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Kurzfassung

Angesichts der neuesten Fortschritte im Quantencomputing [AAB+19] und des Shor’s
Algorithmus [Sho94] zielt dieses Projekt darauf ab, Post-Quantum (PQ) Kryptographie
für die E-Mail- und Dateiverschlüsselung sowie die Softwareverteilung im OpenPGP-
Protokoll zu integrieren.

14 neue Algorithmusbezeichner werden dem Protokoll hinzugefügt, die verschiedene Si-
cherheitsstufen von CRYSTALS-Dilithium und CRYSTALS-Kyber hybrid mit elliptischen
Kurven und zwei eigenständige Varianten von SPHINCS+ implementieren. Die Wahl und
Konstruktion der Algorithmen werden ausführlich diskutiert, unter Berücksichtigung von
Sicherheitsfaktoren, Benutzererfahrung und den Interessen verschiedener Stakeholder.

Das Projekt entwickelt auch eine Implementierung in Golang, welche die bestehende
go-crypto Programmbibliothek erweitert, um sicherzustellen, dass der vorgeschlagene
Standard problemlos implementiert werden kann und um die tatsächliche Leistung auf
realen Desktop- und Mobilgeräten zu messen. Die Leistungsdaten werden dann sorgfältig
analysiert, um Erkenntnisse über die zu erwartenden Unterschiede im Benutzererlebnis
und die notwendigen Änderungen an den OpenPGP-Anwendungen zu erhalten.
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Abstract

Given the recent advancements in quantum computing [AAB+19] and Shor’s algo-
rithm [Sho94], this project aims at bringing PQ cryptography for e-mail and file encryption
as well as software distribution to the OpenPGP protocol.

14 new algorithm identifiers are added to the protocol, implementing different security
levels of CRYSTALS-Dilithium and CRYSTALS-Kyber hybrid with elliptic curves, and
two standalone variants of SPHINCS+. An extensive discussion is provided on the
algorithm choice and construction, considering security factors, user experience, and the
interest of various stakeholders.

The project also develops an implementation in Golang expanding the existing go-crypto
library, to ensure that the proposed standard can be cleanly implemented, and to measure
the actual performance on real desktop and mobile devices. The performance data is
then carefully analyzed to provide insights on the expected differences in user experience
and the necessary changes to the OpenPGP applications.
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CHAPTER 1
Introduction

This project aims at introducing Post-Quantum (PQ) cryptography for e-mail and file
encryption, as well as software signing in the OpenPGP protocol. In the last years there
has been a push among internet protocols to deploy asymmetric cryptography that can
resists attacks with quantum computers. Other internet protocols, such as Transport Layer
Security (TLS) [KSL+19, KV, ELPa] or Secure Shell Protocol (SSH) [ELPb, SKD20]
have been experimenting with the PQ schemes to determine any performance drawback
or issue with the larger artifacts.

This project, sponsored from Proton AG, starts at the beginning of 2021 with a first
proposal to evaluate the feasibility of introducing PQ algorithms into OpenPGP and
gather consensus in the community. At the same time, around June 2021, the German
Federal Office for Information Security (BSI) has also started investing resources in this
field of research, contracting the firm MTG AG to develop a standard and implement
it into libgcrypt (the library behind GnuPG) and Botan. This plan was explained in
detail from Dr. Falko Strenzke, on behalf of MTG AG, at Internet Engineering Task
Force (IETF) 113th meeting, in Vienna. At this venue, a merger of the two projects was
proposed, in order to come up with a common standardization plan led by the community.

The criteria chosen for the development of the standard was to use already standardized
algorithm, mostly relying on National Institute of Standards and Technology (NIST)
and the Crypto Forum Research Group (CFRG), to provide confidentiality and integrity.
Given these cryptographic primitives, the project consists in developing a safe scheme,
with reasonable and coherent security guarantees, considering the performance and
regulatory compliance trade-offs. The main challenges consisted in choosing how to build
the hybrid schemes, how many schemes to propose, how to combine the hybrid secrets
securely, and how to handle the significantly larger artifacts.

The standardization proposal is based on the latest draft of the OpenPGP message
format [WHWY23], and branches off to define new algorithms and the required protocol
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1. Introduction

changes.

Furthermore, to investigate the feasibility of the project, this thesis focuses on the
implementation in the go-crypto Golang library, with the intention of comparing results
and interoperating with MTG’s libgcrypt implementation.

1.1 Motivation
The interest for post-quantum encryption gained particular traction in 1994, when Peter
Shor found an algorithm to factor large numbers in polynomial time given a sufficiently
large quantum computer [Sho94]. This well-known algorithm is nowadays believed to
be useful in cracking the most commonly deployed algorithms for key exchange and
asymmetric encryption based on the discrete logarithm problem and the factoring problem,
like Rivest-Shamir-Adleman (RSA), Diffie-Hellman (DH), Digital Signature Algorithm
(DSA), Elliptic Curve Diffie-Hellman (ECDH), Elliptic Curve Digital Signature Algorithm
(ECDSA), Edwards-curve Digital Signature Algorithm (EdDSA), and ElGamal [BL17].

By then some non-vulnerable algorithms already existed, starting with R. J. McEliece’s
paper “A public-key cryptosystem based on algebraic coding theory” [McE78] which
uses Error-Correcting Codes, in particular Goppa codes. The following year, the first
post-quantum digital signature scheme was published: Lamport’s idea was based on hash
functions [Lam79]. More recent schemes are based on the Shortest Vector Problem (SVP)
in multi-dimensional lattices [GGH96, Ajt96] or multivariate quadratic equations [MI88].

Even though to the best of our knowledge, a quantum computer capable of cracking
the state of the art does not yet exist, we can refer to Mosca’s theorem [EHH+20], to
understand why this is already relevant. Let x be the number of years that the data
to be protected must remain secured, y be the number of years needed to convert the
corresponding system to quantum computer resistant cryptography, and z be the number
of years it will take for quantum computers to exist that threaten the cryptography
currently in use. Standardization needs to happen before x + y > z.

Considering the recent advancements in quantum computing [AAB+19] the BSI believes
that quantum computers may already become a threat already in the early 2030s [BT120].
In the US, NIST has started a competition in 2017 to standardize post-quantum algo-
rithms, that has now completed the third round [MAA+22].

Standardization is a lengthy and complex process, and given that the encrypted data is
supposed to stay confidential for the years to come, we need to ensure that the process is
carried out early enough. Request For Comments (RFC) 7258 [FT14] states that pervasive
monitoring is an attack that should be mitigated in the design of IETF protocols (such
as OpenPGP) and defines some guidelines for its mitigation. This attack, also known as
“store now and decrypt later”, has to be addressed providing the community with PQ
tools to use as soon as possible. Signatures, on the other hand, are yet not subject to
this vulnerability, since they can be re-issued without losing integrity if necessary.
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1.1. Motivation

Other internet protocols such as TLS [KSL+19, KV, ELPa] or SSH [ELPb, SKD20] have
already started standardizing PQ algorithms, while OpenPGP is lagging behind: a few
proposals were raised at the 2018 OpenPGP summit, but this did not lead to any further
research attempt.

In the next chapter, the state of the art of post-quantum encryption is going to be
discussed, giving particular attention to the OpenPGP context and requirements. The
selected algorithms will then be justified considering the advantages and challenges of
implementing PQ algorithms in an asynchronous (and potentially offline) protocol like
OpenPGP.

3





CHAPTER 2
Preliminaries

2.1 OpenPGP
This protocol was originally created from Philip R. Zimmerman as Pretty Good Privacy
(PGP) in 1991, to encrypt e-mail messages. In 1997, due to some patent and interoper-
ability issues, PGP Inc. decided to open the standard, called it OpenPGP and defined it
in RFC 2440 [FTDC98]. This document standardized the original OpenPGP Message
Format, that has since been obsoleted by RFC 4880 [FDC+07]. Many additions have
been added to this protocol since its publication in 2007, for instance the NIST elliptic
curves in RFC 6637 [Jiv12], or Ed25519 [Koc16].

All these different specifications that got adopted over the years are being consolidated in
a single document [WHWY23], informally named “crypto-refresh”. It defines new versions
for keys and packets with significant security improvements, obsoletes old algorithms,
consolidates the standardization of elliptic curves, and aims at better interoperability
among implementations.

All the development of PQ algorithms has been based on this document: PQ schemes
are designed to work only with the latest version 6 keys. The rationale is that users will
need to update in order to benefit from any new algorithm, therefore we can benefit from
security advantages without adding any further upgrade burden.

This latest specification has grown considerably, mostly because the use cases of OpenPGP
expanded over the years, but also due to the legacy burden. The OpenPGP protocol
has different requirements from those of other protocols where PQ algorithms have been
already tested out, such as TLS or SSH. OpenPGP is generally asynchronous: keys are
usually fetched once from a remote server, and then used when necessary to produce
ciphertexts offline. Clearly, this introduces some challenges and opportunities that need
to be considered when designing an implementation, and the designs for TLS or SSH can
not be blindly reused.
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2.1.1 Use Cases
In this section the use cases of OpenPGP are going to be listed, in order to understand
the protocol constraints and later explain its current design. The changes proposed in
this project introduced in chapter 3 are then based off the current structure and use
cases.

Legacy Burden

The most important problem with OpenPGP is deprecation: it is significantly harder to
deprecate algorithms compared to real-time key exchange protocols. Once keys using a
specific algorithm have been issued, it is usually a long process to remove the algorithm
from the implementation. In fact, in order to send a message, the sender needs to support
the encryption schemes required by the recipient, if not no communication is possible.
Furthermore, when decrypting old ciphertexts we face another challenge: in order to
decrypt them we still need to support the scheme used to encrypt. Old data would have
to be re-encrypted in order to drop support for deprecated algorithms.

Compared to TLS, where defining an experimental Key Encapsulation Mechanism (KEM)
is simple, and the real-time algorithm negotiation will exclude it once deprecated, in
OpenPGP this is not possible, and including a scheme means committing for a longer
time to it.

Real-Time Requirements

Unlike TLS or SSH, OpenPGP has no real-time requirements. This means that a reason-
ably computationally expensive key exchange or signature scheme can be implemented
without heavy impact on the user experience. This also allows larger keys, since they are
rarely fetched.

However, this may change as adoption of Web Key Directory (WKD) increases: WKD
is a recent development in the standard that provides an easier infrastructure to fetch
public keys in real time [Koc22]. This would increase the versatility of short-lived keys,
but gives more importance to reducing public key size.

Signing-capable OpenPGP keys can also be used in authentication mode, for instance
for SSH authentication. This use is rarely seen in the wild, and therefore not a primary
focus of this project.

Long-Lived Keys

Since 2017 TLS certificate lifetime is capped to 825 days [n.A17]. This maximum duration
provides a better key rotation, setting the prerequisites to deprecate old hash algorithms
or enforce new minimum security parameters. This does not happen in OpenPGP, where
it is common to generate keys without expiration or encounter keys that are several years
old.
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This aspect, joint with the legacy burden, makes it very important to choose algorithms
that provide a higher degree of safety, and offer options that exceed today’s computational
expectations.

Secure Enclaves

Another common use for OpenPGP keys is in Hardware Security Module (HSM) chips
or smart cards. All the ciphers in the NIST competition are required to be possible to be
implemented on HSMs, even though for many of them the hardware acceleration is still
in research or development [HMOR21]1. By picking standardized and widely adopted
algorithms, there is a greater chance that optimized designs for these might be readily
available in the near future.

Governments and Policy Restrictions

OpenPGP is widely used from several governmental agencies, and therefore its stan-
dardization and use is vetted from the relevant agencies and standardization bodies.
For instance, many entities require Federal Information Processing Standard (FIPS)
compliant algorithms, such as the NIST curves, while other governments push for other
curves, for instance the BSI [EHH+20] with its requirement for Brainpool [ML10] curves.

Given the many interests and parties, the right balance between implementation burden
and compliance must be found. Considerations from CFRG [Hof20], the National Security
Agency (NSA) [Age22], and the BSI [fIS20] were given significance to ensure continued
use of the OpenPGP standard and adoption of this project.

Key Distribution

OpenPGP does not have a unified key distribution system, and relies on off-band methods.
Some of the most common methods are:

• WKD, a domain-bound key distribution system which provides domain authentica-
tion via Hypertext Transfer Protocol Secure (HTTPS).

• Public Key Server (PKS), a legacy key distribution system where public keys can
be uploaded without any sort of verification.

• Hagrid, an evolution of PKS that enforces address ownership verification and
transmits keys over HTTPS.

• Autocrypt, an email header that signals OpenPGP support and contains the encoded
public key.

1In this paper, table 1 presents a summary of the current state-of-the-art of hardware designs of
NIST post-quantum candidates, implemented on Field Programmable Gate Array (FPGA) circuits
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• E-mail attachment, explicitly attaching the public key in a Multipurpose Internet
Mail Extensions (MIME) e-mail.

• Other manual systems, such as uploading to a website or physical file sharing.

Most of the keys are distributed over HTTPS, that does not put a strict cap on the public
key size. Nevertheless, some schemes’ performance and viability might be hampered if the
public key size is larger than some megabytes, in particular the header-based Autocrypt
and e-mail attachments.

2.1.2 Protocol Design

Considered the use cases and requirements of the protocol, we now flesh out the current
protocol design. The protocol described here includes the changes included in the latest
draft specification [WHWY23].

We will start with a high-level description of the two most common operations of this
protocol, encryption to provide confidentiality and signature to provide authenticity.

Encryption In order to encrypt a message, this is first encoded, optionally com-
pressed, and then symmetrically encrypted using a randomly-generated session key. This
session key is then encrypted asymmetrically to the various recipients public keys’ or
symmetrically to a password, to be communicated off-band.

Signature A signed message can be encrypted or in cleartext. In the first case, the
message is encoded, then a signature is computed over a hash of the encoded data. Some
metadata about the signature is prepended to the message, and the signature data itself
is appended. The signed message is then encrypted. In the second case, the message is
first normalized, then signed, and finally encoded with the signature in a special armoring
so that it can be read by humans without decoding, and at the same time preserve its
format to reliably allow verification.

OpenPGP is not only for messages or files, and can also be used for a variety of other
purposes, such as passwordless authentication, software distribution, identity management,
and so on. All these functions are achieved by the packet data encoding format.

Packets and Sub–packets

The OpenPGP wire format encodes data in packets, some of which contain sub-packets.
All packets are prefixed with a tag, that identifies the type, and a length, that allows
splitting and parsing. Tags can be critical or non-critical. If a critical tag is not understood
from the parsing implementation the message is classified as unreadable. Here we analyze
the inner structure of the relevant packet types specified so far.
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Tag 1: Public-Key Encrypted Session Key (PKESK) Packet This packet
contains a session key, encrypted to a recipient’s public key. It is one of the most common
packets, enabling Public-Key Encryption (PKE).

v6 PKESK packet

header: PKESK, < length >

1-octet version number (= 6)

1-octet key version number

N-octet target key fingerprint

1-octet public-key-algorithm ID = 25 (X25519)

Algorithm specific part

ECDH-ciphertext = X25519(ECDH-PubKey, Key Encryption Key (KEK))

Encrypted Session Key = AES(KEK, Session Key)

Figure 2.1: Version 6 of an X25519 PKESK packet structure.

The packet structure, illustrated in fig. 2.1, shows the data encoding for a version 6
PKESK for the X25519 algorithm. It contains a version to allow parsing, a fingerprint to
identify the target key, and the public key algorithm, directly followed by the algorithm-
specific data. In this part, each algorithm can define a way to encode the ciphertext
and/or a wrapped session key.

Tag 2: Signature Packet This packet contains the complete data for a signature:
with the matching public key and signed data this allows verification.

An example of a version 6 signature packet for Ed25519 can be seen in fig. 2.2. It contains
significantly more metadata than a PKESK, including a signature type to encode the
intended use and an arbitrary amount of subpackets to encode signature properties.

Signatures are in fact used in many different parts of OpenPGP, not just to sign messages
but also to bind identities, certify or revoke keys, and so on. The type provides the
necessary domain separation to identify the purpose of a signature.

Subpackets instead provide some extra information, such as creation time, lifetime, issuer,
or other preferences. Two types of subpackets are to be distinguished: hashed and
unhashed. The former is serialized into the signed hash, and therefore certified from
the issuer, while the latter is for advisory information, uncertified. Most subpackets are
required to be in the hashed portion, with a few exceptions, notably the issuer metadata.

OpenPGP uses a hash-then-sign paradigm on the protocol level, in order to implement
easier data streaming. The data followed by the hashed subpackets is first hashed, then
a signature is produced over the hash itself.
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v6 signature packet

header: Signature, < length >

1-octet version number (= 6)

1-octet signature type

1-octet public-key-algorithm ID = 27 (Ed25519)

1-octet hash algorithm

4-octet hashed subpacket length

N-octet hashed subpacket data

4-octet unhashed subpacket length

N-octet unhashed subpacket data

2-octet hash checksum

1-octet salt length

N-octet random salt

Algorithm specific part

EdDSA-signature = Sign(Ed25519, hash)

Figure 2.2: Version 6 Ed25519 signature packet structure.

Furthermore, version 6 signatures include an unpredictable salt to be prepended to the
signed data as an additional security feature. It ensures that weak-collision resistance
is sufficient for the hash function used in the data hashing [LP20]. An adversary given
access to a signing oracle, may not query for a specific string, since the hash will be
randomly initialized with the salt. Therefore, in order to create a valid signature, for the
adversary is not sufficient to find

H(x) = H(y) with x ̸= y

but it is required to find
H(x) = H(y) given x.

In the scope of the project, the latest specification was updated to bind the salt size to
the hash function expected security level, i.e. 16 bytes for 256-bit hash functions, 24
bytes for 384-bit hash functions, and 32 bytes for 512-bit hash functions.

Tag 3: Symmetric-Key Encrypted Session Key (SKESK) Packet This packet
encrypts a session key to a password, to symmetrically encrypt a message for a recipient
not having a public key or preferring a password protected message.
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v6 SKESK packet

header: SKESK, < length >

1-octet version number (= 6)

1-octet metadata length

1-octet symmetric cipher identifier

1-octet Authenticated Encryption with Associated Data (AEAD) identifier

1-octet String to Key (S2K) length

N-octet S2K data

N-octet AEAD Initialization Vector (IV)

N-octet encrypted data, followed by the AEAD tag

Figure 2.3: Version 6 SKESK packet structure.

The SKESK packet structure is illustrated in fig. 2.3. This packet derives a KEK from
a password using an S2K, then uses it to wrap the session key using AEAD. The S2K
contains a salt, and in the latest specification Argon2 [BDKJ21] may be used for key
derivation.

This packet requires no changes to become PQ, as there is no known effective quantum-
computing enabled attack against the supported symmetric algorithms or S2Ks.

Tag 4: One-Pass Signature (OPS) Packet The signature metadata is prepended
to the message using this packet. Since OpenPGP uses a hash-and-sign paradigm, some
metadata is necessary to instantiate the hashing function. It does not contain the
signature values, therefore does not allow verification by itself.

In fig. 2.4 the OPS packet structure is illustrated. This packet contains the issuer key
fingerprint, to detect if the verification key is available, as well as the hash algorithm used
and the salt to be prefixed to the data. Any discrepancy between this packet and the
signature packet appended to the signed data is required to result in an invalid signature.
This packet does not contain any algorithm-specific data.

Tag 5: Secret-Key Packet The secret and public key material are wrapped by
this packets. It is a strict superset of the public key packet. The secret key material
can be encrypted, deriving the encryption key from a salted password, optionally using
Argon2 [BDKJ21].

The packet structure is illustrated in fig. 2.5b. On top of the public key material, it
contains the S2K parameters to derive the key from a password, the encryption parameters,
and the AEAD encrypted algorithm-specific key material.
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v6 OPS packet

header: OPS, < length >

1-octet version number (= 6)

1-octet signature type

1-octet hash algorithm

1-octet public-key-algorithm ID = 27 (Ed25519)

1-octet salt length

N-octet random salt

1-octet key version number

1-octet nested flag

Figure 2.4: Version 6 OPS signature packet structure.

