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Kurzfassung

Anwendungen benutzen Ontologien als Wissensbasis. Da falsch dargestellte Informa-
tionen zu falschen Ergebnissen führen können, kann die Qualität einer Ontologie ein
entscheidender Faktor für den Erfolg der Anwendung sein. Weil der Entwicklunsprozess
einer Ontologie fehleranfällig ist, ist eine Ontologie-Evaluierung notwendig. Es gibt zwar
automatisierte Ansätze dafür, jedoch gibt es Fehler, die Hintergrundinformationen und
menschliches Wissen erfordern. Hier können Human Computation und Crowdsourcing
eingesetzt werden, sodass die Wissensbasis für die Ontologie erweitert und validiert
werden kann.

In der Literatur werden häufige Fehler vorgestellt, die den Entwicklungsprozess betreffen.
Jedoch fehlt eine solche Analyse bezüglich Ontologien, die von Anfängern entwickelt
werden. Darüber hinaus besteht der Bedarf an einer Human Computation Methodik zur
Lösung von Entwicklungsfehler. Außerdem ist es unklar, inwieweit die Gesamtleistung der
Mitarbeiter beeinflusst wird, wenn mehrere Fehlertypen in einem Human Computation
Task vorkommen und wenn die Vielfalt der Fehler von drei auf fünf ansteigt.

Diese Arbeit sammelt zunächst Informationen über häufige Fehler durch eine Literatur-
recherche und nutzt einen Datenvergleich zwischen Anfängerontologien, um praktische
Informationen herauszufinden. Um eine Human Computation Methodik zur Lösung von
Problemen bei der Entwicklung von Ontologien zu finden, wurde der bestehende Ansatz
VeriCoM um einen Ontolgien-Anwendungsfall erweitert. Schließlich wird in dieser Arbeit
gezeigt, wie sich die Leistung der Mitarbeiter bei der Verifizierung von Fehlern verändert,
wenn die Fehlertypen und die Vielfalt der Fehler in einem Human Computation Task
zunehmen. Dies erfolgt durch ein Experiment, das den Prinzipien von Designing the
experimental process folgt.

Die häufigsten Fehler in Anfängerontologien betreffen: Lesbarkeit, Unvereinbarkeit von
Klassen, Nichtdeklaration inverser Beziehungen und Verwechslung von logischem ”und”
und ”oder” (i). Darüber hinaus zeigt der VeriCoM-Ansatz, dass die durchschnittliche
Leistung der Mitarbeiter bei 78% liegt, während die durchschnittliche Geschwindigkeit
bei der Erledigung einer Aufgabe bei 55 Sekunden liegt. Dies beweist, dass der Ansatz
eine hohe Leistung bei der Verifizierung spezifischer Fehler in Ontologien erbringt (ii).
Bezüglich des Experiments, bei einer Erhöhung der Fehlertypen und der Anzahl an
Fehlern pro Task, im Vergleich zu einem bestehen Experiment, sinkt die tatsächliche
Leistung von 92,58% auf 78%, während die Antwortzeit im Durchschnitt bei etwas
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weniger als einer Minute blieb. Trotzdem ist die Gesamtleistung hoch und hat sich nicht
drastisch verändert (nicht mehr als 30%). Dies zeigt, dass Human Computation immer
noch zuverlässig ist, selbst wenn Ontologien unterschiedliche Fehler enthalten, und dass
es sich um einen praktikablen Ansatz für die Evaluierung der Ontologien im Allgemein
handelt (iii).



Abstract

Applications rely on ontologies as knowledge bases and as wrongly represented information
can lead to false outcomes, the quality of an ontology can be a deciding factor for the
success of the system using it. Because the process of ontology engineering is liable to
errors, the need for ontology evaluation arises. While automated approaches exist, there
are still errors which need background information and human knowledge. For such
cases, Human Computation and Crowdsourcing can be applied, such that with the help
of crowds, the knowledge base for the ontology can be enhanced and the existing one
validated.

While common errors are introduced in the literature, an analysis of typical engineering
errors in beginners’ ontologies in practice is missing. Moreover, the need for a methodology
to solve problems regarding ontology engineering with Human Computation arises and it
is not clear, while considering error classification, to what extent is the overall performance
influenced, when having multiple error types in one Human Computation task and when
the variety of errors increases from three to five.

This thesis firstly collects information regarding common errors through a literature
research and uses data comparison between beginners’ ontologies to find out practical
information. Concerning finding a methodology to solve problems regarding ontology
engineering with Human Computation, an existing approach called VeriCoM was extended
to an Ontology Engineering use case. Lastly, the thesis shows how the performance of
workers regarding verification of ontology engineering errors changes, when increasing
the error types and the variety of errors in an Human Computation task, through an
experiment that follows principles of designing the experimental process.

Based on the results, we conclude that: most common errors in beginners’ ontologies are:
readability, disjointness of classes, not declaring inverse relationships and the confusion
between logical "and" and "or" (i). Moreover, the VeriCoM approach shows that the
average performance of the workers is at 78% while the average speed of completing a
task is at 55 seconds, proving that the approach is able to achieve high performance
regarding the verification of specific defects in ontologies (ii). Comparing a previous
similar experiment with this thesis experiment, that has an increased number of error
types of five, but also tasks with multiple errors, respectively, the actual performance
decreased from 92.58% to 78%, while the response time remains on average at slightly
less then one minute. Even though the performance reduced by 14.58%, the overall
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performance is still high and did not changed drastically. This goes to show that Human
Computation is still reliable, even when the ontologies to be verified contain multiple
and different errors, and is a viable approach for Ontology verification in general (iii).
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CHAPTER 1
Introduction

The concept of ontology in Computer Science emerged from the Knowledge Engineering
field [12]. There are a lot of definitions for ontologies, but the original and most cited
one in the literature belongs to Gruber that defined it as an "explicit specification of a
conceptualization" [12]. Ontologies are therefore used as conceptual models and knowledge
representations and are key concepts in the Semantic Web [5].

Since a lot of applications rely on ontologies as knowledge bases, one of the most important
requirement for them is the quality. Many ontologies reuse large-scale existing ones,
because of resources issues such as time, costs, or knowledge [6]. Therefore ensuring that
quality errors don’t propagate in them is crucial. As wrongly represented information
can lead to false outcomes of applications, the quality of an ontology can be a deciding
factor for the success of the system using it.

From the literature, it is known that ontology engineering is error-prone and that
ontologies typically exhibit a number of quality issues. Several authors [19], [23], [28]
have identified common errors and pitfalls regarding the quality of ontologies. Some of
the most frequent ones are missing annotations, missing domain or range properties,
missing disjointness or usage of recursive definitions, but also incorrect use of universal
and existential restrictions or confusion between logical and linguistic "and".

Because the process of ontology engineering is liable to errors, the need for ontology
evaluation arises, which deals with checking the technical quality of an ontology against
a frame of reference.

In order to evaluate ontologies and detect the possible errors, automated approaches
exist. For example, the OOPS tool developed in [19] can detect up to 33 pitfalls
regarding ontology engineering out of a catalogue of 41. For instance, the tool covers the
detection of missing annotations, relationships not explicitly declared, missing domain
or range properties, etc. Nevertheless, there are still errors which cannot be identified
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1. Introduction

automatically, because they need background information and human knowledge: wrong
data types, missing requirements, irrelevant information, overspecialisation etc.

For cases where the automated approaches are not sufficient, Human Computation and
Crowdsourcing can be applied. Human Computation is constituted by "the problems
that fit the general paradigm of computation, and as such might someday be solvable
by computers" together with "the human participation, directed by the computational
system or process" [22]. While Human Computation does not speak about the number of
humans needed to solve a problem, Crowdsourcing is an idea made popular by Jeff Howe
where a high number of people can solve tasks that cannot yet be fully automated, online
[1]. The connection between the Semantic Web and the field of Human Computation has
been synthesized and discussed in [24], where it is explained that the two fields are often
used together, even though it is stressed that much more research is done in showing
how Human Computation is used for Ontology Engineering and Verification, and not
so much the other way around. With the help of crowds, the knowledge base for the
ontology can be enhanced, but also existing knowledge can be validated. The increasing
of knowledge depends on the task and workflow design, on the genre of the crowd, but
also on the usage of hybrid workflows that combine algorithmic and human computation.
Therefore one can look into specific ontology engineering problems and how they can be
resolved through Human Computation and Crowdsourcing.

1.1 Problem Statement
In the literature there is a variety of errors that can occur when engineering an ontology.
While most of them result from empirical analysis, there is still a need to identify what are
the most common ones when considering beginners’ ontologies, with limited experience
in the field, in order to be able to concentrate on these types of errors when needed.

Performing expert evaluations to verify the quality of ontologies is expensive, time-
consuming, and has limited scalability. Human Computing and Crowdsourcing have
already been successfully utilized for verification tasks in the software engineering domain
[24], but there is not yet a defined and established methodology to solve problems
regarding ontology engineering with Human Computation.

As for the ontology engineering problems, the following errors regarding incorrect mod-
elling are identified:

• D1: missing existential restriction

• D2: universal restriction instead of existential restriction

• D3: missing universal restriction

• D4: missing disjointness

• D5: confusion between linguistic and logical "and" (intersection versus union)
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1.2. Research Questions

While the first three engineering problems have already been tackled using Human
Computation in [27], an experimental investigation is still missing of ways how Human
Computation can be used to address D4 and D5. Moreover, it is not clear how the
enhancement of the set of problems will influence the performance of the crowd.

1.2 Research Questions
In order to contribute to the Human Computation and Ontology Evaluation fields of
research, this thesis aims to answer the following research questions:

1. RQ1: What are typical engineering errors in beginners’ ontologies in practise,
compared to the common errors introduced in the literature?
While the literature describes a variety of engineering errors regarding the ontology,
beginners’ ontologies are evaluated in a comparison, in order to acquire information
about common novices’ ontology engineering errors in practice.

2. RQ2: What is a good methodology to solve problems regarding ontology engineering
with Human Computation?
One aim of this thesis is to investigate how incorrect modelling problems can be
solved with Human Computation. For this, a proper approach has to be chosen. In
[25], the authors develop an approach that would solve the problem of verifying
conceptual domain models with Human Computation. The generic approach that
is developed is called Verifying Conceptual Models (VeriCoM) and it was applied
in a software engineering use case, focusing on the verification of an EER diagram,
based on the system specification document. In this thesis the approach will be
adapted to ontology engineering.

3. RQ3: Considering error classification, to what extent is the overall performance
influenced, when having multiple error types in one Human Computation task and
when the variety of errors increases from three to five?
The last part of the thesis focuses on the design of a Human Computation task for
solving the ontology defects D1-D5. Building on top of [27], the variety of errors
increases from three to five and thus the Human Computation task should support
the detection of multiple error types at once. This thesis aims to investigate the
influence on the performance of the crowd when the data item to be verified includes
a single defect against the case when it includes multiple defects.

1.3 Methodological approach
Firstly, as it can be observed in Figure 1.1, this thesis shows what typical engineering
errors in beginners’ ontologies are, considering practical data. For gathering the necessary
information about the topics of Ontology engineering and evaluation, Human Computation
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1. Introduction

Figure 1.1: Research questions, methodologies used and contributions

and Crowdsourcing, literature research is the first methodological approach. In order
to find out which of the common errors of the literature are present in practice, a data
comparison between beginner’s ontologies is going to be performed to answer RQ1.

