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Abstract
Advanced experimental setups to prepare and manipulate Bose-Einstein Condensates
open the possibility to realise quantum field thermal machines (QFTMs), the analogue to
classical heat pumps acting on the quantum field of a gas. With the aim of enhancing the
performance of such systems, this work studies the dynamics of the experimental quasi
condensate within mean-field theory and for non-zero temperatures. Optimal trajectories
for a complete cooling cycle are derived that minimise mean-field excitations whereby
different approaches are compared. A minimum variance estimator is designed to adapt
parameters of the mathematical model based on experimental data. In studying the
condensate at non-zero temperatures, we find that trajectories that minimise mean-field
excitations also alleviate undesired heating during the cooling sequence.
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Kurzzusammenfassung
Moderne Versuchsaufbauten zur Erzeugung und Manipulation von Bose-Einstein Konden-
saten eröffnen neue Möglichkeiten in der Realisierung von quantenmechanischen Wärme-
pumpen, dem Analog zur klassischen Wärmepumpe zur Manipulation des Quantenfeldes
des Gases. Mit dem Ziel, die Performance einer solchen Wärmepumpe durch optimale
Ansteuerung zu verbessern, wird die Dynamik des Quasi-Kondensats im Experiment im
Rahmen der Mean-Field Theorie und für Temperaturen über dem absoluten Nullpunkt
untersucht. Dazu werden optimale Trajektorien für alle Teilsequenzen der Wärmepumpe
berechnet, sodass Anregungen des Mean-Fields minimiert werden. Zur Lösung des Opti-
malsteuerungsproblems werden verschiedene Ansätze miteinander verglichen. Darüber
hinaus wird ein Minimum-Varianz Schätzer für fluktuierende Modellparameter entworfen.
In der Untersuchung von thermischen Zuständen wird gezeigt, dass diese optimalen Trajek-
torien auch den Eintrag zusätzlicher thermischer Energie zu einem großen Teil verhindern
können.
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1 Introduction
In recent times, progress in quantum physics and enhanced quantum experiments vastly
improve the capabilities of controlling and manipulating individual quantum systems.
While previously experiments in quantum physics were mainly designed to observe quantum
effects or validate theoretical models, advanced experimental setups nowadays try to
make use of genuine quantum effects. These so called quantum techniques use effects
like tunneling, entanglement or superposition, to fulfil some desired task with superior
performance to classical techniques. The use of quantum simulators [1] for example makes
simulations of less accessible quantum systems possible, which might be infeasible to
calculate with conventional techniques. Quantum metrology [2], e.g. atomic interferometry,
uses effects of squeezing and entanglement to surpass classical measurement tools. The
emerging field of quantum computing [3] promises a significant reduction of computation
speed, but also comes with the development of quantum decryptors, which will leave
information that was encrypted with today’s methods vulnerable. Likewise, quantum
cryptography [4] can offer solutions for this problem. By using quantum effects, an
ultimate encryptor could be built which would also withstand possibly in the future
developed quantum- or non-quantum algorithms.

A number of these quantum techniques have their origin in classical systems. The steam
engine can be considered one of the most impactful classical systems invented in the last
centuries, and the limited understanding of its inner workings was a main driving force for
the development of classical thermodynamics. Following this rational, a genuine quantum
thermal machine could help exploring the nature of thermodynamics in the quantum
regime [5, 6].

In [7], Gluza proposes a quantum field thermal machine (QFTM) that has its classic
analogue in a heat pump. A heat pump transfers thermal energy from one place to another,
acting against the striving of nature to equilibrate temperature distribution. It can cool a
cold place while making a hot place hotter. The proposed QFTM from Gluza can provide
an additional cooling stage for quantum gases or liquids and acts as a tool for further
exploration of strong correlation and coherences. The observation and manipulation of
quantum effects has proven to be notoriously difficult, requiring extremely precise and
accurate capabilities. It is thus natural that [7] already points towards the exploitation
of advanced control concepts to realize such a QFTM. Similarly, James Watt designed
a centrifugal governor to stabilise the speed of the steam engine and its mathematical
description by James Clerk Maxwell is considered the foundation of modern control theory
[8].

The main differences between this classic heat pump and the proposed QFTM are the
working fluid, the spatial dimensions of the machine and the methods of actuation and
measurement. In an ordinary refrigerator, a refrigerant liquid undergoes a process called
‘vapor-compression refrigeration’ of evaporation, compression, condensation and expansion.

1



1 Introduction 1.1 Experimental setup 2

To replace this working liquid using a Bose Einstein Condensate (BEC) is a promising
option. In 1925, Albert Einstein predicted a state of matter, where bosons (particles
which can occupy the same quantum state) ‘condense’ at low temperatures in a single
quantum state. They get indistinguishable from each other and behave like the same
single particle which can be described by one single wave-function [9]. Newly developed
tools of cooling atoms that are trapped in magnetic potentials on atom-chips made it
possible to reach temperature regimes of 20 to 100 nK. The procedure of preparing BECs
has become a routine in the labs around the world, which makes them attractive to use in
such advanced applications.

To gain a deeper insight into quantum many-body phenomena, a variety of mathematical
models was developed to describe BECs in different thermal regimes. A selection of these
models can be found in Chapter 2. The existence of suitable mathematical descriptions
that accurately describe the behaviour of the atoms in the experiment is another reason
for using BECs in the proposed QFTM since it allows to apply model-based control theory.

1.1 Experimental setup
The components of a classic heat pump are an electrical compressor, two heat exchangers
(coils or tubes where condensation and evaporation take place) and an expansion valve
where the refrigerant liquid undergoes an abrupt reduction in pressure. In one cooling
cycle, the liquid passes sequentially through all different stages of the refrigerator. In the
QFTM proposed in [7], a BEC replaces the refrigerant liquid and is compressed, coupled
and decompressed.

For the realisation of the QFTM, the experimental setup that is described in [10] is
considered and later used to test the methods that are developed in this work. In this
setup, 87Rb atoms are cooled by laser cooling and particle dissipation (i.e., evaporative
cooling) to a temperature around 50 nK where quantum effects play a prominent role.
The BEC is confined by an anisotropic magnetic potential due to micro currents on
the atom-chip. This confinement potential is tighter in transversal direction than in
longitudinal direction, and forms the atomic cloud to a cigar like shape. When cooled
sufficiently low, the condensate reaches a 1D regime where it can be described by a 1D
macroscopic wave-function and is now called quasi condensate.

To build a quantum machine and to apply control theory some form of actuation is
required. In [11], [12] and [13], the confinement potential can be controlled by changing
the currents of the magnetic micro traps. The design of a QFTM requires to create and
manipulate several compartments. This problem of actuation is solved in the considered
experimental setup by optical dipole trapping [14] of the BEC, which allows detailed
control of potentials. Optical manipulation is obtained by directing a shaped laser beam
on the BEC. The electric dipole interaction produces a trapping force, which enables the
realisation of, at least to some extend, arbitrary time-dependent potential landscapes.

The intensity profile of the laser beam is shaped with a digital micro-mirror device
(DMD), which is a matrix of micro mirrors. Those mirrors have two states and can either
direct the incoming light to the BEC or somewhere else. The shaping of a desired potential
is a non-trivial task [15], since the coherent light used in the setup introduces interference
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(a) Preparation of a BEC with three compartments

S P B

(b) Compression of P

(c) Coupling of P and B

(d) Decompression of P

(e) Coupling S and P

(f) Decoupling of S and P

Figure 1.1: Quantum field thermal machine sequence. Steps (b) to (f) form a single cooling
cycle and can be repeated for multiple several times.

and speckle patterns due to dust particles in the optical system. Thus, this work will
focus on boxlike potential shapes with moving walls, which are easier to implement. The
use of non-coherent light and suitable control methods to efficiently produce arbitrary
potential shapes would allow more advanced configurations.

1.2 The QFTM sequence
Following [7], the quasi 1D condensate of the QFTM is divided into three compartments
(Figure 1.1) by adapting the pixels of the DMD. The most left compartment is called
system (S), the middle one is the piston (P) and the right one is called bath (B). Over
one cooling cycle, energy should be transferred from S to B, while the number of atoms
in all subsystems, especially in S, should not change. Analogously to the classical heat
pump, such a cooling cycle consists of multiple subsequences:
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• Initial state: S, P and B are initially decoupled and have the same temperature.

• Compression of P: While P gets compressed, the temperature and the density in P
increases. B could simultaneously be decompressed to lower its temperature and
to decrease the distance between P and B, for enhancing energy flow from P to B.
Furthermore, it is desirable to adapt the chemical potential on P and B to avoid
possible particle flow.

• Coupling of P and B: After adapting the chemical potentials of P and B, energy is
transferred from the now hotter P to B. This coupling is done either by lowering
the barrier between P and B or by further decreasing the wall width. During the
coupling no atoms should travel from one compartment to the other.

• Decompression of P: After P and B are decoupled, P gets decompressed. While
decompressing P, its temperature decreases. To build a working quantum field
thermal machine, P now should be colder than S. To allow decompression of P, B
has to be compressed again.

• Coupling of S and P: Since P is now colder than S, energy can be transferred from
S to P by coupling them like P and B where coupled.

• Decoupling of S and P: To close the cycle, P gets decoupled from S. S should now
be colder than at the beginning and energy was pumped from S to B. For further
cooling of S, this cycle can be repeated multiple times until heat flow from P to B is
not possible any more because of B being too hot.

To reach the higher-level goal of cooling the system (S) in an optimal way, it is reasonable
to first understand the compression and decompression of a subsystem and the coupling
and decoupling of two subsystems by their own. Those sequences are the building blocks of
the QFTM and are called ‘quantum thermal primitives’ (QTPs). Each QTP is a transition
between two configurations of the external potential, which is controlled by a number of
control parameters.

The term of cooling inherently asks for a discussion of temperature. Regarding mea-
surement possibilities in the experiment, there are two main quantities to get insight into
the temperature of the condensate, namely the global density fluctuation and the phase
coherence length. In a thermalized BEC, thermal energy is distributed in phase- and
density fluctuations [16], which come on top of the classical field but for systems that are
not in thermal equilibrium it is not possible to assign a single temperature. Nevertheless,
quantities as the density fluctuation and the phase coherence length can sill give insight
in the thermal state of the condensate even for non-thermalized states. These quantities
are thus subject for optimisation in the long term. Furthermore, stochastic fluctuations
interact with bulk excitations of the classic field and remaining bulk excitations will most
likely result in a higher temperature of the condensate after thermalisation. Therefore, it
is important to aim not only for the minimisation of phase and density fluctuations but
also for the minimisation of excitations in the classic field.
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1.3 Optimal control of BECs
Compression or decompression of the condensate by moving the walls of the box potential
in a linear manner, i.e. using simple ramps as trajectories for the control parameters, will
cause mean-field excitations and thus reduce the cooling efficiency. This problem raises
the idea of applying control theory to suppress mean-field excitations when performing
QTPs. The model for which optimal control theory is investigated in this work is the
Gross-Pitaevskii equation (GPE), which is the classic equation of motion of the mean-field
wave-function. This model only describes the evolution of the mean density and phase
in the temperature regime T → 0 and thus does not include stochastic fluctuations
or any other quantities describing temperature. After one optimal cooling cycle, the
wave-function in the GPE should be in the same ground state as before the sequence, and
no such thing as cooling can be studied. Since particle numbers should be preserved in
each subsystem, coupling in the GPE description should do nothing and quantities like
the coupling time or strength and the compression ratio are not reasonable to optimise
using only the GPE as mathematical description. Thus, to optimise the energy flow from
S to P or from P to B during the coupling phases, an advanced mathematical model is
necessary to describe the dynamics of phase and density fluctuations and include the
temperature of the condensate. Models that go beyond mean-field theory are for example
the stochastic GPE and the Truncated Wigner approach [16], the MCTDHB-Model [17]
or linearised theories such as the Luttinger Liquid approach.

To reach the ultimate goal of cooling the system (S), a two-level approach will be
pursued in this thesis. First, optimal control trajectories are investigated based on a
mean-field description of the condensate. Solving this low-level control problem, quantum
thermal primitives should be obtained that yield minimal excitations of the mean field.
Some involved parameters of the quantum thermal primitives such as the coupling time
or the compression ratio cannot be decided by employing a GPE description. To define
these parameters, an optimisation of the resulting energy transport and achieved cooling
has to be performed as a second control problem. This top-level control problem must
go beyond mean-field theory and is possibly executed directly on the experiment using
online-optimisation methods.

The optimality of each quantum thermal primitive is quantified with a cost functional.
Together with a mathematical model of the system dynamics, an optimal control problem
can be formulated. Optimal quantum control problems for BECs have been studied in
multiple works. In [11], different benchmark problems (e.g. dislocating a condensate or
splitting it into two by controlling the confinement potential of magnetic micro traps)
are discussed. In [12], it was shown that optimal control theory can also be applied to
3D condensates and in [13] they go beyond mean-field theory and compare splitting in a
two-mode model and using the MCTDHB method.

Due to the absence of real-time measurements, all of the above mentioned applications
of optimal control theory (OCT) are pure feedforward control approaches. As such, they
all share the same drawbacks as any open-loop control, i.e. the mathematical description
has to fit the experiment extremely well to obtain good results. Since one is able to
perform destructive measurements at some point of a QTP transition, one can try to use
this information to improve the trajectory with each iteration of the experiment. This



1 Introduction 1.4 Structure of this thesis 6

adaption mechanism can either be an estimation of model parameters to adjust the model
to the observed system behaviour, or a direct modification of the trajectories by using a
cost functional which contains measurable quantities. In the considered experiment, there
are different measurements possible. Either the density distribution and fluctuations or
the phase fluctuations can be extracted by using a time-of-flight method [10, 18]. These
measurements give insight into local or global distributions and correlations.

1.4 Structure of this thesis
This work is structured as follows: In Chapter 2, a brief introduction to different models
of a BEC is given. Two mean-field theories, namely the GPE and the npSE at zero
temperature, are described in detail and the sGPE is discussed to prepare thermal initial
states to study the BEC beyond the mean field at temperatures bigger than zero. Then, the
optimal control problem for two different mathematical descriptions and cost functionals
is presented with two different approaches for solving it. The first approach is an indirect
optimisation approach (IOA), in which the search space for the optimal control variable is
not limited, and the second one is a basis function approach (BFA). Optimal trajectories
for both models are given for one QFTM sequence and compared to the simple protocol
of linear trajectories. To overcome model-inaccuracies in the experiment and to introduce
feedback into the system, a parameter estimator is designed in Chapter 4. In Chapter 5,
the propagation of thermal initial states is used to study the evolution of fluctuations and
to gain insight into the temperature evolution during the transitions. The trajectories
that where optimised for the mean field are applied to the QFTM sequence at non-zero
temperature and results are compared to simple linear transitions. A conclusion of this
work and an outlook on possible extensions of the project are given in Chapter 6.



2 Mathematical description of BECs
In this chapter, an overview and brief introduction to different mathematical descriptions
for Bose-Einstein condensates will be given. Those two, which are later used in this thesis
will be explained in greater detail.

