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Abstract 
The global air traffic, whether as commercial flights or private jets, accounted for 10% 
of greenhouse gas emissions in 2019. Therefore, the interest has grown to produce 
sustainable aviation fuels (SAF) that reduce CO2 emissions. However, to choose 
potential candidates for SAF production, several tests have to be conducted that 
investigate the properties of SAF as specified by the American Society for Testing and 
Materials (ASTM). However, these tests are extremely expensive and time-consuming.  

Therefore, the concept of predicting fuel properties has become very important to save 
time and cost. This work focuses particularly on predicting the Kováts retention index 
– a standardized measure of gas chromatographic retention – on columns of different 
stationary phases. The Kováts retention index (RI) is of interest due to the fact that it 
can be used as a characteristic, substance-specific parameter to distinguish different 
hydrocarbon isomers within fuels. Since chemical databases do not contain the 
retention indices (RIs) of all possible compounds and the RIs of isomers are sometimes 
misassigned, this work attempts to develop a quantitative structure-property 
relationship (QSPR) model to predict Kováts retention indices.  

The data set used in this study consisted of almost 400 compounds from different 
classes (alkanes, alkenes, cycloalkanes, aromatics, alcohols, acids, aldehydes, 
ketones and esters). The retention indices (RIs) have been mainly collected from the 
PubChem database for standard non-polar (DB1), semi-standard non-polar (DB5) and 
polar wax (PEG) columns. Furthermore, 266 different molecular descriptors (MD) were 
obtained from the online chemical database that describe the structure and shape of 
molecules. 

To build the model, the data set was split into a training and a test set and was pre-
processed by Pareto Scaling. The training set was used to train the model with the 
following regression methods: Partial Least Square (PLS), and Support Vector 
Machine Regression (SVM-R). Venetian Blinds were used as a cross validation 
method and tested on the test set.  

The results show that the SVM-R as a non-linear model was better to correctly predict 
RIs of different compound classes on different columns. For DB1 the SVM model 
reaches a precision (RMSECV) of 12.8 RI units at a correlation R2(CV) of 0.999 and a 
prediction precision (RMSEP) of 12.2 RI units at a correlation R2(Pred) of 0.999. For 
DB5: RMSECV of 19.4 at R2(CV) of 0.999 and RMSEP of 13.7 at R2(Pred) of 0.998 
was obtained. For PEG: RMSECV of 24.5 at R2(CV) of 0.997 and RMSEP of 24.0 at 
R2(Pred) of 0.997 was reached.  

SUBJECT AREA: Chemometrics 

KEYWORDS: Gas chromatography, Kováts Retention Index, Quantitative structure-
property relationship, Modelling, Isomers  
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Kurzfassung 
Der globale Flugverkehr, ob als kommerzielle Flüge oder Privatjets, trägt durch seine 
Emissionen mit etwa 10% zum Treibhauseffekt bei. Um die CO2-Emissionen zu 
reduzieren, haben nachhaltige Flugkraftstoffe (sustainable aviation fuels - SAFs) 
großes Interesse geweckt. Um jedoch potenzielle Kandidaten für die SAF-Produktion 
zu finden, müssen zahlreiche Tests durchgeführt werden, die unterschiedliche SAF 
Kraftstoffeigenschaften untersuchen. Diese Tests beruhen auf ASTM-Standards . 
Jedoch sind diese Tests teuer und zeitaufwändig. Daher hat das Konzept der 
Vorhersage von Kraftstoffeigenschaften große Bedeutung gewonnen, da damit Zeit 
und Kosten gespart werden [1]. 

Diese Arbeit konzentriert sich insbesondere auf die Vorhersage der Kováts-
Retentionsindices auf Säulen verschiedener stationärer Phasen. Der Kováts-
Retentionsindex (RI) ist von Interesse, weil er als charakteristische, stoffspezifische 
Größe zur Unterscheidung verschiedener Kohlenwasserstoffisomere verwendet wird. 
Da chemische Datenbanken keine Retentionsindizes (RIs) aller möglichen 
Verbindungen enthalten und die RIs vieler Isomere im Chromatogramm falsch 
zugeordnet werden, wird im Zuge dieser Arbeit versucht, ein quantitatives Struktur-
Eigenschafts-Beziehungsmodell (quantitative structure property relationship - QSPR) 
zu entwickeln, um die Kováts Retentionsindices vorherzusagen. 

Der für diese Arbeit verwendete Datensatz bestand aus fast 400 Verbindungen 
verschiedener Stoffgruppen (Alkane, Alkene, Cycloalkane, Aromaten, Alkohole, 
Säuren, Aldehyde, Ketone und Ester). Die Retentionsindizes (RIs) wurden 
hauptsächlich aus der PubChem Datenbank für unpolare Standardsäulen (DB1), 
unpolare semi-Standardsäulen (DB5) und polare Säulen (PEG) gesammelt. Darüber 
hinaus wurden 266 verschiedene molekulare Deskriptoren (MD) aus der chemischen 
Online-Datenbank bezogen, die die Struktur und Form von Molekülen beschreiben. 

Zur Erstellung des Modells wurde der Datensatz in Trainings- und Testsets aufgeteilt 
und durch Pareto-Skalierung vorverarbeitet. Das Trainingsset wurde verwendet, um 
das Modell mit folgenden Regressionsmethoden zu trainieren: Partial Least Square 
(PLS), Support Vector Machine Regression (SVM-R). Die Venetian Blind-Methode 
wurde zur Kreuzvalidierung verwendet und auf das Testset angewendet. 

Das Ergebnis zeigt, dass der SVM-R als nichtlineares Modell besser geeignet ist, um 
RIs der Verbindungen verschiedener Stoffgruppen auf verschiedenen Säulen korrekt 
vorherzusagen. Für DB1 erreicht das SVM-Modell eine Präzision (RMSECV) von 12,8 
RI-Einheiten bei einer Korrelation R2(CV) von 0.999 und eine Vorhersagepräzision 
(RMSEP) von 12,2 RI-Einheiten bei einer Korrelation R2(Pred) von 0.999. Für DB5: ist 
der RMSECV von 19,4 bei R2(CV) von 0.999 und RMSEP von 13,7  bei R2(Pred) von 
0.998. Für PEG: beträgt RMSECV 24,5 bei R2(CV) von 0.997 und RMSEP von 24,0 
bei R2(Pred) von 0.997.   

FACHGEBIET: Chemometrie 

SCHLAGWORTE: Gaschromatographie, Kováts Retentionsindex, Quantitative 
Struktur-Eigenschafts-Beziehungen, Modellierung, Isomere  
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List of Abbreviations 
AED Atomic emission detector 

ANN Artificial neural network  

CI Chemical ionization  

CNN Conventional neural network 

DB1 Code of standard non-polar column produced by J&W (now: Agilent); 100% 
poyldimethylsiloxane 

DB5 Code of Semi-standard non-polar column produced by J&W (now: Agilent); 
5%-polydiphenyl-/95%-polydimethylsiloxane 

DC-710 Code of standard non-polar column produced by J&W (now: Agilent); 50% 
polydiphenyl-/50%polydimethylsiloxane  

ECD Electron capture detector  

EI Electron ionization 

ETA extended topochemical atom 

FAME Fatty acid methyl ester 

FID Flame ionization detector  

GC Gas chromatograph, gas chromatography 

GCxGC Two-dimensional comprehensive GC 

He Helium  

HPLC High performance liquid chromatography 

LC Liquid chromatography 

LOO Leave one out 

LV Latent variable 

LWR Locally weighted regression 

MAE Mean absolute error 

Max Maximum  

MD Molecular descriptor  

MLR Multiple linear regression 
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Min Minimum 

MS Mass spectrometer, mass spectrometry 

m/z Mass to charge ratio 

OV-7 Code of non-standard non-polar column originally produced by Ohio Valley 
Specialty Co.; 20% polydiphenyl-/80% Polydimethylsiloxane 

OV-25 Code of non-standard non-polar column originally produced by Ohio Valley 
Specialty Co.; 50%-polydiphenyl-/50%-polydimethylsiloxane  

OV-225 Code of non-standard non-polar column originally produced by Ohio Valley 
Specialty Co.; 50% cyanopropylmethyl-/50%- phenylmethylpolysiloxane  

PAH Polycyclic aromatic hydrocarbon 

PC Principal component  

PCR Principal component regression 

PEG Polyethylene glycol 

PLS Partial least square  

QSAR Quantitative structure-activity relationship 

QSPR  Quantitative structure-property relationship 

RBF Radial basis function  

RDF Radial distribution function 

RI Retention index 

RMSE Root mean square error 

RMSEC Root mean square error for calibration 

RMSECV Root mean square error for cross validation 

RMSEP Root mean square error for prediction 

RSD Relative standard deviation 

RT Retention time 

SAF Sustainable aviation fuel 

SE-30 Code of non-standard non-polar column. 100%-Polydimethylsiloxane (not 
crosslinked) 

SEC Standard error of calibration  
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Silar-5CP Code and trade name of non-standard semi-polar column. 50%-
Cyanopropyl-/50% Phenylmethylpolysiloxane  

SEP Standard error of prediction  

SVM-R Support vector machine regression 

TCD Thermal conductivity detector 

TLC Thin layer chromatography 

VSA Van der Waals surface area  

XE-60 Code of non-standard semi-polar column. 50% Cyanopropylmethyl/50% 
Dimethylpolysiloxane  
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1. Objective 
The traditional and currently still most common source of jet fuel is of fossil origin, 
however with increasing interest to produce sustainable aviation fuel (SAF). In order 
to find potential candidates for SAF, several tests have to be conducted, which are 
very expensive and highly time-consuming. To save time and cost, chemometric 
models have been developed that can predict fuel properties [1–3]. To predict 
properties, a GCxGC chromatogram can be used as data input to provide substance-
specific, quantitative information and molecular descriptors (MDs), combined with a 
quantitative structure-property relationship (QSPR) approach to derive relevant 
properties from the chemical composition (refer to figure 1). It is the aim of this thesis 
to develop a QSPR model with the help of MDs to predict the Kováts retention index 
on columns of different stationary phases. 

  

Figure 1: Illustration of the objective of this thesis. 
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2. Introduction 

2.1. Chromatography  
Michael Tswett observed for the first time the separation of coloured bands of 
chlorophyll pigments while applying the pigment solution to  a column filled with CaCO3 
[4,5]. This technique was first described in the German botanical journal in 1906 [6]. 

The separation of colours was then named as “Chromatography” (derived from Greek 
language meaning ‘to write colour’).  

However, the technique of chromatography was further developed by Archer John 
Porter Martin and Richard Laurence Millington Synge and in 1952 they were awarded 
the Nobel Prize in Chemistry for developing and establishing the principles of partition 
chromatography. This innovation encouraged the development of several more 
chromatographic methods such as high-performance liquid chromatography (HPLC), 
thin layer chromatography (TLC) and gas chromatography (GC) which is the main topic 
of this thesis and will be discussed in section 2.2 Gas Chromatography [7,8]. 

Any chromatographic separation is based on the distribution (partitioning) of the 
sample between the mobile phase and stationary phase. Stationary phase can be a 
solid or a liquid, whereas the mobile phase can be a liquid or a gas. The mobile phase 
carries the sample mixture through the stationary phase where the different 
constituents of the sample are separated based on the different intermolecular 
interaction between the analyte and the stationary phase. Most important factors 
affecting on the chromatographic separation are adsorption, partition and affinity 
between the analyte, mobile phase and the stationary phase. Because of these 
differences some analytes will elute faster or slower than others, thus resulting in 
different retention times [5,7]. 