The second part of Figure 1.1 concerns RQ2. While initial research was done in this
field, the thesis follows up with implementing a Human Computation and Crowdsourcing
approach called VeriCoM on an Ontology Engineering use case, in order to verify
possible engineering errors.

Lastly, the thesis shows how the performance of workers regarding verification of ontology
engineering errors changes, when increasing the error types and the variety of errors in
an Human Computation task, as per Figure 1.1.

Therefore an experiment is conducted where Crowdsourcing is applied. This experi-
ment is an optional part of the Vienna University of Technology (TU Wien) course
188.399 Introduction to Semantic Systems. For preparing the experiment, one of the
important methodologies is designing the experimental process. This will follow
the recommended steps in [29], as shown in Figure 5.1:

• Scoping: deciding on the goals and purpose of the study, settling the performance
of the subject as the studied effect and deciding on the context of running the
experiment as part of the Vienna University of Technology (TU Wien) course
188.399 Introduction to Semantic Systems.
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1.4. Thesis Structure

Figure 1.2: Overview of the experiment process [29]

• Planning: determining which ontology is used as initial data: either a well-known,
correct and easy for beginners ontology, where the errors that are going to be
considered in the experiment have to be manually planted into, or a beginner’s
ontology which already has all the considered errors, but for which a golden standard
has to be made. The tools and platforms for the Human Computation tasks are
chosen and the tasks are designed. The participants are chosen between a layman
crowd and a group of internal students with a level of knowledge in the domain.

• Operation: the execution of the experiment, supported by a strategy of communi-
cation with the students.

• Analysis and interpretation: the collected data is going to be further analyzed in
order to answer RQ3, by using qualitative and quantitative methods to synthesise
the results. The goal of the qualitative evaluation is to analyse the experimental
process while the quantitative methods focus on the results of the students taking
part in the experiment.

• Presentation and package: the results are presented in this thesis.

1.4 Thesis Structure
The thesis is structured in the following chapters:

• Chapter 2 Background and related work focuses on the state of the art in the two
main research areas this thesis concentrates on: Ontology Evaluation and errors
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1. Introduction

that appear in the process of ontology engineering, and Human Computation and
Crowdsourcing.

• Chapter 3 Practical comparison of beginners’ ontologies presents the comparison
of beginners’ ontologies, in order to acquire information about common novices’
ontology engineering errors in practice.

• Chapter 4 Using Human Computation for Ontology evaluation: The VeriCoM
Approach describes the VeriCoM Approach, used for solving the problem of verifying
conceptual domain models, and the adaptation of it on an ontology, in order to
verify it.

• Chapter 5 Ontology evaluation experiment introduces the second practical part of
the thesis, the Ontology evaluation experiment.

• Chapter 6 Conclusion summarizes the findings of this work and states further
aspects for possible future research in the field.
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CHAPTER 2
Background and related work

This thesis concentrates on two main research areas and this chapter covers them in more
detail. First of all, the section 2.1 Ontology evaluation describes the need for Ontology
evaluation, as well as different approaches to achieve this. Afterwards the section 2.2
Common errors in Ontology Engineering presents discussions in literature regarding
which errors are known and commonly noticed. In order to address some of these errors,
the thesis uses Human Computation and Crowdsourcing, covered in section 2.3 Human
Computation and Crowdsourcing.

2.1 Ontology evaluation
While different definitions for ontologies exist, the original and most cited one in the
literature belongs to Gruber and defines an ontology as an "explicit specification of a
conceptualization" [12]. Ontologies are therefore used as conceptual models and knowledge
representations. Not only are they key concepts in the Semantic Web [5], but they are
also used for reasoning and information retrieval [16].

Ontology evaluation presumes checking the technical quality of an ontology against a
reference system. The need for evaluation is given not only because it might help with
the engineering process [17], but also because many ontology reuse large-scale existing
ones, because of resources issues [6], so ensuring the quality of these ontologies play a
crucial role. The evaluation can be achieved through different approaches:

• Topology based: [3], [10], [26] - based on the internal structure of the ontology

• Application based: [11], [18] - based on how a task can be accomplished in an
application that uses the ontology

• Data driven: [3], [7] and Gold standard: [8], [15] - comparison against an unstruc-
tured or structured resource representing the problem domain
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2. Background and related work

• Expert knowledge: [14], [13] - humans assess the quality of the ontology

2.2 Common errors in Ontology Engineering
Concerning the common errors typically introduced during ontology engineering, the
main papers that are used to synthesise them are: [19], [23] and [28].

In [19] two contributions are made. The first one refers to a catalogue of 41 pitfalls that
one can fall into when developing an ontology and the second one regards OOPS!, a
web-based tool for diagnosing potential problems of ontologies, based on a checklist of
common errors. The pitfalls in the catalogue are classified regarding their perspective:
structural, functional or usability-profiling, but also regarding their importance levels:
critical, important and minor. It is important to specify that the levels have no clear
boundaries and can depend on the project they are used on. For the classification of the
importance, both the opinion of experts and OOPS! users was considered. Regarding the
OOPS! tool, it provides mechanisms to diagnose 33 of the 41 pitfalls described in the
catalogue. Those ones that require an external reference framework or human intervention
are not yet automated. For the detection of the problems, three methods were used:
structural pattern matching, lexical content analysis and specific characteristic search.
For some pitfalls, these detection methods might not cover all the possible situations
where a problem could occur, but rather a subset of them. Still, the advantages of OOPS!
are enlarging the list of detectable errors, being in dependent of an ontology development
environment, working with the main browsers and being able to configure the detection
method.

The authors of the second paper, [23], tried to find the most common difficulties of the
OWL description language, especially from the perspective of newcomers. The most
common errors found regard, among others, disjointness, the open world assumption
and domain and range constraints. The disjointness problem appears because users
would naturally assume that two defined concepts are different, unless they had an
explicit common child, but in OWL classes are overlapping until disjointness between
them is added.The next problem has to do with the fact that almost all systems used
by newcomers use a closed world reasoning, so understanding the open world reasoning
is crucial for OWL. In OWL, something is false only if it can be proved to contradict
other information of the ontology. The next major problems are the difficulties regarding
domain and range constraint, because in OWL they are axioms and are used in reasoning,
with potential unexpected effects. Another important topic discussed in the thesis is
the logical problem of understanding the difference between "only" and "some", and that
the first does not imply the other ("Universal restrictions can be satisfied trivially"), the
linguistic versus the logical use of "and" and "or", but also the confusion of "some not"
and "not some". In order to avoid as many errors as possible, a guideline for engineering
ontologies was created. Moreover, the paper proves the idea of understanding expressions
by paraphrasing them in explicit language, so a table of OWL definitions and their
paraphrases was created.
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2.3. Human Computation and Crowdsourcing

The third work, [28] regards knowledge representation languages, used by both computer
scientists and domain experts, in particular Description Logics. Firstly, the difficulties
experienced with using DLs are discussed. These include both understanding and
reasoning with DLs. The second large topic of the paper is an overview of different
theories of reasoning developed by psychologists, like the rule-based or the model-based
logics. Also the ambiguity of natural language is pointed out. Lastly, three different
studies were conducted, where the participants were computer scientists or domain experts
familiar with ontologies. The first two studies concentrated on identifying difficulties
experienced with DLs, while the last study checked the possibility of using alternative
syntactic constructs. This work showed that some of the constructs are ambiguous and
the results of the last study show that using different or additional keywords could affect
the performance of understanding and reasoning with DLs. It is also important to note
that one way of understanding the problems that users might have with knowledge
representation languages is getting insights from cognitive psychology and language
studies.

These three works are used as the base of the selection of ontology engineering errors to
be considered in this thesis’ ontology use case:

• D1: missing existential restriction

• D2: universal restriction instead of existential restriction

• D3: missing universal restriction

• D4: missing disjointness

• D5: confusion between linguistic and logical "and" (intersection versus union)

While these findings have a rather theoretical approach, the practical data comparison in
3 will determine how often the selected errors occur in the ontology engineering process.

2.3 Human Computation and Crowdsourcing
With reference to Human Computation and Crowdsourcing, an extensive work was done
by [21]. Firstly a literature study was made, in order to summarize the definition of the
important terms, but also the factors that influence crowdsourcing projects:

• the human factor (requesters and workers);

• the crowdsourcing process (from different perspectives: the workers, the requesters,
the tasks):

– 1. Define the problem
– 2. Collect data requirements

9



2. Background and related work

– 3. Design the task
– 4. Launch the task online via a crowdsourcing platform
– 5. Analyse the result
– 6. Send rewards to workers

• the types of crowdsourcing tasks;

• but also other factors: user interface, training questions, length of task, ordering of
data in the task.

Afterwards some crowdsourcing experiments were conducted. One of the result was that
the performance of the workers is better when ordering the tasks in unbalanced label
situations. For balanced classes, the performance was better when the relevant documents
were presented first. For unbalanced batches, increasing the number of documents was
find to improve performance, while for balanced batches it lowers it. Also, in absence
of training questions, agreement is higher when relevant documents are shown at the
beginning of the batch. Another outcome is that the results of crowdsourcing projects
are reliable (high level of agreement between workers and experts), repeatable (consistent
over weeks time on the same platform), generally not reproducible (inconsistent on
different platforms) - but they can be if the expectations on payment and rejection rate
across different platforms are equally set. The last important result is that, generally,
the motivation for crowdsource workers is the reward, followed by interest, time required
to complete the task and the difficulty level. Even though requesters agree on a higher
payment, because of channels in between (studied on F8), the workers get less amount of
money for the completed tasks. The demographics and gender influence the tasks and
the requesters should pay attention to this when choosing the channels where the tasks
are available.

While [21] conducted the experiment regarding the ordering of the tasks with relevance
judgements, another paper worked with tasks in the writing domain, [9] focus on the
performance of the workers when ordering the tasks regarding three characteristics:
continuity - same complexity level of the coming microtasks, regarding operations and
content; transitions - transitioning to another complexity; ease-in - starting with simpler
ones to ease into more complex tasks. The experiments showed that regarding continuity,
the workers perform better in low-complexity chains when the same operations are
coming, and better in high-complexity chains when same content is following. For the
transitioning characteristic, they found out that workers perform better when transitioning
to microtasks of the same complexity. Regarding ease-in, the authors state that the
workers were more motivated and felt more "mentally warmed up" if they first completed
microtasks of low complexity before a more complex microtask. These findings show that
the ordering of the tasks is important and can influence the performance of the workers.
The design of this thesis’ experiment was based on the findings and conclusions of [21]
and [9].
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2.3. Human Computation and Crowdsourcing

The authors of [25] developed an approach that solves the problem of verifying conceptual
domain models with Human Computation. While they applied the new approach called
Verifying Conceptual Models (VeriCoM) in a software engineering use case, this thesis
will extend the approach on ontology verification. In order to evaluate the performance
of this new approach, an experiment using Human Computation was conducted. The
participants in the experiment were students of the Vienna University of Technology (TU
Wien), having already knowledge in the software engineering field. After a preparation
stage and a tutorial, the participants had to verify the given model by identifying defects
as part of the Human Computation task. The experiment showed a precision of 73%
when identifying defects and 63% when recalling from a Gold Standard defect set.

