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Kurzfassung

Das Ziel von Validierung eines bildverarbeitenden Systems ist Zuverlässigkeit und Robust-
heit in zahlreichen Situationen zu testen. Hierfür werden eigene Testdatensätze verwendet,
welche möglichst alle schwierigen Aspekte enthalten, die zum Testen der Robustheit nötig
sind. Die Erstellung dieser Datensätze ist aufwendig und schwierig da eine grundlegende
Fragestellung offen bleibt: welche Aspekte müssen in den Daten vorhanden sein um
Robustheit testen zu können? Diese Doktorarbeit präsentiert einen Lösungsansatz für die
Planung neuer Datensätze, das Vergleichen der Qualität von existierenden Datensätzen
und die Bestimmung von Lücken in den Daten um diese mit zusätzlichen Testfällen zu
stopfen. Der CV-HAZOP Prüfkatalog ist das Resultat einer Risikoanalyse und liefert
über 1000 Einträge welche potenziell relevante Aspekte (“visuelle Gefahrenquellen”) für
Bild-Testdaten identifiziert. Ein Vergleich der Leistung mehrerer Stereo Vision Algo-
rithmen zwischen schwierigen und leichten Bereichen (entsprechend des Prüfkatalogs)
zeigen statistisch signifikante Leistungsverluste. Dies bestätigt den Wert des CV-HAZOP
Ansatzes um schwierige Situationen zu beschreiben. Bestehende Stereo Vision Datensätze
werden analysiert um die Abdeckung und Verteilung von enthaltenen visuellen Gefahren-
quellen zu bestimmen. Die Analyse zeigt: bestehende Datensätze konzentrieren sich auf
Standard-Situationen und beinhalten nur wenig anspruchsvolle Testfälle. Zur Erstellung
eines neuen Datensatzes für semantisches Verständnis von Straßenfahrszenen wird der
CV-HAZOP Ansatz angewandt. Der resultierende Testdatensatz Wilddash beinhaltet
Fahrszenen aus aller Welt und ein dazugehöriges öffentliches Webservice mit Ranglisten
wird erstellt. Dieser Benchmark Service erlaubt das Vergleichen der Robustheit von Algo-
rithmen durch zusätzliches Evaluieren basierend auf Gefahrenquellen sowie Negativtests.
Abschließend wird Version 2 von Wilddash präsentiert welches zusätzlich panoptische
Segmentierung unterstützt und eine wesentlich höhere Testanzahl beinhaltet. Durch
die Erstellung und Anwendung einer neuen vereinigten Kategorisierungs-Regelung ist
Wilddash 2 vollständig kompatibel zu drei etablierten Segmentierungsdatensätzen. Eine
automatische Erkennung von visuellen Gefahrenquellen mittels Klassifikatoren erlaubt
die automatische Vorauswahl von Einzelbildern aus Rohdaten, um die Erstellung von
anspruchsvollen Testdatensätzen zu unterstützen.
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Abstract

The goal of validation of computer vision (CV) systems is to test the reliability and
robustness in various situations. This is done using dedicated test datasets which need to
reflect all difficult aspects which the system will potentially face during operation. The
creation of such datasets is expensive and difficult while a major challenge remains open:
which aspects are actually necessary to test the robustness? This work presents a solution
to plan the creation of datasets, compare the quality of existing ones, and pinpoint gaps in
the data so that they may be filled using additional test cases. The CV-HAZOP checklist
is the result of a risk analysis supplying over 1000 entries which indicate potentially
relevant aspects (called “visual hazards”) for image test data. Performances of multiple
stereo vision algorithms are compared between areas identified as difficult by the checklist
vs. regular areas. The statistically significant drop in performance proves the value
of this approach in describing challenging aspects. Existing stereo vision datasets are
analysed to quantify the coverage of difficult and challenging aspects. This analysis shows:
existing datasets focus on standard situations and include only a small amount of visual
hazards. The visual hazard approach is then applied to the creation of a new dataset for
semantic road scene understanding: Wilddash. A dedicated public benchmark webservice
is created which allows the comparison of segmentation algorithm for robustness based on
hazard-aware testing and negative testing. Finally, the concept is extended to panoptic
segmentation and scaled to match regular state-of-the-art training datasets by creating
Wilddash 2. The creation and application of a new unified label policy allows full
compatibility of Wilddash 2 with three existing well-known segmentation datasets. The
classifier-based detection of visual hazards allows automatic pre-selection of frames to
speed up the process of creating challenging large-scale datasets.
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CHAPTER 1
Introduction

This cumulative dissertation contains four papers which present a continuous effort to
improve the testing of computer vision systems by creating better test data. The layout
is as follows: The motivation Section 1.1 summaries the challenge being tackled by this
work. Section 1.1 indicates the goals and Section 1.3 adds a high-level overview of the
used methodology covered by all four papers. The overview continues with Section 1.4
which gives individual summaries for each paper. It concludes with Section 1.5 which
recounts the contributions in a concise manner. Chapter 2 contains all four papers.
Section 3 gives a final summary for the whole dissertation. Section 3.1 presents outlook,
some connected papers, and next steps for this work. The original supplemental material
for all four papers is included at the end at Section 4.

1.1 Motivation
Computer vision (CV) is a field in computer science where high-level tasks are solved using
image and video data. Example tasks include camera-based 3D mapping and localisation,
semantic understanding of the environment, and detection of obstacles [Ike21]. These
capabilities play a major role in the ongoing automation of many processes in industry
and people’s daily lives [JGB+20]. Many of these tasks are safety-relevant and mistakes
could lead to injury or fatalities. Thus, solutions have to be tested rigorously to ensure
their safety. Testing and validation of computer vision systems relies heavily on test
datasets. The test cases contained in the datasets include input data (e.g. images, videos)
and expected system output (ground truth (GT)) and are crucial to detect shortcomings
in systems [SHJ11]. They have to include all relevant aspects which the system will
face during operation to be effective. Otherwise, unchecked circumstances can occur
during system operation and can lead to a dangerous system failure. This presents a
huge challenge: how does one assess the quality and completeness of test data?
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1. Introduction

Gaps in test data represent untested circumstances which can lead to potentially hazardous
situations if encountered during a system’s life cycle. The open world in which autonomous
systems operate can never be completely matched in test data, thus no definitive dataset
exists nor a mathematical description of one. Finally, recurrences and redundancies
create a weighting during validation: aspects which are common in the data will have a
larger impact on the evaluation results compared to minorities [MMS+21].

1.2 Goals
Test data acquisition needs to be planned with these aspects in mind and resulting
test cases curated to create test datasets which allow the evaluation of computer vision
systems for robustness. The first goal is the systematic collection and cataloguing of
situations and aspects which can potentially degrade the performance of a CV system
(visual hazards).

For specific applications, this results in three main goals:

• Identify gaps in existing test dataset which may lead to dangerous oversight during
testing.

• Compare test datasets in regard to the coverage of visual hazards

• Efficiently plan the creation of new test data sets be to include visual hazards.

During the start of this dissertation, no collection of visual hazards existed. No viable
strategy or mechanism had been published to plan new test datasets or evaluate existing
datasets with visual hazard coverage in mind. This work presents tools and results to
improve this situation.

1.3 Methodology
The Section 1.4 summarizes each paper’s contributions and the total progress towards the
indicated goals. This also includes remarks on the chosen methodology for the individual
paper. Important concepts and methods are summarized here for easier comprehension,
with respective pages for details.

1.3.1 HAZOP (pages 11- 16, 28- 29)
Hazard and operability analysis [Kle83] (HAZOP) is a risk analysis method. This is a
process designed to systematically identify potentially dangerous situations and aspects
for a specific system. A HAZOP analysis begins by creating an abstraction of the system
that should be investigated. This results in a model split into multiple subunits called
locations. Each subunit is described by parameters that control the operation of this
component. A standard enumeration of short guide words refers to modifications or

2



1.3. Methodology

deviations of parameters from the expected (e.g. More, Faster, Before). An initial list is
generated by combining each guide word with each parameter from the model locations
leading to a long list of deviations which could lead to a hazard (i.e. a potential for harm).
Hazards in this work’s context mostly refer to reduction of sensor data quality, leading to
loss of functionality. This in turn reduces the safety of the intended functionality (SOTIF)
in contrast to classical hazards, which can result in injury or death for humans. Multiple
experts and users working with the real-world system are now tasked to attribute meaning
to the initial list entries and derive consequences for the full system. This is done by
contemplating the ways this parameter deviation could result in hazards and examples
are added to clarify the identified hazards. Results from each participant are collected
and discussed to improve consistency and remove duplicates. The HAZOP analysis can
result in a thorough organized listing which incorporates the experiences of experts and
users guided by the structure it provides.

1.3.2 Stereo Vision (pages 26- 35)

Depth information can be estimated from two synchronized cameras by identifying
correlating parts between their images [Mat11]. Software calibration methods are applied
to calculate undistorted images representing idealized cameras having parallel central
optical axis. Intelligent correlation methods allow the identification of matching pixels
between the two images which stem from the same point in the scene. Each correlation
can be used to triangulate this scene’s point relative to the cameras. This information
can be turned to a metric distance measurement by knowing the distance between the
cameras and each camera’s optical characteristics (intrinsics). Dense stereo vision applies
this process to the whole image, thus creating dense distance measures which can be
turned into a 3D point cloud of the scene.

1.3.3 Statistical Significance (pages 20, 21, 59)

Evaluations can calculate the expected impacts of a certain visual hazard using test data.
The statistical significance of this test gives a measure about how reliable these results
can be used to deduce general trend/impact for the system under test. In statistics, a
significance can be calculated per specified hypothesis (e.g. performance drops due to
glare visible in camera image) and is usually connected to the p-value probability[JB19].
This uses an inverse logic: the p-value denotes the probability of obtaining the extreme
observed values while there is no special relation present (null hypothesis, e.g. numbers
are uncorrelated or drawn from a random distribution). A low p-value indicates that the
null hypothesis is unlikely and thus there is actually an underlying relation at play (e.g.
glare impacts system performace). The threshold below which a p-value is considered
sufficiently low is called the significance level (e.g. 5%).

3



1. Introduction

1.3.4 Concretization (pages 29, 4- 5)
CV-HAZOP resulted in a checklist of potential visual hazard using a model of a generic
computer vision application without a specific use case in mind. The process of concretiza-
tion is transforming this generic list into an interpretation with a specific task in mind
(e.g. stereo vision, semantic segmentation). A task definition is created that specifies
the system’s intent. Mirroring the original HAZOP process, this step is conducted by
experts and users of the specific application. For each entry in the checklist its meaning,
consequences, and examples are re-evaluated in the new concrete context. This includes
skipping many entries which do not fit the specific task and will update all included
hazards to allow a clear understanding of the hazard in the context of the selected
application. Finally, the concretization will result in an updated checklist specialized for
the new application.

1.3.5 Negative test cases (pages 28, 31, 32)
Software testing uses a large number of individual test cases to validate a system and
identify bugs or unwanted behaviour. Normally a test case represents a use case within
the system’s specifications resulting in a wanted outcome (e.g. when presented with a
certain input, a specified output is expected). For a thorough evaluation, these so-called
positive test cases can be used in conjunction with negative test cases[Sem12, Cem03]
which can test system behaviour outside the specification and should result in a specific
failure state (e.g. when presented with a certain nonsense-input, the system should
report a failure). Positive test cases expect results within the specifications. Thus,
any hallucinated or improbable result returned for a difficult scenario will only increase
performance compared to admitting to a failure. This can lead to dangerous situations
when safety-critical systems interpret unknown scenes. Negative tests are a useful tool to
evaluate the robustness of a system by also incentivizing systems to report failure.

1.3.6 Semantic Segmentation (pages 1- 5, 9- 13, 4)
An image is semantically analysed during the computer vision task of semantic segmenta-
tion. Each pixel is assigned to one of a limited number of predetermined categories which
are relevant for typical use cases[GLGL18]. This attribution of categories to pixels is also
called labeling. Examples of useful categories for autonomous driving are: road, sidewalk,
car, traffic sign, and person[COR+16a]. Foreground and background labels are necessary
to achieve a full understanding of the scene. Both static scenery and dynamic actors
should be included. This semantic information is then used by a higher level algorithm
to facilitate tasks such as navigation, path planing, task planing, obstacle avoidance, and
visual servoing (vision-guided manipulation tasks).

1.3.7 Panoptic Segmentation (pages 0- 7)
The per-pixel semantic labels are extended in the panoptic segmentation task by adding
per-instance (i.e. per individual unit) information for defined labels[KHG+19]. In the
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1.4. Paper Summaries

context of autonomous driving, the vehicle and person classes are typically selected to
get additional per-instance labels. Other labels, especially those describing static areas
like grass, stay on segmentation level as per-instance information would not be useful to
fulfill any higher-level task. In a row of parked cars, individual separate labels are created
for each car instead of just marking the whole area with a single car label (as done for
semantic segmentation). Training and evaluation of panoptic segmentation has to weight
the quality and errors done per segment class versus the errors done during instancing.

1.4 Paper Summaries

Statement of contribution: Oliver Zendel, the author of this thesis, is the main author for
all papers in Section 2 having contributed the largest individual share of time, resources,
text, and ideas for each paper. Style, reference sections, and page numbers of the original
papers have been preserved. An additional consistent page numbering for this dissertation
has been placed at the lower edge corner. Page number ranges in this summary refer to
the dissertation page numbering. All attached versions are publicly available open access
versions. Some published versions differs in page layout, the acknowledgement section,
and copyright notices.

1.4.1 How Good Is My Test Data? Introducing Safety Analysis for
Computer Vision

Paper [ZMHH17] at Section 2.1 (pages 9 - 24) lays the foundations for this work: the
CV-HAZOP risk analysis. The process is described in detail, resulting in a large checklist
of potential visual hazards. The analysed model is a generalization of all computer
vision tasks. The concrete example of stereo vision (calculation of dense depth maps
using triangulation of two camera images) is used to demonstrate specialization, i.e. the
derivation of a checklist for a specific task from the generic CV-HAZOP list. The effect
of visual hazards on the resulting quality and robustness of results is compared in an
experiment. Three standard stereo vision test datasets are annotated according to the
specialized checklist, with bounding boxes marking areas identified by the risk analysis
as potentially difficult. The performance comparison of multiple stereo algorithms shows:
areas identified as difficult have increased error rates versus various control patches. This
comparison is accompanied by a statistical significance analysis to specify the certainty of
each evaluation. The risk analysis is a valid method to identify difficult areas. Historically,
this paper is a journal version of the conference paper [ZMHH15], extended by a larger
experimental section and better descriptions of the CV-HAZOP approach. An earlier
paper [ZHM13] presented a first sketch of the whole approach. The full CV-HAZOP
checklist with 1470 entries is published freely online [CVH22].

5



1. Introduction

1.4.2 Analyzing Computer Vision Data - The Good, the Bad and the
Ugly.

Paper [ZHM+17] at Section 2.2 (pages 25 - 36, supplemental material at 69 - 108) utilizes
CV-HAZOP checklist to compare the completeness and difficulty between five major
stereo vision test datasets. The analysis shows a critical weakness in existing datasets:
they lack many potentially difficult and relevant aspects which can occur during regular
operation. Evaluations with potentially too easy test data prevents the detection of flaws
and shortcomings within the algorithms. The CV-HAZOP checklist approach reveals
shortcomings in existing test data and its verbose description of each visual hazard allows
for planning additional test cases to fill specific gaps. Finally, the paper also introduces the
distinction of test cases into three classes: positive, borderline, negative. This distinction
is often used in regular software testing, but it is still very underrepresented in the field
of computer vision.

1.4.3 WildDash - Creating Hazard-Aware Benchmarks
Section 2.3 with paper [ZHM+18] is at pages 37 - 46. It applies the CV-HAZOP checklist
to create a whole new test dataset with visual hazards in mind. The new Wilddash
dataset and benchmark service for semantic understanding of road scenes is assembled by
gathering/filtering test cases to contain previously identified visual hazards. The mapping
between test cases and hazards allows calculating the individual performance drop per
hazard for a given system. This can be used to characterize and compare algorithms
with more detail and helps to pinpoint weaknesses. A suitable method for evaluating
negative test cases is introduced, which provides additional feedback for out-of-scope
performance. This again creates crucial feedback for the robustness of systems.

1.4.4 Unifying Panoptic Segmentation for Autonomous Driving
Paper [ZSR+22] of Section 2.4 (pages 53 - 63, supplemental material at 109 - 112) vastely
expands Wilddash to Version 2 with over 20 times of WD1 test cases. The large sample
size improves model training using only WD2 and a unified label policy with 80 label
categories allows the combination of WD2 with the three well-known datasets Cityscapes,
Mapillary Vistas, and Indian Driving Dataset. Negative testing is extended to the
panoptic segmentation metric, which combines two previously disjoint segmentation tasks
into one. Image classifiers are trained to create prototypes for automatic visual hazard
detectors, which help reduce the manual effort of finding difficult test cases in video
material.

1.5 Scientific Contribution
In summary, this work includes these contributions for computer vision research:

• CV-HAZOP: applying risk analysis on computer vision applications as a whole

6



1.5. Scientific Contribution

• Process for creation and evaluation of datasets with visual hazards in mind

• Specialized risk assessment for stereo vision and semantic segmentation tasks

• Evaluation of existing stereo vision datasets regarding challenging aspects

• Creation of a new dataset for understanding road scenes

• Application of negative testing to segmentation tasks

• Application of hazard-aware testing to segmentation tasks

• Creation of an online platform for automated evaluation of road scene understanding

• New visualization methods for results and comparisons of panoptic segmentation

• Proof-of-concept of automated visual hazard detector

The papers included in this thesis have been published at journals and conference
proceedings with the highest visibility and impact factors for computer vision re-
search [imp23a, imp23b]. They have already been well received by the community,
with a total of over 225 citations [sch23] (status April 2023). The webservice wilddash.cc
supplying datasets and benchmark service for free to the scientific community has over
2100 registered users from all over the world. Section 3.1 includes summaries of additional
projects which are connected to this work.
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CHAPTER 2
Papers

2.1 How Good Is My Test Data? Introducing Safety
Analysis for CV
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Abstract Good test data is crucial for driving new devel-
opments in computer vision (CV), but two questions remain
unanswered: which situations should be covered by the test
data, and how much testing is enough to reach a conclusion?
In this paper we propose a new answer to these questions
using a standard procedure devised by the safety commu-
nity to validate complex systems: the hazard and operability
analysis (HAZOP). It is designed to systematically iden-
tify possible causes of system failure or performance loss.
We introduce a generic CV model that creates the basis for
the hazard analysis and—for the first time—apply an exten-
sive HAZOP to the CV domain. The result is a publicly
available checklist with more than 900 identified individual
hazards. This checklist can be utilized to evaluate existing
test datasets by quantifying the covered hazards. We evalu-
ate our approach by first analyzing and annotating the popular
stereo vision test datasets Middlebury and KITTI. Second, we
demonstrate a clearly negative influence of the hazards in the
checklist on the performance of six popular stereo matching
algorithms. The presented approach is a useful tool to eval-
uate and improve test datasets and creates a common basis
for future dataset designs.

Keywords Test data · Testing · Validation · Safety analysis ·
Hazard analysis · Stereo vision

Communicated by Rene Vidal, Katsushi Ikeuchi, Josef Sivic, Christoph
Schnoerr.

B Oliver Zendel
oliver.zendel@ait.ac.at

1 AIT Austrian Institute of Technology, Donau-City-Strasse 1,
1220 Vienna, Austria

1 Introduction

Many safety-critical systems depend on CV technologies to
navigate or manipulate their environment and require a thor-
ough safety assessment due to the evident risk to human
lives (Matthias et al. 2010). The most common software
safety assessment method is testing on pre-collected datasets.
People working in the field of CV often notice that algorithms
scoring high in public benchmarks perform rather poor in real
world scenarios. It is easy to see why this happens:

1. The limited information present in these finite samples
can only be an approximation of the real world. Thus
we cannot expect that an algorithm which performs well
under these limited conditions will necessarily perform
well for the open real-world problem.

2. Testing in CV is usually one-sided: while every new
algorithm is evaluated based on benchmark datasets, the
datasets themselves rarely have to undergo independent
evaluation. This is a serious omission as the quality of
the tested application is directly linked to the quality and
extent of test data. Sets with lots of gaps and redundancy
will match poorly to actual real-world challenges. Tests
conducted using weak test data will result in weak con-
clusions.

This work presents a new way to facilitate a safety assess-
ment process to overcome these problems: a standard method
developed by the safety community is applied to the CV
domain for the first time. It introduces an independent mea-
sure to enumerate the challenges in a dataset for testing the
robustness of CV algorithms.

The typical software quality assurance process uses
two steps to provide objective evidence that a given sys-
tem fulfills its requirements: verification and validation

1 3
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(International Electrotechnical Commission 2010). Verifica-
tion checks whether or not the specification was implemented
correctly (i.e. no bugs) (Department of Defense 1991). Val-
idation addresses the question whether or not the algorithm
is appropriate for the intended use, i.e., is robust enough
under difficult circumstances. Validation is performed by
comparing the algorithm’s output against the expected results
(ground truth, GT ) on test datasets. Thus, the intent of vali-
dation is to find shortcomings and poor performance by using
“difficult” test cases (Schlick et al. 2011). While general
methods for verification can be applied to CV algorithms,
the validation step is rather specific. A big problem when
validating CV algorithms is the enormous set of possible
test images. Even for a small 8bit monochrome image of
640 × 480 pixels, there are already 256640×480 ≈ 10739811

possible images). Even if many of these combinations are
either noise or render images which are no valid sensor out-
put, exhaustive testing is still not feasible for CV. An effective
way to overcome this problem is to find equivalence classes
and to test the system with a representative of each class.
Defining equivalence classes for CV is an unsolved problem:
how does one describe in mathematical terms all possible
images that show for example “a tree” or “not a car”? Thus,
mathematical terms do not seem to be reasonable but the
equivalence classes for images are still hard to define even if
we stick to the semantic level. A systematic organization of
elements critical to the CV domain is needed and this work
will present our approach to supply this.

All in all, the main challenges for CV validation are:

1. What should be part of the test dataset to ensure that the
required level of robustness is achieved?

2. How can redundancies be reduced (to save time and
remove bias due to repeated elements)?

Traditional benchmarking tries to characterize perfor-
mance on fixed datasets to create a ranking of multiple
implementations. On the contrary, validation tries to show
that the algorithm can reliably solve the task at hand, even
under difficult conditions. Although both use application spe-
cific datasets, their goals are different and benchmarking sets
are not suited for validation.

The main challenge for validation in CV is listing ele-
ments and relations which are known to be “difficult” for CV
algorithms (comparable to optical illusions for humans). In
this paper, the term visual hazard will refer to such elements
and specific relations (see Fig. 1 for examples).

