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Kurzfassung

Kombinatorisches Testen (KT) ist eine modellbasierte Testmethodik, die Garantien für
die Abdeckung des Eingaberaums bietet. Sie ist äußerst effizient bei der Suche nach
Interaktionsfehlern und stellt unter bestimmten Annahmen sicher, dass alle durch eine
Kombination von Parametern verursachten Fehler gefunden werden können. Trotz der
vielen Vorteile hat sich das kombinatorische Testen noch nicht im Mainstream der
Softwareentwicklung etabliert. Der aktuelle Prozess zur Erstellung des Eingabemodells ist
komplex und teuer, was zu einer Trennung zwischen Eingabemodell/Testfällen und dem
Ziel-Software-System führt und letztendlich zu einem unnatürlichen Änderungsprozess
im späteren Verlauf des Entwicklungslebenszyklus führt. Diese Arbeit zielt darauf ab,
dieses Problem zu lösen, indem sie ein Proof of Concept (PoC) bereitstellt, das es
Entwicklern ermöglicht, ein Eingabeparametermodell innerhalb ihrer eigenen Codebasis
zu definieren. Neben der Vereinfachung des Einrichtungsprozesses, indem sie es dem
Entwickler ermöglicht, in einer vertrauten Umgebung zu bleiben, automatisiert der PoC
auch Schritte, um den Entwickler bei der Erstellung schneller und effizienter KT-Tests
zu unterstützen. Die Verbindung zwischen Quellcode und Eingabeparametermodell stellt
auch sicher, dass der Änderungsprozess später natürlicher verläuft. Eine Bewertung
gegenüber einem externen System zeigt, dass dieser PoC trotz einiger Einschränkungen
in der Lage ist, sinnvolle Eingabeparametermodelle und kombinatorische Testfälle sowie
einfache Orakel für jeden Test zu definieren. Es handelt sich um die erste Arbeit, die
darauf abzielt, Quellcode und Definitionen des Eingabeparametermodells zu kombinieren,
um den initialen Einrichtungsprozess sowie den Änderungsprozess des kombinatorischen
Testens zu verbessern.
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Abstract

Combinatorial Testing (CT) is a model-based testing methodology that offers guarantees
about the input space coverage. It is extremely efficient in finding interaction faults, and
under certain assumptions, ensures that all faults caused by a combination of parameters
can be found. Despite the many upsides, combinatorial testing has yet to make an
emergence in mainstream software development. The current input model creation
process is complex and expensive, which leads to a disconnect between input model/test
cases and the targeted software system, and ultimately to an unnatural change process
later down the development lifecycle. This work aims to solve this issue by providing
a proof of concept (PoC) which allows developers to define an input parameter model
inside their own code base. Besides easing the setup process by enabling the developer to
stay inside a known environment, the PoC also automates steps to further support the
developer in creating fast and efficient CT tests. The connection between source code and
input parameter model also ensures that the change process later on is more natural. An
evaluation against an external system shows that, beside some limitations, this library
is fully capable of defining meaningful input parameter models and combinatorial test
cases, as well as simple oracles for each test. It is the first work that aims to combine
source code and input parameter model definitions to enhance the initial setup process
as well as the change process of combinatorial testing.
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CHAPTER 1
Introduction

Testing is an integral part of a modern software development lifecycle (SDLC), since it
ensures a piece of software exhibits correct behavior in multiple scenarios. Typically,
some sort of input is defined, commonly called a test case, which is then sent to a system
to either ensure the implementation conforms to a specification (called conformance
testing) or to identify potential vulnerabilities (called security testing) [GLL+21].

There exists a multitude of different testing approaches, each with their own unique set of
upsides and downsides, which are often tied to various amounts of effort required. Most
of the time effort is tied to exploration of input space, which results in varying capabilities
of identifying faults or vulnerabilities. One example would be unit testing[AO16], which
is very popular among developers since it consumes little time to create, but it also
typically only explores a tiny fraction of the input space.

An example which explores more of the input space would be fuzz testing[AO16] where
some valid input is chosen as a starting point and then iteratively mutated and submitted
as a test case. Since mutation has a high risk of creating invalid inputs, fuzz testing is
very popular in the field of security testing, but the input space coverage is probabilistic,
which means there is no guarantee that even trivial faults will be discovered with this
testing method.

Our last example which is also the focus of this work is model-based testing, in particular
combinatorial testing (CT) (more information in Section 2.1). Although it has the
biggest time commitment of the three examples, it also offers guarantees about the input
space coverage. In CT, the tester chooses a strength t and under certain assumptions it
guarantees that all faults which can be triggered by a combination of t parameters or
less will be found.

While CT has found its place in some specific areas (e.g. aerospace) it has yet to make
an emergence in the mainstream world of software development. One of the biggest
downsides of CT is the disconnect of the input model/test cases and the targeted software
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1. Introduction

system. While unit tests only explore a small fraction of the input space, they are directly
connected to the source code of a software system, resulting in an easy creation phase
and a natural progression when changes occur inside the system. In CT due to the
disconnect there is a lot of initial effort in creating an input parameter model (IPM),
which is then used to generate test cases which then need to be translated and integrated
in the targeted software system. Additionally, changes in source code do not naturally
lead to changes in the IPM, often resulting in a disconnect between the IPM and the
actual system.

To prevent the disconnect between software systems and IPM, this work introduces
methods to define IPMs and CT tests via annotations, declare methods under test and
define/provide simple oracle functions. This enables the developer to stay inside his
own code base and also eases the initial setup process since he is confronted with known
concepts (annotations). Due to the existence of a connection, it is also more natural to
change the IPM when source code changes occur. All these methods are encapsulated in
a library that also automates some steps such as generating the test set and translating it
to a usable data structure and generating executable tests and automatically calling and
evaluating the oracle function. Lastly, the library offers an easy approach to integrate
it into an existing Continuous Integration/Continuous Deployment (CI/CD) process.
Generation and/or testing steps can be executed during a pipeline, which enables the
developer to continuously use CT tests during development and deployment. Additionally,
this work strives to answer the following research questions:

1. How can Kotlin annotations be used to specify an input parameter model (IPM)
for combinatorial testing? These annotations must be capable of defining the
available parameters, their domains (value types and ranges), and constraints
between parameters. (answered in Section 4.2)

2. How can combinatorial test suites be generated from existing Kotlin sources with
annotations and executed in the context of continuous integration? (answered in
Section 4.6)

3. What methods exist to define Systems under Test (SUTs) for combinatorial testing
in Kotlin, both in the context of native objects (classes and methods) and web
interfaces? (answered in Section 3)

4. What requirements exist for functions to be used as simple oracles and how can such
oracles be used in a combinatorial testing cycle based on source code annotations?
(answered in Section 4.2)

Thus, this work follows the following structure. First Chapter 2 gives an overview and
common understanding of combinatorial testing and annotation processors. Afterwards
Chapter 3 explores papers tackling similar problems and their solutions. Next Chapter 4
explains the resulting library including challenges, solutions and limitations. Additionally,
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Chapter 5 explores some of the topics of the previous chapter more in depth on the
technical side. Before drawing a conclusion in Chapter 7, the evaluation of the library
against an external system is done in Chapter 6.
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CHAPTER 2
Preliminaries

This chapter provides a basic understanding of the two core topics of this thesis, namely
combinatorial testing and annotation processors. Section 2.1 formally defines CT, explains
the general testing workflow, input models and test set generation and lastly talks about
limitations of CT. Section 2.2 first gives an introduction to annotations, explaining
motivation, use cases, limitations and afterwards gives an overview over annotation
processors.

2.1 Combinatorial Testing

To properly introduce CT, we first need to explain some basic definitions.
A step many testing processes share is submitting test cases to the system under test
(SUT) [AO16, KBD+15]. SUT can be defined as "a complete system that comprises
hardware, software, and connectivity components"[Raa], which is targeted for testing
purposes. In the specific case of CT the SUT has a variable amount of inputs callled
parameters. Each parameter has a list of potential values it can assume. Both parameters
and potential values are described in an input parameter model.

One test case describes the input to the SUT, by assigning each parameter to a specific
value. In practice there is often a translation process which transforms the given abstract
values of a test case to a concrete file, protocol message or other unit for data transmission,
but for simplicity this is not taken into account for the definition. One invocation of the
testing process contains a set of test cases, which is called a test set.
One of the defining properties of CT described later on is a claim regarding the portion
of the SUT’s input space that is covered by the test set. The input space is the totality
of all possible inputs which can be submitted to the SUT, defined by the input parameter
model. As a consequence this also describes all valid test cases for the given SUT.
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2. Preliminaries

When a test case is submitted, an oracle decides if the SUT behaved correctly. The
definition for correct behavior is very diverse, since it depends on the SUT and its
available outputs as well as the overall goal of the testing process. The goal of traditional
CT is to detect faults, especially interaction faults. Faults are instances where either
the output or behavior of the SUT deviates from predefined rules. An example would
be a system which concatenates two texts. Such a system should never output a text
which is shorter than the sum of both input texts or should not crash when big texts are
submitted.

On the other hand the goal of security-focused Combinatorial Security Testing (CST)
[GLL+21] is to identify vulnerabilities. In this variant the input model is not necessarily
based on values accepted by the SUT, but rather on control characters, known token
values, or other crafted input designed to modify the way input is processed by the SUT.
In the case of language theoretic security [SPBL13], the input model is constructed with
the aim of causing weird system behavior which results in an observable effect in the
SUT. A big difference between traditional CT and security-focused CST is that there
needs to be a deep understanding of how the input will be translated inside the SUT.
While both types rely on completeness of the IPM to properly test a system, CST has to
also take into account various properties of the underlying SUT such as protocols or file
formats to be effective in exploiting a system.

2.1.1 Formal Definition
Since there is now a common knowledge base, it is possible to move on to a more precise
definition of CT.
Combinatorial testing is a model-based testing methodology, which takes a model that
describes the input space of a SUT as its input and generates a test set which has
guaranteed mathematical input space coverage [KBD+15]. The notion of coverage is
based on parameter-value combinations. Assume there exists a SUT which accepts inputs
made up of k > 1 parameters and each parameter with an index i can take values in
the range of {1, ..., vi}. Observing a selection of parameters together (e.g. indices 2,4,5),
we can derive that there are v2 ∗ v4 ∗ v5 different parameter-value combinations which
can be assigned to the three parameters as part of a test case. Generally speaking if
we select t different parameters in a set S = {p1, ..., pt}, where each pi is the index of a
parameter, we can derive that there are �

i�S vi different parameter-value combinations.
This combination (p1, V[1m), ..., (pt, Vtm), where Vi is the set of values which can be
assumed by parameter i and m is an index for a parameter value which does not have to
be identical for each pi, is called a t-tuple.

The supporting mathematical structure behind practical combinatorial testing is a multi-
level covering array(MCA) MCA(N ; t, k, {vi, ..., vk}). This defines an array with N rows,
where each row represents a single test case, and k columns, where each represents one
parameter. The defining property of a MCA is that for every possible selection of t
distinct parameters, all possible parameter-value combinations occur at least once in the
array. Naturally choosing a larger t leads to a larger array, since more parameter-value
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2.1. Combinatorial Testing

combinations need to be covered, but also results in better fault detection capabilities
since more of the input space is covered. The chosen t is called the strength of a covering
array (CA).
To briefly explain the difference between CA and MCA, formally CA is defined as
CA(N ; t, k, v) which can also be described as a MCA with uniform alphabet, meaning
vi = ... = vk. In practical combinatorial testing this is almost never the case, as such for
brevity there is no distinction between these objects in this work, except where explicitly
noted. Both variants are called CA.

The above definition leaves the question why there is a need to define the strength of a
MCA and not simply setting t = k to always guarantee full exhaustive coverage of the
input space. The test set would cover all parameter-value combinations and as long as
the input model and oracle are correct it would guarantee to identify all faults of the
SUT. These upsides are negated by the sheer amount of test cases this would produce,
which is infeasible to execute in practice. To give an example we assume a SUT with 10
parameters, where each parameter can take 10 different values. We know that there are�k

i=1 vi test cases in such a set, or vk in the case of an uniform alphabet. This results
in an exhaustive test set containing 1010 = 10, 000, 000, 000 tests, which is a staggering
amount in almost all practical settings. If we assume a test rate of 1000 tests per second,
one run of the test set would take 115 days. Comparing this run time to a test set with
strength t = 6, this would lead to a test set containing 1, 494, 326 tests[Col08], which is a
99.985% reduction and assuming the same test rate results in a run time of less than 25
minutes.

An immediate question arising is how much worse this test set performs in terms of fault
detection. Intuitively drastically reducing the size of the test set should also worsen
the detection capability by a fair amount. NIST conducted multiple studies regarding
known bugs across different industries, in which they were unable to find interaction
faults consisting of more than 6 parameters [KLK08]. Some industries had no interaction
fault with more than 4 parameters. This suggests that for practical applications the
strength can be rather low (e.g. 4-6) to identify nearly all if not all bugs.

It should be noted that this differs in security testing. The input model in CST is typically
modeled through an exploit grammar [SZL19], which is used to describe the structure
of inputs, which are capable of triggering certain vulnerabilities. The strength in CST
increases the proportion of the language described by the grammar that is submitted to
the SUT. In contrast to CT, results suggest that higher strength in CST leads to better
results and capabilities[SZL19, LGS21, GLL+21].

2.1.2 Testing Workflow
Figure 2.1 shows an overview of a typical combinatorial testing workflow, as seen applied
in these works [SGZL19, GO07]. It exists of the following steps:

1. Input Modeling As the title suggests the input model is created in this step. All
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2. Preliminaries

Figure 2.1: Combinatorial Testing Workflow

structures and inputs which are accepted by the SUT are described and additional
constraints, which limits the input space and excludes invalid test cases, can be
defined. Most of the time this task is performed manually on the basis of expert
knowledge or interviews. Typically these interviews are conducted far away from
any code base, which especially later on when changes to the input model arise can
lead to issues. Thus one focus of my work is to move this definition inside the code
base to provide a connection between code base and IPM.

2. Test Generation This step combines IPM, constraints and a choice for parameter
t and provides it as input for a CA generation algorithm. The purpose of the
algorithm is to create a CA with roughly minimal numbers of rows in acceptable
time. The resulting array typically consists of rows of abstract values, represented
using integers[WKS+20c]. In most cases the values need to be translated into
some kind of data structure, file or some other concept to enable test execution.
Since this work aims to automate large parts of the workflow, automating this CA
generation and translation is also a focus of this work.

