
Recursive Rule Injection in
Knowledge Graphs

Exploiting Logical Knowledge in Machine Learning

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Felix Karl Michael Wagner, BSc
Matrikelnummer 01429339

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr. Emanuel Sallinger
Mitwirkung: Dipl.-Ing. Markus Nissl

Dipl.-Ing. Aleksandar Pavlovic

Wien, 10. November 2021
Felix Karl Michael Wagner Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Recursive Rule Injection in
Knowledge Graphs

Exploiting Logical Knowledge in Machine Learning

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Felix Karl Michael Wagner, BSc
Registration Number 01429339

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Emanuel Sallinger
Assistance: Dipl.-Ing. Markus Nissl

Dipl.-Ing. Aleksandar Pavlovic

Vienna, 10th November, 2021
Felix Karl Michael Wagner Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Felix Karl Michael Wagner, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. November 2021
Felix Karl Michael Wagner

v

Acknowledgements

First and foremost, I am extremely grateful to my supervisor Prof. Dr. Emanuel Sallinger
for his incredible support, patience, and guidance throughout this thesis. I would also like
to thank Dipl-Ing. Markus Nissl, and Dipl-Ing. Aleksandar Pavlovic, for their expertise,
insightful comments, and fast feedback.

Finally, I would like to thank my friends and family for helping me laugh away my stress.

Without all the support, I would not have been able to finish my master’s degree.

vii

Kurzfassung

Knowledge Graphs (KGs) sind ein vielversprechendes Forschungsgebiet in der Künstlichen
Intelligenz und werden verwendet, um Wissen zu repräsentieren, zu verwalten und zu
verarbeiten. Eine Stärke von ihnen ist es, symbolisches Wissen zu repräsentieren. Jedoch
kann die Manipulation von diesem Wissen spezielle Probleme verursachen. Aus diesem
Grund wandelt das Forschungsgebiet der Knowledge Graph Embeddings (KGEs) das
symbolische Wissen der KGs in den sub-symbolisches Raum um.

Allerdings basieren KGs häufig auf fehlerhaften und nicht kompletten Datensätzen. Das
Trainieren der KGEs mit unvollständigen Daten ist eine Herausforderung. Der Verlust
der Erklärbarkeit im sub-symbolischen Raum stellt ein weiteres Problem dar. Um genau
diese zwei Probleme zu beheben, wurden Embedding Modelle entwickelt, welche teilweise
erklärbar sind. Diese Modelle erlauben es, wertvolles Hintergrundwissen, welches im KG
in Form von logischen Regeln bereits enthalten ist, in den Lernprozess der KGEs zu
integrieren.

Bisher wurden einige Ansätze zur Einarbeitung von Hintergrundwissen veröffentlicht.
Es gibt eine Vielfalt von logischen Regelarten, jedoch unterstützen derzeitige Ansätze
nur einen Teil von diesen Arten. Eine sehr wichtige und nicht unterstützte Art, welche
fundamentale Möglichkeiten zum logischen Schließen in Graphen erlaubt, sind rekursive
logische Regeln. Diese Diplomarbeit hat eine Methode entwickelt, welche es ermöglicht
rekursives logisches Wissen mit KGEs zu vereinigen. Deshalb wurde ein existierendes
KGE Modell adaptiert, welches die vorgeschlagene Methode unterstützt. Zusätzlich wur-
de ein neues KGE Modell im hyperbolischen Raum eingeführt, welches ebenfalls diese
Methode unterstützt. Die Verwendung von nichteuklidischen Räumen als Repräsentati-
onsraum bietet einige Vorteile, wie zum Beispiel die Möglichkeit gewisse Daten mit einer
zugrundeliegenden Struktur, welche nicht im euklidischen Raum erfasst werden können,
zu repräsentieren. Dieses Forschungsgebiet findet in den letzten Jahren große Beachtung.

Die Modelle wurden implementiert und mithilfe von DBPedia und synthetisch generierten
Datensätzen evaluiert. Die Evaluation zeigt, dass die Einarbeitung von rekursiven Regeln
die Performanz der Modelle für alle Datensätze für nichteuklidische sowie euklidische
Modelle verbessert. Zusätzlich konnte unser Ansatz ein hyperbolisches State of the Art
Modell in einer Metrik übertreffen.

ix

Abstract

Knowledge Graphs (KGs) are one of the most significant fields of research in Artificial
Intelligence (AI) today. KGs, in broad terms, represent, manage and process knowledge.
They are exceptionally effective at representing symbolic knowledge. However, utilising
symbolic knowledge may pose unique difficulties. To enable effective manipulation of
this knowledge, the field of Knowledge Graph Embeddings (KGEs) maps KGs into
sub-symbolic space.

However, KGs frequently encounter noisy and incomplete data. This fact represents a
challenge for KGEs, which are trained on this sparse and noisy data. Another limitation
of current KGE models is that explainability in latent sub-symbolic space is usually
lost. Therefore, KGE models were developed that allow for some interpretation, which
additionally allows the injection of precious knowledge in the form of logical rules that
the KG already provides.

There are already some approaches that support the injection of background knowledge,
but they are few in number. Existing approaches, however, do not support all types of
logical rules, including recursive rules. Recursive rules represent the fundamental means
of reasoning in graphs and are thus an essential rule type. Therefore, this thesis develops
and evaluates a method to inject recursive logical knowledge into KGEs. As a result,
an existing KGE approach is adapted to support the proposed method. Additionally,
we propose a novel KGE model in hyperbolic space that supports the method to inject
recursive logical knowledge. Changing the representation space from Euclidean to non-
Euclidean provides several benefits. Non-Euclidean geometry has the advantage of being
able to express certain data with an underlying structure that cannot be represented in
Euclidean space. This area has received considerable interest in recent years.

These models are implemented and validated using datasets retrieved from DBPedia
and generated synthetically. The evaluation demonstrates that injecting recursive rules
increases the performance of Euclidean and non-Euclidean KGEs across all datasets. Ad-
ditionally, our approach outperforms a state-of-the-art hyperbolic model in one particular
metric.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work . 3
1.3 Methodological Approach . 5
1.4 Main Contributions . 5
1.5 Structure of the Work . 6

2 Background 7
2.1 Running Example . 7
2.2 Knowledge Graphs . 10
2.3 Logical Knowledge in Knowledge Graphs 12
2.4 Knowledge Graph Embeddings . 15
2.5 Non-Euclidean Geometry . 20
2.6 Summary . 26

3 Related Work 29
3.1 Knowledge Graph Embeddings . 29
3.2 Rule Injection in Knowledge Graph Embeddings 33
3.3 Summary . 37

4 Proposed Method 39
4.1 Injecting Recursive Rules . 39
4.2 Euclidean Space Model - SimplE+ Adaption 44
4.3 Hyperbolic Space Model . 45
4.4 Summary . 51

5 Evaluation 53
5.1 Creation of the Datasets . 53

xiii

5.2 Datasets . 54
5.3 Metrics . 63
5.4 Evaluation Results . 64
5.5 Summary . 67

6 Conclusion 69
6.1 Discussion of Research Questions . 69
6.2 Future Work . 70

A Appendix 73

List of Figures 75

List of Tables 77

List of Algorithms 81

Acronyms 83

Bibliography 85

CHAPTER 1
Introduction

Combining the strengths of symbolic AI and Statistical AI – Machine Learning (ML)
– has the potential to revolutionise AI methodologies. This fusion can create better-
performing systems requiring considerably less training data and provide understandable
ML model decisions. Furthermore, the promising research field of KGs is inherently multi-
disciplinary. Therefore, it combines many research areas, including ML and symbolic
AI, where symbols/names are used for representation. As a result, KGs are a suitable
candidate to develop augmentation methods of ML with symbolic AI methods.

One of the ML areas within KGs are KGEs, representing KGs as low-dimensional vector
values. They can be used to detect missing information in KGs. On the other side, one
of the strengths of KGs is their compatibility with symbolic reasoning using logical rules.
Logical rules contain rich background information and are understandable. Incorporating
them into KGEs is exactly the combination mentioned above of symbolic and sub-symbolic
knowledge, but the number of existing methods is sparse.

An essential type of rules in logic represent recursive rules, which can be seen in many
real-world examples, such as company ownership or Recommender Systems [BFGS19,
CFG+19]. However, to the best of our knowledge, there is no research regarding the
injection of recursive rules into KGEs, which would allow us to solve the aforementioned
fusion of KGEs and symbolic reasoning for recursive rules.

This thesis investigates this open challenge and develops a method to inject recursive rules
into KGEs. This method trains vector embeddings by following the logical properties of
recursive rules. The effectiveness of this method will be evaluated and analysed.

1.1 Motivation and Problem Statement
KGs are a rapidly growing research field and among the key trends in AI. In 2012 Google
announced the Google Knowledge Graph [Sin12]. This announcement coined the term

1

1. Introduction

“Knowledge Graph” and drew much attention to the concept [Pau17]. However, despite
the considerable advancements in this research field and the high number of created KGs,
there are still many definitions of the notion. In broad terms, one can say that a KG is
used to represent, manage and process knowledge [BSV20b]. In Chapter 2 a definition of
a KG for this thesis is presented. In this chapter, we assume that a KG is a graph that
consists of certain entities (nodes) and relations (edges) that connect them.

After giving a broad definition of the notion, we introduce the benefits and challenges of
the KG research field. KGs are very effective in representing symbolic knowledge, but
manipulating this knowledge can be hard. Additionally, KGs often experience incomplete
and noisy data [AM13, NMTG16] which affects the performance of reasoning tasks on
KGs. Therefore, the research field of KGEs has emerged, which has the goal to transition
KGs (entities and relations) into low-dimensional continuous vector space and still capture
the semantic meanings [WMWG17]. KGEs can be used to compute scores of unobserved
knowledge that indicate the possibility of the facts being true. Therefore, KGEs are
useful for Knowledge Graph Completion tasks. They identify relevant knowledge using
the computed scores and add them to the incomplete KG. Furthermore, KGEs are not
only useful for Knowledge Graph Completion tasks but have a wide variety of application
fields, including relation extraction, entity classification and entity resolution. They
are also advantageous for faster reasoning over a large KG after the creation of the
embedding [WMWG17].

A wide variety of proposed KGE models are using different methods, ranging from
exploiting different spaces (Euclidean, complex, hyperbolic), sophisticated operations
(translations, isometries), Neural Networks (NNs) to Graph Neural Networks [JPC+21].
Besides this significant amount of different approaches, some works concentrated on
enhancing those KGE models by incorporating additional background information. This
additional background information can have a wide variety of forms; some examples are:
textual information, image information, path information, temporal information, and
logical rules [WMWG17, BRC+20]. Incorporating additional information can yield a
much better representation than just relying and training on often highly incomplete KGs.
The quote from Demeester et al. [DRR16] supports this: “Recent research on combining
rules with learned vector representations has been important for new developments in
the field of knowledge base completion”. Thus, combining additional domain expert
knowledge with the actual KG to create better embedding representations is a promising
direction in the field of KGEs.

Although there are approaches to inject logical rules into KGEs, the literature and
the support of injectable logical rules are quite sparse [DRR16, GWW+16, MCM+17,
FRP18, GWW+18, ACLS20]. Logical rules contain rich background information and
provide a high level of explainability. These two reasons represent limitations, yet current
embedding models lack the capabilities to provide explainable embeddings. Already the
following simple example shows the motivation to inject logical rules: Assuming we know
that if a city is the capital of a country, it must be located in this country. The following
logical rule states that: ∀x, y : CapitalOf (x, y) → LocatedIn(x, y). If we could train the

2

1.2. Aim of the Work

embedding in a way that the vector values follow this logical rule and are consistent
with it, the problem of predicting missing links for certain LocatedIn relations is solved.
Furthermore, we add some explainability to the embedding models since we can translate
the logical rule into an understandable human sentence and have more insights into the
vector values.

However, injecting logical rules into KGEs poses several complicated challenges:

• Translating logical properties into vector space and assuring that the vector values
follow this translation after training.

• Developing the method itself to inject logical rules into the training process. This
step poses the question of whether to develop a method that consistently enforces
the background knowledge or allows exceptions.

• Proposing a method that supports complicated rule types or a broad range of types.

As described above, these challenges have been solved for specific rule types, e.g. implica-
tion rules, symmetry rules or anti-symmetry rules [ACLS20, FRP18, GWW+18, DRR16].
However, none of them supports recursive rules, an essential type when reasoning over KG,
which per definition have a recursive structure. Recursive rules provide rich background
information and successfully incorporating recursive rules has the potential to improve
the performance of the KGEs significantly.

In fact, previous methods fail to capture recursive rules because they focus on incorpo-
rating rather basic and common rule types. Furthermore, the majority of the models
supports injecting single logical rules independently but neglect the analysis of jointly
capturing them. Since recursive rules represent a more complex rule type, previous works
do not discuss an analysis or methods to inject recursive rules.

1.2 Aim of the Work
We have discussed the importance of incorporating additional background knowledge
into KGEs. In this chapter we present the necessary outcomes to develop a KGE model
that supports recursive rule injection. The aim of this work is to:

• Identify and analyse state-of-the-art KGE models that support logical rule injection.
An analysis of existing state-of-the-art models that support the injection of logical
rules and the compatibility of various logical rule types should be discussed. This
analysis will be used for development of our approach.

• Develop a method to inject recursive rules into KGE models.
The method should capture the semantics of the recursive rules and guide the
learning process of the vector values according to it.

3

1. Introduction

• Propose a KGE model compatible with the proposed method to inject recursive logical
rules.
It is critical that the proposed method is supported by our proposed KGE model.
Not all KGE models are compatible with our proposed technique due to the inability
to enforce certain numerical constraints.

• Implement the KGE model and evaluate the effectiveness of the recursive rule
injection.
The KGE model and the developed method need to be implemented and evaluated
on suitable data.

These findings serve as the foundation for this thesis and constitute its main contributions.
The following research questions are posed in the thesis as a result of the findings. The
thesis poses two research questions, with the second one being divided into two sub-
questions.

Research Question 1 What is an appropriate method to inject recursive logical rules
into KGEs?

To address this research issue, we must first conduct a literature review to discover
state-of-the-art models. In Section 4.1 we propose our own method for injecting logical
rules based on certain commonly used techniques from state-of-the-art models. Moreover,
Section 4.2 and Section 4.3 propose two KGE models to inject recursive logical rules.
Having proposed a suitable method does not guarantee that the resulting output will
exhibit the anticipated improvements. Therefore, the next research question concerns the
evaluation and is split into two sub-questions, the first studying the overall performance
and the second, an analysis of the specialities of recursive rules.

Research Question 2.1 Does the proposed method to inject recursive rules yield better
overall performance compared to the same method without injection?

Research Question 2.2 Does the recursion depth affect the performance of the proposed
injection method?

Chapter 5 discusses these two research questions in more detail. In order to evaluate
the effectiveness of the method, we formulate a Knowledge Graph Completion problem,
more concretely a link prediction task – Chapter 2 and Chapter 5 give a more detailed
explanation on the evaluation procedure – a typical evaluation task for state-of-the art
KGE models. For the evaluation, we use two datasets, one extracted from DBPedia and
another synthetically generated one, and use the standard metrics, i.e., Mean Reciprocal
Rank (MRR) and Hits at K (H@K), to measure the effectiveness of our approaches.
Section 5.2 discusses the characteristics of the used datasets. Our synthetically generated
datasets enable us to control the recursion depth, which allows us to evaluate the effect
of the recursion depth.

4

1.3. Methodological Approach

1.3 Methodological Approach
This thesis uses the following methodological approach:

1. Literature review
In this step, a literature review is conducted. The literature review should focus
on the area of KG, KGEs and logical knowledge in KG. One goal is to identify
existing KGE models and classify state-of-the-art methods. Furthermore, KGE
models that support logical rule injection are identified, and the supported rule
types are compared. One of our proposed approaches is based on hyperbolic
geometry. Therefore, the literature review focuses on gathering standard literature
on non-Euclidean geometry.

2. Develop an algorithm to inject recursive rules
Based on the literature review, common techniques to inject logical rules into KGEs
are gathered. The next step is to develop an algorithm to inject recursive logical
rules. The standard techniques we identified during the literature review should
provide a reference point to developing this algorithm.

3. Propose KGE model that supports the developed method to inject re-
cursive rules
In this step, an existing state-of-the-art model is modified to support the previously
developed algorithm to inject recursive logical rules. Moreover, a new KGE model
in hyperbolic space is proposed that also supports the developed algorithm.

4. Implementation
The developed algorithm, along with the proposed KGE models are implemented.
Additionally, a synthetic data generator is implemented for evaluating the experi-
ments.

5. Evaluation and interpretation
The hypotheses for the research questions are postulated, and the experiments to
investigate those are constructed. Afterwards, we run the experiments on a datasets
from DBPedia and the synthetic data generator. Lastly, the results are interpreted.

1.4 Main Contributions
This thesis exploits logical knowledge in ML. In this section, we summarise the main
contributions of this thesis.

First, we propose a general method to inject recursive logical rules into KGEs by
transforming recursive rules into a set of implications based on recursion depths. To the
best of our knowledge, there does not exist a KGE model that supports recursive rule

5

1. Introduction

injection. We utilise this method to extend the existing KGE model SimplE+ [FRP18]
to support recursive rule injection. Furthermore, we propose a KGE model in hyperbolic
space that supports the injection of implications and, in turn, our proposed method to
incorporate recursive logical rules. We have implemented both models.

Furthermore, this thesis evaluates the performance of the models using synthetically
generated datasets and a dataset queried from DBpedia. In addition, we discuss the
implementation of the synthetic data generator. We present the achieved results and
compare them to state-of-the-art KGE models. The evaluation shows that the injection
of recursive logical rules does yield a performance gain for both models. Our proposed
method outperforms a state-of-the-art KGE model in one metric. Moreover, the hyperbolic
model performs better in general. Lastly, this thesis presents a discussion about the
influence of the recursion depth regarding the performance.

In conclusion, this thesis develops and evaluates a method to incorporate recursive logical
background knowledge in KGEs.

1.5 Structure of the Work
This thesis is structured as follows:

Background. Chapter 2 summarises important concepts of KGs, KGEs and non-
Euclidean geometry needed for the remaining thesis. This chapter starts by giving a
formal definition of a KG. Afterwards, KGEs are introduced. Lastly, an introduction to
non-Euclidean geometry is presented.

Related work. Chapter 3 presents current state-of-the-art KGE models and identifies
models that support logical rule injection. Furthermore, an overview of the supported
rule types is given.

Proposed approach. Chapter 4 introduces our developed algorithm to inject recursive
logical rules. Moreover, we discuss how this algorithm is integrated into an existing KGE
model. Additionally, we propose a new KGE model in hyperbolic space that is also
compatible with this algorithm.

Evaluation. Chapter 5 describes the data we used to evaluate our approaches along
with the implementation of the synthetic data generator. Furthermore, the experiments
and results are discussed and analysed.

Conclusion. In the last Chapter 6, we conclude this thesis by answering the proposed
research questions. Lastly, future research directions are presented.

6

CHAPTER 2
Background

KGs combine multiple research fields within AI and have a broad application field. This
chapter introduces KGs using a running example that will be referenced throughout this
thesis. It will demonstrate the key concepts and discuss real-world application fields
in the financial sector. Since there does not exist a commonly accepted definition of a
KG, this chapter presents the definition we are using for this thesis. This thesis focuses
on the combination of logical knowledge and KGE methods. Therefore, background on
logical knowledge and logical reasoning in KGs is discussed in Section 2.3. The concepts
of KGE models are presented in Section 2.4. Moreover, using non-Euclidean space as
representation space in ML yielded promising results in recent years, and one of our
proposed approaches is based on hyperbolic geometry. Therefore, the key concepts of
non-Euclidean geometry are introduced in Section 2.5.

2.1 Running Example
This section introduces a running example that helps to better illustrate the concepts
in the following sections. KGs gained much interest in a large number of business
sectors. Especially in the financial domain, there are a lot of interesting application
areas for KGs [BFGS19]. The paper [BFGS19] discusses three applications in the
financial sector: company ownership, detection of close links and detection of family-
owned businesses. Specifically, company ownership graphs offer promising research and
applications fields [BBG+20].