The usage of Human Computation for Ontology verification is rather in its preliminary
state. In [20] the author proposes a two-step hybrid human-machine verification process.
Firstly defect candidates are found automatically, afterwards these defects are verified by
crowds using Human computation. The author concentrates on the following 4 types
of defects: Missing disjointness axiom, Confusion between logical and linguistic "and",
Trivially satisfiable allValuesFrom, Missing closure axiom. Considering the fact that
these defects cannot be found automatically, because of missing human knowledge, the
automated detection of defect candidates uses a heuristic approach and has its limitations:
the findings are only possible errors which have to be validated by crowds in a second
step.

A large literature study and a review of a list of papers regarding human-centric ontology
evaluation were made by [27], by investigating the evaluation tasks, their characteristics
and the solution approaches used. Most of the quality issues that require human knowledge
can be classified in the following categories:

• incorrect information - wrong data types, relations, taxonomic structures, trans-
lations

• missing information - missing requirements, relevant concepts, type and direction
of relationships, either in the resulting ontology or in the requirements themselves

• cognitive defects - irrelevant, controversial or contradicting information, polyse-
mous elements

• incorrect modeling - overspecialisation, duplication or wrong usage of restrictions,
"some not" and "not some", classes

Afterwards a list of ontology evaluation tasks that have not yet been approached using
Human Computation techniques was collected. Out of this list, the author selected
the task of ontology restriction verification and proposed for it a Human Computation
approach. This approach was examined in an experiment using the Crowdsourcing
technique with students, similarly to the method that will be used in this thesis. By
building on top of this work, not only will the number of singular error tasks types
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increase from three to five, but also the tasks get up to three different errors together, in
order to check the performance of workers to identify these errors.

In summary, the work of this thesis builds upon prior research in two domains: Ontology
engineering and Verification, especially regarding common errors that can occur while
developing an ontology, and using Human Computation and Crowdsourcing to try to
resolve some of the ontology engineering problems. Firstly, this thesis shows what typical
engineering errors in beginners’ ontologies are, considering practical data. Secondly, while
initial research was done in this field, the thesis follows up with implementing a Human
Computation and Crowdsourcing approach on an Ontology Engineering use case, in order
to verify possible engineering errors. Lastly, the thesis shows how the performance of
workers regarding verification of ontology engineering errors changes, when increasing
the error types and the variety of errors in an Human Computation task.
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CHAPTER 3
Practical comparison of beginners’

ontologies

While the previous chapter concentrates on the common errors found in the literature
regarding Ontology Engineering, this chapter presents a comparison using data extracted
from beginners’ ontologies, in order to answer RQ1.

RQ1: What are typical engineering errors in beginners’ ontologies in practise,
compared to the common errors introduced in the literature?

The chapter contains firstly information about the collection of the data and afterwards
explains the methodologies and tools used for the comparison, together with the results
of the comparison for each of them, respectively.

3.1 Collection of data
In order to exercise their skills regarding modelling an ontology, students of the Vienna
University of Technology (TU Wien) course 188.399 Introduction to Semantic Systems
were given a graded assignment to suggest a semantic application that uses knowledge
graphs and to create an ontology that models the domain for this application. The
application idea could be built upon different domains as Music, Movies, University,
Retail, Mobility etc., as long as there were stated also 5 to 10 competency questions that
the application would be able to answer. While creating the ontology that represents
the selected domain, the students had to make sure that at least 15 concepts and 20
data/object properties, as well as relationships between the concepts are considered.

An example for a solution of the assignment, uploaded by one of the students, is an
application for the administration of a research and working domain in a specific institute
of a university. Therefore, information about the persons working at the institute are
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considered, as well as research projects, activities, courses carried by the institute. Some
competency questions could be "What lecturers are work colleagues?", "Which books were
written by workers of the institute?" or "Which courses are offered by the institute?".

The total of 68 submitted ontologies were anonymised and the level of knowledge of the
students is assumed, because of the field of study and the novice level of the course.

3.2 Methodology and results
For the comparison of the ontologies, two tools were used: the OOPS! tool developed by
[19] and the tool for finding defect candidates developed by [20].

3.2.1 OOPS! Tool
The OOPS! tool was developed in order to automate the finding of ontology engineering
pitfalls. While the authors specify that only pitfalls that do nor require an external
reference framework or human intervention could be automated, and also the detection
might not cover all the possible situations where a problem could occur [19], the results
of the comparison prove what the literature stated already, that ontology engineering is
error prone.

The following pitfalls, identified and explained in [19], were detected on the 68 beginners’
ontologies:

• P02 Creating synonyms as classes: synonyms identifiers show duplicated classes.
Identified in: 2/68 ontologies.

• P03 Creating the relationship "is" instead of using "rdfs:subClassOf", "rdf:type" or
"owl:sameAs": OWL primitives should be used. Identified in: 3/68 ontologies.

• P04 Creating unconnected ontology elements: elements with no relation to the rest
of the ontology. Identified in: 17/68 ontologies.

• P05 Defining wrong inverse relationships: relationships which are not necessarily
inverse are defined as such. Identified in: 4/68 ontologies.

• P07 Merging different concepts in the same class: defining one class with an
identifier composed of more concepts. Identified in: 2/68 ontologies.

• P08 Missing annotations: lack of human readable annotations such as rdfs:label or
rdfs:comment. Identified in: 54/68 ontologies.

• P10 Missing disjointness: lack of disjoint axioms between classes or properties.
Identified in: 23/68 ontologies.

• P11 Missing domain or range in properties: relationships and/or attributes without
domain or range are defined. Identified in: 45/68 ontologies.
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• P13 Inverse relationships not explicitly declared: any relationship, besides symmetric
ones, does not have an inverse relationship defined. Identified in: 64/68 ontologies.

• P19 Defining multiple domains or ranges in properties: multiple domains or ranges
represent the intersection instead of union, respectively. Identified in: 35/68
ontologies.

• P20 Misusing ontology annotations: as for example, an explaining sentence in
"rdf:label" and a word in "rdf:comment". Identified in: 3/68 ontologies.

• P21 Using a miscellaneous class: using a class for classifying instances that do not
belong to any of its sibling classes. Identified in: 4/68 ontologies.

• P22 Using different naming conventions in the ontology: using different naming
conventions in the same ontology. Identified in: 43/68 ontologies.

• P24 Using recursive definitions: a concept is used in its own definition. Identified
in: 16/68 ontologies.

• P25 Defining a relationship as inverse to itself : using inverse instead of symmetric.
Identified in: 1/68 ontologies.

• P26 Defining inverse relationships for a symmetric one: a symmetric relationship
is inverse to self, so cannot be inverse to another relationship. Identified in: 2/68
ontologies.

• P27 Defining wrong equivalent properties: properties defined as equivalent even
though they have different semantics. Identified in: 1/68 ontologies.

• P28 Defining wrong symmetric relationships: relationships which are not necessarily
symmetric are defined as such. Identified in: 3/68 ontologies.

• P29 Defining wrong transitive relationships: relationships which are not necessarily
transitive are defined as such . Identified in: 8/68 ontologies.

• P30 Equivalent classes not explicitly declared: classes which are equivalent should
be defined as such. Identified in: 9/68 ontologies.

• P32 Several classes with the same label: same content in the "rdfs:label" annotation.
Identified in: 1/68 ontologies.

• P34 Untyped class: usage of a class without declaring it as such. Identified in: 1/68
ontologies.

• P35 Untyped property: usage of a property without declaring it as such. Identified
in: 1/68 ontologies.
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Figure 3.1: OOPS! pitfall distribution in beginners’ ontologies

The two pitfalls P10 and P22, that regard the specific ontology as a whole, were found in
33.8% and 63% of the ontologies, respectively.

For the other type of pitfalls that apply to single classes and/or relationships, Figure
3.1 shows the pitfall distribution in beginners’ ontologies: P08, P13, P11, P19, P24 and
P20 have an average of 27, 9.5, 5.5, 2 and 1 occurrences per ontology respectively. The
other pitfalls listed above have an average of occurrences per ontology bellow 1 and are
omitted in Figure 3.1.

To be more concrete, Figure 3.2 shows the histogram of each of the 4 pitfalls with a
median value over 1. It can be observed that most of the ontologies have between 0 and
5 errors regarding missing annotations, an almost equal distribution of errors between 0
and 20 regarding inverse relationships not explicitly declared, between 0 and 2 errors
regarding missing or defining multiple domain or range in properties.

3.2.2 Automatic Defect Candidate Detection

In the thesis "Hybrid Human-Machine Ontology Verification" [20], the author developed
a two step methodology for detecting errors in ontologies. This methodology uses firstly
an automatic defect candidate detection which is afterwards verified through Human
Computation and Crowdsourcing. The detection of defect candidates is made through
a heuristic approach, since the thesis only concentrates on 4 defects which cannot be
found automatically, because of missing human knowledge. As well as the previous tool,
this one also has as limitation the fact that the findings should be considered as "defect
candidates" or possible errors, since they must be validated by crowds in a second step,
because of the need of human knowledge to identify such errors. However, the tool
improves the scalability of the ontology verification process by facilitating the search for
possible error prone locations in the ontology.
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Figure 3.2: Histogram of each of P08, P13, P11 and P19

The following defect candidates, as explained in [20], were detected on the 68 beginners’
ontologies:

• Missing disjointness axiom: same as P10 from Subsection 3.2.1, lack of disjoint
axioms between classes or properties. Identified in: 59/68 ontologies.

• Trivially satisfiable allValuesFrom: using the universal restriction without con-
sidering that is trivially satisfiable, falsely implying an existential restriction too.
Identified in: 15/68 ontologies.

• Missing closure axiom: using the existential restriction without considering a
universal restriction too, falsely implying a Close World Assumption. Identified in:
27/68 ontologies.

Figure 3.3 shows the error distribution in beginners’ ontologies: Missing disjointness
axiom, Trivially satisfiable allValuesFrom and Missing closure axiom have an average of
29, 1.5, and 1 occurrences per ontology respectively. To be more concrete, Figure 3.4
shows the histogram of the Missing disjointness axiom error, the only error found by
the tool having a median value over 1. It can be observed that most of the ontologies
have between 0 and 40 locations where the missing disjointness error could be a problem,
while a few of them seem to not have considered such axioms at all.

The practical comparison presented in this chapter shows that beginners’ ontologies are
error prone and many of the errors can be detected using automated tools. With the
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Figure 3.3: Automatic Defect Candidate Detection error distribution in beginners’
ontologies

Figure 3.4: Histogram of Missing disjointness axioms
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help of the OOPS! tool [19], one can say that the main errors that novices make when
engineering ontologies regard readability (P22 and P08), disjointness of classes (P10),
not declaring inverse relationships (P13) and the confusion between logical "and" and "or"
(P19). The Automatic Defect Candidate Detection [20] heuristic shows that even if some
specific errors cannot be identified automatically, locations in ontologies can be found,
where such an error could be present. Based of the result of this tool, it seems that the
main problem of beginners’ ontologies could constitute the missing of disjointness axioms,
which supports the finding regarding P10 of the first comparison tool.
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CHAPTER 4
Using Human Computation for

Ontology evaluation: The
VeriCoM Approach

This chapter answers RQ2 by investigating how incorrect modelling problems can be solved
with Human Computation, adapting the VeriCoM Approach on ontology engineering.

RQ2: What is a good methodology to solve problems regarding ontology
engineering with Human Computation?

