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Kurzfassung

Ein Bedingungserfüllungsproblem über einer relationalen Struktur A ist das Problem, bei
dem eine Instanz – d.h. eine endliche Menge von Variablen und Bedingungen – gegeben ist
und das Ziel ist zu entscheiden, ob es eine Zuordnung der Werte aus dem Universum von
A zu den Variablen gibt, so dass alle Bedingungen erfüllt sind. In dieser Arbeit befassen
wir uns mit Bedingungserfüllungsproblemen über Strukturen, die in endlich beschränkten
homogenen Strukturen erster Ordnung definierbar sind (sogenannte Redukte erster Ordnung
dieser Strukturen). Während uns die Homogenität versichert, dass jede Lösung einer Instanz
bis auf Automorphismen durch die Relationen auf ihrem Bild gegeben ist, impliziert die end-
liche Beschränktheit, dass jede Lösung nur auf Teilmengen mit einer festen Größe überprüft
werden muss.
In Kapitel 1 geben wir eine Einführung in die Theorie der Bedingungserfüllungsprobleme

und diskutieren verwandte Konzepte aus der Modelltheorie und der universellen Algebra,
die im Rest der Arbeit benötigt werden.
Prüfung auf lokale Konsistenz ist eine der wichtigsten algorithmischen Techniken im Ge-

biet der Bedingungserfüllungsprobleme. In Kapitel 2 beweisen wir eine obere Schranke für
die Menge an lokaler Konsistenz, die benötigt wird, um Bedingungserfüllungsprobleme über
Redukten erster Ordnung von endlich beschränkten homogenen Strukturen zu lösen, die be-
stimmte algebraische Bedingungen erfüllen. Als Korollar erhalten wir eine obere Schranke
für die Menge an lokaler Konsistenz, die benötigt wird, um Bedingungserfüllungsprobleme
über Redukte erster Ordnung von vielen bekannten relationalen Strukturen zu lösen, die
durch Prüfung auf lokale Konsistenz lösbar sind. Wir erhalten auch eine Charakterisierung
der begrenzten Weite für Redukte erster Ordnung von unären Strukturen und für bestimmte
Strukturen, die mit der Logik MMSNP zusammenhängen.
In Kapitel 3 betrachten wir Bedingungserfüllungsprobleme über Redukte erster Ordnung

von bestimmten uniformen Hypergraphen. In [73] wurde festgestellt, dass diese Bedingungs-
erfüllungsprobleme nicht mit den Standardmethoden gelöst werden können, die in den meis-
ten bekannten Klassifikationen von Bedingungserfüllungsproblemen über Redukte erster
Ordnung von endlich beschränkten homogenen Strukturen verwendet werden. Daher stellen
wir einen neuen Algorithmus zur Lösung der betrachteten Bedingungserfüllungsprobleme vor.
Dieser Algorithmus verwendet Umformulierungen mehrerer Begriffe, die in dem Algorith-
mus für die Lösung aller traktablen Bedingungserfüllungsprobleme über endlichen Domänen
aus [83, 84] verwendet werden.
In Kapitel 4 betrachten wir eine Klasse von Redukten erster Ordnung von endlich be-

schränkten homogenen Strukturen, die durch eine stärkere Form der lokalen Konsistenz
lösbar sind. Wir beweisen, dass diese Strukturen eine begrenzte Ausdruckkraft in Form von
implikationeller Einfachheit haben. Dies impliziert, dass nur eine begrenzte Menge an lokaler
Konsistenz erforderlich ist, um ihre Bedingungserfüllungsprobleme zu lösen.
Kapitel 2 entspricht der Veröffentlichung [72] (mit Antoine Mottet, Michael Pinsker und
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Michal Wrona), die eine Zeitschriftenversion von [71] ist; Kapitel 3 entspricht der Ver-
öffentlichung [70] (mit Antoine Mottet und Michael Pinsker), Kapitel 4 basiert auf noch nicht
veröffentlichten Ergebnissen, die in Zusammenarbeit mit Michael Pinsker erhalten wurden.
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Abstract

A Constraint Satisfaction Problem (CSP) over a relational structure A is the problem where
one is given an instance – i.e., a finite set of variables and constraints, and one has to decide
whether there exists an assignment of the values from the domain of A to the variables such
that all constraints are satisfied. In this thesis, we deal with CSPs over structures which are
first-order definable in finitely bounded homogeneous structures (so-called first-order reducts
of these structures). While homogeneity assures us that every solution of a CSP instance is
up to automorphisms given by the relations holding on its image, finite boundedness implies
that every solution must only be verified locally on subsets of a fixed size.
In Chapter 1, we give an introduction to the theory of CSPs and we discuss related concepts

from model theory and universal algebra that are be needed in the rest of the thesis.
Local consistency checking is one of the most important algorithmic techniques in the area

of constraint satisfaction. In Chapter 2, we prove an upper bound on the amount of local
consistency needed to solve CSPs over first-order reducts of finitely bounded homogeneous
structures which satisfy certain algebraic conditions. As a corollary, we obtain a bound
on the amount of local consistency needed to solve CSPs over first-order reducts of many
well-known relational structures which are solvable by local consistency checking. We also
obtain a characterization of bounded width for first-order reducts of unary structures and
for certain structures related to the logic MMSNP.
In Chapter 3, we consider CSPs over first-order reducts of certain uniform hypergraphs.

It was observed in [73] that these CSPs cannot be solved by standard methods used in most
known classifications of CSPs of first-order reducts of finitely bounded homogeneous struc-
tures. Therefore, we introduce a new algorithm for solving the CSPs under consideration.
This algorithm uses reformulations of several notions used in the algorithm for solving all
tractable CSPs over finite domains from [83, 84].
In Chapter 4, we consider a class of first-order reducts of finitely bounded homogeneous

structures that are solvable by a stronger form of local consistency. We prove that these
structures have limited expressibility in the form of implicational simplicity. This will imply
that only a restricted amount of local consistency checking is needed in order to solve their
CSPs.
Chapter 2 corresponds to the publication [72] (with Antoine Mottet, Michael Pinsker and

Michal Wrona) which is a journal version of [71]; Chapter 3 corresponds to the publica-
tion [70] (with Antoine Mottet and Michael Pinsker); Chapter 4 is based on results that
have not been published yet and that were obtained in collaboration with Michael Pinsker.
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1 Introduction

In this chapter, we introduce and motivate basic notions connected to the theory of con-
straint satisfaction problems (CSPs), in particular to CSPs over first-order reducts of finitely
bounded homogeneous structures.

1.1 Notation and basic notions from model theory

1.1.1 Notation

All relational structures in this thesis are assumed to be at most countable and over a finite
relational signature. We will use the blackboard bold font to denote relational structures.
The domain of a relational structure A will be denoted by A unless stated otherwise. Let A
be a relational structure in a relational signature τ . For any first-order formula ϕ over τ , we
will denote by ϕA its interpretation in A. When the structure A is clear from the context,
we will slightly abuse the notation and use R both for the relational symbol from τ and for
its interpretation in A. Let ϕ, ψ be first-order formulas over τ .
For k ≥ 1, we write [k] for the set {1, . . . , k}. Let R be a relation of arity m ≥ 1, let n ≥ 1,

and let i1, . . . , in ∈ [m]. We denote by proj(i1,...,in)(R) the projection of R to the coordinates
(i1, . . . , in), i.e., proj(i1,...,in)(R) = {(bi1 , . . . , bin) | (b1, . . . , bn) ∈ R}.
Let A be a set, and let m ≥ 2. We say that a tuple t ∈ Am is injective if its entries are

pairwise different. We say that a relation is injective if it contains only injective tuples. We
write IAm for the relation containing all injective m-tuples of elements of A. When the set A
is clear from the context, we omit the upper index and write Im instead of IAm.

1.1.2 Relational structures and permutation groups

A first-order reduct of a structure A is a structure on the same domain whose relations have
a first-order definition in A. A first-order expansion of A is a first-order reduct of A which
contains all relations of A among its relations.
Let A and B be relational structures in the same signature τ . We say that a mapping

f : A → B is a homomorphism from A to B if for every relational symbol R ∈ τ of arity
k and for every a = (a1, . . . , ak) ∈ RA, f(a) = (f(a1), . . . , f(ak)) ∈ RB. If f is moreover
injective and for every a ∈ Ak, it holds that a ∈ RA if, and only if, f(a) ∈ RB, then f is
called an embedding. An isomorphism is a bijective embedding. Two relational structures
are isomorphic if there exists an isomorphism between them. A homomorphism from a
relational structure to itself is an endomorphism of the structure and an isomorphism from a
structure to itself is an automorphism. The set of all endomorphisms of a relational structure
A will be denoted by End(A) and the set of all its automorphisms by Aut(A).

10



Let A be a relational structure, and let n ≥ 1. We define the n-th power An of A as follows.
Let R be a relational symbol from the signature of A of arity k ≥ 1. Then RAn

contains all
tuples ((a11, . . . , a

1
n), . . . , (a

k
1, . . . , a

k
n)) such that (a1i , . . . , a

k
i ) ∈ RA for every i ∈ [n].

Definition 1.1.1. Let G be a permutation group acting on a set A, let k ≥ 1, and let a ∈ Ak.
The orbit of a under G is the set {g(a) | g ∈ G}. We say that G is oligomorphic if for every
k ≥ 1, G has only finitely many orbits of k-tuples in its action on A.
We say that a relational structure A is ω-categorical if its automorphism group is oligo-

morphic.

It is a well-known fact that the automorphisms of a relational structure A preserve all
relations that are first-order definable in A. More precisely, if R is any such relation, α ∈
Aut(A) and t ∈ R, then α(t) ∈ R. It follows that if B is a first-order reduct of A, then
Aut(A) ⊆ Aut(B) and in particular, if A is ω-categorical, then so is B. If B is a first-order
expansion of A, then Aut(B) = Aut(A).
For an ω-categorical relational structure A and for every k ≥ 1, it holds that two k-tuples

of elements from A are in the same orbit under Aut(A) if, and only if, they have the same
type, i.e., if they satisfy the same first-order formulas.

Definition 1.1.2. Let G be a permutation group acting on a set A and let k ≥ 1. We say
that G is k-transitive if it has only one orbit in its action on IAk . We say that G is transitive
if it is 1-transitive.
We say that G is k-homogeneous if for every ℓ ≥ k, the orbit of every ℓ-tuple under G is

uniquely determined by the orbits of its k-subtuples.
We say that G has no k-algebraicity if the only fixed points of any stabilizer of G by k− 1

elements are these elements themselves. We say that G has no algebraicity if it has no
k-algebraicity, for every k ≥ 1.
The canonical k-ary structure of G is the relational structure on A that has a relation for

every orbit of k-tuples under G .

The atomic type of a tuple of elements in a relational structure A is the set of all atomic
formulas satisfied by this tuple.

Definition 1.1.3. Let A be a relational structure. We say that A is transitive if Aut(A) is.
For k ≥ 1, we say that A is k-homogeneous if Aut(A) is k-homogeneous; A is homogeneous
if any two tuples of the same atomic type belong to the same orbit. We say that A has no
algebraicity if Aut(A) has no algebraicity.

Homogeneity is often in the literature defined in a slightly different way – a relational
structure A is homogeneous if any isomorphism between any two finite substructures of A
can be extended to an automorphism of A. However, it is easy to see that this definition
is equivalent to our definition of homogeneity. Note moreover that if a relational structure
A in a finite relational signature τ is homogeneous and if n is the maximum of the arities
of the relational symbols from τ , then A is k-homogeneous for every k ≥ n. It is also easy
to observe that every homogeneous relational structure in a finite relational signature is
ω-categorical.

11



Definition 1.1.4. Let ℓ ≥ 1 and let A be a relational structure in a signature τ . We say
that A is ℓ-bounded if for every finite τ -structure X, if all substructures Y of X of size at
most ℓ embed to A, then X embeds to A.
We say that A is finitely bounded if there exists a finite set F of finite τ -structures such

that for every finite τ -structure X, it holds that X embeds to A if no F ∈ F embeds to X. Let
FA be such a set of finite τ -structures with the property that the size of the biggest structure
contained in FA is the smallest possible among all choices of F ; we write bA for this size.

Note that a finitely bounded relational structure A in a finite relational signature τ is
ℓ-bounded for every ℓ ≥ bA.
While the finite substructures of a finitely bounded structure A are defined by not embed-

ding any of the finitely many structures from FA, it also makes sense to consider structures
where the set of finite structures having a homomorphism to them is defined by forbidding
finitely many homomorphic images. This is achieved in the following definition.

Definition 1.1.5. Let A be a relational structure in a signature τ . We say that A has a
finite duality if there exists a finite set G of finite τ -structures such that for every finite
τ -structure X, it holds that X has a homomorphism to A if no G ∈ G has a homomorphism
to A. Let GA be such a set of finite τ -structures with the property that the size of the biggest
structure contained in GA is the smallest possible among all choices of G; we denote this size
by dA.

Definition 1.1.6. A relational structure A is universal for a class of finite structures in its
signature if it embeds all members of the class.

There exist up to isomorphism unique countable homogeneous relational structures that
are universal for the following classes of finite structures:

• graphs,

• Kn-free graphs (i.e., graphs not containing the complete graph on n vertices as an
induced subgraph) for any fixed n ≥ 3,

• k-uniform hypergraphs for any fixed k ≥ 3,

• tournaments,

• partial orders.

All of these homogeneous structures are obtained as Fräıssé limits of the respective classes
of finite structures [52]. Since we will not need the construction in this thesis, we choose not
to present the details – the interested reader can however find them e.g. in [58].

1.2 CSP, polymorphisms and identities

In the whole thesis, we will use the shortcut CSP for “constraint satisfaction problem”.
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1.2.1 Constraint satisfaction problems

Definition 1.2.1. A CSP instance over a set A is a pair I = (V , C), where V is a finite set
of variables and C is a finite set of constraints such that each constraint C ∈ C is a subset
of AU for some non-empty U ⊆ V; the set U is called the scope of C.
A solution of a CSP instance I = (V , C) is a mapping f : V → A such that for every

C ∈ C with scope U , f |U ∈ C.

CSP over a set A can be understood as a computational problem – an instance of this
CSP is given as an input and one has to decide whether this instance has a solution or not.
This version is known as the decision version of the CSP. In this thesis, this version of the
CSP is considered.
In order to systematically study CSPs, it is natural to view constraints of a CSP instance

over a set A as relations on A. This can be formalized as follows.

Definition 1.2.2. Let A be a relational structure. We say that a CSP instance I = (V , C)
over the set A is an instance of CSP(A) if every constraint C ∈ C can be viewed as a
relation of A by totally ordering its scope U ; more precisely, we require that there exists an
enumeration u1, . . . , uk of the elements of U and a k-ary relation R of A such that for all
f : U → A we have f ∈ C ⇔ (f(u1), . . . , f(uk)) ∈ R. The relational structure A is called
the template of the CSP.

Different definitions of a CSP over a relational structure appear in the literature. One of
the most common alternative approaches to the definition of a CSP over a relational structure
A is to define it as a homomorphism problem, i.e., an instance of CSP(A) is a finite structure I
in the signature of A and a solution of this instance is a homomorphism from I to A. However,
it is easy to see that this definition is equivalent to our definition in the following sense. If
we are given a finite structure I with domain V , then we can define an instance I = (V , C) of
CSP(A) in our sense as follows. For every relational symbol R from the signature of A and for
every tuple (v1, . . . .vk) ∈ RI, we add the constraint C := {f ∈ A{v1,...,vk} | f(v1, . . . , vk) ∈ RA}
to C. It immediately follows that a homomorphism from I to A is a solution of I and vice
versa. On the other hand, given an instance I = (V , C) of CSP(A), we can define a structure
I over the set V as follows. For every relational symbol R from the signature of A, we define
RI as the set of all tuples (v1, . . . , vk) ∈ Vk such that there exists a constraint C ∈ C with
f ∈ C ⇔ (f(v1), . . . , f(vk)) ∈ RA. It again immediately follows that every homomorphism
from I to A is a solution of I and there are no other solutions.
There are many examples of constraint satisfaction problems which appear in different

branches of mathematics and computer science.

Example 1.2.3. Let K3 = ({v1, v2, v3};E) be the complete graph on 3 vertices. Then
CSP(K3) corresponds to the problem of deciding whether the vertices of a given finite graph
can be coloured by 3 colours such that no pair of vertices which are coloured by the same
colour is connected by an edge. The easiest way of seeing this is to understand CSP(K3) as
a homomorphism problem. An instance of CSP(K3) is a finite graph G and any homomor-
phism from G to K3 corresponds to a valid colouring of the vertices of G and vice versa.
This problem is known to be NP-complete.
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Example 1.2.4. Let A = ({0, 1};R) where R ⊆ {0, 1}3 contains the tuples (1, 0, 0), (0, 1, 0)
and (0, 0, 1). Then CSP(A) is the computational problem 1-IN-3 SAT which is known to be
NP-complete.

Example 1.2.5. Solving a finite set X of linear equations over a field F can also be under-
stood as a CSP over the relational structure whose domain is F and which contains a relation
for every linear equation from X; this relation is defined as the set of all tuples satisfying the
corresponding equation. Let, e.g., F := Z2 and let X be a set consisting of the single linear
equation x + y + z = 1. Then the corresponding relation is ternary and contains the tuples
(1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1). It is well-known that every such CSP can be solved in
polynomial time by the Gaussian elimination.

The fact that many natural computational problems can be expressed as CSPs led to a big
interest in classifying the complexity of CSPs. In 1998, Feder and Vardi conjectured that any
CSP whose template has a finite domain is either solvable in polynomial time (tractable) or
NP-complete. This can be put into a contrast with the theorem of Ladner [65] stating that
if P ̸= NP, then there are computational problems that are neither solvable in polynomial
time nor NP-complete.

1.2.2 Clones and polymorphisms

In 2005, a connection between the computational complexity of CSPs over structures with
finite domains and universal algebra was discovered [44]. It turned out that for any rela-
tional structure A with finite domain, the complexity of CSP(A) depends only on functions
preserving all constraints of all instances of this CSP.
Let n,m ≥ 1, let A be a set, let f be an m-ary function on A, and let g1, . . . , gm be n-ary

functions on A. The mn-ary function f(g1, . . . , gm) on A is defined as follows.

f(g1, . . . , gm)(x
1
1, . . . , x

1
n, . . . , x

m
1 , . . . , x

m
n ) := f(g1(x

1
1, . . . , x

1
n), . . . , gm(x

m
1 , . . . , x

m
n ))

Definition 1.2.6. Let n ≥ 1. We say that a constraint C of a CSP instance over a set A
is preserved by a function f : An → A if for all g1, . . . , gn ∈ C, we have f(g1, . . . , gn) ∈ C.

A relation R on a set A of arity k ≥ 1 is preserved by a function f : An → A if the
constraint {g ∈ A{v1,...,vk} | g(v1, . . . , vk) ∈ R} is preserved by f . In this case, we also
say that R is invariant under f . Let A be a relational structure. Functions preserving all
constraints of all instances of CSP(A) are called polymorphisms of A. Note that it is also
possible to define polymorphisms without using the notion of CSP. Indeed, it is easy to see
that a function f : An → A is a polymorphism of A if, and only if, it is a homomorphism
from An to A. The set of all polymorphisms of a CSP template A is denoted by Pol(A); it
is easy to observe that Pol(A) is a function clone.

Definition 1.2.7. A set C of finitary operations on a fixed set C is called a function clone
if both of the following hold.

• for every k ≥ 1 and for every i ∈ [k], C contains the k-ary projection on the i-th
coordinate, i.e., the function πk

i : C
k → C defined by πk

i (x1, . . . , xk) := xi,
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• for all m,n ≥ 1, for every f ∈ C of arity m and for all g1, . . . , gm ∈ C of arity n, it
holds that f(g1, . . . , gm) ∈ C .

For a function clone C , we denote the domain of its functions by C; we say that C acts
on C. Let n ≥ 1. We say that a relation R ⊆ Cn is invariant under C if it is invariant
under all functions from C . The clone C also naturally acts (componentwise) on Ck for any
k ≥ 1, on any invariant subset S of C (by restriction), and on the classes of any invariant
equivalence relation ∼ on an invariant subset S of C (by its action on representatives of the
classes). We write C ↷ Ck, C ↷ S and C ↷ S/∼ for these actions. Any action C ↷ S/∼
is called a subfactor of C , and we also call the pair (S,∼) a subfactor. A subfactor (S,∼)
is minimal if ∼ has at least two classes and no proper subset of S intersecting at least two
∼-classes is invariant under C . For a clone C acting on a set X and Y ⊆ X we write ⟨Y ⟩C
for the smallest C -invariant subset of X containing Y .

The discovery of the connection between CSPs and universal algebra laid the foundations
of the algebraic approach to constraint satisfaction that eventually led to a confirmation of
the Feder-Vardi conjecture independently by Bulatov and Zhuk in 2017. Moreover, it turns
out that the border between tractability and NP-completeness is given by the existence of a
polymorphism of the template satisfying certain algebraic conditions.

Theorem 1.2.8 ([46, 83, 84]). Let A be a relational structure over a finite domain and
suppose that P ̸= NP . Then precisely one of the following applies.

• CSP(A) is tractable, and there exists a 6-ary polymorphism s of A satisfying for every
a, b, c ∈ A

s(a, b, c, b, c, a) = s(b, c, a, a, b, c).

• CSP(A) is NP-complete.

1.2.3 Identities

The polymorphism from the first item of Theorem 1.2.8 is called a Siggers polymorphism
as it is characterized by satisfying the Siggers identity. An identity is an equation of terms
built from some functional symbols where all variables are implicitly interpreted as being
universally quantified. For example, a 6-ary function s on some domain C satisfies the Siggers
identity s(x, y, z, y, z, x) = s(y, z, x, x, y, z) if the equation s(a, b, c, b, c, a) = s(b, c, a, a, b, c)
holds for all elements a, b, c ∈ C.
We list below some identities and operations that will be used in the thesis. Let k ≥ 1,

let C be a set, and let f : Ak → A.

• f is idempotent if it satisfies the identity f(x, . . . , x) = x,

• f is a weak near-unanimity (WNU) operation if it satisfies the set of identities contain-
ing an equation for each pair of terms in {f(y, x, . . . , x), f(x, y, . . . , x), . . . , f(x, . . . , x, y)},

• f is totally symmetric if it satisfies all identities of the form f(x1, . . . , xk) = f(y1, . . . , yk)
whenever {x1, . . . , xk} = {y1, . . . , yk},
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• f is a quasi near-unanimity (qnu) operation if it is a WNU operation and moreover, it
satisfies f(x, . . . , x) = f(y, x, . . . , x),

• f is a near-unanimity operation if it is an idempotent quasi near-unanimity operation,

• a ternary operation m is a minority if it satisfies m(x, x, y) = m(x, y, x) = m(y, x, x) =
y,

• f is a local near-unanimity operation on a finite subset F ⊆ C if it is a near-unanimity
operation when restricted to F ,

• a binary operation g on a two-element domain is a semilattice operation if it satisfies
g(x, y) = g(y, x) = g(x, x) = x for some enumeration {x, y} of its domain.

Note that a local near-unanimity operation and a semilattice operation are not character-
ized by the satisfaction of a certain set of identities since we require them not only to satisfy
a certain set of identities but we also make assumptions about the domains on which these
identities should be satisfied.
Each set of identities also has a pseudo-variant obtained by composing each term appearing

in the identities with a distinct unary function symbol. For example, a ternary operation f
is a pseudo-WNU operation if there exist unary functions e1, . . . , e6 on the same domain such
that f together with these functions satisfies the identities: e1 ◦ f(y, x, x) = e2 ◦ f(x, y, x),
e3 ◦ f(y, x, x) = e4 ◦ f(x, x, y) and e5 ◦ f(x, y, x) = e6 ◦ f(x, x, y).
So far, we were interested in the satisfaction of some set of identities in the clone of

polymorphisms of a particular CSP template. However, sometimes it makes sense to ask
whether these identities are satisfied in some particular subclone of the polymorphism clone.
This motivates the following notion. A function clone C satisfies a given set of identities if
the function symbols which appear in the identities can be assigned functions in C in such
a way that all identities in the set are satisfied by the assigned functions; if U ⊆ C is a set
of unary functions, then C satisfies a set of pseudo-identities modulo U if it satisfies the
identities in such a way that the unary function symbols are assigned values in U .
Unlike for the other identities, the k-ary idempotency identity is trivial for every k ≥ 1, i.e.

it is satisfied in every function clone – indeed, the k-ary projection to the first coordinate is
certainly idempotent. Therefore, it makes sense only to ask whether all functions in a given
function clone satisfy this identity, i.e. if the clone is idempotent. A set of identities that is
not satisfied in every function clone is non-trivial. Remarkably, for clones over finite domains,
the satisfaction of the Siggers identity is equivalent to the satisfaction of any non-trivial set
of identities [77].

1.2.4 Infinite-domain CSPs

As we have seen in Section 1.2, many computational problems can be expressed as CSPs
over relational structures with finite domains. However, many other natural problems from
computer science can be phrased as CSPs only over templates with infinite domains. This is
the case for some problems in artificial intelligence but also, e.g., for the digraph acyclicity
problem.
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Example 1.2.9. Let us consider the relational structure (Q;<). This structure is easily seen
to be universal for the class of all finite linear orders. Note moreover that a finite digraph
D = (D;E) is acyclic if, and only if, it is possible to find a linear order <∗ on D such that
for every (u, v) ∈ E, it holds that u <∗ v. It follows that a finite digraph D is acyclic if, and
only if, it has a homomorphism to (Q;<) (here, we identify the relational symbols E and <).
Hence, CSP(Q;<) is equivalent to the digraph acyclicity problem in the sense of the remark
below Definition 1.2.2.

It is therefore natural to study also CSPs over infinite domains. However, every compu-
tational problem is polynomial-time Turing-equivalent to a CSP over some template with
infinite domain [20]. Hence, it is natural to restrict ourselves only to CSPs with infinite tem-
plates that satisfy some additional properties – the first natural assumption on the template
is that every instance of its CSP has only finitely many solutions up to some property. This
is the case for structures that are ω-categorical: For any instance I = (V , C) of CSP over an
ω-categorical relational structure A, for any solution f : V → A of I and for any α ∈ Aut(A),
αf is a solution of I as well. Hence, the number of solutions of I up to automorphisms of
A is bounded by the number of orbits of | V |-tuples under Aut(A) and is therefore finite.
Moreover, for an ω-categorical structure A, the complexity of CSP(A) depends only on

the polymorphisms of A [33]. Unfortunately, the sole assumption of ω-categoricity of the
template is still insufficient to assess the complexity of its CSP [55, 56]. This is because even
though every instance of such CSP has only finitely many solutions up to automorphisms,
the set of possible solutions still does not need to be algorithmically enumerable. A natural
assumptions on the relational structure A that guarantee the algorithmical enumerability
of the solution set of its CSP are that A is homogeneous and finitely bounded. While
homogeneity amounts to assuming that any solution is uniquely determined by the relations
holding on its image, finite boundedness assures us that in order to decide whether a given
map is a possible solution of some instance, it is necessary to verify if it satisfies certain
conditions on subsets of the variable set of a fixed size.
Observe moreover that if A is a first-order reduct of a finitely bounded homogeneous struc-

ture B, then the set of possible solutions of instances of CSP(A) can still be algorithmically
enumerated in the sense of the previous paragraph since orbits under Aut(A) are unions of
orbits under Aut(B). For first-order reducts of finitely bounded homogeneous structures,
a generalization of the Feder-Vardi dichotomy conjecture was formulated by Bodirsky and
Pinsker in 2011 [38].

Conjecture 1.2.10. Let A be a first-order reduct of a finitely bounded homogeneous structure
B and assume that P ̸= NP. Then precisely one of the following applies.

• CSP(A) is NP-complete.

• CSP(A) is in P.

Moreover, CSP(A) not being NP-complete implies that the polymorphism clone of a cer-
tain CSP template related to A has to satisfy the pseudo-Siggers identity. For more details,
see Section 1.3.1. In this section, we will also present a more precise formulation of Conjec-
ture 1.2.10. This conjecture was confirmed for first-order reducts of many finitely bounded
homogeneous structures as well as for structures representing several classes of problems from
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computer science. We list some of the structures for which the conjecture was confirmed
below.

• first-order reducts of finitely bounded homogeneous graphs [35, 28],

• first-order reducts of (Q;<) [23],

• first-order reducts of unary structures [30, 29],

• first-order reducts of the random poset [63],

• first-order reducts of the random tournament [69],

• first-order reducts of the homogeneous branching C-relation [21],

• structures representing all CSPs in the class MMSNP [26, 25],

• CSPs of representations of some relational algebras [24],

• CSPs of ω-categorical monadically stable structures [41].

In Chapter 3, we confirm Conjecture 1.2.10 for first-order reducts of certain k-uniform
hypergraphs for every k ≥ 3.

1.3 Universal algebra and reductions between CSPs

1.3.1 Primitive positive definability and clone homomorphisms

In this section, we present several notions from universal algebra and model theory and their
connection to complexity reductions between CSPs.
One of the simplest and oldest reductions between CSPs is connected to the notion of

primitive positive definability. A first-order formula is called primitive positive (pp) if it is
built exclusively from atomic formulae, existential quantifiers, and conjunction. A relation
is pp-definable in a relational structure A if it is first-order definable by a pp-formula. A
relation is pp-definable in a relational structure A if, and only if, it is preserved by all its
polymorphisms (see e.g. [78]).

Theorem 1.3.1 ([59]). Let A be a relational structure over a finite signature and let B be
a structure over the same domain such that every relation of B is pp-definable in A. Then
CSP(B) can be reduced to CSP(A) in polynomial time.

Another easy reduction between CSPs comes from the notion of homomorphic equivalence.
We say that two relational structures A and B in the same signature are homomorphically
equivalent if there exists a homomorphism from A to B and a homomorphism from B to A.

Theorem 1.3.2. Let A and B be relational structures over the same finite relational signa-
ture and suppose that A and B are homomorphically equivalent. Then CSP(B) can be reduced
to CSP(A) in polynomial time.
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Finally, the third basic reduction comes from the notion of a model-complete core. Let A
be an ω-categorical relational structure. We say that A is a model-complete core if Aut(A)
is dense in End(A), i.e., if for every e ∈ End(A) and for every finite set F ⊆ A, there
exists α ∈ Aut(A) such that e|F = α|F . In any ω-categorical model-complete core A, all
orbits of n-tuples with respect to the automorphism group Aut(A) are pp-definable for all
n ≥ 1. For every ω-categorical relational structure A, there exists an up to isomorphism
unique ω-categorical structure B which is homomorphically equivalent to A and which is a
model-complete core [16]; B is called the model-complete core of A. Moreover, if we formulate
CSP as a homomorphism problem as in Section 1.2.1, CSP(A) and CSP(B) are the same
computational problems. Note that a relational structure A over a finite domain is a model-
complete core if, and only if, End(A) = Aut(A). In this case, A is called a core. It also makes
sense to generalize the notion of model-complete cores for clones – a clone C is a model-
complete core if for every unary function f ∈ C and for every finite F ⊆ C, there exists
α ∈ Aut(A) such that f |F = α|F . Note that a relational structure A is a model-complete
core if, and only if, Pol(A) is.
However, one may wonder if it is possible to find a reduction that generalizes all the

reductions above. A positive answer was given in [12] where the notion of pp-construction
was introduced. We say that a structure B has a pp-construction in a structure A if B is
homomorphically equivalent to a structure with domain An, for some n ≥ 1, whose relations
are pp-definable in A (for this purpose, a k-ary relation on An is regarded as a kn-ary relation
on A).
Moreover, pp-constructibility of a relational structure B in a relational structure A can be

characterized algebraically by the existence of a certain mapping from Pol(A) to Pol(B).

Definition 1.3.3. Let C and D be function clones. A map ξ : C → D is a clone homomor-
phism if it satisfies all of the following.

• ξ preserves arities, i.e., for every f ∈ C of arity n ≥ 1, ξ(f) has arity n.

• ξ preserves projections, i.e., it maps every projection in C to the corresponding pro-
jection in D .

• ξ preserves compositions, i.e., for all n,m ≥ 1, for every f ∈ C of arity n and for all
g1, . . . , gn ∈ C of arity m, ξ(f(g1, . . . , gm)) = ξ(f)(ξ(g1), . . . , ξ(gn)).

We say that ξ is a minion homomorphism if it preserves arities and compositions with
projections, i.e., it satisfies ξ(f ◦ (π1, . . . , πn)) = ξ(f) ◦ (π1, . . . , πn) for all n,m ≥ 1 and all
n-ary f ∈ C and m-ary projections π1, . . . , πn.

Note that every clone homomorphism is a minion homomorphism. Moreover, it is easy to
see that clone homomorphisms preserves identities, i.e., if ξ : C → D is a clone homomor-
phism and a particular set of identities is satisfies in C , then the same set of identities is
satisfied in D . Indeed, if some functions f1, . . . , fn ∈ C witness the satisfaction of a given set
of identities in C , the functions ξ(f1), . . . , ξ(fn) witness the satisfaction of the same set of
identities in D . Similarly, minion homomorphisms preserve the satisfaction of identities of
height 1 (h1-identities), i.e., identities that do not contain any nesting of functional symbols.
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Definition 1.3.4. Let C and D be function clones and suppose that the domain of D is
finite. We say that a minion homomorphism ξ : C → D is uniformly continuous if for all
n ≥ 1, there exists a finite subset F of Cn such that ξ(f) = ξ(g) for all n-ary functions
f, g ∈ C which agree on F .

Clearly, if the domain of C is finite, then every minion homomorphism from C is uni-
formly continuous. Now, we introduced all notions that are needed to state the algebraic
characterization of pp-constructability.

Theorem 1.3.5 ([12]). Let A be an at most countable ω-categorical relational structure and
let B be a relational structure with a finite domain. Then the following are equivalent.

• B has a pp-construction in A.

• There exists a uniformly continuous minion homomorphism ξ : Pol(A) → Pol(B).

Moreover, if any of the items applies, then CSP(B) can be reduced to CSP(A) in polynomial
time.

Now, we can formulate the precise statement of Conjecture 1.2.10 based on the recent
progress from [8, 7]. We will denote by P the clone of projections on a two-element domain.

Conjecture 1.3.6. Let A be a CSP template which is a first-order reduct of a finitely bounded
homogeneous structure. Then one of the following applies.

• Pol(A) has a uniformly continuous minion homomorphism to P, and CSP(A) is NP-
complete.

• Pol(A) has no uniformly continuous minion homomorphism to P, and CSP(A) is in
P.