3. Test Execution After translating the test cases the next step is to execute them.
In this process there are numerous factors to take into account. First the test case
has to be executed in a way that it is compatible with the specific SUT. Second
tests should always be independent and repeatable, which is relevant when facing
stateful SUTs. If not taken into account, repeating test cases could suddenly fail
or test cases could influence each other. As such most of the time some kind of
reset mechanism is used or additional knowledge of the internal state of a SUT is
neede to ensure above properties. Most of the time this step is performed with the
help of a test execution framework, which monitors the SUT, performs startup and
shutdown tasks, triggers potential reset mechanisms, submits the test cases and
collects the SUT’s output. The form of the output may vary and could consist of
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2.1. Combinatorial Testing

text, function return values or other observable action taken by the SUT, which
can be used for the oracle. Since the goal of the above step also applies in this step,
automatic test execution is also part of the focus of this work.

4. Oracle In the last step the oracle decides if a test case was successful or not. To
perform this decision process it uses the output of the SUT as well as potential
additional sources such as IPM, test case as well as tables or functions to look up
or compute expected result. These oracles are currently constructed the same way
as an IPM in the first step, by using expert knowledge and manual work. As such
oracles have the same issue of being decoupled from the underlying SUT, which
results in high efforts and low adoption rates of CT upon changes in the underlying
system. In contrast, for CST, more universal oracles can often be constructed,
enabling the ability to use the same oracle for multiple SUTs. This is possible due
to the focus of CST on vulnerabilities where exploitation of the vulnerability in
multiple SUT’s often leads to similar behaviors. As an example the authors of a work
revolving around constructing cross-site-scripting(XSS) attack vectors[GRG+19],
attempted to execute the alert function. As such the oracle simply had to check
if the function was executed to decide if the system was exploited. This simple
oracle needs to significant modification to be applicable to new SUT’s. In contrast
for traditional combinatorial testing a new oracle has to be constructed for each
SUT. Only exclusions are simple oracles such as a crash oracle, which deems a test
successful if it did not crash, or workarounds such as differential testing[KS17].

2.1.3 Input Model
Input models (IPMs) [KP11] and constraints [YDL+15, CDS07, WKS+20c] often have
very similar abstract notations in literature. In stark contrast practical CA generation
tools often have significant differences in terms of expected input format, which can be seen
in tools such as CAgen[WKS+20c], ACTS[YLKK13], CTWedge[GR18b] or PICT[Cze06].
Different tools tend to focus on different areas of the generation process which partly
contributes to the differences in format. As an example, the focus of CAgen is speed,
which comes at the cost of supporting less features, such as extension of existing test sets,
which is supported by ACTS, or negative testing and submodels, which is supported by
PICT.

However, even common features, such as IPMs or constraints, often expect vastly different
input formats in each tool. As an example we can portrait an example model taken
from the CTWedge Web-Based Editor and Generator[GR18a], which describes a possible
configuration for a generic phone. The IPM consists of the following parameters:

• emailViewer: Boolean parameter which describes if a phone offers an email
viewer.

• textLines: Int parameter which describes how many lines of text a phone can
display (25-30).
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2. Preliminaries

• display: Enum parameter, which describes the display of the phone, which can be
black and white or offer 16 or 8 million colors.

The example has one additional constraint, which ensures that if the phone has an
emailViewer (meaning emailV iewer == TRUE), it needs to at least be able to display
28 lines (meaning textLines >= 28). The example in CTWedge input format taken from
[GR18a] can be seen in Listing 2.1.

Listing 2.1: Phone Example CTWedge
Model Phone
Parameters :

emailViewer : Boolean
t ex tL ine s : [ 25 . . 30 ]
d i sp l ay : {16MC, 8MC, BW}

Const ra in t s :
# emailViewer => tex tL ine s > 28 #

Modeling the same example in the ACTS input format can be seen in Listing 2.2. It has
slightly less functionality than the CTWedge counterpart. In particular it lacks ranges
for numbers (each number has to be written individually) and shortcuts such as Boolean
(each value has to be defined individually).The ACTS input format is roughly comparable
to the popular .ini format in various Windows applications.

Listing 2.2: Phone Example ACTS
[ System ]
Name : Phone
[ Parameter ]
emailViewer ( boolean ) : TRUE, FALSE
tex tL ine s ( i n t ) : 25 ,26 ,27 ,28 ,29 ,30
d i sp l ay (enum ) : 16MC, 8MC, BW
[ Constra int ]
emailViewer = TRUE => textL ine s > 28

CAgen offers a web version[WKS+20b] which is capable of importing ACTS input files,
but has less constraint support than the original format. It does not support numerical
relations such as < ("less than"), which results in the need to define constraints more
explicitly. As an example to define the constraint textLines > 28 in the above example,
it would need to be converted to textLines = 29||textLines = 30 for CAgen. As an
upside it does not require types for every parameter, since it handles parameters per
default as enumeration of values.

Besides the web version, CAgen is distributed as command line tool which is typically
faster and more versatile[WKS+20c]. Due to the limitation of the command line the
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2.1. Combinatorial Testing

input format is more condensed and the strength t which is typically separately defined
has to be passed in the same command. The phone example in command line version
can be seen in Listing 2.3. The speed and versatility also led to using this command line
in this work for test set generation.

Listing 2.3: Phone Example CAgen Command Line
f ipo −c l i −t 3 −−i n s t anc e " emailViewer :TRUE,FALSE; t ex tL ine s

: 25 , 26 , 27 , 28 , 29 , 30 ; d i sp l ay :16MC, 8MC,BW; " −c ’ emailViewer = "
TRUE" => ( tex tL ine s = "29 " | | t ex tL ine s = " 3 0 " ) ’

PICT seems to offer the biggest variety of options including aliasing, variable relations
and sub-models. The phone example in PICT format can be seen in Listing 2.4

Listing 2.4: Phone Example PICT
emailViewer : TRUE, FALSE
tex tL ine s : 25 ,26 ,27 ,28 ,29 ,30
d i sp l ay : 16MC, 8MC, BW
IF [ emailViewer ] = "TRUE" THEN [ t ex tL ine s ] > 28 ;

To conclude the constraint support of these tools is comparable in terms of features, but
not identical. In detail, they differ in the following points:

• CAgen: supports conjunction, disjunction, negation, implication, equality and
"not equal".

• PICT: supports the same functionality as CAgen and extends it with inequalities
(e.g. <, "less than" operator), which is applicable for numeric types and strings.

• ACTS: supports the same functionality as PICT, besides negation, and further
extends functionality with arithmetic operations, which are applicable to numeric
parameters. Additionally it does not support inequalities for strings.

• CTWedge: supports the same functionality as ACTS and extends it with bicondi-
tional operator (e.g. a ↔ b).

2.1.4 Test Set Generation
For generation of CAs there exist a wide variety of strategies, each with their own
advantages and disadvantages[KP11, KS19]. For simplicity this section will only cover a
representative sample of methods and further details can be read in the referenced surveys.
AETG [CDKP94, CDFP97] is one of the oldest algorithms for generating CAs and is also
the predecessor to multiple algorithms such as density algorithm [BC07, BC09], Sliced
AETG [KLS20] and PICT [Cze06].
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2. Preliminaries

AETG and its successors construct a CA one test at a time and within each test one
parameter at a time. Generally speaking the first parameter is chosen by determining
the parameter which has the greatest number of uncovered (i.e. not appearing in the test
set) t-tuples. The order of the remaining parameters differs from algorithm to algorithm
and could be fixed, random or heuristically determined. The value of each parameter is
chosen by maximizing the number of newly covered, currently uncovered t-tuples. This
process terminates when no t-tuples remain uncovered.

The original AETG algorithm has been shown to be less efficient than algorithms which
take the structure and requirements of a combinatorial test set into account[KS19]. This
is due to the fact that the original implementation is more or less a popular greedy set
covering algorithm translated into the domain of CAs. The only remaining publicly
available and competitive implementation of an AETG-style algorithm is PICT.

Currently the most relevant algorithm in practice is the In-Parameter-Order Algo-
rithm (IPO), which was originally presented in 1998[LT98] and later extended to higher
strengths[LKK+07]. Both ACTS[YLKK13] and CAgen [WKS+20c] use IPO as the un-
derlying algorithm while CTWedge[GR18b] offers it as one option. Due to popularity this
algorithm has seen multiple extensions and improvements such as including a quantum
computing approach[WKS20a], using symmetries in CAs for improvement [CG09] or
combining IPO with simulated annealing[WKS21].

At its core IPO is a greedy algorithm which orders parameters descending by parameter
size. As a starting point it constructs a test set for the first t parameters and then
subsequently repeats following 2 steps:

• Horizontal extension: In this step the test set is extended horizontally by adding
a column to the test set, one row at a time. The value for each column is chosen
from the alphabet of the parameter and maximizes the number of uncovered t-tuples
becoming covered. After this step the test set has the same number of rows and
one more column. It is important to note that t-tuples relevant for the appended
column can still remain uncovered.

• Vertical extension: In this step the test set is extended vertically by adding rows
until all t-tuples involving the column added in the previous step are covered. This
extension can lead to undefined values for some columns called don�tcare values,
which can assume all valid values for the respective parameter in the column. Later
vertical extensions can still change these don�tcare values to a fixed value. After
this step the resulting test set is a CA of strength t for all columns which have
been added by the horizontal extension step.

The IPO algorithm terminates after it completes the vertical extension for the last added
column. Generally speaking IPO tends to be the fastest algorithm for many problem
instances [WKS+20c]. The downside is that most of the time the resulting CA is slightly
larger than CAs produced by e.g. simulated annealing.
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Simulated annealing, in particular Covering Arrays by Simulated Annealing(CASA)[GCD09,
GCD11] also uses a two-step process, containing the outer search and inner search and
are executed in the following way:

• Outer search As a first step the outer search tries to identify the smallest number
of rows to construct a CA satisfying given strength, parameters and parameter
values. It then starts the inner search which executes the simulated annealing
process.

– Inner Search Simulated annealing starts with a random array of k columns
and some N , which is determined by the current iteration of the outer search.
It then determines the coverage of the current array.

– Inner Search Then it randomly replaces an arbitrary cell in the array and
recomputes the coverage of the resulting array. If the coverage improved
or stayed the same then the new array is accepted as the array which will
be further annealed. If the coverage worsened there is a formula which will
calculate if the array is still accepted, depending on temperature (a value
which decreases over the runtime of the algorithm) and the margin of how
much worse the coverage became. This is done to prevent being stuck in local
minima/maxima.

– Inner Search The above steps are iterated until there is no improvement for
a number of iterations or the array achieved full coverage (becoming a CA).
When one of the criterion is met the inner search returns to the outer search.

• Outer Search Upon return of the inner search the outer search will adjust the
target N and restart the inner search. The outer search terminates when a condition
is met, which is typically a timeout.

CASA is also an option for CTWedge and produces slightly smaller CAs than the greedy
approach but has a much longer runtime as a trade off.

2.1.5 Limitations
CT and CST offer a guaranteed level of input space coverage or exploit space coverage in
CST, while maintaining a relatively small number of required tests. If certain conditions
are met it can identify all faults which are triggered by up to t parameters. Unfortunately
in practice most of the time not all conditions can be met, thus leading to limitations of
the whole CT/CST process. These limitations include:

• Correctness and Completeness of input parameter model CT heavily relies
on a specification of the input space, which is a typical occurrence in all model-based
testing approaches. Unfortunately such models are often not available in practice,
since if there is no anticipation of formal methods verifying the system (e.g. in
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secure development lifecycles), then developers mostly do not invest time in creating
and maintaining an input parameter model or similar description. Since this work
tries to tackle bridging the gap between input model and developer this is one of
the main issues addressed. Additionally for large domains of parameters (e.g. 32-bit
integer) it is impossible to test the whole value range which results in the need
to apply techniques such as equivalence partitioning[Rei97] to reduce the input
domain to a manageable subset. For CST, to my knowledge, there is no practically
useful measure of completeness that would be applicable to models of exploits.

• Correctness of execution environment CT and CST assume that there is
some execution framework which will correctly submit generated test vectors. In
this work part of this implication will be handled by the library, since it provides
an environment which will automatically submit test cases to a method. Due to
limitation of this simple PoC we still offer the possibility of additional setup before
execution.

• Independence of tests CT and CST assume that the SUT will process each test
case individually, which is typically not the case in practice. Often test cases lead
to side effects in the system, such as data created in a data structure or leaving the
SUT in a particular state. This can change the behavior of following test cases. A
rather trivial solution would be the use of a reset symbol[SL89] that restores the
same state of the SUT every time, however to my knowledge there is no practical
work employing CT or CST using this feature. Due to the simplicity of the library
it also assumes that each test case is handled individually.

• The oracle problem CT and CST assume there exists an oracle function, which
observes the output of the SUT and decides if the test case was successful. Con-
structing such an oracle function involves a fair amount of challenges and is known
as the oracle problem in software testing[BHM+14]. While there are numerous
solutions, none seems to offer an approach which has high accuracy and low effort,
which would make it ideal for practical software testing.

2.2 Annotation Processors
Annotation Processors, as the name suggests, process annotations, which is why a proper
introduction to annotations is needed to provide a common knowledge base for further
explanations. Annotations discussed in this section revolve around Kotlin annotations.
Kotlin is a programming language which depends and interoperates with Java and
fully supports Java annotations. Since both Kotlin and Java annotations fulfill the
same purpose and Kotlin annotations are derived from Java annotations, they will be
used interchangeably in this section. There are also annotations in other programming
languages fulfilling the same purpose, for example in C[HNS09], but they are not the
focus of this work.
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2.2.1 Annotations
Java introduced annotations in J2SE 5.0 in 2004[GJSB05]. They are used to provide
metadata information associated with Java elements i.e. classes or methods. Metadata
information is essentially data about data, providing additional information about
associated elements in code. Per default annotations have no direct effect on the code
they annotate and also do not influence how code is compiled in any way.

In an implementation context annotations can be considered special interfaces[GJSB05,
Dar09]. To distinguish an annotation from a normal interface Java uses the @interface
keyword, but in Kotlin we use the simple annotation keyword instead of interface.
Annotations can hold an arbitrary amount of additional values, which normally includes
the actual metadata, which is called annotation parameters. An example declaration can
be seen in Listing 2.5, while Listing 2.6 shows how to use the declared annotation. An
annotation declaration can be created anywhere inside the source package of a project.
Additionally the location of the declaration also determines the visibility of the annotation
inside the project, since depending on the structure of a system it may be visible to the
whole project or only a specific part of the system.