Strictly speaking, a BEC is a many-body system and every particle in it will have its
own wave-function. In the Hamiltonian of such a system, the interaction between all pairs
of atoms has to be described, which leads to N2 terms in the many-body Hamiltonian,
with N being the number of particles in the condensate [19]. At low temperatures, this
very complex behaviour can be approximated up to different orders. The Gross-Pitaevskii
equation (GPE) represents the lowest order of approximation. All particles are assumed to
be in one single state and are described by the same quasi-particle wave-function Ψ(r, t),
which is a classic field. In the three-dimensional space, Ψ(r, t) gives the expectation
value of the true quantum field and thus the GPE is referred to as a mean-field theory.
Thermal and quantum fluctuations, i.e. stochastics introduced due to finite temperature
and quantum mechanics, are not described by such a mean-field theory. At nonzero
temperature, the GPE can still be used as classical equation of motion for thermal initial
states, which yields a description of the BEC that goes beyond mean-field theory.

The Hartree-Fock-Bogoliubov theory allows second-order terms in the Hamiltonian
[20]. The field operator is split into a condensate (the classic field of the GPE) and a
non-condensate (density and phase fluctuations). This results in equations of motion for
the non-condensed part, which also couple to the classical field of the GPE. Linearisation
of this semi-classical theory yields the Tomonaga-Luttinger Liquids model [16].

In the multi-configurational time-dependent Hartree method for Bosons (MCTDHB)
[17, 21], the full many-body state is approximated by a set of ansatz functions. The ansatz
functions can be viewed as states or orbitals, in which the atoms are distributed. Using
only one orbital results in the GPE, and higher orbitals relate to states of higher energy.
This method yields the evolution in time of the atom distribution in the orbitals, which
are themselves time dependent. Because not all atoms are assumed to be in the ground
state, many-body correlations can be studied up to different orders, depending on the
number of orbitals used.

The uncertainty properties due to finite temperatures can also be mimicked by propa-
gating multiple thermal initial states. Realisations of such thermal states can be sampled
from a Wigner distribution [4] or using the stochastic GPE [16]. These sampled thermal
initial states are subsequently propagated in using the classic GPE. The desired statistics
such as density and phase fluctuations and correlations can then be calculated from
the ensemble of all resulting wave-functions and give insight into the evolution of the
temperature in the BEC.

7
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2.1 Gross-Pitaevskii equation
When the temperature of a condensate goes to zero, all atoms can be described by one
complex wave-function Ψ(r, t). The classical equation of motion called Gross-Pitaevskii
equation (GPE)

iℏ∂tΨ(r, t) = − ℏ2

2m
∆Ψ(r, t) + V (r, t)Ψ(r, t) + g|Ψ(r, t)|2Ψ(r, t) (2.1)

describes the evolution of the mean-field wave-function Ψ(r, t) in the three-dimensional
space and has the form of a nonlinear Schrödinger equation. Here, ∆ is the three-
dimensional Laplace operator, m is the mass of the atoms in the condensate, V is an
external potential which confines the condensate and the coupling constant g = 4πℏ2as/m
describes the coupling between particles with the s-scattering length as. The wave-function
is normalized to the atom number N , i.e.

� |Ψ(r)|2dr = N .
For normalisation, equation (2.1) is divided by ℏ, the wave-function is normalised to

one, i.e.
� |Ψ̃(r̃)|2dr̃ = 1, |Ψ|2 = |Ψ̃|2N/µm, time is measured in ms and space in µm.

Inserting the normalisation

t = t̃ · 1 ms, ∂t = ∂t̃ · 1
ms (2.2a)

z = z̃ · 1 µm, ∆ = ∆̃ · 1
µm2 (2.2b)

V = ℏṼ · 1
ms (2.2c)

m = ℏm̃ · 1 ms
µm2 (2.2d)

Ψ = Ψ̃ ·
�

N

µm (2.2e)

in (2.1), we get the normalized GPE

i∂t̃Ψ̃(r̃, t̃) = − 1
2m̃

∆̃Ψ̃(r̃, t̃) + Ṽ (r̃, t)Ψ̃(r, t̃) + g̃|Ψ̃(r̃, t̃)|2Ψ̃(r̃, t̃) (2.3)

with a new coupling constant g̃ = 4πℏNãs/m̃. Although this normalisation is used in
every following equation, the tilde sign is dropped for convenience. If normalised to one,
the absolute value |Ψ(r, t)|2 gives the probability of finding an atom at time t and place r.
The particle number now is no longer included in the normalisation of the wave-function
but in the coupling constant.

Equation (2.1) describes the wave-function in the three-dimensional space. As mentioned
in the introduction, the condensate in the experiment is confined tightly in transversal
direction and cooled to a regime where it is valid to assume 1D dynamics. A variational
ansatz for the transverse wave-function and integrating the transversal degrees of freedom
leads to the normalised non-polynomial Schrödinger equation (npSE) [16]

i∂tΨ(z, t) = − 1
2m

∂zzΨ(z, t) + V (z, t)Ψ(z, t) + ω⊥

	
1 + 3asN |Ψ(z, t)|2�
1 + 2asN |Ψ(z, t)|2 − 1

�
Ψ(z, t)

(2.4)
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Symbol Name Value Unit
m mass 1.443 · 10−25 kg
ω⊥ transversal confinement 10.000 rad/ms
as s-wave scattering length 5.200 · 10−3 µm
N atom number in the BEC 5.000 · 103 1

g1D coupling constant of the 1D-GPE 520 µm/ms

Table 2.1: Parameter values for the mean-field description of BECs used in this work.

for the classic field Ψ(z, t) with the frequency ω⊥ of the harmonic confinement in transversal
direction.
If asN |Ψ(z, t)|2 ≪ 1 (valid for small atom numbers), Taylor-series expansion allows to
approximate the npSE with the one-dimensional GPE

i∂tΨ(z, t) = − 1
2m

∂zzΨ(z, t) + V (z, t)Ψ(z, t) + g1D|Ψ(z, t)|2Ψ(z, t), (2.5)

where the 1D coupling constant g1D = 2asω⊥N . When reducing the npSE to the 1D-GPE,
terms of higher order in the Taylor-series expansion are neglected and a shift of the speed
of sound [16] is introduced. In the npSE, this speed of sound is

c2
npSE = ω⊥asNρ

2 + 3asNρ

m(1 + 2asNρ)3/2 , (2.6)

while in die 1D-GPE it is
c2

1D-GPE = g1Dρ/m, (2.7)

with ρ = |Ψ(z, t)|2 being the 1D density. For the ground state of a box-shaped potential
this 1D density is constant in the middle of the condensate. In the harmonic approximation
and assuming such a homogenous condensate, the speed of sound in the GPE can be
adapted to the npSE with an effective 1D coupling constant [16]

geff = ω⊥asN
2 + 3asNρ

(1 + 2asNρ)
3
2

. (2.8)

Parameters of the GPE and the npSE that are used in this work are given in Table 2.1.

2.2 Ground state of the GPE
To find the ground state of the GPE, the time-independent GPE

− 1
2m

∂zzΨ0(z) + V (z)Ψ0(z) + g1D|Ψ0(z)|2Ψ0(z) = µΨ0(z) (2.9)

has to be solved. The chemical potential µ of the ground state is the energy needed to add
one particle to the condensate. If the coupling constant g1D is neglected, one has to solve
a simple linear eigenvalue problem, which is the time-independent Schrödinger equation.
The chemical potential corresponds to the eigenvalue and the ground state wave-function
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Figure 2.1: Comparison of different methods to calculate the ground state of the GPE for
a box-shaped potential.

Ψ0(z) is the eigenvector of the smallest eigenvalue µ in this case. Another simplification
can be found if the kinetic energy term − 1

2m∂zzΨ0(z) is neglected, while the non linearity
is taken into account. This leads to the so called Thomas-Fermi approximation

Ψ0(z) =
�

µ − V (z)
g1D

. (2.10)

In contrast to the properties of the linear eigenvalue problem, the chemical potential
depends on the normalisation of the wave-function and is given by the normalisation
condition

� |Ψ0(z)|2dz = 1. A standard numerical method of solving the nonlinear problem
(2.9) is propagating the 1D-GPE from some arbitrary initial density profile with a numerical
solver using imaginary time-steps ∆t = −1i, which is often referred to as imaginary time
evolution (ITE) [22]. It introduces a dissipative effect and the wave-function will converge
towards its lowest energy state. Notice that after every iteration the wave-function is
renormalised. In Figure 2.1 a comparison of ground states obtained with different methods
is given. Except for the edges of the condensate, (2.10) gives a good approximation for
sufficiently high coupling constants. For the calculation of all further ground states, the
imaginary time step method was used.
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2.3 Moving solitons and numerical solutions of the GPE and the
npSE

To validate numerical solvers of the GPE, an analytic solution is needed which can be
compared to numerical results. Such an analytic solution is given for the propagation of
bright solitons [23] with V (z) = 0. Inserting the ansatz

Ψ(z, t) = Φ(z − ct)e
i

�
mcz− mc2

2 t−µt

�
(2.11)

in (2.5) and using the abbreviation ζ = z − ct, results in the time-independent equation

µΦ(ζ) = − 1
2m

d2

dζ2 Φ(ζ) + g1D|Φ(ζ)|2Φ(ζ) (2.12)

which can be solved to

Φ(ζ) =
�

2 |µ|
|g1D|

1
cosh(

�
2m|µ|ζ)

. (2.13)

The speed c of the moving soliton, which is not to be confused with the speed of sound in
the GPE, is given by its initial state

Ψ(z, 0) = Φ(z)eimcz. (2.14)

Numerical methods of solving the GPE can be classified into implicit or explicit finite-
difference methods and solvers that use finite Fourier transformation or pseudospectral
methods [24]. Two different numerical solvers, a Split-Step Fourier method and an implicit
Crank-Nicolson scheme, are compared in this chapter. To convert the partial differential
equation of the GPE or the npSE to a set of ordinary differential equations, a discrete
grid with Nz spatial discretization points is applied. The spatial discretization was chosen
as ∆x = ξ/10, where ξ = 1/

√
2mµ is the healing length of the condensate, which also

defines the characteristic length of solitonic solutions (2.12). The remaining temporal
dynamics are then solved numerically according to the chosen solver.

Figure 2.2 shows the density evolution over time for a moving soliton. The analytic
solution (2.11) is compared to the results of the Split-Step and the Crank-Nicolson solver.
When the soliton approaches the edge of the spatial grid, both of the solvers will differ from
the analytic solution because of the imposed boundary condition. The Crank-Nicolson
solver reflects the soliton at the edges of the computational domain while the Split-Step
solver has periodic boundary conditions and the soliton re-enters from the other side.
These errors are not of interest in this work, since the potential V is later defined so that
the condensate will never approach the edges of the computational domain. Furthermore,
the Split-Step method introduces dispersion and the soliton dissolves with time, while the
Crank-Nicolson scheme preserves the shape and energy of the soliton very well.

Figure 2.3 shows the computation time of both solvers and the distance to the numerical
solution as a function of temporal step size, whereby the distance d asses the similarity
between the numerical solution Ψnum and the analytical solution Ψana at t = 2.5 ms. The
Crank-Nicolson scheme, as it is an implicit method, needs several iterations for solving
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a nonlinear equation in each time step and therefore requires higher computation time
than the explicit method. In some regimes, both of the solvers produce comparable
small errors to the analytic result, but with step-sizes smaller than 0.5 ms, the Split-Step
solver produces higher errors although the step size is decreased. This counterintuitive
behaviour is typical for the Split-Step solver, since it is known to be sensitive to the ratio
of spatial and temporal step size. The Crank-Nicolson method does get more precise
with smaller time steps. To make sure not to choose an unfavourable ratio of spatial and
temporal step size, the Crank-Nicolson solver was chosen for calculating the dynamics
of the mean-field wave-function in this work. To calculate ground states, the Split-Step
solver was used since it is computationally less expensive and the precise dynamics of the
condensate are not of interest when calculating ground states. Note that the required
spatial and temporal step-size depends on the healing length and the chemical potential
of the condensate. The numerical solution of the GPE is a well known task and there
already exist several implementations. In this work, the Matlab-toolbox OCTBEC [25]
was used, which provides several different solvers.

To solve the npSE, the OCTBEC toolbox was extended with a Crank-Nicolson solver
to calculate the dynamics of the npSE and with a Split-Step solver for the imaginary
time method to calculate ground states. The result of the Crank-Nicolson solver for the
npSE, starting from the initial state of a soliton as for the GPE results above, is shown
in Figure 2.4. It can be seen that a soliton is not a stationary solution of the npSE and
additional dispersion is introduced in comparison to the GPE 1. Since there is no analytic
solution of the npSE available to compare the numeric solution step sizes that produced
good results in the GPE are also used for solving the npSE.

2.4 Stochastic Gross-Pitaevskii equation
As noted in Chapter 1, the GPE and the npSE describe the condensate at zero temperature.
Also at nonzero temperature the evolution of the classic field during QTPs is nicely captured
by these classic equations of motion. However, they do not include fluctuation due to
thermal or quantum effects and designing a quantum thermal machine without a model
that includes finite temperatures is clearly not reasonable. If we succeeded in optimising
the transition parameters such that the condensate’s classic field remains in the ground
state at the end, there still is a need for advanced models to investigate the achieved
energy transfer due to the whole cooling cycle or individual QTPs. The remaining degrees
of freedom (e.g. the time of coupling, the strength of coupling, the compression ratio, or
the number of cycles necessary to achieve sufficient cooling) have to be studied in a model
that goes beyond mean-field approximations and is well suited to handle thermal states.
In this work, a sampled approach is used, where a number of thermal initial states (TISs)
are drawn to include fluctuation due to finite temperatures. These thermal states are
then propagated with the GPE or the npSE and stochastic properties are calculated from
the resulting ensemble. To sample TISs, one could draw initial states from the Wigner

1This dispersion depends on the chosen parameters, i.e. the chemical potential and the speed of the
soliton. Furthermore, this observed dispersion might be less present for dark solitons since the difference
between the npSE and the 1D-GPE is larger for higher densities.
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the numeric result with the Crank-Nicolson scheme and the Split-Step method.
The density profiles on the right side are given at two points in time.
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Computation time tcomp for the numerical solution of the GPE.
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function, which is the Weyl transform of the density matrix [16]. The latter method
requires the non-trivial task of solving Bogoliubov equations to obtain ansatz functions
of the thermal state. An alternative method of sampling TISs uses the stochastic GPE
(sGPE), which is chosen in this work. The sGPE is a Langevin type of equation [26],
like the equation that describes the Brownian motion of a particle in a liquid. Such
equations are derived from a fluctuation-dissipation theorem, whereby the strength of the
fluctuations, introduced by a noise term, and the strength of dissipation, introduced by a
damping term, are balancing each other.

In the (normalised) sGPE

i∂tΨ(z, t) = (1 − iγ)
�
− 1

2m
∆Ψ(z, t) + V (z, t)Ψ(z, t) + g1D|Ψ(z, t)|2Ψ(z, t) − µ

�
+ η,

(2.15)
the noise term η is complex Gaussian white noise, which introduces a stochastic drive. It
is not correlated in space and time and has a variance of ση = 2γkBT/(ℏ · 103 rad/s). The
desired temperature of the TISs is defined by T and kB denotes Boltzmann’s constant.
The parameter γ in the sGPE on the other hand has a damping effect. The variance ση

also depends on γ, which introduces the balancing effect that was mentioned above. As
the sGPE is only used as growth sGPE to obtain thermal initials, γ is a parameter which,
within some limits, does not effect the resulting thermal initial states, but influences
the convergence of the sGPE. The chemical potential µ is determined beforehand by
the calculation of the mean-field ground state as described in Section 2.2. Note that by
determining the chemical potential we define the mean value of

� |Ψ(z)|2 dz to one but
allow fluctuations in the atom number2.