Observe that for every CSP template B over a two-element domain, P ⊆ Pol(B). Hence,
the first item of Conjecture 1.3.6 corresponds to every CSP template over a two-element
domain being pp-constructible in A. Since there are NP-complete CSPs on two-element
domain (e.g., the CSP from Example 1.2.4), this implies that if Pol(A) has a uniformly
continuous minion homomorphism to P, then CSP(A) is NP-complete. Hence, in order
to prove Conjecture 1.3.6, it remains to prove that if Pol(A) has no uniformly continuous
minion homomorphism to P, then CSP(A) is in P. By the results from [16] mentioned
above, it is enough to prove it for the model-complete core B of A. For an ω-categorical
model-complete core B, it is known that if Pol(B) does not have a uniformly continuous
minion homomorphism to P, then the pseudo-Siggers identity is satisfied in Pol(B) [13].

1.3.2 Canonical functions

As we mentioned in Section 1.2.4, Conjecture 1.2.10 has been confirmed for many CSP
templates under consideration. In all proofs, a reduction to some finite domain CSP is used.
In many of these reductions, so-called canonical functions play a key role.
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Definition 1.3.7. Let k, n ≥ 1, let G be a permutation group acting on a set C, and let
f : Ck → C. We say that f is n-canonical with respect to G if for all a1, . . . , ak ∈ Cn and
all α1, . . . , αk ∈ G there exists β ∈ G such that f(a1, . . . , ak) = β ◦ f(α1(a1), . . . , αk(ak)). A
function that is n-canonical with respect to G for all n ≥ 1 is called canonical with respect to
G . We say that a function is diagonally canonical if it satisfies the definition of n-canonicity
in the case α1 = · · · = αk for every n ≥ 1.

In particular, a canonical function f induces an operation on the set Cn/G of orbits of
n-tuples under G . If all functions of a function clone C are n-canonical with respect to G ,
then C acts on Cn/G and we write C n/G for this action; if the permutation group G is
oligomorphic, then C n/G is a function clone on a finite set.
We write GC to denote the largest permutation group contained in a function clone C ,

and say that C is oligomorphic if GC is oligomorphic. For n ≥ 1, the n-canonical (canonical)
part of C is the clone of those functions of C which are n-canonical (canonical) with respect
to GC . We write C can

n and C can for these sets, which form themselves function clones.
Let k ≥ 1 and let B be a finitely bounded k-homogeneous structure. For a first-order

reduct A of B, the polymorphisms of A which are canonical with respect to B act on the
orbits of k-tuples under Aut(B), for every k ≥ 1. Moreover, by the k-homogeneity, for any
instance I = (V , C) of CSP(A), every solution f : V → A of I is up to Aut(B) determined by
the orbits of the images of k-tuples of variables from f . This means that we can transform
every instance I = (V , C) of CSP(A) into an instance having one variable for every k-tuple
of variables of V and such that these variables are meant to take values in the set of orbits of
k-tuples under Aut(B). If we can solve every such finite instance in polynomial time, then
we can solve the original CSP in polynomial time. This idea was formalized in [29, 30].

Theorem 1.3.8. Let A be a first-order reduct of a finitely bounded homogeneous structure B
and let C ⊆ Pol(A) be the clone of all polymorphisms of A which are canonical with respect
to Aut(B). Then both of the following hold.

• If C satisfies the pseudo-Siggers identity modulo Aut(B), then CSP(A) is tractable.

• If C contains quasi-WNU operations modulo Aut(B) of all arities n ≥ 3, then CSP(A)
has bounded width.

In Chapter 2, we will introduce a variant of the reduction from [29, 30] that will enable
us to prove a bound on the relational width of first-order reduct A of a finitely bounded
homogeneous structure B which has canonical pseudo-WNU operations modulo Aut(B) of
all arities n ≥ 3 among its polymorphisms.
In order to make use of Theorem 1.3.8, we first need to show that a first-order reduct

A of a finitely bounded homogeneous structure B under consideration possesses the desired
canonical polymorphisms. In order to do that, a Ramsey expansion of the structure B is
often used.
Let A and B be relational structures in the same signature. We write B

A for the set of
all embeddings of A into B. We say that a class S of finite relational structures in the same
signature has the Ramsey property if for every r ≥ 1 and for all A,B ∈ S there exists C ∈ S
such that for every mapping χ : C

A → [r] there exists f ∈ C
B such that |χ(f ◦ B

A )| ≤ 1. We
say that a homogeneous structure B is Ramsey if its age, i.e., the set of all finite structures
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that embed into B, has the Ramsey property. For more details on Ramsey structures, see
e.g. [17]. It is an open problem whether every finitely bounded homogeneous structure has a
first-order expansion which is Ramsey and in general, it is not easy to show that a particular
structure has one – the most general results that have proven to be useful in the context of
CSP come from [76, 49].
For a set of functions F over the same fixed set C we write F for the set of those

functions g such that for all finite subsets F ⊆ C, there exists a function in F which agrees
with g on F . For k ≥ 1, for k-ary functions f, g and for a permutation group G such
that f, g and G act on the same domain, we say that f locally interpolates g modulo G if
g ∈ {β ◦ f(α1, . . . , αk) | β, α1, . . . , αk ∈ G }. Similarly, we say that f diagonally interpolates
g modulo G if f locally interpolates g with α1 = · · · = αk. If G is the automorphism group
of a Ramsey structure, then every function on its domain locally interpolates a canonical
function modulo G , and diagonally interpolates a diagonally canonical function modulo
G [39, 37]. Intuitively speaking, this means that Ramsey structures have many canonical
polymorphisms. We say that a clone D locally interpolates a clone C modulo a permutation
group G if for every g ∈ D there exists f ∈ C such that g locally interpolates f modulo G .

1.4 Local consistency

Local consistency checking plays a prominent role in the area of constraint satisfaction. In
this section, we introduce two different notions of local consistency - relational width and
strict width. First, we need to introduce a few related concepts, in particular the notion of
minimality.
A CSP instance I = (V , C) over a set A is non-trivial if it does not contain any empty

constraint; otherwise, it is trivial. Given a constraint C ⊆ AU and a tuple v ∈ Uk for some
k ≥ 1, the projection of C onto v is defined by projv(C) := {f(v) : f ∈ C}. Let U ⊆ V . We
define the restriction of I to U to be an instance I |U = (U, C |U) where the set of constraints
C |U contains for every C ∈ C the constraint C|U = {g|U | g ∈ C}.
We denote by CSPInj(A) the restriction of CSP(A) to those instances of CSP(A) where for

every constraint C and for every pair of distinct variables u, v in its scope, proj(u,v)(C) ⊆ IA2 .

1.4.1 Minimality

Definition 1.4.1. Let 1 ≤ m ≤ n. We say that an instance I = (V , C) of CSP(A)is
(m,n)-minimal if both of the following hold:

• every at most n-element subset of the variable set V is contained in the scope of some
constraint in I;

• for every at most m-element subset of variables K ⊆ V and for any two constraints
C1, C2 ∈ I whose scopes contain K, the restrictions of C1 and C2 to K coincide.

We say that an instance I is m-minimal if it is (m,m)-minimal.

Let 1 ≤ m ≤ n. Note that an instance I = (V , C) is (m,n)-minimal if, and only if, for every
u ∈ Vn, all variables of u are contained in the scope of some constraint, and for every v ∈ Vm
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and for all C1, C2 ∈ C containing all variables of v in their scopes, projv(C1) = projv(C2).
It follows that if I is an m-minimal instance and v is a tuple of variables of length at most
m, then there exists a constraint of I whose scope contains v, and all the constraints who
do have the same projection on v. We write projv(I) for this projection, and call it the
projection of I onto v.
Let 1 ≤ m ≤ n, let A be a relational structure, and let p denote the maximum of n and

the maximal arity of the relations of A. Clearly not every instance I = (V , C) of CSP(A)
is (m,n)-minimal. However, every instance I is equivalent to an (m,n)-minimal instance I ′

of CSP(A′) where A′ is the expansion of A by all at most p-ary relations pp-definable in A
in the sense that I and I ′ have the same set of solutions. In particular we have that if I ′

is trivial, then I has no solutions. Moreover, CSP(A′) has the same complexity as CSP(A)
by Theorem 1.3.1.
Moreover, if A is ω-categorical, then the instance I ′ can be computed in only polynomially

many steps in the number of variables and constraints as follows. First introduce a new
constraint AL for every set L ⊆ V with at most n elements to satisfy the first condition.
Then remove orbits with respect to Aut(A) from the constraints in the instance as long as
the second condition is not satisfied.
To see that I ′ is an instance of CSP(A′), observe that the relation AL is pp-definable in A

for every L ⊆ V and hence, the instance created from I by adding the new constraints is still
an instance of CSP(A). Moreover, when the algorithm removes orbits from some constraint,
then the new constraint is obtained by a pp-definition from two old constraints and hence,
it is pp-definable in A. Whence, the instance I ′ is an instance of CSP(A′).

The algorithm just described introduces at most
n

i=1

| V |
i

new constraints and it uses only

relations of arity at most p. Note that by the ω-categoricity of A, every relation pp-definable
in A is a finite union of orbits of tuples with respect to Aut(A). Hence, since in every step
the algorithm removes at least one orbit from some constraint and since the number of orbits
that can be removed is polynomial in | V |+ | C | by the discussion above, the number of steps
of the algorithm is polynomial in | V |+ | C |.
In the following section, CSPs for which every sufficiently minimal instance has a solution

will be introduced. However, the above algorithm producing an (m,n)-minimal instance can
also be used as a subroutine in more complicated algorithms for solving certain CSPs. This
is the case also for the algorithm from Chapter 3.

1.4.2 Relational width

Definition 1.4.2. Let 1 ≤ m ≤ n. A relational structure A has relational width (m,n) if
every non-trivial (m,n)-minimal instance equivalent to an instance of CSP(A) has a solution.
A has bounded width if it has relational width (m,n) for some m,n.

If A has relational width (m,n), then we will also say that CSP(A) has relational width
(m,n). We say that CSPInj(A) has relational width (m,n) if every non-trivial (m,n)-minimal
instance equivalent to an instance of CSPInj(A) has a solution.

Example 1.4.3. The relational structure A := (Q;<) has relational width (2, 3) but not
relational width (2, 2) or (1, k) for any k ≥ 1.
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To show that A does not have relational width (1, k) for any k ≥ 1, let us consider the
instance I = ({u, v}, C) of CSP(A) where C contains the following two constraints: C1 :=
{f ∈ Q{u,v} | f(u) < f(v)} and C2 := {f ∈ Q{u,v} | f(u) > f(v)}. It follows that both C1

and C2 are non-empty, proju(C1) = proju(C2) = projv(C1) = projv(C2) = Q and hence, I is
(1, k)-minimal for any k ≥ 1. However, it has obviously no solution.
To show that A does not have relational width (2, 2), let us consider the instance I ′ =

({u, v, w}, C ′) of CSP(A) such that C ′ contains for every (a, b) ∈ {(u, v), (v, w), (w, u)} the
constraint Ca,b := {f ∈ A{a,b} | f(a) < f(b)}. This instance is easily seen to be (2, 2)-minimal
and non-trivial but it does not have any solution.
Finally, it is easy to see and well-known that A has relational width (2, 3).

The following statement gives an overview of conditions characterizing relational structures
with bounded width that are used in several proofs later. Let p ≥ 2 be a prime number and
let R0 and R1 be the relations defined by Ri := {(x, y, z) ∈ Zp | x + y + z = i mod p} for
i ∈ {0, 1}. An affine clone is the clone of affine maps over a finite module. We say that a
function clone C is equationally affine if it has a clone homomorphism to an affine clone. A
Datalog program is a set of formulas of the form ϕ1(x1) ∧ · · · ∧ ϕn(xn) ⇒ ϕ0(x0) where ϕi is
an atomic formula over free variables from the tuple xi for every i ∈ {0, . . . , n}.
Theorem 1.4.4. Let A be an ω-categorical relational structure. All the implications (i) ⇒
(j) and (i) ⇔ (i′) in the list below hold for 1 ≤ i ≤ j ≤ 3.

1. A has relational width (2, 3).

2. A has bounded width.

(2’) The class of finite structures that do not have a homomorphism to A is definable by a
Datalog program.

3. Pol(A) does not admit a uniformly continuous minion homomorphism to an affine
clone.

(3’) A does not pp-construct (Zp;R0, R1) for any prime number p.

If A is finite, then all these conditions are equivalent, and moreover equivalent to the following
two statements.

4. The expansion B of the core of A by all unary singleton relations is such that Pol(B)
is not equationally affine.

5. Pol(A) contains WNU operations of all arities n ≥ 3.

The implication from (1) to (2) is trivial, the equivalence of (2) and (2’) follows from [53,
Theorem 23] and [47, Corollary 1]. (2) implies (3) by [66] and [12], and the equivalence of
(3) and (3’) is a folklore consequence of [12]. For finite structures, the implication from (4)
to (1) was proven in [6], (3) implies (4) by [12], and (4) is equivalent to (5) by the results
from [67, 64] (in fact, a slightly weaker statement is formulated there; the precise statement
made here is attributed to E. Kiss in [64, Theorem 2.8], and another proof can be found
in [85]).
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If A is an ω-categorical model-complete core, then it is known that the clone of polymor-
phisms of A which are canonical with respect to Aut(A) is either equationally affine, or it
contains pseudo-WNU operations modulo Aut(A) of all arities n ≥ 3 [38, 69].
The following theorem shows that finite CSP templates which have relational width (1, 1)

can be characterized algebraically. In fact, Theorem 1.4.4 together with the results from [53,
50] imply that a finite CSP template with bounded width has always relational width (1, 1)
or (2, 3).

Theorem 1.4.5 ([51, 53]). Let A be a finite relational structure. A has relational width
(1, 1) if, and only if, Pol(A) contains totally symmetric operations of all arities.

We have just seen that every finite CSP template with bounded width has relational width
(2, 3) and that such templates can be characterized algebraically by Item 5 of Theorem 1.4.4.
Unfortunately, none of those is true for first-order reducts of finitely bounded homogeneous
structures. In fact, already the first-order reducts of (Q, <) with bounded width cannot be
characterized algebraically [34]. The following example exhibits a class of finitely bounded
homogeneous structures with arbitrarily large relational width.

Example 1.4.6. Let k ≥ 2, let H = (H;E) be the universal homogeneous k-uniform hy-
pergraph, and let A = (H;E,N) be an expansion of H, where N := IHk \E. We will show
that A does not have relational width (k− 1, n) for any n ≥ k− 1 but it has relational width
(k, k + 1).
To see that A does not have relational width (k − 1, n) for any n ≥ k − 1, let I =

({v1, . . . , vk}, C) be the instance of CSP(A) where C contains two constraints C1 := {f ∈
H{v1,...,vk} | (f(v1), . . . , f(vk)) ∈ E} and C2 := {f ∈ H{v1,...,vl} | (f(v1), . . . , f(vk)) ∈ N}. It
immediately follows that I is (k− 1, n)-minimal for every n ≥ k− 1 but it does not have any
solution.
On the other hand, it can be easily seen that Pol(A) contains pseudo-symmetric operations

of all arities which are canonical with respect to Aut(H) and Theorem 2.1.2 yields that A
has relational width (k, k + 1).

In Chapter 2, we find an upper bound on the relational width of first-order reducts of
k-homogeneous ℓ-bounded structures for every k, ℓ ≥ 1 that depends only on k and ℓ under
the assumption that these first-order reducts satisfy certain algebraic conditions.

1.4.3 Strict width

While the notion of relational width describes CSPs where locally consistent instances are
guaranteed to have a solution, it makes sense to strengthen this assumption and require that
for instances that are sufficiently locally consistent, every local solution extends to a global
one. This concept is formalized in the notion of strict width which was introduced by Feder
and Vardi [53]. Let I = (V , C) be an instance of CSP over a set A, and let V ′ ⊆ V . We say
that a mapping g : V ′ → A is a partial solution of I, if for every C ∈ C with scope U ⊆ V ,
it holds that g|U∩V ′ ∈ C|U∩V ′ .

Definition 1.4.7. Let A be a relational structure and let m ≥ 1. We say that A has strict
width m if there exists n > m such that for every (m,n)-minimal instance I = (V , C) of
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CSP(A), for every V ′ ⊆ V, and for every partial solution g : V ′ → A of I, there exists a
solution f : V → A of I such that f |V ′ = g. We say that A has bounded strict width if it
has strict width m for some m ≥ 1.

Moreover, for any m ≥ 1, finite CSP templates with strict width m can be characterized
algebraically as follows.

Theorem 1.4.8 ([53]). Let A be a relational structure with finite domain and let m ≥ 2.
Then the following are equivalent.

• A has strict width m.

• Pol(A) contains a near-unanimity operation of arity m+ 1.

However, in contrast with the case of relational width where Theorem 1.4.4 implies that
every finite template with bounded width has relational width (2, 3), the following example
shows that no bound on the amount of strict width needed to ensure that a CSP template
has bounded strict width can be found already for templates over a 2-element domain.

Example 1.4.9. Let m ≥ 3 and let A = ({0, 1};R) where R := {0, 1}m\(1, . . . , 1). We
claim that A has strict width m but not m − 1. To this end, we will first show that A does
not have strict width m− 1. Let us suppose that this is the case and let f : {0, 1}m → {0, 1}
be a near-unanimity polymorphism of A that exists by Theorem 1.4.8. We have




0
1
1
. . .
1


 ,




1
0
1
. . .
1


 , . . . ,




1
1
. . .
1
0


 ∈ R.

and applying f to the rows yields that (1, . . . , 1) ∈ R, which is a contradiction.
On the other hand, consider the operation g : {0, 1}m+1 → {0, 1} defined by

g(a1, . . . , am+1) :=
1, if there exists at most one i ∈ [m+ 1] such that ai = 0,

0, otherwise.

It is easy to see that g ∈ Pol(A) and g is a near-unanimity operation of arity m + 1.
Theorem 1.4.8 implies that A has strict width m.

On the other hand, strict width is one of the few concepts from finite-domain CSP where
the algebraic characterization can be lifted to CSPs over ω-categorical templates as follows.
Let A be an ω-categorical relational structure. We say that f ∈ Pol(A) is oligopotent if for
every finite subset B ⊆ A, there exists α ∈ Aut(A) such that f(b, . . . , b) = α(b) for every
b ∈ B.

Theorem 1.4.10 ([19]). Let A be an ω-categorical relational structure and let m ≥ 2. Then
the following are equivalent.
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• A has strict width m,

• Pol(A) contains an oligopotent quasi near-unanimity operation of arity m+ 1,

• for every finite subset F ⊆ A, Pol(A) contains a local near-unanimity operation on F
of arity m+ 1.

In Chapter 4, we will use this characterization to show a bound on relational width of
first-order reducts of certain finitely bounded homogeneous structures with bounded strict
width.
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2 Smooth approximations and relational
width collapses

2.1 Introduction

Local consistency checking is an algorithmic technique that is central in computer science.
Intuitively speaking, it consists in propagating local information through a structure so as to
infer global information: consider, for example, computing the transitive closure of a relation
as deriving global information from local one. Local consistency checking has a prominent
role in the area of constraint satisfaction – the local consistency algorithm can be used to
decrease the size of the search space efficiently or even to correctly solve some constraint
satisfaction problems in polynomial time (for example, 2-SAT or Horn-SAT). However, the
use of local consistency methods is not limited to constraint satisfaction. Indeed, local
consistency checking is also used for such problems as the graph isomorphism problem, where
it is is known as the Weisfeiler-Leman algorithm. Again, the technique can be used to derive
implied constraints that an isomorphism between two graphs has to satisfy so as to narrow
down the search space, but local consistency is in fact powerful enough to solve the graph
isomorphism problem over any non-trivial minor-closed class of graphs [57]. Notably, the
best algorithm for graph isomorphism to date also uses local consistency as a subroutine [5].
Finally, local consistency can be used to solve games involved in formal verification such as
parity games and mean-payoff games [27].

One of the reasons for the ubiquity of local consistency is that its underlying principles
can be described in many different languages, such as the language of category theory [1], in
the language of finite model theory (by Spoiler-Duplicator games [62] or by homomorphism
duality [3]), and logical definability (in Datalog, or infinitary logics with bounded number of
variables). For constraint satisfaction problems over a finite template A, the power of local
consistency checking can additionally be characterised algebraically (see Theorem 1.4.4).
Moreover, whenever local consistency correctly solves CSP(A), then in fact only a very
restricted form of local consistency checking is needed. This fact is known as the collapse of
the bounded width hierarchy, and it has strong consequences both for complexity and logic.
On the one hand, the collapse gives efficient algorithms that are able to solve all the CSPs
that are solvable by local consistency methods, and in fact this gives a polynomial-time
algorithm solving instances of the uniform CSP, where the template A is also part of the
input. On the other hand, this collapse induces collapses in all the areas mentioned at the
beginning of this paragraph.

As we have seen in Section 1.2.4, many natural problems from computer science can only
be phrased as CSPs where the template is infinite. This is the case for linear programming,
some reasoning problems in artificial intelligence such as ontology-mediated querying, or
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even problems as simple to formulate as the digraph acyclicity problem. In order to under-
stand the power of local consistency in more generality it is thus necessary to consider its
use for infinite-domain CSPs. Infinite-domain CSPs with an ω-categorical template form a
very general class of problems for which the algebraic approach from the finite case can be
extended, and numerous results in the recent years have shown the power of this approach.
An algebraic characterisation of local consistency checking for infinite-domain CSPs is, how-
ever, missing. In fact, the negative results of [31, 32], refined in [55], show that no purely
algebraic description of local consistency is possible for CSPs with ω-categorical templates;
this is even the case for temporal CSPs [34]. These negative results are to be compared
with the recent result by Mottet and Pinsker [69] that did provide an algebraic description
of local consistency for several subclasses of ω-categorical templates.
In the finite, the algebraic characterisation of local consistency relies on a set of alge-

braic tools whose development eventually led to the solutions of the Feder-Vardi dichotomy
conjecture. Bulatov’s proof of the Feder-Vardi conjecture [46] builds on his theory of edge-
colored algebras, that were also used in his characterisation of bounded width [45]; Zhuk’s
proof [83, 84] relies on the concept of absorption, which was developed by Barto and Kozik
in their effort to prove the bounded width conjecture [9, 11]. Comparable algebraic tools, or
a general theory, are at the moment missing in the theory of infinite-domain CSPs, even with
an ω-categorical template. The most general results obtained so far use canonical operations,
which behave like operations on finite sets, and for which it is sometimes possible to mimic
the universal-algebraic approach to finite-domain CSPs. Canonical operations alone do not
seem to be sufficient in full generality and a characterisation of their applicability is also
missing, but on the positive side their applicability covers a vast majority of the results that
were proved in the area. The application of canonical operations to approach the question
of local consistency for infinite-domain CSPs has only been started recently [29, 30, 69, 82].

2.1.1 Results

In this section, we focus on applying the theory of canonical functions to study the power of
local consistency checking for constraint satisfaction problems over ω-categorical templates.
Our objective is two-fold: on the one hand, we wish to obtain generic sufficient conditions
that imply that local consistency solves a given CSP, and on the other hand we wish to
understand the amount of locality needed for local consistency to solve the CSP, as measured
by the so-called relational width.
In order to solve the first objective, we build on recent work by Mottet and Pinsker [69]

and expand the use of their smooth approximations to fully suit equational (non-)affineness,
which is roughly the algebraic situation imposed by local consistency solvability. The main
technical contribution is a new loop lemma that exploits deep algebraic tools from the fi-
nite [10] and, assuming the use of canonical functions is unfruitful, allows to obtain the
existence of polymorphisms of every arity n ≥ 2 and satisfying certain strong symmetry
conditions. Using this loop lemma, we are able to obtain a characterisation of bounded
width for particular classes of templates, namely for first-order reducts of unary structures
(i.e., structures that have only unary relations) and for certain structures related to Feder
and Vardi’s logic MMSNP [53].
In particular, we solve the following open problem from [15, 54]. A Datalog program is a
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sentence in the existential positive fragment of least fixpoint logic (see, e.g., [53] for a clear
introduction of Datalog in the context of constraint satisfaction). The Datalog-rewritability
problem for MMSNP is the problem of deciding, given as input an MMSNP sentence Φ,
whether ¬Φ is equivalent to a Datalog program.

Theorem 2.1.1. The Datalog-rewritability problem for MMSNP is decidable, and is
2NExpTime-complete.

In order to solve the second objective, we prove that for infinite CSP templates with a
certain finite presentation, sufficiently locally consistent instances can be turned into locally
consistent instances of a finite-domain CSP. If this finite-domain CSP has bounded width,
then it has relational width (2, 3) by [6], which in turn allows us to obtain a bound on
the relational width of the original CSP. In this way, we obtain a collapse of the relational
width reminiscent of the collapse in the finite case for all structures whose clone of canonical
polymorphisms satisfies suitable identities. In particular, it turns out that the relational
width of a structure then only depends on two simple parameters of the structure whose
automorphism group is considered in the notion of canonicity. These parameters deter-
mine the finite presentation of the CSP template, and structures which have such a finite
presentation contain the range of the complexity dichotomy conjecture for infinite-domain
CSPs [38, 14, 13, 8, 7]. Finally, let us note that while the notion of bounded width makes
mathematical sense even outside the scope of ω-categorical templates, its algorithmic mean-
ing there is not guaranteed since the recursion establishing consistency of an instance need
not terminate after a finite number of steps.

Theorem 2.1.2. Let k, ℓ ≥ 1, and let A be a first-order reduct of a k-homogeneous ℓ-bounded
ω-categorical structure B.

• If the clone of polymorphisms of A which are canonical with respect to Aut(B) contains
pseudo-WNU operations modulo Aut(B) of all arities n ≥ 3, then A has relational
width (2k,max(3k, ℓ)).

• If the clone of polymorphisms of A which are canonical with respect to Aut(B) contains
pseudo-totally symmetric operations modulo Aut(B) of all arities, then A has relational
width (k,max(k + 1, ℓ)).

Note that every finite structure A with domain {a1, . . . , an} is a first-order reduct of the
structure ({a1, . . . , an}; {a1}, . . . , {an}), which is easily seen to be 1-homogeneous and 2-
bounded. Thus the width obtained in Theorem 2.1.2 coincides with the width given by
Barto’s collapse result from [6].
As a corollary of Theorem 2.1.2, we obtain a collapse of the bounded width hierarchy for

first-order reducts of the unary structures mentioned above, as well as of numerous other
structures studied in the literature [35, 29, 30, 28, 63].

Corollary 2.1.3. Let A be a structure that has bounded width. If A is a first-order reduct
of:

• the universal homogeneous graph G or tournament T, or of a unary structure, then A
has relational width at most (4, 6);
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• the universal homogeneous Kn-free graph Hn, where n ≥ 3, then at most (2, n);

• (N; =), the countably infinite equivalence relation with infinitely many equivalence
classes Cω

ω, or the universal homogeneous partial order P, then at most (2, 3).

Proof. For the first item, let A be a first-order reduct ofG or T. Then A has a model-complete
core by [16]; this model-complete core has the same relational width as A. Moreover, by
Lemma 17 and Lemma 46 in [69], this model-complete core is again a first-order reduct of
G or T, respectively, or a one-element structure. In the latter case, A has relational width
1; hence, we may assume that A is itself a model-complete core. It then follows that A has
bounded width if and only if the algebraic condition in the first item of Theorem 2.1.2 is
satisfied [69]. Since both G and T are 2-homogeneous and 3-bounded our claim follows.
By Lemma 6.7 in [30], the set of first-order reducts of unary structures is closed under

taking model-complete cores. Hence, by appeal to Theorem 2.1.2 and Theorem 2.5.1 our
claim holds for this class as well.
First-order reducts of Hn, (N; =) or Cω

ω have bounded width if and only if the condition
in the second item of Theorem 2.1.2 is satisfied, by [28], [22] and [40], respectively. Since
Hn is 2-homogeneous and n-bounded, and since both (N; =) and Cω

ω are 2-homogeneous and
3-bounded, the claimed bound follows.
Finally, a first-order reduct of P with bounded width is either homomorphically equivalent

to a first-order reduct of (Q;<) or it satisfies the algebraic condition in the second item
of Theorem 2.1.2 [63]. In the latter case we are done by Theorem 2.1.2, in the former we
appeal to the syntactical characterization of first-order reducts of (Q;<). Indeed, such a
structure has bounded width if and only if it is definable by a conjunction of so-called Ord-
Horn clauses [34]. It then follows by [43] that a first-order reduct of (Q;<) with bounded
width has relational width (2, 3). The result for P follows.

The following example shows that for some of the structures under consideration, the
bounds on relational width provided by Corollary 2.1.3 are tight.

Example 2.1.4. To show the tightness of the bound in the case of the universal homogeneous
graph G = (G;E), we exhibit a first-order reduct A such that for all i ≤ j with i ≤ 4, if
1 ≤ i < 4 or 1 ≤ j < 6, then there exists a non-trivial, (i, j)-minimal instance equivalent to
an instance of CSP(A) that has no solution. Let N := (G2\E)∩IG2 . Consider the first-order
reduct A := (G;R=, R ̸=) of G, where R= := {(a, b, c, d) ∈ G4 | E(a, b) ∧ E(c, d) or N(a, b) ∧
N(c, d)} and R ̸= := {(a, b, c, d) ∈ G4 | E(a, b) ∧N(c, d) or N(a, b) ∧ E(c, d)}.
It can be seen that A has bounded width, so that Corollary 2.1.3 implies that A has rela-

tional width (4, 6). It is easy to see that the instance I1 = ({v1, v2, v3, v4}, {C1, C2}) where
C1 = {G{v1,...,v4} | (f(v1), . . . , f(v4)) ∈ R=}, C2 = {G{v1,...,v4} | (f(v1), . . . , f(v4)) ∈ R ̸=} is
non-trivial, (i, j)-minimal for all i ≤ j with 1 ≤ i < 4, and has no solution. Moreover,
the (4, 5)-minimal instance equivalent to the instance I2 = ({v1, . . . , v6}, {C1, C2, C3}) where
C1 = {G{v1,...,v4} | (f(v1), . . . , f(v4)) ∈ R ̸=}, C2 = {G{v3,...,v6} | (f(v3), . . . , f(v6)) ∈ R ̸=} and
C3 = {G{v1,v2,v5,v6} | (f(v1), f(v2), f(v5), f(v6)) ∈ R ̸=} is non-trivial and has no solution. It
follows that the exact relational width of A is (4, 6).

The tightness of the bound for first-order reducts of the universal homogeneous tournament
can be shown similarly. However, it is an open question whether the bound is tight for first-
order reducts of unary structures (for more details, see [73]).
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The bound on relational width provided in the second item of Corollary 2.1.3 is tight.
Indeed, let n ≥ 3, let Hn := (Hn;E) be the universal homogeneous Kn-free graph, let
N := ((Hn)

2\E) ∩ IHn
2 , and let A := (Hn;E,N). A is preserved by canonical pseudo-

totally symmetric operations modulo Aut(Hn) of all arities and therefore has relational
width (2, n) by Theorem 2.1.2 (setting B := Hn). But the non-trivial, (2, n − 1)-minimal
instance I1 = ({v1, . . . , vn}, {Ci,j | 1 ≤ i ̸= j ≤ n}) where Ci,j = {f ∈ (Hn)

{vi,vj} |
(f(vi), f(vj)) ∈ E} has no solution; moreover, the instance I2 = ({v1, v2}, {C1, C2}) where
C1 = {f ∈ (Hn)

{v1,v2} | (f(v1), f(v2)) ∈ E}, C2 = {f ∈ (Hn)
{v1,v2} | (f(v1), f(v2)) ∈ N} is

non-trivial, (1, j)-minimal for every j ≥ 1 and has no solution either.
For the structures from the third item of Corollary 2.1.3, the tightness of the bound can

be shown similarly.

2.1.2 Related results

Local consistency for ω-categorical structures was studied for the first time in [19] where
basic notions were introduced and some basic results provided. First-order reducts of certain
k-homogeneous ℓ-bounded structures with bounded width were characterized in [69, 34].
The articles [82] and [81] give the upper bound (2, ℓ) on the relational width for first-

order expansions of some classes of 2-homogeneous, ℓ-bounded structures under the stronger
assumption of bounded strict width; Corollary 2.1.3 for first-order reducts of Hn and of Cω

ω

also follows from [82].

2.1.3 Organisation of the present chapter

In Section 2.2 we provide some definitions and basic facts connected to the theory of smooth
approximations from [69]. The reduction to the finite using canonical functions which leads
to the collapse of the bounded width hierarchy is given in Section 2.3. We then extend the
algebraic theory of smooth approximations in Section 2.4 before applying it to first-order
reducts of unary structures and MMSNP in Section 2.5.

2.2 Smooth Approximations

We are going to apply the fundamental theorem of smooth approximations [69] to lift an
action of a function clone to a larger clone.

Definition 2.2.1. (Smooth approximations) Let A be a set, n ≥ 1, and let ∼ be an equiv-
alence relation on a subset S of An. We say that an equivalence relation η on some set S ′

with S ⊆ S ′ approximates ∼ if the restriction of η to S is a (possibly non-proper) refinement
of ∼. We call η an approximation of ∼.
For a permutation group G acting on A and leaving η as well as each ∼-class invariant,

we say that the approximation η is smooth if each equivalence class C of ∼ intersects some
equivalence class C ′ of η such that C ∩ C ′ contains a G -orbit.

Theorem 2.2.2 (The fundamental theorem of smooth approximations [69]). Let C ⊆ D
be function clones on a set A, and let G be a permutation group on A such that D locally
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interpolates C modulo G . Let ∼ be a C -invariant equivalence relation on S ⊆ A with G -
invariant classes and finite index, and η be a D-invariant smooth approximation of ∼ with
respect to G . Then there exists a uniformly continuous minion homomorphism from D to
C ↷ S/∼.

2.3 Collapses in the Relational Width Hierarchy

Definition 2.3.1. Let I = (V , C) be a CSP instance over a set A. Let G be a permutation
group on A, let k ≥ 1, and for every K ∈ V

k
, let OK

G be the set of K-orbits, i.e., orbits of
maps f : K → A under the natural action of G . Let OV

G ,k :=
K∈(Vk)

OK
G and let IG ,k be the

following instance over OV
G ,k:

• The variable set of IG ,k is the set V
k

of k-element subsets of V. Every variable K of
IG ,k is meant to take a value in OK

G .

