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Zusammenfassung

Die vorliegende Diplomarbeit zielt darauf ab, das stochastische Integral beziiglich mehr-
dimensionaler stetiger lokaler Martingale und in weiterer Folge stetiger Semimartingale
einzufiihren und dieses zu diskutieren. Da in der aktuariellen Praxis Vermogenswerte oft als
stetige Semimartingale modelliert werden, ist ein moglichst allgemeiner Integralbegriff sehr
wichtig, da das stochastische Integral genau den Gewinn oder Verlust einer Handelsstrategie
beziiglich dieses Vermogenswertes darstellt. Des Weiteren werden viele Eigenschaften des
bekannten Lebesgue-Stieltjes-Integrals auch fiir das neu eingefiihrt stochastische Integral
nachgewiesen.

Kapitel 1 gibt eine kurze Ubersicht iiber die stochastische Integration beziiglich eindimen-
sionaler stetiger lokaler Martingale oder Semimartingale, gemifl [Sch23, Chapter 5]. Das
darauffolgende Kapitel 2 basiert zum Teil auf [SC02, Chapter 3] und [CE15, Section 12.5]
und liefert zuallererst fiir jedes d-dimensionale stetige lokale Martingal eine Darstellung
seines Kovariationsprozesses als pfadweises Lebesgue-Stieltjes-Integral eines vorhersehbaren
matrixwertigen Prozesses beziiglich der Spur des Kovariationsprozesses. Diese Darstellung
wird verwendet, um fiir jedes p > 1 den normierten Vektorraum LP(M) zu definieren.

Darauf aufbauend wird in Kapitel 3, Abschnitt 3.1, das stochastische Integral beziiglich
eines multidimensionalen stetigen lokalen Martingals definiert. Im Anschluss werden einige
Eigenschaften, wie zum Beispiel die Linearitdt im Integranden sowie im Integrator, des
soeben definierten stochastischen Integrals behauptet und gezeigt. Danach, in Abschnitt
3.2, wird das stochastische Integral beziiglich multidimensionaler adaptierter und stetiger
Prozesse von lokalendlicher Variation definiert. Dies hat die Definition des stochastischen
Integrals beziiglich d-dimensionaler stetiger Semimartingale zur Folge.

Um die vorhin erwihnte Darstellung von [M] als pfadweises Lebesgue-Stieltjes-Integral
in Theorem 2.7 konstruieren zu kénnen, wird eine Verallgemeinerung des bekannten Satzes
von Radon-Nikodym bendétigt. Dieser Satz sowie die besagte Verallgemeinerung werden in
Kapitel 4 bewiesen. Wéahrend der gesamten Diplomarbeit werden viele mehr oder weniger
bekannte Resultate aus den unterschiedlichsten Teilbereichen der Mathematik verwendet,
die mehrheitlich im Appendix (Kapitel 5) gesammelt zu finden sind.

Interessierte Lesende sind gerne eingeladen, sich einige Eigenschaften des stochastischen
Integrals beziiglich eindimensionaler stetiger lokaler Martingale oder stetiger Semimartingale
in Erinnerung zu rufen und zu versuchen, diese auf den in dieser Arbeit eingefiihrten
Integralbegriff zu verallgemeinern. Alternativ kdnnten auch nicht notwendigerweise stetige
Integratoren betrachtet werden. Die vorliegende Diplomarbeit stellt nicht den Anspruch
dieses spannende Thema im Bereich der Stochastischen Analysis vollstdndig beleuchtet zu
haben, sondern soll eine Einfithrung darstellen, auf der aufgebaut werden kann.

Stichworter: Stochastische Integration, stetiges lokales Martingal, stetiges Semimartin-
gale, Ubergangs- oder Markovkern, Satz von Radon-Nikodym, signiertes or komplexes Maf
auf einem 4-Ring.
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Abstract

The thesis at hand aims to introduce and discuss stochastic integration with respect to multi-
dimensional continuous local martingales and even continuous semimartingales. As assets
are often modeled as continuous semimartingales and the stochastic integral corresponds to
the profit or loss of a trading strategy w.r.t. this asset, this is a very relevant topic in the
professional life of many practical mathematicians. Furthermore, many useful properties of
the well-known Lebesgue—Stieltjes integral are being extended to our stochastic integral
processes.

Chapter 1 provides a quick overview of stochastic integration with respect to continuous
semimartingales, introduced in [Sch23, Chapter 5]. The following Chapter 2 relies in parts
on [SC02, Chapter 3] and [CE15, Section 12.5] and first and foremost provides the covariation
process of each d-dimensional continuous local martingale M with a representation as a
pathwise Lebesgue—Stieltjes integral of a predictable matrix-valued process w.r.t. the trace
of the covariation process. This representation will then be used to introduce the normed
vector spaces LP(M) for p > 1.

Building on those findings, in Chapter 3 (Section 3.1) the stochastic integral w.r.t. M
will be defined. Afterwards, some properties of this newly introduced stochastic integral,
for example linearity in the integrand as well as the integrator, will be stated and proven.
Furthermore, in Section 3.2, the stochastic integral w.r.t. multi-dimensional adapted and
continuous process of locally finite variation is being defined as a pathwise Lebesgue—Stieljes
integral. Those results then lead to the definition of the stochastic integral w.r.t. K%-valued
continuous semimartingale X = A 4+ M, being composed of a process of locally finite
variation and a continuous local martingale in Section 3.4.

In order to construct the predictable integrand in the aforementioned representation of
[M] as a pathwise Lebesgue—Stieltjes integral in Theorem 2.7, an extension of the famous
Radon-Nikodym theorem will be used. To prove the Radon-Nikodym theorem as well as
many different generalizations of it is the duty of Chapter 4. Throughout this thesis, a lot
of more or less well-known results of many different fields of mathematics are being used,
which can be found in the appendix, Chapter 5.

Any reader interested in the topic of this thesis is welcome to consider properties of the
stochastic integral w.r.t. one-dimensional continuous local martingales or semimartingales
and try to generalize them for the stochastic integral introduced in this thesis. Another
possible extension of this work would be to consider not necessarily continuous integrators.
The thesis at hand is by no means to be considered as a conclusion, but much more an
introduction to this fascinating topic in the field of Stochastic Analysis.

Keywords: Stochastic integration, continuous local martingale, continuous semimartin-
gale, transition kernel, Radon—Nikodym theorem, signed or complex measure on a d-ring.

iii
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1 Introduction and the one-dimensional case

1.1 Introduction and motivation

As insurance companies hold quite large amounts of capital, investing this capital in different
assets is a big part of the day-to-day work of many actuaries. Those assets are often modeled
via continuous semimartingales and the profit or loss of a trading strategies can then be
denoted by a stochastic integral of the trading strategy with respect to this continuous
semimartingale. As those assets may often times be highly correlated, a multi-dimensional
model can provide better results when considering a portfolio of assets instead of simply
looking at each one separately. For instance, exchange-traded funds, when related to
some stock index, for example ATX or DAX, are a separate asset consisting of a linear
combination of other stocks in this index. Consequently, the exchange-traded fund and this
linear combination are almost perfectly correlated. Intuitively, the stochastic integral of a
d-dimensional integrable trading strategy w.r.t. a d-dimensional continuous semimartingale
could then be defined by taking the sum of the componentwise stochastic integrals, see
for example [Sch23, Definition 5.109(d)]. The following two examples, which can be found
in [CE15, p. 284f], show, however that this definition —while easy to introduce — has some
shortcomings. The example below corresponds to a trading strategy, which for example
shorts an exchange-traded fund and holds a long position of the linear combination of the
stocks in this exchange-traded fund.

Example 1.1. Take any K-valued continuous semimartingale X and a K-valued process
H, which is integrable w.r.t. X. Intuitively, the profit or loss of the two-dimensional trading
strategy (H, H)" w.r.t. the two-dimensional continuous semimartingale (X, —X)7 is zero,
as

/(Ht,Ht)Td(Xt,—Xt)T:/ thXt—/ H;dX; = 0.
0 0 0

One would expect the same result for a trading strategy H, which is not integrable w.r.t.
X. In this definition of the multi-dimensional stochastic integral, such processes cannot be
considered and would not yield a result.

This thesis, however, introduces another definition of the stochastic integral with respect
to multi-dimensional continuous semimartingales, where the integral in the display above is
well-defined and equal to zero, even if H ¢ L(X), as Example 3.30 below shows. In order
to provide another, much less trivial, example, the following metric on the space S of all
K-valued semimartingales will be introduced.
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2 CHAPTER 1. INTRODUCTION AND THE ONE-DIMENSIONAL CASE

Definition 1.2 (Emery distance). The Emery distance of two K-valued continuous semi-
martingales X and Y is defined as
A 1} }

where P! denotes the space of all one-dimensional predictable processes according to
Definition 2.1 below and || - ||o denotes the uniform norm on the space of all bounded
K-valued processes, i.e.

t
/ Hyd(X, — Y,)
0

HePpl t€[0,n]

o0
p(X,Y)= sup {Z 2_”]E[ sup
IHes1 "

| Hlloo = sup{[Hy(w)| : (tw) € Rs x Q.

This metric was defined by Michel Emery in [EmeOG, p. 264ff]. Furthermore, [EmeOG,
Théoreme 1] states that S is complete w.r.t. p, when identifying processes that are up to
indistinguishability equal. In the following example assume K = R.

Example 1.3 (Failing completeness w.r.t. the Emery distance). For two independent real-
valued standard Brownian motions B' and B? define the deterministic process H; =t for t €
R and the R-valued continuous local martingales X' = B! and X% = (1— H)e B! + H e B2.
Note at this point that the processes X' and X? in this example are continuous local
martingales. Furthermore, define the vector space

LIXL,X?)={K'e X'+ K?e X?: K' e L(X'), K? € L(X?)}. (1.1)

For more information about the stochastic integral w.r.t. one-dimensional continuous local
martingales, denoted by the operator e in the display above, as well as the vector space of
integrable process w.r.t. X' and X2, i.e. L(X!) and L(X?) respectively, see [Sch23, Section
5.7]. Throughout this example, the integrands are real-valued, deterministic and continuously
differentiable on (0, c0). Consequently, the stochastic integrals below can be calculated with
the help of [Sch23, Corollary 5.62] and [Sch23, Example 5.63]. Keep in mind that for each
x € Ry follows |1 — z|? < 1V 22. Now consider for each ¢ > 0 and t € R, the pathwise

integrals

¢ 1 ) t 1 t 1

1 — ———| dXY(w) < 1, ds < 1,=)d
[ e < [mos(1 g Jass (1)

1
= tmax(l, 2) < 00
€

2

2

and

[

Consequently, 1 — (H +¢)~! € L(X?!) as well as (H + ¢)~! € L(X?), whereby the sum of

2 ¢ 2] (o
! (X, (w) < /O L (w) = Bw)

Hi(w) +e

1
S+ €

€2 €2

A = [




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.1. INTRODUCTION AND MOTIVATION 3

two stochastic integrals
YVei=(1—(H+e) HeX '+ (H+e) 'eX?

1 1-H H
:Bl— Bl Bl B2
Hye ' TH" THLC®
H+e 1 1-H 1, H+e—e
= — B —— B
<H+e H—|—6+H—|—e). H+ e *

€
= B! —
Hte' H+e¢

€
= B! — B?) + B?
H+€°( )+

e B2+ B?

is well-defined. Note that in the calculations above linearity of the stochastic integral in
the integrand as well as the integrator and the chain rule for stochastic integrals have been
applied. This in turn leads to

Y- B?, = {Hieo(Bl—B2)L:/Ot<H:+€>2d[Bl—B2]S:2/Ot<8jr€>2ds

:2/”6622(1”:2 B €2 +f :2e(t+€)—62: 26757
PR 7} t+e € t+e€ t+e

which converges for each t € (0,00) to zero for € \, 0. The sequence

ot

n neN
t—i—%’ )

converges even uniformly to zero, as for fixed € > 0 it follows that

2t 2t )
nl Si *S tE(0,00),
t+ﬁ t n

for each natural number n > % Consequently, (Y'1/™),cn converges in HE to B2, see

Definition 3.4 and Lemma 3.7 below, because for each € > 0 one may define
ne=inf{n e N:n > 26_2},

which results in
1/2 1/2 2
YY" — B|lyye = E[[YY/" — BYoo]V? < E[[2/n]s] /? = \/; <e,  n>ne
Therefore, [Eme06, Theoreme 2(b)] implies the convergence of (Y'1/"),cn to B2 in S.

However, it will now be shown that B* ¢ £(X", X?). For proof by contradiction assume
the existence of processes K € L(X') and K € L(X?), such that

)
B*=KeX'tKeX?=KeB'+Ke((1—H)eB'+HeB?)
= (K+K(1—-H))eB'+ (KH)e B>
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4 CHAPTER 1. INTRODUCTION AND THE ONE-DIMENSIONAL CASE

This then implies

t= [BQJt = [(K+K(1-H))eB'+(KH)e B B,
(K +K(1-H))eB' B?, + [(KH) e B2, B?],

t t
/K + K Hs)d[Bl,B2]S+/ KsHsd[BQ]sz/ K, sds
0 0

up to indistinguishability for each ¢ € (0,00). Consequently, there exists a (A ® P)-null
set in N € Ry x Q such that K;(w) = 1/t for each pair (t,w) € N€, where \ denotes
the Lebesgue-measure on Ry. As the example at hand should only be an easy demon-
stration of the usefulness of the theory of stochastic integration that will be introduced
and discussed throughout this thesis, and the following is pretty standard procedure in
the field of stochastic analysis, the next few sentences will only outline the proof of the
statement above. In the later parts of this thesis, such proofs will be provided in much more
detail. Fix such an w that the display above holds for each t € R;. Then the functions
s+ [i1du = s and s — [; K,(w)udu induce a induce a finite and a signed measure
on [0,n] for each n € N, respectively. By the display above, those measures agree on
the set {[a,b) : a,b € [0,n] with a < b}, which is intersection stable and generates the
Borel-o-algebra By ). As furthermore fon lds =n = fon ~S (w) sds, Lemma 5.14 in the
appendix implies [ 4 lds= 4K A ) sds for each A € By, for fixed ¢ € Ry. Consequently,
as the constant function 1 as Well as K,(w) s are Bjg,nj-measurable for each n € N, follows
1 = K4(w) s or equivalently K,(w) = 1/s on [0,n] outside of a set N,, satisfying A(N,,) = 0
for each n € N. Therefore, K,(w) induces a finite measure (and not only a signed measure)
on By, for each n € N and as such a o-finite measure Bg, . Consequently, K(w) =1/s
for each s € Ry outside of the A-null set | J,,cr IV and P-almost all w € Q.

Almost analogously one obtains up to indistinguishability
0=[B"B’;=[B",(K+K(1-H))eB'+(KH)e B,
= [B', (K + K(1—H)) e B'], + [B',(KH) ¢ B?],

t t
:/ K, + K,(1 — H,)d[B"], +/ K,H,d[B', B?),
0 0

t t
:/ sts—i—/ Ks(1—s)ds
0 0

for each ¢t € (0,00) and in turn for each ({,w) € Ry x Q outside of a (A x P)-null set

Ky(w) = — Ky (w)(1 — ) = —¥ . %

However, 1 —t~! ¢ L(B'), because

(=30 -2+ D)o sglo -0

= lim (2 + 21 1 =
81{%( +2In(s) +1/s) = o0
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1.2. UNDERLYING ASSUMPTIONS 5

Thus (Y1/™),en is a sequence in £(X', X?), which has been defined in display (1.1), whose
limit w.r.t. p, i.e. B2, is not in £(X*!, X?), which is a rather unpleasing result. Speaking in
financial terms, it is not possible to hedge options, which are only depending on B? w.r.t.
the financial market (X', X?), even though Y''/" can be hedged for each n € N.

Consequently, one would like to consider another possibility of extending the idea of
stochastic integration w.r.t. local martingales or even semimartingales to multi-dimensional
processes. To avoid such negative examples as given above, the integral should provide the
possibility for positive and negative terms in the integrand to cancel out. Furthermore, one
would like for the vector space {H e X : H € L(X)} to be complete w.r.t. the Emery distance
for each semimartingale X. This thesis will provide such a notion of stochastic integration,
which will be stated for R?-valued processes H and X in Theorem 3.32. However, it only
discusses the theory for continuous integrators.

1.2 Underlying assumptions

Throughout this thesis, unless stated otherwise, the underlying filtered probability space
will be denoted by (Q, F,F = (F;)ier,,P), where the filtration F is right-continuous,
ie. Fp = ﬂue(t,oo) Fy for all ¢ € Ry. Furthermore, it is assumed that all P-null sets of
Fo 1= U(Ut6R+ F;) are already elements of Fy. Note that by [Sch23, Remark 5.55] one
can always add all null sets of F to a given filtration and this enlargement inherits the
right-continuity of F and does not change the martingale or independence properties of
given processes. Finally, unless specified otherwise, all equalities and inequalities between
stochastic processes are understood to hold up to indistinguishability.

For two stochastic processes X and Y the integral process of X w.r.t. Y, if it exists, may
be denoted by

XoY:/ X, dYs,
0

or more precisely for (t,w) € Ry x Q

(X oY) (w) :/0 Xs(w)dYs(w).

This stochastic integral may not be calculated for each w € € but can always be considered
as a stochastic process apart from a P-null set. Depending on the nature of Y, this more
easily readable convention will be used to represent stochastic integrals as well as pathwise
Lebesgue—Stieljes ones.
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6 CHAPTER 1. INTRODUCTION AND THE ONE-DIMENSIONAL CASE

1.3 Stochastic integrals w.r.t.
one-dimensional continuous semimartingales

Although this thesis focuses on the multivariate case, we firstly consider a K-valued con-
tinuous local martingale M, where K = R or C. As this introduction should not distract
from the main points of the thesis, proofs are omitted in this section and the reader is
referred to [Sch23, Chapter 5] for said proofs as well as a more detailed understanding of
the one-dimensional case.

Definition 1.4 (L(M)). A progressive process V : Ry x Q@ — K is integrable with respect
to a K-valued continuous local martingale M, i.e. V € L(M), if and only if

t
/|vs|2d[M15<oo, teR,,
0

where [M] denotes the covariation process of M defined below. The set L(M) is a vector
space.

The integral in the definition above is a pathwise Lebesgue—Stieltjes integral, as the
covariation process of any continuous local martingale is of locally finite variation. As the
covariation process is an integral building block in stochastic integration, a proper definition
as well as some basic properties will be given in the following.

Definition 1.5 (Covariation process). For two continuous local martingales M and N
taking values in K™ and K", respectively, the covariation process of M and N (i.e. [M, N])
is defined as a process of locally finite variation, for which [M, N]y = 0 holds and

MNT —[M, N]

is again a continuous local martingale. Considering just one continuous local martingale M,
the covariation process of M is defined as

[M] = [M, M].

Theorem 1.6. For any two continuous local martingales M and N the covariation process
exists uniquely, is K-bilinear and compatible with stopping for any F-stopping time, where
all equalities are to be understood up to indistinguishability.

Those properties will be useful throughout this thesis, one instance being the following
abstract definition of the stochastic integral with respect to continuous local martingales.

Definition 1.7 (One-dim. stochastic integral for continuous local martingales). Let M
be a K-valued continuous local martingale and V' € L(M). Then there exists an up to
indistinguishability unique K-valued continuous local martingale, denoted by V' e M, such
that (V e M)p =0 as well as

[V o M, N] :/O'vs d[M, N,
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1.3. THE INTEGRAL W.R.T. ONE-DIMENSIONAL SEMIMARTINGALES 7

holds for every K-valued continuous local martingale N. Then V e M is said to be the
stochastic integral of V' with respect to M and can also be denoted by

/ Vs dM.
0

This thesis will consider not only continuous local martingales, but an even bigger set of
processes, namely continuous semimartingales.

Definition 1.8 (Continuous semimartingales). Let X be a K%valued process. If X can
be represented as the sum X = A 4+ M consisting of an adapted continuous process A of
locally finite variation starting at 0 and a continuous local martingale M, then X is called
a continuous semimartingale and A + M its canonical decomposition.

Note that the canonical decomposition of a continuous semimartingale is unique up to
indistinguishability. In the definition above, A as well as M need to match the dimensions
of X, in order for the sum to be well defined and the equality to hold. For a K-valued
adapted and continuous process of locally finite variation A starting at 0 the K-vector
space i(A) is defined as the set of all progressive processes V', such that the integral
process fo Vs dAg exists as a pathwise Lebesgue—Stieltjes integral. Keeping that in mind,
the following definition comes quite naturally.

Definition 1.9 (One-dim. stochastic integral for continuous semimartingales). Let X be
a K-valued continuous semimartingale, X = A + M its canonical decomposition and the
progressive process V € L(X) := L(A)NL(M), therefore the integrals below are well defined.
The stochastic integral process of V w.r.t. X is then defined as

VOX:/X/;dst/X/,SdAS+/X/;dMS.
0 0 0

This definition implies that the process V' e X is a K-valued continuous semimartingale,
too, with canonical decomposition V e X = [/ Vi dA, + [, Vs dM, as long as V € L(X).
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2 Integrable processes w.r.t.
multi-dimensional continuous
local martingales

After those preliminary statements, the main topic, the multi-dimensional case, will now be-
gin and proofs as well as more details on the treated subjects will be provided. The following
approach to defining the stochastic integral process w.r.t. multi-dimensional continuous local
martingales is quite different to the one-dimensional one. However, it will be shown that
those two approaches are still equivalent for K-valued continuous local martingales and in
both senses integrable processes. Most of the following two chapters rely on [CE15, Section
12.5] and [SCO02, Chapter 3.