Listing 2.5: Annotation Declaration Example Kotlin
@Target ( AnnotationTarget .CLASS, AnnotationTarget .FUNCTION)
@Retention ( Annotat ionRetention .SOURCE)
@Repeatable
annotat ion c l a s s Example ( va l metadata : S t r ing )

Listing 2.6: Annotation Usage Example Kotlin
@Example ( " meta " ) c l a s s Foo {

@Example ( " data " ) fun baz ( foo : Int ) : Int {
re turn 1

}
}

Annotations can be divided by three properties: Target, Retention and Repeatability.
Target limits which elements can be annotated by declared annotation, for example
AnnotationTarget.CLASS limits the annotation to only annotate class elements. Reten-
tion configures if annotations are present in binary code and if they can be accessed via
reflection, for example AnnotationRetention.BINARY leads to annotations present in
binary code but not accessible via reflection. Repeatability configures whether the same
annotation can be used multiple times on the same element or not and is configured via
@Repeatable annotation. Java and Kotlin both also have some predefined annotations.
Examples include compiler annotations such as @Override or meta annotations such as
@Repeatable [Ora14].

Annotations can be used in many different use cases [GJSB05, Dar09, RV11, ND08] such
as:
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• Compiler Information Developers can use compiler related annotations to inter-
act with the compiler to suppress compiler warnings or detect errors. An example
would be the @SuppressWarnings annotation which can be used to suppress a
multitude of warnings such as warnings for using a deprecated function.

• File Generation In this use case a developer annotates an element with a pre-
defined annotation of an arbitrary annotation processor, which is then picked up
by the processor and results in a generated file dependent on the used annotation.
Since this is the use case relevant for this paper, an example could be @CTATest,
which generates a combinatorial test class, which is an annotation of this work.

• Documentation With the use of the @Documented annotations, developers can
signal that annotations with a type should be documented by Javadoc or other
tools.

• Logging, Testing Annotations are not only relevant during the compile process,
but can also be used and processed during runtime, which enables possibilities to
use them for logging or testing.

• API, Libraries Many APIs or libraries rely on annotation to provide their func-
tionality. As an example, Spring is a library which enables nearly all functionality
and configuration via annotations. It is possible to turn features on or off or provide
congifurations (e.g. timeout for request) or orchestrate features. Simply annotating
a class with @Entity, will mark this class as a database entity class and trigger a
variety of additional functionality automatically.

While annotations have many usages and are widespread in the Java/Kotlin world they
also have some limitations[CV14], which also impacted the implementation of the library
in this work. Relevant limitations include:

• Limited granularity Although most elements can be annotated, there are also
some which cannot, including generic statement, expression or code blocks. This
leads to the inability of annotating and adding metadata inside the body of a
method.

• Limited Parameter Types Annotation Parameters have very strict type limita-
tions. As an example, Java parameter types only include primitive values, strings,
enums, classes, other annotations and arrays containing preceding types.

• Limited Parameter Values Annotation Parameter Values also have string limi-
tations, since parameters can only hold values resolvable in a static context. This
leads to the inability to use any kind of method or string template as value for an
annotation.
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2.2.2 Processors
The purpose of an annotation processor is to process annotations and provide access to
the metadata contained inside them. This metadata is then used to trigger some kind of
functionality which also heavily depends on the type of processor. In general processors
are divided by time frame they access annotations, either during compile time or during
runtime[PN15]. Access during compile time is realized via an annotation processing API,
which is also the approach used in this work, while runtime processors use reflection API
for access.

While both approaches offer metadata in different representations, in general they are
very similar since both approaches offer all available metadata in the relevant processing
phase. One of the reasons why metadata can change between compile- and runtime
is the retention policy of annotations. As explained above certain retentions prevent
annotations from reaching binary code or being accessed by reflection leading to some
annotations only available during compile time. Compile time processors also generate
code most of the time, which can contain annotations which could also lead to a difference
in metadata between compile- and runtime.

These approaches not only differ in provided metadata, but also in capabilities. During
runtime a developer can invoke methods both known or unknown during compile time,
while compile time processing does not allow invocation of code at all, since the source
code is not compiled yet. Another difference is that compile-time processing is only
allowed to generate code and not alter existing code, while reflection allows you to alter
code i.e. change type or add a constructor.

From an implementation perspective these processor types also operate on completely
different data structures and method sets, which can lead to more complexity if developers
have to work in both timeframes. This led to multiple approaches to bridge the gap
between both processing approaches[PN15, Paw06], but the library used in this work,
called ksp[Goo21], still adheres to above limitations.
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CHAPTER 3
Related Work

This section about related work is split into two parts. The first part is revolving around
papers tackling similar issues than this work in model based testing. The second part
takes a look at papers which involve testing in Java and their approach to define systems
under test (SUT).

3.1 Issues in Model-Based Testing
As stated in the introduction two of the biggest pain points of model-based testing is
the creation of a model, in the specific case of CT an IPM, as well as how to deal with
changes after an initial model was created. Consequently there have been multiple papers
addressing one of the two issues and offering various solutions to them.

Works revolving around the model creation process try to address the issue that oftentimes
no model exists and it takes a lot of effort to create one. A paper revolving around
web application testing [BSSH17] argues that model based testing would provide plenty
of advantages for it, since a large amount of effort is put into ensuring that users
have an uniform user experience across all platforms. This desired experience could be
modeled and then used to create uniform tests for all platforms. The authors argue that
unfortunately most of the time these web apps have no model or even a specification
of desired behavior. To overcome this issue they propose learning based testing, which
revolves around defining actions of the system and desired test cases and then using a
system, which sends test cases and evaluates the output to create a model of the SUT
through learning. The resulting model is then used as the base model and can be further
adjusted as needed.

Similar to the above work there is another paper which tries to fix the issue of model
creation with exploratory learning [FBJ16]. The focus of this work focuses more on the
effort it takes to create a detailed and accurate model, which is needed to leverage all
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the upsides of model based testing. In general exploratory testing is about manually
exploring the possibilities of a graphical user interface (GUI) as a tester. The downside
of exploratory testing is that the quality of tests is unclear and heavily depend on the
tester as well as there is no assurance that a feature was tested. To circumvent these
downsides the authors propose an approach where a system tracks the testing process
and offers information and possibilities to mark important steps to the tester. In the
background the system attempts to identify all relevant steps of the tester and transform
them into a usable model, which could then be used for further model based testing.
In contrast to the previous two papers which involved at least to some extent manual
work the next two papers try to create models without any additional manual work
required. The first of these works revolves around Javascript libraries[MT19]. The
authors explain that Javascript libraries are most of the time regularly updated, but often
developers have a hard time to determine if a new update contains breaking changes
or not. To support developers in the future the paper proposes to use model based
testing to create regression tests, which should ensure that future releases do not contain
any unknown breaking changes. This approach works without any prior model, since it
heavily depends on existing clients using the library. The system downloads tests of these
clients, executes them and tries to build a model by analyzing the interaction between
client and library. After the initial model creation this model then can be used to execute
regression tests against the new update and reports if any interactions differ from the
previous interactions.
The second work revolves around mobile tests [AFT+14]. The approach of this paper is
to attempt to reverse engineer the GUI to create a model. It is similar to the exploratory
learning approach in the sense that the program which attempts to reverse engineer the
app, obtains all possible events and options of the initial starting screen and explores the
application via this information, gathering more information with every new screen. The
finalized result of the reverse engineering process is a state machine model which could
then be used for further test generation.
Although the above papers try to tackle a similar issue as this work they use fundamentally
different approaches, which focus more on either reducing or completely eliminating the
need for manual work in the model creation phase. In contrast to these approaches which
all ignore the issue of how to ensure that changes are reflected correctly after the initial
creation as well as containing uncertainties of how complete and usable the resulting
models really are, the approach in this work focuses more on breaking up the big chunk
of work into smaller pieces and enabling a larger group, namely developers, to work on
smaller pieces of the model creation process in parallel by integrating it naturally in the
development process.
Works revolving around the issue of how to deal with changes in created models have
a really strong focus on how to integrate the modeling as early as possible, since then
the model is present at all stages of the development process resulting in a more natural
adjustment process due to the reason that the model already constantly evolved. To
further improve the quality of the model some works also try to enable additional
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stakeholders or roles the ability to influence the model. This also provides the upside
that more people are incentivised to update the model upon change.

This is exactly what the first paper revolving around model-based testing (MBT) in
software systems[EWZC15] does. It proposes a process using usage models to start at
an early stage and also involves additional stakeholders and the software team. The
idea of the process is that although the initial creation of the usage model is done by an
expert quality assurance (QA) person, this usage model is then refined with multiple
feedback iteration involving previously mentioned stakeholders and software team. This
usage model can also be adjusted along the way and is tied to requirements, which is
a reoccurring theme in these types of works. At last this usage model is then used to
generate test cases.

The same idea of starting early in the process and involving additional stakeholders
can also be seen in another paper revolving around using UML diagrams as models
[HGB08]. The authors argue that UML diagrams can be created early on, purely based
on requirements and then further adjusted later in the process. Since the diagrams are
also created from a user perspective it is easy to understand by stakeholders and experts.
These UML diagrams are then used to generate test sets, which can then be further used
in tests.

Although the main focus of the next work is more about combinatorially testing 4
systems[DJK+99] and evaluating the performance, the authors also touch upon the issue
that current tools expect many testers to be 1

3 developer, 1
3 tester and 1

3 system engineer.
These types of people are very rare, which means there needs to be alternatives to spread
the possibilities of CT to more QAs, without the need of extensive requirements. The
solution this work proposes is using a tool called AETGSpec, which is simple to use and
understand, but falls short in providing the same depth as other tools. The authors
argue that although the tool has less functionality it still offers the possibility to craft
high quality test cases. Besides this decision the rest of the process is a standard manual
CT process.

The last work is a more unusual one, since it revolves around voicing and resolving
uncertainties in a model[CBGS18]. Instead of creating an initial model and iteratively
changing it during the development process, they propose a process in which the system
is modeled as complete as possible with given requirements and voicing uncertainties
inside the model when aspects are still unclear. Part of the system they proposed then
observes the system during test execution of script with uncertainties and reports back
to the modeler. This modeler can then adjust the model, remove or add uncertainties
and restart the process until all uncertainties are gone.

The papers described above vary a bit more in focus than the creation centered papers.
The first two papers [EWZC15, HGB08] try to start modeling as early as possible and
involve as many people as possible, but there is still the disconnect of model and system.
Additionally both approaches also do not have any automation for translating to usable
test cases or providing an automatic process at all. The third paper[DJK+99] only
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revolves around involving more people and is completely manual, which is the opposite of
this work. The last work[CBGS18] had more automation, but it had an entirely different
focus than this work, since it revolved more about how to tackle changes in models
instead of recognizing an issue due to the disconnect of model and system.

In terms of similarity the most similar work revolves around MBT using two tools
to automate a lot of the process[MPS19]. The first tool revolves around connecting
requirements with test specifications, which ensure testing is done from the requirements
phase and counteracts the issue of starting testing too late. This connected model is then
used to generate executable test scripts via the second tool called Robot. The authors
argue that the upside of the Robot framework is that it already has a lot of built in
functionality which does not need any further implementation to use. Although it is
similar in some aspects e.g. creating executable test scripts, there still exists the issue
that the model and system are disconnected. Additionally in contrast to this work the
process also involves two tools which have to be used manually.

3.2 Define Systems under Test in Java/Kotlin
To answer the research question: "What methods exist to define Systems under Test
(SUTs) for combinatorial testing in Kotlin, both in the context of native objects (classes
and methods) and web interfaces?" a selection of papers were analyzed which revolved
around testing in Java. The reason why Java´ was chosen over Kotlin was to extend
the range of papers to choose from, since Kotlin is still a rather new programming
language. Additionally papers which revolved around testing with annotations were
chosen preferably.

Papers revolving around native objects offer a variety of approaches. One option presented
which is also used by JUnit is simply annotating the relevant method to test[RV11]. If
the need arises additional information can be provided via annotation parameters. A
similar option is annotating a relevant class. This option came in two variations. The
first variation is that upon annotation of a class all methods inside it were marked as
methods under test and additional annotations could be used to opt-out some unnecessary
methods[PE07]. The second variation is that upon annotation of a class all methods inside
are potential candidates to opt-in as method under test via a custom annotation[PJ09].

In the context of classes another option has been proposed. This approach views one
class as a container which holds all information relevant for a test case, which also
includes the method under test, and provides various annotations to mark setup or
teardown tasks[BOF14]. This approach was also used in this work, since it enables a lot
of flexibility to add more functionality around a test if needed (e.g. setup, teardown).
Additionally changes to the method under test are immediately noticed, since not
adjusting the container class will lead to compile errors, which is not guaranteed when
simply referencing a method via string. The last option does exactly that by referencing
a method under test via string, which includes method name, class name and package
name[Mar05]. Although this method is very error prone in itself the paper proposing
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it offers a large variety of ways to define these properties, which is worth mentioning.
Ways to define a method under test proposed by the authors includes defining it in a
Javadoc/comment, referencing it in an annotation, defining in it an external XML file or
using a method which returns the information as a string.

Web interface papers show limited diversity in their approaches to solve the problem.
All papers found, which tackled SUTs in an web interface context used a nearly iden-
tical approach, namely generating a web client which accesses the web interface for
testing[HL05, MBX07a, TPW+02, MBX07b]. This approach defines a SUT by defining
possible actions and inputs via client generation which needs some kind of specification
and then simply defining an URL to specify the specific web interface. The specification
used has been Web Services Description Language (WSDL) document in all cases, which
is a way to describe web services. Although an argument can be made that WSDL is
an old standard, which can also be seen by the release date of referenced papers, this
approach is still used with the only difference that tools and specification languages have
changed. Nowadays someone would probably specify a web interface via OpenAPI[Ini11]
and generate it via a language specific generator[Col18]. Thus this is still a valid ap-
proach and also has some upsides such as changing a web interface simply results in a
regeneration of a web client.
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Methodology

As stated in section 1, the main purpose of this work is to create a PoC in Kotlin that
bridges the gap between IPM and SUT. It automates additional steps of the CT process
for a smoother starting point. The idea is to use annotations to define an IPM. The
workflow involves the following steps:

1. Define IPM, target SUT and oracle function.

2. Invoke library, which generates tests.

3. Execute generated tests.

This is, of course, a very abstract and basic overview of the workflow since both the first
and second steps involve a lot of substeps, which will be explained subsequently in the
next sections.

4.1 Overview
To enable a more concrete overview of the workflow of the library, a closer look into
each step is needed. The first step consists of several substeps, which can also be seen in
Figure 4.2a:

• Annotate Input Class: This input class represents the input to the SUT. Devel-
opers annotate it to define parameters and constraints.