• For every constraint C ⊆ AU in I, IG ,k contains the constraint CG ,k ⊆ (OV
G ,k)

(Uk)

defined by

CG ,k := g :
U

k
→ OV

G ,k | ∃f ∈ C ∀K ∈ U

k
(f |K ∈ g(K)) .

That is, the set of k-element subsets of U is the scope of a constraint which allows
precisely those assignments of orbits to these subsets which are naturally induced by
the assignments allowed by C for the variables in U . Note that for every K ∈ V

k
, for

every constraint C whose scope contains K and for every g ∈ CG ,k we have g(K) ∈ OK
G .

Observe that if I is non-trivial, then so is IG ,k.

Lemma 2.3.2. Let 1 ≤ a ≤ b. If I is (ak, bk)-minimal, then IG ,k is (a, b)-minimal.

Proof. Let K1, . . . , Kb ∈ V
k
. Note that U := i Ki has size at most bk, and therefore there

exists a set W with U ⊆ W ⊆ V and a constraint C ⊆ AW in I since I is (ak, bk)-minimal.
The scope of the associated constraint CG ,k is W

k
, which contains K1, . . . , Kb. Hence, the

first item of Definition 1.4.1 is satisfied.
For the second item, let K := {K1, . . . , Ka} and let CG ,k ⊆ (OV

G ,k)
(Uk), DG ,k ⊆ (OV

G ,k)
(Wk )

be two constraints whose scopes contain K. Then K is contained in the scope of the
associated C ⊆ AU and D ⊆ AW and has size at most ak, so that by (ak, bk)-minimality of
I, the restrictions of C and D to K coincide. Thus for every g ∈ CG ,k, there exists by
definition an f ∈ C such that f |Ki

∈ g(Ki) for all i, and by the previous sentence there exists
f ′ ∈ D such that f ′|Ki

∈ g(Ki) for all i. Thus, g|K is in the restriction of DG ,k to K. The
argument is symmetric, showing that the restrictions of CG ,k and DG ,k to K coincide.

Note that for every solution h of I, the map χh :
V
k

→ OV
G ,k defined by K → {αh|K | α ∈

G } defines a solution to IG ,k. The next lemma proves that every solution to IG ,k is of the
form χh for some solution h of I, provided that I is (k, ℓ)-minimal and that G = Aut(B) for
some k-homogeneous ℓ-bounded structure B.

33



Lemma 2.3.3. Let 1 ≤ k < ℓ. Let B be a k-homogeneous ℓ-bounded structure, let A be a
first-order reduct of B, and let I be a (k, ℓ)-minimal instance equivalent to an instance of
CSP(A). Then every solution to IAut(B),k lifts to a solution of I.

Proof. Let h : V
k

→ OV
G ,k be a solution to IAut(B),k. Recall that h(K) is a K-orbit for any

K ∈ V
k
, and one can therefore restrict h(K) to any L ⊆ K by setting h(K)|L := {f |L | f ∈

h(K)}. Note that since I is k-minimal, we have h(K)|K∩K′ = h(K ′)|K∩K′ for allK,K ′ ∈ V
k
.

We now define an equivalence relation ∼ on V . Suppose first that k = 1. Then every
orbit of elements of B under the action of Aut(B) must be a singleton (for any orbit with
two distinct elements a, b, the pairs (a, a) and (a, b) would not be in the same orbit but their
subtuples of length one would be, so that B would not be 1-homogeneous). In that case, we
identify OV

G ,k with the domain B itself, and set x ∼ y if and only if h({x}) = h({y}); that
is, ∼ is essentially the kernel of h.
Suppose next that k ≥ 2, and set x ∼ y if and only if there is K ∈ V

k
containing x, y such

that h(K)|{x,y} consists of constant maps. One could equivalently ask that this holds for
all K containing x, y by 2-minimality, and it then follows that this is indeed an equivalence
relation by (2, 3)-minimality of I. Moreover, h descends to V /∼

k
: if K ′ = {[v1]∼, . . . , [vk]∼}

is a k-element set, define h̃(K ′) := h({v1, . . . , vk}). The definition of h̃ does not depend on
the choice of representatives, by the very definition of ∼.
Define a finite structure C with domain V /∼ in the signature of B as follows. Let V /∼ =

{[v1]∼, . . . , [vn]∼}. We define C such that the relations holding on the tuple ([v1]∼, . . . , [vn]∼)
in C are the same as the relations holding on an arbitrary tuple (b1, . . . , bn) ∈ Bn that
satisfies the following. For every m ≤ k and for all [vi1 ]∼, . . . [vim ]∼ pairwise different, the
atomic types of (bi1 , . . . , bim) and (g([vi1 ]∼), . . . , g([vim ]∼)) agree for arbitrary g ∈ h̃(K) and
K ⊇ {vi1 , . . . , vim}. This construction does not depend on the choice of the tuple (b1, . . . , bn)
by the k-homogeneity of B and is well-defined by the consistency of the assignment given by
h.
Finally, note that all substructures of C of size at most ℓ embed into B. Indeed, let m ≤ ℓ

and let L be an m-element substructure of C, and let L′ ⊆ V be an m-element set containing
one representative for each element of L. By (k, ℓ)-minimality of I, there exists C ⊆ AL′

in
I, and a corresponding constraint CAut(B),k of IAut(B),k. Thus, h|(L′

k )
∈ CAut(B),k, so that there

exists g ∈ C such that for all K ∈ L′
k

, g|K ∈ h(K). Thus g corresponds to an embedding of
every k-element substructure of L into B, and since B is k-homogeneous, g is an embedding
of L into B. Finally, since B is ℓ-bounded, it follows that there exists an embedding e of C
into B.
It remains to check that the composition of e with the canonical projection V → V /∼ is a

solution to I, which is trivial since the relations of A are unions of orbits under Aut(B).

For every finite set V and for every K ∈ V
k
, every operation f that is canonical with

respect to a permutation group G induces an operation on the set orbits of K-tuples under
G . We denote this operation by fK

G . Finally, we denote by fV
G ,k the union of fK

G for all

K ∈ V
k

and we call it a multisorted operation, i.e., this operation is defined only on tuples

where all elements belong to the same OK
G for some fixed K ∈ V

k
. We say that a multisorted

operation fV
G ,k is a multisorted WNU if fK

G satisfies the WNU identities for every K ∈ V
k
.
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We remark that we could have avoided the use of multisorted functions by using k-tuples of
elements of V instead of k-element subsets of V in Definition 2.3.1; however, encoding the
original instance this way would have added considerable redundancy and made the proof
more technical.
Note that in the above situation, for every constraint C of an instance I = (V , C) it makes

formally sense to ask whether fV
G ,k preserves CG ,k. Indeed, let f be n-ary. Whenever K is a

k-element subset of the scope of C, and hence a variable in the scope of CG ,k, then for all
g1, . . . , gn ∈ CG ,k we have g1(K), . . . , gn(K) ∈ OK

G ; hence fV
G ,k can be applied to these values,

and doing so for all variables in the scope of CG ,k altogether yields a function from this scope
to OV

G ,k which can be an element of CG ,k or not.

Lemma 2.3.4. Let f be a polymorphism of A that is canonical with respect to G . Every
constraint CG ,k in IG ,k is preserved by fV

G ,k.

Proof. Let n be the arity of f and let C ⊆ AU be a constraint in I. In particular since I is
an instance of CSP(A), and f is a polymorphism of A, we have that C is preserved by f .
Let g1, . . . , gn ∈ CG ,k. By definition, for every i ∈ {1, . . . , n} there is g′i ∈ C such

that for all K ∈ U
k
, g′i|K ∈ gi(K). Note that f(g′1|K , . . . , g′n|K) = f(g′1, . . . , g

′
n)|K , so

that f(g′1, . . . , g
′
n)|K ∈ fV

G ,k(g1(K), . . . , gn(K)). Since f(g′1, . . . , g
′
n) ∈ C, it follows that

fV
G ,k(g1, . . . , gn) is in CG ,k.

Finally, this allows us to prove Theorem 2.1.2 from the introduction.

Proof of Theorem 2.1.2. Suppose that the assumption of the first item of Theorem 2.1.2 is
satisfied. Let I be a non-trivial (2k,max(3k, ℓ))-minimal instance equivalent to an instance
of CSP(A), and let IAut(B),k be the associated instance from Definition 2.3.1. Note that
IAut(B),k is a CSP instance over a finite set by the ω-categoricity of B. Note moreover that
any (2k,max(3k, ℓ))-minimal non-trivial instance with less than k variables admits a solution.
Hence, we may assume that I has at least k variables. By Lemma 2.3.2, IAut(B),k is a (2, 3)-
minimal instance, and it is non-trivial by definition and since I has at least k variables. The
constraints of IAut(B),k are preserved by multisorted WNUs of all arities m ≥ 3 (2.3.4). By
an easy corollary of the equivalence of Item 1 and Item 5 in Theorem 1.4.4 for multisorted
WNUs, IAut(B),k admits a solution. Since I is (2k,max(3k, ℓ))-minimal, it is also (k, ℓ)-
minimal, and hence this solution lifts to a solution of I by Lemma 2.3.3. Thus, A has
relational width (2k,max(3k, ℓ)).
Suppose now that the assumption in the second item is satisfied. By the same reasoning

but using Theorem 1.4.5 instead of Theorem 1.4.4, given a (k,max(k+1, ℓ))-minimal instance
I, the associated instance IAut(B),k is (1, 1)-minimal and therefore has a solution. Since I is
(k,max(k + 1, ℓ))-minimal, this solution lifts to a solution of I.

2.4 A New Loop Lemma for Smooth Approximations

We refine the algebraic theory of smooth approximations from [69]. Building on deep alge-
braic results from [10] on finite idempotent algebras that are equationally non-trivial, we lift
some of the theory from binary symmetric relations to cyclic relations of arbitrary arity.
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2.4.1 The loop lemma

Definition 2.4.1. The linkedness congruence of a binary relation R ⊆ A×B is the equiva-
lence relation λR on proj(2)(R) defined by (b, b′) ∈ λR if there are k ≥ 0 and a0, . . . , ak−1 ∈ A
and b = b0, . . . , bk = b′ ∈ B such that (ai, bi) ∈ R and (ai, bi+1) ∈ R for all i ∈ {0, . . . , k−1}.
We say that R is linked if it is non-empty and λR relates any two elements of proj(2)(R).
If A is a set and m ≥ 2, then we call a relation R ⊆ Am cyclic if it is invariant under

cyclic permutations of the components of its tuples. The support of R is its projection on
any argument. We apply the same terminology as above to any cyclic R, viewing R as a
binary relation between proj(1,...,m−1)(R) and proj(m)(R).

If R is invariant under an oligomorphic group action on A × B, then there is an upper
bound on the length k to witness (b, b′) ∈ λR, and therefore λR is pp-definable from R; in
particular, it is invariant under any function clone acting on A× B and preserving R.

Definition 2.4.2. Let G be a permutation group acting on a set A. A pseudo-loop with
respect to G is a tuple of elements of A all of whose components belong to the same G -
orbit [74, 13, 14]. If G contains only the identity function, then a pseudo-loop is called a
loop.

Our next goal is the proof of Theorem 2.4.4. In order to refer to results on finite algebras
more easily, we will use the language of algebras rather than clones in the proof. We need
the following definitions.

Definition 2.4.3. Let A be an algebra and let B be a subuniverse of A, i.e., a subset of the
universe of A closed under all operations of A. We say that B is an absorbing subuniverse
of A (or B absorbs A) if there exists a term operation f of arity n ≥ 2 such that for any
j ∈ {1, . . . , n} and for any (a1, . . . , an) ∈ An with ai ∈ B for all i ̸= j, t(a1, . . . , an) ∈ B.
If B is an absorbing subuniverse of A and no proper subuniverse of B absorbs A, we call

B a minimal absorbing subuniverse of A and write B ◁◁ A.

Theorem 2.4.4 (Consequence of the proof of Theorem 4.2 in [10]). Let C be an idempotent
function clone on a finite domain that is equationally non-trivial. Then any C -invariant
cyclic linked relation on its domain contains a loop.

Proof. Let R as in the statement be given, and denote its arity by m; we may assume m ≥ 2.
Given 1 ≤ i ≤ m, we set Ri := proj(1,...,i)(R); moreover, we set R(i,j) := proj(i,j)(R) for all
distinct i, j with 1 ≤ i, j ≤ m.
We denote the support of R by A. Note that for all i ∈ {1, . . . ,m− 1} we have that Ri+1

is linked when viewed as a binary relation between Ri and A. We give the short argument
showing linkedness for the convenience of the reader. Let a, b ∈ A be arbitrary; since they
are linked in Rm, there exist k ≥ 1 and a = c0, . . . , c2k = b such that (c2j+1, c2j) ∈ Rm and
(c2j+1, c2j+2) ∈ Rm for all 0 ≤ j < k. For all such j, we have c2j+1 ∈ Rm−1; moreover,
proj(ℓ,...,m−1)(c2j+1) ∈ Rm−ℓ for all 1 ≤ ℓ ≤ m−1 by the cyclicity of R. Hence, these elements
prove linkedness of a, b in Ri+1 for all 1 ≤ i ≤ m− 1.
Observe that in particular, proj(1,i)(R) is linked for all i ∈ {2, . . . ,m}.
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Let A be the algebra whose domain is the support A of R and whose fundamental oper-
ations are the restrictions of the functions of the clone C to that domain; note that this is
well-defined since A, as the projection of R to any coordinate, is invariant under the func-
tions of C . Let R be the subalgebra of Am with domain R. Similarly, we write Ri for the
subalgebra of Ai on the domain Ri, for all 1 ≤ i ≤ m. Following the proof of Theorem 4.2
in [10], we prove by induction on i ∈ {1, . . . ,m} that the following properties hold:

1. There exists I ◁◁ A such that I i ◁◁ Ri.

2. For all I1, . . . , Ii ◁◁ A such that Ri∩(I1×· · ·×Ii) ̸= ∅, we have Ri∩(I1×· · ·×Ii) ◁◁ Ri.

The case i = 1 is trivial, since R1 = A. The case i = m gives us a constant tuple in R.
We prove property (2) for i+1. Let I1, . . . , Ii+1 ◁◁ A be such that Ri+1∩(I1×· · ·×Ii+1) ̸=

∅. By the induction hypothesis, Ri ∩ (I1 × · · · × Ii) ◁◁ Ri. By the argument above,
Ri+1 is linked as a relation between Ri and A. Thus, by Proposition 2.15 in [10], we have
Ri+1 ∩ (I1 × · · · × Ii+1) ◁◁ Ri+1.
We prove property (1) for i+ 1. Define a directed graph H on Ri by setting

H := {((a1, . . . , ai), (a2, . . . , ai+1)) | (a1, . . . , ai+1) ∈ Ri+1}.

Let I ◁◁ A be such that I i ◁◁ Ri, which exists by the induction hypothesis. We show that:

• I i is a subset of a (weak) connected component of H;

• this connected component has algebraic length 1, that is, it contains a path from some
element to itself whose numbers of forward arcs and backward arcs differ by 1.

For the first item, let X := {x | ∃a1, . . . , ai ∈ I ((a1, . . . , ai, x) ∈ Ri+1)}, which is an
absorbing subuniverse of A. Let X1 ⊆ X be a minimal absorbing subuniverse of A. Then
since (I i ×X1) ∩Ri+1 ̸= ∅ property (2) gives us (I i ×X1) ⊆ Ri+1. Reiterating this idea, we
find minimal absorbing subuniverses X2, . . . , Xi of A such that for all 1 ≤ j ≤ i we have that
I i−j+1×X1×· · ·×Xj is contained in Ri+1. Now pick an arbitrary tuple (a1, . . . , ai) ∈ I i, and
an arbitrary tuple (x1, . . . , xi) ∈ X1 × · · · ×Xi. Then there is a path in H from (a1, . . . , ai)
to (x1, . . . , xi) by the above, proving the first item.
For the second item, let

E := {(x, y) | ∃c2, . . . , ci ∈ I ((x, c2, . . . , ci, y) ∈ Ri+1)}.

Let V1, V2 be the projection of E onto its first and second coordinate, respectively; then E
is a relation between V1 and V2. We have that E is an absorbing subuniverse of the algebra
R(1,i+1) induced by R(1,i+1) in A2. By assumption on R, we have that R(1,i+1) is linked.
Therefore, E is linked, and V1 and V2 are absorbing subuniverses of A. Note that I ⊆ V1

and I ⊆ V2. Let b ∈ I be arbitrary. Then there exist k ≥ 0 and c0, . . . , c2k+1 such that
(c2j, c2j+1) ∈ E for all 0 ≤ j ≤ k and (c2j+2, c2j+1) ∈ E for all 0 ≤ j ≤ k − 1 and such that
c0 = b = c2k+1. These elements can be assumed to lie in minimal absorbing subuniverses of
A by Proposition 2.15 in [10]. We then have, by property (2), (c2j, b, . . . , b, c2j+1) ∈ Ri+1 for
all 0 ≤ j ≤ k and (c2j+2, b, . . . , b, c2j+1) ∈ Ri+1 for all 0 ≤ j ≤ k − 1. This gives a path of
algebraic length 1 in H from (b, . . . , b) to itself. This proves the second item.
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By Theorem 3.6 in [10] there exists a loop in H which lies in a minimal absorbing subuni-
verseK ofRi; by the definition ofH, this loop is a constant tuple (a, . . . , a). By projectingK
on the first component, we obtain a minimal absorbing subuniverse J ◁◁ A; since a ∈ J , we
have that J i+1 ∩Ri+1 ̸= ∅. By property (2), we get that J i+1 ◁◁ Ri+1, so that property (1)
holds.

The following is a generalization of [69, Theorem 11] from binary symmetric relations to
arbitrary cyclic relations.

Proposition 2.4.5. Let n ≥ 1, and let D be an oligomorphic function clone on a set A which
is a model-complete core. Let C ⊆ Dcan

n be such that C n/GD is equationally non-trivial. Let
(S,∼) be a minimal subfactor of the action C n with GD-invariant ∼-classes. Then for every
D-invariant cyclic relation R with support ⟨S⟩D one of the following holds:

1. The linkedness congruence of R is a D-invariant approximation of ∼.

2. R contains a pseudo-loop with respect to GD .

Proof. Let R be given, and denote its arity by m. Assuming that (1) does not hold, we
prove (2).
Denote by O the set of orbits of n-tuples under the action of GD thereon. Let R′ be the

relation obtained by considering R as a relation on O, i.e.,

R′ := {(O1, . . . , Om) ∈ Om | R ∩ (O1 × · · · ×Om) ̸= ∅}.

Thus, R′ is an m-ary cyclic relation with support S ′ ⊆ O, and R′ contains a loop if and only
if R satisfies (2).
By assumption, the action C n/GD is equationally non-trivial; moreover, it is idempotent

since D is a model-complete core. Note also that R′, and in particular S ′, are preserved by
this action. It is therefore sufficient to show that R′ is linked and apply Theorem 2.4.4.
Recall that we consider R also as a binary relation between projm−1(R) and ⟨S⟩D ; similarly,

we consider R′ as a binary relation between projm−1(R
′) and S ′. By the oligomorphicity of

D , the linkedness congruence λR of R is invariant under D .
By our assumption that (1) does not hold, there exist c, d ∈ S which are not ∼-equivalent

and such that λR(c, d) holds; otherwise, λR would be an approximation of ∼. This implies
that the orbits Oc, Od of c, d are related via λR′ . By the minimality of (S,∼), we have
that ⟨S⟩D = ⟨{c, d}⟩D . Since D is a model-complete core, it preserves the GD -orbits, and it
follows that any tuple in ⟨S⟩D = ⟨{c, d}⟩D is λR-related to a tuple in the orbit of c. Hence,
λR′ = (S ′)2, and thus R′ is linked. Theorem 2.4.4 therefore implies that R′ contains a loop,
and hence R contains a pseudo-loop with respect to GD , which is what we had to show.

The following is a generalization of Lemma 14 in [69] from binary relations and functions
to relations and functions of higher arity.

Lemma 2.4.6. Let n ≥ 1, and let D be an oligomorphic polymorphism clone on a set A
that is a model-complete core. Let ∼ be an equivalence relation on a set S ⊆ An with GD-
invariant classes. Let m ≥ 1, and let P be an m-ary relation on ⟨S⟩D . Suppose that every
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m-ary D-invariant cyclic relation R on ⟨S⟩D which contains a tuple in P with components
in at least two ∼-classes contains a pseudo-loop with respect to GD .

Then there exists an m-ary f ∈ D such that for all a1, . . . , am ∈ An we have that if the
tuple (f(a1, . . . , am), f(a2, . . . , am, a1), . . . , f(am, a1, . . . , am−1)) is in P , then it intersects at
most one ∼-class.

Proof. The proof is similar to the proof of Lemma 14 in [69]. Fix m ≥ 2. Call an m-tuple
(a1, . . . , am) of elements of An troublesome if there exists an m-ary r ∈ D such that

(b1, . . . , bm) := (r(a1, . . . , am), r(a2, . . . , am, a1), . . . , r(am, a1, . . . , am−1))

is in P and has components in at least two ∼-classes. Note that if (a1, . . . , am) is not
troublesome and h ∈ D , then (h(a1, . . . , am), . . . , h(am, a1, . . . , am−1)) is not troublesome
either. Moreover, if a1, . . . , am are in the same orbit under GD , then (a1, . . . , am) is not
troublesome: since D is a model-complete core, h(a1, . . . , am), . . . , h(am, a1, . . . , am−1) are
also in the same orbit under GD for any m-ary h ∈ D ; since the classes of ∼ are closed under
GD , our claim follows.

For each troublesome tuple (a1, . . . , am), the smallest D-invariant relation containing the
set

{(b1, . . . , bm), . . . , (bm, b1, . . . , bm−1)},
where (b1, . . . , bm) is defined via a witnessing function r as above, is cyclic, contains a tuple
in P with components in at least two ∼-classes, and its support is contained in ⟨S⟩D . Hence,
it contains a pseudo-loop with respect to GD by our assumptions. This implies that there
exists an m-ary g ∈ D such that the entries of the tuple

(g(b1, . . . , bm), . . . , g(bm, b1, . . . , bm−1))

all belong to the same GD -orbit. The function

s(x1, . . . , xm) := g(r(x1, . . . , xm), . . . , r(xm, x1, . . . , xm−1))

thus has the property that the entries of

(s(a1, . . . , am), . . . , s(am, a1, . . . , am−1))

all lie in the same GD -orbit.

In conclusion, for every tuple (a1, . . . , am) of elements of An – troublesome or not – there
exists an m-ary function d in D such that (d(a1, . . . , am), . . . , d(am, a1, . . . , am−1)) is not
troublesome: if (a1, . . . , am) is troublesome one can take d to be the operation s we just
described; if (a1, . . . , am) is not troublesome then the first projection works.

Let ((ai1, . . . , a
i
m))i∈ω be an enumeration of all m-tuples of elements of An. We build by

induction on i ∈ ω an operation f i ∈ D such that

(f i(aj1, . . . , a
j
m), . . . , f

i(ajm, a
j
1, . . . , a

j
m−1))

is not troublesome for any j < i. For i = 0 there is nothing to show, so suppose that f i is
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built. Let d ∈ D be an m-ary operation making the tuple

(f i(ai1, . . . , a
i
m), . . . , f

i(aim, a
i
1, . . . , a

i
m−1))

not troublesome, in the manner of the previous paragraph. Then setting

f i+1(x1, . . . , xm) := d(f i(x1, . . . , xm), . . . , f
i(xm, x1, . . . , xm−1))

clearly has the desired property for the tuple (ai1, . . . , a
i
m), and also for all tuples (aj1, . . . , a

j
m)

with j < i by the remark in the first paragraph.
By a standard compactness argument using the oligomorphicity of GD (essentially from [36])

and the fact that the polymorphism clone is topologically closed, we may assume that the se-
quence (f i)i∈ω converges to a function f . This function f satisfies the claim of the lemma.

2.5 Applications: Collapses of the bounded width
hierachies for some classes of infinite structures

We now apply the algebraic results of Section 2.4 and the theory of smooth approximations to
obtain a characterisation of bounded width for CSPs of first-order reducts of unary structures
and for CSPs in MMSNP. Moreover, we obtain a collapse of the bounded width hierarchy
for such CSPs.

2.5.1 Unary Structures

We are going to prove the following characterization of bounded width for first-order reducts
of unary structures.

Theorem 2.5.1. Let A be a first-order reduct of a unary structure, and assume that A is a
model-complete core. Then one of the following holds:

• Pol(A)can is not equationally affine, or equivalently, it contains pseudo-WNUs modulo
Aut(A) of all arities n ≥ 3;

• Pol(A) has a uniformly continuous minion homomorphism to an affine clone.

In the first case, the stated equivalence follows from Section 1.4.2 and A has relational
width (4, 6) by Theorem 2.1.2, and in the second case it does not have bounded width
by Theorem 1.4.4. We remark that Theorem 2.5.1 gives a characterization of bounded width
for all first-order reducts of unary structures, since this class is closed under taking model-
complete cores by Lemma 6.7 in [30].
The two items of Theorem 2.5.1 are invariant under expansions of A by a finite number

of constants (for the first item, this follows exactly as the preservation of the pseudo-Siggers
identity under adding constants in [13, 14], for the second it follows directly from [12]). Thus,
by Proposition 6.8 in [30], one can assume that A is a first-order expansion of (N;V1, . . . , Vr)
where V1, . . . , Vr form a partition of N in which every set is either a singleton or infinite.
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Such partitions were called stabilized partitions in [30], and we shall also call the structure
(N;V1, . . . , Vr) a stabilized partition.
We will use the following fact which states that Pol(A) locally interpolates Pol(A)can.

Lemma 2.5.2 (Proposition 6.5 in [30]). Let A be a first-order expansion of a stabilized
partition (N;V1, . . . , Vr). For every f ∈ Pol(A) there exists g ∈ Pol(A)can which is locally
interpolated by f modulo Aut(A).

Proposition 2.5.3. Let A be a first-order expansion of a stabilized partition (N;V1, . . . , Vr),
and assume it is a model-complete core. Suppose that Pol(A) contains operations of all arities
whose restrictions to Vi are injective for all 1 ≤ i ≤ r. Then the following are equivalent:

• Pol(A)can is equationally affine;

• Pol(A)can ↷ N/Aut(A) is equationally affine.

Proof. Trivially, if Pol(A)can ↷ N/Aut(A) is equationally affine, then so is Pol(A)can.
For the other direction, assume that Pol(A)can ↷ N/Aut(A) is not equationally affine.

Then for all k ≥ 3, Pol(A)can contains a k-ary operation gk whose action on N/Aut(A) is
a WNU operation by the implication from Item 4 to Item 5 in Theorem 1.4.4 and since
N/Aut(A) is a finite set. Fix for all such k ≥ 3 an operation fk of arity k whose restriction
to Vi is injective for all i ∈ {1, . . . , r}, and consider the operation

hk(x1, . . . , xk) := fk(gk(x1, . . . , xk), gk(x2, . . . , xk, x1), . . . , gk(xk, x1, . . . , xk−1)).

Then evaluating h(a, b, . . . , b) for arbitrary a, b ∈ N, all the arguments of fk belong to the
same set Vi, by the fact that gk acts on N/Aut(A) as a weak near-unanimity operation. Since
A is an expansion of (N;V1, . . . , Vr), we obtain that hk(a, b, . . . , b) belongs to Vi. The same
is true for any permutation of the tuple (a, b, . . . , b), so that hk acts as a WNU operation on
N/Aut(A). By the injectivity of fk when restricted to Vi, it also follows that hk acts as a
WNU operation on N2/Aut(A); hence, it is a pseudo-WNU operation since it preserves the
equivalence of orbits of 2-tuples under Aut(N;V1, . . . , Vr) and since the stabilized partition
is 2-homogeneous. Taking for every hk an operation in Pol(A)can locally interpolated by hk

modulo Aut(A) which exists by Lemma 2.5.2, we see that Pol(A)can contains pseudo-WNU
operations of all arities ≥ 3, and hence it is not equationally affine.

The following will allow us to assume, in most proofs, the presence of functions in Pol(A)
which are injective on every set in the stabilized partition. This is the analogue to the efforts
to obtain binary injections in [69].

Lemma 2.5.4 (Subset of the proof of Proposition 6.6 [30]). Let A be a first-order expansion
of a stabilized partition (N;V1, . . . , Vr), and assume it is a model-complete core. If Pol(A)
has no continuous clone homomorphism to P, then it contains operations of all arities whose
restrictions to Vi are injective for all 1 ≤ i ≤ r.

Proof. We show by induction that for all 1 ≤ j ≤ r, there exists a binary operation in
Pol(A) whose restriction to each of V1, . . . , Vj is injective; higher arity functions with the
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same property are then obtained by nesting the binary operation. For the base case j = 1,
observe that the disequality relation ̸= is preserved on V1 since A is a model-complete core;
together with the restriction of Pol(A) to V1 being equationally non-trivial, we then obtain
an operation which acts as as an essential function on V1. This in turn easily yields a function
that acts as a binary injection on V1 – see e.g. [22]. For the induction step, assuming the
statement holds for 1 ≤ j < r, we show the same for j + 1. By the induction hypothesis,
there exist binary functions f, g ∈ Pol(A) such that the restriction of f to each of the sets
V1, . . . , Vj is injective, and the restriction of g to Vj+1 is injective. If the restriction of f to
Vj+1 depends only on its first or only on its second variable, then it is injective in that variable
since disequality is preserved on Vj+1, and hence either the function f(g(x, y), f(x, y)) or the
function f(f(x, y), g(x, y)) has the desired property. If on the other hand the restriction of
f to Vj+1 depends on both variables, then the same argument as in the base case yields a
function which is injective on Vj+1, and this function is still injective on each of the sets
V1, . . . , Vj.

Proof of Theorem 2.5.1. Let A as in Theorem 2.5.1 be given; by the remark following that
theorem, we may without loss of generality assume that A is a first-order expansion of a
stabilized partition (N;V1, . . . , Vr). Assume henceforth that Pol(A)can is equationally affine;
we show that Pol(A) has a uniformly continuous minion homomorphism to an affine clone.
If Pol(A) has a continuous clone homomorphism to P, then we are done. Assume therefore

the contrary; then by Lemma 2.5.4, Pol(A) contains for all k ≥ 2 a k-ary operation whose
restriction to Vi is injective for all 1 ≤ i ≤ r. In particular, Proposition 2.5.3 applies, and
thus Pol(A)can ↷ N/Aut(A) is equationally affine. Let (S,∼) be a minimal subfactor of
Pol(A)can such that Pol(A)can acts on the ∼-classes as an affine clone; the fact that this
exists is well-known (see, e.g., Proposition 3.1 in [80]).
Let R be any Pol(A)-invariant cyclic relation with support ⟨S⟩Pol(A), containing a tuple

with components in pairwise distinct Aut(A)-orbits and which intersects at least two ∼-
classes. By Proposition 2.4.5, R either gives rise to a Pol(A)-invariant approximation of
∼, or it contains a pseudo-loop with respect to Aut(A). In the first case, the presence of
the tuple required above implies smoothness of the approximation: if t ∈ R is such a tuple,
c ∈ ⟨S⟩Pol(A) appears in t, and d ∈ ⟨S⟩Pol(A) belongs to the same Aut(A)-orbit as c, then there
exists an element of Aut(A) which sends c to d and fixes all other elements of t. Hence, c and
d are linked in R, and the entire Aut(A)-orbit of c is contained in a class of the linkedness
relation of R. Thus, Pol(A) admits a uniformly continuous minion homomorphism to an
affine clone by Theorem 2.2.2.
Hence we may assume that for any R as above the second case holds. We are now going to

show that this leads to a contradiction, finishing the proof of Theorem 2.5.1. By Lemma 2.4.6
applied with any m ≥ 2 and P the set of m-tuples with entries in pairwise distinct Aut(A)-
orbits within ⟨S⟩Pol(A), we obtain an m-ary function f ∈ Pol(A) with the property that the
tuple (f(a0, . . . , am−1), . . . , f(a1, . . . , am−1, a0)) intersects at most one ∼-class whenever it
has entries in pairwise distinct Aut(A)-orbits, for all a0, . . . , am−1 ∈ S. Let (A, <) be the ex-
pansion of A by a linear order that is convex with respect to the partition V1, . . . , Vr and dense
and without endpoints on every infinite set of the partition. The structure (A, <) can be
seen to be a Ramsey structure, since Aut(A, <) is isomorphic as a permutation group to the
action of the product r

i=1 Aut(Vi;<), and each of the groups of the product is either trivial

42



or the automorphism group of a Ramsey structure [60]. By diagonal interpolation we may
assume that f is diagonally canonical with respect to Aut(A, <). Let a, a′ ∈ Am be so that
ai, a

′
i belong to the same orbit with respect to Aut(A) for all 1 ≤ i ≤ m. Then there exists

α ∈ Aut(A, <) such that α(a) = a′, and hence f(a) and f(a′) lie in the same Aut(A)-orbit by
diagonal canonicity; hence f is 1-canonical with respect to Aut(A). Applying Lemma 2.5.2,
we obtain a canonical function g ∈ Pol(A)can which acts like f on N/Aut(A). The prop-
erty of f stated above then implies for g that g(a0, . . . , am−1) ∼ g(a1, . . . , am−1, a0) for all
a0, . . . , am−1 ∈ S such that the values g(a0, . . . , am−1), . . . , g(am−1, a0, . . . , am−2) lie in pair-
wise distinct Aut(A)-orbits.
By the choice of (S,∼) we have that Pol(A)can acts on S/∼ by affine functions over a

finite module. We use the symbols +, · for the addition and multiplication in the corre-
sponding ring, and also + for the addition in the module and · for multiplication of ele-
ments of the module with elements of the ring. We denote by 1 the multiplicative identity
of the ring, by −1 its additive inverse, and identify their powers in the additive group
with the non-zero integers. The domain of the module is S/∼, and we denote the iden-
tity element of its additive group by [a0]∼. Pick an arbitrary element [a1]∼ ̸= [a0]∼ from
S/∼, and let m ≥ 2 be its order in the additive group of the module, i.e., the minimal
positive number such that m · [a1]∼ = [a0]∼. For i ∈ {2, . . . ,m − 1}, let ai be an arbi-
trary element such that [ai]∼ = i · [a1]∼. Let g ∈ Pol(A)can be the m-ary operation ob-
tained in the preceding paragraph. If the values g(a0, . . . , am−1), . . . , g(am−1, a0, . . . , am−2)
lie in pairwise distinct Aut(A)-orbits, then (computing indices modulo m) we have that
g([a0]∼, . . . , [am−1]∼), . . . , g([am−1]∼, . . . , [am+m−1]∼) are all equal. If on the other hand they
do not, then g([ak]∼, . . . , [ak+m−1]∼) = g([ak+j]∼, . . . , [ak+j+m−1]∼) for some 0 ≤ k < m and
1 ≤ j < m. Hence, in either case we may assume the latter equation holds. By assumption,
g acts on S/∼ as an affine map, i.e., as a map of the form (x0, . . . , xm−1) → m−1

i=0 ci · xi,
where c0, . . . , cm−1 are elements of the ring which sum up to 1. We compute (with indices
to be read modulo m)

[a0]∼ = g([ak+j]∼, . . . , [ak+j+m−1]∼) + (−1) · g([ak]∼, . . . , [ak+m−1]∼)

=
m−1

i=0

ci · [ak+j+i]∼ + (−1) ·
m−1

i=0

ci · [ak+i]∼

=
m−1

i=0

ci · (k + i+ j) · [a1]∼ + (−1) ·
m−1

i=0

ci · (k + i) · [a1]∼

=
m−1

i=0

ci · j · [a1]∼ = j · [a1]∼.