Tag 6: Public-Key Packet The public key material is encoded here. This packet is
hashed to derive the key fingerprint, an univocal identifier of the key. This packet is used
only for primary keys, therefore the key represented is required to be signing-capable to
certify other subkeys.

v6 Key packet

header: Public-Key Packet, < length >

1-octet version number (= 6)

4-octet key creation time

1-octet PK algorithm ID = 27 (Ed25519)

4-octet public key material length

public key material

32-octet public key value

(a) Public (sub-)key packet structure.

v6 Key packet

header: Secret-Key Packet, < length >

... public key packet data ...

1-octet S2K identifier

1-octet symmetric algorithm ID

1-octet AEAD ID

N-octet S2K specifier

N-octet AEAD IV

(encrypted) secret key material

32-octet secret key value

(b) Secret (sub-)key packet structure.

Figure 2.5: Version 6 public and secret key packets. The secret key is a superset of the
public key, containing all of its parameters, plus the optionally encrypted algorithm-
specific secret key material.

The structure of this packet is illustrated in fig. 2.5a. It is relatively simple, containing
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the creation time, the public-key algorithm ID, and the algorithm-specific public key
material.

Tag 7: Secret-Subkey Packet A private key can have attached an arbitrary number
of sub-keys to perform authentication, signature, or decryption. They are certified by a
signature made by the primary private key.

This packet has the same structure as a Secret-Key packet.

Tag 8: Compressed Data Packet This packet applies a compression algorithm to
the contained data: it is used to compress plaintext before encryption. As other instances
where compression is applied to plaintext, this may open to compression attacks, i.e. a
way to exfiltrate information from the ciphertext observing the encrypted length.

This packet’s structure is simply composed by one octet representing the algorithm used
to compress the packet followed by the compressed data, which makes up the remainder
of the packet.

Tag 9: Symmetrically Encrypted Data Packet This is a deprecated packet that
was used to encrypt data without integrity. It enabled the EFAIL [PDM+18] attack
and is now rejected by default from most implementations. In this attack, an adversary
can change part of the ciphertext in a way that upon decryption trigger some actions
into the mail client, possibly sending the content of the encrypted mail to the attacker.
Given that there is no integrity protection it is not possible to prevent an adversary from
altering the ciphertext without a failure on the decryption level.

Due to this vulnerabilities, generation of this packet is forbidden, and is not considered
in the scope of this project. Any PQ implementation will be mandated not to encrypt
data using this method.

Tag 11: Literal Data Packet The wrapper around plaintext to allow plaintext
serialization inside encrypted messages.

Literal Data packet

header: Literal Data, < length >

1-octet data format

1-octet filename length

N-octet filename string

4-octet creation date

N-octet plaintext data

Figure 2.6: Literal data packet structure.
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The simple structure of the packet is represented in fig. 2.6. It contains the plaintext
with some metadata, such as creation date or filename.

Tag 13: User ID Packet This packet contains an RFC2822 [Res01] formatted identity,
and bound via a self-signature to the key.

Tag 14: Public-Subkey Packet This is the public equivalent of private subkeys.
They can be attached to public keys via a binding signature.

This packet has the same structure as a Public-Key packet.

Tag 18: Symmetrically Encrypted Integrity Protected Data (SEIPD) This
packet symmetrically encrypts data using the session key and an integrity protected
encryption mode.

v2 SEIPD packet

header: SEIPD, < length >

1-octet version number (= 2)

1-octet symmetric cipher identifier

1-octet AEAD identifier

1-octet chunk size

32-octet salt

N-octet encrypted data, followed by the AEAD tag

Figure 2.7: Version 2 SEIPD packet structure.

The packet version 2 structure is represented in fig. 2.7. It contains in cleartext the
metadata used for encryption, such as the cipher suite, AEAD mode, block size, and a
salt. All of these parameters are then fed into HMAC-based Key Derivation Function
(HKDF) [KE10], using SHA-256 as underlying hash function, to derive the data encryption
key and the IV.

Certificate Structure

An OpenPGP certificate is generally composed by the following series of packets:

• A certification-capable primary key packet (Tag 5 or 6) that provides a fingerprint,
to identify the key itself.

• A direct key-signature (Tag 2) that contains the key algorithm preferences.

14



2.2. Post-Quantum Schemes

• Zero or more User ID packets (Tag 13) to identify the user of the key, followed by
a binding signature made from the primary key to ensure integrity.

• Zero or more sub-keys (Tag 7 or 14) used for KEM, signature, and authentication.
These are also bound to the primary key through a signature.

Given this structure it is interesting to provide at least one very strong post-quantum
signature scheme to ensure that primary keys can be long-lived, swapping only the
sub-keys.

Furthermore this key structure can be used for a greedy approach to fight pervasive
monitoring: we can attach PQ KEM subkeys to an existing traditional primary key,
ensuring backwards compatibility while allowing already PQ implementations to secure
the key exchange for the future.

Encrypted Message Structure

An OpenPGP signed and encrypted message is generally encoded with the following
series of packets:

• One or more PKESK (Tag 1) or SKESK (Tag 3) encrypting the session key with a
KEM or password.

• An SEIPD packet (Tag 18), using the session key to encrypt the following:

– One or more OPS packets (Tag 4) containing the signature metadata.
– A literal data packet (Tag 11), wrapping the user input.
– A number of signature packets (Tag 2) corresponding to the the number of

OPS packets signature packet, containing the different signatures’ payloads.

This payload may optionally be embedded in a compressed data packet (Tag 8).

This structure is designed to encrypt to multiple recipients: the same session key is
wrapped for each one of them.

Furthermore, the message may contain multiple signatures, also from the same sender.
This feature can be used to smoothen the transition, embedding both a traditional and a
PQ signature for the same message.

2.2 Post-Quantum Schemes
Our review of the existing literature will be based on the results of the third round of
the NIST PQ competition [MAA+22]. We will first present the selected candidates in
detail, then elaborate on why they were preferred over other alternatives.
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2.2.1 Lattice-based Schemes
Lattices are discrete subgroups of n-dimensional real vector spaces with a zero element.
Elements are vectors that fulfil the properties of addition and have an inverse. Given any
two vectors there also exists a minimum distance, i.e. they can not be arbitrarily close.

This concept lays the foundation of the SVP problem: find the shortest vector given two
arbitrary points of the lattice. This procedure is assumed to be hard for lattice in high
enough dimensions. Most lattice-based PQ algorithms do not rely on the SVP directly,
but rather are designed on the Learning With Errors (LWE) problem, that can be shown
to be asymptotically as hard as a variant of the SVP [EHH+20].

The LWE problem consists in finding the vector s in a noisy linear system b = As + e
where e is a small vector in the lattice. In particular, given a vector s ∈ Zn

q and error
distribution χ, define the LWE distribution As,χ over Zn

q × Zq by choosing a ∈ Zn
q

uniformly at random, sampling e ← χ over Z, and outputting the pair (a, b) where
b = ⟨s, a⟩ + e mod q. We then define the two following problems:

• The Search-LWEn,m,q,B,χ problem: let s ∈ Zn
q be chosen from some distribution B.

Given m samples (a1, b1), . . . , (am, bm) ∈ Zn
q × Zq drawn independently at random

from the distribution As,χ, find s.

• The Decision-LWEn,m,q,B,χ problem: let s ∈ Zn
q be chosen from some distribution B.

Without knowing s, given m samples (a1, b1), . . . , (am, bm) ∈ Zn
q × Zq, distinguish

between the following two cases:

1. The samples are drawn independently from the distribution As,χ.
2. The samples are drawn independently from the uniform distribution on Zn

q ×Zq.

An example of encryption scheme based on this hardness problem is FrodoKEM, that
was excluded from the 4th round of the NIST competition, given that a more performant
lattice-based KEM has been selected for standardization. The performance is obtained
by adding algebraic structure to the underlying lattice, for instance using the Module
Learning With Errors (MLWE) problem. The hardness problem “find s given b = As + e
where e is a small vector in the lattice” is the same as in the LWE assumption, but b, e,
and s are now vectors of polynomials. In particular, given a degree-n polynomial ring of
the form R = Rq = Zq[X]/(p(X)), for some positive integer q and a polynomial p(X),
we define the following problem:

• The Decision-MLWER,m,k,q,B,χ problem: let s ∈ Rk
q be chosen from some distri-

bution B. Without knowing s, given m samples (a1, b1), . . . , (am, bm) ∈ Rk
q × Rq,

distinguish between the following two cases:

1. Every sample is drawn independently from the distribution AR,s,χ, analogue
to the LWE distribution As,χ, but over Rq.
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2. Every sample is drawn independently from the uniform distribution on Rk
q ×Rq.

Compared to the LWE, the MLWE increases efficiency and reduces key size, therefore
researchers have been focused on in its security by looking for reductions for between
average and worst-case [LS12]. The two main candidates for this project are CRYSTALS-
Kyber and CRYSTALS-Dilithium, both MLWE schemes.

CRYSTALS-Kyber

Kyber [ABD+21] is a KEM based on the MLWE problem. Its PKE scheme uses elements
in Rq and Rk

q where R is a cyclotomic power-of-2 ring R := Z[X]/(X256 + 1), q is the
prime 3329, and k is the module rank, set to 2, 3, or 4 depending on the security level.
Elements are sampled from χ, a distribution of “short” polynomials of Rq.

To generate a key, a matrix of random polynomials A ∈ Rk×k
q is pseudorandomly generated

from a uniformly random string. Then two secret vectors of polynomials s, e ∈ Rk
q are

sampled independently from χ coefficient-wise. The vector s is regarded as the secret
key, and the vector e is called the error term. The MLWE public key is (A, As + e).

To encrypt a message m two vectors of polynomials r, e1 ∈ Rk
q and a polynomial e2 ∈ Rq

are sampled, with all coefficients of each polynomial chosen independently from χ. Then,
the ciphertext c is formed as

c := (c1, c2) :=


rA + e1, rb + e2 +


q

2


· m


∈ Rk

q × Rq

To decrypt a ciphertext c using the secret key s the intermediate value v = c2 − c1s is
computed, then each coefficient of the polynomial v mod 2 is rounded to extract the
encoded m.

Kyber offers good performance, comparable to elliptic curves, and artifact size in the
1 to 3 KB range for security level 3 and 5. NIST believes that MLWE is suitable for
high-performance cryptosystems without sacrificing security, and the Kyber team provides
an extensive security analysis with concrete estimates for the security parameters. It is
therefore the only KEM candidate chosen for standardization, eventually giving it FIPS
compliance and setting it up for wide adoption with solid and reviewed implementations.

Kyber has some known patent issues, but in November 2022 the intellectual property
agreement was released [Cou22], stating that adopting the NIST standardized version of
Kyber is going to be royalty-free. Given the legacy burden of OpenPGP, wide deployment
is not considered before the proposed algorithms are fully standardized, therefore this
scheme is suitable for implementation in the context of this project.

As recommended by the authors, it is proposed to be used in composite mode with
well-established curves, ensuring that any flaw in the algorithm or implementation does
not compromise data security.
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CRYSTALS-Dilithium

Dilithium [DKL+21] is a signature scheme based on the decisional MLWE assumption,
under which the private key can not be recomputed from the public key. In particular, it
uses the ring Rq := Zq[X]/(X256 + 1), where q is the prime number 223 − 213 + 1. The
public key is the sample (A, t := As1 + s2), where A is a matrix over Rq and s1 and s2
are error vectors over Rq.

To sign a message, the scheme uses a “Fiat-Shamir with aborts” approach, where given a
random y, the signature consists of the high bits of vector z := y + cs1. Here, c ∈ Rq

is generated via the Fiat-Shamir procedure, c = hash(m||Ay) for a message m. If the
challenge c does not have a specific distribution, then the vector z can reveal information
about s1, therefore the procedure is aborted and repeated with a different random y.
The public key is then compressed.

This scheme ensures a high throughput, with performance close to elliptic curve schemes,
and artifacts in the 1 to 5KB range for security level 3 and 5. Furthermore it has been
chosen as main candidate from NIST, carrying the same advantages as Kyber. Finally it
has been successfully implemented on FPGA circuits [RMJ+21].

For all these reasons, this scheme was adopted in the proposal in composite mode with
well-established curves, similarly to Kyber.

2.2.2 Hash-based Schemes
This category consists of signature schemes based on the security assumptions of the
underlying hashes. Leslie Lamport and Ralph Merkle started this field in 1979 [Lam79,
Mer79], introducing the Merkle signatures. A drawback of these schemes is statekeeping.
Being One-Time Signature (OTS) schemes, they require the signing end to keep track
of which signature keys have already been used. If a signature key is reused, it can be
compromised.

For hash-based schemes, stateful vs stateless represents a very important distinction.
Stateful schemes are generally simpler, have compact and efficient signatures, and have
already been standardized as Leighton-Micali Signatures (LMS) in RFC 8554 [MCF19]
and as Extended Merkle Signature Scheme (XMSS) in RFC 8391 [HBG+18]. On the
other hand, they require very precise statekeeping, and therefore need to ensure only
one copy of the key is being used at a time. Their application is often limited to special
hardware that does not allow key export, and is extremely impractical in the OpenPGP
context, where there is no synchronized key management. We will therefore focus the
analysis on stateless schemes, in particular SPHINCS+, as they offer the versatility
required for the OpenPGP protocol.

SPHINCS+

SPHINCS+ [ABB+22b] combines the use of one-time signatures, few-time signatures,
Merkle trees, and hypertrees to generate a general-purpose scheme that does not require
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statekeeping and allows up to securely generate 264 signatures for each key pair. It is
the only stateless hash-based candidate that is considered in the NIST standardization
process, and the only hash-based scheme considered in the scope of the project.

In particular, the private key contains two uniformly sampled elements. First, the n-byte
secret seed SK.seed, which is used to generate all the Winternitz One Time Signature
(WOTS+) and Forest Of Random Subsets (FORS) private key elements. Second, an
n-byte Pseudo-Random Function (PRF) key SK.prf which is used to deterministically
generate a randomization value for the randomized message hash.

The public key also contains two elements. First, the Hyper-Tree (HT) public key, i.e.
the root of the tree on the top layer. Second, an n-byte public seed value PK.seed
which is sampled uniformly at random.

Generating a signature consists of the following steps:

1. A random value r is pseudorandomly generated from the message and SK.prf;

2. The value r is then used to compute an m-byte message digest which is split into
a ⌊(k log t + 7)/8⌋-byte partial message digest md, a ⌊(h − h/d + 7)/8⌋-byte tree
index idx_tree, and a ⌊(h/d + 7)/8⌋-byte leaf index idx_leaf;

3. The values md, idx_tree, and idx_leaf are truncated to the necessary number
of bits;

4. The partial message digest md is then signed with the idx_leaf-th FORS key
pair of the idx_tree-th XMSS tree on the lowest HT layer;

5. The public key of the FORS key pair is then signed using HT.

A signature is therefore composed of the concatenation of r, the FORS signature, and
the HT signature.

Signature verification consists of the following steps:

1. Recomputing message digest md, idx_tree, and idx_leaf using the same pro-
cedure as signature generation;

2. Computing a candidate FORS public key from idx_tree, idx_leaf, and the
FORS signature;

3. Verifying the HT signature on the candidate FORS public key.

The scheme is rather complex, but its security proof relies exclusively on the security
assumptions of the underlying hash: SHA-256, SHAKE-256, or Haraka. SPHINCS+ offers
also a wide selection of parameters for tradeoffs between security, signature generation
speed, and signature size.
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As a comparison with Dilithium, to achieve the comparable security level, signing with
SPHINCS+-SHA-256-192f-simple requires 65 million CPU cycles against 0.4 million
for Dilithium3, to produce a signature over 10 times in size.

This scheme represents a great candidate for OpenPGP primary keys or long-lived signa-
tures as it provides long-term security guarantees, at the expense of greater bandwidth
usage and slower signature generation. In the context of the project only SHA-2 and
SHAKE hash functions were considered. The former because of the performance, as
they require less than half of the CPU cycles to produce a signature, the latter to be
future-proof. Haraka was excluded because its security level is capped at 2, and it
represents unnecessary implementation burden.

The scheme is included in the proposal as standalone, as the confidence in its proof and
the security of the underlying hashes is very high.

2.2.3 Schemes Excluded from the Project
To prevent the specification from implementing too many algorithms and counter the
legacy burden, after careful consideration we excluded Falcon, Classic McEliece, and
BIKE from the project.

In particular, Falcon [FHK+20] is a signature scheme over NTRU lattices using fast-
Fourier sampling. This procedure requires floating-point arithmetics, therefore making
implementations complex, especially if constant-time operations are desired. In com-
parison to the other candidates, it features compact proofs, but given that bandwidth
is not a critical requirement for OpenPGP, CRYSTALS-Dilithium appears as a better
lattice-based candidate. To reduce the legacy burden we decided to limit the number of
lattice-based candidates to one.

Classic McEliece [ABC+22], instead is a KEM based on the assumptions that binary
Goppa codes it uses are indistinguishable from random linear codes, and that random
linear codes can only be decoded with exponential effort due to the General Decoding
Problem, also on quantum computers. The scheme has been subject to many years of
scrutiny with little changes to the security parameters due to new attacks, therefore
providing strong confidence in its security level. On the other hand, to achieve secure
communication, Classic McEliece presents slow key generation and requires large public
key size. While the former is not an issue in the OpenPGP context, the latter can be
problematic with respect to some key distribution systems, as specified in section 2.1.1.
It is important to consider that OpenPGP certificates can contain multiple subkeys, and
this may easily generate certificates in the tens of megabytes.

Finally, BIKE [ABB+22a] is a KEM based on binary linear Quasi-Cyclic Moderate
Density Parity Check (QC-MDPC) codes. Its performance is comparable to the already
selected CRYSTALS-Kyber, and its artifact size is just slightly larger, specifically in
the range of 3 to 5 KB for public keys and ciphertexts of security level 3 and 5. If a
standardization body, such as NIST or the CFRG, were to standardize this algorithm,
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it could be a great candidate for an alternative KEM based on a different underlying
problem. Given the great legacy burden of OpenPGP we do not consider adding non-
standardized algorithms, since their implementations becomes un-modifiable and support
can not be easily dropped. An unfortunate example can be found with the deployment
of Curve25519, used in OpenPGP before the release of the X25519 standard RFC 7748
[LHT16]: OpenPGP is now stuck with two different variants of X25519, one of which
presents a unique and non-standard way to encode artifacts.

2.3 Key Derivation and Combination
To formally construct a secure hybrid KEM as proposed in this project, we need to define
all its building blocks. This section will provide a definition of KEM, introduce the
concept of Indistinguishability under adaptive Chosen Ciphertext Attack (IND–CCA2)
security, and how to build a Key Derivation Function (KDF) to meet this definition.
Finally we will determine how to combine two or more KEMs such that if an adversary
has full control over all but one of the secret shares, the combination is still secure.

The construction laid out in this section and used in the project is compliant with NIST
SP800-56C [BCD20], is proven secure in the paper “KEM Combiners” by Giacon, Heuer,
and Poettering [GHP18], and directly based on the Internet Research Task Force (IRTF)
draft standard draft-ounsworth-cfrg-kem-combiners-03 [OWK23], of which I
am also an author. Since only Secure Hash Algorithm 3 (SHA–3) and Keccak Message
Authentication Code (KMAC) hash functions are used in the proposed construction, we
will focus on these and do not analyze hash construction in general.

2.3.1 Key Encapsulation Mechanisms
A KEM [KL20] is a tuple of probabilistic polynomial-time algorithms (Gen, Encaps, Decaps)
such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n and
outputs a public-/private-key pair (pk, sk). We assume pk and sk each has length
at least n, and that n can be determined from pk. We write this as

(pk, sk) ← Gen(1n).

2. The encapsulation algorithm Encaps takes as input a public key pk (which implicitly
defines n). It outputs a ciphertext c and a key k ∈ 0, 1ℓ(n) where ℓ is the key length.
We write this as

(c, k) ← Encapspk(1n).