By creating an exhaustive checklist of these visual hazards
we meet the above challenges:

1. Ensure completeness of test datasets by including all rel-
evant hazards from the list.

Fig. 1 Examples for potential visual hazards for CV algorithms

2. Reduce redundancies by excluding test data that only
contains hazards that are already identified.

Our main contributions presented in this paper are:

• application of the HAZOP risk assessment method to the
CV domain (Sect. 3),

• introduction of a generic CV system model useful for risk
analysis (Sect. 3.1),

• a publicly available hazard checklist (Sect. 3.7) and a
guideline for using this checklist as a tool to measure
hazard coverage of test datasets (Sec. 4).

To evaluate our approach, the guideline is applied to three
stereo vision test datasets: KITTI, Middlebury 2006 and Mid-
dlebury 2014 (see Sect. 5). As a specific example, the impact
of identified hazards on the output of multiple stereo vision
algorithms is compared in Sect. 6.

2 Related Work

Bowyer and Phillips (1998) analyze the problems related
to validating CV systems and propose that the use of
sophisticated mathematics goes hand in hand with specific
assumptions about the application. If those assumptions are
not correct, the actual output in real-world scenarios will
deviate from the expected output.

Ponce et al. (2006) analyze existing image classification
test datasets and report a strong database bias. Typical poses
and orientations as well as lack of clutter create an unbalanced
training set for a classifier that should work robustly in real-
world applications.

Pinto et al. (2008) demonstrate by a neuronal net, used for
object recognition, that the currently used test datasets are
significantly biased. Torralba and Efros (2011) successfully
train image classifiers to identify the test dataset itself (not
its content), thus, showing the strong bias each individual
dataset contains.

1 3
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A very popular CV evaluation platform is dedicated to
stereo matching, the Middlebury stereo database. Scharstein
and Szeliski (2002) developed an online evaluation plat-
form which provides stereo datasets consisting of the
image pair and the corresponding GT data. The datasets
show indoor scenes and GT are created with a structured
light approach (Scharstein and Szeliski 2003). Recently, an
updated and enhanced version was presented which includes
more challenging datasets as well as a new evaluation method
(Scharstein et al. 2014). To provide a similar evaluation plat-
form for road scenes, the KITTI database was introduced by
(Geiger et al. 2012).

A general overview of CV performance evaluation can be
found in (Thacker et al. 2008). They summarize and cate-
gorize the current techniques for performance validation of
algorithms in different subfields of CV. Some examples are
shown in the following: Bowyer et al. (2001) present a work
for edge detection evaluation based on receiver operator char-
acteristics (ROCs) curves for 11 different edge detectors. Min
et al. (2004) describe an automatic evaluation framework for
range image segmentation which can be generalized to the
broader field of region segmentation algorithms. In Konder-
mann (2013) the general principles and types of ground truth
are summarized. They pointed out, that thorough engineer-
ing of requirements is the first step to determine which kind
of ground truth is required for a given task. Strecha et al.
(2008) present a multi-view stereo evaluation dataset that
allows evaluation of pose estimation and multi-view stereo
with and without camera calibration. They additionally incor-
porate GT quality in their LIDAR-based method to enable fair
comparisons between benchmark results. Kondermann et al.
(2015) discuss the effect of GT quality on evaluation and
propose a method to add error bars to disparity GT. Honauer
et al. (2015) reveal stereo algorithm-specific strengths and
weaknesses through new evaluation metrics addressing depth
discontinuities, planar surfaces, and fine geometric struc-
tures. All of these are examples of visual hazards.

Current test datasets neither provide clear information
about which challenges are covered nor which issues remain
uncovered. Our approach can fill both gaps: By assign-
ing a reference-table entry with a unique identifier to each
challenging hazard, we create a checklist applicable to any
dataset. To the best knowledge of the authors there is no pub-
lished work considering the vision application as a whole,
which identifies risks on such a generic level.

2.1 Robustness

Depending on context, robustness can refer to different char-
acteristics of the considered system. In the safety context,
robustness is about the correct handling of abnormal sit-
uations or input data. For instance, in the basic standard

for functional safety (International Electrotechnical Com-
mission 2010), it is defined via the system’s behavior in a
hazardous situation or hazardous event. This also includes
the ability to perform a required function in the presence of
implementation faults (internal sources) or cope with faulty
and noisy input data (external sources). A method to evaluate
robustness against the first type is fault injection (Hampel
1971) (e.g., bit flips in registers or bus) while fuzz test-
ing (Takanen et al. 2008) can be used for assessing the
robustness against abnormal input data.

In computer vision, robustness usually refers to coping
with distorted or low-quality input. Popular methods are
random sample consensus (RANSAC) (Fischler and Bolles
1981), M-Estimators (Huber 1964), or specific noise model-
ing techniques, which arose from the need to use systems in
“real-world applications”. In the work described in this paper,
we do not exclude these issues, but aim to cover all influences
that may cause a degraded or false performance of a CV solu-
tion. This in particular includes aspects that can usually be
part of observed scenes, such as lacking or highly regular
textures, reflections, occlusions, or low contrasts. Figure 1
illustrates some examples.

2.2 Risk Analysis

Risk-oriented analysis methods are a subset of validation
and verification methods. All technical risk analysis meth-
ods assess one or several risk-related attributes (e.g. safety
or reliability) of systems, components or even processes with
respect to causes and consequences. Some techniques addi-
tionally try to identify existing risk reduction measures and
propose additional measures where necessary.

Originally, risk identification techniques have been devel-
oped by the chemical industries, but nowadays they are
successfully applied to software quality assurance as well
(see Fenelon and Hebbron 1994 and Goseva-Popstojanova
et al. 2003 for UML models). The most commonly used
methods are:

• HAZOP [7], (Kletz 1983)—hazard and operability anal-
ysis,

• FME(C)A (Department of Defense 1949 )—failure
modes, effects, (and criticality) analysis,

• FTA (Vesely et al. 1981; Laprie 1992)—fault tree analy-
sis.

Each risk analysis method defines a systematic process to
identify potential risks. The first step in a HAZOP is to
identify the essential components of the system to be ana-
lyzed. The parameters for each component, which define
its behavior, have to be identified. These parameters often
describe the input output characteristics of the component.
A set of predefined guide words which describe deviations
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are applied to the parameters (e.g. “less” or “other than”)
and the resulting combinations are interpreted by experts in
order to identify possible consequences (potential hazards)
and counteractions. While FME(C)A also starts with iden-
tifying the systems components and their operating modes,
it then identifies the potential failure modes of the individ-
ual components. Further steps deal with identifying potential
effects of these failures, their probability of occurrence, and
risk reduction measures similar to HAZOP. FTA starts with
a hazardous “top event” as root of the fault tree. Leaves are
added recursively to the bottom events representing Boolean
combinations which contain possible causes for their parent
event (e.g. “own car hits the front car” if “speed too high”
and “braking insufficient”). This refinement is executed until
only elementary events are encountered.

3 CV-HAZOP

The identification and collection of CV hazards should fol-
low a systematic manner and the results should be applicable
to many CV solutions. The process has to be in line with
well-established practices from the risk and safety assess-
ment community to create an accepted tool for validation
of CV systems. The most generic method HAZOP (Kletz
1983) is chosen over FME(C)A and FTA because it is feasi-
ble for systems for which little initial knowledge is available.
In addition, the concept of guide words adds a strong source
of inspiration that all other concepts are missing.
The following Sections address the main steps of a HAZOP:

1. Model the system.
2. Partition the model into subcomponents, called locations.
3. Find appropriate parameters for each location which

describe its configuration.
4. Define useful guide words.
5. Assign meanings for each guide word/parameter combi-

nation and derive consequences from each meaning.
6. Give an example clarifing the entry using for a specific

application (e.g. in the context of stereo vision, object
tracking, face detection).

3.1 Generic Model

The first step of any HAZOP is deriving a model of the
system that should be investigated. In case of this HAZOP,
the generic CV algorithm has to be modeled together with
the observable world (its application). Marr (1982) proposes
a model for vision and image perception from the human
perception perspective. Aloimonos and Shulman (1989)
extended it by the important concepts of stability and robust-
ness. We propose a novel model which is entirely based on
the idea of information flow: The common goal of all CV

algorithms is the extraction of information from image data.
Therefore “information” is chosen to be the central aspect
handled by the system. It should be noted, that “informa-
tion” is used in the context “Information is data which has
been assigned a meaning.” Van der Spek and Spijkervet
(1997) rather than in a strict mathematical sense (Shannon
and Weaver 1949). In this context, hazards are all circum-
stances and relations that cause a loss of information. Even
though hazards ultimately propagate to manifest themselves
in the output of the algorithm, an effective way to find a
feasible list of hazards is to look at the entire system and
attribute the hazard to the location where it first occurred
(e.g. unexpected scene configuration or sensor errors). Mul-
tiple inputs from different disciplines are used to create the
system model:
Information Theory Communication can be abstracted
according to information theory (Shannon and Weaver 1949)
as information flow from the transmitter at the source—
with the addition of noise—to the receiver at the destina-
tion.
Sampling Theorem Sampling is a key process in the course of
transforming reality into discrete data. Artifacts that can be
caused by this process, according to (Nyquist 1928; Shannon
1949), will result in a loss of information.
Rendering Equation The rendering equation (Kajiya 1986)
is a formal description of the process of simulating the out-
put of a virtual camera within a virtual environment. The
different parts of the standard rendering equation amount to
the different influences that arise when projecting a scenery
light distribution into a virtual camera.
Control Theory The general system theory (e.g. Von Berta-
lanffy 1968) and especially cybernetics interpret and model
the interactions of systems and the steps of acquiring,
processing, as well as reacting to information from the envi-
ronment.
The entire flow of information is modeled as follows:

1. Since in CV the sensor is a camera, all data within the
observed scene available to a CV component can only
be provided by the electromagnetic spectrum (simply
referred to as light in this paper) received by the observer
(i.e. the sensor/camera) from any point in the scene.
Hence, light represents data and, as soon as a meaning is
assigned, information.

2. At the same time, any unexpected generation of light and
unwanted interaction of light with the scene distorts and
reduces this information.

3. The sensing process, i.e. the transformation of received
light into digital data, further reduces and distorts the
information carried by the received light.

4. Finally, the processing of this data by the CV algorithm
also reduces or distorts information (through rounding
errors, integration etc.).
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Fig. 2 Information flow within the generic model. Light information
is shown as solid arrows and digital information as a dashed arrow

In essence, two information carriers are distinguished:
light outside of the system under test (SUT) and digital data
within the SUT. This is visualized in Fig. 2 by two types
of arrows: solid arrows for light and a dashed line for digi-
tal data. At each transition, this information can potentially
be distorted (e.g. by reduction, erasure, transformation, and
blending). Benign interactions, e.g. interaction of a pattern
specifically projected to create texture for structured light
applications, are not entered into the list. We are interested
in situations and aspects that can potentially reduce output
quality. Nevertheless, the failing of such expected benign
interactions (e.g. inference effects of multiple projectors) are
a risk and, thus, included in the analysis.

3.2 Locations

The system model is now partitioned into specific locations
(i.e. subsystems) of the overall system. Light sources that pro-
vide illumination start the process flow (illustrated in Fig. 2).
The light traverses through a medium until it either reaches
the observer or interacts with objects. This subprocess is
recursive and multiple interactions of light with multiple
objects are possible. The observer is a combination of optical
systems, the sensor, and data pre-processing. Here the light
information is converted into digital data as input for a CV
algorithm. The CV algorithm processes the data to extract
information from it.

Each entity (box in Fig. 2) represents a location for the
HAZOP. The recursive loop present in the model results in an
additional location called “Objects” for aspects arising from
the interactions between multiple objects. The observer is
modeled by two components: “Observer—Optomechanics”
and “Observer—Electronics”. This reduces complexity for
the analysis and allows to focus on the different aspects of
the image capturing process.

3.3 Parameters

Each location is characterized by parameters. They refer to
physical and operational aspects describing the configuration
of the subcomponent. The set of parameters chosen for a

single location during the HAZOP should be adequate for
its characterization. Table 2 shows the parameters chosen for
the location “Medium” as an example. Too few parameters
for a location means that it is insufficiently modeled and that
the analysis will likely contain gaps. Performing an analysis
with too many parameters would require too much effort and
create redundancy. A full listing of all parameters is available
at the website vitro-testing.com.

3.4 Guide Words

A guide word is a short expression to trigger the imagina-
tion of a deviation from the design/process intent. Number
and extent of guide words must be selected to ensure a broad
view on the topic. Nevertheless, their number is proportional
to the time needed for performing the HAZOP, so avoiding
redundant guide words is essential. The provided examples
in Table 1 show all guide words we used in the analysis.
Exemplary meanings for the deviations caused by each guide
words are given, but the experts are not limited to these spe-
cific interpretations during the risk analysis. The first seven
“basic” guide words are standard guide words used in every
HAZOP. The remainder are adaptations and additions that
provide important aspects specific for CV: spatial and tem-
poral deviations (Table 2).

3.5 Implementation

The actual implementation of the HAZOP is the system-
atic investigation of each combination of guide words and
parameters at every location in the system. It is performed
redundantly by multiple contributors. Afterwards, the results
are compared and discussed to increase quality and complete-
ness. Each HAZOP contributor assigns at least one meaning
to a combination. In addition, for each meaning found the
contributors investigate the direct consequences of this devi-
ation on the system. One meaning can result in multiple
consequences at different levels. Each entry in the list repre-
sents an individual hazard which can lead to actual decreases
in the total system’s performance or quality. Combinations
that result in meaningful interpretations by any contributor
are considered to be “meaningful” entries while combina-
tions without a single interpretation are considered to be
“meaningless”.

3.6 Execution

The execution of the CV-HAZOP, including various meet-
ings and discussions by the contributors (with expertise in
testing, analysis, and CV), took one year. Each location
is covered by at least three of the authors. The addi-
tional experts are mentioned in the acknowledgments. The
52 parameters from all seven locations, combined with
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Table 1 Guide Words used in
the CV-HAZOP

Guide word Meaning Example

Basic

No No information can be derived No light at all is reflected by a
surface

More Quantitative increase (of
parameter) above expected level

Spectrum has a higher average
frequency than expected

Less Quantitative decrease below
expected level

Medium is thinner than expected

As well as Qualitative increase (additional
situational element)

Two lights shine on the same object

Part of Qualitative decrease (only part of
the situational element)

Part of an object is occluded by
another object

Reverse Logical opposite of the design
intention occurs

Light source casts a shadow
instead of providing light

Other than Complete substitution—another
situation encountered

Light source emits a different light
texture

Additional—spatial

Where else “Other than” for position/direction
related aspects

Light reaches the sensor from an
unexpected direction

Spatial periodic Parameter causes a spatially
regular effect

A light source projects a repeating
pattern

Spatial aperiodic Parameter causes a spatially
irregular effect

The texture on object shows a
stochastic pattern

Close/remote Effects caused when s.t. is close
to/remote of s.t. else

Objects at large distance appear
too small

In front of/behind Effects caused by relative positions
to other objects

One object completely occludes
another object

Additional—temporal

Early/Late Deviation from temporal schedule Camera iris opens too early

Before/after A step is affected out of sequence,
relative to other events

Flash is triggered after exposure of
camera terminated

Faster/slower A step is not done with the right
timing

Object moves faster than expected

Temporal periodic Parameter causes a temporally
regular effect

Light flickers periodically with
50 Hz

Temporal aperiodic Parameter causes a temporally
irregular effect

Intensity of light source has
stochastic breakdowns

Table 2 Parameters used in the location Medium

Parameter Meaning

Transparency Dimming factor per wavelength and distance unit

Spectrum Color, i.e. richness of medium with respect to absorption spectrum (isotropic or anisotropic)

Texture Generated by density fluctuations and at surfaces (e.g. water waves)

Wave properties Polarization, coherence

Particles Influences and effects of the particles that make up the medium

the 17 guide words, result in 884 combinations. Each
combination can have multiple meanings assigned to it.
Finally, 947 unique and meaningful entries have been pro-
duced. Table 3 shows an excerpt of entries from the final
HAZOP and Fig. 3 shows visualizations for each hazard

mentioned. The entries in the list can include multiple mean-
ings for each parameter as well as multiple consequences
and hazards per meaning. The whole resulting dataset of
the CV-HAZOP is publicly available at www.vitro-testing.
com.
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Fig. 3 Visualization of entries
from Table 3

3.7 Resulting List

In total, 947 entries are considered meaningful by the experts.
A detailed analysis of the meaningful entries achieved for
each guide word/parameter combination is shown in Fig. 4.
One goal is to maximize the meaningful entries—and the
graphic shows reasonably high entries for most of the basic
guide words (see Table 1). Lower valued entries in the matrix
can be explained as well: The concepts of the spatial aspects
“Close” and “Remote” are simply not applicable to the prop-
erties of the electronic part of the observer (obs. electronics)
and the concept of space in general is not applicable to a num-
ber of parameters at various locations. This also holds true
for the temporal guide words which do not fit to the optome-
chanical and medium locations. Nevertheless, even here the
usage of guide word/parameter combinations inspire the ana-
lysts to find interpretations which would have been hard to
find otherwise. Each hazard entry is assigned a unique hazard
identifier (HID) to facilitate referencing of individual entries
of the checklist.

4 Application

The remainder of this paper focuses on the application of
the checklist as an evaluation tool for existing test datasets.
On the one hand, we show that the CV-HAZOP correctly
identifies challenging situations and on the other hand, we
provide a guideline for all researches to do their own analysis
of test data.

Initially, the evaluators have to clarify the intent and
domain of the specific task at hand. This specification cre-
ates the conceptual borders that allow the following analysis
to filter the hazards. The intent includes a description of the
goals, the domain defines the conditions and the environment
under which any algorithm performing the task should work
robustly. With the intent and domain specified, the evaluators
can now check each entry of the CV-HAZOP list to see if that
entry applies to the task at hand. Often it is useful to refor-
mulate the generic hazard entry for the specific algorithm
to increase readability. In the following a process outline is
given:

Fig. 4 Ratio of meaningful combinations for each guide word per location (averaged over all parameters of each location)
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1. Check if the preconditions defined by the column Mean-
ing and the according Consequences apply.

2. Check if the Example matches the specific task at hand.
3. Each row represents a unique Hazard and has a unique

Hazard ID (HID). If the Hazard is too generic to be feasi-
ble, add a new row for the specific task using a matching
Example.

4. Evaluate if the Hazard can be detected (i.e. is visible in
the test data).

5. Store the identity of test cases which fulfill relevant HIDs.
Create a new test case should none of the current test cases
fulfill this Hazard.

Previous evaluations for comparable tasks can be used as
templates to speed up this process and to reduce the effort
compared to evaluating the whole generic list. Specialized
hazards can be added to the checklist so that they can be
used directly in future evaluations.

With the reduced list of possible hazards, the evaluators
are able to go through test datasets and mark the occurrence
of a hazard. Usually a simple classification per test case is
enough. Individual pixel-based annotations can also be used
to indicate the location of specific hazards in test images (see
Sect. 5). After this process, the missing hazards are known
and quantifiable (e.g. 70% of all relevant hazards are tested
using this test dataset). This is a measure of completeness
which can be used to compare datasets. Even more important:
If a hazard cannot be found in the test data, the CV-HAZOP
entry states an informal specification for creating a new test
case to complement the test dataset. The extensiveness of the
checklist allows a thorough and systematic creation of new
test datasets without unnecessary clutter.

Each hazard entry in the check list has a unique hazard
identifier (HID). This allows to easily reference individual
hazards and compare results from different CV imple-
mentations. The checklist approach allows for a top-down
evaluation of CV (starting from the problem definition down
to the pixel level). This is a good complement to regular
benchmarks which tend to be focused on the detailed pixel
level (bottom-up evaluation).

5 Example

As proof of concept, the authors applied the described process
to a specific task. We chose canonical stereo vision:

The intent of the algorithm is the calculation of a dense
disparity image (correspondence between the pixels of the
image pair) with a fixed epipolar, two camera setup. To
further simplify the analysis, we only use greyscale informa-
tion and assume that the cameras are perfectly synchronous
(exposure starts and stops at the same instants), and omit the
use of any history information so that many time artifacts

can be disregarded. The domains of the algorithm are indoor
rooms or outdoor road scenarios. Conditions like snow, fog,
and rain are included in the problem definition. This was done
to keep the problem definition sufficiently generic to allow
room for the analysis.

Note that this evaluation is not designed to compare stereo
vision algorithms themselves or to compare the quality of the
specific datasets (will be done in future works). However,
this paper provides the first step: a clear proof of concept
of the CV-HAZOP list as a tool for validation. The simpli-
fications in domain/intent analysis and algorithm evaluation
were performed to reduce complexity/workload and should
be re-engineered for a specific stereo vision evaluation.

First, six experts in the field of CV (some had experience
with the CV-HAZOP list, others were new to the concept)
analyzed the initial 947 entries and identified those applying
to the stereo vision use case. During this step, 552 entries
were deemed to be not applicable and 106 entries were non-
determinable (not verifiable by only surveying the existing
test data; more background knowledge needed). The remain-
ing 289 entries were deemed to be relevant for stereo vision.
See Table 4 and Fig. 5 for examples from the datasets.
About 20% of the hazard formulations were further speci-
fied to simplify the following annotation work while the rest
were already specific enough. The experts analyzed three
test datasets commonly used for stereo vision evaluation (see
Table 5) individually for each of the identified hazard.

The hazard entries were evenly distributed among evalu-
ators. All evaluators had the task to annotate each assigned
hazard at least once in each dataset (if present at all). The
step to annotate all occurrences of individual hazards in all
images was omitted as the required effort would exceed the
resources reasonable for this proof of concept. One represen-
tative of each hazard is deemed sufficient for the purpose of
this proof-of-concept but certainly requires a larger sample
size for a detailed evaluation of a CV algorithm. Ideally, a test
dataset should include a systematically increasing influence
of each hazard so that the algorithm’s point of failure can be
evaluated.

The annotation tool was set to randomly choose the access
order to reduce annotation bias by removing the influence of
image sequence ordering. Table 5 summarizes the results of
the evaluation showing the number of images with hazards
and the number of uniquely identified hazards. It is not a sur-
prise that KITTI contains the most hazards: it is the largest
dataset and is also created in the least controlled environ-
ment (outdoor road scenes). It contains many deficiencies
in recording quality manifesting as hazards and it includes
images with motion blur as well as reflections on the wind-
shield.

Many effects stemming from interactions of multiple light
sources, medium effects, and sensor effects are missing in all
three test datasets. The majority of hazards present in the data
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deal with specific situations that produce overexposure (HIDs
26, 125, 479, 482, 655, 707, 1043, 1120), underexposure
(HIDs 21, 128, 651, 1054, 1072, 1123), little texture (HIDs
444, 445, 449) and occlusions (HIDs 608, 626).