A company ownership graph is a directed graph representing companies/shareholders
as entities, and the edges represent the amount of amount of shares a shareholder
owns from another entity in the graph. Those networks have complex structures, and
therefore it is hard to analyse the control structures of companies. Direct ownership
relations are relatively easy to spot, but once there are very long and intertwined control
structures, the reasoning process gets complicated [BBC+20]. As stated in [BBC+20]

7

2. Background

those long and intertwined control chains are present in real-world ownership graphs.
The paper [BBC+20] gives the following definition of the company control problem:

Definition 2.1.1 (Company Control) “A company x controls a company y, if: (i) x
directly owns more than 50% of y; or, (ii) x controls a set of companies that jointly (i.e.,
summing their shares), and possibly together with x, own more than 50% of y.”[BBC+20]

The reasoning over company ownership graphs is essential to unwind those control
structures and prevent, for example, hidden hostile takeovers of companies. In [BBC+20]
the authors discuss reasoning methods against hostile takeovers of strategic relevant
companies (e.g. transport, military or energy sector). Those companies should remain in
control of trusted shareholders. If knowledge about the persons involved is available in
the ownership graph, it can also be used for the detection of family-owned businesses, as
discussed in [BFGS19].

Therefore, we can see that those company ownership graphs can be used in various
financial application fields and are useful for economic research. This motivates to focus
this thesis on a simplified form of company ownership graphs, namely company subsidiary
graphs. From a legal perspective, the definition of ownership and, as a result, the exact
definition of a subsidiary depends on the legal structure, country and other factors [BB01].
However, in most articles and websites, a subsidiary (daughter company) is defined as a
company that is owned by another company (the parent company), where ownership is
defined similarly to Definition 2.1.1.

In [Vij06], the author uses the following definitions. A subsidiary corporation is a
“corporation in which a parent corporation has a controlling share.” [Vij06]. Controlling
share is defined as owning more than 50% of the shares. Additionally, the author uses
the definition of an affiliate that is “a corporation that is related to another corporation
by shareholdings or other means of control; a subsidiary, parent or corporation” [Vij06].
Furthermore, [Vij06] gives the explanation that (strictly speaking) one should use the
term parent-subsidiary structure when ownership exceeds 50% and affiliated-firm structure
when the company holds only minority interests. However, in [Vij06] the two terms are
used interchangeably since the economics of the problems in the work of the author are
similar. For this thesis we use these definitions and also use the term parent-subsidiary
for affiliated-firm structure. Another reason for using these two terms interchangeably is
that those ownership structures change over time. For example, one year, a company is
considered as the parent. A year later, the company only has 49% of shares but is still
related to the daughter company by shareholdings or other means of control. Furthermore,
if we would differentiate between parent-subsidiary and affiliated-firm structure and only
investigate parent-subsidiary structures, we would restrict each child node in the graph to
only have one parent node. This restriction represents a hierarchical structure. However,
if we extend parent-subsidiary structures with affiliated-firm structures, we can evaluate
our embedding methods on more complex KG structures and also unwind more complex
company structures. Therefore, we define a company subsidiary graph for this thesis as:

8

2.1. Running Example

Figure 2.1: Company Subsidiary Graph

Definition 2.1.2 (Company Subsidiary Graph) A company subsidiary graph is a
directed graph, where the nodes represent companies and a directed edge from node x to
node y indicates that x is related to y by shareholdings or other means of control. Node
x is called parent and node y is a subsidiary of x.

Those company subsidiary graphs can be used for similar application fields like ownership
graphs to unwind complex company structures. For example, this thesis uses KGEs
to predict parent-subsidiary relations that are non existing in the data. The difference
to company ownership graphs is that we do not have knowledge about the number of
shares and an edge in a company subsidiary graph represents some means of control.
Figure 2.1 shows our toy company subsidiary KG. We extracted the running example
from DBPedia1. It is a small subgraph from our dataset that is discussed in more
detail in Section 5.2 along with the corresponding SPARQL Query 5.1. Additionally,
we queried the headquarter location California of WaltDisneyStudios(division) and the
industry type Automotive manually. These additions and the toy KG itself help to better
demonstrate the concepts in the following sections.

The running example contains some interesting characteristics that are important for the
next sections. We highlight them in this paragraph.

1https://www.dbpedia.org/

9

https://www.dbpedia.org/

2. Background

• Relations: The KG contains relations between entities (companies, persons and
industry types), e.g. MarvelStudios is a subsidiary of MarvelEntertainment.

• Cyclic Relationships: The KG has cycles (i.e. Renault is a subsidiary of Nissan
and Nissan is a subsidiary of Renault).

• Self-loops: The Running Example also contains self-loops (i.e. MarvelStudios is a
subsidiary of itself).

• Subsidiaries of Subsidiaries: This characteristic is presented by the following
example: MarvelStudios is a subsidiary of MarvelEntertainment which is a sub-
sidiary of CadenceIndustries (therefore MarvelStudios is a subsidiary of a subsidiary
of CadenceIndustries). As a result, we have relations over multiple nodes that are
not directly present in the data.

• Multiple Types of Relations: Besides company subsidiary relations, the Run-
ning Example also contains information about the location of the headquarter
of the companies, e.g. the headquarter of WaltDisneyStudios(division) is located
in California. Moreover, the KG contains knowledge about the industry type of
companies (e.g. Renault is in the Automotive industry type).

From the characteristics, we see that the running example is cyclic. Furthermore, to
compute the subsidiaries of subsidiaries relations over multiple entities, we use recursion
in the following sections. Lastly, together with the proposed KGE models to predict
parent-subsidiary relations that are non existing in the data, the industry types and
headquarter location knowledge can be used to analyse locations of related company
structures or industry types that they cover.

2.2 Knowledge Graphs
KGs are one of the recent and promising trends in AI. In the last years, they did not only
attract the attention of the academic field but also of the industry [BSV20b]. The term
KG gained much interest after Google released this term along with Google’s idea of this
concept in a blog post in 2012 [Sin12]. There is a wide variety of definitions of KGs in
the literature, but there is no common accepted formal definition. Some works define
KGs as Knowledge Bases (KBs) in a graph structure, or heterogeneous graphs [BSV20b].

Since this thesis concentrates on KGEs, we follow the majority of the KGEs literature
and define a KG similar to [BSV20b, JPC+21]:

Definition 2.2.1 (Knowledge Graph) A Knowledge Graph KG is a quadruple KG =
{E , R, F , Σ}, where E = {e1 , ..., en} is a set of entities, R = {r1 , ..., rn} is a set of
relations that link entities, Σ = {k1 , ..., kn} is a set of logical rules and F = {f1 , ..., fn}
represents a set of facts. Facts are denoted as triples and are a subset of (h, r , t) ∈ F ⊆

10

2.2. Knowledge Graphs

(E × R × E). Rules are first-order sentences of the following form ϕ → ψ, where ψ is a
first-order atom and ϕ a conjunctions of atoms.

The following section introduces the notion of atoms formally. Furthermore, we added
the set Σ to the existing definition, which represents the logical knowledge about the
data, in the form of logical rules. This knowledge is used for the injection. Our definition
represents entities and their relationships. We illustrate this definition using our Running
Example 2.1:

Example 1. Our company subsidiary KG consists of the following sets (the set of
logical rules is described in the next Section 2.3 in Example 5). Note that we abbreviate
the hasSubsidiary relation as hS:

E = {CadenceIndustries, MarvelEntertainment, WaltDisneyStudios(division),
MarvelStudios, MarvelCinematicUniverse, MarvelAnimation, Renault
Nissan, Automotive, California}

R = {hasSubsidiary, keyPersonOf , industryType}

F = {(CadenceIndustries, hS , MarvelEntertainment),
(MarvelEntertainment, hS , MarvelStudios),
(MarvelStudios, hS , MarvelStudios),
(MarvelStudios, hS , MarvelCinematicUniverse),
(MarvelStudios, hS , MarvelAnimation),
(WaltDisneyStudios(division), hS , MarvelStudios)
(Renault, hS , Nissan), (Nissan, hS , Renault),
(WaltDisneyStudios(division), headquarterLocation, California),
(Renault, industryType, Automotive), (Nissan, industryType, Automotive)}

From this definition and the running example, we can see that KGs are powerful in
representing symbolic knowledge. Furthermore, they are not only limited to the financial
domain but can be applied in various domains, as one can see from Google’s KG [Sin12].
Additionally, from the running example, we can see that one can extend them with
additional knowledge (e.g. industry type of a company). The example above is rather
logic-based, and also, the next Section 2.3 discusses how logical knowledge can be used
in KGs. However, this thesis puts a focus on KGE methods and how logical knowledge
can be incorporated into embeddings. KGEs map symbolic knowledge into subsymbolic
space, and as a result, they usually represent entities and relations as numerical vectors.

11

2. Background

In fact, embedding approaches would assign each symbolic entity from Example 1, a
vector representation. These vectors can be used for various reasoning tasks. KGEs are
discussed in more detail in Section 2.4. Nevertheless, this symbolic example helps to
better demonstrate and discuss the logical reasoning part of this thesis in the following
sections and, finally, the combination of logical knowledge and KGE models.

2.3 Logical Knowledge in Knowledge Graphs
This section discusses the importance of logical knowledge in KGs. Logical knowledge
enables logic-based reasoning over KGs that can be used to infer unobserved information,
(e.g. create new links between entities), find inconsistencies or integrate new knowl-
edge [BSV20a]. Logical knowledge can be expressed in various forms, but this thesis
concentrates on logical knowledge in the form of logical rules and the following concepts.
First, we introduce the notation. Note that we use the same notation and definitions as
in [BGS18] but adapt it to our KG Definition 2.2.1.

Notation. In [BGS18], the authors introduce the Vadalog system. Vadalog is based on
the logic-based programming language Datalog and, in particular on Warded Datalog±.
Datalog± generalises Datalog rules with existential quantification in the rule heads.
Vadalog can perform complex logical reasoning tasks in KGs [BGS18]. Therefore, the
following definitions are related to Warded Datalog±.

A relational schema S is a finite set that contains predicates (relations) with their
corresponding arity [BGS18]. This corresponds to our set of relations R in Definition 2.2.1
since we defined facts as triples, all r ∈ R are binary relations. Furthermore, we introduce
two disjoint countably infinite sets, C and V. C represents a set of constants and
corresponds to the set of entities E of Definition 2.2.1. V is the set of variables. A term
can be either a variable or a constant. The arguments of a relation are referred to as
tuple. Additionally, an atom over the schema S has the form r(t), where r represents a
predicate of arity n > 0 and t is a n-tuple of terms [BGS18]. Again, in Definition 2.2.1 we
restricted relations to arity two and therefore atoms correspond to facts of the set F in
Definition 2.2.1. As in [BGS18] we will use the terms atom, triple and fact interchangeably.
To give a better illustration we will provide a small example:

Example 2. hasSubsidiary(Renault, Nissan) represents an atom from the Running
Example’s KG 2.1.
In triple (fact) notation, this atom is defined as: (Renault, hasSubsidiary, Nissan).

2.3.1 Logical Reasoning in Knowledge Graphs
The key component of logical reasoning in KGs are logical rules. A very expressive and
important type of rules for inferring new knowledge are implication rules. They encode
‘if-then’ relationships.

12

2.3. Logical Knowledge in Knowledge Graphs

Example 3.

headquarterLocation(x, y) → locatedIn(x, y)

This rule states that if the headquarter of company x is located in y, then the company x is
located in y. In our Running Example 2.1 we can infer that WaltDisneyStudios(division)
is located in California, since the headquarter WaltDisneyStudios(division) is located in
California.

The left-hand side of the rule is referred to as body (if-part) and the right-hand side is called
head (then-part) [AHV95, BGS18]. The simplest form of a recursive rule is if an atom
appears in both head and tail. These rules are called self-recursive rules. Additionally, if
the recursive relation appears only once in the body, it is a linear recursion and non-linear
if it appears multiple times [GHLZ13]. Recursion is a fundamental concept to enable
complex reasoning tasks in the KG and also allow navigation [BGS18]. Recursion enables
the exploration of paths of arbitrary length in the graph. Therefore, it allows traversing
through the graph and, for example, visit each node. As a result, recursion provides
navigational capabilities.

Furthermore, two key concepts enable object creation and express rich knowledge,
namely tuple-generating dependencies (TGDs) and equality-generating dependencies
(EGDs) [Sal13]. In First-order logic (FOL) notation TGDs have the following form:

∀x(ϕ(x) → ∃yψ(x, y)),

where ϕ and ψ are conjunctions of atoms with constants and variables [Sal13]. An
example of a TGD is:

Example 4.

∀x(company(x) → ∃i industryType(x, i))

This rule states that for every company x, there exists an industry type i. Suppose
we allow unary predicates in our Running Example 2.1 and define every entity that
represents a company as a company. In that case, we can see that there exists the
industry type Automotive for Renault and Nissan. We could also infer new facts, e.g. for
MarvelAnimation exists the industry type Entertainment. After applying our proposed
embedding method to discover subsidiary relations that are non existing in the data and
together with the above TGD, we could query the industry type of a parent company and
all its direct and indirect subsidiaries. This knowledge can be used to analyse the industry
types this company structure is involved in.

13

2. Background

In contrast, EGDs have the following form [Sal13]:

∀x(ϕ(x) → xi = xj)

Combining these three key concepts (TGDs, EGDs and recursion) enables expressive
logical reasoning in KGs [BSV20a]. As in [BGS18] we omit the ∀ quantifier and replace
conjunctions ∧ with a comma in the following chapters.

As the title of this thesis suggests, the main focus of this work lies on recursive rules.
We will concentrate on non-linear recursive rules with two atoms in the body. Recursive
rules of the following form:

r(x, z), r(z, y) → r(x, y)

This rule actually expresses the transitive closure of the graph. It represents a special
form of the composition rule type. The different rule types are discussed in Chapter 3.
Our proposed embedding methods try to inject knowledge of recursive rules of the above
form that compute the transitive closure. To better illustrate the idea, we will use a
small subgraph of the Running Example 2.1. In the following example, we assume a set
of facts F (selected subset of the running example) and a set of logical rules Σ (recursive
rules in this case). We apply these rules on the set of facts to infer new facts and add
them to the existing set.

Example 5.

F = {(CadenceIndustries, hasSubsidiary, MarvelEntertainment),
(MarvelEntertainment, hasSubsidiary, MarvelStudios),
(MarvelStudios, hasSubsidiary, MarvelAnimation)}

The set Σ contains the following rules:

1. hasSubsidiary(x, y) → hasSubsidiary(x, y)
2. hasSubsidiary(x, z), hasSubsidiary(z, y) → hasSubsidiary(x, y)

From these recursive rules, we can infer the following new facts:

Fnew = {(CadenceIndustries, hasSubsidiary, MarvelStudios)
(MarvelEntertainment, hasSubsidiary, MarvelAnimation)
(CadenceIndustries, hasSubsidiary, MarvelAnimation)}

Example 5 shows how recursive rules are applied for logical reasoning on KGs. In
Chapter 4, we discuss how our approach injects recursive rules from Example 5 into KGE
models.

14

2.4. Knowledge Graph Embeddings

2.4 Knowledge Graph Embeddings
This section introduces the motivation for KGEs and its key concepts. KGEs gained
a lot of interest during the last years and are used for several tasks, such as Knowl-
edge Graph Completion, Entity Resolution, Entity Classification and Recommendation
Systems [BSV20a].

2.4.1 Motivation
KGs often experience incomplete and noisy data [AM13, NMTG16]. Incomplete and
noisy data affects the performance of reasoning tasks on KGs. In order to resolve this
issue, the field of Knowledge Graph Completion identifies relevant knowledge and adds
facts to the KG. There are many subtasks within Knowledge Graph Completion, but this
thesis concentrates on one of the most important ones, namely link prediction [BSV20a].

Link Prediction. Link prediction is the task of predicting relations between entities.
We can distinguish between two forms [WMWG17]:

• Relation Prediction: This task predicts missing relations between a given head
entity h and a given tail entity t. This is denoted as: (h, ?, t).

• Entity Prediction: This task predicts either missing head entities, given a relation
r and a tail entity t or predict missing tail entities, given r and a head entity h.
This task is denoted as (?, r, t) and (h, r, ?) for the latter case.

2.4.2 Knowledge Graph Embedding General Approach
As mentioned in the beginning, one of the most prominent methods to solve Knowledge
Graph Completion tasks are KGEs. The key idea of KGEs is to map symbolic entities
and relations of a KG into low-dimensional continuous vector space. This mapping should
preserve the KG’s structure in vector space and simplify computation and reasoning tasks.
Figure 2.2 demonstrates this key idea by using a left subgraph of the Running Example 2.1.
In general, the embedding method consists of four steps [WMWG17, JPC+21]:

1. Selection of a representation space for entities and relations (e.g. Euclidean space,
complex vector space or hyperbolic space).

2. Map entities and relations to selected representation space. Usually, entities
and relations are represented as vectors and initialised randomly from uniform
distribution [WMWG17].

3. Define a scoring function s(h, r, t) that measures the plausibility of a fact. True
facts should have higher scores than false facts. Furthermore, define a loss function
L that includes the scoring function and represents the objective of the optimisation.

15

2. Background

Figure 2.2: General idea of Knowledge Graph Embeddings

4. Solve the optimisation problem by minimising the loss function and in turn optimise
the plausibility of the observed facts. Typically, the optimisation problem is solved
by Stochastic Gradient Descent (SGD) [RM51] in minibatch mode.

The work [WMWG17] presents an algorithm for those steps. Next, we present an adapted
version in Algorithm 2.1 that summarises the four steps. In this algorithm, we generate n
negative examples per one positive example [TWR+16b]. A more detailed explanation of
the above steps is presented in the following paragraphs, but first, a rough classification
of KGE methods is given. They can be divided into three categories as described
in [BSV20a]:

• Translational and Rotational Models: These models usually model entities
as points in vector space and relations as translations or rotations, respectively.
Furthermore, they exploit distances or degrees as plausibility score and use them
as scoring function. TransE [BUGD+13] is one of the most prominent translational
models.

• Semantic Matching Models: In contrast to translational and rotational models,
semantic matching models utilise similarity-based scoring functions. Therefore,
they use element-wise multiplications between entities and relations as plausibility
values. An early model for this class is the RESCAL [NTK11] model.

• Neural Network-Based Models: These models are built on top of NNs. They
are based on a multi layered-based learning approach, consisting of an encoding
phase for calculating the vectors and a scoring step for evaluating the plausibilities.
NTN [SCMN13] is one of the early methods in this category.

16

2.4. Knowledge Graph Embeddings

Algorithm 2.1: Learning Knowledge Graphs Embedding
Input: Set of positive facts F+, set of entities E , set of relations R, n number of

negative facts per positive fact
Output: Optimised entitiy and relation embeddings

1 Select representation space U ;
2 Initialize e ← randomly from uniform distribution for each e ∈ E ;
3 Initialize r ← randomly from uniform distribution for each r ∈ R ;
4 Loop
5 S ← minibatch sampled from F+ ;
6 B+ ← ∅ ; // Initialize positive facts in current batch
7 B− ← ∅ ; // Initialize negative facts in current batch
8 for (h, r, t) ∈ S do
9 N ← generate n negative facts ;

10 B+ ← B+ ∪ (h, r, t) ;
11 B− ← B− ∪ N ;
12 end
13 Update embeddings w.r.t. the gradients of the loss function L, e.g.�

f ∈B+∪B− log(1 + exp(−yhrts(h, r, t)) ;
14 EndLoop

This thesis will concentrate on Translational/Rotational and Semantic Matching models.
A more detailed discussion and explanation of KGEs can be found in the following
works [NMTG16, WMWG17, BSV20a, JPC+21].

