced subgraph, where V ′ ⊆ V ,
and E′ = {(u, v) | u, v ∈ V ′}, and we write G′ = G[V ′].
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In an undirected graph, if e = (u, v), e′ = (u, v) and e ̸= e′ then (u, v) is a multi-edge. If
e = (u, v) and u = v, then e is a loop. These definitions are necessary to introduce the
fundamental notion of simple graphs. A graph is a simple graph if it is an undirected
graph with no loop or multi-edge. In this thesis, unless specifically stated otherwise,
every graph is a simple graph. The last important combinatorial notion is the notion
of connectedness. We say that a graph is connected if for any vertex pair v1, vk ∈ V ,
there exists an ordered set of vertices P = {v1, . . . , vk} such that for any 1 < i < k − 1,
(vi, vi+1) ∈ E. Additionally, we say that P is a path of length k. If such a path does not
exist for every vertex pair we say that the graph is disconnected, and each connected
subgraph is a connected component.

A drawing D of a simple graph G = (V, E) is a mapping of the vertices of V to points in
the plane and of the edges of E to curves such that for an edge (v, u) ∈ V the endpoints
of the corresponding curve are the points that correspond to the vertices u and v. In this
thesis, the notions that have been introduced for graphs are extended as is for drawings,
meaning we regularly refer to the vertices of a drawing, or their adjacency and so on.
In a simple drawing, two curves may only intersect once, either on their endpoints or
in their interior, meaning that adjacent edges do not cross on their interior, and any
edge can cross a non adjacent edge only once. We say that a drawing is plane if no two
edges intersect each-other on their interior. In a plane drawing, we define the faces of the
drawing as regions of the plane that are bounded by a set of edges. We say that edges
and vertices are incident to a face that they bound, or that two faces are adjacent if they
share an edge or a vertex on their boundary. When given a drawing Γ of a graph G, we
can compute a dual graph of G, the dual graph D = (VD, ED) is obtained by placing a
vertex in every face of G in the drawing Γ, and for each edge in Γ, adding an edge in D
between the vertices (or vertex) that correspond to the faces that are incident to that
edge in Γ.

A graph can also be represented in the plane with geometrical objects. We call a drawing
of G a contact graph if the vertices of G are represented by objects (segments, rectangles,
circles), and the edges of G are represented by two objects touching, or overlapping.

A more complete introduction to graph theory can be found in the book by Diestel [Die17],
and graph drawing is covered more thoroughly in [BETT99].

2.2 Graph Classes
A graph class represents a family of graphs that all obey a certain property P . Throughout
this thesis, several graph classes will be relevant and we will introduce here the main
graph classes. We previously introduced paths, a special case of a path is a cycle: A
path P = {v1, . . . , vk} is a cycle if v1 = vk, and the path in this case forms a close loop.
Note that the edges on the boundary of a face form a cycle. Another important class
are trees, which are graphs that have no cycles. In a tree each vertex pair is connected
by exactly one path if the graph is connected. Otherwise, the graph is called a forest
and its vertices are connected by at most one path. In a tree, we commonly denote a
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vertex as a root. Every non-root vertex of degree one in that tree is called a leaf. We
denote the depth of a vertex in the tree as the length of the path between the root and
that vertex. If two vertices u and v are connected by an edge, and v is at depth d, then
u is necessarily be at depth d − 1 or d + 1. If u is at depth d + 1, the u is a child of v,
and if u is at depth d − 1, u is the parent of v.

We say that a graph G = (V, E) is a complete graph if for any u, v ∈ V , (u, v) ∈ E. If
|V | = n, then the complete graph on n vertices is written Kn. We say that G is bipartite
if there exists two bipartitions of V : V1, V2 such that V = V1 ∪ V2 and V1 ∩ V2 = ∅, and
for (u, v) ∈ E, if u ∈ V1 then v ∈ V2 or similarly if u ∈ V2 then v ∈ V1. We can combine
the two previous notion to obtain complete bipartite graphs. If |V1| = n and |V2| = m,
then we write Kn,m.

A planar graph is a graph that has an embedding in the plane where no curve intersects
another curve on their interior, meaning it admits a plane drawing. The previously
introduced notions of complete graphs can also be used to characterize plane graphs using
Kuratowski’s theorem, which dictates that a graph is planar if and only if it does not
contain a subgraph that is a subdivision of the K5 or the K3,3. Outerplanar graphs are a
specific class of planar graphs, that admit a drawing where there exists a face to which
every vertex is incident to. Commonly this face is the unbounded face of the drawing,
called the outer face. This notion is extended to k-outerplanar graphs, a k-outerplanar
graph admits a drawing where every vertex on the outer face can be removed to obtain a
(k − 1)-outerplanar graph, and an outerplanar graph is a 1-outerplanar graph.

2.3 Complexity and Algorithms
This thesis mainly focuses on algorithms, thus, complexity results are mostly limited to
the complexity classes P and NP, which are a small subset of the classes investigated in the
broad field of computational complexity. For a comprehensive introduction to complexity
theory, interested readers can refer to "Introduction to the Theory of Computation" by
Sipser [Sip97] or the more recent book by Arora and Barak [AB09]. For the topic of
parameterized complexity, the book "Parametrized Algorithms" [CFK+15a] provides a
thorough view into the topic.

The P and NPcomplexity classes can be understood in the following manner. Consider
Σ, and fixed finite alphabet. We call Σ∗ the set of finite sequences of symbols in Σ. A
decision problem corresponds to a pair x, L, where L ⊆ Σ∗ is a language. The task is to
decide if x ∈ L, in which case a deterministic Turing machine outputs the value 1 and 0
if x ̸∈ L. If x ∈ L then it is a yes-instance of L and it is called a no-instance otherwise.
Most importantly, a decision problem is said to be in P if there is a deterministic
Turing machine that solves x ∈ L in polynomial time. We say then that the decision
problem is polynomial time solvable, and similarly, a problem is said to be in NP if
there is a nondeterministic Turing machine that decides the problem in polynomial
time. It is known that P ⊆ NP, however, the question whether P = NP remains open
and is considered one of the most important question of complexity theory and general
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Figure 2.1: The Euler diagram representing the relationships between P, NP, NP-hard
and NP-complete, assuming P ̸= NP.

informatics. We are most often interested in knowing if the problem we introduce lies in
P or not. To show this, we make use of reductions. Consider two decision problems x, L
and x′, L′. We say that x, L is polynomial time reducible to x′, L′ if there is a polynomial
time computable function that takes as input an instance I ′ of x, L and returns and
instance I of x′, L′, such that I is a yes-instance if and only if I ′ is a yes-instance. We
say that L is polynomial time (Karp) reducible to L′. We say that a decision problem is
NP-hard if every other decision problem in NP is polynomial time reducible to it. Lastly,
we say that a problem is NP-complete if it is both in NP-hard and NP. In this thesis, as is
commonly done, we show membership to the NP complexity class using a verifier M . A
verifier is a deterministic Turing machine such that, for x ∈ Σ∗ and a polynomial p such
that u ∈ Σ|p(x)|, we find that M(x, u) = 1 if and only if x ∈ L. Thus we show that given
a solution to a decision problem, if we can decide in polynomial time that the solution
is correct, then the decision problem is in NP. In this thesis, we make the common
assumption that P ̸= NP, meaning that when membership to NP-hard or NP-complete
is shown for our problem, then is it highly unlikely that an efficient, polynomial time,
algorithm exists, see Fig. 2.1.

To deal with NP-complete problems, we can employ several methods to obtain exact
solution. In this thesis we employ methods from mathematical optimization like integer
linear programming (ILP). Specifically, we model an optimization problem as a set of
equations using the following format:

maximize cT x

subject to Ax ≤ b,

x ≥ 0
and x ∈ Z
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Here x is the output, the values that should be decided, c ∈ Rn, b ∈ Rm and A ∈ Rn×m

are the input. If no value is a binary or an integer, the model can be solved in polynomial
time, and the problem that is modelled lies in P, but integer programming is NP-complete.
Note that if a problem can be formulated using an ILP it is not necessarily NP-complete
or NP-hard. There exists solvers that can solve these models fairly quickly which can
make them viable solutions to small instances of hard problems.

Another option to model hard problems is to make use of the Boolean satisfiabilty problem
(SAT). In this problem, we are given a Boolean formula that is build from variables,
parenthesis and the operators AND, OR, NOT. If one can assign the values TRUE or
FALSE to each variables such that the overall formula can be made true, then this instance
of SAT is satisfiable. Formulas are usually written using the conjunctive normal form
(CNF), meaning they are written as a conjunction of clauses. A clause is a disjunction
of literals and a literal is either a variable or a negation of a variable. There are many
variations of SAT that are NP-hard, for example 3-SAT and MAX-2-SAT. In the first
case the CNF formula is limited to at most three literals per clause, and at most two for
the second, with the added rule of having to determine the maximum number of clauses
that can be satisfied simultaneously by an assignment. Both settings can be used to
model decision problems and can be solved with the use of solvers.

As solvers act as somewhat of a black box to solve these hard problems, we also propose
another type of exact algorithmic results for NP-hard problems using parameterized com-
plexity. Not all NP-hard problems are equally as difficult, and parameterized complexity
can grasp some of these nuances of difficulty. In essence, we are given as input a problem
and a parameter, that should ideally be somewhat small, and we study the complexity of
the problem as a function of this parameter.

Formally, recall that L ∈ Σ∗ is a language over the alphabet Σ. A parameterized problem
L is fixed-parameter tractable, or in the complexity class FPT if for the parameter k, we
can decide if (x, k) ∈ L in running time f(k) · |x|O(1), and f is an arbitrary function.
Thus, when studying an NP-hard problem, we are interested in finding a parameter k
such that the problem lies in FPT when parameterized by k. As a last recourse when
facing NP-hard problems, we also consider XP algorithms, where for a parameter k we
are allowed to solve the problem in running time nf(k) where n is the size of the input.
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CHAPTER 3
General Graph Drawings

While planar graphs admit compact and naturally crossing-free drawings, most graphs
that we encounter regularly have no guarantee to be planar. Computing good layouts of
large and dense non-planar graphs remains a challenging task, mainly due to the visual
clutter caused by large numbers of edge crossings. Several methods have been proposed
to simplify the drawings of non-planar graphs and to minimize crossings, both from a
practical point of view [LHT17, vLKS+11] and a theoretical one [Lie01, Sch18]. Drawing
algorithms often focus on reducing the number of visible crossings [Nö20] or improving
crossing angles [Oka20], aiming to achieve similar beneficial readability properties as in
crossing-free drawings of planar graphs. In this chapter, we begin our investigation of
the vertex splitting operation applied to graph drawings by focusing on the problem of
transforming non-plane drawings of graphs into plane ones with vertex splitting. This
chapter is based on joint work with Martin Nöllenburg, Manuel Sorgue, Soeren Terziadis,
Jules Wulms and Hsiang-Yun Wu [NST+22]. This paper was presented at GD 2022, and
is currently submitted to JoCG. An earlier version was presented at EuroCG 2022.

Since planarity is a highly desirable property when dealing with graph drawing, we first
try to map out the different problems that are related to splitting vertices and obtaining
planar drawings, and then try to understand their complexity, to hopefully derive efficient
algorithms for vertex splitting. Recall a vertex split operation on the vertex v: a vertex
split removes v from G and instead adds two non-adjacent copies v1, v2 such that the
edges formerly incident to v are distributed among v1 and v2. Similarly, a k-split of v
for k ≥ 2 creates k copies v1, . . . , vk, among which the edges formerly incident to v are
distributed. On the one hand, splitting a vertex can resolve some of the crossings of its
incident edges, but on the other hand the number of objects in the drawing to keep track
of increases. Therefore, we aim to minimize the number of splits needed to obtain a
planar graph, which is known as the splitting number of the graph. A related concept is
the planar split thickness [EKK+18] of a graph G, which is the minimum k such that G
can be decomposed into at most k planar subgraphs by applying a k-split to each vertex
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3. General Graph Drawings

(a) (b)

Figure 3.1: Vertex splitting in a drawing of K5. The red and orange disks in (a) are split
once into the red and orange circles in (b). Note that an abstract K5 without drawing
has splitting number 1.

of G at most once. Eppstein et al. [EKK+18] showed that deciding whether a graph
has split thickness k is NP-complete, even for k = 2, but can be approximated within a
constant factor and is fixed-parameter tractable (FPT) for graphs of bounded treewidth.

While previous work considered vertex splitting in the context of abstract graphs, here we
want to improve a given input drawing by splitting a minimum number of vertices, which
can be freely re-embedded, while the non-split vertices must remain at their original
positions in order to maintain layout stability [MELS95], see Fig. 3.1.

As introduced in Chapter 1, the underlying algorithmic problem for vertex splitting in
drawings of graphs poses many challenges. Here we separate the problem in the following
manner: firstly, a suitable (minimum) subset of vertices to be split must be selected, and
secondly the split copies of these vertices must be re-embedded in a crossing-free way.
The original edges of each split vertex are partitioned into a subset for each of its copies.

Similarly to the vertex explosion graph operation introduced in Chapter 1, the former
problem of selecting split vertices is closely related to the NP-complete problem Vertex
Deletion (sometimes called Vertex Planarization), where we want to decide whether
a given graph can be made planar by deleting at most k vertices, and to related problems
of hitting graph minors by vertex deletions, and is very well studied in the parameterized
complexity realm [JLS13, Kaw09, KLP+15, RS95]. For example, it follows from results
of Robertson and Seymour [RS95] that Vertex Deletion can be solved in cubic time
for fixed k. A series of papers [JLS13, Kaw09, MS12] improved the dependency on the
input size to linear and the dependency on k to 2O(k log k).

The latter re-embedding problem is not only related to drawing extension problems, but
as we show in Section 3.3, it generalizes natural problems on covering vertices by faces in
planar graphs [AFL08, AL04, BM88, KLL02].

Structure of the chapter: In Section 3.2 we start by providing a non-uniform FPT
algorithm for the original (non-embedded) splitting number problem. We show that
the class of graphs that can be made planar by at most k splitting operations is closed
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under taking minors. Additionally, we provide a polynomial time algorithm that, when
given a drawing, a vertex, and an integer k, can compute a crossing minimal drawing
of the input graph when splitting the input vertex k times. In Section 3.3, we show
that both subproblems that were outlined above are NP-complete, as well as the overall
problem. Lastly, in Section 3.4, we present an FPT algorithm that solves the re-embedding
subproblem, by reducing our instance to a bounded outerplanarity case that allows us to
use a dynamic program on a sphere-cut decomposition.

3.1 Preliminaries
Let G = (V, E) be a simple graph with vertex set V (G) = V and edge set E(G) = E.
For a subset V ′ ⊂ V , G[V ′] denotes the subgraph of G induced by V ′. The neighborhood
of a vertex v ∈ V (G) is defined as NG(v). If G is clear from the context, we omit the
subscript G. A split operation applied to a vertex v results in a graph G′ = (V ′, E′) where
V ′ = V \ {v} ∪ {v̇(1), v̇(2)} and E′ is obtained from E by distributing the edges incident
to v among v̇(1), v̇(2) such that NG(v) = NG′(v̇(1)) ∪ NG′(v̇(2)) (copies are written with a
dot for clarity). Splits with N(v̇(1)) = N(v) and N(v̇(2)) = ∅ (equivalent to moving v to
v̇(1)), or with N(v̇(1)) ∩ N(v̇(2)) ̸= ∅ (which is never beneficial, but can simplify proofs)
are allowed. The vertices v̇(1), v̇(2) are called split vertices or copies of v. If a copy v̇ of a
vertex v is split again, then any copy of v̇ is also called a copy of the original vertex v
and we use the notation v̇(i) for i = 1, 2, . . . to denote the different copies of v.

Problem 1 (Splitting Number). Given a graph G = (V, E) and an integer k, can G
be transformed into a planar graph G′ by applying at most k splits to G?

Splitting Number is NP-complete, even for cubic graphs [FdFdMN01]. We extend
the notion of vertex splitting to drawings of graphs. Let G be a graph and let Γ be a
topological drawing of G, which maps each vertex to a point in R2 and each edge to a
simple curve connecting the points corresponding to the incident vertices of that edge.
We still refer to the points and curves as vertices and edges, respectively, in such a
drawing. Furthermore, we assume Γ is a simple drawing, meaning no two edges intersect
more than once, no three edges intersect in one point (except common endpoints), and
adjacent edges do not cross.

Problem 2 (Embedded Splitting Number). Given a graph G = (V, E) with a
simple topological drawing Γ and an integer k, can G be transformed into a graph G′ by
applying at most k splits to G such that G′ has a planar drawing that coincides with Γ
on G[V (G) ∩ V (G′)]?

Problem 2 includes two interesting subproblems, namely an embedded vertex deletion
problem (which corresponds to selecting candidates for splitting) and a subsequent
re-embedding problem, both defined below.
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Problem 3 (Embedded Vertex Deletion). Given a graph G = (V, E) with a simple
topological drawing Γ and an integer k, can we find a set S ⊂ V of at most k vertices
such that the drawing Γ restricted to G[V \ S] is planar?

Problem 3 is closely related to the NP-complete problem Vertex Deletion [JLS13,
Kaw09, MS12], yet it deals with deleting vertices from an arbitrary given drawing of a
graph with crossings. One can easily see that Problem 3 is FPT, using a bounded search
tree approach, where for up to k times we select a remaining crossing and branch over the
four possibilities of deleting a vertex incident to the crossing edges. The vertices split in
a solution of Problem 2 necessarily are a solution to Problem 3; otherwise some crossings
would remain in Γ after splitting and re-embedding. However, a set corresponding to a
minimum-split solution of Problem 2 is not necessarily a minimum cardinality vertex
deletion set as vertices can be split multiple times. Moreover, an optimal solution to
Problem 2 may also split vertices that are not incident to any crossed edge and thus do
not belong to an inclusion-minimal vertex deletion set. We note here that a solution to
Problem 3 solves a problem variation where rather than minimizing the number of splits
required to reach planarity, we instead minimize the number of split vertices: Splitting
each vertex in an inclusion-minimal vertex deletion set its degree many times trivially
results in a planar graph.

In the re-embedding problem, we are given a graph drawing and a set of candidate
vertices to be split. The task is to decide how many times to split each candidate vertex,
where to re-embed each copy, and to which neighbors of the original candidate vertex to
connect each copy.

Problem 4 (Split Set Re-Embedding). Given a graph G = (V, E), a candidate set
S ⊂ V such that G[V \ S] is planar, a simple planar topological drawing Γ of G[V \ S],
and an integer k ≥ |S|, can we perform in G at most k splits to the vertices in S, where
each vertex in S is split at least once, such that the resulting graph has a planar drawing
that coincides with Γ on G[V \ S]?

We note that, if no splits were allowed (k = 0), then Problem 4 would reduce to a partial
planar drawing extension problem asking to re-embed each vertex of set S at a new
position without splitting, which can be solved in linear time [ADBF+15].

3.2 Algorithms for (Embedded) Splitting Number
Splitting Number is known to be NP-complete in non-embedded graphs [FdFdMN01].
In Section 3.2.1, we show that it is FPT when parameterized by the number of allowed
split operations. Indeed, we will show something more general, namely, that we can
replace planar graphs by any class of graphs that is closed under taking minors and still
get an FPT algorithm. Essentially we will show that the class of graphs that can be made
planar by at most k splitting operations is closed under taking minors and then apply a
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result of Robertson and Seymour that asserts that membership in such a class can be
checked efficiently [CFK+15b].

For vertex splitting in graph drawings, we consider in Section 3.2.2 the restricted problem
to split a single vertex. We show that selecting such a vertex and re-embedding at most
k copies of it, while minimizing the number of crossings, can be done in polynomial time
for constant k.

3.2.1 A Non-Uniform Algorithm for Splitting Number
We use the following terminology. A minor of a graph G is a graph H obtained from a
subgraph of G by a series of edge contractions. Contracting an edge uv means to remove
u and v from the graph, and to add a vertex that is adjacent to all previous neighbors of
u and v. A graph class Π is minor closed if for every graph G ∈ Π and each minor H
of G we have H ∈ Π. Let Π be a graph class and k ∈ N. We define the graph class Πk

to contain each graph G such that a graph in Π can be obtained from G by at most k
vertex splits.

Theorem 1. For a minor-closed graph class Π and k ∈ N, Πk is minor closed.

Proof. Let G ∈ Πk and let H be a minor of G. We show that H ∈ Πk. Let G′ be a
subgraph of G such that H is obtained from G′ by a series of edge contractions. We
first show that G′ ∈ Πk. Let s1, s2, . . . , sk′ be a sequence of at most k vertex splits
that, when successively applied to G, we obtain a graph in Π. Let G0 = G and for each
i = 1, . . . , k′ let Gi be the graph obtained after applying si. We adapt the sequence
s1, . . . , sk′ to obtain a sequence of graphs G′ = G′

0, G′
1, . . . , G′

k′ as follows. For each
i = 1, 2, . . . , k′, if si is applied to a vertex v ∈ V (Gi−1) with partition N1, N2 of NGi−1(v)
then, if v ∈ V (G′

i−1), to get G′
i we apply a split operation in G′

i−1 to v with neighborhood
cover (N1 ∩ V (G′

i−1), N2 ∩ V (G′
i−1)) (and we assume without loss of generality that the

new vertices introduced by this operation are identical to the vertices introduced by si).
If v /∈ V (G′

i−1) we put Gi = Gi−1 instead. Observe that for each i ∈ {1, 2, . . . , k′}, graph
G′

i is a subgraph of Gi. Hence, G′
k′ is a subgraph of Gk′ and since Π is in particular

closed under taking subgraphs, we have G′
k′ ∈ Π, as claimed.

It remains to show that for each graph H that is obtained from a graph G ∈ Πk through
a series of edge contractions we have H ∈ Πk. By induction on the number of edge
contractions, it is enough to show this in the restricted case where H is obtained by a
single edge contraction from G. Let si and Gi be as defined above, that is, s1, . . . , sk′ is
a sequence of vertex-split operations that when successively applied to G, we obtain a
graph in Π and Gi is the graph obtained after applying si. We claim that there is a series
of k′ split operations applied to H = H0 that result in a series of graphs H1, H2, . . . , Hk′

such that for all i ∈ {1, 2, . . . , k′} a graph isomorphic to Hi is obtained from Gi by a
single edge contraction. This would imply that Hk′ ∈ Π because Π is minor closed and
thus we would have H ∈ Πk, finishing the proof.
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Figure 3.2: Graph G in which splitting vertex u results in graph G′ (top row), and minor
H , the result of contracting edge uv in G, where splitting w results in minor H ′ of G′, by
contracting u2v (bottom row). The set NG(u) is split into N1 and N2. An edge between
a vertex and a set indicates the possibility for the vertex to have neighbors in that set.

To prove the claim, since H0 is obtained from G0 by a single edge contraction, by induction
it is enough to show the following. Let H = (V ′, E′) be obtained from G = (V, E) by
contracting the single edge uv ∈ E and let w ∈ V ′ be the vertex resulting from the
contraction. Let G′ be obtained from G by applying a single split operation s. It is
enough to show that there is a split operation such that, when applied to H to obtain
the graph H ′ we have that H ′ is isomorphic to a graph obtained from G′ by contracting
a single edge.

To show this, if s is not applied to u or v, then s can directly be applied to H. Then,
contracting uv in G′ we see directly that we obtain a graph isomorphic to H ′, as required.

Otherwise, s is applied to u or v. By symmetry, say s is applied to u without loss of
generality. Let thus u ∈ V (G) be split into u1 and u2 in G′. We split w into w1 and w2
in H with the neighborhood 2-cover of w defined as (NG′(u1), NG′(u2) ∪ NG′(v)). That
is, H ′ is obtained from H by splitting w into w1 and w2 such that NH′(w1) = NG′(u1)
and NH′(w2) = NG′(u2) ∪ NG′(v) (see Fig. 3.2). Contracting u2v in G′ into a vertex x
results in a graph Ĝ that is isomorphic to H ′: To see this, observe that all neighborhoods
of vertices in V \ {u1, x} are identical between Ĝ and H ′ and that NĜ(u1) = NH′(w1)
and NĜ(x) = NG′(u1) ∪ NG′(v) = NH′(w2). Thus, our claim is proven.

By results of Robertson and Seymour we obtain:
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3.2. Algorithms for (Embedded) Splitting Number

Proposition 1. Let Π be a minor-closed graph class. There is a function f : N → N
such that for every k ∈ N there is an algorithm running in f(k) · n3 time that, given a
graph G with n vertices, correctly determines whether G ∈ Πk.

Proof. From Theorem 1 it follows that the class Πk of graphs that represent positive
input instances is closed under taking minors. From Robertson and Seymour’s graph
minor theorem it follows that it can be determined in cΠk

· n3 time for a given n-vertex
graph whether it is contained in Πk, where cΠk

is a constant depending only on Πk (see
Cygan et al. [CFK+15b, Theorem 6.13]). Proposition 1 follows by setting f(k) = cΠk

.

Since the class of planar graphs is minor closed, we obtain the following.

Corollary 1. Splitting Number is non-uniformly fixed-parameter tractable1 with
respect to the number of allowed vertex splits.

3.2.2 Optimally Splitting a Single Vertex in a Graph Drawing
Given a graph G = (V, E), its drawing Γ, a candidate vertex v ∈ V and an integer k,
we show that we can split v into k copies such that the resulting number of crossings
is minimized; we construct a corresponding crossing-minimal drawing Γ∗ in polynomial
time.

Chimani et al. [CGMW09] showed that inserting a single star into an embedded graph
while minimizing the number of crossings can be solved in polynomial time. They use
the fact that the length of a shortest path in the dual graph between two vertices v1
and v2 corresponds to the number of edge crossings generated by an edge between two
vertices embedded on the faces in the primal graph corresponding to v1 and v2. We
extend this method to optimally split a single vertex into k copies, which is similar to
reinserting k stars. The algorithm planarizes the input graph, then exhaustively tries all
combinations of k faces to re-embed the copies of v. For each combination it finds for all
the neighbors of v which copy is their best new neighbor (meaning it induces the least
number of crossings) using the dual graph.

In the first step we remove the specified vertex v from Γ with all its incident edges. Let
Π be the planarization of Γ \ v, let F be the set of faces of Π, and let D be the dual
graph of Π. For a vertex u ∈ Π incident to a face set F (u), we define VF (u) as the vertex
set that represents F (u) in D. The algorithm by Chimani et al. [CGMW09] computes
the crossing number for the vertex insertion in a face f ∈ F by finding the sum of the
shortest paths in D between the vertex vf that represents f in D and VF (w), for each
w ∈ N(v). In our algorithm, we collect all the individual path lengths in D between
each face vertex vf and the faces in VF (w), for each w ∈ N(v), in a table, and then
consider all face subsets of size k in which to embed the k copies of v. For such a given

1A parameterized problem is non-uniformly fixed-parameter tractable if there is a function f : N → N
and a constant c such that for every parameter value k there is an algorithm that decides the problem
and runs in f(k) · nc time on inputs with parameter value k and length n.
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set S of k faces, we assign each w ∈ N(v) to its closest face f∗(w) ∈ S, which yields a
crossing-minimal edge between w and S. We break ties in path lengths lexicographically
using a fixed order of F . For each set S of candidate faces we compute the sum of the
resulting shortest path lengths between w via some face in VF (w) and f∗(w) for each
w ∈ N(v).

We choose as the solution the set S∗ with minimum total path length and assign one
copy v̇(1), . . . , v̇(k) of v into each face of S∗ that is closest to at least one of the neighbors
in N(v). This corresponds to splitting v into at most k copies. The edges from the newly
placed copies to the neighbors of v follow the computed shortest paths in D.

Chimani et al. [CGMW09] showed that we can compute the table of path lengths in D
in time O((|F | + |E|)|N(v)|), where F and E are, respectively, the sets of faces and edges
of Π. We consider O(|F |k) subsets of k faces and chose the one minimizing crossings.
Thus our algorithm runs in polynomial time for k ∈ O(1).

Theorem 2. Given a drawing Γ of a graph G, a vertex v ∈ V (G), and an integer k, we
can split v into k copies such that the remaining number of crossings is minimized in
time O((|F | + |E|) · |N(v)| · |F |k), where F and E are respectively the sets of faces and
edges of the planarization of Γ.

Proof. Given a solution that embeds copies in the faces f1, . . . , fk, the drawing we
compute has a minimum number of edge crossings. Since for each face combination
the algorithm finds the minimum number of crossings with the edges of Γ of a vertex
insertion, by design, the star centered at each copy has minimum number of crossings
with Γ by the exhaustive search. Still, uncounted crossings between inserted edges could
happen. We argue that this is impossible. Let us assume that we have two stars rooted
on vi, vj , and vertices ui, uj ∈ N(v) s.t. (vi, ui) crosses the edge (vj , uj) in a point c
inside some face f . This means that in the dual graph both paths representing the two
edges pass through the same vertex vf that represents f . If the path between c and vi

crosses less edges than the path between c and vj then the path in D from vj to uj is
not minimal and uj would have been assigned to vi (symmetrically if the path between c
and vj crosses less edges). If both paths have the same length, then by the lexicographic
order rule, both vertices would have been assigned to the same face. So the stars do not
intersect one another and we search exhaustively for all possible face sets to embed the
stars, meaning that the algorithm produces a crossing minimal drawing after splitting v
at most k times. Finally, to find the number of crossings generated by adding an edge
between a neighbor w of v, we can do a BFS traversal of the graph from the faces of
VF (w), and every time we encounter a face, the depth on the tree corresponds to the face
distance to VF (w). We do this for every element of N(v), and for every set of k faces of
the planarization of Γ, which takes O((|F | + |E|) · |N(v)| · |F |k) time.
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Figure 3.3: The drawing Γ in black, and the vertices and edges added to obtain Γ′ in
blue. The vertex cover highlighted in orange corresponds to the deletion set.

3.3 NP-completeness of Subproblems
While it is known that Splitting Number is NP-complete [FdFdMN01], in the correct-
ness proof of the reduction Faria et al. [FdFdMN01] assume that it is permissible to draw
all vertices, split or not, at new positions as there is no initial drawing to be preserved.
The reduction thus does not seem to easily extend to Embedded Splitting Number.
Here we show the NP-completeness of each of its two subproblems.

Theorem 3. Embedded Vertex Deletion is NP-complete.

Proof. We reduce from the NP-complete Vertex Cover problem in planar graphs [GJ77],
where given a planar graph G = (V, E) and an integer k, the task is to decide if there is a
subset V ′ ⊆ V with |V ′| ≤ k such that each edge e ∈ E has an endpoint in V ′. Given the
planar graph G from such a Vertex Cover instance and an arbitrary plane drawing Γ
of G we construct an instance of Embedded Vertex Deletion as follows. We create a
drawing Γ′ by drawing a crossing edge e′ across each edge e of Γ such that e′ is orthogonal
to e and has a small enough positive length such that e′ intersects only e and no other
crossing edge or edge in Γ, see Fig. 3.3. Drawing Γ′ can be computed in polynomial time.

Let C be a vertex cover of G with |C| = k. We claim that C is also a deletion set that
solves Embedded Vertex Deletion for Γ′. We remove the vertices in C from Γ′,
with their incident edges. By definition of a vertex cover, this removes all the edges of
G from Γ′. The remaining edges in Γ′ are the crossing edges and they form together a
(disconnected) planar drawing which shows that C is a solution of Embedded Vertex
Deletion for Γ′.

Let D be a deletion set of Γ′ such that |D| = k. We find a vertex cover of size at most k
for G in the following manner. Assume that D contains a vertex w that is an endpoint
of a crossing edge e that crosses the edge (u, v) of G. Since w has degree one, deleting it
only resolves the crossing between e and (u, v), thus we can replace w in D by u (or v)
and resolve the same crossing as well as all the crossings induced by the edges incident
to u (or v). Thus we can find a deletion set D′ of size smaller or equal to k that contains
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only vertices in G and removing this deletion set from Γ′ removes only edges from G.
Since every edge of G is crossed in Γ′, every edge of G must have an incident vertex in
D′, thus D′ is a vertex cover for G.

Containment in NP is easy to see. Given a deletion set D, we only need to verify that Γ′

is planar after deleting D and its incident edges.

Next, we prove that also the re-embedding subproblem itself is NP-complete, by showing
that Face Cover is a special case of the re-embedding problem. The problem Face
Cover is defined as follows. Given a planar graph G = (V, E), a subset D ⊆ V , and an
integer k, can G be embedded in the plane, such that at most k faces are required to
cover all the vertices in D? Face Cover is NP-complete, even when G has a unique
planar embedding [BM88].

Theorem 4. Split Set Re-Embedding is NP-complete.

Proof. We give a parameterized reduction from Face Cover (with unique planar
embedding) parameterized by the solution size to the re-embedding problem parameterized
by the number of allowed splits. We first create a graph G′ = (V ′, E′), with a new vertex
v, vertex set V ′ = V ∪ {v} and E′ = E ∪ {dv | d ∈ D}. Then we compute a planar
drawing Γ of G corresponding to the unique embedding of G. Finally, we define the
candidate set S = {v} and allow for k − 1 splits in order to create up to k copies of v.
Then G′, Γ, S, and k − 1 form an instance I of Split Set Re-Embedding.

In a solution of I, every vertex in D is incident to a face in Γ, in which a copy of v was
placed. Therefore, selecting these at most k faces in Γ gives a solution for the Face
Cover instance. Conversely, given a solution for the Face Cover instance, we know
that every vertex in D is incident to at least one of the at most k faces. Therefore,
placing a copy of v in every face of the Face Cover solution yields a re-embedding of
at most k copies of v, each of which can realize crossing-free edges to all its neighbors
incident to the face.

Finally, a planar embedding of the graph can be represented combinatorially in polynomial
space. We can also verify in polynomial time that this embedding is planar and exactly
the right connections are realized, for NP-containment.

3.4 Split Set Re-Embedding is Fixed-Parameter Tractable
In this section we propose an FPT algorithm for Problem 4 (Split Set Re-Embedding)
and prove the following theorem.

Theorem 5. Split Set Re-Embedding can be solved in 2O(k2) · nO(1) time, where k is
the number of allowed splits and n is the number of vertices in the input graph G.
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Γ Γ∗
re

(a) (b) (c)

Figure 3.4: (a) An example graph G, (b) a planar drawing Γ of G where S has been
removed, and (c) a solution drawing Γ∗

re. Pistils are squares, copies are circles and vertices
in S are disks.