6 Evaluation

In this section we evaluate the effect of identified hazards on
algorithm output quality. The goal is to show that the entries
of the CV-HAZOP are meaningful and that the checklist is a
useful tool to evaluate robustness of CV algorithms. A spe-
cific hazard can only impact the system if it is visible in
the image. Thus, we need to annotate areas in images corre-
sponding to specific hazards to show that the annotated area
itself (and, thus, the included hazard) is responsible for the
output quality decrease. Initially it was unclear how accurate
these areas have to be defined. For this purpose two differ-
ent types of annotations were evaluated: a manually selected
outline and a bounding box calculated from the outline.

We potentially add another bias to our analysis by eval-
uating only areas that contain annotations. This has two
influences: (i) We only look at frames that have annotations
while ignoring all other frames in the dataset without any
annotations, (ii) We average over small sampling windows
that often contain relatively little data due to missing values
in the GT.

To quantify these influences we generated another set of
control annotations: for each annotation in the dataset we
generated a mask with a random position but the same size
as the annotated hazard in the respective frame.

At last the overall performance of an algorithm was needed
as a base line value. For this the whole image was evaluated.
All in all we generated four types of masks from the annota-
tions for our evaluation.

The different masks represent a step-by-step increase of
influence of the annotated areas:

• shape masks with the annotated outlines as filled poly-
gons,

• box masks with boxes of equal size and centroid as each
annotated outline,

• rand masks with boxes of equal size as the annotated
outlines but a randomly placed centroid,

• all masks with all pixels except the left border region (to
exclude occlusions).

Figure 6 gives an example of the generated masks. Not every
image in the test datasets contains annotations. The masks
shape, box, and rand are evaluated for the subset of images
containing at least one annotation while all is evaluated for
all images of the datasets.
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Fig. 5 Examples for each entry in Table 4. Images are taken from the datasets described in Table 5

Table 5 Stereo vision test datasets used in our evaluation, number of found hazards and percentage of masks covered by GT

Algorithm Image
pairs

Images with
hazards

Found
hazards

# Annotations % GT all % GT rand
(avrg.)

% GT box % GT
shape

Middlebury Stereo Evaluation
(MB06) (Scharstein and Szeliski 2002)

26 19 34 55 96.0 88.2 94.8 92.5

Middlebury Stereo Eval. “New”
(MB14) (Scharstein et al. 2014)

23 17 57 80 96.9 93.0 93.5 91.2

The KITTI Vision Benchmark
(KITTI) (Geiger et al. 2012)

194 62 76 101 45.7 42.0 36.8 37.0

Fig. 6 Example for annotation masks for hazard ‘No Texture’ (from
left to right): input image, shape, box, rand, all

The rand masks only represent the annotated area’s size
as well as the subset of annotated frames. A total of 100 ran-
dom masks are generated for each annotation that share its
size but are randomly displaced. Statistics can thus be eval-
uated over the whole set of random masks which increases
the significance. Annotation box represents area and position
while shape represents the full annotation.

The rand versus all masks verify if the output quality is
affected by using smaller image parts for evaluation instead
of the whole image as well as a subset of frames, while box
versus shape evaluates the influence of specific shapes of the
annotations.

Table 5 lists the resulting number of annotations created
for each dataset. Some hazards require the selection of split
areas, resulting in multiple annotations. We only use pix-
els with valid GT information for evaluation. Unfortunately,
many of the hazards (e.g. reflections, transparencies, occlu-
sions, very dark materials) also have a negative influence
on the laser scanner used for the GT generation in KITTI.
The GT data is generally sparse and even more sparse in the
annotated areas.

6.1 Performance Evaluation

For evaluation of the stereo vision test dataset we used
the following popular stereo vision algorithms: SAD + tex-

ture thresholding (TX) & connected component filtering
(CCF) (Konolige 1998), SGBM + TX & CCF (Hirschmüller
2008), census-based BM + TX & CCF (Humenberger et al.
2010; Kadiofsky et al. 2012), cost-volume filtering (CVF) &
weighted median post processing filtering (WM) (Rhemann
et al. 2011), PatchMatch (PM) & WM (Bleyer et al. 2011),
and cross-scale cost aggregation using census and segment-
trees (SCAA) & WM (Zhang et al. 2014), (Mei et al. 2013).
The resulting disparities of each stereo vision algorithm are
compared to the GT disparities of the test dataset. The num-
ber of wrong pixels (with an error threshold of >2px) is then
compared to the number of pixels within the respective mask
that had valid ground truth values. Invalids in the result are
counted as being above any threshold. We consider each
disparity pixel di ∈ R
 to either be valid (∈ R) or invalid
(denoted by the star value “
”). Where R
 = R ∪ {
}. The
same holds for each corresponding ground truth pixel value
gi ∈ R
. We consider every di for which correct (di , gi ) =
true to be true, and correct : R
 × R
 �→ true, false to be
defined by:

correct (gi , di ) =

⎧⎪⎪⎨⎪⎪⎩
true for di = R�

gi �= 
� |di − gi | < 2
f alse else

(1)

The actual comparison is performed for each dataset inde-
pendently according to the average error ēm as defined by (2)
where Dm,Gm are the disparity and GT values selected by a
given mask m ∈ { “shape”, “box”, “rand”, “all”}.

ēm = |{∀di ∈ Dm, gi ∈ Gm : ¬correct (di , gi )}|
|{∀gi ∈ Gm : gi ∈ R}| (2)
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Fig. 7 Percentage of pixels with an error above 2px for all algorithms for the different masks and datasets (average error ē)

Figure 7 shows the result of the evaluation for all three
datasets and all four mask types. The arithmetic average of the
performance evaluated for 100 random masks are reported
as rand. We chose to use a high threshold of 2pxl to dis-
tinguish the coarse cases “algorithm succeeded at finding
a good correspondence” versus “algorithm could not deter-
mine a correct correspondence” as opposed to measuring
small measurement errors. The performances of the differ-
ent mask types creates a distinct picture. Section 6.2 will first
interpret the results. The following Sect. 6.3 will then assign
statistical significance to these interpretations.

6.2 Interpretation

The effect of applying the masks based on the identified
hazards can be clearly seen. Table 6 summarizes the ratios
between the error values of shape and all. The correctly
masked areas (shape) have higher error ratios than the mean
for the full image (all). The results for KITTI are much more
erratic than the rest. The large amount of missing GT data
in this dataset reduced its value for this evaluation drasti-
cally. The majority of shape mask areas have higher error
ratios than the same-sized box mask areas. Newer and more
complex algorithms generally score lower errors and have
lower absolute differences between shape and all errors.
There are two distinct groupings: rand masks have compa-
rable results as all masks while box is comparable to shape.
This suggests that box annotations can often be used instead
of the time-consuming shape annotations. This allows for the
following conclusions based on the different maskings: algo-
rithms have higher error rates at annotated areas and score

Table 6 Ratio between average errors of shape and all:
ēshape

ēall

Dataset SAD CEN SGBM CVF PM SCAA

MB06 1.47 1.89 1.95 1.55 1.49 1.15

MB14 1.47 1.58 1.67 1.76 1.65 1.97

KITTI 1.17 1.69 1.86 1.28 2.31 1.07

even higher error rates if the annotation’s shape is preserved
(shape vs. box). The effect of sampling patches of different
sizes in each image is not prevalent (rand vs. box) and can
be neglected.

6.3 Statistical Significance

The intuitive grouping of the mask into groups (all, rand)
and (shape, box) is now evaluated for its statistical sig-
nificance. The null hypothesis H0 we will test is that the
average performance evaluated at two different mask-types
is not distinguishable. More specifically, that the differences
between pairings of measurements (xi , yi ) are symmetri-
cally distributed around zero. This hypothesis should be valid
between the grouped mask types and invalid between the
other types.

To test the hypothesis, parametric and non-parametric
tests can be used. Parametric tests (e.g. T -test) need to
make assumptions about the underlying distribution. Such
assumptions would be detrimental for our analysis as they
could introduce bias. From the possible non-parametric tests
we chose the Wilcoxon signed rank test (Wilcoxon 1945)
because of its robustness and the possibility to evaluate
over all three datasets in one joined analysis (see Demšar
2006) for a comparison between similar suited tests).
The evaluation of all three datasets in one test statistic
increases the sampling size and, thus, the test’s signifi-
cance.

The Wilcoxon signed rank test works by calculating the
absolute difference for each pair of measurements from the
two distributions and sorting those differences in ascending
order. The rank in this order is now summed up using the
original sign of each of the differences and the absolute value
of this sum is used as the test statistic W . Ties in the ranking
receive all the same average over the tying ranks. The number
of differences not equal to zero is denoted with Nr .

Distributions with a symmetry around zero will yield a
sum that has an expected value of zero and a variance of

1 3
21



Int J Comput Vis (2017) 125:95–109 107

Table 7 Probability values zW
obtained from the Wilcoxon
signed rank test for different
pairings

Pairing SAD CEN SGBM CVF PM SCAA Overall

all, rand 0.46 0.08 −0.33 −1.17 −0.81 −1.18 −1.10

shape, box −4.54 −3.22 −2.74 −0.36 −0.20 −0.58 −4.89

all, shape 4.79 5.95 4.89 2.19 4.03 0.87 9.64

all, box 4.00 5.72 4.92 2.50 4.01 0.84 9.43

shape, rand −4.40 −4.98 −4.16 −2.36 −3.21 −1.28 −8.53

box, rand −3.55 −4.70 −4.15 −2.48 −3.37 −1.40 −8.23

Bold entries represent rejected null hypothis when using a typical significance level of 5% (translates to a z
value of +/−1.96). Negative values mean the first entry of the pairing was more difficult that the second;
positive values signify the opposite

varW = Nr (Nr +1)(2Nr +1)/6. For Nr > 9 the distribution
of W approaches a normal distribution with σW = √

varW

and zW = W/σW . These resulting probability values zW can
be used as a measure for rejecting the null-hypothesis if zW

is larger than zW c based on the selected significance level.
In our case we calculate the differences using average per-

formance between two mask variants for each single test case
(stereo image pair) from the datasets and then sort all differ-
ences by their absolute value. The resulting sum of the signed
ranks is divided by σW for the corresponding Nr of that com-
parison yielding a single z value each. This test is performed
for all relevant pairings of masks and for each algorithm, but
we will combine the differences for all datasets. Finally we
also calculate the overall z value for each pairing by evalu-
ating the cumulation of all algorithm results. Table 7 shows
the summarized results for all tests. The 100 samples of each
mask generated for rand are used to calculate 100 times the
value of zW for each combination that contains rand. The
table entry contains the arithmetic average of all 100 values.
For this evaluation we keep the sign of the resulting test statis-
tic to preserve the direction of each comparison. The decision
whether to accept or reject the null hypothesis (distribution
of results from different masks are the same) is based on
the selected significance level. This percentage describes the
probability of rejecting a true null hypothesis (type I error).
We now apply a significance level of 5% to the data which
translates to a z value of +/− 1.96. All null hypothesis with
an absolute zW value of higher than zW c = 1.96 can be
rejected.
This results in the following observations:

• (all, rand) is not significantly different, the null-
hypothesis that both confirm to the same distribution can
be accepted

• (shape, box) is significantly different, shape is more dif-
ficult than box

• (all, shape) has the most significant difference, shape
is much more difficult than all. The pairing all, box is
also presenting the same level of significant differences.
(shape, rand) and (box, rand) show slightly less signifi-

cance but are still very definite: both shape and box are
significantly more difficult than rand

• The significance of the results varies widely between the
different algorithms. Older and real-time algorithms tend
to show the highest test statistics. SCAA results in the
same trends as the remaining algorithms but stays always
below the significance level of 5%.

The evaluation paints a clear overall picture: areas identi-
fied by the CV experts as containing a visual hazard guided
by the CV-HAZOP checklist are especially challenging for
the selected CV algorithms. Focusing on these challenging
areas is beneficial for robustness evaluations since it creates
more meaningful test cases.

7 Conclusion

Many critical situations and relations have the poten-
tial to reduce the quality and functionality of CV sys-
tems. The creation of a comprehensive checklist contain-
ing these elements is a crucial component on the road
towards systematic validation of CV algorithms. This paper
presents the efforts of several experts from the fields of
CV as well as risk and safety assessment to systemati-
cally create such a list. To the authors’ best knowledge,
this is the first time that the risk analysis method HAZOP
has been applied extensively to the field of computer
vision.

The CV-HAZOP is performed by first introducing a
generic CV model which is based upon information flow
and transformation. The model partitions the system into
multiple subsystems which are called locations. A set of
parameters for each location is defined, that characterize
the location’s individual influence on information. Addi-
tional special CV-relevant “guide words” are introduced that
represent deviations of parameters with the potential to cre-
ate hazards. The execution of the HAZOP was performed
by a number of authors in parallel, assigning meanings
to each combination of guide words and parameters to
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identify hazards. The individual findings were discussed
and merged into one resulting CV-HAZOP list. A guide-
line for using the hazard list as a tool for evaluating and
improving the quality and thoroughness of test datasets is
provided.

The CV-HAZOP has produced a comprehensive check-
list of hazards for the generic CV algorithm with over 900
unique entries. Each individual hazard is now referable by a
unique hazard identifier (HID). It supports structured analysis
of existing datasets and calculation of their hazard cover-
age in respect to the checklist. We present an example by
applying the proposed guidelines to popular stereo vision
datasets and finally evaluate the impact of identified hazards
on stereo vision performance. The results show a clear cor-
relation: identified hazards reduce output quality.

8 Outlook

The creation or combination and completion of test datasets
using our checklist is the logical next step. We plan to guide
the creation of a stereo vision test dataset with known cov-
erage of hazards from our checklist. Another idea is the
creation of test data that gradually increases the influence
of specific hazards (e.g. amount of low contrast textures).
This allows to find the point of failure and get an accurate
estimation about the robustness of an algorithm when fac-
ing a specific hazard. The usage of our checklist can also be
streamlined. Pre-filtered lists for common applications and
domains provide specific lists without the need of manual
adjustments. We are also investigating the automatic detec-
tion of hazards, i.e. algorithmic checks to determine if and
where a hazard is present in a test image. This will reduce
the manual task of categorizing test data and in the long
run should lead to a fully automatic CV validation frame-
work.

Our HAZOP checklist is not considered final. It will be
updated to include lessons learned during evaluations and
testing or even after tested systems are put into operation.
By sharing this information with the community over our
public HAZOP database we hope to increase quality and
reduce effort in CV robustness evaluation. At this stage, the
CV-HAZOP becomes a structured and accessible reference
hub for sharing experiences with CV algorithm development,
usage, and maintenance.
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Abstract

In recent years, a great number of datasets were pub-
lished to train and evaluate computer vision (CV) al-
gorithms. These valuable contributions helped to push CV
solutions to a level where they can be used for safety-
relevant applications, such as autonomous driving.

However, major questions concerning quality and use-
fulness of test data for CV evaluation are still unanswered.
Researchers and engineers try to cover all test cases by us-
ing as much test data as possible.

In this paper, we propose a different solution for this
challenge. We introduce a method for dataset analysis
which builds upon an improved version of the CV-HAZOP
checklist, a list of potential hazards within the CV domain.
Picking stereo vision as an example, we provide an extens-
ive survey of 28 datasets covering the last two decades.
We create a tailored checklist and apply it to the datasets
Middlebury, KITTI, Sintel, Freiburg, and HCI to present a
thorough characterization and quantitative comparison. We
confirm the usability of our checklist for identification of
challenging stereo situations by applying nine state-of-the-
art stereo matching algorithms on the analyzed datasets,
showing that hazard frames correlate with difficult frames.
We show that challenging datasets still allow a meaning-
ful algorithm evaluation even for small subsets. Finally, we
provide a list of missing test cases that are still not covered
by current datasets as inspiration for researchers who want
to participate in future dataset creation.

1. Introduction

Vision solutions are used in safety critical applications
such as self-driving cars and guided surgical procedures.
Rigorous quality assurance measures are thus needed to en-
sure safe operations. Software quality assurance provides
two main techniques that can be applied in CV: verifica-

tion and validation (V&V). Verification is the process of
checking whether a given implementation fulfills the spe-
cifications used to define the program’s behavior. In es-
sence these are semi-automatic or automatic checks to de-
tect software bugs and glitches. Validation on the other hand
evaluates if the system fulfills a given task even under dif-
ficult circumstances. This is done by using test datasets
and comparing the results obtained from the system to a
defined ground truth (GT). Major questions about the qual-
ity and usefulness of test data for CV evaluation are still
unanswered: What are the characteristics of a good data-
set? How can shortcomings be identified and supplemented
to create test datasets which are truly effective at uncovering
algorithmic shortcomings? In this work we tackle the ques-
tion: What constitutes good test data for robustness testing,
i.e. the detection of possible shortcomings and weaknesses.
We show that special care should be taken to cover a wide
variety of difficult situations because whether for validation
of CV algorithms or for training applications: Datasets need
a mixture of positive cases (the Good), border cases (the
Bad), and negative test cases (the Ugly). This paper focuses
on test data for validating stereo vision algorithms but the
presented methodology is applicable to basically all CV al-
gorithms as well as the composition of machine learning
training data.

To give an idea about the impact of selected datasets,
Figure 1 shows the number of papers which cite stereo vis-
ion datasets published annually at three major computer
vision conferences (CVPR, ICCV, and ECCV). It is inter-
esting to note that the popular Middlebury dataset (indoor
scenes) was recently overtaken by KITTI (driving scenes)
which shows the importance of stereo vision in the field of
autonomous driving and driver assistance systems.

Section 2 gives a thorough overview and listing of 28
stereo vision datasets and summarizes how content has
changed historically. Section 3.1 reviews CV-HAZOP, a
tool for systematic analysis of test datasets. It presents
our improvements on the method: specialization of generic
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Figure 1. Number of stereo dataset citations published at
CVPR+ICCV+ECCV for the years 2012-2016.

entries and instructions for easier analysis using the check-
lists. We apply the proposed concepts and create a specific
checklist of dangerous/risky situations for stereo vision in
Section 4.1. We evaluate five representative stereo vision
datasets by using the proposed methodology in Section 4.2.
In addition a range of stereo vision algorithms is evaluated
in Section 4.3 using both traditional metrics and new met-
rics based on the results obtained by our checklist. Sec-
tion 4.4 shows that the usage of challenging frames results
in a comparable overall outcome even for a small number
of test cases. Our checklist contains many critical situations
that have not been found in any of the datasets. Section 4.5
presents this useful information for designing future data-
sets while the lessons-learned are shown in Section 4.6. Fi-
nally, Section 5 summarizes all findings and contributions
of this paper.

2. State-of-the-Art

Reference data is the basis for performance analysis in
computer vision. High-quality data is always well received
in the community because it is essential to evaluate al-
gorithm performance allowing the development of more
accurate algorithms. Moreover, an objective comparison
between algorithms using standardized data is important for
a practical understanding of the current state-of-the-art in
the respective area. Progress in stereo algorithm perform-
ance and the emerging applications of stereo technology
motivate the need for more challenging datasets with accur-
ate GT which emerges as a field of research. Among many
others, examples of application domains are: autonomous
driving (AD) [42, 66, 25, 23, 41, 60], space [24], agricul-
ture [46], and medicine [6, 37, 36]. Early research in-
troduced first datasets and performance metrics to show
comparable results on the proposed algorithms. Initially,
no common sequences/datasets were adopted. A clear do-
main or standard performance metrics definition were miss-
ing as well. Through the years, the CV community realized
that thorough performance evaluation opens many research
possibilities such as introduction of new datasets cover-
ing different scenarios and situations, analysis of perform-
ance metrics or online benchmarks comparing different al-
gorithms. We now present the evolution of stereo vision

datasets by comparing 28 datasets of the last two decades1.
Table 1 gives an overview and presents quantitative charac-
teristics of each dataset while Figure 2 shows representat-
ive images. We are focusing on the stereo vision test data.
Many datasets contain additional GT (e.g. flow, segmenta-
tion, instances).

We will not compare datasets that have only RGBD data
(no second camera image, e.g. NYU RGB-D [63, 44], TUM
RGB-D [67] or the Berkeley dataset [22]). Please refer to
the recent work of Firman [13] instead. There have been
previous surveys on stereo vision and the interested reader
is referred to [33, 57, 4, 32, 62, 30, 19].