2.4.3 Training the Embedding model
This subsection discusses Algorithm 2.1 to learn KGEs in more detail. Throughout this
thesis, we use lower-case bold letters to represent entities and relation embeddings, e.g. e
and r. In contrast, the symbolic entities and relations are denoted as lower-case non-bold
letters, e.g. e and r.

Open and Closed World Assumption. There are two different assumptions under
which one can train embeddings: the Open World Assumption (OWA) and the Closed
World Assumption (CWA). The CWA states that all non-observed facts in a KG are false.
In contrast, OWA indicates that all observed facts in the KG are true and non-observed
facts can be either missing or false. These two assumptions differ in the embedding
training process, especially in the selection of the loss function. More models are trained
under the OWA [NMTG16]. Therefore, this subsection focuses on training embeddings
under OWA.

Learning Algorithm. Algorithm 2.1 takes as input the facts of the KG, denoted
as F+, the set of entities E and the set of relations R of the KG and additionally the

17

2. Background

number of negative facts n per positive examples (the next paragraph discusses this in
more detail). First, we need to select a representation space U on Line 1, as described
in the previous subsection. Afterwards, each symbolic entity e ∈ E and each symbolic
relation r ∈ R gets assigned a random embedding value in the representation space U on
Lines 2 and 3 (e.g. vector representation in Euclidean space).

After that, we loop over the facts F+ on Line 4 and generate a minibatch for SGD
optimisation on Line 5. Then, since training is based on negative and positive facts, we
create a set of positive facts B+ and a set of negative facts B− for the current batch on
Lines 6 and 7. Then, for each triple in the minibatch, we generate n negative facts (Line
9) and assign them to the corresponding positive and negative fact batches B+ and B−

on Lines 10 and 11. Lastly, we optimise the loss function (described in the following
paragraphs) using SGD on Line 13.

Algorithm 2.1 outputs the learned embedding values of relations and entities.

Positive and negative facts. Usually, KG only represent positive facts since they
do not store negative facts. Training solely on positive facts might result in overfit-
ting [JPC+21]. Therefore, the following work [BUGD+13] proposed a method to generate
negative facts. Observed facts in the KG are assumed to be positive and denoted as
f + = (h, r, t) ∈ F+. To construct negative facts, either the head or tail entitiy of positive
facts is replaced by a random entitiy. They are represented as f − = (h�, r, t�) ∈ F−,
where [BUGD+13]:

F− =
�
(h�, r, t)|h� ∈ E} ∪ {(h, r, t�)|t� ∈ E�

In Algorithm 2.1 Line 9 generates these negative facts. The algorithm generates n negative
facts per positive fact, [TWR+16b] showed that the number of negative examples per
positive fact can influence the model’s performance.

Scoring Functions. To better illustrate the loss functions in the next paragraph, the
scoring function of TransE [BUGD+13] is presented as an example. TransE models
relations r as translations from the head h to the tail t and therefore the following should
hold: h + r ≈ t. As a result, the scoring function models the distance and is defined as
follows [BUGD+13]:

s(h, r, t) = −�h + r − t�

On Line 13 in Algorithm 2.1 we can see that the scoring function is integrated into the
optimisation step of the loss function.

Loss Functions. This paragraph introduces different loss functions. The model pa-
rameters (usually entity and relation vector representations) are denoted as Θ. Different
loss functions are used to train embedding models. In this paragraph, we will introduce
three major loss functions. In order to learn the embeddings, we can minimise one of

18

2.4. Knowledge Graph Embeddings

the following loss functions. Equation 2.1 shows the negative log-likelihood of logistic
models [JPC+21]:

min
Θ

�
f ∈F+∪F−

log(1 + exp(−yhrts(h, r, t))), (2.1)

where yhrt =
�

−1 if (h, r, t) ∈ F+

1 otherwise.

Algorithm 2.1 minimises the negative log-likelihood loss function with SGD in minibatch
mode on Line 13.

In some models, the sigmoid function σ is applied on the scoring function: σ(s(h, r, t)).
The reason for this is to restrict the output to a probability in the range [0, 1]. Usu-
ally, Bernoulli negative log-likelihood is minimised for this case. For example, the
SimplE+ [FRP18] model uses this loss function that is shown in Equation 2.2:

min
Θ

−
�

f ∈F+

log(s(h, r, t)) −
�

f ∈F−
log(1 − s(h�, r, t�)) (2.2)

SimplE+ is discussed in more detail in Chapter 3 .

Besides these two loss functions, one can minimise the pairwise ranking loss as shown
in Equation 2.3. TransE [BUGD+13] exploits this loss function. The goal of this
loss is to rank positive facts higher than negative ones, where the margin γ separates
them [WMWG17]:

min
Θ

�
f +∈F+

�
f −∈F−

max(0, γ − s(h, r, t) + s(h�, r, t�)) (2.3)

Most of the models also add regularization terms to the loss function, like L2 regularization:
λ�Θ�2

2, where λ is a regularization hyperparameter [WMWG17]. Regularization terms are
used to prevent overfitting by biasing the parameters closer to the origin, add information
or impose certain constraints [DFO20a].

Incorporating additional information. This section discussed the training proce-
dure of embeddings that utilises only facts during training. Nevertheless, we can also
exploit auxiliary information and inject it into the training process. This incorporation
of additional background knowledge should increase the model’s performance and make
it potentially more explainable. Another advantage would be that it also tackles the
problem of noisy and incomplete data as discussed in Subsection 2.4.1 since the additional
information should compensate for missing facts. This auxiliary information can range
from textual information, images, ontologies to logical rules [WMWG17, BSV20a]. This
thesis concentrates on logical rules as additional background knowledge, and Chapter 3
presents state-of-the-art models that inject logical rules.

19

2. Background

2.5 Non-Euclidean Geometry
In this section, we introduce the basic concepts of Non-Euclidean geometry. The first
Subsection 2.5.1 discusses Euclidean geometry along with Euclid’s famous fifth postulate.
This postulate plays an important role in defining Non-Euclidean geometries. Section 2.5.2
introduces key concepts of Differential Geometry that are needed for Hyperbolic Geometry.
Afterwards, Section 2.5.3 defines one specific hyperbolic model, namely the Poincaré ball.

2.5.1 Euclidean Geometry
In this subsection, we review the basic concepts of Non-Euclidean geometry. First,
we start by introducing the well-known Euclidean geometry. Euclid formulated five
postulates (axioms) in his books (the Elements [EH56]) on which he based his plane
geometry [RG11]:

1. “A straight line segment can be drawn joining any two points.”

2. “Any straight line segment can be extended indefinitely in a straight line.”

3. “Given any straight line segment, a circle can be drawn having the segment as
radius and one endpoint as centre.”

4. “All right angles are congruent.”

5. “If two lines are drawn which intersect a third in such a way that the sum of the
inner angles on one side is less than two right angles, then the two lines inevitably
must intersect each other on that side if extended far enough.” [RG11]

The last postulate is also known as parallel postulate. In other words, it states that
if there is a line l and a point A that does not lie on this line, there exists exactly
one line going through A that is parallel to l. Mathematicians tried to prove Euclid’s
fifth postulate from the other four postulates but were unsuccessful in finding a proof.
Therefore, they started to construct geometries by replacing the parallel postulate with
alternate versions. As a result, the two Non-Euclidean geometries with their adapted
parallel postulate were introduced:

• Hyperbolic Geometry: There exist indefinitely many lines going through A
that are parallel to l.

• Spherical/Elliptical Geometry: There exists no line going through A that is
parallel to l.

Figure 2.3 shows the adapted fifth postulate for hyperbolic geometry. All three lines
going through point A are parallel to line l [RG11].

20

2.5. Non-Euclidean Geometry

Figure 2.3: Three parallel lines to l, going through point A in hyperbolic Poincaré disk
model

(a) Sphere S2 (b) Cylinder without top and bottom disk

Figure 2.4: Examples of 2-manifolds

2.5.2 Key Concepts of Differential Geometry

Next, we introduce the key concepts of Differential Geometry that are needed to develop
the hyperbolic embedding model. We present an intuitive explanation of the concepts.

Manifold. First, we need to define the notion of a manifold. A n-dimensional manifold
M is a topological space that locally represents the Euclidean space Rn near any of its
points. For example, 2-dimensional manifolds represent surfaces, since the R2 space is a
plane. Intuitively, if we zoom in enough, the neighbourhood of each point on a 2-manifold
looks like a plane. Figure 2.4 shows two examples of 2-manifolds, the sphere S2 and
the cylinder without top and bottom disk. Other examples would be paraboloids and
hyperboloids. In many applications of manifold theory, the computation of curvatures
and volumes are needed. These computations are done by differentiation and integration.

21

2. Background

(a) Zero curvature (b) Positive curvature (c) Negative curvature

Figure 2.5: Surfaces with different curvatures. Idea of figure taken from [HNA+97]

Figure 2.6: Tangent space TxS2 of point x on S2. Idea of figure taken from [Lee13]

Therefore, the ideas of calculus need to be transferred to a manifold. Without giving a
formal definition, a smooth manifold is a manifold on which one can do calculus. We
need this notion for the definition of the Non-Euclidean models [Lee13, Wei14].

Curvature. Another important concept is curvature which measures how an object
deviates from a flat plane. Figure 2.5 illustrates different curvatures. At a high level, a
surface has zero curvature at a point if at least one of the principal curvatures (the two
lines intersecting the red point in Figure 2.5) is zero. It has positive curvature if the two
principal curvatures bend in the same direction and negative curvature if they bend in
different directions [HNA+97].

Tangent Space. The next notion that is essential for the hyperbolic embedding model
is the tangent space. Intuitively, if there is a n-dimensional manifold M embedded in
Rn+1, “the tangent space TxM at point x on M is a n-dimensional hyperplane in Rn+1

that best approximates M around x” [CYRL19]. The tangent space contains all possible
directions of curves that pass through the point x. Figure 2.6 illustrates an example of
the tangent space TxS2 of point x on S2 [CYRL19].

22

2.5. Non-Euclidean Geometry

Riemannian Metric. The next step is to equip smooth manifolds with a Riemannian
metric which enables the computation of lengths and angles on the manifold. A Rieman-
nian metric g = (gx)x∈M determines an inner product �·, ·�x := gx(·, ·) on each tangent
space TxM. The Riemannian metric defines how to compute the length of smooth curves
on the manifold. Given a curve from a to b as continuous function γ : [a, b] → M, the
length is computed by integration:

L(γ) =
� b

a

gγ(t)(γ�(t), γ�(t))dt

As a result, the computation of curve lengths on manifolds enables the measurement of
distances on manifolds [CBG20]. In contrast, a ‘normal’ metric measures the distance
between two points. For example, in Euclidean space, if we use the dot product as inner
product, we get the following distance:

d(x, y) :=

�x − y, x − y�

between x and y. The following mapping is a metric [DFO20b]:

(x, y) "→ d(x, y)

Riemannian Manifold. After defining a smooth manifold and a Riemannian metric,
we can define a Riemannian manifold [CYRL19]:

Definition 2.5.1 (Riemannian manifold) A Riemannian manifold is a pair (M, g),
where M is a smooth manifold and g is a Riemannian metric.

2.5.3 Hyperbolic Geometry
In general, hyperbolic geometry studies space with constant negative curvature. There
exist several models of hyperbolic space, but for this thesis, we concentrate on the
Poincaré disk and its generalised form to higher dimensions, the Poincaré ball. In these
models, n-dimensional hyperbolic space is modelled in an n-dimensional ball or on a disk
(for the 2-dimensional case). Figure 2.7 shows the Poincaré disk model.

The space grows exponentially towards the edge of the disk. In this model, straight lines
are represented as arcs that are bent towards the centre of the disk and are perpendicular
to the disk’s edge (see Figure 2.3). Furthermore, because of the exponential growth
towards the edge, the shortest paths (geodesics) between two points appear curved since
it is shorter to go into the direction of the centre than to directly go straight to the
second point (see Figure 2.7a) [CCD17].

This exponential growth also motivates the usage of hyperbolic space as representation
space in ML. Hyperbolic space is well-suited to model hierarchical data, such as trees. In
trees, the number of leaves grows exponentially, and this exponential growth is exactly
represented in hyperbolic space. Figure 2.7b shows a binary tree embedded in the

23

2. Background

(a) Geodesics (shortest paths) (b) Embedded binary tree

Figure 2.7: Poincaré disk model. Idea of figure taken from [NK17, CYRL19]

Poincaré disk model. If we interpret this Figure in the Euclidean space perspective,
we can see that the distances between leaves get smaller and smaller. There is no way
to embed this tree in a distance preserving way in Euclidean space, except increasing
the number of dimensions. A higher number of dimensions increases the number of
parameters and, as a result, can cause runtime, complexity and memory issues [NK17].

Poincaré Ball Model. As mentioned in the beginning of this section, we use the d-
dimensional Poincaré ball with negative curvature −c, c > 0. The model is a Riemannian
manifold (Bd,c, g):

Bd,c =
�

x ∈ Rd : �x�2 <
1
c

�
,

g =

 2

1 − c�x�2

�2
Id

where �·� denotes the L2-norm and Id is the identity matrix. The tangent space TxBd,c

for the Poincaré ball Bd,c is a d-dimensional Euclidean space (TxBd,c = Rn) [BAH19b].
This is a very important concept for the development of the embedding model since we
perform Euclidean operations and optimisations on the tangent space as in [CWJ+20].

Exponential and Logarithmic Maps. In order to map from the tangent space
TxBd,c to Bd,c we use the exponential map: expc

x : TxBd,c → Bd,c. For the other direction,
we use the logarithmic map: logc

x : Bd,c → TxBd,c [CWJ+20]. Closed-form expression
for the exponential map and logarithmic map at the center of the ball are defined as
follows: [GBH18b]:

expc
0(v) = tanh(

√
c�v�) v√

c�v� (2.4)

24

2.5. Non-Euclidean Geometry

Figure 2.8: Tangent space TxM on point x on the manifold M. And the exponential
map expx(v) which maps v from the tangent space to the manifold. Idea of figure taken
from [CWJ+20]

logc
0(y) = arctanh(

√
c�y�) y√

c�y� (2.5)

Figure 2.8 illustrates this mapping between a manifold and a tangent space on point x.

Vector Addition. The last concept we introduce in this subsection is vector addition
in hyperbolic space. Adding two vectors in the Poincaré ball might lead to a point outside
of the ball. Therefore, standard vector addition is not possible in hyperbolic space, but
Möbius addition was proposed to tackle this problem. It is analogue to Euclidean vector
addition and defined as follows [Ung01, CWJ+20]:

x ⊕c y = (1 + 2c�x, y� + c�y�2)x + (1 − c�x�2)y
1 + 2c�x, y� + c2�x�2�y�2 (2.6)

2.5.4 Spherical Geometry
This subsection discusses the concepts of spherical geometry. While hyperbolic space has
constant negative curvature, spherical geometry has positive curvature. In Figure 2.5b
positive curvature is presented. A common realization of this geometry is on the surface
of a hypersphere SK [SGB20]. Therefore, the manifold (of the hypersphere) is defined
as [SGB20]:

Sd
K =

�
x ∈ Rn+1 : �x, x�2 = 1

c

�
, for c > 0

In spherical space, geodesics are great circles on the hypersphere [WHPD14]. A great
circle is the intersection of a plane that goes through the center of the sphere [Wei02]. Fig-
ure 2.9 shows two great circles. Therefore, any two lines meet in two points. Furthermore,
there are no parallel lines and as a result, Euclidean’s fifth postulate is rejected as in the
hyperbolic space [Wei21]. Moreover, the distance function can be defined as [SGB20]:

25

2. Background

Figure 2.9: Two great circles on S2 with radius r

dc
S(x, y) = 1√

c
arccos(c�x, y�2)

2.5.5 Combining multiple spaces
While hyperbolic space is well suited for modelling hierarchical structures, spherical
space gained much popularity to embed cyclical data due to its performance [WHPD14,
MHW+19, ZTJ+21]. Recently, approaches have been proposed to combine multiple spaces
to model data [GSGR19, SGB20, ZTJ+21]. The reason for using multiple representation
spaces is because usually, data has multiple structures; therefore, one space can not
ideally capture all structures [ZTJ+21]. For example, if a data set contains hierarchical
and cyclical structures, a combination of hyperbolic and spherical space might improve
the performance of modelling this type of data.

Cyclic data could be embedded around a great circle on the sphere that could increase
the model’s performance2. It is essential to mention that these approaches to combine
multiple spaces do not support the injection of rules. This research area is important to
research which spaces are suitable to represent specific properties.

2.6 Summary
We conclude the introduction of the relevant concepts needed to present the proposed
approaches and related work models. This chapter introduced a running example and
real-world application fields. Furthermore, a formal definition of a KG was presented.
Afterwards, we discussed the logical part of KGs and also the ML side of KGs by
introducing the key concepts of KGEs. Additionally, we discussed the benefits of using

2https://dawn.cs.stanford.edu/2019/10/10/noneuclidean/

26

https://dawn.cs.stanford.edu/2019/10/10/noneuclidean/

2.6. Summary

non-Euclidean geometry as representation space for embeddings. An introduction to
hyperbolic geometry for modelling hierarchical data and spherical spaces to model cyclic
data was presented. The next chapter presents state-of-the-art embedding models and
additionally current approaches to inject logical knowledge into embeddings.

27

CHAPTER 3
Related Work

This chapter presents state-of-the-art KGE approaches. First, we present models from
three classes of embeddings: Semantic Matching Models, Translational/Rotational Models
and Hyperbolic Models. Furthermore, we discuss the hyperbolic approach of Chami
et al. [CWJ+20] in more detail since one of our proposed approaches is based on some
key ideas from this approach. Next, in Section 3.2 recent models that support logical
rule injection are presented. We discuss the embedding approaches along with their
ideas to inject logical rules. Moreover, we put a focus on the SimplE+ [FRP18] model
since our proposed Euclidean approach is based on it. There are commonly used logical
rule patterns in KGE literature to discuss the representation and injection capabilities
of the models. In Table 3.1 the most prominent ones are summarised [ACLS20]. To
better discuss the embedding models, we use the patterns from Table 3.1 throughout
this chapter.

3.1 Knowledge Graph Embeddings
This section presents current state-of-the-art KGE models. We divide them into Trans-
lational/Rotational Models and Semantic Matching Models as presented in Chapter 2
and discuss the chosen representation space of the models. Additionally, hyperbolic
embedding models are presented.

3.1.1 Semantic Matching Models
As discussed in Chapter 2, Semantic Matching Models utilize similarity-based scoring
functions. One of the earliest Semantic Matching Models is RESCAL [NTK11]. In
RESCAL each relation r is modelled as matrix Mr and the scoring function is defined
as [NTK11]:

s(h, r, t) = h�Mrt

29

3. Related Work

Table 3.1: Common logical rule patterns1

Logical Rule Patterns Notation
Symmetry (Sym) r1(x, y) → r1(y, x)
Anti-symmetry (A-Sym) r1(x, y) → ¬r1(y, x)
Inversion (Inv) r1(x, y) ↔ r2(y, x)
Composition (Comp) r1(x, y), r2(y, z) → r3(x, z)
Implication/Hierarchy (Imp) r1(x, y) → r2(x, y)
Non-linear Recursion (Rec) r1(x, y), r1(y, z) → r1(x, z)

The paper [YYH+15] introduces the DistMult model, which is a special case of RESCAL
using diagonal relation matrices. However, DistMult can not model asymmetric rela-
tions [BAH19b]. Therefore, the ComplEx model was proposed in [TWR+16a]. ComplEx
is able to capture asymmetric relations [BAH19b]. ComplEx moves DistMult to complex
vector space. From this approach, we can already see that changing the representation
space can provide advantages in expressiveness. Another recent Semantic Matching Model
is TuckER [BAH19a] that achieved promising evaluation results. This approach utilizes
Tucker decomposition. Tucker decomposition was proposed in [Tuc64] and decomposes a
tensor into a set of matrices, and one small core tensor [BAH19a].