2.1 Preliminary definitions

Definition 2.1 (Predictable o-algebra and predictable processes). On the space Ry x Q
the predictable o-algebra ¥, is defined as the sub-o-algebra of Br, @ F generated by the
set of all adapted and left-continuous processes. A stochastic process is then said to be
predictable, if it is measurable w.r.t. 3,. Set P? to be the vector space of all K%-valued
predictable processes.

Definition 2.2 (Predictable step processes). For every R, -valued pointwise increasing
finite sequence of stopping times 7 < 7 < -+ < 7,41 one may define a predictable step
process by

m
Hy = olioy(t) + Y ¢onl(r,r(t),  tERY,
n=1

where (g is a bounded Fp-measurable and each ¢, is a bounded F-, -measurable K% valued
random vector for n =1,...,m. Clearly H is left-continuous and its adaptedness will be
shown in the lemma below, which then proves predictability. Note also that for each pair
(t,w) € Ry x Q at most one term in the sum on the right-hand side adds a value not equal
to zero.

Lemma 2.3. FEvery predictable step process H according to Definition 2.2 is adapted.

Proof. Note at first that for each t € Ry and stopping time 7 the set {w € Q : 7(w) < t}
(=: {7 < t}) is an element of F;. This can be seen by taking a pointwise strictly increasing
sequence of positive real numbers (¢, ),cn converging to ¢ and observing that

{r<ty=J{r<ta}er,
neN



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

10 CHAPTER 2. INTEGRABLE PROCESSES

where for each n € N the set {7 < t,} € F;,, C F;. Obviously this also implies {7 < t}¢ =
{T >t} € F;. Similarly, one can consider for each F' € F, the set

Frfr<ty=rFn(UJtr<u})=UJFEn{r<u) e,

neN neN

as Fn{r <t,} € F, C F for each n € N.

Note at this point that
Hy'Y(A) = gyt (A) € Fo, A€ Bga.

Now define 1 : 2 — K? to be the constant zero function and fix A € Bga and t € R\ {0}.
Then, due to the F,, -measurability of ¢, the set ¢, 1(A) belongs to F,, for each n =
1,...,m and thus

H7'(4) = (¢7'(4) N({n > ) U{mmi < t}))u(g(@#m) N {m < 30 {r01 > 1}))

e{o,Q}CF; €Fy €Fy E€Fy €Ft

is an element of F;, which proves the adaptedness of H. O

Definition 2.4 (Processes of locally finite variation). Let V¢ denote the set of all K¢-valued
continuous adapted processes A that are of locally finite variation, meaning that for almost
all w € Q the total variation of the continuous function A (w) : Ry > s +— As(w) € K? is
finite on the interval [0,¢] for all + € R. Furthermore, define V¢ = {4 € V¥ : Ay = 0}.

Note that some authors omit the word locally in the definition above and call such processes
finite variation processes. Additionally, the set V¥ is a vector space by [Sch23, Remark 5.47].
Consequently, the same holds for Vg.

Definition 2.5 (The set V). Throughout this thesis, let V; denote the set of all adapted,
continuous, real valued and non-decreasing processes starting at 0.

Keep in mind that, because those processes are non-decreasing, their total variation
coincides with the process itself and it is therefore also of locally finite variation.

Definition 2.6 (Positive semidefinite processes). The term positive semidefinite process will
in the following refer to K¢*%-valued processes, whose realizations at any given time ¢ are
positive semidefinite Hermitian matrices, i.e. m(w)™ = 7 (w)T = 7¢(w) and (x, m(w)z) > 0
for all z € K¢, t € R, and w € , where (-,-) denotes the standard Hermitian form on K¢
(which is linear in the first and semilinear in the second argument), namely

(z,y) =y,  z,yeKL

Note that for each z € K? one can always also consider the complex conjugate vector Z
and thus obtain

0 < (Z, m(w)z) = T (W) T = 27y ()7, z € K%

which implies that 7¢(w) is a positive semidefinite Hermitian matrix, if and only if 7 (w)" =
m(w) and 2T 7 (w)Z > 0 for all » € K9,
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2.2. INTEGRAL REPRESENTATION OF THE COVARIATION PROCESS 11

2.2 Integral representation of the covariation process
of continuous local martingales

This section is devoted to the proof of the theorem below, which is one of the most essential
theorems of this thesis.

Theorem 2.7. For every K%-valued continuous local martingale M = (M*, ..., M7 one
can define the process CM) = tr ([M]) = Z?Zl[Mj] € V", which will most of the time simply
be denoted by C, if the underlying continuous local martingale is obvious. Furthermore,
there exists a K4*4 (M) or simply 7 for

readability, such that up to indistinguishability
[M? M7 =n o C, (i,7) € {1,...,d}* (2.1)

-valued predictable positive semidefinite process m

or equivalently, when viewed as a matriz-equality, [M] = 7 o C. This process 7 is unique
apart from some subset of Ry x Q of measure 0 with regards to C ® P, where C' denotes
with a slight abuse of notation also the o-finite transition kernel induced by the process C'.

Proof. As [M] is R, -valued, adapted, continuous, non-decreasing and starting at zero for
each j = 1,...,d, the same holds for C causing C € Var. For each pair (i,7) € {1,...,d}? the
covariation process [M7, M7] is a K-valued, continuous and adapted process of locally finite
variation, i.e. an element of V}. According to Lemma 5.28 in the appendix, [M7, M7] may be
seen as a signed or complex transition kernel from € to Ry on the d-ring R := (U, cx Bo,n)-
Consequently, Definition 5.25 and Lemma 5.26 result in the signed or complex measure

(M7, M7] @ P)(A) ::/

Q</R ]lA(S,W)[Mj’Mj](ds,w))P(dw), AER®F,

on the product d-ring R ® F for each (i,5) € {1,...,d}?. Similarly, the total variation
process Vi 575 and C' may be viewed as o-finite transition kernels from €2 to Ry, due to
Lemma 5.27, and the functions

(Vg i) © P)(A) 1= /Q ( / La(5,0)Viare (s, 0) JB(dw), A€ Ba, @ F,
Ry

as well as

Ccop) = [

Q(/R ]lA(S,w)C(ds,w))IP’(dw)7 Ac B o F,

are two measures on Br, ® F by Lemma 5.24 for each pair (i,j) € {1,...,d}?. Due to
Lemma 5.30 in the appendix one can see that outside of a P-null set holds

Vi gy (A,w) < \/ [Mi](A,w)\/ [M)(A,w) < /C(A w)y/C(A,w) = C(A,w), A€ Bg,.

Consider now a set A € Br, ® F satisfying (C'®@ P)(A) = 0. Thus one may use Lemma 4.14
below to obtain for each predictable set A the result

(/R HA(S,W)V[Mi7Mj]<d$,Q))>]P><dw)

07, 3] 9 PI(A) < 2 (Vi 7 @ P)(A) =2 |

< 2/9(/]1%+ 14(5,)C(ds, ) ) B(dw) = 2(C @ B)(4) =0,
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12 CHAPTER 2. INTEGRABLE PROCESSES

and thus ‘ .
M', MI|@P< C®P

on B, ® F and consequently also on the sub-c-algebra %, for each pair (,7) € {1,...,d}*.
Consequently, Theorem 4.15 below states the existence of a (C' ® P)-almost everywhere
unique predictable process f% satisfying

prir) = [ fiac
0
up to indistinguishability.

Intuitively define the K ?-valued stochastic matrix f = (f° J) (i,j)e{l,...dy2- Therefore, one
obtains up to indistinguishability

d[M*, MY d[M7, MY d[MY, M) d[MI, MY,
a  ~  dac  ~  ac T dac

17 =

ie. f=f".

Let {\t }ren be a countable dense subset in K¢ and Dy, := {(t,w) € Ry xQ: \] f(t,w) A\, >
0}, which inherits the predictability of f. When taking the intersection of those sets, it
follows by the continuity of the vector multiplication that

() Dr = {(t,w0) : ATf(t,0)A >0 YA€ K} =
keN

As )\ZM is again a K-valued local martingale, the inequality

d
0 <[\ M) = [Z MM ZMJAJ] D ONIML NN, = (AL fA) @

1,7=1

follows and implies that the complement of each of the sets Dy, and therefore also D =
Uren Df» are C(-,w)-evanescent for P-almost all w € Q. Therefore one may define 7 =
flp. O

This theorem showed that the covariation process of a continuous local martingale M
can be represented as a matrix-valued stochastic integral and in the following the setting
as well as the symbols of Theorem 2.7 will remain the same, i.e. M denoting a K%valued
continuous local martingale with [M] = 7 e C' up to indistinguishability.

Example 2.8. As in Example 1.3, let B' and B? be two independent, real valued standard
Brownian motion and define X! = B! as well as X2 = (1— H) e B! + H @ B? where H; =t
for each t € R,. Therefore one can consider Theorem 2.7 for the R%-valued continuous
local martingale M = (X', X?)T. Fix ¢t € R and note that the equalities in this example
are understood to hold up to indistinguishability. Consequently, [Sch23, 5.102] combined
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2.2. INTEGRAL REPRESENTATION OF THE COVARIATION PROCESS 13

with [Sch23, Example 5.70] lead to

Cy =X +[X?: =B+ +[(1 - H)eB' + HeB?,
=t+[(1—-H)eBY;+2[(1— H)eB', HeB%;+ [H e B%;

t t t
:t+/(1—3)2ds+2/(1—s)sd[Bl,B2]+/ s?ds
0 0 — 0

3 23
:t+(t—t2+§)+§=?—t2+2t.

for each t € R4. Furthermore, one may use Lemma 4.12(v) below in the fourth step to
obtain

u_diX')e _d[B") _ dt _(dCt)_IZ 1 1
2

1
t 7 ac, — dc, 4o, \ar 2 _2t+2 212t +1

Note at this point that due to

teR,.

tio = ! + ! 1
1255 1
the polynomial t? — ¢ + 1 has no real roots and thus 7}! is well defined for each t € R,

Additionally,

t 2
(Xt X2, = [Bl,(l—H)oBl+HoB2]t:/ (1—s)ds:t—%
0
for each t € R implies
dixXt, X%, d@t—t*/2) dt 14 1 de? dt
12 21 , 11 11
e dc; dc; ac, 2dC, ™ “aardg, TP
=2t
where parts (i) and (i) of Lemma 4.12 have been used. Finally,
X2 9 3 42 9 3 _ 42 2

dc, dc, dc; dc,

As stated in Theorem 2.7, 7y is a positive semidefinite Hermitian matrix for each ¢t € Ry. It
will now be checked that this holds also in the simple example at hand. At first note that
7'['1';' = 7 is apparent. Furthermore, 7}! = (2t — 2t +2)~! > 0 for each t € R,. Thus one
may now calculate

2
det(m) = mp'mp? — mmt = w1 — 7wt — (1 —t)mt)

B 1 1 (1—1t)?

T 22242 (22 —2t+2)2 (22— 2t +2)2
2T -2 +2-1-1+2t—12 ¢

- (212 — 21 1 2)? “ e —atae !

for each t € (0,00). Consequently, 7 is positive definite for each ¢ € (0, 00), due to Sylvester’s
criterion or in German better known as Hauptminorenkriterium, see [Hav12, Satz 9.10.13].
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14 CHAPTER 2. INTEGRABLE PROCESSES

2.3 Definition of the normed vector spaces L*(M)

The existence and uniqueness of the aforementioned matrix-valued integral representation of
the covariation process for each K?valued continuous local martingale allows the definition
of the following normed vector spaces.

Definition 2.9 (The norms || - |[z»(ar) and the spaces LP(M)). Let M be a K?-valued
continuous local martingale, whose covariation process can be represented as [M] = m e C
according to Theorem 2.7, H a K%valued predictable process, see Definition 2.1, and
p € [1,00). One can then define the function

H ooy = B[(H 7 H) o C)/2]/7,

and the corresponding set LP(M) := {H € P*: | H| 1o(nr) < 00}. Two processes H, H' €
LP(M) are said to be equivalent if and only if || — H'||z»(ps) = 0 and from now on the
equivalence class of a process and the process itself are to be thought of as the same. For
more details, one may turn to [Sch23, Remark 13.5]. The fact that || - ||Le(ps) : LP(M) — Ry
is a norm and LP(M) is a vector space will be shown in Lemma 2.10 below.

At this point it is useful to be reminded that, due to the positive semidefiniteness of ,
the integral process (H"7H) e C is non-decreasing and R, -valued. Consequently, for each
H € LP(M) and t € Ry the integral ((H'wH) e C)t is P-almost surely finite for all t € R,
Furthermore, for all H € P? the process H'mH is also predictable and thus progressive.
Consequently, as C' is continuous for all continuous local martingales M, the integral process
(H TrH ) o C' is P-almost surely well-defined, continuous and adapted per [Sch23, Lemma
5.49(c)] and thus predictable for all H € LP(M).

At first glance it might not be obvious that the function || - [ z»(ar) indeed yields a norm
on LP(M), so it will be proven in the following.

Lemma 2.10. For p € [1,00) and a K¥-valued continuous local martingale M the function
| llr(ary : LP(M) — Ry is a norm on the vector space LP(M).

Proof. Due to the positive semidefiniteness of 7, one may view || - [[zo(ap) 1 LP(M) — Ry
as a Ri-valued function. In the first and most important step it will be shown that this
function satisfies the triangle inequality. Fix therefore p € [1,00) and take two processes
H,K € LP(M). Keep in mind that by its introduction in Theorem 2.7 m(w) is a positive
semidefinite Hermitian matrix for each t € R, and w € 2. Thus one can use Lemma 5.20
in the appendix to see that

2
(Ht + Kt)Tﬂ—t(Ht -+ Kt) S <\/HtT7Tth + \/K;rﬂth)

holds for each pair (t,w) € Ry x Q. As stated above, for each H € LP(M) the integral
(H'rH) o C’)Oo is finite for all w outside of a P-null set Ny, which may depend on H.

This means that for such a w € (Ny U Nk)© the functions VHT7rH and VKTnK are
elements of £?(Ry, Br,,C.(w)). In the following, let || - |2 denote the L?-norm on the space
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2.3. DEFINITION OF THE NORMED VECTOR SPACES L” (M) 15

L? (R+,BR+,C. (w)) being the quotient space of the aforementioned £? (R+,BR+,C,(w))
w.r.t. || - ||2. Thus one can use the Minkowski inequality (see for example [Gril8, Satz 8.3]),
i.e. the triangle inequality for LP-norms, to obtain

00 1/2 0o — — 2 1/2
(/ (Ht + Kt)Tﬂt(Ht -+ Kt) dCt> S (/ (\/HtTTI'th + \/K;rﬂ'th> dCt)
0 0
‘\/Hl;rﬂth—i-\/K;rﬂth S H\/Ht—r’ﬂ'th ‘\/K;I—ﬂ'th
2
= </ H;rﬂ'th dCt> + (/ K;rﬂ'th dC’t) .
0 0

Now let || - ||, denote the LP-norm on the space LP(€2, F,IP) and note that H € LP(M) <=
\/ (HTxH)eC)_ € LP(Q, F,P) and

+
2 2

IHlan = |/ (TR« C)

p
are a direct consequence of Definition 2.9. Therefore the triangle inequality

VH + Kl = B[ (((H + K)T7(H + K)) o c)””} Vp

o

<B[(\(trTei « 0) +\/(KTaK) e ) )]
- H\/((HTwH) ), +/(KTaE)eC)_

1/p

p

< H\/((HTWH) . C)°°Hp + H\/((KTWK) °0)

p
= 1=l o ar) + 1K Lo (ar)

follows by again using the Minkowski inequality in the second-to-last step.
Furthermore, for any a € K and H € LP(M) the equality

laH || ey = E[((aH "raH) e C’)p/z]l/p =E[(|la|*(H nH) e C’)Zéz]l/p

oo

— |a|E[(H = H) o C)"/*)7 = |a| || H| 1 ar)

holds and obviously also [|0]|z»(ar) = 0. Therefore it is clear to see that for H, K € LP(M)
and o € K, also aH + K € LP(M). Thus LP(M) is a vector space and || - ||z»(ar) is indeed
a norm on LP(M). Note at this point that in order to really obtain a norm and not only a
seminorm it was stated before that throughout this thesis one may not distinguish between
a process and its equivalence class in LP(M). O
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16 CHAPTER 2. INTEGRABLE PROCESSES

2.4 Integrable processes w.r.t. multi-dimensional
continuous local martingales

In the following, this thesis fixes p = 2 and examines the normed vector space L?(M) further.
Note that some authors, for example Cohen and Elliott in [CE15] as well as Shyraev and
Cherny in [SC02], consider p = 1.

The space L?(M) can often be too restrictive and one may integrate predictable processes,
which are only locally in L?(M). Such processes are defined below.

Definition 2.11 (The space L2 _(M)). A process H € P?%is in L2 (M) for a K%-valued
continuous local martingale M, if and only if there exists an increasing sequence of stopping
times (7, )nen satisfying lim,,_, 7, = 0o almost surely, such that

E[((H'rH)eC) ] <oo, mneN.

Tn

A process H is said to be integrable w.r.t. a K%valued continuous local martingale M, if
and only if H € L2 (M).

loc

By keeping in mind that the integral process ((H TrH )e C’)T stopped at a stopping time
Tn is the same as stopping the integrator C', it is apparent that

E[(H'rH)eC™) | =E[(H"7H)e ), ]

holds. Furthermore, as C(M) = Z?zl[M 7] by Theorem 2.7 the compatibility with stopping

of the covariation process (see [Sch23, Theorem 5.65]) implies that (CM))™ = C(M™) yp
to indistinguishability as well as #) = 7(M™) on the stochastic integral [0, 7,] := {(t,w) €
Ry x Q:t < 7,(w)} for each n € N. Consequently, H € L% (M) if and only if there exists
an increasing sequence of stopping times (7, )nen satisfying lim,,_, 7, = oo almost surely,

such that for all n € N follows H € L*(M™), i.e.

V|2 (vgmey = E[(H M Eyec™™)) V2 —E[(H rH)eC) ]"* <00, neN

Tn

This definition implies that for each t € R, and P-almost all w € 2 exists a n € N, such
that ¢ < T (w). Thus one gbtains almost surely pathwise for fixed ¢ € Ry the upper bound
(H'wH)e 0), < (HTwH)e C’)T , which is P-almost surely finite. Therefore, in the same

way as for H € LP(M) one can see that the integral process (H'nH) e C is P-almost surely
well-defined, continuous, adapted and thus predictable for each H € L2 _(M).

loc

Let M be some K%valued continuous local martingale and H € L2 _(M). Then set (7,)nen
to be the increasing sequence of stopping times discussed in Definition 2.11 and may (0),en
denote the localizing sequence for M, i.e. it is also increasing as well as lim,,_,~, 0,, = 00 and,
additionally, M7 — My is a martingale. Consider now for each n € N the stopping time
Tp = Tn A 0. Obviously, (7, )nen is still increasing and tending almost surely to infinity for
n — oo. By [Sch23, Lemma 4.135(a)], M™ — My is a martingale for each n € N and thus
(Tn)nen is localizing sequence for M. Furthermore,

E[((H'nH)eC)_] SE[((HTWET)OC)%”] < 00, n €N,

Tn
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2.4. INTEGRABLE PROCESSES W.R.T. LOCAL MARTINGALES 17

holds and therefore one can always think of a single sequence of stopping times meeting the
criteria of Definition 2.11 as well as being a localizing sequence for M.

Lemma 2.12. The above defined set L% (M) is indeed a vector space.

Proof. In a similar way as in Lemma 2.10 one can see that for H, K € L2 (M) and a € K
also aH + K € L (M) and therefore L2 (M) is also a vector space. Namely, by Definition
2.11, there exist two increasing sequences (77),cn and (75),,cn, whose limits for n — oo

are both almost surely infinite, satisfying
HeI?’M™) and KelL*M™), neN.

By now defining for all n € N the stopping time 7, = 7/ A 75 one obtains an again
increasing sequence of stopping times with the almost sure limit lim,,_, ., 7, = 0o satisfying
H,K € L*(M™) for each n € N, as

1H || p2armm) = E[((HTwH) . C)Tn] 2 E[((HTwH) . C)TH} Y oo, meN,
and analogously
1K ll2um) =E[(KT7R) 0 0) |7 <B[((KT7R)e0) ] <00, mew

As L?(M™) is a vector space by Lemma 2.10, also aH + K € L?>(M™) for each n € N,
which leads to aH + K € L2 (M) and thus concludes the proof. O

2 (M) — Ry defines a pseudonorm on L (M) in
the sense that it fulfills all criteria of a norm, except that it might be infinite. Additionally,
L*(M) C L2 (M) and L% (M) \ L?*(M) is exactly the set of all H € L2 (M) satisfying
I HIz2(ar) = oo

Furthermore, the function || || z2(ar) L?