2.1. Dataset Survey

In 2002 the Middlebury group proposed a taxonomy
and a comparison framework of two-frame stereo corres-
pondence algorithms [57]. The Middlebury website [68]
evaluates stereo algorithms online, reports the perform-
ance of submitted algorithms, and offers stereo correspond-
ence software for download. Over the years, the data-
sets were regularly updated: 6 datasets of piecewise planar
scenes (2001), 32 datasets using structured light (between
2003 and 2006) and 43 high-resolution datasets with sub-
pixel accurate ground truth (2014). EISATS [52] provides
different video sequences for the purpose of performance
evaluation. Traffic scenario scenes for evaluation of mo-
tion analysis, stereo vision, and optical flow algorithms are
available to the community. Stereo sequences cover: Night
vision (S1), synthesized (S2), color (S3), gray-level (S4&6),
trinocular (S5&9), and consecutive stereo image pairs (S7).
Neilson and Yang [45] introduced synthetic stereo pairs
which were used to show their new evaluation method
named cluster ranking. The dataset consists of 30 different
stereo pairs containing three different baseline separations
and three different noise levels and includes disparity maps
and evaluation masks [48]. New College [65] is a large
dataset (∼ 30 GB) collected through the parks and cam-
pus of Oxford New College. The dataset focuses on out-
door SLAM (Simultaneous Localization and Mapping) ap-
plications and includes trajectories, stereo/omnidirectional
imagery, as well as laser range/reflectance data. Pittsburgh
Fast-Food [8] is a dataset containing 61 categories of food
items. It aims to provide standard baselines for evaluating
the accuracy of CV algorithms. EVD [9] dataset was de-
veloped for evaluating MODS (Matching On Demand with
view Synthesis), an algorithm for wide-baseline matching
of outdoor scenes but only includes homography data as
GT. Ford Campus [50] dataset (∼100 GB) is recorded using
a 3D scanner laser and an omnidirectional camera inten-
ded for testing SLAM algorithms for AD. In 2012 Geiger
et al. [15] introduced the KITTI Vision Benchmark Suite

1We tried to include every stereo vision dataset that also publishes GT;
some datasets without GT were added due to their popularity.
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Table 1. Summary of stereo datasets. ‘w. GT’ = number of images available with GT data, ‘wo’ = number without GT data, ‘GT-Acc.’ = GT
accuracy in pixels, † =GT reported but dense GT is not available or the GT is very sparse/semantically oriented) * = algorithm results offered
as GT, <1/N = granularity better than 1/N, S = synthetic, R = real, 1 = single shots, 2 = sequences of length 2, N = longer sequences

NAME YEAR IMAGES DESCRIPTION
Resolution w. GT / wo GT-Acc. Type

Middlebury [57] 2002 410 x 370 6 / — 1/8 R1 Piecewise planar cardboards

Middlebury [58] 2003 410 x 370 2 / — 1/4 R1 Cluttered still life

Middlebury [21] 2007 1390 x 1110 27 / 3 1 R1 Cluttered still life

EISATS S1 [70] 2008 640 x 481 — / 1900 — RN Traffic scenes

EISATS S2 [71] 2008 640 x 480 498 / — <1/256 SN Traffic scenes

Neilson [45] 2008 400 x 400 270 / — 1/16 S1 Still scene with var. textures/noise

EISATS S6 [53] 2009 640 x 480 — / 177 — RN Traffic scenes

New College [65] 2009 512 x 384 — / >100000 — RN Outdoor scenes for SLAM

Pittsburgh [8] 2009 1024 x 768 — / 130 * R1 Fast food items (61 categories)

EVD [9] 2011 1000 x 750 — / 15 — R1 Wide baseline still lifes

Ford Campus [50] 2011 1024 x 768 — / >100000 — RN SLAM, dynamic environments

HCI-Robust [27] 2012 656 x 541 — / 462 — RN Difficult road scenes

KITTI 2012 [15] 2012 1226 x 224 194 / 195 1/256 R2 Suburbs w. little traffic day time

Leuven [31] 2012 316 x 25 20 / 50 † RN Traffic day time

Tsukuba [38] 2012 640 x 480 1800 / — <1/256 SN Office cubicle still life

HCI-Synth [17] 2013 960 x 540 12 / — 1/256 S1 Texture challenges

Stixel [51] 2013 1024 x 333 2988 / — † RN Highway w. good/bad weather

Daimler Urban [59] 2014 1024 x 440 — / 70000 — RN Urban city scenes

Malaga Urban [2] 2014 1024 x 768 — / >100000 * RN Dynamic environments real traffic

Middlebury [56] 2014 1328 x 1108 28 / 15 <1/256 R1 Cluttered indoor still life

Cityscapes [10] 2015 2048 x 1024 — / 20000 * R1 Urban scenes daytime

KITTI 2015 [40] 2015 1242 x 375 200 / 200 1/256 R2 Road scenes with traffic

MPI Sintel [5] 2015 1024 x 436 1064 / — <1/256 SN Adventure movie scenes

Freiburg CNN [47] 2016 960 x 540 35454 / — <1/256 SN Road scene, animation movie

HCI Training [26] 2016 2560 x 1080 1023 / — <1/256 RN Difficult road scenes

SYNTHIA [55] 2016 960 x 720 >100000 / — <1/256 SN Diverse driving scenes

Virtual KITTI [14] 2016 1242 x 375 2126 / — <1/256 SN Suburban roads, currently RGBD

Oxford Robot-
Car [35]

To ap-
pear

1280 x 960 >100000 / — <1/256 RN Driving under varying weather and
seasons

Figure 2. Excerpts from the discussed datasets. Images taken from the sources described in Table 1.

which includes a number of benchmarks. Stereo and op-
tical flow data for close to 200 frames are provided. In
addition, annotations include semantic and instance labels

and longer image sequences of 20 frames per scene and
there are about 200 frames where GT is withheld to en-
sure a fair evaluation on their website. In 2015 an updated
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version of the dataset was released containing 400 image
pairs of dynamic city scenes (200 for training and 200 for
testing) and GT which was semi-automatically generated.
Pixels are correctly estimated if the disparity or flow end-
point error is below a certain threshold, either 3 pixels or
5%, and it is required that the methods use the same para-
meter set for all test pairs. Their focus is on AD with the
aim to reduce bias between real data and data generated
under controlled conditions, i.e. laboratory environments.
Objects such as cars and people are visible on each im-
age. The Leuven [31] dataset presents image pairs from
two cameras separated 1.5 meter apart from each other. The
data was acquired in a public urban environment and con-
tains both object class segmentation and dense stereo recon-
struction GT for real world data. Tsukuba [38] dataset is a
synthetic photo-realistic video dataset created as an reen-
actment of their well-known head and lamp stereo scene
[43]. They include computer generated GT data for para-
meters, measurements, 3D position and distances. The 6D
Vision group [11] makes two different datasets available to
the community. The Daimler Urban Dataset [59] consists
of video sequences recorded in urban traffic. Five semantic
classes are defined (building, ground, pedestrian, sky, and
vehicle) and 10% of the dataset is pixel-annotated using
these classes. The Stixel Dataset [51] consists of 12 an-
notated stereo sequences acquired on a highway. Vehicle
data, camera calibration, and GT generated by a fusing in-
formations from manual annotations with ego-motion es-
timations are provided. HCI-Synth [17] contains four data-
sets, each covering a specific issue in stereo vision: visual
artifacts, foreground fattening, decalibration, and texture-
less areas. Malaga Urban dataset [2] was recorded in urban
scenarios using 9 cameras and 5 laser scanners contain-
ing real-life traffic scenes. The dataset is oriented toward
object detection, SLAM, and visual odometry algorithms.
The Cityscapes Dataset [10] was gathered entirely in urban
street scenes focusing on semantic urban scene understand-
ing. The dataset was recorded across several cities and dif-
ferent seasons. A benchmark suite, an evaluation server,
and annotations (detailed for 5000 images and coarse for
20000) are also provided. The MPI Sintel Dataset [5] is
derived from the animated short film Sintel containing di-
verse effects such as scene structure, blur, different illu-
mination, and atmospheric effects. It is designed for the
evaluation of optical flow, segmentation and stereo vision.
Virtual KITTI [14] is a synthetic video dataset generated
using virtual worlds. The scenarios comprise urban set-
tings and the dataset is focused on multi-object tracking.
No stereo setup has been released at the time of writing this
paper (only RGBD). SYNTHIA (SYNTHetic collection of
Imagery and Annotations) [55] is a synthetic dataset collec-
ted using 8 RGB cameras and 8 depth sensors. The data was
acquired in different scenarios (cities, highways and green

areas) under different illumination and weather conditions.
The Oxford RobotCar Dataset [35] was collected by driving
over the same route in Oxford throughout the year and thus
represents good variations in seasons and weather.

2.2. Toward Optimal Test Data

The core problem of test data design is choosing the right
number and kind of test cases. Some works in the CV com-
munity increased the number of sequences to the hundreds
[12, 64, 34], but using more sequences does not necessarily
increase diversity or coverage. Besides that, more data re-
quires more GT, and GT acquisition is well known for being
an error-prone and tedious task. Many recent works gener-
ate synthetic test data, where GT generation is more feasible
and accuracy is higher (see [55, 18, 17, 49, 1, 5]). Another
problem is dataset bias: test datasets without enough vari-
ation cannot reflect real world performance. Thus, research-
ers have begun to assess the role of diversity, coverage, and
dataset bias. Torralba et al. [69] analyzed dataset bias, by
training image classifiers to learn the dataset they belong
to. The VOT challenge [29] performs clustering of a huge
pool of sequences to reduce the size of the dataset to be
evaluated while keeping in mind the diversity of the selec-
ted data. Zendel et al. [74] use a risk analysis procedure
called Hazard and Operability Study (HAZOP) to evaluate
and improve test datasets. HAZOP identifies difficult situ-
ations and aspects present in the dataset showing the hazard
coverage of the dataset.

There are three main categories of test cases in tradi-
tional software quality assurance: positive test cases, border
cases, and negative test cases. Positive test cases [61] rep-
resent normality and shall pose no problem to the algorithm.
Border cases [7] are on the brink between specified and un-
specified behavior but should still create meaningful out-
puts. Negative test cases [61] are expected to fail, but the
error behavior should be well-defined (e.g. marking areas
without meaningful values as invalid).

In this paper we concentrate on selecting challenging
(i.e. border and negative) test cases in datasets to improve
testing for robustness.

3. Methodology
Now we want to analyze some of the datasets presented

in the previous section in depth and evaluate which hazards
are tested by these datasets. We propose a new methodology
based on an existing idea: Applying risk analysis to CV.
First, this quality assurance approach is presented. Then,
we extend the methodology. Finally, we apply this method
to selected stereo vision datasets in Section 4.

3.1. CV-HAZOP

The systematic analysis of aspects that can influence the
output performance and safety of a system is called a risk
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analysis. Zendel et al. [74] apply a standard risk analysis
called HAZOP to generic computer vision algorithms. First,
they define an abstract CV model. Its components and their
parameters create the basis for the HAZOP study. Then,
modifier words called guide words are used to create entries
representing deviations from the expected. These deviations
are applied to each parameter and lead to a multitude of ini-
tial entries for the analysis. CV experts assign meanings,
consequences and eventually hazards to each of these initial
entries. The resulting list of identified vulnerabilities can be
used to evaluate existing datasets and plan new ones. Each
list entry can be referenced using its unique hazard iden-
tifier (HID). This approach allows qualitative and quant-
itative evaluation of datasets by identifying individual test
cases that satisfy a stated checklist entry. However, there is
a shortcoming with the proposed method: In order to have a
unified generic checklist, each entry needs to be interpreted
by the dataset analysts to their individual opinion. This res-
ults in a lot of ambiguity as different analysts might read
and interpret the same entry in considerably different ways
when applying it to the actual task at hand. Therefore we
improve their work in the following aspects:

• Creation of specialized checklists specific to individual
use cases instead of having each analyst start with the
generic risk analysis lists (see Section 3.2).

• Methodology for analyzing datasets using the special-
ized checklist in Section 3.3.

• Application of the presented methods by creating a
specialized checklist for stereo vision (Section 4.1).

• Analysis of popular stereo vision datasets using the
specialized checklist presented in Section 4.3.

3.2. Checklist Specialization

The process starts with the publicly available generic
CV-HAZOP checklist and transforms it into a specific one
suitable for a particular domain and task:

• Decide for each entry in the list whether the hazards
are relevant in the context of the actual task at hand.

• Create a single consensus summary for the entry.
Write down as precisely as possible what is expected
to be in a test image to fulfill the entry.

• Avoid duplicates and generate a concise list with a
minimum of redundancy.

Experience has shown that the resulting list has to be re-
vised after being used by the analysts for the first time. This
resolves misunderstandings as well as annotation bias and
allows to further remove redundancies.

3.3. How to Analyze a Dataset

The main goal of dataset analysis is usually to find at
least one example test image for each checklist entry. This
creates a rough estimate of the covered risks. First the ana-
lyst has to acquire a general overview of the dataset by

noting regularities and reoccurring themes as well as spe-
cial visually difficult situations such as: light sources (l.s.)
visible within the image, visible specular reflections of l.s.,
large glare spots, large reflections showing near-perfect mir-
roring, transparencies, overexposure, underexposure, and
large occlusions.

Now the specialist tries to find a fitting test image for
each entry in the list. The restrictions found at the descrip-
tion are mandatory and reflect the transition from a generic
hazard to the specific one. The relevant image part reducing
the output quality for the target application should be large
enough to have a meaningful impact (e.g. 1/64 of the im-
age) and there should be valid GT available at this location.
Test cases fulfilling only a single hazard with no overlap
are preferred if there are multiple candidates for one entry.
Otherwise images having the strongest manifestation of the
hazard with largest affected areas are chosen.

4. Results

The presented methodology is applied to the stereo vis-
ion use case. A specific checklist is created and used to
analyze popular existing stereo vision datasets. A thorough
evaluation over a wide range of stereo vision algorithms
generates an appropriate background for the following test
data analysis. We show correlations between difficulty of
test cases and predefined hazards from the checklist, indic-
ate remarks about dataset size, and close with an extensive
list of open issues missed in current datasets.

4.1. Stereo Vision Checklist

For our stereo vision checklist we define this use case:
Calculate disparity maps from two epipolar constrained im-
ages without the use of prior or subsequent frames. The
domain for which the algorithms should work is selected
with the test datasets in mind: indoor scenes and outdoor
driving scenes. We exclude most temporal hazards but oth-
erwise regard all generic entries as potential candidates for
our stereo vision checklist. Thus, we start with about 750
generic entries. Many hazards can quickly be disregarded
as being out-of-scope for stereo vision. The remaining 350
entries are discussed and specialized. During this process
some entries are deemed to be too extreme for our domain
and many entries result in duplicates which are already part
of the new checklist. At the end we derive 117 specialized
entries from the generic list. Table 2 shows an excerpt of
representative entries from the full list2. Each example is
later identified in at least one dataset during the analysis.
See Figure 3 for examples to each entry.

2See supplemental material or vitro-testing.com for the full list.
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Table 2. Excerpts from full list of hazards for stereo vision (simplified, l.s. = light source)
hid Loc. / GW / Param. meaning entry
0 L.s. / No / Number No l.s. Highly underexposed image; only black-level noise
26 L. s. / Part of / Position Part of l.s. is visible L.s. in image is cut apart by image border
142 L. s. / Less / Beam prop. Focused beam Scene with half lit object leaving a large portion severely

underexposed
183 Medium / Less / Trans-

parency
Medium is optically thicker than
expected

Fog or haze in image reduces visibility depending on dis-
tance from observer

376 Object / Less / Complex-
ity

Object is less complex than expec-
ted

Scene contains simple object without texture or self-
shading (e.g. grey opaque sphere)

476 Object / No / Reflectance Obj. has no reflectance Well-lit scene contains a very dark object without texture
nor shading

482 Object / As well as / Re-
flectance

Obj. has both shiny and dull surface Object has a large glare spot on its surface that obscures
same areas in the left/right image

701 Objects / Spatial aper. /
Reflectance

Refl. creates a chaotic pattern Large parts of the image show an irregular distorted
mirror-like reflection

904 Obs. / Faster / Position Observer moves too fast Image has parts with clearly visible motion blur
1090 Obs. / No / PSF No optical blurring Image contains strong aliasing artifacts

Figure 3. Identified hazards in datasets corresponding to Table 2

Figure 4. Distribution of hazards per dataset: Dark cells show identified hazards while light cells represent entries with no GT, too small
area or disputed ones; color represents CV-HAZOP category.

4.2. Analyzing Test Data

Of all identified test datasets from Section 2 we concen-
trate on a specific subgroup: All datasets that are public,
provide GT data, and have at least ten test images. This res-
ults in the following subsets: all Middlebury datasets, both
KITTI datasets, Sintel, HCI Training 1K, and Freiburg3.
The Oxford RobotCar and SYNTHIA datasets are certainly
interesting for this evaluation but have been published too
recently given their huge size for us to process.

The dataset analysis commences as described in Sec-
tion 4.3. Two additional analysts as well as all authors par-
ticipate, ensuring that each dataset is analyzed by at least
two different people to reduce bias. In total, 76 hazards
are found across all the datasets. They result in 48 unique
hazards out of 117. Most hazards are found in the HCI
Training Dataset, Freiburg, and Sintel (16 each) followed
by the KITTI and Middlebury datasets (14 each). Figure
3 gives some examples of identified hazards. The entries
correspond to the rows of Table 2. Some hazard entries are
deemed to be unreliable for the upcoming evaluation due to
missing GT, insufficient size, or disagreement between ex-

3Freiburg is annotated without flying things. These scenes are too
chaotic for analysts to evaluate in a reasonable time.

perts. These disputed entries were removed from the eval-
uation. Figure 4 visualizes the hazard distribution over all
datasets. This still leaves 50 entries uncovered by any of the
datasets. Section 4.5 will discuss these open issues.

4.3. Dataset Evaluation

The following stereo vision algorithms are now evalu-
ated on the analysed datasets: SAD + Texture Thresholding
(TX) & Connected Component Filtering [28], SGM [20]
with rank filtering (RSGM), Elas [16] + TX & Weighted
Median Post Processing Filtering (WM), Cost-Volume Fil-
tering (CVF) & WM[54], PatchMatch (PM) & WM [3],
Cross-Scale Cost Aggregation using Census and Segment-
Trees (ST) & WM [75, 39], SPSS [72], and MC-CNN [73]
using their KITTI2012 pre-trained fast network. Average
RMS and bad pixel scores for each test image in the data-
sets are calculated as evaluation metrics.

Figure 5 shows a summary of the difficulty for each data-
set based on the performance of each algorithm. Unfilled
bars visualize the relative amount of frames in the whole
dataset with the specified difficulty, while filled bars denote
the amount of hazard frames within this range of difficulty.
All bars are normed to their respective maximum number.
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As expected, the algorithms behave quite differently on the
same test data due to their different implementations and
performance varies depending on the dataset4. It is evident
that hazard frames strongly group at the bins of higher diffi-
culty. Filled bars are generally higher than unfilled bars for
difficult frames (bins D/E) and lower for easier frames (bins
A/B). This trend can be observed in each of the datasets for
all algorithms.

Figure 5. Difficulty distribution of frames in each dataset. Relat-
ive number of pixels having an error > 4 disparities sorted into
5 bins: A:[0-5%), B:[5-10%), C:[10-20%), D:[20-50%), E:[50-
100%]. Right side: number of frames in full dataset (no-fill bars)
/ with hazards (solid bars). All bars (no-fill/solid) of a single plot
add up to these respective numbers (first/second).

4.4. Data Size

One important aspect of test dataset design is using the
right data size. Too much redundancy increases processing
time and might drown relevant individual test cases in a
flood of meaningless repetitions. Too few test cases, on the
other hand, will prevent the detection of important short-
comings due to missing scenarios.

For our experiment we sort all frames by their difficulty
according to performance per algorithms. We choose a sub-
set of all frames and iteratively calculate the average per-
formance over the subset adding easier frames with each
step. In the first experiment we randomly pick frames from
the dataset, achieving a good representation for the entire
dataset. In our second experiment we only add the easiest
frames of the dataset. In the third experiment we only use
frames identified by the HAZOP analysis and add them in
hardest-first manner. To make the results comparable we
plot the accumulation of all frames up to the number of an-
notated hazard frames.

Figure 6 shows a comparison of the results (random,
best first, HAZOP) for the Sintel dataset. Using only haz-
ard frames allows the same level of distinction between al-
gorithms with comparable numbers of images. Selecting
hard frames is a valid way to evaluate algorithms. The ad-
vantage of using hazard frames in comparison to random

4See supplemental material for addition algorithm performance graphs.

picking is that they also give insights into why a specific
test case failed.

Figure 6. Comparison of cumulative average performance of 13
frames from Sintel: Random picking, easiest frames, hazard
frames (all sorted by difficulty) using the bad pixel metric with
a threshold of 4.

4.5. Missing Tests

There were numerous hazard entries which were not
found in any of the test datasets examined by the ana-
lysts (Table 3). These entries were categorized into two
groups: border cases and negative test cases. The distinc-
tion between the two is sometimes dependent on the do-
main (e.g. not every implementation has to work with a
large field-of-view (FOV) or when there is rain/snow in the
scene). For this checklist we tried to cover a very broad do-
main and require a lot of robustness from the algorithm, i.e.
indoor scenes and outdoor street environments under dif-
ficult weather conditions. Using these guidelines we also
decided on the clustering into the Bad and the Ugly groups.
Positive test cases are usually easy to define. Therefore, we
focus on difficult test cases.

4.6. Future Work

Testing algorithms with single test cases for each haz-
ard allows for valuable insights, but more than a single data
point is needed for representative statistics. Systematic test
data, gradually increasing in difficulty, should be used to
evaluate the breaking point of the algorithm (in regard to
a specific hazard). Frame-based annotation should be aug-
mented using labels within the images. This allows eval-
uations of hazards affecting smaller areas which otherwise
get outweighed by the surrounding area’s influences.

Focusing on the most difficult frames of a dataset can
also give good indications about hazards without the need to
inspect each frame. However, this can introduce a huge bias
toward the evaluation metric used and propagate existing
redundancy.

5. Conclusion
This paper focuses on analyzing datasets for their ability

to test the robustness of CV applications. A thorough survey
of 28 existing stereo vision test datasets demonstrates their
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Table 3. Selection of hazards missing from current test datasets, see supplemental material for the full list
hid entry
Border cases (the Bad)
6 L.s. and its reflection are visible on the same epipolar line
12 Multiple l.s. are periodically placed and aligned on the same epipolar line
63 L.s. visible in image with a long elongated thin shape (e.g. neon tube) creating an unusual overexposed area
107 L.s. projects structured pattern onto a surface that produces two distinctly different Moire patterns in both images
259 Scene is split into two equal parts: one without particles and another with considerable amount of particles
310 Two different sized objects are positioned on the same epipolar line but their projected views are identical
341 Scene contains an expanding/shrinking object resulting in noticeable radial motion blur
479 Object has strongly reflecting material that mirrors larger parts found on the same epipolar line
523 Two partially transparent objects are entangled in such a way that both allow the view on each other
694 Scene contains a clear reflection of observer together with potential matching parts on the same epipolar
754 Scene contains a prominent rainbow effect (i.e. mist/haze with a view-depended colour band)
758 Scene contains pronounced refraction rings (e.g. oil slick)
803 Cameras have both a wide FOV (>135deg)
918 Lens body/lens hood is prolonged and its corners are thus blocking the view
926 Two cameras both have considerable comparable amount of dirt/pollution but with different distributions
1091 Very different textures in left and right image due to large scale Moire effects
Negative test cases (the Ugly)
245 Cloud of visible particles (e.g. pollen, small leaves) in the air are obscuring the whole scene
504 Highly transparent object encompassing a second opaque object that gets distorted due to the other object’s shape
695 Scene contains a large concave mirror that shows an clean upside-down copy of parts of the scenery
719 Observer is placed between two parallel mirrors facing each other so that “infinite” number of reflections occur
790 Left and right image are the same while showing a diverse scene
916 One camera lens contains dust/dried mud that creates a partially defocused area in the image
921 Lens is broken cleanly leaving a visible crack in the image’s center
933 Images contain rolling shutter artifacts
955 Images contain considerable chromatic aberration and many visible edges
983 Images have considerable amounts of vignetting and scene contains many objects close to the observer
1094 One of the two sensors is somewhat out of focus
1105 Inter-lens reflections create visible copy of objects in the image
1162 Image before rectification originates from considerably rectangular pixels (instead of square, near to e.g. 2:1 ratio)
1166 Images contain strong static image noise for well-lit scenes
1261 One camera delivers negative image (or color channels swapped)
1265 Images use logarithmic quantization instead of linear or wrong gamma mapping

progression over time. We present an improved methodo-
logy based on the CV-HAZOP checklist analysis method
that identifies challenging elements in datasets. We ap-
ply this methodology to selected popular stereo datasets to
identify challenging test cases. Then, we evaluate a broad
range of algorithms on those selected datasets. The cor-
relation between frames identified as challenging and test
case difficulty allows these conclusions: (i) cases marked
as challenging are evidently difficult independent of dataset
or algorithm choice, and (ii) challenging cases of a data-
set are a representative subset of the entire dataset. Testing
with challenging cases only yields similar results compared
to the entire dataset but contains all listed challenges.