3. The deterministic decapsulation algorithm Decaps takes as input a private key sk
and a ciphertext c, and outputs a key k or a special symbol ⊥ denoting failure. We
write this as

k := Decapssk(c).
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It is required that with all but negligible probability over the randomness of Gen and
Encaps, if Encapspk(1n) outputs (c, k) then Decapssk(c) outputs k.

The typical use of KEMs is to establish a shared secret between the sending party, or
encapsulater, and the receiving party, or decapsulater.

2.3.2 Chosen-Ciphertext Attack Security
In order to construct a secure KEM we need to define the notion of IND–CCA2 security.
A scheme is secure in this definition if no adversary can distinguish the ciphertext of two
messages, despite having access to a decryption oracle that they are not allowed to use
on the challenge ciphertext.

Formally, let A be an adversary and let Π = (Gen, Encaps, Decaps) be a KEM with key
length n, and consider the following experiment [KL20].

The adaptive Chosen Ciphertext Attack (CCA) indistinguishability experiment KEM cca
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk). Then Encapspk(1n) is run to generate (c,
k) with k ∈ {0, 1}n.

2. Choose a uniform bit b ∈ {0, 1}. If b = 0 set k̂ := k. If b = 1 then choose a uniform
k̂ ∈ {0, 1}n.

3. A is given (pk, c, k̂) and access to an oracle Decapssk(·), but may not request
decapsulation of c itself.

4. A outputs a bit b′. The output of the experiment is defined to be 1 if b′ = b, and 0
otherwise.

A KEM Π is CCA secure if for all probabilistic polynomial-time adversaries A there is a
negligible function negl such that:

Pr[KEM cca
A,Π(n) = 1] ≤ 1

2 + negl(n)

Using a CCA secure KEM in combination with a CCA secure private-key encryption
scheme results in a CCA secure public-key encryption scheme. Given that the allowed
combination of packets permits only usage of integrity protected data, also CCA secure,
we wish to preserve this notion when deriving and combining the KEK.

2.3.3 Keccak
Keccak is based on random sponge functions [BDPvA11], which provide arbitrary output
length, and behave like a random oracle, except for the effects induced by the finite
memory.
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The sponge construction is a simple iterated construction for building a function F with
variable-length input and arbitrary output length based on a fixed-length transformation
or permutation f operating on a fixed number b of bits. Here b is called the width. The
sponge construction operates on a state of b = r + c bits. The value r is called the bitrate
and the value c the capacity.

Figure 2.8: Random sponge function construction.

The following procedure is illustrated in fig. 2.8. First, all the bits of the state are
initialized to zero. The input message is padded and cut into blocks of r bits. The sponge
construction then proceeds in two phases: the absorbing phase followed by the squeezing
phase.

• In the absorbing phase, the r-bit input message blocks are XORed into the first r
bits of the state, interleaved with applications of the function f . When all message
blocks are processed, the sponge construction switches to the squeezing phase.

• In the squeezing phase, the first r bits of the state are returned as output blocks,
interleaved with applications of the function f . The number of output blocks is
chosen at will by the user.

The last c bits of the state are never directly affected by the input blocks and are never
output during the squeezing phase.

In Keccak’s instantiation, the function f consists of 12 + 2ℓ rounds, each composed of
five steps:

1. θ: A linear mapping that aims at maximising diffusion. Without it, f would not
provide diffusion of any significance.

2. ρ: A linear mapping that consists of translations within the lanes aimed at providing
inter-slice dispersion. Without it, diffusion between the slices would be very slow.
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3. π: A transposition of the lanes that provides dispersion. Without it, f would
exhibit periodic trails of low weight.

4. χ: Is a non-linear transformation composed of S-boxes. Without it, f would be
linear.

5. ι: The addition of round constants, aimed at disrupting symmetry. Without it, f
would be translation-invariant in the z-direction and all rounds would be equal.

We rely on Keccak’s properties in several components of the construction. In fact, for
given capacity c the indifferentiability proof shows that assuming there are no weaknesses
found in the Keccak permutation, an attacker has to make an expected number of 2c/2

calls to the permutation to tell KMAC from a random oracle. For a random oracle, a
difference in only a single bit gives an unrelated, uniformly random output [BDPvA11].

2.3.4 Keccak Message Authentication Codes
A KMAC is a variable-length Message Authentication Code (MAC) algorithm based on
Keccak that can also be used as a PRF. It is defined in SP800-185 [KjCP16], and differs
from the other Keccak-based PRFs SHAKE and cSHAKE because altering the requested
output length generates a new, unrelated output.

KMAC takes the following parameters:

• The key K, a bit string required to be at least as long as the security strength for
its usage to be approved.

• The main input bit string X.

• The output bit length L.

• The optional customization string S.

KMAC exists in two flavors, KMAC128 and KMAC256, instantiating Keccak with
capacity c respectively 256 and 512, and rate b respectively 168 and 136. In this project
only KMAC256 is used, and it is constructed as follows:

encode_string(S) = left_encode(len(S)) || S
X’ = bytepad(encode_string(K), 136) || X || right_encode(L)
C = bytepad(encode_string("KMAC") || encode_string(S), 136)
return KECCAK[512](C || X’ || 00, L)

Where the left_encode and right_encode functions encode integers up to 22040 − 1
from the left or from the right as strings.
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2.3.5 Key Derivation Functions
In the scope of the project an IND–CCA2 secure KEM is built out of the ECDH algorithm.
To achieve this, we use the Hashed ElGamal key encapsulation method: the encryption
key will be derived by hashing a pair of group elements of the elliptic curve field:

KDFλ,Γ
dk (a, b) := Hash(a||b)

Where:

• a is the auxiliary group element, in our case the encoded Elliptic Curve (EC) public
point in the ephemeral exchange.

• b is the shared secret, in our case the x-coordinate of an EC point.

• dk is a derivation key, an element in the KDF’s key space.

• λ ∈ Z≥0 is the security parameter.

• Γ ∈ [Sλ] is a group description that specifies a finite abelian group Ĝ, along with
a prime order subgroup G, a generator g of G and the order q of G, all public
parameters of the curve.

• || represents the concatenation operator.

A KDF is secure if the distinguishing advantage between the distribution of KDFλ,Γ
dk (a, b)

and the distribution of a random key K is negligible. This has been proven to be the
case when the KDF is pairwise independent. This is defined formally as ∀a, b, b′ ∈ G
with b ̸= b, the distribution�

KDFλ,Γ
dk (a, b), KDFλ,Γ

dk (a, b′)


: dk ← KDF. KeySpaceλ,Γ
�

is the uniform distribution over all pairs of bits strings of length KDF. OutLen(λ) [CS03].

2.3.6 Key Combiners
In the scope of hybrid PQ cryptography, another issue consists in combining two or more
secrets preserving the security guarantees, in our case IND–CCA2 security.

In order to achieve this, we will construct a key combiner derived from the paper “KEM
Combiners” by Giacon, Heuer, and Poettering [GHP18], in particular the combiner in
example 3 of figure 1, based on a Split-Key Pseudo-Random Function (SKPRF). We
start by defining an SKPRF, then assuming there are no weaknesses found in the Keccak
permutation prove that KMAC is one, and finally show that our construction is equivalent
to example 3.
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Practically, an SKPRF is the extension of a dual-PRF that can be keyed by any of its
inputs. This means, given an adversary that controls all the keys but one that is picked
uniformly at random, the function still behaves like a random function.

Formally, given finite key spaces K1, . . . , Kn, an input space X , and a finite output space
Y, let K = K1 × · · · × Kn, and consider a function F : K × X → Y. We introduce the
following game PRb

i(A) with b ∈ {0, 1} and 1 ≤ i ≤ n:

1. Let X be the empty set.

2. Randomly sample ki
$← Ki.

3. Query the adversary A for b′

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Using the following oracle Eval(k′, x) :

1. The oracle aborts if x ∈ X.

2. X ← X ∪ {x}.

3. The values of all kj ∀j ̸= i are set by the adversary, k1, . . . , ki−1, ki+1, . . . , kn ← k′.

4. The value y0 is obtained by evaluating F , that is y0 ← F (k1, . . . kn, x).

5. The value y1 is randomly sampled from Y, formally y1 $← Y.

6. yb is returned.

For each index i ∈ [1 · · · n], we associate with an adversary A its advantage:

Advpr
F,i(A) := | Pr[PR0

i (A)] = 1] − Pr[PR1
i (A)] = 1]|.

Observe that, for any index i, in the game PRb
i , b ∈ {0, 1}, the i-th key component of F

is assigned at random in point (1) of the game definition, while the adversary contributes
the remaining n − 1 components on a per-query basis, as per point (3) of the oracle
definition. We say that F is an SKPRF if the advantages Advpr

F,i for all key indices are
negligible for all practical adversaries.

Given a KMAC instance as defined in section 2.3.4 we now evaluate it on the input
string s1|| . . . ||sn, where || represents concatenation. Assuming there are no weaknesses
found in the Keccak permutation, for each bit changed in the concatenated input we
obtain a uniformly random output, as shown in section 2.3.3. Given s obtained from
the application of Keccak on the concatenation of strings s1, · · · sn, an adversary has to
correctly guess all strings entirely in order to be able to distinguish s from an uniformly
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random string. Following the previous definition, adversary has therefore negligible
advantage in guessing the correct b′.

Among the one-step KDF standardized by NIST SP800-56C [BCD20] we will evaluate
the following:

KMAC256(salt, x, outputBits, “KDF”)

Where

• salt represents a non-null agreed upon string.

• x is the input formatted as counter || Z || FixedInfo. Here, Z is the
concatenation of the ciphertexts and shared secrets c_1 || ss_1 || ... ||
c_n || ss_n.

• outputBits is the required number of key material bits.

Considered the construction proposed in example 3 [GHP18]

H(k1, . . . , kn, c),

where k1 to kn are the shared secrets, and c is the concatenated ciphertext, we can argue
that this is equivalent to the KDF proposed in the previous paragraph, in fact:

• Under the given assumptions KMAC behaves like a SKPRF.

• A counter prefix and a FixedInfo suffix, constant for each instance, do not
compromise the SKPRF property.

• The two constructions are simply a reordering of the arguments, therefore equivalent.

Therefore we have that

H(k1, . . . , kn, c) = KMAC256(k1|| . . . ||kn||c1|| . . . ||cn)
⇐⇒ KMAC256(c1||k1|| . . . ||cn||kn)
⇐⇒ KMAC256(counter||c1||k1|| . . . ||cn||kn||FixedInfo)

where only the main input bit string X is here considered in the arguments of the function
KMAC256(·).
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CHAPTER 3
Protocol Design Changes

When embedding PQ cryptography into an existing protocol, several design decisions
have to be taken, that are a trade off between security, implementation complexity,
crypto-agility, and usability.

As mentioned in the introduction, this project was born joining two different projects at
the IETF 113, where a presentation about the BSI-sponsored project was held. Both
projects had the same objective of implementing PQ cryptography into OpenPGP, but
with completely different design principles.

In this chapter the various design choices are going to be discussed and justified. We
will start from an overview of the high-level design, such as composite vs composable,
then present a concrete set of cryptographic algorithms chosen based on the theoretical
background illustrated in chapter 2, and finally explain the small bits and pieces.

All the high-level protocol design changes have been extensively discussed with the
OpenPGP community at the OpenPGP Email Summit 20221, at the IETF 115 in
London [EHK+22], and on the mailing list2. This was done with the intention of
gathering feedback directly from the implementers, to ensure a smooth transition to the
standardization phase.

3.1 Composite vs Composable
While there seemed to be consensus for implementing the PQ algorithms in hybrid mode
with elliptic curves, as recommended from the BSI [EHH+20] as well as the authors of
CRYSTALS-Kyber and CRYSTALS-Dilithium, the two initial projects did not agree on
how flexible should this combination mechanism be.

1Minutes can be found at https://wiki.gnupg.org/OpenPGPEmailSummit202205Notes
2Historical archives can be found at https://mailarchive.ietf.org/arch/browse/

openpgp/
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Composite schemes are designed to have a fixed combination of two or more schemes,
coming as an an indivisible package. From the implementation perspective, the composite
model is simpler, because it appears as a single algorithm on the protocol layer, i.e. the
current OpenPGP algorithm structure can be reused. The implementation is agnostic
to the cryptographic primitive, as long as it can offer a KEM interface to encapsulate
and decapsulate a key, or a signer interface to sign and verify. Furthermore, composite
schemes have a simpler cryptographic construction: for the considered algorithms all the
artifacts have a fixed length, ensuring a straightforward data encoding and a simpler
KDF construction.

On the other hand Composite schemes allow very little crypto-agility. Creating a new
combination requires standardization of a new algorithm, update of the deployed software,
and generation of new keys, procedure that might last years in the OpenPGP context.

Composable schemes instead are designed to allow a user to mix a variable combination
of algorithms to create a hybrid scheme. The implementation may choose any of the
available algorithms as building block and concatenate the data, to allow the creation of
a new composable packet. This approach maximizes crypto-agility, allowing the users to
create keys with a very high degree of flexibility, as any set of existing or new algorithms
can be used to create a key.

With great power comes great responsibility, and this approach carries some complexity
drawbacks:

• Algorithm security policy: Public key users have to decide on a policy of
what is an acceptably secure algorithm. For instance, any modern OpenPGP
implementation would reject verifying a signature created with an RSA-512 key.
With composable schemes, a similar policy needs to be created and kept consistent
across implementations. Using fixed combination ensures a clear communication,
e.g. asserting that Ed25519 as standalone is no longer accepted, while Ed25519 +
Dilithium3 is. Using variable combinations requires a more complex policy, where
individual algorithms are not be accepted, but specific combinations are. It is
important to note that this scheme list may grow factorially with the number of
supported algorithms.

• Implementation complexity: Following the composite approach adds another
layer between the protocol layer and the algorithms layer. In fig. 3.1 a concrete
example of the changes required to implement a composite or composable PKESK
is illustrated. In fig. 3.1a we can observe that no changes on the protocol layer are
required to implement a composite scheme, since it appears no different than the
existing X25519 packet. In the algorithm-specific part there are two ciphertexts
instead of one. In fig. 3.1b are instead shown the changes required for a composable
scheme, where a generic PKE algorithm ID is introduced, creating a further
wrapping layer around the ciphertexts.
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• Interoperability: Fixed algorithms provide a simple interoperability testing
framework. The OpenPGP community is actively working on an interface to allow
simple interoperability testing called Stateless OpenPGP Protocol (SOP) [Gil22],
that is used to test the handling of common and edge cases across different im-
plementations3. Having mixed combinations would require a more complex and
computationally expensive interoperability testing suite, in an environment where
interoperability is already precarious.

• Downgrade attacks: keys used in a composable context must be distinguishable
from keys used in a traditional context, i.e. an adversary should not be able
to perform a downgrade attack by reusing part of a PQ key or ciphertext. For
example, an attacker may try to remove the PQ component from a composable
key: the parsing implementation must refuse that key as invalid. This criteria adds
complexity when creating backward-compatible PQ keys, that might be used to
encrypt communication both traditionally or in hybrid mode depending on the
capabilities of the implementation sending the message.

For instance, one may try to design a change to the OpenPGP protocol that issues
two separate keys, ECDH and PQ, where a legacy implementation may use only the
ECDH key, while a newer implementation must use the key material from both to
encapsulate a session key. In this case, a signalling mechanism ignored by the legacy
implementation but enforced from the newer implementations is required. This
procedure, done via non-critical subpackets on the key’s self-signature, is illustrated
in fig. 3.2b. This adds a cross-layer dependency that significantly complicates the
implementation.

In the composite case, see fig. 3.2a, there is no backward-compatibility option. It is
only possible to generate two independent public keys, one for legacy implementa-
tions and one for PQ implementations. More details on the planned migration in
this case follow in section 3.6.

Finally, if an implementation limits the flexibility by reducing the amount of possible
combinations using a whitelist to address the interoperability or security policy concerns,
the composable approach loses any practical advantage compared to the composite
schemes, as allowing a new combination requires update and deploy of all implementations,
but retains the implementation complexity disadvantages.

For all these reasons, it was decided to follow the composite approach, and attempt
standardization with fixed algorithm combinations. This approach was also discussed
with the community at the May 2022 OpenPGP summit, that generally agreed.

3More info and results can be found at https://tests.sequoia-pgp.org/
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v6 PKESK packet

header: PKESK, < length >

1-octet version number (= 6)

1-octet key version number

N-octet target key fingerprint

1-octet public-key-algorithm ID = PQ-XY-with-ECDH-YZ

Algorithm specific part

ECDH-YZ -ciphertext = Encr(ECDH-PubKey, k1)

PQ-XY -ciphertext = Encr(PQ-PubKey, k2)

ESK = Encr(KDF(k1, k2), session-key)

(a) Composite PKESK packet structure: no changes on the protocol layer, a composite scheme
appears as a single algorithm ID for OpenPGP.

v6 PKESK packet

header: PKESK, < length >

1-octet version number (= 6)

1-octet key version number

N-octet target key fingerprints (f1, f2, ...)

1-octet public-key-algorithm ID = Generic PKE

Algorithm specific part

header: algo IDs: ECDH-YZ, PQ-XY, ...

ESK = Encr(KDF(k1, k2, ...), session-key)

Component specific part

ECDH-YZ -ciphertext = Encr(ECDH-PubKey, k1)

PQ-XY -ciphertext = Encr(PQ-PubKey, k2)

...-chipertext

(b) Composable PKESK packet structure: creation of a generic algorithm identifier that has an
arbitrary algorithm composition.

Figure 3.1: Composite vs Composable PKESK packet structure. Changes highlighted in
yellow.
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v6 Key packet

header: Public-Key Packet, < length >

1-octet version number (= 6)

4-octet key creation time

1-octet public-key-algorithm ID = PQ-XY-with-EC-YZ

4-octet public key material length

public key material

key values of EC-YZ

key values of PQ-XY

(a) Composite key packet structure: no changes on the protocol layer, a composite scheme appears
as a single algorithm ID for OpenPGP.

v6 Key packet

header: Public-Key Packet, < length >

1-octet version number (= 6)

4-octet key creation time

1-octet public-key-algorithm ID = ECDH

4-octet public key material length

public key material

key values of ECDH-YZ

Signature

...

hashed subpacket

use-only-with-key-ID (non-critical)

v6 Key Packet

header: Public-Key Packet, < length >

1-octet version number (= 6)

4-octet key creation time

1-octet public-key-algorithm ID = PQ-XY

4-octet public key material length

public key material

key values of PQ-YZ

(b) Possible backwards composable key structure, where the PQ key material is linked to an
existing key via a reference in the self-signature or subkey binding signature. Note that this
model breaks the current OpenPGP layering by requiring key material from multiple keys to
decrypt a message or verify a signature.

Figure 3.2: Composite vs Composable key packet structure. Changes highlighted in
yellow.
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3.2 Key Encapsulation Mechanisms
Recalling from section 2.1.2, OpenPGP public key encapsulation works in the following
way:

1. A session key is randomly generated or taken as input.

2. A PKESK is created for each recipient, asymmetrically wrapping the session key.

3. The PKESKs are prepended to the encrypted data.

The session key can also be taken as input because it is not always desirable to have
a fresh one: sometimes it is computationally expensive to re-encrypt the body of the
message, as it might be several gigabytes large, or there is no intention on changing the
SEIPD; session key reuse is a quite common case in OpenPGP. This constraint would
introduce an additional abstraction layer in the composable model, but plays well with
the composite structure, ensuring a simple yet robust construction, where composite
schemes appear as a single algorithm on the protocol layer. The proposed structure of a
PKESK is illustrated in fig. 3.1a.

The complete list of algorithm identifiers to algorithm association is presented in table 3.1.
This has been discussed with several stakeholders in the protocol that had to conform
to different regulatory requirements, and needed optional algorithm IDs for compliance.
The requirement levels differ because we need to ensure a minimal interoperability option,
Kyber in combination with X25519, recommend a higher security option, Kyber in
combination with X448, and provide an optional set of algorithms for compliance-specific
cases.

ID Algorithm Requirement
29 Kyber768 + X25519 MUST

30 Kyber1024 + X448 SHOULD

31 Kyber768 + ECDH–NIST–P–256 MAY

32 Kyber1024 + ECDH–NIST–P–384 MAY

33 Kyber768 + ECDH–brainpoolP256r1 MAY

34 Kyber1024 + ECDH–brainpoolP384r1 MAY

Table 3.1: Proposed KEM algorithm IDs and their implementation requirement.