3.1.2 Translational and Rotational Models

In this type of model, entities are usually modelled as points and relations as translations
or rotations. The distance functions or degrees between the translated/rotated head
and tail entities are typically used as a scoring function. The seminal model in this
category is TransE [BUGD+13]. In Chapter 2.4.3 we discussed the scoring function of
TransE. Multiple extensions to address expressiveness problems have been proposed,
e.g. TransH [WZFC14], which solves TransE’s problems of representing 1-to-N, N- to-1,
and N-to-N relations, TransR [LLS+15], that addresses TransE’s representation issues
to capture multiple aspects of an entity and various relations focusing on different
aspects or TransSparse [JLHZ16], which simplifies TransR’s complexity. Instead of
translations, the RotatE model [SDNT19] is based on rotations in complex vector space.
This approach allows capturing logical properties like symmetry, inversion, composition,
or anti-symmetry [CWJ+20]. Again, there is an improvement in expressiveness due to a
change of the representation space. RotatE has the following scoring function [JPC+21]:

�h ◦ r − t� h, t ∈ Cd, r ∈ Cd,

where ◦ is the Hadmard (element-wise) product.

1For the relations we have: r1 �= r2 �= r3 [ACLS20]

30

3.1. Knowledge Graph Embeddings

3.1.3 Hyperbolic Embeddings

As discussed in Section 2.5, hyperbolic space can naturally represent trees very well.
Therefore, using hyperbolic space to embed hierarchical data gained much interest
in recent years. Nickel and Kiela [NK17] proposed a model to embed the transitive
closure of the WordNet noun hierarchy data set. As a hyperbolic model, they chose
the Poincaré ball model. Their evaluation showed that low-dimensional hyperbolic
embeddings can significantly increase the performance compared to higher-dimensional
Euclidean embeddings.

Furthermore, in [CWJ+20] the authors also showed that low dimensional hyperbolic
embeddings can outperform Euclidean embeddings in representation and generalization
ability. Therefore, hyperbolic space provides another desirable property, high expressive-
ness in low dimensions. Low dimensionality reduces the model complexity that increases
explainability, and reduces memory complexity.

The drawback of Nickel and Kiela’s embedding approach [NK17] is its incapability
to model asymmetric relations. Ganea et al. [GBH18a] proposed another hyperbolic
embedding approach (also using the Poincaré ball model) for embedding directed graphs
to overcome this problem. The authors utilise cones in hyperbolic space to embed
hierarchical data. However, the Poincaré ball model poses challenges to develop training
optimisers and numerical instabilities [NK18]. As a result, Nickel and Kiela proposed
another embedding model in hyperbolic space to embed hierarchical data, but instead of
the Poincaré ball model, they used the Lorentz model of hyperbolic geometry [NK18].
The advantages of using the Lorentz model instead are facilitating the development of a
more efficient optimiser and avoiding numerical instabilities. Our proposed hyperbolic
model chooses the Poincaré ball model since Chami et al. [CWJ+20] proposed another
elegant solution to solve the problems as mentioned earlier in the Poincaré ball model.
We discuss these solutions in more detail in the next paragraph.

However, the approaches mentioned above focus primarily on graph embeddings and
are not directly developed for KGs. Therefore, we focus this thesis on embedding
models developed explicitly for KGs: the MuRP model in [BAH19b] and the AttH
(and its variants: RotH and RefH) in [CWJ+20]. The MuRP model is a translational
model in hyperbolic space that minimises the distance between the translated tail
entity and a stretched head entity. This model achieves promising results in hyperbolic
space. However, in comparison to AttH, the training optimisation relies on Riemannian
Stochastic Gradient Descents (RSGDs) (the following paragraph introduces RSGDs and
its disadvantages shortly). Furthermore, MuRP is based on hyperbolic translation only
and a fixed hyperbolic curvature, reducing the model’s flexibility. Since this optimisation
method and the resulting structure of the approach is not compatible with our proposed
approach to inject recursive logical rules. Therefore, our hyperbolic approach is based on
key ideas of AttH. In the next paragraph, we discuss the AttH [CWJ+20] model in more
detail.

31

3. Related Work

AttH, RotH and RefH. In [CWJ+20], Chami et al. proposed three hyperbolic
embedding models: AttH, RotH and RefH. The idea is to use different geometric
operations in hyperbolic space to capture logical patterns like symmetry or anti-symmetry.
RotH is based on hyperbolic rotation since it was successfully used in RotatE [SDNT19].
RefH is based on hyperbolic reflection. The authors discuss that rotation can model
inversion, composition, symmetric and anti-symmetric logical patterns. However, only
some rotations can model symmetric relations whereas reflection can naturally capture
symmetric patterns [CWJ+20]. AttH combines rotation and reflection using a hyperbolic
attention mechanism to capture mixed-behaviour (neither symmetric nor anti-symmetric)
relations. Furthermore, the authors apply a relation specific translation after hyperbolic
attention since “translations capture tree-like structures by moving between levels of
hierarchy” [CWJ+20]. The resulting scoring function is defined as:

s(h, r, t) = −dcr (Q(h, r), tH)2 + bh + bt,

where Q(h, r) is a function that applies the hyperbolic attention followed by a hyperbolic
translation. Furthermore, bh and bt are entity biases that represent margins of the
scoring function, tH denotes hyperbolic tail entity embedding and cr is a relation specific
curvature. Chami et al. define the curvature as a learnable parameter per relation.
Therefore, each relation has its own curvature to provide more flexibility in capturing
logical patterns and avoid precision errors [CWJ+20]. Section 2.5 discusses the concept
of curvature.

In hyperbolic space, standard SGD is not possible and usually RSGD [Bon13] is applied
to solve optimisation problems. However, in [CWJ+20] the authors discuss practical
challenges using RSGD. RSGD has the disadvantage of numerical instabilities due to
the computation of fractions in the distance functions (depending on the underlying
hyperbolic model). Therefore, the authors use tangent space optimisation. This key
idea is essential to develop our proposed hyperbolic model. In AttH all parameters are
defined at the tangent space at the origin 0, this represents the parameter space. As
presented in Section 2.5, the tangent space is Euclidean. Therefore, this allows Chami
et al. [CWJ+20] to use standard Euclidean optimisation methods for the parameters.
In order to compute the hyperbolic scoring function, the authors use the exponential
map expcr

0 (eE) and expcr
0 (rE) to recover the hyperbolic parameters of Euclidean entity

embeddings on tangent space eE and Euclidean relation embeddings rE .

3.1.4 Spherical Space Embeddings
Proposed embedding approaches in spherical space gained much attention for embedding
cyclical data. Most of these embedding approaches are not proposed explicitly for
KGs. However, they have been successfully applied for text embeddings [MHW+19].
Furthermore, embeddings in spherical space have yielded promising results in the computer
vision area [WHPD14]. Another interesting application is spherical embeddings for face
recognition [LWY+17]. However, there are more published approaches of non-Euclidean
KGE models in hyperbolic space.

32

3.2. Rule Injection in Knowledge Graph Embeddings

To the best of our knowledge, spherical space embeddings have not been used together
with rule injection. However, since fundamental research is required to inject rules into
spherical KGEs using our proposed method, we do not focus on spherical space in this
thesis and leave it open for future work.

3.2 Rule Injection in Knowledge Graph Embeddings
This section introduces existing state-of-the-art KGE models that support the injection
of logical rules. Logical rule injection integrates logical rules into the learning process
and should ideally guide the training process in a way that the learnt model follows the
logical rules. We start by explaining two different approaches of existing models. There
are multiple ways to inject logical rules, but in general, we can classify state-of-the-art
approaches into two groups [ACLS20]:

1. Formulating a loss function that rewards predictions that satisfy predefined logical
rules and penalizes predictions that violate them. A rule-based loss function
often has the disadvantage that the rules have to be propositionalized, leading to
performance problems. Instead of formulating a rule-based loss function, one can
also add regularizers to the existing loss function to capture logical patterns. These
methods are not able to provably enforce those rules. We will refer to them as soft
constraint methods.

2. The second approach explicitly constrains the embedding space by enforcing con-
straints. This could be done by parameter tying of specific embeddings or by
enforcing inequality constraints by applying specific functions on the vector embed-
dings. These approaches only support a limited number of rule types. We will refer
to them as hard constraints methods.

As discussed in [ACLS20], it is also important to mention that there is a difference
between capturing and injecting logical rules. While capturing expresses the capabilities
of the embedding approach to model logical patterns, injecting indicates that predefined
logical background knowledge can be enforced or at least incorporated into the model.

3.2.1 Embedding Models that Support Logical Rule Injection
This subsection gives an overview of current state-of-the-art models that support logical
rule injection. Furthermore, we give an overview of the rules that are injectable into
these approaches. Table 3.2 shows a summary of recent approaches.

The paper [RSR15] published one of the earliest approaches. In [RSR15], the authors
model both ground atoms/facts and rules as logic formulae. Furthermore, they define
a rule-based loss function that rewards predictions that satisfy the logical formulae
and penalize them if they violate them. By modelling facts and more complex rules
both as logical formulae, the authors can optimise them jointly. A similar approach to

33

3. Related Work

Table 3.2: Embedding models that support logical rule injection

Logical Rule Pattern
Model Sym A-Sym Inv Comp Imp Rec
Joint [RSR15] ∼∼∼† ∼∼∼† ∼∼∼† ∼∼∼† ✓ ✗

FSL [DRR16] ✗ ✗ ✗ ✗ ✓ ✗

KALE [GWW+16], RUGE [GWW+18] ∼∼∼† ∼∼∼† ∼∼∼† ✓ ✓ ✗

DistMultR, TransER, ComplExR [MCM+17] ✗ ✗ ✓ ✗ ✗ ✗

BoxE [ACLS20] ✓ ✓ ✓ ✗ ✓ ✗

SimplE+ [FRP18] ✓ ✓ ✓ ✗ ✓ ✗

inject logical rules is used in the KALE [GWW+16] and RUGE [GWW+18] model but
specifically for KGs. The authors also employ joint optimisation by modelling facts and
rules both as logical formulae. Furthermore, they also define a rule-based loss function
and utilize t-norm fuzzy logic [Háj98] to compute the truth values of the formulae. In
KALE [GWW+16], KG triples are modeled using the TransE [BUGD+13] model. All
three approaches have the disadvantage of the logical rules being grounded (e.g. a
grounded atom is a predicate applied to constants); this might cause performance issues
for large data sets.

Furthermore, the approaches fail to enforce logical rules provably and assume indepen-
dence between relations. Therefore, it is not guaranteed that the injected implications
hold for facts not seen during training [DRR16]. As a result, these models can be classified
as soft constraint models.

In order to avoid the disadvantages mentioned above, Demeester et al. [DRR16] proposed
the FSL model. Their work concentrates on implication rules of the form: r1(x, y) →
r2(x, y). In order to inject those implication rules, they introduce two constraints on the
embeddings:

• Inequality constraint: r1 ≤ r2. This constraint is applied on each relation
provided in the logical rule set Σ and ≤ indicates the component-wise comparison.

• Non-negativity constraint: e ≥ 0 ∀e ∈ E

The authors combine head and tail entity into one entity-tuple t and define the scoring
function as dot product between relation and entity: s(r, t) = �r, t�. The idea to map
the knowledge of the implication rule into the embedding is to ensure that whenever
r1(x, y) is true and has a high score, then r2(x, y) needs to be also true and has an
equal or higher score, but not vice-versa. This idea captures the semantics of the
implication that whenever the left-hand side is true, the right-hand side must also

† The authors use a rule based loss function. In this table we only list the types of rules the authors
used for evaluation and focused their work on. However, the authors give explanation how their approach
can be extended to support more complex rules. But their approaches fail to provably enforce the injected
rules and assume independence of two atoms.

34

3.2. Rule Injection in Knowledge Graph Embeddings

hold. The scoring function in combination with the two constraints ensure exactly
this behaviour: �r1, t� ≤ �r2, t� for every relation in the set of rules. By choosing
an appropriate loss function in combination with the constraints, the authors inject
these implication rules and furthermore avoid grounding the injected rules, and the
independence assumptions [DRR16]. The key idea of these two constraints to inject
implication rules is used by SimplE+ and is discussed in more detail in the next subsection.
Our proposed approach also uses this idea.

A different approach is presented by Minervini et al. in [MCM+17]. The authors focus on
equivalence and inversion rules of the form: r1(x, y) ↔ r2(x, y) and r1(x, y) ↔ r2(y, x).
Their approach investigates the compatibility of these two rules with three KGE models
from the literature: TransE [BUGD+13], DistMult [YYH+15] and ComplEx [TWR+16a].
They prove that two constraints are sufficient to incorporate the knowledge of the
equivalence and inversion rules. For TransE, the following constraint must hold r1 = r2
for the equivalence rule r1(x, y) ↔ r2(x, y). Furthermore, the following constraint must
hold r1 = −r2 to inject the inversion rule r1(x, y) ↔ r2(y, x). The authors chose to
incorporate these rules by adding a regularizer to the loss function but discuss the other
possibility of enforcing hard constraints instead [MCM+17]. Therefore, we can see that
defining constraints on the embedding space is able to capture the behaviour of specific
logical patterns. Since the equivalence rule is trivial to inject (i.e. enforce equality
constraint r1 = r2) for most models we excluded it from Table 3.1 and Table 3.2.

Abboud et al. [ACLS20] address the problem of logical rule injection and capturing logical
patterns by modelling relations as regions in the embedding space. The paper analyses
and proves that certain types of rules can be injected and captured by their region-based
BoxE model. The general idea is to embed entities as points in the vector space and
relations as hyper-rectangles (boxes). They inject rules using a combination of parameter
tying of boxes and growing specific boxes [ACLS20]. Table 3.2 shows what rule types their
model supports. In addition to the common supported rule types in Table 3.2, their model
also supports the injection of the following two rule types: r1(x, y), r2(x, y) → r3(x, y)
and r1(x, y), r2(x, y) → ⊥.

The work [MR18] proposes a method to inject logical rules by using adversarial training.
However, our approach concentrates on enforcing hard constraints on the embedding
space to inject logical rules since we want to ensure that the injected rules always hold.
More specifically, one of the approaches is based on the SimplE [KP18] model and its
extension SimplE+ [FRP18]. The reason why we chose SimplE and SimplE+ as the
basis for one of our approaches is because our injection approach is compatible with
these models and require fewer adjustments than other approaches. Furthermore, the
evaluation results of these two models are promising. Therefore, we will explain these
models in more detail in the following subsection.

35

3. Related Work

3.2.2 SimplE+

This subsection presents the SimplE [KP18] KGE model, its extension SimplE+ [FRP18]
and their method to inject logical rules. To begin with, SimplE assigns each relation two
embeddings and similarly each entity two embeddings. For each relation r ∈ R there
is one ‘forward’ embedding r+ and an embedding for its inverse r−. Furthermore, each
entity e ∈ E gets assigned an embedding as head e+ and as tail e−. The authors define
the scoring function of SimplE, as follows [FRP18]:

s(h, r, t) = σ

1
2

	
�h+, r+, t+� + �t−, r−, h−�

��
, (3.1)

where �x, y, z� for vectors x, y and z of length k is defined as the sum of the element-wise
product:

�x, y, z� =
k�

l=1
xlylzl

SimplE [KP18] supports the injection of three logical rules types: (i) symmetry: r1(x, y) →
r1(y, x) (ii) anti-symmetry: r1(x, y) → ¬r1(y, x) and (iii) inversion: r1(x, y) ↔ r2(y, x).
To inject those rules, SimplE uses a parameter tying approach. This approach enforces
specific parameters of embedding vectors to have specific values. The following list gives
an overview how these rules are injected into the embeddings using parameter tying.
Additionally, the authors prove that this parameter tying enforces the injected logical
rules in embedding space:

• Symmetry rules: Tying parameters of r1− to r1+

• Anti-symmetry rules: Tying parameters of r1− to −r1+

• Inversion rules: Tying parameters of r1− to r2+ and the parameters of r2− to r1+

In [FRP18] the authors propose the SimplE+ model, that is an extended approach.
SimplE+ additionally supports the injection of implication rules of the form: r1(x, y) →
r2(x, y). Similar to [DRR16], the authors propose two constraints [FRP18]:

• Inequality constraint: r1 ≤ r2. This constraint is applied on each relation that
is contained in a given implication and ≤ indicates the component-wise comparison.

• Non-negativity constraint: e+, e− ≥ 0 ∀e ∈ E

To enforce the non-negativity constraint on entity embeddings, the authors tested several
element-wise non-linearity functions. Rectified linear unit (ReLU) yielded the best results.
The ReLU function is defined as:

f(x) = max(0, x)

36

3.3. Summary

In order to apply this constraint, SimplE+ replaces the scoring function s = (h, r, t)
with s = (f(h), r, f(t)) before computing the score. To enforce the inequality constraint,
SimplE+ learns for each relation r1 that is in an implication r1(x, y) → r2(x, y), a non-
negative vector δr1. The non-negativity of the vector is again ensured by applying the
ReLU function on it. The vector δr1 defines how r1 differs from r2 and the following
equality holds: r1 = r2 − δr1 . Therefore, SimplE+ does not learn an embedding for
r1 directly but computes the embedding using the value of the embedding of relation
r2 and δr1 using the above mentioned equality [FRP18]. The idea of capturing the
implication rule in the embedding is the same as in [DRR16]. Whenever the left-hand
side of the implication (h, r1, t) is true, the triple should get a high score and (h, r2, t)
should get an equal or higher score. Since the entity embeddings are non-negative, the
scoring function is the sum of the element-wise product and the inequality constraints
on the relations in an implication are enforced, SimplE+ ensures the following property:
s(h, r2, t) ≥ s(h, r1, t) for all implications r1(h, t) → r2(h, t).

The technique to enforce the inequality constraint in SimplE+ is a crucial aspect we had
to consider during the implementation of our proposed approaches. More details about
the implementation are discussed in Chapter 4.

3.3 Summary
In Section 3.1 we presented recent Semantic Matching, Translational/Rotational and
hyperbolic KGE models. Furthermore, we presented that some models change the
representation space (e.g. complex vector space) to increase the expressiveness of the
models. We concluded the section by discussing the hyperbolic AttH, RotH and RefH
models [CWJ+20] in more detail. Next, we discussed recent approaches to inject logical
rules into embeddings. These approaches can generally be divided into ‘soft’ constraint
methods, and ‘hard’ constraint approaches. Furthermore, we presented an overview of the
models along with the injectable rule types. Lastly, we discussed the SimplE+ [FRP18]
model in more detail. The next chapter presents our two proposed approaches.

37

CHAPTER 4
Proposed Method

In this chapter, we present our general idea to inject recursive logical rules. It starts
by explaining our approach to model the knowledge from the recursive rules using
connected implications. Afterwards, we propose two models that support the injection
of this approach (multiple implications). One of the proposed methods is based on the
state-of-the-art KGE model SimplE+ [FRP18] and the second approach is a hyperbolic
embedding model.

4.1 Injecting Recursive Rules

This section discusses the general idea to inject recursive rules of the form r(x, y), r(y, x) →
r(x, z) into KGEs. In order to develop an approach that is able to inject recursive logical
rules, we define the following steps:

1. Identify the knowledge we get from the recursive rule and decide which part of this
knowledge we are able to inject.

2. Develop a method to incorporate this knowledge into vector space.

3. Develop/Find KGE models that support the injection using this method.

Therefore, we differentiate between the method (the general idea) how to inject recursive
logical rules and the actual KGE model that supports this method. We start by presenting
the general idea of how to inject recursive logical rules and afterwards present the
procedure to incorporate this idea into two KGE models.

39

4. Proposed Method

(a) Subgraph from Running Example 2.1

(b) After applying the recursive rule:
hasSubsidiary(X, Y), hasSubsidiary(Y, Z) → hasSubsidiary(X, Z).

(c) After tracking the recursion depth.

Figure 4.1: Three steps to infer the recursion depths.

Step 1. For the first step, we have to identify the knowledge we get from the recursive
rule and decide which part of this knowledge we are able to inject. Recursion calls itself
and generates facts, and some of them are inferred from previously generated facts from
this recursive rule. As a result, we get inferred facts that are somehow connected. Our
approach should jointly capture these connected facts resulting from the logical rule.
Moreover, the recursive logical rule we are investigating actually computes the transitive
closure. These two aspects (connected facts and the transitive closure) represent the
knowledge we get from the recursive logical rule.