Most importantly, we present a list of challenges that are
missing from all the selected datasets. This results in a road-
map of 32 practical inputs for researchers designing new
datasets.

In our opinion, new datasets should increase difficulty

and variability but not necessarily size: In addition to the
easy cases (the Good), more border cases (the Bad) and neg-
ative test cases (the Ugly) should be added. Ultimately, this
will increase applicability, usefulness, and the safety of CV
solutions as well as systems that rely on them.
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málaga urban dataset: High-rate stereo and lidars in a real-
istic urban scenario. International Journal of Robotics Re-
search, 33(2):207–214, 2014. 3, 4

[3] M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereo-
stereo matching with slanted support windows. In British
Machine Vision Conference, 2011. 6

[4] M. Brown, D. Burschka, and G. Hager. Advances in compu-
tational stereo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(8):993–1008, 2003. 2

[5] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-
uralistic open source movie for optical flow evaluation. In
A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-
puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.
Springer-Verlag, Oct. 2012. 3, 4

[6] F. Campo, F. Ruiz, and A. Sappa. Multimodal stereo vision
systems: 3d data extraction and algorithm evaluation. IEEE
Journal of Selected Topics in Signal Processing, 6(5):437–
446, 2012. 2

[7] J. Cem Kaner. What is a good test case? STAR East, 2003. 4
[8] M. Chen, K. Dhingra, W. Wu, L. Yang, R. Sukthankar, and

J. Yang. PFID: Pittsburgh fast-food image dataset. In Pro-
ceedings of International Conference on Image Processing,
2009. 2, 3

[9] K. Cordes, B. Rosenhahn, and J. Ostermann. Increasing the
accuracy of feature evaluation benchmarks using differen-
tial evolution. In IEEE Symposium on Differential Evolution
(SDE), 2011. 2, 3

[10] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. En-
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Abstract Test datasets should contain many different challenging as-
pects so that the robustness and real-world applicability of algorithms
can be assessed. In this work, we present a new test dataset for semantic
and instance segmentation for the automotive domain. We have conduc-
ted a thorough risk analysis to identify situations and aspects that can
reduce the output performance for these tasks. Based on this analysis
we have designed our new dataset. Meta-information is supplied to mark
which individual visual hazards are present in each test case. Further-
more, a new benchmark evaluation method is presented that uses the
meta-information to calculate the robustness of a given algorithm with
respect to the individual hazards. We show how this new approach al-
lows for a more expressive characterization of algorithm robustness by
comparing three baseline algorithms.

Keywords: Test Data, Autonomous Driving, Validation, Testing, Safety
Analysis, Semantic Segmentation, Instance Segmentation

1 Introduction

Recent advances in machine learning have transformed the way we approach
Computer Vision (CV) tasks. Focus has shifted from algorithm design towards
network architectures and data engineering. This refers in this context to the
creation and selection of suitable datasets for training, validation, and testing.

This work focuses on the creation of validation datasets and their accompa-
nying benchmarks. Our goal is to establish meaningful metrics and evaluations
that reflect real-world robustness of the tested algorithms for the CV tasks of
semantic segmentation and instance segmentation, especially for autonomous
driving (AD). These tasks represent essential steps necessary for scene under-
standing and have recently seen huge improvements thanks to deep learning
approaches. At the same time, they are basic building blocks of vision-based
advanced driver-assistance systems (ADAS) and are therefore employed in high-
risk systems.

Demanding CV tasks are becoming increasingly important in safety-relevant
ADAS applications. This requires solutions that are robust against many perform-
ance-reducing factors (e.g. illumination changes, reflections, distortions, image
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Figure 1. Examples of hazards found in the WildDash dataset. See Table 1 for de-
scriptions.

noise). These factors can be seen as hazards, influences potentially harmful to
algorithm performance. Each hazard poses a potential risk and should be tested
thoroughly to evaluate the robustness and safety of the accompanying system.
Classic risk analysis applied to machine learning systems encompasses an inher-
ent problem: Even if the learning process itself is well-understood, the relation
between cause and effect, and the origin of erroneous behaviors are often hard
to comprehend: if something goes wrong, it can be difficult to trace back the
reason. Incorporating well-categorized test data promises to overcome this is-
sue. Highly expressive meta-information (i.e. describing which aspects and haz-
ards are present in a given test image) allows for reasoning based on empirical
evaluations during the test phase: if a statistically significant amount of tests
containing a specific hazard fails, it can be assumed that the system is not ro-
bust against this hazard. The underlying assumption of this work is: if we use
machine-learning-based mechanisms in systems that represent potential risks to
human life, a systematic approach comprehensible to humans for testing these
components is essential. Only then, sufficient certainty can be obtained regard-
ing the underlying risk and its propagation from one sub-system to others. Data,
metrics, and methodologies presented in this work are designed based on this
assumption.

Another influential factor regarding the quality of a test set is the inherent
dataset bias (see [1]). Most of the publicly available datasets for semantic and
instance segmentation in the ADAS context published in recent years still suffer
from being too focused on a certain geographical region. These datasets have a
strong bias towards Western countries, especially Central Europe. The dataset
presented in this work aims to minimize this shortcoming. It embraces the global
diversity of traffic situations by including test cases from all over the world.
Furthermore, a great variety of different ego vehicles with varying camera setups
extracted from dashcam video material is provided. This ultimately results in a
vivid cross-section of traffic scenarios, hence the title WildDash.

The main contribution of this work is a novel dataset for semantic and in-
stance segmentation, that (i) allows for backtracking of failed tests to visual risk
factors and therefore pinpointing weaknesses, (ii) adds negative test cases to
avoid false positives, and (iii) has low regional bias and low camera setup bias
due to its wide range of sources.
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Figure 2. Example frames of existing datasets. From left to right: CamVid, Cityscapes,
KITTI, Playing for Benchmarks, and Mapillary Vistas.

Section 2 gives a thorough overview of existing datasets for semantic and
instance segmentation focused on ADAS applications. Section 3 summarizes our
process of applying an established risk-analysis method to create a checklist of
critical aspects that should be covered by test data to evaluate algorithm robust-
ness. Section 4 explains how we applied the generated checklist and designed our
new test dataset: WildDash. In Section 5, we demonstrate how the additional
meta-information about included hazards can be used to create new hazard-
aware metrics for performance evaluation. Section 6 describes the training setup
of our baseline models and presents detailed segmentation results on specific
aspects of WildDash. Section 7 gives a short outlook, followed by a summary in
Section 8.

2 Related Work

2.1 Segmentation Datasets

Brostow et al. [2] introduced CamVid, one of the first datasets focusing on se-
mantic segmentation for driving scenarios. It is composed of five video sequences
captured in Cambridge consisting of 701 densely annotated images, distinguish-
ing between 31 semantic classes. In 2013 the 6D Vision group [3] published
the initial version of the Daimler Urban Dataset [4]. It contains 5000 coarsely
labeled images (ground, sky, building, vehicle, pedestrian) extracted from two
videos recorded in Germany.

The release of the Cityscapes Dataset [5] in 2015 marks a breakthrough in
semantic scene understanding. Several video sequences were captured in cities
across Germany and Switzerland and 25000 images labeled (5000 fine/20000
coarse) with 30 different classes. The corresponding benchmark is still the most
commonly used reference, currently listing 106 algorithms for semantic segment-
ation and 29 algorithms for instance segmentation (July 2018). In the year 2017,
the Raincouver dataset [6] contributed additional frames depicting road layouts
and traffic participants under varying weather and lighting conditions. Published
in the same year, Mighty AI Sample Data [7] is composed of dashcam images
representing different driving scenarios in the metropolitan area of Seattle. The
year 2018 marked two more major contributions in terms of quality and data
variability, which represent a further step towards reducing dataset bias. One
of them is Mapillary Vistas Dataset [8] which contains more than 25000 high-
resolution images covering around 64 semantic classes, including varying lighting
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conditions, locations and camera setups. Berkeley Deep Drive [9], on the other
hand, specializes more on challenging weather conditions and different times of
the day. The KITTI Vision Benchmark Suite, first introduced by Geiger et al.
[10] in 2012 and aimed at multiple tasks such as stereo, object detection, and
tracking was updated in 2018 with ground truth for semantic segmentation [11].

In addition to annotations of real images, a number of synthetically gener-
ated datasets emerged in recent years. One of the first contributions to the area
of Urban Scene Understanding was Virtual KITTI by Gaidon et al. [12] in 2016.
It represents a virtual reconstruction of the original KITTI dataset, enhanced
by a higher variety of weather conditions. Published in the same year, SYN-
THIA [13] focuses on multiple scenarios (cities, motorways and green areas) in
diverse illumination, weather conditions, and varying seasons. A recent update
called SYNTHIA-SF [14] furthermore follows the Cityscapes labeling policy. In
the following year, Richter et al. [15] introduced the synthetic benchmark suite
Playing for Benchmarks. It covers multiple vision tasks such as semantic seg-
mentation, optical flow, and object tracking. High-resolution image sequences
for a driving distance of 184 km are provided with corresponding ground-truth
annotations.

2.2 Risk Analysis in Computer Vision

A number of publications regarding risk analysis in CV have been published
during the last years, since the community seemingly gained awareness for the
necessity to train and test for increasingly difficult conditions.

In 2015, Zendel et al. [16] introduced the concept of risk analysis for CV tasks.
In contrast to high-level driving hazards (e.g. car crash, near-miss events as in
the SHRP 2 NDS database [17]), this work focuses on visual hazards (e.g. blur,
glare, and overexposure). They create a checklist of such hazards that can impair
algorithm performance. The list has more than 1000 generic entries which can be
used as seeds for creating specialized entries for individual CV tasks. Such were
presented for stereo vision in 2017 in Analyzing Computer Vision Data [18] where
they strongly emphasize on the underrated aspect of negative test cases. These
are tests where algorithms are expected to fail. Since most of the data is highly
focused on training, many works do not consider the negative test class, neither
in the evaluation metric nor in the data itself. For a safe and robust system it
is important that an algorithm does not ‘overreact’ and knows when it is not
able to provide a reliable result. No indications have been found in any of the
mentioned evaluation frameworks and benchmarks that true negative test cases
are evaluated. Most common is the don’t-care-approach (e.g. in Cityscapes),
where all the regions that are annotated using a negative (=unknown/invalid)
class are not evaluated. This means that an image containing only negative
classes is not evaluated at all.

Both risk analysis publications [16] and [18] include interesting claims and
tools for measuring and improving test data quality. However, the authors only
apply their concepts to existing test datasets and do not create a new dataset
themselves.

41



WildDash - Creating Hazard-Aware Benchmarks 5

In this work we are trying to build upon their work and actually create a
dataset allowing for hazard-aware evaluation of algorithms. In addition, Wild-
Dash deliberately introduces negative test cases to close this crucial gap.

3 Risk Analysis

The process of collecting a comprehensive list of factors that pose risks to a
system and the overall assessment of these risk factors is called risk analysis. For
the course of the WildDash dataset, we started with the results from a publicly
available generic CV risk analysis called CV-HAZOP [16]. The generic entries
from this list are concretized to create a version specific to the current task at
hand. The first step of conducting the risk analysis is the definition of the CV
task itself that shall be evaluated.

We designed our dataset as an organic extension to existing datasets. Thus,
we chose to use a task definition close to the one used in the popular City-
scapes [5] dataset. It provides a valuable tool solving important tasks for autonom-
ous driving: navigation, scene understanding and collision avoidance. The task
definition categorizes test cases: those which are in-scope as positive test cases
vs. those lying outside the task definition as negative test cases.

3.1 Task Definition: Semantic Segmentation

The algorithm shall assign a single best fitting label to each pixel of a given color
image. The specific labels and semantics for these labels can be found in Cordts
et al. [5] and focus on scene understanding for autonomous driving.

In essence, the task focuses on assigning each pixel in an image to exactly
one of these possible classes: road, sidewalk, parking, rail track, person, rider,
car, truck, bus, on rails, motorcycle, bicycle, caravan, building, wall, fence,
guard rail, bridge, tunnel, pole, traffic sign, traffic light, vegetation, terrain,
sky, ground, dynamic, and static.

All scenes depict frontal vehicle views of traffic scenarios. The camera angle
and orientation should be comparable to a human driver or co-driver. It can be
positioned outside the vehicle or behind the windscreen.

Some of the labels do not affect the results because they are not part of the
evaluation in the Cityscapes benchmark. Other labels cause varying annotations,
as the corresponding concepts are hard to narrow down into a concrete task
description for an annotator. To correct this, we deviate from the original work
of Cordts et al. [5] as follows:
• The trailer label is not used. Trailers are labeled as the vehicle that is

attached to it and parked trailers without an attached vehicle as dynamic.
• The label pole group is not used. These parts are labeled as pole.
• Areas within large gaps in an instance label are annotated by the con-

tent visible in that hole, in contrast to being filled with the enclosing label
(original Cityscapes). Whenever content is clearly visible through the hole
consisting of more than just a few pixels, it is annotated accordingly.
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The original Cityscapes labels are focusing on German cities. We are refining
and augmenting some of the definitions to clarify their meaning within a broader
worldwide context:
• Construction work vehicles and agriculture vehicles are labeled as truck.
• Overhead bridges and their support pillars/beams are labeled as bridge.

Roads/sidewalks/etc. on bridges still keep their respective labels.
• Two/Three/Four-wheeled muscle-powered vehicles are labeled as bicycle.
• Three-wheeled motorized vehicles are labeled as motorcycle (e.g. auto rick-

shaws, tuk-tuk, taxi rickshaws) with the exception of vehicles that are in-
tended primarily for transport purposes which get the truck label.

3.2 Task Definition: Instance Segmentation

Instance segmentation starts with the same task description as semantic seg-
mentation but enforces unique instance labels for individual objects (separate
labels even for adjoint instances). To keep this benchmark compatible with City-
scapes, we also limit instance segmentation to these classes: person, rider, car,
truck, bus, on rails, motorcycle, bicycle, caravan.

3.3 Concretization of the CV-HAZOP List

The concretization process as described in Analyzing Computer Vision Data [18]
starts from the generic CV-HAZOP list. Using the task definitions (3.1 and 3.2),
the relevant hazards are filtered. In our case, we filtered out most temporal effects
(as the task description requires a working algorithm from just one image without
other sequence information). The remaining entries of the list were reviewed and
each fitting entry was reformulated to clearly state the hazard for the given task
definition.

3.4 Clustering of Hazards

Getting a specific evaluation for each identified hazard would be the ideal out-
come of a hazard-aware dataset. However, real-world data sources do not always
yield enough test cases to conclusively evaluate each risk by itself. Furthermore,
the effects seen within an image often cannot be attributed to a single specific
cause (e.g. blur could either be the result of motion or a defocused camera).
Thus multiple risks with common effects on output quality were clustered into
groups. The concretized entries have been clustered into these ten risk clusters:
blur, coverage, distortion, hood, occlusion, overexposure, particles, underexpos-
ure, variations, and windscreen. See Table 1 for an explanation of each risk
cluster and Figure 1 for example images containing these hazards.

4 WildDash Setup

4.1 Dataset collection

Gathering a lot of challenging data without strong content bias is a hard task.
Therefore, the input images of our dataset are collected from contributions of
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Table 1. Risk clusters for WildDash. Figure 1 contains examples in the same order

Risk Cluster Hazard Examples

blur Effects of motion blur, camera focus blur, and compression artifacts
coverage Numerous types of road coverage and changes to road appearance
distortion Lens distortion effects (e.g. wide angle)
hood Ego-vehicle’s engine cover (bonnet) is visible
occlusion Occlusion by another object or the image border
overexposure Overexposed areas, glare and halo effects
particles Particles reducing visibility (e.g. mist, fog, rain, snow)
underexposure Underexposed areas, twilight, night shots
variations Intra-class variations, uncommon object representations
windscreen Windscreen smudges, raindrops and reflections of the interior

Figure 3. Positive test cases from wd val 01 (cn0000, si0005, us0006, and zm0001)
together with a visualization of the respective semantic segmentation and color legend.

many ‘YouTube’ authors who either released their content under CC-BY license
or individually agreed to let us extract sample frames from their videos. Potential
online material is considered of interest with regard to the task descriptions (3.1
and 3.2) if it met the following requirements: (i) data was recorded using a
dashcam, (ii) front driving direction, (iii) at least one hazard situation arises,
(iv) some frames before and after the hazard situation exist. This allows for a
later expansion of our dataset towards semantic flow algorithms. All such videos
are marked as a potential candidate for WildDash. From the set of candidate
sequences, individual interesting frames were selected with the specific hazards
in mind. Additionally, the content bias was reduced by trying to create a mixture
of different countries, road geometries, driving situations, and seasons.

This selection resulted in a subset of about 1800 frames. A meta-analysis was
conducted for each frame to select the final list of frames for the public validation
and the private benchmarking dataset.
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4.2 Meta-data analysis

In order to calculate hazard-aware metrics the presence of hazards in each frame
needs to be identified. Another design goal of WildDash is limited redundancy
and maximal variability in domain-related aspects. Therefore, (i) domain-related
and (ii) hazard-related meta-data is added to each frame. The following pre-
defined values (denoted as set {.}) are possible:
• Domain-related: environment {‘city’, ‘highway’, ‘off-road’, ‘overland’, ‘sub-
urban’, ‘tunnel’, ‘other’} and road-geometry {‘straight’, ‘curve’, ‘round-
about’, ‘intersection’, ‘other’}.

• Hazards-related: One severity value {‘none’, ‘low’, ‘high’} for each of the
ten risk clusters from Table 1.

The severity for a given risk is set to ‘high’ if large parts of the image are clearly
affected or the appearance of humans/vehicles is affected. All other occurrences
of the risk are represented by ‘low’ severity or if not present by ‘none’.

4.3 Positive test cases

Based on the meta list, a diverse set of test frames covering each of the haz-
ards has been selected and separated into a public validation set (wd val 01, GT
is published) of 70 test cases and a hidden benchmark set (wd bench 01, GT
is withheld) of 141 test cases. The GT has been generated using a dedicated
annotation service and many additional hours by the authors to ensure consist-
ent quality. Figure 3 shows a few examples taken from the WildDash public
validation set.

4.4 Negative test cases

One of the central requirements presented by Zendel et al. [18] is the inclusion
of negative test cases: tests that are expected to fail. The point of having these
images in the dataset is to see how the system behaves when it is operating
outside its specifications. A robust solution will recognize that it cannot operate
in the given situation and reduce the confidence. Ideally, a perfect system flags
truly unknown data as invalid. Table 2 lists test cases which increasingly divert
from the region of operation of a regular assisted driving system while Figure 4
shows some of the respective input images. With 141 positive and 15 negative
test cases the WildDash benchmarking set wd bench 01 contains a total of 156
test cases.

5 Hazard-Aware Evaluation Metrics

The meta-analysis of the dataset allows for the creation of subsets for each of
the identified hazard clusters. For each group, all frames are divided by severity
into three groups: none, low and high. Performance evaluation can be conducted
for each severity-subset to obtain a coarse measure of the individual hazard’s

45



WildDash - Creating Hazard-Aware Benchmarks 9

Table 2. Negative test cases from wd bench 01.

Altered valid scenes Abstract/Image noise

wd0141 RGB/BGR channels switched wd0142 White wall close-up
wd0143 Black-and-white image wd0144 Digital image receive noise
wd0148 Upside-down version wd0146 Analog image receive noise
wd0151 Color-inverted image wd0147 Black image with error text
wd0155 Image cut and rearranged wd0154 Black sensor noise

Out-of-scope images

wd0145 Only sky with clouds
wd0149 Macro-shot anthill
wd0150 Indoor group photo
wd0152 Aquarium
wd0153 Abstract road scene with toys

Figure 4. Negative test cases wd0141, wd0142, wd0145, wd0146, and wd0152. See
Table 2 for content descriptions

impact on an algorithm’s performance. The Intersection over Union (IoU) meas-
ure [19] represents the ‘de facto’ established metric for assessing the quality
of semantic segmentation algorithms. For each label the ratio of true posit-
ives (i.e. the intersection of predicted and annotated labels) over the union of
true positives, false positives and false negatives is evaluated. The IoU scores
per label class are averaged to calculate a single performance score per haz-
ard subset called mean IoU (mIoU). The impact of the individual hazard re-
flects its negative effect on the algorithm’s performance. It is calculated as:

rimpact = 1.0−min(mIoUlow,mIoUnone)
max(mIoUlow,mIoUhigh)

. Therefore, a value of 0.0 implies no impact,

while a score of e.g. 0.5 corresponds to a hazard of reducing performance by 50%.
The subset low represents border cases between influential and non-influential
test cases and thus mIoUlow is present at both numerator and denominator.

Occlusions are only relevant for foreground objects with instance annotations.
To mitigate this, the risk cluster occlusions evaluates only labels with instance
annotations (human and vehicle category) and ignores the single label with the
largest area (as this is normally the fully visible occluder).

5.1 Evaluating negative test cases

Evaluation of negative test cases might seem straight forward at first: per defin-
ition we expect an algorithm to fail for negative test cases in a graceful manner,
i.e. mark the output as invalid. This creates a paradox situation: output marked
as invalid is considered to be correct while any other output is counted as in-
correct. This binary form of evaluation is not very appropriate, especially as the
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borderline between positive and negative test cases is ambiguous. Just because a
specific situation/aspect is not clearly stated in the domain/task definition does
not make it a clean negative test case (i.e. ‘algorithm must fail here’). Often, a
test case states a situation that is clearly not part of the system’s task definition;
for example, an upside down image of a street scene. It is still possible to assign
unambiguous legitimate semantic labels for this test image. In these cases, we
treat all algorithm output as correct, that is either equal to such legitimate label,
or marked as invalid.

6 Evaluation

This section provides first valuable insights concerning opportunities and short-
comings of recently published datasets predominantly used in the research field of
semantic segmentation. For this purpose, three baseline models (i.e. cityscapes,
mapillary, mapillary+) varying with regard to the amount and source of train-
ing data, were trained from scratch and thoroughly evaluated on subsets of the
WildDash dataset representing specific visual hazards.