The main reason for introducing this set is that the constant processes are not necessarily
elements of L?(M) for each continuous local martingale M. For example, take a R%-valued
Brownian motion B. Then one may use [B]; = tI; for each t € R, where I; denotes the
(d x d)-dimensional identity matrix (see [Sch23, Example 5.70(a)]) to see that C'%) = dt
holds and thus the constant process H = (1,...,1)T € R? is not in L*(B), as

B[(HT P ) e 7)) ] =E [(i ‘”fl(dfj] s(@) |
2 .
() -]~

Jj=1

2

ioc(B), as the lemma below the following definition shows.

However, H is an element of L
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18 CHAPTER 2. INTEGRABLE PROCESSES

Definition 2.13 (Locally bounded process). A K9 valued process H is called locally
bounded, if and only if there exists an increasing sequence of stopping times (7,,)nen tending
almost surely to infinity, such that for each n € N there exists some U,, € R, satisfying
[ H (W) 10,7, w)) (D lp < Uy for all (t,w) € Ry x Q and some p € [1, 00|, where

d
S N\1/p
Il K 2@ (3 leP) T eRy, pellioo),
j=1

denotes the p-norm on K¢ and
|- lloo : K¢ 3z max{|z?] : j =1,...,d} e Ry
the maximum norm on K¢

Note that by [Sch23, Remark 13.19(b)] all norms on K¢ are equivalent, thus the (locally)
boundedness property of a stochastic process does not depend on the choice of p € [1, o0].

Lemma 2.14. For each locally bounded process H € P% according to Definition 2.13 and
K9-valued continuous local martingale M follows that H is an element of LIOC(M).

Proof. In the same way as in the first step of the proof of Theorem 4.15 below define for
each n € N the stopping time

op = inf{t € Ry : Cy = n}.

As always, the convention inf @ = oo is used. Therefore, (0, )nen is increasing and tend-
ing almost surely towards infinity as n — oo, because C is increasing and continuous.
Additionally,

E[/Ognzi:lw{j dCt:| :E[é/ogn dg‘g]t dC’t] :E[Ed: /Un d[Mj]t] :E[Z[Mj]an]

=E[C,,] <E[n]=n< o0

holds for all n € N. Fix now = € K?. Note at first that, due to Lemma 5.21 in the fourth
step,

d d
2 m(w)a| = | Y ar ()| < S ) < ol 3 )

1,j=1 1,j=1 ij=1
i () + 0 (1
< |lz[l3 Z \/ﬂ?i\/ﬁfiqm”? mi'( )J; i (w)
v = 1 (2.2)
_ Lol : ala &,
ZZ ) 5 Z(dﬂt( ) + tr(mp(w)))
i=1j= i=1
T 2
I 2” (dtr(Trt( )) + dtr(my( ))) = dl|z[Str(m (w))
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2.5. PROPERTIES OF THE SPACE L2(M) 19

holds for all t € R4 and w € (2. In the fifth step above the inequality

a? + b?

ab < — 0<a’+b>—2ab=(a—10b)?% a,be Ry,

has been used. One may now define for each n € N the stopping time 7,, = 7, A 05, whereby
(Tn)nen is also increasing and tending almost surely towards infinity as n — oo. Thus the
process H is in L2 (M), due to

loc

B[(Gr7e1)0), ] < aB[(111 3 w) 2] ] =aB[(r10 . 35 o).

=1 "

<duZE[ (D7) o c)%n] <auZE[ (3 ) .C)%] < dU2n < oo

j=1 j=1
for each n € N. O

The last lemma also implies that each K%valued predictable step process is in L120C(M )

for all K%valued continuous local martingales M, as they are bounded by Definition 2.2.

2.5 Properties of the space L?(M)

As L?(M) is a normed vector space, one may also consider convergence of stochastic process
in L?(M). For starters, a relatively simple, but often times useful case will be examined in
the lemma below.

Lemma 2.15. As always, may M denote a K%-valued continuous local martingale and
let (Tn)nen be a sequence of stopping times converging P-almost surely to oo as n — 0o.
Then for every predictable process H € L?(M) the sequence of processes (Hy,)nen defined by
H,. = Hylyy, 1(t) for each n € N and t € Ry converges in L*(M) to H as n — oo in the
sense that

nlgl;o | Hy, — Hl|2(ary = 0.

Proof. Note at first that due to the left-continuousness and adaptedness of 1, the
processes H,, are predictable and thus also in L*(M). With the dominated convergence
theorem in mind, the proof is quite straightforward. At first consider

| Hy = H|| 72y = E /0 (Hpny — Hy) 'my(Hyy — Hy) dCt}

=K / (Ht]l[077n](t) — Ht)TWt(Et]l[O,Tn](t) — ﬁt) dCt:|
0

=FE / H;rﬂ'tﬁt dCt:|

for each n € N. The sequence of F-measurable and P-integrable functions (f,),en defined
as

Aowr frlw) = /O: )Hf(w)wt(w)ﬁt(w)C(dt,w) e Ry
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20 CHAPTER 2. INTEGRABLE PROCESSES

for each n € N converges for P-almost all w € © to zero as 7,(w) — oo for n — oo.
Furthermore,

[fn(@)] = fulw) < g(w) := /Ooo H (w)m(w)Hy(w)C(dt,w),  neN,

where g : Q — Ry is measurable and satisfies E[g| = ||H ||%2( ) < 0. Thus one can use the
dominated convergence theorem, see Theorem 5.37 in the appendix, to obtain

oo
I~ HlR sy = Jim | [ B mpaCo| = i Elf,] = T Blf, ~ 0]l =0,

lim
n—o0

which concludes the proof. O
The proof of the following lemma is very similar to the one above.

Lemma 2.16. Let again H € L*(M) for a K%-valued continuous local martingale M and
set Hy(w) = Hi(w)1) a1, (w)|o<n for each n € N and (t,w) € Ry x Q. Then H,, — H in
L*(M) for n — oco.

Proof. As in Lemma 2.15 one has to show that limy, o [|[Hn — H| z2(ps) = 0. Similarly to
above it is clear that for each n € N the equality

r (o]
I, = Hlupy = | [ (s~ B Tr s~ i ]
L/ 0O

=E / (Helym y<n — He) Tme(HeL gy y<n — Hy) dCt}
LSO

=E _/OOO Lyrr, osn H meHy dCt]
holds. Thus one may define for each n € N pathwise
Fa(t) = Lyp, pon HY o H,,
which is Bg, -measurable by Lemma 5.6 and P-almost surely C-integrable. Additionally,
|fu()] = fult) < §(t) := H m H,, n €N,

where g is also Br, -measurable and P-almost surely C-integrable. Furthermore, as H is
K9 valued, the Euclidean norm of its realization at any point (t,w) € Ry x  is finite and
thus there exists an ng(t,w) € N, such that ||H;(w)||2 < n for all n > ng(t,w), which implies
the pointwise convergence to zero of ( fn)neN for n — oco. Thus one can use the dominated
convergence theorem, i.e. Theorem 5.37 in the appendix, to obtain

o0 [e.e]

0= lim | fu(t) — 0] dC; = lim fult)dCy = lim L1, o 50 HJ T Hy AC.
n oo n [e.9] 0

n—oo 0 0

For each n € N the function

hw) = [ e HT (@) () Fy () O, )
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2.5. PROPERTIES OF THE SPACE L2(M) 21

is F-measurable and P-integrable satisfying

‘fn(w)| = fn(w) < g(w)7
which was defined in the proof of Lemma 2.15 above. By the previous findings of this proof
one can see that (fy,)nen also converges P-almost surely to zero for n — oo. Therefore the
dominated convergence theorem leads to

o
|Hy — H|250p) = Jim E[ | i T 0| = 1 B

lim
n—od n—oo

= lim E[|f, — 0]] =0,
n—oo
whereby limy, e [[Hy — H| 20y = 0 follows. O

In remaining parts of this thesis one may often approximate some process in the normed
vector space L?(M) by predictable step processes. Therefore it is essential to show that
those processes are dense in the aforementioned space, which will be done below. The proof
of the following theorem relies on [SC02, p. 16f].

Theorem 2.17. For each K%-valued continuous local martingale M the predictable step
processes in L2(M) are dense in L*(M).

Proof. Assume at first that M is a K%valued continuous local martingale, such that
E|[(tr(m) e C’)OO] =:U < 0.

Take now any = € K¢ and predictable set A € >p. Thus the K9 valued predictable process
214 is an element of L?(M). To be precise, one may use inequality (2.2), which has already
been introduced in the proof of Lemma 2.14, to see that

|14l 20y = E[((zT1an214) 0 C) _]"? <E[((2T77) « C)
< d|lz| % E[(tr(m) 0 ©) _]"* < o0,

]1/2

o0

where || - || denotes the maximum norm on K%, due to the assumption above. Now define
M as the set of all predictable sets A, such that for each x € K¢ exists a sequence of
predictable step processes, see Definition 2.2, in L?(M) that converges to z14 w.r.t. the
norm || - [ z2(pr)- In the next step it is shown that 9 is a monotone class per Definition 5.15.

(i) @ and Q are trivially in 91, as the constant processes 0 and z are predictable step
processes.

(ii) Suppose A, B € M with A C B. Then there exist two sequences of predictable step
processes (H2),cn and (HP),cn converging to 214 and x1p, respectively. Thus one
can see that (H,‘LB - Hfl‘)neN, which is again a sequence of predictable step processes
per Lemma 3.2 in the next chapter, approximates x1p\ 4 and therefore B \ A € I,

due to
Tim ([(H7 — H;) = 2lp\allzzon) = N |[(H) — Hy) = (@1p — 214) | 200y

= lim H(Hf—w]lB) - (Hf;l _x]lA)HLQ(M)
n—oo

< Jim B = oLplliqn + Jim 1y = @Lallizn =0
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(iii)

Now assume A, B € M with AN B = @. With the notation from (i) is is apparent
that (HA + HP),en converges to 21 405 and thus AU B € 9, as

. A .
Tim (|(H + HY) = 2laosllizon = lim [|(Hy+ HY) = (214 +218)| 2200
= lim [|(H; —x1a) + (Hy — 215)| 20

< hm |HA —zlallz2n) + hm ||HB—:EIIBHL2 y = 0.

Fix an increasing sequence (A, )nen € M, which implies that 14, converges pointwise
to x]lukeN 4, for n — oo. Then for each n € N exists a sequences of predictable step

processes (H, j)ken in L?(M) converging to x1,, in L*(M). In other words, for each
n € N and € > 0 there exist a natural number ky,(¢), such that

[Hn — 214, l[220ar) S € k = kn(e).

Similarly as in the proof of Lemma 2.16 on can now define for fixed w € € and each
n € N the, due to Lemma 5.6 in the appendix, Bg, -measurable function

Ryt fn(tvw) = ]]‘A'n, (t,W) xTﬂ-t(w)ja
which is pointwise bounded by the P-almost surely C' (w)-integrable function
Ry 3t g(t,w) =z m(w)z.

Consequently, the dominated convergence theorem, see Theorem 5.37 in the appendix,
leads for P-almost all w € 2 to

lim 1a,(t,w)z m(w)E C(dt,w) = hm fu(t,w) C(dt,w)
n—oo R+ R+

= f(t,w) C(dt,w) = /R 1, o A (B w) z 7 (w)Z C(dt,w) =: f(w) < oo

R

Furthermore, one may now define
Q3 fulw) = /R 1, (t,w)a"m(w)EC(dt,w), neN,
+
which is for each n € N a F-measurable function and pointwise less or equal to
23 g(w) = /]R 21 (w)Z C(dt, w).
+

Note at this point that as stated in the beginning of this proof

E[g] = EUR+ L C(dt,w)} < deH%EU Zﬂ C(at w)] ~o.

+]1
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2.5. PROPERTIES OF THE SPACE L2(M) 23

Thus the dominated convergence theorem is again applicable, leading to

lim o1y, 4, — 2L, 2200 = lim E[(((HUkGNAk C1a)aTE) e C>oo]

n—oo n—o0

= lim E[f(w) ~ fa(w)] =0.

Thus 214, converges in L?(M) to 21y, . Ay 1€ for each € > 0 exists a n(e) € N,
such that
Ha:]lUkeNAk —zla, |2 <6 n > n(e).

Consequently, the sequence of predictable step processes (Hn,kn(rn))n oy converges in
L*(M) to rlLyy, , Ays 88 for each € > 0 the triangle inequality implies that

[ Hy ke, 2=y — 21, 4|22

< | Hng @) — 2l 2y + 214, — 21y, 4, llzzon
€ _
5 =€
for all n > f(e) := min{n € N : 27" < ¢/2} V n(e/2). Therefore, | J,cn Ar € M,
making 91 a monotone class.

By [JS13, Theorem 2.2(ii)] the set of all sets of the form {0} x B for B € Fy and
(s,r] x B for B € Fs and s < r being two non-negative real numbers, which will in this
proof be denoted by &, generates the o-algebra ¥,. Each of those sets is also in 9, as
1oy« p(t,w) = xli=olp(w) is itself a predictable step process, because r1p(w) is per
assumption a bounded and Fy-measurable random variable. Analogously, (5% g(t,w) =
r1p(w)l(,,(t) is again a rather simple predictable step process according to Definition 2.2.

Note at this point that & is intersection stable, as for (s1,71] X By and (s2,72] X B2 the
intersect is either & or (s1V s, 71 Ara] X BN By, which is again in &, because B1N B2 is Fs, vs,-
measurable. Additionally, ({0} x By) N ((s,7] x B) = @ for all By € Fo, two non-negative
real numbers s < r and B € F;. Lastly ({0} x By) N ({0} x By) = {0} x (BN Bs) € &, as
BN By € Fy for all By, By € Fy. Therefore one may now use the Monotone class lemma,
Lemma 5.16 in the appendix, to obtain

Yp=o0(6)=Mm&)CMm,

where 91(®) denotes the minimal monotone class that is a superset of &. By the definition
of M it is clear that M C 3, and therefore M = ¥,,. In other words: For all processes of
the form z1 4, where z € K¢, A € Yp, exists a sequence of predictable step processes in
L?(M) converging to it.

Let now H € L?(M) be bounded. As H is ¥,-measurable, one can use Lemma 5.35 in
the appendix to obtain a sequence of simple functions (f,,)nen, where f, = ZT:TH Tnjla,
converging uniformly to H. For each n € N and j € {1,...,m,} it follows by the aforemen-
tioned lemma that x, ; € K< and Ay j € ¥p. As seen in the previous steps of this proof,
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24 CHAPTER 2. INTEGRABLE PROCESSES

there exist sequences of predictable step process (H, jx)ken in L?(M) converging to each
Tp,jla, ;- Assuch for each pair (n,j) € Nx {1,...,m,} and each € > 0 exists a k; j(¢) € N
such that

€
[ Hnjk — Znjla, ;llzon) < p k> knj(e).

Therefore the sequence (H, i, )ren defined for each (n, k) € N? as Hy . = ZT:"I H,, j i, which
are again predictable step processes by Lemma 3.2 in the next chapter, converges for all
n € Nin L?(M) to f, for k — oo, which can be seen by

Mn

1Bk~ Fulzqan) = H( o) = (Y wala,, )|
j=1
Mn

—HZ nik — wnﬂAnJ)HLg(M<ZHHW L, |2

7=1
€ €
< E —=my,— =c¢

mnp mpy

L2(M)

for fixed € > 0 and all k& > ky,(€) := max{k, j(e) : 5 =1,...,myp}. As f, — H uniformly for
n — oo, it follows that for each € > 0 exists an n(e) € N, such that

[fn(t,w) = Hy(w)1 < n = n(e)

€
au’
holds simultaneously for all pairs (¢,w) € Ry x Q. Consequently, one may use inequality
(2.2) in the second step to obtain

5= Flia = B| [ (Fn(t0) = Hile) o) i) ) :
<] [ (Ifult.) - I Zw @) dei )r”
SdEU (Z” @) dCi >]1/2§dd€UUge

for each n > n(e).

Consider now the sequence of predictable step functions (Hn’kn(Q—n))neN. This sequence
approximates H in L2(M), because for each € > 0 exists an

n(e) := max(min{n eN:2T" < e/2},ﬁ(e/2)>,
such that
1
1Hn k2 = Hllz2an) < 1Hn k@) = fallezan + 1o = Hll2n < 55 +

holds for all n > n(e).
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2.5. PROPERTIES OF THE SPACE L2(M) 25

Fix in the next step a general, not necessarily bounded, H € L?(M) and define for each
n € N the predictable process H,, = H1||,<pn, Which is obviously bounded by n. Thus for
each n € N there exists a sequence of predictable step processes (Hy, )ren converging to
H,, in L?*(M) for k — oco. In other words, for each € > 0 there exists a k() € N, such that
| Hp ke — Hpllz2(ary < € for all k > ky,(€). Furthermore, the sequence (Hy)nen converges in
L*(M) to H as n — oo, due to Lemma 2.16, i.e. for all € > 0 exists some 7i(¢) € N, such
that ||H, — H||12(ar) < € for all n > 7(e). Similarly to above, consider now the sequence of
predictable step functlons (Hp g, (2-7))nen and fix € > 0. By those preliminary findings, it
is now apparent that (H,, ;,, (2-»))nen converges to H in L?(M), as
I Hppo2-7) — Hll2any < 1 Hpp 27y — Hull 2y + [[Hn — Hl z2(an) <

+-<e

N

€
2n
holds for each n > n(e) := max(min{n € N: 27" < ¢/2},7(e/2)).

In the last step, let M denote a general K?-valued continuous local martingale. As already

seen in the proof of Lemma 2.14, there exists a sequence of stopping times (7, )nen satisfying
Tn < Tnt1, liMy 00 7 = 00 almost surely as well as

1/2

Tn , 4 B}
E[/ (Z(W(M))gj) dC’t(M)] < 00, n € N.
0

J=1

For each n € N one may now define the process Hy,, = H1|;,]. Fix now some n € N. The
stopped process M ™ fulfills the assumption from the beginning of this proof, as

(s J ] ™ & y 1/2
E U (Z(MMM)#) ac™M n)} & [ / <Z(7T(M))€j> ngM)} e
0o N4 )\

shows. Thus there exists a sequence of predictable step processes (H,, ;)ren converging to
H in L?>(M™) for k — co. As

klggo | Hy ke Ljo,r) — HllL2(a170) = khjgo | Hp ke — Hl z2(psmm) = 0,

one may assume H,, ;(t,w) = 0 for t > 7, (w) for each k € N without loss of generality. For
any process K € L?(M) Definition 2.9 implies

1K 1o ryplz2ry = E[((K 17 7D Ko 1, 0 COD) )12
= E[(KTrE o ¢D)_11/2
— E[(KTxME o (COD)™) 11/
—E[(KTaM™E e ¢M™) ]Y/7
= | Kll2(asmn)-

Thus for each € > 0 exists a k,(¢) € N, such that

| Hyke — Hull 20y = 1(Hpp — H) o1 ll2any = [Hue — Hll 2y <6, k> En(e).
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26 CHAPTER 2. INTEGRABLE PROCESSES

Furthermore, Lemma 2.15 implies for each € > 0 the existence of an 7n(€) € N, such that
HHn_HHLZ(M) SG, nZﬁ(e)

Thus one may use the same trick as above one more time, i.e. consider the sequence of
predictable step processes (Hn,kn(z—"))neN and define for each € > 0 the natural number
n(e) := max(min{n € N: 27" < ¢/2},7(¢/2)). Thus one can easily see that Hy g, 2-n) — H
in L?(M), due to

1 €
1 o 2y = Hll 200y < [ H o 2-m) = Hullzzany + 1 Hn = Hll 20y < o +5 <€

for n > n(e), which concludes the proof. O]
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3 The stochastic integral

3.1 The stochastic integral w.r.t.
multi-dimensional continuous local martingales

At first one may only consider simple integrands, i.e. predictable step processes.

Definition 3.1 (Stochastic integral for predictable step processes). Let H; = polyg)(t) +
Y1 ©nlir, (1) be a K9 valued predictable step process (see Definition 2.2) and M a
K9%valued continuous local martingale. Then the K-valued stochastic integral of H w.r.t.
M is defined pathwise as

. m
HOM—/thMt—ZQOI(MTnH—MTn)-
0 n=1

By [Sch23, Lemma 5.13(b)] for each n € N the process ¢} (M™+! — M™) is a K-valued
continuous local martingale. Thus the integral process H o M is also a K-valued contin-
uous local martingale and as such also predictable. In fact, the integral process is even
a martingale, which will be shown a bit further below. This definition also implies that
(H @ M)y = 0 for all predictable step processes H € L?(M).

For a K%valued predictable step process H = (Hy, ..., Hy)" and K%valued continuous
local martingale M = (M, ..., My)T it can be easily seen that

m
(HeM), = Z SD;IL— (MtTnH — MT" Z Z‘Pn Tn+1/\t MﬁnAt)

n=1 n=1j=1
d m d
_E :E : J J E : J J
- ©n (MTn+1/\t T /\t H o M

holds for all ¢ € R;. Furthermore, for each stopping time 7 holds (H e M)™ = H e M".
Additionally, the equality (H e M)™ = H™ e M" follows by [Sch23, p. 152].