While the importance of Ontology Evaluation (Section 2.1) and the presence of Common
errors in Ontology engineering (Section 2.2) have been discussed previously, because
the usage of Human Computation to solve such issues is still in a preliminary state, as
introduced in Section 2.3, there are nevertheless missing ways how it can be used to
address ontology engineering problems.

First of all, the errors regarding incorrect modeling of ontologies that are going to be
considered are defined and explained in Section 4.1. Afterwards, Section 4.2 contains a
break down of the previously introduced VeriCoM Approach into stages and an extensive
description of each one of them. Finally, the methodology described by VeriCoM is going
to be applied in Section 4.3 for specific problems of Ontology Engineering.

4.1 Addressed ontology modelling errors
Based on their appearance in the literature [19],[23],[28],[27], but also on their importance
when engineering ontologies and presence in the beginners’ ontologies practical comparison
regarding errors (Section 3), following errors regarding incorrect modelling are identified
and addressed:
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• D1: missing existential restriction

• D2: universal restriction instead of existential restriction

• D3: missing universal restriction

• D4: missing disjointness

• D5: confusion between linguistic and logical "and" (intersection versus union)

In the following, each error will be explained and then exemplified making use of the
well-known Pizza ontology [23], developed for educational purposes, which will also be
used in the practical part of this thesis. For better visualisation of the ontology, the
Visual Notation for OWL Ontologies (VOWL) [2] formalism is used. In order to focus
on the addressed errors, the models are simplified, as it can be seen in Figure 4.1, by
omitting different characteristics as for example the Subclass of relationship of pizzas
to the class Pizza. In this case, the modelled components of an ontology are: a pizza
and its ingredients as classes, the hasTopping relationship between them, the disjoint
relationship between ingredients, universal and existential restrictions as well as the
union or intersection of classes. For the example of a Hawaii pizza, it is a pizza that has
Mozzarella, Pineapple, Tomato and Ham as toppings.

Figure 4.1: Correct modelling of Hawaii pizza

In order to understand the addressed errors, following terms are to be clarified:

• The existential restriction indicates that there must be a property of the specified
type, but other types are not restricted. As seen in Figure 4.2, every instance of
PetLoverTypeB has a Cat pet and may also have other pets.
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Figure 4.2: Existential restriction example

Figure 4.3: Universal restriction example

Figure 4.4: Disjointness example

• Universal restrictions signal that all property values from the specified property
must be of a certain type. All values must be of that type, but a property value
must not necessarily need to exist. The universal restriction does not imply the
existential restriction. Figure 4.3 shows that if instances of PetLoverTypeA have
pets, the pets are always Dog pets. Instances of PetLoverTypeA, however, may not
have any pets at all.

• Disjointness of two (or more, mutually) classes means that they do not share any
instances: there is no instance that belongs to both (all) classes. Disjoint classes
also cannot have any common subclass, because it would be unsatisfiable. As in
Figure 4.4, the animals can be either of type Mammals or Nonmammals.

• The union between two classes is a class that contains instances belonging to any
of the two classes. Animals are the union of Mammals and Nonmammals, as it can
be seen in Figure 4.5.

• The intersection between two classes is a class of instances that belong to both
classes (i.e., shared instances). In the example of Figure 4.6, WorkStudents are
both Workers and Students at the same time.
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Figure 4.5: Union example

Figure 4.6: Intersection example
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Figure 4.7: D1: missing existential restriction on Pizza Hawaii

4.1.1 D1: missing existential restriction, D2: universal restriction
instead of existential restriction

Both the error of missing existential restriction as well as using the universal restriction
instead are caused by assuming that the universal restriction implies the existential one
[23]. Because of the trivial satisfaction of the universal restriction, unwanted effects can
occur.

In the context of the Pizza ontology, Figure 4.7 shows the missing existential restriction
error and, because of the trivial satisfaction of the universal restriction, it allows for
the Hawaii pizza to have no ingredients at all. The similar case of using the universal
restriction instead of the existential one can be seen in Figure 4.8, where as well the
Hawaii pizza could have no ingredients at all.

4.1.2 D3: missing universal restriction

The error of missing universal restriction, also called the "Closure restriction", is caused
by the Open World Assumption (OWA), present in the field of Ontology engineering.
Opposite to other areas like constraint languages, databases, programming languages,
which follow a Closed World Assumption (CWA) - everything that is not described
is considered incorrect - the OWA leads to the fact that the information that it’s not
explicitly modeled is not incorrect, but rather cannot be inferred [23] [28].
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Figure 4.8: D2: universal restriction instead of existential restriction on Pizza Hawaii

Figure 4.9 exemplifies this defect, by allowing the Hawaii pizza to also contain other
ingredients, for example Mushrooms, since only the existential restriction does not assure
a closure.

4.1.3 D4: missing disjointness
While naturally one can assume that two defined concepts are different, in Ontology
engineering classes are overlapping unless disjointness between them is explicitly declared
[23]. This is because of the concept of Open World Assumption explained above. If the
disjointness is not stated, like for example in Figure 4.10, then the Hawaii pizza could
omit the Cheese, since Mozzarella could be a subclass of Ham.

4.1.4 D5: confusion between linguistic and logical "and" (intersection
versus union)

"The ambiguity of natural language" and the fact that "and" and "or" can be interchanged
in the linguistic field - contrary to their logical values - leads to the confusion between
intersection and union [23]. While the union widens the possibilities, the intersection of
classes restricts the range of the instances.

Figure 4.11 shows that the Hawaii pizza cannot exist, since in the context of using
disjointness, the intersection of two disjoint classes is an empty set, corresponding to
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Figure 4.9: D3: missing universal restriction on Pizza Hawaii

Figure 4.10: D4: missing disjointness on Pizza Hawaii
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Figure 4.11: D5: confusion between linguistic and logical "and" (intersection versus union)
on Pizza Hawaii

an unsatisfiable class. Even when omitting the disjointness, the correct definition of a
Hawaii pizza would have all the four ingredients on, and not the intersection between
Ham, Tomato, Pineapple and Mozzarella which would naturally be expected to be empty.

In order to identify the addressed errors in ontologies, expert evaluations could be carry
out. Because such an evaluation is expensive, time-consuming, and has limited scalability,
a Human Computing and Crowdsourcing methodology to solve such problems regarding
ontology engineering has to be defined. In the following section, the VeriCoM Approach
[25] is presented.

4.2 The VeriCoM Approach
To archive the goal of a more broad approach for evaluating conceptual models with
human computation, the authors of [25] first had to formalize the problem at a generic
level. Therefore, they used a function (“), that applied to the model (M ) and the frame
of reference (FR), leads to a set of defects (D).

“(M, FR) æ D

The model M is the union of at least two model element sets, MEC - the concepts
in a domain, and MER - the relations between them. This is a minimal requirement
for M, that can also contain other model elements, like concept attributes, relation
attributes or instances. The frame of reference FR can have different forms, like for
example specific documents or common sense knowledge, but the authors concentrate
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on textual specifications (Spec). An expected model element (eme) appears in the Spec
and is expected in the model M, such that the group of all these elements(EME) is what
has to be verified. The relevant evidence for an eme is a representative text chunk from
Spec where the eme is mentioned and described, leading to the collection of evidence
for all the emes of EME, EVEME,Spec. The function of assigning each eme to a specific
evidence from Spec is defined by the authors as:

“(EME,Spec) æ EVEME,Spec

Because the model M can contain elements that are not present in Spec, the intersection
of the expected and the actual modelled elements contain the emes that have a equivalent
or synonym (¥) in the model.

EME fl ME = {eme|÷me œ ME · eme ¥ me}
The result of the function “(M, FR) is a set of defects (D) in the model textitM with
respect to the Spec. Each defect d œ D refers to an eme and it can be either of type
Missing, if it appears in the Spec but not in M, or of type Superfluous, if it is modelled in M
without being mentioned in Spec. The first type is represented by the set EME\ME, while
the second by the set ME\EME. Other domain specific defect types can be identified.

Having a formal problem, the authors of [25] developed a generic approach for Veri-
fying Conceptual Models (VeriCoM) regarding the textual specification, using Human
Computation. In order for the approach to be applied, the following stages have to be
completed:

• Data Preparation Stage

• Task Design and Execution Stage

• Aggregation Stage

• Evaluation Stage

Data Preparation supposes first identifying the model M and the specification Spec
used for the verification. Afterwards, the model element types that are going to be
verified are set in order to be able to identify the EME, the elements expected to appear
in the model. As stated in the formalization, each eme needs a representative evidence in
the Spec, so the set of evidences EVEME,Spec is defined such that it covers all the emes,
it is small enough to be used in human computation tasks and is enough to explain the
context to the workers. The last step in this stage is deciding over the defect types, if
other defects then Missing and Superfluous are to be considered.

Having the initial stage completed, the next one to follow is the Task Design and
Execution Stage. The task design has to enable the detection of the considered defects.
The authors exemplify this by a design that guides a worker to decide about three
characteristics of an eme:
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• Relevance: is the eme relevant?

• Representation: is the relevant eme missing? A missing defect is encountered; Is a
irrelevant eme represented? A superfluous defect is encountered.

• Correctness and Interpretation: is the relevant eme or a synonym of it represented
correctly?

The result of the execution of the tasks is a collection of individual defect reports (DR),
that connects an eme and its evidence to a defect type, based on the judgment of a
worker (Wx): DR(eme, Ev(eme,Spec), Wx, Dtype).

For the Aggregation, the individual defects are aggregated in order to identify a final
defect type, using an output agreement strategy. Each individual defect of an eme
receives an agreement coefficient (ACoeff ) and the one with the highest or, as the case
may be, above a threshold value, is selected as the final defect type for the eme. In the
case of a tie, the defect is labeled as Undecided and, if the possibility of free-text defects
is given, they must be aggregated manually. The result of the aggregation, Aggregated
Defect Reports, is defined as follows: ADR(eme, Ev(eme,Spec), ACoeff, W1..n, Dtype).

The last stage contains the Evaluation of the gathered data and subsequent of the quality
of the process. In the best case scenario, the collected defects can be mapped to a list of
true (known) defects (TD) and recall and precision metrics could be computed. Otherwise,
the defects could be evaluated manually, perhaps under specific conditions (e.g defects with
high ACoeff ). The output of this last stage are verified defect reports, possibly aligned
to a golden standard (TDk): V DR(eme, Ev(eme,Spec), ACoeff, TDk, W1..n, Dtype).

In [25] the authors exemplified the VeriCoM Approach on a Software Engineering Use
Case. The upcoming section extends the Approach in the field of Ontology Engineering
Verification.

4.3 Applying the VeriCoM Approach on an Ontology
Engineering Use Case

This part of the thesis covers an ontology verification example by using the VeriCoM
Approach explained in Section 4.2. In order to show the adaptation of VeriCoM to an
Ontology Engineering Use Case, the same Pizza Ontology [23] is used, as mentioned in
Section 4.1. For an easier understanding of the use case, the Pizza Ontology is split into
small ontologies, each modelling one type of pizza.

4.3.1 Data Preparation
The first element in the Data Preparation is the Spec. In this specific case, it is a textual
requirements in form of pizza menu item, described in natural language (e.g. "Hawaii
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Pizza contains ham, tomato, pineapple, mozzarella"). The requirement is in the English
language and is considered to be correct, representing the reference document.