6.1 Experimental Setup

This section describes the setup of the baseline models, which are based on
the pytorch implementation of Dilated Residual Networks (drn) [20]. Employing
dilated convolution for semantic segmentation facilitates an efficient aggregation
of features at multiple scale levels without losses introduced by downsampling.
To ensure comparability between all models, each experiment has been carried
out with the same training configuration. The network architecture drn-d38 was
selected due to the balance between labeling accuracy and training duration it
provides. Moreover, the input batches consist of 8 pairs of input images and cor-
responding annotations each, and are randomly rescaled by a factor between 0.5
and 2 to improve scale invariance, randomly flipped in horizontal direction, and
finally randomly cropped to a size of 896 x 896 pixels. As a pre-processing step,
the Mapillary Vistas dataset has been rescaled and cropped to fit the resolution
of Cityscapes (2048 x 1024 pixels). Since the Cityscapes dataset consists of 3475
pixel-level annotations, subdivided into 2975 training and 500 validation images,
and therefore provides the least amount of training data, a subset of Mapillary
with a similar number of images has been used to train the comparable baseline
method, further referred to as mapillary. During our experiments the 1525 City-
scapes and 5000 Mapillary test images are not included, since they are withheld
for benchmarking purposes and thus not publicly available. The baseline method
mapillary+ uses all publicly available Mapillary data of 18000 training and 2000
validation images. To cope with the increased amount of sampled input data a
faster decay of the learning rate was achieved by lowering the step size from 100
to 17 epochs during the last experiment. Training input has been restricted to
the labels evaluated in the WildDash benchmark without performing any further
label aggregation.
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Table 3. mIoU scores of the conducted experiments on varying target datasets

baseline model/dataset Cityscapes Mapillary
WildDash
(val/bench)

WildDash Negative
Test Cases

cityscapes 63.79 30.31 16.5/15.4 7.2
mapillary 44.81 50.24 29.3/27.4 12.9
mapillary+ 46.34 52.34 30.7/29.8 27.4

6.2 Cross-dataset validation

To quantify shortcomings and the degree of variability inherent to semantic
segmentation datasets, the learned models are validated on three target datasets.
A detailed overview of the corresponding evaluation is given in Table 3.

As expected, the models perform best on the datasets they have been trained
on. The highest mIoU of 63.79 is achieved by the cityscapes model. However, the
validation set of the Cityscapes dataset consists of only three image sequences
captured in Central European cities. The results of this model on datasets like
Mapillary and WildDash show that training solely on Cityscapes images is in-
sufficient to generalize for more challenging ADAS scenarios. The model cannot
cope with visual hazards effectively. The highest score on WildDash is achieved
by the mapillary+ experiment with mIoU scores of 30.7 on validation and 29.8 on
the test set, based on more distinct scene diversity and global coverage present
within the training data of Mapillary. Exemplary results of our baseline experi-
ments on WildDash validation images are shown in Figure 5. As long as input

Figure 5. Qualitative results of our baseline models on WildDash validation images
(left to right: input image, corresponding ground truth, and the inferred labelings of
our baseline models cityscapes, mapillary, and mapillary+)

images bear a high resemblance to the training set of Cityscapes, as shown in
the first row, no significant loss in labeling performance occures. However, mod-
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Table 4. mIoU scores of the baseline model mapillary+ on hazard-related WildDash
subsets, grouped by their severity of the respective hazard. The impact score, which is
introduced in section 5, quantifies the potential negative influence of a specific hazard
on the labeling performance

hazard blur
cover-
age

distor-
tions

hood
occlu-
sion

over-
exp

under-
exp

par-
ticles

wind-
screen

vari-
ations

none 29.0 31.0 31.4 32.9 26.4 32.2 31.5 30.2 31.8 29.0
low 32.2 28.6 28.2 27.8 32.1 23.5 31.0 29.3 28.5 30.7
high 26.6 32.8 26.8 22.4 30.4 17.0 20.8 29.3 27.8 27.9

impact 0.17 0.08 0.15 0.32 0.05 0.47 0.34 0.03 0.12 0.09

Table 5.mIoU scores of the baseline model mapillary+ on domain subsets ofWildDash

domain city
high-
way

off-
road

over-
land

sub-
urban

tun-
nel

curve
inter-
section

round-
about

stra-
ight

mIoU 31.3 24.5 32.7 29.3 31.6 19.6 28.7 31.7 36.6 28.0

els like mapillary and mapillary+ are clearly more robust to the challenging
WildDash scenarios.

6.3 Testing visual hazards

Detailed results on varying subsets of the WildDash test dataset, representing
a diverse range of visual hazards, are reported in Table 41. As expected, the
influence of the individual hazards is clearly reflected in the algorithm perform-
ance. Evaluating hazards causing significant image degradations (e.g. blur, over-
and underexposure) show an high impact, thus leading to lower algorithm per-
formance. On the other hand, effects caused by lens distortions lead to a graceful
decrease of labeling accuracy. Furthermore, mixing environmental effects such as
fog and heavy rain with slight snowfall, leads to high variations in algorithm per-
formance. This will be considered in the future, by partitioning the risk cluster
particles as two disjunct subsets.

6.4 Testing domain-related aspects

As already discussed, another important aspect of test data is a distinctive and
comprehensive coverage of domain aspects, such as differences regarding envir-
onments and varying types of road layouts. The influence of these aspects is
presented in Table 5. As the results show, labeling performance varies strongly

1 See supplementary material for additional results including instance segmentations
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with regard to the domain. Unsurprisingly, tunnel scenes tend to yield inferior
accuracy due to a mixture of low light conditions and homogeneously textured
regions, as well as their relatively rare occurrence within the training data. The
algorithm performs robust in the city, sub-urban, and overland domain, which
can be explained by the high number of learned urban scenes, constituting 90
percent of the Mapillary dataset and the low complexity of overland scenes. As
for variations in road layouts, the best labeling scores are achieved in round-
about scenes, followed by those containing intersections. This could be caused
by the strong uniformity present within these subgroups and lower vehicle speeds
leading to reduced motion blur.

6.5 Negative test cases

Labeling results of negative test cases show typical characteristics dependent
on the specific subgroup. Representative qualitative results are shown in Fig. 6.
If the system is confronted with upside-down images, the trained model par-

Figure 6. Input images, semantic segmentation results and corresponding confidence
of baseline model mapillary+ on WildDash test images (left to right: positive test case,
altered valid image, abstract image and two out-of-scope images).

tially relies on implicitly learned location priors, resulting in a clearly visible
labeling conflict between road and sky in the top region. Labeling performance
on abstract test cases, on the other hand, is strongly influenced by image noise
and high-frequency texture features, leading to a drift towards properties re-
sembling similar labels. The significantly lower confidence scores of altered and
out-of-scope images may be used to suppress the labeling partially or completely,
giving the system the ability to recognize cases where it is operating outside its
specification.

7 Outlook

The benchmark has now started its operation at the website wilddash.cc. It
allows everyone to submit their algorithm results for evaluation. In the future,
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we want to increase the number of validation and benchmark images, as well as
the number of test cases for each hazard cluster (especially for the high severity
subsets). Also, the number of hazard clusters will most probably increase. All
those improvements and extensions will be adapted according to the results
of upcoming submissions. We are confident, that user feedback will help us to
improve and advance WildDash and the concept of hazard-aware metrics in
general.

8 Conclusions

In this paper we presented a new validation and benchmarking dataset for se-
mantic and instance segmentation in autonomous driving: WildDash. After ana-
lyzing the current state-of-the-art and its shortcomings, we have created Wild-
Dash with the benefits of: (i) less dataset bias by having a large variety of road
scenarios from different countries, roads layouts as well as weather and lighting
conditions; (ii) more difficult scenarios with visual hazards and improved meta-
information, clarifying for each test image which hazard is covered; (iii) inclusion
of negative test cases where we expect the algorithm to fail.

The dataset allows for hazard-aware evaluation of algorithms: The influence
of hazards such as blur, underexposure or lens distortion can directly be meas-
ured. This helps to pinpoint the best areas for improvements and can guide
future algorithm development. Adding negative test cases to the benchmark fur-
ther improves WildDash’s focus on robustness: we look even beyond difficult test
cases and check algorithms outside their comfort zone. The evaluation of three
baseline models using WildDash data shows strong influence of each separate
hazard on output performance and therefore confirms its validity. The bench-
mark is now open and we invite all CV experts dealing with these tasks to
evaluate their algorithms by visiting our new website: wilddash.cc.
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Abstract

This paper aims to improve panoptic segmentation for
real-world applications in three ways. First, we present a
label policy that unifies four of the most popular panop-
tic segmentation datasets for autonomous driving. We also
clean up label confusion by adding the new vehicle labels
pickup and van. Full relabeling information for the popular
Mapillary Vistas, IDD, and Cityscapes dataset are provided
to add these new labels to existing setups.

Second, we introduce Wilddash2 (WD2), a new dataset
and public benchmark service for panoptic segmentation.
The dataset consists of more than 5000 unique driving
scenes from all over the world with a focus on visually chal-
lenging scenes, such as diverse weather conditions, lighting
situations, and camera characteristics. We showcase ex-
perimental visual hazard classifiers which help to pre-filter
challenging frames during dataset creation.

Finally, to characterize the robustness of algorithms in
out-of-distribution situations, we introduce hazard-aware
and negative testing for panoptic segmentation as well as
statistical significance calculations that increase confidence
for both concepts. Additionally, we present a novel tech-
nique for visualizing panoptic segmentation errors.

Our experiments show the negative impact of visual haz-
ards on panoptic segmentation quality. Additional data
from the WD2 dataset improves performance for visually
challenging scenes and thus robustness in real-world sce-
narios.

1. Introduction
During the last years, the previously separate tasks of se-

mantic scene segmentation (assigning a semantic label like
car, road, street sign to each pixel) and instance segmen-
tation (assigning masks per individual instance) have been
combined into the panoptic segmentation task [15].

Diverse challenges imposed by real-world autonomous
driving applications confront ML systems with data distri-
butions different from those used during training. Their

Figure 1. Diverse driving scenes from Wilddash2; ae0021: mirror-
ing wet road in UAE, ar0006: broad avenue from Argentia, ci0011:
busy market in Côte d’Ivoire, do0007: unusual pickup from Do-
minican Republic, ee0031: night scene from Estonia with a highly
reflective car hood, gr0027: rainy drive in Greece

ability to extrapolate to out-of-distribution (OOD) test cases
is an active but largely unsolved problem. The combi-
nation of multiple datasets promises a partial solution by
combining different advantages and mitigating individual
shortcomings. In this paper, we present both a unifica-
tion method for existing road scene datasets and the new
dataset Wilddash2 based on this principle. Recent work
of Hendrycks et al. [9] shows that while some robustness-
related distribution shifts can be synthetically generated
from data, other factors (e.g. location/scene-specific im-
age content) can only be well represented during the im-
age formation process of dataset creation. Inspired by
this, Wilddash2 is captured at diverse locations (see Fig-
ures 1,2), environment conditions, and includes many po-
tentially performance-reducing factors (called visual haz-
ards [40]) such as: fog, occlusions, overexposure and many
more. Additionally, for benchmarking we add many out-of-
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Figure 2. Visualization of Wilddash2 geographic distribution.
Dots denote 1-9 scenes; small circles 10-50; medium circles: 50-
200; large circles: >200 scenes. Globe courtesy of USGS [35].

domain frames (e.g. a blank frame) to test for false positives
called negative testing.

The most prominent novelties presented in this paper
are: (a) introduction of a unified label policy enclosing
and backward compatible to the popular datasets Mapillary
Vistas (MVD), Cityscapes, Indian Driving Dataset (IDD),
and Wilddash, including two new vehicle labels pickup and
van. (b) a new dataset and benchmark service with a pub-
lic leaderboard for the panoptic segmentation of driving
scenes called Wilddash2 supporting the unified label pol-
icy. (c) methods to improve panoptic segmentation using
hazard-awareness, negative testing, supercategories, and a
new form of visualizing differences between prediction re-
sults and the ground truth (GT). (d) a method to analyze the
statistical significance of the calculated visual hazard im-
pact on output performance. (e) panoptic segmentation ex-
periments using Wilddash2 and learned visual hazard clas-
sifiers to automatically detect visually challenging situa-
tions in camera data.

Section 2 summarizes the current state of the art for
panoptic segmentation datasets. Section 3 presents a new
public panoptic segmentation dataset. Section 4 introduces
multiple tools to improve the evaluation and benchmarking
of panoptic segmentation while Section 5 analyses how to
calculate the statistical significance of hazard-aware testing.
The experimental Section 6 showcases examples of panop-
tic segmentation using the new dataset and results from
classifier experiments to automatically identify visual haz-
ards. All achievements and results are summarized in the
final Section 7.

2. State-of-the-Art
Solutions for accomplishing real-world vision tasks ro-

bustly need to consider the underlying open world assump-
tion: no task specification enclosing all potential variations
is achievable. This requires establishing datasets with vast
diversity, often considering OOD data. Learning unambigu-
ous concepts from ambiguous data needs adequate proto-

cols and metrics to quantify ambiguous image content.
Many datasets have been proposed recently to enhance

situational diversity in terms of imaging conditions (e.g.
weather, visibility). The Raincouver Scene Parsing bench-
mark [34], Dark Zurich dataset [31], ADUULM dataset
[26], the BDD100K dataset [38], the synthetic FoggyC-
ityscapes [30], and the Woodscape dataset [37] present
driving scenes each adding some adverse condition (fog,
rain, daytime, dusk, night). Exclusively Dark (ExDark)
dataset [19] aims at extending object detection towards low-
light situations. The recent Adverse Conditions (ACDC)
dataset [32] provides detailed semantic segmentation, im-
ages depicting both normal and adverse conditions, and
characterizes uncertainties associated with specific viewing
conditions. NVIDIA’s ClearSightNet [25] (part of NVIDIA
DRIVE) calculates per-pixel measures of occlusions and
visibility reductions via a lightweight convolutional neural
network.

Another prevailing scheme to enhance dataset diversity
is the integration of OOD samples. The Lost and Found
dataset [27] proposes an OOD-focused dataset (using the
Cityscapes dataset [4] as their baseline) and the Fishyscapes
Benchmark [1] introduces a public benchmark for seman-
tic segmentation with a special focus on OOD detection.
The A2D2 dataset [7] proposes OOD sample detection and
similarity-based clustering of OOD samples. The Com-
bined Anomalous Object Segmentation (CAOS) benchmark
dataset [8] integrates BDD100K with synthetic OOD ob-
ject overlays. OOD samples at scene-domain level are tar-
geted in the TAS500 dataset [22] which provides semantic
labeling for autonomous driving in unstructured environ-
ments. Synthetic data can also be used to enrich the learning
process and to extend learned representations beyond com-
mon domains. The VIPER [29] dataset and benchmark use
scenes from GTA5 as a baseline to create a driving scenes
dataset. This allows for the generation of large datasets
with low label noise but adds the specific rendering artifacts
and digital asset quality as considerable dataset bias. Apol-
loscapes [11] focuses on sensor fusion and supplies panop-
tic annotated LiDAR data using a simplified label policy.
Panoramic panoptic datasets WildPPS [14], KITTI-360 [17]
provide annotations for fisheye-camera data creating full
360°driving scenes

Nowadays, driven by legal authorities and regulatory
bodies, the standardization community is aware of the aris-
ing importance of scene interpretation in cars (part of sit-
uational awareness). The ISO Central Secretary published
the guideline ISO/PAS 21448:2019 [13] which specifically
addresses the problem of visual hazards (called triggering
events), such as overexposure or weather-related effects.

Despite the various adverse-situation-oriented datasets,
the scientific community has predominantly adopted four
road scene datasets, therefore strongly affecting the scien-
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tific evolution of semantic road scene understanding. These
datasets offer diversity, dataset scale, and annotations cov-
ering the needs of recent vision tasks:

• The Cityscapes dataset [3] in 2016 was the first ex-
tensive dataset for scene understanding supplying 5000
scenes with 35 different classes from 50 cities in Central
Europe. Its benchmark service is still the most used ref-
erence for comparisons and added panoptic segmenta-
tion in 2019. Location, lighting conditions, and weather
are very uniform and controlled. It uses a license similar
to CC-BY-NC 4.0.

• The Mapillary Vistas dataset (MVD) [24], released in
2017, represents a strong increase in size (20k frames
with GT), worldwide scope, and 64 labels (40 with in-
stances). It is predominantly focusing on daytime, clear-
weather scenarios, and is supplied under a CC-BY-NC-
SA 4.0 license.

• The Wilddash [39] dataset and benchmark service in-
troduced two concepts to improve characterization of
algorithms: Hazard-aware testing and use of negative
test cases. It uses the Cityscapes label policy and only
supplies around 220 frames for benchmarking and vali-
dation under a license similar to CC-BY-NC 4.0.

• The Indian Driving Dataset (IDD) [36] from 2019 sup-
plies 10k frames from Indian cities with very dense and
unstructured driving scenarios. Its label policy is largely
oriented on the Cityscapes policy but introduces new
fall-back classes. Mainly composed of clear-weather
daylight footage from only 150 driving sequences1.

3. Dataset Design

We present Wilddash2, a new dataset for robust panoptic
segmentation training and evaluation combining the most
valuable features of the four previously identified panoptic
segmentation datasets.

3.1. Frame Selection

The frame selection for Wilddash2 focuses on the same
principles as the Wilddash [39] dataset: visually challeng-
ing driving scenes from all over the world.

In general, driving datasets consist of scenes limited to a
single regional area (e.g. Cityscapes: Central Europe, IDD:
India). Public dashcam videos from over 150 countries in
the world are used to create Wilddash2 reducing this re-
gional dataset bias. This includes more than 2000 frames
from historically underrepresented areas such as Africa,
Middle Eastern countries, and Oceania. Figure 2 shows
a visual representation of the broad geographic spread of
WD2 frames.

1No clear license text is distributed with IDD; their homepage suggests
a CC-BY-NC-like license.

The collection of videos included targeted searches for
underrepresented regions and difficult scenes. We manu-
ally selected interesting frames and annotated the severity
of potentially degrading performance factors as visual haz-
ards [39]: blur, road-coverage, lens distortion, hood (visi-
bility of car bonnet), occlusions, underexposure, overexpo-
sure, particles (fog, rain, snow), screen (windshield visibil-
ity and interior reflections), and variations (rare variations
of vehicles and attire). The severity level of each visual
hazard was qualitatively annotated using none, low or high
(see [39]). The top of Table 1 shows the percentage of visual
hazards present in the frames of the dataset.

The final list of Wilddash2 frames is selected based on
these annotations to provide a balanced mix of identified
hazards and domain aspects. To limit redundancy, we en-
sured that there is no direct visual or contextual overlap be-
tween frames in the dataset. In terms of quantity, Wild-
dash2 is offering 5032 scenes, comparable to Cityscapes’s
5000 frames and more than 20 times the amount of Wild-
dash. The dataset is distributed freely under the CC-BY-
NC license. To conform to data protection rules, the access
is limited to registered scientific users. This allows WD2
to include all frames in unaltered form to prevent unneces-
sary training and evaluation bias (e.g. training with blurred
faces can mislead the network into classifying blurred blobs
as faces). Wilddash2 includes a separate version with
pseudonymized RGB images for use in publications.

3.2. Label policy

We have created a unified label policy for Wilddash2 that
merges the labels of MVD, Cityscapes, and IDD. This in-
cludes the Wilddash dataset, as its label policy is based en-
tirely on Cityscapes.

Unification involves three operations:
• Union of labels: the union of all base labels from MVD,

Cityscapes, and IDD is used as a starting point. Dupli-
cate labels are merged.

• Splitting of labels: some labels need to be split, other-
wise they cannot be mapped to other datasets. This ap-
plies to conflicts between MVD and Cityscapes labels:
curb can be sidewalk or terrain, bike-lane and manhole
can be sidewalk or road, rail-track can be rail-track or
road. Figure 4 shows examples for each category that
needs to be split.

• Extension: We introduce two new labels not present in
any of the four datasets: pickup and van. This is done to
reduce label confusion as both types appear in several
existing classes (see Section 3.3).

All are conceptually visualized in Figure 3 for clarifica-
tion. This process results in a unified label policy with 80
distinct categories2.

2See supplemental material for a table with all labels and a color legend
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blur coverage distortion hood occlusion overexp. particles screen underexp. variations

Percentage of WD2 frames containing visual hazards (Section 3.1)

low 43.4% 16.0% 9.4% 16.3% 34.0% 6.8% 4.4% 33.3% 5.7% 5.2%
high 6.0% 10.6% 0.1% 18.9% 41.0% 8.2% 1.9% 4.1% 6.7% 0.5%

Impact on PQ / p-value (Section 6.1)

mvd100 -22.6% -46.6% 0.0% -8.8% -3.3% -15.7% -30.0% -28.7% -28.4% -12.3%
0.0028 0.0002 0.0967 0.0694 0.0202 0.0060 0.0007 0.0015 0.0003 0.1502

mix150 -15.5% -21.0% 0.0% -6.3% -2.6% -6.7% -14.8% -26.3% -11.0% -6.1%
0.0588 0.0008 0.0914 0.0191 0.1165 0.0595 0.0595 0.0028 0.0057 0.1115

Hazard Classifier Performance (Section 6.2)

accuracy 53.0% 79.5% 73.5% 93.1% 57.2% 91.4% 80.0% 75.1% 78.5% 94.4%
macro f1 44.2% 61.2% 39.1% 90.4% 57.2% 69.2% 48.0% 65.5% 57.7% 39.1%

Table 1. Statistics and results relating to visual hazards in the Wilddash2 dataset. Top: Percentage of Wilddash2 frames (public and
benchmark) containing specific visual hazards for low and high severity levels, rest none. Middle: Impact of hazards on the average PQ
metric of the panoptic segmentation evaluation on the private WD2 benchmark set using the WD2eval label policy. Bold p-values are below
the 5% confidence interval and are statistically relevant. Bottom: Accuracy and macro f1-score for the ten prototype hazard classifier.

On the public leaderboard of our dataset benchmark,
we use WD2eval, a shortened version of our unified la-
bel policy. WD2eval consists of 26 classes: the original
19 Cityscapes evaluation labels, the vehicle classes ego-
vehicle, pickup, van as well as billboard, streetlight and
road-marking. Only vehicle and person classes are consid-
ered as instance classes. Negative test cases also evaluate
unlabeled areas (see Sec. 4.2) This close alignment with the
Cityscapes benchmark label policies was chosen to lower
the entry barrier for participating users.

3.3. Relabeling

The vehicle classes pickup and van are not found in any
of the four datasets. To extend the MVD, Cityscapes, and
IDD dataset to our label policy, we manually relabeled their
vehicle instances. In addition, the label autorickshaw (in-
spired by the IDD dataset) was also included. Table 2
shows the distribution and source categories for these vehi-
cle classes. The confusion of both vehicle types in category
car and truck was the main motivation to extend the WD2
policy by these new labels.