3.2.1 ECC Key Share Derivation
While Kyber’s proposed construction is already IND–CCA2 secure, the elliptic curve
counterpart is not. In particular, since there can be multiple points on the curve that
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correspond to the same secret scalar, an adversary that can query a decryption oracle
for P ′ such that P ′ ≡ P ≡ xG, with P ′ ̸= P , can obtain the shared secret for the point
P [LHT16], therefore breaking CCA security, as discussed in section 2.3.2.

To prevent this attack, it was decided to rely on the hashed ElGamal key encapsulation
construction as discussed in section 2.3.5, where the ciphertext is hashed with the shared
secret obtained by the exchange:

KE = hash(SSE ||CE)

Where SSE is the x-coordinate derived from the exchange, and CE is the encoded
ephemeral public point of the exchange. The hash function family is SHA–3, and the
size depends on the algorithm ID.

Given that our construction relies only on the Keccak-based SHA–3 hash function, we can
then show that this makes the KDF pairwise independent. In fact, assuming there are no
weaknesses found in the Keccak permutation, for each bit changed in the concatenated
input we obtain a uniformly random output, as shown in section 2.3.3. This satisfies the
definition of pairwise independence given in section 2.3.5, therefore our construction is
IND–CCA2 secure.

In practice, embedding the ciphertext into the hash prevents malleability, ensuring that
that any adversarial change to the ciphertext diffuses uniformly on the key share.

3.2.2 Key Derivation Function
A KDF derives a KEK from the traditional and PQ key shares. In fig. 3.1a the KDF(k1, k2)
function is mentioned: this key component of the algorithm is critical for a secure
construction, since it provides key share combination, public key binding, protection
against CCA attacks, and domain separation.

The following KMAC-based design is used:

// multiKeyCombine(eccKeyShare, eccCiphertext, kyberKeyShare,
kyberCiphertext, fixedInfo)

// Input:
// domSeparation - the UTF-8 encoding of the string
// "OpenPGPCompositeKeyDerivationFunction"
// counter - a 4 byte counter set to the value 1, that is
// the value 0x00000001
// K_E - the ECC key share encoded as an octet string
// C_E - the ECC ciphertext
// K_K - the Kyber key share encoded as an octet string
// C_K - the Kyber ciphertext
// algID - the algorithm ID encoded as octet
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// publicKey - the recipient’s encryption sub-key packet
// serialized as octet string
// oBits - the size of the output keying material in bits
// customization - the UTF-8 encoding of the string "KDF"

// Output:
// K - A Key Encryption Key to wrap the session key

fixedInfo = algID || SHA3-256(publicKey)
encKeyShares = counter || K_E || C_E || K_K || C_K || fixedInfo
K = KMAC256(domSeparation, encKeyShares, oBits, customization)

This design, inline with NIST recommendation SP800-56C [BCD20], was chosen after con-
sidering several designs using Hash-based Message Authentication Code (HMAC) [ADK+22]
or SHA–3 concatenation, because it ensures the following properties:

• Secure key share combination: if an adversary has full control of one key share,
no information is revealed about the other. Since KMAC is based on Keccak,
we can then state that assuming there are no weaknesses found in the Keccak
permutation, to be able to distinguish a key K, derived from the application of
KMAC to the concatenation the shared keys KE and KK from a random bit string,
an adversary has to correctly guess both key shares KE and KK entirely, as shown
in section 2.3.6.

• Public key binding: safely bind the KEK to the public keys used in the original
encryption process, preventing ciphertext manipulation, such as proxy transfor-
mations. In order to obtain the same KEK, the recipient needs to provide the
expected encryption publicKey and the encoded ciphertexts that are currently
being used for decryption. The serialization of these is univocally standardized by
the OpenPGP protocol. Any attempt at performing a cross-algorithm attack, or
proxy transformations that the recipient is not aware of, will result in an invalid
ciphertext. The recipient’s public key is embedded in the fixedInfo parameter,
and to keep its length constant it is hashed, fixing the position of the algorithm
ID from the end. The sender’s public key is in this context represented by the
two ephemeral ciphertexts included in the KDF, since the sender may not have an
OpenPGP key.

• Preserving IND–CCA2 security: in the proposed construction we combine the
ephemeral ciphertexts into the KDF, ensuring that if at least one of the ingredient
KEM is IND–CCA2 secure, then the combination is secure, as stated in section 2.3.6.
Effectively, this means we are including the ciphertexts in the KDF a second time
to ensure a solid security proof of the construction, even if both key shares already
include them in the derivation.
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• Domain separation: Ensures that no other algorithm builds the KEK in the
same way, preventing cross-algorithm attacks. A source of cross-algorithm attacks
can also be created from the existing ECDH KDF, that has a variable length
fixedInfo format, but compatible parameters, as it may use SHA–3 for the KEK
derivation. For this reason, we opted for a KMAC-based construction instead of
plain SHA–3, using a fixed salt as key.

The derived KEK is then used to encrypt the provided session key using 256-bit Advanced
Encryption Standard (AES) as standardized in RFC 3394 [HS02].

3.2.3 Multiple PKESK
When sending a message to multiple recipients, the same session key is wrapped for
each one of them. It is important to note, that as long as there is one recipient not
supporting PQ algorithms, then the message is still effectively not PQ protected. The
proposed specification therefore forbids applications from encrypting a message for the
same recipient in both a PQ and traditional way.

3.3 Signature Schemes
We introduce in this project three different signature schemes: Dilithium with EdDSA,
Dilithium with ECDSA, and SPHINCS+. As recommended from the authors, the first
two are in combination with EC signatures, to ensure a fallback in case of significant new
attacks on Dilithium.

The complete list of algorithm identifiers to algorithm association is presented in table 3.2.
Similarly to the KEM schemes, it has been negotiated with all the stakeholders to conform
to different regulatory requirements. Also here, we have Dilithium3 in combination with
Ed25519 mandatory, Dilithium5 in combination with Ed448 and SPHINCS+–SHA2
recommended, while all the compliance-specific algorithms are optional.

Similarly to Kyber, also Dilithium signature schemes have been built with a composite
construction, and therefore require no change on the protocol level. OpenPGP considers
the composite signature scheme as a single algorithm, and we require both component
signatures to successfully verify in order to consider the signature valid. An example of
composite signature structure is illustrated in fig. 3.3.

SPHINCS+ instead is considered mature enough for standalone standardization. Its
security analysis [ABB+22b] includes a complete history of third party cryptoanalysis
with estimated security strength and known attacks. The OpenPGP community agreed
with the previous statement, and we therefore propose to not combine the algorithm
with elliptic curves. To prevent an explosion of the number of possible algorithms it was
decided to parametrize SPHINCS+ for speed and security trade-offs. Parameter values
are listed in table 3.3.
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ID Algorithm Requirement
35 Dilithium3 + Ed25519 MUST

36 Dilithium5 + Ed448 SHOULD

37 Dilithium3 + ECDSA-NIST-P-256 MAY

38 Dilithium5 + ECDSA-NIST-P-384 MAY

39 Dilithium3 + ECDSA-brainpoolP256r1 MAY

40 Dilithium5 + ECDSA-brainpoolP384r1 MAY

41 SPHINCS+–simple–SHA2 SHOULD

42 SPHINCS+–simple–SHAKE MAY

Table 3.2: Proposed signature algorithm IDs and their implementation requirement.

Parameter ID Parameter
1 SPHINCS+–simple–*–128s

2 SPHINCS+–simple–*–128f

3 SPHINCS+–simple–*–192s

4 SPHINCS+–simple–*–192f

5 SPHINCS+–simple–*–256s

6 SPHINCS+–simple–*–256f

Table 3.3: Proposed SPHINCS+ parametrization.

3.3.1 Multiple Signatures

Signature schemes differ from PKE because there is an advantage in having two signatures,
PQ and traditional, issued from the same user. As seen in section 2.1.2, these can in fact
be concatenated on in a message to provide forward security. The OpenPGP standard
allows having several signatures, considering a message to be signed when at least one
verifies. It is up to the receiving implementation whether to accept a traditional signature:
this could allow a deadline-based transition or just deprecation of traditional signatures
in future versions. Given this paradigm, the proposed specification recommends to
sign a message multiple times, once with a PQ signature, and once with a traditional
EC signature, shifting the acceptance policy to the receiver. This ensures maximal
compatibility without any authenticity trade-off.
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v6 signature packet

header: Signature, < length >

1-octet version number (= 6)

1-octet signature type

1-octet public-key-algorithm ID = PQ-XY-with-EdDSA-YZ

1-octet hash algorithm

4-octet hashed subpacket length

N-octet hashed subpacket data

4-octet unhashed subpacket length

N-octet unhashed subpacket data

2-octet hash checksum

1-octet salt length

N-octet random salt

Algorithm specific part

EdDSA-YZ -signature = Sign(EdDSA-SecKey, hash)

PQ-XY -signature = Sign(PQ-SecKey, hash)

Figure 3.3: Composite signature packet. Changes highlighted in yellow.

3.3.2 Hash Function Binding
Since OpenPGP pre-hashes the data on the protocol layer, the PQ draft specification
proposes to bind the hash function used in the digest generation to the hash function
used internally in the algorithm, e.g. since Dilithium produces internal digests using
SHAKE, the attack surface would be expanded by using SHA–2 in the message digest
generation.

For PQ algorithms, we propose the bindings listed in table 3.4. Dilithium uses internally
a SHAKE PRF, therefore we bind it to either SHA–3 256 or 512 bit, depending on the
implementation’s security settings. SPHINCS+, instead uses different hashes depending
on the parameters, therefore a more sophisticated binding is necessary.

It was considered to alternatively remove the hash-then-sign paradigm altogether and feed
the PQ algorithms directly the message as input, but this would have required extensive
changes to the OpenPGP protocol. It is important to note, that OpenPGP allows
streaming, and therefore the implementation might not have access to the data multiple
times to rewind and perform a second hashing. The required data for the instantiation
are embedded in the signature packet, that always follows the signed data. Considered
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Algorithm ID Parameter ID Hash function Hash function ID
31 - 36 N/A SHA3–256, SHA3–512 12, 14

37 1, 2 SHA–256 8

37 3, 4, 5, 6 SHA–512 10

38 1, 2 SHA3–256 12

38 3, 4, 5, 6 SHA3–512 14

Table 3.4: Proposed signature hash binding.

that PQ algorithms are bound to use version 6 signatures, featuring salted hashing as
stated in section 3.5, the PQ draft specification proposes to keep the hash-then-sign
paradigm. This is not a security tradeoff, since in SPHINCS+ the salt length matches the
salt size in the internal construction. It is to be noted that binding the salt size to the
hash function is not specific to PQ algorithms and involves a protocol change, therefore
instead of limiting the scope to the PQ draft specification, this binding was integrated
directly into the current standard development process [WHWY23].

3.4 Artifact Encoding
This project uses a new encoding for key material, ciphertext and signature artifacts
in OpenPGP: fixed-length octet strings. Even though this seems to be the easiest data
format, it is historically not used to store these artifacts: OpenPGP was born with RSA
and DSA in mind, and therefore it is using Multi-Precision Integer (MPI) encoding.
While this is very suitable to store integers, it has been reused to store encoded EC points
for algorithms such as ECDH, ECDSA, and EdDSA. In order to avoid truncation when
encoding as MPI, points on the curve are prefixed with a 0x40 or 0x80 leading byte.

Since the NIST competition [MAA+22] requires all candidates to offer only an opaque
fixed-length octet string for all artifacts, it was decided to ditch the MPI encoding in
favor of less flexible and simpler system.

Given that the composite model was chosen, cryptographic material is encoded only in
the algorithm-specific part, like shown in fig. 3.2a.

3.5 Version Binding
The PQ draft specification requires version 6 key, PKESK, signature, and OPS packets
when using PQ algorithms. This improves security providing the following advantages:

• SHA–1 is not used to produce signatures or fingerprints. The latest OpenPGP
specification explicitly forbids using SHA–1 when generating the message digest for
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signature, and for v6 keys replaces it with SHA–256 in fingerprint generation.

• Prevents ciphertext malleability attacks. A version 6 PKESK is always followed by
a version 2 SEIPD that features only AEAD protected symmetric cryptography
modes.

• SHA–3 support. Optional support for SHA–3 was introduced in the latest OpenPGP
specification only. This project proposes to make it mandatory, and binding the
use of SHA–3 to the relevant PQ algorithms.

• Salted signatures. OpenPGP uses a hash-then-sign paradigm on the protocol level,
in order to implement easier data streaming. In particular, an OPS precedes the
data, informing that a signature follows, and the signature details are at the end of
the data stream. Version 6 signatures include an unpredictable salt in the OPS
packet, that is prepended to the hashed data, ensuring that weak-collision resistance
is sufficient for the hash function used in the data hashing [LP20] as analyzed in
section 2.1.2.

3.6 Proposed Migration Strategies
We propose two different migration strategies, depending on the use case.

1. The first strategy is based on having two keys: PQ and traditional. Older clients
will be able to use the traditional key, while newer clients can prefer the PQ key.
To enhance this approach it could be interesting to enhance the specification with
a a “key superseded” signature, that allows to designate a replacement key without
effectively revoking the old one.

2. The second strategy consists of attaching a PQ encryption subkey to a classical
existing key. By design, we require implementations to prefer PQ keys over
traditional ones, while legacy implementations will safely ignore the unknown
algorithm identifier. This approach eases key distribution, as only one key per
recipient has to be shared, but provides only transitional authenticity, as the key
will have to be replaced before cryptographically relevant quantum computers are
introduced.
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CHAPTER 4
Implementation

The designed protocol has been implemented in Golang, in the open-source library
go-crypto1. In its git repository, the branch draft-wussler-openpgp-pqc experi-
mentally implements the latest draft of the specification.

4.1 Dependencies
First and foremost, we investigated support for Kyber, Dilithium and SPHINCS+, to
find out whether suitable, secure libraries are already available, or whether development
from scratch is necessary.

The CRYSTALS algorithms are provided with a good community-based support, with
several viable candidates, among which two were selected:

• crystals-go2, from Kudelski Security, that provides good support for both algorithms
and a well-documented security record.

• circl3, from Cloudflare, a complementary set to Golang’s x/crypto that contains a
variety of well-implemented and performant algorithms.

A first implementation used crystals-go, but to reduce the executable size and increase
performance it was replaced by circl. This second library has a better designed API,
higher throughput, and was already used into the go-crypto library for the X25519,
Ed25519, X448, and Ed448 algorithms.

1https://github.com/ProtonMail/go-crypto
2https://github.com/kudelskisecurity/crystals-go
3https://github.com/cloudflare/circl
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4. Implementation

For SPHINCS+ the selection is much more restricted. The only viable candidate is
SPHINCSPLUS-golang4, a straightforward Golang implementation of the round 3 sub-
mission recommended by the SPHINCS+ authors on the algorithm’s homepage. This
library does not offer the same scrutiny as the CRYSTALS counterparts, but is neverthe-
less valid. Instead of rewriting from scratch, it was decided to rather contribute to the
exiting library, especially since the author opted for an MIT licence, a very permissive
open source option that easily allows reuse and extension.

4.2 Changes to the Library
4.2.1 Creating a Generic EC Interface
Before implementing the PQ algorithms, a refactoring of the legacy EC code was necessary:
a reusable generic interface for ECDH, ECDSA, and EdDSA was created, ready to be
reused in the hybrid schemes. Furthermore standalone support for X448 and Ed448 was
added, and the library for X25519 and Ed25519 was switched over to circl to minimise
the compiled library size and increase performance.

type Curve interface {
GetCurveName() string

}

type ECDSACurve interface {
Curve
MarshalIntegerPoint(x, y *big.Int) []byte
UnmarshalIntegerPoint([]byte) (x, y *big.Int)
MarshalIntegerSecret(d *big.Int) []byte
UnmarshalIntegerSecret(d []byte) *big.Int
MarshalFieldInteger(d *big.Int) []byte
UnmarshalFieldInteger(d []byte) *big.Int
GenerateECDSA(rand io.Reader) (x, y, secret *big.Int, err error)
Sign(rand io.Reader, x, y, d *big.Int, hash []byte)
(r, s *big.Int, err error)

Verify(x, y *big.Int, hash []byte, r, s *big.Int) bool
ValidateECDSA(x, y *big.Int, secret []byte) error

}

type EdDSACurve interface {
Curve
MarshalBytePoint(x []byte) []byte
UnmarshalBytePoint([]byte) (x []byte)
MarshalByteSecret(d []byte) []byte
UnmarshalByteSecret(d []byte) []byte
MarshalSignature(sig []byte) (r, s []byte)
UnmarshalSignature(r, s []byte) (sig []byte)
GenerateEdDSA(rand io.Reader) (pub, priv []byte, err error)
Sign(publicKey, privateKey, message []byte) (sig []byte, err error)
Verify(publicKey, message, sig []byte) bool
ValidateEdDSA(publicKey, privateKey []byte) (err error)

4https://github.com/kasperdi/SPHINCSPLUS-golang
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}

type ECDHCurve interface {
Curve
MarshalBytePoint([]byte) (encoded []byte)
UnmarshalBytePoint(encoded []byte) []byte
MarshalByteSecret(d []byte) []byte
UnmarshalByteSecret(d []byte) []byte
GenerateECDH(rand io.Reader) (point []byte, secret []byte, err error)
Encaps(rand io.Reader, point []byte)

(ephemeral, sharedSecret []byte, err error)
Decaps(ephemeral, secret []byte) (sharedSecret []byte, err error)
ValidateECDH(public []byte, secret []byte) error

}

This interface provides methods to serialize and deserialize points and integers from the
native format, generate keys, encapsulate and decapsulate session keys, and validate
whether a public key matches its private counterpart.

Each curve implements the corresponding methods of the required interfaces to perform
ECDSA, EdDSA, or ECDH. This ensures that curves can be easily interchanged and
code does not have to be duplicated when implementing similar PQ algorithms hybrid
with different curves.

This procedure did not change the underlying curve implementation for the NIST nor
Brainpool curves. It is to be noted, that the latter has never been optimized and therefore
suffers from poor performance, presenting a very clear pattern in the tests shown in
chapter 5.

4.2.2 Implementing Kyber and Dilithium

The next step has been implementing Kyber in combination with ECDH, trying to
minimize code duplication. To hold the algorithm instantiations and the key material a
structure pointing to the kyber and curve interfaces has been developed.

type PublicKey struct {
AlgId uint8
Curve ecc.ECDHCurve
Kyber kem.Scheme
PublicKyber kem.PublicKey
PublicPoint []byte

}

type PrivateKey struct {
PublicKey
SecretEC []byte
SecretKyber kem.PrivateKey

}
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This allows to easily implement the six different schemes using a unified interface that
requires the correct parameters only in the instantiation phase. Three methods are
exported: key generation, encryption and decryption.

func GenerateKey
(rand io.Reader, algId uint8, c ecc.ECDHCurve, k kem.Scheme)
(priv *PrivateKey, err error)

func Encrypt
(rand io.Reader, pub *PublicKey, msg, publicKeyHash []byte)
(kEphemeral, ecEphemeral, ciphertext []byte, err error)

func Decrypt
(priv *PrivateKey, kEphemeral, ecEphemeral, ciphertext, publicKeyHash []byte)
(msg []byte, err error)

When generating a key we instantiate the data structure, requiring the algorithm ID and
the corresponding EC and Kyber instances. Then, public and private keys can be used
with the Encrypt and Decrypt methods without having to specify the primitives.

Both Encrypt and Decrypt use a shared method to perform the KDF procedure, for
which KMAC256 had to be implemented starting from the cSHAKE primitive.

Since no PQ signature algorithm was yet implemented, to test Kyber encryption keys as
standalone a Kyber encryption subkey was attached to a plain Ed25519 primary key.

Then, hybrid dilithium support was implemented using two separate internal representa-
tions, one for EdDSA and one for ECDSA. In fact, the two algorithms differ significantly
in the data encoding and use two different underlying implementations to handle the
curve component.