Outline of Section 3.4. An overview of our algorithm for Theorem 5 is as follows.
Recall that we are given an instance (G, Γ, S, k) consisting of a graph G = (V, E), a set
S of candidate vertices, a drawing Γ of G[V \ S], and an integer k. We aim to split the
candidate vertices at most k times and to re-embed them in the simple drawing Γ using
dynamic programming with the following setup. First, from the given set S of s = |S|
candidate vertices (disks in Fig. 3.4(a)) we guess, by trying all possible combinations, how
many copies of each candidate we will insert back into the graph and we determine the
connections among the copies. We then remove unimportant elements of the drawing that
are too far away from the faces relevant for re-inserting vertices and edges. As we will see,
this results in a 10k-outerplanar graph, the details can be found in Section 3.4.1. Next,
we remove all bridges, which allows us to compute a so-called sphere-cut decomposition
of the drawing (Section 3.4.2) over which we will later perform dynamic programming.

The dynamic-programming algorithm will maintain tables that keep track of possible
partial solutions. We introduce partial solutions formally in Section 3.4.3 together
with their succinct encoding as so-called signatures we use to describe them as well as
their properties. Finally, this allows us to present our dynamic-programming algorithm
in Section 3.4.4. In the base case, the algorithm looks at a leaf of the tree, which
represents an edge e of the drawing Γ, and embeds copies of split vertices in the two faces
on either side of e. In the general case, it combines two sub-solutions (vertex embeddings)
that are consistent. Consistent sub-solutions jointly do not use more copies than allowed
by parameter k, and they can be combined in a planar way.

To aid the explanations in the upcoming sections, we first introduce the following
terminology. For an instance (G, Γ, S, k) of Split Set Re-Embedding, any vertex v in
Γ, the input drawing, that has a neighbor in candidate set S, the set of vertices to be
split, is called a pistil. Each face of Γ that is incident to a pistil is called a petal. Let p
be a pistil in the input graph G with neighbors N(p). Let v̇ be a copy of some v ∈ S,
where v ∈ N(p). We say v̇ covers p if it is embedded in a face incident to p and we can
draw a crossing-free edge between v̇ and p.

If (G, Γ, S, k) is a yes-instance of Split Set Re-Embedding, then there is a series of
split operations to achieve a planar re-embedding. We call the elements of this series
solution splits (see Fig. 3.4 for an example of the problem and its solutions), and we refer
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to the solution graph as the graph obtained from G by performing the solution splits.
Formally, a solution is defined as a tuple (S∗

⋏, copies∗, orig∗, (N∗
u)u∈S∗

⋏ , Γ∗
re) consisting of

the following:

i The set S∗
⋏ of copies of vertices in S introduced by the solution splits. Since S has

size s ≤ k and there are at most k splits, we have |S∗
⋏| ≤ s + k ≤ 2k.

ii A mapping copies∗ : S → 2S∗
⋏ that maps each vertex v ∈ S to the set copies∗(v) ⊆ S∗

⋏
of copies of v introduced by performing the solution splits.

iii A mapping orig∗ : S∗
⋏ → S that maps each copy v̇ ∈ S∗

⋏ to the vertex v = orig∗(v̇) ∈
S that v̇ is a copy of.

iv For each copy v̇ ∈ S∗
⋏ a vertex set N ∗̇

v ⊆ V of neighbors of v̇ such that for each
v ∈ S the family {N ∗̇

v | v̇ ∈ copies∗(v)} is a partition of NG(v).

v A planar drawing Γ∗
re of the graph resulting from Γ by embedding the copies in S∗

⋏
such that each copy v̇ ∈ S∗

⋏ has edges drawn to each vertex in N ∗̇
v (Fig. 3.4c).

3.4.1 Splitting Candidates and Obtaining 10k-Outerplanarity.
Initializing the Split Vertex Set S⋏ As mentioned, the first step in our algorithm
for Split Set Re-Embedding is to determine, for each candidate split vertex, how
many copies are introduced and how these copies are connected to each other. We are
given as input the set S of vertices that have been removed from the drawing to be split
such that |S| = s ≤ k. Otherwise, if |S| = s > k, we can immediately conclude that we
deal with a no-instance as all candidate vertices must be split at least once. From S we
now create sets S⋏ of copies that will be reintroduced into the drawing. To obtain all
relevant sets S⋏, we introduce our first branching rule.

Branching Rule 1. Let (G, Γ, S, k) be an instance of Split Set Re-Embedding.
Create a branch for every k′ = s, . . . , s + k, defining a set S⋏ of k′ new vertices, for every
mapping orig : S⋏ → S, and every mapping copies : S → 2S⋏ such that {copies(v) | v ∈ S}
is a partition of S⋏ and such that orig−1 = copies.2

Note that for resolving crossings in Γ one might sometimes want to only re-embed a
vertex without splitting. However, such a vertex move operation is not permitted in
Embedded Splitting Number and we only permit re-embedding copies of original
vertices. Thus each vertex in S is split at least once. We can bound the number of
branches by observing that the number of ways of distributing the k splits among s
vertices with at least one split per vertex is the same as the number of s-compositions of
the integer k, which is described by k−1

s−1 ≤ 2k.
2Herein for a mapping f : X → Y we define the mapping f−1 : Y → 2X by putting f−1(y) = {x ∈

X | f(x) = y} for every y ∈ Y .
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Lemma 1. If (G, Γ, S, k) is a yes-instance of Split Set Re-Embedding with solution
σ = (S∗

⋏, copies∗, orig∗, (Nv̇)v̇∈S∗
⋏ , Γ∗

re), then there is a branch created by Branching Rule 1
with S∗

⋏ = S⋏.

Proof. Given the set S∗
⋏ of copies re-embedded by a solution, we argue that S∗

⋏ must be
a subset of a set generated in at least one of the branches of BR1. Set S∗

⋏ necessarily
contains at least one copy of each vertex in S, and we call Sadd the remainder of copies
embedded by S∗

⋏. Since the total number of splits is bounded by k, Sadd contains at
most k = s + d vertices: one copy of each vertex in S for the initial split, and d vertices
for additional splits. Our branching rule BR1 creates a branch for each combination of
copies from S that adds up to 2s + d, two copies of each vertex in S, and one branch for
each combination of d copies of S. Thus there is a branch b that chooses a set of copies
Sb that contains a superset of Sadd, such that Sb \ Sadd contains exactly one copy of each
vertex in S. Thus Sb contains exactly all copies S∗

⋏ re-embedded by a solution.

Some vertices in S⋏ have neighbors in S⋏, or in both S⋏ and V \ S. From the perspective
of a non-split pistil it is easy to verify whether the original neighborhood is present in a
solution. However, a split vertex is incident to only a subset of its original edges. Thus it
is required to consider the union of all copies of a vertex to find its original neighborhood.
For an edge (u, v) where u, v ∈ S, we will branch over all possibilities for defining this
edge between any pair of copies of u and v. So if there are i copies of u and j copies of v,
we will branch over the i · j possible ways to reflect the edge (u, v) in the solution.

Branching Rule 2. Let (G = (V, E), Γ, S, k) be an instance of Split Set Re-Embedding
and S⋏ a set of copies obtained from Branching Rule 1. Create a branch for each possible
set E⋏ ⊆ {(u̇(i), v̇(j)) | u̇(i), v̇(j) ∈ S⋏ and (orig∗(u̇(i)), orig∗(v̇(j))) ∈ E} such that every
e ∈ E is represented exactly once in E⋏. That is, for each (u, v) ∈ S⋏

2 ∩ E there is
exactly one i and exactly one j such that (u̇i, v̇j) ∈ E⋏.

Let the number s of splits satisfy s ≥ 2 as otherwise there are no edges with both
endpoints in S⋏. Each of the s ≤ k vertices in S has at most k − 1 neighbors in S,
yielding at most k

2 edges. Since each vertex in S has at most k copies in S⋏, there are
at most k2 possibilities to reflect one original edge in S

2 as an edge in S⋏
2 . This results

in O(k4) branches.

Lemma 2. If (G = (V, E), Γ, S, k) an instance of Split Set Re-Embedding is a yes-
instance with solution σ = (S∗

⋏, copies∗, orig∗, (Nv̇)v̇∈S∗
⋏ , Γ∗

re) and graph G∗ corresponding
to Γ∗

re, then there is a branch created by Branching Rule 2 with E⋏ = E(G∗[S∗
⋏]).

Proof. By Lemma 1 we know that Branching Rule 1 produces a branch that passes S∗
⋏ to

Branching Rule 2. Therefore, in this branch the edges in E⋏ must have both endpoints in
S∗
⋏ in the solution. Consider E(G∗[S∗

⋏]) the edge set of the solution σ on copies of split
vertices. Since Branching Rule 2 attempts all possible edge sets, there exists a branch
where E⋏ = E(G∗[S∗

⋏]). Thus the branching rule is sound.
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Obtaining 10k-Outerplanarity. As a second step, we want to reduce the size of our
input, or, more precisely, the input drawing Γ. Note that faces that are not incident to
any pistil do not play an important part in the solution as there are no crossing-free edges
that can be realized in such a face to achieve our desired adjacencies between copies and
pistils. Hence, we use a reduction rule that removes all vertices not adjacent to a petal
from Γ. We then show that this results in a 10k-outerplanar drawing.

Reduction Rule 1. Let (G, Γ, S, k) be a Split Set Re-Embedding (SSRE) instance.
Any vertex of G not incident to a petal in Γ is removed from G and Γ, alongside all of
its incident edges. This results in the reduced instance (G′, Γ′, S, k).

Lemma 3. Reduction Rule 1 is sound: Given an instance I = (G, Γ, S, k) of SSRE, and
applying Reduction Rule 1 to get I ′ = (G′, Γ′, S, k), it holds that I is a yes-instance if
and only if I ′ is a yes-instance.

Proof. We first show that for a face f ′ ∈ Γ′, for which f ′ ̸∈ Γ, there cannot be pistils on
its boundary, meaning that any vertex inserted into f ′ has degree 0 and can be embedded
anywhere. Assume there is a pistil p incident to f ′ and let F be the set of faces incident
to p in Γ. The reduction rule does not remove any vertex incident to a face of F as these
faces are all petals. So the faces incident to p in Γ′ must be the same as those in Γ. This
contradicts that f ′ is not in Γ and hence there cannot be a pistil on f ′ and a solution for
I ′ is a solution for I.

Given a solution σ to I, we will show that σ is also a solution to I ′. Since every petal of
Γ is also a face in Γ′ (we do not remove vertices incident to petals), every embedding in
a petal face of Γ in σ can be replicated in Γ′. Any copy embedded in a non-petal face of
Γ must have degree 0 to preserve planarity and can therefore be embedded anywhere. As
a result, I is a yes-instance if and only if I ′ is a yes-instance, and Reduction Rule 1 is
sound.

In the remainder, let Γop be the drawing obtained from Γ after exhaustively applying
Reduction Rule 1. We use Lemma 3 every time we apply Reduction Rule 1 to get the
following corollary.

Corollary 2. Let Ip = (G, Γ, S, k) be a Split Set Re-Embedding instance, and let
Io = (G′, Γop, S, k) be the instance obtained from Ip after applying Reduction Rule 1
exhaustively. Ip is a yes-instance if and only if Io is a yes-instance.

We now introduce the notion of a face path in a drawing Γ via a modified bipartite
dual graph D of Γ whose two sets of vertices are the faces and vertices of G (denoted as
face-vertex and vertex-vertex, respectively) and whose edges link each face-vertex with
all its incident vertex-vertices as shown in Fig. 3.5. Paths in D are called face paths and
they alternate between faces and vertices of Γ. We define the length of a face path as the
number of its vertex-vertices. Using this notion, a drawing is k-outerplanar if all of its
vertex-vertices have a face path to the outer face of length at most k. We now show that
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applying the reduction rule exhaustively to an instance of Split Set Re-Embedding
transforms drawing Γ into a 10k-outerplanar drawing Γop.

Lemma 4. If (G, Γ, S, k) is a yes-instance, then Γop 10k-outerplanar.

Proof. We show that the shortest face path from any vertex of Γop to the outer face has
length at most 10k. Let S∗

⋏ be the set of copies of S embedded in the drawing Γ∗
re of a

solution. Note that a face of Γop can be partitioned into multiple faces in Γ∗
re. We label

each face f of Γop by an arbitrary copy v̇ in S∗
⋏ that is closest to f by length of face

paths from the faces partitioning f in Γ∗
re. The length of a face path in Γop, from f to

the face of Γop that v̇ is embedded in, is at most two: The face f is either incident to
a pistil (v̇ is embedded in f , or the face path can traverse the pistil in question to the
face in which v̇ is embedded), or all its vertices are incident to such a face (the face path
traverses one vertex to an incident face with a pistil, and potentially traverses the pistil
as well, to reach the face of v̇). Additionally, all pistils are covered in Γ∗

re and hence in
both cases there must be a copy v̇ covering the closest pistil.

Since |S∗
⋏| ≤ 2k there are at most 2k distinct labels for the faces of Γop. Let v be a vertex

in Γop and let P be a shortest face path between v and the outer face. We claim that
each label appears at most five times in P . Assume to the contrary that there are six
faces f1, f2, f3, f4, f5, f6 with the same label u̇ occurring in P in this order. Observe that
the distance between f1 and f6 along this (shortest) face path is at least 5. We call fu̇

the face in which u̇ is embedded in the solution. The faces f1 and f6 must have at most
distance 2 from fu̇ as otherwise they would be labeled differently. Thus one can find a
path from f1 to fu̇ of length at most 2, and similarly a path from fu̇ to f6 of length at
most 2. Hence, there is a shorter path from f1 to f6 which contradicts our claim. Hence,
P has length at most 10k, showing that Γop is 10k-outerplanar.

3.4.2 Finding a Sphere-Cut Decomposition
Before we can begin the dynamic programming algorithm, we need to find a sphere-cut
decomposition of our drawing. First, we introduce the notion of sphere-cut decomposition,

(a) (b)

Figure 3.5: (a) A graph and (b) its modified dual. A shortest face path, drawn with
yellow edges in (b), from the yellow face in (a) to the outer-face alternates between
face-vertices (in red) and vertex-vertices (in blue).
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Figure 3.6: (a) A graph and (b) its sphere-cut decomposition. Each labeled leaf
corresponds to the same labeled edge of the graph. The middle set of each colored edge
in the tree corresponds to the vertices of the corresponding colored dashed noose in the
graph.

and then describe a last transformation applied to our drawing that will ensure we find
this decomposition.

A branch decomposition of a (multi-)graph G is a pair (T, λ) where T is an unrooted
binary tree, and λ is a bijection between the leaves of T and E(G). Every edge e ∈ E(T )
defines a bipartition of E(G) into Ae and Be corresponding to the leaves in the two
connected components of T − e. We define the middle set mid(e) of an edge e ∈ E(T )
to be the set of vertices incident to an edge in both sets Ae and Be. The width of a
branch decomposition is the size of the biggest middle set in that decomposition. The
branchwidth of G is the minimum width over all branch decompositions of G.

A sphere-cut decomposition of a planar (multi-)graph G with a planar embedding Γ on a
sphere Σ is a branch decomposition (T, λ) of G such that for each edge e ∈ E(T ) there
is a noose η(e): a closed curve on Σ such that its intersection with Γ is exactly the
vertex set mid(e) (i.e., the curve does not intersect any edge of Γ) and such that the
curve visits each face of Γ at most once (see Figure 3.6). The removal of e from E(T )
partitions T into two subtrees T1, T2 whose leaves correspond respectively to the noose’s
partition of Γ into two embedded subgraphs G1, G2 (with edges sets respectively Ae and
Be). Sphere-cut decompositions are introduced by Seymour and Thomas [ST94], more
details can also be found in [MP15, Section 4.6]. The length of the noose η(e) for an edge
e ∈ E(T ) is the number of vertices on the noose (or the size of mid(e)) and it is at most
the branchwidth of the decomposition. The drawings in this chapter are defined in the
plane, whereas we need drawings on the sphere for sphere-cut decompositions. However,
if we treat the outer face of a planar drawing just as any other face, then spherical and
planar drawings are homeomorphic.

An ℓ-outerplanar graph has branchwidth at most 2ℓ [Bie15]. Moreover, each connected
bridgeless planar graph of branchwidth at most b has a sphere-cut decomposition of width
at most b and this decomposition can be computed in O(n3) time where n is the number
of vertices (this has been shown by Seymour and Thomas [ST94], see the discussion
by Marx and Pilipczuk [MP15, Section 4.6]). We transform any bridge in our newly
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obtained graph into a multi edge to ensure that the graph is bridgeless.

Obtaining a Bridgeless Graph. While our graph drawing Γop is already ℓ-outerplanar
(more specifically 10k-outerplanar), we have to deal with the bridges, i.e., edges of G
whose removal disconnect G. There is no guarantee our graph is bridgeless and even if
it was required of the input, Reduction Rule 1 might create bridges. We instead create
a new graph G′′ together with a drawing Γbl, in which for any bridge (u, v), we add a
secondary multi edge between u and v and continue to work with the resulting multigraph.
Note that adding the edge does not affect the outerplanarity and hence does not affect
the bound of the width of the decomposition.

Lemma 5. Given two instances of Split Set Re-Embedding, Io = (G′, Γop, S, k) and
Ib = (G′′, Γbl, S, k), which differ only in the graph G′ and G′′ and their respective drawings
Γop and Γbl, where G′′ is a copy of G′ plus a duplicate of every bridge, then Io is a
yes-instance if and only if Ib is a yes-instance.

Proof. Given a solution σo = (S∗
⋏, copies∗, orig∗, (Nv̇)v̇∈S∗

⋏ , Γ∗
re) to Io, we will show that

σo is also a solution to Ib. We can extend σo to solve Ib as follows. All the faces of Γop
exist in Γbl and have the same set of vertices incident to them. This means that any split
vertex s inserted into a face f of Γop to cover a set of vertices N(s) can be inserted in
the same face of Γbl and cover the same set of vertices. So σo is a solution to Ib.

Given a solution σb = (S∗
⋏, copies∗, orig∗, (Nv̇)v̇∈S∗

⋏ , Γ∗
re) to Ib, we can extend σb to solve

Io in the same way as for the previous paragraph with one exception. There may be split
vertices that are embedded into a face bounded by two multi-edges (u, v) of Γbl that does
not exist in Γop. Such a split vertex ṡ would have one or both of u, v as neighbors. If
the split vertex only has one neighbor then it can be embedded in any face incident to
that neighbor without disturbing anything. If N(ṡ) = {u, v}, then there is only a single
face of Γop in which they both lie (by virtue of being a bridge). If there are no vertices
embedded on that face and we can freely put ṡ in it and have it reach its neighborhood
without risk of creating a crossing. Otherwise, if there are other copies of split vertices
embedded in that face, we can still embed ṡ sufficiently close to edge (u, v) and connect it
to u and v by two crossing-free edges. This means that after embedding all such vertices,
we have found a solution to Io, and with this we showed that Io is a yes-instance if and
only of Ib is a yes-instance.

As a result, we have a bridgeless graph with a 10k-outerplanar drawing which thus admits
a sphere-cut decomposition of width bounded by 20k, as discussed before. Moreover, we
can compute this decomposition in O(n3) time [Bie15, MP15, ST94].

3.4.3 Initializing the Dynamic Programming
In the previous sections, we used branching and computed a set S⋏ as well as the
mappings copies and orig for each branch. We now focus on one such branch, and
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use dynamic programming on the sphere-cut decomposition (T0, λ) of the bridgeless
10k-outerplanar graph G′, obtained previously, and its drawing Γ′ to find the remaining
elements of the solution: (N ∗̇

v )v̇∈S⋏ and Γ∗
re. We have therefore effectively reduced Split

Set Re-Embedding to the following more restricted problem:

Problem 5 (Split Set Re-Embedding Decomp). Let the following be given: a
graph G = (V, E) obtained after Reduction Rule 1 and resolving bridges, a set S ⊆ V ,
an integer k ≥ |S|, a drawing Γ on the sphere of the 10k-outerplanar bridgeless graph
G′ = (V ′, E′) := G[V \ S], its sphere-cut decomposition (T0, λ), and, as guessed by the
initial branching, two mappings orig and copies and a graph GS⋏ on the set of vertices
S⋏.

The task is to decide whether there is a solution (S∗
⋏, copies∗, orig∗, (N ∗̇

v )v̇∈S∗
⋏ , Γ∗

re) to
the instance (G, S, Γ, k) of Split Set Re-Embedding that coincides with the guessed
branch, i.e., S∗

⋏ = S⋏, orig∗ = orig, copies∗ = copies, and G∗[S∗
⋏] = GS⋏ , where G∗ is the

corresponding solution graph.

We first transform T0 into a rooted tree T by choosing an arbitrary edge er = (r1, r2) ∈ T0
and subdividing it with a new root vertex r. This induces parent-child relationships
between all the vertices in T (except the new root), and we set for a given vertex t ∈ V (T )
with parent p, the noose η(t) = η((p, t)) corresponding to the set mid((p, t)). Since for
each t ∈ V (T ) \ {r} the parent p is unique, we simply use mid(t) instead of mid((p, t)).
Additionally we put mid(r1) = mid(r2) = mid(er).

The dynamic program works bottom-up in T , considering iteratively larger subgraphs of
the input graph G′. It determines how partial solutions look like on the interface between
subgraphs and the rest of G′. Saving a single local optimal partial solution, a solution
that uses the smallest number of copies, in the corresponding vertex of the decomposition
tree is not sufficient. This sub-solution may result in a no-instance when considering the
rest of the graph. We therefore keep track of all possible split vertex embeddings that
allow us to realize all the missing edges with a crossing-free drawing in the subgraph.
Ultimately, we look for two consistent sub-solutions at the root of the decomposition tree
to resolve the planar re-embedding of S in Γ using at most 2k split vertices resulting
from at most k splits. We need the following notions to describe the interface between
the subgraphs. For a vertex t ∈ V (T ) and the noose η(t) associated to it, we define the
subgraph G′

t of G′ as the subgraph obtained from the union of the edges that correspond
to the leaves in the subtree of T rooted at t. We say that a subgraph of G′ is inside
the noose η(t), if it is a subgraph of G′

t. For a noose η(t) of (T, λ), the processed faces
are faces of the subgraph G′

t that have all their incident vertices inside or on η(t); the
current faces of G′

t are the faces of Γ that have vertices inside, on, and outside of the
noose η(t), they are not closed faces in G′

t.

Nooses in sphere-cut decompositions by definition pass through a face at most once, so it
is not possible for a face to have an intersection with a noose that contains more than
two vertices. Additionally, since Γ is embedded on the sphere, there is no outer face.
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Next, we define partial solutions for the subgraphs of G′. Intuitively, a partial solution
for a subgraph G′

t is a planar drawing Γ′ of G′
t using a set S′

⋏ of copies that covers all of
the pistils inside the noose η(t) defining G′

t.

Definition 1. A partial solution for G′
t is a tuple (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′), s.t. S′

⋏ ⊆ S⋏ and:

i for every v̇ ∈ S′
⋏, we have Nv̇ ⊆ NG(orig(v̇)),

ii the planar drawing Γ′ extends Γ by embedding each copy v̇ ∈ S′
⋏ in a face or a

current face of G′
t,

iii for every v ∈ orig(S′
⋏), the family {Nv̇ | v̇ ∈ copies(v)} is a partition of some subset

of NG(v),

iv for each pistil p of G′ that is inside (and not on) the noose η(t) and for each neighbor
v ∈ NG(p) ∩ S there is a copy v̇ ∈ copies(v) such that p ∈ Nv̇ and v̇ ∈ NΓ′(p), and

v the set of edges in Γ′ with both endpoints in S′
⋏ coincides with the edge set E⋏

guessed by Branching Rule 2.

The dynamic programming algorithm works bottom-up in T . To find a solution at the
root, we need to find partial solutions at the leaves and propagate them upwards in the
tree. To do so, we need to check if two partial solutions are compatible. Notably, we
must check that both partial solutions agree on the embedding of the faces of Γ that
are shared in both nooses (the current faces in the two subgraphs corresponding to the
nooses). To achieve this we describe the combinatorial embedding of the split vertices
embedded inside that face using a structure called a nesting graph.

Formally, let η be a noose, f be a face that is current for η, and let Sf ⊆ S′
⋏ be a set of

copies to be embedded in f . A nesting graph Cf for f is a combinatorially embedded
graph with vertex set Sf ∪ C, where C is a set of vertices that induces a cycle that
encloses all vertices in Sf . We call the vertices in C cycle vertices. For a graph to be a
nesting graph, the following conditions must be satisfied:

i embedded graph Cf is planar and all vertices in C must be incident with its outer
face,

ii the vertices of ∪v̇∈Sf
N(v̇) \ Sf lie in a cycle C and Sf is embedded inside of C,

iii each vertex u ∈ C has exactly one neighbor in Sf ,

iv for any two vertices c1, c2 ∈ C that have the same neighbor ṡ ∈ Sf , it holds that c1
and c2 are not neighbors in Cf , and lastly

v Cf [Sf ] = GS⋏ [Sf ].
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Figure 3.7: (a) A degree-one vertex u is compatible with any other vertex, here only v.
(b) Vertex u is still compatible with v. (c) Vertices u and v are not compatible.

The cycle is a combinatorial representation of the boundary of a face and its vertices
represent a subset of the vertices of the boundary of f (possibly merged). Intuitively,
the nesting graph describe how to embed copies inside a face in a solution. To draw the
edges between the pistils in the current face f and the copies in Sf , we can imagine Cf

embedded inside of f and attempt to draw crossing-free edges from the vertices of C to
the pistils of f .

To describe the combinatorial embeddings of the vertices inside of the cycle of nesting
graphs, we introduce the notion of compatibility (see Figure 3.7).

Definition 2. Given a face f and two copies u̇, v̇ ∈ S⋏ to be embedded in f with their
respective neighborhoods N(u̇) and N(v̇) incident to f , we say that v̇ is compatible with
u̇ in f if in the cyclic ordering of N(u̇) and N(v̇) around f , the respective neighborhoods
not alternate, meaning it is possible in a traversal of f to encounter first vertices in N(u̇)
and no vertices in N(v̇), and then vertices in N(v̇) and not in N(u̇).

To propagate the partial solutions of two child vertices to the parent, we must carefully
consider the nesting graphs of the current faces shared by both children. Since current
faces of G′

t are not closed faces in η(t), we want to specify which part of a nesting graph
Cf is used in a current face f to cover incident pistils. To achieve this we keep track of
only the first and last vertices ps, pe on the cycle C of Cf that connect to pistils in f .
That is, a clockwise traversal of C from ps to pe visits all vertices used to cover pistils of
G′

t. If only a single pistil is covered, then ps = pe; if no pistil is covered ps and pe can be
undefined.

While all pistils inside the noose η(t) of G′
t are covered in a partial solution, the vertices

on η(t) can have missing neighbors. That is, for a pistil p on η(t) with neighborhood
NG(p) in G and NΓ′(p) in Γ′ (the drawing of the partial solution), and v ∈ S ∩ NG(p)
such that copies(v) ∩ NΓ′(p) = ∅, vertex v is a missing neighbor of p. We define Xt(p) as
the set of missing neighbors of p.

Using the elements described above, we build a signature for a node t ∈ T modeling a
possible solution.
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Figure 3.8: The information stored in a signature of the partial solution inside the orange
dashed noose: copies in Sin are used in the grey faces, blue noose vertices who have
missing neighbors (outgoing edges outside the noose) are stored in Nη, in red an example
of a nesting graph for a face traversed by the noose, with four dotted edges connecting
to the cycle and the vertices described by M in green.

Definition 3. A signature on t ∈ V (T ) is a tuple (Sin(t), Cout(t), Mt, Nη(t)) where:

1. Sin(t) ⊆ S⋏,

2. Cout(t) is a set containing a nesting graph Cf for each current face f of G′
t such

that no two of the graphs share a vertex in S⋏,

3. Mt : Cout(t) → V (Cout(t)) × V (Cout(t)) maps each nesting graph to a pair (ps, pe),
and

4. Nη(t) is a list of | mid(t)| sets of vertices, denoted by ⟨Xt(p)⟩p∈mid(t).

Intuitively, for a given signature on t ∈ V (T ), the set Sin(t) ⊆ S⋏ tracks the split vertices
embedded in the processed faces of G′

t, graph Cout(t) and Mt track the embedding
information in current faces, and Nη(t) tracks the missing neighbors of the noose vertices
(see Figure 3.8).

We now show that every partial solution has a corresponding signature. For a partial
solution (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′) for G′

t we construct a signature tuple (Sin(t), Cout(t), Mt, Nη(t))
(or (Sin, Cout, M, Nη) when t ∈ V (T ) is clear from context) as follows. The set Sin is
composed of all vertices of S′

⋏ embedded in processed faces of G′
t. To construct Nη, we

create a set Xt(p) ∈ Nη for each noose vertex p, and add to Xt(p) all neighbors in S for
which no copy is adjacent to p in Γ′: Xt(p) = (NG(p) ∩ S) \ orig(NΓ′(p) ∩ S′

⋏). Lastly,
for a current face f of G′

t where Sf ⊆ S′
⋏ are the copies embedded in f , we find the

nesting graph Cf by transforming f and the graph induced by Sf : If |Sf | = 1, graph Cf

will consist of that vertex embedded inside a 2-cycle, with outgoing edges from the split
vertex to both cycle vertices. If |Sf | ≥ 2, the construction is as follows (see Figure 3.9).
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f
Cf

(a) (b)

Figure 3.9: (a) A face f and copies inside the orange noose, and (b) the corresponding
nesting graph Cf with the interval described by M highlighted in grey. The two light
blue vertices represent two different copies of the same removed vertex. Copies in Cf

have no edges to copies in other nesting graphs.

• For each v ∈ V (G′
t) such that N(v) ∩ S′

⋏ = ∅ we contract one of its outgoing edges
in f . We repeat this process until all remaining vertices of f are incident with a
vertex of S′

⋏.

• For each u ∈ V (G′
t) we let ṡ1, . . . , ṡi be the ordering of N(u)∩S′

⋏ clockwise around u.
We replace u by the path (u1, u2), . . . , (ui−1, ui) on which we then add the edges
(ṡ1, u1), . . . , (ṡi, ui). Thus each vertex on f is adjacent to at most one vertex of S′

⋏.

• For e = (u1, u2) incident to f , if there is a split vertex ṡ ∈ S′
⋏ such that (u1, ṡ), (u2, ṡ)

in Γ′, we contract e such that the new vertex obtained has a single edge to ṡ.

Since G′
t is bridgeless and we initialized Cf as f , Cf \ Sf is necessarily a cycle C. To

obtain M , for each graph in Cf we find the section of C used for the coverage of G′
t. We

determine the first and last vertex in clockwise ordering on cycle C, here ps and pe, and
set Mt(Cf ) = (ps, pe). The obtained signature is the signature of the partial solution. We
say that each signature for which a partial solution exists is valid.

During dynamic programming we enumerate all signatures in linear time, and hence we
first determine how many distinct signatures can exist. To bound the number of different
signatures, we need an upper bound on the number of vertices in a nesting graph.

Lemma 6. A nesting graph with s split vertices embedded inside the cycle C has at most
2s vertices on C.

Proof. Let Cf = (V, E) be a nesting graph, where V = C ∪ Sf with C being the cycle
defining the outer face and Sf the vertex set embedded inside the cycle and let |Sf | = s.
We remove all edges e = (u, v) ∈ E such that u, v ∈ Sf and all vertices in Sf that have
degree zero after the removal. We obtain a new set of faces F . Euler’s formula tells us
that for this modified nesting graph G′ = (V ′, E′) we have |V ′| − |E′| + |F | = 2. We first
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notice |V ′| ≤ s + |C| and thus

s + |C| − |E′| + |F | ≥ 2. (3.1)

Considering that E′ = {(u, v), u ∈ C, v ∈ C}∪{(u, v), u ∈ C, v ∈ Sf }, that by property (i)
of nesting graphs |{(u, v), u ∈ C, v ∈ C}| = |C|, and that |{(u, v), u ∈ C, v ∈ Sf }| = |C|
(from (ii)), we obtain |E′| = 2|C|. Plugging this into Eq. (3.1), we have

s + |F | ≥ 2 + |C|
s + |F | − 2 ≥ |C|.

We lastly show that |F | ≤ |C|
2 . Assume for a contradiction that a face f ∈ F that is not

the outer face has only one edge e = (u, v) of C on its boundary. We traverse f starting
from v, visiting its neighbor vs different from u. Note that vs ∈ Sf . Then as we have
removed all edges incident to vs having their other endpoint in Sf , the next vertex vc

is necessarily on the cycle C. Considering property (iv) of nesting graphs we find that
vc ̸= u. Thus our traversal continues and property (iii) implies that the next vertex must
be a vertex on the cycle different from u and v, which contradicts our assumption that
an inner face of Cf only has a single cycle edge incident to itself.

Hence, |C| ≤ s − 2 + |C|
2 , giving us |C| ≤ 2s − 4 ≤ 2s.

Next we bound the number of distinct signatures for k split operations.

Lemma 7. The number Ns(k) of valid signatures is upper bounded by 2O(k2). Moreover,
we can enumerate a superset of signatures that includes all valid signatures in O(Ns(k))
time.

Proof. Consider a valid signature. We first count the number of all possible sets Sin
included in the signature. These are necessarily subsets of S⋏. Thus, there are almost
22k such sets.

To find the number of the possible sets Nη, we compute the set of all candidate vertices
that are neighbors to the noose vertices. As our input graph must be a 10k-outerplanar
graph and we know that those have sphere-cut decompositions of branchwidth upper
bounded by 20k [Bie15, Lemma 3], there are at most 20k vertices on a noose in the
decomposition. Since a single vertex has at most k split neighbors, the set is of size at
most 20k2. This means that there are at most 220k2 sets Nη.

To find the number of all the possible sets Cout of nesting graphs, consider constructing
an auxiliary graph Ĉ that consists of the union of all nesting graphs in Cout connected
by edges in an arbitrary tree-like fashion. To find an upper bound for the number of sets
Cout it is enough to find an upper bound on the number of (combinatorially) embedded
graphs Ĉ. By Lemma 6 and since no two nesting graphs in Cout share a vertex in S⋏
(by the definition of a signature), it follows that |V (Ĉ)| ≤ 4k (recall that |S⋏| ≤ 2k).
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Consider taking Ĉ and triangulating it; in this way it becomes triconnected. Thus Ĉ is a
partial drawing of a triconnected embedded planar graph with at most 4k vertices, that is,
Ĉ can be obtained from this graph by omitting vertices and edges. The number of partial
drawings of a fixed triconnected embedded planar graph with at most 4k vertices is at
most 2O(k) because such a graph contains O(k) edges (as it is not the full drawing). It
remains to find an upper bound on the number of triconnected combinatorially embedded
planar graphs. Since each triconnected planar graph with 4k vertices has O(k) different
combinatorial embeddings (the embedding being fixed up to the choice of the outer
face), an upper bound is O(k) times the number of planar graphs with 4k vertices. To
bound the number of planar graphs with 4k vertices, recall that each planar graph is
5-degenerate, that is, it admits a vertex ordering such that each vertex v has at most
5 neighbors before v in the ordering. Thus, there are at most ((4k)5)4k planar graphs
with 4k vertices because all planar graphs on a given vertex set can be constructed
by, for each vertex v, trying all possibilities to select the at most five neighbors of v
occurring before v in the degeneracy ordering. Overall, we obtain an upper bound of
2O(k) · O(k) · O(k)O(k) = 2O(k log k) for the number of sets Cout. As many of the graphs
created are not nesting graphs, if a graph is missing any of the properties of the nesting
graph, it is discarded.