Chromatography in general can be classified into two groups, column chromatography 
and planar chromatography, depending on how the stationary phase and mobile phase 
come into contact. Column Chromatography means the stationary phase is held in a 
column and the mobile phase runs through by gravity or pressure (e.g. liquid 
chromatography LC and gas chromatography GC). Whereas, planar chromatography 
means the stationary phase is lying flat and the mobile phase moves through by 
capillary action (e.g. thin layer chromatography TLC). The stationary phase can have 
different polarities, and based on that the chromatography can be classified either as 
normal phase (where the stationary phase is more polar than the mobile phase) or 
reversed phase (where the stationary phase is less polar than the mobile phase).  

2.2. Gas Chromatography  
The modern gas chromatography (GC) was invented in 1952 by James and Martin [9]. 
The main focus at that time was to separate amino acids. But now due to its high 
sensitivity and fast analysis, GC has become indispensable for many different scientific 
fields, providing qualitative and quantitative analysis. The instrumentation for gas 
chromatography mainly consists of a carrier gas system, injector, gas chromatographic 
column, detector and data processing unit. The carrier gas (mobile phase), is a 
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chemically inert gas, which does not influence the selectivity of the separation (e.g. 
helium). The injector helps to introduce the sample to the GC column. The basis of 
components separation in GC is by partitioning between two different phases, the 
stationary phase and the mobile phase (typically, He as the carrier gas) [15]. The 
separation in GC depends on the column properties such as different column 
dimensions (length, diameter, stationary phase film thickness) and different polarities 
(standard non-polar – 100% dimethylpolysiloxane, semi standard non-polar – 5%-
Phenyl-/95% methylpolysiloxane or polar – polyethylene glycol). Based on the 
interaction between the column and the molecules, different compounds will elute from 
the column at different times (retention times). If coupled to a mass spectrometer as a 
detector, this allows the MS to ionize and detect the molecules separately [10–13]. 

Choosing the right temperature program in GC will help achieve an effective and 
reliable separation since the column temperature is one of the most decisive 
parameters. Hence, there are two different temperature modes, isothermal separation 
mode where the column is operated at a constant temperature and temperature 
programmed mode where a predetermined temperature program is applied [14].  

Once the analyte exits the column (elution), it will reach the detector where a 
chromatogram will be generated, which is a plot of signal intensity versus elution time 
(retention time).  For a successful chromatographic separation the detector should fulfil 
the following characteristics: High sensitivity, high selectivity, fast response time and  
being non-destructive. There are many different detectors which are developed for 
sensitive quantification of analytes such as flame ionization FID, electron capture ECD, 
thermal conductivity TCD, atomic emission AED, mass spectrometer MS, etc. [13]. 

Most frequently used detectors with GC are the FID, TCD and MS. In FID once the 
analyte mixture elutes the column, it will combust in hydrogen/air where ions will form 
and be detected by the electrode. The generated signal is proportional to the amount 
of organic carbon in the mixture. FID is the most commonly used as GC detector due 
to the fact that it is very robust and easy to use with high sensitivity and low noise, it 
has even high sensitivity for organic compounds, however it cannot detect water or 
carbon dioxide and is destructive (destroys the sample) [15]. TCD consists of double 
channel system with electrical heated filaments. The amount of heat loss is a function 
of the thermal conductivity of the carrier gas flowing through the cell. When the analyte 
flows through the detector it will change the gas composition and resulting in a change 
of conductivity [16]. Although TCD is less sensitive than FID, it is non-destructive and 
has an advantage over FID due to the fact that it can see and detect analytes that the 
FID does not see (e.g., permanent gases) [15]. 

Nowadays, GC is often coupled with mass spectrometry (MS) as information-rich 
detector. GC-MS is considered as a versatile analytical method due to its 
reproducibility, high resolution and capability of structural elucidation, it can separate 
mixtures of volatile and semi-volatile compounds with high selectivity and sensitivity 
[17]. The MS detects the molecules by ionizing them in a high vacuum system, using 
electron ionisation (EI) or chemical ionisation (CI) techniques. Because of the high-
vacuum, MS requires an interface to direct the analytes from the GC to the MS (Refer 
to figure 2). The generated ions are then accelerated in a magnetic or electric field and 
sorted according to their m/z (mass to charge ratio), producing the mass spectrum. MS 
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data is generated as a chromatogram indicating the compound quantity as a function 
of retention time (elution time from the column) [18]. 

In 1991, the first comprehensive two-dimensional gas chromatogram (GCxGC) was 
reported by Liu and Phillips [19]. A typical GCxGC system consists of two GC columns 
with different dimensions and the both columns differ in their selectivity (e.g. selectivity 
of column 1 is based on volatility whereas column 2 is based on polarity). 
Multidimensional GC has gained interest over time to improve the separation of co-
eluting compounds and for enrichment of trace components.  

 

Figure 2:Schematic representation of GC-MS. 

2.3. Chromatographic separation 
When sample molecules pass through the GC column, they will spend different lengths 
of time in the stationary phase and in the mobile phase. The time that is required  for  
an unretained solute to reach the detector is called the gas hold-up time (𝑡0). The 
unknown compound retention time (𝑡𝑅) is the time between injection and when the 
maximum of the peak signal reaches the detector and (𝑡𝑅́) is the adjusted retention 
time of the unknown compound (refer to figure 3). The adjusted retention time is 
calculated by [20]: 𝑡𝑅́ = 𝑡𝑅  +  𝑡0 …………(1) 
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Figure 3: Schematic explanation of retention time [21]. 

The retention time is influenced by many factors such as temperature, stationary 
phase, column length etc. Hence, the retention time is not ideal for peak identification. 
And in order to overcome the problem of expressing retention data in a more general 
way and to enable the transfer of measured results from one laboratory to another, 
Kováts introduced the retention index system (RI) in 1958 [22]. In which a homologous 
series of n-alkanes were used as reference peaks in isothermal GC conditions [23]. 

2.4. Retention Index System 
With the beginning of 1980s, the retention index has become a trending subject, where 
a great number of studies on retention index systems were published to improve their 
reliability, from which several linear relationships between the retention index and other 
fundamental properties (e.g. boiling point, melting point, carbon number and molecular 
weight) were derived [23,24].  

Nevertheless, only recently it was recognized how useful RI is, as an independent 
additional parameter, in supporting the identification of unknown compounds in 
complex mixtures. Most important applications of RIs is to confirm correct identification 
of chemical compounds, filtering GC-MS false-positive identifications and the 
identification of isomers with similar mass spectra. Since mass spectral information 
alone is not fully reliable in assigning the identity of isomers [25]. 

Moreover, according to literature the retention parameters can be related simply to the 
thermodynamic partition coefficient between the gas and the liquid phase [26], and this 
led to the presumption that physico-chemical properties (such as boiling point) of a 
molecule are related to its chromatographic retention data (Kováts retention index) 
[27]. Some studies even used this information to predict physico-chemical properties 
of organic compounds with the help of mathematical relationships between the 
retention indices and physico-chemical properties [28]. 
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2.4.1. RI in isothermal and temperature-programmed 
system 

Retention indices (RIs) can be calculated for isothermal and temperature-programmed 
conditions, but it must be mentioned that the RI values differ between the two systems 
[23].  

In isothermal condition, the column temperature is maintained constant during the 
analysis. This works best for samples with narrow boiling point distribution. In contrast 
to the isothermal, the heating rate and the temperature in the temperature-
programmed operation can be adjusted during the analysis and this method is well 
suited for separating a mixture of a broad boiling point range. And during the analysis, 
components with low boiling points are separated first at low temperature and by 
increasing the temperature high boiling components are separated. 

In 1958 Kováts proposed the first retention index system [22] which was considered 
for isothermal conditions, for which n-alkanes (n-CnH2n+2) were used as reference 
compounds to define the RI scale under isothermal GC conditions [29]: 𝑅𝐼 = 100 ∗ 𝑛𝐶…………(2) 

where 𝑛𝐶 is the number of carbon atoms of n-alkanes [e.g., ethane C2H6 has RI of 
200]. To obtain the RI of compounds different than n-alkanes in isothermal conditions, 
the retention time of the unknown compound should be normalized to the retention 
times of adjacently eluting n-alkanes before and after the unknown compound [20,29]: 𝑅𝐼 = 100 ∗ {𝑘 + [𝑙𝑜𝑔(𝑡′𝑅,𝑥𝑡′𝑅,𝑘) / 𝑙𝑜𝑔 (𝑡′𝑅,𝑘+1𝑡′𝑅,𝑘 )]}…………(3) 

Where 𝑘 is the number of carbon atoms of the n-alkane eluting before the unknown 
compound, 𝑡′𝑅,𝑥 is the adjusted retention time (RT) of the unknown compound, 𝑡′𝑅,𝑘 is 
the RT of the n-alkane eluting before the unknown compound, 𝑡′𝑅,𝑘 is the RT of the n-
alkane eluting after the unknown compound [29]. 

In 1963 Van den Dool and Kratz derived the RI formula for linear temperature-
programmed system [29–31]: 𝑅𝐼 = 100 ∗ [𝑘 + (𝑡𝑅,𝑥−𝑡𝑅,𝑘)(𝑡𝑅,𝑘+1− 𝑡𝑅,𝑘)]…………(4) 
Where 𝑘 is the number of carbon atoms of the n-alkane eluting before the unknown 
compound, 𝑡𝑅,𝑥 is the RT of the unknown compound, 𝑡𝑅,𝑘 is the RT of the n-alkane 
eluting before the target, 𝑡𝑅,𝑘+1 is the RT of the n-alkane eluting after the unknown 
compound. The linear temperature-programmed conditions are very useful for 
separating complex mixtures like petroleum crude oils that contains constituents with 
a broad range of boiling points [29]. Moreover, obtaining reliable retention index data 
is often arguable, due to the different heating programs. Thus temperature-
programmed conditions are usually less, not more reliable than the isothermal 
conditions.  
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Nevertheless, the retention index system is based on the incremental structure and 
retention relationship of the eluting compound, this means that the retention index 
system should not be limited to the use of n-alkanes as standards. Therefore, there 
are many other suggested systems than Kováts, such as the fatty acid methyl esters 
(FAMEs) and polynuclear aromatic hydrocarbons (PAHs) [23,32]. For FAME the RI is 
calculated by the formula [33]: 𝐼 = 100 ∗ [𝑘 + (𝑇𝑥−𝑇𝑘)(𝑇𝑘+1−𝑇𝑘 )]…………(5) 
Where, 𝑘 is the number of carbon atoms of the FAME before the peak of the unknown 
compound, 𝑇𝑥 the elution temperature of the unknown compound, 𝑇𝑘 the elution 
temperature of the FAME before the unknown compound and 𝑇𝑘+1 is the elution 
temperature of the FAME after the unknown compound. 

And in the PAH retention index system, instead of using the retention times of alkanes, 
it uses the retention times of selected polycyclic aromatic hydrocarbons with the 
number of rings [32]. 

There were also other systems which were based on the equation proposed by Kováts 
such as the standard retention index suggested by Robinson and Odell in 1971 [34], 
where the reference parameter is not a retention time but boiling point of the unknown 
analytes and the reference standards.  