Lemma 3.2. Let G, H be two K%-valued predictable step processes, o € K and M a K9-
valued continuous local martingale. Then the process oG+ H is again a K*-valued predictable
step process, which leads to the set of all K%-valued predictable step processes being a vector
space, and the above defined stochastic integral is linear in the integrand, i.e.

(aoG+H)eM=a(GeM)+ Hell.

27
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Proof.
Step 1 (Vector space property). For notational convenience let
mG
G G
Gy = “0 IL{O}(U + Z Pn 1(7-7?,77%_1 (t)a te Ry
n=1

and
mH
Hy = o3 Loy(®) + 3 on Lot 10, tE Ry
n=1

G

Without loss of generality assume m© < mf and define ¢& = 0 as well as Tl = TSG 41

for all n =m& +1,...,m". Similarly to [Sch23, p. 152] one may define

. 1/ H
T = max min 7; nefl.....mft1
! IQ{G’H}X{17’n} (l»])el 7’ { ’ ) }7
[T|=n+1
and
_ L o )
Tn m min 7; ne{m” +2,...,2m" 4+ 2},

= ax It
IC{G,H}x{1,...mH 41} (4,5)€l

[I|=2mH +3—n

where |I| denotes the cardinality, i.e. the number of elements, of I. Fix now n €
{1,... omH 4+ 2} and note that each element of I is itself a pair consisting of a capital letter
(either G or M) and a natural number smaller than or equal to n. By [Sch23, Lemma
3.12(b)] follows that 7,, is a stopping time, as ming j)er T; is a stopping time, due to it being
the minimum of finitely many stopping times for each set I C {G, H} x {1,...,nA(mf +1)}.
Thus 7, is the maximum of finitely many stopping times and consequently again a stopping
time, by using [Sch23, Lemma 3.12(b)]| once more.

By definition, 7y = 77 A Tl = min{T; i€ {G,H}, j€{1,...,m" +1}}, as both
sequences (75),c (1,...mH} for i € {G, H} are increasing. Thus one may now use induction
and assume that

Tk:min<{rj:i€ {G,H}, je {1,...,mH+1}}\{7’1,...,716,1})

forall k =1,...,n — 1 and fixed n € {1,...,m" 4 1}, which also implies 7y < --- < 7, 1.
Note that there exists exactly one set I C {G,H} x {1,...,n} satisfying |I| = n + 1, such
that IN{rj:j=1,...,n— 1} = @, as the cardinality of {G, H} x {1,...,n} = 2n. Thus
each subset of it with cardinality n + 1 leaves out exactly 2n — (n + 1) = n — 1 elements.
As both sequences (T,ril)ne{l,m7mi} for i € {G, H} are increasing,

min 7¢ <7, 1 < min 7! I C{G,H} x{1,...,n} satisfying [I| =n+1, I #1,

L bl
el ? Gj)ef ’

holds, which implies

Tp = minj; = min({T; i€ {GH}, je{l,...,m"T + 13\ {7'1,...,7'”,1}>,
(i.)el
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for eachn € {1,...,m" +1}. Similarly, for fixed (m" 4+14-n), where againn € {1,...,mf +
1}, there exists exactly one subset I C {G, H} x {1,...,m* 4 1} satisfying

I =2m" +3—(m" +14+n)=mf —n+2,

such that TN {r; : j = 1,...,(m" + 14 n) — 1} = @, as the cardinality of {G, H} x
{1,...,mf +1} = 2m* 4 2. Thus each subset of it with cardinality m — n + 2 leaves out
exactly 2mfl +2 — (m" —n +2) = m® 4+ n elements. Consequently,

min 7' < Tpian < min 7h T C{G, H}x{1,...,m" 1} with |I| = 2m* +3—n, I #1,

(i 7])61 (4,9)€l 7

holds for all n € {1,...,m" 4+ 1} in the same way as above, leading to

Tp = Min_7; —mm({T ie{G,H}, je {1,...,mH+1}}\{7’1,...,7'”_1}>
(ig)el

for each n € {1,...,2m! + 2}. Thus the sequence (Tn)ne(l,....2mH +2} 1S an increasing finite
sequence of stopping times satisfying

{Tn(w) 'n € {1,...,2mH+2}} = {Tfl(w):ie {G,H}, n€ {1,...,mi+1}}

for each w € Q.

Furthermore,
2mM 41

zwn ERCED DT (zson )
k=1
2mH+1m

= Z Z@n n’n+1 )]]‘(Tkﬂ'k+1](t)
2mH+1
= > (Z% {(mmﬂcu,nH]})ﬂ(wm(t)

k=1 n=1
omH 41
G
= Z (Z #n :H'{(Tk»'f'k-&-l]g( TG :H'{Tk<7_lc+1}> :ﬂ'(Tk»TkJrl]( )
k=1 n=1

holds for each t € Ry. Note that for each pair (w,k) € Q x {1,...2m* + 1} exists at most
one n € {1,...,m%}, such that

1{(Tk,Tk+1]g(T§7T§+l]}(w) H{Tk<7k+1}(w) =1

and define Q > w +— ¥ (w) = 0 € K. Additionally, for each two stopping times o and 7 and
a set F € F, follows

Fn{oc<t}=Fn({o<ri\{o=7})=(Fn{o <7})\{o =1} € Fonr,

e]'-a/\'r G‘FO'/\T
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due to [Sch23, Lemma 3.12(g) and (h)]. Consequently, for fixed k € {1,...,2m + 1} the
random vector given by

mG
Q3w ﬂﬁkG = Z %?(W)ﬂ{(Tk,TkH]g(T,?,TgH]}(w) 1{7k<rk+1}(w)
n=1
]l{Tk<Tk+1} Z H{TG<Tk}( )]l{TfHZTkH}(w)
mG
]]'{Tk<7'k+1} Z Il{7’G<7'k<7' }(w)

is bounded, K%valued and F,, -measurable, as one can use [Sch23, Lemma 3.12(d), (g) and
(h)] to obtain
mG

-1
G
<]l{7'k<‘fk+1} Z #n H{TESW<T§+1}> (4)
n=1

- ( P A) ﬂ( {1 < TlG} U{re > ng+1}U{Tk = Tk+1})>
—— —_—— ) ———

{(8Q)CFy,  €F, 6Py, eFry eFr,
mG
U -1 AN{E <IN G N F.
(o) (A) N7y < b0 e <70} 0 {me < Tk} | € Fo,
o 4 ~~
=l 6‘7:7—7? Eka AT§+1 F, €Fn, ATk+1 CFry
efT,?ATkngk

for all A € Bga. Analogously one can see that for each ¢ € Ry holds

omH 41
Z(p” 11( i ) t) Z <Z #n ]l{ (T T 1S (P E 1Y ]l{Tk<Tk+1})]l(TMk+1](t)

k=1 n=1
and the random vector defined as
H
Q5w <Pk = Z o ( {(Tk,f,m]q i T n+1]}(w) ]l{rk<7k+1}(w)
n=1
is also bounded, K?valued and F,,-measurable for each k € {1,...,2m! +1}.
Consequently,
aGy + Hy = (ap§ + o )10y (2 +a2@nﬂ( , n+1] +Z¢n TH (1)
2mH+1 2’mH+1
= (2§ + ot )yt +a D B Lm0t Z B1 Lm0 ()
k=1
2mH +1
= (ae§ + o)Ly () + D (@@ + &)L (r, ) ()
k=1
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for each t € R, where ompOG —|—(p6{ is a bounded Fp-measurable random vector and acﬁg + gka
is a bounded F, -measurable random vector for each k € {1,...,2m* + 1}. Thus oG + H
is a K%valued predictable step process by Definition 2.2 and the set of all K%valued
predictable step processes is consequently a vector space.

Step 2 (Linearity of the integral). As aG + H is a K%valued predictable step process, the
stochastic integral (aG + H) e M exists according to Definition 3.1. Thus one may use the
previous findings of this proof to obtain

2amH 41
(aG+H) o M = ((ag§ + o)Ly + Y (3 + D) Lin ) o M
k=1

omH 41

3" (a@g + g (M - M)

k=1

omH +1 omH 41
=a Y (F)TM™ = M)+ Y (@) (M — M),

k=1 k=1

Define now for each n € {1,...,m%} and w € Q the natural number
kS (w) = inf{k € {1,...,2m" +2} : 78 (w) = 7k(w)}.
Consequently, for each pair (t,w) € Ry x Q follows

omH 41 omH 41 G

m
T
~G\T G
Z ((pk) (MtTkJrl - Mz;rk) = Z <]]-{Tk<7'k+1} Z ¥Yn ]]'{TEST]C<T§+1}> (MtTkJrl - MtTk)
k=1 k=1 n=1

k=1 n=1
m 2mH+1 mG Kni1 (w)fl
=D 00T Y Lpganer (MM = M) =3 ()T D MM - M
=t h=1 n=1 P
m& mG
Tkn n\ T8 G B
= (ng)T(Mt +1 MTE ) _ (ng)T(Mt 1T ) _ (G o M)t
n=1 n=1

and analogously
2mH +1
N (@) T(MT — M) = H e M.
k=1
Thus one may now combine those results to obtain

2mH +1 omH 41
@G+ H)yoeM=a Y (5)T(M* —M™)+ Y (FO)T(M™+1 — M)
k=1 k=1

=a(GeM)+ HeM,

which completes the proof. O
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Another very important property of the above defined stochastic integral for K%-valued
predictable step processes w.r.t. K%-valued continuous local martingales will be shown in
the following lemma.

Lemma 3.3. Let H be a predictable step process and M a continuous local martingale,
which are both K%-valued. Then the quadratic variation process of the stochastic integral

[H o M] = / <Z H;w;'ng> dC, = (H'nH) e C
i,7=1
up to indistinguishability.

Proof. Let H = (Hy,...,Hy)T, where H = @)1y (t) + S0 @hl(s, 5, (t) for each
j=1,...,d. Thus for all t € R one obtains

d d
[HoM]t:[ZHjoMj] = Z[HjoMj,ﬁkoMk]t
j=1 k=1
d m
] —k(ark Ak
= Z |:Z (Pn +1/\s - Mgn/\s)a Z Pl (MTl+1/\S - Mn/\s)
jk=1'n=1 =1 t
d m
j k k
Z Z +1/\S - MﬁnAS) (MTZ+1/\S M’T‘l/\s)]
jk=1n,i=1
Considering each n = 1, ..., m separately, for each w € {2 the processes goﬁl(Mﬁn LiAs T Mﬁn As)
are zero regardless of ¢f, up to 7,(w) for each j = 1,...,d. Thus also the covariation process

is zero. Therefore, the linearity of the covariation process extends in this case not only to
Fo, but to all F, -measurable random variables, particularly ¢7,. An analogous conclusion
can be drawn for the processes @) (MleAS — Mfms) where [ =1,...,mand k=1,...,d.
Furthermore, those processes are constant, except when 7, (w) < s < 7,41(w), which leads to
the covariation process [gpn(MﬁnHAs - MﬁnAS) (Mflﬂ/\S - Mfl/\s)] being zero, whenever
n # [, because then at least one of the two contlnuous local martingales in the covariation

bracket would be constant on every interval in R;. Consequently,

d m
Z Z +1/\S - Mgn/\s) (M‘I]'Cn+1/\s an/\s)] te R+.
J,k=1n=1

By carefully using the above mentioned extended linearity argument twice, one obtains

d m
[H b M]t Z ZW%@ZZ [(M] +1As T MT /\s) (an+1/\s an/\s)]t

d m
= Z Z 90 ([M] +1A8? an+1As]t - [Mﬂj'n_H/\s’ an/\s]t - [Mgn/\sv an+1As]

+ [MJ AS) Mf /\s]t)
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for each t € R, which then leads to

> ehEn (M7 MO — (M7, MM

M=

[H [ ] M]t =
jk=1n=1
d m Tt 1AL _
— Z Z(pgl @ / TR dCs = (H'nH) e O)y,
jk=1n=1 T/
where in the second-to-last equality Theorem 2.7 is used. 0

Up to this point only one given continuous local martingale was being considered. In the
definitions below two Banach spaces, whose elements are continuous (local) martingales,
will be introduced. In the following let M and M. denote the vector space of all K-valued
continuous martingales and continuous local martingales, respectively.

Definition 3.4 (The Banach space H? and the norm || - [l32). On the above introduced
space M set the function || - [|2 : M — R4 to be

,11/2
| Mgz = B[ sup [0;?]
teR,

and define the space H2 = {M € M : | M||32 < oo}.

From this point on, no distinction will be made between a process in 42 and its equivalence

class of all processes in H? that are equal up to indistinguishability, in order for || - ||, to
define a norm on H?.
In the following let H2? denote the set of all aforementioned equivalence classes of K-
valued cadlag martingales M satisfying || M |32 < oo, as opposed to H? including only the
continuous ones. Note that cadlag is an acronym of the French phrase continue a droite,
limite a gauche, which means that for each w € €2 the path M (w) is right-continuous and the
left-hand limit exists for each ¢ € (0,00). Consequently, H? C H2. Then (H2, || - [l42) is a
Banach space, as shown in [CE15, Lemma 10.1.5]. Furthermore, as stated by [CE15, Remark
10.1.11], the limit in H? of a sequence of K-valued continuous martingales in H? is then
itself again a K-valued continuous martingale and consequently also an element of #2. Thus
the above defined set H? equipped with the norm || - ||32 is indeed a Banach space, as for
K-valued continuous martingales M and M? as well as o € K also aM '+ M? is a K-valued
continuous martingale. Similarly, one can also consider continuous local martingales M
satisfying ||M |2 < oco. However, the following lemma shows that this does not yield a
generalization of the space H?2.

Lemma 3.5. If for M € Mg the value | M |52 is finite, then M is a continuous martingale
and thus also in H>.

Proof. Fix M € Mg, such that ||M|y2 < oo, which directly shows that the random
variable supyeg, |Ms| is in € £2(Q, F,P). Furthermore, Jensen’s inequality [Gril8, Satz 8.1]
applied to the convex function R, > z + z? implies that SUPseR, | M| is also an element
of € £1(Q, F,P). Additionally, let (7,,),en be a localizing sequence of M. Then for each
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t € Ry also My € LY(Q, F,P) as well as Myn,, € LY(Q, F,P) for each n € N, as for all
w € () it is evident that

[Minr,w)(@)| < sup [My(w)],  (£,n) € Ry XN
seRy

holds. Furthermore, as the pointwise limit lim, ., 7, = oo one may use the pathwise
continuity of M to obtain lim,_, Mir,, = M;. Consequently, for two non-negative real
numbers s < t the conditional dominated convergence theorem [Sch23, Theorem 17.15(j)]
leads almost surely to

E[M|Fs] = le E[Mnr, | Fs] = ILm E[Mipr, —Mo|Fs]+My = ILm Mpr, —Mo+My = Ms,

where the martingale property of M™ — M for each n € N has been used in the third step.
Therefore, M is a martingale. O

Further examination of the space H? yields the result that there exists an equivalent
norm on a subspace of it, which is induced by a scalar product. This subspace H(Q) is defined
as the set of all M € H? starting at zero. It is apparent that (H2, || - ||2) is again a Banach
space, when identifying up to indistinguishability equal processes.

Lemma 3.6. The function H3 x HE > (M, N) — (M, Nz == E[[M, N]s] €K defines a

2
scalar product on Hg.

Proof. For readablility set (M, N) = (M, N >Hg throughout this proof.
The Burkholder—Davis—Gundy inequalities [Sch23, Theorem 5.84] combined with the
monotonicity of the root function on Ry imply

1/2

E[[M]w]"? < |M]p2 < 2E[[M]] (3.1)

for all M € 7-[3. Thus this function takes indeed only finite values, as for M, N € Hg the
bounds

(M, )| < E[IIM, Nloo(@)]] < E[Vigy (R, )] < E[ VMR, w) VMR, w)]

< VE[MIR,w)]/E[[N(R4,w)] = E[[M]a] /2
< IMlygz [Nl < o0

E[[N]oo]

hold, where in the third step equation (5.30) in the appendix and in the fourth one the
Holder inequality [Gril8, Satz 8.2] have been used.

Now fix My, My and M3 € 7—[(2) and « € K and see that the conditions in Definition 5.17
below, namely

(i)
(aMy + Mo, M3) = E[[aMl + My, M?;]oo] = O‘EHMI’ ]\7[3}00] + EHMZ’M?’]OO]
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(i)
(My, My + M) = E[[My, oMy + Ms)oo] = aE[[ M, Ma)oo| + E[[M1, M3]oo]
= a(My, Ma) + (M1, M3),  and

(iii)
(My, My) = E[[My, My)s] = E[[Ma, Mi]oo] = E[[Ma, My]oo] = (Ma, My)

follow directly from the linearity of the expectation as well as [Sch23, Theorem 5.65]. Thus
(+,+) is a symmetric bilinear or Hermitian sesquilinear form, corresponding to K = R or
K=C.

Furthermore, by [Sch23, Theorem 5.76(d)], for each M € H2 the inequality (M, M) > 0
holds, as [M] is up to indistinguishability non-negative. Additionally, the aforementioned
Burkholder-Davis—Gundy inequalities imply that

uti

(M, M) =E[[M]] =0 < |[Mljsp =0 <= M =0
holds, proving the positive definiteness of (-,-) and consequently concluding the proof. [J

Therefore, the following lemma is a direct result of the Burkholder-Davis—Gundy inequal-
ities (3.1) mentioned in the proof above.

Lemma 3.7. The norm on 7-[% that is induced by the above defined scalar product, i.e.

1Mz 2= 1/ (M, M)y = E[[M]oo] /%,

is equivalent to || - ||2.

Consequently (H2, || - [32) inherits the completeness of (H3, || - l42) and is therefore also a
Banach space. This will become very useful in the following, as Lemma 3.3 directly leads to

1/2

|H o Mllyz = E[[H o M)oo] ' =E[(HTnH) o C) _|"? = |H| 20y (32)

for all predictable step processes H in L?(M). Therefore, for each K?-valued continuous
local martingale M and H € L?(M) being a predictable step process the stochastic integral
H e M is a continuous martingale starting at zero, not only a local martingale.

As stated in Lemma 2.17, each H € L?(M) can be approximated by a sequence (H,,),en
of predictable step processes in L?(M) and as such, (H,)nen is a Cauchy sequence in L?(M).
Therefore, for each € > 0 exists an ng € N, such that for all n, m > ng the norm

|(Hiy 0 M) = (Hyy o M)z = [[(Ho — Hyn) @ Mgz = [ Hy — Hyall 2000, < e
0 0

which makes the sequence of stochastic integrals (H,,  M),cn a Cauchy sequence in ’H%.
Note that in the first step of the display above Lemma 3.2 has been used. Due to the
completeness of this space, there exists a unique limit of (H,, @ M),cn, which will in the
following simply be denoted by H e M € H3.
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Definition 3.8. Let M be a K%valued continuous local martingale and H € L?(M),
according to Definition 2.9. Then the stochastic integral of H with respect to M

H.M:/thMt
0

is defined as the continuous martingale in ’H% that is the ’Hg—limit of the sequence (H,®M),cn,
where the sequence of predictable step processes (H,,)nen converges to H in L2(M).

Lemma 3.9. In the setting of the definition above, the stochastic integral process H o M
exists uniquely up to indistinguishability in ’H%, i.e. it does not depend on the sequence
(Hy)nen approzimating H in L*(M).

Proof. As in Definition 3.8 let (H,)nen denote a sequence of predictable step processes
converging to H in L?(M) and H e M the HZ-limit of (H,, ® M),cy. Furthermore, let
(H,)nen be another sequence of predictable step processes converging to H in L2(M) and
Y the H%—limit of (f]n e M) en. Thus one can use the linearity of the stochastic integral
for predictable step processes as well as equality (3.2) to see that

Y — (H o M)|lyz = E[[Y — (H o M)|oo]* = lim E[[(f,, o M) — (H,, ® M)]oc] "/

n—oo

= lim E[[(H, — H,) e M]s] "’

i = Jim [|Hn = Hyllz2m) =0

holds, which implies the equality up to indistinguishability of Y and H e M. O

Lemma 3.10. The isometry (3.2) holds for all H € L*(M).

Proof. Let again (H,),en denote a sequence of predictable step processes converging to H
in L?(M). Then by Definition 3.8 follows

[ H o M|y = Jim [ Hr @ M52 = Jim. I Hnll2ary = 1 Hl L2 0y
which proves the lemma. ]

The lemma below will be used on multiple occasions throughout the remainder of this
chapter. Note that the linearity of the stochastic integral proven in the first part will be
extended to processes H € L2 (M) in Lemma 3.23.

loc

Lemma 3.11. For each K%-valued continuous local martingale M and two processes H,G €
L?(M) follow the two statements below.

(i) Let o € K. Then (aH + G) € L*>(M) and
(aH+G)e M =a(HeM)+ Gel.

1) For each n € N define H, = H1g,<n, which leads to
1H]l2<
H,eM — HelM

in H3 as n — oo.
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Proof. The linearity follows from Lemma 3.2 and the second part is a consequence of the
first part.