We lastly need to find all mappings Mt for the nesting graph set. The trees have at most
4k vertices, which means in the worst case a cycle has 8k vertices. This gives us at most

8k
2 vertex pairs per nesting graph (as well as ∅) as possible outputs for every nesting

graphs.

This means that there are at most Ns(k) = 22k · 220k2 · 2O(k log k) · 8k
2 = 2O(k2) valid

signatures for a given noose. Moreover, the upper bound derived above is constructive and
yields a linear-time algorithm for enumerating signatures, including all valid signatures.

3.4.4 Dynamic Programming
We first give an overview of our dynamic programming approach, starting with how the
valid signatures at the root are found. In each branch obtained after Branching Rule 1
and 2, we perform bottom-up dynamic programming on the tree T of the sphere-cut
decomposition. We want to find a valid signature at the root node of T , which corresponds
to a solution for the whole input graph G′, and we start from the leaves of T . Each
leaf corresponds to an edge (u1, u2) of the input graph G′, for which we consider all
enumerated signatures and check if a signature is valid and thus corresponds to a partial
solution. Such a partial solution should cover all missing neighbors of u1 and u2 that are
not in Nη = {X(u1), X(u2)}, using for each incident face f the subgraph of Cf ∈ Cout as
specified by M .

For internal nodes of T we merge some pairs of valid child signatures corresponding
to two nooses η1 and η2. We merge if the partial solutions corresponding to the child
signatures can together form a partial solution for the union of the graphs inside η1 and
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η2. The signature of this merged partial solution is hence valid for the internal node
when

1. faces not shared between the nooses do not have copies in common,

2. shared faces use identical nesting graphs and

3. use disjoint subgraphs of those nesting graphs to cover pistils, and

4. noose vertices have exactly a prescribed set of missing neighbors.

As we will see, these conditions suffice and thus we can find valid signatures for all
nodes of T and notably for its root. For each node t ∈ T the valid signatures are
stored in a corresponding table D(t). If we find a valid signature for the root, a partial
solution (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′) must exist. In Γ′ all pistils are covered and it is planar, as

the nesting graphs are planar and they represent a combinatorial embedding of copies
that together cover all pistils. The running time for every node of T is polynomial in the
number of signatures Ns(k), thus, over all created branches Split Set Re-Embedding
is solved in 2O(k2) · nO(1) time.

The next three sections will each explain part of our dynamic-programming approach,
starting with the leaf nodes of the sphere-cut decomposition tree T and finishing with
the proof for Theorem 5.

Finding Valid Signatures for Leaf Nodes. By definition, the leaf nodes of T form
a bijection with the edges of the drawing Γ. The first step of the dynamic programming
algorithm is to find the set of valid signatures on the leaf nodes of T . To do this, we loop
over each possible signature for each leaf t ∈ V (T ), and check whether it is valid. In the
following, we show how we determine whether a signature for a leaf t ∈ V (T ) is a valid
signature for t, that is, the signature corresponds to a partial solution for the subinstance
induced by the edge of Γ that corresponds to t. The signatures we created by enumerating
all possibilities as described in Lemma 7 are not all useful, so we check beforehand that
they satisfy the necessary properties. From the non-discarded leaf signatures we can
progress our dynamic programming algorithm to the inner nodes of T .

For a leaf node t ∈ T with corresponding edge e = (u, v) in Γ and given a signature t
sig = (Sin(t), Cout(t) = {C1, C2}, Mt, Nη(t) = {Xt(u), Xt(v)}), the algorithm will proceed
in two steps to cover u and v by embedding vertices in the two faces of Γ incident to e.
It will first check elements of the signature and whether there are pistils on the noose
to assess trivially valid and invalid signatures. Then it will execute a routine based on
branching and traversing the cycle of the nesting graph to assess the remaining signatures.
We first define the set Nu(t) = NG(u) \ Xt(u) to contain the neighbors of u that should
cover u, as they are not in the missing neighbors set in G′

t and we analogously define
Nv(t). The trivial checks are the following:
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e

Figure 3.10: The edge e corresponding to the current leaf node t ∈ T in blue, and
its endpoints (both pistils) as red squares. The filled colored disk correspond to its
neighborhood in S. The vertices of Nη(t) are drawn in pink and are ignored by A. The
remaining vertices can be covered using any cyclic ordering and can be embedded in any
of the two faces incident to e. On the right two examples of a possible coverage with
copies, shown as circles, that A looks for in their noose (orange).

1. If Sin ̸= ∅ then the signature is not valid – as G′
t is only an edge, there is no

processed face.

2. If Nu(t) = Nv(t) = ∅, then the signature is valid and we put sig ∈ D(t): There is
no vertex to cover in the subgraph, hence the signature is valid (even if Mt ̸= ∅ the
vertices in the nesting graph will just not be used).

3. If Nu(t), Nv(t) ̸= ∅, but Cout = {∅, ∅} or Mt = ∅, then there is no available vertex
to cover the pistils, hence the signature is not valid.

For the general case, we now introduce algorithm A to check the validity of the signatures
on leaf nodes, using the following notation. Let p1

s , p1
e ∈ C1 and p2

s , p2
e ∈ C2 such that

Mt(C1) = (p1
s , p1

e) and Mt(C2) = (p2
s , p2

e). Let f1 be the face incident to e in Γ associated
with C1. A clockwise traversal f1 encounters the endpoints of e one after the other in a
specific order: w.l.o.g. we assume here that u is visited right before v, meaning for the
other face f2 incident to e, a clockwise traversal finds v right before u.

In its execution, algorithm A first branches over all possible partitions of Nu(t) ∪ Nv(t)
into two sets S1, S2. Then, for each branch, it creates two new branches, assigning (1) S1
to C1 and S2 to C2 and (2) vice versa as shown in Fig. 3.10.

Next, algorithm A creates a branch for each ordering of Nu(t) ∩ S1. In each branch, the
algorithm proceeds as follows. It creates a queue Q1 from the ordering of Nu(t) ∩ S1
and a queue Q2 containing the elements of the cycle of C1 in the order of a clockwise
traversal starting with p1

s . It then checks whether the first element q1 of Q1 is equal to
the first element q2 of Q2. If so, q1 is removed from Q1. Intuitively, this corresponds
to covering the pistil u by a copy of q1 connected to cycle vertex q2. Otherwise, the
cycle vertex q2 is not connected to a copy of the current missing neighbor q1, thus q2 is
removed from Q2. It repeats the checks and removals of the first elements until either (1)
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e

Figure 3.11: Algorithm A checks if the cyan nesting graphs correspond to a valid signature
for the blue edge in the orange noose. The path between p1

s and p1
e is highlighted in gray.

First, it checks if the green copy is the desired first neighbor of the red pistil. Then it
continues down the gray path, or moves on to the second red pistil if all desired vertices
have been found. When the desired coverage has been found for the first face without
exhausting all vertices on the gray path, the process is repeated in the second face, using
the other (cyan) nesting graph.

Q1 becomes empty or (2) Q2 becomes empty. In the second case, the algorithms discards
the current branch, since not all neighbors of pistil u are covered. In the first case, the
algorithms proceeds in the same way with Nv(t) ∩ S1 and C2. If in at least one branch
for an ordering of Nu(t) ∩ S1, the algorithm never reaches case (2), the algorithm accepts
and puts sig ∈ D(t). However, if all branches are discarded then the signature is not
valid. Thus, we fill D(t) with all signatures found to be valid.

Lemma 8. For each leaf node t ∈ T , algorithm A correctly computes the table of valid
signatures D(t).

Proof. For a leaf t ∈ T such that λ(t) = e where e = (u, v) in E(G′), we show that for
sig = (Sin(t), Cout(t), Mt, Nη(t)) algorithm A finds sig ∈ D(t) if and only if the input
signature is valid, meaning we can find a partial solution σ = (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′) from

sig. In the following proof, for ease of reading, we identify the vertices on the cycle of a
nesting graph with corresponding split neighbor in that graph.

Given a partial solution σ for the signature sig, and embedded subgraph G′
t = ({u, v}, e),

we show that algorithm A sets sig ∈ D(t). Let f1 and f2 be the faces incident to e in Γ, and
let C1 and C2, respectively, be their assigned nesting graphs. By definition of the signature
of a partial solution, since G′

t has no processed faces, necessarily Sin(t) = ∅. Additionally,
if Nu(t) = Nv(t) = ∅, necessarily Cout(t) = {∅, ∅}. Similarly if Nu(t), Nv(t) ̸= ∅, then
Cout(t), Mt ̸= ∅. Lastly all edges between split vertices in the solution are fully in f1 or
f2, therefore the preliminary checks do not discard the signature. If Nu(t), Nv(t) ̸= ∅
in the partial solution, u and v have a subset of their neighborhood in f1 and/or f2.
Algorithm A attempts all partitions of Nu(t) ∪ Nv(t) into two sets, hence two branches
will necessarily correspond to the partition of the solution. Additionally, since both
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options of assigning a set of the partition to a face are considered, one branch will assign
the correct subsets of S′

⋏ to the correct faces. We place ourselves in the search tree
nodes corresponding to this path. W.l.o.g., by definition of the signature of a partial
solution, the clockwise traversal of the neighborhood of u and v in f1 corresponds to a
sub-sequence of a clockwise traversal of the vertices on the cycle of C1 between p1

s and
p1

e . This sub-sequence of cycle C1 will correspond to one of the orders we branch over:
since a solution exists, this order is one of the possible orders of Nu(t) ∩ S1, Nv(t) ∩ S1,
hence, each search will always find a copy of the neighbor it is trying to cover the pistil
with, meaning A finds the signature of a partial solution to be valid.

Given a signature sig such that A finds sig ∈ D(t), we show that sig corresponds to a
partial solution σ = (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′). We set V (C1) ∪ V (C2) = S′

⋏. If Nu(t) = Nv(t) =
∅, sig ∈ D(t): If no endpoints of the edge have to be covered, S′

⋏ = ∅, there are no
neighborhoods to cover, and the drawing of the input edge is necessarily planar. Hence,
if Nu(t) = Nv(t) = ∅, then A correct puts sig ∈ D(t). Otherwise, A returns sig ∈ D(t)
when a branch of the search tree encounters all the neighbors it searches for before
completing the nesting graph cycle traversal in both faces. In this case, we construct the
partial solution in the following way. We place the nesting graphs in their corresponding
face. We follow the path of the search tree that was able to cover each pistil(s). When
encountering a search tree node, we draw an edge between the cycle vertex found by
the traversal of the nesting graph and the pistil it is in the neighborhood of. Because
both traversals (the edge in the noose and the cycle) are in the same direction, the
drawing is planar. Indeed there could only be a crossing between an edge that has u as
an endpoint and an edge that has v as an endpoint, but since their neighborhoods are
successive in the traversal of the nesting graph (they do not alternate), this is impossible.
We can then remove the cycle edges and contract the edges between the pistils and
the cycle vertices. The nesting graph is planar and these operations preserve planarity
ensuring the final drawing is planar. The set of vertices Sf inside the cycle of both
nesting graphs C1, C2 is such that for every s ∈ S that has a copy in Sf , we have that
{NΓ′(ṡ) | ṡ ∈ copies(s) ∩ Sf } is a partition of some subset of NG(s), more specifically, a
subset of {u, v}. There are no pistils inside of the noose, S′

⋏ ⊆ S⋏ and for every ṡ ∈ S′
⋏

we have Nṡ ⊆ NG(orig(ṡ)), showing that sig is a partial solution. Thus, A correctly puts
sig ∈ D(t).

We now derive the running time.

Lemma 9. For a leaf node t ∈ V (T ), we can fill D(t) in O(Ns(k)k22k2k!) time.

Proof. The trivial checks can be done in constant time. For the main part of the algorithm,
there are at most k missing neighbors to u and v each, meaning 22k−1 partitions of
the missing neighbors, giving 22k branches as each set creates one branch for each face
assignment. Each of these branches will further branch into all the possible orders of
their vertex set, meaning a single branch will further create at most 2k! branches. Each
branch traverses the two sub-cycles once. Since any cycle has at most 4k vertices this
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takes O(k) time. Overall for a given signature it takes O(k22k2k!) time to check whether
it is valid, and thus it takes O(Ns(k)k22k2k!) time to fill the table for a leaf node.

This concludes the description of the algorithm for computing all valid signatures at the
leaf nodes of the decomposition tree T .

Finding Valid Signatures for Internal Nodes. In this section, we describe an
algorithm that fills the table of valid signatures for internal nodes of sphere-cut decompo-
sition T . For t, c1, c2 ∈ V (T ) such that c1, c2 are the children of t and given tables D(c1)
and D(c2) of valid signatures for c1, c2 respectively, we will describe an algorithm that
checks for each valid signature pair whether there exists a corresponding valid signature
for t.

Given the signatures s1, s2 of two children c1, c2 of the same node t, we introduce
algorithm B that tests the two signatures for the following four properties. If the pair
s1, s2 has all the required properties, B finds the signatures to be consistent and combines
them to compute a signature st = B(s1, s2) for the parent node. For i ∈ [2] we let
si = (Sin(ci), Cout(ci), Mi, Nη(ci)). The tests are the following.

1. Firstly, we require Sin(c1) ∩ Sin(c2) = ∅, Sin(c1) ∩ Sout(c2) = ∅, and Sout(c1) ∩
Sin(c2) = ∅, where Sout is the union of all the split vertices of the graphs of Cout.
This ensures vertices shared by both signatures can only belong to nesting graphs
(see Fig. 3.12(a)).

2. Next, consider the set of vertices I = (mid(c1) ∪ mid(c2)) \ mid(t) that are on
the noose of both children c1, c2 and not on the noose of t. We require for every
v ∈ I with missing neighbors sets Xc1(v) ∈ Nη(c1) and Xc2(v) ∈ Nη(c2) that
Xc1(v) ∩ Xc2(v) = ∅ (see Fig. 3.12(b)).

3. We then check that Sout(c1) ∩ Sout(c2) contains only vertices in nesting graphs
corresponding to faces that intersect both nooses. That is for all faces f ∈
η(t) current in η(c1) and η(c2) with Cf (c1) ∈ Cout(c1), Cf (c2) ∈ Cout(c2) the
corresponding nesting graphs should be equivalent, and hence Cf (c1) = Cf (c2) (see
Fig. 3.12(c)).

4. Lastly, for all faces f current in both s1 and s2, given the mappings M1 of s1 and
M2 of s2 such that M1(Cf ) = (p1

s , p1
e) and M2(Cf ) = (p2

s , p2
e), we check that a

clockwise traversal of the cycle of Cf from p1
s encounters first p1

e then p2
s and finally

p2
e (see Fig. 3.12(d)), the order is not strict, p1

s = p1
e = p2

s = p2
e or any equality of

consecutive elements is allowed.

Any signature pair s1, s2 that fails any of the above tests is not consistent and no parent
signature is computed. Otherwise, to compute the combination, Algorithm B does the
following. The set Cout(t) is set to Cout(c1) ∪ Cout(c2) \ C where C corresponds to the
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(a) (b)

(c) (d)

Figure 3.12: Algorithm B checks for consistent signatures and rejects a pair for the orange
noose if (a) the corresponding partial solutions both use the same green copy, (b) a
vertex is a missing neighbor in both partial solutions (in light green), (c) a face uses two
different nesting graphs, and (d) while the nesting graphs are the same, the used cycle
vertices are interleaved. A combined signature for such a pair of signatures is invalid.

nesting graphs of faces current in η(c1) and η(c2) and processed in η(t). Let Sf be the set of
vertices in C and set Sin(t) = Sf ∪Sin(c1)∪Sin(c2). The new mapping Mt is a combination
of M1 and M2 on the nesting graphs for the faces that are current in η(t). For such a
current face f there are four candidate vertices: p1

s , p1
e , p2

s , p2
e . The two vertices that are

not on the noose η(t) are removed. If p1
s , p2

e remain, Mt(Cf ) = (p1
s , p2

e), otherwise, p1
e , p2

s
remain and Mt(Cf ) = (p2

s , p1
e). Lastly, Nη(t) is composed from Nη(c1) and Nη(c2) for all

vertices in mid(t). For p ∈ mid(c1) ∩ mid(c2) ∩ mid(t), we set Xt(p) = Xc1(p) ∩ Xc2(p),
otherwise for p ∈ (mid(c1) ∩ mid(t)) \ mid(c2) we set Xt(p) = Xc1(p), and similarly
Xt(p) = Xc2(p) for the remainder of the vertices p ∈ (mid(c2) ∩ mid(t)) \ mid(c1). Thus
we get Nη(t) = ⟨Xt(p)⟩p∈mid(t). Observe that the computed tuple indeed adheres to the
definition of a signature.

For every node t with children c1, c2, we compute the combination B(s1, s2) of all consistent
signatures of children s1 ∈ D(c1), s2 ∈ D(c2). We prove that exactly those signatures are
the valid signatures of t.

Lemma 10. For an internal node t ∈ T with children c1, c2, the table D(t) of its valid
signatures can be computed using the following recurrence relation:

D(t) = {B(s1, s2) | s1 ∈ D(c1), s2 ∈ D(c2), s1, s2 consistent}.

Proof. Given c1, c2, t ∈ V (T ) such that c1, c2 are the children of t, to prove that the
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recurrence relation holds, we first show that

{B(s1, s2) | s1 ∈ D(c1), s2 ∈ D(c2), s1, s2 consistent} ⊆ D(t).

Fix two arbitrary signatures s1 ∈ D(c1), s2 ∈ D(c2) that are consistent and let st =
B(s1, s2). We have to show that st is valid, that is, there exists a corresponding partial
solution σ′. In the following, let

s1 = (Sin(c1), Cout(c1), Mc1 , Nη(c1)),
s2 = (Sin(c2), Cout(c2), Mc2 , Nη(c2)),
st = B(s1, s2) = (Sin(t), Cout(t), Mt, Nη(t)), and
σ′ = (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′) (if σ′ exists).

Since s1, s2 are valid a few properties are immediately verified: S′
⋏, the vertices in Sin(t)

and inside the cycles of Cout(t), are a union of the split vertices in each child’s signature
(where some nesting-graph vertices are moved to Sin(t)), thus S′

⋏ ⊆ S⋏. Additionally,
for every v̇ ∈ S′

⋏, we have Nv̇ ⊆ NG(orig(v̇)) since all coverage is inherited, and for every
v ∈ orig(S′

⋏), the family {Nv̇ | v̇ ∈ copies(v)} partitions NG(v). Additionally, while B
omits some nesting graphs, it does not change the graphs themselves, in particular, the
edge set induced by S′

⋏ still corresponds to the guess made by Branching Rule 2. Thus it
is planar.

For each pistil p inside of η(t), we want to show that they have no missing neighbors
remaining. Since s1 and s2 are valid, all the pistils that were inside η(c1), η(c2) are
already covered, we must show that their remaining noose vertices that are inner vertices
in η(t) do not have remaining missing neighbors. This is done by B in the third step,
for every v ∈ I (as defined in test 3) where Xc1(v) ∈ Nη(c1), Xc2(v) ∈ Nη(c2) we have
Xc1(v) ⊆ NG(v) and Xc2(v) ⊆ NG(v) (by definition). Since Xc1(v) ∩ Xc2(v) = ∅, by
test 2, we know that (NG(v) \ Xc1(v)) ∪ (NG(v) \ Xc2(v)) = NG(v). Thus, the missing
neighbors sets for vertices which are not in mid(t) can be safely removed in st as they are
empty in the union of the two partial solutions. For the pistil in mid(t) we must make
sure they are missing the correct neighbors. Consider p ∈ mid(t); it is either in mid(c1),
mid(c2), or both. If p is only in one child noose, w.l.o.g., assume p ∈ mid(c1). Then
Xc1(p) = Xt(p), the missing neighbors are the same as in the child noose and remain for
the parent noose. If p is shared by both nooses, then p’s missing neighbors are vertices
missing in both children nooses which corresponds to what B computes.

We finally show that we can find a planar drawing Γ′ that extends Γ. Such drawings
exist for η(c1) and η(c2), we call them Γ1 and Γ2 respectively, and we show that Γ′

exists for the subgraph inside η(t) and is planar, meaning we now show that we can
find the embeddings for the required copies in Γ′ and connect them without inducing
crossings. The solution drawing for the faces not shared between η(c1) and η(c2) can
directly be extended to Γ′ in a planar way: B verifies in the first test that the only copies
shared by both signatures’ vertices were necessarily in nesting graphs that correspond
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to faces shared by both nooses, which ensures that there are no edges spanning from a
face of η(c1) to a face of η(c2) which could create crossings. Next we explain how, for
the remaining current faces present in both children nooses, we use the drawings of Γ1
and Γ2 to create Γ′. For one such face, there is a set of copies in Γ1 that do not appear
in Γ2, or do not cover vertices in Γ2. For those we can replicate the embedding in Γ′

as it was in Γ1. We can do the same with Γ2. Consider the copies that cover vertices
in both Γ1 and Γ2; we now show we can also replicate their embedding in Γ′ without
creating crossings. For a vertex u̇ with neighbors u1 ∈ G′

1 and u2 ∈ G′
2, let us assume it

does not have a planar embedding, meaning we find a crossing involving a split copy ẋ.
This means that when traversing f , we can find a subsequence of vertices u1, x1, u2, x2
such that x1, x2 ∈ Nẋ. This can be extended to the vertices of the nesting graph: there
must be two neighbors of u̇ and two neighbors of ẋ on the cycle that are alternating.
This means that the two neighborhoods are not sequential in the cyclic ordering of the
vertices on the cycle of the nesting graph. This contradicts the validity of the children
signatures, and this situation is not possible, showing that we can create Γ′ by replicating
the neighborhoods and embeddings in Γ1 and Γ2.

Thus σ′ is a partial solution for st and hence st is valid.

We now show that D(t) ⊆ {B(s1, s2) | s1 ∈ D(c1), s2 ∈ D(c2), s1, s2 consistent}. Given a
valid signature st ∈ D(t), we show that it is possible to find two valid consistent signatures
s1 = (Sin(c1), Cout(c1), Mc1 , Nη(c1)) for c1 and s2 = (Sin(c2), Cout(c2), Mc2 , Nη(c2)) for c2.
Since st is valid there is a corresponding partial solution σ′ = (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′) where

Γ′ is the drawing of the solution graph inside η(t). We can find a partial solution for the
graphs G′

1 and G′
2 inside η(c1) and η(c2) respectively from σ′. To compose the sets S′

⋏
1

and S′
⋏

2 of copies in the partial solution for η(c1) and η(c2) respectively, we check for
each copy in S′

⋏ its neighborhood in Γ′. If the copy has a neighbor in G′
1 is it added to

S′
⋏

1 and if it covers a pistil in G′
2 is it added to S′

⋏
2. Thus we obtain partial solutions

for G′
1 and G′

2 using the sets of copies in S′
⋏1 and S′

⋏2 and their embedding in Γ′.

By definition of the signature of a partial solution, there exists a valid signature s1 and
s2 for the two children nodes. We now show that these are consistent:

Since Γ′ is planar, any vertex embedded in a face f inside η(c1) can only be incident to
vertices in f . Meaning the first test of B is passed.

The shared current faces of s1 and s2 will also necessarily have the same nesting graph as
they are the same face in G′

t: They induce the same nesting graphs, and thus the third
test is passed.

As for the second test, since σ′ is a partial solution, all of the inner vertices in G′
t have

no missing neighbors, meaning that the noose vertices of η(c1) and η(c2) that are not
noose vertices of η(t) are covered by a vertex in a face of G′

1 or G′
2, which is reflected in

the signature of the partial solution. The vertices on the noose may have some neighbors
in faces that are not in G′

t, those are the missing neighbors in the parent signature.

Lastly, we assume that the mappings created by B do not pass the fourth test, meaning
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3.4. Split Set Re-Embedding is Fixed-Parameter Tractable

without loss of generality in a face f ’s nesting graph Cf we encounter p1
s then p2

s then p1
e

and p2
e . This ordering is strict since the test is not passed. By construction, vertex p2

s
represents either, a pistil in G′

1 and G′
2, or a path of pistils and non-pistils in G′

1 and G′
2

that were contracted to a make p2
s in the nesting graph. In the first case this means that

the pistil p2
s represents a noose pistil and in the second case one of the vertices on the

path is on the noose, thus after contraction p2
s is on the noose. Since once the traversal

of f leaves G′
1 by passing the noose vertex p2

s , the next encountered pistils are pistils of
G′

2 and p1
e cannot be any of the cycle vertex that represents a pistil of G′

2, it must be the
case that p2

s = p1
e , which contradicts our assumption.

Thus s1 and s2 are consistent, the recurrence relation is correct, and Algorithm B
computes all valid signatures.

We now give the running time for merging the tables of signatures for two child nodes.

Lemma 11. Let t be a node in T that is neither the root nor a leaf and let c1, c2 be t’s
children. Given the tables D(c1) and D(c2) we can fill the table D(t) in O(Ns(k)2k4)
time.

Proof. Algorithm B first does four different tests. To verify that the inner vertex sets of
size at most 2k are disjoint requires quadratic time, we additionally need to compute
the vertex sets of the nesting graph which can be done in linear time. Overall the first
test requires O(k2) time. Checking that the at most 20k nesting graphs are equal can
be done in linear time for the second test, for a O(k) runtime. There are at most 20k
noose vertices which have at most k missing neighbors. We must verify that the missing
neighbors sets are disjoint in O(k2) time, thus the third test takes O(k3) overall. Lastly,
a clockwise traversal of the cycle of length at most 4k requires linear time. Overall these
check are done for each signature pair in the table of valid signatures for the children,
which are of size at most Ns(k), the number of possible signatures. Overall, B can be fill
the table for an internal node in O(Ns(k)2 · k3) time.

This concludes the description of the algorithm for computing the valid signatures for
internal nodes.

Checking Signatures at the Root Node. Finally, we check for the existence of a
solution σ by looking at the valid signatures of the children of the root node. In the
initialization we split a single edge er = (r1, r2) into two edges by connecting the end
points of er to a new root node r. As a result mid(r1) = mid(r2) = mid(er), and the
union of the graphs inside η(r1) and η(r2) would make up the whole input graph. With
the previous section we have shown how to compute the tables D(r1) and D(r2). We
now show how given s1 ∈ D(r1), s2 ∈ D(r2) we decide if a solution exists. We reuse here
algorithm B to decide whether the two signatures are consistent. As there are no current
faces anymore, the only relevant element in the tuple is the set Sin of vertices that were
used to cover the pistils in G′. We run one last test on the set S⋏ \ Sin. The edge set
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Figure 3.13: For the (orange) noose at the root, B checks signatures for the light blue
and dark blue subgraphs. If a pair of consistent signatures is found, we check if the
remaining copies (colored circles) in S⋏ form a planar graph, that can be embedded in
any face of our drawing.

guessed by Branching Rule 2 holds some of the coverage of the split vertices, but if a split
vertex is not in Sin and has a neighbor in GS⋏ , then we must be able to realize those last
edges. Hence we verify that the graph GS⋏ [S⋏ \ Sin] is planar, and if so, embed it inside
any face of a partial solution. Thus, if this test is passed, we find that a solution σ exists.

Lemma 12. For an instance I of Split Set Re-Embedding Decomp with input graph
G′ and modified sphere-cut decomposition tree T rooted on r where r1, r2 are the children
of r with G′

1, G′
2 the subgraphs inside η(r1), η(r2) respectively, such that G′

1 ∪ G′
2 = G′, I

has a solution if and only if there exist valid consistent signatures for r1, r2.

Proof. Given that two valid consistent signatures s1, s2 exist, for r1, r2 ∈ V (T ) with
G′

1, G′
2 the subgraphs inside η(r1), η(r2) respectively, such that G′

1 ∪ G′
2 = G′ we show

that I has a solution.

From Lemma 10, the existence of valid consistent signatures s1, s2 ensures that D(r) ̸= ∅.
For sr ∈ D(r) s.t. sr = (Sin(r), Cout(r), Mr, Nη(r)), sr is valid, meaning it corresponds to
a partial solution σ′ = (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′). We can construct a solution for I that looks as

follows: (S⋏, orig, copies, (Nv̇)v̇∈S⋏ , Γ∗). The mappings copies and orig are those guessed
in Branching Rule 1. We know that S′

⋏ = Sin(r) ⊆ S⋏. The missing vertices S⋏ \ S′
⋏ can

be added in any face of the partial solution’s drawing Γ′ to get the drawing Γ∗. We will
argue later that Γ∗ is still planar.

We now show for (Nv̇)v̇∈S⋏ , that the family {Nv̇ | v̇ ∈ copies∗(v)} is a partition of NG(v).
First consider a pistil p ∈ η(r1), since mid(r1) = mid(r2), p ∈ η(r2). When creating
the set Nη(r), B removes the sets Xt(p) from Nη(r) where p ∈ mid(c1) ∩ mid(c2), hence
Nη(r) = ∅. Now we make a case distinction on the different types of pistils. For a pistil
p ∈ G′, w.l.o.g. assume p ∈ V (G′

1) and p ̸∈ mid(r1), since s1 is valid, p is covered. If
p ∈ mid(r1) then p ∈ mid(r2) and since Nη(r) = ∅, p is covered. For a split vertex

56



3.4. Split Set Re-Embedding is Fixed-Parameter Tractable

ṗ ∈ Sin(sr), since sr is valid, ṗ is covered. Lastly, if ṗ ∈ S⋏ \ Sin(sr), ṗ has all of its
missing neighbors in S⋏: ṗ cannot have neighbors in Sin(sr), as vertices in Sin(sr) are
already completely covered. We only need to embed GS⋏ [S⋏ \ Sin(sr)] in Γ′ to obtain
the coverage of ṗ.

Since sr is valid, Γ′ is planar. The only vertices of S⋏ not yet embedded in Γ′ are the
vertices not in S⋏ \ Sin. The last test, executed after B, verifies that the graph consisting
of the remaining copies GS⋏ [S⋏ \ Sin(sr)] is planar, and since it is not a connected
component of G′, it can be embedded into any of its faces and preserve planarity. Hence,
there exists a planar drawing Γ∗ of the solution.

Given a solution I = (S⋏, orig, copies, (Nv̇)v̇∈S⋏ , Γ∗) we now show that we can find two
valid consistent signatures signatures s1, s2 for r1, r2 ∈ V (T ) with G′

1, G′
2 the subgraphs

inside η(r1), η(r2) respectively, such that G′
1 ∪ G′

2 = G′. By definition, the drawing Γ∗ is
the drawing of a graph extending G′, we remove from it any component not connected
to G′. The vertices we remove are necessarily vertices in S⋏ as all other vertices are
in G′. We call S′

⋏ the remaining split vertices and Γ′ the obtained drawing. Since
every pistil in Γ∗ was covered and we did not remove vertices connected to G′, every
pistil in Γ′ is covered, and it is a planar drawing. With these elements we construct
σ′ = (S′

⋏, (Nv̇)v̇∈S′
⋏ , Γ′) a partial solution for G′. We can now obtain the signature

of a partial solution, sr = (Sin(r), Cout(r), Mr, Nη(r)) where S⋏ = Sin(r) — this is a
special case with no current faces. Lemma 10 tells us that given a valid signature for
a parent node, there must be two valid consistent signatures for its children, hence, as
r corresponds to G′, its children must partition G′ in two and thus we find two valid
consistent signatures signatures s1, s2 for r1, r2 ∈ V (T ) with G′

1, G′
2 the subgraphs inside

η(r1), η(r2) respectively, such that G′
1 ∪ G′

2 = G′.

Lemma 13. Given two valid signature tables D(r1) and D(r2) where mid(r1) = mid(r2)
such that the union of the subgraphs inside η(r1), η(r2) is the whole input graph, we can
decide in O(Ns(k)2k3) time if our input is a yes instance.

Proof. Lemma 11 showed that B requires O(Ns(k)2k3) time to compute the table for
an internal node. On the root level the only difference is the final test that checks the
planarity of the graph induced by the at most 2k vertices of S⋏, which are unused in
the signature. This can be done in O(k) time. Thus, we can check for the existence of a
solution in O(Ns(k)2k3) time.

This now gives us the necessary tools to prove Theorem 5.

Proof of Theorem 5. From the input instance of Split Set Re-Embedding, we first
find mappings between candidate vertices and copies, and determine how the graph
induced by candidate vertices maps to copies. Lemmas 1 and 2 show that an exhaustive
search can do this in O(2kk3) time. Next, we show with Corollary 2 and Lemmas 4
and 5 that we can apply transformations to the input graph in linear time to obtain a
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graph, whose sphere-cut decomposition we can compute. Thus we obtain an instance
of Split Set Re-Embedding Decomp, that we solve using our dynamic programming
algorithm.

The dynamic programming algorithm computes partial solutions starting from the leaves
of the sphere-cut decomposition. By Lemma 8 we know that all valid signatures for all
m leaves can be correctly computed, and this can be done in O(Ns(k)k22k2k!) time per
leaf (see Lemma 9). The number of possible signatures Ns(k) can be bounded using
Lemma 7, to get Ns(k) = 22k · 220k2 · 2O(k log k) · 8k

2 = 2O(k2). Those signatures can be
enumerated in O(Ns(k)). The dynamic programming now correctly computes all valid
signatures for all m − 1 internal nodes of the sphere-cut decomposition in bottom up
fashion (see Lemma 10), in O(Ns(k)2k3) time per internal node, as shown in Lemma 11.
Finally, we arrive at the root, where we can correctly determine whether a solution to
Split Set Re-Embedding exists, by Lemma 12. This takes an additional O(Ns(k)2k3)
time (see Lemma 13). Thus, we can solve any instance in 2O(k2) · nO(1) time

3.5 Chapter Conclusion
In this chapter, we introduced the embedded splitting number problem for planarizing
graph drawings by vertex splitting and showed its NP-completeness. However, fixed-
parameter tractability is only established for the Split Set Re-Embedding subproblem,
the parameterized complexity of Embedded Splitting Number remains open.