To sample a number of M thermal initial states Ψth
i , the sGPE is propagated M -times,

starting from an empty condensate. The condensate gets increasingly occupied over time
due to the noise term η and coherent growth due to the −iγ[. . . ] term. As numerical
solver the Split-Step method was used with a time discretization of ∆t = 0.0 5ms. Since
we only use the sGPE to draw samples of stationary thermal states, the choice of the step
size is completely arbitrary and the amount of noise added in each iteration can be tuned
with the damping parameter γ. The product ∆tγ sets the growth of the convergence
values. For example, to obtain TISs with a temperature of 50 nK, γ was set to 0.1 to
reach fast convergence without extremely high noise terms. Convergence can be checked
by looking at the atom number, the global density fluctuation and the phase correlation
[16]. The mean value of the (normalised) atom number is given by

N̄ = 1
M

M�
i=1

Ni, (2.16a)

with
Ni =

�
|Ψth

i (z)|2 dz, (2.16b)

2The chemical potential µ in (2.15) depends on the temperature of the thermal state, which can be
taken into account by iteratively renormalising the thermal initials to a desired mean atom number,
evaluating the new chemical potential and correcting it in the sGPE. This effect is almost negligible in
this work and small deviations in the resulting mean atom number where corrected once at the end of
the sGPE propagation.
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whereby N̄ is expected to converge towards one. Global density fluctuations are calculated
as the sample variance

δρ(z) =
� 1

M − 1

M�
i=1

�
|Ψth

i (z)|2 − ρ̄(z)
�2

dz, (2.17a)

with the mean density

ρ̄(z) = 1
M

M�
i=1

|Ψth
i (z)|2 (2.17b)

and the phase correlation is given by

C(z, z′) = 1
M

M�
i=1

cos
�
arg(Ψth

i (z)) − arg(Ψth
i (z′))

�
. (2.18)

To introduce an averaging effect and to check for convergence and validity of the thermal
state, the phase correlation is integrated over diagonal lines (plotted as black dots in the
phase correlation of Figure 2.6). This integrated phase correlation is written as

CD(∆z) =
�

C(z, z + ∆z) dz. (2.19)

For a homogenous condensate in thermal equilibrium this phase correlation should decay
exponentially with the thermal coherence length λc = 2ℏ2ρ/(mkbT ), [16], which gives the
analytic result

Cana
D (∆z) = e− ∆z

λc . (2.20)

Note that the normalised coherence length λ̃c = 2ρ̃N/(m̃T̃ ), with T̃ = kbT/(ℏ · 103 rad/s),
is given in µm consistently with the normalisation (2.2). In the considered box condensates,
the phase correlation is calculated in the middle of the condensate, where it is quasi
homogenous.

The number of iterations needed for the thermal state to converge depends on the
desired temperature, whereby the mean particle number and the density fluctuations
typically converge faster than the phase correlation. Furthermore, the number of samples,
which is necessary to obtain TISs with correct stochastic properties, depends on the
desired temperature. For 50 nK, 500 TISs where calculated, with each of them needing
6000 iterations of the sGPE. To check and improve convergence of the phase correlation,
another 3000 iterations of the GPE where performed.

Figure 2.5(a) shows the density of ten of the resulting TISs for a box potential. The
mean of all 500 density profiles can be seen in Figure 2.5(b). With increasing number of
sampled states, this mean density converges to a smooth box shape.

The phase correlation and the integrated phase correlation of the resulting TISs is
shown Figure 2.6. Outside the box, the density is zero apart from some remaining noise,
which explains the vanishing correlations C(z, z′) for |z| < 50. The line over which is
integrated to obtain CD(∆z) is drawn as dashed line for ∆z = 0 µm and ∆z = 20 µm in
Figure 2.6. The integrated phase correlation nicely fits the analytic result (2.20) with
a coherence length of λc = 13.17 µm. The convergence of the atom number, the global
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density fluctuations and the integrated phase correlation at ∆z = 10 µm are shown in
Figure 2.7. Comparing all three convergence values, the atom number (defined by setting
the chemical potential according to the GPE ground states) is the first value to converge,
followed by the global density fluctuation. Clearly, obtaining TISs with correct phase
correlations requires the largest number of iterations and a particularly high number of
samples.
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Figure 2.5: Density profiles of resulting TISs. 100 samples where calculated by solving
the sGPE (2.15) with a desired temperature of T = 50 nK and γ = 0.1.
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(a) Phase correlation C(z, z′)
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Figure 2.6: Phase correlation properties (2.18) of sampled TISs after convergence. To check
the validity of the TISs, the integrated phase correlation (2.19) is compared
to the analytic result of (2.20).
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(a) Convergence of atom number (2.16) of three thermal initial states.
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(b) Convergence of the global density fluctuation (2.17)
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Figure 2.7: Convergence of stochastic properties of the TISs to check the TISs validity.
500 TISs are calculated with the sGPE (2.15). After 6000 iterations of the
sGPE, another 3000 iterations of the GPE are performed. During the sGPE
iterations, the atom number fluctuates but then stays constant for the last
3000 iterations since the GPE preserves the atom number of the condensate.
The atom number and the global density fluctuations converge within 1000
iterations. To obtain correct phase correlation properties, many more iterations
and a high number of sampled TISs are necessary.



3 Optimal control of the mean field in
quantum thermal primitives

The application of optimal control theory (OCT) on BECs has been investigated in a
number of contributions. In [11], optimal control of BECs in magnetic micro traps is
studied using the GPE as model and optimal transitions are provided for splitting the
condensate and shifting its position. They utilize simple parabolic potentials and more
realistic descriptions of magnetic micro traps as the magnetic confinement of Hänsel [27]
and Lesanovsky [28].

In [13], condensate splitting and squeezing in magnetic micro traps is explored in the
generic two-mode model [29] for a more transparent picture of the dynamics and in the
more elaborated MCDTHB model [17], which is formally a quantum-mechanically correct
description of the many-body dynamics.

Optimisation for the 3D GPE is investigated in [12], where they calculate optimal
trajectories for a 3D compression in a parabolic potential, for loading a toroidal trap and
for splitting the condensate in two parts.

The problem of finding an optimal trajectory of some input variable or control parameter
is called dynamic optimisation problem. There are two main approaches to solve such
an optimisation problem. All of the above mentioned contributions follow an indirect
optimisation approach (IOA), where the calculus of variations is used to formulate first-
order optimality conditions. These optimality conditions are written as a set of equations
(also referred to as optimality system) and define a boundary value problem, which has to
be solved to obtain optimal trajectories. This approach does not restrict the search space
for the optimal trajectory, but one has to put effort in deriving and solving the optimality
conditions and the calculation of the gradient can be computationally expensive. For a
direct approach, the input quantity is discretised or composed of a finite number of basis
functions. If these basis functions are chosen wisely, the basis function approach (BFA)
typically results in a lower number of parameters to optimise. With a direct approach,
the dynamic optimisation problem is turned into a static optimisation problem, which
can be solved with gradient-based or non-gradient-based methods. If a method is chosen
which does not require a gradient, a BFA can also be executed directly on an experiment
without model knowledge and can contain any measurable quantity. In [30], a BFA is
combined with the randomisation of the basis functions and named Chopped Random
Basis (CRAB).

In this chapter, a short introduction to optimal control approaches suited for BECs is
given, the optimality conditions for the GPE are presented and then the equations for
the npSE are derived. As illustrative problem, the compression of a condensate in a box
potential, which is one of the QTPs described in Chapter 1, is explored in greater detail.
The results of a BFA are compared to those of a IOA. Differences in the GPE and the

22
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npSE are discussed for a less drastic compression and a more drastic one.

3.1 Formulation of the optimal control problem
The aim of optimal control is to find the trajectory (i.e. a function in time) of some input
quantity of a system which produces an optimal result. The input quantity in this work
is the control parameter λ(t), t ∈ [0, Tt], which is element of a suitable function space
V and parametrises a transition of the external potential V (z, t) = V (z, λ(t)) = Vλ(z).
The transition starts at t = 0 and ends at the fixed end time t = Tt while the potential
is transformed from an initial to a final shape. The subscript of the external potential
highlights the dependence on the control parameter. The mean-field wave-function Ψ(z, t)
is the state variable of the system and the initial wave-function is assumed to be the
ground state of the initial potential V (z, 0). To minimise excitations after the transition,
the optimal final state should be the ground state of the final potential V (z, Tt). The
optimality of a transition is evaluated with a cost functional J : V → R of the form

J(λ) = ϕ(Tt, Ψ(z, Tt)) +
� Tt

0
l(t, Ψ(z, t), λ(t)) dt, (3.1)

with the terminal costs ϕ(Tt, Ψ(Tt)) at the end of the transition, and the integral costs
l(t, Ψ(z, t), λ(t)) during the transition. As constraints to the optimisation problem, the
state equation (i.e. the differential equations which describe the system’s behaviour), the
initial conditions for the wave-function and boundary conditions for the control parameter
are added and the full optimisation problem is formulated as

min
λ(·)

J(λ) (3.2a)

s.t. ∂tΨ(z, t) = f(Ψ(z, t), λ(t)), Ψ(z, 0) = Ψ0(z) (3.2b)
λ(0) = λ0, λ(Tt) = λT (3.2c)

In principle, the system function f can be any model that describes the experiment. Since
we are interested in mean-field solutions in this chapter, the optimal control problem is
formulated for the GPE and for the npSE. Details of the mathematical description of
BECs are given in Chapter 2.

3.2 Numerical solution of the optimal control problem
As mentioned above, there exist several approaches to find the optimal solution for λ(t).
In a BFA, the search space of λ(t) is restricted from the beginning and the problem is
turned into a finite-dimensional optimisation problem. Alternatively, the gradient can
be calculated directly from the optimality conditions via functional derivatives without
limiting the search space, which is the approach followed in an IOA.
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3.2.1 Indirect optimisation approach (IOA)
To find the optimal trajectory λ̂(t)1 without restricting the search space, one has to
calculate the functional derivative (or Gateaux derivative) of J with respect to the control
parameter using calculus of variations. This functional derivative is defined as

δJ(λ; ξλ) = d
dν

J(λ + νξλ)|ν=0 (3.3)

where ξλ ∈ V is a variation of λ. At the minimum of J , this functional derivative has
to meet the first-order optimality condition δJ(λ̂; ξλ) = 0 for all admissible variations ξλ

regarding the boundary conditions (3.2c). Note that the cost functional J depends on
the wave-function Ψ = Ψ(z, t) and the dependence of the wave-function on the control
parameter is defined by the equations describing the system dynamics.

A commonly used approach to calculate δJ(λ; ξλ) is the introduction of the Lagrange
functional

L(λ, Ψ, p) = ϕ(Tt, Ψ(z, Tt)) +
� Tt

0
l(t, Ψ(z, t), λ(t)) dt + (3.4)

+ Re
	� Tt

0

�
p∗(z, t)(∂tΨ(z, t) − f(Ψ(z, t), λ(t))) dz dt

�
,

that uses the system’s state equation ∂tΨ(z, t) = f(Ψ(z, t), λ(t)) with the adjoint variable
p = p(z, t) [31]. With this definition, δJ(λ; ξλ) is now equal to the partial functional
derivative δλL((λ, Ψ, p); ξλ) if the conditions δpL((λ, Ψ, p); ξp) = 0 and δΨL((λ, Ψ, p); ξΨ) =
0 are met for all admissible variations of ξp and ξΨ, which are variations of the adjoint
variable and the wave-function. This relation can be seen in the expansion

δJ(λ; ξλ) = δλJ(λ, Ψ; ξλ) + δΨJ(λ, Ψ; ξΨ)|ξΨ=δΨ(λ;ξλ), (3.5a)

where the derivative of the wave-function with respect to the control parameter δΨ(λ; ξλ)
is derived by differentiating the state equation with respect to the control parameter

∂tδΨ(λ; ξλ) = ∂

∂Ψf(Ψ, λ)δΨ(λ; ξλ) + ∂

∂λ
f(Ψ, λ)ξλ (3.5b)

considering the initial condition

δΨ(λ; ξλ)|t=0 = 0. (3.5c)

Setting the partial functional derivatives of (3.4) with respect to λ, Ψ and p to zero results
in a set of differential equations with initial and final conditions, which is also called
optimality system and defines the first-order optimality condition.

Regarding the cooling sequences described in Chapter 1, the condensate should reach
the initial ground state again after one cycle within a mean-field description. For each
quantum thermal primitive on its own, the most obvious goal is reaching the ground

1Variables at the optimum are marked with a hat, which is not to be confused with operators in the
Dirac notation.
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state after each transition, according to the final configuration of the potential, so that
no mean-field excitations are remaining. In this work, two different cost functionals are
investigated to reach the goal of minimising mean-field excitations. The state-trapping
cost functional, or short state cost,

Jstate = 1
2

	
1 −

����� Ψ∗
des(z)Ψ(z, Tt) dz

����2
�

+ γreg
2

� Tt

0
(∂tλ(t))2 dt (3.6)

evaluates the difference between the obtained final state Ψ(z, Tt) and the desired state
Ψdes(z), which is the ground state of the final configuration of the external potential in
this work. The term γreg

2
� Tt

0 ∂t(λ(t))2 dt penalizes strong variations of λ(t) and improves
convergence. Alternatively, the energy of the obtained final state can be evaluated using
the energy cost functional for the normalised 1D-GPE

JGPE
energy =

�
Ψ∗(z, Tt)

�
− 1

2m
∂zz + Vλ(z, Tt) + g1D

2 |Ψ(z, Tt)|2
�

Ψ(z, Tt)dz −

− JGPE
des + γreg

2

� Tt

0
(∂tλ(t))2 dt, γreg > 0 (3.7)

whereby JGPE
des is the energy of the desired ground state

JGPE
des =

�
Ψ∗

des(z)
�

− 1
2m

∂zz + Vλ(z, Tt) + g1D
2 |Ψdes(z)|2

�
Ψdes(z)dz. (3.8)

This energy cost originates from the Hamiltonian for the 1D-GPE. This desired energy
will always be smaller than the achieved energy, since the ground state is defined as the
state of smallest energy.