But j · [a1]∼ ̸= [a0]∼ since the order of [a1]∼ equals m > j, a contradiction.

2.5.2 MMSNP

MMSNP is a fragment of existential second order logic that was discovered by Feder and
Vardi in their seminal paper [53]. MMSNP is defined as the class of formulas of the form
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Φ := ∃M1 . . . ∃Mr∀x1 . . . ∀xk

i

¬(αi ∧ βi)

where M1, . . . ,Mr are unary predicates, each αi is a conjunction of positive atoms in a sig-
nature τ not containing the equality (called the input signature) and each βi is a conjunction
of positive or negative existentially quantified unary predicates. We say that Φ is connected
if every conjunction αi is connected, that is, no αi can be written as the conjunction of two
non-empty formulas which do not share any variables. A simple syntactic procedure shows
that every Φ is equivalent to a disjunction of connected MMSNP sentences, which can be
computed in exponential time.

As for graphs, we call a structure connected if it is not the disjoint union of two of its
proper substructures. Let τ be a relational signature, let σ be a unary signature whose
relations are called the colors, and let F be a finite set of finite connected (τ ∪σ)-structures,
with the property that every element of any structure in F has exactly one color. We call F
a colored obstruction set in the following. The problem FPP(F) takes as input a τ -structure
X and asks whether there exists a (τ ∪ σ)-expansion X∗ of X whose vertices are all colored
with exactly one color and such that for every F ∈ F , there exists no homomorphism from F
to X∗. We say in this case that the coloring X∗ is F-free or obstruction-free. It can be seen
that connected MMSNP and FPP are equivalent: for every connected MMSNP sentence Φ,
there exists a set F such that X |= Φ if and only if X is a yes-instance to FPP(F), for any
τ -structure X. Conversely, given any F , there exists a connected MMSNP sentence Φ as
above. We call F a colored obstruction set associated with Φ.

Every connected MMSNP sentence Φ has an equivalent normal form Ψ that can be com-
puted from F in double exponential time [25, Lemma 4.4]. It is shown in [25, Definition 4.12]
that for every MMSNP sentence Φ in normal form, there exists an ω-categorical structure
AΦ (denoted in [25] by Cτ

Φ) such that for any τ -structure X it is true that X |= Φ if and only
if X admits a homomorphism to AΦ (which can equivalently be taken to be injective) [25,
Lemma 4.13].

Additionally, Φ is in strong normal form if any identification of two existentially quantified
predicates in Φ yields an inequivalent sentence. Finally, we say that Φ is precolored if for
every symbol M ∈ σ, there is an associated unary symbol PM ∈ τ , and Φ contains the
conjunct ¬(PM(x)∧M ′(x)) for every color M ′ ∈ σ\{M}. Note that any precolored sentence
in normal form is automatically in strong normal form (identifying two unary predicates
M,M ′ would yield a sentence Ψ containing the conjunct ¬(PM(x) ∧ M(x)), and Φ and Ψ
can be separated by a 1-element structure whose sole vertex is in PM). Any sentence Φ has
a standard precoloration obtained by adding the necessary predicates and conjuncts. The
colored obstruction set of the standard precoloration of Φ consists of the obstruction set for
Φ together with one-element obstructions F whose sole vertex belongs to PM and M ′ in F.
A useful (but imprecise) parallel between MMSNP and finite-domain CSPs is the following.

Connected MMSNP sentences in normal form, in strong normal form, and in precolored
normal form have the same relationship as do finite structures, finite cores, and expansions
of cores by all singleton unary relations.

When Φ is in strong normal formal or precolored, AΦ can additionally be chosen to have
the following properties:
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(i) If Φ is precolored, then the orbits of the elements of AΦ under Aut(AΦ) correspond to
the colors of Φ and to the corresponding predicates in τ [25, Lemma 6.2]. In particular,
the action of Pol(AΦ)

can
1 on Aut(AΦ)-orbits of elements is idempotent [25, Proposition

7.2].

(ii) The expansion of AΦ by a generic linear order < is a Ramsey structure [25, Corollary
5.9]. In particular, every f ∈ Pol(AΦ) locally interpolates an operation g ∈ Pol(AΦ)

can
1 ,

and every f diagonally interpolates an operation f ′ that is diagonally canonical with
respect to Aut(AΦ, <).

We finally solve the Datalog-rewritability problem for MMSNP and prove that a precolored
connected sentence Φ in normal form is equivalent to a Datalog program if and only if the
action of Pol(AΦ)

can
1 on Aut(AΦ)-orbits of elements is not equationally affine.

The following proposition is proved in [25, Lemma 7.5] in the case where m = 2. We give
the proof for the convenience of the reader.

Proposition 2.5.5. Let Φ be a precolored MMSNP sentence in normal form and let m ≥ 1.
There exist self-embeddings e1, . . . , em of AΦ such that the tuples (ei1(a1), . . . , eim(am)) and
(ej1(b1), . . . , ejm(bm)) are in the same orbit under Aut(AΦ, <) provided that:

• ak and bk are in the same color for all k ∈ {1, . . . ,m}
• ak and aℓ are in distinct colors for all k ̸= ℓ,

• {i1, . . . , im} = {j1, . . . , jm} = {1, . . . ,m}.
Proof. Let A∗ be the expansion of AΦ by all pp-definable relations. Let (H, <) be the
countably infinite homogeneous structure whose finite substructures are exactly the finite
substructures of structures satisfying Φ and expanded by all pp-definable relations and by
an arbitrary linear order. By [49], such (H, <) exists and it is a Ramsey structure. There
exists a homomorphism h : H → A∗ since the reduct of H to the input signature of Φ satisfies
Φ by definition and hence, it admits a homomorphism to AΦ. The homomorphism h can
moreover be assumed to be canonical from (H, <) to (AΦ, <), i.e., sending tuples of the same
type to tuples of the same type, by [37].
Let B be {1, . . . ,m} × A∗, the disjoint union of m copies of A∗. Endow B with a linear

order that is convex with respect to the colors. Then there exists an embedding e′ of (B, <)
into (H, <) since AΦ satisfies Φ and hence, also B satisfies Φ. All the finite substructures of
(B, <) then embed into (H, <), and by compactness (B, <) itself embeds into (H, <). Let
ei(x) := (h ◦ e′)(i, x).
To check that these self-embeddings satisfy the required properties, let a1, b1, . . . , am, bm

and i1, j1, . . . , im, jm be as in the statement. Note that since ak and bk are in the same color
for all k, they are in the same orbit in AΦ by the fact that Φ is precolored (i). They therefore
satisfy the same formulas, meaning that e′ maps (ik, ak) and (jk, bk) to elements of H that
are in the same orbit (H is homogeneous). Note moreover that by definition of the order
on B, (ik, ak) < (iℓ, aℓ) if and only if (jk, bk) < (jℓ, bℓ), and that no other atomic relation
holds within the tuples ((i1, a1), . . . , (im, am)) and ((j1, b1), . . . , (jm, bm)). Thus, the required
tuples are in the same orbit in (H, <), by the homogeneity of (H, <). Since h is canonical,
we obtain that their image under h is in the same orbit in (AΦ, <).
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Lemma 2.5.6. Let (S,∼) be a subfactor of Pol(AΦ)
can
1 with Aut(AΦ)-invariant ∼-classes.

Let m ≥ 2, and let f ∈ Pol(AΦ) be such that for all a1, . . . , am ∈ AΦ, if the entries of the
tuple (f(a1, . . . , am), f(a2, . . . , am, a1), . . . , f(am, a1, . . . , am−1)) all belong to different colors,
then the tuple intersects at most one ∼-class. Let O0, . . . , Om−1 ∈ S be pairwise distinct
orbits under Aut(AΦ). There exists g ∈ Pol(AΦ)

can
1 that is locally interpolated by f and that

satisfies
g(Ok, . . . , Ok+m−1) ∼ g(Oj+k, . . . , Oj+k+m−1) (⋆)

for some 0 ≤ k < m and 1 ≤ j < m (where the indices are computed modulo m).

Proof. Recall that by (ii) the expansion of AΦ by a generic linear order is a Ramsey structure.
Thus, f diagonally interpolates a function g ∈ Pol(AΦ) with the same properties and which
is diagonally canonical with respect to Aut(AΦ, <), and without loss of generality we can
therefore assume that f is itself diagonally canonical.

Let e0, . . . , em−1 be self-embeddings of AΦ with the properties stated in Proposition 2.5.5.
Consider f ′(x0, . . . , xm−1) := f(e0x0, . . . , em−1xm−1), and note that f ′ is 1-canonical when
restricted to m-tuples where all entries are in pairwise distinct orbits. Let g ∈ Pol(AΦ) be a
function that is diagonally interpolated by f ′ and which is diagonally canonical with respect
to Aut(AΦ, <). In particular g ∈ Pol(AΦ)

can
1 and g(Ok, . . . , Ok+m−1) and f ′(Ok, . . . , Ok+m−1)

are in S and ∼-equivalent for all k.

As in the proof of Theorem 2.5.1, there are suitable 0 ≤ k < m and 1 ≤ j < m such that

f(ekOk, . . . , ek+m−1Ok+m−1) ∼ f(ek+jOk+j, . . . , ek+j+m−1Oj+k+m−1)

holds, where indices are computed modulo m. Then

g(Ok, . . . , Ok+m−1) ∼ f(e0Ok, . . . , em−1Ok+m−1)

∼ f(ekOk, . . . , ek+m−1Ok+m−1) (‡)
∼ f(ek+jOk+j, . . . , ek+j+m−1Ok+j+m−1)

∼ f(e0Ok+j, . . . , em−1Ok+j+m−1) (‡)
∼ g(Ok+j, . . . , Ok+j+m−1),

where the equivalences marked (‡) hold by the fact that f is diagonally canonical with respect
to Aut(AΦ, <) and by Proposition 2.5.5.

Let Φ be an MMSNP sentence in normal form and let F be the associated colored ob-
struction set. Note that AΦ satisfies Φ, so that there exists a coloring of AΦ that is F -free.
Fix such a coloring A∗

Φ. Let BΦ be the finite structure whose domain is the set of colors of Φ,
with one k-ary relation RF for each obstruction F ∈ F of size k, and where the interpretation
of RF in BΦ contains all tuples (C1, . . . , Ck) of colors such that there exist a1, . . . , ak in AΦ

inducing a homomorphic image of the τ -reduct of F, and such that ai is in the color Ci in
A∗

Φ for all i.

The following theorem gives a characterization of Datalog-rewritability for precolored nor-
mal forms. The proof is similar to that of Theorem 2.5.1.
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Theorem 2.5.7. Let Φ be a precolored connected MMSNP τ -sentence in normal form, and
let ℓ be the maximum size of a structure in a minimal colored obstruction set associated with
Φ. The following are equivalent:

1. ¬Φ is equivalent to a Datalog program;

2. Pol(AΦ) does not have a uniformly continuous minion homomorphism to an affine
clone;

3. The action of Pol(AΦ)
can
1 on Aut(AΦ)-orbits of elements is not equationally affine;

4. Pol(BΦ) is not equationally affine;

5. AΦ has relational width (2,max(3, ℓ)).

Proof. (1) implies (2) by the implication from Item 2’ to Item 3 in Theorem 1.4.4.
(2) implies (3). We do the proof by contraposition. The proof is essentially the same

as in the case of reducts of unary structures (Theorem 2.5.1). Suppose that Pol(AΦ)
can
1 ↷

AΦ/Aut(AΦ) is equationally affine and let (S,∼) be a minimal module for this action.
Let m ≥ 2 and let R be an m-ary cyclic relation invariant under Pol(AΦ) and containing

a tuple (a1, . . . , am) whose entries are pairwise distinct. By Proposition 2.4.5, either the
linkedness congruence of R defines an approximation of ∼, or R contains a pseudoloop
modulo Aut(AΦ). In the first case, the approximation is smooth by the same argument as
in the proof of Theorem 2.5.1 and we obtain a uniformly continuous minion homomorphism
from Pol(AΦ) to an affine clone by Theorem 2.2.2.
So let us assume that for all m ≥ 2, every such relation R contains a pseudoloop. By

applying Lemma 2.4.6 with P being the set of m-tuples whose entries belong to pairwise
distinct colors, we obtain a polymorphism f such that for all a1, . . . , am, if the elements
f(a1, . . . , am), . . . , f(am, a0, . . . , am−1) are in pairwise distinct colors, then they intersect at
most one ∼-class. As in the proof of Theorem 2.5.1, pick an arbitrary a1 ∈ S such that [a1]∼
is not the zero element of the module S/∼. Let m ≥ 2 be its order, and let Oi be the orbit
of i · [a1]∼, for i ∈ {0, 1, . . . ,m− 1}. By Lemma 2.5.6, we obtain g ∈ Pol(AΦ)

can
1 such that

g(Ok, . . . , Ok+m−1) ∼ g(Oj+k, . . . , Oj+k+m−1)

for some k ∈ {0, . . . ,m − 1} and j ∈ {1, . . . ,m − 1}. The same computation as in Theo-
rem 2.5.1 then gives a contradiction and concludes the proof.
(3) implies (4). Since Φ is precolored, orbits under Aut(AΦ) corresponds to the colors

of Φ, i.e., to the domain of BΦ (by (i)). Then under the bijection between colors and
orbits, Pol(AΦ)

can
1 ↷ AΦ/Aut(AΦ) is a subset of Pol(BΦ). Thus if the smaller clone is not

equationally affine, the larger clone is also not.
(4) implies (5). Let F be a minimal colored obstruction set associated with Φ. Suppose

that Pol(BΦ) is not equationally affine. Then BΦ does not have a minion homomorphism
to an affine clone and by the implication from Item 3 to Item 1 in Theorem 1.4.4, BΦ has
relational width (2, 3). It is proven in [25] that there exists a weak reduction from CSP(AΦ)
to CSP(BΦ) (using the terminology of [4], this is a positive quantifier-free reduction without
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parameters). Since the maximal arity of a relation in BΦ is ℓ, this reduction implies the
claimed bound on the relational width of AΦ.

(5) implies (1). By the implication from Item 2 to Item 2’ in Theorem 1.4.4, (5) implies
that the class of finite structures that do not have a homomorphism to AΦ is definable by
a Datalog program. This class is by construction the class of finite models of ¬Φ, which
proves (1).

Note that the characterization in Theorem 2.5.7 only holds for precolored sentences in nor-
mal form. We show below how to characterize Datalog also for arbitrary MMSNP sentences
in normal form. The steps involved in the proof to go from normal form to precolored normal
form reflect a similar situation as for finite domain CSPs, when going from arbitrary finite
structures to their cores: given a finite structure A and its core B, we have that CSP(A)
is in Datalog if and only if Pol(B) is not equationally affine if and only if Pol(A) does not
admit a minion homomorphism to an affine clone (see Theorem 1.4.4). As for finite CSPs,
those steps involve the use of pp-constructions.

The following proposition shows that for the question of Datalog-rewritability, one can go
from strong normal form to precolored normal form without loss of generality. The same
proposition was shown in [26, 25] for the P/NP-complete dichotomy, with P replacing affine
clones in the statement.

Proposition 2.5.8. Let Φ be an MMSNP sentence in strong normal form and let Ψ be
its standard precoloration. There is a uniformly continuous minion homomorphism from
Pol(AΨ) to an affine clone if and only if there is a uniformly continuous minion homomor-
phism from Pol(AΦ) to an affine clone.

Proof. It is shown in [25, Theorem 6.9] that Pol(AΨ) has a uniformly continuous minion
homomorphism to Pol(AΦ) and that Pol(AΦ, ̸=) has a uniformly continuous minion homo-
morphism to Pol(AΨ). Thus, it suffices to show that if Pol(AΦ, ̸=) has a uniformly continuous
minion homomorphism to an affine clone, then so does Pol(AΦ).

Let p ≥ 2 be prime and let R0 and R1 be the relations from Item 3’ in Theorem 1.4.4. By
the equivalence of Item 3 and Item 3’ in Theorem 1.4.4, it is enough to show that if (AΦ, ̸=)
pp-constructs (Zp;R0, R1), then so does AΦ.

Suppose that (Zp;R0, R1) has a pp-construction in (AΦ, ̸=). Thus, there is n ≥ 1 and pp-
formulas ϕ0(x, y, z), ϕ1(x, y, z) defining relations S0, S1 such that (An;S0, S1) and (Zp;R0, R1)
are homomorphically equivalent; we take n to be minimal with the property that such pp-
formulas exist. Let x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn). Since R0 and R1

are totally symmetric relations (i.e., the order of the entries in a tuple does not affect its
membership into any of R0 or R1), we can assume that S0 and S1 are, too, and that the
formulas pp-defining them are syntactically invariant under permutation of the blocks of
variables x, y, and z.

We first claim that ϕi does not contain any inequality atom xr ̸= yr for r ∈ {1, . . . , n}
(so that by symmetry, also yr ̸= zr and xr ̸= zr do not appear). Let h : (Zp;R0, R1) →
(An;S0, S1) be a homomorphism. Since (0, 0, 0) ∈ R0, we have that (h(0), h(0), h(0)) satisfies
ϕ0, and therefore the listed inequality atoms cannot appear. The same holds for ϕ1, by
considering (h(0), h(0), h(1)) and its permutations.
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Moreover, the only possible equality atoms in ϕ0 are of the form ur = vr for some r ∈
{1, . . . , n} and u, v ∈ {x, y, z}. Indeed, if ϕ0 contains ur = vs for r ̸= s, then by symmetry
of ϕ0 we obtain by transitivity that ϕ0 entails xr = xs. One could obtain a pp-construction
with smaller dimension by adding all the equalities xr = xs, yr = ys, zr = zs to ϕ0 and ϕ1

and existentially quantifying the sth coordinate of the two formulas. The same reasoning
applies to ϕ1.
Let ψi be the formula obtained from ϕi by removing the possible inequality literals, and let

Ti be defined by ψi in AΦ. We claim that (An;T0, T1) and (An;S0, S1) are homomorphically
equivalent, which concludes the proof. Since ϕi implies ψi, we have that (A

n;S0, S1) is a (non-
induced) substructure of (An;T0, T1), and therefore it homomorphically maps to (An;T0, T1)
by the identity map. For the other direction, we prove the result by compactness and show
that every finite substructure B of (An;T0, T1) has a homomorphism to (An;S0, S1). Let
b1, . . . , bm be the elements of B, where bi = (bi1, . . . , b

i
n). Let C be the τ -structure over at

most n ·m elements {cir | i ∈ {1, . . . ,m}, r ∈ {1, . . . , n}} such that:

• cir and cjs are taken to be equal if, and only if, bir and bjs are connected by a sequence of
equalities coming from ϕ0 and ϕ1. By the claims above, this is only possible if r = s.

• the relations of C are defined by pulling back the relations from AΦ under the map
π : cij → bij.

Note that π is a homomorphism C → AΦ, and therefore C admits an injective homomorphism
g to AΦ. Let ci = (ci1, . . . , c

i
n) for i ∈ {1, . . . , n}. We claim that if (bi, bj, bk) ∈ T0 then

(g(ci), g(cj), g(ck)) ∈ S0. Indeed, suppose that (bi, bj, bk) satisfies ψ0. Then by construction
(ci, cj, ck) satisfies ψ0 in C, and thus (g(ci), g(cj), g(ck)) satisfies ψ0 in AΦ. Moreover, by
injectivity of g, we have g(cir) ̸= g(cjs) as long as r ̸= s. Consider any inequality atom in
ϕ0. By our first claim, it can only be of the form xr ̸= ys for some r ̸= s, and therefore it
is satisfied by (g(ci), g(cj), g(ck)). Thus, (g(ci), g(cj), g(ck)) satisfies ϕ0. The same reasoning
for ϕ1 shows that g induces a homomorphism B → (An;S0, S1) by mapping bi to g(ci).

Proposition 2.5.9. Let Φ be an MMSNP sentence in normal form. Then ¬Φ is equivalent
to a Datalog program if, and only if, Pol(BΦ) does not admit a minion homomorphism to an
affine clone.

Proof. Let Ψ be an MMSNP sentence in strong normal form equivalent to Φ, and let Θ be
the standard precoloration of Ψ.
We prove that BΘ is the expansion of the core of BΦ by all unary singleton relations.

Note that since Φ and Ψ are equivalent, the structures AΦ and AΨ are homomorphically
equivalent. The homomorphisms realizing the equivalence can be taken to be 1-canonical
without loss of generality (by (ii)), and thus they induce a homomorphic equivalence between
BΦ and BΨ. Moreover, BΨ is a core: if h is an endomorphism of BΨ such that h(M) = h(M ′)
for some colors M ̸= M ′, one can identify in Ψ the colors according to h and obtain an
equivalent sentence, contradicting the fact that Ψ is in strong normal form. Recall that the
standard precoloration of Ψ is obtained by adding 1-element obstructions for each pair of
colors M ̸= M ′. Since in AΘ the relation PM equals the color M (by (i)), these obstructions
yield in BΘ unary relations containing a single element. Thus, BΘ is the expansion of the
core of BΦ by all unary singleton relations.

49



If Pol(BΦ) does not admit a minion homomorphism to an affine clone, then Pol(BΘ) is
not equationally affine by the implication from Item 3 to Item 4 in Theorem 1.4.4, and
by Theorem 2.5.7, ¬Θ is equivalent to a Datalog program. Note that if X is a structure in
the signature of Φ, it satisfies Φ if and only if its expansion by the relations PM for every
color M interpreted as empty relations satisfies Θ. Thus, we obtain that ¬Φ is equivalent to
a Datalog program (it suffices to take a program for ¬Θ and remove all rules involving the
extra predicates PM).
Conversely, suppose that Pol(BΦ) has a minion homomorphism to an affine clone. Then

Pol(BΘ) is equationally affine by the implication from Item 3 to Item 4 in Theorem 1.4.4,
therefore by Theorem 2.5.7 there is a uniformly continuous minion homomorphism from
Pol(AΘ) to an affine clone. By Proposition 2.5.8, there is a uniformly continuous minion
homomorphism from Pol(AΨ) to an affine clone. Since AΨ and AΦ are homomorphically
equivalent, we obtain a uniformly continuous minion homomorphism from Pol(AΦ) to an
affine clone. Finally, by the implication from Item 2 to Item 3 in Theorem 1.4.4, this implies
that AΦ does not have bounded width, i.e., ¬Φ is not equivalent to a Datalog program by
the same reasoning as in the proof of (5) implies (1) in Theorem 2.5.7.

This finally allows us to obtain Theorem 2.1.1 from the introduction.

Theorem 2.1.1. The Datalog-rewritability problem for MMSNP is decidable, and is
2NExpTime-complete.

Proof. Let Φ be an MMSNP sentence, which is equivalent to a disjunction Φ1 ∨ · · · ∨ Φp

of connected MMSNP sentences, and this decomposition can be computed in exponential
time [26, Proposition 3.2]. Each Φi has size polynomial in Φ. Moreover, if p is minimal then
¬Φ is equivalent to a Datalog program if and only if every ¬Φi is equivalent to a Datalog
program (see, e.g., Proposition 3.3 in [25], for a proof of a similar fact). Such a minimal
set {Φ1, . . . ,Φp} of sentences can be computed in exponential time, given Φ as input. After
having computed any set {Φ1, . . . ,Φp} whose disjunction is equivalent to Φ, it suffices to
iterate the following procedure: for any i, j ∈ {1, . . . , p}, check whether Φi implies Φj (by
Theorem 5.15 in [25], this problem is in NP). If Φi implies Φj for some i ̸= j, then remove
Φi and continue. Otherwise we claim {Φ1, . . . ,Φp} is minimal. Indeed, no Φi disjunct from
Φj1 , . . . ,Φjk implies any disjunction Φj1 ∨ · · · ∨ Φjk : by taking for each j ∈ {j1, . . . , jk} a
structure Xj witnessing that Φi does not imply Φj (i.e., Xj satisfies Φi but not Φj), then the
disjoint union Xj1 ∪ · · · ∪ Xjk witnesses that Φi does not imply the disjunction.
Fix i ∈ {1, . . . , p}. Let Ψi be a normal form associated with Φi, which can be computed

in double exponential time, and where Ψ itself can be of size doubly exponential in the size
of Φi. By Proposition 2.5.9, ¬Ψi is equivalent to a Datalog program if, and only if, Pol(BΨi

)
does not admit a minion homomorphism to an affine clone. Deciding this property is in
NP [48, Corollary 6.8]. We obtain overall a 2NExpTime algorithm. The complexity lower
bound is Theorem 18 in [42].
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3 A new algorithm for infinite-domain
CSPs

3.1 Introduction

As we mentioned in Section 1.2.4, Conjecture 1.3.6 has been confirmed for many subclasses.
There are two regimes in which these complexity classifications were proven. In the first
regime, the aim is to show that already the clone of canonical polymorphisms admits a rich
algebraic structure, which yields an efficient many-one reduction to a tractable finite-domain
CSP [29, 30].
In order to prove that the structures under consideration have canonical polymorphisms

enabling an efficient reduction of their CSPs to tractable finite-domain CSPs, a demanding
case distinction had to be done until recently. Today, at least two general approaches that
avoid this case distinction are available: the theory of smooth approximations of Mottet and
Pinsker [69] and the work of Bodirsky and Bodor on the unique interpolation property [18].
In the second regime, the standard action of the canonical polymorphisms of the structure

on orbits of tuples is trivial, and therefore ad hoc algorithms that do not use the standard
reduction to the finite-domain CSP mentioned above need to be given to confirm Conjec-
ture 1.3.6. In [69], a non-standard action of the canonical polymorphisms is used to explain
the known algorithms in the case of temporal CSPs, but the method does not seem to gener-
alize. It was remarked in [18] that the boundary between the two regimes is roughly drawn
by whether or not the template has the strict order property (SOP) (for details on the SOP,
see [61]). Indeed, in all of the above-mentioned complexity classifications, it was possible
to confirm Conjecture 1.3.6 for first-order reducts of structures without the SOP within the
first regime.
However, in [73, Example 1], a worrying example of a first-order reduct A of the universal

homogeneous 3-uniform hypergraph H is given. Even though H does not have the SOP, the
structure A should have a polynomial-time solvable CSP according to Conjecture 1.3.6 but it
does not possess canonical polymorphisms that would allow us to use the standard reduction
to a tractable finite-domain CSP. The polymorphisms of A depend on a linear order on the
domain of H even though the hypergraph H is not ordered. This surprising discovery implies
that new algorithmic techniques are needed to solve CSPs of first-order reducts of finitely
bounded homogeneous hypergraphs.

3.1.1 Results

In this chapter, we will use the above-mentioned theory of smooth approximations to con-
firm Conjecture 1.3.6 for first-order reducts of certain finitely bounded homogeneous ℓ-
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uniform hypergraphs (where ℓ ≥ 3). In particular, we show that the templates from [73,
Example 1] have polynomial-time solvable CSPs. For the precise definitions of the mentioned
concepts that are not defined in Chapter 1, see Section 3.2.

Theorem 3.1.1. Let ℓ ≥ 3, let H be a finitely bounded homogeneous ℓ-uniform hypergraph
whose expansion with a freely added linear order < is a Ramsey structure and whose au-
tomorphism group is n-“primitive” for every n ≥ 1 and let A be a first-order reduct of H.
Then precisely one of the following applies.

1. The clone Pol(A) has a uniformly continuous minion homomorphism to the clone of
projections P, and CSP(A) is NP-complete.

2. The clone Pol(A) has no uniformly continuous minion homomorphism to the clone of
projections P, and CSP(A) is in P.

The complexity classification from Theorem 3.1.1 is of particular interest for the following
reasons:

• New algorithms are needed to prove Theorem 3.1.1. Since proving Conjecture 1.3.6
would in particular give an algorithm solving all tractable finite-domain CSPs, it seems
likely that the methods existing in the finite either have to be used as a black box or
have to be adapted in the infinite setting. The black box method from [30] does
not work for the class of structures considered in this chapter, so we resort to the
second option and introduce algorithmic techniques inspired by Zhuk’s algorithm for
finite-domain CSPs. These techniques are then coupled with the classical reduction to
finite-domain CSPs, resulting in an intriguing interplay between infinitary and finitary
methods.

• The result depends only on some general properties of the automorphism group of the
base structure (n-“primitivity”) and on the fact that the base structure has a particular
Ramsey expansion. Moreover, the base structures, i.e., ℓ-uniform hypergraphs satisfy-
ing the properties from Theorem 3.1.1, are not classified and a complete classification
seems to be demanding if not hopeless (some 3-uniform hypergraphs satisfying our
assumptions were classified in [2]). This is the first classification where no structural
results about the base structures are known.

• In [69], the scalability of the theory of smooth approximations, i.e., the fact that this
theory does not require us to analyze all first-order reducts of the particular structure,
was claimed to be one of the main contributions of this theory compared to the ar-
chaic case-distinction method from the early literature on the subject. Theorem 3.1.1
provides us with the first complexity classification using smooth approximations that
truly stands by this promise. By [79], even for the universal homogeneous ℓ-uniform
hypergraph, the number of first-order reducts of this hypergraph grows with ℓ, putting
an exhaustive case analysis out of reach.

Finally, in Section 3.8, we obtain as an easy consequence of the proof of Theorem 3.1.1
a classification of first-order expansions of the finitely bounded homogeneous hypergraphs
under consideration whose CSP is solvable by local consistency methods.
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3.2 Hypergraphs and clones

3.2.1 Hypergraphs and model-theoretic notions

Let ℓ ≥ 2. A structure H = (H;E) is an ℓ-uniform hypergraph if the relation E (called a
hyperedge) is of arity ℓ, contains only injective tuples and is fully symmetric, i.e., for any
tuple in E, all tuples obtained by permuting its components are in E as well.
Let ℓ ≥ 2. The universal homogeneous ℓ-uniform hypergraph is the up to isomorphism

unique countably infinite homogeneous structure that is universal for the class of all finite
ℓ-uniform hypergraphs.The universal homogeneous ℓ-uniform hypergraph is not a Ramsey
structure for any ℓ but it has a finitely bounded homogeneous Ramsey expansion – if we
add a linear order freely (i.e., so that the new age consists of the structures from the old
age ordered in all possible ways and the resulting structure is homogeneous), the resulting
structure will be homogeneous, finitely bounded and Ramsey – this follows, e.g., from the
Nešetřil-Rödl theorem [76].

Definition 3.2.1 (“Primitivity”). Let A be a set and n ≥ 1. A permutation group G acting
on A is n-“primitive” if for every orbit O ⊆ An of G , every G -invariant equivalence relation
on O containing some pair (a, b) with a, b disjoint is full.

Example 3.2.2. The automorphism group of the universal homogeneous ℓ-uniform hyper-
graph H is n-“primitive” for any n ≥ 1. Indeed, let n ≥ 1, let O be an orbit of n-tuples
under Aut(H) and let ∼ be an equivalence relation on O containing (a, b) such that a, b are
disjoint. Let c, d ∈ O be arbitrary. We define X to be an ℓ-uniform hypergraph over 3n
elements {xj

i | i ∈ [n], j ∈ [3]} such that the following holds. The hypergraph induced by
(xj

1, . . . , x
j
n, x

j+1
1 , . . . , xj+1

n ) is isomorphic to the structure induced by (a, b) in H for every
j ∈ [2] and the hypergraph induced by (x1

1, . . . , x
1
n, x

3
1, . . . , x

3
n) is isomorphic to the structure

induced by (c, d) in H. By the universality of H, X embeds to H. By the homogeneity of H,
we can assume that the embedding maps (x1

1, . . . , x
1
n, x

3
1, . . . , x

3
n) to (c, d). By the transitivity

of ∼, c ∼ d.

In the whole chapter, we fix ℓ ≥ 3 and a finitely bounded homogeneous ℓ-
uniform hypergraph H whose expansion with a freely added linear order <
is a Ramsey structure and whose automorphism group is n-“primitive” for
every n ≥ 1.

Note that not every finitely bounded homogeneous ℓ-uniform hypergraph satisfies our
assumptions. However, the universal homogeneous ℓ-uniform hypergraph does satisfy the
assumptions for every ℓ ≥ 3. Additionally, for every fixed ℓ ≥ 3 and n > ℓ, there exists a
homogeneous ℓ-uniform hypergraph that is universal for the class of Kℓ

n-free hypergraphs,
where Kℓ

n is the ℓ-hypergraph on n vertices whose every ℓ-element subset forms a hyperedge;
these hypergraphs also satisfy our assumptions.
In the whole chapter, for n ≥ 1, we denote by In the set IHn and we write I := Iℓ. We

write N for the complement of the hyperedge relation E in I and we call it the non-hyperedge
relation.
Note that H has no algebraicity. To see this, suppose that there exists a0 ∈ H that is

first-order definable using elements a1, . . . , an ∈ H as parameters. Let us define ordered
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ℓ-uniform hypergraphs X = ({x0, . . . , xn}, EX, <X) and Y = ({y0, . . . , yn}, EY, <Y) such that
both (xi1 , . . . , xiℓ) ∈ EX and (yi1 , . . . , yiℓ) ∈ EY if, and only if, (ai1 , . . . , aiℓ) ∈ E for every
(i1, . . . , iℓ) ∈ {0, . . . , n}ℓ. Let moreover both xi <

X xj and yi <
Y yj if, and only if ai < aj

for every i, j ∈ [n] and let x0 < xi and y0 > yi for every i ∈ [n]. It follows that X and
Y embeds to (H, <) by embeddings eX and eY and by the homogeneity, we may suppose
that eX(ai) = eY (bi) = xi for every i ∈ [n]. Hence, eX(x0), eY (y0) and a0 satisfy the same
first-order formulas over (H, {{ai} | i ∈ [n]}) but eX(x0) ̸= eY (y0), a contradiction.