A trivial XP-algorithm for Embedded Splitting Number can provide appropriate
inputs to Split Set Re-Embedding as follows: check for any subset of up to k vertices,
whether removing those vertices results in a planar input drawing, and branch on all
such subsets.

An FPT-algorithm for Embedded Splitting Number should similarly select vertices
whose removal results in a planar drawing. However, this is not sufficient, as it may be
necessary to also consider vertices whose removal merges two faces f1 and f2 into f3.
Thus less copies may be required to cover pistils in f3, than placing copies in both f1
and f2.

Furthermore, many variations of embedded splitting number are interesting for future
work. For example, rather than aiming for planarity, we can utilize vertex splitting
for crossing minimization. Other possible extensions can adapt the splitting operation.
Vertex explosion (or splitting a vertex degree many times) behaves similarly to minimizing
the number of vertices split at least once, and both problems in this setting are equivalent
to Embedded Vertex Deletion. But, since the split operation allows both creating
an additional copy of a vertex and re-embedding it, one could consider alternatives in
which changing a the embedding of a vertex is a separate, cheaper operation.
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CHAPTER 4
Planar Drawings

In Chapter 3 we saw that splitting graph drawings to planarity is NP-complete. We now
continue the investigation of the vertex splitting operation when applied to restricted
graph classes, beginning here with splitting drawings of planar graphs to outerplanarity.
This chapter is based on joint work with Martin Gronemann and Martin Nöllenburg.
This paper was presented at WALCOM 2023 [GNV23] and invited to the corresponding
JGAA special issue.

Graph editing problems are fundamental problems in graph theory. They define a set
of basic operations on a graph G and ask for the minimum number of these operations
necessary in order to turn G into a graph of a desired target graph class G [NSS01, LY80,
Yan78, Kan96]. For instance, in the Cluster Editing problem [SST04] the operations
are insertions or deletions of individual edges and the target graph class are cluster
graphs, i.e., unions of vertex-disjoint cliques. In graph drawing, a particularly interesting
graph class are planar graphs, for which several related graph editing problems have
been studied, e.g., how many vertex deletions are needed to turn an arbitrary graph
into a planar one [MS12] or how many vertex splits are needed to obtain a planar
graph [JR84, FdFdMN01]. In this chapter, we further this study of vertex splitting, by
applied to splitting plane drawings to outerplane ones.

Further, we are translating the graph editing problem into a more geometric or topological
drawing editing problem. This means that rather than having complete freedom to choose
the neighborhoods and the embeddings of our copies, we consider the existing embedding
of the planar embedded, or plane, graph. In a plane graph, each vertex has an induced
cyclic order of incident edges, which needs to be respected by any vertex split: we must
split the vertex’s cyclic order into two contiguous intervals, one for each of the two copies.
From a different perspective, the two faces that serve as the separators of these two edge
intervals are actually merged into a single face by the vertex split.
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(a) (b)

Figure 4.1: (a) An instance of Outerplane Splitting Number, where the colored
vertices will be split; (b) resulting outerplane graph after the minimum 3 splits.

To obtain an outerplanar graphs through vertex splitting operations, we want to apply a
minimum number of vertex splits to a plane graph G. These splits merge a minimum
number of faces in order to obtain an outerplanar embedded graph G′, where all vertices
are incident to a single face, called the outer face. We denote this minimum number of
splits as the outerplane splitting number osn(G) of G (see Fig. 4.1). Outerplanar graphs
are a prominent graph class in graph drawing (see, e.g., [Bie11, Fra22, LLL19, LL96])
as well as in graph theory and graph algorithms more generally (e.g., [BF02, Fre96,
MZ99]). For instance, outerplanar graphs admit planar circular layouts or 1-page book
embeddings [BK79]. Additionally, outerplanar graphs often serve as a simpler subclass of
planar graphs with good algorithmic properties. For example, they have treewidth 2 and
their generalizations to k-outerplanar graphs still have bounded treewidth [Bod98, Bie15],
which allows for polynomial-time algorithms for NP-complete problems that are tractable
for such bounded-treewidth graphs. This, in turn, can be used to obtain a PTAS for
these problems on planar graphs [Bak94].

We are now ready to define our main computational problem as follows.

Problem 6 (Outerplane Splitting Number). Given a plane biconnected graph
G = (V, E) and an integer k, can we transform G into an outerplane graph G′ by applying
at most k vertex splits to G?

While splitting numbers have been studied mostly for abstract (non-planar) graphs with
the goal of turning them into planar graphs, there also exist applied work in graph
drawing that make use of vertex splitting to untangle edges [WNV20] or to improve
layout quality for community exploration [ADM+22, HBF08]. Regarding vertex splitting
for achieving graph properties other than planarity, Trotter and Harary [TH79] studied
vertex splitting to turn a graph into an interval graph. Paik et al. [PRS98] considered
vertex splitting to remove long paths in directed acyclic graphs and Abu-Khzam et
al. [ABFS21] studied heuristics using vertex splitting for a cluster editing problem.

Structure of the chapter: We start by showing the key property for our subsequent
results, namely that (minimum) sets of vertex splits to turn a plane biconnected graph G
into an outerplane one correspond to (minimum) connected face covers in G (Section 4.2),
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Figure 4.2: (a) Two touching faces f1, f2 with a common vertex v on their boundary.
(b) Result of the split of v with respect to f1, f2 joining them into a new face f . (c-
d) Merging 4 faces f1, . . . , f4 covering a single vertex v with 3 splits.

which in turn are equivalent to (minimum) feedback vertex sets in the dual graph of
G. Using these equivalences, we then show that for general plane biconnected graphs
Outerplane Splitting Number is NP-complete (Section 4.3), whereas for maximal
planar graphs we can solve it in polynomial time (Section 4.4). Then, we provide
upper and lower bounds on the outerplane splitting number for maximal planar graphs
(Section 4.5). Finally, we introduce a SAT formulation to solve a generalized formulation
of Outerplane Splitting Number.

4.1 Preliminaries
The key concept of our approach is to merge a set of faces of a given plane graph
G = (V, E) with vertex set V = V (G) and edge set E = E(G) into one big face which
is incident to all vertices of G. Hence, the result is outerplanar. The idea is that if
two faces f1 and f2 share a vertex v on their boundary (we say f1 and f2 touch, see
Fig. 4.2a), then we can split v into two new vertices v1, v2. In this way, we are able to
create a narrow gap, which merges f1, f2 into a bigger face f (see Fig. 4.2b). With this
in mind, we formally define an embedding-preserving split of a vertex v with regards
to two incident faces f1 and f2. We construct a new plane graph G′ = (V ′, E′) with
V ′ = V \ {v} ∪ {v1, v2}. Consider the two neighbors of v both incident to f1 and let w1
be the second neighbor in clockwise order. Similarly, let wi be the second vertex adjacent
to v and incident to f2. We call wd the vertex preceding w1 in the cyclic ordering or
the neighbors, with d being the degree of v, see Fig. 4.2a. Note that while w1 = wi−1
and wi = wd is possible, wd ̸= w1 and wi−1 ≠ wi. For the set of edges, we now set
E′ = E \ {(v, w1), . . . , (v, wd)} ∪ {(v2, w1), . . . , (v2, wi−1)} ∪ {(v1, wi), . . . , (v1, wd)} and
assume that they inherit their embedding from G. From now on we refer to this operation
simply as a split or when f1, f2 are clear from the context, we may refer to merging the
two faces at v. The vertices v1, v2 introduced in place of v are called copies of v. If a
copy vi of a vertex v is split again, then any copy of vi is also called a copy of the original
vertex v.

We can now reformulate the task of using as few splits as possible. Our objective is to
find a set of faces S that satisfies two conditions. (1) Every vertex in G has to be on the
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boundary of at least one face f ∈ S, that is, the faces in S cover all vertices in V .1 And
(2) for every two faces f, f ′ ∈ S there exists a set of faces {f1, . . . , fk} ⊆ S such that
f = f1, . . . , fk = f ′, and fi touches fi+1 for 1 ≤ i < k. In other words, S is connected
in terms of touching faces. We now introduce the main tool in our constructions that
formalizes this concept.

4.2 Face-Vertex Incidence Graph
Let G = (V, E) be a plane biconnected graph and F its set of faces. The face-vertex
incidence graph is defined as H = (V ∪ F, EH) and contains the edges EH = {(v, f) ∈
V ×F : v is on the boundary of f}. Graph H is by construction bipartite and we assume
that it is plane by placing each vertex f ∈ F into its corresponding face in G.

Definition 4. Let G be a plane biconnected graph, let F be the set of faces of G, and
let H be its face-vertex incidence graph. A face cover of G is a set S ⊆ F of faces such
that every vertex v ∈ V is incident to at least one face in S. A face cover S of G is a
connected face cover if the induced subgraph H[S ∪ V ] of S ∪ V in H is connected.

We point out that the problem of finding a connected face cover is not equivalent to the
Connected Face Hitting Set Problem [SS10], where a connected set of vertices incident to
every face is computed. We continue with two lemmas that are concerned with merging
multiple faces at the same vertex (Fig. 4.2c).

Lemma 14. Let G be a plane biconnected graph and S ⊆ F a subset of the faces F of G
that all have the vertex v ∈ V on their boundary. Then |S| − 1 splits are sufficient to
merge the faces of S into one.

Proof. Let f1, . . . , fk with k = |S| be the faces of S in the clockwise order as they appear
around v (f1 chosen arbitrarily). We iteratively merge f1 with fi for 2 ≤ i ≤ k, which
requires in total |S| − 1 splits (see Fig. 4.2c and Fig. 4.2d).

Lemma 15. Let G be a plane biconnected graph and let S be a connected face cover of
G. Then |S| − 1 splits are sufficient to merge the faces of S into one.

Proof. Let H ′ = H[S ∪ V ] and compute a spanning tree T in H ′. For every vertex
v ∈ V (T ) ∩ V (G), we apply Lemma 14 with the face set F ′(v) = {f ∈ S ∩ V (T ) | (v, f) ∈
E(T )}. We root the tree at an arbitrary face f ′ ∈ S, which provides a hierarchy on the
vertices and faces in T . Every vertex v ∈ V (T ) ∩ V (G) requires by Lemma 14 |F ′(v)| − 1
splits. Note that that for all leaf vertices in T , |F ′(v)| = 1, i.e., they will not be split.
Each split is charged to the children of v in T . Since H is bipartite, so is T . It follows
that every face f ∈ S \ {f ′} is charged exactly once by its parent, thus |S| − 1 splits
suffice.

1Testing whether such S with |S| ≤ k exists, is the NP-complete problem Face Cover [BM88].
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Lemma 16. Let G be a plane biconnected graph and σ a sequence of k splits to make G
outerplane. Then G has a connected face cover of size k + 1.

Proof. Since by definition applying σ to G creates a single big face that is incident to all
vertices in V (G) by iteratively merging pairs of original faces defining a set S ⊆ F , it is
clear that S is a face cover of G and since the result of the vertex splits and face merges
creates a single face, set S must also be connected.

As a consequence of Lemmas 15 and 16 we obtain that Outerplane Splitting Number
and computing a minimum connected face cover are equivalent.

Theorem 6. Let G be a plane biconnected graph. Then G has outerplane splitting
number k if and only if it has a connected face cover of size k + 1.

4.3 NP-completeness
In this section, we prove that finding a connected face cover of size k (and thus Outer-
plane Splitting Number) is NP-complete. The idea is to take the dual of a planar
biconnected Vertex Cover instance and subdivide every edge once (we call this an all-
1-subdivision). Note that the all-1-subdivision of a graph G corresponds to its vertex-edge
incidence graph and the all-1-subdivision of the dual of G corresponds to the face-edge
incidence graph of G. A connected face cover then corresponds to a vertex cover in the
original graph, and vice versa. The following property greatly simplifies the arguments
regarding Definition 4.

Property 1. Let G′ be an all-1-subdivision of a biconnected planar graph G and S a
set of faces that cover V (G′). Then S is a connected face cover of G′.

Proof. Let H be the all-1-subdivision of the dual of G, and assume to the contrary that
the induced subgraph H ′ = H[S ∪ V (G)] is not connected. Then there exists an edge
(u, v) ∈ E(G) such that u and v are in different connected components in H ′. Let w be
the subdivision vertex of (u, v) in G′. As a subdivision vertex, w is incident to only two
faces, one of which, say f , must be contained in S. But f is also incident to u and v and
hence u and v are in the same component of H ′ via face f , a contradiction. Hence H ′ is
connected and S is a connected face cover of G′.

The proof of the next theorem is very similar to the reduction of Bienstock and Monma
to show NP-completeness of Face Cover [BM88]; due to differences in the problem
definitions, such as the connectivity of the face cover and whether the input graph is
plane or not, we provide the full reduction for the sake of completeness.

Theorem 7. Deciding whether a plane biconnected graph G has a connected face cover
of size at most k is NP-complete.

63



4. Planar Drawings

D

G

(a) primal (black) and
dual graph (gray)

D∗

(b) subdivision of
the dual graph

(c) vertex cover (red) in
the primal graph

Figure 4.3: Link between the primal graph G, its vertex cover, the dual D and its
subdivision D∗.

Proof. Clearly the problem is in NP. To prove hardness, we first introduce some notation.
Let G be a plane biconnected graph and D the corresponding dual graph. Furthermore,
let D∗ be the all-1-subdivision of D. We prove now that a connected face cover S∗ of
size k in D∗ is in a one-to-one correspondence with a vertex cover S of size k in G (see
Fig. 4.3). More specifically, we show that the dual vertices of the faces of S∗ that form a
connected face cover in D∗, are a vertex cover for G and vice versa. The reduction is
from the NP-complete Vertex Cover problem in biconnected planar graphs in which
all vertices have degree 3 (cubic graphs) [Moh01].

Connected Face Cover ⇒ Vertex Cover: Let G be such a biconnected plane
Vertex Cover instance. Assume we have a connected face cover S∗ with |S∗| = k
for D∗. Note that the faces of D∗ correspond to the vertices in G. We claim that the
faces S∗, when mapped to the corresponding vertices S ⊆ V (G) are a vertex cover for G.
Assume otherwise, that is, there exists an edge e∗ ∈ E(G) that has no endpoints in S.
However, e∗ has a dual edge e ∈ E(D) and therefore a subdivision vertex ve ∈ V (D∗).
Hence, there is a face f ∈ S∗ that has ve on its boundary by definition of connected face
cover. And when mapped to D, f has e on its boundary, which implies that the primal
edge e∗ has at least one endpoint in S∗; a contradiction.

Vertex Cover ⇒ Connected Face Cover: To prove that a vertex cover S induces
a connected face cover S∗ in D∗, we have to prove that S∗ covers all vertices and the
induced subgraph in the face-vertex incidence graph H is connected. We proceed as in
the other direction. S covers all edges in E(G), thus every edge e ∈ E(D) is bounded by
at least one face of S∗. Hence, every subdivision vertex in V (D∗) is covered by a face
of S∗. Furthermore, every vertex in D∗ is adjacent to a subdivision vertex, thus, also
covered by a face in S∗. Since S∗ is covering all vertices, we obtain from Property 1 that
S∗ is a connected face cover.

64



4.4. Feedback Vertex Set Approach

G

D

(a) primal (gray) and
dual graph (black)

(b) spanning tree (black) of
the connected face cover

(c) outerplanar graph after
splitting along the tree

Figure 4.4: The connected face cover (blue) is a feedback vertex set (red) in the dual.

4.4 Feedback Vertex Set Approach
A feedback vertex set S◦ ⊂ V (G) of a graph G is a vertex subset such that the induced
subgraph G[V (G) \ S◦] is acyclic. We show here that finding a connected face cover S
of size k for a plane biconnected graph G is equivalent to finding a feedback vertex set
S◦ ⊂ V (D) of size k in the dual graph D of G. The weak dual, i.e., the dual without
a vertex for the outer face, of an outerplanar graph is a forest. Thus we must find the
smallest number of splits in G which transform D into a forest. In other words, we must
break all the cycles in D, and hence all of the vertices in the feedback vertex set S◦ of D
correspond to the faces of G that should be merged together (see Fig. 4.4).

Property 2. Let H be the face-vertex incidence graph of a plane biconnected graph G
and let S◦ be a feedback vertex set in the dual D of G. Then S◦ induces a connected
face cover S in G.

Proof. We need to show that S◦ is a face cover and that it is connected. First, assume
there is a vertex v ∈ V (G) of degree deg(v) = d that is not incident to a vertex in S◦,
i.e., a face of G. Since G is biconnected, v is incident to d faces f1, . . . , fd, none of which
is contained in S◦. But then D[V (D) \ S◦] has a cycle (f1, . . . , fd), a contradiction.

Next, we define S◦ = V (D) \ S◦ as the complement of the feedback vertex set S◦ in D.
Assume that H[V ∪ S◦] has at least two separate connected components C1, C2. Then
there must exist a closed curve in the plane separating C1 from C2, which avoids the
faces in S◦ and instead passes through a sequence (f1, . . . , fℓ) of faces in S◦, where each
pair (fi, fi+1) for i ∈ {1, . . . , ℓ − 1} as well as (fℓ, f1) are adjacent in the dual D. Again
this implies that there is a cycle in D[V (D) \ S◦], a contradiction. Thus S◦ is a connected
face cover.

Theorem 8. A plane biconnected graph G has outerplane splitting number k if and only
if its dual D has a minimum feedback vertex set of size k + 1.
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Proof. Let S◦ be a minimum feedback vertex set of the dual D of G with cardinality
|S◦| = k +1 and let H be the face-vertex incidence graph of G. We know from Property 2
that H ′ = H[V (G) ∪ S◦] is connected and hence S◦ induces a connected face cover S
with |S| = k + 1. Then by Lemma 15 G has osn(G) ≤ k.

Let conversely σ be a sequence of k vertex splits that turn G into an outerplane graph
G′ and let F be the set of faces of G. By Lemma 16 we obtain a connected face cover S
of size k + 1 consisting of all faces that are merged by σ. The complement S = F \ S
consists of all faces of G that are not merged by the splits in σ and thus are the remaining
(inner) faces of the outerplane graph G′. Since G′ is outerplane and biconnected, S is the
vertex set of the weak dual of G′, which must be a tree. Hence S is a feedback vertex set
in D of size k + 1 and the minimum feedback vertex set in D has size at most k + 1.

Since all faces in a maximal planar graph are triangles, the maximum vertex degree of
its dual is 3. Thus, we can apply the polynomial-time algorithm of Ueno et al. [UKG88]
to this dual, which computes the minimum feedback vertex set in graphs of maximum
degree 3 by reducing the instance to polynomial-solvable matroid parity problem instance,
and obtain

Corollary 3. We can solve Outerplane Splitting Number for maximal planar
graphs in polynomial time.

Many other existing results for feedback vertex set extend to Outerplane Splitting
Number, e.g., it has a kernel of size 13k [BK16] and admits a PTAS [DH05].

4.5 Lower and Upper Bounds
In this section we provide some upper and lower bounds on the outerplane splitting
number in certain maximal planar graphs.

4.5.1 Upper Bounds
Based on the equivalence of Theorem 8 we obtain upper bounds on the outerplane
splitting number from suitable upper bounds on the feedback vertex set problem, which
has been studied for many graph classes, among them cubic graphs [BHS87]. Liu and
Zhao [LZ96] showed that cubic graphs G = (V, E) of girth at least four (resp., three) have
a minimum feedback vertex set of size at most |V |

3 (resp., 3|V |
8 ). Kelly and Liu [KL17]

showed that connected planar subcubic graphs of girth at least five have a minimum
feedback vertex set of size at most 2|V |+2

7 . Recall that the girth of a graph is the length
of its shortest cycle.

Proposition 2. The outerplane splitting number of a maximal planar graph G = (V, E)
of minimum degree (i) 3, (ii) 4, and (iii) 5, respectively, is at most (i) 3|V |−10

4 , (ii) 2|V |−7
3 ,

and (iii) 4|V |−13
7 , respectively.
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Proof. Maximal planar graphs with n = |V | vertices have 2n − 4 faces. So the corre-
sponding dual graphs have 2n − 4 vertices. Moreover, since the degree of a vertex in
G corresponds to the length of a facial cycle in the dual, graphs with minimum vertex
degree 3, 4, or 5 have duals with girth 3, 4, or 5, respectively. So if the minimum degree
in G is 3, we obtain an upper bound on the feedback vertex set of (3n − 6)/4; if the
minimum degree is 4, the bound is (2n − 4)/3; and if the minimum degree is 5, the bound
is (4n − 6)/7. The claim then follows from Theorem 8.

4.5.2 Lower Bounds
We first provide a generic lower bound for the outerplane splitting number of maximal
planar graphs. Let G be an n-vertex maximal planar graph with 2n − 4 faces. Each
face is a triangle incident to three vertices. In a minimum-size connected face cover S∗,
the first face covers three vertices. Due to the connectivity requirement, all other faces
can add at most two newly covered vertices. Hence we need at least n−1

2 faces in any
connected face cover. By Theorem 6 this implies that osn(G) ≥ n−3

2 .

Proposition 3. Any maximal planar graph G has outerplane splitting number at least
|V (G)|−3

2 .

Next, towards a better bound, we define a family of maximal planar graphs Td = (Vd, Ed)
of girth 3 for d ≥ 0 that have outerplane splitting number at least 2|Vd|−8

3 . The family
are the complete planar 3-trees of depth d, which are defined recursively as follows. The
graph T0 is the 4-clique K4. To obtain Td from Td−1 for d ≥ 1 we subdivide each inner
triangular face of Td−1 into three triangles by inserting a new vertex and connecting it to
the three vertices on the boundary of the face.

Proposition 4. The complete planar 3-tree Td of depth d has outerplane splitting
number at least 2|Vd|−8

3 .

Proof. Each Td is a maximal planar graph with nd = 3 + d
i=0 3i = 3d+1+5

2 vertices.
All 3d leaf-level vertices added into the triangular faces of Td−1 in the last step of the
construction have degree 3 and are incident to three exclusive faces, i.e., there is no face
that covers more than one of these leaf-level vertices. This immediately implies that any
face cover of Td, connected or not, has size at least 3d. From nd = 3d+1+5

2 we obtain
d = log3

2nd−5
3 and 3d = 2nd−5

3 . Theorem 6 then implies that osn(Td) ≥ 2nd−8
3 .

4.6 SAT Formulation
We showed previously that Outerplane Splitting Number is NP-complete for plane
biconnected graphs, we introduce here a SAT formulation that solves the problem, as
well as more general instances. Specifically, given a simple graph G and an integer k, the
SAT formula decides if G can be transformed into an outerplanar graph G∗ with at most
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k vertex splitting operation. This formula is a weighted Max-SAT formula, meaning each
clause gadget is weighted, and the goal is to maximize the sum of the weights of the
satisfied clauses. Our formulation is based on a SAT formulation for book embeddings,
similar to the one proposed by Bekos et al. [BKZ15], specifically to model crossings
and transitivity. As outerplanar graphs are exactly the classes of graphs that can be
embedded into 1-page book embeddings, our formulation aims, for the given input graph,
to find a set of splits which would allow for the graph to be embedded on a single page.

Intuitively, we build a graph G′ = (V ′, E′), where every vertex is represented k + 1 times,
intuitively, one representative is the vertex itself, and the k others represent its potential
k copies. For every edge (u, v), we create a complete bipartite graph with one bipartition
being all the vertices representing u and the second bipartition being the vertices that
represent v. We then find a smallest outerplanar subgraph G∗ in G′ such that every edge
and every vertex is represented at least once in the subgraph.

The formula F(G, k) is written using the conjunctive normal form, and we now introduce
the different variables needed to build our constraints. For each vertex v ∈ V and each
copy in c1, . . . , ck, the variable vertex(v, ci) has value 1 if the i-th copy is a copy of
vertex v and it appears in G∗. For all v ∈ V , vertex(v, 0) corresponds to the input
vertex and necessarily, vertex(v, 0) = 1. Since edge (u, v) ∈ E can be represented in the
final drawing by any combination of copies of u and v, we create an edge from every copy
of u to every copy of v, thus for 0 ≥ i, j ≥ k, we create a variable edge((u, ci), (v, cj)),
and the value is set to 1 if the edge is in G∗. For two edges e and e′, we create the
variable coexist(e, e′), such that coexist(e, e′) = 1 if both e and e′ are in G∗. Lastly,
we need a variable to represent the vertex ordering along the outer face (the spine
of the book embedding), specifically, for every u, v ∈ V and 0 ≥ i, j ≥ k, we create
before((u, ci), (v, cj)) and set the value to 1 if the i-th copy of u appears ahead of the
j-th copy of v in G∗.

We now introduce the set of constraints of F(G, k). For clarity, we simplify where possible
the notation of vertices, and use v to refer to a copy of a vertex in V (instead of (v, ci)).
This set of vertices and their copies is called V ′. Similarly, we sometimes call e an edge
between two vertices of V ′, and denote this edge set with E′.

To fix the linear ordering of the vertices on the outer face, we require transitivity
constraints. Therefore for u, v, w ∈ V ′, three distinct vertices, we create the two following
clauses:

(¬before(u, v) ∨ ¬before(v, w) ∨ before(u, w)) (4.1)
(before(u, v) ∨ before(v, w) ∨ ¬before(u, w)) (4.2)

which respectively ensure that if u is before v and v is before w, then u is before w, and
that if u is after v and v after w, than u is after w.

To minimize the number of copies used, for each vertex v ∈ V and each 1 ≥ i ≥ k we
create the following soft constraint (note that for i = 0 this constraint does not exist as
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the input vertices are kept "for free"):

(¬vertex(v, ci)) (4.3)

meaning that for every non input vertex v that is not split, this clause is satisfied and its
weight is added to the objective function.

As we have a budget of k splitting operations, and every splitting operation is done on
a single vertex, for every value of 1 ≥ i ≥ k, only one vertex can correspond to the ith
split, hence for two distinct vertices u, v ∈ V :

(¬vertex(u, ci) ∨ ¬vertex(v, ci)) (4.4)

which ensures that for at most one v ∈ V , vertex(v, ci) = 1.

Since for (u, v) ∈ E we create an edge between all the possible copies of u and v, we have
to ensure that at least one edge is present in G∗ between u or a copy of u, and v or a
copy of v, thus:

(edge((u, c0), (v, c0))∨ · · · ∨ edge((u, c0), (v, ck))∨
. . .

∨edge((u, ck), (v, c0))∨ · · · ∨ edge((u, ck), (v, ck)))
(4.5)

and, for at least one value of i and j such that 0 ≥ i, j ≥ k, edge((u, ci), (v, cj)) = 1.

Most importantly, we need to ensure no two pair of active edges are crossing. To obtain
this we first need to know which edge pairs are coexisting in G∗ and can thus potentially
intersect, for e, e′ ∈ E′:

(coexist(e, e′) ∨ ¬edge(e) ∨ ¬edge(e′)) (4.6)

where coexist(e, e′) = 1 if and only if edge(e) = edge(e′) = 1.

This allows us to build the crossing constraints, thus for e, e′ ∈ E′ such that e = (u, v)
and e′ = (s, t), we need to characterize all possible vertex orderings that can induce
crossing, which forbids the two edges from coexisting, we set L = ¬coexist(e, e′):

(L ∨ ¬before(s, u) ∨ ¬before(u, t) ∨ ¬before(s, v) ∨ before(v, t)) (4.7)
(L ∨ ¬before(s, u) ∨ ¬before(u, t) ∨ before(s, v) ∨ ¬before(v, t)) (4.8)
(L ∨ ¬before(s, u) ∨ before(u, t) ∨ ¬before(s, v) ∨ ¬before(v, t)) (4.9)
(L ∨ before(s, u) ∨ ¬before(u, t) ∨ ¬before(s, v) ∨ ¬before(v, t)) (4.10)
(L ∨ ¬before(s, u) ∨ before(u, t) ∨ before(s, v) ∨ before(v, t)) (4.11)
(L ∨ before(s, u) ∨ ¬before(u, t) ∨ before(s, v) ∨ before(v, t)) (4.12)
(L ∨ before(s, u) ∨ before(u, t) ∨ ¬before(s, v) ∨ before(v, t)) (4.13)
(L ∨ before(s, u) ∨ before(u, t) ∨ before(s, v) ∨ ¬before(v, t)) (4.14)

69



4. Planar Drawings

consider Eq. 4.14, if before(s, u) = before(u, t) = before(s, v) = ¬before(v, t) = 0,
then the corresponding vertex ordering on the spine is in order t, u, s and v which induces
a crossing, thus, coexist(e, e′) = 0 as these two edges cannot coexist in a planar
drawing.

Lastly, we can only allow edges in G∗ if their endpoints are also in G∗, thus for (u, v) ∈ E′,

(¬edge(u, v) ∨ vertex(u)) ∧ (¬edge(u, v) ∨ vertex(v))) (4.15)

which ensures that edge(u, v) = 1 if and only if vertex(u) = vertex(v) = 1.

Only the clause that tracks an active copy is a weighted (here soft) clause, every other
clause is a hard clause. Since every edge e ∈ E has (k + 1)2 representatives in E′, and
since the coexistence variables are created for each pairwise edge representative, there
are O(|E|3) variables and O(|E|6) constraints, which makes the current formulation
impractical. Using the MaxHS solver [DB], with G = K10, and k = 7, it took 1min30s to
create the constraints, which came up to 35641240 clauses and could not be handled by
the solver. On a small instance like G = K5 and k = 2, both creating and solving the
formula was instantaneous. The usefulness of solving smaller instances is still relevant for
graph visualization but the current formulation would need to be improved, or formulated
with integer linear programming.

4.7 Chapter Conclusion
In this chapter, we have introduced the Outerplane Splitting Number problem and
established its complexity for plane biconnected graphs. We found that it is polynomial
time solvable for maximal planar graphs, on that many results pertaining to Feedback
Vertex Set can naturally be extended to Outerplane Splitting Number.

The main open question remaining revolves around the embedding requirement. Mainly,
splitting operations can be carried without retaining the graph topology at all, and
placing the copies freely in the drawing.

In general, it is also of interest to understand how the problem differs when the input graph
does not have an embedding at all, as in the original splitting number problem. While
splitting number has been studied for abstract graphs, vertex splitting to outerplanarity
for abstract general graphs has not yet been studied.

Lastly, since Outerplane Splitting Number can be solved in polynomial time for
maximal planar graphs but is hard for plane biconnected graphs, there is a complexity
gap to be closed when faces of degree more than three are involved.
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CHAPTER 5
Bipartite Graphs

In this chapter, we focus on another restricted graph class by studying bipartite graphs.
These graphs are very common for practical use, and have many properties that we
can take advantage of within the vertex splitting problem. This chapter is based on a
collaboration between Reyan Ahmed, Patrizio Angelini, Michael A. Bekos, Giuseppe Di
Battista, Michael Kaufmann, Philipp Kindermann, Stephen Kobourov, Martin Nöllenburg,
Antonios Symvonis and Markus Wallinger. Our main contribution to this project can be
found in Section 5.3, but other sections have been kept for completeness and coherence.
The full paper has been accepted to IEEE Computer Graphics and Application.

Multilayer networks are used in many applications to model complex relationships between
different sets of entities in interdependent subsystems [MRA+21]. When analyzing and
exploring the interaction between two such subsystems St and Sb, bipartite or 2-layer
networks arise naturally. The nodes of the two subsystem are modeled as a bipartite
vertex set V = Vt∪Vb with Vt∩Vb = ∅, where Vt contains the vertices of the first subsystem
St and Vb those of Sb. The inter-layer connections between St and Sb are modeled as
an edge set E ⊆ Vt × Vb, forming a bipartite graph G = (Vt ∪ Vb, E). Visualizing this
bipartite graph G in a clear and understandable way is a key requirement to designing
tools for visual network analysis [PFH+18].

In a 2-layer graph drawing of a bipartite graph the vertices are drawn as points on two
distinct parallel lines ℓt and ℓb, and edges are drawn as straight-line segments [EW94].
The vertices in Vt (top vertices) lie on ℓt (the top layer) and those in Vb (bottom vertices)
lie on ℓb (the bottom layer). In addition to direct applications of 2-layer networks for
modeling the relationships between two communities as mentioned above [PFH+18], such
drawings also occur in tanglegram layouts for comparing phylogenetic trees [SZH11] or
as components in layered drawings of directed graphs [STT81] and between consecutive
axes in hive plots [KBJM12].
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The primary optimization goal for 2-layer graph drawings is to find permutations of one
or both vertex sets Vt, Vb to minimize the number of edge crossings. While the existence
of a crossing-free 2-layer drawing can be tested in linear time [EMW86], the crossing
minimization problem is NP-complete even if the permutation of one layer is given [EW94].
Hence, both fixed-parameter algorithms [KT15] and approximation algorithms [DF01]
have been studied. Further, graph layouts on two layers have also been investigated in
the area of graph drawing beyond planarity [DLM19]. However, from a practical point of
view, minimizing the number of crossings in 2-layer drawings may still result in visually
complex drawings [JM97]. Hence, we focus here on using vertex splitting to construct
readable 2-layer drawings.

We study variations of the algorithmic problem of constructing planar or crossing-minimal
2-layer drawings with vertex splitting. When visualizing biological networks, for example
graphs defined on anatomical structures and cell types in the human body [PBHI+], the
two vertex sets of G play different roles. Thus, we consider the variation where only
the vertices on one side of the layout may be split. While only the bottom vertices may
be split, the top vertices may either be specified with a given context-dependent input
ordering, e.g., alphabetically, following a hierarchy structure, or sorted according to an
important measure, or allowed to arbitrarily permute them to perform fewer vertex splits.

Structure of the chapter: In Section 5.2, it is shown that for a given integer k it
is NP-complete to decide whether G admits a planar 2-layer drawing with an arbitrary
permutation on the top layer and at most k vertex splits on the bottom layer (see
Theorem 9). In Section 5.4 it is shown that NP-completeness also holds if instead of
minimizing the number of splits, we minimize the number of vertices that are split (see
Theorem 11). If, however, the vertex order of Vt is given, then two linear-time algorithms
to compute planar 2-layer drawings are presented, one minimizing the total number of
splits (see Theorem 10), and one minimizing the number of split vertices (see Theorem 12).
In Section 5.3, we study the setting in which the goal is to minimize the number of
crossings (but not necessarily remove all of them) using a prescribed total number of
splits. For this setting, we prove NP-completeness even if the vertex order of Vt is given
(see Theorem 13). On the other hand, we provide an XP-time algorithm parameterized
by the number of allowed splits (see Theorem 14), which, in other words, means that the
algorithm has a polynomial running time for any fixed number of allowed splits.