For the npSE, this energy cost reads as

JnpSE
energy =

�
Ψ∗(z, Tt)

�
− 1

2m
∂zz + Vλ(z, Tt) − µ + ω⊥

�
1 + 2asN |Ψ(z, t)|2

�
Ψ(z, Tt)dz−

− JnpSE
des + γreg

2

� Tt

0
(∂tλ(t))2 dt, γreg > 0 (3.9)

with

JnpSE
des =

�
Ψ∗

des(z, Tt)�
− 1

2m
∂zz + Vλ(z, Tt) − µ + ω⊥

�
1 + 2asN |Ψdes(z, t)|2

�
Ψdes(z, Tt)dz. (3.10)

If the desired final state is the ground state, which by definition is the state of lowest
energy, both the state and the energy cost functionals have the global minimum at the
same value of wave-function and control parameter. Convergence behaviour of the two
cost functionals can still differ substantially and local minima might not be the same, as
shown in Section 3.4. Obviously, the desired state, the cost values and optimal solutions
are not the same for the GPE and the npSE. When the GPE is used as mathematical
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description for the system, the resulting first-order optimality conditions for the state
cost, as derived in [31], are

i∂tΨ̂(z, t) =
�

− 1
2m

∆ + Vλ̂(z, t) + g1D|Ψ̂(z, t)|2
�

Ψ̂(z, t) (3.11a)

i∂tp̂(z, t) =
�

− 1
2m

∆ + Vλ̂(z, t) + g1D|Ψ̂(z, t)|2
�

p̂(z, t) + g1DΨ̂(z, t)2p̂∗(z, t) (3.11b)

γreg∂ttλ̂ = − Re
�

Ω
Ψ̂∗(z, t)∂Vλ

∂λ
|λ=λ̂(t)p(z, t) dz (3.11c)

Ψ̂(z, 0) = Ψ0(z) (3.11d)

p̂(z, Tt) = i

�
Ψ∗

des(z)Ψ̂(z, Tt) dzΨdes(z) (3.11e)

λ(0) = λ0, λ(Tt) = λT (3.11f)

If the energy cost (3.7) is used, the final condition of the adjoint variable changes to

p̂(z, Tt) = −2i

�
− 1

2m
∆ + Vλ̂(z, Tt) + g1D|Ψ̂(z, Tt)|2

�
Ψ̂(z, Tt). (3.12)

Since the 1D-GPE is an approximation of the npSE (2.4), which describes the quasi
condensate of the experiment more accurately, the IOA is also studied for the npSE in
this work. For the npSE, the derivation of the optimality system is done in the same way
as for the GPE. All required equations are briefly discussed in the following paragraphs.

In the first step, the npSE is rewritten as

∂tΨ(z, t) = fnpSE(Ψ, λ) (3.13a)

fnpSE(Ψ, λ) = −i

�
− 1

2m
∂zzΨ(z, t) + Vλ(z, t)Ψ(z, t)+

+ ω⊥

	
1 + 3asN |Ψ(z, t)|2�
1 + 2asN |Ψ(z, t)|2 + 1

�
Ψ(z, t)

�
. (3.13b)

For the state cost, the partial functional derivative of the Lagrange functional with respect
to Ψ results in

δΨL((λ, Ψ, p); ξΨ) = Re
�� �

Ψ∗
des(z)Ψ(z, Tt) dzΨ∗

des(z)ξΨ(z, Tt) dz

�
+ (3.14)

+ Re
	� Tt

0

�
p∗(z, t)(∂tξΨ(z, Tt) − δΨfnpSE(Ψ, λ; ξΨ)) dz dt

�
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where

iδΨfnpSE(Ψ, λ; ξΨ) = − 1
2m

∂zzξΨ(z, t) + Vλ(z, t)ξΨ(z, t)+ (3.15)

+ ω⊥

	
1 + 3asN |Ψ(z, t)|2�
1 + 2asN |Ψ(z, t)|2 + 1

�
ξΨ(z, t)+

+ ω⊥3asN
Ψ∗(z, t)ξΨ(z, t) + Ψ(z, t)ξ∗

Ψ(z, t)�
1 + 2asN |Ψ(z, t)|2 Ψ(z, t)−

− ω⊥2asN
1
2

1 + 3asN |Ψ(z, t)|2
(1 + 2asN |Ψ(z, t)|2)

3
2



Ψ∗(z, t)ξΨ(z, t) + Ψ(z, t)ξ∗

Ψ(z, t)
�
Ψ(z, t).

Considering the initial condition of the wave-function and assuming that the external
potential at the boundaries of the spatial domain Ω is sufficiently high, the conditions
ξΨ(z, 0) = 0 and ξΨ(z, t) = ∂zξΨ(z, t) = 0 ∀z ∈ ∂Ω are met for all admissible variations.
By using partial integration, (3.14) can be rewritten as

δΨL((λ, Ψ, p); ξΨ) = (3.16)

Re
�� �

Ψ∗
des(z)Ψ(z, Tt) dzΨ∗

des(z)ξΨ(z, Tt) + p∗(z, Tt)ξΨ(z, Tt) dz

�
+

+ Re
	 � Tt

0

�
−∂tp

∗(z, t)ξΨ(z, Tt) − i
1

2m
∂zzp∗(z, Tt)ξΨ(z, t) + iVλ(z, t)p∗(z, t)ξΨ(z, t)+

+ ip∗(z, Tt)A(Ψ)ξΨ(z, t) + ip∗(z, Tt)B(Ψ)ξ∗
Ψ(z, t)

�
dz dt

�

with

A(Ψ) = ω⊥

	
3asN |Ψ(z, t)|2�

1 + 2asN |Ψ(z, t)|2 − (1 + 3asN |Ψ(z, t)|2)asN |Ψ(z, t)|2
(1 + 2asN |Ψ(z, t)|2)

3
2

+ (3.17a)

+ 1 + 3asN |Ψ(z, t)|2�
1 + 2asN |Ψ(z, t)|2 − 1

�

B(Ψ) = ω⊥

	
3asNΨ(z, t)2�

1 + 2asN |Ψ(z, t)|2 − (1 + 3asN |Ψ(z, t)|2)asNΨ(z, t)2

(1 + 2asN |Ψ(z, t)|2)
3
2

�
. (3.17b)

The functional derivatives with respect to the control-parameter and to the adjoint
parameter for the npSE are calculated analogously as for the GPE, i.e.

δλL((λ, Ψ, p); ξλ) = γreg

� Tt

0
∂tλ(t)∂tξλ(t) dt+

+ Re
	� Tt

0

�
p∗(z, t)i ∂

∂λ
Vλ(z, t)Ψ(z, t)ξλ(t) dz dt

�
(3.18)

δpL((λ, Ψ, p); ξp) = Re
	� Tt

0

�
ξ∗

p(z, t)
�
∂tΨ(z, t) − fnpSE(Ψ(z, t), λ(t))

�
dz dt

�
. (3.19)



3 Optimal control 3.2 Numerical solution of the optimal control problem 28

In contrast to δΨL((λ, Ψ, p); ξΨ), these two functional derivatives do not change if the
energy cost is used instead of the state cost. Furthermore, the derivative δλL((λ, Ψ, p); ξλ)
is the same in the GPE and the npSE and δpL((λ, Ψ, p); ξp) only differs in the system
function f .

By setting all partial functional derivatives of L(λ, Ψ, p) to zero for all admissible varia-
tions regarding the boundary conditions (3.2b) and (3.2c) and considering the fundamental
lemma of the variational calculus, we get the optimality system for the state-trapping cost
of the npSE

i∂tΨ̂(z, t) = − 1
2m

∆Ψ̂(z, t) + Vλ̂(z, t)Ψ̂(z, t)+

+ ω⊥

 1 + 3asN |Ψ̂(z, t)|2�
1 + 2asN |Ψ̂(z, t)|2

+ 1

Ψ̂(z, t) (3.20a)

i∂tp̂(z, t) =
�

− 1
2m

∆ + Vλ̂(z, t) + A(Ψ̂)
�

p̂(z, t) + B(Ψ̂)p̂∗(z, t) (3.20b)

γreg∂ttλ̂(t) = − Re
�

Ψ̂∗(z, t)∂Vλ

∂λ
|λ=λ̂(t)p(z, t) dz (3.20c)

Ψ̂(z, 0) =Ψ0(z) (3.20d)

p̂(z, Tt) =i

�
Ψ∗

des(z)Ψ̂(z, Tt) dzΨdes(z) (3.20e)

λ̂(0) =λ0, λ̂(Tt) = λT . (3.20f)

If the energy cost for the npSE (3.9) is used, the final condition once again changes to

p̂(z, Tt) = −2i

− 1
2m

∆ + Vλ̂(z, Tt) + ω⊥

 1 + 3asN |Ψ̂(z, Tt)|2�
1 + 2asN |Ψ̂(z, Tt)|2

+ 1

Ψ̂(z, Tt). (3.21)

To solve the respective optimality system numerically, a gradient-based approach
analogous to [31] was chosen. A gradient ∇Jλ is defined to meet

(∇Jλ, ξλ)X = δJ(λ; ξλ) (3.22)

for all admissible directions ξλ ∈ X and the inner product (., .)X of the inner-product
space X. As inner-product space, typical choices include the Sobolev H1 or the Lebesque
L2 space, where (a, b)L2 =

� Tt
0 a(t)b(t) dt and (a, b)H1 =

� Tt
0 ∂ta(t)∂tb(t) dt. Note that

the H1 inner product lacks the term
� Tt

0 a(t)b(t) dt from the usual definition and the
Dirichlet boundary conditions of λ(t) will impose boundary conditions for ∇Jλ. In [31],
optimal solutions computed in both functional spaces are compared. They find that
the regularization parameter γreg influences the solution in the H1 and the L2 space
differently and that in the H1 space the optimal result tends to be less oscillating and
more robust with respect to the choice of γreg. The H1-based optimisation also obtains
better cost-value results in less computation time. For this reason, H1 was chosen as inner
product space in this work.

To obtain the numerical solution of the optimality systems (3.11) or (3.20), the state
equation (3.11a) or (3.20a) is propagated forward with some initial guess of the control
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parameter λ(t), which meets the boundary conditions (3.2c). At t = Tt, the final value of
the adjoint variable can be computed using its terminal condition (3.12), (3.21), (3.11e)
or (3.20e) depending on the chosen mathematical description and cost functional. The
adjoint equation (3.11b) or (3.20b) is then solved backwards in time. Since (3.20b) is
linear in p, no underlying iterations are needed to solve the implicit equation of the
Crank-Nicolson scheme. As mentioned above, δJ(λ; ξλ) is equal to the partial functional
derivative δλL((λ, Ψ, p); ξλ) if Ψ and p are solved to meet their differential equations of the
optimality system. Choosing the H1 space and inserting the partial functional derivative
from (3.18) into (3.22) results in a Poisson equation for ∇Jλ(t), i.e.

d2

dt2 ∇Jλ(t) = γregλ̈(t) + Re
�

Ψ∗(z, t)∂Vλ

∂λ
p(z, t) dz. (3.23a)

∇Jλ(0) = 0, ∇Jλ(Tt) = 0. (3.23b)

With the values of Ψ and p from the forward and backward propagation this two-point
boundary value problem can be solved by spatial discretization. Notice that ∇Jλ vanishes
at time t = 0 and t = Tt and thus is an admissible variation of the boundary conditions
(3.2c). This is a feature of the H1 space and would not be the case in the L2 space setting,
see [31]. With the obtained gradient, Quasi-Newton (BFGS) iterations are performed
until ||∇Jλ||X reaches a certain tolerance. The full algorithm for the IOA is summarized
in Algorithm 1.

As for solving the GPE, the OCTBEC Matlab toolbox [25] is used to solve the optimality
system (3.11) of the GPE. To solve the equations of the npSE (3.20), a Split-Step-solver
and a Crank-Nicolson scheme was added to the toolbox in this work. Only the Crank-
Nicolson scheme was used for all further simulations, as it was already detailed in the
previous chapter.

Algorithm 1 Indirect optimisation approach (IOA)
Initialize: j = 0, λ(t) = λinit and BFGS algorithm initialisation
repeat

j ← j + 1
Propagate the GPE (2.5)/npSE (2.4) from its initial condition to get Ψ(z, t).
Calculate p(z, Tt) depending on the chosen system equation and cost functional.
Solve the respective adjoint equation (i.e. (3.11b) or (3.20b)) starting from t = Tt.
Use the solutions of Ψ(z, t) and p(z, t) to solve the boundary value problem (3.23)

and obtain the gradient ∇Jλ.
Calculate the search direction sj(t) using the BFGS algorithm.
Perform a line search to get the step size αj .

(requires multiple propagations of the GPE/npSE).
Update the control variable λj(t) = λj−1(t) + αjsj(t).

until ||∇Jλ||X < ϵ or the maximum number of function evaluations is reached
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3.3 Basis function approach (BFA)
In the basis function approach (BFA), the control parameter is composed of an initial
guess λinit(t) and a set of basis functions λi(t), i = 1, . . . , M . The control parameter is
thus given by

λ̄(ai, t) = λinit(t) +
M�

i=1
aiλi(t), (3.24)

with unknown coefficients ai ∈ R. The dynamic optimisation problem (3.2) is reduced to
a finite-dimensional static optimisation problem

min
ai

J(λ̄(ai, t)) (3.25a)

s.t. ∂tΨ(z, t) = f(Ψ(z, t), λ̄(t)), Ψ(z, 0) = Ψ0(z) (3.25b)
λ̄(ai, 0) = λ0, λ̄(ai, Tt) = λT , (3.25c)

where the evaluation of the cost function requires the solution of the state equations,
which can be very complicated. If λinit(t) meets the boundary conditions (3.2c) and the
basis functions are defined to meet λi(0) = λi(Tt) = 0, the boundary conditions of λ̄(ai, t)
are fulfilled automatically and the coefficients ai are unconstrained. In this work, sine
functions are chosen as basis functions and the initial guess λinit is a linear ramp fulfilling
the boundary conditions (3.2c)

λ(t) = λinit(t) +
M�

i=1
ai sin

�
it

π

Tt

�
. (3.26)

With this choice, the resulting static optimisation problem is unconstrained apart from
the system equation, which is solved during the function evaluation and does not constrain
the parameters ai. To find the optimal parameters ai, one can use gradient-based or
non-gradient-based optimisation algorithms. In this work, a Quasi-Newton algorithm is
used without gradient information. The Quasi Newton algorithm could also be replaced
by some other non-gradient-based methods. A popular global optimisation method is the
so-called Bayesian or surrogate optimization, a method for computationally expensive
cost functions where a virtual surrogate of the cost function is constructed iteratively [32].
Another common choice is the Nelder-Mead simplex optimisation. The latter method is a
heuristic search method, which is often applied if gradients are not known or too expensive
to calculate. Experience has shown that the BFA with a Quasi-Newton algorithm is a
good choice for the investigated type of problems.

In the next section, the basis function approach (BFA) is compared to the solution of
the full optimisation problem using the indirect optimisation approach (IOA).

3.4 Results for the optimal compression of a BEC
To compare the results obtained with the IOA to those obtained with a BFA, the
compression of a BEC is used as exemplary problem. The external potential is shaped
as a box whereby the walls are not assumed to be infinitely steep, but are composed of
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Figure 3.1: Initial and final potential landscape and density profile for the compression of
a condensate from 100 µm to 75 µm.

Gaussian error functions erf(z). The box is then compressed from a width of w0 = 100 µm
to wT = 75 µm symmetrically within Tt = 50 ms, which yields a compression ratio
rcomp = w0−wT

w0
= 0.25 in this first scenario. The control parameter λ(t) defines the

displacement of the wall and goes from λ0 = 0 to λT = 12.5 during compression. Thus,
the external potential is written as

V (z, t) = Vmax − Vmax
2 erf

�
z + (w0/2 − λ(t))

σ

�
+ Vmax

2 erf
�

z − (w0/2 − λ(t))
σ

�
. (3.27)

The parameter σ depends on the properties of the light from the optical system that
shapes the external potential in the experiment and is assumed to be 3 µm here. In
Figure 3.1, the initial and desired 1D potential can be seen with the associated ground
state density profiles. The initial state of the wave-function is the ground state of the
initial configuration of the 1D potential. In all following GPE simulations, the effective
coupling constant geff from (2.8) is used with the density ρ0 of the initial ground state to
adapt the speed of sound in the GPE to the npSE. Note that geff only adapts the GPE to
the npSE for the initial state in linear order. In general, geff is a nonlinear equation of
|Ψ(z, t)|2 and by inserting ρ0, the speed of sound can only be adapted if the compression
ratio is not too high.