3.2.2 Universal algebra

For a function f of arity n ≥ 1 and for i ∈ [n], we say that the i-th variable of f
is essential if there exist a1, . . . , an, a

′
i from the domain of f such that f(a1, . . . , an) ̸=

f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an). A function is called essentially unary if at most one of its

variables is essential, otherwise the function is essential.
We say that a function clone C is equationally trivial if it has a clone homomorphism to

the clone P, and equationally non-trivial otherwise.
For a first-order reduct A of H, we will consider the following two subclones of Pol(A):

• C H,inj
A is the clone of those polymorphisms of A which preserve the equivalence of orbits

of injective tuples under Aut(H).

• C A,inj
A is the clone of those polymorphisms of A which preserve the equivalence of orbits

of injective tuples under Aut(A).

3.3 Overview of the proof of Theorem 3.1.1

Let A be a model-complete core of a first-order reduct A′ of H. By [12], it is enough
to prove that Theorem 3.1.1 holds for A since there exists a uniformly continuous minion
homomorphism from Pol(A′) to Pol(A) and from Pol(A) to Pol(A′). By Proposition 3.4.2,
we can assume that A is itself a first-order reduct of H.
By applying some folklore results, as well as a compactness argument, we finally obtain

in Proposition 3.4.5 that Pol(A) contains an injective operation with certain properties unless
Pol(A) admits a uniformly continuous clone homomorphism to P. This polymorphism
witnesses that I is a binary absorbing subuniverse of Hℓ. In the rest of the chapter, we
will prove that assuming that I is absorbing, then CSP(A) is tractable if, and only if,
C H,inj
A ↷ {E,N} is equationally non-trivial.
Let us therefore first suppose that C H,inj

A ↷ {E,N} is equationally non-trivial. In this
case, CSPInj(A) can be solved by the reduction to a tractable finite domain CSP from [29, 30].
We will show that CSP(A) can be reduced to CSPInj(A).
By the classification of clones on a two-element domain from [75], C H,inj

A ↷ {E,N} is either
equationally non-affine, or it consists of affine maps over Z2. In the first case, CSPInj(A)
has relational width (2ℓ,max(3ℓ, bH)) by an easy modification of the proof of Theorem 2.1.2.
Now, Theorem 3.1.1 follows from Corollary 3.5.2 (details in Section 3.5.1). In the second
case, CSPInj(A) amounts to solving linear equations over Z2. In this situation, we can apply
the following algorithm – for more details, see Section 3.5.2.
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Let I be an instance of CSP(A). Our algorithm transforms I into an equi-satisfiable
instance I ′ that is sufficiently minimal, such that the solution set of a certain relaxation
of I ′ is subdirect on all projections to an ℓ-tuple of pairwise distinct variables, and that
additionally satisfies a condition which we call inj-irreducibility, inspired by Zhuk’s notion of
irreducibility [83, 84]. We then prove that any satisfiable instance satisfying those properties
has an injective solution. This step is to be compared with the case of absorbing reductions in
Zhuk’s algorithm, and in particular with Theorem 5.5 in [84], in which it is proved that any
sufficiently minimal and irreducible instance that has a solution also has a solution where an
arbitrary variable is constrained to belong to an absorbing subuniverse. Since in our setting
I is an absorbing subuniverse of Hℓ, this fully establishes a parallel between the present work
and [84].
If C H,inj

A ↷ {E,N} is equationally trivial, our goal is to prove that CSP(A) is NP-hard.
The first step is to establish that C A,inj

A is equationally trivial as well and that C A,inj
A ⊆ C H,inj

A
(Lemma 3.6.1). Moreover, Proposition 36 in [69] implies that there exists k ≥ ℓ such that the
action of C A,inj

A on orbits of injective k-tuples under Aut(A) is equationally trivial. Therefore,
there exists a naked set (S,∼) for this action. A naked set of C A,inj

A ↷ Ik/Aut(A) consists of
an invariant subset S ⊆ Ik/Aut(A) and an invariant equivalence relation ∼ on S such that
∼ has at least two equivalence classes and such that C A,inj

A ↷ Ik/Aut(A) acts on S/∼ by
projections. By classical results in finite clone theory, the existence of such a naked set is
equivalent to the existence of a clone homomorphism from C A,inj

A ↷ Ik/Aut(A) to P, which
extends to a uniformly continuous clone homomorphism C A,inj

A → P.
Now, we can employ the theory of smooth approximations to extend this homomorphism

further and obtain a uniformly continuous clone homomorphism Pol(A) → P. We recall
below the relevant definitions from the theory of smooth approximations.

Definition 3.3.1 (Smooth approximations). Let A be a set and let ∼ be an equivalence
relation on S ⊆ A. We say that an equivalence relation η on a set S ′ with S ⊆ S ′ ⊆ A
approximates ∼ if the restriction of η to S is a refinement of ∼. η is called an approximation
of ∼.
For a permutation group G acting on A and leaving the ∼-classes invariant as well as

η, we say that the approximation η is smooth if every equivalence class C of ∼ intersects
some equivalence class C ′ of η such that C ∩ C ′ contains a G -orbit. η is very smooth if
orbit-equivalence with respect to G is a refinement of η on S.

Recall that H has no algebraicity and hence, the hypotheses of the loop lemma of smooth
approximations [69, Theorem 10] are met and we may use the following reformulation of the
lemma to our situation.

Theorem 3.3.2. Let k ≥ 1 and suppose that C A,inj
A ↷ Ik/Aut(A) is equationally trivial.

Then there exists a naked set (S,∼) of C A,inj
A ↷ Ik/Aut(A) with Aut(A)-invariant ∼-classes

such that one of the following holds:

• ∼ is approximated by a Pol(A)-invariant equivalence relation that is very smooth with
respect to Aut(A);

• every Pol(A)-invariant binary symmetric relation R ⊆ (Ik)
2 that contains a pair (a, b) ∈

S2 such that a ̸= b and such that a ̸∼ b contains a pseudo-loop modulo Aut(A), i.e., a
pair (c, c′) where c, c′ belong to the same orbit under Aut(A).
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In [69, Theorem 10], the first item of the statement gives an approximation ∼ that is not
very smooth, but presmooth. By [69, Lemma 8], under the assumption that Pol(A) preserves
I2 and that Aut(A) is n-“primitive”, every presmooth approximation is very smooth; this
justifies our reformulation above.
Suppose that the first case of Theorem 3.3.2 applies. By a minor modification of the smooth

approximation toolbox (Lemma 3.6.2), this implies that Pol(A) has a uniformly continuous
clone homomorphism to C A,inj

A ↷ Ik/Aut(A) and hence to the clone of projection.
Suppose now that the second case of Theorem 3.3.2 applies. By [69, Lemma 13], Pol(A)

contains a weakly commutative function, i.e., a binary operation f with the property that
f(a, b) ∼ f(b, a) holds for all a, b ∈ Ik such that f(a, b) and f(b, a) are in S and disjoint. It
follows from a fairly involved compactness argument in Lemma 3.7.2 that C H,inj

A ↷ {E,N}
contains a semilattice operation and in particular, is equationally non-trivial, which is a
contradiction.

3.4 Model-Complete Cores and Injective Polymorphisms

In this section, we first prove some basic facts about model-complete cores of first-order
reducts of H. In the second part, we prove that such first-order reducts that are model-
complete cores and that are equationally non-trivial have binary injective polymorphisms
acting as a projection or as a semilattice operation on {E,N}. These binary injections will
play an important in the algorithm for tractable CSPs in Section 3.5.

3.4.1 Model-complete cores

Let G be a permutation group and let g : G → G be a function. We say that g is range-rigid
with respect to G if all orbits of tuples under G that intersect the range of g are invariant
under g. We will use the following theorem to understand the model-complete cores of
first-order reducts of A.

Theorem 3.4.1 ([68]). Let A be a first-order reduct of a homogeneous Ramsey structure
B and let A′ be its model-complete core. Then A′ is a first-order reduct of a homogeneous
Ramsey substructure B′ of B.
Moreover, there exists g ∈ End(A) that is range-rigid with respect to Aut(B) and such that

the age of B′ is equal to the age of the structure induced by the range of g in B.

Proposition 3.4.2. Let A be a first-order reduct of H. Then the model-complete core of A
is a one-element structure or a first-order reduct of H. Moreover, if A is a model-complete
core that is a first-order reduct of H and not of (H; =), then the range of every f ∈ End(A)
intersects every orbit under Aut(H, <).

Proof. Using Theorem 3.4.1, we obtain that the model-complete core A′ of A is a first-
order reduct of a homogeneous Ramsey substructure B′ of (H, <). Moreover, there exists
g ∈ End(A) which is range-rigid with respect to Aut(H, <) and such that the age of the
structure induced by the range of g in (H, <) is equal to the range of B′.
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If the range of g contains just one element, B′ is a one-element structure. Otherwise,
the range contains at least two elements a < b and by the range-rigidity, it then contains
infinitely many elements. In particular, it contains a hyperedge or a non-hyperedge.
If the range contains only hyperedges, then g sends every ℓ-tuple in N to an ℓ-tuple ordered

in the same way as the original tuple that lies in the hyperedge relation E. It follows that
for all injective tuples a, b of the same length, there exists an automorphism α of H and an
embedding e from the range of g into B′ such that e ◦ g ◦α(a) = b. It follows that Aut(A′) is
the full symmetric group on the domain of A′ and hence, A′ is a first-order reduct of (A′,=)
which is isomorphic to (H; =). If the range of g contains only ℓ-tuples in N , A′ is a first-order
reduct of (A′,=) by the same argument where the roles of E and N are switched. Finally,
if the range of g contains both a hyperedge as well as a non-hyperedge, it follows from the
range-rigidity of g that B′ is isomorphic to (H, <) and A′ is isomorphic to A. In particular,
A′ is a first-order reduct of H.
Suppose now that A is a model-complete core that is a first-order reduct of H but not of

(H; =) and let f ∈ End(A). Suppose that the range of f does not intersect every orbit under
Aut(H, <). By Lemma 15 and Lemma 11 in [68] applied to End(A), the range-rigid function
g does not intersect every orbit under Aut(H, <) either and we obtain a contradiction with
the previous paragraph.

3.4.2 Injective binary polymorphisms

Lemma 3.4.3. Let A be a first-order reduct of a finitely bounded homogeneous hypergraph
H that is a model-complete core. If Pol(A) does not have a uniformly continuous clone
homomorphism to P, then it contains a binary essential operation.

Proof. It follows from Corollary 6.9 in [14] that Pol(A) contains a ternary essential operation.
Moreover, the binary relation O := {(a, b) | a ̸= b ∈ H} is an orbit under Aut(H) that is free,
i.e., for every (c, d) ∈ H2 there exists a ∈ H such that (a, c), (a, d) ∈ O. Now, the lemma
follows directly from Proposition 22 in [69].

Note that for every binary injective operation f on H, there exists an embedding e of the
substructure induced by the range of f into H such that f ′ := e ◦ f acts lexicographically
on the order, i.e., f ′(x, y) < f ′(x′, y′) if x < x′ or x = x′, y < y′. To see this, let us
define an ordered hypergraph (Y, EY, <Y) on H2 such that ((x1, y1) . . . , (xℓ, yℓ)) ∈ EY if
(f(x1, y1), . . . , f(xn, yn)) ∈ E and such that (x, y) <Y (x′, y′) if x < x′ or x = x′, y < y′. It
is easy to see that there exists an isomorphism i from the substructure of H induced by the
range of f in H to Y. Since (H, <) is an expansion of H by a linear order that is added
freely, it is universal for the class of all l-uniform linearly ordered hypergraphs (X, <X) such
that X embeds to H. It follows that Y embeds to (H, <) by an embedding e′. Finally, by
setting e := e′ ◦ i, we get the desired embedding e.

Lemma 3.4.4. Let A be a first-order reduct of H that is a model-complete core. Suppose
that Pol(A) contains a binary essential operation. Then C H,inj

A contains a binary injection f
such that one of the following holds:

• f acts like a semilattice operation on {E,N}, or
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• f acts like a projection on {E,N} and is canonical with respect to (H, <).

Proof. The binary disequality relation ̸= is clearly an orbit under Aut(A) and since A is a
model-complete core, A pp-defines ̸=. H is clearly transitive, i.e., Aut(H) has only one orbit
in its action on H. Moreover, Aut(H) has only one orbit of injective pairs in its action on
H2, namely the orbit of {(a, b) | a ̸= b ∈ H} and the structure (H; ̸=) clearly has finite
duality. Proposition 25 in [69] then implies that Pol(A) contains a binary injection.
Note that if A is a reduct of (H; =), then this binary injection can be composed with a

unary injection so that the result acts like a semilattice operation on {E,N}, so that we can
assume below that A is not a first-order reduct of (H; =).
Since (H, <) is a homogeneous Ramsey structure and since any function interpolated by

an injective function is injective, Pol(A) contains a binary injection f which is canonical with
respect to (H, <). Since A is a model-complete core and not a first-order reduct of (H; =),
we can assume that the action of f on orbits of ℓ-tuples under Aut(H, <) is idempotent
by Proposition 3.4.2 – the range of the endomorphism e defined by e(x) := f(x, x) intersects
every orbit under Aut(H, <) and hence, if f does not act idempotently on the orbits of
ℓ-tuples under Aut(H, <), we may compose f finitely many times with itself until it does.
Here, by composition of a binary function g with f we mean the function g(f(x, y), f(x, y)).
Moreover, by the remark above, we may assume that f acts lexicographically on the order
<.
Let α be a permutation of {1, . . . , ℓ}. If O is an orbit of injective ℓ-tuples under Aut(H, <),

then we write α(O) for the orbit obtained by changing the order of the tuples in O according
to α (not by permuting the tuples in O). That way, α acts naturally on orbits of injective
ℓ-tuples. We also apply this notation to unions of orbits of injective tuples under Aut(H, <).
Let J be the set of strictly increasing ℓ-tuples with respect to <. For a fixed permutation
α, the restriction of the natural action of f on ℓ-tuples to J × α(J) acts idempotently
on {E,N}; depending on what this action is, we say that f behaves like p1 on input α
if it behaves like the first projection on {E,N} and we say that it behaves like p2 if it
behaves like the second projection in this action on input α; in both cases, we say that f
behaves “like a projection” on input α. Finally, we say that f behaves like ∨ on input α if
f(E,N) = f(N,E) = f(E,E) = E, f(N,N) = N and that f behaves like ∧ on input α if
f(E,N) = f(N,E) = f(N,N) = N, f(E,E) = E; in both cases, we say that f behaves “like
a semilattice” on input α. Since the action of f on orbits is idempotent, it cannot behave
like a constant in the above situation.
We write id for the identity on {1, . . . , ℓ}. If f behaves like p2 on input id, then the

operation f(f(x, y), f(y, x)) behaves like p1 on id while still satisfying the behaviour with
respect to the order we assumed in the beginning, so we assume that this is not the case.
If f behaves like p1 on id, then f(x, f(x, y)) behaves like p1 on {E,N} on all inputs, and

hence it acts on {E,N} and is canonical on injective tuples with respect to H.
Suppose that f behaves like a semilattice on {E,N} on input id; without loss of generality

it behaves like ∨. If f behaves differently on some other input α, then f(f(x, y), f(x, α−1(y))
behaves like ∨ on input α as well as on all other inputs where f behaves like ∨. Hence,
repeating this argument for all α, we can assume that f behaves like ∨ on {E,N} on any
input. Note, however, that the expression f(f(x, y), f(x, α−1(y)) only makes sense for the
action on orbits unless α is the identity or reverses the order; that is, only in those cases there
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exists a canonical function on (H, <) whose action on orbits is that of α. The global argument
has to be made local in the other cases, as follows. Let (s, t) ∈ J × α(J). Let α−1 be an
automorphism of H which changes the order on t as would α−1. Then f(f(x, y), f(x, α−1(y))
acts like ∨ on (s, t), as well on all pairs of injective ℓ-tuples on which it previously acted like
∨. Repeating this procedure for all pairs of ℓ-tuples and applying a standard compactness
argument, we obtain a function which acts like ∨ on all pairs of injective tuples, and hence
on all inputs.

A combination of Lemma 3.4.3 and Lemma 3.4.4 immediately yields the following propo-
sition.

Proposition 3.4.5. Let A be a first-order reduct of H that is a model-complete core. If
Pol(A) does not have a uniformly continuous clone homomorphism to P, then C H,inj

A contains
a binary injection f such that one of the following holds:

• f acts like a semilattice operation on {E,N}, or
• f acts like a projection on {E,N} and is canonical with respect to (H, <).

3.5 The tractable case

In this section, we will prove that if C H,inj
A ↷ {E,N} is equationally non-trivial, then CSP(A)

is in P. We distinguish two cases based on whether C H,inj
A ↷ {E,N} is equationally affine.

3.5.1 C H,inj
A ↷ {E,N} is equationally non-affine

Let A be a relational structure, let n ≥ 1, let S,R with S ⊆ R be n-ary relations pp-definable
in A and let f ∈ Pol(A) be binary. We say that S is a binary absorbing subuniverse of R if
for every s ∈ S, r ∈ R, we have that f(s, r), f(r, s) ∈ S. In this case, we write S ⊴2 R and
we say that f witnesses the binary absorption.

Lemma 3.5.1. Let A be an ω-categorical structure, let 1 ≤ k ≤ m ≤ n, let S,R with
S ⊆ R ⊆ Ak be relations pp-definable in A and suppose that S ⊴2 R. Let I = (V , C) be
a non-trivial, (m,n)-minimal instance equivalent to an instance of CSP(A). Let I ′ be an
instance obtained from I by adding for every v = (v1, . . . , vk) ∈ Vk with projv(I) ⊆ R,
S ∩ projv(I) ̸= ∅ and such that S ∩ projv(I) ⊴2 R a constraint {c ∈ A{v1,...,vk} | c(v) ∈ S}.
Then the (m,n)-minimal instance equivalent to I ′ is non-trivial.

Proof. Let I ′′ be the (m,n)-minimal instance equivalent to I ′. We will find a non-trivial,
(m,n)-minimal instance J of CSP over the set A with the same set of variables as I ′′ and
such that every constraint of J is a subset of a constraint of I ′′. Then it follows that I ′′ is
non-trivial.
Let f be a binary polymorphism of A witnessing S ⊴2 R, let F := {αf(β, γ) | α, β, γ ∈

Aut(A)} and let T := {t ∈ Pol(A) | t is a term in F}. Let C be constraint of I with scope
{u1, . . . , uq} and let c1, . . . , cp ∈ C be such that (c1(u1), . . . , c1(uq)), . . . , (cp(u1), . . . , cp(uq))
are in pairwise different orbits of q-tuples under Aut(A) and such that for every d ∈ C
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there exists i ∈ [p] such that (d(u1), . . . , d(uq)) is in the same orbit under Aut(A) as
(ci(u1), . . . , ci(uq)).
Set for every C ∈ C,

C ′ := {t(c1, . . . , cp, a1, . . . , ar) | t ∈ T, ai ∈ C, all variables of t essential}.

Set now J to be the instance obtained from I by replacing every constraint C by C ′.
Clearly, J is non-trivial, for every k-tuple of variables v it holds that if projv(I) ⊆ R and
S ∩ projv(I) ̸= ∅ then S ∩ projv(J ) ⊴2 R and C ′ ⊆ C for every C ∈ C. It remains to show
that J is (m,n)-minimal.
To this end, let 1 ≤ m′ ≤ m and let v ∈ Vm′

, let C,D ∈ C be such that projv(C) =
projv(D) and let c ∈ C ′. We need to find d ∈ D′ such that c(v) = d(v). We may suppose
that there exist d1, d2 ∈ D such that d1(v), d2(v) lie in different orbits under Aut(A) since
otherwise, d(v) is in the same orbit of m′-tuples under Aut(A) as c(v) for any d ∈ D by
the m′-minimality of I, and hence, for any d ∈ D′ we may find α ∈ Aut(A) such that
α(d(v)) = c(v). By the definition of D′, it follows that αd ∈ D′.
We have c = t(c1, . . . , cp, a1, . . . , ar) for some a1, . . . , ar ∈ C, t ∈ T . Suppose that D′ is

defined using d1, . . . , dp′ ∈ D and let s ∈ T be of arity p′ ≥ 2 (by our assumption from
the previous paragraph). Then αj ◦ s(d1, . . . , dp′)(v) = cj(v) for some j ∈ [p] and some
αj ∈ Aut(A). Find xi ∈ D with ci(v) = xi(v) for every i ∈ [p] and yi ∈ D with ai(v) = yi(v)
for every i ∈ [r]. Set now d := t(x1, . . . , xj−1, αj(s(d1, . . . , dp′)), xj+1, . . . , xp, y1, . . . , yr). It is
easy to see that d ∈ D′.
It follows that c(v) = t(c1, . . . , cp, a1, . . . , ar)(v) = d(v) as desired.

Lemma 3.5.1 together with the results from [71, 72] give the following corollary.

Corollary 3.5.2. Let A be a first-order reduct of H which is a model-complete core. Suppose
that C H,inj

A ↷ {E,N} is equationally non-affine. Then every non-trivial (2ℓ,max(3ℓ, bH))-
minimal instance equivalent to an instance of CSP(A) has a solution. Moreover, such a
solution s exists where s(x) ≠ s(y) for all variables x, y such that proj(x,y)(I) ∩ I2 ̸= ∅.

Proof. It follows from [67, 64] that for every k ≥ 3, C H,inj
A contains an operation of arity k

that acts as a WNU operation on {E,N}. An easy modification of the proof of Theorem 2.1.2
yields that CSPInj(A) has relational width (2ℓ,max(3ℓ, bH)). Moreover, by Proposition 3.4.5,
there exists a binary injection f ∈ Pol(A). Therefore, for all a, b ∈ A2 such that b is injective,
f(a, b), f(b, a) ∈ I2 and hence, I2 ◁2 A

2. Finally, Lemma 3.5.1 yields the result.

3.5.2 C H,inj
A ↷ {E,N} is equationally affine

Let A be a first-order reduct of H which is a model-complete core. If C H,inj
A ↷ {E,N} is

equationally affine but equationally non-trivial, then A is not a first-order reduct of (H; =)
and it follows from Proposition 3.4.5 that Pol(A) contains a binary injection p1 canonical
with respect to (H, <) that acts as the first projection on {E,N}.
Moreover, we can suppose that the function f(x, y) := p1(y, x) acts lexicographically

on the order by the remark above Lemma 3.4.4. It follows from [75] and from [29] that
C H,inj
A contains a ternary function m′ that acts idempotently and as a minority on {E,N}.
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We may moreover suppose that m′ is canonical with respect to (H, <) since any function
locally interpolated by a function that acts idempotently and as a minority on {E,N}
acts idempotently and as a minority on {E,N}. It can be easily seen that the function
m(x, y, z) = m′(p1(x, p1(y, z)), p1(y, p1(z, x)), p1(z, p1(x, y))) is a ternary injection canonical
with respect to (H, <) that acts like a minority on {E,N}.
For a ∈ Hℓ, we write O(a) for the orbit of a under Aut(H) and O<(a) for the orbit of a

under Aut(H, <). We say that a non-injective orbit O of ℓ-tuples under Aut(H) is:

• deterministic if for every a ∈ O, there exists α ∈ Aut(H) such that p1(O<(α(a)), E) =
p1(O<(α(a)), N), where the ordering on the second coordinate is strictly increasing,

• non-deterministic otherwise.

For a tuple a contained in a deterministic orbit O, we call any α ∈ Aut(H) with the
property that p1(O<(α(a)), E) = p1(O<(α(a)), N) for the strictly increasing ordering in the
second coordinate deterministic for a. Note that for any β ∈ Aut(H, <), βα ∈ Aut(H) is
deterministic for a as well since p1 is canonical with respect to (H, <).

3.5.3 Injectivisation of instances

Let A be a first-order reduct of H. Let I = (V , C) be an instance of CSP(A). In this
section, we always assume that the variable set V is equipped with an arbitrary linear order;
this assumption is inessential and is used to formulate the statements and proofs in a more
concise way. We denote by [V ]ℓ the set of injective increasing ℓ-tuples of variables from V .
Given any instance I of CSP(A), consider the following CSP instance Ifin over the set O of
orbits of ℓ-tuples under Aut(H):

• The variable set of Ifin is the set [V ]ℓ.
• For every constraint C ⊆ AU in I, Ifin contains the constraint C ′ containing the maps
g : [U ]ℓ → O such that there exists f ∈ C satisfying f(v) ∈ g(v) for every v ∈ [U ]ℓ.

We introduced this instance already in Definition 2.3.1 in a more general setting, where
it is denoted by IAut(H),ℓ. In the original definition, ℓ-element subsets of V were used as
variables and the domain consisted of orbits of maps. However, the translation between the
two definitions is straightforward.
Let J = (S, C) be an instance over the set O of orbit of ℓ-tuples under Aut(H), e.g.,

J = Ifin for some I. The injectivisation of J , denoted by J (inj), is the instance obtained by
replacing every constraint C ∈ C with scope U ⊆ S by {g ∈ C | g(s) ∈ {E,N} for every s ∈
U}.
Let I = (V , C) be an instance of CSP(A) and let S ⊆ [V ]ℓ. The finite injectivisation of I

on S is the instance I(inj)
fin |S. If S = [V ]ℓ, we call the finite injectivisation of I on S just the

finite injectivisation of I. For any constraint C ∈ C, the corresponding constraint in the finite
injectivisation of I is called the finite injectivisation of C. Note that if C H,inj

A ↷ {E,N}
is equationally non-trivial, I = (V , C) is an instance of CSP(A) and S ⊆ [V ]ℓ, the finite
injectivisation of I on S is solvable in polynomial time by Lemma 2.3.4 and by the dichotomy
theorem for finite-domain CSPs [83, 84, 46].
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Let A be a first-order reduct of H, let I = (V , C) be an instance of CSP(A) and let W ⊆ V .
Let g : W → A and let h : V → A, we say that g is ordered by h if for all u, v ∈ W , we have
g(u) < g(v) if, and only if, h(u) < h(v).
Let A be a first-order reduct of H preserved by m and by p1. We can assume that A has

among its relations all unions of orbits of ℓ-tuples under Aut(H) that are preserved by p1 and
by the ternary injection m. Otherwise, we expand A by these finitely many relations and
we prove that the CSP of this expanded structure is solvable in polynomial time. Note that
in particular, every orbit of ℓ-tuples under Aut(H) is a relation of A. Let n be the maximal
arity of a relation from the signature of A. We will moreover suppose that A has among its
relations all relations of arity at most max(3ℓ, bH, n) that are pp-definable in A. Hence, for
every instance I of CSP(A), the (2ℓ,max(3ℓ, bH))-minimal instance equivalent to I is again
an instance of CSP(A).
Let I = (V , C) be an instance of CSP(A) and let C ∈ C. Since A is preserved by m, there

exists a set of linear equations over Z2 associated with the finite injectivisation of C. By
abuse of notation, we write every linear equation as

v∈S
Xv = P , where P ∈ {E,N} and S

is a set of injective ℓ-tuples of variables from the scope of C. In these linear equations, we
identify E with 1 and N with 0, so that e.g. E + E = N and N + E = E.
We may assume that no equation

v∈S
Xv = P associated with the finite injectivisation

of any constraint C ∈ C splits into two equations
v∈S1

Xv = P1 and
v∈S2

Xv = P2 where

S1∩S2 = ∅, S1∪S2 = S, P1+P2 = P and such that every element of the finite injectivisation
of C satisfies both these equations. If this is not the case, let us consider only equations
satisfying this assumption – it is clear that this new set of equations is satisfiable if, and
only if, the original set of equations is satisfiable. We will call every equation satisfying this
assumption unsplittable.
For an instance I = (V , C) of CSP(A), we define an instance Ieq = (V , Ceq) of the equality-

CSP over the same base set H corresponding to the closure of the constraints under the full
symmetric group on H. Formally, for every constraint C ∈ C, the corresponding constraint
Ceq ∈ Ceq contains all functions αh for all h ∈ C and α ∈ Sym(H). Since A is preserved by
a binary injection, Ieq is preserved by the same or indeed any binary injection and hence,
its CSP has relational width (2, 3) by the classification of equality CSPs [22].
Let I be an ℓ-minimal instance of CSP(A), let v ∈ [V ]ℓ and let R ⊆ projv(I) be an ℓ-ary

relation from the signature of A. Let Iv∈R be the instance obtained from I by replacing
every constraint C containing all variables from v by {g ∈ C | g(v) ∈ R}.
We call an ℓ-minimal instance of CSP(A) eq-subdirect if for every v ∈ [V ]ℓ and for every

non-injective orbit O ⊆ projv(I) under Aut(H), the instance (Iv∈O)eq has a solution. Note
that by ℓ-minimality and since the instance is preserved by a binary injection, the instance
(Iv∈O)eq has a solution for every injective orbit O ∈ projv(I) under Aut(H).
It is clear that we can obtain an eq-subdirect instance out of an ℓ-minimal instance in

polynomial time by the algorithm in Figure 3.1.

Lemma 3.5.3. The instance I ′ outputted by the algorithm in Figure 3.1 is ℓ-minimal, eq-
subdirect, and it is an instance of CSP(A).

Proof. It is easy to see that I ′ is ℓ-minimal since in every run of the repeat... until not
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INPUT: ℓ-minimal instance I = (V , C) of CSP(A);
OUTPUT: eq-subdirect instance I ′;
repeat

changed:=false;
for v ∈ [V ]ℓ do

if not changed then
P := projv(I) ∩ I;
for O ⊆ projv(I) non-injective orbit do

if (Iv∈O)eq has a solution then
P := P ∪O;

end if
end for
for C ∈ C containing all variables of v in its scope do

replace C by {g ∈ C | g(v) ∈ P};
end for
if I is not ℓ-minimal then

make I ℓ-minimal;
changed:=true;

end if
end if

end for
until not changed
return I

Figure 3.1: Procedure Eq-Subdirect
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changed-loop, we check ℓ-minimality of the produced instance.

To prove that I ′ is an instance of CSP(A), it is sufficient to show that for every v ∈ [V ]ℓ
the last P in the first for-loop is preserved by the binary injection p1 as well as by the ternary
injection m. To this end, let v ∈ [V ]ℓ be injective, let P be as in the algorithm, let O1, O2, O3

be orbits of ℓ-tuples from P and let gi, i ∈ {1, 2, 3} be solutions to (Iv∈Oi)eq, i ∈ {1, 2, 3}.
Let C ∈ C be arbitrary and let U be its scope. By the definition of Ieq, there exist

h1, h2, h3 ∈ C and α1, α2, α3 ∈ Sym(H) such that gi|U = αihi for every i ∈ {1, 2, 3}. Since
every binary injection is canonical in its action on {=, ̸=}, it follows that there exist β1, β2 ∈
Sym(H) such that p1(g1, g2)|U = p1(α1h1, α2h2) = β1p1(h1, h2) ∈ C and m(g1, g2, g3)|U =
m(α1h1, α2h2, α3h3) = β2m(h1, h2, h3) ∈ C. Hence, p1(g1, g2)|U ,m(g1, g2, g3)|U ∈ C and
since C was chosen arbitrarily, both p1(g1, g2) and m(g1, g2, g3) are solutions to (Iv∈Oi)eq.

Let v ∈ [V ]ℓ. If C contains all variables from v in its scope, then either p1(g1, g2)(v)
is injective and p1(g1, g2)(v) ∈ P or p1(g1, g2)(v) and p1(h1, h2)(v) are non-injective and
contained in the same orbit under Aut(H) and it follows that p1(h1, h2)(v) ∈ P . Similar
argument holds for m(h1, h2, h3) as well. Therefore, P is preserved by p1 and m as desired.

Note that the eq-subdirect instance I ′ outputted by the algorithm has the same solution
set as I. Moreover, for any 1 ≤ m ≤ n and any instance I of CSP(A), we can compute an
instance that is both eq-subdirect and (m,n)-minimal and that has the same solution set as
I in polynomial time. Indeed, it is enough to repeat the above-mentioned algorithm and the
(m,n)-minimality algorithm until no orbits under Aut(H) are removed from any constraint.

3.5.4 Inj-irreducibility

Let J = (V , C) be a CSP instance over a set B. A path in J is a sequence of the form
v1, C1, v2, . . . , Ck, vk+1, where k ≥ 1, vi ∈ V for every i ∈ [k+1], Ci ∈ C for every i ∈ [k] and
vi, vi+1 are contained in the scope of Ci for every i ∈ [k]. We say that two elements a, b ∈ B
are connected by a path v1, C1, v2, . . . , Ck, vk+1 if there exists a tuple (c1, . . . , ck+1) ∈ Bk+1

such that c1 = a, ck+1 = b and such that (ci, ci+1) ∈ proj(vi,vi+1)
(Ci) for every i ∈ [k]. Let

J = (V , C) be a 1-minimal instance over the set B and let v ∈ V . The linkedness congruence
on projv(J ) is the equivalence relation λ on projv(J ) defined by (a, b) ∈ λ if there exists
a path from a to b in J . Note that for a finite relational structure B, for a (2, 3)-minimal
instance J = (V , C) of CSP(B) and for any v ∈ V , the linkedness congruence λ on projv(J )
is a relation pp-definable in B. Indeed, it is easy to see that for every k ≥ 1, the binary
relation containing precisely the pairs (a, b) ∈ B2 that are connected by a particular path in
I is pp-definable in B. If we concatenate all paths that connect two elements (a, b) ∈ λ, the
resulting path will connect every pair (a, b) ∈ λ since by the (2, 3)-minimality of J , every
path from v to v connects c to c for every c ∈ projv(J ). It follows that λ is pp-definable.

Definition 3.5.4. Let A be a first-order reduct of H and let I = (V , C) be a non-trivial
ℓ-minimal instance of CSP(A). We call I inj-irreducible if for every set S ⊆ [V ]ℓ, one of
the following holds for the instance J = Ifin |S:

• J (inj) has a solution,
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• for some v ∈ S, projv(J ) contains the two injective orbits and the linkedness congru-
ence on projv(J ) does not connect them,

• for some v ∈ S, the linkedness congruence on projv(J ) links an injective orbit to a
non-deterministic orbit.