• Implement Oracle Function: Developers implement an oracle function to deter-
mine test success. They can create the function before or after the library generates
tests.
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Figure 4.1: Sequence Diagram of library workflow

• Implement Container Class: This is a wrapper class that contains the target
function to be tested, as well as the oracle function.

• Annotate Test Function, Linking Input Class and Container Class: De-
velopers annotate a function that declares a single CT test and references the input
and container class.

All these steps lead up to the ability to invoke the library and start the test generation.
Most of the above steps rely on annotations. A closer look at annotations will be given
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(a) Use case diagram of library (b) Input/Output diagram of library

Figure 4.2: Use case and Input/Output diagram of library

in the next section. All this setup leads up to the second step, which is invoking the
library to generate tests.

This step involves no interaction from any user and once started works completely
automated. The only possibility for possible interaction is if the developer made a
mistake in a previous step resulting in the need to fix the issue before rerunning the
process. This step contains a lot of technical substeps, which will be explained in Sections
4.3 - 4.6.

In general, the workflow can be described as scanning the source code to extract all the
information defined during the setup phase and converting that into executable tests.
An overview of the components involved and their interaction can be seen in Figure 4.1,
while an overview of inputs and outputs of components can be seen in Figure 4.2b. More
details will be provided in the following sections.

After the creation phase, the developer can move on to the last step, which is executing
the generated test cases. Typically, this step will also involve tweaking of the oracle as
well as readjustments of the IPM definition if needed.

4.2 Annotations
This section provides an in-depth look at the annotations used in this library while
answering RQ1: "How can Kotlin annotations be used to specify an input parameter
model (IPM) for combinatorial testing? These annotations must be capable of defining
the available parameters, their domains (value types and ranges), and constraints between
parameters."
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The first challenge in designing the library was to define an appropriate annotation format
that could handle all the requirements. As stated in the research question, the annotations
had to be capable of defining parameters and their domain, as well as constraints between
parameters. The goal was to implement the library with heavy use of annotations to
provide a uniform entry point for all interactions. This led to additional requirements
that needed to be considered when defining the format, including:

• Defining a SUT, which is a function in a software system in the context of the PoC.

• Referencing input classes that contain the defined parameters and constraints.

• Referencing an oracle, which is a function in a software system in the context of
the PoC.

• Providing a way to define an automated CT test.

Additionally, a way to enable more concrete debug logs to support developers when
interacting with the library was deemed a useful addition to the format. The creation of
the annotation format was an iterative process. The first step was to create a format for
defining parameters and constraints. This step included researching and deciding on a
test set generation program, since there are varying capabilities and formats between
different tools. For this PoC, CAgen [WKS+20b] as a command-line tool was chosen. A
deep dive into how the tool was integrated and challenges involving the process will be
given in Section 4.5.

For defining parameters and their domains, CAgen supports enumerations, integer values,
and boolean values. As stated previously, this library uses the concept of input classes,
which means one class (in a Kotlin context) represents a self-contained part of an input
model. This input class only contains parameter definitions and constraints revolving
around parameters contained in this class. In the current PoC, only a single input class
is supported, but the implementation took the possibility of multiple input classes into
account. Especially in the context of functions, the possibility of having multiple inputs
is very probable.

The upside of using these input classes is that the parameter definition is done on the
actual parameter in the class, which ensures a connection between parameter definition
of an IPM and the actual parameter in the software system. A simple example of this
concept in pseudocode can be seen in Listing 4.1.

Listing 4.1: Simple example of the concept of annotating parameters
/∗∗
∗ This example conta in s a normal i n t e g e r parameter which
∗ r e p r e s e n t s a parameter d e f i n i t i o n i n s i d e a c l a s s . The
∗ annotat ion on top adds metadata to the parameter d e f i n i n g
∗ i t s d e f i n i t i o n i n s i d e the IPM. Due to the natur o f

28



4.2. Annotations

∗ annotat ions parameter and annotat ion are
∗ automat i ca l l y connected .
∗∗/
@AnnotationDefininingIPMParameter
var actua lParameter InClasscont inuous i n t e g r a t i o n = 1

The initial concept leads up to the finalized parameter annotation concept, which includes
the following annotations:

• CTABoolean: This annotation is used to define a boolean parameter. It has no
additional parameters, since boolean parameters can only be either true or false.

• CTAInt: This annotation is used to define an integer parameter. It has three
additional parameters and can be used to define integers in 2 different ways.

– Range: Although as stated above CAgen does not support range integers,
the library itself converts the range to a list to enable more flexibility when
defining parameters. For this definition 2 parameters are relevant from and
to, which defines the start and the end of the range.

– Value List: When defining integers this way we use the third parameter
available which is just a simple list, where we can provide all values the integer
can possibly take, which is then simply used for the IPM.

• CTAEnum: This annotation is used to define an enum parameter. It has one
additional parameter and can be used in 2 different ways.

– Enum: If this annotation is placed on an enum class in Kotlin, no additional
parameter needs to be set, since the library itself extracts the enum type and
possible values.

– String Enum: To also enable the possibility of string enums (which is a
string, which is expected to have a value out of a limited set of values), this
annotation is an enum, which is just a simple list which can be used to define
all the possible string values the enum can take similar to the list on the
integer annotation.

With these annotations, we can define all parameters currently supported by CA-
Gen. The next challenge is constraints between parameters. CAgen currently only
supports if constraints, which are logic formulas with restricted support of opera-
tions. They are commonly referred to as "if constraints" within this thesis due to
their typical form: IF A THEN B. Supported operators are &&(AND), ||(OR), =>
(IMPLIES), !(NOT ), EQUALS(==), NOTEQUALS(! =), which are used to define
constraints.
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To bundle the constraints in one location and prevent them from being spread across
multiple locations, a wrapper annotation called CTAConstraints was created. It
contains a list of if constraint annotations CTAIfConstraint as parameters. Initially,
the idea was to reference existing parameters in a Kotlin class to ensure verification and
prevent errors like typos. However, limitations of annotations changed the design, as
annotation parameter values must be compile-time constants and cannot reference any
type of function or non-constant value.

Besides enabling the possibility of referencing existing parameters, another idea was to
define constraints with building blocks. However, a limitation of annotations is that they
cannot self-reference, which creates issues when trying to translate a formal grammar
with self-referencing into an annotation format. As a result, the decision was made to use
a simple string input for constraints and define some enums for the operators to provide
developers with some support. The downside of this approach is that constraints need to
be written exactly in the format expected by the test generation tool. An example of
defining an IPM using all parameter and constraint annotations can be seen in Listing
4.2.

Listing 4.2: Example showing usage of annotations to define an IPM
/∗∗
∗ s imple example enumeration c l a s s
∗ can take va lue s : Value1 or Value2
∗∗/
enum c l a s s EnumExample {

Value1 , Value2
}

/∗∗
∗ c o n s t r a i n t s annotat ion conta in ing 2 c o n s t r a i n t s
∗
∗ f i r s t c o n s t r a i n t ensure s that i f the normal enumeration value
∗ i s Value1 the s t r i n g enumeration value cannot be "RED" .
∗
∗ second c o n s t r a i n t ensure s that i f the i n t e g e r parameter with
∗ range d e f i n i t i o n i s 2 then the i n t e g e r parameter with a value
∗ l i s t i s 4 .
∗//
@CTAConstraints (

CTAIfConstraint ( " enum $CTEQUALS \" Value1 \" $CTIMPLIES
stringEnum $CTNOTEQUALS \"RED\ " " ) ,

CTAIfConstraint ( " intRange $CTEQUALS 2 $CTIMPLIES in tVa lueL i s t
$CTEQUALS 4" ) ,

)
c l a s s ExampleClass {
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// i n t e g e r parameter , de f i n ed to be in range 1 − 5
@CTAInt( from = 0 , to = 5)
var intRange : Int = 1

// i n t e g e r parameter , de f i n ed with v a l i d va lue s 0 , 1 , 2 , 3 , 4 , 5
@CTAInt( va lue s = [ 0 , 1 , 2 , 3 , 4 , 5 ] )
var i n tVa lueL i s t : Int = 3

// boolean parameter , can be t rue or f a l s e
@CTABoolean
var boolean : Boolean = f a l s e

// enumeration value , v a l i d va lue s are de f i n ed by enumeration
// c l a s s on top
@CTAEnum
var enum : EnumExample = EnumExample . Value1

// s t r i n g enumeration value , de f i n ed to be e i t h e r "RED" ,
//"GREEN" or "YELLOW"
@CTAEnum( va lue s = [ "RED" , "GREEN" , "YELLOW" ] )
var stringEnum : St r ing = "RED"

}

After defining the above format, the next small step is to create an annotation for
debugging purposes. A simple annotation called CTADebug is created. When this
annotation is set on any element, it enables the creation of a debug log file with more
information about the scanning and creation service.

The next challenge is to fulfill the additional requirements besides the research question.
These requirements include referencing an SUT and input classes, as well as defining a
CT test in general. To address this, another annotation called CTATest is used. This
annotation determines if the library is active and fulfills all the necessary requirements.
As soon as a single CTATest annotation is present, the library becomes activated. This
annotation also defines a single CT test, which describes an input model and the SUT,
and starts the automatic test generation process. The input class and SUT are defined
via parameters of the annotation.

There are many libraries out there which provide an annotation, which enables provided
functionalities (e.g. @EnableXXX ). Typically these libraries provide parts of their
functionality out of the box, which is not possible in the context of the library, since we
need some information to provide any meaningful functionality. That’s why we went
with the above solution. An example usage of the annotation can be seen in Listing 4.3.

Listing 4.3: Example usage of CTATest
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@CTADebug
c l a s s CTATests {

@CTATest( CTATestContainerImpl : : c l a s s , TestClass : : c l a s s )
fun t e s t i n g T e s t C l a s s e s ( ) {}

}

The CTATest annotation contains 2 parameters: testContainer, which references a test
container class, and classToTest, which references all the classes that should be used as
input class for the test. The references to input classes are vararg (variable arguments),
which means multiple test classes can be referenced and collected into a list. However,
the current version of the library only supports one class. Due to the limited scope of
the PoC, we decided to use a simple approach instead of extracting all input classes
from a referenced method and working from there towards the input model. The test
container class is a specific class that must implement a predefined interface. You can
see the interface in Listing 4.4.

Listing 4.4: Interface for container class
/∗∗
∗ I n t e r f a c e f o r TestContainer .
∗ A TestContainer ho lds a r e f e r e n c e to the method which w i l l be

t e s t e d as we l l as the o r a c l e func t i on which w i l l then
∗ dec ide i f the t e s t was s u c c e s s f u l .
∗/
i n t e r f a c e CTATestContainer {

var testMethod : KFunction<∗>

/∗∗
∗ Oracle Function which r e c e i v e s the func t i on c a l l and

inputs f o r a s i n g u l a r t e s t run as input and re tu rn s the
∗ s u c c e s s o f the t e s t run as boolean as output .
∗ @param methodToTest func t i on c a l l f o r t e s t run .
∗ @param inputs input f o r t e s t run
∗ @return i f t e s t run was s u c c e s s f u l
∗/

fun o r a c l e ( methodToTest : KFunction<∗>, inputs : Array<Any>) :
Boolean

}

The container class serves two purposes: firstly, it enables the definition of a SUT (System
Under Test), which, in our case, is the function to be tested. Secondly, it allows the
definition of an oracle function. Although it may seem like a strange workaround to create
an interface just to reference some methods, this decision was made due to limitations
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of annotations. Initially, the idea was to directly reference two functions inside the
annotation. However, unlike classes, functions are not allowed as parameter values inside
an annotation. This led to the need for a different approach.

Some libraries, like Spring JPA, use string identifiers to match annotations. For example,
in the context of database one-to-many relations, you would reference the field in the
parent class with a simple string identifier. This concept of matching strings led to the
idea of annotating the functions with an annotation that has a string parameter. This
string parameter is then used to match the functions to the correct CTATest annotation.
However, this approach can be error-prone due to typos and it also hinders the ability to
see all the building blocks of a test in one place. That’s why the decision was made to
use the approach of a container class. Since classes are allowed as annotation references,
an interface was created to ensure that each container class contains all the relevant
building blocks for a test case.

Having an actual reference to the method being tested ensures its existence, eliminates
typos, and catches compilation errors if the method is changed or deleted. While oracle
functions typically only receive the output of a test case, the different approach addresses
the requirements for functions to be used as oracles in a combinatorial testing cycle based
on source code annotations, as stated in RQ4: "What requirements exist for functions to
be used as simple oracles and how can such oracles be used in a combinatorial testing
cycle based on source code annotations?".

In the Preliminaries in Section 2, it’s mentioned that CT test cases are usually executed
against a separate SUT that accepts input and returns output. However, when testing
functionality within a system with dependencies, return values can vary and converting
everything to one type may not make sense. Working with actual classes instead of
interface-based output offers advantages. Additionally, many tests in systems require setup
before execution, such as preparing a specific state or executing additional commands.
To provide developers with more autonomy, the decision was made to provide all the
necessary building blocks for executing the test case. This allows for setup and flexibility
in the return value, enhancing the test writing experience within a SUT.

These are all the annotations and building blocks needed to define a singular CT test.
This leads us to the process of how we combine these building blocks to create executable
tests, which will then call our oracle. This will be discussed in the next sections.

4.3 Annotation Processor

The first step in designing the whole automatic test generation process is to find a tool
that fulfills the needed requirements. There are two main requirements: first, the ability
to scan source code to find and extract all annotations, and second, the possibility to
generate files to generate our actual test files. After a small search, the decision to use
Kotlin Symbol Processing API (KSP) [Goo21] is made.
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There are multiple factors why KSP is the perfect fit. First, they are promoted by the
official Kotlin website and the tool is developed by Google, which reduces the chances to
a minimum that the tool will not be supported or updated in the near future. It is also
the successor of the widely spread and used Kotlin Annotation Processing Tool (KAPT)
[Jet17], which ensures it builds on a solid foundation. Last but not least, it fulfills both
requirements of scanning for annotations and creating files.

KSP uses processors as an entry point to their process. A developer can create and link
an arbitrary amount of processors, and during compilation (since it is a compiler plugin),
each processor will receive access to the scanned source code as well as the possibility
to create additional files. In the library, the processor which handles the whole process
is called CTAProcessor. A processor consists of a processor provider and the actual
processor. During compilation, it first calls the provider to create the processor and
afterwards calls the created processor to execute, whatever is implemented inside the
process function (e.g. search for specific annotation). For a more technical in-depth look
into the processor creation and implementation, see Section 5.1.