(i) Let (Hp)nen and (Gy)nen denote two sequences of predictable step process in L(M)
converging to H and G in L?(M), respectively. As always those sequences exist due to
Lemma 2.17 in the last chapter. Then Lemma 2.10 implies (o H +G) € L?(M). Define
now for each n € N the process K,, = aH, + G,, which is also a predictable step
process by Lemma 3.2 as well as an element of L?(M). Consequently, the sequence
(Kpn)nen converges in L?(M) to the predictable process aH + G for n — oo, because

lim ||Ky, —aH + G2y = lim [JaH, + Gn — aH + G| 1200
n—oo n—o0
~ i [la(Ha— H) + (o = O)ll12an

<alim |[Hy — H| g2 + lim |Gn — G[z2(ar) = 0.
n—00 n—00

Due to Definition 3.8 and Lemma 3.9, the stochastic integral («H + G) ¢ M is the
Hg—limit of the sequence (K, ® M),cy and thus one can use the linearity of the
stochastic integral of predictable step processes w.r.t. continuous local martingales in
Lemma 3.2 to obtain
(aH + G) e M = lim (K, e M) = lim ((aH, + G,) e M)

n—oo

n—oo

= lim (a(H, @ M) + (G, @ M)) :anli_{rgo(HnoM)—f— lim (G,, @ M)

n—oo n—oo

(ii) Lemma 2.16 implies H,, € L*(M) for each n € N as well as H, — H as n — oo in
L?(M) and thus one can use Lemma 3.10 and the linearity of the stochastic integral
proven in part (i) to get

i N e 0) = (H e M)l =l (o ) Mg = i, 1o~ Hlssan = 0

Fix now a stopping time 7 as well as again H € L?(M) and (H,),ecn, a sequence of
predictable step processes converging to H in L?(M). Then the sequence of processes
(Hn1jo)nen converges to Hljg ;) in L?(M), as

Jim |[Hp Lo 7 = Hjorl[2(ar) = 1im [|(Hy = H)Ljo 7l L2(ar)
3.3
n—oo

shows.
Consider some process H € L2 (M). By Definition 2.11 there exists an increasing

sequence of stopping times (7, )nen satisfying lim,,_, o, 7, = 0o almost surely, such that

E[((1p,, H wH) e C) ] =E[((H'wH)eC) ]<oo, neN
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This implies that the process H1jg ) is an element of L?(M) for each n € N and as such
there exists the stochastic integral (H 1y ,,;) ® M. Note that for each m > n the equality

((Hlp,,, ) e M)™ = (Hly,,, ) e M™ = (Hlj 1o ® M = (Hl,,) e M

holds. Fix now some n,m € N with n < m and a sequence of predictable step processes
(Hpn k) ken converging in L?(M) to H1p 5,.1- Thus the sequence (H,y, 11y r,])ken converges to
H1y ) in L*(M) by equation (3.3). Due to Lemma 3.9, the sequence ((Hpm, 1 ,))®M)
then approximates (H1[ ) ® M in HE for all m > n.

keN

Definition 3.12 (Stochastic integral w.r.t. K%valued continuous local martingales). Let
M be a K%valued continuous local martingale and H € LIQOC(M ). Then the stochastic
integral of H w.r.t. M is a process H e M satisfying

(HeM)™ = (Hlpy,)e M, neN (3.4)

up to indistinguishability, where (7,,)nen is an increasing sequence of stopping times satisfying
all conditions of Definition 2.11.

Lemma 3.13. The above defined stochastic integral exists uniquely up to indistinguishability
and is a K-valued continuous local martingale starting at zero.

Proof. Note at first that equation (3.4) implies for some fixed n € N almost surely
(HeM)o= (HeM)j = ((Hl,,) e M), =0.

It is apparent that P-almost surely for each pair (¢,w) € R4 x € there exists an ng € N, such
that ¢t < 7,(w) for all n > ng. Consequently, the almost sure limit lim,,_,, H Lo, = H.
Therefore the almost sure limit lim,, oo (H ]l[oxm}) e M satisfies

(lim (H1,,, ) eM)™ = lim ((Hlp,,)) ®M)™ = lim (Hlg,,)eM = (Hlq, ) eM

m—00 m—00 m—00
for each n € N. Thus one can set H e M = limm_mo(H]l[Oﬁm}) o M.

Let now Y denote another process satisfying (3.4). Thus for each ¢ € Ry and P-almost
all w € 2 exists a n € N, such that ¢ < 7,(w), leading to

Yifw) = ¥ @) = ((Ha(@) Lo, 0)(5)) © Mi(w)), = (Ha(w) @ My ()"
= (Hs(w) @ My(w)):,
which shows that the two processes Y and H e M agree up to indistinguishability.
Suppose now (%n)n@\i to be another sequence of stopping times meeting all criteria of
Definition 2.11 and let Y be the up to indistinguishability unique integral process of H e M

satisfying .
Y™ :(HH[O,%H}).M7 n € N.
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Similarly to the last step there exists for each t € Ry and P-almost all w € Q a n € N, such
that ¢ < 7,,(w) as well as ¢ < 7,,(w). Consequently,

Vi(w) = V") = (Ho (@) Lo 5 (0] (5)) © Mis(w)),
= ((Hy(@) Lo () (5)) @ My(w)), = (Hy(w) @ My(w))[") = (Hy(w) © My(w)),

and as such Y = H e M up to indistinguishability.

As the pointwise limit of adapted processes this stochastic integral is also adapted and
the continuousness follows directly from equation (3.4), thus H e M is also predictable. By
definition 3.8 for H € L?*(M) the stochastic integral H ¢ M € HZ is again a continuous
martingale.

As mentioned earlier, the sequence (7, )nen can be assumed to not only meet all criteria
of Definition 2.11, but to also be a localizing sequence for the continuous local martingale
M. Consider now for each n € N the stopped integral process

(HeM)™ =HeM™=(Hlq,,)eo M,

where the right-hand side is a martingale, as Hl ;) € L?(M). Consequently, the integral
process H o M is again a continuous local martingale with localizing sequence (73,)nen,
which concludes the proof. O

3.2 The stochastic integral w.r.t. multi-dimensional
continuous processes of locally finite variation

In order to define stochastic integrals w.r.t. continuous semimartingales, one needs to at
first consider integrators of locally finite variation.

Lemma 3.14. For each A € V§ define the process

d
Viw) =Y Vai(0,1]),  (Lw) Ry xQ,
j=1

where Vi([0,t]) denotes the pathwise total variation of the process B on the interval [0,t].
Then there exists a (V @ P)-almost everywhere unique K%-valued predictable process v,
satisfying A9 = v @ V' up to indistinguishability for each j € {1,...,d}.

Proof. The proof is very similar to the first steps in the proof of Theorem 2.7. By assumption,
AV € Vi for each j € {1,...,d}. Furthermore, as V ,; is R -valued, adapted, continuous,
non-decreasing and starting at zero for each j € {1,...,d} follows V € V;. Fix now
j €{1,...,d}. According to Lemma 5.28 in the appendix, A’ may be seen as a signed
or complex transition kernel from  to Ry on the d-ring R := |, ey Bjo,n)- Consequently,
Definition 5.25 and Lemma 5.26 result in the signed or complex measure

@ oBB) = [

Q</R ]lB(S,W)Aj(ds,w))P(dw)’ BeR®F,
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on the product é-ring R ® F. Similarly, the processes V 4; and V may be viewed as two
o-finite transition kernels from €2 to R4, due to Lemma 5.27, and the functions

(V4 ® P)(B) = /Q(/R 15(s,w)V 45 (ds,w))ﬂ”(dw), BeBg, ®F,
as well as
(V@ P)(B) = /Q</R Lp(s,w)V(ds,w) )P(dw), B € By, ®F,

are two measures on Br, ® F by Lemma 5.24. Note that the linearity of the Lebesgue—
Stieltjes integral in the integrand as well as the integrator implies

(VeP)(B)= /Q</R ]lB(s,w)V(ds,w))IF’(dw)

:/ﬂ</R+ ILB(s,w)<§:VAj(ds,w)>> / Z/R 15(5, )V 45 (d3, ) ) B(dw)
_2/ / 1g(s,w)V 4 (ds, w)) (dw) :i:l V4 @ P)(B)

for each B € Bg, ® F. Thus it is apparent that V,; @ P < V ® P holds on Bg, ® F for
each j € {1,...,d}. Consider now a set B € Br, ® F satisfying (V ® IP)(B) = 0. Thus one
may use Lemma 4.14 below to obtain

|47 @ P|(B) <2(V ®P)(B) =0

and thus '
AP VP

on Br, ® F and thus also on the sub-g-algebra X, for each j € {1,...,d}. Consequently,
Theorem 4.15 proves the lemma. O

Definition 3.15 (Stochastic integral w.r.t. K%valued continuous processes of locally finite
variation). Let A € V(‘]i be a process of locally finite variation starting at 0 let V' be defined
as in Lemma 3.14. Then there exists a (V' ® P)-almost everywhere unique predictable
process v = (v', ..., v?)T, satisfying A7 = v7 @ V| as stated by the lemma above. If there
is some degree of ambiguity regarding the underlying process A, the processes v and V
will be denoted by v and VA, respectively. The space L(A) is then defined to include
all K%valued predictable processes H, such that almost surely (|H v| e V); < oo holds
for each ¢t € Ry. For such a process H the integral process is defined as the pathwise
Lebesgue—Stieltjes integral
HeA= (H™v)eV,

which is again adapted, continuous, starting at zero and of locally finite variation, as stated
by [Sch23, Lemma 5.49(c)] and thus in V.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.2. W.R.T. MULTI-DIMENSIONAL CONTINUOUS LOCALLY FV-PROCESSES 41

Note that for K-valued processes A € V} and H € L(A) the pathwise Lebesgue-Stieltjes
integral H e A does already exist, which could cause problems, if the above defined integral
does not agree with H e A in the sense of a regular pathwise Lebesgue—Stieltjes integral.
Luckily, this is not the case, as for each ¢ € R, the polar decomposition of A in [Sch23,
Theorem 15.128(c)| implies

([H| o Va)e = ((IH| W) e VIV), = (HToV ] 0 VD), < o0,

whereby Lemma 4.12(iii) is applicable, which leads to

t
/HTU(A) dV(A):/ HdVA_/ HdA
0

for each t € Ry and the above defined integral does not cause ambiguity.

This newly defined integral is linear in the integrand as well as the integrator, which will
be shown in the following lemma.

Lemma 3.16. Let A, B be two processes in Vél. Then the statements below follow.
(i) L(A) is a vector space.
(ii) Let H K € L(A) and o € K, then due to part (i) holds («H + K) € L(A) and
(cH+ K)o A=a(HeA)+ K e A.
(iii) Let H € L(A) N L(B) and again o € K, then H € L(aA + B) and
He(aA+B)=a(HeA)+ HeB.
Proof. (i) Fix H, K € L(A) as well as a € K and let v and V' be as in Lemma 3.14. Thus

by using the linearity of the Lebesgue—Stieltjes integral and the triangle inequality
fulfilled by |- | : K — Ry it follows that

t t t
/ |(aHs+KS)Tvs]dV;:/ |aHJvS+KJvS|st§/ loH Tvg| + | K Tv,| AV
0 0 0
t t
:|a|/ |H5Tvs|st—|—/ K Tv,| dV, < oo
0 0

holds for all ¢t € R, whereby L(A) is a vector space.

(ii) Similarly to above, one can again use the linearity of the Lebesgue—Stieltjes integral
to obtain

(eH+K)™v) oV =(aH v+ K'v)eV=a((Hv)eV)+ (K v)eV.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

42

CHAPTER 3. THE STOCHASTIC INTEGRAL

(iii) At first consider B = 0 and without loss of generality a@ # 0. By the definition of the

total variation measure, Definition 4.10 in the next chapter, follows V(*4) = ||V (4),
Thus again the linearity of the Lebesgue—Stieltjes integral implies pathwise

(0@ o V(@A) = n AT = ¥ |a| A = €l |a ((U(A))j ° V(A)) = P (p(A)) o y(@d)

for all j = 1,...,d, where a = |a| e for some ¢ € [0,27). Consequently, v(®4) =

e'? v(4) must hold (V(@4) @ P)-almost everywhere by the uniqueness in Lemma 3.14.
Thus H € L(aA), as

(IH D o VD) = (|HT ¥ v e (|o|V ), = |a|(|H v e VIV) < o0

holds almost surely for each ¢ € R,. Note that |e'¥ | = 1 has been used in the second
step above. Furthermore,

He(aA) = (H ) e V@A) — (HT &% () o (ja|VA) = |a eiw((HTv(A)) o V(A))
= a((H™W) e V) = o(H o A)

holds, as the Lebesgue-Stieltjes integral is linear in the integrand as well as the
integrator.

Consequently, one may consider now o = 1 and drop the assumption B = 0. As
H € L(A) N L(B) the sets

Ny={we: (]H(w)Tv(A)(w)\ o V(A)(w))t = o0, for some t € R}
and

Np:={we: (|H(w)Tv(B)(w)| ° V(B)(w)) = o0, for some t € R}

t

are P-null sets. Thus the same holds for N4 U Np. Fix now some w € (N4 U Np)© and

t € Ry. Note at this point that the process V(4 induces pathwise a o-finite measure
on B, for each process A € V¢. Furthermore, A (w) as well as B (w) induce signed
or complex measures on the d-ring R := |J, ey Bjo,n) of all relatively compact Borel
sets of R, see the proof of Lemma 3.14. Therefore one can use Lemma 4.12 to obtain

.Vw)
t

+ dA dv )
AV | d(VA) 4 v (B))

A

+ dA

T, (A A _
m>ﬂHUUMVUL—<Hdwm

.WW+V®O
t

VA AV 4 VD)
T adA
AV + V)

t

qwm+vwo

t
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and, analogously,

dB
V(4) 4 vV (B))

(’HTU(B)’ ° V(B))t — ('HTd( o (VA 4 V(B))>

t

as well as

d(A+ B

t

for each t € Ry. Consequently, H € L(A + B) holds, as for each t € Ry follows

d(A+ B
(ETAE VD), = (‘HTd(VfA) n v33>> ‘ (V4 V(B))>

dA dB
_ T T
- ('H ava vy T gua v
dA
T (4) (B)
g(F{awm+vwn'“f v 0
dB
T (4) (B)
(| a0 V),

= (]HTU(A)\ o V(A))t + (]HTU(B)\ o V(B))t < 0.

t

qmm+vwv
t

t

By taking the same steps as above again and simply omitting the absolute value
(which leads to < becoming = in the fourth step of the display above) one indeed
obtains

Heo(A+B) = (H vA+B) oy (A+E) — (HTy(A))eV () 1 (HTy(P))eV(P) — He A+ HeB,

which concludes the proof. O

3.3 Properties of the stochastic integral w.r.t.
multi-dimensional continuous local martingales

One may now consider sequences of continuous martingales and their limits and use the
Lemma 5.22 in the appendix to prove the following two statements.

Lemma 3.17. Let (My)nen and (Np)nen be two sequences of K-valued continuous martin-
gales in H3, converging in H3 to M and N, respectively, then

E[[M,N)] = lim E[[My, Na)t],  t€Rs.

Proof. An analogue result as in Lemma 3.6 also holds, when not considering the entire
positive real half-axis Ry but only the interval [0,t] for each t € R;. To be precise, for
each t € R, the space H3(t) := {continuous martingales M = (Ms)sepo, starting at

1/2 < 0} is a Banach space on which

zero and satisfying || M|[yz2() := E[sup,epo g | M |?]
(M,N); := E[[M, N];] induces the equivalent norm E[[]¢] 12 making (H%(t),E[Ht}l/Q) a

Hilbert-space.
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Fix now t € Ry. Then, by viewing M and for each n € N also M, as continuous
martingales on the interval [0, ¢], they are also elements of the aforementioned Hilbert space

(H3(t), E[[-]¢] 1/2). The same holds for N and (NV,)nen. Consequently,
E[[M,N))] = lim E[[M,,N,),], teR,

n—oo

is a direct consequence of Lemma 5.22 below. O

Lemma 3.18. As in the last lemma, let (My,)nen be a sequence of elements of HE converging
n H% to M and, analogously, let (Np)nen converge in ’H% to N. Then there exist two
subsequences (My, Jnen and (N}, )nen, such that

[M, N]y(w) = lim [Mp, , Ni,J¢(w)

for P-almost all w € Q and all t € Ry.

Proof. Fix a pair (t,w) € R4 x Q and define the set
M(t,w) :={M (w) : M = (Ms),epo,) is a K-valued continuous martingale}.

Obviously, M(t,w) C C([0,¢t],K), where C([0,t],K) denotes the space of all continuous
functions from the interval [0, ¢] into K. Furthermore, it is apparent that M(¢,w) is a vector
space. In the same way as in Lemma 3.6 it follows that the function

(M.(w), N.(w)) := [M.(w), N.(w)]i(w) = [M, N]y(w)

is a scalar product on M(¢,w), making (M(t,w), [-]t(w)1/2) a Pre-Hilbert space. As per
assumption (M, )nen converges to M in H3 for n — oo, i.e.

. . 1/2
OZT}LIEO”MN_M”Hg :JEEOEHMH_M]OO] ’

follows that the sequence of P-integrable random variables ([M,, — M]s)nen, or to be
more precise their equivalence classes w.r.t. the L!-norm, converges in L'(, F,P) to zero.
By [Sch09, Satz 8.4.8] this sequence also converges in measure to zero, which in turn implies
the existence of a subsequence ([My, — M]oo)nen that converges P-almost surely to zero, as
stated in [Gril8, p. 64]. Consequently, for P-almost all w € Q and each t € R} follows

lim [M},, — M]i(w) < lim [My, — M]s(w) =0,

n—oo n—oo
which means that ((Mkn).(w))neN
a subsequence (N}, )nen, such that the same holds almost surely for ((Nln)(w))n oy and
N (w) for each t € R;. Thus one can use Lemma 5.22 in the appendix to obtain for all
w € Q outside of a P-null set

converges to M (w) in M(¢,w). Analogously, there exists

[M, N)y(w) = lim [M, , N, Je(w), t€R,,

n—oo

which concludes the proof. ]

This lemma will be used in the proof of the following theorem.
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Theorem 3.19. Let M be again a K%-valued continuous local martingale and H € LIZOC(M).

Then the stochastic integral process H @ M is the up to indistinguishability unique K-valued
continuous local martingale starting at zero that satisfies up to indistinguishability

[HeM,N|=He[M,N] (3.5)
for each K-valued continuous local martingale N, where H € L([M, N]) and the right-hand
side is the stochastic integral w.r.t. [M, N] € V§ according to Definition 3.15.

Proof.

Step 1 (Predictable step process H). For readability, set v = vND) and v = VIMLN)
throughout this proof. Let H = (H',..., HY)T at first be a predictable step process. Note
at this point that Lemma 4.12(iv) in the next chapter implies the P-almost sure integrability
of vJ(+,w) w.r.t. V.(w) on the interval [0,¢] for each ¢t € Ry and j = 1,...,d, because

/Iw'ldV: d[M7, N], dVar5,3 ([0, 8])
og - Jog

av, <2 AVi = 2V 155 ([0, .
av, | = /[o,t} av, Va = 2Viarsm ((0,1) < o0

Therefore it is apparent that by the boundedness of H there exists a ¢ > 0, such that for
each t € R, follows

. d ; d
(o] 0 V)i < e[S -V)tsCZ<
j=1

J=1

d[M7, N]
dV;

d
. V> <2¢) Vi n([0,8] < oo
j=1

As stated above, H ¢ M = Z;-lzl H7 e M7 and consequently the right-hand side actually
fulfills (3.5), as for every t € Ry

d d
[H o M,N); = [ZHJ oMj,N]t = [H? e M, NJ;

j=1 i=1
d m ‘ ‘ ) m ) . .
= [z GMI o~ M), Ns] -y [sowzm ~MI )N,
7j=1"n=1 t j=1n=1 t

holds. As already stated in the proof of lemma 3.3, by viewing the right-hand side for each
n =1,...,m separately the linearity of the covariation process extends in this case to all
F, -measurable random variables, particularly ¢y for all j = 1,...d, which leads to

n

d m
H 0 M N = 350 6 (M = M)

j=1n=1 t

m
90{'1([M7]'n+1/\57N8]t - [Mgn/\wNS]t) = Z Z¢¥1([M]7N]Zn+l - [ijN]Zn)
j=1n=1

I
M-
NE

<
I
—
3
Il
—

Tn4+1 AL

I
M&
NE

) Tn+1AE d m
A =y
i 4

n/A\t j=1n=1

d ¢
HlvldV, = Z/ Hlvldv,

1In

<.
Il
IS

t t
:/ ZngngS:/ HIv,dV, = (H ¢ [M,N]),
0 0
7j=1

for each t € R4 and almost all w € Q.
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Step 2 (Bounded H € L?(M)). In the following let || - |2 denote the Euclidean norm on K¢
and fix a bounded process H € L?(M), i.e. there exists a ¢ > 0 satisfying || H;(w)||2 < ¢ for
each pair (t,w) € Ry x Q, and let as always (H,,),en denote a sequence of predictable step
processes converging in L%(M) to H. Fix now n € N and consider

Mn

Hn(t7 w) = @n,O]]-{(]} (t) + Z Son,k]]‘(Tn7k,Tn7k+1](t7w)’ (tvw) eRyL xQ,
k=1

according to Definition 2.2. Thus one can define

Pk = Pk (ﬂu%knﬁc ]]-||g0n7k||2>c)7 k=0,...,mp,

_|_ -
lPnkll2

which is for each k =0, ..., m, again a bounded K%valued random vector and inherits the

respective measurability of ¢y, . Therefore, (H,),en defined for each n € N as

Mmn

Ho(t,w) = Gnolioy(t) + > Prplirpmmpetw),  (Bw) € Ry x Q,
k=1

is also a sequence of predictable step processes, which is uniformly bounded by c. Further-
more, this sequence converges in L?(M) to H, due to ||lEIn—HHL2(M) < ||Hn—H]||2(pr)- Con-
sequently, as each predictable step process H,, is bounded by ¢, ]H%(t, w)vd (t,w)| < cfvd (¢, w)
for each pair (t,w) € Ry x Q and n € N. Thus the dominated convergence theorem, see
Theorem 5.37 in the appendix, is applicable in the fifth step of the display below. By
Definition 3.8, (H,, ® M ),cn converges in ’Hg to H ¢ M. By Lemma 3.18 one obtains the
existence of a subsequence (Hy, ® M),cn, such that

[H o M,N];, = { lim (Hy, o M), NL = lim [Hy, M, N}, = lim ((H v)e V)

n—00 n—00 n—oo0 t

= zd:ggo((ﬂ,gnvj) V), = zd:(( lim H] /) o V) = ((lim HIv)eV)
i=1 :

n—oo n—oo
Jj=1

= ((HTv) e V), = (H « [M.N]),

t

for each t € Ry and P-almost all w € Q. Thus one can now consider the function
R, >t +— H(t,w) v(t,w) for P-almost all w € Q as a Radon Nikodym derivative of
[H e M,N] (w) w.r.t. V(w) according to Theorem 4.15 in the next chapter. By the same
argumentation as above, also 7 (w) is P-almost surely C (w)-integrable on the interval [0, ]
for each t € Ry and (i,75) € {1,...,d}? and

|HY (¢, w)m? () HI (t,w)| < A7l (W),  (tw) eRy xQ, neN.