The need to introduce different RI systems was due to the development of different 
element-specific detectors such as the electron capture detector (ECD) and the flame 
photometric detector (FPD) that are not sensitive to n-alkanes and therefore they need 
different standard homologous. For example, the series of chloroalkanes and 
bromoalkanes can be used with ECD, sulphur-containing molecules e.g. 
dialkylsulphides can be used with FPD [23]. Therefore, several RI systems were 
suggested for specific applications. To mention further, RIs generated in one system 
can be recalculated in the Kováts RIs system. Moreover, Kováts RI is usually the most 
suggested and most frequently used system, due to following reasons: n-alkane 
standards form a homologous series increasing one carbon at a time, many of them 
are usually available commercially in high purity, the first 20 linear alkanes already 
cover a wide range of boiling points, and they have a linear relationship between the 
carbon atom number of the n-alkanes and the logarithm of the corrected retention 
time [23].  

2.4.2. RI Application for Phase Constant 
Determination 

After the RI system was introduced by Kováts, new interests have been raised to 
understand and characterize different stationary phases. Hence, in 1966 
Rohrschneider proposed in his work to investigate the macroscopic level of physico-
chemical properties – by modelling the retention of known test compounds on the 
respective stationary phase [35]. Rohrschneider tried to characterize stationary phases 
of GC columns by studying the retention index differences (∆𝐼) of five different test 



 

 
16 

 

compounds on squalene (non-polar) stationary phase and on the stationary phase to 
be characterized, at 120 °C [35].  ∆𝐼 =  𝐼𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑒𝑑 −  𝐼𝑠𝑞𝑢𝑎𝑙𝑎𝑛𝑒 [23]…………(6) 
The used test compounds were the following: Benzene, ethanol, 2-butanone, 
nitromethane and pyridine.  

Rohrschneider suggested further that RI differences ∆𝐼𝑖,𝑗 for a solute 𝑖 on stationary 
solvent phase 𝑗, can be expressed as a summation of five terms, each consisting of 
solute-specific and solvent-specific factors [35]: ∆𝐼𝑖,𝑗 = 𝑎𝑖𝑥𝑗 + 𝑏𝑖𝑦𝑗 + 𝑐𝑖𝑧𝑗 + 𝑑𝑖𝑢𝑗 + 𝑒𝑖𝑠𝑗  …………(7) 

Or more generally [36]: ∆𝐼𝑖,𝑗 = ∑ 𝑎𝑖,𝑘𝑛𝑘=1 𝑥𝑘,𝑗 …………(8) 
Where, 𝑎𝑖,𝑘 is the solute-specific factor (for test compounds) and 𝑥𝑘,𝑗 is the solvent-
specific factor (for stationary phase). The 𝑥𝑘,𝑗 factors are obtained experimentally, 
whereas, 𝑎𝑖,𝑘 are calculated with the intention of minimising the sum of the squared 
errors for each substance on the stationary phase, meaning sum of the errors should 
be zero. Rohrschneider chose these five standard solutes to explain the different 
interactions of the solutes with different  stationary phases [23,35,37,38] (refer to 
table 1). 

Table 1: Interactions of different solutes with the stationary phase. 

Test compounds Interactions 

Benzene π – π, aromatic 

Ethanol Hydrogen bonding for alcohols 

2-butanone Proton acceptor – ketones, aldehydes 

Nitromethane Dipole – dipole interactions 

Pyridine Strong proton acceptor – acid character of 
column 

 

Later on, McReynolds expanded the five compounds list that was suggested by 
Rohrschneider and included 10 compounds to characterize the columns even better. 
Benzene, 1-butanol, 2-pentanone, nitropropane, pyridine, 2-methyl-2-pentanol, 1-
iodobutane, 2-octyne, 1,4-dioxane and cis-hidrindane. The first five compounds are 
either the same compounds as Rohrschneider used or homologs of Rohrschneider’s 
compounds [39]. The purpose of McReynolds constants is to more comprehensively 
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describe retention properties and to give information on phase polarity, which can be 
used to rank the polarity of different stationary phases [40]. For example, if the 
McReynolds constants are high for all these 10 test compounds, then this signifies that 
the characterized (investigated) stationary phase is polar. If the McReynolds constants 
are not equally high for all these 10 test compounds then this indicates different 
degrees of polarity of the stationary phase.  

For instance, a classical non-polar phase such as squalene, has a polarity number of 
zero (low value of McReynolds constants). On the other hand, a 50% phenyl-methyl 
polysiloxane stationary phase is considered moderately polar and has a polarity 
number of around 20, while polyethylene glycol phase, considered as one of the most 
polar stationary phases,  has a polarity number of around 52 [41]. 

The McReynolds constants enable to compare polarities of different stationary phases. 
For instance, benzene has 𝑋′ = 0 on squalene column, 𝑋′ = 0.16 on 100% dimethyl 
polysiloxane stationary phase and 𝑋′ =  3.22 on polyethylene glycol stationary phase 
[23,37,38]. Although the McReynolds system gives the advantage of determining and 
comparing polarities of different columns, it has still some limitations. Hence, the 
combination of both Rohrschneider and McReynolds data would help develop this 
research area.  

2.4.3. Retention Index Prediction  

The concept of Rohrschneider and McReynolds stimulated the idea of predicting 
retention indices. And the inspiration to develop predictive relationships was due to 
several reasons; To generate reliable retention data, or to predict retention index of an 
analyte whose RI is unavailable for study, and also to extrapolate valuable physical-
chemical properties of an analyte that could be correlated through its retention index 
[23].  

Despite the fact that several databases contain large amounts of RI data of different 
chemical compounds, there is still a lack of generally available retention data for many 
different compounds. Therefore, in the absence of experimental retention data, 
predicted retention data could be very helpful in confirming correct identification and 
avoiding false-positive identification [42]. 

A general approach for retention index prediction depends on generating topological, 
geometric and electronic molecular descriptors, which are then used to predict 
retention index using different regression methods.  

The topological indices are indispensable for the study of the relationships between 
molecular structure and chromatographic retention data. As a consequence, they have 
been widely used to correlate retention indices with several important properties such 
as boiling point, molecular polarizability, van der Waals volumes [27]. 

The main used RI predictive approaches are the following: Quantitative structure 
property relationship (QSPR) approach with molecular descriptors (MD), deep learning 
approaches and non-learning methods based on functional group increments [43,44]. 
Hence, the section 2.5. QSPR Predictive Modeling will cover different approaches that 
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were used in various literature to predict RIs. However, this work mainly focuses on 
the QSPR approach with MD. 

2.5. QSPR Predictive Modeling 
The field of quantitative structure–activity relationships (QSARs) modelling was 
developed by Corwin Hansch [45], and deals with creating a model that relates the 
chemical structure of a compound (descriptor) to its activity. This modelling was further 
extended to the physical and chemical properties of the compound (melting point, 
boiling point or retention index) and was then called quantitative structure–property 
relationship (QSPR). QSPRs are found to be important complementary tools in 
computational chemistry to predict a variety of physicochemical properties for the 
purpose of industrial processes optimization. They have gained remarkable interest 
due to their fast and inexpensive computation. The prediction by this method relies on 
the use of descriptors, which derive information from the molecular structure. The 
descriptors encode numeric information about molecular topology, geometry and 
electronic features. Consequently, these values are used to build an accurate 
predictive model [43,44]. 

2.5.1. Modeling Techniques from Literature 

This section discusses different predictive models for retention index, which were 
published over the years by different research groups. 

The group of Biancolillo & D’Archivio [2] used the model of quantitative structure-
property relationships (QSPR) to predict retention indices (RIs) of 90 saturated esters 
that were experimentally collected (isothermal program at 150 °C) on seven different 
stationary phases: 100%-dimethylpolysiloxane (SE-30), 20% diphenyl-80% 
dimethylpolysiloxane (OV-7), 50% diphenyl-/50% dimethylpolysiloxane (DC-710), 50% 
diphenyl-/50%-dimethylpolysiloxane (OV-25), 50% cyanopropylmethyl-/50% 
dimethylpolysiloxane (XE-60), 50% cyanopropylmethyl-50%- henylmethylpolysiloxane 
(OV-225) and 50% cyanopropyl-50% phenylmethylpolysiloxane (Silar-5CP) [46,47]. 

Subsequently, 613 molecular descriptors (MDs) were computed using the Dragon 
software [48], of which 439 were describing the solute and 174 the stationary phases, 
with no preliminary selection of the MD. The used MDs belonged to several sub-blocks 
such as: Constitutional (molecular composition of a molecule), Topological (graph 
representation of a molecule), Connectivity (arrangement of the atoms in the 
molecule), Geometrical (molecular geometry) and etc. [49,50]. The QSPR model was 
trained with Partial Least Square (PLS) regression and was validated with “leave-one-
out” 10-fold cross-validation. Eventually, Covariance Selection was used to investigate 
which descriptors contributing mostly to the model and to filter the least important ones. 
This feature selection simplifies the system and the interpretation but not the 
prediction. Any model is validated via Root Mean Square Error (RMSE), known as the 
standard deviation error in calculation, which can be calculated via the following 
equation [51]: 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖− 𝑦̂𝑖 )2𝑖 𝑛  …………(9) 
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Where, n is the number of objects (90 esters in this case), 𝑦𝑖 is the observed dependent 
variable (experimentally collected RIs in this case) and 𝑦̂𝑖 is the calculated dependent 
variable (RIs calculated via the PLS model in this case).  

In the work of Biancolillo & D’Archivio [2] the validated results were reported as Root 
Mean Square Error in Cross Validation (RMSECV) and Root Mean Square Error in 
Prediction (RMSEP). These should always be reported, since for any prediction model, 
we need two different data sets; one for training the model (cross validation) and one 
for testing the prediction (test prediction). RMSECV and RMSEP are also calculated 
using equation 9, the only difference is the 𝑦𝑖 and 𝑦̂𝑖 data, for RMSECV is used from 
the cross validation data set and for RMSEP is used from the test prediction data set. 
RMSECV and RMSEP of the different stationary phases are presented in table 2. The 
values stand for the standard deviation error of RIs for cross validation and for test 
prediction, hence they have retention index units:  

Table 2: Model precision of the different stationary phases [2]. 

Column 
RMSECV 

[RI units] 

RMSEP 

[RI units] 

OV-225 20.6 24.4 

OV-25 15.5 23.3 

OV-7 15.1 17.0 

SE-30 15.4 26.6 

Silar-5CP 14.9 24.0 

XE-60 13.4 17.3 

DC-710 18.2 11.2 

D’Archivio et al. [3] in an earlier work also showed the use of a QSPR model for the 
same 90 saturated esters on columns of different polarities (SE-30, OV-7, DC-710, 
OV-25, XE-60, OV-225 and Silar-5CP), but this time the model was trained via multi-
linear regression (MLR) and artificial neural network regression (ANN). The used 
descriptors consisted of constitutional and topological descriptors, walk and path 
counts (which is the number of walks of any length in the graph representation), 
information indices (which take into account the indices of neighborhood symmetry) 
and connectivity indices (arrangement of the atoms in the molecule) [49,52]. To 
validate the model leave-one-out cross-validation was used. After comparison between 
the two approaches, MLR and ANN provide similar predictive performance for similar 
stationary phases. However, when compared between different polarity columns, ANN 
prediction becomes better than that MLR. This is especially noticeable when 
dissimilarity between stationary phase composition grows. This could be explained due 
to the fact that ANN data treatment overcomes problems related with collinearity of 
column descriptors which cannot be overcome by MLR. Table 3 summarizes the 
standard error of calibration (SEC) and standard error of prediction (SEP) of MLR and 
ANN [3]: 
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Table 3: Model precision presented with related standard errors (SEC and SEP) in RI units of the 
different stationary phases with different regression models [3]. 