The main purpose of the processor is to find all CTATest annotations inside the code
base, since these annotations are the entry point to our processing logic. The processor
then validates the found annotations and passes them on to the visitors, which will be
discussed in the next section. Additionally, the processor is also responsible for managing
the debug mode and its accompanying logging functionality.

4.4 Visitors
To ensure a common understanding before deep diving into the different visitors, a small
introduction to the visitor design pattern seems appropriate. In general, this pattern is
used to separate the algorithm used to traverse and perform operations on data structures
from the data structure itself. It is useful when working with complex data structures that
may have different types of data that need to be processed in different ways, as it allows
for the addition of new operations without modifying the underlying data structure. This
pattern is especially useful when working with hierarchies of objects and is commonly
used in parsers and compilers.

In a more concrete context, the code base is scanned and turned into a traversable data
structure by KSP. This data structure has the typical accept function of the visitor
pattern, which enables visitors to work on the data. In the case of KSP, the visitors
implement an interface, which allows defining operations for every type of data in the
data structure (e.g., a function, a parameter, ...). A simple pseudo code example can be
seen in Listing 4.5.

Listing 4.5: Visitor Pattern Example
c l a s s Function {

// f i e l d s and methods f o r Car
void accept ( V i s i t o r v ) {
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v . v i s i t ( t h i s ) ;
}

}

c l a s s Parameter {
// f i e l d s and methods f o r Car
void accept ( V i s i t o r v ) {
v . v i s i t ( t h i s ) ;
}

}

i n t e r f a c e V i s i t o r {
void v i s i t ( Function f ) ;
void v i s i t ( Parameter p) ;

}

c l a s s V i s i t o r Imp l implements V i s i t o r {
void v i s i t ( Function f ) {
p r i n t ( " V i s i t i n g func t i on : " + f ) ;
}
void v i s i t ( Parameter p) {
p r i n t ( " V i s i t i n g parameter : " + p) ;
}

}

This example has a class representing a function and a class representing a parameter.
Both classes implement an accept function, which simply calls the visit function of
the visitor passed as an input argument. The visitor itself implements a visit function
for each data type it supports. If a developer now calls accept on either a function
or class, it will call the respective visit function in the visitor. This library has three
different visitors, each with their own respective task to complete. As described in
the previous section, the first visitor that is called is the TestDeclarationVisitor,
which will be discussed in the next section. A small detail is that the function which
searches for annotations does not return the annotation itself, but the object it resides
on. In the case of the library, all CTATest annotations reside on a function, thus the
KSFunctionDeclaration class, which is a class representing a function in KSP, is the
entry point for the TestDeclarationVisitor.

4.4.1 Test Declaration Visitor
The first step in designing this visitor is to define its role and responsibilities. It is the
entry point of our processing logic and as such is also the mastermind of the whole
process, which delegates data to multiple sub components and ensures all the data is
transformed into an executable test.
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As stated above the first interaction is when the visit function for KSFunctionDecla-
ration is called. This function then triggers the following process:

1. As stated above the visitor receives the element the annotation resides on. Thus
the first step is retrieve all annotations present on the element and filtering out
all unnecessary annotations. This process also supports that one element contains
multiple CTATest annotations.

2. Next the visitor extracts all information present in the annotation, namely the
input classes and the container class.

3. All input classes are sent to the ConstraintAnnotationVisitor, which will be discussed
in more detail in Section 4.4.2. This visitor extracts all information present in the
input class and collects the result in an input parameter model. Important to note
is that although this process suggests that multiple input classes are possible, this
PoC currently only supports singular input classes. To provide proper multi input
class support, some implementations which currently assume a single input class
need to be adapted and additional challenges need to be overcome.

4. The resulting input parameter model is sent to the test generation tool, which
generates a test set out of the IPM. More details about this process will be discussed
in Section 4.6.

5. As a last step the test set is combined with additional information e.g. IPM and
sent to a function which then converts the given information into executable tests.
More information about this process will be provided in Section 4.6.

A more in depth implementation of this visit function can be seen in Section 5.2.

This concludes the explanation about the process of converting a single CTATest
annotation into an executable test. Yet again this explanation is still very high level in
some areas of the process and a lot is passed to additional components, which will be
discussed in later sections.

4.4.2 Constraint Annotation Visitor
As described in the previous section, this visitor is called for each input class referenced
in the CTATest annotation. The main purpose of this visitor is to parse the passed
input class and create a complete input model to enable the test set generation process.
One of the big differences between this visitor and the previous one is that this visitor
exchanges data. As explained in the previous section, an input model class is created
and passed into this visitor. This visitor also returns the input model class at the end.

The decision to create the input model class and use a different visitor implementation
was made due to multiple reasons. The first reason is to create a single class that holds
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all definitions of an IPM for one CTATest. Since the class is created before starting
the parsing process, this can also be easily extended to support multiple input classes,
since this visitor only adds constraints and parameter definitions instead of creating a
complete new IPM during each run. The biggest challenge about this transition would
be to rework the way the finalized test set is translated back to the initial class. More on
this process will be discussed in Section 4.6.

Another reason was the need to transfer data between different visiting functions, as
well as the need for returning the parsed data back to the first visitor. Thus, the input
and return value of this visitor is the input model class, which is also reflected in the
function declaration, which has a return type and non-void data. All these decisions and
requirements led to the final implementation of the input model class, which can be seen
in Listing 4.6.

Listing 4.6: Input Model Class Implementation
c l a s s CTAInputModel ( va l f i leName : CTAFileName) {

/∗∗
∗ L i s t o f Value Const ra in t s .
∗/
p r i va t e va l parameters : MutableList<CTAAbstractParameter> =

mutableListOf ( )
/∗∗
∗ L i s t o f I f Cons t ra in t s .
∗/
p r i va t e va l c o n s t r a i n t s : MutableList<CTAConstraint> =

mutableListOf ( )
/∗∗
∗ Values used to t r a n s f e r data between v i s i t o r s .
∗/
p r i va t e var parameterType : S t r ing = " "
/∗∗
∗ Values used to t r a n s f e r data between v i s i t o r s .
∗/
p r i va t e var name : S t r ing = " "

// g e t t e r and s e t t e r
}

The implementation is rather simple, revolving around four fields. The parameters and
constraint fields each respectively hold a list of all parameter and constraint definitions.
The parameterType and name field are used to transfer data between visitors and are
used to enable validation between the annotation definition and the annotated parameter.
A more in-depth look at this topic will be given later in this section. An interesting
thing to note about the data transfer fields is that the setter always sets both fields since
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they are meant for temporary information transfer, and the getter cleans the field upon
reading. Another interesting thing to note is that although the constraints class is a
simple class containing the string constraint and nothing more, the parameter class is
more complex.

Since the parameters can be quite different, as explained in Section 4.2, an interface was
created which contains the common operations each parameter needs to fulfill, while
the individual functionality could be expressed in the various implementations of the
interface. The interface and an example implementation of one parameter can be seen in
Listing 4.7.

Listing 4.7: Parameter Interface and Example Implementation
ab s t r a c t c l a s s CTAAbstractParameter ( p r i v a t e va l name : S t r ing ) {

ab s t r a c t fun getACTSString ( ) : S t r ing

ab s t r a c t fun ge tVar i ab l eS t r i ng ( ) : S t r ing

fun getParameterName ( ) : S t r ing {
re turn name

}
}

c l a s s CTAIntParameter ( p r i va t e va l name : Str ing , p r i va t e va l
va lue s : L i s t <Int >) : CTAAbstractParameter (name) {
o v e r r i d e fun getACTSString ( ) : S t r ing {

re turn " $name( i n t ) : ${ va lue s . j o inToStr ing ( ) }"
}

o v e r r i d e fun ge tVar i ab l eS t r i ng ( ) : S t r ing {
re turn " $name : $INT_IDENTIFIER"

}

companion ob j e c t {
const va l INT_IDENTIFIER = " Int "

}
}

From the abstract class, it can be deduced that each parameter at least has a name
and implements two functions: getACTSString and getV ariableString. The reason for
these functions will be explained in Section 4.6. The example implementation contains
additional parameters and simply calls the constructor with the mandatory name and
implements the two functions. Since this parameter implementation is split on how the pa-
rameter is defined, this results in five different implementations, namely CTABooleanPa-
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rameter, CTAEnumParameter, CTAStringEnumParameter, CTAIntParame-
ter, and CTARangeParameter. Since the list for parameters expects any parameter
that implements the interface, the range of parameters is easily extendable, since a new
parameter only needs to implement the interface as well as add handling in the few places
where it matters (e.g. parsing annotation to parameter).

This concludes the introduction to the input model class, its inner workings, and the
reasonings behind it. Following this introduction, the next step is to explain how annota-
tions are parsed in the aforementioned parameter and constraint definitions. As explained
in the previous section, each Input Class referenced inside the CTATest annotation is
visited with this visitor. From this follows that the visitKSClassDeclaration function
is the first function invoked, the so-called entry point to this visitor. This function has a
simple job: it searches for all annotations on the class itself, as well as all declarations
(e.g. functions, properties) inside the class. It then visits all found occurrences, relaying
each annotation or declaration into their respective visit function. The implementation
of the visitKSClassDeclaration function can be seen in Listing 4.8.

Listing 4.8: ConstraintAnnotationVisitor - visit Class Declaration function
/∗∗
∗ func t i on implementation r e c e i v i n g a r e f e r e n c e to a scanned
∗ c l a s s and a r b i t r a r y passed data in t h i s case the input model
∗ c l a s s . I t a l s o r e tu rn s the input model c l a s s to enable the
∗ p o s s i b i l i t y o f r e tu rn ing the completed input model .
∗∗/
o v e r r i d e fun v i s i t C l a s s D e c l a r a t i o n ( c l a s s D e c l a r a t i o n :

KSClassDeclarat ion , data : CTAInputModel ) : CTAInputModel {
// pas s ing a l l annotat ion to the c o r r e c t v i s i t o r func t i on
c l a s s D e c l a r a t i o n . annotat ions . forEach { i t . accept ( th i s , data )

}
// pas s ing a l l a d d i t i o n a l d e c l a r a t i o n s ( e . g . funct ion ,
// v a r i a b l e s ) to the c o r r e c t v i s i t o r func t i on .
c l a s s D e c l a r a t i o n . d e c l a r a t i o n s . forEach { i t . accept ( th i s , data

) }
re turn data

}

The annotations are visited since they could represent definitions of the input model.
In general, the visit annotation function contains the main logic of parsing annotations
into input model properties, since all definitions of an IPM are inside an annotation.
The reason for also searching and visiting all declarations is to search for all annotations
inside a class. This means the main purpose of the declaration visiting functions is to
also search for all occurrences of annotations on themselves and pass them to the main
annotation visit function.
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In the current PoC, this visitor searches for annotations on function and property
declarations (parameters). Due to the properties of the visitor design pattern, it is
easy to extend the functionality in searching for more parts of a class if needed, since
simply implementing a new visit function is enough. The visit function for functions is
very similar to the class visit function; the only difference is that it does not search for
declarations anymore, but only annotations. For properties, there is a bigger difference,
since the visit function extracts the type of the property to validate if the annotation
makes sense. To give a concrete example, annotating a boolean value with a CTAInt
annotation does not make sense and will also result in errors later on when the library
tries to assign an int value to a boolean property. Thus, it extracts the type via the
ResolveTypeVisitor, which will be explained in the next section and sends the resulting
type via the temporary data fields inside the input model class to the annotation visit
function to provide the possibility of validating the connection between annotation and
property.

This leads to the next step, which is the visit annotation function. When an annotation
is visited, one of three cases can occur. The first case is that the annotation is unknown
to this library, which results in ignoring the annotation. The other two cases are that
the annotation is either a parameter or constraint-defining annotation. In this case, the
visit function parses the annotation accordingly and adds the resulting definition to the
existing input model class. After every annotation is parsed, the visitor returns the
input model class back to the TestDeclarationVisitor. A more in-depth look into the
implementation of the visit annotation function can be seen in Section 5.3.

4.4.3 Resolve Type Visitor
As explained in the previous section, this visitor has the single purpose of extracting the
type of a property. Fortunately, KSP provides a simple way of extracting this information
by providing a property classKind on every KSClassDeclaration. This is also the
main reason for this visitor, since the ConstraintAnnotationVisitor already has a
visit function for KSClassDeclaration with a different intent. Of course, it is always
possible to navigate through the data structure manually, but honoring the concept of
the visitor design pattern, this simple visitor was created instead.

This visitor simply extracts the classKind property and parses it into a usable format.
The implementation can be seen in Listing 4.9.

Listing 4.9: ResolveTypeVisitor - visit Class Declaration
enum c l a s s ClassKind ( va l type : S t r ing ) {

INTERFACE( " i n t e r f a c e " ) ,
CLASS( " c l a s s " ) ,
ENUM_CLASS( " enum_class " ) ,
ENUM_ENTRY( " enum_entry " ) ,
OBJECT( " ob j e c t " ) ,
ANNOTATION_CLASS( " annotat ion_c las s " )
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}

o v e r r i d e fun v i s i t C l a s s D e c l a r a t i o n ( c l a s s D e c l a r a t i o n :
KSClassDeclarat ion , data : Unit ) : S t r ing {
re turn when( c l a s s D e c l a r a t i o n . c las sKind ) {

ClassKind .ENUM_CLASS −> "Enum"
ClassKind .CLASS −> c l a s s D e c l a r a t i o n . simpleName . a sS t r i ng

( )
ClassKind .ANNOTATION_CLASS −> " Annotation "
e l s e −> "UNKNOWN"

}
}

As seen in the example KSP differentiates between interface, class, enum class, enum
entry, object and annotation. If the passed class is an enum we return Enum, if it is an
annotation we return Annotation. For an actual Kotlin class we extract the class name,
which also includes String or Int. For all other class kinds we return unknown, since it is
a non supported class kind. From this follows that there are two possible error cases,
either the type is an unsupported Kotlin type e.g. Double or the class is an unsupported
class kind in general.

4.5 Test set Generator Connector
After the annotation parsing discussed in the previous step concludes, the resulting
IPM is converted into a file in the format used by ACTS[YLKK13]. Details about the
conversion will be discussed in Section 4.6. The reason why the IPM is needed in said
format is because the CAgen[WKS+20c] command line tool expects the same format
for generating test sets via file input. The alternative, which would be defining the
whole IPM as command line arguments, is discarded due to resulting in poor readability,
comprehensibility, and a potentially extremely long command line command.

The reference to the ACTS configuration file, as well as a reference to the CAgen command
line tool, serves as input for the entry point to this connector. The main purpose of this
connector is to use the previously mentioned inputs, execute the library to generate a
test set, and return the results for further processing. The implementation of the entry
point function generateTestSet can be seen in Listing 4.10.