The EdDSA data structure is as follows:

type PublicKey struct {
AlgId uint8
Curve ecc.EdDSACurve
Dilithium dilithium.Mode
PublicPoint []byte
PublicDilithium dilithium.PublicKey

}

type PrivateKey struct {
PublicKey
SecretEC []byte
SecretDilithium dilithium.PrivateKey

}

func GenerateKey
(rand io.Reader, algId uint8, c ecc.EdDSACurve, d dilithium.Mode)
(priv *PrivateKey, err error)

46



4.2. Changes to the Library

While the ECDSA stores the points by their integer coordinates:

type PublicKey struct {
AlgId uint8
Curve ecc.ECDSACurve
Dilithium dilithium.Mode
X, Y *big.Int
PublicDilithium dilithium.PublicKey

}

type PrivateKey struct {
PublicKey
SecretEC *big.Int
SecretDilithium dilithium.PrivateKey

}

func GenerateKey
(rand io.Reader, algId uint8, c ecc.ECDSACurve, d dilithium.Mode)
(priv *PrivateKey, err error)

Both EdDSA and ECDSA offer a similar signature and verification interface:

func Sign(priv *PrivateKey, message []byte) (dSig, ecSig []byte, err error)
func Verify(pub *PublicKey, message, dSig, ecSig []byte) bool

Finally, all keys offer a Validate method to prevent KOpenPGP [BHP22] attacks. This
validates whether the public key component matches the one derived from the private
key, preventing key replacement attacks:

func Validate(priv *PrivateKey) (err error)

4.2.3 Implementing SPHINCS+

Being SPHINCS+ a standalone algorithm, not used in a hybrid configuration, its imple-
mentation was limited to a shallow wrapper around the SPHINCSPLUS-golang library,
mapping the different security parameters to the library instantiation.

The data structures are defined as follows:

type PublicKey struct {
ParameterSetId ParameterSetId
Mode Mode
Parameters *parameters.Parameters
PublicData *sphincs.SPHINCS_PK

}

type PrivateKey struct {
PublicKey
SecretData *sphincs.SPHINCS_SK

}
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Here ParameterSetId corresponds to the OpenPGP configuration option that is then
mapped to the Parameters of the underlying library.

4.2.4 Additional Changes Required for Integration
In order to integrate the library some additional pivotal changes were necessary:

• A new encoding type OctetArray has been introduced. As previously discussed
in section 3.4 we opted to use fixed length binary strings, that were not previously
available in OpenPGP.

• The Config structure, used to pass key generation options, had to be altered
to take a SphincsPlusParameterId option, that allows customization when
generating SPHINCS+ keys.

• The algorithm to tweak subkey preference has been changed to favour PQ keys
over traditional when looking for an encryption key candidate.

• Version checks were implemented across the codebase to ensure the version binding
is enforced.

• Unit, integration, and end-to-end tests were added to the library for the new
algorithms.

4.2.5 Design Changes During the Implementation Phase
The first draft, version 00, was published in December 2022, providing a permanent link
to add references to the specifications in the code, making procedures well documented.
The second draft, version 01, was published in March 2023 and is the one that this thesis
is based on. It adapted the text to the latest changes in version 08 of the OpenPGP
draft specification [WHWY23].

In this section we describe some of the changes that were done after having started the
implementation, that led to the changes across the draft versions, gathering feedback
from development process.

Kyber Parametrization

It was then attempted to parametrize the Kyber and Dilithium components, similarly to
the choice taken for SPHINCS+. For instance, this would have meant having Kyber +
X25519 as algorithm ID 29 featuring a parameter in the packet specifying which security
level of Kyber to use. This option was then excluded because it added complexity to
the protocol without a real advantage in crypto agility. It was valued more important to
have fixed and clear combinations, than to allow users to pick which PQ security level
was to be used with different curves. Reasonable combinations are provided by design,
that ensure a similar expected security level between curves and PQ algorithms.
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Lower Security Parameters

In an early version, the algorithm selection included also Kyber512 and Dilithium2, but
we opted to remove it preferring only NIST security level 3 and 5 candidates: Kyber768,
Kyber1024, Dilithium3, and Dilithium5. This was done because aggressive bandwidth or
performance optimizations are not necessary in OpenPGP, rather a conservative approach
with respect to security is preferred. This was also confirmed with the community when
gathering feedback at IETF 115 in London, and corresponds with the recommendation
from the NSA [Age22]. The same feedback also influenced the choice of EC for both
signatures and PKE changing respectively from NIST-P-384 and NIST-P-521 to NIST-P-
256 and NIST-P-384, as well as brainpoolP384r1 and brainpoolP512r1 being respectively
downgraded to brainpoolP256r1 and brainpoolP384r1.

Key Combiner

The Kyber + ECDH key combiner has been changed due to security concerns, as it could
collide with the existing ECDH key combiner. The new revision is using KMAC256
instead of plain SHA-3, introducing domain separation from the existing ECDH KDF.
Furthermore, in version 01, the KDF construction has changed to be IND–CCA2 secure.

Preference of PQ Keys

When having to develop an algorithm to select candidate encryption subkeys, we opted
to prefer PQ over traditional keys, a measure necessary to allow a smooth migration for
PQ capable implementations.

Binding PQ to Version 6

Given the security benefits of version 6 packets, we decided to bind the PQ algorithms
to this version for PKESK, signature, and key packets. Part of these features were not
yet fully implemented in go-crypto, therefore benchmarking incurred in some delays.
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CHAPTER 5
Results and Performance Analysis

To measure the performance of the algorithms and implementation we timed end-to-end
key generation, parsing, encryption, signing, and verification.

Our objective with these measurement is to provide a realistic user perspective and
reason about the user experience when using these algorithms. We therefore chose to
measure the end-to-end performance of the implementation rather than measuring the
performance of the algorithm itself, that has generally been well documented in the
context of the NIST PQ competition [MAA+22].

In order to evaluate the benchmark results we need to look into the structure of the
generated version 6 certificates. Here we use a very plain structure, that is also the
default for go-crypto, with a primary certification and signature capable public-private
keypair and an encryption capable subkey. The primary key signs:

• a direct key signature containing the user preferences,

• a single primary user identity,

• the encryption subkey via a binding signature.

Given the key structure:

• Key generation operation consists of two different primitive key generations and
three signature generations.

• Key parsing consists of three signature verifications.

• Encryption, decryption, signing and verification are instead just the primitive
operations over 1 KB of randomly generated plaintext.
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In these tests, we compare the newly proposed algorithms with the the matching set
of existing algorithms: RSA-2048, RSA-3072, RSA-4096, Ed25519, Ed448, P256, P384,
Brainpool256, and Brainpool384. The matching between signing and KEM algorithms is
shown in table 5.1.

Primary key Algorithm Encryption Sub-key Algorithm
RSA RSA

Ed25519 X25519

Ed448 X448

ECDSA-NIST-P-256 ECDH-NIST-P-256

ECDSA-NIST-P-384 ECDH-NIST-P-384

ECDSA-brainpoolP256r1 ECDH-brainpoolP256r1

ECDSA-brainpoolP384r1 ECDH-brainpoolP384r1

Dilithium3 + Ed25519 Kyber768 + X25519

Dilithium5 + Ed448 Kyber1024 + X448

Dilithium3 + ECDSA-NIST-P-256 Kyber768 + ECDH-NIST-P-256

Dilithium5 + ECDSA-NIST-P-384 Kyber1024 + ECDH-NIST-P-384

Dilithium3 + ECDSA-brainpoolP256r1 Kyber768 + ECDH-brainpoolP256r1

Dilithium5 + ECDSA-brainpoolP384r1 Kyber1024 + ECDH-brainpoolP384r1

SPHINCS+–simple–SHA2 Kyber1024 + X448

SPHINCS+–simple–SHAKE Kyber1024 + X448

Table 5.1: Default matching for public and private keys in go-crypto

5.1 Artifact Size
We start by analyzing the artifact size for each considered algorithm combination and
operation in fig. 5.1. These results are implementation specific, and as much as they do
not vary depending on platform, other implementations might serialize packets differently,
effectively generating similar but not identical sizes. As it is here done for performance
benchmarking, we use the default settings and 1 KB uncompressed plaintext to generate
the results.

At a first glance it appears evident that PQ algorithms, and in particular SPHINCS+

have much larger artifacts than any traditional algorithm, 4096 bit RSA included. No
PQ algorithm in the standardization process unfortunately provides artifacts under a
few KB in size, let alone in the hundred of bytes like EC. As discussed in chapter 2, this
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Figure 5.1: Overview of the artifact size for all newly implemented and reference algo-
rithms for 1 KB of data. The plot is logarithmic in the size of the artifact.
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tradeoff is well-known, and widely accepted in the community, and part of this project’s
contribution is to investigate what impact this has on the existing protocol.

It is to be noted, that for encryption and signature the sizes reported in fig. 5.1 refer
only to the algorithm overhead, i.e. excluding the signature plaintext and the encrypted
ciphertext. For instance, for a 1KB large email, X25519 will add 0.2KB of overhead
totalling 1.2KB message size, while Kyber768 combined with X25519 will add 2KB of
overhead, totalling 3KB.

Fortunately for OpenPGP, this does not seem to pose a problem, except for some edge-
cases such as cleartext signed messages where a base64 encoded signature is appended to
a human-readable message, they will appear to users as large chunks of unreadable data
eclipsing the actual message.

Other issues might appear only at scale, when handling large storage of messages or
signatures; for instance migrating billions of signatures from 138 bytes for Ed25519 to
3432 bytes for Ed25519 + Dilithium3 can be expensive. Given that around 3.5KB is the
smallest signature offered, this cost has to be taken in consideration in the process of PQ
migration. Ciphertexts also present the same problem: for 1 KB of plaintext there will
be a 129% overhead.

5.2 Desktop Performance Analysis Methodology

For desktop devices, the measurements were taken using the integrated Golang bench-
marking tool. For each measurement we repeated the operation 8 times and averaged
the time, repeating this procedure 10 times.

Measurements were taken on an idling x86 Intel(R) Core(TM) i5-8265U CPU, clocked at
1.60 GHz. A consumer laptop CPU was chosen to ensure realistic measurements from
the user perspective.

We can first observe an overview of the median performance of all considered algorithms
in fig. 5.2. For this first plot, we selected a logarithmic scale on the time axis: performance
varies in a very large range, from 0.15 ms to 15 s, given the tradeoffs between security,
size, and speed.

In this plot, it can be seen that, except for SPHINCS+, all operations remain into the
same order of magnitude, and that the lattice-based schemes preserve the computational
cost of the elliptic curves, also in the hybrid setting. In the following sections we will
break down the analysis by operation and algorithms, with detailed considerations about
each comparable set using linear graphs.
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Figure 5.2: Overview of the x86 performance for all newly implemented and reference
algorithms for 1 KB of data. The plot is logarithmic in the operation time.
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Figure 5.3: Overview of the ARM performance for all newly implemented and reference
algorithms for 1 KB of data. The plot is logarithmic in the operation time.
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5.3. Mobile Performance Analysis Methodology

5.3 Mobile Performance Analysis Methodology
In order to perform measurements on mobile devices, we first had to compile GopenPGP1

using go-mobile2 for Android: this builds a library that can be accessed from ap-
plications via bindings. A simple application using Google’s instrumented test suite
AndroidJUnit4 was then developed and run on a Fairphone 4, featuring an 8-core
64-bit Qualcomm LAGOON ARM CPU clocked at 2.1 GHz. This application ran each
test 16 times and provided the raw execution time. Similarly to the desktop tests, the
results are plotted using a logarithmic scale for the time axis, in fig. 5.3.

It can be observed that the distribution of the results is very close to the x86 performance
presented in fig. 5.2. Some overhead for the fastest operations can be seen, due to the
language bindings, with most of the curve operations on ARM taking slightly more than
1 ms instead of just under.

In the case of SPHINCS+ performance is mostly dependent on the underlying hash
implementation, and since both platforms use highly optimized assembly code the
performance pattern is similar.

5.4 Key Generation
The benchmarked OpenPGP key generation consists in generating two keys and three
signatures, making it the slowest operation for most algorithms.

We start by comparing the two computationally most expensive traditional and PQ
algorithm, RSA and the compact variant of SPHINCS+, shown for both architectures in
fig. 5.4.

While both algorithms require a long time to generate keys, RSA is slow because of the
probabilistic prime search, while SPHINCS+ is slow because of signature generation. This
performance difference will be evident later on when comparing signature creation time. It
is also interesting to note that RSA seems to have an unoptimized prime search on ARM
architectures, while SPHINCS+ efficiently runs on both. This results on significantly
different times for x86 key generation, but comparable for ARM.

In fig. 5.5 we can observe the fast version of SPHINCS+ versus RSA. From the data
we can infer that the performance of the fast variant of SPHINCS+ is faster than the
currently deployed RSA algorithms, with its slowest version, being as fast today’s common
RSA default, 3072 bits.

Since key generation is generally a one-off operation, this long processing time is generally
considered acceptable from a user experience point of view. The main compromise here
is key size: in fig. 5.1 we can observe how RSA has a key size between 2 and 4 KB, while
SPHINCS+ keys lie in the range from 20 to 200 KB.

1https://github.com/ProtonMail/gopenpgp
2https://github.com/golang/mobile
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5. Results and Performance Analysis
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Figure 5.4: Time comparison for key generation of compact SPHINCS+ vs RSA
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5.4. Key Generation
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Figure 5.5: Time comparison for key generation of fast SPHINCS+ vs RSA
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5. Results and Performance Analysis

For a completely different speed range we can now consider EC performance, shown in
fig. 5.6 and fig. 5.7. The two charts were split because of the significant performance
penalty of the Brainpool curves.

Dilithium3Ed25519_Kyber768X25519

Ed25519_X25519

Dilithium5Ed448_Kyber1024X448

Ed448_X448

Dilithium3P256_Kyber768P256

P256

Dilithium5P384_Kyber1024P384

P384

0 2 4 6
Time (ms)

A
lg

or
ith

m

(a) x86 implementation

Dilithium3Ed25519_Kyber768X25519

Ed25519_X25519

Dilithium5Ed448_Kyber1024X448

Ed448_X448

Dilithium3P256_Kyber768P256

P256

Dilithium5P384_Kyber1024P384

P384

0 2 4 6
Time (ms)

A
lg

or
ith

m
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Figure 5.6: Time comparison for key generation of Dilithium vs NIST and CFRG curves

In these plots we compare plain elliptic curves versus hybrid operation, noting that
the plain and hybrid implementations share the same code for the EC component. A
constant overhead of approximately 2 ms on x86 and 4 ms on ARM can be reliably seen,
therefore hinting to some missing instructions in the ARM set having a negative impact
on performance.

In both cases the overall impact is very small, since the operations stay in the millisecond
range, even though for Ed25519 this represents a 10-fold increase.
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5.5. Key Parsing
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Figure 5.7: Time comparison for key generation of Dilithium vs Brainpool curves

5.5 Key Parsing

Once a key has been generated and shared, we need to consider the performance of
parsing it on the other end. In OpenPGP this consists not only of loading the data from
disk into the correct data structure, but also of verifying all the embedded signatures.

Since signature verification is a fast operation for all considered algorithms, we were able
to collect all the information in a single plot in fig. 5.8.

It can be seen that apart from the poor implementation of Brainpool in go-crypto, all
EC algorithms lie under the 10 ms threshold. For SPHINCS+ it is interesting to note
that the fast variant is twice as slow in signature verification compared to the compact
one. This phenomena happens because the algorithm is optimized for speed in signature
generation rather than verification. Said this, the operation is still in the 5 to 25 ms
range and poses no problematic restriction to SPHINCS+ operations.

It is interesting to note that while on x86 architectures the SHA–2 variant of SPHINCS+

is faster than SHAKE, for ARM the converse is true. The other algorithms, even if slower
on ARM, present the same patterns on both architectures.
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Figure 5.8: Time comparison of key parsing on x86
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5.5. Key Parsing

Dilithium3Ed25519_Kyber768X25519

Ed25519_X25519

Dilithium5Ed448_Kyber1024X448

Ed448_X448

Dilithium3P256_Kyber768P256

P256

Dilithium5P384_Kyber1024P384

P384

Dilithium3Brainpool256_Kyber768Brainpool256

Brainpool256

Dilithium5Brainpool384_Kyber1024Brainpool384

Brainpool384

RSA_2048

RSA_3072

RSA_4096

SphincsPlusSHA2_128f_Kyber1024X448

SphincsPlusSHA2_192f_Kyber1024X448

SphincsPlusSHA2_256f_Kyber1024X448

SphincsPlusSHAKE_128f_Kyber1024X448

SphincsPlusSHAKE_192f_Kyber1024X448

SphincsPlusSHAKE_256f_Kyber1024X448

SphincsPlusSHA2_128s_Kyber1024X448

SphincsPlusSHA2_192s_Kyber1024X448

SphincsPlusSHA2_256s_Kyber1024X448

SphincsPlusSHAKE_128s_Kyber1024X448

SphincsPlusSHAKE_192s_Kyber1024X448

SphincsPlusSHAKE_256s_Kyber1024X448

0 10 20 30 40 50
Time (ms)

A
lg

or
ith

m

Figure 5.9: Time comparison of key parsing on ARM
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5.6 Signature Generation

When signing data, SPHINCS+ has a considerable speed and artifact size tradeoff. As it
can be seen in fig. 5.10, the compact variant up to 3 s on x86 and up to 5 s on ARM
architectures. The fast variant, displayed in fig. 5.11 requires instead up to 250 ms on x86
and up to 500 ms on ARM, still significantly slower than any other algorithm deployed
today. Here developers will have to carefully consider whether their application is suitable
for SPHINCS+ and account for the resulting user experience.
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Figure 5.10: Time comparison for signature generation of the compact variant of
SPHINCS+ vs RSA
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Figure 5.11: Time comparison for signature generation of the fast variant of SPHINCS+

vs RSA
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5. Results and Performance Analysis

In fact, both variants rank worse than RSA by 1 or 2 orders of magnitude, and will most
likely imply a user experience change when implemented in applications. Developers will
need to consider progress indicators or signalling, especially when using the compact
version. For some uses this tradeoff is acceptable, for instance software signing, where 3
seconds to produce a signature might be acceptable as long as verification is fast.

With respect to size, SPHINCS+ signatures start at 7.9 KB, forcing developers to hide
them from users, for instance in the already mentioned example of the cleartext signed
messages.

For elliptic curves, like key generation, we have a substantial difference between hash
and lattice based schemes, as seen in fig. 5.12 and fig. 5.13.
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Figure 5.12: Time comparison of signature generation on x86 for Dilithium vs EC

We can observe that except Brainpool curves, all hybrid algorithms are all well under 2
ms, thus faster than 2048 bit RSA, that already provides a reasonably fast performance.
There is also no significant difference between the two architectures, with ARM being
slower but presenting the same patterns as x86.

For Dilithium, the only tradeoff with respect to the traditional algorithms is artifact size:
signatures shift from approximately 100 bytes to over 3 KB, as it can be seen in fig. 5.1.
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Figure 5.13: Time comparison of signature generation on ARM for Dilithium vs EC

5.7 Signature Verification

In fig. 5.14 and fig. 5.15 it can be seen how signature verification lies into the same range
under 15 ms per operation for all algorithms, SPHINCS+ included. Signature verification,
shows similar results to key parsing, that mostly consists of 3 verification operations,
therefore the same observations apply also here.

A direct consequence of this is that SPHINCS+ is expensive when generating keys or
signatures, but not when verifying: the user picking those algorithms is the one that has
to pay their cost, while others can efficiently consume the artifacts.