5.1 Preliminaries
We denote the order of the vertices in Vt and Vb in a 2-layer drawing by πt and πb,
respectively. If a vertex u precedes a vertex v, then we denote it by u ≺ v. Although
2-layer drawings are defined geometrically, their crossings are fully described by πt and
πb, as in the following folklore lemma.

Lemma 17. Let Γ be a 2-layer drawing of a bipartite graph G = (Vt ∪ Vb, E). Let (v1, u1)
and (v2, u2) be two edges of E such that v1 ≺ v2 in πt. Then, edges (v1, u1) and (v2, u2)
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Figure 5.1: (a) Instance G. (b) A solution with three splits, involving three different
vertices, that is optimal for CRS. (c) Optimal CRSV solution with two split vertices.

cross each other in Γ if and only if u2 ≺ u1 in πb.

In the following we formally define the problems we study. For all of them, the input
contains a bipartite graph G = (Vt ∪ Vb, E) and a split parameter k.

Problem 7 (Crossing Removal with k Splits – CRS(k)). Given a bipartite graph G,
can G be transformed into a planar 2-layer drawing after applying at most k vertex-splits
to the vertices in Vb.

Problem 8 (Crossing Removal with k Split Vertices – CRSV(k)). Given a
bipartite graph G, can G be transformed into a planar 2-layer drawing after splitting at
most k original vertices of Vb.

Problem 9 (Crossing Minimization with k Splits – CMS(k, M)). Given a bipartite
graph G, can G be transformed into a planar 2-layer drawing with at most M crossings
after applying at most k vertex-splits to the vertices in Vb, where M is an additional
integer specified as part of the input.

Note that in CRSV(k), once we decide to split an original vertex, then we can further split
its copies without incurring any additional cost. The example in Fig. 5.1 demonstrates
the difference between the two problems concerning the removal of all crossings.

For all problems, we refer to the variant where the order πt of the vertices in Vt is given
as part of the input by adding the suffix “with Fixed Order”.

The following lemma implies conditions under which a vertex split must occur.

Lemma 18. Let G = (Vt ∪ Vb, E) be a bipartite graph and let u ∈ Vb be a bottom vertex
adjacent to two top vertices v1, v2 ∈ Vt, with v1 ≺ v2 in πt. In any planar 2-layer drawing
of G in which u is not split, we have that:

1. A top vertex that appears between v1 and v2 in πt can only be adjacent to u;

2. In πb, u is the last neighbor of v1 and the first neighbor of v2.

Proof. If there is a top vertex v′ between v1 and v2 adjacent to a bottom vertex u′ ̸= u,
then (v′, u′) crosses (v1, u) or (v2, u). If there is a neighbor u′′ of v1 after u in πb, then the
edges (v1, u′′) and (v2, u) cross. A symmetric argument holds when there is a neighbor of
v2 before u in πb.
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5.2 Crossing Removal with Bounded Splits
In this section, we prove that the CRS(k) problem is NP-complete in general and linear-
time solvable when the order πt of the top vertices is part of the input.

Theorem 9. The CRS(k) problem is NP-complete.

Proof. The problem belongs to NP since, given a set of at most k splits for the vertices
in Vb, we can check whether the resulting graph is planar 2-layer [EMW86].

We use a reduction from the Hamiltonian Path problem to show the NP-hardness; see
Fig. 5.2. Given an instance G = (V, E) of the Hamiltonian Path problem, we denote by
G′ the bipartite graph obtained by subdividing every edge of G once. We construct an
instance of the CRS(k) problem by setting the top vertex set Vt to consist of the original
vertices of G, the bottom vertex set Vb to consist of the subdivision vertices of G′, and
the split parameter to k = |E| − |V | + 1. The reduction can be easily performed in linear
time. We prove the equivalence.

Suppose that G has a Hamiltonian path v1, . . . , vn. Set πt = v1, . . . , vn, and split all
the vertices of Vb, except for the subdivision vertex of the edge (vi, vi+1), for each
i = 1, . . . , n − 1. This results in |Vb| − (n − 1) splits, which is equal to k, since |Vb| = |E|
and n = |V |. We then construct πb such that, for each i = 1, . . . , n − 1, all the neighbors
of vi appear before all the neighbors of vi+1, with their common neighbor being the last
neighbor of vi and the first of vi+1. This guarantees that both conditions of Lemma 18
are satisfied for every vertex of Vb. Together with Lemma 17, this guarantees that the
2-layer drawing is planar.

Suppose now that G′ admits a planar 2-layer drawing with at most |E| − |V | + 1 splits.
Since |E| = |Vb| and every vertex of Vb has degree exactly 2 (subdivision vertices), there
exist at least |V | − 1 vertices in Vb that are not split. Consider any such vertex u ∈ Vb.
By C.1 of Lemma 18, the two neighbors of u are consecutive in πt. Also, these vertices
are connected in G by the edge whose subdivision vertex is u. Since this holds for each
of the at least |V | − 1 non-split vertices, we have that each of the |V | − 1 distinct pairs
of consecutive vertices in Vt (recall that Vt = V ) is connected by an edge in G. Thus, G
has a Hamiltonian path.

Next, we focus on the optimization version of the CRS(k) with the Fixed Order problem.
Our recursive algorithm considers a constrained version of the problem, where the first
neighbor in πb of the first vertex in πt may be prescribed. At the outset of the recursion,
there exists no prescribed first neighbor. The algorithm returns the split vertices in Vb

and the corresponding order πb.

In the base case, there is only one top vertex v, i.e., |Vt| = 1. Since all vertices in Vb have
degree 1, no split takes place. We set πb to be any order of the vertices in Vb where the
first vertex is the prescribed first neighbor of v, if any.
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v1 v5v3

v2 v4 v6

v12 v56

(a)

v2 v4 v6v1 v5v3

v12 v56. . .

(b)

v2 v4 v6v1 v5v3

v12 v56

(c)

Figure 5.2: Theorem 9. (a) Subdivided graph G′. (b) Instance of CRS(k). (c) Splits are
minimized if and only if G has a Hamiltonian path.
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Figure 5.3: Algorithm for CRS(k) with Fixed Order optimization. Vertices in N+ are
colored in shades of gray. (a) Case 1, (b) Case 2, and (c) Case 3.

In the recursive case when |Vt| > 1, we label the vertices in Vt as v1, . . . , v|Vt|, according
to πt. If the first neighbor of v1 is prescribed, we denote it by u∗

1. Also, we denote by N1

the set of degree-1 neighbors of v1, and by N+ the other neighbors of v1. Note that only
the vertices in N+ are candidates to be split for v1. In particular, by C.1 of Lemma 18,
a vertex in N+ can avoid being split only if it is also incident to v2. Further, since any
vertex in N+ that is not split must be the last neighbor of v1 in πb, by C.2 of Lemma 18,
at most one of the common neighbors of v1 and v2 will not be split. Analogously, if u∗

1 is
prescribed, then it must be split, unless v1 has degree 1.

In view of these properties, we distinguish three cases based on the common neighborhood
of v1 and v2. In all cases, we will recursively compute a solution for the instance composed
of the graph G′ = (V ′

t ∪ V ′
b , E′) obtained by removing v1 and the vertices in N1 from G,

and of the order π′
t = v2, . . . , v|Vt|. We denote by π′

b and s′ the computed order and the
number of splits for the vertices in V ′

b . In the following we specify for each case whether
the first neighbor of v2 in the new instance is prescribed or not, and how to incorporate
the neighbors of v1 into π′

b.

Case 1: v1 and v2 have no common neighbor; see Figure 5.3a. In this case, we do
not prescribe the first neighbor of v2 in the instance composed of G′ and π′

t. To compute
a solution for the original instance, we split each vertex in N+ so that one copy becomes
incident only to v1. We construct πb by selecting the prescribed vertex u∗

1, if any, followed
by the remaining neighbors of v1 in any order and, finally, by appending π′

b. This results
in s = |N+| + s′ splits.

Case 2: v1 and v2 have exactly one common neighbor u. If u = u∗
1 and v1 have a
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degree larger than 1, then u cannot be the last neighbor of v1 and must be split. Thus,
we perform the same procedure as in Case 1. Otherwise, in the instance composed of G′

and π′
t, we set u as the prescribed first neighbor of v2; see Figure 5.3b. To compute a

solution for the original instance, we split each vertex in N+, except u, so that one copy
becomes incident only to v1. We construct πb by selecting the prescribed vertex u∗

1, if
any, followed by the remaining neighbors of v1 different from u in any order and, finally,
by appending π′

b. This results in s = |N+| − 1 + s′ splits.

Case 3: v1 and v2 have more than one common neighbor. If v1 and v2 have
exactly two common neighbors u, u′ and one of them is u∗

1, say u = u∗
1, then u cannot be

the last neighbor of v1, as v1 has degree larger than 1. Thus, we proceed exactly as in
Case 2, using u′ as the only common neighbor of v1 and v2.

Otherwise, there are at least two neighbors of v1 different from u∗
1; see Figure 5.3c. We

want to choose one of these vertices as the last neighbor of v1, so that it is not split.
However, the choice is not arbitrary as this may affect the possibility for v2 to save the
split for a neighbor it shares with v3. In the instance composed of G′ and π′

t, we do not
prescribe the first vertex of v2. To compute a solution for the original instance, we simply
choose as the last neighbor of v1 any of its common neighbors with v2 that has not been
set as the last neighbor of v2 in π′

b. Such a vertex, say u, always exists since v1 and v2
have at least two common neighbors different from u∗

1, and can be moved to become the
first vertex in π′

b. Specifically, we split all the vertices in N+, except for u, so that one
copy becomes incident only to v1. We construct πb by selecting the prescribed vertex u∗

1,
if any, followed by the remaining neighbors of v1 different from u in any order. We then
modify π′

b by moving u to be the first vertex. Note that this operation does not affect
planarity, as it only involves reordering the set of consecutive degree-1 vertices incident
to v2. Finally, we append the modified π′

b. This results in s = |N+| − 1 + s′ splits.

Theorem 10. For a bipartite graph G = (Vt ∪ Vb, E) and an order πt of Vt, the
optimization version of CRS(k) with Fixed Order can be solved in O(|E|) time.

Proof. By construction, for each i = 1, . . . , |Vt|−1, all neighbors of vi precede all neighbors
of vi+1 in πb. Thus, by Lemma 17, the drawing is planar. The minimality of the number
of splits follows from Lemma 18, as discussed before the case distinction. In particular,
any minimum-splits solution can be shown to be equivalent to the one produced by our
algorithm. The time complexity follows as each vertex only needs to check its neighbors
a constant number of times.

We conclude this section by mentioning that the CRS(k) problem had already been
considered, under a different terminology, in the context of molecular QCA circuits
design [CCH+07]. Here, the problem was claimed to be NP-complete, without providing
a formal proof. In the same work, when the order πt of the top vertices is part of the input,
an alternative algorithm was proposed based on the construction of an auxiliary graph
that has super-linear size. Exploiting linear-time sorting algorithms and observations
that allow avoiding explicitly constructing all edges of this graph, the authors were able
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to obtain a linear-time implementation. We believe that our algorithm of Theorem 10 is
simpler and more intuitive, and directly leads to a linear-time implementation.

5.3 Crossing Removal with Bounded Split Vertices
In this section, we prove that the CRSV(k) problem is NP-complete in general and
linear-time solvable when the order πt of the top vertices is part of the input. Ahmed
et al. [AKK22] showed that CRSV(k) is FPT when parameterized by k. To prove the
NP-completeness we can use the reduction of Theorem 9. In fact, in the graphs produced
by that reduction all vertices in Vb have degree 2. Hence, the number of vertices that are
split coincides with the total number of splits.

Theorem 11. The CRSV(k) problem is NP-complete.

For the version with Fixed Order, we first use C.1 of Lemma 18 to identify vertices that
need to be split at least once, and repeatedly split them until each has degree 1. For a
vertex u ∈ Vb, we can decide if it needs to be split by checking whether its neighbors are
consecutive in πt and, if u has degree at least 3, all its neighbors different from the first
and last have degree exactly 1.

We first perform all necessary splits. For each i = 1, . . . , |Vt| − 1, consider the two
consecutive top vertices vi and vi+1. If they have no common neighbor, no split is needed.
If they have exactly one common neighbor u, then we set u as the last neighbor of vi

and the first of vi+1, which allows us not to split u, according to C.2. Since u did not
participate in any necessary split, if u is also adjacent to other vertices, then all its
neighbors have degree 1, except possibly the first and last. Hence, C.2 can be guaranteed
for all pairs of consecutive neighbors of u.

Otherwise, vi and vi+1 have at least two common neighbors and thus have degree at least
2. Hence, all common neighbors of vi and vi+1 must be split, except for at most one,
namely the one that is set as the last neighbor of vi and as the first of vi+1. Since all
these vertices are incident only to vi and vi+1, as otherwise they would have been split by
C.1, we can arbitrarily choose any of them, without affecting the splits of other vertices.

At the end we construct the order πb so that, for each i = 1, . . . , |Vt| − 1, all the neighbors
of vi precede all the neighbors of vi+1, and the unique common neighbor of vi and vi+1,
if any, is the last neighbor of vi and the first of vi+1. By Lemma 17, this guarantees
planarity. Identifying and performing all unavoidable splits and computing πb can be
easily done in O(|E|) time. Since we only performed unavoidable splits, as dictated by
Lemma 18, we have the following.

Theorem 12. For a bipartite graph G = (Vt ∪ Vb, E) and an order πt of Vt, the
optimization version of CRSV(k) with Fixed Order minimizing the number of split
vertices can be solved in O(|E|) time.
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5.4 Crossing Minimization with Bounded Splits

In this section we consider minimizing crossings, by applying at most k splits. We first
prove NP-completeness of the decision problem CMS(k, M) with Fixed Order and then
give a polynomial-time algorithm assuming the integer k is a constant.

Theorem 13. For a bipartite graph G = (Vt ∪ Vb, E), an order πt of Vt, and integers
k, M , problem CMS(k, M) with Fixed Order is NP-complete.

Proof. We reduce from the NP-complete Decision Crossing Problem (DCP) [EW94],
where given a bipartite 2-layer graph with one vertex order fixed, the goal is to find an
order of the other set such that the number of crossings is at most a given integer M .
Given an instance of DCP, i.e.,a 2-layer graph G = (Vt ∪ Vb, E), with ordering πt of
Vt and integer M , we construct an instance G′ of CMS(k, M) where k = |Vb|. First let
G′ = (V ′

t ∪ V ′
b , E′) be a copy of G. We give an arbitrary ordering πb to the vertices of V ′

b .
We then add, respectively, to each vertex set Vt and Vb a set Ut and Ub of M + 1 vertices
and connect each u ∈ Ut to exactly one v ∈ Ub, forming a matching of size M + 1. We
add the vertices of Ut to πt (resp. Ub to πb) after all the vertices of Vt (Vb). We lastly add
a set Wt of k vertices to V ′

t , placed at the end of πt, such that each wi ∈ Wt (i = 1, . . . , k)
has exactly one neighbor vi ∈ Vb and vice versa (see Fig. 5.4a).

Given an ordering π∗
b of Vb that results in a drawing of G with at most M crossings, we

show that we can solve the CMS(k, M) instance G′. In G′, we split each vertex of Vb to
obtain the sets V 1

b and V 2
b in which we place exactly one copy of each original vertex. We

place V 2
b after the vertices of Ub in πb in the same order that the vertices of Wt appear

in πt and draw a single edge between the copies and their neighbor in Wt. We place V 1
b

before the vertices of M2 in πb in the same order as in π∗
b . The graph induced by V 1

b and
Vt is the same graph as G, hence it has at most M crossings. Since Vt only has neighbors
in Vb and all those neighbors are in V 1

b , it has no other outgoing edges, similarly, all
edges incident to vertices in Wt are assigned to the copies in V 2

b . The remaining graph is
crossing-free as the vertices in Ut and Wt form a crossing-free matching with the vertices
in Ub and V 2

b .

Conversely, let G∗ be a 2-layer drawing obtained from G′ after k split operations that
has at most M crossings. Since each vertex v ∈ Vb has a neighbor w ∈ Wt, it induces
M + 1 crossings with edges induced by the vertices in Ut ∪ Ub. Since the vertices in Ub

have a single neighbor, they cannot be split, thus every vertex in Vb is split once, and
their neighborhood are partitioned for each copy in the following way: one copy receives
the neighbor in Wt and one copy receives the remaining neighbors, which are in Vt (see
Fig. 5.4b), thus avoiding the at least M + 1 crossings induced by Ut ∪ Ub. Any other split
would imply at least M + 1 crossings. The graph induced by the copies that receive the
neighbors in Vt has at most M crossings, thus, the ordering found for those copies is a
solution to the DCP instance G.
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Figure 5.4: Instance of CMS(k) constructed from a DCP instance, in light gray the
vertices in Ut ∪ Ub (a) before the splitting operation, (b) after splitting

Next, we present a simple XP-time algorithm for the crossing minimization version
of CMS(k, M), parameterized by the number k of splits, i.e., the algorithm runs in
polynomial time O(nf(k)), where n is the input size, k is the parameter, and f is a
computable function. Let G = (Vt ∪ Vb, E) be a 2-layer graph with vertex orders πt and
πb and let k be the desired number of splits. Our algorithm executes the following steps.
First, it determines a set of splits by choosing k times a vertex from the n vertices in
Vb – we enumerate all options. For any vertex v ∈ Vb split i times in the first step, v is
replaced by the set of copies {v1, ..., vi+1}. The neighborhood N(v) of a vertex v ∈ Vb is a
subset of Vt ordered by πt. We partition this ordered neighborhood into i + 1 consecutive
subsets, i.e., for each subset, all its elements are sequential in N(v) – again, we enumerate
all possible partitions. Each set is assigned to be the neighborhood of one of the copies of
v. The algorithm then chooses an ordering of all copies of all split vertices and attempts
all their possible placements by merging them into the order πb of the unsplit vertices
of Vb. The crossing number of every resulting layout is computed and the graph with
minimum crossing number yields the solution to our input. It remains to show that the
running time of this algorithm is polynomial for constant k.

Theorem 14. For a 2-layer graph G = (Vt ∪ Vb, E) with vertex orders πt, πb and a
constant k ∈ N we can minimize the number of crossings by applying at most k splits in
time O(n4k).

Proof. Let G∗ be a crossing-minimal solution after applying k splits on Vb and let us
assume that our algorithm would not find a solution with this number of crossings. As
our algorithm considers all possibilities to apply k splits, it also attempts the splits
applied in G∗. Similarly, the neighborhood partition of G∗ and the copy placement are
explicitly considered by the algorithm as it enumerates all possibilities. Hence a solution
at least as good as G∗ is found, proving correctness.

Let nt = |Vt| and nb = |Vb| with n = nt + nb. The algorithm initially chooses k times
from nb vertices leading to nk

b possible sets of copies. Since a vertex has degree at most
nt, there are at most nk

t possible neighborhoods for each copy. Additionally, there are
(2k)! orderings of at most 2k copies. Lastly, there are n2k

b possible placement of the 2k
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ordered copies between the at most nb unsplit vertices in πb. This leads to an overall
runtime of O((2k)! · n4k) = O(n4k) to iterate through all possible solutions and select the
one with a minimum number of crossings.

5.5 Chapter Conclusion
In this chapter, we considered the vertex splitting applied to bipartite graphs. We
considered both abstract graphs, and layered drawings with a given vertex ordering. We
found that while most crossing minimization or removal problems were hard, when given
an ordering of the non-split vertex layer, one could in linear time compute a planar
drawing of the graph either minimizing the number of splits, or minimizing the number
of split vertices.

One could consider the case o, which vertices might be split in both layers, and partial
ordering given. In general, layered bipartite drawings have a lot of structural properties,
thus, they would make ideal candidates to study vertex splitting to improve other quality
measures. For example, when visualizing large bipartite graphs, a natural goal is to
arrange the vertices so that a small window can capture all the neighbors of a given node,
i.e., minimize the maximum distance between the first and last neighbors of a top vertex
in the order of the bottom vertices.

Lastly, while we found that the problem can be solved in linear time for layered drawing,
one could investigate if the problem is still polynomial time solvable when considering
general bipartite graph drawings.
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CHAPTER 6
Practical Considerations

The main motivation for studying vertex splitting, is its application to visualizing non-
planar graphs. In previous chapters, we focused on theoretical approaches to the problem.
While we found that vertex splitting for crossing minimization was largely a hard problem,
we were able to gain significant insight into the problem’s main challenges. Additionally,
we were also able to introduce some efficient algorithms for restricted subproblems. In
this chapter, our goal is to extend this knowledge towards efficient solutions for vertex
splitting in graph drawings. Specifically, we now focus on practical algorithms for our
main problem of crossing minimization. We introduce an algorithmic pipeline, where user
input can be incorporated at each stage. By doing so, we aim to outline the challenges
and design goals for practical vertex splitting solutions.
One of the primary challenges of graph visualizations is to effectively communicate
information contained in large and dense graphs. Many of the data sets we are interested
in are often too big to be efficiently displayed, which results in messy "hairball"-like
layouts. When visualizing a graph, we must be able to distinguish the different entities,
and to also visualize and analyze their relationships. To create representations for such
large networks, our algorithms are often limited, and we must rely on heuristic methods
to generate layouts. Force directed graph drawing methods are common for such a use
case, but they offer no guarantee of readability or aesthetic qualities.
The challenge of visualizing large graphs has led to the development of various techniques
aimed at improving graph drawings. One such method is graph summarization [LSDK18],
where the task is to create a simplified version of an input graph by grouping nodes or
edges based on some criteria, such as their similarity or such as structural properties like
an underlying hierarchy. Summarization techniques include node aggregation [EF10],
where nodes are grouped together based on shared attributes or similarly, edge aggregation
methods like edge bundling. With edge bundling, edges sharing a similar orientation
are clustered [ZXYQ13], thus densifying dense regions, and rendering the rest of the
drawing more sparse. One can also consider graph simplification methods, like vertex
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deletion [JdKW21]. While it is a powerful tool to make a drawing more legible, deletion
in general is not an ideal solution as the loss of information is too detrimental to the
faithfulness of the data being presented. Vertex splitting shares many similarities with
vertex deletion, and it offers an interesting alternative to deletion as it permits us to
retain all of the information at the cost of increasing the visual load through the addition
of extra vertices.

While we focused on crossing removal in Chapter 3 and 5, vertex splitting can also be
used to improve other graph aesthetics, or to target other graph properties as shown
in Chapter 4. Similarly, splitting has been used in visualization to achieve different
goals, for example to transform a network into a hierarchical one [LPP+06], or to
visualize a network as a ontology [ERG02]. It has also been used in social networks to
display interlinked group as matrices by duplicating actors that are connected to multiple
groups [HBF08]. Splitting has also been used to visualize Euler diagrams [HRD10] or
biological networks [WNSV19]. In the case of biological network, as they are often
very large and complex but their representations are important for researchers, vertex
duplication is often used to obtain layouts with a small number of crossings. Currently,
metabolic pathway graphs [KFS+22] are largely manually drawn [NDG+17]. As metabolic
pathways often have some vertices of very high degree (for example the water molecule is
involved in a large number of chemical reactions), vertex splitting or deletion is required
to obtain a legible drawing. Nielsen et al. [NOM+19] used machine learning to automate
the creation of these graphs, and guide the vertex splitting operation, but as the training
data is limited to already existing manually drawn graphs, this method cannot be easily
extended to more general instances. While vertex splitting is a very practical and powerful
tool in graph visualization, it has not been studied closely, and is limited to heuristics
and heavily targeted applications. Eades and Mendonça [EdMN95] studied the operation
in the setting of tension minimization, but to our knowledge, vertex splitting has not yet
been studied in other general settings.

In this chapter, we focus on the crossing minimization problem, as it is the most thoroughly
studied from a theoretical point of view. We initiate the discussion of efficient vertex
splitting algorithms for graph visualization, and identify the challenges and benefits of
the approach. We propose a series of methods to reduce crossings in graph drawings
using vertex splitting through an algorithmic pipeline. As each of the steps of the pipeline
can easily be guided by user preference, the algorithms we introduce are capable of
taking human selection into account. While our algorithms attempt to compute optimal
solutions to each subtasks, these solutions could instead be used as a set of hints to guide
a user in their layout design. Lastly we evaluate the performance of the algorithms by
developing a set of metrics targeted at crossing reduction via vertex splitting.

Structure of the chapter: We start by introducing in Section 6.1 the different steps of
the pipeline, as well as the two main problems that were targeted by our implementation.
We then focus on the first problem, computing a plane drawing through iterative vertex
splitting, and cover in Section 6.2 the different algorithms that were used for this setting.
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In Section 6.3, we consider a relaxation of the previous problem, through three algorithms
that are targeted towards crossing minimization. We present an evaluation of our pipeline
in Section 6.4, and the different algorithms we introduced. We first focus on a quantitative
analysis of the algorithms’ performance, and later present a case study on a smaller data
set. Lastly, in Section 6.5 we cover the limitations of our implementation, as well as the
remaining important questions that need to be further studied.

6.1 Preliminaries
In this chapter, we attempt to solve the Embedded Splitting Number problem (ESN)
introduced in Chapter 3. Namely, given an input drawing Γ, to compute a plane drawing
Γ∗ by applying splitting operations to the vertices of Γ. Additionally, we consider the
Embedded Splitting Crossing Minimization problem (ESCM), a relaxation of
ESN, where the output drawing Γ∗ must only contain fewer crossings than Γ.

To solve these problems, we consider a sequence of sub-tasks that follow the sequence
established in Chapter 3. We first select a subset of vertices that will be split, and
remove them from the drawing. Secondly, we split the selected vertices, and compute
a neighborhood and embedding for the copies we obtained. As we are also considering
crossing minimization, we must pay additional attention to the re-embedding tasks,
specifically to the task of routing edges between copies and their neighbors. Lastly, as our
focus is to propose a more manageable restricted system, we only attempt here to split a
single vertex at a time. We detail in the following section each step of the pipeline.

6.1.1 A Three Step Pipeline
In Chapter 1, we highlighted the five different subproblems that must be solved during
a splitting operation: (i) choosing a set of vertices to be split, (ii) choosing how many
times each vertex should be split, (iii) choosing a partitioning of the original vertex’s
neighborhood, (iv) choosing an embedding for the new vertex, (v) routing the edges
between the copies and its neighborhood partition. In this setting we have grouped them
into the following three subproblems, illustrated in Fig. 6.1.

1. Choosing a set of vertices to be split (i)

2. Partitioning the original vertex’s neighborhood (ii)-(iii)

3. Embedding the copy and connecting it to its neighbors (iv)-(v)

We now detail the challenges presented by each sub-task.

Selecting a set of vertices to be split Consider the input drawing Γ. Our task is
to compute a set S∧ of vertices to be split. To solve ESN, we must, at this step, ensure
that the vertex set we compute is a solution to Embedded Vertex Deletion. For the
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1. 2. 3.

Figure 6.1: The three step pipeline for the input drawing on the left, on the top, an
instance of ESN and an instance of ESCM on the bottom. In the first step, the
colored disks represent the vertices that are selected te be split. In the second step,
each continuous highlighted line corresponds to one partition of the removed vertex’s
neighborhood. In the third step we place the copies and connect them to their partition,
in this example, we use straight lines for the top drawing and curves for the bottom one.

ESCM problem, it is sufficient if the drawing Γ[V \ S∧] has fewer crossings than Γ, thus,
we focus on deleting vertices whose incident edges have a high number of crossings.

Partitioning the Split Vertex’s Neighborhood Given a drawing Γ′ and a vertex
v ∈ S∧, the task is to partition the neighbors of v such that each vertex in N(v) is
connected to a copy of v, and vertices in the same partition subset are connected to the
same copy. Depending on the chosen algorithm for this task, the number of copies for
each vertex is either manually set (or chosen by a user), or it is imposed by the algorithm.
For example, when solving ESN, if v is incident to three vertices v1, v2, v3 such that no
face in Γ is incident to v1, v2 and v3, then it must be split at least twice to ensure no
crossing will be induced by connecting copies of v their neighbors.

Embedding and Connecting the Copies The input at this step is a vertex v ∈ S∧,
a partition of N(v) and a drawing Γ′. The task is to select a set of faces of Γ′ to embed
the copies of v, and for a subset in N(v), to connect its vertices to their corresponding
copy. Depending on the chosen embedding method, we connect copies to their neighbors
using straight-line edges or using curves. Curves can be required to solve ESN. For
example, if a copy is embedded in a non-convex face or the outer face, then a straight-line
edge is not necessarily crossing free1.

Step two and three are done iteratively, meaning that one vertex is removed from S∧ at a
time and then split. Its copies are then embedded into Γ, and this operation is repeated
until S∧ is empty. This means that if there exists an edge (u, v) ∈ E, such that u ∈ S∧

1Minimizing crossings in straight-line drawings while requiring the output to retain the straight-line
property has been studied by Ehlers, Villedieu, Raidou and Wu (unpublished manuscript).
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and v ∈ S∧, and u is split first, we are unable to connect a copy of u to v as v has been
removed from the drawing. Thus, only when we are splitting vertex v, can we select one
of the copies of u previously embedded in the drawing to be connected to a copy of v.

6.1.2 Metrics
As vertex splitting algorithms have, to our knowledge, not yet been closely studied or
evaluated, we will propose here a novel set of natural metrics to gauge our algorithms.

• Our main task is to resolve edge crossings, thus the most important metric to
consider is the ratio of the number of remaining edge crossing over the initial
number of edge crossings present in the drawing, the crossing resolution ratio.

• Additionally, since each split introduces one vertex to the drawing (more accurately
two new vertices are added and one is removed), we want to count how many
splitting operations were performed, and how many input vertices were split at
least once. Thus, we consider the number of splits that were executed.

• To understand how much our drawing is changed by the algorithm, we compute
the vertex splitting ratio, the ratio of the number of vertices split over the total
number of vertices in the input drawing.

• When routing curves through the outer face or non-convex faces, we might obtain
very long and complex edges, thus we measure the edge complexity of the drawing
by counting how many control points are required to route the curves between
copies and their neighbors.

• Lastly, we will consider the runtime of our algorithm, as fast algorithms are
paramount to an interactive setting.

6.2 Embedded Splitting Number
We begin by presenting the algorithms used to solve the Embedded Splitting Number
problem. We have shown in Chapter 3 that ESN, as well as its subproblems are NP-
complete, thus we make use of integer linear programming to compute solutions for each
subtask.

6.2.1 Largest Planar Subdrawing
Given a drawing Γ, the task is to compute a plane drawing Γ′ by removing the smallest
number of vertices from Γ. This means that for each crossing in Γ at least one of the
four involved vertices has to be removed from the graph. We call SH the set of removed
vertices. If we model each crossing as a set of size four containing each vertex involved
in the crossing, then the task is to find the smallest cardinality set SH such that each
crossing set has at least one of its four endpoints in SH .
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Figure 6.2: We solve the hitting set instance in the middle to find a set of vertices to split

Figure 6.3: We solve the face cover instance in the middle to find the faces in which to
embed our copies.

We find that this problem corresponds to a restricted version of the Hitting Set problem.
In the hitting set problem, given a universe of elements, and a set S of element subsets,
the task is to compute a minimum cardinality subset of elements Se such that each
subset in S has an element in Se, thus we model this problem using hitting set, as shown
in Fig. 6.2 For a drawing Γ of graph G = (V, E), we first use a sweep-line algorithm
to detect the crossings in Γ. Then, for each crossing, we create a set containing the
subset of vertices that induces the crossing. We then compute SH using the following
straightforward ILP formulation. For each vertex v ∈ V in the input drawing, we create
a variable xv, such that xv = 1 if vertex v is part of SH , and 0 otherwise. The objective
function is the following.

min
v

xv for v ∈ V

Then, for a subset Sc corresponding to a crossing between (a, b) and (c, d), we consider
the following constraint which forces at least one of the vertices to be selected.

xa + xb + xc + xd >= 1

We create such a constraint for every crossing in Γ. We call this vertex selection variant
v-HS.
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6.2.2 Face Cover
We showed in Chapter 3 that the Face Cover problem [BM88] can naturally be
transformed into a vertex splitting problem. Given a graph G, a set of vertices S and an
integer k, the task is to find a set of at most k faces such that each vertex in S is incident
to at least one of the k selected faces. Consider now a vertex v with neighborhood N(v),
and the face cover SF of N(v) in Γ. By embedding a copy in each of the faces in SF , we
ensure that each vertex in N(v) can be connected to a copy in Γ without inducing any
crossing, as it is necessarily incident to a face in SF , as shown in Fig. 6.3.

The previously stated definition of face cover is insufficient when multiple vertices are
being split. Consider two vertices u and v, u adjacent to v that must be split. Consider
v has already been split and its copies {v1, . . . , vi} are in Γ. When splitting a vertex u,
only one copy of v must be incident to a face of the solution of the face cover instance.
We now detail the ILP formulation to solve this modified face cover instance.

Given a drawing Γ of graph G = (V, E), we first compute the cyclic ordering of each
vertex’s neighborhood to obtain the set of faces F of Γ. Consider that |F| = nF , and the
split vertex u has neighborhood N(u) = {u1, . . . , um}.

The objective function is to minimize the number of faces that are part of the solution.
A face Fi is part of the solution if the variable fi has value 1.

min
i

fi for i ≤ nF

We use the variable ci,j to say that face Fi covers a vertex uj ∈ N(u), meaning that the
vertex uj is incident to face Fi, and face Fi is part of the solution, thus we can connect
uj to a copy placed in Fi. Additionally, we have to ensure that uj it covered by at least
one face in F that is selected. Consider the subset Fj of F that corresponds to faces
incident to uj .

i

ci,j = 1 for i s.t. Fi ∈ Fj

This ensures that each neighbor of the copy is covered by a face. For simplicity, we
model this as an equality to avoid having one neighbor covered by multiple faces. If the
neighbor v of u has been split into copies v1, . . . , vℓ, we use the variable si,j,k to say that
face Fi covers the kth copy of neighbor v. This leads us to the following constraint.

i,k

si,j,k = 1 for i s.t. Fi ∈ Fj and k s.t. vk is a copy of v

Similarly, this ensures that for one vertex v that was split, exactly one of its copies is
covered by a face. Note that enforcing neighbors of u to be covered by exactly one face
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(a)

(b)

Figure 6.4: Examples of edges routed when a straight-line path induces crossings, (a)
shows routing through the outer face, and (a) shows a routing example through an inner
non convex face. The colored squares represent the neighbors that must be connected to
the copy drawn as a circle

does not prevent them from being incident to several selected faces. Since neighbors can
only be covered by faces selected in the solution, we set the following constraints.

i

ci,j ≤ fi for i s.t. Fi ∈ Fj

i

si,j,k ≤ fi for i s.t. Fi ∈ Fj and k s.t. vk is a copy of v

This ensures that a face can only cover a neighbor of u, if it has value 1. We can then
output the set of faces selected by the solver, as well as the set of vertices each of these
selected faces cover. This vertex splitting algorithm variant is called s-FC.