The conceptual model M that has to be verified is an ontology describing one type
of pizza, as for example the correct model for Hawaii pizza in Figure 4.1. Formally,
M = MC fi MR fi MRR:

• MC is the set of all classes, e.g. Hawaii(Pizza), Ham, Tomato, Pineapple, Mozzarella,
Union, Intersection;

• MR is the set of relations, e.g. hasTopping, disjoint;

• MRR is the set of relation restrictions, e.g. existential restriction ÷, universal
restriction ’.

The goal of the presented use case is to verify the modelling of Union and Intersection from
MC , the disjoint from MR and all of MRR such that their correct modelling constitutes
the emes. The evidence EVEME,Spec is exactly the pizza menu item, which is small
enough for a human computation task and also gives enough context to the workers,
especially because it is regarded as common knowledge. Regarding the definition of
defect types, in order to guide the workers to identify the expected defects and ease the
aggregation process, the defects described in Section 4.1 are addressed: D1: missing
existential restriction 4.1.1, D2: universal restriction instead of existential restriction
4.1.1, D3: missing universal restriction 4.1.2, D4: missing disjointness 4.1.3, D5: confusion
between linguistic and logical "and" (intersection versus union) 4.1.4.

4.3.2 Task Design and Execution
The tasks are designed in such a way, that the workers see a pizza menu item in natural
language and the ontology representing this pizza in a visual formalism (VOWL). These
two elements are variables, in order to be able to show different pizzas and models in
different tasks.

The question for the workers focuses on whether the menu item is represented correctly
or not by the ontology. If the answer is no, the worker has to choose out of a multiple
choice list of defects the ones that appear in the model. For the sake of completeness
and symmetry, but also to filter out spam answers, for the defects D2, D4 and D5, also
their opposite was added as an answer possibility (D22, D42, D52):

• D1: "One or more existential (÷) restrictions need to be added."

• D2: "One or more universal (’) restrictions need to be replaced by existential (÷)
restrictions."

• D22: "One or more existential (÷) restrictions need to be replaced by universal (’)
restrictions."
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• D3: "One or more universal (’) restrictions need to be added."

• D4: "Disjointness between entities needs to be added."

• D42: "Disjointness between entities needs to be removed."

• D5: "The set operator intersection (fl) needs to be replaced by the set operator
union (fi)."

• D52: "The set operator union (fi) needs to be replaced by the set operator intersec-
tion (fl)."

A free-text field was also present in the task, for eventual comments or other identified
defects.

Figure 4.12 shows an example of a modelled task. The red borders delimit the elements of
the task. Number 1 represents the textual requirements, the menu item, while number 2 is
the model that has to be verified, if it depicts correctly the requirement. As it can be seen
in the red square number 3, the worker is initially asked if the pizza item is represented
correctly. If so, then the list of errors is not shown. If, as in the figure, the item is
not represented correctly, then the multiple selection of errors appears. Afterwards, a
comment section is available. In the same view of the task, a instruction panel is offered
- number 4, and the "Submit" button (number 5) finishes the task while submitting the
answer. The instruction panel offers three tabs, as it can be observed in Figures 4.13, 4.14
and 4.15. The summary 4.13 gives the worker a short tutorial through an overview and
the steps to be executed. Under "Detailed Instructions" 4.14, the worker gets familiarised
will all the concepts present in the model, as well as tips regarding them. Figure 4.15
shows the last tab of the Instruction, that offers an example of correct modelling of a
pizza item, as well as examples for incorrect modelling for each defect respectively.

4.3.3 Aggregation
The aggregation of the data is done for each eme separately following the VeriCoM
approach by using the majority voting strategy. The comments gathered are analysed
manually to identify additional defects or general feedback.

4.3.4 Evaluation
For the evaluation, a golden standard was available, meaning that all the models that
contained defects had a list of defects, respectively. The accuracy of the results and the
response time are evaluated.

4.4 VeriCoM Summary
This chapter firstly addressed specific ontology modelling errors that occur in the field
of Ontology Engineering: missing existential restriction, universal restriction instead
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Figure 4.12: HIT: Mushroom Pizza with defects D2 and D5

Figure 4.13: HIT: Instructions

of existential restriction, missing universal restriction, missing disjointness, confusion
between linguistic and logical "and" (intersection versus union). Because of the occurrence
of these errors, the problem of ontology verification arises. The VeriCoM methodology
offers a way for evaluating conceptual models with Human Computation, by formalizing
the problem and developing a generic approach. While the VeriCoM approach was
exemplified on a Software Engineering Use Case by its authors, in this chapter it was
adapted for an Ontology Engineering one. All the presented stages of VeriCoM can be of
course customised for different Ontology Engineering problems, the example focusing only
on the presented defects applied on a specific, well-known ontology. In order to show that
the proposed VeriCoM solution is a good methodology for solving problems regarding
ontology engineering with Human Computation and to answer RQ2, an experiment was
conducted, which is broadly described in Chapter 5.
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Figure 4.14: HIT: Detailed Instructions
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4.4. VeriCoM Summary

(a) (b)

Figure 4.15: HIT: Examples
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CHAPTER 5
Ontology evaluation experiment

This chapter verifies the VeriCoM approach proposed in Chapter 4 for solving problems
regarding ontology engineering with Human Computation and answering RQ2. The
evaluation of the experiment answers RQ3.

RQ3: Considering error classification, to what extent is the overall perfor-
mance influenced, when having multiple error types in one Human Compu-
tation task and when the variety of errors increases from three to five?

In order to develop the experiment, designing the experimental process follows the
recommended steps in [29], as shown in Figure 5.1, and discussed in the rest of this

Figure 5.1: Overview of the experiment process [29]
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chapter:

• Scoping: defining the problem and the aims

• Planning: defining the design and the instrumentation

• Operation: following the planned design of the experiment

• Analysis and interpretation: evaluating the measurements of the operation step

• Presentation and package: showing the final results of the experiment

5.1 Experiment scoping
The scoping of the experiment focuses on defining the goals, before the planning and the
execution take place, so that the experiment follows the defined path, can be used in the
intended study and the rework is reduced to a minimum[29]. In order to manage this,
one has to define the following concepts [4]:

• Object of study (what is studied?)

• Purpose (what is the intention?)

• Quality focus (which effect is studied?)

• Perspective (whose view?)

• Context (where is the study conducted?).

The Object of study is the VeriCoM Approach applied on an Ontology Engineering
use case. The Purpose is evaluating if it is a good methodology to solve problems
regarding ontology engineering with Human Computation. The main Quality focus is
the performance of the subjects in verifying the ontology and the Perspective is the
researchers’. The Context defines the subjects of the experiment - students of the Vienna
University of Technology (TU Wien) course 188.399 Introduction to Semantic Systems,
with a basic level of knowledge in the domain - as well as the objects of the experiment.
In this case, the objects of the experiment are the errors regarding incorrect modelling
of ontologies discussed in Chapter 4, represented by small ontologies. The experiment
context classification is then a blocked subject-object study [29], since more subjects are
evaluating more then one defect/ontology.

According to the goal template of [4], this experiments’ goal outline is:

Analyze the VeriCoM Approach applied on an Ontology Engineering use case

for the purpose of evaluation
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with respect to the performance of the subjects

from the point of view of the researcher

in the context of students evaluating specific defects in individual ontologies.

5.2 Experiment planning
This phase determines how the experiment will be conducted, by getting from the goal
definition to an experiment design through an iterative process and it is a crucial phase
in designing an experiment. As it can be seen in Figure 5.2, the process contains the
following seven steps [29]:

• Context selection: defining the personnel and the environment

• Hypothesis formulation: formally stating the hypothesis, including a null and an
alternative one

• Variables selection: defining the independent variables (inputs) and the dependent
variables (outputs), including the value ranges and measurement scales

• Selection of subjects: defining the criteria of selection for the subjects

• Choice of design type: deciding on using design principles and standard design
types

• Instrumentation: preparing the objects or artifacts needed, for instance: examples,
guidelines, measurement systems etc.

• Validity evaluation: deciding over the validity of the study considering internal,
external, construct and conclusion validity

5.2.1 Context selection
Since the experiment is part of the Vienna University of Technology (TU Wien) course
188.399 Introduction to Semantic Systems, the participants are a group of internal
students with a level of knowledge in the domain. Other context selection characteristics
of the experiment, as described by [29], are being off-line, since the project is not a
real, large, software project, being of toy size, because of costs, time and understanding
matters and, even though the used ontology is specific, it can be easily generalized to
different ontologies.

As part of the context selection, the decision on the platform on which the experiment is
executed fell on Amazon Mechanical Turk (mTurk)1. This is one of the most widely used

1https://www.mturk.com/
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Figure 5.2: Overview of the experiment planning phase [29]

crowdsourcing platform, that allows for distributed workers to complete tasks virtually.
Requestors have to build their work package in HITS (Human Intelligence Tasks) as part
of a Job. These tasks are independent from one another. mTurk offers requestors the
flexibility of implementing individual user interfaces through HTML, so that the tasks
are fitting as well as possible. The platform allows for a monetary reward for workers
that complete tasks or jobs, as well as a restriction of possible workers based on different
criteria as demographics, language, specific qualifications, etc. mTurk offers a free of
charge Sandbox where HIITs can be developed and tested before they go live and the
experiment will run in such an environment.

5.2.2 Hypothesis formulation
The hypothesis is the basis of the study and it has to be proven or refuted. The null
hypothesis is the one that has to be formulated and after collecting the data, rejected.
By that means, conclusions can be drawn. The alternative hypothesis is the one in favor
of which the null hypothesis is rejected.[29]

For this experiment, which answers two research questions, there are two null hypothesis
to be refuted:

H01 : Using the VeriCoM approach to solve errors regarding Ontology Engi-
neering with Human Computation leads to low performance (under 70%) of
the contributors (or, in other words, VeriCoM is not a good methodology for
these type of problems).
H02 : Considering error classification, the overall performance changes drasti-
cally (over 30%), when having multiple error types in one Human Computa-
tion task and when the variety of errors increases from three to five.
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Therefore, there are two alternative hypothesis, answering the RQ2 and RQ3 respectively:

H1 : The VeriCoM approach is a good methodology to solve problems
regarding ontology engineering with Human Computation, because of the
high performance (over 70%) of the workers.
H2 : Considering error classification, the overall performance does not change
drastically (over 30%), when having multiple error types in one Human
Computation task and when the variety of errors increases from three to five.

There are two types of risks when doing hypotheses testing: type-I-error which proves
the null hypothesis to be true, and type-II-error which consists of not being able to refute
the null hypothesis. These risks have to be considered when planning an experiment.[29]

5.2.3 Variables selection
Independent variables can be changed and controlled in the experiment and they have
effects on the dependent variable. The dependent variable is derived directly from the
hypothesis, and while choosing the dependent variable, the measurement scale and range
are also determined.[29]

As independent variable for this experiment, the number of errors in each task was
considered. This means that the models to be verified by the workers in a task had
different number of errors, respectively. The dependent variable is the accuracy of the
results, or more precise the percentage of correct responses, as well as the speed of the
verification.

5.2.4 Selection of subjects
According to [29], the selection must be representative for that population and the
sampling can be either a probability or a non-probability sample. The difference is that
for the first one, the probability is known, while for the second one unknown. The size of
the sample also impacts the generalization of the conclusions.