5.8 Encryption

In the case of encryption we have only the lattice-based candidate Kyber, that provides
an extremely small overhead of less than 0.2 ms with respect to the pure EC operations,
as shown in fig. 5.16. This holds even for the fastest curve in our dataset, X25519, that
in the hybrid mode encrypts in 0.11 ms versus 0.08 ms when used as standalone on x86.
For ciphertexts the only relevant difference is the artifact size, which overhead increases
10-fold.
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Figure 5.14: Time comparison of verification on x86
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5.8. Encryption
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Figure 5.15: Time comparison of verification on ARM
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(b) ARM implementation

Figure 5.16: Time comparison of encryption
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5.9. Decryption

5.9 Decryption
Decryption shows a very similar picture to encryption, where overhead is barely visible
in fig. 5.17. Also here, for X25519 decrypts in 0.09 ms in hybrid mode versus 0.06 ms
as standalone on x86. All other elliptic curves are also in this case at least an order
of magnitude slower than the lattice operations, making the hybrid and traditional
measurements not significantly different.
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Figure 5.17: Time comparison of decryption
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CHAPTER 6
Conclusion

This project was developed with the intention to show a feasible and secure way to include
PQ algorithms into the OpenPGP protocol, providing input to the standardization
process for the working group and the community. The final aim is for this proposal to
be integrated with feedback from other implementers and turn into a standards track
RFC.

After selecting CRYSTALS-Kyber, CRYSTALS-Dilithium, and SPHINCS+ from the
NIST standardization process we have constructed 14 algorithm identifiers made of
composite combinations: the CRYSTALS-based algorithms with the most common
elliptic curves, and SPHINCS+ standalone with two different underlying hashes.

To encrypt messages, we selected to use KEMs, in particular CRYSTALS-Kyber hybrid
with X25519, X448, P-256, P-384, Brainpool P-256, or Brainpool P-384. These curves
were selected because they are already supported by OpenPGP and ensure the widest
range of compliance and compatibility with existing hardware. The secrets derived from
Kyber and the curve are then combined using a KMAC-based KDF and key combiner
that preserves the IND–CCA2 security of each KEM.

To sign messages, we selected SPHINCS+ as standalone or CRYSTALS-Dilithium hybrid
with Ed25519, Ed448, P-256, P-384, Brainpool P-256, or Brainpool P-384; the first two
curves with EdDSA, while the latter four with ECDSA. This choice was dictated from the
different use cases of the protocol: some users desire a high security margin for long-term
keys, and are willing to sacrifice performance, while some others require fast operations.
SPHINCS+ is in fact a very conservative choice, that offers a solid security proof at the
expense of slower operations. To ease the burden of the tradeoff made with SPHINCS+

we decided to implement two different underlying hashes and parametrize it, allowing
implementations and users to determine how critical is speed in their usage: OpenPGP
ranges from software signing to real-time chat.
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6. Conclusion

We have picked fixed combinations over the freely composable variant to ensure a simpler
and more robust construction, that requires less changes to the protocol and a simpler
interface, greatly reducing complexity. This has almost removed the need for protocol
changes, limiting them to hash binding and optional signalling mechanisms. All the PQ
algorithms have been implemented by extending the existing algorithm identifiers and
keeping the logic and artifacts within the algorithm-specific part.

A a proof-of-concept implementation was developed starting from go-crypto, a Golang
library implementing OpenPGP, using existing libraries to provide cryptographic primi-
tives. This has proven to be relatively straightforward given the fixed combination design,
requiring only to implement the new algorithms and some minor changes to the protocol
level implementation.

The performance of the implementation was tested to compare it with the existing
algorithms on desktop devices and Android phones, compiling it via gomobile.

6.1 Results
While artifacts from PQ algorithms are significantly larger than their traditional counter-
parts, they do not seem to be problematic for most OpenPGP use cases. In particular,
email can already handle the new keys, ciphertexts, and signatures seamlessly. Some
considerations need to be done when scaling: while significantly larger artifacts do not
affect the single message, they may be problematic for providers deploying this standard
to million of messages. An edge case is the fast variant of SPHINCS+, that presents sig-
natures over 10KB in size. They will require re-thinking of the user experience, especially
when signing small ciphertexts.

Regarding performance, the lattice-based algorithms add just a small overhead, keeping
the hybrid schemes’ perfomance still significantly above RSA. Since RSA is still widely
used, we can assert that this should not imply any user experience drawback. In particular
for encryption the overhead is minimal, and the efficiency of EC is preserved. On the
other hand, SPHINCS+ can present some user experience challenges when signing or
generating new certificates. These will need to be handled from the application layer
when switching to PQ algorithms: the implementation may require up to 3s for signing
and up to 20s for key generation, therefore an indicator of progress may be necessary. All
things considered, in particular for the recommended algorithms, the implementation has
a similar performance profile to today’s operations, allowing for a transparent migration
from the user’s perspective.

6.2 Directions for Future Research
6.2.1 Standardization
This project was developed in collaboration with the community, in order to pave the
way for standardization into an IETF RFC. The following steps will be determined at
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the upcoming meetings, where the Working Group (WG) will be rechartered and this
draft will be proposed for adoption.

6.2.2 Expanding the Algorithm Selection
To provide a higher degree of security in the OpenPGP environment, a second PQ KEM
could be standardized, based on a different underlying problem than Kyber. In particular,
code theory based algorithms such as BIKE are considered very interesting, if any
standardization body would consider them ready and provide a standard to follow. Since
OpenPGP presents a serious legacy burden, and once support for an algorithm is added
it is very difficult to deprecate it, implementation should strictly follow standardization:
this prevents having to support non-standard implementations forever. The publication
of another algorithm set can in any case follow in a different RFC.
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APPENDIX A
Integral RFC Text

In this appendix we display the integral text of the draft RFC published on March 25th
2023 on the IETF Internet-Draft archive. Version 01 specifies the normative text for the
analysis carried out in this thesis. A draft RFC, being a living document, has since been
updated to match implementer and security analysis feedback from the community.
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1. Introduction

The OpenPGP protocol supports various traditional public-key
algorithms based on the factoring or discrete logarithm problem. As
the security of algorithms based on these mathematical problems is
endangered by the advent of quantum computers, there is a need to
extend OpenPGP by algorithms that remain secure in the presence of
quantum computers.

Such cryptographic algorithms are referred to as post-quantum
cryptography. The algorithms defined in this extension were chosen
for standardization by the National Institute of Standards and
Technology (NIST) in mid 2022 [NISTIR-8413] as the result of the NIST
Post-Quantum Cryptography Standardization process initiated in 2016
[NIST-PQC]. Namely, these are CRYSTALS-Kyber as a Key Encapsulation
Mechanism (KEM), a KEM being a modern building block for public-key
encryption, and CRYSTALS-Dilithium as well as SPHINCS+ as signature
schemes.

For the two CRYSTALS-* schemes, this document follows the
conservative strategy to deploy post-quantum in combination with
traditional schemes such that the security is retained even if all
schemes but one in the combination are broken. In contrast, the
hashed-based signature scheme SPHINCS+ is considered to be
sufficiently well understood with respect to its security assumptions
in order to be used standalone. To this end, this document specifies
the following new set: SPHINCS+ standalone and CRYSTALS-* as
composite with ECC-based KEM and digital signature schemes. Here,
the term "composite" indicates that any data structure or algorithm
pertaining to the combination of the two components appears as single
data structure or algorithm from the protocol perspective.

The document specifies the conventions for interoperability between
compliant OpenPGP implementations that make use of this extension and
the newly defined algorithms or algorithm combinations.

1.1. Conventions used in this Document
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1.1.1. Terminology for Multi-Algorithm Schemes

The terminology in this document is oriented towards the definitions
in [draft-driscoll-pqt-hybrid-terminology]. Specifically, the terms
"multi-algorithm", "composite" and "non-composite" are used in
correspondence with the definitions therein. The abbreviation "PQ"
is used for post-quantum schemes. To denote the combination of post-
quantum and traditional schemes, the abbreviation "PQ/T" is used.
The short form "PQ(/T)" stands for PQ or PQ/T.

1.2. Post-Quantum Cryptography

This section describes the individual post-quantum cryptographic
schemes. All schemes listed here are believed to provide security in
the presence of a cryptographically relevant quantum computer.
However, the mathematical problems on which the two CRYSTALS-*
schemes and SPHINCS+ are based, are fundamentally different, and
accordingly the level of trust commonly placed in them as well as
their performance characteristics vary.

[Note to the reader: This specification refers to the latest NIST
submission papers of each scheme as if it were a specification. This
is a temporary solution that is owed to the fact that currently no
other specification is available. The goal is to provide a
sufficiently precise specification of the algorithms already at the
draft stage of this specification, so that it is possible for
implementers to create interoperable implementations. As soon as
standards by NIST or the IETF for the PQC schemes employed in this
specification are available, these will replace the references to the
NIST submission papers. Furthermore, we want to point out that,
depending on possible changes to the schemes standardized by NIST,
this specification may be updated substantially as soon as
corresponding information becomes available.]

1.2.1. CRYSTALS-Kyber

CRYSTALS-Kyber [KYBER-Subm] is based on the hardness of solving the
learning-with-errors problem in module lattices (MLWE). The scheme
is believed to provide security against cryptanalytic attacks by
classical as well as quantum computers. This specification defines
CRYSTALS-Kyber only in composite combination with ECC-based
encryption schemes in order to provide a pre-quantum security
fallback.
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1.2.2. CRYSTALS-Dilithium

CRYSTALS-Dilithium, defined in [DILITHIUM-Subm], is a signature
scheme that, like CRYSTALS-Kyber, is based on the hardness of solving
lattice problems in module lattices. Accordingly, this specification
only defines CRYSTALS-Dilithium in composite combination with ECC-
based signature schemes.

1.2.3. SPHINCS+

SPHINCS+ [SPHINCS-Subm] is a stateless hash-based signature scheme.
Its security relies on the hardness of finding preimages for
cryptographic hash functions. This feature is generally considered
to be a high security guarantee. Therefore, this specification
defines SPHINCS+ as a standalone signature scheme.

In deployments the performance characteristics of SPHINCS+ should be
taken into account. We refer to Section 10.1 for a discussion of the
performance characteristics of this scheme.

1.3. Elliptic Curve Cryptography

The ECC-based encryption is defined here as a KEM. This is in
contrast to [I-D.ietf-openpgp-crypto-refresh] where the ECC-based
encryption is defined as a public-key encryption scheme.

All elliptic curves for the use in the composite combinations are
taken from [I-D.ietf-openpgp-crypto-refresh]. However, as explained
in the following, in the case of Curve25519 encoding changes are
applied to the new composite schemes.

1.3.1. Curve25519 and Curve448

Curve25519 and Curve448 are defined in [RFC7748] for use in a Diffie-
Hellman key agreement scheme and defined in [RFC8032] for use in a
digital signature scheme. For Curve25519 this specification adapts
the encoding of objects as defined in [RFC7748] in contrast to
[I-D.ietf-openpgp-crypto-refresh].

1.3.2. Generic Prime Curves

For interoperability this extension offers CRYSTALS-* in composite
combinations with the NIST curves P-256, P-384 defined in [SP800-186]
and the Brainpool curves brainpoolP256r1, brainpoolP384r1 defined in
[RFC5639].
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1.4. Standalone and Multi-Algorithm Schemes

This section provides a categorization of the new algorithms and
their combinations.

1.4.1. Standalone and Composite Multi-Algorithm Schemes

This specification introduces new cryptographic schemes, which can be
categorized as follows:

* PQ/T multi-algorithm public-key encryption, namely a composite
combination of CRYSTALS-Kyber with an ECC-based KEM,

* PQ/T multi-algorithm digital signature, namely composite
combinations of CRYSTALS-Dilithium with ECC-based signature
schemes,

* PQ digital signature, namely SPHINCS+ as a standalone
cryptographic algorithm.

For each of the composite schemes, this specifications mandates that
the recipient has to successfully perform the cryptographic
algorithms for each of the component schemes used in a cryptrographic
message, in order for the message to be deciphered and considered as
valid. This means that all component signatures must be verified
successfully in order to achieve a successful verification of the
composite signature. In the case of the composite public-key
decryption, each of the component KEM decapsulation operations must
succeed.

1.4.2. Non-Composite Algorithm Combinations

As the OpenPGP protocol [I-D.ietf-openpgp-crypto-refresh] allows for
multiple signatures to be applied to a single message, it is also
possible to realize non-composite combinations of signatures.
Furthermore, multiple OpenPGP signatures may be combined on the
application layer. These latter two cases realize non-composite
combinations of signatures. Section 4.4 specifies how
implementations should handle the verification of such combinations
of signatures.
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Furthermore, the OpenPGP protocol also allows for parallel encryption
to different keys held by the same recipient. Accordingly, if the
sender makes use of this feature and sends an encrypted message with
multiple PKESK packages for different encryption keys held by the
same recipient, a non-composite multi-algorithm public-key encryption
is realized where the recipient has to decrypt only one of the PKESK
packages in order to decrypt the message. See Section 4.2 for
restrictions on parallel encryption mandated by this specification.

2. Preliminaries

This section provides some preliminaries for the definitions in the
subsequent sections.

2.1. Elliptic curves

2.1.1. SEC1 EC Point Wire Format

Elliptic curve points of the generic prime curves are encoded using
the SEC1 (uncompressed) format as the following octet string:

B = 04 || X || Y

where X and Y are coordinates of the elliptic curve point P = (X, Y),
and each coordinate is encoded in the big-endian format and zero-
padded to the adjusted underlying field size. The adjusted
underlying field size is the underlying field size rounded up to the
nearest 8-bit boundary, as noted in the "Field size" column in
Table 6, Table 7, or Table 11. This encoding is compatible with the
definition given in [SEC1].

2.1.2. Measures to Ensure Secure Implementations

The following paragraphs describe measures that ensure secure
implementations according to existing best practices and standards
defining the operations of Elliptic Curve Cryptography.

Even though the zero point, also called the point at infinity, may
occur as a result of arithmetic operations on points of an elliptic
curve, it MUST NOT appear in any ECC data structure defined in this
document.

Furthermore, when performing the explicitly listed operations in
Section 5.1.1.1, Section 5.1.1.2 or Section 5.1.1.3 it is REQUIRED to
follow the specification and security advisory mandated from the
relative elliptic curve specification.
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3. Supported Public Key Algorithms

This section specifies the composite Kyber + ECC and Dilithium + ECC
schemes as well as the standalone SPHINCS+ signature scheme. The
composite schemes are fully specified via their algorithm ID. The
SPHINCS+ signature schemes are fully specified by their algorithm ID
and an additional parameter ID.

3.1. Algorithm Specifications

For encryption, the following composite KEM schemes are specified:

+====+==================================+=============+=============+
| ID | Algorithm | Requirement | Definition |
+====+==================================+=============+=============+
| 29 | Kyber768 + X25519 | MUST | Section 5.2 |
+----+----------------------------------+-------------+-------------+
| 30 | Kyber1024 + X448 | SHOULD | Section 5.2 |
+----+----------------------------------+-------------+-------------+
| 31 | Kyber768 + ECDH-NIST-P-256 | MAY | Section 5.2 |
+----+----------------------------------+-------------+-------------+
| 32 | Kyber1024 + ECDH-NIST-P-384 | MAY | Section 5.2 |
+----+----------------------------------+-------------+-------------+
| 33 | Kyber768 + ECDH-brainpoolP256r1 | MAY | Section 5.2 |
+----+----------------------------------+-------------+-------------+
| 34 | Kyber1024 + ECDH- | MAY | Section 5.2 |
| | brainpoolP384r1 | | |
+----+----------------------------------+-------------+-------------+

Table 1: KEM algorithm specifications

For signatures, the following (composite) signature schemes are
specified:
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+====+===============================+=============+=============+
| ID | Algorithm | Requirement | Definition |
+====+===============================+=============+=============+
| 35 | Dilithium3 + Ed25519 | MUST | Section 6.2 |
+----+-------------------------------+-------------+-------------+
| 36 | Dilithium5 + Ed448 | SHOULD | Section 6.2 |
+----+-------------------------------+-------------+-------------+
| 37 | Dilithium3 + ECDSA-NIST-P-256 | MAY | Section 6.2 |
+----+-------------------------------+-------------+-------------+
| 38 | Dilithium5 + ECDSA-NIST-P-384 | MAY | Section 6.2 |
+----+-------------------------------+-------------+-------------+
| 39 | Dilithium3 + ECDSA- | MAY | Section 6.2 |
| | brainpoolP256r1 | | |
+----+-------------------------------+-------------+-------------+
| 40 | Dilithium5 + ECDSA- | MAY | Section 6.2 |
| | brainpoolP384r1 | | |
+----+-------------------------------+-------------+-------------+
| 41 | SPHINCS+-simple-SHA2 | SHOULD | Section |
| | | | 1.2.3 |
+----+-------------------------------+-------------+-------------+
| 42 | SPHINCS+-simple-SHAKE | MAY | Section |
| | | | 1.2.3 |
+----+-------------------------------+-------------+-------------+

Table 2: Signature algorithm specifications

3.2. Parameter Specification

3.2.1. SPHINCS+-simple-SHA2

For the SPHINCS+-simple-SHA2 signature algorithm from Table 2, the
following parameters are specified:
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+==============+===========================+
| Parameter ID | Parameter |
+==============+===========================+
| 1 | SPHINCS+-simple-SHA2-128s |
+--------------+---------------------------+
| 2 | SPHINCS+-simple-SHA2-128f |
+--------------+---------------------------+
| 3 | SPHINCS+-simple-SHA2-192s |
+--------------+---------------------------+
| 4 | SPHINCS+-simple-SHA2-192f |
+--------------+---------------------------+
| 5 | SPHINCS+-simple-SHA2-256s |
+--------------+---------------------------+
| 6 | SPHINCS+-simple-SHA2-256f |
+--------------+---------------------------+

Table 3: SPHINCS+-simple-SHA2 security
parameters

All security parameters inherit the requirement of SPHINCS+-simple-
SHA2 from Table 2. That is, implementations SHOULD implement the
parameters specified in Table 3. The values 0x00 and 0xFF are
reserved for future extensions.

3.2.2. SPHINCS+-simple-SHAKE

For the SPHINCS+-simple-SHAKE signature algorithm from Table 2, the
following parameters are specified:

+==============+============================+
| Parameter ID | Parameter |
+==============+============================+
| 1 | SPHINCS+-simple-SHAKE-128s |
+--------------+----------------------------+
| 2 | SPHINCS+-simple-SHAKE-128f |
+--------------+----------------------------+
| 3 | SPHINCS+-simple-SHAKE-192s |
+--------------+----------------------------+
| 4 | SPHINCS+-simple-SHAKE-192f |
+--------------+----------------------------+
| 5 | SPHINCS+-simple-SHAKE-256s |
+--------------+----------------------------+
| 6 | SPHINCS+-simple-SHAKE-256f |
+--------------+----------------------------+

Table 4: SPHINCS+-simple-SHAKE security
parameters
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All security parameters inherit the requirement of SPHINCS+-simple-
SHAKE from Table 2. That is, implementations MAY implement the
parameters specified in Table 4. The values 0x00 and 0xFF are
reserved for future extensions.

4. Algorithm Combinations

4.1. Composite KEMs

Kyber + ECC public-key encryption is meant to involve both the Kyber
KEM and an ECC-based KEM in an a priori non-separable manner. This
is achieved via KEM combination, i.e. both key encapsulations/
decapsulations are performed in parallel, and the resulting key
shares are fed into a key combiner to produce a single shared secret
for message encryption.

4.2. Parallel Public-Key Encryption

As explained in Section 1.4.2, the OpenPGP protocol inherently
supports parallel encryption to different keys of the same recipient.
Implementations MUST NOT encrypt a message to a purely traditional
public-key encryption key of a recipient if it is encrypted to a PQ/T
key of the same recipient.

4.3. Composite Signatures

Dilithium + ECC signatures are meant to contain both the Dilithium
and the ECC signature data, and an implementation MUST validate both
algorithms to state that a signature is valid.

4.4. Multiple Signatures

The OpenPGP message format allows multiple signatures of a message,
i.e. the attachment of multiple signature packets.

An implementation MAY sign a message with a traditional key and a
PQ(/T) key from the same sender. This ensures backwards
compatibility due to [I-D.ietf-openpgp-crypto-refresh] Section 5.2.5,
since a legacy implementation without PQ(/T) support can fall back on
the traditional signature.

Newer implementations with PQ(/T) support MAY ignore the traditional
signature(s) during validation.