MLR-based model ANN-based model 

Column SEC SEP Column SEC SEP 

SE-30 13.9 23.3 SE-30 8.3 9.6 

OV-7 15.3 13.3 OV-7 8.1 8.3 

DC-710 15.2 12.9 DC-710 8.3 7.0 

OV-25 15.2 12.9 OV-25 7.5 11.0 

XE-60 15.4 12.0 XE-60 7.5 11.6 

OV-225 15.3 12.8 OV-225 7.9 9.1 

Silar-5CP 12.9 25.4 Silar-5CP 7.8 12.2 

 

The QSPR model was also used in the work of Katritzky et al [53], to predict RIs of 178 
methylalkanes (mono-, di-, tri-, tetramethylalkanes) that are produced by insects. The 
RIs were measured on a non-polar DB1 column with a temperature program of 
60 - 320°C. The chosen descriptors belong to the sub-block of topological and 
geometrical descriptors, these descriptors were found to be very relevant in predicting 
the RIs of iso-alkanes, due to their high coding capability in representing the chemical 
structures effectively. As the test compounds are all belonging to the same compound 
class (isomeric alkanes) of same polarity, there was no need to introduce molecular 
descriptors that describe differences in their electronic structure or in their polarity 
(which would have been necessary if the test compounds belonged to different 
compound classes). CODESSA [54] was used to compute 302 descriptors, boiling 
point was also used as a physicochemical descriptor combined with other structure-
based descriptors. The model was validated by leave-one-out cross validation using 
an external set of 30 methyl-branched alkanes. The predicted retention indexes on 
non-polar DB1 column had an average error of 4.6 RI units, correlation coefficient R2 
of 0.9585 and standard deviation of 5.8 RI units. The used regression was MLR with 
four-descriptor equation that might be the reason for the relatively poor correlation 
coefficient R2 of 0.9585.  

On the other hand the group of Matyushin et al. [55] has compared two predictive 
models for RI, a deep convolutional neural network model and a molecular descriptor 
approach with functional groups contributions, to experimentally measured RI data. 
The models were tested for almost 20,000 compounds containing essential oils, 
metabolites, flavors that were obtained from several databases (PubChem, NIST, 
Adams, Golm, Flavors) [56–60]. The RI values were recorded on standard non-polar 
and semi-standard non-polar columns. For the NN approach, the compounds were 
converted to SMILES and used as input data. The results of different approaches were 
compared in terms of percentage of correct compound identification (refer to table 4). 
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Table 4: Percentage of correct compound identification is reported for each used method [55]: 

Used method for compound identification Percentage of correct 
identification (F%) 

Experimental 92.3 

Calculated using functional groups contribution 83.9 

Calculated using NN 86.4 

Only MS 82.1 

Only MS means that the compound was identified without RI system, but using only 
mass spectra data, which scores 82.1% of correct identification; the identification is 
correct only for 82.1% of compounds. Hence, F% suggests that using NN approach 
with RI prediction allows to increase compound correct identification rate from 82.1% 
(MS detection alone) to 86.4%. Furthermore the Root Mean Square Error (RMSE) was 
reported for NN to range from 66.9 – 144.8 [RI units] (for the different databases) and 
RMSE of MD with functional group contribution in the range of 101.1 – 282.0 [RI units] 
(for the different databases). However, the RMSE values are considered quite high 
when compared to other literature values (also used NN model), where the RI 
prediction error was within the range of ± 20 units [3]. A (small) width of this range is 
important to be useful for compound confirmation [2,3].  

Furthermore, the NN approach quoted in this paper [55] does not encode information 
about stereochemistry and geometric isomerism, which are very important to 
distinguish different isomers, might have a negative consequence on the modelling 
ability.   

Also a similar approach was found in the paper of Kireev, Osipenko, Mallard, Nikolaev 
and Kostyukevich [61], where they compare deep learning approaches (trained on a 
NIST RI database) to a non-learning method based on functional group increments. 
For this model 4397 different compounds were used from the Organisation for the 
Prohibition of Chemical Weapons chemical analysis database. Retention index values 
within the range of 488 – 3309 were retrieved for the DB5MS column, where the 
average RI values of the non-polar (DB1) and the average RI values of the semi-
standard non-polar (DB5) column were used separately. The deep learning model was 
composed of 1D-CNN and 2D-CNN (Convolutional neural network), for which SMILES 
string was used as an input. The non-learning model was based on the theory that a 
RI difference should be preserved between two pairs of molecules that differ by the 
alkyl chain and between two pairs of molecules that differ by scaffold. However, for this 
method three molecules with known RI and relevant substituents should be given in 
advance. The models were validated using MAE mean absolute error in fitting 
(calculated on test set): 𝑀𝐴𝐸 = ∑ |𝑦𝑖− 𝑦̂𝑖|𝑖 𝑛   …………(10) 

Where, n is the number of objects, 𝑦𝑖 is the observed dependent variable 
(experimentally collected RIs) and 𝑦̂𝑖 is the calculated dependent variable (RIs 
calculated via the model).  
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The results of 1D-CNN (deep learning approach) and increment-based (non-learning 
method) are summarized in Table 5. 

Table 5: Performance of different approaches reported with MAE RI units [61]: 

Test Set 1D-CNN Increment-Based 

Methyl - Phosphonofluoridates 35 4.0 

Ethyl - Phosphonofluoridates 11 1.8 

Propyl - Phosphonofluoridates 52 3.4 

Although deep learning methods are very powerful and state of art, the results indicate 
that non-learning method significantly enhances the RI predictions specially when 
modeling molecular properties of structurally similar compounds (homologues and 
isomers). 

A different study tried to predict Kováts retention indices of essential oils using 
molecular descriptors with two different regression methods; linear and non-linear, 
multiple linear regression (MLR) and support vector machine (SVM) respectively [62]. 
The dataset consisted of 340 essential oils obtained experimentally from the work of 
Babushok et al. [63]. The RIs were collected from DB1, DB5, and PEG columns. A 
total of 184 molecular descriptors were used that belonged to different blocks 
(topological, geometrical, constitutional, and hybrid descriptors). The model was 
validated only externally with a test set and not internally. The prediction performance 
is reported in table 6. Hence, the results indicate that SVM as a non-linear method has 
a better precision in predicting Kováts retention indices when compared to MLR. 

Table 6: Precision of the different models; Root Mean Square Error (RMSE) used for the training set 
and Root Mean Square Error of Prediction (RMSEP) used for the test prediction set [62]. 

Model RMSE [RI units] RMSEP [RI units] 

MLR 56.55 56.99 

SVM 44.62 53.60 

 

2.6. Chemometrics 
The concept of chemometrics is based on the use of mathematical and statistical 
methods to obtain relevant information. The processing of enormous data which is 
generated by the analytical instruments requires the use of chemometric methods. The 
initial purpose of chemometrics is to convert complicated mathematical methods into 
simple practicable version to apply for particular applications, such as the optimization 
of chromatographic separations or prediction of various properties (boiling point, 
melting point, retention indices, etc.). One of the major applications of chemometrics 
is the development of QSAR and QSPR for analytical and chemical purposes [64]. 
Typical steps of any chemometric modelling comprise data input (acquisition & 
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sourcing), pre-processing of the data, method calculation by regression methods, 
method validation and finally checking the accuracy and robustness of the model. If it 
is found non-acceptable all the previous steps have to be optimized (figure 4). 

 

Figure 4: Steps of chemometric model building. 

2.6.1. Pre-processing 

Data pre-processing is a crucial step before any machine learning regression methods 
can be applied, because the algorithm of machine learning heavily depends on the 
input data needed or available to solve a particular problem [65]. In the case of QSPR 
modelling, several molecular descriptors are used, covering a wide range of numerical 
values (e.g. molecular weight descriptor can have a range of [16−400], polarity 
descriptor of [0−40] and connectivity index of [0−0.4]. When no scaling is implemented, 
descriptors with large numerical values will dominate the model, thus it will be difficult 
to determine the relative contribution of each descriptor to the QSPR model. 
Consequently, this compromises the statistical validity of the model. Therefore, to 
avoid this kind of problem, data pre-processing is recommended [43]. However, during 
pre-processing there is the danger of losing important information if inappropriate 
strategies are used. An example of a pre-processing used within this work is the Pareto 
scaling, which scales the data by dividing each variable by the square root of the 
standard deviation x1√σ, so that each variable has variance equal to 1 (refer to figure 5). 
This ensures that datasets with both large and small(er) variability are brought to a 
comparable level of variability and thus the (large) variance of one parameter will not 
dominate the model. This kind of scaling does not change the original raw data 
drastically, but instead retains important data from being lost [64]. 
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Figure 5: Raw data before and after pareto scaling [66]. 

2.6.2. Regression Methods 

Regression methods are statistical methods used to estimate relationships between a 
dependent variable and one or more independent variables. They can be used for 
modelling a relationship between the dependent and independent variables. 
Regression analysis comprises linear, multiple linear, and non-linear methods. Most 
commonly used forms of regression models are the linear and multiple linear 
regression. However, some cases cannot be described by simple linear relationships. 
Therefore, non-linear regression is used for data in which the dependent and 
independent variables have a non-linear relationship. This section covers the following 
methods: Multiple Linear Regression (MLR), Partial Least Square regression (PLS) 
and Principal Component Regression (PCR) as linear regression, Locally Weighted 
Regression (LWR), Support Vector Machine regression (SVM), and Neural Network 
(NN) regression as non-linear regression [64,67]. 

Multiple Linear Regression (MLR): MLR assumes that there is a linear relationship 
between the dependent variable 𝑌𝑖 and independent 𝑋𝑖 variables. It uses 𝑋𝑖 to predict 𝑌𝑖 with the equations in the form of: 𝑌𝑖 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + … +  𝑏𝑛𝑋𝑛 …………(11) 

where a is the y-intercept, and 𝑏1 to 𝑏𝑛 are the regression coefficients of the first to the 
last independent variable, respectively. However, for this method to function, it requires 
that the number of 𝑌𝑖 specimens be greater than the number of 𝑋𝑖 predictors; also 
there must not be any significant correlation between the used 𝑋𝑖 values. To overcome 
the limitations of MLR, PLS or PCR can be implemented instead [67,68]. 

Partial Least Squares (PLS): PLS is one of the primarily used chemometric tools, it can 
be used to predict linear and non-linear relationships between 𝑋𝑖 and 𝑌𝑖. The 𝑋𝑖 
variables that show a high correlation with the 𝑌𝑖 response are given a higher relative 
significance because they will have more effect in the prediction. Moreover, to predict 
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𝑌𝑖 variables, PLS reduces the dimensionality of 𝑋𝑖 variables by identifying latent 
variables (LVs) which are orthogonal to each other [64,67]. This concept assists PLS 
to fully explain the maximum relationship between 𝑋𝑖 and 𝑌𝑖. The following equation in 
figure 6 is used for PLS, where 𝒀 is the matrix of dependent variables, 𝑿 is the matrix 
of independent variables, B is the matrix of regression parameters, and residuals are 
the differences between measured and predicted 𝑌𝑖 data: 

 

Figure 6: PLS matrix equation [67]. 