Listing 4.10: CTAGeneratorConnector - generate test set
fun generateTestSet ( conf igPath : Str ing , l i b r a r y : F i l e ) : F i l e {

va l (command , outputPath ) = generateCommand ( conf igPath ,
l i b r a r y )

va l r e sponse = command . runCommand ( )
va l outputF i l e = F i l e ( outputPath )
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i f ( i sFi leEmpty ( outputF i l e ) ) {
throw FileNotFoundException ( " Generated Tes t se t at

l o c a t i o n : ${ outputF i l e . absolutePath } not found or
empty , Reason : $response " )

} e l s e {
re turn outputF i l e

}
}

The first step is generating the command line command, which will be executed. Ad-
ditionally, an output path is needed, defining where the resulting test set is generated.
Both properties are created via the generateCommand function, which receives the
configuration file path and CAgen file path and returns an executable command and the
desired output path. The command created in this function has this format:

<path-to-library> -t 3 -i <acts config path> -o <output-path> –randomize

First, the absolute path to the library is inserted to tell the command line which tool to
invoke. Afterwards, a strength t of the resulting test set is defined. The strength three
has been chosen as a good balance between test set coverage and computing time. Due
to being a PoC, which aims to automate as much as possible instead of granting a lot
of customization, this strength is not configurable in this library. Next, the path to the
IPM definition is set as input, and the desired output path is set as output. Lastly, the
randomize flag is set to prevent the need of dealing with don�tcare values. Don�tcare
values, depicted by a star in the test set, represent a value which is not relevant for
the coverage in this exact test case, which means any value can be set. The randomize
flag assigns a random value to each wildcard, which removes the need to deal with it in
the library. As an example instead of resulting in Example, 1, true, * it will result in
Example, 1, true, "RED".

This generated command is then executed as a command line command in the runCommand
function. This function simply uses some built-in functionality from Kotlin (Process-
Builder) to execute the command and returns the output of the tool. This output is
needed to return more meaningful error messages back to the developer in case some
definitions are not valid. One of the most common error cases is probably constraints,
since the library relies on the developer to write valid constraints in the format of ACTS.
After the execution of the command, the output file is opened and read to ensure the
execution was a success. If the file does not exist or the file is empty, the library assumes
an error occurred and returns the output of the tool contained in an error message. If
the file exists and has content, it is returned for further processing.
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4.6 File Util
The main responsibility of the File Util is to handle all aspects of file creation, as
implied by its name. The main responsibilities are creating the ACTS format input
model configuration, retrieving the test set generation tool, and transforming all inputs
collected from previous steps into executable tests and generating them. The first two
actions are performed before running the command line tool discussed earlier, while the
last action is the final step in converting annotations to executable tests.

The first action, creating the ACTS format input model, involves a two-step process.
First, a new file is generated and then filled with the translated configuration from the
received input model. The implementation and an example in ACTS format can be found
in Listing 4.11.

Listing 4.11: File Util - ACTS example and generate ACTS file
[ System ]
Name : TestClassCTTest

[ Parameter ]
boolean ( boolean ) : true , f a l s e
enum(enum) : Example1 , Example2
numberWithArrayOfValues ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5
numberWithRange ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5
stringEnum (enum) : RED, GREEN, YELLOW

[ Constra int ]
enum = " Example1 " => stringEnum != "RED"
numberWithRange = 2 => numberWithArrayOfValues = 4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

fun generateACTSFile ( inputModel : CTAInputModel ) : S t r ing {
va l f i l ename = inputModel . f i leName .

getConfigFileNameNoExtension ( )
va l f i l e = codeGenerator . createNewFi le ( Dependencies ( f a l s e ) ,

" " , f i l ename , " txt " )

va l actsTemplate = createACTSTemplate ( inputModel )
f i l e . appendText ( actsTemplate )
f i l e . c l o s e ( )

va l c o n f i g F i l e = codeGenerator . g ene ra t edF i l e . f i n d { i t . name
== inputModel . f i leName . getConfigFileNameWithExtension ( ) }
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? : throw FileNotFoundException ( " Generated Config
F i l e not found " )

re turn c o n f i g F i l e . abso lutePath
}

As seen in the example, the configuration file is very straightforward. The system name
is simply the name from the input model and has no real effect on the creation of the
test set. Next are the parameter definitions, one parameter each line written in the
format <name>(<type>): <valid values>.. At last, the constraints are also inserted one
constraint per line. This should also clear up the need for the getACTSString function
described in a previous section, as it is a simple helper function that automatically
translates an extracted parameter into the expected format.
The function itself first creates a new file with the built-in code generator. Afterwards,
the input model is translated into the needed format and written into the newly created
file. This translation is done via a string template, which is a built-in functionality in
Kotlin. Templating will be discussed later on when it is used more extensively during the
translation to executable tests. In this case, the template simply has the basic structure
of the configuration file and inserts parameters and constraints in the respective areas,
one line at a time.
The second action, which is retrieving the test set generation tool, is a bit special. The
need for this function arises from the need to have the test set generation tool present
during execution. The simplest way would be to expect the developer to have the tool
downloaded and made available in the command line (e.g., via path variable). This
library has a different approach of bundling the tool as a resource and using this resource
for generation. The problem with this approach is that the tool is bundled inside the
JAR during the execution inside another system. Thus, the File Util creates a file and
copies the tool inside this file. On consecutive access, it returns the finalized file. The
advantage of this approach is that the developer doesn’t need to have the command line
tool prepared, while the library can be completely certain that the tool exists in a known
location.
The third action, which is transforming all inputs collected from previous steps into
executable tests, is the most complex of the three actions. It essentially ties all the
information from the previous steps together to create usable test cases. The information
it ties together consists of the list of referenced input classes, the referenced container
class, the generated test set, and a name for the test class. The main challenges this
method has to solve are how to translate the generated test set into usable input data
and how to generate executable tests, which also ties into the research question 2, which
revolves around how combinatorial test suites can be generated from existing Kotlin
sources with annotations and executed in the context of continuous integration. This
topic will also be answered in the following paragraphs.
The function itself is very similar to the generation of the ACTS format configuration file.
It determines a suitable package and file name for the test file based on the referenced
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input classes. Then, a new file is created via the code generator. Afterwards, the test class
content is realized via a template, written into the generated file, and saved. From this
explanation, it can be easily seen that the whole logic to overcome the above-mentioned
challenges lies inside the function that realizes the template. But before designing the
previously mentioned template, additional decisions had to be made. How would the
template result in executable tests that can be executed in the context of continuous
integration?

The basis of the decision was the need for KSP for Gradle [Dav19]. Gradle is a powerful
and widespread build tool in the Kotlin and Java world, which offers a lot of functionality
for dependencies, building, publishing, and much more. A typical Gradle build involves
compiling the codebase and, among other tasks, also running referenced test cases inside
the test package. Besides the build task, Gradle also offers the option to selectively
run the test task, which executes all tests without running a complete build, provided
that the codebase has been compiled before. Additionally, KSP also offers its own task
via Gradle, which executes the compilation task alongside any defined processors. This
results in solid support for continuous integration, as developers can decide to either
simply run a full build, which would compile, invoke KSP, and run generated tests, or
run specific steps as needed, e.g., for an integration test scenario.

This decision leads to the question of how to generate tests that are executable by Gradle
and also recognized as part of the test package. The answer to the first question is using
JUnit 5 tests [GS17]. JUnit is one of the most widespread testing frameworks found in
nearly every Kotlin or Java project, which is a big plus since most developers are familiar
with the framework and no new technology has to be introduced or explained. Regarding
the second question, the solution is to add the folder that houses the generated test files
to the test package to ensure they are found and executed by Gradle. Alternatively, the
generated tests can also be executed manually. This concludes the answer to the research
question of how to generate CT test suites in the context of continuous integration 2.

The above decisions result in the need to create a test template that uses JUnit 5. Since
this template is a lot more complex than the configuration file, the decision was made to
create a TestTemplateSource, which is a class that holds all the needed information to
fill the template. This class has the advantage that all the information needed is inside
a single object, and the possibility to create utility functions enhances the readability
of the template parsing part, as singular functions are called instead of mutating the
data as needed inside the template. This process is realized in the createTestTemplate
function, which creates the source and parses the template. The implementation can be
seen in Listing 4.12.

Listing 4.12: File Util - generate test file
fun createTestTemplate (

t e s t S e t : CTATestset ,
testName : CTAFileName ,
con ta in e rC la s s : CTAFileName ,
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c la s s e sToTest : L i s t <KSClassDeclarat ion >,
part : Int

) : S t r ing {
va l imports = TestTemplateImports ( c lassesToTest , t e s t S e t .

parameters )
va l source =

TestTemplateSource ( t e s tSe t , imports , testName ,
conta ine rC la s s , c l a s s e sToTest .map { i t . simpleName .
a sS t r i ng ( ) } , part )

re turn parseTemplate ( source )
}

The first step of the process is to identify all additional imports this resulting test class
has to import. This involves imports of all input classes, the container class, as well as all
referenced enums. Next, the imports and all additional available information are passed
into the source class. Besides holding and offering all the inserted information, this class
also has two important functions. To understand the need for these functions, a bit more
explanation of the test template has to be done. The overall idea of the test template
was to use parameterized tests, which is a functionality offered by JUnit. Parameterized
tests have a source, which can be various options (e.g. function, CSV file). Each entry
of the source is executed as a test case. What makes these tests special is that they all
share the same implementation, with only the input changing. This is ideal since the
sole purpose of the generated test is to create the input data for a test case and send it
to the oracle and await the decision of the oracle if the test passed or not.

This leads to two possible approaches. One way would be that the parameterized test
receives the CSV test set as source, which means the function starts with a number
of values and the template needs to provide a function that can then translate all the
values to a usable class object. The other way would be to translate the test set during
the processing, which results in a list of class objects as input, enabling the possibility
of simply calling the oracle with the passed input. This PoC decided on the second
possibility since it removes the need for the translating function and improves the speed,
as the test is confronted with already instantiated objects. Either approach has some
size limitation because at one point too many inputs will result in the function becoming
too big (a single method can consist of at most 65536 bytes of bytecodes), which is an
active limitation of Kotlin.

This leads back to the two functions mentioned above. Both functions are used to create
a helper function, which is used to instantiate a class object. This helper function is then
used to create all the test cases for the test. A simplified representation of the template
can be seen in listing 4.13.

Listing 4.13: File Util - test template
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<s t a t i c imports e . g . jun i t , ba s i c k o t l i n funct i ons >
<dynamic imports e . g . input c l a s s , c on ta ine r c l a s s >

c l a s s <c l a s s name> {

@ParameterizedTest
@MethodSource(< t e s t case source >)
fun t e s t i ng <c l a s s name>(<inputs >) {

<invoke orac l e >
< i f o r a c l e negat ive re sponse −> f a i l t e s t >

}

companion ob j e c t {
<t e s t case source> = Stream . o f (

<invok ing he lpe r func t i on with inputs o f one t e s t
case>

<invok ing he lpe r func t i on with inputs o f one t e s t
case>

. . .
)

<he lpe r func t i on which c r e a t e s c l a s s with passed inputs>
}

}

As seen in the template approach, the helper function is created and each test case is
then converted into a class object via the helper function. The stream of these class
objects are then used as input for the parameterized test, where they are passed to the
oracle function. The resulting template are executable JUnit 5 tests. This concludes the
process of how annotations are used to create executable tests. The next section contains
a list of limitations of this library, since this work is still a PoC and is not fully fleshed
out.

4.7 Limitations
There are a multitude of reasons for limitations in this work. Some limitations arise due
to architectural decisions or limitations of used tools. Other limitations are due to being
a PoC, which means some limitations are set knowingly. The main limitations of this
work are:

• Kotlin Using Kotlin brings some limitations, such as the requirement for projects
to use Kotlin and Gradle, along with other additional restrictions.
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– Version - The Java or Kotlin version is a big topic in every system. Thus
the targeted SUT needs to at least have the same Kotlin version as the
library. This is an active limitation of the language/compiler itself due to
different functionalities offered between versions, which could potentially not
be supported in older versions.

– Annotations - Kotlin has great support for annotations, allowing them to
be used on classes, functions, and variables. However, these annotations do
have significant limitations, which have led to unconventional approaches in
the defined format of this work.

• Oracle Problem - This is a commonly known limitation in CT. Most of the time
a proper knowledge of the inner workings of the system is needed to create a proper
oracle. This will also come up later on in Section 6, but inferring how a test case
should behave solely by the input data is often not possible. This fact results in
difficulties for testers to write meaningful oracles without the help of a developer.

• State in OOP - Object-oriented programming (OOP) is a programming paradigm
that organizes code around objects with data and behaviors, promoting code
organization and reusability. Kotlin’s focus on OOP leads to the limitation of
needing state (of previously mentioned objects) in OOP systems, affecting the PoC.
In contrast to typical approaches where input is simply sent against an interface
and each test case is meant to be stateless, tests against function often need some
kind of state setup to make sense. This state is oftentimes also part of a test case,
because depending on the previous state there could be multiple outcomes, thus
it would make sense to also take these possible states into account during test set
generation. Currently the only possibility is to integrate the state variables into
the input class, which is used for generating the test and then extracting the values
from the input class oneself for setup. This clashes with the idea of a developer
creating input classes for functions and annotating them without altering the initial
class. In the future there could be a way to define or generate a state as well.

• Instantiation of a class - At one point or another the generated test has to
instantiate the class with the given test case values to enable the use of it in a
test. In the context of the PoC the class needs to have an empty constructor and
variables have to be reassignable. Other possibilities could have been to either
parse the constructor and decide depending on the structure of the constructor,
or break open variables via reflection to add the values. This would have inflated
the scope and since the instantiation is not the main focus of this work the above
limitation was accepted.

• IPM limitations - In the current PoC the input classes are limited to one class,
which could be easily adapted in future works and was an active decision to limit
the scope of the work. An additional limitation discovered during the evaluation
in section 6 is that there is currently no possibility to create multiple instances
of the same input class. As an example, if the system has a class representing a
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point in a coordinate system and a developer wants to create a test case involving
3 points there is no easy way to do that without creating a class and duplicating
the variables. Although this is also not supported by the test generation tool, it
could be provided and supported by a KSP processor.

• CAgen ACTS limitation - As explained in a previous section CAgen[WKS+20c]
expects the same format as ACTS[YLKK13], but it does not support the full range
of operations. The upside of CAgen is speed, which is very important to not prolong
the compilation process by a lot. If there is ever the need to support the full range
of operations, the change to ACTS could be easily done by changing the tool and
command and simply using the same configuration file. But in the context of
this PoC this is an active limitation, by the decision to use CAgen as a test set
generation tool.
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CHAPTER 5
Implementation

This chapter highlights and explains in depth technical details and processes revolving
around the whole library workflow.