As stated above, the students of the Vienna University of Technology (TU Wien) course
188.399 Introduction to Semantic Systems were the subjects of the experiment. One
of the reasons for choosing internal students over a layman crowd is because a basic
knowledge of ontologies and possible errors is required, in order to fulfill the tasks. Not
only would this be hard to require from laymen workers on a crowdsourcing platform, but
it would also be hard to filter out the spammers. The students of the course had to choose
if they attend the experiment or not, and were given extra points in the above-stated
course, depending on the participation and the quality of work (over 50% score) resulting
from the experiment.

There were 61 subjects that accepted participating in the experiment, all attending
the course 188.399 Introduction to Semantic Systems of the winter term 2021, master
students of the following study programs: Data Science, Business Informatics, Informa-
tion & Knowledge Management, Medical Informatics, Software Engineering & Internet
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Computing. Even though it was expected for them to have at least basic knowledge on
the subject, a self-assessment test and a qualification test were conducted as part of the
pre-study, in order to ensure this basic knowledge.

The self-assessment test is a subjective way to qualify the subjects. They were asked
to rate their English language skills, their experience with formal logic, model-driven
engineering, ontology modelling and web-based knowledge representation languages.
According to [28], previous knowledge in this field has an impact on the accuracy of the
interpretation, so for measurement purposes, the same scale was used:

• 1 - novice: no knowledge

• 2 - beginner: little knowledge

• 3 - intermediate: some knowledge

• 4 - expert: expert knowledge

Appendix Appendix A: Self Assessment Test contains the entire self-assessment test,
which was provided as a Google Form2 to the experiment subjects. Figure 5.3 shows the
summary of the subjects answers. While not all the participants took the self assessment
test, one can say that almost all participants have some or expert knowledge of the
English language, which is needed in order to understand the tasks of the experiment.
Regarding the assumed basic knowledge in the discussed field, the majority of the subjects
have intermediate experience with Formal logic and Model-driven Engineering, while
the vast majority have at least little knowledge over Ontology Modelling and Web-based
knowledge representation languages, which is both explainable due to them being master
students in the stated IT programs.

In order to have also an objective view over the base knowledge of the subjects, a manda-
tory qualification test was conducted, depicted in Appendix Appendix B: Qualification
Test. The Sections 1,2 and 3 of the Quality Test test the levels beginner, intermediate
and expert respectively. Section 1 briefly checked the understanding of the main model
components (classes and relations), as well as the understanding of the universal and
existential restriction, and the ability to recognize them in a graphical representation.
Section 2 focuses on the implication of ontology axioms and restrictions, while Section
3 covers the idea of reasoning with ontology models, as well as comparing and relating
models to one another. The subjects were able to score 4 points per section, and the
algorithm for the classification worked as following:

• scorePerSection: the score of the subject per Section, with 1 point for each correct
answer

• scoreTotal: the sum of the scores of each Section
2https://www.google.com/forms/about/
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Figure 5.3: Background knowledge of experiment subjects as per self-assessment

• grading:

– any scorePerSection < 3: beginner
– scorePerSection for Section1 >= 3 and scoreTotal >= 4: beginner
– scorePerSection for Section2 >= 3 and scoreTotal >= 8: intermediate
– scorePerSection for Section3 >= 3 and scoreTotal>= 10: expert

After analyzing the participation in the Qualification Test, 45 subjects continued the
experiment. Figure 5.4 shows that most of the participants were qualified as beginners
by the above explained algorithm, almost a third as expert and the rest as having some
knowledge in the field, determining the assumed basic knowledge of the students, in order
to be able to participate in the experiment.

5.2.5 Choice of design type
Designing the experiment plays a key role in proving or refuting the hypotheses and also
influences directly the analysis of the data [29]. The existence of general design principles
[29] eases the conception of an experiment:

• Randomization - applies for objects, subjects and the order of the tasks, in order
for the observations to be independent from specific factors
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Figure 5.4: Background knowledge of experiment subjects as per qualification test

• Blocking - eliminating a specific factor that has an effect on the result in which one
is not interested

• Balancing - each tasks should have an equal amount of subjects

In this experiment, the principle of randomization is used: the order of the tasks for the
subjects is randomized, and as a consequence the number of errors in each task.

While there are different standard design types, as explained in [29], the one that fits
most is one factor with two treatments: in order to extend the experiment of [27] and
prove H2: Considering error classification, the overall performance does not change,
when having multiple error types in one Human Computation task and when the variety
of errors increases from three to five, the factor of this experiment is the number of errors
per task and the treatments are the new and the old type of questions and errors. While
using a paired comparison design, the precision of the experiment of [27] is increased by
expanding the error types and by changing the single error tasks into mixed error tasks,
such that a conclusion regarding H2 can be drawn.

5.2.6 Instrumentation
There are three types of instruments for an experiment [29]: objects, guidelines and
measurement instruments.
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An object of the experiment is the ontology used as initial data. This had to be determined:
either a well-known, correct and easy for beginners ontology, where the errors discussed
in Chapter 4 have to be manually planted into, or a beginner’s ontology which already
has all the considered errors, but for which a golden standard has to be built. In order to
compare the results with the results of [27], the decision fell on using the same ontology:
the well-known Pizza ontology [23], developed for educational purposes. The defects D1
to D5 were manually planted into the ontology and the experiment tasks were built.

Regarding guidelines, there were a number of resources available:

• presentation slides containing information about the context and the motivation of
the experiment, the topic, the tools and platforms used, the reward for attending
and the timeline;

• a Google Site3 containing the presentation, extra information, prerequisites and
checklists;

• a tutorial for the crowdsourcing platform, as part of the Experiment operation 5.3;

For the measurement, the answers are collected by the used platforms and are available
for download, analysis and interpretation in a text file format (CSV).

5.2.7 Validity evaluation
The results of the experiment should have an "adequate validity" for the population
of interest [29], so threats to the validity must be evaluated, for each step of drawing
conclusions:

• Conclusion validity: there should be a statistical relationship between the treatment
and the outcome

• Internal validity: the relationship between the treatment and the outcome should
be causal

• Construct validity: the treatment and the outcome have to reflect the construct
(the theory)

• External validity: concerns the generalization of the study

An example for a threat to the conclusion validity of the experiment could be the number
of errors in a task being to low, but since the experiment has different tasks with different
occurrences of errors, this should not affect the conclusion validity. Regarding internal
validity, a threat could be that the Pizza ontology used might be too simple, so that the
number of errors in a task or the error types do not make a difference. Since most of

3https://workspace.google.com/products/sites/
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Figure 5.5: Experiment operation steps

the participants have beginner knowledge in the field, this threat should also be resolved.
For construct validity, the choice of the specific defects might be a threat to the change
of performance, but they are various and could stand as a good example for Ontologies
in general. The last concern is the external validity and an example for a threat could be
inappropriate subjects, which should also not be the case, since the subjects had to pass
a self-assessment and a qualification test in order to attend the experiment.

5.3 Experiment operation
As explained by [29], there are three steps in the operation of an experiment:

• Preparation

• Execution

• Data validation

For this thesis’ experiment, these steps can be seen in Figure 5.5 and are going to be
discussed bellow.

5.3.1 Preparation
The first step was to prepare the data for each phase the subjects are going through.
Firstly, the questions for the Self-assessment test were prepared, as described in Chapter
5.2.4. Since the Self-assessment is a subjective way to find out the knowledge of the
subjects, a Qualification test 5.2.4 was needed and the decision fell on preparing this test
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in the same platform as the experiment itself, Amazon Mechanical Turk, described in
5.2.1.

Afterwards, a Tutorial for the experiment was developed, in order for the subjects to get
a first impression on how the tasks are designed, how the platform is working and what
is to be expected of the experiment. The tasks of the Tutorial followed the designed
explained in Chapter 4.3.2, but the ontology used was a simple Wine ontology with a
few wine types and a few grape sorts.

For the experiment itself, firstly the data for the tasks was prepared. Using the Pizza
ontology and the defect errors explained in Chapter 4.1, 30 tasks were created, according
to Chapter 5.2.6, as following:

• 3 tasks containing D1 only

• 3 tasks containing D2 only

• 4 tasks containing D3 only

• 2 tasks containing D4 only

• 2 tasks containing D5 only

• 2 tasks containing D1 and D4

• 2 tasks containing D1 and D5

• 2 tasks containing D2 and D5

• 2 tasks containing D3 and D4

• 2 tasks containing D2, D4 and D5

• 6 tasks containing no defect (correct modelling)

For each mTurk Job: Qualification Test, Tutorial and Experiment, individual HTML
files were created, in order to achieve proper user interface as explained in Chapter 4.3.2.

Regarding the Post-Study phase, Appendix Appendix C: Post-study Questionnaire
contains the entire feedback questionnaire for the students, which was provided as a
Google Form4. They also got feedback in form of an e-mail, in which their responses
were analysed. This feedback e-mail is discussed in Chapter 5.3.3.

The resources explained in Chapter 5.2.6 were prepared and the students were asked to
make sure they have as prerequisites:

• a Google Account5: for the Self-assessment test and the Feedback Questionnaire
4https://www.google.com/forms/about/
5https://accounts.google.com/signup?
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• an Amazon Account6 and an Amazon Mechanical Turk Sandbox Worker Account7:
for the Qualification test, the Tutorial and the Experiment itself

5.3.2 Execution
For the execution itself, the students were split into two slots and got all the information
regarding the experiment one hour before the start, per email. They were required to
complete, in order, the steps presented in Figure 5.5: firstly the Self Assessment test, then
the Qualification test, the Tutorial example, afterwards the Experiment tasks themselves
and lastly the Post-study feedback. The time-frame for all the steps was two hours which
could be split as desired. To ensure a smooth communication and support, the students
could join a Zoom8 meeting for any questions or problems during the experiment. The
data collection was done automatically by the specific tools in each step and monitored
live.

5.3.3 Data validation
The automatic collection of the data during the experiment allowed a live monitoring
and first validation. Nevertheless, a script was written to interpret the data, validate it
and give a feedback to each student participating in the experiment, around one hour
after the end of the expeiment. As it can be seen in the feedback template below, each
student got informed about their submission, level, correct answered questions, majority
agreement and achieved points:

Dear X X,

Thank you for participating in the Ontology Verification Quiz
within the Introduction to Semantic Systems Course!

We have automatically assessed your submitted verifications by
comparing these with our ground truth data as well as with the
judgements of your fellow students participating in this Quiz.
Remarks added as comments will be analysed manually after the
Quiz.

Based on this automatic assessment, your performance, per task
is as follows:

Self-Assessment Test: XXXXX (submitted/not-submitted)

6https://www.amazon.com/
7https://requester.mturk.com/signin_options
8https://zoom.us/
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Qualification Test
You answered XX/11 questions correctly. This has categorized
your knowledge as XXXXX (’beginner’/’intermediate’/’expert’)
in Ontology Modelling.
As a reminder, your own assessment in the self-assessment test
was that you consider yourself a XXXXX (’novice’/’beginner’/
’intermediate’/’expert’) .

Tutorial: X/7 HITs were submitted.

Quiz:
Submitted HITS: XX/30
You answered XX% correctly, which is XXXXX (above/bellow) the
average performance of students in the same group.
Feedback Form: XXXXX (submitted/not-submitted)
We estimated that you verified XX ontology restriction axioms
correctly, which makes your defect detection precision XX%.