Our proposed approach uses the idea of unfolding the recursive function calls by tracking
the recursion depth. We chose the recursion depth as the knowledge we aim to inject
into the embeddings. Furthermore, our approach connects these single recursion depths.
Therefore, these ideas should model the connected inferred facts. We chose this idea
because it should jointly capture the connection between facts and additionally order
the entities in vector space according to their inferred recursion depths. The following
paragraphs present this idea in more detail. Moreover, the following paragraph discusses
the actual procedure of tracking the recursion depth.

40

4.1. Injecting Recursive Rules

(a) Recursion depth of a cycle. (b) Recursion depth of a self-loop.

Figure 4.2: Recursion depth of cycle and self-loop from subgraphs of the Running
Example 2.1.

Inferring Recursion Depth. In Figure 4.1a, a subgraph of the Running Example 2.1
is shown. In Example 5 we presented the usage of logical reasoning by applying the
recursive rule hasSubsidiary(x, y), hasSubsidiary(y, z) → hasSubsidiary(x, z) on this sub-
graph. The application of this rule results in additionally inferred hasSubsidiary relations
presented in Figure 4.1b. As already discussed, this represents the transitive closure of
the graph. For our proposed approach, we additionally track the recursion depth while
applying the recursive rule. In our running example, this expresses how many levels
(subsidiaries) are between the parent company and its subsidiaries. The tracking process
is shown in Figure 4.1c, e.g. the company MarvelAnimation is a subsidiary of level 3 of
the company CadenceIndustries.

After tracking the recursion depth we additionally introduce a new relation for each
recursion depth and add it to the set of relations R. The largest recursion depth d is
determined. In the case of Figure 4.1c the largest depth is 3. Formally, after applying
the recursive rule r(x, y), r(y, x) → r(x, z), tracking the recursion depth and identifying
the largest recursion depth, we add the following relations to the set R:

R ∪ {ri | 1 < i ≤ d},

where ri represents relation r of depth i. For Figure 4.1c this process results in the
following new set of relations:

R = {hasSubsidiary, hasSubsidiary_2, hasSubsidiary_3}
As already discussed, our KG contains cycles and self-loops. The following paragraph
discusses this specific case in regards to tracking the recursion depth.

Recursion Depth in Cycles. Cycles and self-loops represent a special case for tracking
the recursion depth. Our approach tracks the depth until we reach a node that was already

41

4. Proposed Method

Algorithm 4.1: Transforming recursive rule to chain of implication
Input: Set of facts F (including the tracked recursion depth after applying the

recursive rule), recursive rule of the form r(x, y), r(y, z) → r(x, z)
Output: New set of logical rules Σ

1 maxDepth ← find largest recursion depth in F ;
2 for i ← maxDepth to 2 do
3 k ← (ri(x, y) → ri−1(x, y)) ; // Create new implication rule
4 Σ ← Σ ∪ k ;
5 end
6 return Σ

visited. After encountering an already visited node, the tracking stops. For self-loops, we
do not infer additional depths. Figure 4.2 shows two examples from subgraphs of our
running example, where Figure 4.2a represents the cycle case and Figure 4.2b shows that
we do not infer additional depths for self-loops.

Step 2. After previously stating that our approach should embed the recursion depth
and connect these depths, the next step is to develop a method on how to embed these
connected depths into vector space. Implication rules have already been successfully
injected into KGE models (SimplE+ [FRP18] or FSL [DRR16]). Therefore, we know
that it is possible to inject implication rules. As a result, we define a set of implication
rules based on the newly inferred recursion depth relations and connect these rules. This
results in a method that embeds the recursion depths and also models the connection
between the single depths. The following paragraph discusses this idea in more detail.

Chain of implications. Our approach to inject recursion depths is to build a chain
of implications. We want to model the behaviour that larger depths imply smaller
depths. For example, suppose we learn from the KG in Figure 4.1 that the company
MarvelAnimation is a subsidiary of depth/level 3 of the company CadenceIndustries. In
that case, we know that it is also a subsidiary of level 2 and furthermore a subsidiary
in general (of level 1). This actually should represent the knowledge from the recursive
rule, since the recursive rule infers (without tracking the recursion depth) the fact
hasSubsidiary(CadenceIndustries, MarvelAnimation). By introducing the depths and
the chain of implication, we aim to structure the embeddings in the representation space
so that they are ordered with respect to the company structures of the KG. Furthermore,
the dependencies between the relations in the set of implications should capture the
recursive behaviour of connected inferred facts because the rule infers edges over multiple
nodes and is not limited to only adjacent nodes.

Algorithm 4.1 presents the procedure of creating these implication rules. The algorithm
takes a set of facts F as input that already includes the tracked recursion depths as
discussed in the previous paragraphs. Additionally, it takes a recursive rule as input. Line

42

4.1. Injecting Recursive Rules

1 determines the relations with the largest recursion depth. Afterwards, the algorithm
iterates from the largest depth to 2 on Line 2. For each iteration, the following implication
rule is generated: ri(x, y) → ri−1(x, y) (Line 3), e.g. for i = 2 this would result in the
rule r2(x, y) → r1(x, y). This models that larger recursion depths imply smaller recursion
depths. On Line 4, the newly generated rule is added to the set of logical rules and finally
returned on Line 6.

As a result, Algorithm 4.1 adds the following implication rules to our set of logical rules
Σ:

ri(x, y) → ri−1(x, y), d ≥ i ≥ 2

At the end of the paragraph, an example that explains this procedure is given. Note,
relations of depth one i.e. r1 refer to the ‘original’ relation r: r1 = r. In the following,
we will use both notations interchangeably. In order to better illustrate the connection
between these single implication rules, we can define them as a chain of implications.
This chain of implications has the following form:

rd(x, y) → rd−1(x, y) → ... → r2(x, y) → r1(x, y)

The next example illustrates the procedure of Algorithm 4.1 on the KG of Figure 4.1:

Example 6. Assuming the KG from Figure 4.1 is given, Algorithm 4.1 would create
the following new implication rules:

hasSubsidiary_3(x, y) → hasSubsidiary_2(x, y)
hasSusbidiary_2(x, y) → hasSubsidiary(x, y)

This can be seen as the following chain of implications:

hasSubsidiary_3(x, y) → hasSubsidiary_2(x, y) → hasSubsidiary(x, y)

Step 3. Step 1 and 2 represent the proposed idea to inject recursive logical rules
(introducing new relations for each recursion depth and injecting a chain of implication
rules). The next step is to identify/develop KGE models that support the injection of
multiple implication rules. For this purpose, we use the existing SimplE+ model and
develop a model in hyperbolic space. The following sections explain the procedure of
injecting the chain of implications into these two KGE models and introduce the proposed
hyperbolic KGE model. Furthermore, we give some details about the implementation
of the approaches. These two models enforce constraints in the embedding space, and
therefore, we classify them as hard constraint models (discussed in Section 3.2).

43

4. Proposed Method

4.2 Euclidean Space Model - SimplE+ Adaption
The first approach is based on the SimplE+ model [FRP18] since the model can inject
implication rules. The key idea of our proposed method to inject recursive rules is to inject
a set of implication rules. Therefore, SimplE+ is a suitable candidate for our method.
Hence, we use the same techniques and ideas of the original SimplE+ model: Entities and
relations have two embeddings each as discussed in [FRP18] and Section 3.2.2. Moreover,
the same scoring function as in SimplE+ (Equation 3.1) and the same loss as in the
original paper (introduced in Section 2.4 in Equation 2.2) is used.

In order to inject recursive logical rules using our proposed method with SimplE+, we
follow the following procedure. First, we need a recursive rule of the form r(x, y), r(y, x) →
r(x, z) for the given KG that we want to inject. In the case of a company-subsidiary
graph we use the already discussed rule: hasSubsidiary(x, y), hasSubsidiary(y, x) →
hasSubsidiary(x, z). Our goal is to transform this rule into a set of implication rules
(representing a chain of implications) and inject this set of rules. For this purpose we are
using Algorithm 4.1 on our KG. The next chapter discusses the process of obtaining the
training data and when the inferring of the recursion depths is executed in more detail.
However, for now, Algorithm 4.1 provides us with a set of implication rules.

In Section 3.2.2 we discussed how the SimplE+ model injects implication rules. Algo-
rithm 4.1 generated a set of implication rules; this enables us to utilise the same techniques
from SimplE+ to inject this type of rule. Therefore, we enforce the same two constraints
as in SimplE+ [FRP18]: non-negative entity embeddings and inequality constraints on
each relation in the implication rule set. As a result, the recursive logical rule is injected
according to our proposed method. The following section discusses Algorithm 4.2 that
enforces similar constraints. Therefore, Algorithm 4.2 provides a more detailed insight
into how these constraints are actually enforced. However, there are certain aspects to
consider during the implementation of the inequality constraints. We present them in
the following paragraph.

Computing the values of the embedding vectors concerning the inequality constraint gets
more complicated once implications are connected. We define connected implications as
implications where the relation of the right-hand side of one implication is present in
the left-hand side of another implication. These connections are present in a chain of
implications. We demonstrate this issue by giving an example:

Example 7. Assume the following two implication rules are given:

r1(x, y) → r2(x, y)
r2(x, y) → r3(x, y)

These two implications are connected since r2 is on the right-hand side of the first rule
and on the left-hand side of the second rule. As described in Subsection 3.2.2, SimplE+

44

4.3. Hyperbolic Space Model

does not learn the embeddings for r1 and r2 directly but their value is computed as:

r1 = r2 − δr1

r2 = r3 − δr2

From the two above equalities we can see that we can not directly compute the embedding
value of r1 since we need the embedding value of r2 and to get that value, we need the
embedding value of r3. We can substitute the second equation into the first one and get:

r1 = r3 − δr2 − δr1

From the above example we can see that the embedding vector of r1 depends on the
embedding vector of r3 and δr2. For this example, SimplE+ learns only r3 as ‘real’
embedding and for r1 and r2 the non-negative vectors δr1 and δr2 are learned. Therefore,
the above mentioned dependencies have to be considered when computing the relation
embedding values.

We used the GitHub repository1 of the SimplE [KP18] model as codebase for the
implementation. Since this code contains the implementation of SimplE and not the
extended version SimplE+, we had to extend the codebase. We added the computation
functionality of the implications as mentioned above to inject these rules. Furthermore,
we enforced the non-negativity constraint by applying the ReLU function on the entity
embeddings and applied the sigmoid function to the scoring function (as it is described
in [FRP18]).

4.3 Hyperbolic Space Model
This section proposes a hyperbolic KGE model that supports the injection of implication
rules. Therefore, this is our second approach to inject recursive logical rules. As already
discussed, the motivation to use hyperbolic space is because in [NK17] the authors
achieved promising results while embedding the transitive closure in hyperbolic space.
The recursive rule type we investigate computes the transitive closure. First, this section
presents the general idea of our model, and afterwards, the proposed algorithm of our
hyperbolic KGE model is discussed in detail.

4.3.1 General Idea
Our general idea is to specify a KGE model in hyperbolic space and map the ideas of
non-negative entity embedding constraints and inequality constraints on relations to
hyperbolic space in order to support the injection of a set of implication rules. The
central part of a KGE model is its scoring function. As we have already discussed, the
enforcement of the constraints is usually connected to the scoring function. Therefore, we

1https://github.com/baharefatemi/SimplE

45

https://github.com/baharefatemi/SimplE

4. Proposed Method

Algorithm 4.2: Scoring function of our proposed hyperbolic model
Input: Head embbedding hE , Relation embedding rE , Tail embedding tE ,

Hyperbolic curvature c, Set of implication rules Σ
Output: Triple score s
// Map relation to hyperbolic space

1 hH ← expc
0(hE , c);

2 if r is present as relation on the right-hand side of an implication (r → s) ∈ Σ
3 rE ← GetBaseValue(Σ);
4 end
// Map relation to hyperbolic space

5 rH ← expc
0(rE , c);

// Apply hyperbolic addition: head + relation

6 hrH ← MöbiusAddition(hH , rH , c);
// Map result back to Euclidean tangent space and apply

ReLU function

7 hrE ← ReLU(logc
0(hH , rH , c));

8 if r is present as relation on the right-hand side of an implication (r → s) ∈ Σ
9 hrE += GetSumOfBias(r);

10 end
// Compute inner product

11 s ← �hrE , ReLU(tE) �;
12 return s

need to define a suitable scoring function first. Most of the Semantic Matching Models
use the Euclidean inner product as similarity/scoring function [BAH19b]. From previous
work, we can see that it is possible to enforce the two previously mentioned constraints
using the inner product/element-wise multiplications as scoring functions. For example,
in Chapter 3 we discussed that the paper [DRR16] defined two constraints: non-negative
entity embedding constraint and inequality constraint on relations on the embedding
space. In combination with the inner product as a scoring function, the model was
able to inject implication rules. A similar approach was proposed in SimplE+ [FRP18]
using the sum of the element-wise multiplication as a scoring function in combination
with the same constraints. As the inner product is a suitable scoring function for our
embedding model, we chose it as the basis for developing our scoring function. Using the
Euclidean inner product in hyperbolic space requires non-trivial transformations. These
transformations and other non-trivial solutions to encountered issues are discussed in the
following Subsection 4.3.2.

4.3.2 Algorithm
Algorithm 4.2 builds the basis for our hyperbolic embedding model and shows the
procedure of computing the scoring function and how the constraints are enforced. We

46

4.3. Hyperbolic Space Model

start by explaining the input of Algorithm 4.2.

In order to compute the scoring function, our algorithm takes as input the head, relation
and tail embeddings. Additionally, the hyperbolic curvature c (used for computations in
hyperbolic space) and the chain of implications is provided as input. Since we want to
propose a KGE model in hyperbolic space, our entity and relation embeddings should be
vectors in hyperbolic space. The following paragraph discusses the transformation from
Euclidean embeddings to hyperbolic space.

Parameters and Optimisation. Algorithm 4.2 takes as input embeddings in the
tangent space (Euclidean). The reason our algorithm does not define the embeddings
in hyperbolic space directly is that, as we have discussed in Subsection 3.1.3, Chami
et al. [CWJ+20] identified issues for optimisation in hyperbolic space. Therefore, the
authors proposed to define the parameters in the tangent space at the origin. We follow
this idea and also define all our embedding parameters in the tangent space at the origin.
In order to perform hyperbolic operations on entity and relation embeddings, the exp map
retrieves hyperbolic parameters. Afterwards, hyperbolic operations can be performed on
them. This procedure can be seen on Lines 1 and 5; the exp map is applied to retrieve
the hyperbolic parameters of the head and relation embedding. We define our Euclidean
entity and relation embeddings in the tangent space as ∀e ∈ E : (eE) and ∀r ∈ R : (rE),
and retrieve the hyperbolic parameters on the Poincaré ball using:

eH = expc
0(eE),

rH = expc
0(rE).

To map the parameters back, we use the log map presented in Equation 2.5. This
mapping is performed on Line 7, where the parameters are mapped back to tangent space
before computing the scoring function. Furthermore, we also use a Euclidean optimisation
method (i.e. SGD) in the tangent space at the origin as proposed in [CWJ+20]. The
cross-entropy loss is used as loss function. In order to use the tangent space optimisation,
hyperbolic parameters need to be transformed back to the tangent space (Line 7) before
optimisation.

Similarity function. Line 11 in Algorithm 4.2 shows the computation of the inner
product on embeddings in the tangent space. Therefore, Line 11 presents our chosen
similarity function. As discussed at the beginning of this section, the inner product is a
suitable similarity function for our proposed approach. However, in hyperbolic space,
there does not exist a clear correspondence to Euclidean inner product [TBG19]. To
solve this issue and still be able to use the inner product as a similarity function, we
use the following method. Tangent space is Euclidean space, and therefore, we can
perform Euclidean operations there (i.e. computation of the Euclidean inner product).
Our approach to use the inner product in hyperbolic space uses the idea presented
in [GBH18b, CYRL19, CWJ+20], which leverages the log map presented in Equation 2.5
to move the hyperbolic embeddings to the tangent space T0Bd,c to perform Euclidean

47

4. Proposed Method

transformations there. Figure 2.8 shows the mapping between tangent space and the
manifold. As a result, this allows our approach to use the Euclidean inner product as a
scoring function and still utilise hyperbolic space. The hyperbolic parameters are mapped
to the Euclidean tangent space before computing the inner product between to Euclidean
parameters on Line 7.

Hyperbolic Translation. In Algorithm 4.2 the hyperbolic translation (Möbius addi-
tion) is computed on Line 6. Before applying the Möbius addition, the algorithm must
map the head and relation embedding to hyperbolic space on Lines 1 and 5. Utilising
the hyperbolic translation is necessary since only mapping from hyperbolic space to
tangent space and computing the Euclidean inner product there does not leverage the
benefits of hyperbolic space. A hyperbolic geometric operation is needed to exploit the
characteristics of hyperbolic space. Therefore, we decided that our approach additionally
incorporates hyperbolic translation that we presented in Equation 2.6. The following
paragraph discusses the combination of hyperbolic translation and the inner product
that results in our final scoring function.

Final Scoring Function. This paragraph summarises the parameters, similarity func-
tion and hyperbolic translation into our proposed scoring function for Algorithm 4.2.
This scoring function is essential to present the idea of injecting implication rules into
our proposed model. It is a mixture of a Translational Model (to utilise hyperbolic
space characteristics) and Semantic Matching Models (in order to be able to enforce
constraints and inject implications). Our triple scoring function first maps the head
entity’s Euclidean parameters (defined in the tangent space) and relation to hyperbolic
space (Lines 1 and 5). Then, the hyperbolic translation (Möbius addition) of the head
and the relation is applied (Line 6). Afterwards, the translation result is mapped back to
the tangent space (Line 7). This mapping allows computing the Euclidean inner product
between the translation result and the tail entity (Line 11). As a result, we define the
following scoring function:

s(h, r, t) = �logc
0(expc

0(hE) ⊕c expc
0(rE)) + bE

r , tE�, (4.1)

where bE
r denotes a relation specific bias term, which we will discuss in more detail

(including its computation) in the following paragraphs, and �, � denotes the Euclidean
inner product.

This scoring function represents the basis for Algorithm 4.2. The next step is to
incorporate rules into our proposed method.

Injecting rules. In the beginning of the section we discussed that the inner product as
scoring function in combination with the two mentioned constraints enable the injection
of implication rules as in [DRR16, FRP18]. Therefore, we want to incorporate these
two constraints into our proposed hyperbolic model: Non-Negativity Constraint and

48

4.3. Hyperbolic Space Model

Figure 4.3: Enforcing inequality constraint of proposed hyperbolic model.

Inequality Constraint. The goal is to force s(h, r2, t) ≥ s(h, r1, t) for all h, t ∈ E , given
the implication rule: r1(h, t) → r2(h, t). As already discussed, this injects the logical
properties of the implication rule. Furthermore, this allows us to inject a set/chain of
implications and in turn inject recursive logical rules according to our proposed method.
The next paragraphs present both constraints.

Non-Negativity Constraint. Algorithm 4.2 enforces the non-negativity constraint
on Lines 7 and 11. However, the first constraint is not bound to the entity embeddings
as in [DRR16, FRP18]. Instead, we enforce the element-wise non-negativity constraint
on the translational result of head entity and relation on Line 7. Furthermore, we apply
this constraint on the tail entity embedding. Line 11 enforces this constraint by applying
the ReLU function before computing the scoring function:

s(h, r, t) = �f(logc
0(expc

0(hE) ⊕c expc
0(rE))) + bE

r , f(tE)�, (4.2)

where f(x) denotes the ReLU function and bE
r a relation specific bias term. Note, the

bias terms are also defined as non-negative vectors. In the next paragraph we discuss the
importance of this constraint to inject the chain of implications.