6.2.3 Planar Edge Routing
Given a drawing Γ, a vertex v to be split, a set of faces SF , and for each face F ∈ SF a
subset of N(v) incident to F , the task is to find a crossing free drawing Γ∗ by embedding
a copy of v in each face of SF and connecting it to the corresponding subset of N(v)
with crossing free edges.

First we must compute coordinates inside a face F to embed a copy vi in F . While the
barycenter of the vertices incident to F is a natural candidate position to embed the copy,
the face might not be convex. Thus, we instead loop over any subset of three vertices
incident to F , and check if the barycenter of that triangle lies inside of F . Once such a
point is found, we use its coordinate as the coordinates of the copy.
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As this is a discrete set of valid coordinates, it can lead to several vertices sharing the
same embedding. Thus, we introduce a wiggle, a randomly generated small value, to shift
the vertex slightly off of the position computed for it, to ensure no two vertices share the
same coordinates. As this might induce a crossing, we generate new values for the wiggle
until we can find a suitable position which does not induce additional crossings.

If the straight line edge between the copy of v and its neighbor in N(v) does not induce
a crossing, then it is drawn. Otherwise, we must distinguish two scenarios.

• If the face is non-convex, we compute the Delaunay triangulation of its incident
vertices. We place a control point at the barycenter of each triangle and connect
two control points if their corresponding triangles share an edge. Then, we connect
both the copy and its neighbor to the closest control point possible, and then find
the shortest path through the remaining control points to finish connecting the two
vertices (see Fig. 6.4(a)). This allows us to draw curves through non-convex faces
to connect copies to their neighbors without inducing crossings.

• If the curve must be drawn through the outer face, we first compute the convex
hull of the drawing. We then scale it up with a ratio of 1.2, and add several control
points along this new large polygon. Then, as in the non-convex face step, we
connect copies and neighbors to the control points, and then connect the control
points together to obtain a curved crossing free edge (see Fig. 6.4(b)). This allows
us to route curves around the drawing.

Using these algorithms, we can compute a plane drawing Γ∗. Note that while we make
use of solvers and exact solutions, efficient algorithms exist for both hitting set and set
cover [HL05, AP20] to compute approximation or small solutions.

6.3 Embedded Splitting Crossing Minimization
In this section we focus on the crossing removal through vertex splitting problem. To
obtain a planar drawing when the input graph is dense, it is often necessary to split
a very large number of vertices. This introduces a high amount of complexity to the
graph by not only adding many copies, but additionally disturbing the input drawing
significantly as well as disconnecting a large number of paths. While crossings are often
detrimental in graph visualization, drawings with a small number of crossings can still
be read efficiently [DLM19].

The algorithms introduced in Section 6.2 can also be used to solve ESCM, with the
difference that a planarization of Γ must be computed, as the drawing must be plane to
compute its faces to solve face cover. The planarization is obtained by replacing edge
crossings with graph vertices and subdividing intersecting edges into paths through the
planarization vertices.
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6.3.1 Vertex Selection
Our goal here is to remove the vertices responsible for the largest number of crossings in
the drawing. To do this, we compute the number of crossings occurring on each edge,
and for each vertex, sum the total number of crossings that are induced by all of its
incident edges.

While we only focus on crossings to limit the scope of our investigation, one could also
easily consider other quality metrics to select vertices, such as selecting the highest degree
vertex, the vertex with the longest incident edges, a vertex that induces crossings with
undesirable angles (desirable crossing angle would typically be right angles) and so on,
depending on the aesthetic criteria preferred.

The vertices to be split can also be chosen by the user, and the previously computed
metrics can provide guidance for this selection using the weights that we compute for the
single vertex selection step. We call this metric based vertex selection method v-M.

6.3.2 Neighborhood Assignment
In this section we focus on the core task of the vertex splitting crossing minimization
problem, partitioning the split vertices’ neighborhoods. We propose three algorithms.
One algorithm is the algorithm introduced in Section 3.2.2, that optimally minimizes
crossings when splitting a single vertex k times. The other two algorithms are based on
graph community detection and on point clustering techniques.

Embedding Copies Using the Dual Graph We introduced in Chapter 3 an exact
algorithm to split a single vertex k times that optimally minimizes the number of crossings
induced by re-embedding the copies into Γ. An example is shown in Fig. 6.5.

We begin by computing the planarization Γp of Γ, (Fig. 6.5(a)), to compute the dual D
of Γp (Fig. 6.5(b)). To find D, we first find the set of faces of Γp and then create the dual
by creating one vertex per identified face, and connecting any vertices that corresponds
to faces are adjacent.

We can then compute the crossing minimal split of v as described in Section 3.2.2. We
loop over all subset of k faces of Γp, and for such a subset Sc, we compute the shortest
path in the dual between vi ∈ N(v) (more precisely, one of the faces incident vi) and one
of the faces in Sc (Fig. 6.5(c)). Once every neighbor has been connected to a face in Sc,
the lengths of each paths in the dual correspond to the minimum number of crossings
induced by connecting all neighbors to copies embedded in this subset of faces. We then
find the subset Sc that induces the least number of crossings and return the corresponding
embedding of the copies of v. We additionally output the ordered set of faces traversed
to connect the neighbors of v to their neighboring copy.

This algorithm has a running time of O((|F | + |E|) · |N(v)| · |F |k). When considering a
dense graph, the planarization can have a very large number of faces, meaning that in
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(a) (d)(b) (c)

Figure 6.5: The red vertices are the neighbors of the split vertex. To compute the
embedding that induces the minimal number of crossings, (a) we first compute the
planarization of the graph (the small vertices have been introduced where crossings
previously occurred), (b) which allows us to compute its dual (in blue), (c) we find the
shortest path in the dual between the face where a copy could be embedded, and a face
incident to a neighbor of the split vertex. Drawing (d) shows the embedding that would
be computed if the solution in (c) is selected.

practice this algorithm performs quite poorly. Thus, when using this method, we choose
to only split each vertex once, at the cost of having to split that same vertex again.

When the split vertex v has a neighbor u that has already been split, we cannot select
for u the closest copy of v in the dual graph. Instead, for each copy of u we find the
closest face in which a copy of v is embedded, and only add the length of the shortest
path between one copy of u and one copy of v to the total number of crossings generated
by that face subset. This algorithm is referred to as s-D.

Community Detection-based Splitting This well studied class of algorithms are used
to identify groups of strongly connected vertices in a graph. In a complex network, nodes
that are strongly inter-connected and share less connections to the rest of the graph can
be identified as a community. If a vertex adjacent to multiple communities is split, it
is then natural to have one copy representing that vertex for each community it was
connected to.

To compute this, we use the Louvain algorithm [MFFP11], and obtain a dendrogram
of the communities in the input graph. The dendrogram is a tree where each level of
the tree corresponds to a partition of the nodes of our graph into communities. As in
practice we find that the algorithm computes a larger number of smaller communities,
we select the partition that has the lowest number of communities, to avoid creating too
many copies of our split vertex. We then remove any partition that does not contain a
neighbor of the split vertex. In the remaining communities, we remove any vertex that is
not a neighbor of the split vertex, and return this vertex partition as an output. This
algorithm is called s-L.

Euclidean Clustering-based algorithm Lastly, we make use of clustering methods.
As our input is a drawing, every node has a given location. We abstract the graph
structure and instead focus only on the coordinates of the neighbors of the split vertex.
We then group these neighbors using Euclidean distance-based clustering with the k-
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means algorithm [HW+79]. This allows us to choose how many copies of the split vertex
we desire, by targeting a certain number of clusters in the solution. If two vertices are
strongly connected but drawn far away from one another in the graph, connecting copies
to each of these vertices might induce a large number of crossings, but it can also result
in long spanning edges that increase the visual load of the drawing. Thus, this method
results in splits whose impact is limited to a small area. We call this method s-kM.

6.3.3 Re-embedding Copies
When using the clustering or community detection algorithms, only a partition of
neighbors is computed, thus, we must first compute a set of faces in which to embed the
copies. Then, we can route the paths between the copies and their neighbors.

To embed the copies we propose two alternatives, one algorithm based on minimizing
Euclidean distances between copies and their neighbors, and one relying on minimizing
crossings using paths in the dual.

For both methods, as described for ESN, we compute for each copy, the coordinate of a
point inside the face it must be embedded in, and introduce a small wiggle to shift it
away from that point while remaining inside the face.

Barycenter Positioning

To avoid long complex edge spanning the drawing, we investigate a straightfoward
embedding method, by computing the barycenter position for each neighborhood partition.
With this method we must be mindful of degenerate cases. Namely, for a partition with
a single vertex, we do not place the copy on top of its neighbor but rather use the wiggle
to shift it slightly away from that position. Similarly, for a partition with two neighbors,
if the two neighbors are connected, the copy is not placed halfway between the neighbors
but rather slightly shifted perpendicularly away from the halfway point. This ensures
that the copy does not lie on the edge connecting its neighbors to one another. We then
connect the copies to their neighbors using straight lines. This variant will be referred to
as e-B.

Shortest Dual Face-path Method

Given a set of neighborhoods, the task is to compute a set of faces to embed the copies in,
such that a copy’s connection to its neighbors induces a minimum number of crossings.
To do so, for the neighborhood N(v) of a copy v, we loop over every face f in the
planarization Γp of the input graph Γ, and compute the shortest path in the dual between
f and the faces incident to the vertices in N(v). The length of the path in the dual
corresponds to the number of faces that were crossed to connect the copy to its neighbors,
which then tell us the number of crossings induced by the connection. We repeat this
process over all faces to find the best face to position the copy in, and repeat the process
for each neighbor partition. This algorithm is called e-D and is closely related with
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s-D. It is computationally more efficient though as we only loop over one face at a time
instead of k faces.

This algorithm results in a collection of paths through the dual graph, between faces in
which copies are embedded, and faces that are adjacent to the copy’s neighbors. To route
these edges, we begin by placing control points in each face that appears in one of those
paths, using the method presented in Section 6.3.3. We then connect the control points
along the paths using the same algorithm as for ESN, but allowing for a crossing to be
created when connecting control points in two different faces, as shown in Fig. 6.5(4).

6.4 Evaluation

In this section, we present a two-fold evaluation of our pipeline. We first present
a quantitative evaluation of our algorithms’ performance with regards to the metrics
introduced in Section 6.1.2 and secondly, we present a case study of four different drawings
obtained with our pipeline. We identify the challenges of the vertex splitting approach,
and outline some aesthetic considerations that result in higher quality drawings when
using vertex splitting.

6.4.1 Dataset

While vertex splitting has previously been applied mostly to biological networks [WNSV19,
NDG+17, NOM+19], our approach is meant to generalize its application. Therefore we
focus instead on a less studied use case for vertex splitting, social networks [HBF08].

To evaluate our system, we use the graphs of the dagstuhl network graphs2. As our stated
interested is the social networks, we use the people graphs, in which each node represents
a researcher that has attended an event at dagstuhl and two people are connected if they
both attended the same event. The repository contains four such graphs, one containing
all events from 1990 onward, and three that only contain events occurring after 2001,
2011 and 2019 respectively.

As this work is meant to be a preliminary proof-of-concept for vertex splitting, we focus
on smaller graphs. Therefore, to create our test graphs, for each of the four social
networks, we filter the 20, 30 or 40 highest degree node. As solving vertex splitting in a
disconnected graph is equivalent to solving smaller instances independently, we will add
more nodes if necessary to ensure that the input graph is connected. Once we obtain a
connected graph, we will remove the smallest degree nodes that do not disconnect the
graph to ensure the sizes of the graph remain comparable.

2https://github.com/mwallinger-tu/dagstuhl-network
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6.4.2 Experimental Setup
We implemented our bundling algorithm in python 3.9, using the networkx3 library, and
ran it on a machine with Windows 11 operating system, with an 2.40 GHz Intel i5-9300H
CPU and 8G of RAM. The louvain and kmeans splitting algorithms were both implement
using a specialized python library4. The ILP formulations were solved using the Gurobi
optimizer5.

As our use case considers automatically generated layout of large graphs, for each of
the 16 input graphs described in Section 6.4.1, we obtained an input drawing using the
Fruchterman-Reingold spring layout algorithm. We then ran each instance through the
pipeline, using different algorithm combinations.

For each of the 16 instance we used the following three different vertex selection methods.

• First, we evaluted the perfomance of our algorithm when a single vertex should be
split. We used v-M method to select the vertex involved in the highest number of
crossings.

• Then, to emulate a more natural use case in which the vertex selection is done
by a human, we used v-M to compute the five vertices that induce the largest
number of crossings. We then randomly selected one of these vertices, removed it
from the graph, and repeated the operation until n

10 + 1 vertices were selected. We
believe users are less likely to choose two vertices whose respective edges intersect
the other’s a lot, instead of choosing vertices which are independently problematic.
Additionally, we believe users would not choose to split a large number of vertices
to be split, thus we attempted to replicate that behavior with this method.

• Lastly, to evaluate instances of ESN, we generated plane input drawings by selecting
vertices to be split using v-HS.

We note here that we did not allow the set of selected vertices to disconnect the graph,
as we believe that a disconnected graph is not a desirable output. If an optimal solution
to v-HS resulted in a disconnected graph, we first generated different embeddings for
the drawing to avoid the situation, or would select a sub-optimal solution to prevent this
situation.

For each of these 48 instances, we used every splitting algorithms (s-FC, s-D, s-L
and s-kM). For the community and cluster detection algorithms, we used the e-D and
e-B re-embedding methods respectively. As the Euclidean based clustering ignores
the structure of the graph, it is a natural candidate for the Euclidean distance based
embedding algorithm, and similarly, the graph community detection is more suited to

3https://networkx.org/
4https://github.com/taynaud/python-louvain,https://scikit-learn.org/
5https://www.gurobi.com/
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the dual based re-embedding method. If the instances had not timed out after 1 hour
(only relevant for s-D on larger instances), we measured their performance according to
each of the metrics we defined Section 6.1.2.

Lastly, to compare clustering and community detection directly, we generated a set of
larger graphs (50 nodes), and used both methods in conjunction with v-HS and e-B. We
first ran the instances with the s-L algorithm. Then we ran the same instances using
s-kM, and set the number of clusters to be computed to the number of splits that had
been executed by s-L.

6.4.3 Quantitative Evaluation
Our main focus with this pipeline is crossing minimization, and these results are sum-
marized in Fig. 6.6. We first notice that our algorithms were successful in reducing the
number of crossings in the input drawings. The methods that were the least efficient were,
s-D and s-kM. This is to be expected as they were only allowed one split operation per
selected vertex. We can still observe that s-D was very successful in more sparse settings,
when more vertices has been selected to be split. We can also see that its performance
falls off significantly for larger instances. As expected, s-FC outperforms every other
method, even for instances where the input drawing is not planar. Most interestingly, the
Louvain based algorithm achieved strong results when compared to the optimal solution
computed with s-FC. This seems to be linked to the fact that this method induced a
large number of splits. Its performance appears to be inconsistent; we can observe that
in one instance, it even resulted in a higher number of crossings than was present in the
input. This is likely due to edges between copies of the same vertex intersecting one
another. Lastly, we note that splitting a tenth of the vertices in the input graph produces
good results, as even on larger graphs it appears it is sufficient to resolve about a third
of the crossings in the input drawing. In general this seems to indicate that splitting a
small number of vertices a large number should be a consideration for such a system.

With regards to resolving instances where the input is a planar graph, we summarize
in Fig. 6.7 the performance of the v-HS algorithm. We observe that on graphs with only
40 vertices, half or more vertices have to be removed. As our implementation relies on
an ILP, any non exact method for this setting would require an even larger number of
vertices to be split. As our motivation is interactive human-in-the-loop systems, this
indicates that ESN should not be one of the main targets as it significantly disturbs the
input drawing.

We observe during the evaluation that the density of the graph seemed to have a strong
impact on the performance of our algorithm. This is summarized in Table 6.1. This
is natural as a larger number of edges results in a large number of crossings to resolve,
and makes crossing resolution also more difficult. This means that unlike aggregation
methods that are suited for denser drawings, vertex splitting is a strong candidate for
larger sparser drawings. While the quality of the output was lower in denser drawings,
we can observe in Fig. 6.8 that most algorithms were still very fast, even when splitting
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(a)

(b)

(c)

Figure 6.6: Crossing resolution ratio by the number of splits for each splitting algorithm,
(a) vertices selected using v-M once, (b) using v-U (c) and using v-HS.
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Figure 6.7: The ratio of vertices selected by v-HS by the total number of edges.

full 2001 2011 2019
density 0.27 0.35 0.32 0.23

cross resol ratio 0.66 0.71 0.73 0.63
number splits 15.6 20.9 17.6 11.9
runtime (sec) 9.61 59.37 17.58 4.08

Table 6.1: Average performance for all algorithms over all metrics for each of the input
graphs considered.

a lot of vertices, with the exception of s-D. This algorithm also timed out for all of
the instances with 40 vertices and the two denser instances with 30 vertices (2001 and
2011). The high runtime that is sometimes incurred by s-L is linked to the edge routing
computation, as Fig. 6.10 shows that it was significantly faster when paired with e-D.

We noted in Section 6.1.2 that complex curves were undesirable. Our algorithm’s
performance with regards to curve complexity is presented in Fig. 6.9. We see that
when only a single vertex in the instance is split, long spanning edges are avoided by
having copies with a small degree. Indeed, as only two copies are introduced by s-D, the
copies have to cover a large subset of the neighborhood of the selected vertex, unlike the
copies introduced by s-FC. Instead, as the neighbors of the copies created with s-FC
are incident to the face in which the copy is embedded, we can often draw a straight-line
edge to connect them. This reaffirms our initial observation, that a high number of splits
of a small number of vertices is desirable.

Lastly, we consider the results of the comparison between s-L and s-kM in Fig. 6.10.
As can be expected, considering the graph structure is more significant than considering
the position of the neighbors of the split copies. Both algorithms are similarly fast, but
for every input, s-L was able to resolve more crossings than s-kM.

In summary, we can see that splitting vertices is a successful technique to lower crossings
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Figure 6.8: The runtime in seconds by the number of splits for each algorithm.
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Figure 6.9: Number of control points generated by the number of splitting operations for
each algorithm, when only a single vertex is selected to be split.

in graph drawings. We find that splitting a small number of vertices many times results
in better performances as far as the quality metrics we have defined. We can also note
that scalability is challenging. Denser graphs are not well suited to this approach, but
sparse graphs lead to very positive results. Lastly, considering the underlying graph
structure should be a focus when computing a neighborhood partition. Vertices in the
same partition should be close with regards to graph distances to obtain good drawings.

6.4.4 Case Study
In this section we look closely at one of the instances from the previous section, shown
in Fig. 6.11, to better understand the results from our algorithms. These drawings are
created manually from the graph output by our pipeline using the same coordinates for
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(a) (b)

Figure 6.10: Performances of s-L and s-kM with regards to (a) runtime (in seconds) (a)
and resolving crossings when vertices are selected with v-HS and embedding is computed
with e-B.

vertices and control points. As we present a proof-of-concept in this chapter, creating
renderings or post processing has not been implemented. Mainly, curves are currently
polylines in the raw output.

Three vertices are selected by v-HS (Fig. 6.11(a)) and removed from the drawing. We
can see in Fig. 6.11(b), that algorithm s-D performed well and only resulted in a single
crossing remaining, even though it is limited to splitting a vertex only once. We also
note that the orange vertex has not been split, since its complete neighborhood lies on
the outer face, and the split operation was only used to change the embedding of the
vertex rather than actually splitting it. Lastly, vertices embedded on the outer face tend
to generate long curves. For example one of the blue edges is longer than the width of
the drawing.

Similarly, s-FC (Fig. 6.11(c)) resulted in a large number of curves drawn in the outer
face. While we consider an input drawing with straight line, we permit curves in the
output. Curves have the benefit of highlighting which vertices are split, making them
easier to find and potentially helping a user find paths through splits, but they add a lot
of visual noise. Additionally, due to the small number of control points, they sometimes
have sharp turn, as in Fig. 6.11(d).

While we noted that s-L (Fig. 6.11(d)) performed well in the previous section, we can
notice here that it does not consider the input drawing or the coordinates of the vertices.
The neighborhood assignment on the red vertices induces a crossing which could be
avoided at no extra cost. Overall, it creates two more copies than s-D (Fig. 6.11(b)),
and induces two more crossings, which makes s-D much more interesting for smaller
instances as we had highlighted previously.

The drawing obtained using s-kM looks simpler due to the lack of curves, and the area
it occupies has only marginally increased compared to the other drawings. We notice
though, that because the lengths of the edges are minimized, the edges can become hard
to read, and each embedding results in smaller faces in the drawing. Thus, when more

99



6. Practical Considerations

(e)

(a)

(c)(b)

(d)

Figure 6.11: Graphs created using the output for the 2019 graph on 20 nodes, with the
v-HS vertex selection algorithm, (a) shows the input drawing, with the colored vertices
showing the vertices selected, (b) is obtained with s-D, (c) with s-FC, (d) with s-L
and e-D and (e) with s-kM and e-B, and the copies are drawn with circles.
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split occur we obtain very short edges and vertices being drawn too close to one another,
which is undesirable as splitting is meant to help readability.

Overall, we can see that splitting is very effective on smaller graphs, but computing an
effective embedding to reflect the splits is a delicate task, that is also dependent on the
use case for the resulting drawing.

6.5 Limitation
Vertex splitting is a very complex problem that involves a large number of considerations.
While we believe that we have identified a strong general guideline for splitting vertices
for crossing minimization, the re-embedding sub-task has not been satisfyingly resolved.
Different methods should be developed and implemented that could potentially mimic
the drawing style of the input graph.

Similarly, our evaluation was limited to drawings obtained using a spring embedder,
which does not accurately reflect the variety of existing drawing techniques. One should
consider other inputs, including manually laid out graphs [NOM+19], or orthogonal
graphs [WNSV19] which have been used in conjunction with splitting in the past.

While we only considered instances of a small size, it was sufficient to observe the challenges
when it comes to scaling this approach to large graphs. Unlike graph simplification
methods which reduce the amount of object being displayed, vertex splitting increases it.
The use of vertex splitting for large graph is likely to be limited, though very specialized
techniques for restricted settings could be considered, or different approaches that relied
on the operation.

On the choice of vertices to be split, it is possible for a set of vertices to be selected that
disconnect the graph. This is probably undesirable, especially since there is no guarantee
that the output will be connected. While we did not allow for this situation to occur,
having a set of vertices which cannot be split seems like a natural constraint for real
world application.

Lastly, as our main interest is for vertex splitting to be extended to a human-in-the-loop
system, an interactive tool should be designed, to better evaluate the impact of vertex
splitting in graph drawing through a user study.

6.6 Chapter Conclusion
In this chapter we presented a preliminary proof of concept for vertex splitting for
crossing minimization in drawings and found that it could efficiently reduce the number
of crossings in a drawing. We introduced a flexible pipeline that can easily be adapted to
other methods, or to user interactions as we decomposed the problems into simple and
visual subproblems.
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While we found that vertex splitting poses many challenges, we were able to identify
general design guidelines for the problem. Namely, targeting planarity was not desirable
as it required splitting a very large number of vertices. Instead, we found that focusing
on a small number of vertices and splitting them many times was the most promising
method. While we relied on an ILP to optimize this assignment, a greedy method would
only result in smaller degree vertices which do not induce a lot of clutter. For this reason
as well, we believe that vertex explosions should be considered for this problem.

One of the largest remaining question to understand is to the task of embedding copies
back into the graph. In general when attempting to reduce crossings, straight-line
edges are not desirable. Since a large number of layout algorithms produce straight-line
drawings, this creates a conflict, as the input’s drawing conventions do not match the
ones of the re-embedding system. A simple solution to this is to consider very low degree
vertices, as the task is almost trivial for them.
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Word Clouds
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CHAPTER 7
Layered Semantic Word Clouds

From a theoretical point of view, semantic word clouds are an extension to the contact
graph problem. Contact representations of graphs are a well-studied topic in graph
theory, graph drawing, and computational geometry [Fel13, Koe36, dFdMR94]. Vertices
are represented by geometric objects, e.g., disks or polygons, and two objects touch if
and only if they are connected by an edge. They find many applications, for instance
in VLSI design [YS93], cartograms [NK16]. In this chapter, we will focus on the model
described for semantic word clouds [WPW+11, BFK+14]. This chapter is based on joint
work with Martin Nöllenburg and Jules Wulms, and was presented at GD 2021 [NVW21].
An extended abstract of this chapter was also presented at EuroCG

Word clouds, in which words have different font size and are packed without semantic
context such as the one shown in Fig. 7.1, have received criticism on their readability. The
audience sometimes fails understand the sometimes fails at understanding the underlying

Figure 7.1: Word cloud generated from the apnews.com frontpage by worditout.com on
the day of the certification of Joe Biden’s victory in the 2020 US elections.
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7. Layered Semantic Word Clouds

data (while enjoying their playful nature) [HPP+20]. For example, neighboring words that
are not semantically related can be misleading (see marked words in Fig. 7.1). As a way
to improve readability, semantic word clouds have been introduced [CWL+10, WPW+11,
BFK+14]. In semantic word clouds, an underlying edge-weighted graph indicates the
semantic relatedness of two words, whose positions are chosen such that semantically
related words are next to each other while unrelated words are kept far apart.

Classic word clouds are often generated using forced-based approaches, alongside with a
spiral placement heuristic [VWF09, WCB+18, WCZ+20] that allows for a very compact
final layout. This method is powerful even when the rough position of a word is dictated
by an underlying map [BCL+16, LDY18]. Semantic word clouds on the other hand
have been approached with many different techniques, e.g., force directed [CWL+10],
seam-carving [WPW+11], and multidimensional scaling [BKP14]. The problem has also
been studied from a theoretical point of view, where an edge of the semantic word graph
is realized if the bounding boxes of two related words properly touch; the realized edge
weight is gained as profit. Then the semantic word cloud problem can be phrased as
the optimization problem to maximize the total profit. Barth et al. [BFK+14] and later
Bekos et al. [BvDF+17] gave several hardness and approximation results for this problem
(and some variations) on certain graph classes. The underlying geometric problem
also has links to more general contact graph representation problems, like rectangular
layouts [BGPV08] or cartograms [vKS07].

In most of the literature about layered graphs, vertices are assigned to rows without a
predefined left-to-right order, yet this has interesting properties in the context of word
clouds. For instance, layered rectangle contact representations are compact, assuming a
good assignment they have an even distribution of words and our eye naturally understands
words grouped in rows or tables. In this chapter we therefore study row-based contact
graphs of unit-height but arbitrary-width rectangles, which may represent the bounding
boxes of words with fixed font size.

Structure of the chapter: We start by studying the classic word cloud problem of
minimizing the drawing area, we introduce in Section 7.2 a flow network based area
minimization algorithm for the layered word cloud problem. We then focus on the
semantic quality of the layout, and study the contact maximization optimization version
of our problem. We show in Section 7.3 that we can find a layout of the rectangles for
two-layer drawings that maximizes contacts, and present an integer linear programming
model for the n layer setting.

7.1 Preliminaries
As input we take a layered graph G = (V, E) on L layers, with an arbitrary number
of vertices per layer. Each vertex vi,j ∈ V is indexed by its layer i ∈ [0, L − 1] and its
position j within the layer: vi,j is the jth vertex on the ith layer. The edge set E consists
of edges connecting each vertex vi,j to its neighbors vi,j−1 and vi,j+1 on the same row
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v1,0 v1,4
v1,5

v2,0
v2,1 v2,3 v2,4

v0,0 v0,1 v0,3

R0,0 R0,3

R1,0 R1,1 R1,4 R1,5

R2,3R2,2R2,1R2,0

Figure 7.2: Partial drawing of a graph G, along with a representation R of the visible
vertices of G. Red edges are not realized, due to the gray gap in R.

Figure 7.3: Allowing false adjacencies (red) could reduce lost adjacencies (blue).

(if they exist), and connections between adjacent rows form an internally triangulated
graph. We associate each vertex with an axis-aligned unit-height rectangle Ri,j with
width wi,j , and y-coordinate i. We want to compute its x-position xi,j given by the
x-coordinate of its bottom left corner such that the rectangles do not overlap except on
their boundaries (see Fig. 7.2). Leaving whitespace between two rectangles on the same
layer is allowed and forms a gap. Such a layout R is called a representation of G. An
edge (u, v) ∈ E is realized in a representation R if rectangles Ru and Rv, representing
vertices u and v, intersect along their boundaries for a positive length ε > 0, which we
denote by (Ru, Rv) ∈ R. If Ru and Rv are horizontally adjacent we call the contact a
horizontal contact.

Otherwise, the intersection is located along a horizontal boundary if Ru and Rv are on
adjacent layers; these are called vertical contacts. Contacts between rectangles whose
vertices are not adjacent in G are false adjacencies. Such adjacencies can mislead a user
to infer a link between unrelated words, invalidating the representation. Within this
model we study two problem variations, area minimization and contact maximization.

For the area minimization problem the goal is to produce a representation R that
minimizes the total width of the gaps in R. The contact maximization problem asks
to maximize the number of adjacencies realized in R, as specified by edge set E. For
both optimization criteria, false adjacencies are forbidden: otherwise a trivial gap-less
representation would always be a solution to the area minimization problem and in the
case of contact maximization, false adjacencies may reduce the number of lost contacts
with respect to a valid optimal solution as Fig. 7.3 shows. We say a representation is
valid if it has no false adjacencies.

107



7. Layered Semantic Word Clouds

7.2 Area Minimization
To solve the area minimization problem, we construct a flow network N = (G′ =
(V ′, E′); l; c; b; cost) for a given vertex-weighted layered graph G = (V, E), with edge capac-
ity lower bound l : E′ → R+

0 , edge capacity c : E′ → R+
0 , vertex production/consumption

b : V ′ → R and cost function cost : E′ → R+
0 . Each unit of cost will represent a unit

length gap and each unit of flow on an edge will represent a unit length contact. To
build the network we create two vertices va and vb for each rectangle, that respectively
receive the flow from the lower layer and output flow to the upper layer, and one for
each potential gap, located between each sequential pair of rectangles in the same layer.
Every edge e that ends on a gap vertex has cost(e) = 1. We also add an edge e between
va and vb for each Ri,j with l(e) = c(e) = wi,j and no cost to ensure that rectangle nodes
receive exactly as much flow as they are wide.

The intuition behind the network is that it represents a stack of layers consisting of
rectangles and gaps, with a maximum width of wmax · K, K being the maximum number
of rectangles per layer, and wmax the width of the widest rectangle. To facilitate this flow
on all layers, there are buffer vertices on both sides of each layer. Each rectangle is as
wide as the amount of flow its vertices va and vb receive, and has contacts with its upper
and lower neighbors as wide as the flow on the edges representing these contacts. Every
vertex has edges to the layer above as far as its rectangle is allowed to have contacts: a
rectangle Ri,j that has only one upper neighbor, will have an edge to that neighbor, and
to the gaps on that neighbor’s right and left side. Any further edge would be to another
rectangle with which Ri,j should not share a contact, and such edges would hence result
in false adjacencies. We picture the stack bottom-up, meaning that the flow comes in at
the bottom layer and exits from the top layer. A gap block gi,j will reach as far left and
right as its left and right neighbors in the same row: if rectangle Ri,j lies directly left of
gi,j , then the furthest left upward neighbor of Ri,j is the furthest left upward neighbor
of gi,j . If gi,j could reach even further, then it would essentially push Ri,j into a false
adjacency. The construction is sketched in Fig. 7.4.

Flow Network Construction: For each vi,j ∈ V we create two copies va
i,j and vb

i,j

in V ′; for each pair vi,j , vi,j+1 we introduce a gap vertex gi,j , for each layer a left and
right buffer vertex li and ri and a global source and sink, s and t. All the vertices v
have b(v) = 0 except b(s) = wmax · K and b(t) = −wmax · K with wmax the width of the
widest rectangle and K the maximum number of rectangles per layer.

Unless stated otherwise, each edge e has c(e) = ∞, l(e) = 0 and cost(e) = 0. The
rectangle-rectangle edges for two vertically adjacent vertices u and v are from the ub

vertex on layer i to the va vertex on layer i + 1. For each va
i,j , vb

i,j pair in G′ we add an
edge ei,j from va

i,j to vb
i,j with c(ei,j) = wi,j and l(ei,j) = wi,j . This ensures that a vertex

must receive exactly as much flow as the width of the rectangle it represents. We also
add edges going in and out of the buffer vertices: to minimize the gaps it is preferable
for the outer rectangles to get missing flow from the buffers on the outside or to route
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Figure 7.4: Parts of a flow network: outgoing edges from the source (orange), a rectangle
(blue) and a gap; red buffer rectangles; gray edges have cost 1.

excess flow to these buffers.

Edges from rectangle vertices to gap vertices are defined as follows. For a vertex vb
i,j , we

add an edge to all vertices va representing its neighbors in G on layer i + 1, and we add
edges to the gaps left and right of those neighbors. All edges to gaps have cost = 1, to
penalize the creation of gaps. Lastly we add edges from gaps to other vertices. For a
gap vertex gi,j we look at its left and right neighbors vb

i,j and vb
i,j+1 respectively. We add

edges from gi,j to all rectangles and gaps that have an incoming edge from vb
i,j and vb

i,j+1,
and assign cost = 0 for edges into rectangles, and cost = 1 for edges into gaps. We do
not penalize the outgoing flow of a gap, since we already count the incoming flow.

From this network we can easily deduce that the minimum cost flow corresponds to
the solution that minimizes total gap length: only gap vertices have a cost, hence the
flow avoids these vertices whenever possible. We can construct the network and then
solve the minimum flow problem in polynomial time. In the obtained solution, the flow
values found on each edge should represent the length of the overlap between these
elements, which allow us to construct the corresponding representation. However, in
practice the relationship between units of flow and contact length is not always direct.
Indeed, consider a 4 vertex configuration where a lies bottom left, b bottom right, c top
left and d top right, and both a and b have an edge to both c and d. Note that in such a
case a and d, or c and b, would be gaps. It is possible that a favors sending its flow to d
and b to c, which is impossible to represent as contacts in a configuration of rectangles.