For XX% of the ontology models you assessed, you were in
agreement with the majority of the other students who evaluated
these models.

For participating actively during the workshop, you will
receive X points for participation and X points for the quality
of the work.

Thank you again for participating in this workshop and
supporting our research!

Best regards,
Your ISS Ontology Verification Quiz Team

In the few cases where a step of the experiment was missing, either the respective student
got informed to complete the missing step while the experiment was on going, or they
responded to the feedback email that something was missing. This allowed immediate
correction of incomplete data.

5.4 Experiment analysis and interpretation
Following [29] in order to analyse and interpret the data, firstly it has to be described
and then reduces to a data set of valid data. Afterwards the data is examined in accord
with the hypothesis.

49



5. Ontology evaluation experiment

The students were informed that all the steps shown in Figure 5.5 are to be completed.
In order to link the results to the students, for them to get the extra points for the course,
the participation to the Qualification test was required. Also, participating in at least
one more step besides the Qualification test and the experiment itself was mandatory
to get participation points. These requirements filtered out subjects which were not
planning to thoroughly participate in the experiment.

After reducing the data to a valid data set, there was a total of 1293 responses for 30 tasks.
The table 5.1 shows the data for each task: the number of responses, the correctness per
task, the average response time, as well as the accuracy of the majority, which is 100%
for all the tasks.

The two dependent variables to be verified are, as described in Chapter 5.2.3, the accuracy
of the results, better said the percentage of correct responses, as well as the speed of the
verification. The overall accuracy was at 78% and the average response per task took
around 55 seconds. Figure 5.6 shows how the accuracy remains more or less constant over
all the 30 tasks of the experiment, being already at a relative high level. The time that
subjects took to complete the tasks can also be observed in Figure 5.6: it was initially
slightly higher, which can be explained by the subjects still getting used to the platform
and tasks, but gets shorter and normalized over the time, afterwards remaining constant
except for one singular point. This means that the students got better with time in
identifying the defects, since the accuracy remained high, but the time to complete a
task shortened.

While resolving the tasks, the subjects could write a comment regarding that specific task.
Most of the comments were a justification for the chosen answer. Some of the comments
concerned defect D5 and the correct answer for that: "The set operator intersection
(fl) needs to be replaced by the set operator union (fi)." The subjects were missing
an "Add an union operator" answer possibility, probably misunderstanding the above
written possibility. One comment was stating that the answer possibility for defect D4:
"Disjointness between entities needs to be added." was not stating if it applies for two or
all the classes. Some of the models were found "confusing" or "not readable", because
there were a lot of classes and relationships between them and the models looked crowded.

In order to get feedback on the experiment, a Post-study questionnaire presented in
Appendix 6.2 was available. The questions covered:

• the usefulness of the tutorial, the instructions and the examples

• the awareness regarding the chosen defects

• the difficulty level of the tasks

• the understanding of the concepts (the existential and universal restriction, dis-
jointness, union and intersection)

• general feedback
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task_ID responses correct time_per_resp accuracy_majority
1 43 71.94% 44.54 1
2 43 71.39% 51.15 1
3 43 93.52% 34.17 1
4 43 98.61% 40.53 1
5 43 94.91% 48.75 1
6 43 83.52% 40.39 1
7 43 86.85% 35.70 1
8 43 82.78% 78.53 1
9 43 98.61% 55.13 1
10 43 95.28% 77.91 1
11 43 64.72% 44.16 1
12 43 66.11% 38.12 1
13 43 59.63% 100.88 1
14 44 65.83% 54.74 1
15 43 79.81% 46.18 1
16 43 71.39% 72.82 1
17 43 69.44% 69.22 1
18 43 59.17% 61.33 1
19 43 63.98% 49.52 1
20 43 54.20% 45.06 1
21 43 69.07% 42.17 1
22 43 38.70% 62.20 1
23 43 65.37% 45.04 1
24 44 61.39% 57.04 1
25 44 87.22% 49.23 1
26 43 83.15% 57.75 1
27 43 64.72% 79.33 1
28 44 63.89% 71.72 1
29 43 75.09% 49.82 1
30 42 73.03% 67.18 1

Table 5.1: Performance of subjects in verifying each of the 30 tasks
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Figure 5.6: Accuracy and speed of subjects’ responses over time
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Almost all the students found the tutorial, the instructions and the examples useful or
partially useful, while 85% stated to have used the instructions at least sometimes while
resolving the tasks. Considering the awareness of the presence of the chosen defects
in ontology engineering processes, 2/3 of the participants stated that they were aware
or partially aware of it. Around 80% of them stated also that if was easy to recognise
invalid representations of the models. The question regarding the understanding of the
concepts got some different answers, but still the majority of the subjects agreed on the
concepts being clear, or getting clearer with the help of examples or through practice,
while advancing with the tasks. As general feedback, the subjects seemed contempt with
the experiment process and the experiment itself. Most of the negative feedback regarded
the tasks being repetitive and the existence of a pattern in the questions, which could be
easily predicted.

5.5 Experiment presentation and package
One of the final steps of the methodology explained by [29] is the presentation and
package of the experiment which, for the actual case, is done through this thesis.

5.6 Experiment summary
This chapter synthesises the experimental process developed and run, in order to test
the VeriCoM approach on an Ontology use case, as explained in Chapter 4. The second
purpose of the experiment was to analyse the changes in the overall performance of the
subjects, when variables of the experiment change: the variety of Ontology engineering
errors, as well as different occurrences of the defects per task.

This experiment was building on top of the work done in [27]. Their experiment was
similar, but the author considered the defects D1 to D3 in singular error tasks. This
means that each tasks contained a model with only one possible error. The overall
performance in their experiment was at 92.58%, with a single verification taking around
one minute. Compared to that data, the fact that the error types increased from three
to five, but also that the tasks got multiple errors, respectively, sunk the performance of
the subjects at 78%, while the response time remains on average at slightly less then one
minute.

After analyzing the collected data, in the context of the hypothesis defined in Chapter
5.2.2, one can without a doubt refute the two null hypothesis as following:

H01 : Since the performance of the contributors is at an average of 78%, using
the VeriCoM approach to solve errors regarding Ontology Engineering with
Human Computation does not lead to low performance of the contributors.
H02 : Compared to the previous experiment of [27], where the average
performance was at 92.57%, the actual performance dropped by only 14.58%,
such that the overall performance did not change drastically when having

53



5. Ontology evaluation experiment

multiple error types in one Human Computation task and when the variety
of errors increases from three to five.

Therefore, the two alternative hypothesis, answering the RQ2 and RQ3 respectively, are
proven:

H1 : The VeriCoM approach is a good methodology to solve problems
regarding Ontology Engineering with Human Computation, because of the
high performance (over 70%) of the workers.
H2 : Considering error classification, the overall performance does not change
drastically (over 30%), when having multiple error types in one Human
Computation task and when the variety of errors increases from three to five.

Interpreting the comments and the feedback given by the students after the study, one
could regards this aspects for possible future works:

• Having a tutorial, as well as instructions and examples that can be accessed during
the tasks, is considered useful for solving problems

• Increasing the variety of the defects and questions, such that they are not repetitive
and patterns cannot be easily recognised

• Choosing models or preparing data which is as small as possible, in order for the
model to be readable

• Improving answering possibilities, such that they are unambiguous

While this experiment was a second of its kind, extending the work of [27], it still allows
for future works, where not only the points stated above can be improved, but also the
crowd or the types of defects can be extended.
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CHAPTER 6
Conclusion

Ontologies are used as conceptual models and knowledge representation and a lot of
application rely on them, so one of the most important characteristics they have is their
quality. Ensuring that quality errors do not propagate when reusing ontologies is crucial,
because wrongly represented information can lead to false outcomes of application and
therefore the quality of an ontology can be a deciding factor for the success of the system
using it.

The literature [19], [23], [28] shows that the process of Ontology engineering is error prone
and common errors and pitfalls are identified, but this thesis extends this by considering
beginners’ ontologies, with no experience in the field.

Because of the liability to errors, the need for Ontology evaluation arises. While automated
approaches exist, there are still errors that cannot be identified through such methods,
because they need background information and human knowledge. For such cases, Human
Computation and Crowdsourcing can be applied. While [24] developed an approach
called VeriCoM for verifying conceptual models, this has only been used for a Software
Engineering use case. This thesis successfully applies the VeriCoM approach on an
Ontology engineering use case, by considering the following errors regarding incorrect
modelling:

• D1: missing existential restriction

• D2: universal restriction instead of existential restriction

• D3: missing universal restriction

• D4: missing disjointness

• D5: confusion between linguistic and logical "and" (intersection versus union)
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6. Conclusion

An experiment is conducted, in order to check if the VeriCoM approach is fitting for
the explained Ontology engineering use case, but also to compare the performance of
the crowd in the field of Ontology verification with the work of [27], when changing
parameters as error types or the variety of errors in one Human Computation task.

The following sections provide a discussion of the research questions and the main
contributions of the thesis, as well as possible future work that can be conducted in the
field.

6.1 Research Questions Discussion
The Research Questions defined in the beginning of this thesis are going to be discussed,
in order to show the contribution of the thesis to the Human Computation and Ontology
Evaluation fields of research:

1. RQ1: What are typical engineering errors in beginners’ ontologies in practise,
compared to the common errors introduced in the literature?
The literature describes a variety of engineering errors regarding the ontology,
therefore a comparison was carried on beginners’ ontologies, in order to acquire
information about common novices’ ontology engineering errors in practice. To
achieve this, two automated tools were used.
With the help of the OOPS! tool [19], the main errors found in novices’ ontologies
regard:

• readability
• disjointness of classes
• not declaring inverse relationships
• the confusion between logical "and" and "or"

The second tool, based on the Automatic Defect Candidate Detection [20] heuristic,
was used for errors that cannot be identified automatically, but for which defect
candidates may be elicited. Based on the results, it seems that the main problem of
beginners’ ontologies constitutes the missing of disjointness axioms, which supports
one of the findings of the first comparison tool.

2. RQ2: What is a good methodology to solve problems regarding Ontology engineer-
ing with Human Computation?
The VeriCoM [25] methodology offers a way of evaluating conceptual models with
Human Computation, by formalizing the problem and developing a generic approach.
While the VeriCoM approach was exemplified on a Software Engineering use case by
its authors, this thesis adapted the approach to an Ontology engineering use case,
regarding the following modelling errors: missing existential restriction, universal
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6.2. Limitations and Future work

restriction instead of existential restriction, missing universal restriction, missing
disjointness, confusion between linguistic and logical "and" (intersection versus
union). All the stages of VeriCoM were applied, considering the enumerated defects,
on a specific, well-known ontology and an experiment was conducted, in order to
find out the performance of subjects, when verifying the presence of these defects
in Human Computation tasks.
The experiment shows that, when using the VeriCoM approach to design Human
Computation tasks, the average performance of the workers is at 78% and the
average speed of completing a task is at 55 seconds, proving that this Human
Computation methodology is able to achieve high performance regarding the
verification of specific defects in ontologies. This means that the VeriCoM approach
and Human Computation are a viable alternative to expert evaluation of ontologies,
which are expensive, time-consuming, and have limited scalability.