Lemma 3.5.5. Let I = (V , C) be a non-trivial 2-minimal instance of CSP(A) such that
proj(u,v)(I) ∩ I2 ̸= ∅ for every u ̸= v ∈ V. Let S ⊆ [V ]ℓ be a set of variables appearing
together in an unsplittable linear equation associated with the finite injectivisation of some
constraint C ∈ C. Then for every g ∈ C either g(s) is in an injective or deterministic orbit
for all s ∈ S or g(s) is in a non-deterministic orbit for all s ∈ S.

Proof. Suppose not and let g ∈ C be a counterexample. Let ∅ ̸= S ′ ⊊ S be the set of
all s ∈ S such that g(s) is in an injective or deterministic orbit. Let

s∈S
Xs = P be an

unsplittable linear equation associated with the finite injectivisation of C and containing all
the variables from S.
Let {s1, . . . , sn} be the set of all si ∈ S ′ such that g(si) is in a deterministic orbit. For

every i ∈ [n], let αi ∈ Aut(H) be deterministic for g(si). Let

p′1(x, y) := p1(α1x, p1(α2x, p1(. . . , p1(αnx, y) . . . ))).

It is easy to see that for all s ∈ S, we have that p′1(g(s), a) and p′1(g(s),b) are contained in
the same injective orbit Os under Aut(H) for all increasing a ∈ E,b ∈ N . For all s ∈ S\S ′,
let Ps be N if p′1(g(s), a) ∈ E for every increasing a ∈ E and let Ps be E otherwise.
Since every binary projection of I (and hence of C) has a non-empty intersection with I2

and since A is preserved by a binary injection, it follows that there exists a monotone injective
g′ ∈ C. Moreover, since S ′ ⊊ S and the equation under consideration is unsplittable, one
can assume that

s∈S′
O(g′(s)) =

s∈S′
Os +

s∈S\S′
Ps +E. Let us consider h = p′1(g, g

′) ∈ C. h

is clearly injective and we obtain:

s∈S
O(h(s)) =

s∈S′
O(h(s)) +

s∈S\S′
O(h(s)) =

s∈S′
Os +

s∈S\S′
O(g′(s)) +

s∈S\S′
Ps

=
s∈S′

O(g′(s)) + E +
s∈S\S′

O(g′(s)) =
s∈S

O(g′(s)) + E

= P + E

Hence, the mapping h′ : S → {E,N} defined by h′(s) := O(h(s)) is a solution to the fi-
nite injectivisation of C on S but it does not satisfy the unsplittable linear equation, a
contradiction.

Theorem 3.5.6. Let A be a first-order reduct of H which is a model-complete core and
suppose that C H,inj

A ↷ {E,N} is equationally non-trivial. Let I be a (2ℓ,max(3ℓ, bH))-
minimal, eq-subdirect, inj-irreducible instance of CSP(A) with variables V such that for every
distinct u, v ∈ V, proj(u,v)(I)∩I2 ̸= ∅. Then I has a solution if, and only if, it has an injective
one.

65



Proof. In the case when C H,inj
A ↷ {E,N} is equationally non-affine, the statement follows

directly from Lemma 3.5.1 and Corollary 3.5.2, where only the (2ℓ,max(3ℓ, bH))-minimality
of I and the fact that for every distinct u, v ∈ V , proj(u,v)(I) ∩ I2 ̸= ∅ are needed.

Suppose henceforth that C H,inj
A ↷ {E,N} is equationally affine (and equationally non-

trivial by assumption). Note that if I has less than ℓ variables, it has an injective solution
by the assumption on binary projections of I and since it is preserved by a binary injection
by Proposition 3.4.5. Let us therefore suppose that I has at least ℓ variables. Let us assume
for the sake of contradiction that I does not have an injective solution. Let J be Ifin and
let C be the set of its constraints. By assumption, J (inj) does not have a solution. Note that
J (inj) corresponds to a system of linear equations over Z2, which is therefore unsatisfiable.
In case this system can be written as a block matrix, there exists a set S ⊆ [V ]ℓ of variables
such that the system of equations associated with the injectivisation of K := J |S = (S, C ′)
corresponds to a minimal block, and is therefore unsatisfiable. By definition, this means that
K(inj) is unsatisfiable. The instance K has the property that for every constraint C ∈ C ′, and
every non-trivial partition of the scope of C into parts S1, S2, some unsplittable equation
associated with C contains a variable from S1 and a variable from S2.

Since I is inj-irreducible, there exists v ∈ S such that the two injective orbits are elements
of projv(K) and are not linked, or some injective orbit in projv(K) is linked to a non-
deterministic orbit in projv(K).

In the first case, we note that for all w ∈ S such that projw(K) contains the two injective
orbits, the two injective orbits are not linked. Indeed, suppose that there exists w ∈ S such
that E,N ∈ projw(K) are linked, i.e., there exists a path v1 = w, C1, . . . , Ck,vk+1 = w
in K connecting E and N . Since I is (2ℓ,max(3ℓ, bH))-minimal, Lemma 2.3.2 yields that
J and hence also K is (2, 3)-minimal. In particular, there exists C ∈ C ′ containing in its
scope both v and w. Let O1, O2 ∈ {E,N} be disjoint such that there exist g1, g2 ∈ C
with g1(v) ∈ O1, g1(w) ∈ E, g2(v) ∈ O2, g2(w) ∈ N . It follows that the path v, C,w =
v1, C1, . . . , Ck,vk+1 = w, C,v connects O1 with O2 in projv(J ), a contradiction. Let g : S →
{E,N} be defined as follows. For a fixed v ∈ S, let g(v) be an arbitrary element of
projv(K(inj)). Next, for w ∈ S, define g(w) to be the unique injective orbit O such that
there exists a path in K from v to w connecting g(v) to O. This g is a solution to K(inj), a
contradiction.

Thus, it must be that a non-deterministic orbit in projv(K) is linked to an injective orbit
in projv(K). Hence, there exists a path in K from v to v and connecting an injective orbit to
a non-deterministic one. Moreover, up to composing this path with additional constraints,
one can assume that this path goes through all the variables in S. This follows by the
(2, 3)-minimality of J . Define a partition of S where w ∈ S1 if the first time that w appears
in the path, the element associated with w is in an injective orbit, and w ∈ S2 otherwise.
Since the system of unsplittable equations associated with K(inj) cannot be decomposed as
a block matrix, some constraint C ∈ C ′ gives an equation in that system containing u1 ∈ S1

and u2 ∈ S2. Thus, there exists g ∈ C with g(u1) injective, and g(u2) non-deterministic.
This contradicts Lemma 3.5.5.
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INPUT: instance I = (V , C) of CSP(A);
OUTPUT: instance I ′ that is either inj-irreducible or trivial and that has a solution if,
and only, if I has a solution;
repeat

changed := false;
J := (2ℓ,max(3ℓ, bH))-minimal eq-subdirect instance with the same solution set as I;
I := J ;
I := IdentifyAllEqual(I);
for u ∈ [V ]ℓ do

for {E1
u, . . . , E

m
u } partition on proju(I) with pp-definable classes such that

proju(I) ∩ I ⊆ E1
u and E1

u contains no non-deterministic orbit do
S, {Ei

w | i ∈ [m],w ∈ S} := ExtendPartition(I, {u}, {Ei
u | i ∈ [m]});

solve the finite injectivisation of I on S;
if it does not have a solution and not changed then

changed := true;
for v ∈ S do

for C ∈ C containing all variables of v in its scope do
replace C by {f ∈ C | f(v) /∈ E1

v};
end for

end for
end if

end for
end for

until not changed;
return I

Figure 3.2: Procedure InjIrreducibility

3.5.5 Establishing inj-irreducibility

We show that the algorithm in Figure 3.2 produces, given an instance I of CSP(A), an
instance I ′ of CSP(A) that is either inj-irreducible or trivial and that has a solution if, and
only if, I has a solution. It uses the fact that the finite injectivisation of an instance I of
CSP(A) on S is solvable in polynomial time for any set S ⊆ [V ]ℓ. This follows from the fact
that the finite injectivisation of I is preserved by a ternary minority by Lemma 2.3.4.

The algorithm uses the subroutines IdentifyAllEqual and ExtendPartition. The
subroutine IdentifyAllEqual takes as an input a 2-minimal instance I = (V , C) and
returns an instance where all variables u, v ∈ V with proj(u,v)(I) = {(a, a) | a ∈ H} are
identified. It is clear that this can be implemented in polynomial time. Note moreover that
for a (2ℓ,max(3ℓ, bH))-minimal instance I, the resulting instance IdentifyAllEqual(I) is
again (2ℓ,max(3ℓ, bH))-minimal. The subroutine ExtendPartition is given in Figure 3.3.
We note that if (S, {Ei

w}) is a set of partitions returned by ExtendPartition, then for
every w ∈ S, the linkedness congruence on projw(Ifin) defined by the instance Ifin |S is a
refinement of the partition {Ei

w}.
First of all, note that the instance I ′ outputted by this algorithm is (2ℓ,max(3ℓ, bH))-
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INPUT: a tuple (I, S, {Ei
w | i ∈ [m],w ∈ S}) where

• I = (V , C) is a ((2ℓ,max(3ℓ, bH)))-minimal instance of CSP(A),
• S ⊆ [V ]ℓ,
• {E1

w, . . . , E
m
w} is a partition on projw(I) with pp-definable classes for every w ∈ S

such that E1
w contains no non-deterministic orbit and such that Ei

w := {a ∈ Hℓ |
∃b ∈ Hℓ : (b, a) ∈ proj(v,w)(I)} for every v,w ∈ S and every i ∈ [m];

OUTPUT: S, {Ei
w : i ∈ [m],w ∈ S} as above such that no tuple w can be added to S

where a partition on projw(I) as above exists;
repeat

added := false;
for v ∈ S,w ∈ [V ]ℓ with w /∈ S do

D := proj(v,w)(I);
for t = 1, . . . ,m do

Et
w := {a ∈ Hℓ | ∃b ∈ Et

v : (b, a) ∈ D};
end for
if E1

w, . . . , E
m
w are disjoint and E1

w contains no non-deterministic orbit then
S := S ∪ {w};
added := true;

end if
end for

until not added
return S, {Ei

w : i ∈ [m],w ∈ S}

Figure 3.3: Procedure ExtendPartition

68



minimal and for every u ̸= v ∈ V , I ′
(u,v) ∩I2 ̸= ∅. We will show in Lemma 3.5.8 that I ′ is an

instance of CSP(A). Then it follows that if I ′ is non-trivial, then every constraint C ′ of I ′

contains an injective tuple since I ′ is preserved by the binary injection p1.
Let S ⊆ [V ]ℓ be the set outputted by ExtendPartition(I, {u}, {Ei

u | i ∈ [m]}) for some
u ∈ [V ]ℓ as in the algorithm for an instance I with I = IdentifyAllEqual(I) – note that
this subroutine is called in the algorithm only for instances satisfying this assumption. Note
that for every w ∈ S, E1

w contains all injective orbits under Aut(H) contained in projw(I).
This can be easily shown by induction of the size of S. For S containing just the tuple u,
there is nothing to prove. Suppose that it holds for S, let w ∈ Vℓ be a tuple added to S and
let v ∈ S be such that E1

w = {a ∈ Hℓ | ∃b ∈ Hℓ : (b, a) ∈ proj(v,w)(I)}. Let O ⊆ projw(I)
be an injective orbit under Aut(H) and let C ∈ C be a constraint containing all variables
from the tuples v and w in its scope. Let g1 ∈ C be such that g1(w) ∈ O and let g2 ∈ C be
injective. Then p1(g1, g2) ∈ C is injective and hence, p1(g1(v), g2(v)) ∈ E1

v by the induction
assumption. Moreover, p1(g1(w), g2(w)) ∈ O and p1(g1(w), g2(w)) ∈ E1

w by the definition
of E1

w.
It is easy to see that the algorithm runs in polynomial time: the algorithm of checking eq-

subdirectness as well as the (2ℓ,max(3ℓ, bH))-minimality algorithm both run in polynomial
time. Moreover, the number of runs of every for- or repeat...until-loop in the main algorithm

as well as in the subroutine ExtendPartition is bounded by cc(d + ℓmax(3ℓ,bH,n)) | V |
ℓ

2
,

where n is maximum of the arities of relations in the signature of A, c is the number of
orbits of ℓ-tuples under Aut(H) and d is the number of constraints of the original instance
I.
Before proving that I ′ is an inj-irreducible instance of CSP(A) and that it has a solution

if, and only if, I has a solution, we will show a few auxiliary statements.

Lemma 3.5.7. Let I = (V , C) be an ℓ-minimal non-trivial instance of CSP(A) such that
proj(u,v)(I) ∩ I2 ̸= ∅ for every u ̸= v ∈ V. Let S ⊆ [V ]ℓ be such that projv(I) contains
some injective orbit and no non-deterministic orbit for every v ∈ S. Suppose that I has a
solution. Then the finite injectivisation of I on S has a solution as well.

Proof. Let g : V → H be a solution of I such that g(s) is not injective for some s ∈ S.
Let {s1, . . . , sn} be the set of all si ∈ S ′ such that g(si) is in a non-injective orbit under
Aut(H). For every i ∈ [n], let αi ∈ Aut(H) be deterministic for g(si). Let p′1(x, y) :=
p1(α1x, p1(α2x, p1(. . . , p1(αnx, y)))).
It is easy to see that for all s ∈ S, we have that p′1(g(s), a) and p′1(g(s),b) are contained

in the same injective orbit Os under Aut(H) for all increasing a ∈ E,b ∈ N .
We claim that f : S → {E,N} defined by f(s) = Os is a solution to the finite injectivisation

of I on S. To this end, let C ∈ C and let g′ ∈ C be monotone and injective. It follows that
p′1(g, g

′) ∈ C and moreover, O(p′1(g(s), g
′(s)) = Os for all s ∈ S such that all variables from

s are in the scope of C and the lemma follows.

Lemma 3.5.8. Let I = (V , C) be a (2ℓ,max(3ℓ, bH))-minimal, non-trivial, eq-subdirect in-
stance of CSP(A) such that proj(u,v)(I) ∩ I2 ̸= ∅ for every u ̸= v ∈ V. Let S ⊆ [V ]ℓ and let
{Ei

s | s ∈ S, i ∈ [m]} be sets of classes of the partitions from the algorithm. Suppose that
there exists s′ ∈ S such that the relation

i∈{2,...,m}
Ei

s′ is not preserved by p1 or by m. Then

the finite injectivisation of I on S has a solution.
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Proof. Suppose that the relation R :=
i∈{2,...,m}

Ei
s′ is not preserved by p1. Let a1, a2 ∈ R be

such that p1(a1, a2) ∈ E1
s′ .

For j ∈ [2], let Oj be the orbit of aj under Aut(H). Let hj : V → H be a solution to

(Is′∈Oj

)eq such that hj(s′) = aj. Let h := p1(h
1, h2). It follows that h(s′) ∈ E1

s′ and, by the
way how the partitions are obtained, h(s) ∈ E1

s for every s ∈ S. In particular, h(s) lies in
an injective or deterministic under Aut(H) for every s ∈ S.
Let s1, . . . , sn be all tuples in S such that h(si) is not injective. For every i ∈ [n], let

βi ∈ Aut(H) be such that βi is deterministic for h(si). Let now

p′′1(x, y) := p1(β1x, p1(β2x, p1(. . . , p1(βnx, y)) . . . )).

Observe that for all s ∈ S, we have that p′′1(h(s), a) and p′′1(h(s),b) are contained in the
same injective orbit Os under Aut(H) for all increasing a ∈ E,b ∈ N . Let f : S → {E,N}
be defined as f(s) = Os. We claim that f is a solution of the finite injectivisation of I on S.
To this end, let C ∈ C. By the choice of h1, h2, there exist g1, g2 ∈ C ordered by h1

and h2, respectively, It follows that g := p1(g
1, g2) is ordered by h and moreover, g ∈ C.

For every i ∈ [n], let αi ∈ Aut(H) be such that αig is ordered by βih. Let p′1(x, y) :=
p1(α1x, p1(α2x, p1(. . . , p1(αnx, y)) . . . )) and let g′ ∈ C be monotone and injective. It follows
that for every s ∈ S such that all variables from s are contained in the scope of C and for
every i ∈ [n], O<(αig(s)) = O<(βih(s)). In particular, p′1(g(s), g

′(s)) ∈ f(s) as desired.
The case when R is not preserved by m is similar.

Using the auxiliary statements above, we are able to prove the correctness of the main
algorithm:

Theorem 3.5.9. The instance I ′ produced by the algorithm in Figure 3.2 is an instance of
CSP(A) and it has a solution if, and only if, the original instance has a solution. Moreover,
I ′ is either trivial or inj-irreducible.

Proof. It is easy to see that I ′ is an instance of CSP(A) by the algorithm – the only thing
that needs to be proven is that if the algorithm constrains an injective tuple v ∈ Vℓ by
projv(I)\E1

v, where I = (V , C) is an eq-subdirect, (2ℓ,max(3ℓ, bH))-minimal instance ob-
tained during the run of the algorithm, then projv(I)\E1

v is preserved by p1 and by m. But
this follows directly from Lemma 3.5.8.
We will now show that if the original instance has a solution, the instance I ′ has a solution

as well. Suppose that in the repeat... until not changed loop, we get an instance I = (V , C)
and we removed a solution of I during one run of this loop. Clearly, we didn’t remove any
solutions by making the instance eq-subdirect, (2ℓ,max(3ℓ, bH))-minimal and by identifying
variables in the IdentifyAllEqual subroutine. Hence, the only problem could occur when
removing the classes E1

w.
Suppose therefore that there is a set S ⊆ [V ]ℓ and a partition {Ej

v | j ∈ {1, . . . ,m},v ∈ S}
on the projections of I to the tuples from S. Suppose moreover that I had a solution
s : V → H such that s(w) ∈ E1

w for some w ∈ S. Then s(v) ∈ E1
v for every v ∈ S by the

definition of the partition.
Recall that E1

v contains all injective orbits under Aut(H) that are contained in projv(I)
for all tuples v ∈ S by the reasoning below the algorithm. Let I ′′ be an ℓ-minimal instance
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equivalent to the instance obtained from I by adding for every v = (v1, . . . , vℓ) ∈ S the
constraint {g : {v1, . . . , vℓ} → H | g(v) ∈ E1

v}. Since E1
v is pp-definable in A, it is by

assumption one of the relations of A and therefore I ′′ is an instance of CSP(A). Since s is
a solution to I and hence also to I ′′, I ′′ is non-trivial. Since the classes {E1

v | v ∈ S} were
removed, the finite injectivisation of I on S does not have a solution and it follows that the
finite injectivisation of I ′′ on S does not have a solution as well. Hence, s is not a solution
to I ′′ by Lemma 3.5.7, a contradiction.
We finally prove that if I ′ is non-trivial, it is inj-irreducible. Note that by the algorithm,

I ′ is (2ℓ,max(3ℓ, bH))-minimal and if it is non-trivial, then any projection of I ′ to a pair
of disjoint variables has a non-empty intersection with I2. In particular, for every injective
tuple v of variables of I ′, projv(I ′) contains an injective orbit under Aut(H). Let S be a
subset of variables of I ′

fin.
Suppose that for some variablew in S, the linkedness congruence on projw(I ′

fin |S) links the
injective orbits within this set, and separates the injective orbits from the non-deterministic
ones.
Each block Bi

w of the linkedness congruence on projw(I ′
fin |S) defines a subset of projw(I ′)

by taking Ei
w := Bi

w. By assumption, this partition of projw(I ′) extends to a partition
{E1

v, . . . , E
m
v } of projv(I ′) for v ∈ S. Each Ei

v is pp-definable: for an arbitrary orbit O in
Bi

w, E
i
v consists of the tuples that are reachable from some a ∈ O by a suitable path of

constraints. Since A contains all orbits of ℓ-tuples under Aut(H) by our assumptions, O is a
relation of A. Thus, the algorithm has checked that the finite injectivisation of I ′ on S has
a solution, showing the inj-irreducibility of I ′.

By combining Theorems 3.5.6 and 3.5.9, we obtain the desired result.

Corollary 3.5.10. Let A be a first-order reduct of H that is a model-complete core and such
that C H,inj

A ↷ {E,N} is equationally non-trivial. Then CSP(A) is in P.

3.6 The NP-hard case

In this section, we prove that if the first case of Theorem 3.3.2 applies, CSP(A) is NP-hard.

Lemma 3.6.1. Let A be a first-order reduct of H that is a model-complete core. Suppose
that C H,inj

A ↷ {E,N} is equationally trivial. Then so is C A,inj
A . Moreover, C H,inj

A ⊆ C A,inj
A .

Proof. Suppose that C A,inj
A is equationally non-trivial. Then Pol(A) contains a binary injec-

tion by Lemma 3.4.4.
We claim that C A,inj

A has an operation s which satisfies the pseudo-Siggers identity modulo
Aut(A) on injective tuples. To see this, consider the actions of C A,inj

A on In/Aut(A) for
all n ≥ 1. Each of these actions has a Siggers operation sn, and we may assume that the
sequence (sn)n≥1 converges in C A,inj

A to a function s, which has the desired property.
Let s′ be a polymorphism canonical with respect to (H, <) that is locally interpolated

by s modulo Aut(H, <). Then on all injective tuples x, y, z of the same length, s′ sat-
isfies the pseudo-Siggers equation on x, y, z modulo Aut(A), by a standard computation
(see e.g. the proof of Lemma 35 in [69]). Now for all 1 ≤ i ≤ 6 let pi be a 6-ary func-
tion which is canonical with respect to (H, <), behaves like the i-th projection on {E,N},
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and which acts lexicographically on the order – such functions can easily be obtained from
the binary injections from Proposition 3.4.5 and by the remark above Lemma 3.4.4. Set
s′′ := s′(p1(x1, . . . , x6), . . . , p6(x1, . . . , x6)). Then s′′ ∈ C H,inj

A since application of p1, . . . , p6
makes forget the order. Say without loss of generality that s′′ behaves like the first projection
on {E,N}; the case where it flips E and N of the first coordinate is similar. Let a, b be
injective increasing tuples in distinct orbits under Aut(A) (such tuples only exist if A is not
reduct of (H; =), but we already know from Lemmas 3.4.3 and 3.4.4 that in those cases,
Pol(A) consists of essentially unary operations only and thus the result is also true in this
case). Then

a ∼Aut(H) s
′′(a, b, . . .) ∼Aut(A) s

′′(b, a, . . .) ∼Aut(H) b ,

a contradiction.
The proof that C H,inj

A ⊆ C A,inj
A is almost identical as the proof of Lemma 32 in [69] but

we provide it for the convenience of the reader. Observe that the action C H,inj
A ↷ {E,N}

is by essentially unary functions by [75]. Moreover, the action C H,inj
A ↷ {E,N} determines

the action of C H,inj
A on orbits of injective tuples under Aut(H) since H is homogeneous in an

ℓ-ary language. Hence, for every f ∈ C H,inj
A of arity n ≥ 1, there exists 1 ≤ i ≤ n such that

the orbit of f(a1, . . . , an) under Aut(H) is either equal to the orbit of ai under Aut(H) for
all injective tuples a1, . . . , an of the same length, or the orbit of f(a1, . . . , an) under Aut(H)
is equal to the orbit under Aut(H) of a tuple obtained from ai by changing hyperedges to
non-hyperedges and vice versa. In the first case, f ∈ C A,inj

A since the orbits under Aut(H)
are refinements of the orbits under Aut(A). In the second case, Aut(A) contains a function
α changing hyperedges into non-hyperedges and vice versa and hence, α ◦ f ∈ C A,inj

A and
f ∈ C A,inj

A follows.

The following is an adjusted version of the fundamental theorem of smooth approxima-
tions [69, Theorem 12]. The original version of this theorem does not apply to our case since
for a first-order reduct A of H, we do not have that Pol(A) locally interpolates C A,inj

A modulo
Aut(H).

Lemma 3.6.2. Let A be a first-order reduct of H that is a model-complete core. Assume that
C H,inj
A ⊆ C A,inj

A and that C H,inj
A does not contain a binary function that acts as a semilattice

operation on {E,N}. Let k ≥ 1 be so that Ik/Aut(A) has at least two elements and let (S,∼)
be a subfactor of C A,inj

A ↷ Ik/Aut(A) with Aut(A)-invariant equivalence classes. Assume
moreover that η is a very smooth approximation of ∼ which is invariant under Pol(A). Then
Pol(A) has a uniformly continuous clone homomorphism to C A,inj

A ↷ S/ ∼.

Proof. We may assume that Pol(A) contains an essential operation – otherwise, Pol(A) has
a uniformly continuous clone homomorphism to the clone of projections and hence, to any
clone. For all n ≥ 1 and all 1 ≤ i ≤ n, let pni ∈ Pol(A) be an n-ary injection which is
canonical with respect to Aut(H, <), acts like the i-th projection on {E,N}, and follows the
first coordinate for the order. These functions are easily obtained from the binary injection
acting as a projection on {E,N} from Lemma 3.4.4. We define a map ϕ from Pol(A) to
C A,inj
A ↷ S/ ∼ as follows. For every n ≥ 1 and every n-ary f ∈ Pol(A), we take any

function f ′ canonical on (H, <) which is locally interpolated by f modulo Aut(H, <), and
then set f ′′ := f ′(pn1 , . . . , p

n
n); this function is an element of C H,inj

A , and hence also of C A,inj
A

by assumption. We set ϕ(f) to be f ′′ acting on S/ ∼.
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Our first claim is that ϕ is well-defined, i.e., it does not depend on the choice of f ′. Let
u1, . . . , un ∈ S. Then

f(u1, . . . , un) (η ◦ ∼) f ′(u1, . . . , un) ∼ f ′′(u1, . . . , un) .

Hence, the action of f ′′ on S/ ∼ is completely determined by f , and consequently independent
of f ′.
It remains to show that ϕ is a uniformly continuous clone homomorphism. ϕ clearly

preserves arities, let us show that it preserves compositions as well. Let n,m ≥ 1, let
f ∈ Pol(A) be m-ary, let g1, . . . , gm be n-ary, and let u1, . . . , un ∈ S. Pick, for all 1 ≤ i ≤ m,
any vi ∈ S such that vi η gi(u1, . . . , un). Then

f(g1, . . . , gm)(u1, . . . , un) η f(v1, . . . , vm)

(η ◦ ∼) f ′′(v1, . . . , vm)

(η ◦ ∼) f ′′(g′′1 , . . . , g
′′
m)(u1, . . . , un),

the last equivalence holding since gi(u1, . . . , un) (η ◦ ∼) g′′(u1, . . . , un) for all i ∈ [n]. Hence,
ϕ(f(g1, . . . , gm)) = ϕ(f)(ϕ(g1), . . . , ϕ(gm)). It follows that ϕ is a clone homomorphism. More-
over, ϕ is uniformly continuous since for any fixed set of representatives of the classes of ∼
and for any f ∈ Pol(A), the action of f on these representatives determines ϕ(f) by the
above proof showing that ϕ is well-defined.

3.7 The impossible case: few canonical functions and a
weakly commutative function

In this section, we prove that if A is a first-order reduct of H which has among its poly-
morphisms a weakly commutative function then C H,inj

A contains a binary function that acts
as a semilattice operation on {E,N}. This will allow us to derive a contradiction if the
second case of Theorem 3.3.2 applies. To prove this, we will need the following consequence
from [18] of the fact that (H, <) satisfies the Ramsey property.

Let C be a relational structure and let A,B ⊆ C. We say that A is independent from B
in C if for every n ≥ 1 and for all a1, a2 ∈ An such that a1, a2 satisfy the same first-order
formulas over C, a1 and a2 satisfy the same first-order formulas over C with parameters from
B. We say that two substructures A and B of C are independent if A is independent from
B in C and B is independent from A in C. Finally, we say that a substructure A of C is
elementary if the identity mapping from A to C preserves the truth of all first-order formulas
in the signature of C.

Theorem 3.7.1 (Theorem 4.4. in [18]). Let C be a countable homogeneous ω-categorical
Ramsey structure. Then C contains two independent elementary substructures.

Let A be a first-order reduct of H which is a model-complete core and so that Pol(A) is
equationally non-trivial and let us assume that the second case of Proposition 3.4.5 applies,
i.e., C H,inj

A contains a binary injection g1 which acts as a projection on {E,N} and which is
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canonical with respect to (H, <). We will show that in this case, there exist p1, p2 ∈ C H,inj
A

with the following properties.

• p1, p2 are both canonical with respect to (H, <),

• pi acts like the i-th projection on {E,N} for all i ∈ {1, 2},
• pi acts lexicographically on the order for all i ∈ {1, 2},
• for all x, y ∈ H, if x < y, then p1(x, y) < p2(x, y), and if y < x, then p1(x, y) > p2(x, y),

• the ranges of p1 and p2 are disjoint and independent as substructures of H.

To show the existence of p1, p2, assume without loss of generality that g1 acts as the first
projection on {E,N}. Then the function g2(x, y) := g1(y, x) acts as the second projection
on {E,N}. By the remark above Lemma 3.4.4, we may assume that both g1 and g2 act
lexicographically on the order <. Finally, by Theorem 3.7.1, we may compose g1 and g2
with automorphisms of (H, <) and obtain binary injections g′1, g

′
2 that still satisfy all the

assumptions above and whose ranges are disjoint and induce in (H, <) substructures that
are independent.
Let us define a linear order <∗ on U := im(g′1) ∪ im(g′2) as follows. We set u <∗ v if one

of the following holds.

• u < v and u, v ∈ im(g′i) for some i ∈ [2], or

• u = g′i(x1, y1), v = g′j(x2, y2) for some i ̸= j ∈ [2], x1, x2, y1, y2 ∈ H and one of the
following holds

– i = 1, j = 2, x2 ≤ y2 and u ≤ g′1(x2, y2), or

– i = 1, j = 2, x1 ≤ y1 and g′2(x1, y1) ≤ v, or

– i = 2, j = 1, x2 > y2 and u ≤ g′2(x2, y2), or

– i = 2, j = 1, x1 > y1 and g′1(x1, y1) ≤ v.