The evolution of the density profile over time, calculated in the npSE and the GPE,
can be seen in Figure 3.2. The transition ends after 50 ms and the external potential is
held constant for another 50 ms. For these simulations, the condensate was compressed
with a linear ramp as control parameter, i.e.

λ(t) =
�

λ0 + t
Tt

(λT − λ0) t ∈ [0, Tt]
λT t ≥ Tt,

(3.28)

with Tt = 50 ms.
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Figure 3.2: Comparison of the evolution of the density over time in the npSE and in
the GPE with geff. The condensate is compressed from w0 = 100 µm to
wT = 75 µm with the external potential of (3.27) using the linear ramp (3.28)
as control parameter.

With increasing compression of the box, the density in the condensate rises and the
speed of propagating waves in the GPE with geff deviates from the one in the npSE. When
comparing the carpet-plots of the GPE and the npSE in Figure 3.2 visually, the result of
the npSE and the GPE with geff look quite similar, but a more detailed analysis shows
that the similarity decreases during the compression.

In the plots of Figure 3.2, it can be seen nicely that the speed of phononic excitations
is limited by the speed of sound (2.7) and (2.6) in the condensate. When optimising the
compression of a box-shaped BEC by only actuating the walls of the box, the time horizon
cannot be shorter than the time the excited wave reaches the opposite wall. This time
is referred to as ‘minimum control time’. If the condensate would not be compressed,
the travelling time of a wave from one wall to the other would be given by ∆T = w0/c.
With compression, the density in the condensate increases and so does the speed of sound,
which decreases the minimum control time. Furthermore, the movement of the opposite
wall towards the travelling wave shortens the referred path, which further decreases the
minimum control time. It follows that a more drastic compression in principle can be
performed in shorter time for the given protocol, as long as the speed of the moving walls
does not exceed the speed of sound in the condensate.

Note that the minimum control time arises from the limited actuation capabilities of
only moving the walls of the box-shape potential. By allowing arbitrary potential shapes
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in space and time, one could introduce momentum at any position, instead of just pushing
the condensate from the sides. In this way, one would not rely on the condensate’s internal
dynamics to propagate the excited waves any more and the compression could be done
faster than the minimum control time requires.

For the optimal control techniques proposed in this chapter, the transition time Tt

is fixed and has to be chosen beforehand. The iterations needed to obtain an optimal
trajectory highly depend on this choice of Tt. Indeed, the minimum control time marks a
kind of sweet spot for Tt, whereby the resulting optimal trajectories have simple shapes if Tt

is chosen a little bit higher than the minimum control time. When choosing Tt significantly
higher, the optimal control problem becomes harder to solve. Interestingly, after about
double the minimum control time, the reflected wave returns, which again alleviates
the numerical issues of the optimal control problem. If the box was not compressed
symmetrically from both sides, but only one wall was actuated, the optimal transition
would take about double the time, because the moving wall would have to wait for the
wave to be reflected back in order to cancel excitations. Therefore, we focus on studying
symmetric compression and decompression in this work but all transitions could also be
done by only actuating one wall.

To minimise excitations after the transition, we minimise either the state cost (3.6), in
which the desired state is the ground state according to the final configuration, or the
energy cost (3.7). In Figure 3.3, optimal trajectories resulting from the IOA, which solves
the full optimal control problem (3.2), and the BFA (3.25) in the GPE are shown for the
compression from 100 µm to 75 µm. Optimal trajectories are given both for the energy
cost (3.7) and the state cost (3.6), which results in four different optimal trajectories. For
the BFA, the ansatz (3.26) is used with M = 4.

In Table 3.1 the resulting cost values of the IOA are compared to those obtained with
the BFA. The optimisation with the energy cost (3.7) needs significantly less function
evaluations to converge, both in the IOA and the BFA. The energy cost values of the
two BFA results have a difference of two decades, although the state cost values are
similarly small for both optimisation results (the one optimised with the state cost is even
a bit smaller). This rises the question which of the two costs is more suited to evaluate
the quality of transition. To investigate this problem, the evolution of the error to the
desired ground state after the transition, with a fixed external potential, is analysed.
This evolution for all of the four different optimal trajectories can be seen in Figure 3.4.
Compared with Table 3.1, the optimal trajectories with low energy cost value at the
end of the transition also have little oscillations after the transition. With the BFA in
combination with the state cost, a state which resembles the ground state is reached, but it
does not stay there as seen in the evolution of the error to the ground state. Furthermore,
the energy cost generally has better convergence behaviour, a smaller number of function
evaluations and is less sensitive to the choice of the time horizon Tt.

The basis functions and the components ai in the ansatz (3.26) of the optimal result
obtained with the BFA are shown in Figure 3.5. The trajectories optimised with the IOA
in the infinite-dimensional search space are projected onto this reduced basis and their
components are displayed for comparison. Interestingly, the solution of the BFA with the
energy cost and the one of the BFA with the state cost exhibit similarly small state cost
values (see Table 3.1) although their components differ quite a lot. Using the energy cost
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Figure 3.3: Optimal trajectories for the compression of a box-shape condensate from 100
to 75 µm in the GPE. The results found with IOA and BFA are compared
whereby two different cost functionals (the state cost of (3.6) and the energy
cost of (3.7)) are used.

Jenergy Jstate number of cost function
evaluations

linear ramp 2.9441 · 10−2 1.9162 · 10−1 1
IAO with state cost 5.3696 · 10−4 3.7510 · 10−5 535
IAO with energy cost 1.5338 · 10−5 6.7511 · 10−6 277
BFA with state cost 2.7207 · 10−2 2.4546 · 10−3 155
BFA with energy cost 6.2236 · 10−4 8.9778 · 10−3 65

Table 3.1: Comparison of state and energy cost values of optimal trajectories found by
solving the full optimal control problem (3.2) using an indirect optimisation
approach (referred to as IOA) and by solving the static optimisation problem
in a basis function approach (BFA). As cost functionals the state cost (3.6) and
the energy cost (3.7) are compared.
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pression with optimal control parameters, optimised with energy cost and
state cost by solving the full optimal control problem (IAO) and using a basis
function approach (BFA), respectively. The dashed line is the evolution of the
state error if a linear ramp is used for compression.



3 Optimal control 3.4 Results for the optimal compression of a BEC 36

0 5 10 15 20 25 30 35 40 45 50
−4
−2

0
2
4

×10−2

t in ms

λ
i(t

)
λ1
λ2
λ3
λ4
λ5

1 2 3 4 5 6 7 8 9 10−30

−20

−10

0

10

i

a i

IOA with state cost
IOA with energy cost
BFA with state cost
BFA with energy cost

Figure 3.5: Above: First 5 basis functions λi of the ansatz (3.26). Below: Components ai

of the optimal result with the BFA (M = 4) and by solving the full optimisation
problem with the IOA for the energy and state cost.

results in far less oscillations of the error to the desired ground state after the transition
and thus, the choice of the right cost functional might be even more important in a BFA
compared to the IAO where the search space is not restricted.

Figure 3.6 shows the obtained energy cost with the BFA as a function of the number of
basis functions used in (3.26). It can be seen that a BFA with 8 harmonics can already
reach costs in the same order as when the full OCT problem is solved. For the results
that where discussed above the number of basis functions was chosen as M = 4 in order
to avoid excessively high computation times.

In Figure 3.7, the trajectory that minimises the energy cost functional in the npSE
(3.9) is shown alongside the optimal trajectory in the GPE, whereby the effective coupling
constant geff was used for the GPE. The optimisation in the npSE reaches an energy cost
value of 3.8623 · 10−6 and a state cost value of 1.3075 · 10−6 within 398 cost-function
evaluation. For the discussed compression, which is not so strong, the speed of the
travelling waves in the GPE is well adapted to the npSE by the effective coupling constant.
The resulting optimal trajectories for λ(t) are therefore very similar in both models. When
applied to the respective other model, the trajectories obtain energy cost values in the
order of 10−4, which is still a good result. The evolution of the density, if the optimal
trajectory of the GPE is applied to the npSE, can be seen in Figure 3.7. In this carpet
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Figure 3.6: energy cost values JGPE
energy at t = Tt and required number of cost-function

evaluations Nit plotted over the number of basis functions M for the BFA
(3.26).

JGPE
energy

propagated in GPE
JnpSE

energy
propagated in npSE

optimised in GPE 1.5338 · 10−5 3.3597 · 10−4

optimised in npSE 2.9741 · 10−4 3.8623 · 10−6

Table 3.2: energy cost values Jenergy from (3.7) and (3.9) of the compression with control
parameters optimised in the GPE and in the npSE model. The box-shaped
condensate was compressed from 100 to 75 µm. Optimal trajectories are also
applied to the respective other model.

plot it becomes obvious, that excitations after the transition are almost cancelled although
the trajectory optimised in the GPE is applied to the npSE. The optimal cost values and
the obtained cost values, if optimal trajectories are applied to the respective other model,
are listed in Table 3.2.

For a more drastic transition, the box is compressed from a width of w0 = 100 µm to
wT = 50 µm (rcomp = 0.5) and the optimal control problem is solved analogously to the
compression discussed so far. Since the final box width is now smaller than previously,
excited waves take less time to travel to the opposite walls and the minimum control time
is smaller. The resulting optimal trajectories for the GPE and the npSE, which now go
from λ0 = 0 to λT = 25 within Tt = 45 ms, can be seen in Figure 3.9. Figure 3.8 shows
the evolution of the density during and after the optimal compression in the GEP and
the npSE. For comparison, the carpet plot of the linear compression is plotted above the
optimal result. No visually observable excitations are remaining after the transition when
the optimal trajectory is used. In Table 3.3, the achieved energy cost values are displayed.
Comparing these results to those of the less drastic compression from above (Figure 3.7
and Table 3.2), it can be seen that the optimal control parameters in the GPE and the
npSE now differ a lot and result in worse cost values applied to the respective other model.
The effective coupling constant geff can no longer appropriately adapt the speed of sound
to the npSE for more drastic compressions. This relation can also be seen in the carpet
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Figure 3.8: Evolution of the density in the npSE and in the GPE during and after
compression of a box-shaped condensate from w0 = 100 µm to w1 = 50 µm
within 45 ms. Corresponding cost values are listed in Table 3.3.

plot of Figure 3.9, where the trajectory that is optimal in the GPE with geff was applied
to the npSE. In contrast to the less drastic compression, which was discussed before, a lot
of excitations are remaining in this scenario.
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energy = 5.217 · 10−2.

JGPE
energy if the

wave-function is
propagated with the

GPE with geff

JnpSE
energy if the

wave-function is
propagated with the

npSE
optimised in GPE with geff 1.3416 · 10−4 5.217 · 10−2

optimised in npSE 5.68 · 10−2 4.6694 · 10−5

Table 3.3: energy cost values Jenergy from (3.7) and (3.9) of the compression with control
parameters optimised in the GPE and in the npSE model. The box-shaped
condensate was compressed from 100 to 50 µm. Optimal trajectories are also
applied to the respective other model.
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3.5 Adaption of the model to experimental results
In the considered experiment, the box-shaped potential is realised with a digital micro
mirror device (DMD) [15]. This DMD has pixels to turn on or off and to compress the
condensate in the experiment. For this, the box-walls are actuated by turning on whole
columns of pixels. A new configuration is sent to the DMD every 0.25 ms, which is why a
time and value discretization has to be applied to implement the optimal trajectories on
the experiment.

For the more drastic compression from w0 = 100 µm to w1 = 50 µm, 60 pixels are
available for the full compression range both on the left and the right of the condensate,
which results in discrete steps of λ(t) with the size of 25

60 . The optimal trajectory for the
compression, which was obtained in the GPE, is implemented on the experiment. The
resulting experimental density data is shown in Figure 3.11(a). For plotting the evolution
of the density over 90 ms with a resolution of one millisecond, 90 new experiments where
prepared and terminated at different times during the compression. Moreover, multiple
experiments have to be done for one time-slice to obtain an estimate of the mean density
by averaging.

When comparing the experimental data in Figure 3.11(a) to the optimal transition in
Figure 3.8, it can be seen that the excited waves hit the opposite wall a little bit too late
and the excitations are not cancelled in the experiment. When only the walls can be
activated and no global control of the potential V is possible, the quality of the transition
is very sensitive to the value of the speed of sound. The speed of sound in the GPE (2.7)
is proportional to the square root of the coupling constant as described in Chapter 2.
By measuring the slope of the wave propagation in the carpet plot of the experimental
data, the speed of sound can be calculated and the coupling constant g1D can be adapted
manually to fit the experiment.

Furthermore, the initial density profile of the experiment (depicted in Figure 3.10) is
not a perfectly smooth box as it was assumed in the previous calculations. The potential
profile in the experiment can be estimated from the experimental initial density by using
the Thomas-Fermi approximation (2.10). The resulting non-smooth box potential is also
displayed in Figure 3.10. The wall heights where modified so that the density in the wall
stays zero during the compression. This adapted potential is included in the simulations,
but the compression is still done only by pushing symmetrically from both sides. Note
that only the initial potential shape is known relatively well from the initial ground state
density profile, while the evolution of the potential can only be roughly estimated. The
precise movement of the potential walls in the experiment is not known, since the optical
path is not perfectly identified and determining which influence switching on entire rows
of the DMD has on the condensate is not a straightforward task. Thus, the evolution
of the potential V (z, t) is only a rough estimate of the experimental potential. For the
following simulations, walls that are composed of Gaussian error functions with σ = 2 µm
where added to the Thomas-Fermi approximation of experimental initial configuration
seen in Figure 3.10. These walls where compressed symmetrically according to the control
parameter to adapt the potential V (z, t) to the experiment.

The adaption of the coupling constant was done manually in this chapter by measuring
the slope of the excited waves in the experimental carpet plot. The speed of sound in
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the GPE is proportional to the square root of g1D, which allows simple adaption to the
experiment. This manual method might not be the most efficient and precise way of
estimating the experimental coupling constant. Therefore, a recursive minimum variance
estimator is presented in Chapter 4 to adapt the parameter in an optimal way. The carpet
plot of the GPE with adapted coupling constant gadapted = 230 and adapted potential
shape is also shown in Figure 3.11(c). In this evolution of the density, the diamond shaped
patterns agree nicely to the experimental data.

In Figure 3.11(b), the carpet plot resulting from the npSE with adapted number of
particles and adapted potential is shown. Since the atom number fluctuates in the
experiment, the mean number of atoms of all experimental measurements is used. The
resulting density pattern of the npSE visually agrees well with the experimental data.
Thus, an optimal trajectory calculated in the npSE with the correct atom number from
measurements and adapted potential also could improve the result on the experiment.