Once the flow has been computed, we can locally swap the required flow between the
crossing edges to resolve those crossing patterns.

Theorem 15. Given a graph G = (V, E), the cost of a minimum-cost flow f in N
equals the minimum total gap length of any valid representation of G. An area-minimal
representation of G is constructed from f in polynomial time.
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Proof. Given any graph G = (V, E), the associated network N has production equal to
its consumption v∈V ′ b(v) = b(s) + b(t) = 0. The source produces b(s) = wmax · K flow,
which is available to every vertex on layer 1 (except vb vertices whose incoming neighbor
is va on the same layer). Any vertex va

1,j must receive w1,j units of flow, as its only edge
towards vb

1,j has capacity constraint c = l = w1,j . Because w1,j ≤ wmax and since there
are at most K vertices va

1,j on layer 1, the capacities can be satisfied. Any edge in E′

goes from layer i to i + 1, except for (va
i,j , vb

i,j), but the exact amount of flow that comes
from layer i − 1 into va

i,j will go through vb
i,j to layer i + 1. Hence for the same reason as

in layer 1, there is enough flow to satisfy the edge capacity constraints, while excess flow
is routed through (0-cost) buffers or (1-cost) gaps.

Since in this network only flow that goes into a gap vertex has a (non-zero) cost, flow
into gap vertices, and therefore also the total gap width, is minimized. The minimum
cost procedure finds this optimal flow f .

We construct a minimum-area representation R by placing rectangles row by row: we
leave buffers and gaps equal to the flow routed through the corresponding vertices, and
align all rows on the left. The total width of each row, including buffers and gaps, is
wmax · K. Since the flow through each rectangle is constant, the area of the buffers is
maximized, to minimize the area occupied by gaps.

While this method minimizes the area occupied by the drawing it will not always lead
to the representation with the minimum bounding box. To minimize the size of the
bounding box, we propose to limit the amount of flow outgoing from the source node
and incoming into the sink node. If the chosen bound is too small then the flow network
will not be realizable. We can thus perform a binary search between the width of the
longest layer Wmax as a lower bound and wmax · K as an upper bound. Assuming input
widths have integer values, this method would add a O(log(wmax · K − Wmax)) factor to
the flow runtime.

7.3 Maximization of Realized Contacts
In this section we propose algorithms that maximize the number of realized contacts. We
start with a linear-time algorithm for L = 2, followed by an integer linear programming
model for L > 2. The complexity for L > 2 remains open.

7.3.1 Linear-time Algorithm for L = 2
In this section we describe an algorithm A for the case where the input has 2 layers. On
a 2-layer graph, a vertex either has one neighbor in the adjacent layer, or more than one.
If a vertex has one neighbor we call it a T-vertex and if there are more neighbors, it is
called a fan. A block is a maximal sequence of consecutive rectangles in a layer i, for
which each horizontal contact is realized. A block from the jth until the lth vertex of row
i is the sequence (Ri,j , . . . , Ri,l), where for each k ∈ [j, l − 1] holds that (Ri,k, Ri,k+1) ∈ R.
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In a given 2-layer graph, there will always be a layer that starts on a fan, while the
opposite layer starts on a T-vertex. Assume without loss of generality that R0,0 is
a fan, otherwise swap the two rows for the duration of the algorithm. Algorithm A
starts by placing R0,0, followed by all its neighbors on the adjacent layer, from left to
right, ending with R1,j . Rectangle R1,j is again a fan, and the process of placing all
opposite-row neighbors, left to right, is repeated for R1,j and every consecutive fan, as
they are encountered. We call this placement ordering ≺.

When we add a rectangle Ri (fan or T-vertex), we always first attempt to add it next
to its horizontal predecessor, if possible (no false adjacency). Though, if the horizontal
predecessor is too far left, we place Ri in the leftmost allowed position. Let R0 be the
first rectangle in ≺, which is placed on position x0 by A. Algorithm A then proceeds by
adding R1, representing a T-vertex in the opposite row. Rectangle R1, with width w1,
is placed leftmost, on coordinate x0 + ε − w1. We then proceed to add all rectangles
corresponding to other T-vertices of R0 one by one, such that all horizontal contacts
are realized. Once a T-vertex Ri cannot reach R0, we store the number of contacts
currently realized by R0 as well as its position x0, and slide R0 rightward, to the leftmost
position x′

0 that allows a contact of ε with Ri. Note that, since we placed R1 in the
leftmost position that allowed a contact of width ε with R0, we lose at least one contact
by moving R0 rightward. If placing R0 at x′

0 ties the number of contacts of x0, then we
set x0 := x′

0. If x′
0 is strictly worse, then the representation is reset to having R0 at x0.

From that point on, every time we add a new rectangle, we attempt this shift of the
fan and update the position when we find a tie or when we realize more contacts. We
repeat this operation for each rectangle, following the order ≺, always shifting the last
encountered fan.

However, once we consider a fan Rf that is not R0, any sliding operation will be attempted
on the block containing Rf , rather than just Rf . As before, we always shift the block to
the leftmost position that realizes the contact between Rf and the newly placed rectangle.
We remember position xf that realizes most contacts, and favor the newest position on a
tie. In case moving the block containing Rf leads to strictly less contacts, we also try to
move only Rf instead. This starts a new block containing just Rf .

Theorem 16. Algorithm A computes a contact maximal valid representation with contacts
of length at least ε for a given 2-layer graph G in linear time.

Proof. We show that during the placement of rectangles by algorithm A, the invariant
holds that a representation computed for the first n rectangles in ≺ achieves a maximum
number of contacts. First observe that, we start by placing R0 and R1, such that their
only contact is realized. The invariant therefore holds at the start.

Now assume that the invariant holds after A placed n − 1 rectangles, such that the
current representation R∗ is a contact maximal representation of the first n−1 rectangles
in ≺, and realizes k contacts. Algorithm A now adds the next rectangle Rn. We show
that the new representation is contact maximal.
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The maximum number of contacts that the new representation can realize is k + 2,
because rectangle Rn can achieve at most one vertical and one horizontal contact. If
there was a representation of the n rectangles that realized k′ > k + 2 contacts, then
removing Rn would leave k′ − 2 > k contacts, which contradicts our assumption that R∗

is optimal. If Rn naturally realizes its vertical and horizontal contacts, the representation
realizes k + 2 contacts. There is no configuration where we cannot realize any contact
when adding rectangle Rn to R∗, since one of the rows extends further, and hence Rn

either can achieve its horizontal contact, or the opposing row extends at least ε and
the vertical contact can be realized. We therefore consider only the cases where adding
Rn results in a representation with k + 1 contacts. Throughout the rest of the proof,
we refer to the vertical fan neighbor of Rn, that has already been placed, as Rf . Rf

necessarily lies in the opposite layer. The only rectangles that will be moved when placing
Rn are the rectangles in the block containing Rf . Any other rectangles and adjacencies
are untouched. So it is sufficient to count the adjcencies gained and lost by the block
containing Rf and Rn to confirm that the representation of n rectangles is optimal.

• If Rn realizes only its vertical contact with Rf , then rectangle Rl, neighboring Rn

on the left, is necessarily a fan (see Fig. 7.5a)). Assume for contradiction that Rl

is a T-vertex. This implies that Rf is Rl’s only allowed vertical contact. Since
Rn achieves contact with Rf and Rf is leftmost, Rl must also be in contact with
Rf . As a result the horizontal contact with Rl always happens, contradicting our
assumption that Rn has only a vertical contact. As a consequence, Rl is a fan,
and the position for a fan is the position that maximizes contacts, favoring newer
positions (or positions more to the right) for ties. An alternative to R∗ with Rl

in contact with Rf must therefore achieve less than k contacts. Additionally, Rn

cannot be slid left of Rf even though there is a gap towards Rl, as the rectangles
left of Rf are not part in the neighborhood of Rn. Thus, sliding Rn further left
would cause false adjacencies. There is no contact maximal representation that
preserves the contact between Rl and Rn, and hence k + 1 contacts is maximal.

• If Rn realizes only its horizontal contact, then it fails the contact with Rf . We
distinguish between Rn being a fan or a T-vertex.

– If Rn is a T-vertex, then Rf is too far to the left, and the algorithm will try
to create representations where Rf is in the leftmost position that realizes a
contact with Rn: either by moving the block containing Rf , or alternatively
moving just Rf .

∗ If Rf remains in its original position, which does not achieve the vertical
contact with Rn, it means that the leftmost position of Rf , that achieves
the contact with Rn realizes strictly less contacts than the original position
of Rf in R∗. As a result, there is no contact maximal representation that
preserves the contact between Rf and Rn, and thus k + 1 contacts is
optimal (see Fig. 7.6a).
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Figure 7.5: Two configurations where Rl is necessarily a fan (blue) or a T-vertex (yellow).
(a) If Rn can only achieve a vertical contact, Rf is a fan. (b) If Rn can only achieve a
horizontal contact and is a fan, Rf is a T-vertex.

∗ When the block containing Rf is shifted to the right to create the alter-
native representation that ties the number of contacts of R∗, at most
one vertical contact must have been lost, to gain the vertical one. Oth-
erwise, Rf can give up its horizontal contact to achieve the same result
(see Fig 7.6b). Thus, while Rn realises 2 contacts, Rf lost one and the
representation realizes k + 1 contact. This alternative representation is
optimal and used by A instead of the representation where Rf is not
moved rightward.

∗ If the block containing Rf does not lose contacts when shifted, then the
overall representation will gain the contact between Rn and Rf contact.
This configuration is optimal because it achieves k + 2 contacts (see
Fig. 7.6c).

– If Rn is a fan, then rectangle Rl, again neighboring Rn on the left, must be
a T-vertex, since Rf cannot be an empty fan (see Fig. 7.5b). Assume for
contradiction that Rl is a fan, then A would try to realize the vertical contacts
between Rf and the fans Rl and Rn on the other row. In this case Rf would
necessarily be an empty fan, and hence A will try to sacrifice the contact with
the left neighbor of Rf , to gain the vertical contact between Rf and Rn. As
there are no T-vertices for Rf to lose contacts with, A will always find at least
a tie between the configuration that has the vertical contact between Rf and
Rn, and R∗, and hence prefer the new configuration. This contradicts our
assumption that Rn realizes only its horizontal contact, and hence Rl must be
a T-vertex. When Rn is added, an alternative representation is created with
Rf shifted to the leftmost position that realizes the contact with Rn. Since
this configuration is not chosen by A, the configuration realizes less than k + 1
contacts, and therefore k + 1 contacts is optimal.

Thus, after adding Rn to R∗, algorithm A produces a representation that realizes k + 2
contacts, if it is possible, and k+1 otherwise, which is optimal. The invariant will therefore
still be true after A added all rectangles, producing a contact maximal representation of
our input graph.

The algorithm considers each rectangle either only once, or as many times as its degree
when an alternative shifted representation is created. As the input graph is planar, the
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Figure 7.6: Three configurations where T-vertex Rn does not realize vertical contacts
with Rf initially. We move Rf and either (a) reset if the number of contacts is strictly
worse, or save when we find (b) a tie, or (c) an increase in contacts.

Figure 7.7: Edge case where the prefered position of the fan vertices (red and blue) causes
a point contact on fan vertices (orange and green)

algorithm runs in linear time.

As one may already have realized, in some cases, when looking at two sequential fans
that are not in contact, two T-vertices will be in a point contact. This happens when the
T-vertices cannot overlap without creating a false adjacency, as we show in see Fig 7.7.

7.3.2 ILP
To solve the contact maximization problem on L > 2 layers we propose an ILP formulation,
which intuitively works as follows. We create a binary contact variable c(e) for each
edge e in the input graph. If a contact is not realized, we set c(e) = 1 to satisfy the
position constraints, otherwise we can set c(e) = 0. To handle false adjacencies we add
for each rectangle a constraint on the first false contact that happens from the right and
left on the row above, if they exist. We use hard constraints on the rectangle coordinates
to prevent the false adjacencies. The objective is to minimize the sum over all contact
variables, under all these constraints, to maximize the number of realized contacts in a
solution.

Our integer linear programming formulation M , which can be used to find optimal
solutions to the contact maximization problem is as follows. In this formulation, the
constants are the width wi,j of each rectangle, the list E of contacts, the minimal length ε
of a contact and a large integer M for indicator type constraints. Additionally, we
have the lists FL and FR of false adjacencies, defined as follows. Consider the rectangle
representing vertex vi,j and its neighbors N = {vi+1,k, . . . , vi+1,l} on the row above. For
each such vertex vi,j , we store the pairs (vi,j , vi+1,k−1) ∈ FL and (vi,j , vi+1,l+1) ∈ FR, if
vi+1,k−1 and vi+1,l+1 exist. These pairs represent the false adjacencies of Ri,j with the
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rightmost rectangle left of N and the leftmost rectangle right of N , respectively. Note
that preventing these two false adjacencies will prevent all false adjacencies of Ri,j with
rectangles in row i + 1, as long as the order of the rectangles in both rows is correctly
maintained.

The variables of the ILP are the following. We use xi,j as variables for the position
of each rectangle, representing the bottom left corner of the rectangle, and Boolean
variables c(v, v′) which indicate that a contact is not realized between v and v′. We start
by stating the optimization function, which minimizes the sum of all c variables. In
practice, this means we maximize realized adjacencies.

minimize
(v,v′)∈E

c(v, v′) (7.1)

The following inequalities ensure firstly, that there is no overlap between rectangles on
the same layer (2), and secondly, check whether the horizontal contact is realized (3): if
xi,j is too small, then c must be set to 1, and hence the represented rectangle is too far
left to have the contact naturally.

xi,j + wi,j ≤ xi,j+1 ∀(vi,j , vi,j+1) ∈ E (7.2)
xi,j+1 ≤ xi,j + wi,j + c(vi,j , vi,j+1)M ∀(vi,j , vi,j+1) ∈ E (7.3)

The next inequalities ensure that the contacts between rectangle Ri,j and all of its
neighbors on layer i + 1 are realized, such that the left side of a neighbor is left of the
right side of Ri,j , or symmetrically, the right side of a neighbor is right of the left side of
Ri,j . Again, if we cannot satisfy the inequality with c = 0, then it is set to 1, and since
M is a large value, the inequalities are trivially satisfied.

xi+1,j′ ≤ xi,j + wi,j − ε + c(vi,j , vi+1,j′)M ∀e(vi,j , vi+1,j′) ∈ E (7.4)
xi,j ≤ xi+1,j′ + wi+1,j′ − ε + c(vi,j , vi+1,j′)M ∀e(vi,j , vi+1,j′) ∈ E (7.5)

Finally, we model false adjacencies using the pairs stored in FL and FR. For a pair in FL,
the rectangle Ri+1,j′ , with which Ri,j has a false adjacency, should stay left of Ri,j . This
forces the left side of Ri,j to be right of the right side of Ri+1,j′ . Symmetrically, pairs in
FR prevent false adjacencies when Ri+1,j′ is to the right of Ri,j .

xi+1,j′ + wi+1,j′ ≤ xi,j ∀(vi,j , vi+1,j′) ∈ FL (7.6)
xi,j + wi,j ≤ xi+1,j′ ∀(vi,j , vi+1,j′) ∈ FR (7.7)
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Theorem 17. Solving ILP model M optimally, results in an optimal solution for the
contact maximization problem.

Proof. First, we show that whenever a variable c is set to zero, then a contact is realized.
Let us assume that c = 0, then one of the following two cases applies.

• If c(vi,j , vi,j+1) = 0, then the horizontal contact between Ri,j and Ri,j+1 is realized.
Since xi+1,j ≤ xi,j + wi,j and xi,j + wi,j ≤ xi,j+1, then xi,j + wi,j = xi,j+1. Thus
the coordinate of the right side of Ri,j lies on the left side of Ri,j+1, and there is a
horizontal contact.

• If c(vi,j , vi+1,j′) = 0, then the vertical contact between Ri,j and Ri+1,j′ is realized.
We have both xi+1,j′ ≤ xi,j + wi,j − ε which means that the left side of Ri,j lies left
of the right side of Ri+1,j′ and xi,j ≤ xi+1,j′ + wi+1,j′ which means that the right
side of Ri,j lies right of the left side of Ri+1,j′ .

Finally, since we minimize the sum of the c values, as many as possible are set to 0. Each
c value set to zero corresponds to a realized adjacency, and thus the number or contacts
in the resulting representation is maximized.

7.4 Chapter Conclusion
In this chapter, we studied layout algorithms for semantic word clouds where the un-
derlying graph is layered. We found that we could compute an area minimal layout in
polynomial time, and could maximize contacts for two layers in linear time. Lastly, we
introduced an ILP formulation to solve the problem for an arbitrary number of layers.
The complexity of the problem for L ≥ 3 layers remains open.

Our problem formulation differs from that of the CROWN problem on one significant
point, namely, rectangles representing non-adjacent vertices should not share a contact.
This is a natural restriction for the design of semantic word clouds, and it could be
interesting to understand it’s impact for the currently known hardness and approximation
results.
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CHAPTER 8
Interactive Semantic Word Clouds

Semantic word clouds offer an interesting range of theoretical challenges, but as we have
shown in Chapter 1 and 7, the most interesting problems are NP-complete. This implies
that there are no efficient exact algorithms to exploit for the human-in-the-loop approach.
To remedy this, we present in this chapter an interactive semantic word cloud layout
tool, the leaves the optimization tasks in the hands of the user. To facilitate the user’s
task, a high-quality layout is presented, that can then be iterated upon and fine-tuned
to obtain a final layout of high-quality that is also aesthetically pleasing according to
the user’s personal criteria. This chapter is based on joint work with Michael Huber and
Martin Nöllenburg, and was presented at PacificVis 2023.

The first layout algorithm for semantic word clouds was presented by Cui et al. [CWL+10],
and their technique motivated further work into efficient systems to create semantic
word cloud visualizations. While there are several algorithms to generate such word
clouds [BKP14], there is currently no interactive tool that allows the user to fine-tune
these semantic word clouds in a human-in-the-loop way. The online tool implemented
by Barth et al. [BKP14] lets a user generate layouts using many different algorithms
and allows for some limited dragging operations on the words, as well as deletion but
neither operation is supported by algorithms that update the layout. The number of
relevant word pairs in a typical data set far exceeds the number of word pairs that can be
adjacently placed by any planar word neighborhood structure. Fully automated solutions
must therefore favor some of the many semantic links to be represented at the cost of
missing others, purely based on numeric similarity scores. But only a human user, having
deeper semantic knowledge about the underlying text, knows which of the chosen pairs
are most relevant, which ones are missed, and which ones are less important. Hence,
human-in-the-loop fine-tuning can lead to more user satisfaction and semantic accuracy
of the word clouds as meaningful text summary visualizations. While a tool such as
EdWordle [WCB+18] allows the user to easily edit a word cloud, having full manual
control can be overwhelming for humans, and one should rather aim to combine the
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Figure 8.1: Semantic word cloud initially generated by our system from the “data and
information visualization” Wikipedia page on the left. Realized adjacencies are shown
in green and the main missing adjacencies in yellow. On the right the same word cloud
after local user improvements. More adjacencies are realized, remaining large missing
edges are shorter, and we can see three clusters emerge.

computational power of automated algorithmic solutions with the expert knowledge of
the user. While the authors of EdWordle argue that a semantic word cloud could be used
as input to their system to be edited, there is currently no simple way of importing a
semantic word cloud into their tool. Additionally, any updates on the layout are focused
on preserving existing neighborhoods and the compactness of the layout. Since the
algorithm has no knowledge of the semantic relationships of the individual words in the
word cloud, a single displaced word could completely perturb the existing neighborhoods,
leading to a flawed layout, where the user has no guarantee or feedback about its semantic
quality.

To address this gap, we introduce MySemCloud, an interactive human-in-the-loop se-
mantic word cloud editor. Our tool generates a semantic layout of high quality using an
algorithm inspired by Cui et al. [CWL+10], that performs well on the relevant evaluation
criteria for word clouds [BKP14]. The main contributions of MySemCloud concern the
subsequent editing steps and are two-fold. Firstly, we propose metric guides which allow
the user to visualize the underlying semantic relationships within the word cloud, e.g.,
via the links between related words as shown in Figure 8.1, as well as guide the user
towards potential improvements of the layout. Secondly, we propose semantic-enhanced
interactions. While most interactive systems focus on changing the appearance of the
words, our system is focused on preserving the semantic quality of the word cloud.
Accordingly, MySemCloud includes a smart dragging tool that considers the neighbors
of dragged words and updates their position while preserving the visual stability of the
layout. Additionally, extending EdWordle’s compactifying layout updates, our system is
able to consider the semantic relationships when updating the layout, which allows us to
focus on maintaining the most meaningful adjacencies.

Structure of the chapter: We first present an overview of the word cloud literature
and current state-of-the-art layout algorithms (Section 8.1). Then, in Section 8.2 we
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describe our layout algorithms, as well as the quality metrics we are designing our system
for. In Section 8.3 we introduce the semantic-aware display as well a our semantic-
enhanced interactions. Lastly, in Section 8.4, we present an user study to evaluate our
system. MySemCloud can be accessed on ac.tuwien.ac.at/mysemcloud, where
the code has been made available as well.

8.1 State of the Art
Word clouds were introduced in the early 2000’s [VW08], but were known then as
tag clouds. In tag clouds, the words that occur the most in an input text are scaled
proportionally to the frequency at which they appear in the data set and displayed in
lines, laid out alphabetically or by descending frequency. To improve on these layouts,
more compact display methods were proposed [SKK+08] that focused on packing the
words more tightly. These compact tag clouds were quite similar to visualizations created
by designers by hands, as for example pile of words graphics that appeared in 2008
in the Boston Globe [Sch08]. Word clouds were further popularized by the Wordles
website [VWF09], that allowed users to generate their own tag clouds, where the words are
colored, displayed in a compact setting and sometimes rotated vertically. Appealing word
clouds are often more than just compact layouts. For example, in Shapewordles [WCZ+20]
the user chooses a (potentially complex) shape to draw the word cloud in. Extensions
to the traditional word cloud design also include maps, where words are displayed on
geographically significant areas [BCL+16, BGL+21, LDY18].

8.1.1 Semantic Word Clouds

The concept of using word placement in the plane is a logical way to encode more
information within a word cloud. With semantic word clouds, the spatial distance
between two words carries semantic meaning, namely placing closely related words
nearby each other. While there exist different methods to compute a word similarity
matrix [SSW+17, CWL+10, WPW+11], our focus lies in the layout algorithms. Cui et
al. [CWL+10] proposed one of the first methods to generate such a semantic layout.
Using multi-dimensional scaling (MDS), they computed 2D-coordinates for the words
that approximate the desired relative distances to the other words. This technique usually
results in a sparse layout. To avoid white space, they construct a Delaunay triangulation
of the layout, on which they use a system of attractive forces preserving the neighborhoods.
A similar result can also be achieved using a system of forces not on a triangulation of
the layout but on the similarity graph itself [XTL16]. Wu et al. [WPW+11] proposed
an alternative to the force-based compaction by using seam carving. They identify
vertical or horizontal sections of the drawing that are empty and remove them from
the drawing. The semantic word cloud layout problem has also inspired research with
a more theoretical focus. When representing the words by their rectangular bounding
boxes, it is possible to transform the semantic word cloud problem to one reminiscent of
rectangle contact graphs. In contact graphs, the edges of an underlying graph are meant
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to be realized by a proper edge contact between two boxes representing their respective
vertices. In the Contact Representation of Word Networks (CROWN) problem, the
number of edges of the input similarity graph that are realized in the contact graph has
to be maximized. Barth et al. [BFK+14] proposed approximation algorithms to solve the
problem on restricted graph classes which were later improved by Bekos et al. [BvDF+17].
Barth et al. [BKP14] compared multiple semantic word cloud algorithms using the most
common semantic word cloud evaluation metrics. To our knowledge, there is currently no
semantic word cloud layout system that offers an interactive component. This is a natural
extension of the model when considering the amount of interest that interactive word
clouds have generated [JLS15, KLKS10, WCB+18]. The dynamic semantic word clouds
introduced by Cui et al. [CWL+10] have been studied further. They explored word clouds
generated from a collection of documents at different timepoints. Not only was semantic
relatedness encoded with proximity, but placement was also used to accommodate later
changes of the data, e.g., words needing space to grow between two timestamps. Binucci
et al. [BDS16] designed a layout algorithm that creates such word clouds over time
without a-priori knowledge of the complete data collection.

8.1.2 Interactive Word Clouds
Visualization construction and authoring tools are of great interest to the information
visualization community. Thus, creating interactive tools was a natural next step to the
growing popularity of static word cloud layout systems. One of the first tools created
was ManiWordle [KLKS10] which allowed the user to change the font, the color and
orientation of the words as well as their position to potentially modify the whole layout.
The interactive system allows users to fine-tune an automatically generated layout to
match their personal aesthetic criteria. To maintain a compact layout, ManiWordle
recomputes a layout using the Wordle algorithm but only considering the unedited words.
In WordlePlus, Jo et al. [JLS15] extended these interactive environments to multitouch
systems. To update the word cloud after the changes, boundary words are moved in
the gaps left by a potential edit. While the interactive component is positively received,
updating the word cloud itself remains a challenge as both solutions tend to disturb
the mental map of the user significantly. Wang et al. [WCB+18] proposed EdWordle,
a solution using rigid body dynamics to preserve the neighborhoods of the unedited
word as well as to preserve stability of the layout. While the authors of EdWordle argue
that their tool allows users to edit semantic word clouds without destroying the layout,
there is currently no straightforward method of generating an initial semantic layout
with EdWordle, and additionally the user has no ability to conserve the semantic quality
during the edits. If a user moves a word, its direct neighborhood is lost, and the user has
no knowledge of whether or not significant semantic information was lost. Similarly, while
the remaining neighborhood is preserved, there is no guarantee of its actual semantic
quality. The visualizations that were created by designers using EdWordle are reminiscent
of the semantic word cloud thematic clustering, which highlights their strength as an
information communication tool, but to create those word clouds from scratch is time
consuming and can be overwhelming. Also, if the user does not have expert knowledge
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1
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Figure 8.2: Steps to create an initial semantic word cloud layout: (1) stop words are
removed, the remaining words are stemmed, and the top k words are selected, (2) from
those words and (2’) the similarities computed from the co-occurrences in the input text
(3) the words are laid out in the plane using MDS, and (4) attractive and repulsive forces
are activated to obtain a compact, but overlap-free initial semantic word cloud layout.

of the text, they might not have the information necessary to create such a layout. Thus
there is a need for a tool which provides a good quality semantic layout as a starting
point that a user can easily fine tune subsequently, as well as information about the
semantic similarities of the words in the text and interactions tailored towards preserving
the semantic relationships in the layout.

8.2 Semantic Word Cloud layout
The general problem of generating semantic word clouds has been studied in depth by
Barth et al. [BKP14]. Here we present our method in detail, which has been inspired
by several works and tailored to our needs and implementation choices (JavaScript and
D3.js). There are two main steps to the generation of a semantic word cloud layout. The
first step involves generating from an input text a similarity graph and the second step
concerns the actual layout of the words in the plane. An overview of our system can be
seen in Figure 8.2. The goal is to generate a layout, where the relative position of two
words indicates their similarity or lack thereof. There exist multiple metrics to describe
the relationships between the words in the input text, and in the visualization, word
pairs that score highly on the chosen relatedness metric should appear closer together
than word pairs with a low score. This results in thematic clusters in the final layout,
where the user is then able to understand the content and how different terms are related
in the text source.

8.2.1 Constructing the Semantic Similarity Graph
The first step is to extract the words from the given text, which will later form the
vertex set of our similarity graph. Using the natural language processing (NLP) library
Natural [UEM11], we first remove irrelevant words from the text, for example “that”,
“the”, “for”, ... that are not significant and should not be displayed. We then use
stemming on the remaining words, meaning words are shortened to their meaningful
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stem, e.g., the words “explanation” and “explaining” would both be understood by the
algorithm as their stem “expla”. For each of these stems we choose one of the words of
the text as the representative of all the words with the same stem. This allows us then to
accurately rank word frequencies, and to choose the top k words that are found (see step
(1) in Figure 8.2). We found that in most cases k = 50 is sufficient to cover the main
themes of the text without overloading the visualization. This step is already sufficient
to create a word cloud without additional semantic information. Finally for each chosen
word, the number of times the stem occurs is summed up and we scale the font size of
the word proportionally to this frequency.

To evaluate word similarities, further pre-processing is required. For a pair of words
w1, w2, their similarity is calculated using the Jaccard similarity, which performs slightly
better than the cosine similarity [BKP14], a common alternative. We calculate it in the
following way. Let S(w) be the set of sentences the word w appears in. Then the Jaccard
similarity of two words w1, w2 is a score in [0, 1] given by:

s(w1, w2) = |S(w1) ∩ S(w2)|
|S(w1) ∪ S(w2)| .

From this we create a complete weighted graph G = (V, E), where the vertices in V
represent the top k words selected and the edges are weighted by the Jaccard similarity
s(w1, w2) for each edge (w1, w2) ∈ E. Some word pairs might have little or no similarity,
meaning the two corresponding words rarely occur in the same sentence; thus we remove
edges with Jaccard similarity below some threshold σ from the graph. We set σ = 0 as a
default, removing only edges corresponding to words that never co-occur (see step (2) in
Figure 8.2).

8.2.2 Creating the Initial Layout

Using multidimensional scaling (MDS) [GKN04], we initialize the positions of the vertices
of G in the plane. At this step some words may be tightly clustered together and overlap,
while others may be spread much further apart (see the example layout of step (3) in
Figure 8.2). We then apply a forced-based system to the graph to adjust word positions,
meaning we assign forces to the edges and vertices of the graph and then use these forces
to simulate the motion of the vertices. It is important that words do not overlap one
another so we must consider node overlap removal methods [CPPS20] that rely on a force
system to naturally extend our layout algorithm. We calculate the distance between each
pair of words in the x and the y dimension (see Figure 8.3a). If their bounding boxes
overlap, the words are either pushed vertically or horizontally away from one another,
in the direction that resolves the overlap fastest. That is, if there is more overlap in
the x-dimension, the force will be applied vertically, thus ensuring a top/bottom or side
contact between the two boxes remains after the resolution of the overlap (see step (4)
in Figure 8.2). This method is similar to the Force-Transfer-Algorithm introduced by
Huang et al. [HLSG07].
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(b)

(c)

(a)

Figure 8.3: The force system to create the initial layout, (a) shows the repulsive forces
that push overlapping words away from one another to prevent the bounding boxes from
overlapping, (b) the attractive forces that pull all words toward their similar neighbors,
proportionally to their respective similarity score and (c) the attractive forces that pull
all words towards the center,

To obtain a compact layout, we must also apply attractive forces between each pair
of words that is connected by an edge in G as well as a centering force on every word.
Consider a word w1 that shares an edge with a word w2. Then there is a force from
the center point of the bounding box of w1 oriented towards the center point of w2 that
is scaled by the value s(w1, w2), meaning more strongly related words have a stronger
attractive force (see Figure 8.3b). To ensure that our layout is displayed in the center
of the canvas, we also add a weak attractive force from each word to the center of the
canvas (see Figure 8.3c). Since our graph is dense, the force system might struggle to
find a stable layout immediately, thus, we let it recompute iteratively new positions while
decreasing the strength of the forces before we stop its computation and we obtain a
final layout. Since our system is interactive, it is undesirable to let the system stabilise
itself for too long as it affects the responsiveness of our system negatively. But it is also
necessary to not stop it too early either to ensure our layout is of sufficiently good quality.
We found experimentally that 1000 iterations, which could be computed in about 230ms,
are a good compromise.

8.2.3 Semantic Word Cloud Quality Metrics
To design an automatic word cloud system, we often rely on optimizing quantitative
metrics that measure the aesthetic qualities that are desirable in such a visualization.
For classical, non-semantic word clouds, creating a compact design is the main visual
criterion, and it remains an important aspect for semantic word clouds, too. But we
must also consider metrics for the semantic quality of the visualization. Next, we
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introduce the main quality metrics that are relevant to evaluate semantic word cloud
layouts [BFK+14, BKP14, BvDF+17].
The semantic quality can be measured in two main ways, the first being realized adja-
cencies [BFK+14, BKP14, WCB+18]. When modeling the words as their rectangular
bounding boxes, a realized adjacency corresponds to a segment contact between two
boxes that share an edge in the semantic graph, see the highlighted edges in Figure 8.4.
As this edge is weighted, the metric is weighted as well, meaning that it is better to
realize a contact between two highly related words over one or more contacts of low
weight. This metric captures the notion that the simplest way to understand that two
words are related is if they are directly next to one another. As the boxes themselves are
an abstraction of the words, rather than checking for a proper contact between two boxes,
we check if the bounding boxes of two words w1 and w2 overlap. More precisely, assume
w2 has the smaller bounding box. We artificially inflate the size of its bounding box by
20% and check if it overlaps with the bounding box of w1. Experimentally, we found
that limiting a contact to a distance of 0 between two bounding boxes was too strict and
words that visually appeared to be in contact were not counted as not realized. For a
semantic input graph G = (V, E) and a word cloud layout Γ of G, the value r(Γ) ∈ [0, 1]
of the realized adjacencies E′ ⊆ E according to the above definition is calculated in the
following way:

r(Γ) = e∈E′ s(e)
e∈E s(e) ,

where s(e) is the similarity score (weight) of the edge e in G. To realize every adjacency,
the input graph would need to be planar [BGPV08]. But semantic similarity graphs
are dense, almost complete graphs, so this value r(Γ) is often low. Nevertheless it is
still an effective method to compare two layouts as that value can easily double from
one drawing to the other. For an arbitrary graph G, finding the maximum realizable
adjacency value is an NP-hard problem [BFK+14]. It was found that the cycle cover
algorithm [BvDF+17] has the best performance for this metric [BKP14].
The second semantic quality metric is distortion [BKP14], which compares the distance
of each word pair to their similarity score. Distortion can be seen as a relaxation of
realized adjacencies as two highly correlated words do not need to touch but can instead
be sufficiently close to indicate a meaningful relationship in the visualization, as shown by
the colored edges in Figure 8.4. It also reflects the notion that unrelated words should not
be close to one another, which the realized adjacencies metric fails to properly account
for, since in its commonly accepted definition there is no penalty when two unrelated
words touch. But with distortion, if their similarity value is low then they should be
far away from one another in the plane. The distortion value d(Γ) of a layout Γ of G is
computed using Pearson’s correlation coefficient δ(Γ) between the (dis)similarity matrix
and the distances realized in the plane:

δ(Γ) = 1 − (u,v)∈E(1 − s(u, v) − (1 − s))(dΓ(u, v) − dΓ)

(u,v)∈E(1 − s(u, v) − (1 − s))2(dΓ(u, v) − dΓ)2
,
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where 1 − s((u, v)) corresponds to the dissimilarity of u and v, (1 − s) is the average
dissimilarity value in G and similarly, dΓ(u, v) is the minimum distance between the
bounding boxes of u, v in Γ and dΓ is the average distance in Γ. The distortion is then
defined as

d(Γ) = δ(Γ) + 1
2 ,

as δ(Γ) has its values in [−1, 1]. A value of d(Γ) = 1 indicates that every word is
positioned at an ideal distance from any other word, 0 indicates the inverse and a value
of 0.5 signals that there is no correlation between similarities and distances. Barth et
al. [BKP14], who first introduced the distortion metric, found that the seam-carving
algorithm [WPW+11] performed well with this metric.