It is easy to verify that <∗ is a linear order on U . Let us define a hyperedge relation
E∗ on U as the restriction of the relation E to U . It follows that (U,E∗) is isomorphic to
the structure induced by the union of the ranges of g′1 and g′2 in H and hence, (U,E∗, <∗)
embeds to (H, <) by an embedding e since (H, <) is universal for the class of all ℓ-uniform
linearly ordered hypergraphs (X, <X) such that X embeds to H. Finally, we obtain the
desired functions p1 and p2 by setting p1 := e ◦ g′1 and p2 := e ◦ g′2.
Lemma 3.7.2. Let A be a first-order reduct of H which is a model-complete core. Suppose
that Pol(A) does not have a uniformly continuous clone homomorphism to P and contains
a binary function f such that there exist k ≥ 1, S ⊆ Ik, and an equivalence relation ∼ on S
with at least two Aut(A)-invariant classes such that f(a, b) ∼ f(b, a) for all disjoint injective
tuples a, b ∈ Hk with f(a, b), f(b, a) ∈ S. Then C H,inj

A ↷ {E,N} contains a semilattice
operation.
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Proof. Since A is a model-complete core, we have f(a, a) ∈ S for all a ∈ S, and hence
picking any b ∈ S which is not ∼-equivalent to a, we see on the values f(a, a), f(b, b), f(a, b),
and f(b, a) that f must be essential. It follows from Proposition 3.4.5, from Theorem 3.7.1
and from the discussion above that Pol(A) contains functions p1, p2 as above, or else the
conclusion of the lemma follows immediately. Moreover, since its distinctive property is
stable under diagonal interpolation modulo Aut(H), we can assume that f is diagonally
canonical with respect to Aut(H, <).
It is easy to see that for every U ′, V ′ ⊆ H such that u < v for every u ∈ U ′, v ∈ V ′,

f is canonical with respect to (H, <) on U ′ × V ′. Let c1, c2 ∈ H be arbitrary, let U :=
{p1(d, c2) | d ∈ H, d < c1} and let V := {p2(c1, d) | d ∈ H, c2 < d}. Hence, for every
u ∈ U, v ∈ V , it holds that u < v. Note that for every m ≥ 1 and for every a ∈ Hm, there
exist b ∈ Um, c ∈ V m such that a, b, c are in the same orbit under Aut(H, <). Note moreover
that if m ≥ 1 and (a, b) is any pair of m-tuples such that (ai, bj) ∈ U × V for all i, j ∈ [m],
then p1(ai, bj) < p2(ai, bj) for every i, j ∈ [m]. Setting g(x, y) := f(p1(x, y), p2(x, y)), we
obtain a function which is canonical with respect to H on U × V . Hence, the restriction of
g to U × V naturally acts on {E,N}, and we may assume it does so as an essentially unary
function as otherwise we are done. A similar statement holds for its restriction to V × U .
If one of the two mentioned essentially unary functions on {E,N} is not a projection, then
Aut(A) contains a function flipping E and N . It follows that whenever a, b ∈ S are so that
(ai, bj) ∈ U × V for all i, j ∈ {1, . . . , k}, then g(a, b) and g(b, a) are elements of S. If a, b
are moreover both increasing, then g(a, b) and f(a, b), as well as g(b, a) and f(b, a), belong
to the same orbit under Aut(A). Since f(a, b) ∼ f(b, a), the two essentially unary functions
mentioned above cannot depend on the same argument, as witnessed by choosing a, b ∈ S
from distinct ∼-classes. Hence, we may assume that the one from U × V depends on the
first argument and the other one on the second.
More generally, since g(x, y) = f(p1(x, y), p2(x, y)), the function g has the property that

for all injective ℓ-tuples a, b where a is increasing, the type of their image under this function
in H only depends on the relations of H on each of a and on b, respectively, and on the order
relation on pairs (ai, bj), where i, j ∈ {1, . . . , ℓ}; this type is precisely the same type obtained
when applying the function to a, b′, where b′ is obtained from b by changing its order to be
increasing.
In the following, for any pair (a, b) of injective increasing ℓ-tuples, we shall consider the

set B of all pairs (a′, b′) of injective increasing ℓ-tuples such that the order relation on (ai, bj)
and that on (a′i, b

′
j) agree for all i, j ∈ {1, . . . , ℓ}; we call this set an increasing diagonal order

type. We then have by the above that g acts naturally on {E,N} within each such set B.
Set h(x, y) := g(e1 ◦ g(x, y), e2 ◦ g(x, y)), where e1, e2 are self-embeddings of (H, <) which

ensure that for all injective increasing a, b, the diagonal order type of (a, b) is equal to that
of (e1 ◦ g(a, b), e2 ◦ g(a, b)). Then h acts idempotently or as a constant function in its action
on {E,N} within each increasing diagonal order type B as above. In particular, h then
acts like the first projection on {E,N} when restricted to U × V , and like the second when
restricted to V × U .
We will now rule out the possibility that h acts like a constant function on {E,N} within

some increasing diagonal order type of injective ℓ-tuples. In the following, we assign to every
increasing diagonal order type B of pairs of increasing injective ℓ-tuples a number nB as
follows: if ((x1, . . . , xℓ), (y1, . . . , yℓ)) ∈ B, then nB is the minimal number in {0, . . . , ℓ} such
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that for all nB < i ≤ ℓ it holds that xi < yi, and if i > 1, then moreover yi−1 < xi.
Suppose that within some increasing diagonal order type B, we have that h acts as a

constant function on {E,N}. Pick such B such that nB is minimal. Assume without loss of
generality that the constant value of h on B is E. We claim that A has an endomorphism onto
a clique, which contradicts the conjunction of the assumptions that A is a model-complete
core and not a reduct of (H; =). We prove this claim by showing that any finite injective
tuple can be mapped to a clique by an endomorphism of A. Suppose that m ≥ 1 and that
(a1, . . . , am) is an injective m-tuple of elements of H which does not induce a clique, i.e.,
there is a subtuple of length ℓ which is not an element of E. Then m ≥ ℓ, and we may assume
without loss of generality that (a1, . . . , aℓ) ̸∈ E. By applying a self-embedding e1 of H, we
obtain an increasing tuple (x1, . . . , xm) such that (x1, . . . , xℓ) ∈ N . Applying an appropriate
self-embedding e2 of H to (a1, . . . , am), we moreover obtain an increasing tuple (y1, . . . , ym)
such that ((x1, . . . , xℓ), (y1, . . . , yℓ)) ∈ B and such that yi−1 < xi < yi for all i > ℓ. Then the
increasing diagonal order type C for any pair ((xi1 , . . . , xiℓ), (yi1 , . . . , yiℓ)) of subtuples, both
increasing, has the property that nC ≤ nB (note that in order to compute nC , the entries
of both tuples receive the indices 1 to ℓ). If nC < nB, then h acts idempotently on {E,N}
within C, by the minimality of nB; if on the other hand nC = nB, then B = C and h acts
as a constant with value E. It follows that applying the endomorphism h(e1(x), e2(x)) to
(a1, . . . , am), one obtains a tuple which has strictly more subtuples in E than (a1, . . . , am).
The claim follows.
We may thus henceforth assume that within each increasing diagonal order type B, we

have that h acts in an idempotent fashion on {E,N}. Thus, within each such type, h acts
as a semilattice operation or as a projection on {E,N}.
Let 0 ≤ j ≤ ℓ, and consider the diagonal order type T given by a pair (c, d) of increasing

injective j-tuples of elements of H; we call j the length of T . In the following, we shall say
that T is categorical if for all pairs (a, b) of increasing injective ℓ-tuples which extend (c, d)
(we mean any extension, not just end-extension) the corresponding diagonal order type is
one where h behaves like the first projection on, or if a similar statement holds for the second
projection, or for the semilattice behaviour (both semilattice behaviours are considered the
same here). Note that for length j = 0 every T is non-categorical, by the behaviours on
U × V and V ×U . Note also that for length j = ℓ every T is trivially categorical. We claim
that there exists T of length j = ℓ− 1 which is not categorical. Suppose otherwise, and take
any T which is categorical and implies the behaviour as the second projection; this exists by
the behaviour on V ×U . Let (c, d) be a pair of injective j-tuples which are ordered such that
they represent the diagonal order type T . Let (a1, b1) be obtained from (c, d) by extending
both increasing tuples by a single element c′ and d′ at the end, respectively, in such a way
that c′ < d′. Let (c1, d1) be tuple obtained from (a1, b1) by taking away the first components.
Then the order type represented by (c1, d1) is categorical but not for the first projection. We
continue in this fashion until we arrive at a pair (aℓ, bℓ) in U × V , a contradiction.
In the following, we assume that there exists T of length j = ℓ − 1 which extends to

diagonal order types where h behaves like different projections; the other case (projection
+ semilattice) is handled similarly. We show by induction on m ≥ 1 that for all tuples
a, b ∈ Im such that for every i ∈ {1, . . . ,m} at most one of the tuples ai, bi is in N there
exists u ∈ Pol(A) such that u(a, b) ∈ Em. A standard compactness argument then implies
that C H,inj

A contains a function such that C H,inj
A ↷ {E,N} is a semilattice operation.
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The base case m = 1 is clearly achieved by applying an appropriate projection. For the
induction step, let a, b ∈ Im for some m ≥ 2. Since Pol(A) contains p1, we may assume that
the kernels of a and b are identical. We may then also assume that ai, aj induce distinct sets
whenever 1 ≤ i, j ≤ m and i ̸= j, for otherwise we are done by the induction hypothesis.
By the induction hypothesis, we may assume that all components of a are in E except for
the second, and all components of b are in E except for the first. It is sufficient to show
that there exists an increasing diagonal order type on the pair (a, b) (i.e., increasing diagonal
order types for each of the pairs (a1, b1), . . . , (am, bm) which are consistent with the kernels of
a and b) such that h behaves like the first projection within the order type of (a1, b1) and like
the second within the order type of (a2, b2). This, however, is obvious by our assumption.

3.8 Bounded width

In this section, we prove a characterization of first-order expansions of H whose CSPs have
bounded width.

Theorem 3.8.1. Let A be a first-order expansion of H. Then precisely one of the following
applies.

1. The clone Pol(A) has a uniformly continuous minion homomorphism to the clone of
affine maps over a finite module.

2. The clone Pol(A) has no uniformly continuous minion homomorphism to the clone of
affine maps over a finite module, and CSP(A) has relational width (2ℓ,max(3ℓ, bH)).

We prove Theorem 3.8.1 in a similar way as Theorem 3.1.1. We prove that if A is a first-
order expansion of H which is a model-complete core then CSP(A) has bounded width if,
and only if, C H,inj

A ↷ {E,N} is equationally non-affine. If C H,inj
A ↷ {E,N} is equationally

non-affine, the result follows from Corollary 3.5.2.

Let us therefore suppose that C H,inj
A ↷ {E,N} is equationally affine. Moreover, we may

assume that C H,inj
A ↷ {E,N} is equationally non-trivial as otherwise, Pol(A) has a uniformly

continuous homomorphism to the clone of projections by the proof of Theorem 3.1.1. We
apply the second loop lemma of smooth approximations [69, Theorem 11].

Theorem 3.8.2. Let k ≥ 1 and suppose that C H,inj
A ↷ {E,N} is equationally non-trivial.

Let (S,∼) be a minimal subfactor of C H,inj
A ↷ {E,N} with Aut(H)-invariant ∼-classes.

Then one of the following holds:

• ∼ is approximated by a Pol(A)-invariant equivalence relation that is very smooth with
respect to Aut(H);

• every C H,inj
A ↷ {E,N}-invariant binary symmetric relation R ⊆ I2 that contains a

pair (a, b) ∈ S2 such that a ̸= b and such that a ̸∼ b contains a pseudo-loop modulo
Aut(H), i.e., a pair (c, c′) where c, c′ belong to the same orbit under Aut(H).
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In the formulation of the first item of Theorem 3.8.2, we are using [69, Lemma 8]. If the first
case of the theorem applies, i.e., the equivalence relation (S,∼) on whose classes C H,inj

A acts by
a function from a clone M of affine maps over a finite module is approximated by a Pol(A)-
invariant equivalence relation that is very smooth with respect to Aut(H), Lemma 3.6.1 (with
k = ℓ, C A,inj

A = C H,inj
A ) implies that Pol(A) has a uniformly continuous clone homomorphism

to C H,inj
A ↷ (S,∼) and hence to M .

If the second case of Theorem 3.8.2 applies, we get a weakly commutative function by [69,
Lemma 13], and the same argument mentioned at the end of Section 3.3 gives that C H,inj

A ↷
{E,N} contains a semilattice operation. In particular, C H,inj

A ↷ {E,N} is equationally
non-affine, which is a contradiction.
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4 Bounds on the relational width of
first-order expansions of structures
with neoliberal automorphism group

4.1 Introduction

As we have mentioned already in Section 1.4.2, the algebraic characterization of local consis-
tency from Theorem 1.4.4 does not translate to infinite-domain CSPs [31, 32, 55]. Moreover,
no collapse of bounded width hierarchy is possible for infinite-domain CSPs with bounded
width (see Example 1.4.6). This indicates that new methods have to be developed to better
understand this class of CSPs.
The exploration of the exact relational width of infinite-domain CSP templates with

bounded width was only started recently. First results were obtained in [82, 81] where
an upper bound on the relational width of first-order expansions of certain binary structures
with bounded strict width was given. In [69], algebraic conditions characterizing CSP tem-
plates with bounded width were introduced for several well-known classes of infinite-domain
CSPs. Finally, in Theorem 2.1.2, we found an upper bound on the relational width of CSP
templates which satisfy these conditions. Moreover, we showed in Example 2.1.4 that this
bound is optimal for many templates under consideration.
Contrary to the case of bounded width, the algebraic characterization of bounded strict

width can still be lifted to the ω-categorical case by Theorem 1.4.10 – this suggests that
CSPs with bounded strict width form a particularly well-behaved subclass of ω-categorical
CSPs with bounded width. Studying this class therefore seems to be a natural starting
point in the endeavour to understand the amount of local consistency needed to solve ω-
categorical CSPs. Such understanding has on the one hand algorithmic consequences – it
provides us with efficient algorithms for solving the CSPs under consideration. On the other
hand, it represents an imperceptible part in the constant strive of the humanity to better
understand, classify, parameterize and dominate the outer world which always seems to resist
our endeavour to conquer it.

4.1.1 Results

In this chapter, we build on results by Wrona [81] and prove that certain CSP templates with
bounded strict width have limited expressibility in the form of implicational simplicity. As a
corollary, we obtain a bound on the amount of local consistency needed to decide solvability
of CSP instances over these templates. The relations of our templates are required to be
first-order definable in an ω-categorical base structure whose automorphism group satisfies
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certain abstract properties. In contrast to [81], the base structure can have relations of
arbitrarily large arity that is greater or equal to 3.
While for many well-known ω-categorical structures in a binary signature, their first-order

reducts whose CSPs are solvable by local consistency checking are quite well-understood [69],
the investigation of first-order reducts of structures whose relations have arbitrarily large ar-
ity was only started recently (see Chapter 3). The precise definition of all notions mentioned
in the following theorem can be found in Sections 4.2 and 4.3.

Theorem 4.1.1. Let k ≥ 3, let B be the canonical k-ary structure of a k-neoliberal permu-
tation group G , and suppose that B has finite duality. Then any first-order expansion of B
with bounded strict width is implicationally simple on injective instances.

In order to prove Theorem 4.1.1, we reformulate the concept of an implication and many
related concepts from [81] to our setting. Using these concepts, we will employ a similar
proof strategy as in [81].

Corollary 4.1.2. Let k ≥ 3, let B be the canonical k-ary structure of a k-neoliberal permu-
tation group G , and suppose that B has finite duality. Then any first-order expansion of B
with bounded strict width has relational width (k,max(k + 1, bB)).

To show that Corollary 4.1.2 follows from Theorem 4.1.1, we will use results from [69] and
from Chapter 3.

4.2 Implications and binary injections

In this section, we first restate some results about binary injections from [69] that will
enable us to use Lemma 14 from [70] in order to reduce CSP(A) for any structure A under
consideration to CSPInj(A). Afterwards, we introduce the notion of an implication and
several related concepts that are inspired by notions from [81] and that will play a key role
in the proof of Corollary 4.1.2. It is not hard to see that, unlike in the case for structures
from [81], the reduction to CSPInj(A) is necessary since every structure in the scope of
Theorem 4.1.1 is implicationally hard without restricting to injective instances.

4.2.1 Definitions and notation

Let k, ℓ ≥ 1, and let A be a set. For a tuple t ∈ Ak, we write S(t) for the scope of t, i.e., for
the set of all entries of t.
Let A be a relational structure and let ϕ be a first-order formula over the signature of A.

We identify the interpretation ϕA of ϕ in A with the set of satisfying assignments for ϕA.
Let V be the set of free variables of ϕ, and let u be a tuple of elements of V . We define
proju(ϕ

A) := {f(u) | f ∈ ϕA}.

4.2.2 Binary injections and bounded width

We will use the following results from [69]. The orbit O with the property stated in
Lemma 4.2.1 is called free in [69].
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Lemma 4.2.1 (Proposition 21 in [69]). Let B be a homogeneous structure such that there
exists an orbit O of pairs under Aut(B) with the property that for all a, b ∈ B, there exists
c ∈ B such that (a, c), (b, c) ∈ O, and let A be first-order reduct of B. If Pol(A) contains an
essential function, then it contains a binary essential function.

Lemma 4.2.2 (Proposition 24 in [69]). Let A be a first-order reduct of a transitive ω-
categorical structure B such that the canonical binary structure of Aut(B) has finite duality. If
Pol(A) contains a binary essential function preserving IB2 , then it contains a binary injection.

Lemmas 4.2.1 and 4.2.2 immediately yield the following proposition.

Proposition 4.2.3. Let k ≥ 2, let G be a 2-transitive oligomorphic permutation group, and
let B be its canonical k-ary structure. Let A be a first-order expansion of B, and suppose
that A has bounded strict width. Then A has relational width (k,max(k+1, bB)) if, and only
if, CSPInj A has relational width (k,max(k + 1, bB)).

Proof. Since A has bounded strict width, it has in particular bounded width, and hence
Pol(A) does not have a uniformly continuous homomorphism to an affine clone by Theo-
rem 1.4.4. In particular, it does not have a uniformly continuous clone homomorphism to
the clone of projections. It is easy to see and well-known that Pol(A) then contains an
essential function. Since G is 2-transitive, IB2 is an orbit under G , and it clearly satisfies
the condition from Lemma 4.2.1. It follows that Pol(A) contains a binary essential oper-
ation, and since A is a first-order expansion of B, every polymorphism of A preserves IB2 .
Lemma 4.2.2 yields that Pol(A) contains a binary injection. Now, the statement follows
directly from Lemma 3.5.1.

4.2.3 Implications

Definition 4.2.4. Let A be a relational structure. Let V be a set of variables, let u,v be
injective tuples of variables in V of arity k < |V | and m < |V |, respectively, such that
S(u) ∪ S(v) = V . Let C ⊆ Ak and D ⊆ Am be pp-definable from A and non-empty. We
say that a pp-formula ϕ over the signature of A with free variables from V is a (C,u, D,v)-
implication in A if all of the following hold:

1. for all distinct x, y ∈ V , proj(x,y)(ϕ
A) ̸⊆ {(a, a) | a ∈ A},

2. C ⊊ proju(ϕ
A),

3. D ⊊ projv(ϕ
A),

4. for every f ∈ ϕA, it holds that f(u) ∈ C implies f(v) ∈ D,

5. there exists no D′ ⊊ D such that for every f ∈ ϕA, it holds that f(u) ∈ C implies
f(v) ∈ D′.

We say that ϕ is a (C,u, D,v)-pre-implication if it satisfies items (2)-(5). We will call
ϕ a (C,D)-implication if it is a (C,u, D,v)-implication for some u ∈ IVk ,v ∈ IVm. We say
that an implication ϕ is injective if ϕA contains only injective mappings.
Let G be a permutation group acting on A, and let f ∈ ϕA. If O,P are orbits under G

such that f(u) ∈ O, f(v) ∈ P , then we say that f is an OP -mapping.
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Example 4.2.5. Let A be a relational structure, let k ≥ 1, and let O be an orbit of k-tuples
under Aut(A). Suppose that A pp-defines the equivalence of orbits of k-tuples under Aut(A).
Then the formula defining this equivalence is an (O,O)-pre-implication in A. If A is such
that Aut(A) does not have any fixed point in its action on A, this pre-implication is an
implication. For all orbits P,Q of k-tuples under Aut(A), ϕA contains an PQ-mapping if,
and only if, P = Q.

4.2.4 Implicationally simple structures

Definition 4.2.6. Let A be a relational structure, and let k ≥ 1.
The k-ary implication graph of A, to be denoted by GA, is a directed graph defined as

follows.

• The set of vertices is the set of pairs (C1, C) where ∅ ̸= C ⊊ C1 ⊆ Ak and C,C1 are
pp-definable from A.

• There is an arc from (C1, C) to (D1, D) if there exists a (C,u, D,v)-implication ϕ in
A such that proju(ϕ

A) = C1, projv(ϕ
A) = D1.

The k-ary injective implication graph of A, denoted by GInj
A , is the (non-induced) subgraph

of GA which contains precisely the vertices (C1, C) where C is injective and which contains
an arc from (C1, C) to (D1, D) if (C1, C) ̸= (D1, D) and there exists an injective (C,u, D,v)-
implication ϕ in A with proju(ϕ

A) = C1, projv(ϕ
A) = D1.

We say that A is implicationally simple (on injective instances) if the (injective) implica-
tion graph GA (GInj

A ) is acyclic. Otherwise, A is implicationally hard (on injective instances).

Note that by item (1) in Definition 4.2.4, the implication graph does not necessarily contain
all loops – e.g., the formula over variables {x1, . . . , x2k} defined by

i∈[k]
(xi = xi+k) is not an

implication.
The following is essentially subsumed by Lemma 2.3.3 but we provide the reformulation

to our setting as well as the proof for the convenience of the reader.

Lemma 4.2.7. Let k ≥ 2, let G be a permutation group, let B be its canonical k-ary
structure, and suppose that B is finitely bounded. Let I = (V , C) be a non-trivial, (k,max(k+
1, bB))-minimal instance of CSP(B) such that for every v ∈ Vk, projv(I) contains precisely
one orbit under G . Then I has a solution.

Proof. Let ∼ be a binary relation defined on V such that u ∼ v if, and only if, I |{u,v} consists
of constant maps. Since k ≥ 2, ∼ is an equivalence relation.
Let τ be the signature of B, and let us define a τ -structure A on V / ∼ as follows. Let

R ∈ τ ; then R is of arity k. We set ([v1]∼, . . . , [vk]∼) ∈ R if proj(v1,...,vk)(I) = RB. Note that

by our assumption, for every (v1, . . . , vk) ∈ Vk, there is precisely one relation of A containing
the tuple ([v1]∼, . . . , [vk]∼).
Let us show that the definition of ∼ does not depend on the choice of the representatives

v1, . . . , vk ∈ V . We will show that it does not depend on the choice of v1, the rest can be
shown similarly. Let u1 ∼ v1, and let C ∈ C be such that u1, v1, . . . , vk are contained in
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its scope. Then C|{u1,v1} consists of constant maps and it follows that proj(u1,v2,...,vk)
(I) =

proj(u1,v2,...,vk)
(C) = proj(v1,...,vk)(C) = proj(v1,...,vk)(I).

We claim that A embeds into B. Suppose for contradiction that this is not the case.
Then there exists a bound F ∈ FB of size b with b ≤ bB such that F embeds into A. Let
[v1]∼, . . . , [vb]∼ be all elements in the image of this embedding. Find a constraint C ∈ C such
that v1, . . . , vb are contained in its scope. Since C is nonempty, there exists f ∈ C. Since
all relations in τ are of arity k, since I is k-minimal and since for every v ∈ Vk such that
all variables from v are contained in the scope of C, projv(C) contains precisely one orbit
under G , it follows that F embeds into the structure that is induced by the image of f in B
which is a contradiction.
It follows that there exists en embedding e : A → B and it is easy to see that f : V → B

defined by f(v) := e([v]∼) is a solution of I.

Proposition 4.2.8. Let k ≥ 3, let G be a (k−1)-transitive oligomorphic permutation group,
let B be its canonical k-ary structure, and suppose that B is finitely bounded. Let A be a
first-order expansion of B which is implicationally simple on injective instances and such
that Pol(A) contains a binary injection. Then A has relational width (k,max(k + 1, bB)).

Proof. By Proposition 4.2.3, it is enough to show that CSPInj(A) has relational width
(k,max(k + 1, bB)). To this end, let I = (V , C) be a non-trivial (k,max(k + 1, bB))-minimal
instance of CSPInj(A); we will show that there exists a satisfying assignment for I.
For every i ≥ 0, we define inductively a (k,max(k + 1, bB))-minimal instance I i = (V , Ci)

of CSPInj(A) with the same variable set as I such that I0 = I and such that for every i ≥ 1,
Ci contains for every constraint Ci−1 ∈ Ci−1 a constraint Ci such that Ci ⊆ Ci−1.
Let I0 := I. Let i ≥ 1. We define Gi to be the graph that originates from GInj

A by removing
all vertices that are not of the form (projv(I i−1), F ) for some injective v ∈ Vk, and some
F ⊆ Ak. Claim 4.2.9 implies that I i−1 is k-minimal, and hence projv(I i−1) is well-defined.
If Gi does not contain any vertices, let I i := I i−1. Suppose now that Gi contains at least one
vertex. In this case, since GInj

A and hence also Gi is acyclic, we can find a sink (projvi
(I i−1), Fi)

in Gi for some injective vi ∈ Vk. Let us define for every Ci−1 ∈ Ci−1 containing all variables
from vi in its scope Ci := {f ∈ Ci−1 | f(vi) ∈ Fi}, and let Ci := Ci−1 for every Ci−1 ∈ Ci−1

that does not contain all variables from vi in its scope. Note that in both cases, Ci ⊆ Ci−1.
Finally, we define Ci = {Ci | Ci−1 ∈ Ci−1}.
Claim 4.2.9. For every i ≥ 1, I i is non-trivial and (k,max(k+ 1, bB))-minimal. Moreover,
for every v ∈ Vk \{vi}, projv(I i) = projv(I i−1) and projvi

(I i) = Fi.

Let i ≥ 1 and if i > 1, suppose that the claim holds for i − 1. Note that if I i = I i−1,
then there is nothing to prove so we may suppose that this is not the case. Observe that for
every Ci ∈ Ci containing all variables from vi in its scope, projvi

(Ci) = Fi by the definition

of Ci. We will now show that for every v ∈ Vk \{vi} and for every Ci ∈ Ci containing all
variables from v in its scope, projv(Ci) = projv(Ci−1). Observe that if Ci does not contain
all variables from vi in its scope, then the conclusion follows immediately since Ci = Ci−1;
we can therefore assume that this is not the case. Assume first that v is not injective, let m
be the number of pairwise distinct entries of v, and let u be an injective m-tuple containing
all variables of v. Hence, proju(Ci) = IAm = proju(Ci−1) by the (k − 1)-transitivity of G
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and it follows that projv(Ci) = projv(Ci−1). Now assume that v is injective and, striving
for a contradiction, that projv(Ci) ⊊ projv(Ci−1). It follows that (projv(Ci−1), projv(Ci))
is a vertex in GInj

A and hence also in Gi. Let w = (w1, . . . , wℓ) ∈ Vℓ be an enumeration
of all variables of v and vi. It follows that the pp-formula ϕ(w) defining projw(Ci−1) is
an injective (Fi,vi, projv(Ci),v)-implication. Hence, there is an arc from (projvi

(I i−1), Fi)
to (projv(Ci−1), projv(Ci)) in Gi and in particular, (projvi

(I i−1), Fi) is not a sink in Gi, a
contradiction.

Now, it is easy to see that I i is (k,max(k+1, bB))-minimal. Indeed, since I is (k,max(k+
1, bB))-minimal, every subset of V of size at most max(k+ 1, bB) is contained in the scope of
some constraint of I and by construction also of I i. Moreover, by the previous paragraph,
any two constraint of I i agree on all k-element subsets of V within their scopes.

Since for every i ≥ 0, if Gi is not empty, we remove at least one orbit of k-tuples under
G from some constraint. By the oligomorphicity of G , there exists i0 ≥ 0 such that Gi0 is
empty. We claim that for every injective v ∈ Vk, projv(I i0) contains precisely one orbit of
k-tuples under G : If projv(I i0) contained more than one orbit, then (projv(I i0), O) would
be a vertex of Gi for an arbitrary orbit O ⊆ projv(I i0); O being a relation of A since A is a
first-order expansion of B.
It follows that I i0 = (V , Ci0) is a non-trivial, (k,max(k + 1, bB))-minimal instance of

CSPInj(B) that satisfies the assumptions of Lemma 4.2.7. Hence, there exists a satisfying
assignment for I i0 and whence also for I.

4.3 Neoliberal permutation groups and bounded strict
width

Definition 4.3.1. Let k ≥ 2, and let G be a permutation group acting on a set A. We
say that G has no k-algebraicity if the only fixed points of any stabilizer of G by k − 1
elements are these elements themselves. We say that G is k-neoliberal if it is oligomorphic,
(k − 1)-transitive, k-homogeneous, and has no k-algebraicity.

Note that a permutation group G has no algebraicity if, and only if, it has no k-algebraicity,
for every k ≥ 2.

The notion of k-neoliberality is inspired by the notion of liberal binary cores introduced by
Wrona in [81] – the automorphism group of every liberal binary core is 2-neoliberal. However,
the opposite is not true – the automorphism group of the universal homogeneous K3-free
graph is easily seen to be 2-neoliberal but its canonical binary structure B is a binary core
which is not liberal. This is because a liberal binary core is supposed to be finitely bounded
and the set of forbidden bounds should not contain any structure of size 3, . . . , 6. However,
K3 is a 3-element graph which does not embed into B but all its subgraphs of size at most
2 do, and hence K3 has to be contained in any set of forbidden bounds for the universal
homogeneous K3-free graph.

Example 4.3.2. For every k ≥ 2, the automorphism group of the universal homogeneous
k-uniform hypergraph is k-neoliberal.
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Let C2
ω be the countably infinite equivalence relation where every equivalence class contains

precisely 2 elements. Then Aut(C2
ω) is oligomorphic, 1-transitive, and 2-homogeneous, but

not 2-neoliberal. Indeed, for any element a of C2
ω, the stabilizer of Aut(C2

ω) by a fixes also
the unique element of C2

ω which is in the same equivalence class as a.
On the other hand, the automorphism group of the countably infinite equivalence relation

with equivalence classes of a fixed size m > 2 is easily seen to be 2-neoliberal.

Note that if G is a permutation group acting on a set A which is k-neoliberal for some
k ≥ 2 and which is not equal to the group of all permutations on A, then the number k is
uniquely determined. Indeed, k = min{i ≥ 1 | G is not i-transitive}.
Note also that a permutation group G acting on a set A which is oligomorphic, (k − 1)-

transitive, and k-homogeneous for some k ≥ 2 is k-neoliberal if, and only if, there exists no
function f : IAk → A with the property that for every α ∈ G , f(α, . . . , α) = αf . Indeed, if G
is not k-neoliberal, then there exist pairwise distinct a1, . . . , ak ∈ A such that ak is a fixed
point of the stabilizer of G by a1, . . . , ak−1. It is easy to see that we can obtain a function
f : IAk → A with the stated property by defining for every t ∈ IAk−1, f(t) := αf(a1, . . . , ak−1)
where α ∈ G is such that (αa1, . . . , αak−1) = t – such α exists by the (k − 1)-transitivity of
G . On the other hand, if such function f exists, then for every a1, . . . , ak−1, f(a1, . . . , ak−1)
is a fixed point of the stabilizer of G by a1, . . . , ak−1, and G is not k-neoliberal.

4.3.1 Some implications with no bounded strict width

In this section, we first prove that if a structure A pp-defines certain implications, then it
does not have bounded strict width (Lemmas 4.3.3 and 4.3.4). This will enable us to prove
that if A has bounded strict width, and if a relation pp-definable in A contains a tuple with
certain properties, then this relation contains an injective tuple with the same properties
(Corollary 4.3.5).

Lemma 4.3.3. Let k ≥ 3, let G be a k-neoliberal permutation group, and let B be its
canonical k-ary structure. Let A be a first-order expansion of B, let ℓ ∈ {2, . . . , k}, let
S ⊆ IBℓ , and let ϕ be an (S,=)-implication in A with ℓ+ 1 variables. Then A does not have
bounded strict width.

Proof. Enumerate the variables of ϕ by x1, . . . , xℓ+1. Without loss of generality, u =
(x1, . . . , xℓ) and v = (xℓ, xℓ+1) are such that ϕ is an (S,u,=,v)-implication in A. The
set ϕA can then be viewed as an (ℓ+ 1)-ary relation R(x1, . . . , xℓ+1).
Using the k-neoliberality of G , we can find a1 . . . , aℓ, b1, . . . , bℓ ∈ B with aℓ ̸= bℓ such that

all of the following hold:

• (a1, . . . , aℓ) ∈ S,

• (a1, . . . , aℓ−1, bℓ) ∈ S,

• (b1, . . . , bℓ−1, aℓ, bℓ) ∈ R.

To see this, let (a1, . . . , aℓ) ∈ S be arbitrary. The fact that G has no k-algebraicity implies
that there exists bℓ ∈ B which is distinct from aℓ but which lies in the same orbit under
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the stabilizer of G by a1, . . . , aℓ−1. In particular, (a1, . . . , aℓ) and (a1, . . . , aℓ−1, bℓ) lie in
the same orbit under G , and hence (a1, . . . , aℓ−1, bℓ) ∈ S. Finally, since G is 2-transitive
and proj(ℓ,ℓ+1)(R) ̸⊆ {(a, a) | a ∈ A}, we have IB2 ⊆ proj(ℓ,ℓ+1)(R), and hence we can find
b1, . . . , bℓ−1 such that (b1, . . . , bℓ−1, aℓ, bℓ) ∈ R.
Suppose for contradiction that A has bounded strict width. Then by Theorem 1.4.10,

there exist m ≥ 3 and an m-ary f ∈ Pol(A) which is a local near-unanimity function on
{a1 . . . , aℓ, b1, . . . , bℓ}. Since ϕ is an (S,=)-implication, it follows that (b1, . . . , bℓ−1, aℓ) /∈ S
and (a1, . . . , aℓ, aℓ), (a1, . . . , aℓ−1, bℓ, bℓ) ∈ R. Put

t1 :=




a1
. . .
aℓ−1

bℓ
bℓ


 , t2 :=




b1
. . .
bℓ−1

aℓ
bℓ


 , t3 = · · · = tm :=




a1
. . .
aℓ−1

aℓ
aℓ


 .

By the discussion above, ti ∈ R for every i ∈ [m]. Since f preserves R, it follows that
f(t1, . . . , tm) ∈ R, i.e.,


a1 = f(a1, b1, a1, . . . , a1)
. . . . . .
aℓ−1 = f(aℓ−1, bℓ−1, aℓ−1, . . . , aℓ−1)
aℓ = f(bℓ, aℓ, . . . , aℓ)

f(bℓ, bℓ, aℓ, . . . , aℓ)


 ∈ R.

Since (a1, . . . , aℓ) ∈ S and ϕ is an (S,=)-implication, we get f(bℓ, bℓ, aℓ, . . . , aℓ) = aℓ. We
can now proceed by induction to show

aℓ = f(bℓ, aℓ, . . . , aℓ) = f(bℓ, bℓ, aℓ, . . . , aℓ) = · · · = f(bℓ, . . . , bℓ) = bℓ,

which is a contradiction to the choice of aℓ and bℓ.

Lemma 4.3.4. Let k ≥ 3, let G be a k-neoliberal permutation group, and let B be its
canonical k-ary structure. Let A be a first-order expansion of B, let ℓ ∈ {2, . . . , k}, let
S ⊆ IBℓ , and let ϕ be an (S,=)-implication in A with ℓ+ 2 variables. Then A does not have
bounded strict width.

Proof. Enumerate the variables of ϕ by x1, . . . , xℓ+2. Without loss of generality, u =
(x1, . . . , xℓ) and v = (xℓ+1, xℓ+2) are such that ϕ is an (S,u,=,v)-implication in A. The set
ϕA can then be viewed as an (ℓ+ 2)-ary relation R(x1, . . . , xℓ+2). Moreover, we can assume
that for every i ∈ {1, . . . , ℓ}, and every j ∈ {ℓ+ 1, ℓ+ 2}, ϕ does not entail S(u) ⇒ xi = xj

in A; otherwise, the result follows immediately from Lemma 4.3.3.
Using the k-neoliberality of G , we can find a1, . . . , aℓ+1, b1, . . . , bℓ+1, c1, d2, . . . , dℓ ∈ B with

aℓ+1 ̸= bℓ+1 such that all of the following hold:

• (a1, . . . , aℓ) ∈ S,

• (a1, . . . , aℓ, aℓ+1) ∈ IBℓ+1,
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• (a1, . . . , aℓ, aℓ+1, aℓ+1) ∈ R,

• (c1, a2, . . . , aℓ) ∈ S,

• (c1, a2, . . . , aℓ, bℓ+1) ∈ IBℓ+1,

• (c1, a2, . . . , aℓ, bℓ+1, bℓ+1) ∈ R,

• (b1, . . . , bℓ, aℓ+1, bℓ+1) ∈ R,

• (b1, d2, . . . , dℓ) ∈ S.

To find these elements, let first (a1, . . . , aℓ) ∈ S be arbitrary. By our assumption above, ϕ
does not entail S(u) ⇒ xi = xj in A for any i ∈ {1, . . . , ℓ}, j ∈ {ℓ + 1, ℓ + 2}, and hence
there exists aℓ+1 ∈ B such that (a1, . . . , aℓ, aℓ+1) ∈ IBℓ+1 ∩ proj(1,...,ℓ+1)(R). Since ϕ is an
(S,=)-implication, it follows that (a1, . . . , aℓ, aℓ+1, aℓ+1) ∈ R. By the fact that G has no
k-algebraicity, we can find bℓ+1 such that aℓ+1 ̸= bℓ+1 and both these elements lie in the same
orbit under the stabilizer of G by a2, . . . , aℓ. In particular, it follows that (a2, . . . , aℓ, bℓ+1)
and (a2, . . . , aℓ+1) lie in the same orbit under G , and hence there exists c1 ∈ B such
that (c1, a2, . . . , aℓ, bℓ+1) and (a1, . . . , aℓ+1) lie in the same orbit under G . In particular,
(c1, a2, . . . , aℓ) ∈ S and it follows that (c1, a2, . . . , aℓ, bℓ+1, bℓ+1) ∈ R. Since (aℓ+1, bℓ+1) ∈
IB2 ⊆ proj(ℓ+1,ℓ+2)(R), there exist b1, . . . , bℓ ∈ B such that (b1, . . . , bℓ, aℓ+1, bℓ+1) ∈ R. Fi-
nally, since G is 1-transitive, proj(1)(S) = B, and hence there exist d2, . . . , dℓ ∈ B such that
(b1, d2, . . . , dℓ) ∈ S.