Using the GPE with adapted coupling constant and adapted potential shape, a new
optimal trajectory is calculated. This new optimal trajectory is show in Figure 3.12
alongside the density evolution of the linear and the optimal compression. Visually, very
view excitations are remaining after the transition. Further insight into the remaining
excitations gives the evolution of the state error, which is shown in Figure 3.13. For the
non-smooth box, not all excitations can be cancelled. The optimised energy cost value
is 7.5217 · 10−2 and in the evolution of the state-error it can be seen that the obtained
trajectory still performs better than a linear ramp and the original optimal trajectory for
a smooth box. Since the adapted non-smooth box is also not symmetric, the use of two
control parameters to move the walls independently of each other instead of symmetrically
compressing the box could further improve the result.
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Figure 3.10: Initial density data from the experiment, adapted external potential to fit
the initial state of the simulation to the experiment.
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(a) Density data from the experiment
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(b) Evolution of |Ψ(z, t)|2 in the npSE, with adapted potential V and the atom number from the
experimental data

0 10 20 30 40 50 60 70 80 90

−50

0

50

z
in

µm

(c) Evolution of |Ψ(z, t)|2 in the 1D-GPE, with manually adapted coupling constant so that the
speed of sound matches experimental data ( gadapted = 230)
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Figure 3.11: Comparison of experimental density data to the simulation results using the
npSE and the GPE. The potential landscape of both simulations is adapted
to the experiment by using the Thomas-Fermi approximation.
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Figure 3.12: Carpet plots for the linear and optimal trajectory in the GPE, whereby the
coupling constant and the potential where adapted to the experiment. The
resulting optimal trajectory is compared to the trajectory that is optimal for
the GPE with the theoretical effective coupling constant in a smooth box
potential.
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Figure 3.13: Evolution of the state cost, whereby the coupling constant of the GPE and
the potential V (z) was adapted to fit the experimental data. The result of the
transition with the original optimal control parameter, which was optimised
without adaption of the GPE or the potential shape, is compared to the
result with a new optimal trajectory, which was optimised in the adapted
GPE with non-smooth potential V (z). The result of a transition with a linear
ramp is included for comparison purpose.
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3.6 Optimal trajectories for the whole QFTM sequence
Up to now, only optimal compression sequences where considered since they can be
formulated for a single compartment. To treat the whole cooling cycle (see Chapter 1),
the potential V (z, t) is composed of error functions analogous to (3.27) to form three
compartments (the system (S), the piston (P) and the bath (B)). Since all compartments
are decoupled in the initial configuration, the ground state for each compartment is
calculated separately whereby the atom number is set to 5000 for each of the three
compartments. The resulting 1D potentials and the associated ground state density of
the mean-field wave-functions for every configuration is depicted in Figure 3.14. The
quantum thermal primitives are the transitions from one configuration to the next and
can be described by the evolution of several control parameters. The compression of a
condensate, which is captured by symmetric displacement of the walls, was investigated
in great detail in the previous sections. For the decompression of a subsystem, the same
parametrisation (3.27) as for the compression is used, only the initial and final value of
the control parameter are exchanged.

In the presented cycle, coupling is realised by bringing two subsystems close together
and decreasing the wall width between them. By decompressing B, P and B are brought
close together automatically, which means that coupling is not a step on its own, but is
integrated in the decompression of B. The decompression of B not only enables coupling
but also enhances energy flow from P to B since B is cooled down. Furthermore, this
way of coupling allows very easy tuning of the coupling strength. By defining the initial
position of B, the target wall width is set which has direct influence on the coupling
strength. The same relations apply to the coupling of S and P. By decompressing P, it
is brought close to S and the final wall width can be tuned by the initial position of S.
Another parameter that could be introduced to set the coupling strength is the wall height
during coupling. This method of coupling would require an additional subsequence for
coupling two subsystems, which would be controlled by additional control parameters.
In this work, it is assumed that the decrease of the wall width allows sufficient coupling,
and no control parameter for the wall height is introduced. In Figure 3.14, there is still a
variation in the wall height visible for small wall widths, because the potential V (z, t) is
composed of error functions with a finite slope. With this choice of realising a full cooling
cycle, four trajectories are needed, namely those two for the parameter λpiston, which
controls the compression and decompression of the piston (P), and another two for the
parameter λbath, which controls the compression and decompression of the bath (B).

As already noted, optimal coupling in the GPE should do nothing. Thus, it does
not make sense to investigate coupling parameters as the target wall width, the time of
coupling or the wall height in the GPE. Those coupling parameters have to be studied and
optimised in advanced models. The chosen method of coupling makes further investigations
beyond mean-field theories and possible optimisation steps easy because one can change
the final wall width by simply setting the initial position of B instead of calculating
new optimal trajectories that minimise mean-field excitations, when adapting coupling
parameters. For the presented results in the mean-field GPE, the coupling wall width
for both coupling processes is chosen to 5 µm. The time of coupling is chosen to 5 ms for
the presented mean-field simulations. In further investigations of the QFTM sequence
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that go beyond mean-field theory it might turn out that the chosen parameters do not
achieve sufficient coupling and there could be the need of adding an additional sequence
for lowering the walls while coupling.

Furthermore, adjusting the relative potentials of two compartments before coupling
them is not investigated at this point, which could help to avoid undesired particle flow.
Since overall control of the experimental potential is not yet possible, this adjustment
might not be easy to implement on the experiment at the current status of the project.

The resulting evolution of the density is shown in Figure 3.15a, whereby linear ramps
are used for all transitions. The mean-field is excited with every subsequence, and a lot of
excitations remain after one cycle. The optimal trajectories for all QTPs are presented in
Figure 3.16 and the evolution of the density for a mean-field optimal cooling cycle can be
seen in Figure 3.15b. It is clearly visibly that most of the excitations are cancelled by
the optimal trajectories. A drawback could be that excitations that possibly were not
cancelled in one QTP get carried along for the next sequence and will sum up over several
cycles. This is a consequence of treating each QTP individually. One could approach this
problem by defining the initial state of the optimisation for the next cycle as the final state
of the previous cycle if needed. Figure 3.17 shows the intermediate density profiles for
the non-optimal and optimal cooling cycle. Both in the non-optimal and in the optimal
cooling cycle the remaining excitations are bigger in B than in P, since the compression
ratio of B is higher than the one of P. A more accurate analysis of the difference between
the linear and the optimal cooling sequence is possible by comparing the evolution of
energy

Jenergy(t) =
�

Ψ∗(z, t)
�

− 1
2m

∂zz + Vλ(z, t) + g1D
2 |Ψ(z, t)|2

�
Ψ(z, t)dz, (3.29)

which is the Hamiltonian of the GPE. The resulting evolution of Jenergy(t) is shown in
Figure 3.18. An ideal cooling sequence should introduce no mean-field excitations and
the energy after all transitions should be the energy of the desired ground state, which
is identical to the initial state. It can clearly be seen in the evolution of energy that
the optimal sequence introduces far less energy than the linear one. More precisely, the
distance to the energy of the desired final state is only 0.003 199 kHz for the optimal
sequence and 0.157 27 kHz for the linear transitions.

The optimised trajectories and results for the full cycle where calculated using the
1D-GPE (2.5). All calculations can also be done in the npSE (2.4), which is a more
accurate description of the actual quasi 1D condensate in the considered experiment. The
only drawback of using the npSE is the increase of computational costs, since solving the
npSE involves more complex equations. Optimal trajectories for the QFTM sequence in
the npSE are depicted in Figure 3.16 in addition to the results for the GPE.

The presented protocol surely is not the only possible solution of realising the QFTM
sequence. As argued for the example of compressing a box-shaped condensate, displacing
the walls symmetrically from both sides results in about half the minimum control
time compared to the one-sided compression. Therefore, the presented protocol brings
advantages regarding the duration of one cycle, especially because decompression and
compression of P and B could be done quasi simultaneously. An alternative protocol could
avoid actuation of B to prevent additional heating. In this scenario, P would have to be
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(a) Initial configuration of three decoupled compartments
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(b) Decompression of B to couple P and B
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(c) Initial configuration of three decoupled compartments
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(d) Decompression of P to couple S and P and compression B
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Figure 3.14: Ground states of all intermediate configurations of the potential V (z, t) for
the cooling cycle. Transitions from one configuration to another are controlled
with the parameters λpiston(t) and λbath(t).
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(a) Cooling cycle with linear trajectories
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Figure 3.15: Evolution of the density ρ(z, t) during one cooling cycle with linear (a) and
optimal (b) trajectories. Optimal trajectories can be seen in Figure 3.16.
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(a) Coupling P and B by decompressing B
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Figure 3.16: Optimal trajectories for the whole QFTM sequence to perform one cycle with
minimal mean-field excitations.
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(a) Cooling cycle with linear trajectories
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(b) Optimal cooling cycle
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Figure 3.17: Intermediate density profiles during one cooling cycle with linear ramps (a)
and with optimal trajectories (b) for the GPE. Optimal trajectories can be
seen in Figure 3.16.
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Figure 3.18: Evolution of the mean-field energy (3.29) during the cooling cycle. The result
of linear trajectories is compared to the one with optimal control parameters
for the GPE. (a) Decompression of B (b) Coupling P and B (c) Compression
of B (d) Decompression of P (e) Coupling S and P (f) Compression of P
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actuated only by moving its left wall in order to keep the wall width between P and B
small. Coupling could then be obtained by additional lowering of the wall.

Using moving compartment walls is a simple and efficient method to manipulate BECs
without arbitrary shaped potentials. Optimal trajectories however rely on cancellation of
propagating waves in this case. When choosing such an approach in a pure feed forward
manner, the mathematical model used during offline optimisation has to fit the experiment
extremely well to obtain good results. To overcome this problem, a parameter estimator
is designed in Chapter 4 to automatise the adaption of the mathematical model to the
experiment. Another approach would be to further improve the trajectories directly
on the experiment. The cost functional of such an online optimisation has to assess
measurable quantities. In the cost functionals presented above, the wave-function was
used to calculate the distance to the ground state or the energy, which are both clearly
not measurable. Moreover, the restricted number of online iterations limits the available
optimisation schemes to low-level approaches such as the BFA described in Section 3.3.
The next section briefly discusses a BFA with a cost functional that assesses the mean-field
density of the condensate after transition.

3.7 A basis function approach with measurable quantities
With regard to implementing an optimisation loop directly on the experiment, it is
necessary to choose a suitable quantity to be assessed in a cost functional. This quantity
not only has to be measurable, but the optimisation should also aim at minimising
mean-field excitations after the transition.

A simple measurement that can be taken after each experiment is the atom distri-
bution, which corresponds to the density ρ(z, t) = |Ψ(z, t)|2 in the GPE. Based on the
Bhattacharyya-distance one can define a density cost functional

Jdensity = 1
2

	
1 −

����� �
|Ψdes(z)|2

�
|Ψ(z, Tt)|2 dz

����2
�

, (3.30)

that compares the final density profile to the density profile of the desired state. In
Figure 3.19, the evolution of this density error and the state error is shown with a
trajectory that minimises (3.30). The state error compares the mean-field wave-function
to its desired ground state. Directly at t = Tt the density cost indeed reaches a small value,
but the condensate is not in its ground state, as seen in the remaining excitations of the
state error. Due to missing phase information the density cost (3.30) cannot determine
if the condensate is in its ground state. This exemplary problem shows that it is not a
straightforward task to choose the right quantity to be assessed in a cost functional if
mean-field excitations should be minimised after the transition.

One could use measurement data of multiple points in time or the combination of
measurable quantities other than the density. Additionally, this issue could be alleviated
by incorporating model information. Such a procedure would be conceptually related to
the parameter-estimation approach investigated in the following chapter of this thesis.
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Figure 3.19: Left: Evolution of the density error. Right: Evolution of the state error,
during and after the compression with a control parameter optimised with
a density cost Jdensity. The grey dashed line at t = Tt marks the end of the
compression, which is the time horizon of the optimisation.



4 Parameter estimation from density data
Optimal trajectories for all subsequences in two different mathematical descriptions where
presented in Chapter 3.4. Optimal trajectories that are calculated offline will not perform
well on the experiment if used in a pure feedforward manner, since parameter inaccuracies,
approximations made in the mathematical description or fluctuating quantities impair
the performance of experimental results. As a result, measurement data shall be used
to improve the cooling sequence directly on the experiment. There are different ways to
use experimental data for adapting the pre-calculated trajectories. The first option is an
online optimisation using a cost functional that contains measured quantities. While this
is a very general approach, the choice of quantities to optimise is not straightforward as
illustrated in the previous chapter.

The second possibility of adapting the trajectories is investigated in this chapter. By
comparing experimental data to the result of the mathematical model, parameters of the
model can be estimated. In this way, the model is adapted to fit the experiment, new
trajectories can be calculated on the adapted model and the experimental results can
be improved. In this work, a parameter estimation for the GPE is designed, but also
any other mean-field description as for example the npSE could be used as mathematical
model.

Since the potential V (z, t) is assumed to be adjustable in the GPE (2.5) and the atom
mass m is well known, the coupling constant g is chosen as parameter to be estimated.
This makes sense as the coupling constant contains parameters that are not known exactly
or fluctuate from experiment to experiment and g has direct influence to the speed of
sound in the condensate. If one uses another mathematical description than the GPE, the
choice of parameter to estimate obviously has to be reconsidered.

The adaption of the speed of sound is especially important since the chosen method
of compressing and decompressing is very sensitive on the speed of excited waves. The
reason for this sensitivity is the chosen method of controlling the condensate. It is only
controlled by moving the walls of the box and thus excited waves have to be cancelled in
the exact moment when they hit the opposite wall to compress or decompress a subsystem
in an optimal way. Optimal compression or decompression therefore depends on optimal
timing and the travelling time of excited waves is defined by the speed of sound in the
condensate. Since the (normalised) GPE is considered as a model, the speed of sound is

c1D-GPE =

�
g1D

ρ(z, t)
m

, g1D = 2Nasω⊥ (4.1)

with the theoretically known transversal confinement ω⊥ and the atom mass m. The 1D
density ρ(z, t) = |Ψ(z, t)|2 is constant in a homogenous box shape condensate, but in the
experiment the potential shape will not be perfectly smooth. Furthermore, the particle

56



4 Parameter estimation 4.1 Linearisation of the GPE 57

number N fluctuates from experiment to experiment and the s-wave scattering length as

depends on the temperature, which can also change depending on the quality of cooling
during the preparation of the condensate. Estimating the coupling constant g includes
the estimation of particle number and scattering length and simultaneously adapts the
speed of sound. Additionally, the GPE is not an exact description of the physical reality.
The parameter adaption can thus potentially compensate also for other model errors.

In this chapter, it is shown that the coupling constant g can be estimated with a
Least-Mean-Squares estimator by only using density data. The developed estimator is
tested in simulation and the robustness with respect to noise and fluctuations is shown.

4.1 Linearisation of the GPE with respect to the coupling
constant

The solution Ψ(z, t) of the GPE at some point in time depends on the value of the coupling
constant g with which it was propagated. If g changes from its nominal value by a small
amount ∆g, the new solution Ψg+∆g(z, t) can be approximated in a linear fashion by

Ψg+∆g(z, t) ≈ Ψg(z, t) + SΨ
g (z, t)∆g, (4.2)

where Ψg(z, t) is the wave-function propagated with the nominal coupling constant g. The
quantity SΨ

g (z, t)(z, t) denotes the derivative of the solution with respect to g and is also
referred to as sensitivity function [33].