Although PLS is very suitable to model multiple outcome variables (when there is 
multicollinearity among 𝑋𝑖), PLS has limitations when the data set contains strong non-
linear relationships, causing the need to switch to advanced non-linear regression 
methods. 

Principal Component Regression (PCR): PCR regression is very similar to PLS, in the 
sense of reducing the dimensionality of the variables used in the model. Instead of 
using the variables directly, it transforms them into principal components (PC) with 
smaller dimension and this transformation is shown in figure 7. PCR is more sensitive 
to a systematic error in the predictor values 𝑋𝑖 than in the response 𝑌𝑖. The principal 
components are chosen in a way that they describe as much of the variation in 𝑋𝑖 as 
possible. One major advantage of PCR is that it overcomes the problem of 
multicollinearity. Hence, when there is high correlation between the predictor variables, 
MLR fails to deliver a reliable prediction; consequently PCR replaces MLR [67,69,70]. 

 

Figure 7: PCR dimension reduction, where a raw data matrix X is reduced to a smaller data matrix T [70]. 

Locally Weighted Regression (LWR): LWR is a non-linear memory-based regression, 
meaning it stores the training data and uses it every time a new prediction is made. 

LWR is a so-called local model due to the fact that It chooses a test point x from the 
training data, and gives more focus (weightage) to the points which are near to x (refer 
to figure 8). Because, the points which are close to x are a good way to estimate the 
value of the point to be predicted [71]. LWR approximates a non-linear response by a 
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linear function on a small (local) scale [72], the points are weighted by proximity to the 
x and a regression is then computed using the weighted points.  

LWR model is assisted with PLS or PCR, it copes well with noise and corrupted data, 
and is usually used when PLS fails to predict extreme non-linear relationships between 
dependent and independent variables. 

 

Figure 8: Graphic representation of how LWR works by focusing only on the points in close proximity to x 
and uses these to compute the model [72]. 

Support Vector Machine regression (SVM): SVM is another form of a non-linear 
regression it is a very powerful technique to predict non-linear responses and is 
considered to be a hybrid of MLR and LWR. SVM, which is basically a machine 
learning method, was first developed by Vapnik [73]. The model comprises of a number 
of support vectors (which are the data set) and non-linear model coefficients. The 
regression can be calculated by two different functions: Linear kernel or radial basis 
function (RBF) kernel. Kernel is a mathematical function that returns the inner product 
between two points in a space and is called as the “kernel trick”, it is used to classify 
different data. Kernel functions are very common functions in machine learning for data 
analysis. 

Linear kernel:  

The linear SVM, classifies different data by using maximum margin classifiers that 
construct decision surfaces called hyper-planes, and by maximizing the margin 
between two classes it supports the hyper-planes. Figure 9 shows a linear kernel SVM 
with the decision surface (maximum margin), support vectors, hyper-planes and 
margin (the distance between hyperplane and support vectors) [74]. 

Radial basis function (RBF) kernel:  

The easiest way to group similar data is with a straight line, however sometimes it is 
impossible to do so. So when the data that is not linearly separable, the radial basis 
function (RBF) kernel comes into play. By using the kernel ‘trick’ it projects the data on 
a new dimension (transforms the data into 3D or higher dimensional space) where the 
data set can be separated linearly via a linear plane [73] (shown in figure 10).  

While the complicated functions behind SVM can be calculated mathematically, it can 
still be considered as a black-box method, meaning there is a lack of access to the 
internal workings and parameters of functions, which makes it difficult to interpret the 
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results. Following are a representation of the different functions for linear and RBF 
kernels which are the most used [73–75]. Linear kernel: 𝐾(𝑥1, 𝑥2) = 𝑥1. 𝑥2 …………(12) RBF kernel: 𝐾(𝑥1, 𝑥2) = 𝑒𝑥𝑝(−||𝑥1 − 𝑥2||22𝜎2 ) …………(13) 
Where, 𝐾(𝑥1, 𝑥2) is the kernel function, 𝑥1, 𝑥2 are the support vectors, ||𝑥1 − 𝑥2|| is the 
Euclidean distance between 𝑥1, 𝑥2 and σ represents the kernel width. 

 

Figure 9: Schematic demonstration of linear SVM decision surface (maximum margin), support vectors 
and hyper-planes [76]. 

 

Figure 10: Schematic demonstration of RBF SVM transforming the data into higher dimensions [77]. 

Neural Network regression (NN): NN is also a non-linear regression and a black-box 
method. In fact, a NN is generated in a way to imitate the operations of brain neurons. 
Analogous to the brain neuron, neural networks have many layers of artificial neurons 
linked to each other. A typical NN consists of a first input layer that receives the input 
variables, a second hidden layer where the mathematical operations take place, and a 
third output layer (see figure 11 & 12) [64]. Neural Networks have gained significant 
interest especially in cases of pattern recognition. Unlike PLS and PCR, NNs do not 
deduce any initial mathematical relationship between the input and output data. 
Therefore, NNs are flexible tools in modelling complex relationships. However, this 
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model has its challenges, for example it doesn’t encode information about 
stereochemistry and geometric isomerism and such subtle modifications of the input 
data could cause misleading outputs (e.g. small amount of noise would cause NN to 
misclassify the data) [67]. 

 

Figure 11: An example of a neural network [67]. 

 

Figure 12: Example of neural operation [64]. 

2.6.3. Model validation 

A requirement in any application field is that an analytical method is suitable for its 
intended purpose and this is statistically demonstrated. Validation is specially crucial 
in case of a new method whose viability needs to be tested. Also in case of a method 
transfer when transferring an analytical method from one laboratory to another, it will 
only be acceptable if it is properly validated. The same applies in chemometric 
modelling where the validation is critical to establish a reliable and robust predictive 
model. Most commonly used validation parameters in chemometric modelling, to 
assess the precision of the model and to evaluate it, are the following [64,67,78]: 

1. Root mean square error (RMSE), which is the standard deviation of the 

prediction errors (residuals); RMSE = √∑ (𝑦𝑖− 𝑦̂𝑖 )2𝑖 𝑛   
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2. Root mean square error of cross validation (RMSECV), which is obtained from 

the cross-validated data (internal validation); RMSECV = √∑ (𝑦𝑖− 𝑦̂𝑖 )2𝑖 𝑛  

3. Root mean square error of prediction (RMSEP), which is obtained from using 

an external test data set (external validation); RMSEP = √∑ (𝑦𝑖− 𝑦̂𝑖 )2𝑖 𝑛  

Where, n is the number of objects, 𝑦𝑖 is the observed dependent variable 
(experimentally collected RIs in this case) and 𝑦̂𝑖 is the calculated dependent variable 
(RIs calculated via the PLS model in this case).  

Cross-validation: Is an internal validation of a model which measures the predictive 
accuracy by removing each time a random subset from the dataset, then constructing 
the model using the remaining objects in the dataset, subsequently applying the 
resulting model to the removed objects. This way, the model is tested with objects that 
were not used to build the model. There are usually four different cross-validation 
methods (figure 13), varying with respect to how the different objects are selected from 
the dataset [79]:  

1. Venetian Blinds: Removes every nth object from the data set to revalidate 

2. Contiguous Blocks: Removes a block of different objects from the data set to 
revalidate  

3. Random Subsets: Removes the objects randomly from the data set to revalidate  

4. Leave-One-Out (LOO): Removes each single object at a time from the data set 
to revalidate  

 

Figure 13: Illustration of different forms of cross-validation where colors signify the different objects 
within the dataset; in Venetian Blind the colors signify that every 3rd object is selected for the validation; 

in Random Subset the objects are selected in random order; in Contiguous Block the data is selected 
block-wise; and in LOO every single object is selected at a time [79]. 

External validation: Is usually used when a large dataset is available. For this purpose 
the initial dataset should be split into a training set (this is used to train the model) and 
a test set which is not included in the training set. Consequently, the test set will be 
used to externally validate the model.  
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Moreover, it must be mentioned that there is no exact criterion to obtain the best 
chemometric model. Hence, to obtain the optimum predictive performance of any 
model, all the steps of a model building from figure 4 have to be re-optimized until 
reaching a satisfactory result. Also outliers should be taken into consideration, since 
they are objects that cannot be described / explained by the model and therefore must 
be eliminated. This is done by testing the cross validation residuals against the input Y 
(RI) variables (figure 14). 

 

Figure 14: Example of an outlier. 

outlier 
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3. Experimental Part 

3.1. Dataset 
The whole dataset used in this work consists of almost 400 compounds from different 
classes (alkanes, alkenes, cycloalkanes, aromatics, alcohols, acids, aldehydes, 
ketones and esters) and with different isomers. All of the retention indices (RIs) have 
been collected from the PubChem database [60], for standard non-polar (DB1), semi-
standard non-polar (DB5) and standard polar (wax / PEG) columns. In the case of 
multiple data for the same compound, the values were averaged. Furthermore, the 
data was statistically evaluated based on relative standard deviation (RSD), minimum 
and maximum, checked for consistency and cleansed, if necessary. Furthermore, RIs 
of esters on different columns OV-7, DC-710, OV-25, XE-60, OV-225, Silar-5CP were 
collected from the work of Biancolillo and D’Archivio [2] and were used to evaluate the 
performance of the model on the mentioned different columns (table 7 summarizes the 
composition of different columns used in this work). Moreover, the data of 400 
compounds was split into ~75% training set and ~25% test set (refer to supplementary 
materials), training set was used to train the model and the test set was used to 
externally validate the model.  

Table 7: List of used columns with their composition.  

Column 
type 

Stationary phase Polarity [80] 

DB1 100% poyldimethylsiloxane Non-polar 

DB5 5%-polydiphenyl-/95%-polydimethylsiloxane Non-polar 

OV-7 20% polydiphenyl-/80% Polydimethylsiloxane Slightly-polar 

DC-710 50% polydiphenyl-/50%polydimethylsiloxane Mid-polar 

OV-25 50%-polydiphenyl-/50%-polydimethylsiloxane Mid-polar 

XE-60 50% Cyanopropylmethyl/50% Dimethylpolysiloxane Mid-polar 

OV-225 50% cyanopropylmethyl-/50%- phenylmethylpolysiloxane Mid-polar 

Silar-5CP 50%-Cyanopropyl-/50% Phenylmethylpolysiloxane Highly-polar 

PEG Polyethylene glycol Highly-polar 
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3.2. Molecular descriptors 
Furthermore, 266 different molecular descriptors (MD) were obtained from the online 
chemical database (free online software), which are a set of real numbers encoding 
information about the compound under study such as molecular weight, hydrogen 
bond donor/acceptor, double bonds, hybridization, cyclic or linear system, 
polarizability, etc. and these information can be linked to experimental values of a 
molecule [81]. MDs can encode information of a molecule on different representation 
levels such as 1D, 2D, 3D (see figure 15).  

 

Figure 15:1D, 2D and 3D representations of benzene and hexanol molecules. 

The used descriptors within this thesis belong to several sub-blocks mentioned in table 
8 and for further information refer to the supplementary materials. These descriptors 
were specifically chosen based on literature research [2,3,53,62,82–84].     
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Table 8: Main sub-blocks of used molecular descriptors [49,50,52]. 

MD sub-blocks Encodes the following information 

Constitutional indices Molecular weight, number of atoms etc. 