Thus the dominated convergence theorem is again applicable and leads combined with
Lemma 3.3 for each ¢ € Ry almost surely to

[H o M]; = | lim (Hy, o M)| = lim [Hy, o M), = lim (H] 7H,) s ),
= (nh_{go H) nHy,)e 0), = (H'nH) o C)

T
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Step 3 (H € L?>(M)). Consider now a (possibly unbounded) process H € L?(M) and define
for each n € N the bounded process H,, = H1p|,<, as in Lemma 2.16. Due to the
positive semidefiniteness of , the function ¢ — H, (¢, w) m(w)Hy(t, w) is Br, -measurable,
R -valued and satisfies

Hy(t,w) Tm(w)Hp (t, w) < Hpy1 (8, w) Trp (W) Hpy1 (2, w), n € N.

Furthermore, H,, € L*(M) implies the C (w)-integrability of this function for P-almost all
w € Q. Furthermore, Lemma 3.11(ii) states that the sequence (H,, ® M ),cn converges in
HZ to H e M. Thus one may use the monotone convergence theorem, Theorem 5.38 in the
appendix, and again Lemma 3.18 to get a subsequence (Hy,, ® M),y for which
[H o M] = { lim (Hy, o M)} = lim [Hy, o M] = lim (HJ «H,) e C)
n—oo

n—oo n—o0

= (lim H] nHy,)eC = (H nH)eC

n—0o0

up to indistinguishability.

Similarly to above, for each n € N the Bg,-measurable and R -valued function Ry >
t e folt,w) := |Hy(t,w)Tv(t,w)] is for P-almost all w € 2 integrable w.r.t. V.(w) on [0, ],
as one can use Lemma 5.30 in the appendix in the fourth step to obtain

/ |Ha(s5,0)To(s,w)| V(ds, w) = / d[Hy o M, N (w)
[0.,¢]

[0,¢] V(ds’w)
< 2/ dV[HnoM,N}([O’ 8]7"‘))
(0,4 V(ds,w)

’ V(ds,w)

V(dsa w) = 2V[HTLOM,N] ([Oa t]? w)

< 2y/[H, o M]([0,1],0)v/IN|([0. ], w) = 2/ (HxH,) « C) /[N,

<2y/(HTnH) e C),\/[N]: = 2\/[H ® M];/[N]; < o0

for each ¢ € Ry, due to the findings of the last step and Lemma 4.12(iv) below. Furthermore,
for fixed w € Q and n € N holds f,(t,w) < foy1(t,w) for all t € Ry. As the last display
also implies

sup / | (5,0) T0(s,w)| V(ds,w) < sup(2+/[H o M];/[NJ,) = 2y/[H o M];\/[N]; < oo,
neN J[0,t] neN

one may use again the monotone convergence theorem to obtain for P-almost all w €
the integrability of Ry 3 s+ [H(s,w)Tv(s,w)| = lim, so0 fn(s,w) w.r.t. V.(w) on [0,t] for
each t € R, which implies H € L([M, N]) per Definition 3.15. Obviously, this function is a
pointwise upper bound of f,, for each n € N. Consequently,

[H o M,N];, = { (Hy, o M), NL = lim [Hy, o M,N], = lim ((H] v) e V)

lim
n—00 t

= (( lim_ Hiv)eV), = ((Hv)eV), = (He[MN]),
for each t € Ry and P-almost all w € €2 follows. Note here that in the second-to-last step of

the display above the dominated convergence theorem has been used once more, which is
applicable by the previous findings in this step of the proof.
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48 CHAPTER 3. THE STOCHASTIC INTEGRAL

Step 4 (H € L (M)). In the second-to-last step, let H denote a general process in L2 (M)
and (7, )nen the corresponding increasing sequence of stopping times according to Definition
2.11. Then for P-almost all w € Q, each t € R, there exists a n € N, such that ¢t < 7, (w).

Thus one can see that H € L([M, N]), due to
(IH 0| o V) = (|1, H 0| 0 V) < o0,
as well as
[H e M,N]; = [(HLjp,)) ® M,N]; = ((HLjgr,]) ® [M,N]), = (H o [M,N]).
Analogously, one obtains

[H e M]y = [(Hlp 1) e M]: = (Hl)) " mH1 1) e C), = (H'wH)eC) teR,.

t?

Step 5 (Uniqueness). Suppose Y is a K-valued continuous local martingale starting at zero
as well as satisfying equation (3.5), i.e.

[Y,N] = H o [M, N]

up to indistinguishability for each K-valued continuous local martingale N. Therefore, the
linearity of the covariation process implies

[HeM —Y N|=[HeM/N|—-[Y,N|=He[M,N|—He[M,N|=0, N € M.
By considering now N = H e M — Y one obtains
[HeM —Y]|=[HeM—-Y HeM—-Y]|=0,

which implies, by using [Sch23, Corollary 5.85] that the continuous local martingale HeM —Y
is up to indistinguishability equal to its starting point, which is zero. ]

As already stated in Lemma 3.3, for predictable step processes H there exists a often
times useful formula for the covariation of the integral process. This result also holds for
general processes H € L2 (M), which will be stated in the lemma below. Note that the

proof of this equality has already been given during the proof of the last theorem.
Lemma 3.20. Let M be a K%-valued continuous local martingale and H € L2 (M). Then

loc

for the covariation of the integral process H @ M holds up to indistinguishability

(H o M] = /0 | ( zdj Héﬂing) dC, = (HTxH) e C.

i,j=1

Example 3.21 (One-dimensional case). Consider now a K-valued continuous local mar-
tingale M and H € L% (M) N L(M), where L(M) has been introduced in Definition 1.4.
Obviously, this new definition of the multi-dimensional stochastic integral should coincide for
such a K-valued process H with the one from Definition 1.7, otherwise the one-dimensional
case would not be well defined. However, this is not the case, as equation (3.5) coincides
with the equality in Definition 1.7. By revisiting Theorem 2.7 the one-dimensional case also

implies C' = [M] and thus 7 = 1 up to indistinguishability.
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Example 3.22 (H’/ € L2 _(M’)). For a K%-valued continuous local martingale M =
(M?Y,..., M%7 and a predictable process H = (H*,...,H")T let H/ € L2 (M7) for each
j=1,...,d, which implies that Z;.lzl HJ e M7 is well-defined. Thus there exists for each
j=1,...,d a sequence of stopping times (Tﬂ;)neN satisfying all criteria of Definition 2.11.
Then one may define for each n € N the function 7, = /\?:1 77, i.e. the pointwise minimum,
which is again a stopping time by [Sch23, Lemma 3.12(b)]. Obviously, this sequence is
also increasing and satisfying lim, o, 7, = oo almost surely. As both H7 and M/ are
one-dimensional for each j =1,...,d,

Tno ™o d[MY] o )
/ \Hgy%gfdctg/ \H P dC, = / \HgPtdC’t:/ \HIRAMI), (3.6)
0 0 0 dCy 0

follows, which is P-almost surely finite for all n € N. Thus for almost all w €  holds
HINTii € L2([0, 7 (w)], Blo,m (w)]» C.(w)), (n,j) e Nx {1,...,d}.

One can now use Lemma 5.21 below in the second and the Holder inequality [Gril8, Satz
8.2] in the fourth step to obtain almost surely

/HtthtdCt / Z\Ht |w || HY | dCy < / Z|Ht|\/7r§’\/7rt \H}|dC,

3,j=1 4,j=1
d Tn . .
=50 [7 (i ) () ac
i,j=1"0
d - 1/2 Tn 1/2
S'Zl( /0 yH§|27r§idct) ( /0 |Hg|27r§jd0t> .
1,]=

In the next step, one may take the expectation of both sides of inequality (3.6) to see

Tn . .. Tr{ . X
]E[/ |\ HJ el dCt} < E[/ |Hg|2d[Mﬂ]t] <oo,  (nj)eNx{L,...,d}
0 0
whereby
Tn . . 1/2
</ \H]|*r)? dCt> € L*(Q, F.,P), (n,7) € Nx {1,...,d},
0

follows. Consequently, H is an element of LZ (M), as

S 1/2 - 1/2
|H;\27T;cht> (/ |H | Jd@)

0

d Tn ) N 1/2 Tn ] B 1/2
= S |( [T mpnac) ([T e ach)

i,j=1 0

d 1/2 Tn 1/2
Z [/ |H}|?ni dC’t} E[/ | [l dCt} < 00
j=1 0 0

/ Ht ﬂ'th dCt < E[

1,j=1
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50 CHAPTER 3. THE STOCHASTIC INTEGRAL

follows for each n € N by using the Holder inequality again in the last step. Therefore, the
stochastic integral H e M exists.

Fix now a K-valued continuous local martingale N and let v = (v',...,v9)T be the
predictable process introduced in Lemma 3.14 satisfying [M7, N] = v/ e VIMND for each
j € {1,...,d}. Furthermore, one may also consider for each j = 1,...,d the stochastic

integral H7 e M7, which satisfies [H7 @ M7, N] = H7 e [M7, N] by Theorem 3.19. Thus for
each t € R the equality

d d d
[Z Hie Mj,N} =3 [H o MY, NJ, = Y (HI o [M7, N]),
j=1 Ot j=1
d ; d ;
~d[MJ,N1> ) ((  d[M7, N] dWm) M
— H7 Viun | = HI ’ o V(IMN])
jz:; (( dViazi,ny R ; dVipp ) dVILND t
d ; d
-3 ((# d[M7, NI | ey | (32 a7 07) 0 v
; dV (IM.N)]) ;
7j=1 H,_/ t j=1 t
=vJ
= ((H"v) o VIMND) — (H o [M, N]),

follows up to indistinguishability by the linearities of the covariation process and the
Lebesgue—Stieltjes integral as well as Lemma 4.12 in the next chapter. Thus the uniqueness
in Theorem 3.19 implies H e M = Z;l:l HI7 e MJ up to indistinguishability.

Theorem 3.19 and Lemma 3.16 will now be used to proof the following important properties
of the stochastic integral introduced in section 3.1.

Lemma 3.23. Let M and M be two K%-valued continuous local martingales, o € K and
H e L2 _(M). Then the following three statements hold, where the equalities are as always

loc
understood up to indistinguishability.

(i) For each G € L2 (M) follows (oH + G) € L2 (M) and

loc loc

(aH+G)e M =a(HeM)+ Gel.

(i) For each stopping time T the equalities
(HeM)"=HeoM"™ = (Hlj,) oM
hold.
(iii) If additionally H € LY (M), then H € L, (aM + M) as well as

He(aM+ M)=a(HeM)+ HeM.
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Proof.

(iii)

(i) Note at first that (a«H + G) € L2 (M), because LZ (M) is a vector space due
to Lemma 2.12. Let N be some K-valued continuous local martingale. Then one can
use the linearity of the covariation process and Lemma 3.16(ii) in the last step to
obtain

[o(H o M) + G o M,N] = a[H e M, N] + [G e M, N]
=«a(H e[M,N])+Ge[M,N]=(aH +G)e[M,N]

up to indistinguishability and the uniqueness in Theorem 3.19 concludes the proof.

For any t € R, it is apparent that both
tAT t
(HOM)I:/ HSdMsz/ HydMspr = (H o MT™);
0 0

and
tAT t
(H o M); = /0 HydM; = /0 H 1o () M, = ((H1pp) ® M),

are true.

Let (7)nen and (7,)nen denote the two sequences of stopping times discussed in
Definition 2.11, which exist due to H € L2 (M) and H € L (M), respectively. As
always, the sequence (0,,)nen defined for each n € N as 0, = 7, A 7, is also increasing
and tending almost surely to infinity. Fix now n € N. Consequently, Lemma 3.20,

Theorem 3.19 applied to N := H e (aM + M) and Lemma 3.16(iii) lead to

E[(HTx@M D) o O<C“M+M))gn] — E[[H o (aM + M)),,]

= E[(H o [(0M + 21).N)), | = E[(H o (a[M.N] + [{1.N])) |
—E[a(H e[M,N]), + (He[M,N])

—QB[(i 4 LN, ] +E[(H

< aE[(H o [M,N]), ] +E[(H o

=aE[[H ¢ M,N),,] +E[[H ¢ M,N],,]

o [M.N]), ]
M.N)), |
Furthermore, one may use Lemma 5.30 in the appendix in the last step to obtain

|[H e (aM + M), H e M]| = |H e [aM+ M,H o M||
= |H e (a[M,H o M]+ [M,H o M))| < |a(H o [M,H o M))| + |H o [M,H o M]|
= |af |[H o M, H o M]|+|[H o M, H o M|| < |o| [H « M| + V5,1 7enry

< |a|[H o M] +\/[H o M]\/[H & M]

and analogously

|[H o (M + M), H o M]| < [H o M] + || \/[H o M]\/[H o M].




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

52 CHAPTER 3. THE STOCHASTIC INTEGRAL

Combining the last three displays results in

E[((HT (aM+M)E).C(aM+M) } ]E[ (HTﬂ_ aMJrM)H) C(aMH\Z))%”
< |a| [E[[H ¢ M,N],,|| + |E[[H ¢ M,N],,]|
<|a|E[|[H e M,H o (aM + M)),,|] +E[|[H @ M,H o (oM + M)],,|]
= |a|E[|[H o (aM + M),H o M|, || +E[|[H (aM+M) H e M,,|]

< |a]IE[\oz| (H o M|, + \/[HoM]Un\/[HoM}Un]
—}—E{[HOM]% + |a| 4/ [HQM]%\/[HQM]%}
= |a2E[[H o M],,] +2|a|E[\/[H.M]%\/m} +E[[H o M],,)].

Due to

L] <o

E[[H e M],,] =E[(HTx"H) e C™) | <E[((H =" H)eC™)
and

E[[H o M],,] =E[(HT=MH) e ¢D) | <E[(H Tz H) e CD)_ ] < oo,

Tn

the Holder inequality [Gril8, Satz 8.2] is applicable and results in

E[\/[H o 1]y, /[H o M],, | <E[[H o M],,]*E[[H o M],, ],

Consequently, H is an element of L2 (oM + M), as for each n € N holds
E[((HTW(O‘M+M)]%7) . C(aM+M))J ]

< |a2E[[H o M),,] +2|a| E[\/[H o My, /[H o M, | +E[[H o 11],,]

< loE[((H#Tx"0H) e CM0) ]+ E[((H 7MW H) e 01D, ]

1/2

+2/a|E[[H o M), ] E[[H o M],,]"* < .

The second claim of the last part of this lemma can be proven much quicker and
simpler, as one may use again the linearity of the covariation process, Lemma 3.16(iii)
and Theorem 3.19 to see that

He[aM + M,N] = H e (a[M,N]+[M,N]) = a(H e [M,N]) + H o [M, N]
=a[HeM,N|+ [HeM,N]=[a(HeM)+ HeM,N]

up to indistinguishability for each K-valued continuous local martingale N, whereby
the uniqueness in Theorem 3.19 concludes the proof. ]

Now one may again consider the processes X' and X? defined in Example 1.3 and further
examined in Example 2.8.
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Example 3.24. In the setting of Example 1.3 in Section 1.1 define for each ¢ > 0 the
deterministic R?-valued process

H = (1—(H+e) S\ (H+e™)'
which is predictable, as stated by [Sch23, p. 286], as well as M = (X', X?)T. Note at this
point that

||ﬁf|]§ = |1—(Ht+6)71{2+‘(Ht+6)71‘2 < max{l, (t+6)72}+(t+6)72 < max{1,672}+e*2,

where || - |2 denotes the Euclidean norm on R?. Consequently, as H is bounded, it is
also an element of L (M) by Lemma 2.14 and there exists an increasing sequence of
stopping times (7,)nen tending almost surely to infinity, such that H € L2(M™) for each
n € N. Consider now any real-valued continuous local martingale N and a two-dimensional
predictable process K satisfying [X7, N] = K7 o C for j = 1,2, according to Theorem 3.19.
Consequently,

E
=

=
[

g K! K?
e\ T _ 1
((H)K>'C_<K H+6+H+e>.c

XUN| - [(H+e) ' e X! N+ [(H+¢)"' ¢ X? N]

BYN]— (H +¢) ' o[B, N+ (H +¢) ' e[(1-H)eB' + HeB? N]J
( , V]

“le((1—H)e[B'N])+ (H +¢) "o (He[B*N])

1-H H
H+e H+e€
.[BQ,N]

= [BY,N]— (H +¢)"'e[B,N] + o[B!, N] + e [B% N]

H
=[B' N|— —— e[B'' N
[B*, N] (-;'[ 7]+H+6

H+e—e¢ 9
——— o |B° N
H+6 .[ ’ ]

B'— B2 N+ [B2 N| = |—* B'— B>+ B2 N
o N+ [BEN] = | o ) + B2,

:H+6

for each € > 0, by [Sch23, Corollary 5.102] and the linearity of the stochastic integral as
well as the chain rule for stochastic integrals, see [Sch23, Lemma 5.116]. Consequently, the
uniqueness in Theorem 3.19 leads for each € > 0 to

~ €

H¢e M =
° H—i—e.

(Bl_BQ)+B2

up to indistinguishability, just the same as in Example 1.3. Therefore, the findings of this
example in Sectiop 1.1 can be applied to the case at hand, which leads to the convergence
of the sequence (H'/™ o M),en to B? with respect to the topology induced by p.
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3.4 The stochastic integral w.r.t.
multi-dimensional continuous semimartingales

After all this preliminary work, the following definition comes quite easily.

Definition 3.25 (Stochastic integral w.r.t. K%valued continuous semimartingales). Let
X = A+ M be a K%valued continuous semimartingale and its canonical decomposition. A
K%-valued process H is defined to be in L(X), if and only if it is integrable w.r.t. A as well as
M, according to Definition 3.15 and Definition 2.11, respectively, i.e. L(X) = L(A)NLZ .(M).

loc
For those processes, the multi-dimensional stochastic integral w.r.t. X is defined as

HoeX =Ho A+ Heo M.

Note that the integral process He X is again a continuous semimartingale and He A+ H e M
is its canonical decomposition. The following theorem provides some useful properties of the
stochastic integral, whose proves are straightforward, when considering the aforementioned
canonical decomposition of the integral process.

Theorem 3.26 (Linearity of the stochastic integral w.r.t. continuous semimartingales). Let
X andY be two K®-valued continuous semimartingales. Then the following three statements

hold.
(i) L(X) defines a vector space.
(ii) Let H,G € L(X) and o € K, then («¢H + G) € L(X) and

(aH+G)e X =a(HeX)+GeX.

(iii) Let H € L(X)NL(Y) and again o € K, then H € L(aX +Y) and

He(aX+Y)=a(HeX)+HeY.

Proof. (i) Combine Lemma 3.16(i) with Lemma 2.12.
(ii) Combine Lemma 3.16(ii) with Lemma 3.23(i).
(iii) Combine Lemma 3.16(iii) with Lemma 3.23(ii). O

Another useful property of the Lebesgue—Stieltjes integral, which can be translated to
stochastic integrals, is the chain rule. The proof of this will be split into the following two
lemmata.