The equation for the propagation of the sensitivity function is derived by differentiating
the GPE (2.5) with respect to g, which yields

i∂tS
Ψ
g (z, t) = − 1

2m
∂zzSΨ

g (z, t) + VλSΨ
g (z, t) + g|Ψg(z, t)|2SΨ

g (z, t)+ (4.3a)

+ g(Ψg(z, t))2
�
SΨ

g (z, t)
�∗

+ |Ψg(z, t)|2Ψg(z, t)

to obtain SΨ
g (z, t) at any point in time.

Because the wave-function is normalized to one, the initial state, i.e. the ground state of
the initial potential configuration, hardly depends on the atom number, which is included
in the coupling constant. Furthermore, the initial potential is optimized so that the initial
density fits a desired shape. Thus, it is reasonable to assume that the initial state of the
condensate is known and the sensitivity SΨ

g (z, t) is zero at t = 0, i.e.

SΨ
g (z, 0) = 0. (4.3b)

Since the wave-function cannot be measured in the experiment, the sensitivity of a
measurable quantity has to be calculated. A simple measurement that can be taken is the
atom distribution, which corresponds to the density ρ(z, t) = |Ψ(z, t)|2. As done for the
solution Ψ(z, t) above, the density can be linearised if g changes from its nominal value:

ρg+∆g(z, t) ≈ ρg(z, t) + Sρ
g (z, t)∆g. (4.4)
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Figure 4.1: Evolution of the density ρ(z, t) = |Ψ(z, t)|2 and the according sensitivity
Sρ

g(z, t) during the compression of a box-shaped condensate. The box is
compressed from 100 to 50 µm within 45 ms. Since the initial state of the
condensate is assumed to be known, the sensitivity is zero at t = 0.

The condensate’s mean-field dynamics are described by the GPE, which is formulated with
the wave-function Ψ(z, t). The sensitivity function Sρ

g (z, t) of the density with respect to
g is derived from the result above by

Sρ
g (z, t) = SΨ

g (z, t)Ψ∗(z, t) + Ψ(z, t)
�
SΨ

g (z, t)
�∗

= 2 Re
�
Ψ(z, t)SΨ

g (z, t)
�
. (4.5)

To solve (4.3) numerically a Crank-Nicolson scheme was implemented analogous to
the solver for the adjoint equation in Section 3.4. The evolution in time of the absolute
value of the sensitivity function Sρ

g (z, t) for the compression of a condensate is plotted in
Figure 4.1. During the transition, the sensitivity increases, and it can be seen nicely that
the speed of sound restricts the sensitivity to the wavefronts of the excitations. In the
middle of the condensate, the sensitivity remains zero at the beginning of the transition,
and increases along the wavefronts over time.
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4.2 Least-Squares Estimator
Based on the linearisation (4.2), a Least-Squares estimator (LSE) [34] for the coupling
constant shall be designed. For this purpose, we define a measurement time Tmeas, at
which the experiment is terminated and a measurement ymeas is taken. The measurement
is taken on a discrete grid at spatial points zgrid = [z1, . . . , zM ]T . The aim of the LSE is
to find an estimate of the coupling constant ĝ to minimise the squared error ||e||22, where

e = y − ymeas. (4.6)

Here, y is the output of a mathematical model at t = Tmeas on the same discrete grid
as the measurement, which corresponds to the measurement data and depends on ĝ. In
this work, the GPE is used as mathematical model and the output is assumed to be the
density (y = [ρ(z1, Tmeas), . . . , ρ(zM , Tmeas)]T ). The estimator below is still formulated
with a general output y.

The output is written as y = F(g), where F(g) is the propagation operator of the GPE
including the calculation of the desired output quantity, if the coupling constant g is used.
In the same way as already done in the previous section for the mean-field wave function
and the density profile, the output can be approximated around a nominal value of g as

yg+∆g = F(g + ∆g) ≈ F(g) + Sg∆g. (4.7)

Note that Sg = [Sg(z1, Tmeas) . . . Sg(zM , Tmeas)]T is now the sensitivity of the general
output quantity on the discrete grid. Inserting this linearisation results in the quadratic
approximation of the error

||eg+∆g||22 ≈ ||eg||22 + 2ST
g eg∆g + ST

g Sg∆g2, eg = F(g) − ymeas (4.8)

and by setting the derivative ||eg+∆g||22 with respect to ∆g to zero, we get the optimal
value of ∆g that minimises the squared error

∆g̃ = (ST
g Sg)−1Sgeg. (4.9)

This result is the least-squares estimation of the coupling constant, but since it is based
on a linearisation at some value of g, multiple iterations are needed to solve the nonlinear
problem and to fit the simulation result to the experimental data. In each iteration, the
output of the mathematical model and the sensitivity is calculated with the last estimation
of g (i.e. ĝj−1). The propagation operator is then linearised at this last estimation
(F(ĝj−1 + ∆g) ≈ F(ĝj−1) + Sĝj−1∆g), which results in the LSE

∆g̃j = (ST
ĝj−1Sĝj−1)−1Sĝj−1eĝj−1 , (4.10)

where eĝj−1 is the error of the previous output to the measurement. The iterative estimator
is written as

ĝj = ĝj−1 + (ST
ĝj−1Sĝj−1)−1Sĝj−1eĝj−1 , eĝj−1 = F(ĝj−1) − ymeas. (4.11)

Note that this iterative LSE uses the same measurement data in each iteration. Multiple
iterations are only necessary because of the nonlinearity in the propagation operator.
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Figure 4.2: Convergence of the Least-Squares estimator (4.11) for a single measurement.
GPE simulation with unknown coupling constant is used as experiment from
which one measurement of the density at Tmeas = 10 ms was used for the
estimation. The estimated coupling constant ĝj (left) and the squared error
||eĝj ||22 (right) are plotted over the iterations.

To test the Least-Squares estimator, the GPE with coupling constant gexp was used to
generate pseudo measurement data. This coupling constant is assumed to be unknown by
the estimator and the initial guess ĝ0 was chosen so that gexp = 1.1ĝ0. Figure 4.2 shows the
convergence of ĝj for the compression of a condensate. The estimator converges towards
gexp and within 6 iterations an estimation error in the coupling constant of 0.0312 % is
achieved. For this estimation, the condensate was measured at Tmeas = 10 ms, but also
other points could be chosen. The measurement time has influence on the sensitivity
and the squared error of the nonlinear propagation (4.6). Thus, the convergence of the
estimator highly depends on the choice of the measurement time.

In Figure 4.3, the squared error ||eg||22 according to (4.6) is plotted as a function of ∆g for
three different measurement times Tmeas together with the quadratic approximation (4.8)
of the nonlinear dependence (4.6) at the initial guess ĝ0 for Tmeas = 10 ms, Tmeas = 20 ms
and Tmeas = 40 ms. The minima of the nonlinear problem exactly correspond to the
step-size ∆g needed to match the experimental coupling constant. Near the minima, the
quadratic approximation fits the nonlinear problem really well. For small values of Tmeas
at the beginning of the compression, the estimation is quite robust with regard to the
initial guess, but both the error in the density and the sensitivity are very small. At later
measurement times, the error and the sensitivity are higher, but multiple local minima
start to appear. If the initial guess ĝ0 is not expected to be close to the true value of the
experimental coupling constant, a good strategy is to start with measurement times Tmeas
rather at the beginning of the transition. Once a relatively good estimation is achieved,



4 Parameter estimation 4.3 LSE with exponential memory 61

−20 0 20 400

0.2

0.4

0.6

0.8

1

1.2

1.4
×10−3

∆g

||e
g
||2 2

Test = 10 ms
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Figure 4.3: Squared error ||eg||22 (4.6) and its quadratic approximation (4.8) linearised at
the initial guess ĝ0 for different measurement times Tmeas.

further iterations can be done with measurements at later times of the transition that are
more sensitive to parameter variations. One could also include multiple measurements
with different measurement times Tmeas in one iteration. Simulation data must then be
taken at the same points and concatenated in the same way.

4.3 Iterative Least-Squares estimator with exponential memory
Experimental data is subject to quantum noise and other stochastic fluctuations (e.g. fluc-
tuations of the density, varying atom number or changing temperature of the condensate)
which makes the estimation of parameters from a single measurement impossible and
information of multiple measurements is needed. These measurements can be taken either
at the same measurement time or at different measurement times, whereby the use of
measurements from different measurement times can enhance the result of the estimator
and gives more insight into the dynamics of the condensate. To adapt the estimation to
slow changes, an iterative Least-Squares estimator with exponential memory is used. This
estimator takes into account the already obtained information of multiple measurements
and includes new measurements iteratively. If a number of Nmeas measurements are
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available, an estimated coupling constant ĝ is obtained minimising the weighted squared
error

Nmeas�
j=0

qNmeas−j ||egj ||22, egj = yj − yj
meas (4.12)

with the memory factor q ∈ (0, 1] and the output
yj = [ρ(z1, T j

meas), . . . , ρ(zM , T j
meas)]T = Fj(ĝ) as a result of the GPE simulation. The

further in the past a measurement lies, the less impact it will have on the estimation. The
iterative Least-Squares estimator with exponential memory [34] is written as

kj = (Pj−1ST
j )(qE + Sĝj−1Pj−1ST

ĝj−1)−1 (4.13a)

Pj =
�
Pj−1 − kjSĝj−1Pj−1

�1
q

(4.13b)

ĝj = ĝj−1 + kjegj , egj = Fj(ĝj−1) − yj
meas, (4.13c)

where kj and Pj are abbreviations, although Pj can be interpreted as the covariance of
the estimation error. This estimator minimises (4.12) if the initial value of P is chosen as
P0 = αE with a big value for the tuning parameter α. The smaller α, the more influence
the initial value ĝ0 has on the estimation. If the memory factor q is chosen to one, all
measurements are equally weighted and (4.13) describes the iterative LSE for multiple
measurements. The full algorithm for the iterative LSE with exponential memory is
summarized in Algorithm 2. For validating this approach, Gaussian density noise with a

Algorithm 2 Iterative Least-Squares estimator with exponential memory
Prepare the initial state of the experiment
Adapt potential V (z, t) of the simulation to the experiment
Initialize: j = 0, ĝ0, P0 = αE, q ∈ (0, 1]
for desired number of measurements do

j ← j + 1
Run the experiment and take a measurement yj

meas at T j
meas

Propagate the GPE (2.5) to get Ψĝj (z, t)
Calculate the density as output: ρ(z, t) = |Ψĝj (z, t)|2
Calculate the error on the discrete grid:

egj = yj − yj
meas, yj = [ρ(z1, T j

meas), . . . , ρ(zM , T j
meas)]T

Propagate the PDE (4.3) of the sensitivity function SΨ
ĝj

(z, t)
Calculate Sρ

ĝj
(z, t) from (4.5)

Update Pj , kj , ĝj following (4.13)
end for

variance (i.e. σ2) of 10 % of the peak density was added to the output ymeas of the GPE
experiment and the number of atoms N was drawn randomly from a normal distribution
with a variance of 10 % of the nominal atom number for each experiment, which imposes
fluctuations of the coupling constant. As for the LSE, the compression of a condensate is
used as test scenario. Measurements are taken every 2 ms during the compression, and
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used as iterative measurements yj
meas. Since a nonlinear minimisation problem has to

be solved every iteration, 3 sub-iterations are made every iteration without updating
the measurements. In Figure 4.4, the convergence of the estimated coupling constant is
plotted over the measurement time, which corresponds to the iterations j of the estimator.
Comparing these results to the convergence of the LSE (Figure 4.2) that estimated the
coupling constant from one measurement without noise, it can be seen that more iterations
are needed to estimate the expectation value of the coupling constant correctly.

In conclusion it can be said that the coupling constant in the GPE can nicely be
estimated with a Least-Squares estimator by only using density information from one
measurement if no measurement noise or parameter fluctuations are present. The correctly
estimated coupling constant can then be used to adapt the mathematical description and
further improve the control parameter in the adapted model. The resulting new trajectory
also improves results on the experiment, since the mathematical model is well adapted to
the reality.

In the real-world experiment [35], we still could not perform an estimation of the
coupling constant in this automatised way. The reasons for this is that the presented
estimator only works well if the potential V (z, t) in the GPE matches the actual potential
in the experiment really well. While the initial potential in the experiment is optimised
to fit a desired shape, the evolution over time of the potential is not well known. For
the compression of a box shape condensate, the not perfectly box-shaped initial state is
compressed by switching on whole rows of the DMD. This method produces spatial and
temporal discretization as described in Section 3.5. Furthermore, the optical system of
the setup is not perfectly identified and the effect of turning on individual pixels or rows
is not exactly known. Therefore, the box width at a certain point in time, the steepness
of the walls or other effects in the region of the condensate’s edges are not fully under our
control. A first approach to this problem could be ground-state measurements or even
optimisation of intermediate pixel configurations to gain more insight into the evolution
over time of the potential V (z, t).

In Section 3.7, it was shown that a BFA with only using density data misses phase
information to suppress mean-field excitations after the compression of a condensate, while
this chapter uses only density data to estimate a parameter and improve the result. The
fundamental difference of those two approaches is the use of model knowledge in the design
of the parameter estimator. Following this rational, a promising approach to suppress mean-
field excitations in the experiment would be the estimation of model parameters directly
on the experiment. After adapting the parameters of the mathematical description, the
trajectories can then be improved on the adapted model without limitation of computation
time since the experiments are anyway terminated for every new measurement. If reduction
of the computation time is desired, one can think of approximating the nonlinear dynamic
optimisation problem (3.2) near the beforehand calculated optimal trajectory to a quadratic
optimisation problem.
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Figure 4.4: Convergence of the estimation of the coupling constant (left) and the squared
density error (right) with an iterative Least-Squares estimator with exponential
memory. The measurement data was generated by GPE simulations with un-
known, fluctuating coupling constant to imitate changing atom numbers in the
experiment. Measurements where taken every 2 ms at ascending measurement
times T j

meas and at every iteration, three sub-iterations where performed. To
imitate measurement noise and density fluctuations, a Gaussian noise with
σ2 = 10 % of the maximum value of the density was added to the measured
density.



5 Stochastic properties of thermal states
during the QFTM sequence

As stated in Chapter 2, thermal and quantum fluctuations are not described in mean-
field theories such as the GPE or the npSE. To investigate the thermal effects that the
QFTM sequence in Chapter 1 has on the three compartments S, P and B and to choose
parameters for the coupling phase, a more advanced description of the condensate is
necessary. Therefore, a ensemble of thermal initial states is prepared using the sGPE
(see Section 2.4) and than propagated with the GPE to go beyond mean-field theory and
obtain the evolution of stochastic properties in the condensate.

So far, the evolution of the mean field during the compression of a condensate was
discussed in detail in Chapter 3. The parameter controlling the evolution of the potential
V (z, t) was optimised so that no mean-field excitations remain after each quantum thermal
primitive of the cooling cycle. This chapter shall investigate the evolution of stochastic
properties during one cooling cycle. The results with linear ramps as control parameters
are compared to those using trajectories that where optimized in the mean-field description.
To get insight into thermal properties, two stochastic properties are evaluated during the
QFTM sequence. Analogous to the discussion of mean-field optimisation, the compression
of a condensate is discussed before the whole QFTM sequence is studied.