Suppose for contradiction that A has bounded strict width. Then by Theorem 1.4.10,
there exist m ≥ 3 and an m-ary f ∈ Pol(A) which is a local near-unanimity function on the
set {a1, . . . , aℓ+1, b1, . . . , bℓ+1, c1, d2, . . . , dℓ}. Put

t1 :=




c1
a2
. . .
aℓ
bℓ+1

bℓ+1



 , t2 :=




b1
b2
. . .
bℓ

aℓ+1

bℓ+1



 , t3 = · · · = tm :=




a1
a2
. . .
aℓ
aℓ+1

aℓ+1



 .

By the discussion above, ti ∈ R for every i ∈ [m]. Since f preserves R, it follows that
t := f(t1, . . . , tm) ∈ R, i.e.,

t =




f(c1, b1, a1, . . . , a1)

a2 = f(a2, b2, a2, . . . , a2)
. . . . . .
aℓ = f(aℓ, bℓ, aℓ, . . . , aℓ)
aℓ+1 = f(bℓ+1, aℓ+1, . . . , aℓ+1)

f(bℓ+1, bℓ+1, aℓ+1 . . . , aℓ+1)



 ∈ R.
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Put

s1 :=




c1
a2
. . .
aℓ


 , s2 :=




b1
d2
. . .
dℓ


 , s3 = · · · = sm :=



a1
a2
. . .
aℓ


 .

By construction, si ∈ S for every i ∈ [m]. Since f ∈ Pol(A) and S is pp-definable from A, f
preserves S and it follows that s := f(s1, . . . , sm) ∈ S, i.e.,

s =




f(c1, b1, a1, . . . , a1)
a2 = f(a2, d2, a2, . . . , a2)
. . . . . .
aℓ = f(aℓ, dℓ, aℓ, . . . , aℓ)


 ∈ S.

Whence, s is precisely the tuple containing the first ℓ entries of t. Since ϕ entails S(u) ⇒
xℓ+1 = xℓ+2 in A, it follows that the last two entries of t are equal, i.e.,

f(bℓ+1, bℓ+1, aℓ+1, . . . , aℓ+1) = f(bℓ+1, aℓ+1, . . . , aℓ+1) = aℓ+1.

We can proceed by induction as follows to show that

aℓ+1 = f(bℓ+1, aℓ+1, . . . , aℓ+1) = · · · = f(bℓ+1, . . . , bℓ+1) = bℓ+1,

which is a contradiction to the choice of aℓ+1 and bℓ+1. Suppose that for some i ≥ 2,
i < m we have already shown aℓ+1 = f(bℓ+1, . . . , bℓ+1, aℓ+1, . . . , aℓ+1) where bℓ+1 appears
exactly i times. We can apply f to the rows of the matrix which has in its first i columns
(c1, a2, . . . , aℓ, bℓ+1, bℓ+1), in the (i+1)-th column (b1, . . . , bℓ, aℓ+1, bℓ+1), and in the remaining
columns (a1, . . . , aℓ+1, aℓ+1). Since all of its columns belong to R, we get as above that
aℓ+1 = f(bℓ+1, . . . , bℓ+1, aℓ+1, . . . , aℓ+1) where bℓ+1 appears i+ 1 times.

The following corollary follows from Lemma 4.3.3 and Lemma 4.3.4.

Corollary 4.3.5. Let k ≥ 3, let A be a first-order expansion of the canonical k-ary structure
B of a k-neoliberal permutation group G , and suppose that A has bounded strict width. Let ϕ
be a pp-formula over the signature of A with variables from a set V such that for all distinct
x, y ∈ V , proj(x,y)(ϕ

A) ̸⊆ {(a, a) | a ∈ A}, and let g ∈ ϕA. Then there exists an injective

h ∈ ϕA with the property that for every r ≥ 1 and for every v ∈ IVr , if g(v) is injective, then
g(v) and h(v) belong to the same orbit under G .

Proof. Let W be the set of all tuples v ∈ IVr with r ≤ k and such that f(v) is injective; we
denote the orbit of f(v) under G by Ov. Note that all these orbits are pp-definable from A
– indeed, for r = k this is the fact that A is a first-order expansion of B, and for r < k this
follows by the r-transitivity of G . Hence, the formula

ψ ≡ ϕ ∧
v∈W

Ov(v)
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is equivalent to a pp-formula over A. Moreover, it does not entail in A any equality among
any two of its variables: otherwise, take a subset W ′ ⊆ W which is maximal with respect
to inclusion with the property that if we replace W by W ′ in the above definition, then
the resulting formula ψ′ does not entail in A any equality among any two of its variables.
Then taking any v ∈ W\W ′, ψ′ entails Ov(v) ⇒ x = y in A for some distinct x, y ∈ V and
by existentially quantifying all variables of ψ′ except for the variables from the set S(v) ∪
{x, y}, we obtain an (Ov,v,=, (x, y))-implication in A, in contradiction with Lemmas 4.3.3
and 4.3.4.
Since G is (k−1)-transitive and k ≥ 3, it is in particular 2-transitive, and hence the relation

IB2 is pp-definable from B and hence also from A. It follows that IBm, wherem is the number of
variables of ψ, is pp-definable from A and hence, so is ψ∧Im. Moreover, ψ∧Im is non-empty
since otherwise, we would obtain an (IB2 ,=)-implication in contradiction with Lemmas 4.3.3
and 4.3.4 as in the previous paragraph with I2(v1, v2) for every v1 ̸= v2 ∈ V in the role of
Ov(v).
Finally, observe that any h ∈ (ψ ∧ Im)

A has the desired property by the k-homogeneity of
G .

4.3.2 Critical relations

In this section, we adapt the notion of a critical relation from [81] to our situation and
prove that no structure which satisfies the assumptions of Corollary 4.1.2 can pp-define such
relation.

Definition 4.3.6. Let k ≥ 2, and let A be a relational structure. Let C,D ⊆ IAk be disjoint
and pp-definable from A, let V be a set of k + 1 variables, and let u,v ∈ IVk be such that
S(u) ∪ S(v) = V and such that u1, v1 /∈ S(u) ∩ S(v). We say that a pp-formula ϕ over the
signature of A with variables from V is critical in A over (C,D,u,v) if all of the following
hold:

• ϕ is a (C,u, C,v)-implication in A,

• D ⊊ proju(ϕ
A) ⊆ IAk ,

• D ⊊ projv(ϕ
A) ⊆ IAk ,

• there exists no D′ ⊆ Ak with D′ ∩D ⊊ D and such that for every f ∈ ϕA, it holds that
f(u) ∈ D implies f(v) ∈ D′.

Lemma 4.3.7. Let k ≥ 3, let G be a k-neoliberal permutation group, and let A be a first-
order expansion of the canonical k-ary structure of G . Suppose that there exists a pp-formula
ϕ which is critical in A over (C,D,u,v) for some k-ary C,D, and some u,v. Then A does
not have bounded strict width.

Proof. First of all, observe that the formula ϕInj := ϕ∧Ik+1 is equivalent to a pp-formula over
A by the 2-transitivity of G and ϕInj is still critical in A over (C,D,u,v) by Corollary 4.3.5.
Indeed, all items of Definition 4.3.6 except for the first one depend only on proju(ϕ

A) and
on projv(ϕ

A) and moreover, these projections are injective. Furthermore, for all distinct
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x, y ∈ V , proj(x,y)(ϕ
A) ̸⊆ {(a, a) | a ∈ A}, and hence Corollary 4.3.5 implies that for every

g ∈ ϕA, there exists h ∈ ϕA
Inj such that g(u) and h(u) belong to the same orbit under G , and

so do g(v) and h(v). It follows that ϕInj satisfies also the first item of Definition 4.3.6.
Let V = {x1, . . . , xk+1} be the set of variables of ϕ. We can assume without loss of

generality that u = (x1, . . . , xk) and S(v) = {x2, . . . , xk+1}. Let v = (xi1 , . . . , xik). In the
rest of the proof, for any k-tuple (t2, . . . , tk+1), we write projv(t2, . . . , tk+1) for the tuple
(ti1 , . . . , tik) by abuse of notation.
Suppose for contradiction that A has bounded strict width – hence, by Theorem 1.4.10,

there exists an oligopotent quasi near-unanimity operation f ∈ Pol(A) of arity ℓ ≥ 2.
Let us define w2, . . . ,wk+1 ∈ Aℓ as follows. Let d2, . . . , dk+1 ∈ A be arbitrary such that
projv(d

2, . . . , dk+1) ∈ D, and let wj be constant with value dj for all j ∈ {2, . . . , k + 1}.
Setting J = [ℓ] in Claim 4.3.8 below, we get that projv(f(w

2), . . . , f(wk+1)) ∈ C. On
the other hand, projv(f(w

2), . . . , f(wk+1)) ∈ D since D is pp-definable from A, and hence
preserved by f , contradicting that C and D are disjoint.

Claim 4.3.8. For every J ⊆ [ℓ], the following holds. Let w2, . . . ,wk+1 ∈ Aℓ be such that
w2, . . . ,wk are constant tuples, and such that projv(w

2
i , . . . , w

k+1
i ) ∈ C for all i ∈ [ℓ]\J and

projv(w
2
i , . . . , w

k+1
i ) ∈ D for all i ∈ J . Then projv(f(w

2), . . . , f(wk+1)) ∈ C.

We will prove the claim by induction on n := |J |. For n = 0 the claim follows by the
assumption that C is pp-definable from A, and hence it is preserved by f .
Let now n > 0, and suppose that Claim 4.3.8 holds for n− 1. The set ϕA

Inj can be viewed
as a (k + 1)-ary relation R(x1, . . . , xk+1). Let m ∈ J be arbitrary, and set J ′ := J\{m}.
Using the k-neoliberality of G , we will find w1 ∈ Aℓ such that all of the following hold:

• (w1
i , . . . , w

k+1
i ) ∈ R for all i ∈ [ℓ]\{m},

• (w1
i , . . . , w

k
i ) ∈ C for all i ∈ [ℓ]\J and (w1

i , . . . , w
k
i ) ∈ D for all i ∈ J ′,

• (w1
m, . . . , w

k
m) ∈ C and w1

m ̸= wk+1
m .

To find w1, let first i ∈ [ℓ]\J . Note that by the definition of a (C,u, C,v)-implication in A,
there exists no C ′ ⊊ C such that for every g ∈ ϕA

Inj, it holds that g(u) ∈ C implies g(v) ∈
C ′. Since projv(w

2
i , . . . , w

k+1
i ) ∈ C, it follows that there exists h ∈ ϕA such that h(v) =

projv(w
2
i , . . . , w

k+1
i ) and h(u) ∈ C. Set w1

i := h(x1). Let now i ∈ J ′. Using the definition of
a critical formula over (C,D,u,v), we can find h ∈ ϕA such that h(v) = projv(w

2
i , . . . , w

k+1
i )

and h(u) ∈ D similarly as above, and set w1
i := h(x1). It remains to find w1

m satisfying the
last item. By the (k − 1)-transitivity of G and the fact that it has no k-algebraicity, we can
extend any tuple (a2, . . . , ak) ∈ IAk−1 to injective tuples (a1, . . . , ak), (b1, a2, . . . , ak) ∈ O with
a1 ̸= b1, for an arbitrary injective orbit O of k-tuples under G . Applying this fact to the
tuple (w2

m, . . . , w
k
m), we get w1

m such that (w1
m, . . . , w

k
m) ∈ C and w1

m ̸= wk+1
m as desired.

Note that w1, . . . ,wk satisfy the assumptions of Claim 4.3.8 for J ′ in the role of J up
to permuting the order of the tuples. Indeed, w2, . . . ,wk are constant, and it holds that
(w1

i , w
2
i , . . . , w

k
i ) ∈ C for all i ∈ [ℓ]\J ′ and (w1

i , w
2
i , . . . , w

k
i ) ∈ D for all i ∈ J ′. Since

|J ′| = n− 1, the induction hypothesis yields that (f(w1), . . . , f(wk)) ∈ C.
Since (w1

m, w
k+1
m ) ∈ IA2 = proj(1,k+1)(R), there exist a2, . . . , ak ∈ A such that

(w1
m, a

2, . . . , ak, wk+1
m ) ∈ R.

90



For all j ∈ {2, . . . , k}, let qj be the tuple obtained by replacing the m-th coordinate of wj

by aj. It follows that (w1
i , q

2
i , . . . , q

k
i , w

k+1
i ) ∈ R for all i ∈ [ℓ], and since R is preserved by f ,

it holds that (f(w1), f(q2), . . . , f(qk), f(wk+1)) ∈ R.

Since wi is constant, and since f is a quasi near-unanimity operation, we have f(wj) =
f(qj) for all j ∈ {2, . . . , k}. This implies that (f(w1), f(q2), . . . , f(qk)) ∈ C. Since
ϕ entails C(u) ⇒ C(v) in A, we get projv(f(q

2), . . . , f(qk), f(wk+1)) ∈ C, and hence
projv(f(w

2), . . . , f(wk+1)) ∈ C.

4.3.3 Composition of implications

In this section, we introduce the notion of composition of implications which will play an
important role in the rest of Section 4.3.

Definition 4.3.9. Let A be a relational structure, let k ≥ 1, let C,D,E ⊆ Ak be non-empty,
let ϕ1 be a (C,u1, D,v1)-implication in A, and let ϕ2 be a (D,u2, E,v2)-implication in A.
Let us rename the variables of ϕ2 so that v1 = u2 and so that ϕ1 and ϕ2 do not share any
other variables. We define ϕ1 ◦ ϕ2 to be the pp-formula arising from the formula ϕ1 ∧ ϕ2 by
existentially quantifying all variables that are not contained in S(u1) ∪ S(v2).

Let ψ be a (C,u, C,v)-implication. For n ≥ 2, we write ψ◦n for the pp-formula ψ ◦ · · · ◦ψ
where ψ appears exactly n times.

Lemma 4.3.10. Let k ≥ 3, let A be a first-order expansion of the canonical k-ary structure
of a permutation group G . Let ϕ1, ϕ2 be as in Definition 4.3.9, and suppose that projv1(ϕ1) =
proju2(ϕ2). Then ϕ := ϕ1◦ϕ2 is a (C,u1, E,v2)-pre-implication in A. Moreover, for all orbits
O1 ⊆ proju1(ϕA

1 ), O3 ⊆ projv2(ϕA
2 ) under G , ϕA contains an O1O3-mapping if, and only if,

there exists an orbit O2 under G such that ϕA
1 contains an O1O2-mapping and ϕA

2 contains
an O2O3-mapping.

Suppose moreover that G is k-neoliberal, that A has bounded strict width and that ϕ1 and
ϕ2 are injective implications. Then ϕ is a (C,u1, E,v2)-implication in A. Restricting ϕA to
injective mappings, one moreover obtains an injective (C,u1, E,v2)-implication, which for
all injective orbits O1 ⊆ C,O3 ⊆ E under G contains an O1O3-mapping if, and only if, ϕA

contains such mapping.

Proof. Let us assume as in Definition 4.3.9 that v1 = u2 and that ϕ1, ϕ2 do not share
any further variables. Let V1 be the set of variables of ϕ1, let V2 be the set of variables
of ϕ2, and let V be the set of variables of ϕ. We will first prove the last sentence of the
first part of Lemma 4.3.10 about O1O3-mappings. To this end, let O1 ⊆ proju1(ϕA

1 ), O2 ⊆
projv1(ϕA

1 ), O3 ⊆ projv2(ϕA
2 ) be orbits under G , and suppose that ϕA

1 contains an O1O2-
mapping f and ϕA

2 contains an O2O3-mapping g. Using that f |V1∩V2 is contained in the same
orbit under G as g|V1∩V2 , find a mapping h : V1 ∪ V2 → A such that h|V1 is contained in
the same orbit under G as f and h|V2 is contained in the same orbit as g. It follows that
h ∈ (ϕ1 ∧ ϕ2)

A, and hence h|V ∈ ϕA is an O1O3 mapping. On the other hand, if ϕA contains
an O1O3-mapping h′, we can extend it to a mapping h ∈ (ϕ1∧ϕ2)

A such that f := h|V1 ∈ ϕA
1

and g := h|V2 ∈ ϕA
2 by the definition of ϕ. Setting O2 to be the orbit of h(v1), we get that

f ∈ ϕA
1 is an O1O2-mapping and g ∈ ϕA

2 is an O2O3-mapping as desired.
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Observe now that the fact that ϕ is a (C,u1, E,v2)-pre-implication in A follows from
the previous paragraph. Indeed, it follows immediately that ϕ satisfies items (4) and (5)
of Definition 4.2.4. To see that items (2) and (3) are satisfied as well, take any g ∈ ϕA

2

with g(v2) /∈ E, let O2 be the orbit of g(u2) under G , and let O3 be the orbit of g(v2).
Since projv1(ϕ1) = proju2(ϕ2), we can find an O1O2-mapping in ϕA

1 , and ϕA contains an
O1O3-mapping witnessing that C ⊊ proju1(ϕA), C ⊊ projv2(ϕA).
To prove the second part of the lemma, we will prove that for all orbits O1 ⊆ C,O2 ⊆

D,O3 ⊆ E under G such that ϕA
1 contains an O1O2-mapping f and ϕA

2 contains an O2O3-
mapping g, ϕA contains an injective O1O3-mapping h. Note that as in the previous para-
graph, it is enough to find an injective mapping h ∈ (ϕ1∧ϕ2)

A such that h|V1 is contained in
the same orbit under G as f and h|V2 is contained in the same orbit as g. Let U1 be the set
of all injective tuples of variables from V1 of length at most k, and for every v ∈ U1, let us
denote the orbit of f(v) by Of

v. Similarly, let U2 be the set of all injective tuples of variables
from V2 of length at most k, and for every tuple v ∈ U2, let O

g
v be the orbit of g(v). Let us

define a formula ψ with variables from V1 ∪ V2 by

ψ ≡
v∈U1

Of
v(v) ∧

v∈U2

Og
v(v).

Note that since A is a first-order expansion of the canonical k-ary structure of G , all orbits
Of

v, O
g
v are pp-definable from A, and hence ψ is equivalent to a pp-formula over A. Since

G is k-neoliberal, and since A has bounded strict width, we can proceed as in the proof
of Corollary 4.3.5 and use Lemmas 4.3.3 and 4.3.4 to show that ψA contains an injective
mapping h. By the construction and by the k-homogeneity of G , this mapping satisfies our
assumptions.

The following observation states a few properties of implications and their compositions
which will be used later.

Observation 4.3.11. Let A be a relational structure, let k ≥ 2, let C ⊆ Ak, let ϕ1 be
a (C,u1, C,v1)-implication in A, let ϕ2 be a (C,u2, C,v2)-implication in A. Let p1 be the
number of variables of ϕ1, let p2 be the number of variables of ϕ2, and let ℓ be the number of
variables of ϕ := ϕ1 ◦ ϕ2. Then both of the following hold.

1. ℓ ≥ max(p1, p2).

2. ℓ = p1 = p2 if, and only if, S(u1) ∩ S(v2) = S(u1) ∩ S(v1) = S(u1) ∩ S(u2) ∩ S(v2).

3. Suppose that ϕ1 = ϕ2 and ℓ = p1. Then for every i ∈ [k], it holds that if v1i is contained
in the intersection in (2), then so is u1

i .

Proof. Let us rename the variables of ϕ2 as in Definition 4.3.9 so that v1 = u2, and ϕ1 and
ϕ2 do not share any further variables.
For (1), observe that the number of variables of a (C,u, C,v)-implication is equal to

2k−| S(u)∩S(v)|. Hence, for ϕ we get that ℓ = 2k−| S(u1)∩S(v2)|, and since S(u1)∩S(v2)
is contained both in S(u1) ∩ S(v1) and in S(u2) ∩ S(v2), (1) follows by applying the same
reasoning to p1 and p2.
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For (2), observe that by the previous paragraph, ℓ = p1 if, and only if, S(u1) ∩ S(v2) =
S(u1)∩S(v1). Similarly, ℓ = p2 if, and only if, S(u1)∩S(v2) = S(u2)∩S(v2), and (2) follows
by the fact that v1 = u2.
For (3), suppose that v1i ∈ S(u1). It follows by (2) that v1i = u2

i ∈ S(v2), and since ϕ1 = ϕ2

and u2 was obtained by renaming v1, it follows that u1
i ∈ S(v1).

4.3.4 Digraphs of implications

In this section, we reformulate the notion of digraph of implications from [81] and prove a
few auxiliary statements about these digraphs.

Definition 4.3.12. Let k ≥ 3, let A be a first-order expansion of the canonical k-ary struc-
ture of a k-neoliberal permutation group G . Let ∅ ̸= C ⊆ Ak, and let ϕ be (C,u, C,v)-
implication in A such that proju(ϕ

A) = projv(ϕ
A) =: E. Let Vert(E) be the set of all orbits

under G contained in E. Let Bϕ ⊆ Vert(E) ×Vert(E) be the directed graph such that Bϕ

contains an arc (O,P ) ∈ Vert(E)×Vert(E) if ϕA contains an OP -mapping.
We say that S ⊆ Vert(E) is a strongly connected component if it is a maximal set with

respect to inclusion such that for all (not necessary distinct) vertices O,P ∈ S, there exists
a path in Bϕ connecting O and P . We say that S is a sink in Bϕ if every arc originating in
S ends in S; S is a source in Bϕ if every arc finishing in S originates in S.

Note that the digraph Bϕ can be defined also for relational structures which do not satisfy
the assumptions on A from Definition 4.3.12; however, these assumptions are needed in the
proof of Lemma 4.3.15 so we chose to include them already in Definition 4.3.12. Note also
that Bϕ can contain vertices which are not contained in any strongly connected component.

Observation 4.3.13. Let ϕ be as in Definition 4.3.12. Then there exist strongly connected
components S1 ⊆ Vert(C), S2 ⊆ Vert(E\C) in Bϕ such that S1 is a sink in Bϕ, and S2 is a
source in Bϕ. Moreover, since proju(ϕ

A) = projv(ϕ
A) = E, any vertex O ∈ Vert(E) has an

outgoing and an incoming arc, i.e., the digraph Bϕ is smooth.

Proof. The second part of the lemma is immediate. To prove the first part, observe that
since ϕ is a (C,C)-implication in A, it follows that Vert(C) is a sink in Bϕ. Using the
oligomorphicity of G and the definition of a (C,C)-implication, we get that the induced
subgraph of Bϕ on Vert(C) is finite and smooth. Hence, there exists a strongly connected
component S1 ⊆ Vert(C) in Bϕ which is a sink in the induced subgraph, and hence also
in Bϕ. Similarly, one sees that Vert(E\C) is a source in Bϕ, and it contains a strongly
connected component S2 which is itself a source in Bϕ.

Let ϕ be as in Definition 4.3.12, and set Iϕ := {i ∈ [k] | ui ∈ S(v)}. If the number of
variables of ϕ is equal to the number of variables of ϕ◦ϕ, then item (3) in Observation 4.3.11
yields that Iϕ = {i ∈ [k] | vi ∈ S(u)}.
Definition 4.3.14. Let ϕ be as in Definition 4.3.12. We say that ϕ is complete if the
number of variables of ϕ◦ϕ is equal to the number of variables of ϕ, ui = vi for every i ∈ Iϕ,
and each strongly connected component of Bϕ contains all possible arcs including loops.

The following is a modification of Lemma 36 in [81]:
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Lemma 4.3.15. Let ϕ be as in Definition 4.3.12. Then there exists a complete injective
(C,C)-implication in A.

Proof. We will construct the desired complete implication as a conjunction of a power of ϕ
and Iℓ, where ℓ is the number of variables of the power of ϕ. Note that for every n ≥ 1, the
number of variables of ϕ◦n is at most 2k by Definition 4.3.9 and this number never decreases
with increasing n by item (1) in Observation 4.3.11. Hence, there is n ≥ 1 such that the
number of variables of ϕ◦n is the biggest among all choices of n. Let us denote the number of
variables of ϕ◦n by ℓ; it follows that the number of variables of (ϕ◦n)◦m is equal to ℓ for every
m ≥ 1. Let us replace ϕ by ϕ◦n. It follows from Lemma 4.3.10 that for every m ≥ 1, ϕ◦m∧ Iℓ
is an injective (C,C)-implication. Now, it follows by item (3) in Observation 4.3.11 that
there exists a unique bijection σ : Iϕ → Iϕ such that ui = vσ(i) for every i ∈ Iϕ. Replacing ϕ
with a power of ϕ again, we can assume that σ is the identity.
Now, we can find m ≥ 1 such that the number of strongly connected components of ϕ◦m is

maximal among all possible choices ofm. It follows that composing ϕ◦m with itself arbitrarily
many times does not disconnect any vertices from Vert(C) which are contained in the same
strongly connected component of Bϕ◦m ; we replace ϕ by ϕ◦m. Taking another power of ϕ and
replacing ϕ again, we can assume that every strongly connected component of Bϕ contains
all loops. Now, setting p to be the number of vertices of Bϕ, we have that, replacing ϕ with
ϕ◦p, every strongly connected component of Bϕ contains all arcs, whence ϕ∧ Iℓ is a complete
injective (C,C)-implication.

4.3.5 Proof of the main result

Theorem 4.1.1. Let k ≥ 3, let B be the canonical k-ary structure of a k-neoliberal permu-
tation group G , and suppose that B has finite duality. Then any first-order expansion of B
with bounded strict width is implicationally simple on injective instances.

Proof. Let A be a first-order expansion of B with bounded strict width. Striving for contra-
diction, suppose that A is implicationally hard on injective instances. Then the injective im-
plication graph GInj

A contains a directed cycle (D1, C1), . . . , (Dn−1, Cn−1), (Dn, Cn) = (D1, C1).
This means that for all i ∈ [n − 1], there exists an injective (Ci,u

i, Ci+1,u
i+1)-implication

ϕi in A with projui(ϕA
i ) = Di, and projui+1(ϕA

i ) = Di+1.
Let us define ϕ := ((ϕ1◦ϕ2)◦. . .◦ϕn−1). Restricting ϕ

A to injective mappings, we obtain an
injective (C1,u

1, C1,u
n)-implication by Lemma 4.3.10. Lemma 4.3.15 asserts us that there

exists a complete injective (C1, C1)-implication ψ in A.
Observation 4.3.13 yields that there exist C ⊆ C1, and D ⊆ D1\C1 such that Vert(C) is

a strongly connected component which is a sink in Bψ, and Vert(D) is a strongly connected
component which is a source in Bψ. Observe that since A is a first-order expansion of B and
since ψ is complete, C is pp-definable from A. Indeed, for any fixed orbit O ⊆ C under G ,
C is equal to the set of all orbits P ⊆ C1 such that ψA contains an OP -mapping. We can
observe in a similar way that D is pp-definable from A as well. Moreover, ψ is easily seen
to be a complete (C,C)-implication in A.
Since B has finite duality, there exists a number d ≥ 3 such that for every finite structure

X in the signature of B, it holds that if every substructure of X of size at most d − 2 maps
homomorphically to B, then so does X. Set ρ := ψ◦d. Let V be the set of variables of ρ. It

94



follows from Lemma 4.3.10 that ρ is a (C,u, C,v)-implication in A for some u,v. We are
going to prove the following claim using the finite duality of B and by the completeness of
ψ.

Claim 4.3.16. Every f ∈ AV with f(u) ∈ C and f(v) ∈ C is an element of ρA. The same
holds for any f ∈ AV with f(u) ∈ D and f(v) ∈ D.

To prove Claim 4.3.16, let f ∈ AV be as in the statement of the claim. Up to renaming
variables, we can assume that ψ is a (C,u, C,v)-implication. Completeness of ψ implies
that Iψ = {i ∈ [k] | ui ∈ S(v)} = {i ∈ [k] | vi ∈ S(u)}, and that ui = vi for every
i ∈ Iψ. Let w0, . . . ,wd be k-tuples of variables such that wj

i = ui = vi for all i ∈ Iψ and
all j ∈ {0, . . . , d}, and disjoint otherwise. We can moreover assume that w0 = u, wd = v.
For every j ∈ {0, . . . , d − 1}, let ψj+1 be the (C,wj, C,wj+1)-implication obtained from
ψ by renaming wj by v1, and wj+1 by v2. It follows that ρ is equivalent to the formula
obtained from ψ1 ∧ · · · ∧ ψd by existentially quantifying all variables that are not contained
in S(u) ∪ S(v). In order to proof Claim 4.3.16, it is therefore enough to show that f can be
extended to a mapping h ∈ (ψ1 ∧ · · · ∧ ψd)

A.

Now, for all p, q ∈ [k], we identify the variables w0
q = uq and wd

p = vp if f(vp) = f(uq).
Observe that f |S(u)∩S(v) is injective since f(u) ∈ C ⊆ IAk , and hence this identification does
not force any variables from S(u)∩S(v) to be equal. Moreover, since d ≥ 2, this identification
does not identify any variables from the tupleswd−1 andwd. Let us define f0 := f |S(w0)∪S(wd).
It is enough to show that f0 can be extended to a mapping h ∈ (ψ1 ∧ · · · ∧ ψd)

A.

Let O be the orbit of f(u) under G , and let P be the orbit of f(v). Let f1 ∈ ψA
1 be

an injective OP -mapping, and for every j ∈ {2, . . . , d}, let fj ∈ ψA
j be an injective PP -

mapping. Note that such fj exists for every j ∈ [d] since ψj is complete and since Vert(C)
and Vert(D) are strongly connected components in Bψj

.

Let τ be the signature of B. Let X := S(w0)∪ · · · ∪ S(wd), and let us define a τ -structure
X on X as follows. Recall that the relations from τ correspond to the orbits of injective
k-tuples under G . For every relation O ∈ τ , we define OX to be the set of all tuples w ∈ IXk
such that there exists j ∈ {0, . . . , d} such that S(w) ⊆ S(wj) ∪ S(wj+1) and fj(w) ∈ O;
here and in the following, the addition + on indices is understood modulo d + 1. We will
show that X has a homomorphism h to B. If this is the case, it follows by the construction
and by the k-homogeneity of G that h ∈ (ψ1 ∧ · · · ∧ ψd)

A. Moreover, we can assume that
h|S(w0)∪S(wd) = f0 as desired.

Let now Y ⊆ X be of size at most d − 2. Then for cardinality reasons there exists
j ∈ {1, . . . , d − 1} such that Y ⊆ S(w0) ∪ · · · ∪ S(wj−1) ∪ S(wj+1) ∪ · · · ∪ S(wd). Observe
that fj+1 is a homomorphism from the induced substructure of X on S(wj+1) ∪ S(wj+2)
to A. Since the orbits of fj+1(w

j+2) and fj+2(w
j+2) agree by definition, by composing

fj+2 with an element of G we can assume that fj+1(w
j+2) = fj+2(w

j+2). We can proceed
inductively and extend fj+1 to S(w0) ∪ · · · ∪ S(wj−1) ∪ S(wj+1) ∪ · · · ∪ S(wd) such that it is
a homomorphism from the induced substructure of X on this set to A. It follows that the
substructure of X induced on Y maps homomorphically to A. Finite duality of B yields that
X has a homomorphism to A as desired and Claim 4.3.16 follows.

Assume without loss of generality that 1 /∈ Iρ, and identify ui with vi for every i ̸= 1.
Note that this is possible by item (3) in Observation 4.3.11, and since ρ is easily seen to be
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complete. SetW := S(u)∪S(v), and let ρ′ be the formula arising from ρ by this identification.
We will argue that ρ′ is critical in A over (C,D,u,v). To this end, let us first show that ρ′ is
a (C,u, C,v)-implication in A. Observe that for every orbit O ⊆ C under G , (ρ′)A contains
an injective OO-mapping. Indeed, there exists an injective g ∈ AW such that g(u) ∈ O and
g(v) ∈ O; this easily follows by the (k − 1)-transitivity of G and by the fact that it has no
k-algebraicity. Forgetting the identification of variables, we can understand g as an element
of AV , and Claim 4.3.16 yields that g ∈ ρA, whence g ∈ (ρ′)A. Now, it immediately follows
that ρ′ satisfies the items (1)-(3) and (5) from Definition 4.2.4. Moreover, the satisfaction of
item (4) follows immediately from the fact that ρ is a (C,u, C,v)-implication in A.
It remains to verify the last three items of Definition 4.3.6. Observe similarly as above

that for any orbit O ⊆ D under G , (ρ′)A contains an OO-mapping, which immediately yields
that D is contained both in proju((ρ

′)A) and in projv((ρ
′)A), it also yields that there exists no

D′ ⊆ Ak with D′ ∩D ⊊ D and such that for every f ∈ (ρ′)A, it holds that f(u) ∈ D implies
f(v) ∈ D′. Hence, ρ′ is indeed critical in A over (C,D,u,v), contradicting Lemma 4.3.7.

Corollary 4.1.2. Let k ≥ 3, let B be the canonical k-ary structure of a k-neoliberal permu-
tation group G , and suppose that B has finite duality. Then any first-order expansion of B
with bounded strict width has relational width (k,max(k + 1, bB)).

Proof. Let A be a first-order expansion of B with bounded strict width. By Proposi-
tion 4.2.3, it is enough to prove that CSPInj(A) has relational width (k,max(k + 1, bB)).
Theorem 4.1.1 yields that A is implicationally simple on injective instances and the result
follows from Proposition 4.2.8.

96



Bibliography

[1] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite
model theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society,
2017. doi:10.1109/LICS.2017.8005129.

[2] Reza Akhtar and Alistair H. Lachlan. On countable homogeneous 3-hypergraphs.
Archive for Mathematical Logic, 34:331–344, 1995. doi:10.1007/BF01387512.

[3] Albert Atserias, Andrei A. Bulatov, and Vı́ctor Dalmau. On the power of k -consistency.
In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Au-
tomata, Languages and Programming, 34th International Colloquium, ICALP 2007,
Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Com-
puter Science, pages 279–290. Springer, 2007. doi:10.1007/978-3-540-73420-8\_26.

[4] Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations
and counting infinitary logic. Theor. Comput. Sci., 410(18):1666–1683, 2009. doi:

10.1016/j.tcs.2008.12.049.

[5] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 684–697. ACM, 2016. doi:10.1145/2897518.2897542.

[6] Libor Barto. The collapse of the bounded width hierarchy. J. Log. Comput., 26(3):923–
943, 2016. doi:10.1093/logcom/exu070.

[7] Libor Barto, Michael Kompatscher, Miroslav Oľsák, Trung Van Pham, and Michael
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algorithm for infinite-domain CSPs. arXiv.2301.12977, 2023. arXiv:2301.12977, doi:
10.48550/arXiv.2301.12977.
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