Lemma 3.27 (Chain rule for continuous processes of locally finite variation). Consider the
three processes A € Vg, H € L(A) and G, which is a K-valued predictable process. Then
GH € L(A) if and only if G € L(H e A), which also implies

(GH)e A=Ge(HeoA).
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Proof. To prove the first statement, assume at first GH € L(A). Due to the last display
of [Sch23, Lemma 5.49] in the fourth and the chain rule for Lebesgue integrals [Sch09, Satz
9.2.2(1)] in the fifth step,

(IGTo e o VD), = (|G [o"*N]) e VI = (1G] @ Vizen):
= (Gl o Vigrymyeven )t = (1G] o ((HTv W e VIV)), = (IGHToV] 0 V), < o0

follows almost surely for each ¢ € Ry and thus G € L(HeA). In the second step of the display
above, the fact [v(#*4)| = 1 has been used, which is stated in [Sch23, Theorem 15.128(c)].
This theorem is applicable, as H e A is one-dimensional. Now suppose G € L(H e A). In
the same way as above, one can see

((GH) Do VW) = (JGTo M| e V), <0 1Ry,

almost surely, leading to GH € L(A). Furthermore, the chain rule for Lebesgue—Stieltjes
integrals [Sch23, Lemma 16.6] in the second step leads to

Ge(HeA)=GCGe ((HT?)(A)) o V(A)) = (GH"v) e VA = (GH) o A,
which concludes the proof. ]

Lemma 3.28 (Chain rule for continuous local martingales). Let M denote a K%-valued
continuous local martingale, H € L2 (M) and G be a K-valued predictable process. Then

loc

GH € L} (M) if and only if G € L} (H e M), which also implies

loc
(GH)e M = G e (H e M).

Proof. As H e M is one-dimensional, Lemma 3.20, Example 3.21 and the chain rule for
Lebesgue integrals [Sch09, Satz 9.2.2(1)] in the third step lead to

. . . t
/ G;rﬂ]gHoM)étdCt(HoM) :/ ’Gt’Qd[H.M]t:/ ’Gt‘2d</ H;I—,]TgM)HSdC‘gM))
0 0 0 0
= / G 2H 7™M H, dc™) = / (GH) =M GH, dc™.
0 0

Let now (7, )nen denote an increasing sequence of stopping times fulfilling the criteria of
Definition 2.11 for GH € L2 (M), which is assumed at this point. Thus the last display

loc
implies

E[((GTTF(H.M)@) ° C(H.M))T

n

] :E[(((GH)TW(M)@)OC(M)> ] < 00, n €N,

Tn

resulting in G € LY (H ¢ M). Conversely, assume now G € L% _(H ¢ M) and let (0y,),en be

loc

an according sequence of stopping discussed in Definition 2.11. Then also GH € L1200<M )
holds, due to

E[((GH)TrGH) e D) | —E[(GTaH*M0G) 0 CUHM) ] <00, neN.
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Similarly to the proof of Lemma 3.23(iii) one may now use Lemma 3.27 and Theorem
3.19, which result up to indistinguishability in

(GH)o [M,N]=Ge(Heo[M,N))=Ge[HeM/N|=[Ge(HeM),N|

for each K-valued continuous local martingale N. Therefore, Theorem 3.19 implies G o (H o
M) = (GH) e M up to indistinguishability. O

Theorem 3.29 (Chain rule for continuous semimartingales). Let X = A+M be a K%-valued
continuous semimartingale, H € L(X) and furthermore G a K-valued predictable process.
Then GH € L(X) if and only if G € L(H o X) and the equation

(GH)e X =G e (HeX),

which can be equivalently written as
/ GthdXt:/ th</ Hsts>,
0 0 0

Proof. Let at first GH € L(X), which is by Definition 3.25 equivalent to GH € L(A) N
L% (M). Therefore, G € L(H o A)N L} (H e M), by Lemma 3.27 and Lemma 3.28,

respectively. Thus Definition 3.25 leads to G € L(H @ X)), as H e A+ H o M is the canonical
decomposition of the K-valued continuous semimartingale HeX. Assume now G € L(HeX),

follows.

i.e. G € L(HeA)NLE (M). In the same way as before, one obtains GH € L(A)N LE (M)

and thus GH € L(X). Furthermore, Definition 3.25 in the first and last step implies
(GH)e X =(GH)o A+ (GH)e M =Ge(HoeA)+Ge(HoM)=GeX,

where Lemma 3.27 and Lemma 3.28 have been used in the second step. O

Example 3.30. Reconsider now Example 1.1 in Section 1.1 and fix a K-valued continuous
semimartingale X = A+ M and a predictable process H, which is not necessarily in L(X).
The trading strategy (H, H)" associated with an portfolio of the two assets modeled by
(X, —X)T should intuitively result in zero profit or loss. This newly defined stochastic
integral does indeed yield this result, as

d[M 1
([iC]_ and 7?2 =qt= """ —_

2 dc 2
result in (H,H)T € L?((M,—M)T), because

C = 2[M], gl =722 =

T2 _ H _
||(H,H) ”LQ((M,—M)T) = E|:/R; (Ht,Ht)ﬂ't(Ht,Ht) dCt =0 < o0.

T 00

Thus the strategy (H, H)T is in the same equivalence class w.r.t. | - || as the

£2((M,~M)7)
process (0,0)7, which is a predictable step process per Definition 2.2. Consequently, the
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3.4. W.R.T. MULTI-DIMENSIONAL CONTINUOUS SEMIMARTINGALES 57

stochastic integral according to Definition 3.8 (H, H)" e (M,—M)T = 0, as the constant
sequence ((0, O)T)neN converges trivially to (H, H)T in L?((M,—M)T).

Similarly, for the two-dimensional process (A, —A)T € V2 follows

dA d(—A
V = 2VA; and Ul = W = _(d‘/) - _'UQ,

which implies (H,H)" € L((A,—A)T), and as such also (H,H)T € L((X,—X)T), because
(I(H,H)v|eV), = (|Hv' + Hv?| o V), = (|Hv' — Hv'l o V), =0 < oo, te Ry,
and, analogously,
(H,H)" o (A,—~A)T = ((H,H)v) o V = (Hv' + Hv*) o V = (Hv' — Hv') ¢ V = 0.
Finally, this yields the expected result via
(H,H)" o (X,—X)" = (H,H)" o (M,—M)" + (H,H)" o (A,—A)T = 0.

Example 3.31. Fix the notation of Example 3.24, where it was shown that the sequence
(H'Y? @ M)en to B? with respect to the topology induced by p. In the next step one
would like to see that there exists a R? valued predictable process He LIOC(M ), such that
B2 = H e M up to indistinguishability. Consider now the deterministic process

H=00-H"H ) o= (1—t""¢") 1150, teR,.

Then Example 2.8 leads for each ¢ € Ry to

((ﬁ%ﬁ).o)t:/(oﬂ(u_ﬂ D2all o1 — H;YH 72 + HS 27r22) dc,

3 2
= [ (0058 003G *%LN e e rae) ) 1o
2 3
:/(O,t]<(1_i+512+i_522 ) ( ;)ds+2ds>dcs
:/ 1d5—/ 1d52+/ ids?’
(0,4 (0,] 8 (0,4] 38

dC, = 3s52dC,
:/ <1—25+38>ds—/ (1-2+2)ds=t< o0,
(0.4] 5 (0.4]

where in the fifth step the chain rule and

52:/ 2udu and 82:/ 3u? du
0 0

has been used. Consequently, the increasing sequence of deterministic stopping times
(Tn)nen defined for each n € N as 7,, = n tends to infinity and satisfies

7

E[((ﬁ[Twﬁ) o C)Tn] = E[((ﬁTWﬁ) e () ] =E[n] =n < oo, n €N,
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o8 CHAPTER 3. THE STOCHASTIC INTEGRAL

which implies H € L% (M) and thus the stochastic integral H o M is well defined.

Similarly as in Example 3.24, consider now a real-valued continuous local martingale
N and a two-dimensional predictable process K satisfying [X7, N] = K7 ¢ C for j = 1,2,
according to Theorem 3.19. Therefore,

. - . K' K?
HoeM, N =(H K)eC= K ——+ — |o(C
70 MN] = (K)o € = (K = G+ )
=X, N - [H e X! N+ [H e X? N|
=B, N|—-H '[B!, N+ H 'e[(1—H)eB'+ HeB? N|
1-H

o[B!, N] + a, [B?,N] = [B?, N,

:[Bl,N}_i.[Bl,N]Jr 7

H
which implies H e M = B2 up to indistinguishability, as stated in Theorem 3.19.

In the setting of the stochastic integral introduced in this thesis, the process B2 can be
denoted by a stochastic integral with respect to M, which was not possible in Section 1.1,
as seen in Example 1.3.

The following theorem also circles back to Section 1.1 and makes sure that no setting
similar to the negative Example 1.3 can exist for the stochastic integral defined in this
thesis, when considering only the in applications much more often used case K = R. For
the proof of this theorem the reader is referred to [Mém80, Théoreme V.4].

Theorem 3.32. Let X denote a R¥*-valued continuous semimartingale. Then the set
{HeX : H € L(X)}, which is a vector space by Theorem 3.26, is complete w.r.t. the Emery
distance, see Definition 1.2.

Assume now that the R%valued continuous semimartingale models a financial market
consisting of d underlying assets. Each H € L(X) can be seen as a trading strategy w.r.t.
X and H e X is the profit or loss of this trading strategy. If any financial instrument can be
represented by a well-defined stochastic integral H @ X w.r.t. X, then it can be hedged. In
this context, the theorem above states that if there exists a sequence of financial instruments,
which can be hedged w.r.t. X, converging w.r.t. the topology induced by p, then the same
holds for the limit.
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4 The Radon—Nikodym theorem

4.1 The Radon—Nikodym theorem for o-finite measures

Throughout this thesis, £P (€2, F, ) denotes the space of all F-measurable functions satisfying

1w == /Q P dv < oo,

The function || - [[1r() : LP(2, F,v) — Ry is a seminorm. Consequently, one may call two
functions f1 and f2 in LP(Q, F,v) equivalent, if and only if || f1 — fal|z»(,) = 0, which means
they agree v-almost everywhere. Therefore, on the factor space LP(2, F,v), consisting of
all equivalence classes in LP(Q, F,v), || - [[1r() is an actual norm. This chapter is often
concerned with v-almost everywhere unique functions in £P(£2, F,v). Note that one may
also regard such functions as unique equivalence classes in LP(2, F,v).

In the following section the very useful Radon—Nikodym theorem will be constructed and
proven in a similar fashion as in [Wil91, Chapter 14.13].
Note that in this section, all measures and functions are [0,00) = Ri-valued. At first,
the separability of the o-algebra F is assumed, i.e. the existence of a sequence (A, )nen of
subsets of €, such that F = 0(A, : n € N).

Theorem 4.1 (The Radon—Nikodym theorem for finite measures). Let u denote a finite
measure on the probability triple (Q, F,v). If u < v on F, i.e. for all A € F with v(A) =0
also u(A) = 0 must hold (say p is absolutely continuous with regards to v on F ), then there
exists a v-almost surely uniquely defined non-negative function f € LY(Q, F,v), such that

M(A):/Adu:/Afdy, AeF. (4.1)

Such a function f is then understood to be a Radon—Nikodym derivative of u w.r.t. v on F
and may also be denoted as
dp
f=3,
In the proof of this theorem, the following lemma will be used in the first step.

Lemma 4.2. Let p < v on F be the same as in Theorem 4.1. Then for each € > 0 there
exists a > 0, such that for every A € F

v(A) <d=p(A) <e

holds.

59
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60 CHAPTER 4. THE RADON-NIKODYM THEOREM

Proof. In this case proof by contradiction will be used. Let’s assume the statement not to
be true. Therefore there must exist some € > 0, such that there is also a sequence (A;)nen
in F satisfying simultaneously

v(A,) <27" and p(4,) > e

For B := limsup,,cy Ay one can see that v(B) = 0 by the Generalized First Borel-Cantelli
Lemma (see Lemma 5.7 in the appendix), as > " v(A4,) < > >7 ;27" < co. On the other
hand, the Reverse Fatou Lemma (see for example [Wil91, p. 27]) states p(limsup,cy An) >
lim sup,,cy 4(Ay,) for finite measures p and (A, )nen in F. This leads to

w(B) = p(limsup A,) > limsup u(Ay,) > lim u(A,) > € > 0,
neN neN neN

which directly contradicts the assumption u < v and therefore proves the lemma. ]

Proof of Theorem /4.1. Throughout the proof of this theorem and the one of the following
lemma all expectations are to be understood w.r.t. the underlying probability measure v,
ie. E[f] = [, fdv. As F is separable by assumption, one can represent it as o(A, : n € N)
and define for each n € N

fn == O'(Al,... ,An)

An atom A of a g-algebra F is a set in F, where the empty set and A itself are the only
subsets of A that are again also in F. Keeping this definition in mind, each F,, is therefore
made up of the 2"(") possible unions of the atoms Anis . Aprn)- In order to see this easily,
one has to understand that each atom can be represented as

An,k:HlﬂHQO'”ﬂHn,

where H; = Aj or H; = Aj. Working with those atoms provides the opportunity to
define the function below unambiguously, because for each w € €2 there exists exactly one
ke{l,...,r(n)}, such that w € A,, ;. The existence is obvious, as Q € F,,. If there were to
exist k £ k € {1,...,7r(n)} satistying w € A, and w € AnJ}, then w € A, 1 N An,fc' This
however would mean that this intersect would be a nonempty strict subset of both A,, j,
and An’]”g while also belonging to F, contradicting the definition of an atom.

For each n € N and w € Q with w € A,, , now define f,, : @ — [0,00) as

0 if v(App) =0,

fow) = ‘;Ef‘:::; if U(Ap) > 0.
Keep in mind that due to the definition of an atom for each A € F,, and k € {1,...,r(n)}
the intersect A N A, j is either A, ; or @. From this it is clear to see that each f, is
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4.1. FOR o-FINITE MEASURES 61

Fn-measurable and that for every A € F,,
r(n)

-3 /A D)) = f / fow) dv(w)

E{ful4] = / fo(w) du(w

Ay, kCA
r(n A r(n) ,u
= / k) dv(w) = Z ok / dv(w)
= Ja,, v(Ank) Ank (4.2)
Ap, kg AnkCA
v(A n,k) >0 v(Anp,)>0
r(n) r(n)
= Z ,U'(An,k> = M(An,k) = p(A)
k=1 k=1
An,kgA An, gA
V(An k)>0

holds, where in the second-to-last equality the fact v(A) = 0 = p(4) = 0 for A € F
is used. Furthermore, by setting A = €0 in the previous equation, it is apparent that
fn € LY(Q, Fp,v) due to the finiteness of y. Therefore f,, can be seen as a Radon-Nikodym
derivative of u w.r.t. v on the space (9, F,).

By the previous findings, M := (f,)nen is an integrable, time-discrete process adapted
to the filtration (Fy,)nen. Equation (4.2) suffices to see that E[fp,+114] = p(A) = E[f,14]
for every A € F,, and therefore E[f,+1|Fn] = fn for each n € N. Consequently, M is
a martingale on (Q, F, (Fp)nen, V). Keeping in mind that each f, is non-negative, i.e.
(fn)” =0, one can now use Doob’s almost sure convergence theorem (see Theorem 5.8 in
the appendix) to obtain almost surely a v-integrable and F-measurable random variable

h"]%ih’
as Foo, = F per definition of F,,.
Fix now € > 0. Lemma 4.2 necessitates the existence of a 6 > 0, such that
v(A) <d=p(h) <e.
holds for all A € F. Select a C € (0,00) that satisfies
Cu(Q) < 6.

This causes the boundedness of v({f,, > C}) by ¢ simultaneously for all n € N, as

WU%>CH=/ dv=C! cm«xra/ ﬁMuSO*/ﬁAu
{fn>C} {fn>C} {fa>C} Q

= C'E[f,] = C'u() < 4.
Therefore M is uniformly integrable (see Definition 5.9 in the appendix), because

Ellfallg >0yl = Elfnlyssoy = n({fn > C}) <6, neN,
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62 CHAPTER 4. THE RADON-NIKODYM THEOREM

holds, where in the second step equation (4.2) is used again. This allows the usage of
Theorem 5.12 in the appendix, which suffices to see that the martingale M = (f,)nen
converges to fo in £!. For every A € UneN Fy, there exists a ng € N, such that A € F,, for
all n > ng. Consequently, for such a set A

/A foo dv = E[focla] = E[ lim fyla] = lim E[f,14] = lim pu(A) = p(A)

remains true. The set |J,,cy Fn is intersection-stable, as for each pair A, Ae Unen Fn there
exists a ng € N in a way that both A, A € Fno implying AN Ae Frgs as Fp, is a o-algebra.
Note that
F=0(A,:neN) :a(U Fn).
neN
Then, by Lemma 5.14 in the appendix, the previous equality also holds more general for all
A € F. Therefore fo is a Radon—Nikodym derivative of p w.r.t. v on (Q, F).

In order to prove the uniqueness v-a.s. let f and f be two possible Radon-Nikodym
derivatives satisfying equation (4.1). Then, due to the required F-measurability, the set

A={f#fy={f>f1u{f<f}

is in F and thus must be a v null set, as

/ ~fdu—u({f>f~}>—/ v
{f>r} {f>r}

implies v({f > f}) to be zero and the same can be done for {f < f}. O

The separability of F, which was assumed in the beginning of this chapter is a rather
unpleasant restriction and will therefore be dropped in the following.

Lemma 4.3. Theorem 4.1 remains true, even if F may not be separable.

Proof. To avoid confusion it should be stated here that the terms sub- and superset are
not to be understood in the strict sense, unless explicitly stated otherwise. Furthermore,
throughout this proof F is not allowed to be separable.

Define Sep as the set of all separable sub-o-algebras of F. Note at this point that each
G in Sep is a strict sub-o-algebra of F and thus there exists at least one set A € F with
A ¢ G. Therefore one may consider the separable o-algebra o(G, A) and see that each G in
Sep has at least one strict super-o-algebra in Sep.

Due to Theorem 4.1 there exists for each G € Sep a Radon—Nikodym derivative fg €
L1(Q,G,v). In the first step of the proof consider the family (fg)gesep- This family will be
proven to be a “Cauchy sequence”, where one should understand this phrase as follows: For
all € > 0 there exists a IC € Sep such that for each two supersets G; and Gy of I in Sep
the inequality || fg, — fg,|/1 < € must hold, where || - [|; denotes the L'-norm on L!(2, F,v).
Let’s assume the opposite, meaning the existence of an ¢y > 0, such that for every IC € Sep
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4.1. FOR o-FINITE MEASURES 63

exist at least two supersets G; and Gy of K in Sep with || fg, — fg,|1 > €0. Keep in mind
that every K in Sep has at least two different super-o-algebras in Sep, namely the above
mentioned strict super-o-algebra and itself. Now fix some K1 € Sep and the corresponding
o-algebras G; and Go in Sep fulfilling the inequality above. Due to the triangle-inequality

€ < Hfgl - f92||1 < ||fg1 - f/C1||1 + ||f’C1 - fngl

holds and therefore at least one of the summands on the right-hand side has to be bigger or
equal to €y/2. Define then K2 to be either G; or Go, such that

€0
”le - f/CQHl > 5

is satisfied. The same can then in turn be done with Ko leading to the definition of
K3 D K9 D Kq. This leads to the existence of a sequence K1 C Ko C - -+ in Sep satisfying

€0
In a similar way as in the proof of Theorem 4.1 one obtains that (fx, )nen is a uniformly
integrable martingale w.r.t. the filtration (KC,,)nen and therefore converges in £!, which
makes the inequality above impossible.

Therefore one can find for each n € N a IC,, € Sep satisfying that if IC,, C Gy N Gy for Gy
and Gy both in Sep, || fg, — fa,|l1 < 2~V holds. Define now H,, = (K1 U---UK,,) for
each n € N. From this point on, the Radon-Nikodym derivatives fy, will be considered
as equivalence classes in the normed vector space L'(2,H,,v). Then it follows from the
completeness of this aforementioned space (for more details about the completeness of
LP-spaces the reader is referred to [Wil91, p. 65f]) that the limit

f = lim f’Hn

n—o0

exists almost surely as well as in L'. Thus for each n € N there exists some ng € N, such
that for all m > nyg

If = Frglln < 270D
holds. Therefore, for every n € N there exists some ng € N so that for m := max{n,ng}
and every G € Sep with H,, C G

I1f = falls < If = Frmllt + [ e — foll < 270D 4 27(mFD) < o=(ntD) 4 o=(nFD) = 9=n,

So in that sense, one can say (fg)gesep — f in L.

With slight abuse of notation, some function in the equivalence class f will now be fixed
and in the following be denoted also by f € £1(Q,G,v). It therefore now suffices to show
equation (4.1) for such a function f. In order to do so fix some A € F and let € > 0 and
K € Sep be such that for each Sep > G D K the inequality ||f — fg|l1 < € holds, which is
always possible due to the previous steps. Furthermore note that o(KC, A) € Sep and thus

[E[fLa] = p(A)] = [E[(f = fouc.a)Lall S E[f = fore,nll < If = foucnlh <e

As this holds for each € > 0, the lemma is proven, as the uniqueness can be shown in the
same way as in Theorem 4.1. O
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64 CHAPTER 4. THE RADON-NIKODYM THEOREM

Those results can be extended even further making the Radon—-Nikodym theorem even
more useful.