3.4. Limitations

The new Wilddash2 dataset is specifically designed to
cover many visual hazards, but there are some limitations:

• The public sources did not contain frames with strong
distortion. Wilddash added a few frames with artificial
lens distortion to potentially confuse neural networks.
We decided against this approach to preserve the real-
world aspect of WD2.

• In many still-images of rain there are either no parti-
cles visible or the rain covers the windscreen leading to

Source van pickup autoricks.

MVD car 4202 (2.8%) 2654 (1.8%) 0
MVD other-veh. 0 0 128 (8.2%)
MVD truck 43 (0.5%) 33 (0.4%) 0
Cityscapes car 907 (0.6%) 12 (0.01%) 0
IDD car 419 (1.4%) 10 (0.1%) -
IDD truck 0 18 (0.2%) -

Table 2. Addition of van, pickup and autorickshaw class labels.
Number of instances and % of source class. Note: Cityscapes and
MVD label policies state that pickups should be labelled as truck.

fewer frames in the particles hazard category.
• Out-of-distribution examples for vehicles and people

rarely occur. Thus the low number of frames contain-
ing the variations hazard.

During the development of Wilddash2, the 2.0 update of
MVD [21] was introduced. It offers more detailed semantic
annotations with added categories and depth ordering cues.
However, no new frames were added and no new category
addresses any of the label issues presented in this Section.
Thus, all information in this work refers to MVD v1.2 but
is fully applicable to v2.0 as well.

MSeg [16] scheme targets a similar dataset unification
strategy (including non-driving datasets like COCO) with-
out introducing a new dataset themselves. Their policy only
includes the reassignment of object labels. This misses
cases where outlines of labels need splitting.

Many algorithms use depth data to improve scene under-
standing performance. However, our method of sourcing
frames from public video data does not allow the computa-
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Figure 3. Conceptual depiction of label unification: (top) Organization and combination of disjunct categories and supercategories of two
datasets. (center) merging and splitting of sets in case of label-policy-clashes of two datasets (see Figure 4). (bottom) cleaning up mixed
categories by the introduction of new label categories.

Figure 4. Example frames from WD2 visualizing the need for additional splitting of some labels. Left to right: crop from RGB image,
GT using MVD classes, GT using Cityscapes classes, GT using WD2 classes. From top to bottom: ru0009 10000 (curb vs. curb-terrain),
ga0004 10000 (manhole vs. manhole-sidewalk), de0056 10000 (bike-lane vs. bike-lane-sidewalk as well as rail-track vs. tram-track)

tion and release of reliable depth data. This would require
a dedicated measurement vehicle, which is contrary to our
goal of geographic diversity.

4. Evaluation of Panoptic Segmentation

We base our benchmark on the Wilddash public leader-
board which focuses on hard cases and provides more in-
sights using diverse metrics.

Panoptic segmentation [15] describes the combination of
instance and semantic segmentation into a single segmenta-
tion task. The scene is split into thing and stuff segments,
where stuff describes amorphous regions of similar texture
(e.g. road, building) and thing describes countable objects
(e.g. person or car). Wilddash2 uses COCO panoptic for-
mat [2] for submissions. Panoptic segmentation is evaluated
using the panoptic quality (PQ) metric defined as follow:

PQ =

�
(p,g)ϵTP IoU(p, g)

|TP |� �� �
segmentation quality (SQ)

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |� �� �

recognition quality (RQ)

.

(1)
Let g be a ground truth segment and p a prediction seg-

ment of the same class, IoU(p, g) is the intersection over

union of the segments p (prediction) and g (GT). A pair of
segments (p, g) counts as true positive (TP) if the IoU(p, g)
is larger than 0.5. This way, a ground truth segment can only
match with at most one prediction segment. The segmenta-
tion quality (SQ) is the mean IoU of all TP, the recognition
quality (RQ) penalizes segments without matches, e.g. false
positives (FP) and false negatives (FN).

We apply the concept of hazard-aware testing directly to
panoptic segmentation: all metrics are computed separately
for the frames from each subset of visual hazards. Impacts
per hazard are derived using the method of Zendel et al. [39]
by comparing results from subsets of different severity lev-
els. Legacy support for both semantic segmentation and in-
stance segmentation is provided: our public toolkit allows
the mapping of WD2 into segmentation or instance masks
and additional public leaderboards for both tasks help re-
searchers in their respective fields.

4.1. Supercategory Scores

Like most panoptic labeling policies, Wilddash2 defines
a semantic label on two hierarchical levels:

• an exact identifier that describes the label’s specific type
(e.g. car, truck),

• a broader identifier for label groups (e.g. vehicle).
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Figure 5. Visualization method for panoptic segmentation results.
Top: WD2 scene in0090 RGB image and GT; Middle: result of
the MVD-trained model (mvd100) and proposed difference image
(see Section 4.3); Bottom: result of mixed MVD&WD2 model
(mix150) and difference image (in0090 was part of the random
validation split).

Cityscapes uses the terms class and category, whereas
COCO uses category and supercategory. To avoid confu-
sion with the term category, this paper uses the the terms
category and supercategory for the different hierarchical
levels of a semantic label, see Figure 3.

Misclassification of a segment has a negative impact on a
model’s score. Especially classes that are underrepresented
in a model’s training set or are annotated differently (e.g.
car instead of truck) are prone to this misclassification. This
can skew panoptic evaluation: instances with perfect out-
lines but wrong category score no points. However, often
the wrongly predicted class label and the ground truth share
the same supercategory. Wilddash2 extends the evaluation
strategy of panoptic segmentation by computing each score
(PQ, RQ, SQ) also per supercategory.

From an application perspective, correct supercategory
assignments are often more important than overall category
correctness. The new supercategory metrics allow addi-
tional differentiation between algorithms at a coarser level.
In contrast to more complex metrics like PQPart [5], this
is achieved without requiring data relabeling or retraining.

4.2. Negative Testing

The Wilddash2 benchmark introduces negative testing to
panoptic segmentation. The goal is to evaluate the robust-
ness of a system operated outside of its specifications. Ex-
amples from WD2 for such frames include drone scenes,
abstract paintings of driving scenes, large-scale image er-
rors, and non-driving scenes (e.g. an indoor volleyball

match). Under such circumstances, the desired behavior of
a robust system is to mark truly unknown regions as invalid.
However, some parts of the image might still contain seg-
ments describable by the label policy and systems may be
able to produce valid segmentation. The Wilddash2 bench-
mark rewards the prediction for negative test frames in two
ways:

• Reward matching instances: A best-effort based on the
label policy is defined also for negative test cases. A
segment p is detected correctly if the IoU(g, p) with a
ground truth segment q of the same thing class is larger
than 0.5. Correct segments are kept, other segments that
overlap with g are set to invalid.

• Reward segments that are flagged as invalid: segment
pixels are set to the best-effort ground truth, thus im-
proving the overall score of the image.

This combined approach rewards both: systems that cre-
ate meaningful results for out-of-distribution frames and
systems which are aware of their result quality. Exist-
ing work on open-set problems (see [12], [23]) focuses on
handling gaps in data while our negative testing evaluates
systems by investigating their behavior in specific out-of-
distribution situations.

Solutions that always “hallucinate” data (i.e. never report
areas as unlabeled) normally have an advantage over more
cautious ones: regular metrics potentially only increase by
guessing a label, since admitting defeat always lowers the
score. Real-world applications are dependent on reliable
systems which can estimate the quality of their predictions.
Wilddash2 negative testing provides an incentive to encour-
age improvements in this area.

4.3. Visualization

Panoptic segmentation combines semantic per-pixel la-
bels and instancing into a single task. Quantifiable metrics
support direct rankings and give a good impression of al-
gorithm performance. Images representing label results can
provide a more detailed insight into the workings of a spe-
cific solution.

The pure label results themselves can be visualized us-
ing standard procedures: false-color mappings represent the
labels (e.g. light blue for pixels labeled as sky) and white
outlines encircle individual instances.

Images highlighting the differences between ground
truth and predictions help visual inspection of label results.
We introduce a novel method to create these “difference im-
ages” that illustrates both: the segmentation quality and the
instancing quality.

Figure 5 shows visualizations of algorithm results using
this method. Segmentation quality is illustrated for pixels
with a correct class in mint green, pixels with the false class
but correct supercategory in yellow, and pixels with false
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MVD Validation WD2 Benchmark

PQ SQ RQ PQvan PQpickup PQ SQ RQ PQvan PQpickup PQneg PQcat

mvd100 35.1% 74.2% 43.9% 26.6% 29.9% 37.6% 75.6% 48.3% 34.0% 38.1% 17.1% 57.7%
mix150 34.1% 73.5% 42.8% 24.7% 29.7% 42.2% 77.5% 53.2% 38.9% 49.2% 21.1% 64.7%

Table 3. Performance of the mvd100 model only trained on MVD for 100 epochs versus mix150 which is additionally fine-tuned for 50
epochs on WD2. Both evaluated on the original MVD validation set and the hidden WD2 benchmark set. Bold entries mark higher scores.

class and false supercategory in dark red. Areas excluded
from comparison receive a black color. The quality of in-
stancing is drawn on top using outlines and hatching. In-
stances that match a ground truth instance (i.e. IoU(p, q) >
0.5) are framed and overlaid with a dark green hatched pat-
tern. Wrongly predicted instances (i.e. false positives) are
framed and overlaid with a grey pattern. Ground truth in-
stances that have no prediction match (i.e. false negatives)
are framed in a dashed red line and no hatching.

5. Statistical Significance

The hazard-aware evaluation method compares perfor-
mance metrics between subsets of identified hazards, e.g.
the performance of an algorithm evaluated at frames marked
as having a high severity of occlusions versus frames with-
out occlusions (of instance labels). The quality of such sub-
set comparison can be estimated using a statistical signif-
icance test. Such tests work in an inverse fashion: a null
hypothesis states that there is no significant difference in
subsets and the test should reject this hypothesis in cases
where a clear distinction can be made. In our case, the
null hypothesis H0 tests that the performance metric is in-
dependent of the subset groupings. The significance tests
shall reject this H0 hypothesis with a high significance, thus
showing that the identified hazard subset is indeed creating
a more challenging subset of frames. Demšar [6] offers a
good overview of possible statistical significance tests. Ini-
tially, no assumption of an underlying distribution of per-
formance metrics can be made. The number of influences
on algorithm performance that are present in test frames
and how they interact is too complex to estimate. Thus,
we chose the non-parametric Mann–Whitney U test [20] to
evaluate the significance of hazard subset impacts due to
three properties: (1) it does not make assumptions about
the underlying distributions (e.g. Gaussian), (2) it does not
rely on a direct pairing between individual values, and (3)
also works if the subsets have different sample sizes. The
test between two subsets for a given metric results in a p-
value which is the probability of samples being drawn from
the same distribution. A low p-value represents a situation
where samples differ strongly and thus the null hypothesis
H0 can be rejected. We use a two-sided confidence interval
of 5%, i.e. all p-values < 0.05 signify that the subsets are

substantially different and calculated performance impacts
can be trusted.

The results in the middle section of Table 1 include the p-
values for each of the visual hazard subsets. The impact of
subsets negative, particles, occlusion, blur, screen, under-
exp, coverage, and overexp show strong significance. While
some hazard evaluations show not enough significance for
average metrics, they contain some categories with high sig-
nificance (e.g. category ego-vehicle for subset hood or car
for occlusion). The impacts of distortion and variations
could not be shown with enough significance.

6. Experiments
6.1. Panoptic Segmentation

The baseline model for panoptic segmentation uses the
Seamless Scene Segmentation model by Porzi et al. [28].
The model mvd100 is trained using the official BSD-3 code-
base [33] on the Mapillary Vistas dataset [24] (including
relabeled van and pickup instances) for 100 epochs after
which the PQ metric no longer improves on the validation
set. The second model mix150 fine-tunes 3 mvd100 for addi-
tional 50 epochs using a mixture of 3618 randomly selected
public Wilddash2 frames (85% of public Wilddash2 frames)
and a random subset of 3618 MVD training frames. The
remaining 638 public Wilddash2 frames are used as WD2
validation frames.

Table 3 shows results for both models evaluated on
the original MVD validation set and the public Wilddash2
benchmark set (776 frames including 144 negative test
cases, GT not public). We show the overall panoptic met-
rics and individual PQ scores for the newly introduced ve-
hicle classes pickup and van as well as PQ scores for nega-
tive testing and supercategory method as introduced in Sec-
tion 4. In general, mix150 is more robust in presence of
visual hazards. This comes at the cost of small performance
losses for the average MVD frame. The performance re-
duction for WD2 evaluation of mvd100 showcases the in-
creased difficulty of WD2.

Table 1 shows the calculated impacts of visual hazards
and statistical significance values for each impact (see Sec-
tion 5). All visual hazards except ”distortion” and ”varia-

3mvd100 & mix150 both use MVD labels, see Supplemental for exper-
iments with WD2, Cityscapes, and IDD
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Figure 6. Confusion matrices for each prototype hazard classifiers.

tions” show clearly significant impacts on performance for
mvd100. As expected, mix150 suffers a lower performance
loss than mvd100, proving it to be generally more robust.
The confidence for the significance of impact measurements
also decreases (higher p-values) for mix150 signifying a
stronger generalization even on hard test cases.

Figure 5 visualizes the output quality of both models for
the same frame (used for validation during fine-tuning, i.e.
not a training frame).

6.2. Visual Hazard Classifiers

The identification of relevant Wilddash2 frames contain-
ing visual hazards requires considerable manual effort. Au-
tomated hazard classifiers can significantly reduce this work
by pre-filtering existing data. Classifiers can potentially
also improve the safety of autonomous driving by providing
confidence measures for camera-based sensors. First pro-
totypes using the per-image visual hazard meta-labels for
each WD2 frame are trained using the fastai [10] PyTorch
framework. Default augmentations are used to create in-
dividual multi-class classifiers per visual hazard based on
pre-trained ResNet50 networks. The input resolution of
768x432 and a batch size of 64 are chosen to allow the
fast classification of large numbers of video frames. Fo-
cal Loss [18] is used to counteract the imbalance of visual
hazards subsets and the WD2 full dataset (both public and
benchmarking frames) is used to maximize the number of
hazards frames. The frames are randomly split into 80%
training frames and 20% validation frames The bottom of
Table 1 summarizes the classifier performance and Figure 6
shows the respective confusion matrices for all validation
frames. The relative low performance of the classifiers dis-
tortion, particles, or variations can be accounted to the rel-
ative low number of critical cases.

The 5000 frames of WD2 provide sufficient statistical
power to identify performance problems for panoptic seg-
mentation but are insufficient to reliably identify visual haz-
ards for arbitrary driving frames. The resulting prototype
classifiers successfully perform initial pre-labeling, espe-
cially when taking the confidence of the predicted class into
account. This reduces the effort for identifying interesting
frames by a factor of approx. 10 for the hazards coverage,
hood, occlusion, overexposure, screen, and underexposure.

7. Conclusion
Panoptic segmentation combines semantic information

and individual instancing delivering useful representations
for autonomous driving. This work presents the new dataset
Wilddash2 which combines the best aspects of four pub-
lic semantic scene understanding datasets: MVD v1.2,
Cityscapes, IDD, and Wilddash. The focus on diverse and
difficult scenes complements existing work and with 5000
frames also delivers enough substance for own experiments.
Our new data policy with 80 labels is the first to combine the
label space of all four datasets and allows precise mapping
of WD2 into other domains. Additionally, we identified two
new vehicle categories which reduce confusion among in-
stance labels and relabeled all vehicles of MVD, IDD, and
Cityscapes. Tools and meta-data for this relabeling are sup-
plied freely under the CC BY-NC-SA 4.0 license thus allow-
ing the inclusion of the new labels in existing frameworks.4

We further introduce the concept of hazard-aware testing
and negative test cases for panoptic segmentation and pro-
vide statistical significance with each performance impact
evaluation. This allows for better comparisons and to pin-
point the most pressing issues per algorithm. A new method
for visualizing the comparison of panoptic segmentation re-
sults helps to quickly understand algorithm characteristics.

Our new public benchmark server with leaderboards al-
lows unbiased comparisons of panoptic segmentation solu-
tions and offers legacy support to evaluate semantic seg-
mentation and instance segmentation as well. The ex-
perimental section presents two baseline models showing
clear benefits of adding WD2 to your training: increased
performance and robustness in visually challenging situa-
tions. First prototypes for visual hazard classifiers are pre-
sented allowing an automated pre-selection of frames dur-
ing dataset design. The Wilddash2 dataset and the bench-
marking service are available for free to researchers at
https://wilddash.cc under CC BY-NC 4.0 license.5

4This research has received funding from Mobility of the Future; a re-
search, technology, and innovation funding program of the Austrian Min-
istry of Climate Action

5The software for remapping and visualizing panoptic
data is released freely under GNU LGPL v2.1 license at
https://github.com/ozendelait/wilddash scripts.
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CHAPTER 3
Conclusion

3.1 Summary
Computer vision applications rely heavily on image data for training and evaluations.
Robustness of real-world solutions have to be tested with challenging data to identify
potential problems during their development. How can we create difficult test cases
or identify them in existing supplied datasets? This work presents a method for sys-
tematically listing circumstances and aspects which can have negative effects on their
performance by applying risk analyis to computer vision applications. The method
Hazard and operability analysis (HAZOP) is applied to create a list of generic visual
hazards: CV-HAZOP. Evaluation of stereo vision datasets show, that areas with identi-
fied visual hazards lead to lower performances with a high statistical significance. The
entries of the checklist indeed represent factors which can result in more challenging
test cases. A specialized version of visual hazards for stereo vision is created to evaluate
the difficulty of existing datasets. Five well-used datasets for benchmarking stereo vision
are evaluated to identify test cases which contain specific visual hazards. The results
are clear: existing benchmarking datasets contain very little challenging situations, but
focus on mostly ideal conditions. Performances of multiple stereo vision algorithms
are compared between frames identified as potentially difficult vs. easy. This confirms
that the manual selection based on visual hazards has led to a more difficult subset. A
new dataset with visual hazards in mind is created for semantic scene understanding:
Wilddash. Scenes are added based on which specific hazards they contain. Algorithm
performance for test case subsets containing certain hazards can be compared to the
average performance to calculate hazard-specific performance impacts. Negative testing is
introduced for segmentation tasks by comparing results for out-of-distribution test images
(e.g. an aquarium scene for road scene understanding). A new evaluation metric expects
invalidated results for negative tests while allowing an additional best-effort solution.
The dataset and an automatic online evaluation platform for road scene understanding is
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launched on wilddash.cc. The updated Wilddash 2 (WD2) dataset is created, which
increases in size by a factor of 20. It features a new unified label policy making it
compatible with four established existing datasets for road scene understanding. The
concepts of hazard-aware testing as well as negative testing are extended to panoptic
segmentation and a new method for visualizing panoptic results is presented. Multiple
panoptic segmentation prototypes are trained using various datasets with and without
WD2 data. Adding WD2 data results in considerable gains when evaluating on WD2
benchmark data. No noticeable negative effects on their performance are introducing
when testing on their respective original datasets. Lastly, a proof-of-concept for an
automatic classifier to detect various visual hazards in image data is presented.

3.2 Outlook

The following topics and projects have started and will continue as a consequence of the
presented work. They will provide continuity and long-lasting service to the scientific
community to improve computer vision validation.

3.2.1 LiDAR and CV-HAZOP

The safety for many autonomous systems are increased by adding more types of sensors.
Risks and performance degradation associated with one sensor can be mitigated by sensor
fusion. LiDAR (light detection and ranging) sensors are quickly becoming a standard
sensor for many applications. An ongoing risk-assessment and experiments will apply
the risk analysis of CV-HAZOP to LiDAR sensors.

3.2.2 Wilddash Webservice

The public webservice launched together with the Wilddash datasets [ZHM+18, ZSR+22]
continues to provide public leaderboards for semantic segmentation, instance segmenation,
and panoptic segmentation. Ground-truth for the dedicated benchmarking dataset part
of Wilddash is held secret to reduce potential dataset biases. It allows a fair comparison
of the current state-of-the-art for all three segmentation tasks.

3.2.3 Railway scene understanding

Wilddash has provided data for semantic understanding of road scenes, but one important
part of urban traffic has received much less attention: trams and trains. RailSem19
[ZMZ+19] has been released to mitigate this data gap and improve safety of railway
applications. It is the first public dataset for semantic rail scene understanding, delivering
8500 railway scenes with rich semantic annotations. An updated version of RailSem19
with more scenes and additional annotations is currently under development, including a
dedicated benchmark part with public leaderboards.
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3.2.4 Redundancies in image datasets

The selection of suitable scenes for training and test datasets is time-consuming. One
aspect promoted by CV-HAZOP is the selection of difficult/challenging test cases. Another
important topic is the coverage of scene variability without too many redundancies. The
automatic filtering of images based on image hashes [ZZ21] has provided an easy tool to
reduce redundant images. Follow-up work will introduce efficient databases for image
hash comparisons at scale to allow efficient use during the creation of large-scale datasets.

3.2.5 Robust Vision Challenge

Another aspect of robust validation is evaluation bias. This describes the inherent bias
associated with evaluations due to using a specific benchmarking test dataset. This effect
is a special concern for public benchmarks with leaderboards. Their known benchmarking
datasets become the target of optimization. The scientific community uses the position
in leaderboards to validate the quality of their approaches. Due to evaluation bias,
there is an inherit benefit in optimizing (or basically solving) the benchmarking dataset
instead of the underlying task at hand. Data-driven machine learning approaches can
memorize and focus on characteristics of the small benchmark data in favor of general
robustness, as only the benchmarking results will be relevant to paper reviewers. In 2017
the Robust Vision Challenge (RVC) [RVC22] was devised by computer vision benchmark
operators 3.1 to reduce evaluation bias. Each computer vision task in the challenge

Table 3.1: Benchmarks that previously participated in one or more Robust Vision
Challenges and their associated computer vision tasks. Object detection, Stereo, Flow,
Depth predict.; Semantic, Instance, Panoptic Segmentation.