Topological indices Molecular structure and connectivity 

ETA indices Electronegativity of an atom 

Functional group counts Which and how many functional groups are present in a molecule 

Charge descriptors Partial charges of an atom 

Geometrical descriptors Spatial coordinates of atoms in a molecule 

Walk and path counts Where the molecule starts and ends 

2D matrix-based descriptors Degree of branching, the neighboring atoms in terms of electronic 
& steric effects, flexibility 

Ring descriptors Aromatic ratio and number of rings in a molecule 

P_VSA-like descriptors Van der Waals surface area 

3D matrix-based descriptors Surface properties in contact with a solvent or stationary phase 

Edge adjacency indices Connectivity as in how the edges of a molecule are connected 

RDF descriptors Average distribution of atoms around any given atom within the 
molecule (it gives the coordination number of a molecule) 

WHIM descriptors It gives the 3D (x,y,z)-atomic coordinates of a molecule 

Getaway descriptors Entropy of a molecule 

Burden eigenvalues Searches for chemical similarities between molecules 

3.3. Model calculation and validation 
All calculations were done in MATLAB (version R2019b). For each column 
type (DB1, DB5 and PEG) the model was generated separately. Firstly, for the model 
calculation, training set was used containing same compounds for DB1, DB5 and PEG 
with same 𝑋𝑖 (MD) data but with different 𝑌𝑖 (RI) values for each column (DB1, DB5 
and PEG) respectively. Secondly, suitable regression analysis was chosen (PLS or 
SVM). Thirdly, 𝑋𝑖 and 𝑌𝑖 data were pre-processed by Pareto Scaling so that each 
variable has a variance of one and none would dominate the model. Fourthly, The 
generated model was internally validated using Venetian Blinds (10 splits and 1 sample 
per split) to predict model performance (refer to figure 16). And finally, the model was 
calculated and the results were evaluated by Root mean square error of cross 
validation (RMSECV).  
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Once the generated model is accepted, the model can be now externally validated 
using an external test set which is not included in the training set. The predictive ability 
of the model can be determined by the two metrics: Root mean square error of cross 
validation (RMSECV) obtained from internal validation and root mean square error of 
prediction (RMSEP) obtained from external validation. 

The exact same steps were repeated to generate the model with different regressions: 
partial least square (PLS) regression assuming a linear relationship between 
descriptors and retention indices. Locally weighted regression (LWR) and support 
vector machine (SVM) regression assuming a non-linear relationship between 
descriptors and retention indices. 

 

Figure 16: Demonstration of MATLAB Venetian Blinds cross validation, where the number of data splits 
means every 10th object is removed from the set and revalidated, and thickness means one single object 

at each time (Different colors explain the data split and the thickness).  
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3.4. Data Quality  
Before plotting the data input in our models, we analyzed the quality of the Pubchem 
data and we noticed that the reported RIs on Pubchem are from different sources and 
belong to two different RI systems, Lee retention index and Kováts retention index. An 
example of this problem when using the complete dataset is demonstrated in figures 
17 and 18. 

 

Figure 17: Pubchem averaged RIs of different compounds eluting on DB1 versus on DB5 columns [60]. 
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Figure 18: Differently reported RIs of 2,7-dimethylnaphthalene eluting on DB5 (semi-standard non-polar) 
column according to Pubchem [60]. 

As DB1 and DB5 columns are not very different in terms of composition, therefore the 
RI values of any compound should be comparable on both columns. However, we see 
a big difference between RIs of 2-methylnaphthalene and 2,7-dimethylnaphthalene on 
DB1 compared to DB5. But knowing that Naphthalene has 10 carbon atoms, it means 
that the Kováts RI should at least have the value of 1000 RI units, thus the average 
values of RIs on DB5 of 745 (for 2-methylnaphthalene) and 385 (for 2.4-
dimethylnaphthalene) are not reliable. These lower values can only be explained by 
the (inappropriate) averaging of RI values from two different RI systems, namely the 
Lee RI system (which is defined in a different way) and the Kováts RI systen, thus 
producing so erratic numeric values [85]. 

For demonstration purposes we report in table 12 the mean, standard deviation, RSD, 
maximum and minimum values of the reported RIs from Pubchem of some 
compounds. To mention, table 12 does not show the values for all compounds, but 
demonstrates only fraction of the analyzed data (for further information lookup the 
supplementary materials). 
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Table 12: Statistical tests on RIs from Pubchem mainly on DB5 (RSD = relative standard deviation, 
Max = maximum, Min = minimum).  

Compound Mean Standard 
deviation RSD Max Min RI 

(Pubchem) 

ethane 200 0 0% 200 200 200 

octadecane 800 707 89% 1800 297 1800, …, 
297 

cyclopropane 353 15 4% 367 331 331, 367, 
349 

methyl 2-methylpentanoate 836 32 4% 867 804 804, 867 

1,2-dimethylnaphthalene 729 593 81% 1462 236 1451, 250, 
249 

2-methylnaphthalene 745 537 72% 1318 216 1318, …,  
216 

2,7-dimethylnaphthalene 385 572 149% 1410 238 1410, …, 
238 

 

The RSD value is a measure that indicates the presence of possible errors or outliers 
within the data, and to accept any data it should have low RSD values. An example of 
extremely high RSD value is noticeable for naphthalenes (aromatics) and octadecane. 
Hence, the reason for this observation is the presence of RI values from different RI 
systems. Higher values belong to the Kováts  system whereas lower values belong to 
the Lee system. So by eliminating the lower values (Lee RIs) we were able to obtain 
RSD values between 0 – 1 %. However, in the example of Cyclopropane and Methyl-
2-methylpentanoate we see an error of 4%, even though there are only few data 
available but the RSD is high. Since we could not determine which RI should be 
accepted or rejected. Therefore, we included these data in our input despite having 
RSD value of 4%.  

On the other hand, there is also the possibility that the RI data could sometimes be 
misassigned and DB1 values could be confused for DB5 values. It cannot be excluded 
that this error in the Pubchem data could be a source of prediction errors in our 
simulated models.  
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4. Results and discussion 
For any predictive modelling task, it is recommended to (initially) assume that there is 
a linear relationship between the dataset and to start the modelling with the simplest 
regression form, such as multiple linear regression (MLR). However, when MLR fails 
due to the limitations (refer to section 1.5.2 Regression methods), partial least square 
(PLS) can be used to calculate the model, and if PLS also fails to predict a linear 
relationship between the dataset, one has to shift to using a non-linear regression such 
as locally weighted regression (LWR) or support vector machine (SVM). 

The retention indices (RIs) of different compounds have been collected on DB1, DB5 
and PEG columns from Pubchem [60]. The data distribution among the different 
compound classes within training and test sets for each column is demonstrated in 
figures 19 – 21 and RI frequency within training and test sets for each column is 
demonstrated in figure 22. From following figures we can notice that the data is not 
homogenously distributed between different compound classes and also not all 
compounds have RI data on all three columns in Pubchem [60].  

 

  

Figure 19: DB1 data distribution among the different compound classes within training and test sets, and 
% in the table stands for the percentage of test set compared to training set. 
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Figure 20: DB5 data distribution among the different compound classes within training and test sets, and 
% in the table stands for the percentage of test set compared to training set.  

 

 

Figure 21: PEG data distribution among the different compound classes within training and test sets, and 
% in the table stands for the percentage of test set compared to training set.  
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Figure 22: RI Distribution within training and test sets. 
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4.1. PLS regression for DB1 
Since our dataset includes high numbers of molecular descriptors (refer to 
supplementary materials), so we decided to start the modelling task with PLS 
regression. The interest for modelling RI on DB1 column, is due to the fact that DB1 
column is a non-polar column and has therefore the tendency to separate analytes 
based on their volatility. Hence, RI predicted on DB1 column has high correlation with 
boiling point of a compound (proportional to boiling point) and could eventually be used 
to acquire the boiling point of compounds. 

Firstly, retention indices (RIs) were used as 𝑌𝑖 data, and 266 MDs were used as 𝑋𝑖 
variables in MATLAB. Nevertheless, it was necessary to use all of these MDs due to 
the fact that our dataset contains 9 different compound classes with different 
functionalities and isomers, hence eliminating any MD is critical and could affect the 
prediction abilities of the model. 

The entire dataset was split into 75% training and a 25% test set. The data was pre-
processed by Pareto Scaling so that each variable has a variance of one and none 
would dominate the model. The training set was used to train the model with PLS 
regression using 4 latent variables (LVs) which has the optimal root mean square error 
of calibration (figure 23). The model was cross-validated using Venetian Blinds (10 
splits and 1 sample per split, refer to figure 16), the performance of the model was 
evaluated by RMSECV (root mean square error of cross validation). After training and 
evaluation of the model, the test set was used to assess the final performance of the 
model via RMSEP (root mean square error of prediction). The results of PLS 
regression for DB1 are reported in figures 24 – 26. 
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Figure 23: Plot of RMSEC versus Latent variables (LV) in PLS regression.  

Figure 23 shows a summary of which LV should be chosen, that could describe the 
model at best. In this example MATLAB automatically selects LVs of 4 (LV of 4 means 
the dimensionality of 𝑋𝑖 variables are reduced to 4 variables).   
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Figure 24: (a) PLS calibration plot with training set on DB1 column. (b) Residuals plot of predicted RIs 
versus measured RIs with ± 20 units margin (upper and lower error tolerance limits).  

From figure 24 we can summarize that, in (a) the calibration error of the PLS model for 
DB1 is quite high with average RMSECV of  55.6 and correlation coefficient R2 (CV) of 
0.982. This is justified by referring to literature values of RIs, where it is states that 
predicted RI error can be acceptable within the range of ± 20 units [2,3]. It is even 
visible in (b) that the majority of the predicted RIs of different compound classes are 
outside the ± 20 units margin, where a cycloalkane has the highest error of -150 
(meaning the predicted value is 150 RI units lower than the actual RI value). 

4 Latent Variables 
RMSECV = 55.639 
R2 (CV) = 0.982 
 

(a) 

(b) 
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Furthermore, the plots in figure 25 give further explanation of the PLS model. (a) shows 
Hotelling versus Q residuals plot which is a measure of the variation in each sample 
within the model, it indicates how far each sample is from the center (scores = 0) of 
the model. Hotelling score of 97.66% means that this much of the data variation is 
explained by PLS. The compounds within the threshold of 1 (closer to the center) are 
better explained than outside the threshold of 1 which are poorly understood/explained. 
And (b) shows that LV1 can explains 89.57% of the data, by showing the trend of 
increasing molecular weight of the components (starting with ethane ending with 
nonadecane – marked with purple color), whereas LV2 explains 4.50% of the data by 
distinguishing the different compound classes. 
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Figure 25: (a) Hotelling versus Q residuals plot. (b) Scores plot LV1 versus LV2, it indicates how much of 
the data is explained by the respective LV. 

The trained model is then used to predict the test set, and the results are reported in 
figure 26. 

(a) 

(b) 
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Figure 26: (a) RI prediction on DB1 with PLS using external test set. (b) Hoteling versus Q residuals plot 
represents a measure of the variation in each sample within the model.   

The prediction of the PLS model for test set on the DB1 column has poor results with 
RMSEP of 60.0 and correlation coefficient R2 (Pred) of 0.979 (refer to figure 26 (a)). 
And the Hoteling versus Q residuals plot in (b) shows that some aromatics, esters and 
cycloalkanes are poorly explained by the model. 