Inequality Constraint. The GetBaseValue() and GetSumBias() function in Algo-
rithm 4.2 on Lines 3 and 9 are essential to enforce the inequality constraints. Figure 4.3

49

4. Proposed Method

presents the mechanics of those functions. Before explaining the functions in detail, we
need to discuss the relation embeddings and the relation bias.
To begin with, for each relation r we define a standard relation embedding r and a non-
negative relation bias bE

r . Assume a set of implication rules Σ is given. An example of a
given set Σ and the inferred chain of implications is shown in Figure 4.3 (a). Whenever a
relation is present on the right-hand side of an implication rule in the set Σ, we learn a
relation bias for this relation instead of the relation embedding. Whenever a relation is
only present on the left-hand side of an implication rule in the set Σ (or not contained in
any rule), the actual relation embedding for this relation is learned instead of the relation
bias. Figure 4.3 (b) demonstrates this for a 2 dimensional embedding. For relation r1 the

relation embedding is learned (initial embedding value
�
1
2

�
), for relation r2 and r3 the

relation biases are learned. Lines 2 and 8 show this check whether the relation is present
on the right-hand side of an implication or not. If it is not, the algorithm proceeds with
the standard relation embedding (e.g. r1 in the case of Figure 4.3). The bias term should
model how relations in the chain of implications differ from each other.

To discuss the use of these bias terms and the actual relation embeddings we need to
introduce the two functions from Algorithm 4.2 in more detail: GetBaseValue() (on Line
3) and GetSumOfBias() (on Line 9).

GetBaseValue() Function. For simplicity, we will use the notation of the chain of
implications r1 → r2 → r3 of Figure 4.3 instead of the set Σ to explain this function. This
function basically retrieves the relation embedding of the first relation of the chain of
implications (in Figure 4.3 (c) this represents r1). We always learn a relation embedding
for the first relation since it is only present on the left-hand side of any implication rule.
If a relation is present on the right-hand side (check on Line 2) the algorithm assigns the
“base” value (GetBaseValue() function) to the relation.

GetSumOfBias() Function. The GetSumOfBias() function (shown in Figure 4.3
(d)) takes as input a specific relation. It returns the following sum: ∀i > 1 : �i

k=1 bE
k ,

assuming the following chain of implications is given:

r1(x, y) → r2(x, y) → ... → ri−1(x, y) → ri(x, y)

Figure 4.3 (d) shows this computation for relation r3. Since the bias values are de-
fined as non-negative values we enforce the desired elementwise inequality: ∀i > 1:
GetSumOfBias(ri) ≤ GetSumOfBias(ri+1). Again, we have to check whether the relation
is present on the right-hand side of an implication on Line 8. If it is present, we retrieve
the value of the function GetSumOfBias(r) and add it to the translation result on Line 9
otherwise the algorithm continues with the standard relation embedding.

The following explanation demonstrates how the inequality constraint is essential to
inject the implication rule:

50

4.4. Summary

For example, if we would call GetSumOfBias(r2) from Figure 4.3 we would receive the

vector
�
3
4

�
and for GetSumOfBias(r3) the vector

�
8
10

�
:

�
3
4

�
<

�
8
10

�
. In the case of r3

we would add a larger vector on Line 9, so we would receive a bigger value for hrE .
In combination with the non-negativity constraint (Line 7 and Line 11) this results
in a higher inner product value on Line 11. This enforces the following property of
the scoring function s(h, r3, t) ≥ s(h, r2, t) for all h, t ∈ E , given the implication rule:
r2(h, t) → r3(h, t). Whenever the left-hand side of the implication is true and receives
a high score, the right hand-side gets always an equal or bigger score and in turn this
enforces the implication as we have discussed for the SimplE+ [FRP18] and FSL [DRR16]
model.

We have covered all the necessary parts of our proposed algorithm. The following
paragraphs discuss the final embedding model and some implementation details.

Final Embedding Model. To inject recursive logical rules in our proposed hyperbolic
KGE model, we follow the same steps as in Section 4.2. First, we need a recursive rule
(of the form r(x, y), r(y, x) → r(x, z)) we want to inject for the given KG. Afterwards, we
transform this rule into a set of implication rules (that represent a chain of implications)
using Algorithm 4.1. To inject these rules, we apply the previously discussed steps to
inject implication rules.

Implementation. To implement our proposed hyperbolic approach, we used the code-
base of [CWJ+20] on GitHub2. We extended the codebase with functionalities of our
proposed approach including Algorithm 4.1 and Algorithm 4.2. Our code is available on
GitHub3. The code is written in Python and we mainly used the PyTorch [PGM+19]
package and Pandas [pdt20] to implement the embedding models.

4.4 Summary
This chapter presented our two proposed models to inject recursive logical rules. In
Section 4.1 we introduced the general idea of injecting recursive rules. Our idea tracks
the recursion depth and generates a set of implication rules for the tracked depths.
Furthermore, the goal of our two proposed models is to inject this set of implication rules.
In Section 4.2 we presented our first model that is based on the SimplE+ [FRP18] model.
This approach uses the same idea to inject implication rules as SimplE+. In Section 4.3
we presented our hyperbolic model. This model moves the general ideas of SimplE+ and
FSL [DRR16] to inject implication rules from Euclidean space to hyperbolic space. As a
result, this model is able to inject a chain of implications that represent recursive rules
in our approach.

2https://github.com/HazyResearch/KGEmb
3https://github.com/kglab-tuwien/recursive-rule-injection

51

https://github.com/HazyResearch/KGEmb
https://github.com/kglab-tuwien/recursive-rule-injection

CHAPTER 5
Evaluation

This chapter describes our experimental setup along with the evaluation results. It starts
by giving a detailed explanation of the dataset creation process and which datasets were
used for the experiments. Then, to explain the creation of the synthetic datasets, we
present algorithms used to generate the data. Furthermore, we discuss the metrics and
tasks on which we evaluated our method. Finally, the evaluation results and a discussion
is presented.

5.1 Creation of the Datasets
The following section presents the method we use to create the datasets. We want to
investigate how the injection of recursive rules affects the performance of the proposed
embedding models. All our datasets represent company-subsidiary KGs. In the beginning,
the datasets consist of entities representing companies and one relation: hasSubsidiary.
Afterwards, we apply logical reasoning on the whole dataset using the following rule:
hasSubsidiary(x, z), hasSubsidiary(z, y) → hasSubsidiary(z, y) as we have presented in
Example 5. We will denote the set of newly inferred facts as Fnew . Additionally, we
track the recursion depth of the recursive rule as we have discussed in Section 4.1, add
the newly introduced relations and create a new set of facts with the new relations. We
denote this set as Fnewd . It is important to mention that we add the newly derived
facts from directly applying the recursive rule and the facts derived from tracking the
recursion depth to the KG:

F ∪ Fnew ∪ Fnewd

We will use hasSubsidiary_add as relation for the newly inferred facts in set Fnew

instead of hasSubsidiary to differentiate between the sets Fnew and F only in the textual
representation of this chapter for illustration purposes. Note that the actual experiments
are executed without differentiation. Therefore, a fact hasSubsidiary(X, Y) from Fnew is
denoted as hasSubsidiary_add(X, Y).

53

5. Evaluation

After adding these facts, Algorithm 4.1 is applied to create the set of implication rules we
aim to inject. To better illustrate the creation of the datasets, Listing A.1 in Appendix A
shows all steps, inferred facts and implication rules on a subgraph (including all entities
that represent companies) of the Running Example 2.1.

To evaluate our results we split the facts into training, test and validation sets: Ftrain , Ftest ,
Fvalidation , where Ftrain ∪Ftest ∪Fvalidation = F ,using an 80/10/10 split-ratio. As we see in
Figure 5.1, the distribution of relations in the set of facts is heavily skewed. Therefore, we
apply a stratified sampling method on the relations of the facts when creating the splits to
ensure that each split contains proportionally the same number of different relations. For
the dataset splitting, we used the scikit-learn library [PVG+11] that provides a splitting
function with stratifying option. We set the stratify parameter to the relation, that
ensures that the number of triples for each relation type is proportionally the same in
the training, test and validation sets. The validation set is used to select the best model
from all iterations.

To prevent the leakage of data, we follow the experimental setup from Nickel et al. [NK17]
and use the link prediction setting to evaluate our proposed models. In Section 5.3 the
metrics and the setting are discussed in more detail. Nickel et al. evaluate their model on
the transitive closure of the WordNet dataset. For this reason, the authors first compute
the transitive closure of the dataset. This procedure is similar to our processing step
since we basically also compute the transitive closure of the KG first. After computing
the transitive closure, the authors split the data into train, validation and test sets by
randomly holding out observed links. We follow this procedure to first process the dataset
as described and, as the next step, partition our dataset randomly into pairwise disjoint
training, validation and test sets.

Furthermore, this thesis investigates how recursive rule injection influences the perfor-
mance of the embeddings. Therefore, we also follow the experimental setup to evaluate
the effectiveness of incorporating background knowledge into KGEs (used in the Sim-
plE [KP18] and SimplE+ [FRP18] papers). If background knowledge is given, we expect
the KG not to include this additional knowledge since it can be inferred from it. Fur-
thermore, this is the general idea of injecting additional knowledge into embeddings so
that methods that do not have this background knowledge can never learn these facts.
After processing and splitting the data into train, validation and test sets as described
above, we remove all redundant facts (that can be inferred from the given recursive
logical rule: hasSubsidiary_add relations) from the training set (as in [KP18, FRP18]).
This procedure enables us to evaluate the hypothesis that providing recursive background
knowledge has an effect on the performance compared to not providing any background
knowledge.

5.2 Datasets
This section describes the datasets used for training and evaluating our two proposed
approaches. First, the retrieval of the DBPedia dataset is discussed. Afterwards, the

54

5.2. Datasets

Table 5.1: Statistics for each dataset before and after processing

Dataset Before
Processing #Entities #Relations #Facts

DBPedia ✗ 10513 1 8506
DBPedia ✓ 10513 7 11706
Synthetic
Max. Depth: 3 ✗ 7163 1 6448

Synthetic
Max. Depth: 3 ✓ 7163 4 22017

Synthetic
Max. Depth: 5 ✗ 8788 1 8088

Synthetic
Max. Depth: 5 ✓ 8788 6 38080

Synthetic
Max. Depth: 7 ✗ 9783 1 9083

Synthetic
Max. Depth: 7 ✓ 9783 9 52575

synthetic data generator is presented in detail, including the algorithms used to implement
the data generator. In Table 5.1 the statistics (number of entities, relations and facts)
before and after applying processing steps are summarized. The synthetic data generator
is discussed in more detail in the subsection about the synthetic data, however maximum
depth in Table 5.1 indicates the maximum depth of the randomly generated trees. It
is essential to mention that usually, a maximum depth of x should imply x number of
relations after processing since the recursion depth is limited to the maximum depth of
the tree. However, since the data contains cycles and self-loops, more relations than x
are introduced.

5.2.1 DBPedia Dataset
This section discusses the characteristics of the DBPedia dataset. The dataset was
queried from a SPARQL endpoint of DBPedia1 using the following query:

SELECT (s t r (? name1) AS ?company1)
(" hasSubs id ia ry " AS ? r e l a t i o n)
(s t r (? name2) AS ?company2)

WHERE {
?comp <http :// dbpedia . org / onto logy / subs id i a ry > ?compSub .
}

Listing 5.1: SPARQL query for company subsidiary dataset from DBPedia

1https://dbpedia.org/sparql/, Access: 27 July, 2021

55

https://dbpedia.org/sparql/

5. Evaluation

hasSubsidiary

hasSubsidiary_2

hasSubsidiary_3

hasSubsidiary_4

hasSubsidiary_5

hasSubsidiary_6

hasSubsidiary_7

hasSubsidiary_
add

0

2,000

4,000

6,000

8,000
8,506

1,429

248 38 22 8 4

1,451

Relations

N
um

be
r

Figure 5.1: DBPedia dataset statistics: frequency of relations in the facts

Table 5.2: DBPedia dataset number of parents per company

Number of Parents Percentage
1 94%
2 5%
3 > 1%
4 > 1%
5 > 1%
6 > 1%
7 > 1%
8 > 1%
9 > 1%

The query retrieves all companies that are in a subsidiary relation with another company
from DBPedia. The Unified Resource Identifiers (URIs) of the company entities are
returned. As already mentioned above, Table 5.1 summarizes the statistics of the DBPedia
dataset before and after processing (discussed in Section 5.1). A more detailed overview
of the number of facts having a specific relation is shown in Bar Plot 5.1. It shows the
frequency of facts that contain a specific relation.

Another interesting characteristic is shown in Table 5.2, where we can see that most
companies (94%) only have one parent node. Therefore, we can state that the dataset
has a tree-like structure and therefore is hierarchical.

56

5.2. Datasets

5.2.2 Synthetic Dataset
Besides the DBPedia dataset, we implemented a random company-subsidiary generator.
This program generates random company-subsidiary graphs. In the following, we discuss
the implementation details, assumptions and design decisions. As we have seen in
Figure 5.1, the distribution of the relations in the set of facts is heavily skewed. These
skewed distributions should serve as a reference point, and therefore, we also use skewed
distributions for our random generator. However, we also want to generate bigger datasets
than the DBPedia dataset to evaluate our approach on different characteristics. Therefore,
we change these skewed distributions accordingly.

The general procedure of the data generator starts by randomly generating hierarchical
company-subsidiary trees. As we have discussed in Section 2.1, companies can have
multiple parent nodes. Therefore, the next step after creating the trees is to merge these
trees on randomly selected nodes by introducing new edges. The last step is to insert
edges in order to introduce cycles and self-loops randomly. This procedure consists of
the following steps:

• Generate n number of trees.

• Merge m number of trees, in order to combine them and avoid only having single
trees.

• Add c number of cycles or self-loops.

This procedure allows us to have more control over the generation process (e.g., regulating
the maximum depth of trees that affects the recursion depth) compared to randomly
generating nodes and edges. The following paragraphs discuss these three steps in more
detail.

Tree Generation. As already discussed, the generator starts by randomly generating
trees. Algorithm 5.1 presents the steps to generate the random trees. The algorithm
takes as input the maximum depth of the trees and the number of trees n that should be
generated. First, the algorithm generates a node that represents the root node on Line
3. The next step is to pick a random number of children for the root node on Line 4.
The maximum number of children for the root node is nine, and the skewed probability
distribution to select the number of children is shown in Figure 5.2a. The reason why we
decided to have a maximum number of nine children and utilize the previously mentioned
distribution, is because the percentage of nodes having more than nine nodes drops
below 1% on the DBPedia dataset. The distribution of the DBPedia dataset is shown in
Figure 5.2c (this figure only shows the number of nodes up until ten children per node).
However, to not precisely mimic the DBPedia dataset and to test our approaches on
larger datasets, we introduce a different distribution in the following levels of the tree,
which is discussed in the following.

57

5. Evaluation

Algorithm 5.1: Generating multiple random trees
Input: Maximum depth maxdepth , number of trees to generate n
Output: A list of randomly generated trees

1 Initialize trees ← empty list;
2 for i ← 1 to n do
3 root ← Generate node;

// Different distributions for root and root’s children
4 r ← Randomly pick number from skewed distribution ∈ [1, 9];
5 Create r number of nodes and add it to root’s children list;
6 Initialize q ← Queue with root’s children in it;
7 while q not empty do
8 cur_node ← Pop element from q;
9 if cur_node.getLevel() ≥ maxdepth then

10 break ; // Reached maximum depth
11 end
12 rc ← Randomly pick number from skewed distribution ∈ [0, 9];
13 Create rc number of nodes add it to cur_node’s children list and q;
14 end
15 trees ← trees ∪ root;
16 end
17 return trees

After creating the selected number of children and adding them to the children’s list of
the parent on Lines 4 and 5, the algorithm initializes a queue. Then, it adds the newly
created nodes to it (Line 6). This queue is used to sequentially add a random number
of children nodes to the queue. The algorithm starts by popping the first node of the
queue (Line 8) and checking if the maximum depth is already reached (Line 9); if so,
the algorithm stops. Since the nodes are inserted at the end of the queue level by level,
we know that whenever the first node of the queue has a depth greater or equal to the
maximum depth, we need to stop the generation process. After popping the first node,
the algorithm generates a random number of children for this node (Line 12) and adds it
to the node’s list of children and to the end of the queue (Line 13). The distribution to
generate a random number of children is shown in Figure 5.2b.

The distribution of numbers of children per company from the DBPedia dataset is
shown in the Bar Plot 5.2d. Note that there are also companies that do not have any
subsidiaries2. As already mentioned, we do not want to exactly mimic the characteristics
of the DBPedia dataset and generate larger datasets to evaluate our models. Therefore,
we modified the Skewed Distribution 5.2b of companies per node in comparison to the

2It is important to differentiate between the distribution of the root node (Figure 5.2a) and the
distribution of the following levels (Figure 5.2b) since the data generator can not just generate a root
node without any subsidiaries. Only generating a root node without any connections would not produce
a triple for our dataset. Therefore, the distribution for the root node (Figure 5.2a) excludes 0.

58

5.2. Datasets

1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

Number of children

Pr
ob

ab
ili

ty

(a) Distribution: Number of children per
root

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

Number of children

(b) Distribution: Number of children per
root nodes except root

1 2 3 4 5 6 7 8 9 10

0%

10%

20%

30%

40%

50%

Number of children

Pe
rc

en
ta

ge

(c) DBPedia-Dataset: Number of children
per company (excluding companies that do
not have any subsidiaries)

0 1 2 3 4 5 6 7 8 9 10

0%

20%

40%

60%

Number of children

(d) DBPedia-Dataset: Number of children
per company

DBPedia Distribution 5.2d. We decreased the probability of having no subsidiaries
by 18% and increased the probability of having 1 or 2 subsidiaries by 15% and 10%,
respectively. This modification should increase the size of the dataset, and it indeed does.
Table 5.1 shows that our three synthetic datasets, generated by the data generator, have
1.8, 3.3 and 4.5 times more triples than the DBPedia dataset (after processing).

The algorithm repeats this process of popping a node from the beginning of the list until
the queue is empty or we reach the maximum depth. Then, lastly, the root node of this
tree is added to the list of trees (Line 15), and the whole procedure is executed n times.

Merge Trees. This paragraph discusses the procedure to combine/merge single trees.
Algorithm 5.2 presents the procedure. The algorithm takes as input the maximum depth,
a list of generated trees and the number of trees to merge. The maximum depth is needed
to avoid merging two trees on nodes that would result in a combined tree exceeding
the maximum depth. This parameter allows us to have more control over the random
generator and test whether larger recursion depths influence the performance of the

59

5. Evaluation

Algorithm 5.2: Merging random trees
Input: Maximum depth maxdepth , List of generated trees, number of trees to

merge m
Output: Random subsidiary KG including combined trees

1 n ← Number of trees;
/* seq is used to randomly choose which trees to merge.

The two neighbouring indices are always merged.
Indices ∈ [0, n − 1]. */

2 seq ← Randomly generate sequence of indices of length m;
// Merge trees

3 for i ← 0 to m by 2 do
// Select random node from a tree using indices seq

4 parent_node ← Randomly pick node from tree: trees[seq[i]];
5 Loop

// Select random node from the next tree in the seq
6 child_node ← Randomly pick node from tree: trees[seq[i+1]];

// Current height of the merged tree
7 cr ← GetRemainingHeight(child_node) + GetLevel(parent_node) + 1;
8 if cr ≤ maxdepth then
9 Add child_node to parent_node’s children list ;

10 break ; // Success: Did not exceed maximum depth

11 end
12 EndLoop
13 end

embedding. Figure 5.3 demonstrates the merging process of Tree A and Tree B by
introducing a new relation from node A to node B. The algorithm starts by generating a
random sequence of indices of the input list of trees (Line 2). This sequence is used to
determine which trees to merge. Our algorithm always merges two neighbouring trees
from the sequence. The following example should give a better insight:

Example 8. Assuming 4 trees are generated, and we want to merge 4 trees. Therefore,
we would have a list of 4 trees: [tree0, tree1, tree2, tree3]. The generator would produce a
sequence of the form [0,3,2,1], indicating which trees to merge. Firstly, the first tree is
merged with the third tree, and the second tree is merged with the first tree (based on the
generated indices of the sequence).