Implementations SHOULD consider the message correctly signed if at
least one of the non-ignored signatures validates successfully.

89



A. Integral RFC Text

Kousidis, et al. Expires 26 September 2023 [Page 12]

Internet-Draft PQC in OpenPGP March 2023

[Note to the reader: The last requirement, that one valid signature
is sufficient to identify a message as correctly signed, is an
interpretation of [I-D.ietf-openpgp-crypto-refresh] Section 5.2.5.]

5. Composite KEM schemes

5.1. Building Blocks

5.1.1. ECC-Based KEMs

In this section we define the encryption, decryption, and data
formats for the ECDH component of the composite algorithms.

Table 5, Table 6, and Table 7 describe the ECC-KEM parameters and
artifact lengths. The artefacts in Table 5 follow the encodings
described in [RFC7748].

+========================+===================+==================+
| | X25519 | X448 |
+========================+===================+==================+
| Algorithm ID reference | 29 | 30 |
+------------------------+-------------------+------------------+
| Field size | 32 octets | 56 octets |
+------------------------+-------------------+------------------+
| ECC-KEM | x25519Kem | x448Kem (Section |
| | (Section 5.1.1.1) | 5.1.1.2) |
+------------------------+-------------------+------------------+
| ECDH public key | 32 octets | 56 octets |
| | [RFC7748] | [RFC7748] |
+------------------------+-------------------+------------------+
| ECDH secret key | 32 octets | 56 octets |
| | [RFC7748] | [RFC7748] |
+------------------------+-------------------+------------------+
| ECDH ephemeral | 32 octets | 56 octets |
| | [RFC7748] | [RFC7748] |
+------------------------+-------------------+------------------+
| ECDH share | 32 octets | 56 octets |
| | [RFC7748] | [RFC7748] |
+------------------------+-------------------+------------------+
| Key share | 32 octets | 64 octets |
+------------------------+-------------------+------------------+
| Hash | SHA3-256 | SHA3-512 |
+------------------------+-------------------+------------------+

Table 5: Montgomery curves parameters and artifact lengths

90



Kousidis, et al. Expires 26 September 2023 [Page 13]

Internet-Draft PQC in OpenPGP March 2023

+==============+===========================+==================+
| | NIST P-256 | NIST P-384 |
+==============+===========================+==================+
| Algorithm ID | 31 | 32 |
| reference | | |
+--------------+---------------------------+------------------+
| Field size | 32 octets | 48 octets |
+--------------+---------------------------+------------------+
| ECC-KEM | ecdhKem (Section 5.1.1.3) | ecdhKem (Section |
| | | 5.1.1.3) |
+--------------+---------------------------+------------------+
| ECDH public | 65 octets of SEC1-encoded | 97 octets of |
| key | public point | SEC1-encoded |
| | | public point |
+--------------+---------------------------+------------------+
| ECDH secret | 32 octets big-endian | 48 octets big- |
| key | encoded secret scalar | endian encoded |
| | | secret scalar |
+--------------+---------------------------+------------------+
| ECDH | 65 octets of SEC1-encoded | 97 octets of |
| ephemeral | ephemeral point | SEC1-encoded |
| | | ephemeral point |
+--------------+---------------------------+------------------+
| ECDH share | 65 octets of SEC1-encoded | 97 octets of |
| | shared point | SEC1-encoded |
| | | shared point |
+--------------+---------------------------+------------------+
| Key share | 32 octets | 64 octets |
+--------------+---------------------------+------------------+
| Hash | SHA3-256 | SHA3-512 |
+--------------+---------------------------+------------------+

Table 6: NIST curves parameters and artifact lengths
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+==============+===========================+==================+
| | brainpoolP256r1 | brainpoolP384r1 |
+==============+===========================+==================+
| Algorithm ID | 33 | 34 |
| reference | | |
+--------------+---------------------------+------------------+
| Field size | 32 octets | 48 octets |
+--------------+---------------------------+------------------+
| ECC-KEM | ecdhKem (Section 5.1.1.3) | ecdhKem (Section |
| | | 5.1.1.3) |
+--------------+---------------------------+------------------+
| ECDH public | 65 octets of SEC1-encoded | 97 octets of |
| key | public point | SEC1-encoded |
| | | public point |
+--------------+---------------------------+------------------+
| ECDH secret | 32 octets big-endian | 48 octets big- |
| key | encoded secret scalar | endian encoded |
| | | secret scalar |
+--------------+---------------------------+------------------+
| ECDH | 65 octets of SEC1-encoded | 97 octets of |
| ephemeral | ephemeral point | SEC1-encoded |
| | | ephemeral point |
+--------------+---------------------------+------------------+
| ECDH share | 65 octets of SEC1-encoded | 97 octets of |
| | shared point | SEC1-encoded |
| | | shared point |
+--------------+---------------------------+------------------+
| Key share | 32 octets | 64 octets |
+--------------+---------------------------+------------------+
| Hash | SHA3-256 | SHA3-512 |
+--------------+---------------------------+------------------+

Table 7: Brainpool curves parameters and artifact lengths

The SEC1 format for point encoding is defined in Section 2.1.1.

The various procedures to perform the operations of an ECC-based KEM
are defined in the following subsections. Specifically, each of
these subsections defines the instances of the following operations:

(eccCipherText, eccKeyShare) <- eccKem.encap(eccPublicKey)

and

(eccKeyShare) <- eccKem.decap(eccPrivateKey, eccCipherText)

The placeholder eccKem has to be replaced with the specific ECC-KEM
from the row "ECC-KEM" of Table 5, Table 6, and Table 7.
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5.1.1.1. X25519-KEM

The encapsulation and decapsulation operations of x25519kem are
described using the function X25519() and encodings defined in
[RFC7748]. The eccPrivateKey is denoted as r, the eccPublicKey as R,
they are subject to the equation R = X25519(r, U(P)). Here, U(P)
denotes the u-coordinate of the base point of Curve25519.

The operation x25519Kem.encap() is defined as follows:

1. Generate an ephemeral key pair {v, V} via V = X25519(v,U(P))

2. Compute the shared coordinate X = X25519(v, R) where R is the
public key eccPublicKey

3. Set the output eccCipherText to V

4. Set the output eccKeyShare to SHA3-256(X || eccCipherText)

The operation x25519Kem.decap() is defined as follows:

1. Compute the shared coordinate X = X25519(r, V), where r is the
eccPrivateKey and V is the eccCipherText

2. Set the output eccKeyShare to SHA3-256(X || eccCipherText)

5.1.1.2. X448-KEM

The encapsulation and decapsulation operations of x448kem are
described using the function X448() and encodings defined in
[RFC7748]. The eccPrivateKey is denoted as r, the eccPublicKey as R,
they are subject to the equation R = X25519(r, U(P)). Here, U(P)
denotes the u-coordinate of the base point of Curve448.

The operation x448.encap() is defined as follows:

1. Generate an ephemeral key pair {v, V} via V = X448(v,U(P))

2. Compute the shared coordinate X = X448(v, R) where R is the
public key eccPublicKey

3. Set the output eccCipherText to V

4. Set the output eccKeyShare to SHA3-512(X || eccCipherText)

The operation x448Kem.decap() is defined as follows:
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1. Compute the shared coordinate X = X448(r, V), where r is the
eccPrivateKey and V is the eccCipherText

2. Set the output eccKeyShare to SHA3-512(X || eccCipherText)

5.1.1.3. ECDH-KEM

The operation ecdhKem.encap() is defined as follows:

1. Generate an ephemeral key pair {v, V=vG} as defined in
[SP800-186] or [RFC5639]

2. Compute the shared point S = vR, where R is the component public
key eccPublicKey, according to [SP800-186] or [RFC5639]

3. Extract the X coordinate from the SEC1 encoded point S = 04 ||
X || Y as defined in section Section 2.1.1

4. Set the output eccCipherText to the SEC1 encoding of V

5. Set the output eccKeyShare to Hash(X || eccCipherText), with Hash
chosen according to Table 6 or Table 7

The operation ecdhKem.decap() is defined as follows:

1. Compute the shared Point S as rV, where r is the eccPrivateKey
and V is the eccCipherText, according to [SP800-186] or [RFC5639]

2. Extract the X coordinate from the SEC1 encoded point S = 04 ||
X || Y as defined in section Section 2.1.1

3. Set the output eccKeyShare to Hash(X || eccCipherText), with Hash
chosen according to Table 6 or Table 7

5.1.2. Kyber-KEM

Kyber-KEM features the following operations:

(kyberCipherText, kyberKeyShare) <- kyberKem.encap(kyberPublicKey)

and

(kyberKeyShare) <- kyberKem.decap(kyberCipherText, kyberPrivateKey)

The above are the operations Kyber.CCAKEM.Enc() and
Kyber.CCAKEM.Dec() defined in [KYBER-Subm].
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Kyber-KEM has the parameterization with the corresponding artifact
lengths in octets as given in Table 8. All artifacts are encoded as
defined in [KYBER-Subm].

+===========+==============+========+========+============+=======+
| Algorithm | Kyber-KEM | Public | Secret | Ciphertext | Key |
| ID | | key | key | | share |
| reference | | | | | |
+===========+==============+========+========+============+=======+
| 29, 31, | kyberKem768 | 1184 | 2400 | 1088 | 32 |
| 33 | | | | | |
+-----------+--------------+--------+--------+------------+-------+
| 30, 32, | kyberKem1024 | 1568 | 3186 | 1568 | 32 |
| 34 | | | | | |
+-----------+--------------+--------+--------+------------+-------+

Table 8: Kyber-KEM parameters artifact lengths in octets

The placeholder kyberKem has to be replaced with the specific Kyber-
KEM from the column "Kyber-KEM" of Table 8.

The procedure to perform kyberKem.encap() is as follows:

1. Extract the component public key kyberPublicKey that is part of
the recipient’s composite public key

2. Invoke (kyberCipherText, keyShare) <-
kyberKem.encap(kyberPublicKey)

3. Set kyberCipherText as the Kyber ciphertext

4. Set keyShare as the Kyber symmetric key share

The procedure to perform kyberKem.decap() is as follows:

1. Invoke keyShare <- kyberKem.decap(kyberCipherText,
kyberPrivateKey)

2. Set keyShare as the Kyber symmetric key

5.2. Composite Encryption Schemes with Kyber

Table 1 specifies the following Kyber + ECC composite public-key
encryption schemes:
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+==============+==============+===========+=================+
| Algorithm ID | Kyber-KEM | ECC-KEM | ECDH-KEM curve |
| reference | | | |
+==============+==============+===========+=================+
| 29 | kyberKem768 | x25519Kem | X25519 |
+--------------+--------------+-----------+-----------------+
| 30 | kyberKem1024 | x448Kem | X448 |
+--------------+--------------+-----------+-----------------+
| 31 | kyberKem768 | ecdhKem | NIST P-256 |
+--------------+--------------+-----------+-----------------+
| 32 | kyberKem1024 | ecdhKem | NIST P-384 |
+--------------+--------------+-----------+-----------------+
| 33 | kyberKem768 | ecdhKem | brainpoolP256r1 |
+--------------+--------------+-----------+-----------------+
| 34 | kyberKem1024 | ecdhKem | brainpoolP384r1 |
+--------------+--------------+-----------+-----------------+

Table 9: Kyber-ECC-composite Schemes

The Kyber + ECC composite public-key encryption schemes are built
according to the following principal design:

* The Kyber-KEM encapsulation algorithm is invoked to create a Kyber
ciphertext together with a Kyber symmetric key share.

* The encapsulation algorithm of an ECC-based KEM, namely one out of
X25519-KEM, X448-KEM, or ECDH-KEM is invoked to create an ECC
ciphertext together with an ECC symmetric key share.

* A Key-Encryption-Key (KEK) is computed as the output of a key
combiner that receives as input both of the above created
symmetric key shares and the protocol binding information.

* The session key for content encryption is then wrapped as
described in [RFC3394] using AES-256 as algorithm and the KEK as
key.

* The v6 PKESK package’s algorithm specific parts are made up of the
Kyber ciphertext, the ECC ciphertext, and the wrapped session key

5.2.1. Fixed information

For the composite KEM schemes defined in Table 1 the following
procedure, justified in Section 9.3, MUST be used to derive a string
to use as binding between the KEK and the communication parties.
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// Input:
// algID - the algorithm ID encoded as octet
// publicKey - the recipient’s encryption sub-key packet
// serialized as octet string

fixedInfo = algID || SHA3-256(publicKey)

SHA3-256 MUST be used to hash the publicKey of the recipient.

5.2.2. Key combiner

For the composite KEM schemes defined in Table 1 the following
procedure MUST be used to compute the KEK that wraps a session key.
The construction is a one-step key derivation function compliant to
[SP800-56C] Section 4, based on KMAC256 [SP800-185]. It is given by
the following algorithm.

// multiKeyCombine(eccKeyShare, eccCipherText,
// kyberKeyShare, kyberCipherText,
// fixedInfo, oBits)
//
// Input:
// eccKeyShare - the ECC key share encoded as an octet string
// eccCipherText - the ECC ciphertext encoded as an octet string
// kyberKeyShare - the Kyber key share encoded as an octet string
// kyberCipherText - the Kyber ciphertext encoded as an octet string
// fixedInfo - the fixed information octet string
// oBits - the size of the output keying material in bits
//
// Constants:
// domSeparation - the UTF-8 encoding of the string
// "OpenPGPCompositeKeyDerivationFunction"
// counter - the fixed 4 byte value 0x00000001
// customizationString - the UTF-8 encoding of the string "KDF"

eccKemData = eccKeyShare || eccCipherText
kyberKemData = kyberKeyShare || kyberCipherText
encData = counter || eccKemData || kyberKemData || fixedInfo

MB = KMAC256(domSeparation, encData, oBits, customizationString)

Note that the values eccKeyShare defined in Section 5.1.1 and
kyberKeyShare defined in Section 5.1.2 already use the relative
ciphertext in the derivation. The ciphertext is by design included
again in the key combiner to provide a robust security proof.
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The value of domSeparation is the UTF-8 encoding of the string
"OpenPGPCompositeKeyDerivationFunction" and MUST be the following
octet sequence:

domSeparation := 4F 70 65 6E 50 47 50 43 6F 6D 70 6F 73 69 74 65
4B 65 79 44 65 72 69 76 61 74 69 6F 6E 46 75 6E
63 74 69 6F 6E

The value of counter MUST be set to the following octet sequence:

counter := 00 00 00 01

The value of fixedInfo MUST be set according to Section 5.2.1.

The value of customizationString is the UTF-8 encoding of the string
"KDF" and MUST be set to the following octet sequence:

customizationString := 4B 44 46

5.2.3. Key generation procedure

The implementation MUST independently generate the Kyber and the ECC
component keys. Kyber key generation follows the specification
[KYBER-Subm] and the artifacts are encoded as fixed-length octet
strings. For ECC this is done following the relative specification
in [RFC7748], [SP800-186], or [RFC5639], and encoding the outputs as
fixed-length octet strings in the format specified in table Table 5,
Table 6, or Table 7.

5.2.4. Encryption procedure

The procedure to perform public-key encryption with a Kyber + ECC
composite scheme is as follows:

1. Take the recipient’s authenticated public-key packet pkComposite
and sessionKey as input

2. Parse the algorithm ID from pkComposite

3. Extract the eccPublicKey and kyberPublicKey component from the
algorithm specific data encoded in pkComposite with the format
specified in Section 5.3.2.

4. Instantiate the ECC-KEM eccKem.encap() and the Kyber-KEM
kyberKem.encap() depending on the algorithm ID according to
Table 9
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5. Compute (eccCipherText, eccKeyShare) :=
eccKem.encap(eccPublicKey)

6. Compute (kyberCipherText, kyberKeyShare) :=
kyberKem.encap(kyberPublicKey)

7. Compute fixedInfo as specified in Section 5.2.1

8. Compute KEK := multiKeyCombine(eccKeyShare, eccCipherText,
kyberKeyShare, kyberCipherText, fixedInfo, oBits=256) as defined
in Section 5.2.2

9. Compute C := AESKeyWrap(KEK, sessionKey) with AES-256 as per
[RFC3394] that includes a 64 bit integrity check

10. Output eccCipherText || kyberCipherText || len(C) || C as
specified in Section 5.3.1

5.2.5. Decryption procedure

The procedure to perform public-key decryption with a Kyber + ECC
composite scheme is as follows:

1. Take the matching PKESK and own secret key packet as input

2. From the PKESK extract the algorithm ID and the encryptedKey

3. Check that the own and the extracted algorithm ID match

4. Parse the eccSecretKey and kyberSecretKey from the algorithm
specific data of the own secret key encoded in the format
specified in Section 5.3.2

5. Instantiate the ECC-KEM eccKem.decap() and the Kyber-KEM
kyberKem.decap() depending on the algorithm ID according to
Table 9

6. Parse eccCipherText, kyberCipherText, and C from encryptedKey
encoded as eccCipherText || kyberCipherText || len(C) || C as
specified in Section 5.3.1

7. Compute (eccKeyShare) := eccKem.decap(eccCipherText,
eccPrivateKey)

8. Compute (kyberKeyShare) := kyberKem.decap(kyberCipherText,
kyberPrivateKey)

9. Compute fixedInfo as specified in Section 5.2.1
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10. Compute KEK := multiKeyCombine(eccKeyShare, eccCipherText,
kyberKeyShare, kyberCipherText, fixedInfo, oBits=256) as defined
in Section 5.2.2

11. Compute sessionKey := AESKeyUnwrap(KEK, C) with AES-256 as per
[RFC3394], aborting if the 64 bit integrity check fails

12. Output sessionKey

5.3. Packet specifications

5.3.1. Public-Key Encrypted Session Key Packets (Tag 1)

The composite Kyber algorithms MUST be used only with v6 PKESK, as
defined in [I-D.ietf-openpgp-crypto-refresh] Section 5.1.2.

The algorithm-specific v6 PKESK parameters consists of:

* A fixed-length octet string representing an ECC ephemeral public
key in the format associated with the curve as specified in
Section 5.1.1.

* A fixed-length octet string of the Kyber ciphertext, whose length
depends on the algorithm ID as specified in Table 8.

* A variable-length field containing the symmetric key:

- A one-octet size of the following field;

- Octet string of the wrapped symmetric key as described in
Section 5.2.4.

5.3.2. Key Material Packets

The algorithm-specific public key is this series of values:

* A fixed-length octet string representing an EC point public key,
in the point format associated with the curve specified in
Section 5.1.1.

* A fixed-length octet string containing the Kyber public key, whose
length depends on the algorithm ID as specified in Table 8.

The algorithm-specific secret key is these two values:

* A fixed-length octet string of the encoded secret scalar, whose
encoding and length depend on the algorithm ID as specified in
Section 5.1.1.
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* A fixed-length octet string containing the Kyber secret key, whose
length depends on the algorithm ID as specified in Table 8.