3. RQ3: Considering error classification, to what extent is the overall performance
influenced, when having multiple error types in one Human Computation task and
when the variety of errors increases from three to five?
The experiment is based on initial work of [27], where a similar experiment was
conducted, but with only two of the five defects stated above, present in singular
error tasks. This means that each tasks contained a model with only one possible
error. The experiment of this thesis had an increased number of error types of
five, but also tasks with multiple errors, respectively, such that the performance
compared to the first experiment decreased from 92.58% to 78%, while the response
time remains on average at slightly less then one minute.
Even though the performance reduced by 14.58%, considering the fact that multiple
error types were present in a Human Computation task and that the variety of
error increased, the overall performance is still high and did not changed drastically
(over 30%). This goes to show that Human Computation is still reliable, even when
the ontologies to be verified contain multiple and different errors, and is a viable
approach for Ontology verification in general.

As an outline of the main contribution of this thesis, it has been shown (1)what are
typical engineering errors in beginners’ ontologies in practise, (2) that VeriCoM is a
good Human Computation approach to verify ontologies and (3) that considering error
classification, having multiple error types in one Human Computation task and increasing
the variety of errors from three to five slightly reduces the overall performance of crowd,
which still remains at a high level of accuracy.

6.2 Limitations and Future work
This last section concludes the research of the thesis by presenting some limitations and
possible future work.
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6. Conclusion

Firstly, the conducted comparison on beginners’ ontologies relies on available tools for
identifying Ontology engineering errors. Since some of the errors need human knowledge
to be identified, only some heuristic approaches are available. As soon as the technology
advances in this field, another comparison or even a benchmark can be carried out, to
extend or refute the current findings of what are the Ontology engineering errors most
present in novices’ ontologies in practice.

As for using Human Computation to solve the problem of verifying ontologies, it has
been shown that this is a viable approach, but the list of defects it has been researched
on is limited. In the literature there are still other defects which cannot be identified
automatically, which could be approached with the help of Human Computation and
Crowdsourcing. Another future aspect that can be considered is extending the experiment
on a larger crowd which doesn’t imply only students, to find out if workers without specific
knowledge or demographics would still achieve such high performances when evaluating
errors in ontologies. Furthermore, the feedback of the students to the experiment lead to
a list of possible improvements for next experiments:

• Having a tutorial, as well as instructions and examples that can be accessed during
the tasks, is considered useful for solving problems

• Increasing the variety of the defects and questions, such that they are not repetitive
and patterns cannot be easily recognised

• Choosing models or preparing data which is as small as possible, in order for the
model to be readable

• Improving answering possibilities, such that they are unambiguous
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1.

2.

3.

4.

Mark only one oval.

no understanding

1 2 3 4

expert understanding

Your answers will be treated anonymously. Your name will only be used to connect your 
answers to your inspection records. No individual information will be made public in any form.

* Required

Appendix A: Self Assessment Test
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5.

Mark only one oval.

no knowledge

1 2 3 4

expert knowledge

6.

Mark only one oval.

no knowledge

1 2 3 4

expert knowledge
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7.

Other:

Check all that apply.

Entity–Relationship (ER) diagrams

Unified Modeling Language (UML)

Stock and Flow diagram (SFD)

Causal Loop Diagram (CLD)

Business Process Model and Notation (BPMN)

Event-Driven Process Chain (EPC)

8.

Mark only one oval.

no knowledge

1 2 3 4

expert knowledge

9.

Mark only one oval.

no knowledge

1 2 3 4

expert knowledge
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10.

Other:

Check all that apply.

Web Ontology Language (OWL)

RDF Schema (RDFS)

Simple Knowledge Organization System (SKOS)

11.

Mark only one oval.

Yes

No

This content is neither created nor endorsed by Google.

Forms
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Qualification Test
Make sure to accept the HIT before you start answering the questions.

Please enter your Student ID: 
 

Section 1
This section tests your understanding of basic ontology components and the ability to recognise them in
graphical representations.

Consider the model, represented in VOWL, and answer questions 1 & 2 below. 

hasSon

hasPet

hasDaughter

(disjoint)

(disjoint)

(disjoint)

Pet

Son

PersonTypeA Daughter

1. Identify the main model components from the model 
 

How many named classes can you identify from the model? 
 

How many relations (including disjoint relations) can you identify from the model?

2. Identifying the different quantifiers from the model
 

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data
and format of the submitted results.

Appendix B: Qualification Test
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How many universal restrictions (owl:allValuesFrom) can you identify in the model?

How many existential restrictions (owl:someValuesFrom) can you identify in the model?

Section 2
This section tests your understanding of the implications of ontology axioms and restrictions.

Consider the model, represented in VOWL, and answer question 3 below. 

hasPetPetLoverTypeA Dog

3. Select the statement that describes instances of PetLoverTypeA correctly. 
 

 Instances of PetLoverTypeA must have a Dog pet and cannot have other types of pets. 
  Instances of PetLoverTypeA might not have a Dog pet and cannot have other types of pets. 

  Instances of PetLoverTypeA must have a Dog pet and can also have other types of pets. 
  Instances of PetLoverTypeA might not have a Dog pet and can also have other types of pets. 

Consider the model, represented in VOWL, and answer question 4 below. 

hasPet CatPetLoverTypeB

4. Select the statement that describes instances of PetLoverTypeB correctly. 
 

 Instances of PetLoverTypeB must have a Cat pet and cannot have other types of pets. 
  Instances of PetLoverTypeB might not have a Cat pet and cannot have other types of pets. 

Continue to Section 2
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 Instances of PetLoverTypeB must have a Cat pet and can also have other types of pets. 
 Instances of PetLoverTypeB might not have a Cat pet and can also have other types of pets. 

Consider the model, represented in VOWL, and answer question 5 below. 

hasPet

hasPet
(disjoint)

Cat

PetLoverTypeC Dog

5. Select the statement that correctly represents instances of PetLoverTypeC. 

 Instances of PetLoverTypeC must have 2 pets - a Dog and a Cat. 
 Instances of PetLoverTypeC might have 2 pets - a Dog and a Cat but also might not have any pets. 
 Instances of PetLoverTypeC cannot have any pets. 
 Instances of PetLoverTypeC could have 0 to n pets from type Cat or 0 to n pets from type Dog but

not both. 

Consider the model, represented in VOWL, and answer question 6 below. 
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hasPet

hasPet

hasPet

(disjoint)

PetLoverTypeI
Intersection

Cat

Dog

6. Select the statement that correctly represents instances of PetLoverTypeI. 

 Instances of PetLoverTypeI must have 2 pets - a Dog and a Cat. 
 Instances of PetLoverTypeI must have 2 pets which are both Dog and Cat at the same time. 
 Instances of PetLoverTypeI cannot have any pets. 
 Instances of PetLoverTypeI could have 0 to n pets from type Cat and 0 to n pets from type Dog but

not both. 

Section 3
This section tests your ability to reason with ontology models, as well as compare and relate them to
each other.

Consider models A and B both describing PetLoverTypeE, each represented in VOWL, and
answer question 7 below. 

Model A: PetLoverTypeE Model B: PetLoverTypeE

hasPet

hasPet

hasPet

(disjoint)

PetLoverTypeE

Dog

Cat

Union hasPet
(disjoint)

hasPet

PetLoverTypeE

Dog

Cat

7. Select the correct statement about models A and B describing PetLoverTypeE. 
 

Continue to Section 3
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 Model A allows for instances of PetLoverTypeE to have a pet that is neither a Dog nor a Cat. 
 Model B allows for instances of PetLoverTypeE to have a pet that is neither a Dog nor a Cat. 
 None of the models allow for instances of PetLoverTypeE to have a pet that is neither a Dog nor a

Cat. 
 Both models allow for instances of PetLoverTypeE to have a pet that is neither a Dog nor a Cat. 

Consider models A and B describing PetLoverTypeD and PerLoverTypeF, each represented in
VOWL, and answer question 8 below. 

Model A: PetLoverTypeD Model B: PerLoverTypeF

hasPet not DogPetLoverTypeD hasPet DogPetLoverTypeF

8. Is it true that PetLoverTypeD is disjoint to PetLoverTypeF? That is, there can be no instance that is at
the same time of type PetLoverTypeD and PetLoverTypeF. 

 Yes 
 No 

Consider models A and B describing PetLoverTypeG and PerLoverTypeF, each represented in
VOWL, and answer question 9 below. 

Model A: PetLoverTypeG Model B: PerLoverTypeF

hasPet not DogPetLoverTypeG hasPet DogPetLoverTypeF

9. Is it true that PetLoverTypeG is disjoint to PetLoverTypeF? That is, there can be no instance that is at
the same time of type PetLoverTypeG and PetLoverTypeF. 

 Yes 
 No 

Consider models A and B describing PetLoverTypeD and PerLoverTypeH, each represented in
VOWL, and answer question 10 below. 

Model A: PetLoverTypeD Model B: PerLoverTypeH
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hasPet not DogPetLoverTypeD hasPet DogPetLoverTypeH

10. Is it true that PetLoverTypeD is disjoint to PetLoverTypeH? That is, there can be no instance that is
at the same time of type PetLoverTypeD and PetLoverTypeH. 

 Yes 
 No 
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1.

2.

Feedback Questions

3.

Mark only one oval.

Yes

No

Partially

4.

Mark only one oval.

Yes

No

Partially

Post-Study Questionnaire
Your answers will be treated anonymously. Your name will only be used to connect your 
answers to your inspection records. No individual information will be made public in any 
form.

* Required

Name *

Student ID (Matrikelnummer) *

Q1: Was the tutorial example useful for understanding the various modelling issues
that can arise in ontologies?

*

Q2: Were you aware of (some of) the modelling issues prior to the Quiz?? *

Appendix C: Post-study Questionnaire
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5.

6.

Mark only one oval.

Yes

No

7.

Mark only one oval.

never

sometimes

most of the time

all the time

8.

Mark only one oval.

Yes

No

Q3: What could have made the difference between modelling concepts clearer (the
existential & universal restriction, disjointness, union & intersection) ?

Q4: Was it easy to recognise invalid representations of menu items? *

Q5: Did you use the provided instructions while performing the judgements? *

Q6: Were the provided instructions and examples helpful in understanding
modelling issues?

*
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9.

Thank you for your participation!
You will receive a feedback email with your performance scores in the next hours/days.

This content is neither created nor endorsed by Google.

O7: Is there any feedback you would like to share (general comments, positive
aspects, improvements, etc.) ?

Forms

80


	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Research Questions
	Methodological approach
	Thesis Structure

	Background and related work
	Ontology evaluation
	Common errors in Ontology Engineering
	Human Computation and Crowdsourcing

	Practical comparison of beginners' ontologies
	Collection of data
	Methodology and results

	Using Human Computation for Ontology evaluation: The VeriCoM Approach
	Addressed ontology modelling errors
	The VeriCoM Approach
	Applying the VeriCoM Approach on an Ontology Engineering Use Case
	VeriCoM Summary

	Ontology evaluation experiment
	Experiment scoping
	Experiment planning
	Experiment operation
	Experiment analysis and interpretation
	Experiment presentation and package
	Experiment summary

	Conclusion
	Research Questions Discussion
	Limitations and Future work

	List of Figures
	List of Tables
	Bibliography
	Appendices
	Appendix A: Self Assessment Test
	Appendix B: Qualification Test
	Appendix C: Post-study Questionnaire