To start this merging process, the algorithm iterates over the sequence of indices on Line
3. Assuming we still have the sequence [0,3,2,1] from the example above, the algorithm
picks the tree with the index 0 and selects a random node from this tree (Line 4). This
node represents the parent node. Afterwards, a random node from the next tree with
index 3 (the next index from the sequence) is chosen. This node represents the child

60

5.2. Datasets

Figure 5.3: Combine Tree A with Tree B. The GetLevel() function returns the level of a
specific node, in this case of node A. The GetRemainingHeight() function returns the
maximum remaining height of a specific node. In this case of the node B. Tree A gets
combined with Tree B by introducing a relation between node A and node B.

node. To not exceed the maximum depth limit, we compute the height of the resulting
tree, assuming we would introduce a new relation from the parent node to the child
node on Line 7. The function GetRemainingHeight() computes the remaining height of
all children of a specific node and selects the maximum out of them. Furthermore, the
function GetLevel() returns the level on which a specific node is located in the tree. In
Figure 5.3 these two functions are illustrated. Moreover, in this figure, we can see that
if we had a maximum depth of 5, we would exceed this limit if we introduce a relation
from node A to node B. This check is done on Line 8. Since there is no guarantee that
we can combine the two nodes without exceeding the maximum depth, we loop over the
random child selection process until we do not exceed it (Line 5).

Afterwards, if the check on Line 8 is successful, we add a relation (hasSubsidiary) from
the parent node to the child node and successfully merge the two trees. The algorithm
would continue by combining the tree with index 2 and index 1 in our small example.

Adding Cycles and Self-Loops. The last step is to add cycles and self-loops. Algo-
rithm 5.3 presents the procedure. The algorithm takes as input the parameters: maximum
depth, a list of already merged trees and the number of cycles/self-loops to insert. Note

61

5. Evaluation

Algorithm 5.3: Adding cycles and self-loops to trees
Input: Maximum depth maxdepth , List of generated combined trees, number of

cycles or self-loops c
Output: Random subsidiary KG including loops
// Insert cycles and self loops

1 for i ← 0 to c do
// Cycles are of length > 1

2 Randomly decide whether self-loop or cycles;
3 if self-loop then
4 rand_node ← Select random node from random tree from trees;
5 Add edge from rand_node to rand_node;
6 else if cycle then
7 rand_path ← Select random path from random tree of random length ∈

[2,maxdepth];
8 Add edge from last node to first node of the path ; // This

introduces a cycle

9 end

Table 5.3: Parameters to create three synthetic datasets with varying maximum depth
parameter.

Maximum
depth

Number of
trees

Number of
trees to merge

Number of
cycles/self-loops

3 1000 400 100
5 1000 400 100
7 1000 400 100

that the generated trees are actually no “real” trees anymore (since there are children
with multiple parents and multiple roots), but we still refer to them as trees for simplicity.
The maximum depth is needed to know the maximum length of the cycle and select
paths of random length. First, the algorithm decides to either introduce a self-loop or
a cycle (a cycle has a length > 1) using a probability of 50% (Line 2). If self-loop is
selected, a hasSubsidiary relation between a random node to itself is added (on Lines 3
to 5). To introduce a cycle, we first select a random tree and from this tree a random
path of random length 1 < n ≤ maxdepth . Afterwards, we add a hasSubsidiary relation
between the end node and the path’s start node. These steps are done on Lines 6 to 8.
This procedure adds cycles and self-loops to the KG.

Parameters and Datasets. In order to evaluate whether the recursion depth has
an influence on the embedding’s performance, we create three datasets with different
maximum depth parameters ∈ [3, 5, 7] using the algorithms described above. Table 5.3
summarizes the parameters we used to generate the datasets.

62

5.3. Metrics

The maximum depth parameter also increases the recursion depth of our proposed
methods. Therefore, this parameter supports the control of the data generation process
itself and provides regulations for our recursion depth approach. As already mentioned,
Table 5.1 summarized the statistics of the three generated datasets (before and after
processing.)

5.3 Metrics
This section discusses the metrics and the approach to evaluate our proposed embedding
models. We evaluate our approaches on the link prediction task. Additionally, for each
KG we use the standard data augmentation process that was proposed in [LUO18] and
also used in [CWJ+20]. This process adds for each training triple (h, r, t) its inverse
(t, r−1, h) to the training set. Furthermore, at test time the queries of the form (?, r, t)
are answered as (t, r−1, ?). In order to measure the performance of our proposed models
we compute for each test triple (h, r, t) the score (h, r, t�) for all t� ∈ E , rank the entities
and compute the ranking rankt of the triple having t. Additionally, we do the same
for (t, r−1, h�) and compute the ranking rankh of the triple having h. We use the two
standard evaluation ranking-based metrics from KGE literature: (i) MRR and (ii) H@K,
where K ∈ {1, 3, 10}. MRR measures the mean of the inverse ranks assigned to correct
entities and is defined as follows:

MRR = 1
2|Ftrain |

�
(h,r,t)∈Ftrain

1
rankh

+ 1
rankt

Furthermore, H@K computes the proportion of correct triples whose ranking is among
top K predicted triples [KP18].

In [BUGD+13], the authors identified a problem with computing the metrics mentioned
above. We demonstrate this issue by providing an example:

Example 9. Suppose we are given the following training and test sets (for simplicity,
the validation set is left out). This example is a subgraph from our Running Example 2.1:

Ftrain = {(MarvelStudios, hasSubsidiary, MarvelCinematicUniverse),
(MarvelStudios, hasSubsidiary, MarvelAnimation),
(MarvelEntertainment, hasSubsidiary, MarvelStudios)

Ftest = {(MarvelStudios, hasSubsidiary, MarvelStudios)}

The test triple gets converted to the query (MarvelStudios, hasSubsidiary, ?) and we want
to predict (MarvelStudios, hasSubsidiary, MarvelStudios). Assume we have two models.
The first model ranks (MarvelStudios, hasSubsidiary, MarvelAnimation) first, whereas the
second model ranks (MarvelStudios, hasSubsidiary, MarvelEntertainment) first. We can

63

5. Evaluation

see that the first model predicts a correct triple (it is included in Ftrain), in contrast to
the second model that predicts an incorrect triple. However, H@1 would assign the same
score for both models for the test triple, although the first model should receive a higher
score.

The above example shows that these metrics penalize certain correct predictions. In
order to avoid this issue, the authors of [BUGD+13] proposed a modification, filtered
MRR and filtered H@K. Instead of finding the rank for the test triple (h, r, t) among
the triples (h, r, t�) for all t� ∈ E , the modification only considers triples (h, r, t�), where
t� /∈ Ftrain ∪ Ftest ∪ Fvalidation , for ranking. For the triples (t, r−1, h�) the same protocol
is applied. These triples are filtered out during test time and therefore the name filtered
MRR and filtered H@K. As a result, for this thesis we use this filtered setting proposed
in [BUGD+13].

5.4 Evaluation Results
In this section, we present our experiments. We evaluated our two proposed methods,
SimplE+ adaption and the hyperbolic model (we refer to this model as HRec), on
the four presented datasets: DBPedia and synthetic dataset with maximum depth
n ∈ {3, 5, 7}. For each model, we evaluated the results two times: (i) with the injection
of recursive rules (as described in the previous chapter) (ii) without injection of logical
rules. Using this setup, we can evaluate whether the method of injecting recursive rules
does increase the performance. Furthermore, we evaluated the state-of-the-art hyperbolic
model AttH [CWJ+20] on the four data sets to have reference values and a baseline.
Additionally, SimplE+ without injection also represents a state-of-the-art approach.

Hyper-Parameters. In Table A.1 we summarize the hyper-parameters used during
the experiments. We set the maximum number of iterations to 500, and the best model
of the 500 iterations gets selected by evaluating it on the validation set. Afterwards, it is
evaluated on the test set. In [CWJ+20] the authors showed that hyperbolic models yield
better results in low dimensions compared to Euclidean models in higher dimensions. As
a result, we set the embedding size of HRec and AttH to 32 and the Euclidean models
to 100. We tested several hyper-parameter combinations and reported the settings
which yielded the best results in Table A.1. An extensive grid search to select the best
hyperparameters was not possible due to computational limitations. However, since our
goal is to evaluate whether the injection of recursive rules improves the performance, it
is not essential to find the best hyperparameters. For the AttH model, we tried every
hyper-parameter setting reported in [CWJ+20] and chose the one with the best results.

The following paragraphs discuss the evaluation results in more detail. We use the
following notation in the reported tables: Values in bold mark the best results comparing
each model with and without injection of recursive rules. Underlined values highlight the
best scores from all models on each metric.

64

5.4. Evaluation Results

Table 5.4: DBPedia dataset evaluation. Results in bold mark the better scores comparing
each model with or without injection of recursive rules. Best overall results are underlined.

DBPedia

Model Rule
Injection MRR H@1 H@3 H@10

AttH ✗ .248 .219 .264 .297
SimplE+ ✓ .179 .125 .214 .282
SimplE+ ✗ .172 .117 .212 .263
HRec ✓ .192 .117 .241 .329
HRec ✗ .142 .062 .186 .325

Table 5.5: Synthetic dataset evaluation. Results in bold mark the better scores comparing
each model with or without injection of recursive rules. Best results are underlined.

Synthetic Dataset:
Max. Depth: 3

Synthetic Dataset
Max. Depth: 5

Synthetic Dataset
Max. Depth: 7

Model Rule
Injection MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

AttH ✗ .507 .467 .540 .571 .540 .514 .558 .579 .530 .482 .556 .625
SimplE+ ✓ .330 .183 .423 .626 .308 .147 .380 .668 .292 .128 .354 .672
SimplE+ ✗ .304 .172 .397 .547 .283 .125 .374 .619 .270 .112 .341 .622
HRec ✓ .359 .159 .471 .795 .324 .122 .411 .797 .299 .112 .352 .774
HRec ✗ .260 .066 .283 .812 .233 .058 .230 .777 .204 .047 .189 .696

Results and Insights - DBPedia Dataset. Table 5.4 compares the evaluation results
of the experiments on the DBPedia dataset. Additionally, Figure 5.4a shows a visual
comparison of the results using a bar plot.

From the results, we can see that the injection of recursive rules outperforms each
metric for both SimplE+ and HRec compared to no injection. For the hyperbolic model,
the performance gain between injection and no injection is greater than for SimplE+.
While the improvement ranges from 0.2% to 1.9% across the metrics for SimplE+, the
performance gain for HRec ranges from 0.4% to 5.5%. Furthermore, HRec yields better
results compared to SimplE+ (except on the H@1 metric). AttH outperforms SimplE+

and HRec (both with injection) on all metrics except the H@10 metric. For the H@10
metric HRec yields a 3.2% performance gain compared to the state-of-the-art model
AttH.

Furthermore, it is essential to mention that the hyperbolic models only have a dimen-
sionality of 32. However, they still outperform the Euclidean model SimplE+ with
dimensionality 100. Usually, a higher dimensionality implies more expressive capabilities
and, as a result, better results. These advantages demonstrate the effectiveness of using
the hyperbolic space.

Results and Insights - Synthetic Dataset. The synthetic datasets allows us to not
only evaluate the effectiveness of injecting recursive rules but also investigate whether

65

5. Evaluation

AttH
SimplE +

w. Injection

SimplE +
wo. Injection

HRecw. Injection

HRecwo. Injection

0

0.1

0.2

0.3

(a) DBPedia evaluation results.

AttH
SimplE +

w. Injection

SimplE +
wo. Injection

HRecw. Injection

HRecwo. Injection

0

0.2

0.4

0.6

0.8
MRR
H@1
H@3
H@10

(b) Synthetic dataset (max. depth: 3) evalua-
tion results.

AttH
SimplE +

w. Injection

SimplE +
wo. Injection

HRecw. Injection

HRecwo. Injection

0

0.2

0.4

0.6

0.8

(c) Synthetic dataset (max. depth: 5) evalua-
tion results.

AttH
SimplE +

w. Injection

SimplE +
wo. Injection

HRecw. Injection

HRecwo. Injection

0

0.2

0.4

0.6

0.8 MRR
H@1
H@3
H@10

(d) Synthetic dataset (max. depth: 7) evalua-
tion results.

the maximum recursion depth has an impact on the results. As already discussed, we
generated synthetic datasets using a maximum depth d ∈ {3, 5, 7}. Table 5.5 summarizes
the evaluation results on these three datasets. Furthermore, Figure 5.4b shows a bar plot
for d = 3, Figure 5.4c for d = 5 and Figure 5.4d for d = 7.

For the synthetic dataset, we get similar insights compared to the DBPedia dataset:

66

5.5. Summary

• Injecting recursive rules does yield a performance gain compared to not injecting
background knowledge (except for the metric H@10 evaluated on the dataset having
maximum depth 3 using the HRec model).

• HRec has a higher performance gain when injecting recursive rules compared to no
injection in comparison to SimplE+. HRec performance gain ranges from 2% to
16.3% (excluding the one instance where we got a performance loss), and SimplE+

ranges from 0.6% to 4.9%.

• HRec receives higher scores compared to SimplE+, except on the H@1 metric.
However, SimplE+ outperforms HRec on the H@1 metric on every dataset.

• AttH outperforms our proposed models except on the H@10 metric on all datasets.
We can see that, SimplE+ and HRec (SimplE+ with injection and HRec with and
without injection) outperform AttH on the H@10 metric. For the H@10 metric, we
get a performance gain of up to 24%. However, our models perform very poorly on
the H@1 metrics.

• It is interesting to mention that HRec has the highest performance gain with the
injection of recursive rules compared to no injection on the H@3 metric on all
datasets, while for SimplE+ it is the H@10 metric.

• There is no clear pattern to see whether the recursion depth impacts the performance.
In general, the evaluation of all three datasets yielded similar results.

To sum up, this confirms our hypothesis that the proposed methods of injecting recursive
logical rules yield a performance gain. Furthermore, injecting the recursion depth proves
to be a suitable method to inject recursive rules. We could not find any patterns that
indicate that the maximum recursion depth influences our proposed models. Our models
could not outperform the state-of-the-art hyperbolic AttH model except on the H@10
metric, where our models clearly outperformed AttH.

5.5 Summary
To conclude this chapter, we discussed the different datasets we used for evaluation along-
side their statistics and the processing steps. Furthermore, we outlined the experiments
we conducted and the metrics used. This chapter also put a focus on the creation of
synthetic datasets to evaluate our approach. Lastly, we presented our evaluation results
and discussed them. Our proposed method does yield a substantial performance gain
on Hit@10 on some datasets of up to 24%. Therefore, we can conclude that injecting
recursive rules can greatly improve KGEs.

67

CHAPTER 6
Conclusion

This thesis aims to investigate methods to combine logical knowledge with ML models.
More concretely, we researched incorporating recursive logical rules into KGE. The
recursive rules should guide the training of the embedding values to be consistent with
the given background knowledge. Some approaches support the injection of logical rules
into KGEs. However, no model actively supports recursive background knowledge to the
best of our knowledge.

In order to inject recursive rules, we proposed an algorithm and adapted an existing state-
of-art KGE model to support the proposed algorithm. Furthermore, besides Euclidean
space, we investigated hyperbolic space as representation space. Previously published
papers achieved promising results for hyperbolic KGEs. Therefore, a hyperbolic model
that supports the injection of recursive logical rules was also proposed. The proposed
models have been implemented and evaluated on data from DBPedia and synthetic data.

6.1 Discussion of Research Questions
This section gives an overview of the answers to the proposed research questions in
Chapter 1.

Research Question 1 What is an appropriate method to inject recursive logical rules
into KGEs?

In Chapter 4 we proposed a general method to inject recursive logical rules. Our proposed
method transforms recursive rules into a set of implications based on the recursion depths.
Additionally, we add a new relation to the KG for each recursion depth. We utilise this
method to extend the existing KGE model SimplE+ [FRP18] to support recursive rule
injection. Furthermore, we proposed a KGE model in hyperbolic space that supports

69

6. Conclusion

the injection of implications and, in turn, our proposed method to incorporate recursive
logical rules.

Research Question 2.1 Does the proposed method to inject recursive rules yield better
overall performance compared to the same method without an injection?

In Chapter 5 we presented our experiments and the achieved results. The injection of
recursive logical rules does yield a performance gain for every dataset for both proposed
models (SimplE+ adaption and HRec). However, HRec performs better in general
compared to SimplE+ (except on the H@1 metric). Furthermore, the improvement for
injecting recursive rules compared to no injection is higher for HRec in comparison to
SimplE+.

Research Question 2.2 Does the recursion depth affect the performance of the proposed
injection method?

We could not find any patterns that indicate that the recursion depth influences the
performance of the proposed method. All different recursion depths result in similar
evaluation metrics.

6.2 Future Work
There are several aspects to continue the research conducted during this thesis. On
the one hand, there are improvements for the proposed models, and on the other hand,
a more detailed investigation and comparison of the models could be conducted. The
following listing contains further research:

• One way to improve the models could be to investigate methods to increase the
integration of logical reasoning in the training process or even during prediction.
For example, to build a hybrid system that can potentially detect that the KGE
prediction is not correct and react to this incorrectness by switching to logical
reasoning for this specific instance instead.

• A method that does not rely on the information of the recursion depths. We need
the recursion depths for our proposed approach, and this knowledge might not be
available for specific datasets. Therefore, a method that infers the depths during
training would be more favourable.

• Since recursion is, by definition, cyclic, spherical geometry could be more efficient
to inject recursive rules. Therefore, further research in this area could develop a
spherical geometry model similar to our proposed hyperbolic model and compare
both methods.

70

6.2. Future Work

• Extending the model to support more complex types of recursive rules. Another
future research direction would be to extend the model to support multiple recursive
logical rules and evaluate them on different datasets. In general, identifying other
datasets to evaluate our proposed models could give insights into the models.

• Lastly, an in-depth theoretical analysis of our proposed hyperbolic model is needed.
Some further questions would be if the hyperbolic aspect of our proposed method
yields the performance gains or if the proposed scoring function is the reason.
Another question would be to investigate why the model performs so well on H@10
but on H@1 so poorly.

71

APPENDIX A
Appendix

Table A.1: Hyperparameter of the models. NA negative samples indicates that no
negative samples were used (full cross-entropy loss is used)

Dataset Embedding
Dimension Model Rule

Injection Optimizer Learning Rate Batch Size Negative Samples

DBPedia

32 AttH ✗ Adam .0005 500 50
100 SimplE+ ✓ Adagrad .1 256 1
100 SimplE+ ✗ Adagrad .1 256 1
32 HRec ✓ Adam .0005 256 NA
32 Hrec ✗ Adam .0005 256 NA

Synthetic
Max. Depth: 3

32 AttH ✗ Adam .0005 500 50
100 SimplE+ ✓ Adagrad .1 256 1
100 SimplE+ ✗ Adagrad .1 256 1
32 HRec ✓ Adam .0005 256 NA
32 HRec ✗ Adam .0005 256 NA

Synthetic
Max. Depth: 5

32 AttH ✗ Adam .0005 500 50
100 SimplE+ ✓ Adagrad .1 256 1
100 SimplE+ ✗ Adagrad .1 256 1
32 HRec ✓ Adam .0005 256 NA
32 Hrec ✗ Adam .0005 256 NA

Synthetic
Max. Depth: 7

32 AttH ✗ Adam .0005 500 50
100 SimplE+ ✓ Adagrad .1 256 1
100 SimplE+ ✗ Adagrad .1 256 1
32 HRec ✓ Adam .0005 256 NA
32 Hrec ✗ Adam .0005 256 NA

Listing A.1 gives an overview of the single steps of the dataset creation process for our
Running Example 2.1.

Complete Set of Facts

Before Recurs ion
hasSubs id ia ry (CadenceIndustr ies , MarvelEntertainment) .
hasSubs id ia ry (MarvelEntertainment , MarvelStudios) .
hasSubs id ia ry (MarvelStudios , MarvelStudios) .