5.1 CTAProcessor
This section contains technical details about CTAProcessor creation and implementation.

5.1.1 CTAProcessor Creation
To create and link a KSP processor the first step is to create a processor, which implements
an interface from KSP called SymbolProcessor. This interface contains a single method
called process, which is then called during the compile process. This method receives
a Resolver as an argument, which is a class that allows to search and access all the
annotations inside the code base. Additionally the code generator which is also provided
by KSP is used as an additional argument for the generator. A basic example of the
processor without functionality can be seen in Listing 5.1.

Listing 5.1: Basic Processor KSP
c l a s s CTAProcessor (

p r i va t e va l codeGenerator : CodeGenerator
) : SymbolProcessor {

/∗∗
∗ @param r e s o l v e r c l a s s from ksp which can be used to search

f o r annotat ions
∗ @return l i s t o f i n v a l i d annotat ions which could be used in

f u r t h e r p r o c e s s o r s
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∗/
o v e r r i d e fun proce s s ( r e s o l v e r : Reso lver ) : L i s t <KSAnnotated>

{
// f u n c t i o n a l i t y

}
}

The next step in the processor creation process is to create a provider. Similar to the pro-
cessor the provider also implements a provided interface called SymbolProcessorProvider,
which contains a single method create. The create function has a SymbolProcessorEn-
vironment as a single input parameter and expects a SymbolProcessor as return value.
The passed environment provides access to classes and information relevant for the
processing process, such as the Kotlin version, compiler version or a code generator. To
implement the create function we used the code generator to create the previously created
CTAProcessor and pass this processor back as return value. The final provider can be
seen in Listing 5.2.

Listing 5.2: Processor Provider KSP
c l a s s CTAProcessorProvider : SymbolProcessorProvider {

o v e r r i d e fun c r e a t e (
environment : SymbolProcessorEnvironment

) : SymbolProcessor {
re turn CTAProcessor ( environment . codeGenerator )

}
}

The last step to create a processor is to link the provider to KSP, which enables KSP to
create and call the processor. To link the provider to KSP a reference to the provider
in a specific resource file is needed. The specific file is located under resources/META-
INF/services/com.google.devtools.ksp.processing.SymbolProcessorProvider and simply
adding package and class name (e.g. tuwien.cta.processor.CTAProcessorProvider) is
enough. This concludes the creation and linking process, from now on KSP calls the
provider during every compilation process.

5.1.2 CTAProcessor Implementation
Next is the implementation of functionality. The actual processing of annotations is done
via visitors which will be explained in depth in the next section. Thus the main purpose
of the processor is to find specific annotations, which are CTATest annotations in the
context of this library, and validate and pass them to relevant visitors. Additionally it
also searches for the debug annotation and creates a relevant Logging Util, which is a
utility class designed to help with logging relevant information, if set. It ensures to only
log if the CTADebug annotation is present and also creates the needed logfile. The
finalized process function can be seen in Listing 5.3 and works the following way:.
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Listing 5.3: Processor process function KSP
1 o v e r r i d e fun proce s s ( r e s o l v e r : Reso lver ) : L i s t <KSAnnotated> {
2 // check i f debug mode i s enabled
3 va l isDebug = r e s o l v e r . getSymbolsWithAnnotation ( " tuwien .

cta . annotat ion . u t i l i t y .CTADebug" ) . count ( ) > 0
4
5 // get a l l CTATest annotat ions
6 va l symbols = r e s o l v e r . getSymbolsWithAnnotation ( " tuwien .

cta . annotat ion . t e s t . CTATest " )
7
8 // proce s s a l l v a l i d CTATest annotat ions
9 i f ( symbols . count ( ) > 0) {

10 va l l o g g i n g U t i l = c r ea t eLogg ingUt i l ( isDebug )
11
12 symbols
13 . f i l t e r { i t i s KSFunctionDeclaration && i t .

v a l i d a t e ( ) }
14 . forEach { i t . accept ( T e s t D e c l a r a t i on V i s i t o r (

codeGenerator , r e s o l v e r , l o g g i n g U t i l ) , Unit )
}

15
16 l o g g i n g U t i l . c l o s e ( )
17 }
18
19 // re turn a l l i n v a l i d symbols f o r p o s s i b l e f u tu r e

p r o c e s s i n g
20 re turn symbols . f i l t e r { ! i t . v a l i d a t e ( ) } . t o L i s t ( )
21 }

• Line 3, 10, 16: Checks if any CTADebug annotations are present with the use
of the getSymbolsWithAnnotation function. Depending if an annotation is present
either a dummy or an actual Logging Util is created. Finally after the whole
annotation processing the Logging Util is cleaned up.

• Line 6, 9: Checks for any CTATest annotations via the getSymbolsWithAnnotation
function. If there are any the annotation process is started otherwise it does nothing.
This also correlates to using CTATest as enable annotation mentioned in Section
4.2.

• Line 12,13,14,20: First it filters out invalid annotations or annotations placed
in unexpected locations, since the CTATest annotation should only be placed on
functions, then it passes each valid annotation to the TestDeclarationVisitor which
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is described in more depth in Section4.4.1. At last it returns invalid annotations to
provide the possibility for other processors to process it.

The logging util itself is a simple wrapper around a logging file, which provides logging
functions which only log, when a file exists. The way the createLoggingUtil function
works is it only creates a logging file if the isDebug boolean is true and thus the logging
util only logs if a CTADebug annotation is present.

5.2 TestDeclarationVisitor
The implementation of the visit function can be seen in Listing 5.4 and works the following
way:

Listing 5.4: TestDeclarationVisitor - visit KSFunctionDeclaration Implementation
1 p r i va t e va l knownAnnotations = l i s t O f ( " CTATest " )
2
3 o v e r r i d e fun v i s i t F u n c t i o n D e c l a r a t i o n ( func t i on :

KSFunctionDeclaration , data : Unit ) {
4 va l functionName = func t i on . simpleName . a sS t r i ng ( )
5 i f ( v i s i t e d . conta in s ( functionName ) ) {
6 re turn
7 }
8 v i s i t e d . add ( functionName )
9

10 func t i on . annotat ions
11 . f i l t e r { knownAnnotations . conta in s ( i t . shortName .

a sS t r i ng ( ) ) }
12 . forEach { i t . accept ( th i s , data ) }
13 }

• Line 4-8: The function name gets extracted and checked against a static list which
contains all previously visited functions. If the function name is contained inside
the list we stop the process since we do not want to process the same function
multiple times. Otherwise we add the function to the list and continue.

• Line 10-12: We extract the list of all annotations present on this function and
filter it to only contain relevant annotation, which are only CTATest annotations
and then accept the remaining annotations with the same visitor, which results in
execution of the visit function for annotations for each CTATest annotation.

This leads us to the visit function for KSAnnotation, which is the function which contains
the logic of processing a CTATest function from start to finish. The implementation of
the annotation function can be seen in Listing 5.5 and works the following way:
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Listing 5.5: TestDeclarationVisitor - visit KSAnnotation Implementation
1 o v e r r i d e fun v i s i tAnnota t i on ( annotat ion : KSAnnotation , data :

Unit ) {
2
3 va l con ta in e rC la s s = ext rac tConta ine rC la s s ( annotat ion ) ? :

r e turn
4
5 va l inputModelClasses = extract InputMode lClas se s ( annotat ion )
6
7 i f ( inputModelClasses . isEmpty ( ) ) {
8 re turn
9 }

10
11 // use one o f the s p e c i f i e d c l a s s e s f o r t e s t i n g f o r name and

package
12 va l testName = extractClassNameAndPackage ( inputModelClasses

[ 0 ] )
13
14 var inputModel = CTAInputModel ( testName )
15
16 f o r ( inputModelClass in inputModelClasses ) {
17 inputModel = inputModelClass . accept (
18 Const ra in tAnnotat i onVi s i to r ( codeGenerator , r e s o l v e r ,

l o g g i n g U t i l ) ,
19 inputModel
20 )
21 }
22
23 va l pathToACTSFile = f i l e U t i l . generateACTSFile ( inputModel )
24 va l l i b r a r y F i l e = f i l e U t i l . g e t L i b r a r y F i l e ( )
25
26 va l t e s t S e t F i l e = generatorConnector . generateTestSet (

pathToACTSFile , l i b r a r y F i l e )
27
28 va l t e s t S e t E n t r i e s = csvReader ( ) . r eadAl l ( t e s t S e t F i l e )
29 va l t e s t S e t = CTATestset ( inputModel . getParameters ( ) ,

t e s t S e t E n t r i e s )
30
31 f i l e U t i l . g ene ra t eTe s tF i l e ( t e s tSe t , testName , conta ine rC las s ,

inputModelClasses )
32 }

55



5. Implementation

• Line 3: Extracting the container class with a helper function, which will be
discussed in more detail in the next paragraphs. If no valid container class is found
the function returns, since without a container class we have neither a SUT nor an
oracle function.

• Line 5-9: Extracting the input classes with another helper function, which will also
be discussed in the next paragraphs. If there exists no input classes the function
returns, since without an input class no input model can be created.

• Line 12-14: Extracting package and class name to use for the auto generated tests
as well as creating an input model class which is a class which represents an input
model and is used during the extraction of parameter definitions and constraints.

• Line 16-21: Iterating over each extracted input class, visiting each entry with
the ConstraintAnnotationVisitor, which processes all parameter and constraint
definition annotations and returns an input model.

• Line 23-24: The previous step extracted the complete input model which is
now ready to be used as input for the test set generation tool. The tool needs a
configuration and the library also needs to know where the tool exists, to call it,
which is done in these two lines.

• Line 26: After gathering enough information to execute the tool, this line executes
the tool and receives the generated test set as a file reference.

• Line 28-29: The retrieved test set file is a CSV file, which is parsed with a CSV
reader library. For this purpose a library named kotlin-csv [doy21] was used. After
extracting all lines of the CSV file the result is saved in the CTATestset.

• Line 31: As the last step a function which generates the actual test file is called
with a combination of the generated test set, input model, container class and a
test name.

The implementation of the container class can be seen in Listing 5.6 and works the
following way:

Listing 5.6: TestDeclarationVisitor - extract Container Class implementation
1 p r i va t e fun ext rac tConta ine rC la s s ( annotat ion : KSAnnotation ) :

CTAFileName? {
2 va l con ta ine r = annotat ion . arguments . f i n d {
3 va l argumentName = i t . name
4 argumentName != n u l l && argumentName . a sS t r i ng ( ) ==

CTA_CONTAINER_ARGUMENT
5 } ? : re turn n u l l
6
7 va l containerType = conta ine r . va lue as KSType
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8 va l c on ta in e rDec l a r a t i on = containerType . d e c l a r a t i o n
9 re turn i f ( c on ta in e rDec l a r a t i on i s KSClassDeclarat ion ) {

10 extractClassNameAndPackage ( con ta in e rDec l a r a t i on )
11 } e l s e {
12 n u l l
13 }
14 }

• Line 2-5: Searching the annotation for the container argument and extracting it,
if there is no argument present the function returns null

• Line 7-13: The declaration of the argument is extracted and a check is performed
if the container argument is indeed a valid class declaration. If the declaration is
valid the function returns class and package name of the container class otherwise
it returns null

The main difference for input classes is that the function searches for a different annotation
argument as well as that input classes are a vararg, which means they are retrieved in a
list. This means the function handles a list instead of a single specific element. Otherwise
the implementation is the same.

5.3 ConstraintAnnotationVisitor
The implementation of the visit annotation function can be seen in Listing 5.7.

Listing 5.7: ConstraintAnnotationVisitor - visit Annotation function
o v e r r i d e fun v i s i tAnnota t i on ( annotat ion : KSAnnotation , data :

CTAInputModel ) : CTAInputModel {
re turn i f ( annotat ion . shortName . a sS t r i ng ( ) ==

CONSTRAINTS_ANNOTATION_NAME) {
par s eCons t ra in t s ( annotat ion , data )

} e l s e i f (KNOWN_PROPERTY_ANNOTATIONS. conta in s ( annotat ion .
shortName . a sS t r i ng ( ) ) ) {

parseValueConstra int ( annotat ion , data )
} e l s e {

data
}

}

To provide better scoping and readability the parsing functionality is split into 2 separate
functions. The parseConstraints function is simpler, since there are less implications.
The implementation can be seen in Listing 5.8. First it searches for the if constraint
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argument, which is the list of CTAIfConstraint inside the CTAConstraints annotation
as described in Section 4.2. It then iterates through each if constraint, extracting the
constraint inside, checking it for unsupported operations (more about this in Section 4.5)
and if no errors occur adding it to the input model class.

Listing 5.8: ConstraintAnnotationVisitor - parse Constraint
p r i va t e fun par s eCons t ra in t s ( annotat ion : KSAnnotation , data :

CTAInputModel ) : CTAInputModel {
va l i fConstra intArgument = annotat ion . arguments . f i n d { i t .

name ? . a sS t r i ng ( ) == IF_CONSTRAINTS }
i f ( i fConstra intArgument != n u l l ) {

va l v a l u e s L i s t = ( i fConstra intArgument . va lue as Li s t <∗>)
. f i l t e r I s I n s t a n c e <KSAnnotation >()

v a l u e s L i s t . forEach { i f C o n s t r a i n t −>
val c o n s t r a i n t = i f C o n s t r a i n t . arguments . f i n d { i t .

name ? . a sS t r i ng ( ) == IF_CONSTRAINTS_VALUE }
i f ( c o n s t r a i n t != n u l l ) {

va l va lue = c o n s t r a i n t . va lue as S t r ing
checkForUnsupportedOperations ( va lue )
data . addConstraint ( CTAConstraint ( va lue ) )

}
}

}
re turn data

}

The property parsing is a bit more complex, since there is validation of the connection
between annotation and property type as well as the diversity of parameter definition
annotations, resulting in the need to write a parser for each specific annotation type.
The implementation can be seen in Listing 5.9. After extracting the type and name
received from the previous visit function, the first step is to verify if the type is known
in this library. Currently the only valid properties to annotate are Int, Enum, Boolean
and String. How this type extraction process works and the need for UNKNOWN is
described in the next section.