From these results we concluded that PLS as a linear regression method is not reliable 
for predicting RIs on DB1 column, RMSECV and RMSEP having high prediction error 
of around 55.6 and 60.0 respectively, which is too high when compared to literature 
values that suggest RI error should be within ± 20 RI units, in order to be useful for 

4 Latent Variables 
RMSECV = 55.639 
RMSEP = 59.9587 
R2 (CV) = 0.982 
R2 (Pred) = 0.979 
 

(a) 

(b) 
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compound prediction or confirmation [2,3]. This could mean that our dataset is not 
satisfactory modelled by PLS model. Hence, the PLS model was not further tested on 
DB5 and PEG columns since it failed to deliver satisfactory results for DB1 column. 

With these findings we were motivated to explore predictive models with a non-linear 
regression method such as locally weighted regression (LWR) and support vector 
machine (SVM) in order to predict non-linear relationships between our retention 
indices (RIs) and molecular descriptors (MDs).  

4.2. LWR regression for DB1 
The dataset is treated exactly as described in section 4.1. The only difference is that, 
for the regression method, LWR was used with 5 principal components (same concept 
as LV, where 𝑋𝑖 variables are reduced to 5 variables) and 5 local points (which are in 
close proximity to point of interest x). And the regression is then computed using these 
5 weighted points. The model is validated in the same order as PLS and the results of 
calibration and prediction are reported in figures 27 and 28, respectively.  
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Figure 27: (a) LWR calibration plot with training set on DB1 column. (b) Residuals plot of predicted RIs 
versus measured RIs with ± 20 units margin (upper and lower error tolerance limits). 

5 Principal Components 
5 Local Points 
RMSECV = 86.8689 
R2 (CV) = 0.958 
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Figure 28: RI prediction on DB1 with LWR using external test set. 

From the results in figure 27 and 28 we concluded that LWR performed worse than 
PLS in predicting RIs on DB1 column, with RMSECV and RMSEP of 86.9 and 82.6 
respectively, and R2 (CV) of 0.958 and R2 (Pred) of 0.960. Based on figure 27b the 
big deviation between the predicted and measured RI values is specially noticeable for 
couple of alcohol, cycloalkane, alkene and alkane compounds, which could mean that 
the LWR is not able to explain and model data with big variability and outliers and thus 
the model was not further tested on DB5 and PEG columns. For the next trial SVM 
was selected as a machine learning regression to generate the model. 

4.3. SVM regression for DB1 
For this part the same training set and MDs (from PLS regression) were used to 
generate the model but this time using SVM regression. The data was also pre-
processed by Pareto Scaling. The model was internally cross-validated using the same 
Venetian Blinds as PLS and externally validated using the test set. The performance 
of the model was evaluated by RMSECV and the results are reported in figure 29. 

5 Principal Components 
5 Local Points 
RMSECV = 86.8689 
RMSEP = 82.6362 
R2 (CV) = 0.958 
R2 (Pred) = 0.960 
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Figure 29: a) SVM calibration plot with training set on DB1 column. (b) Residuals plot of predicted RIs 
versus measured RIs with ± 20 units margin (upper and lower error tolerance limits). 

From figure 29 we can summarize that, in (a) the calibration error of the SVM model 
for DB1 is obviously lower than with PLS and LWR with an average RMSECV of 19.1 
and correlation coefficient R2 (CV) of 0.989. It is visible in (b) that the majority of the 
predicted RIs of different compound classes are within the ± 20 units margin, with 
highest error of around ± 60 (meaning the predicted value is 60 RI units lower or higher 
than the actual RI value). Components from mostly aromatic, alcohol, cycloalkane and 
ketone classes are crossing the ± 20 units margin, and only very few components from 
other compound classes do so, too.  

RMSECV = 19.0823 
R2 (CV) = 0.989 
 

(a) 

(b) 
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However, it is reported in the literature that predicted RI error can be acceptable within 
the range of ± 20 units [2,3]. And referring to section 3.4. Data Quality, the data source 
of Pubchem is not reliable, Therefore, to reduce the errors in our model we had to 
remove RIs that were of poor quality and some outliers which were not perfectly 
predictable (data outside the ± 20 units margin are seen as outliers), in order to improve 
the RMSECV.  

The data elimination is reported in figure 30 and table 9), and SVM model was 
recalculated with the rest of the data. The results are reported in figure 31. 

Table 9: It demonstrates how many components were present within each compound class before and 
after the data elimination and the remaining data percentage. 

Number of data points 

Class Before outlier 
removal  After removal % of data points 

retained 
aromatic 37 33 89 
alkane 70 52 74 
alkene 21 16 76 
cycloalkane 18 14 78 
aldehyde 18 14 78 
ketone 19 15 79 
acid 11 9 82 
ester 47 38 81 
alcohol 32 25 78 

 

Figure 30: Plotted data from table 9 before and after data elimination per each compound class. 

From table 9 we can see that the remaining data percentage for all compound classes 
is almost similar (data removal was more or less to the same extent) and none of the 
compound classes was particularly affected by this, except alkanes (having the lowest 
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percentage of remaining data ~74%). This could mean that the model has a bit 
difficulties predicting RIs of alkanes on DB1 column. 

 

 

Figure 31: a) SVM calibration plot on DB1 column after data elimination from the training set. 
(b) Residuals plot of predicted RIs versus measured RIs with ± 20 units margin. 

We can conclude from figure 31 (a) that the model shows significant improvement once 
outliers from figure 29 (b) are removed from the dataset. Application of the SVM model 
results, after outlier elimination, in an average RMSECV of 12.8 and correlation 
coefficient R2 (CV) of 0.999. It is also visible in figure 29 (b) that almost all of the 
predicted RIs are within the ± 20 units margin with some minor exceptions for 
aromatics and cycloalkanes which are a bit above/below the limits. 

RMSCV = 12.7983 
R2 (CV) = 0.999 
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Thus, the current SVM model on DB1 was accepted according to literature values [2,3] 
and further tested for prediction on the external test set (refer to figure 32).  

 

Figure 32: RI prediction on DB1 with the final SVM model using external test set. 

The result in figure 32 with RMSEP = 12.2 is very close to RMSECV = 12.8 with R2 
(CV) = 0.999 and R2 (Pred) = 0.999. Since average RMSECV and RMSEP errors are 
very close and within the ± 20 units margin, this gives us the conformation that SVM 
model for the prediction of RI values on a DB1 column is acceptable. 

4.4. SVM regression for DB5 
For modelling on DB5 column the same approach was used as in section “4.3. SVM 
regression for DB1”. The only difference to DB1 model is that 𝑌𝑖 data (RIs) which is 
specific for DB5 column in this case. The data was also pre-processed by Pareto 
Scaling. The model was internally cross-validated using the Venetian Blinds and 
externally validated using the test set. The performance of the model was evaluated 
by RMSECV and the results are reported in figure 33. 

 

RMSCV = 12.7983 
RMSEP = 12.1665 
R2 (CV) = 0.999 
R2 (Pred) = 0.999 
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Figure 33: (a) SVM calibration plot with training set on DB5 column. (b) Residuals plot of predicted RIs 
versus measured RIs with ± 20 units margin. 

From figure 33 we can summarize that, in (a) the calibration error of the SVM model 
for DB5 is a bit higher than for DB1, with an average RMSECV of 39.6 and correlation 
coefficient R2 (CV) of 0.991. It is visible in (b) that the predicted RIs of different 
compound classes are crossing the ± 20 units margin, with highest error of around ± 
100 (meaning the predicted value is 100 RI units lower or higher than the actual RI 
value). Components from mostly aromatic, alcohol, cycloalkane, aldehyde, ester and 
ketone classes are crossing the ± 20 units margin. So we were following the concept 
of DB1 model and assuming the components outside the limits as outliers since they 
cannot be correctly predicted by the model. Hence, all the components outside those 

RMSECV = 39.5799 
R2 (CV) = 0.991 
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limits were eliminated from the dataset (data elimination is reported in figure 34 and 
table 10), and SVM model was recalculated with the rest of the data. The results are 
reported in figure 35. 

Table 10: It demonstrates how many components were present within each compound class before 
and after the data elimination and the remaining data percentage. 

Number of data points 

Class Before outlier 
removal  After removal % of data points 

retained 
aromatic 42 28 67 
alkane 69 67 97 
alkene 25 23 92 
cycloalkane 16 6 38 
aldehyde 16 13 81 
ketone 19 12 63 
acid 11 9 82 
ester 50 43 86 
alcohol 35 29 83 

 

Figure 34: Plotted data from table 10 before and after data elimination per each compound class. 

In table 10, the remaining data percentage is very different for each compound class. 
And for DB5 column more data was eliminated than for DB1 (refer to table 9). For 
instance, cycloalkane class is significantly affected where only 38% of the original data 
remained in the dataset and the rest were eliminated. Aromatic class is also affected 
by the data removal (with 67% data remaining). This could mean that the used 
descriptors were not fully able to explain polar interactions. Furthermore, it is 
noticeable that alkanes and alkenes are barely affected by the data removal. Hence, 
when compared with table 9, we notice that alkanes are better predicted on DB5 
column than on DB1 column. This could be explained by the fact that n-alkanes on 
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Pubchem [60] have only a single RI value on all columns,  meaning they might have 
been measured and reported mostly on DB5 column composition (which is the most 
common used stationary phase in analytical laboratories). 

 

 

Figure 35: a) SVM calibration plot on DB5 column after data elimination from the training set. 
(b) Residuals plot of predicted RIs versus measured RIs with ± 20 units margin. 

We can conclude from figure 35 (a) that the model improves once outliers from figure 
33 (b) are removed from the dataset. SVM model after outlier elimination resulting with 
an average RMSECV of 13.7 and correlation coefficient R2 (CV) of 0.999. It is also 
visible in 33 (b) that almost all of the predicted RIs are within the ± 20 units margin with 

RMSECV = 13.7109 
R2 (CV) = 0.999 
 

(a) 

(b) 
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some minor exceptions for alcohols, aromatics, esters and cycloalkanes which are a 
bit above/below the limits. 

Thus, the current SVM model on DB5 was accepted according to literature values [2,3] 
and further tested for prediction on the external test set (refer to figure 36).  

 

Figure 36: RI prediction on DB5 with the final SVM model using external test set. 

The result in figure 36 with RMSEP = 13.7 is somewhat close to RMSECV = 19.4 with 
R2 (CV) = 0.999 and R2 (Pred) = 0.998. Since average RMSECV and RMSEP errors 
are not too far away from each other and within the ± 20 units margin, this gives us the 
conformation that SVM model on DB5 is acceptable. 

4.5. SVM regression for PEG 
Likewise for modeling on PEG column the same approach was used as in section “4.3. 
SVM regression for DB1”. But this time the 𝑌𝑖 data (RIs) is specific for PEG column. 
The data was pre-processed, internally and externally validated as before. The 
performance of the model was evaluated by RMSECV and the results are reported in 
figure 37. 

 
 

RMSCV = 13.7109 
RMSEP = 19.3552 
R2 (CV) = 0.999 
R2 (Pred) = 0.998 
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Figure 37: a) SVM calibration plot with training set on PEG column. (b) Residuals plot of predicted RIs 
versus measured RIs with ± 20 units margin. 