Name Challenge Tasks
ADE20K[ZZP+17] SS
COCO[LMB+14] Obj SS IS PS
Cityscapes[COR+16b] SS IS PS
ETH3D[SSG+17] Ste
HD1K[KNH+16] Flo
KITTI[GLU12, MG15] Ste Flo Dep SS IS PS
MVD[NORBK17] SS IS PS
Middlebury Ste Flo
[SS02, SCD+06, BSL+11, SHK+14]
MPI-Sintel[BWSB12] Flo Dep
OID[KRA+20] Obj
rabbitAI[SGB+20] Dep
ScanNet[DCS+17] SS IS
VIPER[RVRK16] Flo Dep SS IS PS
Wilddash[ZHM+18, ZSR+22] SS IS PS
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(e.g. stereo vision, semantic segmentation) requires participants to submit results to
multiple benchmarks but must be generated by a single solution/network. The individual
subrankings are joined by a method deemed mathematically fair in electoral science:
Schulze Proportional Ranking (PR) method [Sch11]. The joined meta-ranking represents
a more robust evaluation with reduced evaluation bias. In addition to the changing image
content characteristics, different data specifications and policies are joined at RVC:

• Depth ranges vary between the multiple stereo vision datasets

• Displacement vectors vary in scale and orientation characteristics (optical flow)

• Semantic classes differ widely between segmentation datasets (e.g. Outdoor car
traffic labels for Cityscapes and Wilddash are mixed with indoor labels of ScanNet)

• Input image dimensions and aspect ratios vary

RVC thus also helps to increase the applicability of the competing solutions by requiring a
richer feature set based on the union of the individual benchmark specifications. RVC has
been hosted in 2018, 2020, and 2022. The main organizer for the first RVC was Andreas
Geiger, all later and upcoming RVC workshops are organized by Oliver Zendel. It is
planned to continue as a biennial workshop series and new ideas for further reduction of
evaluation bias will be incorporated in the future. The workshop will focus on advancing
meaningful evaluations for computer vision validation to test the robustness of solutions
for solving real-world tasks.
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CHAPTER 4
Supplemental Materials

4.1 Analyzing Computer Vision Data - The Good, the
Bad and the Ugly
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Supplemental Material

This is the supplemental material for the CVPR 2017 paper Analyzing Computer Vision Data - The Good,
the Bad and the Ugly by Oliver Zendel, Katrin Honauer, Markus Murschitz, Martin Humenberger, and Gustavo
Fernández Domínguez

Overview:

1. Visualization of algorithm results for each of the identified hazard frames for all datasets (all thumbnail
images are taken from the respective datasets): Section 1

2. Cumulative calculation of average performances for all datasets: Section 2

3. Full hazard list specialized for stereo vision: Section 3

4. Identified hazards per dataset (and corresponding frame): Section 4

5. URLs of datasets (Datasets are the same as in Table 1 of the submitted paper): Table 12
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4. Found Hazard Frames (Accepted as well as Disputed)

Table 2. Accepted Hazard Frames from the Freiburg Dataset
HID Frame

22 driving/15mm_focallength_scene_forwards_slow/_frame_0298
45 driving/15mm_focallength_scene_forwards_slow/_frame_0200

125 driving/15mm_focallength_scene_forwards_slow/_frame_0064
142 driving/15mm_focallength_scene_forwards_slow/_frame_0652
271 monkaa/a_rain_of_stones_x2/_frame_0051
305 monkaa/family_x2/_frame_0101
326 driving/15mm_focallength_scene_forwards_slow/_frame_0165
476 driving/15mm_focallength_scene_backwards_slow/_frame_0475
481 driving/15mm_focallength_scene_forwards_slow/_frame_0697
561 monkaa/treeflight_x2/_frame_0187
651 driving/35mm_focallength_scene_backwards_slow/_frame_0751
729 driving/35mm_focallength_scene_forwards_slow/_frame_0073
899 monkaa/top_view_x2/_frame_0071
904 driving/15mm_focallength_scene_backwards_slow/_frame_0487

1016 monkaa/funnyworld_camera2_augmented0_x2/_frame_0045
1090 monkaa/treeflight_augmented0_x2/_frame_0100

Table 3. Accepted Hazard Frames from the HCI Dataset
HID Frame

7 0_0065_frame_02584
22 0_0038_frame_03216
45 0_0065_frame_02480
46 0_0068_frame_02652
47 0_0068_frame_02636
52 0_0026_frame_02296

125 0_0059_frame_04656
141 0_0038_frame_03784
142 0_0038_frame_03488
244 0_0013_frame_08000
444 0_0026_frame_02312
539 1_0014_frame_03408
555 1_0075_frame_05436
666 0_0026_frame_01992
701 0_0068_frame_02492
922 1_0075_frame_05044
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Table 4. Accepted Hazard Frames from the KITTI Datasets
HID Frame

0 kitti2015_000104_frame_10
26 kitti2012_000071_frame_10
50 kitti2015_000144_frame_10

125 kitti2012_000116_frame_10
141 kitti2015_000104_frame_10
142 kitti2012_000120_frame_10
459 kitti2012_000026_frame_10
482 kitti2012_000051_frame_10
651 kitti2012_000010_frame_10
655 kitti2012_000191_frame_10
666 kitti2012_000136_frame_10
701 kitti2012_000193_frame_10
904 kitti2012_000097_frame_10
922 kitti2012_000074_frame_10

Table 5. Accepted Hazard Frames from the Middlebury Datasets
HID Frame

22 middl_2014_add_Classroom1_perfect_frame_L3_E6
50 middl_2006_orig_Midd1_frame_illum_2_expo_2
52 middl_2006_orig_Monopoly_frame_illum_3_expo_2

125 middl_2006_orig_Midd2_frame_illum_3_expo_1
376 middl_2014_train_orig_Recycle_frame_0
444 middl_2006_orig_Plastic_frame_illum_2_expo_1
449 middl_2005_orig_Laundry_frame_illum_2_expo_2
451 middl_2014_train_orig_Pipes_frame_0
476 middl_2014_train_orig_Jadeplant_frame_0
482 middl_2014_train_orig_Vintage_frame_0
608 middl_2014_train_orig_Jadeplant_frame_0
626 middl_2014_add_Sword2_perfect_frame_L0_E3
735 middl_2005_orig_Laundry_frame_illum_3_expo_1
892 middl_2014_train_orig_PlaytableP_frame_0

Table 6. Accepted Hazard Frames from the Sintel Dataset
HID Frame

52 sleeping_1_frame_0050
141 shaman_3_frame_0001
142 market_5_frame_0002
183 mountain_1_frame_0031
305 ambush_2_frame_0004
321 ambush_2_frame_0014
326 ambush_2_frame_0012
365 ambush_4_frame_0011
449 shaman_3_frame_0032
459 market_6_frame_0004
539 bamboo_2_frame_0011
883 bandage_2_frame_0011
898 bandage_2_frame_0011
899 mountain_1_frame_0050
904 ambush_2_frame_0004
989 ambush_2_frame_0014
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Table 7. Disputed Hazard Frames from the Freiburg Dataset
HID Frame

52 driving/15mm_focallength_scene_backwards_slow/_frame_0133
141 driving/15mm_focallength_scene_backwards_slow/_frame_0796
259 monkaa/lonetree_augmented1_x2/_frame_0446
321 driving/35mm_focallength_scene_forwards_slow/_frame_0081
383 driving/15mm_focallength_scene_backwards_slow/_frame_0140
555 monkaa/treeflight_x2/_frame_0017
671 driving/15mm_focallength_scene_backwards_slow/_frame_0615

Table 8. Disputed Hazard Frames from the HCI Dataset
HID Frame

6 0_0038_frame_03216
21 0_0038_frame_03720
47 0_0068_frame_02796

321 1_0026_frame_02760
326 0_0026_frame_02328
376 0_0013_frame_08392
383 0_0050_frame_08696
449 0_00_23_frame_02500
451 0_0000_frame_04816
457 0_0013_frame_08392
459 0_0050_frame_08600
478 0_0026_frame_02272
481 0_0000_frame_04904
482 0_0038_frame_03224
502 0_0013_frame_07968
542 1_0026_frame_02616
561 1_0014_frame_03352
608 0_0000_frame_04400
626 0_0059_frame_09972
655 0_0068_frame_02476
688 0_0038_frame_03728
693 0_0038_frame_03424
698 0_0000_frame_04936
701 0_0026_frame_02304
707 0_0068_frame_02580
729 0_0026_frame_02152
748 1_0032_frame_02364
899 0_0067_frame_03900
998 0_0038_frame_03536

1059 0_0065_frame_02504
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Table 9. Disputed Hazard Frames from the KITTI Datasets
HID Frame

21 kitti2012_000071_frame_10
26 kitti2015_000061_frame_10
46 kitti2012_000074_frame_10
50 kitti2012_000020_frame_10

459 kitti2015_000088_frame_10
509 kitti2015_000058_frame_10
539 kitti2012_000116_frame_10
586 kitti2012_000193_frame_10
655 kitti2015_000169_frame_10
671 kitti2012_000143_frame_10
707 kitti2012_000193_frame_10
922 kitti2015_000062_frame_10

Table 10. Disputed Hazard Frames from the Middlebury Datasets
HID Frame

0 middl_2014_add_Cable_perfect_frame_L1_E7
275 middl_2006_orig_Bowling1_frame_illum_3_expo_1
383 middl_2001_orig_tsukuba_frame_3
449 middl_2014_train_orig_Playtable_frame_0
457 middl_2014_train_orig_Playtable_frame_0
458 middl_2006_orig_Wood2_frame_illum_2_expo_1
481 middl_2006_orig_Bowling1_frame_illum_2_expo_0
482 middl_2005_orig_Laundry_frame_illum_2_expo_1
539 middl_2014_train_orig_Playtable_frame_0
883 middl_2001_orig_map_frame_0

1123 middl_2006_orig_Baby3_frame_illum_1_expo_0

Table 11. Disputed Hazard Frames from the Sintel Dataset
HID Frame

244 bamboo_2_frame_0007
275 bandage_1_frame_0028
451 market_6_frame_0005
481 ambush_6_0003

1123 shaman_3_frame_0050
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Table 12. Summary of datasets and the associated url.
NAME YEAR URL
Middlebury 2002 http://vision.middlebury.edu/stereo/data/scenes2001/
Middlebury 2003 http://vision.middlebury.edu/stereo/data/scenes2003/
Middlebury 2007 http://vision.middlebury.edu/stereo/data/scenes2006/
EISATS S1 2008 http://ccv.wordpress.fos.auckland.ac.nz/eisats/set-1/
EISATS S2 2008 http://ccv.wordpress.fos.auckland.ac.nz/eisats/set-2/
EISATS S6 2009 http://ccv.wordpress.fos.auckland.ac.nz/eisats/set-6/
New College 2009 http://www.robots.ox.ac.uk/NewCollegeData/
Pittsburgh 2009 http://pfid.rit.albany.edu/
EVD 2011 http://cmp.felk.cvut.cz/wbs/#datasets
Ford Campus 2011 http://robots.engin.umich.edu/SoftwareData/Ford
HCI-Robust 2012 https://hci.iwr.uni-heidelberg.de/Robust_Vision_Challenge_2012
KITTI 2012 2012 http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
Leuven 2012 https://www.inf.ethz.ch/personal/ladickyl/Leuven.zip
Tsukuba 2012 http://www.cvlab.cs.tsukuba.ac.jp/dataset/tsukubastereo.php
HCI-Synth 2013 http://heidata.customers.aldago.com/dataset
Stixel 2013 http://www.6d-vision.com/ground-truth-stixel-dataset
Daimler Urban 2014 http://www.6d-vision.com/scene-labeling
Malaga Urban 2014 http://www.mrpt.org/MalagaUrbanDataset
Middlebury 2014 http://vision.middlebury.edu/stereo/data/scenes2014/
Cityscapes 2015 https://www.cityscapes-dataset.com/
KITTI 2015 2015 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
MPI Sintel 2015 http://sintel.is.tue.mpg.de/stereo
Freiburg CNN 2016 http://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
HCI Training 2016 http://www.hci-benchmark.org/dataset
SYNTHIA 2016 http://synthia-dataset.net/
Virtual KITTI 2016 http://www.xrce.xerox.com/Research-Development/Computer-Vision/Proxy-

Virtual-Worlds
Oxford Robot-
Car

To ap-
pear

http://robotcar-dataset.robots.ox.ac.uk/
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4.2 Unifying Panoptic Segmentation for Autonomous
Driving
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Supplemental Material CVPR2022 Paper
Unifying Panoptic Segmentation for Autonomous Driving

1. Unified Label Policy
Table 1 lists all WD2 labels including mappings to MVD, IDD, Cityscapes, and WD2eval as well as each label’s supercat-

egory and visualization color.

WD2 color MVD IDD Cityscapes WD2eval WD2 color MVD IDD Cityscapes WD2eval

person person person person person pole pole pole pole pole
motorcyclist motorcyclist rider rider rider utilitypole utilitypole pole pole pole

bicyclist bicyclist rider rider rider trafficsignframe trafficsignframe pole pole pole
otherrider otherrider rider rider rider trafficlight trafficlight trafficlight trafficlight trafficlight
egovehicle egovehicle egovehicle egovehicle egovehicle billboard billboard billboard billboard billboard

dashcammount carmount egovehicle egovehicle egovehicle streetlight streetlight obsstrbarf. streetlight streetlight
car car car car car manhole manhole road road road

truck truck truck truck truck trafficsign trafficsignfront trafficsign trafficsign trafficsign
bus bus bus bus bus trafficsignback trafficsignback obsstrbarf. static unlabeled

motorcycle motorcycle motorcycle motorcycle motorcycle trafficsignany unlabeld obsstrbarf. static unlabeled
bicycle bicycle bicycle bicycle bicycle otherbarrier otherbarrier wall wall wall
pickup truck truck truck pickup catchbasin catchbasin road road road

van car car car van manholesidewalk manhole sidewalk sidewalk sidewalk
autorickshaw othervehicle autorickshaw motorcycle motorcycle junctionbox junctionbox obsstrbarf. static unlabeled

caravan caravan caravan caravan unlabeled mailbox mailbox obsstrbarf. static unlabeled
trailer trailer trailer trailer unlabeled phonebooth phonebooth obsstrbarf. static unlabeled
onrails onrails train onrails unlabeled bikerack bikerack obsstrbarf. static unlabeled

othervehicle othervehicle vehiclef. dynamic unlabeled pothole pothole road road road
wheeledslow wheeledslow vehiclef. dynamic unlabeled trashcan trashcan obsstrbarf. static unlabeled

boat boat unlabeled dynamic unlabeled bench bench obsstrbarf. static unlabeled
road road road road road banner banner obsstrbarf. dynamic unlabeled

sidewalk sidewalk sidewalk sidewalk sidewalk firehydrant firehydrant obsstrbarf. static unlabeled
roadmarking markinggeneral road road roadmarking cctvcamera cctvcamera obsstrbarf. static unlabeled

curb curb curb sidewalk sidewalk building building building building building
tramtrack railtrack road road road wall wall wall wall wall
bikelane bikelane road road road fence fence fence fence fence

bikelanesidewalk bikelane sidewalk sidewalk sidewalk guardrail guardrail guardrail guardrail guardrail
pedestrianarea pedestrianarea road road road bridge bridge bridge bridge unlabeled

crosswalkplain crosswalkplain road road road tunnel tunnel tunnel tunnel unlabeled
crosswalkzebra crosswalkzebra road road road vegetation vegetation vegetation vegetation vegetation

curbterrain curb curb terrain terrain terrain terrain nondrivablef. terrain terrain
servicelane servicelane road road road groundanimal groundanimal animal dynamic unlabeled

curbcut curbcut curb sidewalk sidewalk bird bird animal dynamic unlabeled
ground unlabeled unlabeled ground unlabeled mountain mountain f.background static unlabeled
parking parking parking parking unlabeled sky sky sky sky sky
railtrack railtrack railtrack railtrack unlabeled dynamic unlabeled unlabeled dynamic unlabeled

water water nondrivablef. ground unlabeled overlay unlabeled rect.border rect.border unlabeled
sand sand drivablef. ground unlabeled outofroi unlabeled outofroi outofroi unlabeled
snow snow unlabeled ground unlabeled static unlabeled unlabeled static unlabeled

polegroup pole polegroup polegroup pole unlabeled unlabeled unlabeled unlabeled unlabeled

Table 1. Wilddash2 label policy and mapping to MVD, IDD, CS, and WD2eval. Bold labels have instance annotations, italic labels are not
evaluated at their respective benchmark. Negative test cases do evaluate areas labeled as unlabeled in WD2eval (see paper’s Section 4.2 on
Negative Testing); Supercategories: human; vehicle; flat; object; construction; nature; sky; void

2. Category definitions
The WD2 label policy unifies MVD, IDD, and Cityscapes category labels (in addition to the new vehicle labels pickup

and van. The definition for most labels can be found in existing label definitions. Others need clarification or clear rules for
differentiation in borderline cases. This leads to the following category definitions:

• The categories person, egovehicle, car, truck, bus, motorcycle, bicycle, caravan, trailer, onrails, road, sidewalk,
ground, parking, railtrack, polegroup, billboard, streetlight, building, wall, fence, guardrail, bridge, tunnel, vegetation,
terrain, sky, unlabeled, outofroi, static, and dynamic are described in the supplemental material to the Cityscapes [1]
paper.

• The categories motorcyclist, bicyclist, otherrider, othervehicle, wheeledslow, boat, roadmarking (==marking general)
curb, bikelane, pedestrianarea, crosswalkplain, crosswalkzebra, servicelane, curbcut, water, sand, snow, pole, utili-
typole, trafficlight, trafficsign (== traffic sign front), manhole, pothole, trafficsignback, trafficsignframe, otherbarrier,
catchbasin, junctionbox, mailbox, phonebooth, bikerack, trashcan, bench, banner, firehydrant, cctvcamera, groun-
danimal, bird, mountain, dashcammount (== car mount) are described in the supplemental material to the MVD [2]
paper.
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human vehicle flat object construction nature sky average

mvd100 PQCat 46.0% 55.3% 71.6% 32.3% 52.8% 66.5% 79.5% 57.7%
mix150 PQCat 49.7% 61.4% 86.2% 34.1% 62.5% 71.9% 87.3% 64.7%
mvd100 RQCat 60.2% 67.0% 84.1% 48.2% 70.0% 82.1% 86.3% 71.1%
mix150 RQCat 65.2% 73.6% 97.5% 50.9% 79.8% 87.1% 93.6% 78.2%
mvd100 SQCat 76.4% 82.6% 85.1% 67.1% 75.4% 80.9% 92.2% 80.0%
mix150 SQCat 76.2% 83.4% 88.4% 66.9% 78.2% 82.6% 93.3% 81.3%

Table 2. Per-supercategory PQ, RQ and SQ metrics evaluated on the hidden WD2 benchmark set for both models mvd100 and mix150
presented in the main paper.

• The labels curb and curbterrain both are described by the MVD curb label (i.e. curb stones; including all visible faces
of a curb). If the curb encases an area labeled with terrain (or other vegetation), then the curb receives the curbterrain
label. Otherwise use curb.

• The labels bikelane and bikelanesidewalk are both described by the MVD curb label. Use bikelanesidewalk if the
bikelane is on a sidewalk. Otherwise use bikelane.

• The labels manhole and manholesidewalk are both described by the MVD manhole label. Use manholesidewalk if the
manhole is on a sidewalk. Otherwise use manhole.

• The traintrack is described by the Cityscapes traintrack label (i.e. track of raised rails, not drivable by cars). The
tramtrack label is used for the track area between embedded rails (drivable by cars) including the rails themselves.

• The autorickshaw category is described in the IDD [3] paper.

• The trafficsignany category is a fallback category used for cases where either trafficsign (=front) or trafficsignback
could be correct.

• Vehicle class pickup: This label is used for light commercial vehicles (LCV) with an open cargo area. It only applies to
motorized, car-sized vehicles with a visible un-roofed cargo area (also for open cages). Pickup trucks have regular car
front wheels and a regular car wheelbase (distance). Cargo vehicles with larger tires or a truck motor housing (driver
sitting above motor with a vertical windscreen and bonnet) retain the truck label.

• Vehicle class van: This label applies to motorized LCV without an open cargo area. Vans have a boxy shape with
regular car tires and their wheel-base is typically larger than those of regular cars. The front of vans is often inclined
but straight and they are distinctively higher (i.e. the van’s ceiling) than regular cars. Vehicles sold under the term
“mini-van” with a regular car height remain at the car label. Hybrid vehicles with a fully separated, non-continuous,
driver cabin are still labeled as truck (e.g. many ambulance vehicles, police, some delivery trucks).

3. Supercategory Scores
Table 2 shows individual per-supercategory scores of mvd100 and mix150 on the WD2bench set. Table 3 in the main

paper contains the right-most column (arithmetic mean over all supercategories) denoted as PQcat.

4. Further Experiments
The following Table 3 mirrors the layout of Table 3 in the main paper. Experiments were conducted for WD2, Cityscapes,

and IDD in the same way as for MVD: first 100 epochs on only the original dataset using the standard training label policy
(plus van and pickup. This results in 66 labels for MVD, 29 for IDD, and 22 for Cityscapes. The validation results are
calculated on the original validation dataset using the original training label policy while the WD2 benchmark evaluation
remaps the algorithm outputs to the WD2eval label policy (26 labels) and reports the results for the hidden WD2 benchmark
dataset. The models after 100 epochs are fine-tuned for 50 epochs using WD2 individually remapped to each of the dataset’s
training label policies mixed with the same amount of frames from the original dataset (i.e. 50%/50% split). The model for
the first column wd2 100 uses only WD2 frames with the WD2eval label policy during training. The same train/val split is
used both for wd2 100 as well as in all fine-tunings.
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Original Validation WD2 Benchmark

PQ SQ RQ PQvan PQpickup PQ SQ RQ PQvan PQpickup PQneg PQcat

wd2 100 38.0% 75.6% 48.2% 36.9% 33.4% 37.0% 75.5% 47.7% 35.1% 37.3% 16.9% 61.1%
cs100 55.7% 76.4% 68.2% 53.7% 0.0% 10.7% 69.5% 15.0% 10.6% 0.0% 5.4% 22.8%
cs150 56.1% 77.4% 68.2% 55.2% 0.0% 32.2% 76.9% 41.1% 34.4% 41.1% 15.5% 58.4%
idd100 47.7% 75.6% 59.5% 48.8% 0.0% 15.3% 72.8% 20.1% 14.1% 0.0% 7.2% 35.7%
idd150 46.4% 75.7% 57.9% 40.4% 0.0% 29.4% 76.1% 37.7% 33.7% 33.7% 14.2% 54.8%
mvd100 35.1% 74.2% 43.9% 26.6% 29.9% 37.6% 75.6% 48.3% 34.0% 38.1% 17.1% 57.7%
mix150 34.1% 73.5% 42.8% 24.7% 29.7% 42.2% 77.5% 53.2% 38.9% 49.2% 21.1% 64.7%

Table 3. Comparison of performances for multiple models first trained on the respective original datasets (WD2, Cityscapes, IDD, MVD)
and later fine-tuned for 50 additional epochs on a 50%/50% mixture of the original dataset and WD2. The left side shows results when
evaluated on the original validation sets and the right side shows scores on the hidden WD2 benchmark set. The label policy on the left
is not constant across the rows while the right side all evaluate using the same labels: WD2eval. Results for MVD are duplicated from the
main paper to improve comparability.
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