Both metrics help us gauge the semantic quality of a layout. To evaluate its overall
aesthetic quality, one can further consider compactness [BKP14, WCB+18]. The com-
pactness c(Γ) ∈ [0, 1] of a layout Γ of G represents the ratio of the space used by the
words over the total space available in the bounding box of Γ. More precisely,

c(Γ) = v∈V a(v)
a(Γ) ,

where a(v) represents the area of the bounding box of v and a(Γ) is the area of the
bounding box of the entire word cloud. Most non-semantic word cloud layout methods
achieve high values of compactness as they can form a tight packing without considering
relative word placement. When semantics are considered, the need to separate some
words from each other to obtain good distortion values often leads to lower compactness
values.

There exist further metrics [BKP14] to evaluate the visual quality of a word cloud layout,
namely uniform area utilization, which requires the words to be evenly distributed over
the canvas. One can also consider the aspect ratio of the layout, where a ratio of 1 could
be desirable, or one closer to traditional media formats like 16:9, in contrast to extreme
aspect ratios, which might make the visualization difficult to read.

As our main interest point is the semantic quality of the layout and how it can be
maintained during interactive steps, we will focus our attention on the realized adjacencies
and distortion values of our layout, but retain the compactness metric in our quantitative
evaluation as it is the most established of the three aesthetic layout quality metrics.

8.3 MySemCloud
MySemCloud is designed as a tool for a general public audience, with no deeper design
expertise. It is created for users who wish to summarize familiar texts with informative
word clouds in different media forms (presentation, social media) and focus on the
information delivery. The target user is expected to have expert knowledge of the input
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A

C

B

O
Figure 8.4: Word O is strongly connected to every other word. It successfully realizes
its adjacency with word A (green highlight), but not with the word B (red highlight) as
the boxes do not touch, but the distortion value with word B is good (green edge) as
they are still close, unlike the distortion value with word C (red edge). The compactness
corresponds to the ratio of the blue area over the area of the gray bounding box.

text, but limited expertise in graphic design. MySemCloud should be simple to use to
ensure the user can quickly achieve a desired result. Therefore we focused on repositioning
operations that are directly made on the visualization canvas. It is meant to be an
alternative to existing editing tools which focus heavily on aesthetics and extensive design
expertise.

In this section we present the technical details of our novel interactive semantic word
cloud editing tool MySemCloud. Typically, a word cloud for a given text computed using
the approach outlined in Section 8.2 is of good quality but does not take subjective user
preferences into account yet. Since current algorithmic methods cannot predict which
semantic relationships a user prefers to highlight over others, MySemCloud implements
intelligent interaction modes and visual aids meant to guide the user in fine-tuning the
computed word cloud themselves.

To help the user during their desired editing steps, MySemCloud provides two smart
support tools, a semantic-aware display and semantic-enhanced interactions. All of these
tools can be toggled on via the user interface Fig. 8.5.

8.3.1 Semantic-aware Display
The metric guides are a system of display layers meant to translate the underlying
semantic data into visual cues that help the user understand and edit the layout while
optimizing its visual and semantic quality. Specifically they correspond to three options
that each can be toggled on or off together or separately and change the user interface.

The adjacencies metric guide lets the user display the edges of the semantic word
similarity graph. When toggled on, for every edge in the semantic graph whose endpoints

126



8.3. MySemCloud

Figure 8.5: The user interface of MySemCloud, with the information visualization
Wikipedia page as an input dataset.

are reasonably close to each other in the visualization to be considered an adjacency
(see Section 8.2.3), the edges are displayed using a green segment between the center
points of the two words corresponding to the edge’s endpoints. The width of the segment
is scaled proportionally to the similarity value of the edge. Additionally, some missing
adjacencies are also shown in yellow. Since the graph is very dense, we only focus on
showing the most significant missing contacts in the graph. We sort the list of missing
adjacencies and select the ten highest-weight edges that are not realized, as shown in
Figure 8.6a. This helps the user see where strongly connected components lie as well as
the main missing adjacencies.

To ensure that all the data is visible, we offer a secondary view: when selecting a specific
word using the right click, we replace the display of the main missing adjacencies of the
cloud, with a display of all the edges that are incident to the selected word as shown in
Figure 8.7. When the adjacency metric guide is active, if a user wants to move a word,
they have the information of the word’s adjacencies in its starting position, adjacencies
that will likely be lost, and the adjacencies that might be realized in its new neighborhood,
and thus make a decision of how to best adjust the position of a word. The user might
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(a)

(c)

(b)

Figure 8.6: The different metric guides, (a) shows the realized adjacencies guide with
the realized edges in green and the strongest missed adjacencies in yellow, (b) shows the
heat map that indicates the positions with the highest distortion values for the selected
word “visualization" in red and highlights the five most misplaced words, and (c) shows
the compactness metric guide with the words stretching the bounding box highlighted.

Figure 8.7: The right click operation under the adjacencies metric guide show the five
links of the selected word “Archived”. We see one realized adjacency with “visualization”
and five missing ones.
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also decide which missing adjacencies are globally too important not to be realized and
quickly identify those in the general view.

The distortion metric guide shows to the user which positions are, or are not,
semantically meaningful. When selecting a word with the right click in the distortion
view, a heat map will be displayed, where a darker green shade indicates positions that
achieve high values for the distortion metric for the chosen word, and pale yellow shades
represent positions that realize low values for the same metric. To create the heat map, we
produce a tiling of the bounding box that the word cloud currently occupies. We compute
a new distortion value by updating the length of the edges incident to the selected vertex
only, then use a color gradient to associate a shade with the values obtained on a scale
from dark green to pale yellow. This creates a color scale that indicates in which areas
of the cloud the strongest neighbors of the selected word lie, and in which area the
unrelated words are. The resulting view can be seen in Figure 8.6b. When turning
the metric guide on, the words with the most negative impact on the distortion are
highlighted in grey. To compute this, we calculate for each edge e of the input graph an
ideal length ℓ(e) = (1 − s(e))D

2 , where D is the longest distance between two words in the
visualization. We calculate the penalty, i.e. the difference between the ideal length and
the actual length of e. If two words are unrelated and the difference is positive, they are
too close and the penalty is squared. For each word we sum the penalties incurred with
all other words, and finally highlight in grey the five words that achieve the highest sum.

Lastly, the compactness metric guide helps the user create a more space-efficient
layout. When active, the bounding box of the word cloud is displayed, and the words that
are on the boundary are highlighted (see Figure 8.6c). A user interested in creating a
more compact layout can then select a boundary word and, using any of the two semantic
metric guides, find a new suitable position that results in a more compact layout. This
guide can be used alone, but as it only optimizes towards compactness, it is more relevant
for semantic word clouds when used alongside the distortion or adjacencies guide. When
used with a semantic guide, the user can more easily consider the global appearance of
the word cloud while improving its semantic quality.

The three different views can be used individually or in any combination. Thus, the user
can choose how to edit the layout in a way that can preserve the important neighborhoods,
or they can choose to improve it by using the information from the underlying data set.
While some views could potentially contain more information, we chose to prioritize
simpler views to encourage the user to layer views on top of one another.

8.3.2 Semantic-enhanced Interaction
The default interaction step of MySemCloud is a drag-and-drop operation, where the user
moves a word from one place to another. Once the new word is in place, we resolve any
overlaps that were induced by the move. These edits cause minimal disturbances of the
user’s mental map and are useful for precise refinements of the layout. We additionally
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provide two semantic-enhanced edit modes. Updating a force-based layout is often a
challenge: a single local move can greatly perturb a graph’s layout. Thus, our semantic-
enhanced interactions are not only focused on incorporating the semantic graph with the
interaction, but also on maintaining the stability of the previous layout. After any move
is done by the user, the values of the quality metrics of the layout are updated to give
the user direct feedback about how much impact the move they made has had.

The neighborhood-follows mode helps preserve the distortion and adjacencies in
the graph. Specifically, when this mode is toggled on and a word is moved, the positions
of its strong neighbors will be updated as well. There are two main components to this
step.

The first component concerns the selection of the vertices whose position should be
updated. We compute a breadth-first search tree of G rooted at the moved word w1, and
add vertices from that tree to the relevant vertices list in the following way. We first
consider all the children of w1. If those have similarity value with w1 higher than our
threshold θ, they are added to the list. We then look at the children of those selected
vertices. We compute the ratio of their similarity value with their parent over their depth
in the tree. If those are higher than θ, they are similarly added. We continue down the
tree using the same ratio of similarity with the parent divided by depth of the vertex
until all vertices have been considered. This method ensures that we are less likely to
select grandchildren of w1, and will do so only if they are strongly related to their parent
(and that parent is strongly related to w1). We set θ = 0.1.

The second component is the update of the layout itself. First the non-overlap forces
and attractive forces are turned off. An anchoring force is added to every word, oriented
from the center point of the word to its current position at the start of the move. For
each edge linking a vertex of the relevant vertices list to their parent, we reactivate the
attractive forces in the following way: all edges between w1 and its children in the list
are reactivated with their full strength, all the edges between the chosen children of w1
and their own chosen children will be reactivated at partial strength, and every further
edge will have its strength decreased proportionally to their depth in the BFS tree of w1.

Finally, when the new positions are computed, the anchoring forces of the moved
neighbors are updated to be directed to their current position, the overlap removal forces
are reactivated and we compute the final layout. Using this move, when a word is dragged,
its highly similar neighbors will follow it, thus preserving the important adjacencies in
the graph. Since those following words might have strong adjacencies themselves, we
search deeper in the tree to find if some are significant enough that further words might
be moved as well. The anchoring force pulls any following words back towards their
starting position. This helps to maintain the stability by not permitting the moved words
to go too far. It also avoids significantly disturbing the distortion value of the layout as
can be seen in Figure 8.8.

130



8.3. MySemCloud

Figure 8.8: “Bar” is moved to the position marked by a red cross using the neighbors
follow mode, the algorithm selects “show", “chart" and “comparison" as its significant
neighbors. “Comparison" was close to the new position and is able to realize the contact
after the move. “Chart" and “show" also move closer to “bar" but “show" has more
similar neighbors in the upper part of the visualization and thus does not move too far
away.

The fill-holes mode aims to preserve the compactness without damaging adjacencies.
A common issue with interactive word clouds is that when a word is moved, the space left
behind should be filled to re-establish the compactness of the layout. In MySemCloud, we
resolve this issue by reactivating the forces of the system similarly to how we generated
the first layout. Specifically all the attractive forces corresponding to the edges are
reactivated, as are the centering and the non-overlap forces. This allows the layout to
re-compactify itself, in a manner where words that are more strongly related to one
another will more likely be pulled together into the hole created by a word move than
weakly related words. This operation can also be triggered with a button, without
needing a move.

When used together, these interactive modes tend to update the layout significantly such
that a user’s mental image might be disturbed. The fill-holes mode tends to increase
the value of realized adjacencies, as it attempts to close the gaps between words. The
neighbors-follow mode can also be used for larger updates: when wanting to place a new
topic in an entirely new area of the layout, it can effectively allow the user to move a
cluster of related words at once.

MySemCloud further contains a mode to toggle the bounding boxes of the words, as it
makes it easier to notice directly if the contacts are realized or not. This is also helpful
with compactness as one can quickly spot gaps in the rectangle packing. It also contains
an undo button which reverts the layout to its state before the last move was executed,
as well as a button to save a certain state of the layout. The user can then load any
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saved state at any point in the editing process, or recover an unsaved state using the
undo button. Lastly, the values of the metrics are displayed for the current layout, the
previous layout, as well as the best value achieved by a layout. After every move the
values are updated and if the layout achieves a new optimum for any value, it is saved
automatically.

8.4 Evaluation

We evaluate MySemCloud from two different perspectives. First, we explore in a controlled
study how the semantic-aware display and the semantic-enhanced interactions are able to
allow users to improve the quality of initial semantic layouts. Second, we present findings
from a qualitative study during which participants were able to freely use MySemCloud
to design word clouds of their own text data. We want to show that MySemCloud is not
only able to generate word clouds of high semantic quality, but that it additionally is a
good compromise between the existing interactive, but non-semantic word cloud editors
and the non-interactive, semantic word cloud layout algorithms.

We implemented MySemCloud in JavaScript. The text submitted in the client is sent to
a backend server running on Node.js that handles the semantic similarity computation
using the NLP library Natural [UEM11] and generates the MDS layout. The final layout
is computed in the client using the popular JavaScript visualization library D3.js [Bos]
for the force layout computation and the rendering.

Both aspects of the evaluation were performed as a back-to-back in-person user study
that took 45min during which each participant worked individually with the tutor.
We recruited 20 participants (5 women, 15 men) who were students or researchers in
Computer Science. None of the participants had used a word cloud creation tool or layout
algorithm previously. One participant reported not being familiar with word clouds, and
another reported having heard about semantic word clouds. All participants reported
normal or corrected-to-normal vision, and had no color vision deficiencies. The study
was conducted on a 27" LCD screen at a 2560 × 1440 resolution using a mouse as input
device.

8.4.1 High-Quality Layout Creation

We introduced in Section 8.2.3 several metrics to evaluate the quality of a semantic
word cloud layout. In the study, we focused on the two semantic quality metrics realized
adjacencies and distortion, and on the non-semantic compactness metric. In this section
we evaluate the quality of the layouts created by the 20 participants using MySemCloud.
Specifically, we investigate how efficiently users can improve the quality of the layouts using
the semantic-aware display and semantic-enhanced interactions provided in MySemCloud.
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Study Design

The study was conducted in three steps, an introduction and training phase, followed by
a set of word cloud improvement tasks, and completed by a short questionnaire.

To start, the participants were given an introduction to semantic word clouds, as well
as the definition and intuition behind each metric. They were then introduced to the
tool, and each of its functionalities was explained. They were given time to learn to use
the tool, and told what the tasks would consist of. During this training they could ask
questions and familiarize themselves with MySemCloud.

Data Sets. The data sets used for the study were the following: (1) A summary of the
book “Harry Potter and the Philosopher’s Stone” [Moh] as a training data set and (2)
the English Wikipedia page for the “European Union” [wik22] for the study tasks.

As the users of MySemCloud are expected to have some familiarity with the texts they
are designing a cloud for, we chose text data sets covering topics of broader public interest.
One participant reported no familiarity with the Harry Potter book, but all participants
reported having sufficient knowledge of the European Union to understand the content
of the layout being presented to them.

Tasks. Four tasks were given to the participants to evaluate the different aspects of
our tool. They were asked to improve the value of a metric as much as possible within a
given time. For task 1 they had to improve the realized adjacency metric, for task 2 the
distortion metric, the compactness metric for task 3 and to improve in parallel as much
as possible the values of the realized adjacency and compactness metrics for task 4. While
the participants spent time training on the tool before the tasks were undertaken, we
randomized tasks 1 through 3 to avoid systematic bias through leaning effects. We gave
the participants 2 minutes for tasks 1, 2, and 3 and 2.5 minutes for task 4. We calculated
the improvement rate achieved by each participant within each task for the targeted
metric. We did not give participants a lot of time as we were interested at how efficient
our design was at guiding the users during the edits. The last task was given more time as
we expected it would be more complicated for the participants to optimize two potentially
conflicting goals simultaneously. We focused on combining compactness and realized
adjacencies as those have been the strongest focus of previous semantic word cloud layout
algorithms [KLKS10, WCB+18, BKP14, BFK+14, BvDF+17]. The participants were
not obliged to use the relevant metric views for each task or specific interaction modes,
but were asked to choose the setup that they felt most efficient working with.

Once the participants had completed the tasks, they were given a questionnaire to
describe their understanding of the quality metrics and to evaluate the difficulty of the
task.
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Results/Findings

Figure 8.9a shows the results of the four metric improvement tasks. Our hypothesis was
that we believed candidates would successfully complete all four tasks, but struggle with
task 4 when balancing the two different metrics. We found that the candidates were
most successful with the compactness improvement task, as 19 participants improved
the compactness of the bounding box. For the task of increasing the realized adjacencies
values, the candidates were similarly very successful, with only two candidates failing
to improve the layout. When the candidates were tasked of improving adjacencies
and compactness in parallel, they were similarly successful. No participant failed to
improve realized adjacencies on this second attempt, but some neglected the bounding
box improvement.

Three candidates had chosen for the compactness task to completely ignore any semantic
positioning by creating a tight packing of rectangles, but could not rely on this strategy
on the combined task. Those participants successfully improved the layout when they
had to preserve and improve its semantic quality.

The participants on average clearly outperformed the four automated layout algorithms
on most tasks. The cycle cover algorithm, that is designed towards maximizing realized
adjacencies was outperformed by 11 participants in task 1 as well as in task 4. No
participant was able to obtain a better distortion value than what was achieved by the
seam carving algorithm, but they usually performed better than most of the competing
algorithms, confirming the anticipated advantages of our human-in-the-loop approach.

We also note that they were able to efficiently target the two metrics at the same time in
task 4, unlike for example cycle-cover which is targeted towards adjacencies and performs
poorly on compactness. Candidates in general did not heavily disregard one metric for
the other as the best participants achieved good values for both metrics and similarly
the worst performers tended to struggle with both metrics.

The task to improve distortion proved difficult, as eight participants did not succeed in
improving the distortion value of the initial layout. During the interview, six participants
reported that while they understood the intuition behind this metric, they had issues
understanding how to translate it visually. When asked which metrics they thought were
the most relevant for semantic word clouds, distortion was the best received metric with
eight participants commenting that it was the most relevant metric for these layouts, two
of those had reported having trouble with the distortion improvement task.

The difficulties with this task are likely due to the participants focusing on the larger
words of the layout. Those, when moved, tended to heavily disrupt the initial layout,
often lowering its overall quality. More successful participants focused instead on average
and smaller sized words, which often were farther from ideal positions. Given additional
targeted training and more time for the task, we suppose that candidates could have been
more successful. An example of a word cloud with high realized adjacencies and distortion
scores can be found in Figures 8.9b and 8.9c. Notice that high value distortion layouts are
less densely packed, which is contrary to high realized adjacency and high compactness
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(b)

(c)

(a)

Figure 8.9: (a) Each point corresponds to the ratio of the metric value obtained by a
participant for the task indicated by the column over the value of the starting layout. The
left values in task 4 correspond to realized adjacencies and on the right is the compactness.
The grey lines link values obtained in the same layout. A value of 1 means no improvement,
anything above the line corresponds to a better value in the targeted metric and a value
below 1 shows a worsening of the score. On average every task was successful, although
distortion was the most difficult overall. The horizontal lines correspond to values achieved
with the algorithms specified in the legend [BFK+14, KLKS10, BKP14, WCB+18]. (b)
an example of a semantic word cloud achieving high realized adjacencies values and
an improvement ratio of 1.84, (c) an example of a semantic word cloud achieving high
distortion value corresponding to an improvement ratio of 1.11. Both layouts were created
using MySemCloud in under 5 minutes and outperform the best automated layouts.

value layouts. As many participants naturally tried to augment the compactness of
each layout even when the tasks did not require it, this can also explain the difficulties
they encountered. One might consider an alternative definition to the metric, that is
compatible with denser layouts, or that results in higher swings of the value of the metric
which would give more feedback to the user regarding the efficiency of their edit.

We hypothesized candidates would understand the compactness metric most easily, as
well as not have many difficulties with the realized adjacencies metric. Each participants
graded the difficulty of improving each metric on a seven point Likert scale, where 1
meant the task was very difficult and 7 meant very simple. They found that compactness
was the simplest, rating it a 6.3 (simple), distortion was the most difficult giving it a
3.95 rating (neither simple nor difficult), and they gave realized adjacencies a 4.65 grade
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(slightly simple to simple).

8.4.2 Qualitative Evaluation

In this section, we want to understand how MySemCloud could be used as a word cloud
design tool and how users approach it as a visualization tool to present a text of their
choosing. We want to study the interest users have in semantic word cloud layouts and
how much they value being able to edit and fine tune their layouts.

Study Design

For this task, we simulated a typical use case of our tool, where a user creates a semantic
word cloud for a text they have a deep knowledge of. As our pool of participants
contained 13 researchers and 7 students who had at least obtained a Bachelor’s degree,
each participant was able to choose a scientific text that they had expert knowledge of.
Of the 20 participants, 10 chose a paper they were a main author of, 4 chose their thesis,
and 6 chose a paper they had thoroughly studied.

A semantic word cloud was generated from the chosen input text using MySemCloud,
and the participants were asked to edit the layout into a visualization of their liking.
They were able to take as much time as they desired and could use any functionality of
MySemCloud. Overall, the candidates took between 5 and 20 minutes to arrive at a final
layout and had different design goals.

The candidates were then introduced to the semantic word cloud generation tool created
by Barth et al. [BKP14]. The functionalities were explained and they were able to try out
the different algorithms on the text they had previously chosen. They were also shown
the layouts generated using the Cycle Cover algorithm [BFK+14], the layout computed
using the Seam Carving method [WPW+11], the Inflate & Push layout [BKP14] as
layouts which, respectively, achieved high values for the realized adjacency, distortion
and compactness metrics.

They then completed a questionnaire covering their experience using MySemCloud,
their impression of semantic word clouds in general and they were asked to compare
MySemCloud to the non-interactive layout algorithms. Lastly, an interview was conducted
during which each participant was asked about their design goals for their personal word
cloud, their impression of the metrics and the quality of the visualization as well as their
impression of MySemCloud.

Results/Findings

Our hypothesis was that participants would preserve the semantic grouping created by
the original layout, and would focus on changing the placements of some words to more
appropriate topic clusters.

136



8.4. Evaluation

Design goals. We identified three different types of design goals amongst the partici-
pants: the compact designs (13), the clustered designs (5) and the mind map designs
(2).

An example of a compact design can be seen in Figure 8.10b. Here the participant did
not edit the initial layout (Figure 8.10a) significantly, most of the changes are results of
the interaction modes and overlap removal forces. The main aspects of those compact
designs revolve around a strategic placement of the largest words toward the center. Our
algorithm tends to draw the bigger words towards the center as they often have a very
high degree in the similarity graph. This was rated positively by eight participants as it
aligned with their design goal. The smaller words are naturally arranged on the periphery.
Some of those words are moved, often using the hints given by the semantic metric guides,
closer to the most related large neighbor. In the interviews, eight participants describe a
layout with the main themes centered as an ideal layout. The resulting layouts appeared
more compact, but due to their often rounded designs achieved on average a coverage of
under 60% of the bounding box volume.

A related class are the clustered designs, e.g., see Figure 8.10d created from the layout
of Figure 8.10c. Here we note that the final layout is less dense and multiple thematic
clusters appear. Four participants preferred that the larger words were separated and
serve as the centers of thematic clusters. In those word clouds, the larger words were
spread out and the smaller words that were misplaced or at the periphery between two
clusters were brought closer to a certain cluster. Every such design in our study achieved
a compactness score of less than 50%.

The last designs are the mind map designs. In those cases, participants disregarded the
initial layout and instead created from scratch a new layout, where small topic bubbles
containing few words were spread around the canvas around the central most meaningful
word.

We found that participants consistently spent time fixing the reading direction of some
word pairings, e.g., the two words “induced" and “subgraph" should not be reverted.
Additionally, they separated words that were loosely related when they had the same
font size and appeared side to side, as they would otherwise appear visually as a word
pair rather than two independent words.

Metrics. The importance of the metrics was evaluated next. The participants were
asked which metric, if any, they were interested in when working with the MySemCloud
layout. We hypothesized that participants would naturally lean towards compact layouts
and realized adjacencies. Seven participants noted they mostly were interested in
compactness. As for the semantic metrics, four reported paying attention to the distortion
value, and five to realized adjacencies. They were then asked how the value of the metrics
was correlated with the quality of the layout. Those answers did not align well with the
participants’ personal design goals. Specifically, eight participants thought that distortion
was the most meaningful metric, six thought distortion and realized adjacencies were
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(b)

(a)

Figure 8.10: Example of semantic word clouds generated for task 2, (a): a word cloud
before and after the user fine-tuned the layout, the larger words have been organised in
topic clusters and few smaller words have been moved, (d): a word cloud created by a
user, gaps separate the different themes which are themselves clusters together.

equally the most relevant and three thought that adjacencies were a better indicator of
semantic quality. Compactness was not received as well as the general impression was
that it was misleading. Five participants noted that higher compactness lead to worse
layouts, and three that it was a secondary goal and only beneficial up to a point.

MySemCloud. We hypothesized that our users would enjoy the playful nature of
the tool, and appreciate the novelty of semantic word clouds as opposed to the more
commonly seen compact non semantic layouts. We also believed that the users would
rate highly the ability to interact and improve the visualization over the current best
performing layout algorithms. The impressions of MySemCloud as an interactive editor
were very positive. Participants valued the simplicity and efficiency of the design (8).
Nine participants highlighted the different interaction modes and six the metric guide
views. Two participants were interested in the ability to see the underlying data and
noted that data exploration was for them a strong use case for MySemCloud.

We evaluated our tool using the same questionnaire developed to evaluate ManiWor-
dle [KLKS10] and EdWordle [WCB+18], as well an additional set of questions targeted
at our system. We can see in Figure 8.11a that the design of my MySemCloud was
found to be very efficient. We can note that creativity was not rated as highly by the
users, which is to be expected as we designed the tool to create effective semantic text
visualizations as a focus over aesthetics. Moreover, the semantic-enhanced interactions
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Figure 8.11: Participants used a seven point Likert scale to rate the following ten
statements from strongly disagree (−3) to strongly agree (3): 1.) It was easy to learn
MySemCloud (MSC), 2.) It was easy to use MSC, 3.) I liked to use MSC, 4.) It was
fun to use MSC, 5.) I felt creative while using MSC, 6.) I am satisfied with the result,
7.) The metrics were understandable, 8.) The metric guides were understandable, 9.)
MSC represented the data well, and 10.) MSC was faithful to the data; (a) (1.–6.) covers
the user experience, (b) (7.–8.) the metrics and (c) (9.–10.) shows that our tool was
preferred to the automated layouts.

somewhat restrict the edits of the word clouds compared to the free drag-and-drop mode.
The participants rated highly the quality of the visualization they created using the
tool, and thought that the tool itself represented the underlying information of their
chosen input text faithfully (see Figure 8.11c). Additionally, while some participants
reported issue with the distortion metric, on average when considering all the metrics,
the participants had a strong understanding of the optimization goals of the semantic
word clouds (see Figure 8.11b).

Lastly, when comparing their experience of MySemCloud to the non-interactive layout
algorithms, 16 participants preferred MySemCloud, with 7 indicating a strong preference.
On their preference of semantic word clouds over traditional word cloud layouts, 17
participants preferred semantic layouts, two found that it depends on the use case and
one participant found that semantic layout presented them with too much information.
Additionally, two participants answered that they naturally assumed non-semantic word
clouds had a semantically meaningful layout, and thus found them misleading.

8.4.3 Limitations
Interactive word clouds offer more than updating the position of words. For example
ManiWordle [KLKS10] and EdWordle [WCB+18] allow the user to rotate or color words.
Such functionality has not yet been implemented in MySemCloud, but could be appealing
for users. The focus of MySemCloud so far is the semantic quality of the layout, but it
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could be worthwhile to study how a system that supports both general aesthetics and
semantics is perceived. Such an in-depth system could overwhelm the user, but as some
participants in our study suggested, these are possible extensions of MySemCloud.

Additionally, we chose not to allow the user to interact with and modify the underlying
data computed by the NLP algorithm, to ensure that it remains faithful to the input text.
In the creative part of our user study, however, some participants had complaints about
the limitation of the NLP library, e.g., as we often worked with text from mathematical
publications, the word “theorem” could appear, which the participant considered to
not be actually relevant, but the NLP algorithms considered it significant due to its
high frequency in the text. Similarly, when dealing with technical vocabulary, stemming
can fall short, e.g., the words “parameterized” and “parameter” being considered two
independent words. Thus, the need to remove and add some words from the top-k word
list is a natural addition to MySemCloud. While editing the input data might help
generate a better initial layout, users will still need to refine the visualization further.
Therefore we chose to focus on the more difficult task of providing meaningful information
to the user to guide the direct interactions with the layout, while adding data editing
modes remains as future work.

With regards to the interactive modes, we noticed that the participants would sometimes
move a word on the boundary slightly to trigger some compaction using fill holes; so
having a button to trigger the compaction directly would be a natural addition. Lastly,
the implementation of the bounding boxes sometimes caused visual confusion, and the
participants would attempt to bring two words together that would not stay close. This is
due to the perception of the bounding box by the user being different from the bounding
box used in the algorithm. An implementation similar to EdWordle that considers the
bounding box of each letter individually might lessen those issues.

8.5 Chapter Conclusion
In this chapter, we presented MySemCloud, a novel human-in-the-loop word cloud editor
combining the strength of the semantic word cloud layout algorithms with those of
interactive word cloud systems.

We found that users were often dissatisfied with layouts computed by state-of-the-art
algorithms as they tended to focus on the wrong semantic relationships, had sometimes
undesirable layouts for the largest words, and would misplace several words. The study
participants, on average, outperformed the state-of-the-art algorithms on almost all
quality metrics with our human-in-the-loop approach. We also found that the focus on
compactness provided by previous word cloud editors was detrimental to a visualization
of high semantic quality, and the lack of semantic information made the word clouds less
interesting.

Overall, we showed that MySemCloud successfully bridges the gap between non-interactive
semantic layouts and the existing non-semantic interactive tools. While some users did
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not believe that they could successfully improve a layout and others were happy to spend
a longer amount of time to completely recreate their layout, the large majority of our
participants fell between those two extremes and engaged happily with our interactive
system. We also found that our tool has a strong potential for data exploration, more so
when the users do not have expert knowledge of the input data.

The neighbors-follow mode requires a certain similarity value as a threshold, and it, as
well as the fill-holes mode, reactivate forces at a set strength coefficient. These parameters
could be set by the user, and would offer flexibility at the cost of making the tool more
complex.

It could also be interesting to study layout methods that take into account user preferences
to generate the visualization. Some users are not willing to spend time carefully editing
a layout, but still have preferences about which semantic elements should be highlighted.
Such a user-centered layout algorithm would combine naturally with our human-in-the-
loop fine-tuning system. Lastly, one could also consider extending this approach to
handle time-varying data, as the words need to be laid out not only with regards to user
preferences but also to enable morphing and optimize stability between subsequent word
clouds.
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CHAPTER 9
Conclusion

In this thesis we presented some graph drawing problems, studied their complexity,
and designed efficient algorithms for these problems. Our goal was to understand
how to extend our own, and other known theoretical results, to practical applications.
In Part I, we focused on node link diagrams and the vertex splitting operations for
general graphs Chapter 3, bipartite graphs Chapter 5, in planar graphs to find outerplane
drawings Chapter 4, as well as investigated efficient algorithms to reduce crossings in
real world graph instances Chapter 6. In Part II, our focus shifted to contact graph
representations with the semantic word cloud problem, where graphs are represented
using contacts between rectangular boxes in the plane, where the rectangles have a fixed
area and aspect ratio. In Chapter 7, we studied a setting where the underlying semantic
word cloud graph is a layered graph, and in Chapter 8, we implemented an interactive
user in the loop system to design semantic word cloud.

As is common in graph drawing, most problems that we encountered are NP-hard, which
complicated the investigation into practical implementations of algorithmic solutions. We
relied on a mix of heuristic methods, ILP formulations and exact algorithms to further
understand and evaluate our findings, and introduce human-in-the-loop algorithmic
considerations. In the next section, we want to consider the broader open questions
relating to our main question, that is, how to efficiently combine expect human knowledge
with exact algorithmic method to tackle complex tasks. For a detailed discussion on a
specific problem, we refer the reader to the relevant chapter conclusion, where the main
results are summarize, and the main open questions are listed.

Outlook
The field of information visualization regularly inspires interesting graph drawing problems.
Relying on heuristics is often sufficient for many applications, but, to understand a problem
fully, it is important to know its complexity. Since many graph drawing problems are
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NP-hard, creating practical algorithms to solve them is often impossible. Thus, in this
thesis, we focused on combining human knowledge with algorithmic techniques to achieve
more practical solutions to graph drawing problems. We believe that strongly adhering
to the optimization goals dictated by the problem should be avoided. Not only is it a
computationally hard task, but users also consider multiple aesthetic criteria at once in a
manner that cannot be described by a function. Instead, one should focus on creating
algorithms which allow the user to focus on their own personal quality criteria through
fine-tuning.

We highlight the following tasks that we believe can lead to effective human-in-the-loop
graph drawing algorithms. Computing an initial layout of high quality allows a user to
create a mental map, an get a basic understanding of the dataset. The user can then
identify areas in the layout that require changes, and one can propose many methods
for computer-aided layout fine-tuning. This can be achieve through computing
quality metrics, to guide the user towards certain choices that might improve the
layout. For example it is simple to identify singular vertices responsible for a large
amount of crossings, or placed far away from their neighbors. Additionally, this simplifies
the algorithmic task. Rather than attempting to optimally compute a whole layout, if
the targeted subproblem is restricted enough, exact algorithms might be achievable. For
example, one can easily split a vertex to minimize its crossings, but a set of multiple
vertices is computationally not tractable. Lastly, splitting a general task in a pipeline
of sub-tasks limits the computational hurdles to manageable instances. In general, the
process of creating and editing a layout can offer invaluable insight into the data being
visualized, thus, any user wanting to create beautiful data visualizations within such
a system can not only represent their data in a way that they believe would be most
effective, but also understand the data itself better.

In this thesis, the practical solutions proposed for both settings very significantly, thus
it would be interesting to pursue this investigation further, to identify a more defined
series of tools necessary for such systems, or to see if, like graph drawing aesthetics, each
problem invites very different solutions.
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