6. Composite Signature Schemes

6.1. Building blocks

6.1.1. EdDSA-Based signatures

To sign and verify with EdDSA the following operations are defined:

(eddsaSignature) <- eddsa.sign(eddsaPrivateKey, dataDigest)

and

(verified) <- eddsa.verify(eddsaPublicKey, eddsaSignature, dataDigest)

The public and private keys, as well as the signature MUST be encoded
according to [RFC8032] as fixed-length octet strings. The following
table describes the EdDSA parameters and artifact lengths:

+==============+=========+=======+========+========+===========+
| Algorithm ID | Curve | Field | Public | Secret | Signature |
| reference | | size | key | key | |
+==============+=========+=======+========+========+===========+
| 35 | Ed25519 | 32 | 32 | 32 | 64 |
+--------------+---------+-------+--------+--------+-----------+
| 36 | Ed448 | 57 | 57 | 57 | 114 |
+--------------+---------+-------+--------+--------+-----------+

Table 10: EdDSA parameters and artifact lengths in octets

6.1.2. ECDSA-Based signatures

To sign and verify with ECDSA the following operations are defined:

(ecdsaSignatureR, ecdsaSignatureS) <- ecdsa.sign(ecdsaPrivateKey,
dataDigest)

and

(verified) <- ecdsa.verify(ecdsaPublicKey, ecdsaSignatureR,
ecdsaSignatureS, dataDigest)

The public keys MUST be encoded in SEC1 format as defined in section
Section 2.1.1. The secret key, as well as both values R and S of the
signature MUST each be encoded as a big-endian integer in a fixed-
length octet string of the specified size.
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The following table describes the ECDSA parameters and artifact
lengths:

+=========+===============+=====+======+======+=========+=========+
|Algorithm|Curve |Field|Public|Secret|Signature|Signature|
| ID| |size |key |key |value R |value S |
|reference| | | | | | |
+=========+===============+=====+======+======+=========+=========+
| 37|NIST P-256 |32 |65 |32 |32 |32 |
+---------+---------------+-----+------+------+---------+---------+
| 38|NIST P-384 |48 |97 |48 |48 |48 |
+---------+---------------+-----+------+------+---------+---------+
| 39|brainpoolP256r1|32 |65 |32 |32 |32 |
+---------+---------------+-----+------+------+---------+---------+
| 40|brainpoolP384r1|48 |97 |48 |48 |48 |
+---------+---------------+-----+------+------+---------+---------+

Table 11: ECDSA parameters and artifact lengths in octets

6.1.3. Dilithium signatures

The procedure for Dilithium signature generation is the function
Sign(sk, M) given in Figure 4 in [DILITHIUM-Subm], where sk is the
Dilithium private key and M is the data to be signed. OpenPGP does
not use the optional randomized signing given as a variant in the
definition of this function, i.e. rho’ := H(K || mu) is used. The
signing function returns the Dilithium signature. That is, to sign
with Dilithium the following operation is defined:

(dilithiumSignature) <- dilithium.sign(dilithiumPrivateKey,
dataDigest)

The procedure for Dilithium signature verification is the function
Verify(pk, M, sigma) given in Figure 4 in [DILITHIUM-Subm], where pk
is the Dilithium public key, M is the data to be signed and sigma is
the Dilithium signature. That is, to verify with Dilithium the
following operation is defined:

(verified) <- dilithium.verify(dilithiumPublicKey, dataDigest,
dilithiumSignature)

Dilithium has the parameterization with the corresponding artifact
lengths in octets as given in Table 12. All artifacts are encoded as
defined in [DILITHIUM-Subm].
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+========================+============+========+========+===========+
| Algorithm ID | Dilithium | Public | Secret | Signature |
| reference | instance | key | key | value |
+========================+============+========+========+===========+
| 35, 37, 39 | Dilithium3 | 1952 | 4000 | 3293 |
+------------------------+------------+--------+--------+-----------+
| 36, 38, 40 | Dilithium5 | 2592 | 4864 | 4595 |
+------------------------+------------+--------+--------+-----------+

Table 12: Dilithium parameters and artifact lengths in octets

6.2. Composite Signature Schemes with Dilithium

6.2.1. Binding hashes

Composite Dilithium + ECC signatures MUST use SHA3-256 (hash
algorithm ID 12) or SHA3-512 (hash algorithm ID 14) as hashing
algorithm. Signatures using other hash algorithms MUST be considered
invalid.

An implementation MUST support SHA3-256 and SHOULD support SHA3-512,
in order to support the hash binding with Dilithium + ECC signatures.

6.2.2. Key generation procedure

The implementation MUST independently generate the Dilithium and the
ECC component keys. Dilithium key generation follows the
specification in [DILITHIUM-Subm] and the artifacts are encoded as
fixed-length octet strings as defined in Section 6.1.3. For ECC this
is done following the relative specification in [RFC7748],
[SP800-186], or [RFC5639], and encoding the artifacts as specified in
Section 6.1.1 or Section 6.1.2 as fixed-length octet strings.

6.2.3. Signature Generation

To sign a message M with Dilithium + EdDSA the following sequence of
operations has to be performed:

1. Generate dataDigest according to
[I-D.ietf-openpgp-crypto-refresh] Section 5.2.4

2. Create the EdDSA signature over dataDigest with eddsa.sign() from
Section 6.1.1

3. Create the Dilithium signature over dataDigest with
dilithium.sign() from Section 6.1.3
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4. Encode the EdDSA and Dilithium signatures according to the packet
structure given in Section 6.3.1.

To sign a message M with Dilithium + ECDSA the following sequence of
operations has to be performed:

1. Generate dataDigest according to
[I-D.ietf-openpgp-crypto-refresh] Section 5.2.4

2. Create the ECDSA signature over dataDigest with ecdsa.sign() from
Section 6.1.2

3. Create the Dilithium signature over dataDigest with
dilithium.sign() from Section 6.1.3

4. Encode the ECDSA and Dilithium signatures according to the packet
structure given in Section 6.3.1.

6.2.4. Signature Verification

To verify a Dilithium + EdDSA signature the following sequence of
operations has to be performed:

1. Verify the EdDSA signature with eddsa.verify() from Section 6.1.1

2. Verify the Dilithium signature with dilithium.verify() from
Section 6.1.3

To verify a Dilithium + ECDSA signature the following sequence of
operations has to be performed:

1. Verify the ECDSA signature with ecdsa.verify() from Section 6.1.2

2. Verify the Dilithium signature with dilithium.verify() from
Section 6.1.3

As specified in Section 4.3 an implementation MUST validate both
signatures, i.e. EdDSA/ECDSA and Dilithium, to state that a composite
Dilithium + ECC signature is valid.

6.3. Packet Specifications

6.3.1. Signature Packet (Tag 2)

The composite Dilithium + ECC schemes MUST be used only with v6
signatures, as defined in [I-D.ietf-openpgp-crypto-refresh]
Section 5.2.3.
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The algorithm-specific v6 signature parameters for Dilithium + EdDSA
signatures consists of:

* A fixed-length octet string representing the EdDSA signature,
whose length depends on the algorithm ID as specified in Table 10.

* A fixed-length octet string of the Dilithium signature value,
whose length depends on the algorithm ID as specified in Table 12.

The algorithm-specific v6 signature parameters for Dilithium + ECDSA
signatures consists of:

* A fixed-length octet string of the big-endian encoded ECDSA value
R, whose length depends on the algorithm ID as specified in
Table 11.

* A fixed-length octet string of the big-endian encoded ECDSA value
S, whose length depends on the algorithm ID as specified in
Table 11.

* A fixed-length octet string of the Dilithium signature value,
whose length depends on the algorithm ID as specified in Table 12.

6.3.2. Key Material Packets

The composite Dilithium + ECC schemes MUST be used only with v6 keys,
as defined in [I-D.ietf-openpgp-crypto-refresh].

The algorithm-specific public key for Dilithium + EdDSA keys is this
series of values:

* A fixed-length octet string representing the EdDSA public key,
whose length depends on the algorithm ID as specified in Table 10.

* A fixed-length octet string containing the Dilithium public key,
whose length depends on the algorithm ID as specified in Table 12.

The algorithm-specific private key for Dilithium + EdDSA keys is this
series of values:

* A fixed-length octet string representing the EdDSA secret key,
whose length depends on the algorithm ID as specified in Table 10.

* A fixed-length octet string containing the Dilithium secret key,
whose length depends on the algorithm ID as specified in Table 12.

The algorithm-specific public key for Dilithium + ECDSA keys is this
series of values:
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* A fixed-length octet string representing the ECDSA public key in
SEC1 format, as specified in section Section 2.1.1 and with length
specified in Table 11.

* A fixed-length octet string containing the Dilithium public key,
whose length depends on the algorithm ID as specified in Table 12.

The algorithm-specific private key for Dilithium + ECDSA keys is this
series of values:

* A fixed-length octet string representing the ECDSA secret key as a
big-endian encoded integer, whose length depends on the algorithm
used as specified in Table 11.

* A fixed-length octet string containing the Dilithium secret key,
whose length depends on the algorithm ID as specified in Table 12.

7. SPHINCS+

7.1. The SPHINCS+ Algorithms

The following table describes the SPHINCS+ parameters and artifact
lengths:

+==============+=============+============+============+===========+
| Parameter ID | Parameter | SPHINCS+ | SPHINCS+ | SPHINCS+ |
| reference | name suffix | public key | secret key | signature |
+==============+=============+============+============+===========+
| 1 | 128s | 32 | 64 | 7856 |
+--------------+-------------+------------+------------+-----------+
| 2 | 128f | 32 | 64 | 17088 |
+--------------+-------------+------------+------------+-----------+
| 3 | 192s | 48 | 96 | 16224 |
+--------------+-------------+------------+------------+-----------+
| 4 | 192f | 48 | 96 | 35664 |
+--------------+-------------+------------+------------+-----------+
| 5 | 256s | 64 | 128 | 29792 |
+--------------+-------------+------------+------------+-----------+
| 6 | 256f | 64 | 128 | 49856 |
+--------------+-------------+------------+------------+-----------+

Table 13: SPHINCS+ parameters and artifact lengths in octets.
The values equally apply to the parameter IDs of SPHINCS+-

simple-SHA2 and SPHINCS+-simple-SHAKE.
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7.1.1. Binding hashes

SPHINCS+ signature packets MUST use the associated hash as specified
in Table 14. Signature packets using other hashes MUST be considered
invalid.

+========================+==============+==========+===============+
| Algorithm ID reference | Parameter ID | Hash | Hash function |
| | reference | function | ID reference |
+========================+==============+==========+===============+
| 41 | 1, 2 | SHA-256 | 8 |
+------------------------+--------------+----------+---------------+
| 41 | 3, 4, 5, 6 | SHA-512 | 10 |
+------------------------+--------------+----------+---------------+
| 42 | 1, 2 | SHA3-256 | 12 |
+------------------------+--------------+----------+---------------+
| 42 | 3, 4, 5, 6 | SHA3-512 | 14 |
+------------------------+--------------+----------+---------------+

Table 14: Binding between SPHINCS+ and signature hashes

An implementation supporting a specific SPHINCS+ algorithm and
parameter MUST also support the matching hash algorithm.

7.1.2. Key generation

The SPHINCS+ key generation is performed according to the function
spx_keygen() specified in [SPHINCS-Subm], Sec. 6.2 as Alg. 19. The
private and public key are encoded as defined in [SPHINCS-Subm].

7.1.3. Signature Generation

The procedure for SPHINCS+ signature generation is the function
spx_sign(M, SK) specified in [SPHINCS-Subm], Sec. 6.4 as Alg. 20.
Here, M is the dataDigest generated according to
[I-D.ietf-openpgp-crypto-refresh] Section 5.2.4 and SK is the
SPHINCS+ private key. The global variable RANDOMIZE specified in
Alg. 20 is to be considered as not set, i.e. the variable opt shall
be initialized with PK.seed. See also Section 9.4.

An implementation MUST set the Parameter ID in the signature equal to
the issuing private key Parameter ID.
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7.1.4. Signature Verification

The procedure for SPHINCS+ signature verification is the function
spx_verify(M, SIG, PK) specified in [SPHINCS-Subm], Sec. 6.5 as Alg.
21. Here, M is the dataDigest generated according to
[I-D.ietf-openpgp-crypto-refresh] Section 5.2.4, SIG is the
signature, and PK is the SPHINCS+ public key.

An implementation MUST check that the Parameter ID in the signature
and in the key match when verifying.

7.2. Packet specifications

7.2.1. Signature Packet (Tag 2)

The SPHINCS+ algorithms MUST be used only with v6 signatures, as
defined in [I-D.ietf-openpgp-crypto-refresh] Section 5.2.3.

The algorithm-specific v6 Signature parameters consists of:

* A one-octet value specifying the SPHINCS+ parameter ID defined in
Table 3 and Table 4. The values 0x00 and 0xFF are reserved for
future extensions.

* A fixed-length octet string of the SPHINCS+ signature value, whose
length depends on the parameter ID in the format specified in
Table 13.

7.2.2. Key Material Packets

The SPHINCS+ algorithms MUST be used only with v6 keys, as defined in
[I-D.ietf-openpgp-crypto-refresh].

The algorithm-specific public key is this series of values:

* A one-octet value specifying the SPHINCS+ parameter ID defined in
Table 3 and Table 4. The values 0x00 and 0xFF are reserved for
future extensions.

* A fixed-length octet string containing the SPHINCS+ public key,
whose length depends on the parameter ID as specified in Table 13.

The algorithm-specific private key is this value:

* A fixed-length octet string containing the SPHINCS+ secret key,
whose length depends on the parameter ID as specified in Table 11.
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8. Migration Considerations

The post-quantum KEM algorithms defined in Table 1 and the signature
algorithms defined in Table 2 are a set of new public key algorithms
that extend the algorithm selection of
[I-D.ietf-openpgp-crypto-refresh]. During the transition period, the
post-quantum algorithms will not be supported by all clients.
Therefore various migration considerations must be taken into
account, in particular backwards compatibility to existing
implementations that have not yet been updated to support the post-
quantum algorithms.

8.1. Key preference

Implementations SHOULD prefer PQ(/T) keys when multiple options are
available.

For instance, if encrypting for a recipient for which both a valid
PQ/T and a valid ECC certificate are available, the implementation
SHOULD choose the PQ/T certificate. In case a certificate has both a
PQ/T and an ECC encryption-capable valid subkey, the PQ/T subkey
SHOULD be preferred.

An implementation MAY sign with both a PQ(/T) and an ECC key using
multiple signatures over the same data as described in Section 4.4.
Signing only with PQ(/T) key material is not backwards compatible.

Note that the confidentiality of a message is not post-quantum secure
when encrypting to multiple recipients if at least one recipient does
not support PQ/T encryption schemes. An implementation SHOULD NOT
abort the encryption process in this case to allow for a smooth
transition to post-quantum cryptography.

8.2. Key generation strategies

It is REQUIRED to generate fresh secrets when generating PQ(/T) keys.
Reusing key material from existing ECC keys in PQ(/T) keys does not
provide backwards compatibility, and the fingerprint will differ.

An OpenPGP (v6) certificate is composed of a certification-capable
primary key and one or more subkeys for signature, encryption, and
authentication. Two migration strategies are recommended:
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1. Generate two independent certificates, one for PQ(/T)-capable
implementations, and one for legacy implementations.
Implementations not understanding PQ(/T) certificates can use the
legacy certificate, while PQ(/T)-capable implementations will
prefer the newer certificate. This allows having an older v4 or
v6 ECC certificate for compatibility and a v6 PQ(/T) certificate,
at a greater complexity in key distribution.

2. Attach PQ(/T) encryption and signature subkeys to an existing v6
ECC certificate. Implementations understanding PQ(/T) will be
able to parse and use the subkeys, while PQ(/T)-incapable
implementations can gracefully ignore them. This simplifies key
distribution, as only one certificate needs to be communicated
and verified, but leaves the primary key vulnerable to quantum
computer attacks.

9. Security Considerations

9.1. Hashing in ECC-KEM

Our construction of the ECC-KEMs, in particular the final hashing
step in encapsulation and decapsulation that produces the
eccKeyShare, is standard and known as hashed ElGamal key
encapsulation, a hashed variant of ElGamal encryption. It ensures
IND-CCA2 security in the random oracle model under some Diffie-
Hellman intractability assumptions [CS03].

9.2. Key combiner

For the key combination in Section 5.2.2 this specification limits
itself to the use of KMAC. The sponge construction used by KMAC was
proven to be indifferentiable from a random oracle [BDPA08]. This
means, that in contrast to SHA2, which uses a Merkle-Damgard
construction, no HMAC-based construction is required for key
combination. Except for a domain separation it is sufficient to
simply process the concatenation of any number of key shares when
using a sponge-based construction like KMAC. The construction using
KMAC ensures a standardized domain separation. In this case, the
processed message is then the concatenation of any number of key
shares.

More precisely, for a given capacity c the indifferentiability proof
shows that assuming there are no weaknesses found in the Keccak
permutation, an attacker has to make an expected number of 2^(c/2)
calls to the permutation to tell KMAC from a random oracle. For a
random oracle, a difference in only a single bit gives an unrelated,
uniformly random output. Hence, to be able to distinguish a key K,
derived from shared keys K1 and K2 (and ciphertexts C1 and C2) as
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K = KMAC(domainSeparation, counter || K1 || C1 || K2 || C2 || fixedInfo,
outputBits, customization)

from a random bit string, an adversary has to know (or correctly
guess) both key shares K1 and K2, entirely.

The proposed construction in Section 5.2.2 preserves IND-CCA2 of any
of its ingredient KEMs, i.e. the newly formed combined KEM is IND-
CCA2 secure as long as at least one of the ingredient KEMs is.
Indeed, the above stated indifferentiability from a random oracle
qualifies Keccak as a split-key pseudorandom function as defined in
[GHP18]. That is, Keccak behaves like a random function if at least
one input shared secret is picked uniformly at random. Our
construction can thus be seen as an instantiation of the IND-CCA2
preserving Example 3 in Figure 1 of [GHP18], up to some reordering of
input shared secrets and ciphertexts. In the random oracle setting,
the reordering does not influence the arguments in [GHP18].

9.3. Domain separation and binding

The domSeparation information defined in Section 5.2.2 provides the
domain separation for the key combiner construction. This ensures
that the input keying material is used to generate a KEK for a
specific purpose or context.

The fixedInfo defined in Section 5.2.1 binds the derived KEK to the
chosen algorithm and communication parties. The algorithm ID
identifies univocally the algorithm, the parameters for its
instantiation, and the length of all artifacts, including the derived
key. The hash of the recipient’s public key identifies the subkey
used to encrypt the message, binding the KEK to both the Kyber and
the ECC key. Given that both algorithms allow a degree of ciphertext
malleability, this prevents transformations onto the ciphertext
without the final recipient’s knowledge.

This is in line with the Recommendation for ECC in section 5.5 of
[SP800-56A]. Other fields included in the recommendation are not
relevant for the OpenPGP protocol, since the sender is not required
to have a key on their own, there are no pre-shared secrets, and all
the other parameters are univocally defined by the algorithm ID.

9.4. SPHINCS+

The original specification of SPHINCS+ [SPHINCS-Subm] prescribes an
optional randomized hashing. This is not used in this specification,
as OpenPGP v6 signatures already provide a salted hash of the
appropriate size.
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9.5. Binding hashes in signatures with signature algorithms

In order not to extend the attack surface, we bind the hash algorithm
used for message digestion to the hash algorithm used internally by
the signature algorithm. Dilithium internally uses a SHAKE256
digest, therefore we require SHA3 in the Dilithium + ECC signature
packet. In the case of SPHINCS+ the internal hash algorithm varies
based on the algorithm and parameter ID.

10. Additional considerations

10.1. Performance Considerations for SPHINCS+

This specification introduces both Dilithium + ECC as well as
SPHINCS+ as PQ(/T) signature schemes.

Generally, it can be said that Dilithium + ECC provides a performance
in terms of execution time and space requirements that is close to
that of traditional ECC signature schemes. Implementers may want to
offer SPHINCS+ for applications where a higher degree of trust in the
signature scheme is required. However, SPHINCS+ has performance
characteristics in terms of execution time of the signature
generation as well as space requirements for the signature that can
be, depending on the parameter choice, far greater than those of
traditional or Dilithium + ECC signature schemes.

Pertaining to the execution time, the particularly costly operation
in SPHINCS+ is the signature generation. In order to achieve short
signature generation times, one of the parameter sets with the name
ending in the letter "f" for "fast" should be chosen. This comes at
the expense of a larger signature size.

In order to minimize the space requirements of a SPHINCS+ signature,
a parameter set ending in "s" for "small" should be chosen. This
comes at the expense of a larger signature generation time.

11. IANA Considerations

IANA will add the following registries to the Pretty Good Privacy
(PGP) registry group at https://www.iana.org/assignments/pgp-
parameters:

* Registry name: SPHINCS+-simple-SHA2 parameters

Registration procedure: SPECIFICATION REQUIRED [RFC8126]

Values defined in this document, Table 3.
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* Registry name: SPHINCS+-simple-SHAKE parameters

Registration procedure: SPECIFICATION REQUIRED [RFC8126]

Values defined in this document, Table 4.

Furthermore IANA will add the algorithm IDs defined in Table 1 and
Table 2 to the registry Public Key Algorithms.
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