5.1 Compression of a thermal condensate
The first stochastic property that one can calculate from a thermal state is the global density
fluctuation δρ defined in (2.17). The evolution of this quantity during the compression of a
condensate is plotted in Figure 5.1. The result with a linear ramp is compared to the result
with the trajectory that minimises mean-field excitations. It can be seen that the density
fluctuation rises as the condensate is compressed. This raise in fluctuations is expected
since the aim of compressing the condensate is rising its temperature. The final value of
the density fluctuation is higher for the linear ramp than for the trajectory that is optimal
in the mean-field description. This relation supports the assumption that a trajectory
that minimises mean-field excitations will also alleviate additionally excited fluctuations
and undesired heating of the condensate. Not only reaches the density fluctuation a
higher value for the linear compression directly after the compression at t = 45 ms, but it
also rises further after the compression. In contrast to the linear compression, density
fluctuations hardly increase further after the optimal compression. With further rise of
fluctuations, one can observe a decay of mean-field excitations that are remaining after
a linear compression. This phenomenon is a consequence of the nonlinear interaction
between the mean field and the fluctuations in the GPE. Remaining mean-field excitations
are thereby converted to density fluctuations over time.
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Figure 5.1: Density fluctuations δρ as defined in (2.17). The resulting evolution is com-
pared for a linear compression and the compression that minimises mean-field
excitations.The dashed line indicates the end of the transition.

λc T

initial state 14.982 µm 42.0372 nK
optimal compression 3.832 µm 103.9433 nK
linear compression 6.059 µm 164.3287 nK

Table 5.1: Thermal coherence length and temperature before and after the compression of
a condensate. The phase correlation functions CD(∆z) are plotted in Figure 5.2.
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Figure 5.2: Integrated phase correlation CD(∆z) (2.18) of the initial state and after the
linear and the optimal compression. The analytic solution (2.20) was fitted to
find the coherence length λC and the associated temperature T of the thermal
state, which are given in Table 5.1.

The second stochastic property that can be looked at to gain insight into the thermal
properties during compression is the phase correlation function CD(∆z) defined in (2.18).
For a fully thermalised and homogenous condensate, this correlation decays with the
thermal coherence length λc, which is indirect proportional to the temperature. In
Figure 5.2, the phase correlation is plotted for the initial thermal state before compression
and 30 ms after the compression both with a linear ramp and the optimal trajectory as
control variable. Especially for the linear ramp, the resulting state is not expected to
be fully thermalized and homogenous. Nevertheless, the decay of phase correlation gives
some insight into the temperature of the condensate. To quantify temperature in this
context, the resulting decay of the phase correlation is fitted to the analytic result (2.20)
to measure the thermal coherence length and thus assign a temperature value according
to T = 2ℏ · 103rad/sρ̃N/(m̃kbλ̃C). The fitted curves are plotted as dashed lines together
with the simulation results. The phase correlation of the initial state nicely follows the
exponential decay corresponding to a temperature of 42 nK. The phase correlation after
the transition decays faster and thus has a higher temperature in this context. Comparing
the linear compression to the optimal compression, the result for the optimal trajectory
results in a slower decay of phase correlation, a higher coherence length and thus a lower
temperature. Notice the remaining correlations of the linear ramp of long distance, which
also indicates that the condensate is not fully thermalized. The condensate reaches a
temperature of 104 nK if the optimal trajectory is used and 164 nK if a linear ramp is
used. These results once more support the presumption that trajectories that minimise
mean-field excitations also alleviate additional heating of the condensate.
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The compression ratio has influence on the achieved temperature rise in the condensate
and therefore could be a crucial parameter to allow for effective coupling after the
compression. To investigate this relation, the condensate was compressed from w0 =
100 µm to w1 = 50 µm, w1 = 62.5 µm and w1 = 75 µm within 45 ms, which results
in compression ratios of rcomp = 1/2, rcomp = 3/8 and rcomp = 1/4 (rcomp = ()w0 −
w1)/(w0)). Figure 5.3 shows the evolution of the density fluctuation during three different
compression scenarios. It can clearly be seen that a higher compression ratio results in
higher fluctuations in the density and thus points towards a higher temperature of the
condensate. The second value to investigate the rise in temperature is the phase coherence
length. The decay of phase correlation for all three compression ratios are plotted in
Figure 5.4. For the same value of density higher temperature corresponds to smaller phase
coherence length. Considering the different densities in the middle of the condensate the
following temperature values can be assigned:

rcomp = 1
2 , λc = 3.6404 µm, T = 387.6709 nK

rcomp = 3
8 , λc = 5.2564 µm, T = 212.1611 nK

rcomp = 1
4 , λc = 6.0425 µm, T = 146.4712 nK

For choosing the right compression ratio for effective coupling, the coupling phase could
be studied on its own to determine the required temperature difference in the two
condensates. The compression ratio can then be chosen subsequently according to the
desired temperature rise.

To investigate the amount of undesired energy that is brought into the condensate by
actuation, another subsequence of the whole QFTM sequence is studied. The condensate
is compressed after decompression and stochastic properties are evaluated. Ideally, no
additional heat should be introduced and both density fluctuations and the thermal
coherence length should reach their initial value. Figure 5.5 shows the evolution of density
fluctuations during this protocol. It can be seen that the optimal trajectory results in far
less fluctuations than the linear ramp, but additional heat introduction cannot completely
be prevented by this optimal trajectory.

5.2 QFTM sequence for a thermal condensate
Analogous to the full QFTM sequence at zero temperature, the compartments S, P and B
are decoupled for the initial configuration and thermal states for all three compartments
are prepared with the sGPE separately from each other and the compartments are assumed
to have the same temperature for the initial state. The evaluation of one QFTM sequence
for a thermal state is computationally very expensive, since all thermal initials have to
be propagated by their own. Trying out a large number of configurations or optimising
the coupling parameters (e.g. the final wall width for coupling or the duration of holding
two condensates near each other) would require very time consuming calculations and
is beyond the scope of this thesis. Therefore, coupling parameters were set using an
educated guess: coupling is expected to happen when the mean-field wave-functions of
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Figure 5.3: Evolution of density fluctuation for three different compression ratios. The
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Figure 5.5: Evolution of the density fluctuations during decompression and compression
with linear ramps and mean-field-optimal trajectories.

two subsystems do overlap, while their densities are mostly disjoint to limit their mutual
disturbance. This approach was followed and the wall width for coupling two condensates
was set to 0.5 µm. The coupling of two condensates would be observable in an exchange of
fluctuations and a shift of the thermal coherence lengths. The hotter of both condensates
is expected to be cooled and energy would be shifted to the initially cooler one.

As seen in the evolution of the density fluctuations of the whole QFTM sequence in
Figure 5.6, no coupling is happening in the coupling phase and the system S remains
unchanged during the whole cycle. We found that it is not a straightforward task to find
the right parameters so that coupling is happening without combining the condensates.
Coupling might only take place if the wall width is decreased to a value very close to
zero. Additional lowering of the barrier could help to couple two condensates, but further
exploring the coupling phase would most likely need additional computational power or a
more effective implementation of propagating thermal states. Such investigations remain
to be studied in future work.

At this point, differences to [7] should be mentioned, where coupling was indeed observed.
In that work, the field operator is decomposed in the Gross-Pitaevskii (GP) density profile,
and density and phase fluctuations. The Lieb-Lininger Hamiltonian is expanded up to
second order and an effective Hamiltonian that depends on the GP profile is used as
mathematical description for density and phase fluctuations. In other words, equations
for small fluctuations that are added on top of the GP profile are derived. This Luttinger
Liquid approach is not that computationally expensive and differs fundamentally from
the strategy of propagating thermal initials, which was followed in this work.

Furthermore, the coupling process in [7] was modelled by merging two initially completely
decoupled condensates. The condensates are already very close to each other before the
coupling and decoupling is performed by adding the interaction part of the Hamiltonian
in a linear manner, neglecting the precise spatial details. In this way, coupling is tuned by
defining the initial overlap of the condensates, but it was not discussed how to get the
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optimal λC T linear λC T

S 6.2612 µm 75.2214 nK S 6.9409 µm 67.8441 nK
P 5.8962 µm 79.8773 nK P 6.0881 µm 77.347 nK
B 13.2567 µm 35.5272 nK B 2.3866 µm 196.4834 nK

Table 5.2: Thermal coherence length and temperature in the three compartments after
decompressing B, which is the first sequence of the full QFTM cycle. The phase
correlation function C(z, z′) and CD(δz) are plotted in Figure 5.7.

condensates in this state or what protocol the external potential has to follow for coupling.
Regarding the compression or decompression of a condensate, the time-dependent GP
profile was assumed to stay homogenous during the transition without exciting waves by
actuating the external potential.

Even though coupling cannot be studied in detail with the available setup of this work,
the optimal QFTM sequence still performs better than the linear one in the sense that far
less additional heating is introduced during one cycle. In comparison to the linear cycle,
the use of optimal trajectories can reduce the final density fluctuations by 64 %.

The phase correlation after the decompression of the bath, which is the first subsequence
of the QFTM sequence, is plotted in Figure 5.7. In the phase correlation C(z, z′), it can
be seen that the condensate is roughly homogenous after the optimal decompression of
B. The temperature that can be assigned to the bath B is 35 nK, while the piston P
and the system S remain quasi at the initial temperature of around 75 − 80 nK. The
phase correlation C(z, z′) shows that the condensate in B is not at all homogenous or in
ground state after the linear decompression. Thus, it does not make sense to assign a
single temperature value to the bath B after the linear decompression. Nevertheless, the
exponential decay was fitted to the integrated phase correlation CD(∆z). The resulting
temperature value can be interpreted as a kind of mean temperature of the compartment,
since the calculation of CD includes an averaging effect due to the integration along
diagonal lines of C(z, z′). If one would hold the potential V constant after decompression
and wait for all bulk excitations to dissolve, the coherence length most likely would
decrease further.

The evolution of the mean density of the thermal state is given for the optimal and the
linear QFTM sequence in Figure 5.6. The decay of mean-field excitations that comes with
a rise in fluctuations can be observed once more in the plots for the thermal condensates.
In summery, it can be said that the use of trajectories that minimise mean-field excitations
alleviates additional heating during compression and decompression and prevents further
rise in fluctuation after the transitions.
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6 Conclusion and Outlook
This work studied optimal control strategies for quantum field thermal machines (QFTMs)
using BECs in the special framework of one dimensional box-shaped condensates. This
restricted framework was chosen because of simple realisation in the considered experiment
[15, 35]. An optimal protocol for the potential was developed to perform the cooling
sequence of a QFTM as suggested in [7].

In order to find a suitable mathematical description for the condensate both at zero
temperature and at finite temperature, an overview of common models was given in
Chapter 2. We found that the mean field is well described by the one-dimensional
Gross-Pitaevskii equation (1D-GPE) if densities are not too high. The nonpolynomial
Schrödinger equation (npSE) is a more accurate description of the experiment that is not
so broadly studied as the GPE. To investigate thermal states, we chose to prepare thermal
initials using stochastic GPE approaches and propagating them in time using the GPE.

In Chapter 3, optimal control schemes were investigated in both mean-field descriptions,
whereby we compared two different approaches for solving the optimisation problem, the
first one being the solution of the full dynamic optimisation problem by using functional
derivatives without restricting the search space (referred to as indirect optimisation
approach (IOA)). Based on the work in [11, 12, 25], where optimal control strategies for
the GPE were developed, the required equations were derived for the npSE and optimal
trajectories for the QFTM sequence were calculated. We found that optimisation in the
npSE and the GPE give similar results if the condensate is only slightly compressed and
density profiles in the condensate are not too high, but for more drastic compressions
the optimal trajectories differ significantly, since the speed of sound in GPE cannot be
adapted to the npSE by the effective coupling constant anymore. These results of the IAO
were then compared to a basis function approach (BFA), in which the control variable
is composed of basis functions to restrict the search space and reduce the optimality
problem to finite dimensions. The resulting static optimisation problem was solved using
non-gradient-based algorithms. We also studied two different cost functionals, namely
a state cost and an energy cost and found that the use of the energy cost results in less
function evaluations and less oscillations in the mean field after the optimal transition.
Furthermore, the BFA with 8 ansatz functions reaches comparable good results as the
IOA if the energy cost is used, which opens the possibility of performing either black-box
or also model-based optimisation directly on the experiment. In this work, a Quasi-
Newton optimisation without gradient information was used, which resulted in 65 function
evaluations until reaching sufficiently low cost values. Finally, the optimal control of a full
QFTM cycle was investigated using the IOA.

Since the real world experiment is not perfectly known and varying parameters impair
the performance, it is favourable to use measurement information instead of using the
precalculated trajectories in a pure feedforward manner. Besides the mentioned approach
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of online optimisation with a BFA, one can recursively adapt the mathematical model
based on measurements on the experiment. Following this consideration, an iterative
least-squares estimator (LSE) was designed in Chapter 4, which uses density measurements
to iteratively estimate the coupling constant of the GPE. Estimating a correct coupling
constant is particularly important because it defines the observed speed of sound, which
is essential for the box-shaped potentials with moving walls in this thesis.

The simple LSE, which only uses density data at one point in time, could correctly
estimate the coupling constant in simulations and within 6 iterations an estimation error of
0.0312 % is achieved. By using an iterative LSE with exponential memory, the estimation
error is sufficiently small after 20 iterations even if significant measurement noise and a
fluctuating coupling constant are considered.

The design of a quantum field thermal machine requires a mathematical description of
the condensate at finite temperature. In Chapter 5, the propagation of thermal initial
states were chosen to investigate the cooling sequence with thermal states. The resulting
density fluctuation and phase correlation was calculated before end after the compression.
During the compression, density fluctuations rise while the thermal coherence length
decreases, which corresponds to the expected and desired rise in temperature. Ideally, the
temperature should drop to its initial value after decompressing the condensate again
and additional heating is unwanted. The trajectory that is optimal in the mean field also
causes far less additional density fluctuations during the transition and a higher thermal
coherence length (i.e. a smaller temperature) than a linear transition. If mean-field
excitations are remaining after a transition, they will decay in time due to nonlinear
interaction, causing additional density and phase fluctuations and heating the condensate.
The use of optimal trajectories could not completely prevent the introduction of additional
heat, but significantly reduce undesired heating. The presumption that the minimisation
of mean-field excitations can alleviate the problem of additionally introduced heat during
actuation therefore turned out to be valid. Due to the expensive computational costs of
propagating thermal initial states, several parameters that define the coupling process,
including the wall width and wall height during coupling, the time span for coupling and
also the compression ratio, are not explored in detail in this work. These parameters
were set using educated guess and further optimisation would most likely need a more
effective implementation or additional computational resources. The coupling process of
two condensates therefore remains to be studied in future work.

In conclusion it can be said that mean-field excitations could be strongly suppressed
by optimal trajectories and it was shown that these optimal trajectories also alleviate
additional heating in thermal states. The quantum field thermal machine was studied
very carefully in the restricted framework of box-shaped potentials and the realisation of
arbitrary potential shapes will open many more possibilities in the future. The possibility
of realising arbitrary potential shapes could also allow cooling protocols that are less
sensitive to the speed of sound. Furthermore, the simple protocol of moving walls implies a
minimum control time and optimal compression cannot be performed faster than this time.
Alternative protocols could introduce momentum at any position and optimal transitions
could possibly be executed much faster.
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