73

A. Appendix

hasSubs id ia ry (MarvelStudios , MarvelCinematicUniverse) .
hasSubs id ia ry (MarvelStudios , MarvelAnimation) .
hasSubs id ia ry (WaltDisneyStudios (d i v i s i o n) , MarvelStudios) .
hasSubs id ia ry (Renault , Nissan) .
hasSubs id ia ry (Nissan , Renault) .

Tracking Recurs ion Depth : Fnewd

hasSubsidiary_2 (CadenceIndustr ies , MarvelStudios) .
hasSubsidiary_3 (CadenceIndustr ies , MarvelStudios) .
hasSubsidiary_3 (CadenceIndustr ies , MarvelCinemativUniverse) .
hasSubsidiary_3 (CadenceIndustr ies , MarvelAnimation) .
hasSubsidiary_2 (MarvelEntertainment , MarvelStudios) .
hasSubsidiary_2 (MarvelEntertainment , MarvelCinematicUniverse) .
hasSubsidiary_2 (MarvelEntertainment , MarvelAnimation) .
hasSubsidiary_2 (WaltDisneyStudios (d i v i s i o n) , MarvelStudios) .
hasSubsidiary_2 (WaltDisneyStudios (d i v i s i o n) ,

MarvelCinematicUniverse) .
hasSubsidiary_2 (WaltDisneyStudios (d i v i s i o n) , MarvelAnimation) .
hasSubsidiary_2 (Renault , Renault) .
hasSubsidiary_2 (Nissan , Nissan) .

I n f e r r e d f a c t s from r e c u r s i v e r u l e : Fnew

hasSubsidiary_add (CadenceIndustr ies , MarvelStudios) .
hasSubsidiary_add (CadenceIndustr ies , MarvelCinemativUniverse) .
hasSubsidiary_add (CadenceIndustr ies , MarvelAnimation) .
hasSubsidiary_add (MarvelEntertainment , MarvelCinematicUniverse) .
hasSubsidiary_add (MarvelEntertainment , MarvelAnimation) .
hasSubsidiary_add (WaltDisneyStudios (d i v i s i o n) ,

MarvelCinematicUniverse) .
hasSubsidiary_add (WaltDisneyStudios (d i v i s i o n) , MarvelAnimation) .
hasSubsidiary_add (Renault , Renault) .
hasSubsidiary_add (Nissan , Nissan) .

Imp l i c a t i on Rules :
hasSubsidiary_3 (X,Y) → hasSubsidiary_2 (X,Y) .
hasSubsidiary_2 (X,Y) → hasSubs id ia ry (X,Y) .

Listing A.1: Overview of running example’s original facts, newly inferred facts, facts with
recursion depth and the resulting implication rules

74

List of Figures

2.1 Company Subsidiary Graph . 9
2.2 General idea of Knowledge Graph Embeddings 16
2.3 Three parallel lines to l, going through point A in hyperbolic Poincaré disk

model . 21
2.4 Examples of 2-manifolds . 21
2.5 Surfaces with different curvatures. Idea of figure taken from [HNA+97] . . 22
2.6 Tangent space TxS2 of point x on S2. Idea of figure taken from [Lee13] . . 22
2.7 Poincaré disk model. Idea of figure taken from [NK17, CYRL19] 24
2.8 Tangent space TxM on point x on the manifold M. And the exponential

map expx(v) which maps v from the tangent space to the manifold. Idea of
figure taken from [CWJ+20] . 25

2.9 Two great circles on S2 with radius r . 26

4.1 Three steps to infer the recursion depths. 40
4.2 Recursion depth of cycle and self-loop from subgraphs of the Running Exam-

ple 2.1. 41
4.3 Enforcing inequality constraint of proposed hyperbolic model. 49

5.1 DBPedia dataset statistics: frequency of relations in the facts 56
5.3 Combine Tree A with Tree B. The GetLevel() function returns the level of

a specific node, in this case of node A. The GetRemainingHeight() function
returns the maximum remaining height of a specific node. In this case of the
node B. Tree A gets combined with Tree B by introducing a relation between
node A and node B. 61

75

List of Tables

3.1 Common logical rule patterns1 . 30
3.2 Embedding models that support logical rule injection 34

5.1 Statistics for each dataset before and after processing 55
5.2 DBPedia dataset number of parents per company 56
5.3 Parameters to create three synthetic datasets with varying maximum depth

parameter. 62
5.4 DBPedia dataset evaluation. Results in bold mark the better scores comparing

each model with or without injection of recursive rules. Best overall results
are underlined. 65

5.5 Synthetic dataset evaluation. Results in bold mark the better scores compar-
ing each model with or without injection of recursive rules. Best results are
underlined. 65

A.1 Hyperparameter of the models. NA negative samples indicates that no negative
samples were used (full cross-entropy loss is used) 73

77

Listings

5.1 SPARQL query for company subsidiary dataset from DBPedia 55
A.1 Overview of running example’s original facts, newly inferred facts, facts

with recursion depth and the resulting implication rules 73

79

List of Algorithms

2.1 Learning Knowledge Graphs Embedding 17

4.1 Transforming recursive rule to chain of implication 42

4.2 Scoring function of our proposed hyperbolic model 46

5.1 Generating multiple random trees . 58

5.2 Merging random trees . 60

5.3 Adding cycles and self-loops to trees . 62

81

Acronyms

AI Artificial Intelligence. xi, 1, 7, 10

CWA Closed World Assumption. 17

EGD equality-generating dependency. 13, 14

FOL first-order logic. 13

H@K Hits at K. 4, 63, 64

KB Knowledge Base. 10

KG Knowledge Graph. ix, xi, 1–3, 5–15, 17, 18, 26, 31, 32, 34, 41–44, 51, 53, 54, 60, 62,
63, 69

KGE Knowledge Graph Embedding. ix, xi, 1–7, 9–12, 14–17, 26, 29, 32, 33, 35–37, 39,
42, 43, 45, 47, 51, 54, 63, 67, 69, 70

ML Machine Learning. 1, 5, 7, 23, 26, 69

MRR Mean Reciprocal Rank. 4, 63, 64

NN Neural Network. 2, 16

OWA Open World Assumption. 17

ReLU rectified linear unit. 36, 37, 45, 49

RSGD Riemannian Stochastic Gradient Descent. 31, 32

SGD Stochastic Gradient Descent. 16, 18, 19, 32, 47

TGD tuple-generating dependency. 13, 14

URI Unified Resource Identifier. 56

83

Bibliography

[ACLS20] Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso
Salvatori. Boxe: A box embedding model for knowledge base completion. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases:
The Logical Level. Addison-Wesley Longman Publishing Co., Inc., USA, 1st
edition, 1995.

[AM13] Gabor Angeli and Christopher Manning. Philosophers are mortal: Inferring
the truth of unseen facts. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 133–142, Sofia, Bulgaria,
August 2013. Association for Computational Linguistics.

[BAH19a] Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Tucker: Tensor
factorization for knowledge graph completion. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, pages 5184–5193. Association
for Computational Linguistics, 2019.

[BAH19b] Ivana Balažević, Carl Allen, and Timothy Hospedales. Multi-relational
poincaré graph embeddings, 2019.

[BB01] F. Barca and M. Becht. The control of corporate Europe. Oxford University
Press, 2001.

[BBC+20] Luigi Bellomarini, Marco Benedetti, Stefano Ceri, Andrea Gentili, Rosario
Laurendi, Davide Magnanimi, Markus Nissl, and Emanuel Sallinger. Rea-
soning on company takeovers during the COVID-19 crisis with knowledge
graphs. In Sotiris Moschoyiannis, Paul Fodor, Jan Vanthienen, Daniela
Inclezan, Nikolay Nikolov, Francisco Martín-Recuerda, and Ioan Toma,

85

editors, Proceedings of the 14th International Rule Challenge, 4th Doctoral
Consortium, and 6th Industry Track @ RuleML+RR 2020 co-located with
16th Reasoning Web Summer School (RW 2020) 12th DecisionCAMP 2020
as part of Declarative AI 2020, Oslo, Norway (virtual due to Covid-19 pan-
demic), 29 June - 1 July, 2020, volume 2644 of CEUR Workshop Proceedings,
pages 145–156. CEUR-WS.org, 2020.

[BBG+20] Luigi Bellomarini, Marco Benedetti, Andrea Gentili, Rosario Laurendi,
Davide Magnanimi, Antonio Muci, and Emanuel Sallinger. Covid-19 and
company knowledge graphs: Assessing golden powers and economic impact
of selective lockdown via ai reasoning, 2020.

[BFGS19] Luigi Bellomarini, Daniele Fakhoury, Georg Gottlob, and Emanuel Sallinger.
Knowledge graphs and enterprise ai: The promise of an enabling technology.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 26–37, 2019.

[BGS18] Luigi Bellomarini, Georg Gottlob, and Emanuel Sallinger. The vadalog
system: Datalog-based reasoning for knowledge graphs, 2018.

[Bon13] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds.
IEEE Transactions on Automatic Control, 58(9):2217–2229, Sep 2013.

[BRC+20] Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Palmonari,
and Pasquale Minervini. Knowledge graph embeddings and explainable
AI. In Ilaria Tiddi, Freddy Lécué, and Pascal Hitzler, editors, Knowledge
Graphs for eXplainable Artificial Intelligence: Foundations, Applications
and Challenges, volume 47 of Studies on the Semantic Web, pages 49–72.
IOS Press, 2020.

[BSV20a] Luigi Bellomarini, Emanuel Sallinger, and Sahar Vahdati. Chapter 6 Reason-
ing in Knowledge Graphs: An Embeddings Spotlight, pages 87–101. Springer
International Publishing, Cham, 2020.

[BSV20b] Luigi Bellomarini, Emanuel Sallinger, and Sahar Vahdati. Knowledge graphs:
The layered perspective. In Valentina Janev, Damien Graux, Hajira Jabeen,
and Emanuel Sallinger, editors, Knowledge Graphs and Big Data Processing,
volume 12072 of Lecture Notes in Computer Science, pages 20–34. Springer,
2020.

[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational
data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems,
volume 26. Curran Associates, Inc., 2013.

86

[CBG20] Calin Cruceru, Gary Bécigneul, and Octavian-Eugen Ganea. Computation-
ally tractable riemannian manifolds for graph embeddings, 2020.

[CCD17] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth.
Neural embeddings of graphs in hyperbolic space, 2017.

[CFG+19] Jack Clearman, Ruslan R. Fayzrakhmanov, Georg Gottlob, Yavor Nenov,
Stéphane Reissfelder, Emanuel Sallinger, and Evgeny Sherkhonov. Feature
engineering and explainability with vadalog: A recommender systems ap-
plication. In Mario Alviano and Andreas Pieris, editors, Datalog 2.0 2019
- 3rd International Workshop on the Resurgence of Datalog in Academia
and Industry co-located with the 15th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2019) at the Philadel-
phia Logic Week 2019, Philadelphia, PA (USA), June 4-5, 2019, volume
2368 of CEUR Workshop Proceedings, pages 39–43. CEUR-WS.org, 2019.

[CWJ+20] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and
Christopher Ré. Low-dimensional hyperbolic knowledge graph embeddings.
In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6901–6914, Online, July 2020. Association for
Computational Linguistics.

[CYRL19] Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic
graph convolutional neural networks, 2019.

[DFO20a] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics
for machine learning. Cambridge University Press, Cambridge New York,
NY Port Melbourne New Delhi Singapore, 2020.

[DFO20b] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics
for Machine Learning. Cambridge University Press, 2020.

[DRR16] Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. Lifted rule
injection for relation embeddings. In Jian Su, Xavier Carreras, and Kevin
Duh, editors, Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November
1-4, 2016, pages 1389–1399. The Association for Computational Linguistics,
2016.

[EH56] Euclides and Thomas L Heath. The thirteen books of Euclid’s elements : 1.
Introduction and books I, II. Dover Publ., New York, NY, 2. ed. rev. with
additions. edition, 1956.

[FRP18] Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. Improved knowledge
graph embedding using background taxonomic information, 2018.

87

[GBH18a] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic
entailment cones for learning hierarchical embeddings. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 1632–1641. PMLR, 2018.

[GBH18b] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic
neural networks, 2018.

[GHLZ13] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou.
2013.

[GSGR19] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-
curvature representations in product spaces. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

[GWW+16] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly
embedding knowledge graphs and logical rules. In Jian Su, Xavier Carreras,
and Kevin Duh, editors, Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA,
November 1-4, 2016, pages 192–202. The Association for Computational
Linguistics, 2016.

[GWW+18] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Knowledge
graph embedding with iterative guidance from soft rules. In Sheila A.
McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 4816–4823.
AAAI Press, 2018.

[Háj98] Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic.
Kluwer, 1998.

[HNA+97] Stephen Hyde, Barry W. Ninham, Sten Andersson, Kåre Larsson, Tomas
Landh, Zoltan Blum, and Sven Lidin. Chapter 1 - the mathematics of
curvature. In Stephen Hyde, Barry W. Ninham, Sten Andersson, Kåre
Larsson, Tomas Landh, Zoltan Blum, and Sven Lidin, editors, The Language
of Shape, pages 1–42. Elsevier Science B.V., Amsterdam, 1997.

[JLHZ16] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Knowledge graph
completion with adaptive sparse transfer matrix. In Dale Schuurmans and
Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference

88

on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA,
pages 985–991. AAAI Press, 2016.

[JPC+21] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu.
A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning Systems, page 1–21,
2021.

[KP18] Seyed Mehran Kazemi and David Poole. Simple embedding for link pre-
diction in knowledge graphs. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 4289–4300, 2018.

[Lee13] J.M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics.
Springer New York, 2013.

[LLS+15] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning
entity and relation embeddings for knowledge graph completion. In Blai
Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pages 2181–2187. AAAI Press, 2015.

[LUO18] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical
tensor decomposition for knowledge base completion. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 2869–2878. PMLR, 2018.

[LWY+17] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. In 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pages 6738–6746. IEEE Computer
Society, 2017.

[MCM+17] Pasquale Minervini, Luca Costabello, Emir Muñoz, Vít Novácek, and
Pierre-Yves Vandenbussche. Regularizing knowledge graph embeddings via
equivalence and inversion axioms. In Michelangelo Ceci, Jaakko Hollmén,
Ljupco Todorovski, Celine Vens, and Saso Dzeroski, editors, Machine Learn-
ing and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part
I, volume 10534 of Lecture Notes in Computer Science, pages 668–683.
Springer, 2017.

89

[MHW+19] Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang,
Lance M. Kaplan, and Jiawei Han. Spherical text embedding. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8206–8215, 2019.

[MR18] Pasquale Minervini and Sebastian Riedel. Adversarially regularising neural
NLI models to integrate logical background knowledge. In Anna Korhonen
and Ivan Titov, editors, Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, CoNLL 2018, Brussels, Belgium, October
31 - November 1, 2018, pages 65–74. Association for Computational Lin-
guistics, 2018.

[NK17] Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning
hierarchical representations, 2017.

[NK18] Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in
the lorentz model of hyperbolic geometry. In Jennifer G. Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
3776–3785. PMLR, 2018.

[NMTG16] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich.
A review of relational machine learning for knowledge graphs. Proceedings
of the IEEE, 104(1):11–33, Jan 2016.

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In Proceedings of
the 28th International Conference on International Conference on Machine
Learning, ICML’11, page 809–816, Madison, WI, USA, 2011. Omnipress.

[Pau17] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic Web, 8(3):489–508, 2017.

[pdt20] The pandas development team. pandas-dev/pandas: Pandas, February
2020.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

90

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RG11] Jürgen Richter-Gebert. Perspectives on Projective Geometry: A Guided
Tour Through Real and Complex Geometry. Springer Publishing Company,
Incorporated, 1st edition, 2011.

[RM51] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method.
The Annals of Mathematical Statistics, 22(3):400 – 407, 1951.

[RSR15] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical
background knowledge into embeddings for relation extraction. In Rada
Mihalcea, Joyce Yue Chai, and Anoop Sarkar, editors, NAACL HLT 2015,
The 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 1119–1129. The Association
for Computational Linguistics, 2015.

[Sal13] Emanuel Sallinger. Reasoning about Schema Mappings. In Phokion G. Ko-
laitis, Maurizio Lenzerini, and Nicole Schweikardt, editors, Data Exchange,
Integration, and Streams, volume 5 of Dagstuhl Follow-Ups, pages 97–127.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2013.

[SCMN13] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng.
Reasoning with neural tensor networks for knowledge base completion. In
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’13, page 926–934, Red Hook, NY,
USA, 2013. Curran Associates Inc.

[SDNT19] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. In 7th
International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[SGB20] Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-
curvature variational autoencoders. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[Sin12] Amit Singhal. Introducing the knowledge graph: things,
not strings. https://blog.google/products/search/
introducing-knowledge-graph-things-not/, 2012. Accessed:
2021-06-15.

91

https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

[TBG19] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincare
glove: Hyperbolic word embeddings. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

[Tuc64] L. R. Tucker. The extension of factor analysis to three-dimensional matrices.
In H. Gulliksen and N. Frederiksen, editors, Contributions to mathematical
psychology., pages 110–127. Holt, Rinehart and Winston, New York, 1964.

[TWR+16a] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex embeddings for simple link prediction. In
Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 2071–2080. JMLR.org, 2016.

[TWR+16b] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex embeddings for simple link prediction, 2016.

[Ung01] A.A. Ungar. Hyperbolic trigonometry and its application in the poincaré ball
model of hyperbolic geometry. Computers & Mathematics with Applications,
41(1):135–147, 2001.

[Vij06] Anand M. Vijh. Does a parent-subsidiary structure enhance financing
flexibility? The Journal of Finance, 61(3):1337–1360, 2006.

[Wei02] Eric W. Weisstein. Great circle. https://mathworld.wolfram.com/
GreatCircle.html, 2002. Accessed: 2021-05-18.

[Wei14] Steven H. Weintraub. Chapter 4 - smooth manifolds. In Steven H. Weintraub,
editor, Differential Forms (Second Edition), pages 141–206. Academic Press,
Boston, second edition edition, 2014.

[Wei21] Eric W. Weisstein. Spherical geometry. https://mathworld.wolfram.
com/SphericalGeometry.html, 2021. Accessed: 2021-08-05.

[WHPD14] Richard C. Wilson, Edwin R. Hancock, Elzbieta Pekalska, and Robert P. W.
Duin. Spherical and hyperbolic embeddings of data. IEEE Trans. Pattern
Anal. Mach. Intell., 36(11):2255–2269, 2014.

[WMWG17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–2743, 2017.

[WZFC14] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In Carla E. Brodley and
Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference

92

https://mathworld.wolfram.com/GreatCircle.html
https://mathworld.wolfram.com/GreatCircle.html
https://mathworld.wolfram.com/SphericalGeometry.html
https://mathworld.wolfram.com/SphericalGeometry.html

on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada,
pages 1112–1119. AAAI Press, 2014.

[YYH+15] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge
bases. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[ZTJ+21] Shuai Zhang, Yi Tay, Wenqi Jiang, Da-Cheng Juan, and Ce Zhang. Switch
spaces: Learning product spaces with sparse gating. CoRR, abs/2102.08688,
2021.

93

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Methodological Approach
	Main Contributions
	Structure of the Work

	Background
	Running Example
	Knowledge Graphs
	Logical Knowledge in Knowledge Graphs
	Knowledge Graph Embeddings
	Non-Euclidean Geometry
	Summary

	Related Work
	Knowledge Graph Embeddings
	Rule Injection in Knowledge Graph Embeddings
	Summary

	Proposed Method
	Injecting Recursive Rules
	Euclidean Space Model - SimplE+ Adaption
	Hyperbolic Space Model
	Summary

	Evaluation
	Creation of the Datasets
	Datasets
	Metrics
	Evaluation Results
	Summary

	Conclusion
	Discussion of Research Questions
	Future Work

	Appendix
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