Listing 5.9: ConstraintAnnotationVisitor - parse Property
enum c l a s s CTAType {

Int ,
Enum,
Boolean ,
Str ing ,

UNKNOWN
}
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p r i va t e fun parseValueConstra int ( annotat ion : KSAnnotation , data
: CTAInputModel ) : CTAInputModel {
va l ( typePayload , namePayload ) = data . getPayload ( )

va l type : CTAType
try {

type = CTAType . valueOf ( typePayload )
} catch ( e : Exception ) {

re turn data
}

va l va l i da t ed = annotat ion . val idateAnnotatedType ( type )
re turn i f ( va l i da t ed ) {

va l proper tyConst ra int = annotat ion . generateParameter (
type , namePayload )

data . addParameter ( proper tyConst ra int )
data

} e l s e {
data

}
}

If the extracted type is a valid type the next step is to validate if the correct annotation
is set on the correct property via the validateAnnotatedType function. This function
simply checks which type is passed e.g. Enum and verifies if the set annotation is the
correct one e.g. CTAEnum. After this validation is passed the next step is to parse the
annotation to the respective parameter class. This is done via the generateParameter
function, which checks for the type of the annotation and then calls the specific parsing
function for the respective annotation type. The function implementation as well as the
implementation of one specific parsing function can be seen in Listing 5.10.

Listing 5.10: ConstraintAnnotationVisitor - generate Parameter
fun KSAnnotation . generateParameter ( type :CTAType, name : S t r ing ) :

CTAAbstractParameter {
re turn when( type ) {

CTAType . Int −> ctaParameterGenerator . generateIntParam (
th i s , name)

CTAType . Boolean −> ctaParameterGenerator .
generateBooleanParam (name)

CTAType .Enum −> ctaParameterGenerator . generateEnumParam (
th i s , name)

CTAType . S t r ing −> ctaParameterGenerator .
generateStringEnum ( th i s , name)
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CTAType .UNKNOWN −> throw Inval idDataTypeException ( "
Cannot generate Parameter from type Unknown " )

}
}

fun generateStringEnum ( annotat ion : KSAnnotation , name : S t r ing ) :
CTAAbstractParameter {

va l valuesArgument = annotat ion . arguments . f i n d { i t . name ? .
a sS t r i ng ( ) == ENUM_VALUES }

i f ( valuesArgument != n u l l ) {
va l v a l u e s L i s t = ( valuesArgument . va lue as Li s t <∗>) .

f i l t e r I s I n s t a n c e <Str ing >()
i f ( v a l u e s L i s t . isNotEmpty ( ) ) {

re turn CTAStringEnumParameter (name , v a l u e s L i s t )
}

}
throw Inval idAnnotat ionExcept ion ( " miss ing argument on

annotat ion " )
}

While the generateParameter function is a simple when block which checks for the passed
type and calls the relevant parsing function, the parsing function itself is pretty similar
to the parsing function in Listing 5.8, searching for expected annotation arguments and
constructing the respective class with the extracted information. The resulting class is
then added to the input model class as parameter definition and the parsing process is
complete.
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CHAPTER 6
Evaluation

The chosen approach to evaluate the finalized PoC was to integrate it into an existing
code base and write CT test cases for it. This evaluation should ensure that the library
can fulfill the basic use case of defining an IPM via annotations and generating CT tests.
The first step in this evaluation process was to search for a suitable project. As described
in Section 4.7, the project had to be a Kotlin project with a matching Kotlin version
and Gradle. It should be a medium sized codebase project to provide enough content to
write multiple meaningful test cases. After attempting to integrate some projects as a
test it also became apparent that a requirement was that the code base worked with self
defined data structures, since if the code base relied on third party data structures, there
would be no possibility to annotate these data structures. A popular example in the
Kotlin context would be Android apps, since they often work with a variety of predefined
classes and data (e.g. Activities and Intents), which limits the possibility to annotate
and define meaningful CT tests.
The search resulted in the project KotCity [kot18] chosen as evaluation target. As
explained in their README KotCity is a city simulator, which aims to emulate the
excitement and possibilities of previous popular city simulators such as SimCity. The
state of development was still on alpha level during evaluation, which was an upside since
a full blown city simulation would probably be far from a medium size project. Another
upside of this simulation was that it was written from scratch, resulting in an optimal
testing field for the PoC.
The next step in the evaluation was to integrate the PoC into KotCity. Following the
written guide in the README provided in the PoC the integration posed no big hurdles
and went without any major issues. Before starting to annotate and generate CT tests it
was a must to familiarize oneself with the code base and identify potential points which
were deemed worth testing. Luckily the authors of the simulation already wrote some
generic unit tests, which were used as inspiration to choose targets for the evaluation.
The final decision was made to focus on three tests related to different aspects of the city
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simulation,namely a build collision test, a pathfinding test, and an upgrading test. An
overview of the three evaluation tests containing parameter and constraint count as well
as test set size can be seen in Table 6.1. Each evaluation test will be explained in depth
in the following paragraphs.

Testing Evaluation Result
Test Name Parameters Constraints Testset Size
Collision 3 0 5766

Pathfinding 6 6 2945
Upgrader 12 3 6128

Table 6.1: Evaluation Test Results

The first test revolved around the collision of buildings. The simulation always starts
with a clean state, which means the starting point is an empty field of varying size
containing blocks. Each block has a repertoire of commands it can execute and one of
these commands is the build command, which builds a structure of a given type at the
given location. Structures vary in a multitude of properties, one being the size of the
building, which could be only 1 block or multiple. This can lead to collision of buildings
when either attempting to build 2 buildings in the same location or building a larger
building too close to another building. In these cases the latter building should not be
built. This was the content of the first test.

It had 3 parameters, namely the x and y coordinates of where to build and the type of
structure which should be built. Unfortunately there was no class containing all needed
values and for the type there was no class at all, since in all test cases using the type
just wrote a plain text type referencing a JSON file. Thus a helper class was created to
define the IPM and the values were reassigned in the oracle. After annotating the test
with the needed input class and container class, the test set was generated containing
5766 test cases. The annotated class as well as the generated ACTS format configuration
and a sample of the test set can be seen in Listings 6.1,and 6.2. For each coordinate, the
test constructed a building at a given location and then attempted to build a second one
on the exact same spot or too close by. It was confirmed that none of the subsequent
constructions were successful. Beside the needed workaround for the IPM due to missing
definition of properties there were no other issues and all test cases passed without an
issue.

Listing 6.1: Evaluation - Collision Test - Input Class
c l a s s C o l l i s i o n I n p u t C l a s s {

@CTAEnum( va lue s = [ " slum1 " , " slum2 " , " cheap_house " , "2796
_charla_lane " , "1278 _sherman_street " , "277 _irving_place
" ] )
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var bui ldingType : S t r ing = " p l a c eho ld e r "

@CTAInt( from = 0 , to = 30)
var x : Int = 0

@CTAInt( from = 0 , to = 30)
var y : Int = 0

}

Listing 6.2: Evaluation - Collision Test - ACTS format config and sample
[ System ]
Name : CollisionCTACTTest

[ Parameter ]
bui ldingType (enum) : slum1 , slum2 , cheap_house , 2796 _charla_lane

, 1278 _sherman_street , 277 _irving_place
x ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30
y ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30

[ Constra int ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Sample Test Cases :
slum1 , 0 , 0
slum2 , 0 , 0
cheap_house , 0 , 0

The second test revolved around pathfinding in particular finding a way out of the city.
From the referencing test it could be inferred that pathfinding only worked if there was a
road leading out of the city. This resulted in the test case of building a road and then
given a point testing if the pathfinding finds a way out. To define the IPM a helper class
was needed again, since the need for multiple instances of the same type arose. In the
case of the test case multiple points in the city were needed which consist of x and y
coordinates. In total the IPM consisted of six parameters: two parameters describing
x and y coordinates of starting point for pathfinding and four parameters describing x
and y coordinates of starting and end point of the road which is built. Additionally it
consisted of six constraints, which ensured that the generated road was a valid road,
meaning it spanned from one side of the city to another. The resulting test set had 2945
test cases. The resulting input class, ACTS format configuration and a sample of the
test set can be seen in Listings 6.3, 6.4.
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Listing 6.3: Evaluation - Pathfinding Test - Input Class
@CTAConstraints (

CTAIfConstraint ( " xRoadStart $CTEQUALS xRoadEnd $CTIMPLIES
yRoadStart $CTNOTEQUALS yRoadEnd " ) ,

CTAIfConstraint ( " yRoadStart $CTEQUALS yRoadEnd $CTIMPLIES
xRoadStart $CTNOTEQUALS xRoadEnd " ) ,

CTAIfConstraint ( " xRoadStart $CTEQUALS 0 $CTIMPLIES xRoadEnd
$CTNOTEQUALS 0" ) ,

CTAIfConstraint ( " yRoadStart $CTEQUALS 0 $CTIMPLIES yRoadEnd
$CTNOTEQUALS 0" ) ,

CTAIfConstraint ( " xRoadStart $CTEQUALS 30 $CTIMPLIES xRoadEnd
$CTNOTEQUALS 30" ) ,

CTAIfConstraint ( " yRoadStart $CTEQUALS 30 $CTIMPLIES yRoadEnd
$CTNOTEQUALS 30" ) ,

)
c l a s s Path f ind ingInputClas s {

@CTAInt( from = 0 , to = 30)
var xStart : Int = 0
@CTAInt( from = 0 , to = 30)
var yStart : Int = 0

@CTAInt( va lue s = [ 0 , 15 , 3 0 ] )
var xRoadStart : Int = 0
@CTAInt( va lue s = [ 0 , 15 , 3 0 ] )
var yRoadStart : Int = 0

@CTAInt( va lue s = [ 0 , 15 , 3 0 ] )
var xRoadEnd : Int = 0
@CTAInt( va lue s = [ 0 , 15 , 3 0 ] )
var yRoadEnd : Int = 0

}

Listing 6.4: Evaluation - Pathfinding Test - ACTS format config and sample
[ System ]
Name : PathfindingCTTest

[ Parameter ]
xRoadEnd( i n t ) : 0 , 15 , 30
xRoadStart ( i n t ) : 0 , 15 , 30
xStart ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,

15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
30
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yRoadEnd( i n t ) : 0 , 15 , 30
yRoadStart ( i n t ) : 0 , 15 , 30
yStart ( i n t ) : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,

15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
30

[ Constra int ]
xRoadStart = xRoadEnd => yRoadStart != yRoadEnd
yRoadStart = yRoadEnd => xRoadStart != xRoadEnd
xRoadStart = 0 => xRoadEnd != 0
yRoadStart = 0 => yRoadEnd != 0
xRoadStart = 30 => xRoadEnd != 30
yRoadStart = 30 => yRoadEnd != 30

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Sample Test Cases :
0 , 15 ,0 ,0 ,15 ,0
15 ,30 ,0 ,15 ,30 ,0
30 ,0 ,0 ,30 ,0 ,0

Besides the workaround for the IPM, the most apparent limitation which came up during
this test was the oracle problem. This issue is discussed more in depth in Section 4.7, but
the gist is that often in depth knowledge of the system is needed to write a meaningful
oracle. Simply expecting pathfinding to find a path when a road exists, led to a lot of
failing tests. A closer look into the pathfinding functionality was needed to write a proper
oracle which could decide if the current scenario should find a path or not. It turned
out that if no road was nearby, meaning in a 3 block range, the pathfinder just gave up.
Additionally it could not handle diagonal roads; only horizontal or vertical roads were
valid. Taking this into account led to all tests passing.

The third and last test was about upgrading structures. Each tick of the simulation
the buildings had the chance to be upgraded if the building had enough goodwill. This
test had a lot of parameters, because of the need of a state (more about this topic in
Section 4.7). As explained in the first test the city always starts with a clean state, but
many test cases need some kind of setup to make sense. An upgrader upgrading nothing
because the city is empty is not a meaningful test case and while a static setup can be
done easily it would waste the potential of CT to not also reference the setup state in
the input model to cover multiple different starting scenarios. This was also apparent
in the previous test case where the test needed a road, which strictly speaking was also
part of a setup and not of the pathfinding test per se. One way or another a future
work could be to enable the possibility to craft varying states for test cases separated
from the oracle function. In this specific case the parameters represented three buildings
each with their own x and y coordinate, build type and goodwill. Additionally the IPM
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had 3 constraints which ensured that the three buildings would never be in the same
location. The IPM resulted in 6128 test cases. In addition to the state issue this test
also suffered from the oracle problem, since a deeper inspection was needed to find out
multiple structures do not start with level one but higher as well as the upgrader only
upgrading one building although the docs stated it could upgrade up to three buildings.
Taking this into account led to all test cases passing.

This concludes the evaluation of the PoC. Apart from discovering some known and
unknown limitations, which resulted in workarounds, there was overall no case which
could not be modeled or tested and the test generation and execution went without any
issues. The flow of defining the input model with an empty oracle, generating the test
cases and then implementing the oracle and tweaking the IPM felt like a very natural
process.
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CHAPTER 7
Conclusion

In conclusion, while combinatorial testing provides upsides such as guarantees about
input space coverage, it still struggles to make an emergence in the mainstream world
of software development. This work tried to address one of the biggest downsides in
current CT approaches, namely the disconnect between the input parameter model and
the actual targeted software system. The disconnect results in an unnatural change
process for the IPM, which often results in an IPM depicting a different state than the
actual system.

To counteract this issue this work introduced methods to define IPMs and CT tests via
annotations, declare methods under test and define and provide a simple oracle functions,
which ensures IPM and target system are connected. Additionally, a small literature
study was conducted investigating papers tackling similar issues and comparing their
methods to methods in this work. We presented the implementation, challenges and
limitations of the defined methods and evaluated the resulting PoC against an external
target system, which demonstrated that the PoC is capable of annotating meaningful
IPMs, generating CT test suites and defining simple oracles for each test.

This work shows an approach of combining annotations and source code to create IPMs.
It provides an entry point into the topic of creating a connection between IPMs and
targeted systems and enables developers to create CT tests instead of a small count of
experts. The empowerment of developers, as well as the easier setup and change process
could be important steps to push CT into mainstream software development.

There is a lot of potential for future work in my opinion. The most natural idea would be
to refine the PoC. An example of refinement would be the removal of easier limitations,
such as multi class support or testing of web interfaces. Another potential option would
be to use the same approach with another programming language and compare the
performance, upsides and downsides of both approaches. One of the biggest downsides
was the limitation due to programming language, which naturally leads to finding a
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language independent solution as possible future work. It remains questionable if this
can be achieved without sacrificing the current level of automation. There could also be
an investigation if there is another way to enable developers to define IPMs inside their
own system, which has more upsides or fewer downsides than using annotations. Lastly,
the limitation regarding state in OOP systems could be addressed, eliminating the need
for misusing the oracle for setup and cleaning tasks.
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