As demonstrated in figure 37 we can summarize that, in (a) the calibration error of the 
SVM model for PEG is comparable to the error on DB5, with an average RMSECV of 
41.5 and correlation coefficient R2 (CV) of 0.993. It is visible in (b) that the predicted 
RIs of different compound classes are crossing the ± 20 units margin, with highest error 
of around -100 (meaning the predicted value is 100 RI units lower than the actual RI 
value). Components from mostly aromatic, alcohol, cycloalkane, ester and ketone 
classes are crossing the ± 20 units margin. So the same concept is applied for PEG 
and the components outside the limits are assumed as outliers and were eliminated 

RMSECV = 41.4932 
R2 (CV) = 0.993 
 

(a) 

(b) 
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from the dataset (data elimination is reported in figure 38 and table 11), and SVM 
model was recalculated with the rest of the data. The results are reported in figure 39. 

Table 11: It demonstrates how many components were present within each compound class before 
and after the data elimination and the remaining data percentage. 

Number of data points 

Class Before outlier 
removal  After removal % of data points 

retained 
aromatic 37 17 46 
alkane 38 33 87 
alkene 20 17 85 
cycloalkane 9 4 44 
aldehyde 15 9 60 
ketone 18 9 50 
acid 10 0 0 
ester 50 38 76 
alcohol 35 17 49 

 

Figure 38: Plotted data from table 11 before and after data elimination per each compound class. 

Table 11 tells us a lot  about the remaining data percentage from all compound classes. 
Acids are drastically affected by this where the whole class was removed from the 
model. Acids, cycloalkanes, alcohols and ketones show also significant data reduction. 
The least affected classes are the alkanes, alkenes and esters. This could mean that 
the used descriptors were not fully able to explain strong polar interactions of these 
certain classes on PEG column. And when compared with the data in table 9 and 10 
(for DB1 and DB5), a larger fraction of data was excluded for PEG column.  
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Figure 39: a) SVM calibration plot on PEG column after data elimination from the training set. 
(b) Residuals plot of predicted RIs versus measured RIs with ± 20 units margin. 

We can conclude from figure 39 (a) that the model shows an improvement once outliers 
from figure 37 (b) are removed from the dataset, but on the cost of losing data (e.g. 
acid class). SVM model after outlier elimination resulting with an average RMSECV of 
24.5 and correlation coefficient R2 (CV) of 0.997. In figure 37 (b) we can notice that 
the predicted RIs of some compounds are still crossing the ± 20 units margin e.g. 
aldehydes, alcohols and cycloalkanes. Even though the SVM model for PEG is not as 
good as for DB1 and DB5, we still accepted it and further tested it for prediction on the 
external test set (refer to figure 40).  

RMSECV = 24.4624 
R2 (CV) = 0.997 
 

(a) 

(b) 
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Figure 40: RI prediction on PEG with the final SVM model using external test set. 

The result in figure 40 with RMSEP = 24.0 is close to RMSECV = 24.5 with R2 (CV) = 
0.997 and R2 (Pred) = 0.997. The average RMSECV and RMSEP errors are a bit 
outside the ± 20 units margin, meaning that the SVM prediction model performs a bit 
poorly for PEG column. And further data elimination would only mean losing essential 
data and overfitting the model which is not recommended.  

Nevertheless, we were curious to test our SVM model on experimentally obtained RIs 
values of ester class on different column compositions: OV-7, DC-710, OV-25, XE-60,  
OV-225 and Silar-5CP (compositions explained in table 7). The RIs of around 90 
saturated esters were obtained from literature [2,47] and were calibrated using the 
same steps for SVM model (4.3. SVM regression for DB1). Due to the small dataset 
availability, the model was only calibrated but not tested. The results are shown in 
figure 41. 

RMSCV = 24.4624 
RMSEP = 24.0181 
R2 (CV) = 0.997 
R2 (Pred) = 0.997 
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Figure 41: SVM model calibration for RI prediction of esters on different columns. 

The results of figure 41 indicate an excellent prediction performance for esters 
(RMSECV of the different columns ranging between 8 – 12). However, it is quite 
remarkable, despite the fact that different stationary phases have been used, the 
prediction of the RI values is still very good compared to the simulations on the DB1, 
DB5, PEG columns.  

RMSECV = 9.1583 
R2 (CV) = 0.998 

RMSECV = 8.5006 
R2 (CV) = 0.998 

RMSECV = 8.3328 
R2 (CV) = 0.998 

RMSECV = 10.4754 
R2 (CV) = 0.997 

RMSECV = 10.5666 
R2 (CV) = 0.997 

RMSECV = 11.8148 
R2 (CV) = 0.995 
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At this point, the effect of the data quality is specially emphasized when we compare 
the SVM model on DB1, DB5 and PEG to the SVM model for the esters [2,47] on 
different columns. In the case of DB1, DB5 and PEG the models improved once the 
data (outliers) outside the ± 20 units margin were removed. In contrast to this, in the 
esters case (figure 41), the model had an excellent performance (RMSECV between 
8 – 12) without the need of removing any data.  

This observation could be interpreted in two ways: Firstly, the ester data was from one 
single consistent source and not from different sources of unknown quality as is the 
case for Pubchem data. Secondly, the data consists of only one single compound class 
(esters), therefore it makes it easier to predict a single class than having 9 different 
compound classes. 

Hence, this concludes that if the input data is of good quality, so is the output data.  
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5. Conclusion and Outlook 
Several studies have been published where molecular descriptors have been used to 
predict GC RIs, but most of them restrict the study on certain compound classes and 
on certain column compositions. However, this thesis was able to derive a quantitative 
structure-property relationship model to predict GC retention indices of alkanes, 
alkenes, cycloalkanes, aromatics, alcohols, acids, aldehydes, ketones and esters for 
around 400 compounds obtained from the Pubchem database [60] on the most 
commonly used stationary phases DB1, DB5, PEG. For the purpose of prediction, 266 
molecular descriptors were obtained from the chemical online database OCHEM [81] 
to describe the topology, geometry, electronic states, etc. of these different 
compounds. The use of a single descriptor can capture only part of the property of 
interest, which is not satisfactory in our case, since we need to describe very different 
compound classes and on different columns.  

To generate the model three different regression methods were used, PLS, LWR and 
SVM which were compared to predict RIs of different compounds. Based on the quality 
of the collected data and by comparing the models we arrived to the conclusion that 
the data of the Pubchem database is comprehensive, however, not always of 
consistently high quality, and must be used only with critical attention. Otherwise, 
errors and outliers in the input data may deteriorate the model’s predictive abilities, as 
the descriptors are not able to explain irregular data variations. Under these conditions 
it has become evident that the SVM model is more robust towards outliers and towards 
input data errors when compared to PLS and LWR. Therefore, SVM performs better in 
predicting retention indices of different compound classes (refer to chapter 4).  

To summarize, the SVM model performs well for DB1 (RMSECV of 12.8) and DB5 
columns (RMSECV of 19.4) after the data removal, but a bit poorerfor predicting RIs 
on a PEG column (RMSECV of 24.5). Moreover, the data removal did not affect the 
DB1 data as much as it affected the DB5 and PEG data. For DB5 mostly affected 
classes were cycloalkanes and aromatics. And for PEG the most affected were 
cycloalkanes, alcohols, ketones and acids, nevertheless the acid class was completely 
lost during data treatment. This could mean that the used descriptors were not fully 
able to explain strong polar interactions of these compound classes on more polar 
stationary phases. Meaning the descriptors are not specific enough to the column 
composition and to its interaction with the compound. 

Nonetheless, to further improve the current model these different factors should be 
taken into account: 

• Quality of the input data (having a single consistent data source)  

• Molecular descriptors specific for the column and for certain interactions with 
the column 

• Data distribution (number of compounds and RI frequency within each 
compound class should be in equal proportions) 

It is expected that by improving these factors the prediction ability of the PLS and LWR 
models would also improve. 
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7. Appendix  
 

Table 12: Information to the PLS model for DB1 exported from MATLAB: 

Model 
Type 

𝑋𝑖 and 𝑌𝑖 
Training 

Preprocess
-ing 

𝑋𝑖 and 𝑌𝑖 
Test 

Preprocess
-ing 

Cross 
validation 

LV compo-
nents 

PLS 
calculated 
in MATLAB 

[66] 

266 by 272 
Pareto 

(Sqrt Std) 
Scaling 

266 by 107 
Pareto 

(Sqrt Std) 
Scaling 

Venetian 
Blinds 

10 splits 
and 1 

sample per 
split 

4 

 

Table 13: Information to the LWR model for DB1 exported from MATLAB: 

Model 
Type 

𝑋𝑖 and 𝑌𝑖 
Training 

Preprocess
-ing 

𝑋𝑖 and 𝑌𝑖 
Test 

Preprocess
-ing 

Cross 
validation 

Principal 
Compo-

nents 

Local 
Points 

 

LWR 
calculated 
in MATLAB 

[66] 

266 by 272 
Pareto 

(Sqrt Std) 
Scaling 

266 by 107 
Pareto 

(Sqrt Std) 
Scaling 

Venetian 
Blinds 

10 splits 
and 1 

sample per 
split 

5 5 
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Table 14: Information to the SVM model for DB1 exported from MATLAB: 

Model 
Type 

𝑋𝑖 and 𝑌𝑖 
Training 

Preprocess
-ing 

𝑋𝑖 and 𝑌𝑖 
Test 

Preprocess
-ing SVM type SVM kernel 

type 

SVM 
optimal 

parameters 

SVM: 
number of 

SVs 

Cross 
validation 

SVM 
calculated 

in MATLAB 
[66] 

266 by 272 
Pareto 

(Sqrt Std) 
Scaling 

266 by 107 
Pareto 

(Sqrt Std) 
Scaling 

epsilon-
SVR 

 

radial basis 
function 

cost = 100 

epsilon = 0.
1 

gamma = 0
.00031623 

 

189 

Venetian 
Blinds 

10 splits 
and 1 

sample per 
split 

 

Table 15: Information to the SVM model for DB5 exported from MATLAB: 

Model 
Type 

𝑋𝑖 and 𝑌𝑖 
Training 

Preprocess
-ing 

𝑋𝑖 and 𝑌𝑖 
Training 

Preprocess
-ing SVM type SVM 

kernel type 

SVM 
optimal 

parameters 

SVM: 
number of 

SVs 

Cross 
validation 

SVM 
calculated 

in MATLAB 
[66] 

266 by 283 
Pareto 

(Sqrt Std) 
Scaling 

266 by 94 
Pareto 

(Sqrt Std) 
Scaling 

epsilon-
SVR 

 

radial basis 
function 

cost = 100 

epsilon = 0.
1 

gamma = 0
.00031623 

 

166 

Venetian 
Blinds 

10 splits 
and 1 

sample per 
split 

 

Table 16: Information to the SVM model for PEG exported from MATLAB: 

Model 
Type 

𝑋𝑖 and 𝑌𝑖 
Training 

Preprocess
-ing 

𝑋𝑖 and 𝑌𝑖 
Training 

Preprocess
-ing SVM type SVM 

kernel type 

SVM 
optimal 

parameters 

SVM: 
number of 

SVs 

Cross 
validation 

SVM 
calculated 
in MATLAB 

[66] 

266 by 232 
Pareto 

(Sqrt Std) 
Scaling 

266 by 85 
Pareto 

(Sqrt Std) 
Scaling 

epsilon-
SVR 

 

radial basis 
function 

cost = 100 

epsilon = 0.
1 

gamma = 0
.00031623 

 

155 

Venetian 
Blinds 

10 splits 
and 1 

sample per 
split 

 