Theorem 4.4. Let u and v denote one finite and one o-finite measure on (2, F), respec-
tively. If u < v on F, then there exists a v-almost everywhere uniquely defined non-negative
function f € LY(Q, F,v), such that

[(A) = /A dp = /A fdv, AeF. (4.3)

Such a function f is then understood to be a Radon—Nikodym derivative of p w.r.t. v on F
and may also be denoted as 1

1
= dv’
Proof. Note at this point that if v(2) = 0 (and consequently p(£2) = 0) any non-negative
function f € £1(Q, F,v) can be regarded as a Radon-Nikodym derivative of y w.r.t. v on
F and the theorem is proven. Therefore in the remaining parts of the proof, this extreme
case will no longer be considered and v(2) > 0 is pre-conditioned.

At first assume v to be finite. Then by defining 7(A) := Zgég for each A € F one obtains

a probability measure 7, for which there exists the Radon-Nikodym derivative f . By the
linearity of the integral it is clear to see that

u(A):/Afdﬂ:/Ay(J;)du, AeF
.

and therefore j—ﬁf = V(];]) =

Now v is assumed to no longer be finite but o-finite. One can therefore find a partition
consisting of F-measurable nonempty sets Q = J,cy An With A, N A, = @ for n #m
in such a way that v(A,) < oo for all n € N, i.e. v [£, is a finite measure on (A,, F,),
where F,, := {AN A, : A€ F} is the trace o-algebra of F on A,,. Therefore there exists
a Radon-Nikodym derivative f,, € L' (A, Fn,v |7,) for each n € N. Considering now a
A € F one obtains by using the monotone convergence theorem (see Theorem 5.38 in the
appendix) in the last equality

p(A) = p(An | An) :;M(AﬂAn):;AﬂAnfndu:;AfnlAndu

neN

= lim / fnla, dv= lim / fnla, du:/ fnlga, dv
A ), A ]2 p3
Defining then
F@) =" fa(w)la, (@)
n=1

gives a Radon—Nikodym derivative on of p w.r.t. v on F, as it is obviously F-measurable
and due to the now proven equation (4.3) applied to A = Q one can see that f € L}(Q, F,v)
as long as p is finite. O
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4.1. FOR o-FINITE MEASURES 65

At last, yet another extension of the Radon—Nikodym theorem will be provided. To be
precise, one wants to use it even for two o-finite measures. This however comes with a
price tag, as it is then no longer possible to prove the integrability of the Radon—Nikodym
derivative. By setting A =  in the first equality of the upcoming theorem it can be
easily seen that for a measure p that is indeed not finite but o-finite, the Radon—Nikodym
derivative is not integrable w.r.t. v.

Theorem 4.5 (The Radon-Nikodym theorem for o-finite measures). Let p and v be two
o-finite measures on (Q,F). If pn < v on F, then there exists a v-almost everywhere
uniquely defined F-measurable function f, such that

M(A):/Adu:/Afdz/, AeF.

Note that in contrast to the last theorems, f is still Ry -valued, it however may not be in
LY(Q, F,v). Such a function f is then understood to be a Radon—Nikodym derivative of i1
w.r.t. v on F and may also be denoted as

du
F=3,
Proof. Let u be not finite but o-finite. Then, exactly like in the theorem above, one can
find a partition consisting of F-measurable nonempty sets Q = J, oy An with A, N A, = @
for n # m such that pu(A,) < oo for all n € N. The Radon-Nikodym derivative f is then

defined the same as above, namely
F@) =" falw)la, ()
n=1

and is therefore again F-measurable. Note that for any given w € Q only on of the indicator
functions on the right-hand side are nonzero, and therefore f(w) < oo holds for each
w e . O

In the course of this section, the conditions on the measures p and v have gotten weaker
and weaker, starting at finite ;1 and a probability measure v and ending with two o-finite
measures. For more general measures however, the conclusion of the above theorems may
fail, which will be shown by the following examples.

Example 4.6 (Absolutely continuous measures without a density). On the measurable
space ({0},{9,{0}}) set u({0}) =1 and v({0}) = co. Therefore u < v (even u ~ v as also
v < ji, i.e. the two measures are equivalent), as the empty set is the only null set for both
measures. However, there does not exist a function f : {0} — R, satisfying

| = p({o}) = /{ = F0w{o)),

as v({0}) = oco. Thus the o-finiteness of v in the Radon-Nikodym Theorems is essential.

Example 4.7 (Multiple different densities). In the same setting as above, every function
f:{0} — (0,00] can be considered as a derivative of the not o-finite measure v w.r.t. itself
on {@,{0}}, so the uniqueness v-almost everywhere of a density could fail as well as its
existence, which was demonstrated in the example above [Sch23, p. 253f].
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4.2 The Radon—Nikodym theorem
for signed or complex measures on J-rings

Definition 4.8 (Signed and complex measures on d-rings). Let R be a J-ring (see [Sch23,
Definition 15.106]) on a set S and F := o(R) its generated o-algebra. According to
the Jordan decomposition every signed (or complex) measure p on R can be written as
p=pg—p— (or p=plt—pf+i(ul —pl)), where the right-hand side consists of R -valued
measures in R.

Assumption 4.9. Throughout this section, the existence of a sequence (Ay,),en of disjoint
sets in R that satisfy (J,,cny An = 5, is assumed.

Note at this point that in the throughout this thesis most important case, i.e. S = R
and R = U,,en Bjo,n), this assumption is trivially fulfilled by defining A,, = [n,n + 1) for
n € NU{0}.

Definition 4.10 (Total variation measure). The total variation measure || of a K-valued
measure g on R is defined for every A € F by

in which IT is the set of all countable collections of disjoint subsets of A in R.

Note that for two K-valued measures pu, v on R and a € K, the total variation measure
has the properties

apl(4) = sup 37 lapu(B)| = sup > lal [p(B)| =lalsup 3 [n(B) = lal Jul(4), A F
BE7r BE7r BE7r
and
p21(4) = sup S [(u+v)(B)| < sup 3~ (1u(B)] +Iv(B))
BE7r BET(
=sup (X 1kB)) + (X WB))) < (sup - 1u(B)) + (sup 3 14(B)])
mell Bem Bem 7IEHBEW B€7r

= [ul(A) +v[(4),  AeF

Each o-finite R, -valued measure on R can be extended to an R, -valued measures on
F. In the following, these minimal extensions will be denoted by the same symbols as
the underlying measures on R. Therefore, the total variation measure |u| of a signed
measure 4 can be written as |u| = u4 + p—. For a complex measure p it can be shown
that |[Re(p)| = pff + pff, Im(p)| = pf + pl and |p] < |Re(p)| + [Im(p)|. Additionally,
Assumption 4.9 implies that || is indeed a o-finite R -valued measure on F [Sch23, p. 4671f].

Let p and v be two signed (or complex) measures on a d-ring. One may call p absolutely
continuous w.r.t. v, i.e. p < v on F, if and only if the total variation measure |u| is
absolutely continuous w.r.t. |v| on F.
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Theorem 4.11 (The Radon—Nikodym theorem for signed measures on d-rings). In the
setting of Definition 4.8 let pn and v be two signed measures on a 6-ring R on a set S and
F = 0(R), satisfying p < v on F. Then there exists a Radon—Nikodym derivative of u
w.r.t. v on R, i.e. a F-measurable function f:S — R that satisfies

N(A):/Afdy:/Afder—/Afdy
dp

for all sets A € R. This function is |v|-almost everywhere unique and may be written as .

Proof.

Step 1 (Existence). Due to Definition 4.8 and the assumption u < v, |u| and |v| are two
o-finite measures on the measure space (S, F) satisfying |u| < |v|. Therefore, due to
the Radon-Nikodym theorem for o-finite measures Theorem 4.5, there exists [v|-almost
everywhere uniquely a F-measurable function f : S — R, satisfying

l(A) =/Afd|v|, AcF.

Let A € R be an arbitrary set and P,, N, and P,, N, be the Hahn decomposition on
0-rings (see [Sch23, Theorem 15.116 and Remark 15.117]) of S w.r.t. p and v, respectively,
which exists, because by the assumption made just above the start of this theorem, there
exists sequence (A, )nen € R of disjoint sets, whose union is S. Note that those four sets
are elements of F, not necessarily of R and that the Hahn decomposition of A € R w.r.t. u
can be easily identified as A:L' =ANPF, and A, = AN N,. Therefore, one can define the
F-measurable function
fa) :{ f(a) for a € (P,NP,)U(N,NN,),

—f(a) fora € (P,NN,)U(IN,NP,).
By using the equalities

ne(A) = p(4)),  po(A) = —p(Ay),  pr(A) = (A =0 (44)

presented by the Jordan decomposition one can prove that the previously defined function
f is indeed the Radon—Nikodym derivative we are looking for. By switching the signs of
terms equal to zero, the third equality is justified and one gets

p(A) = pi(A) = p(A) = p (A7) + py (Ay) — p-(A)) — p—(A})
= p(A) + p(A)) = e (Ay) — n—(Ay) = ul(A7) — ul(A)

Z\M\(Aﬂpu)—lul(AﬂNu)ZAmP fd|v|—/ Falvl,

ANN,,

where the Radon—Nikodym theorem is used in the last equation. By using analogous
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equations as in (4.4) for v the right-hand side can be further split into

/ fd\u\—/ fd]y]:/ fdu++/ fdy_—/ fdl/+—/ fdv_
ANP, ANN, ANP, ANP, ANN, ANN,

:/ fdy—/ fdu—/ fdu—l—/ fdv
(ANP,)NP, (ANP,)NN, (ANNL)NP, (ANNL)NN,

:/ fdu+/ fdu—/ fdu—/ fdv
AN(P,NP,) AN(NLNN,) AN(P,NN,) AN(NLNP,)

= fdv

/ fdv— /
Aﬁ((PuﬂPu)U(NumNu)) Am((P”mNV)U(NHmPV))
_ Afl[(PMmPU)U(NMﬂNv)] - f]]_[(PMmNV)U(NHﬂPI,)] dv = /Afdy

and thus f may be regarded as a Radon—Nikodym derivative of y w.r.t. v on R.

Step 2 (Uniqueness). To show the |v|-almost everywhere uniqueness consider two Radon-
Nikodym derivatives fi; and fo and consider the set {f; < f2}, which is in F, due to
the F-measurability of both f; and fy. By the assumption made just above the start of
this theorem, there exists sequence (Ay)nen € R of disjoint sets satisfying (J, ey An = S.
Define for each n € N the trace-0-ring R,, = {AN A, : A € R}, which is the same as the
trace-o-algebra {AN A, : A € F} by [Sch23, Lemma 15.110(a)] as well as a (not necessarily
strict) subset of R by the definition of a d-ring. Furthermore, as P, € F, the same holds for
{f1 < fa} N P,. Thus the set ({f1 < fo} N P,) N A, is an element of R,, C R for alln € N

one may now see that

[ paw- fav= [ fidv
{fi<fa} {fi<fe}nP, {A<fInP)N(U,eny An)

neN

_Z/ f1dl/=Zu({f1<f2}ﬁP,,ﬂA Z/ fodv

neEN {fi<fenP)NA, neN neN {fi<fe}nP,)NA,

/ fadv = | frdv=[ oo
{f<InP)N(U,en An) {fi<f}nPy {fi<f2}

An analogous result follows also for the measure v_, as N, € F, and for the set { f1 > fo} € F
with respect to both v; and v_. Consequently, f; = fo must hold |v|-almost everywhere,
due to

/ fidly| 2/ f1d1/++/ Jidv- =/ f2d1/++/ Jodv_
{f1i<fe} {f1<fa} {fi<fa} {f1<f2} {fi<fa}

— [ ndy
{fi<f2}

and analogously

/ f1d|1/|=/ fodlv],
{fi>f2} {f1i>f2}

resulting in [v|({f1 # f2}) = [v|({f1 < f2}) + [v|({f1 > f2}) =0, as {f1 # f2} is the union
of the disjoint sets { f1 < fa} and {f1 > fo}. O
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Obviously, this theorem can be extended to a complex measure p = pft +ip! and a signed
measure v on R, as p < v implies that u® < v as well as u! < v hold. Then one could
use Theorem 4.11 for the real and imaginary part separately, which results in

w(A) = pB(A) +ipd( /fRdv+1/fIdV—/fR+1fIdy AeR
and the Radon-Nikodym derivative 4 + = fR4ifl

The Radon—Nikodym derivative has many useful properties, some of which will be proven
in the following lemma.

Lemma 4.12. As in Theorem 4.11 let u and v be two signed or complex measures on a
0-ring R, F := o(R) and a € K. Thus the following four statements hold.

(i) The Radon—Nikodym derivative is linear, i.e. if X is a signed measure on R with
<X and v <\ on F, then also (ap+v) < X on F and
d(ap + 1/) du dv

dA - d)\ a’ [A|-almost everywhere.

(ii) If p < v < X\ on F, where X is a o-finite measure on F and v is restricted to be a
signed measure, then

dp  dpdv

D Qv A-almost everywhere.

(7i) Let again X be a o-finite measure on F and h be a |u|-integrable and F-measurable
function. Thus if p < A, then

dp
hduy = h—— dA, A .
/A H / A5\ €R

(iv) If X denotes once more a o-finite measure on F satisfying u < X and p is a signed
measure on R, then

dIul ‘

follows on R. For a complex measure p on R this then implies

B ’d,u d,u duR

dA

R 1
_ el dwT] ol
dx | dA dA

!

+d)\

dA

d(pf +ip")
T

(v) If w and v are two signed measures satisfying pp < v and v < p, i.e. they have the
same null-sets, then

d d d
'l #£0, v-almost everywhere and & _ (S
du dv

3 > ,  V-almost everywhere.
v
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Proof.

(if)

(iii)

(i) Fix some set A € F, such that |[A|(A) = 0. Therefore,

lap +v|(A) <lapl(A) +[v[(A) = |af |p|(A) + [v[(A) = 0

holds, which follows directly from the properties of the total variation measure below
Definition 4.10 and implies (ap +v) < A on F. Take now any set A € R and consider

dp dv
(ap+v)(A) = au(A) + v(A —a/d)\—i—/d)\ / a—i-ad)\

Thus the |A|-almost everywhere uniqueness of the Radon—Nikodym derivative in
Theorem 4.11 proves the first part of this lemma.

For each A € R one can use the chain rule for Lebesgue integrals [Sch09, Satz 9.2.2(1)]
twice in the third as well as part (i) in the fifth step to obtain

dptt dp? (it
piy = [ Wrar— [ Wan - [ Fan

_ [ duddyy dde—dA:/ duf<0b+_dV—)dA
A

A dv dA L dv dA dv \Vdx  dA
L dv d) L dv d)

and, analogously,
duf dv dpl dv
R I +
A= | —— A= [ —F— = | —/——
neA = o A= A v A
which combined leads to
p(A) = plH(A) — pl(A) +1(h (A) — L (A))

d,uf dv dp® dv du+ dp! dv
= | ——d\— | ——d\+ Ty i [ =
4 dv dA / dv dA / dv dA / dv dA

:/(duf_d,u]_%_f_ dul. du_>dud)\_ dpdv o\

dv dv dv dv /ax " ), dvdx

Thus one may use again the uniqueness in Theorem 4.11 conclude the proof of the
second part.

Note that h is uf—, plt-, ufr— and p! -integrable by assumption. Thus for each A € R
one can again use the chain rule for Lebesgue integrals [Sch09, Satz 9.2.2(2)] in the
third step as well as the linearities of the Lebesgue integral and the Radon—Nikodym
derivative to get

/hdu—/hduf—/hduRJri/hdufr—i/hduI
A A

d Ayl d d
/ “*dA /h;}\dA+ /h:;dA h%d)\ /hj‘;dA
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(iv) Fix A € R, revisit the construction of the Radon-Nikodym derivative in Theorem
4.11 and take the notation from there. As A is a o-finite measure on JF it is apparent

that Py = S and Ny = @. Consequently, f(a) = f(a) for a € P, and f(a) = —f(a)
for a € Ny, which leads to |f| = f and thus

() = !u!(AﬁPu)Jrlul(AﬂNu):/AmP fdA+/m Fdr

:/AHP#yf\d)\Jr/AmN#\f|d)\:/A|f|d/\.

(v) This follows directly from part (ii), as

d dvd
1= d—Z = ﬁd—ﬁ, v-almost everywhere. O
The following theorem can be proven in exactly the same way as Theorem 4.11 by using
Theorem 4.4 instead of Theorem 4.5 in the beginning of the proof and keeping the above

mentioned extension to complex measures g in mind.

Theorem 4.13 (The Radon-Nikodym theorem for signed or complex measures on o-algebras).
Let p and v denote one finite K-valued and one signed or o-finite measure on (2, F), re-
spectively. If p < v on F, then there exists a |v|-almost surely uniquely defined K-valued
function f € LY(Q, F,v), such that

u(A):/Adu:/Afdu, AeF.

Such a function f is then understood to be a Radon—Nikodym derivative of u w.r.t. v on F
and may also be denoted as
dp

F=q,

4.3 The Radon—Nikodym theorem
for signed or complex transition kernels

The theorem below plays an essential role in the proofs of Theorem 2.7 and Lemma
3.14. At first though a Lemma is stated, which is helpful in its proof. Note at this

point that R := (J,,cy Bo,n) 18 a d-ring and consists of all relatively compact sets in R,
see [Sch23, Example 15.107(d)].

Lemma 4.14. Let V denote a process in Vé, which may be seen as a signed or complex
transition kernel from £ to Ry on R, as stated in Lemma 5.28 in the appendix, satisfying
pathwise V- = VR4 — VR= 1 (VI + —VI.=). Consequently, the map

(VOP)(4) == (VAT RP)(A)—(VE~@P)(A)+i (VI eP)(4) - (V" eP)(4)), A€ RF,

s a signed or complex measure on R @ F, due to Definition 5.25, and Lemma 5.26 implies

vor)a - |

Q(/R ]lA(S,w)V(ds,w))IP)(dw)’ AcReF.
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Similarly, the total variation process Vi can be viewed as a o-finite transition kernel from
Q to Ry by Lemma 5.27 and induces the measure

(Vv © P)(4) = /

14(s,w)Vy(ds,w) )P(dw), AeBr, ®F,
(L )

as stated in Lemma 5.24. Then for the total variation of V ® P holds
[V @P|(A) <2(Vy @P)(A), AeBr, ®F.
In the case K =R, one would get the even more convenient result
(VaP)(A) = (Vy @P)(A4), AeBr, ®F.
Proof. By the properties of the total variation measure in [Sch23, Theorem 15.128] follows

(V& P)|(A)

< [Re(V @ P)|(A) + [Im(V @ P)|(A)

= |(VE*+ @P) — (VP @ P)|(4) + (VT @ P) — (V™ @ P)|(4)
= (VB @ P)(A) + (VE~ @ P)(4) + (VT @ P) + (VI~ @ P)(4)

_ /Q</R+ 14 (s, w) (VE+ —i—Vi)(ds,w))]P(dw)

[Re(V)|(ds,w)

(L e

-~

Im(V)|(ds,w)

< 2/Q</R L (s,0) Vi (ds, ) ) P(d)
=2(Vy ®@P)(A)

for each A € Bgr, ® F, which simplifies to
(VeP)|(4) = |(VEF @ P) — (V™ @ P)|(4) = (VT @ P)(4) + (V™ @ P)(4)
_ / ( / La(s,0) (V2 + VA7) (ds, ) )Pldw) = (Vv © P)(A),
o R,

Vy (dsvw)

whenever K = R. OJ

Theorem 4.15 (The Radon—Nikodym theorem for a signed or complex and a o-finite
transition kernel on a d-ring). Let C € VJ denote an adapted, continuous, real-valued and
non-decreasing process starting at zero and V € V&. When viewing C' and V' as a o-finite
transition kernel and a signed or complex transition kernel, respectively, assume that

VoPkK(C®P
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on ¥,. Then there exists a (C ®P)-almost everywhere unique predictable process f satisfying

vz/'fsdcs
0

up to indistinguishability. Furthermore, f(-,w) may be P-almost surely seen as the C(-,w)-

almost everywhere unique Radon—Nikodym derivative of V (-,w) w.r.t. C(-,w) on R and be

denoted by gggzg, according to Theorem 4.11.

Proof.

Step 1 (Construction of the density for a stopped process). As stated in Lemma 5.28, V
can be viewed as a signed or complex transition kernel from €2 to Ry in R and by Lemma
5.26, V ® P is a signed or complex measure on the d-ring R ® F. Simlarly, C' may be seen
as a o-finite transition kernel from 2 to R4 and

comu) = [

Q(/]R Ta(s,w) C(dS,W))P(dw)7 Ae B, ©F,

is a measure on (R x Q,Bg, ® F), due to Lemma 5.27 and Lemma 5.24, respectively,
because PP is a (probability) measure on (€2, ). Throughout this proof the notation of the
processes V and C will be sightly abused, as the same symbol is used for the process itself
as well as its induced transition kernel. Note at this point that for two sets A € Bg, and
F € F the product A x F'is an element of Bg, ® F and

(C®}P’)(A><F):/

Q

(/R ﬂAxF(S,w)C(dS,w))P(dw)
= /Q 1p(w) (/R+ Ta(s) C(ds,w))P(dw) — /FC(A’W) P(dw)
holds.

Let’s fix the convention inf @ = oo and define a series of functions as
Tn(w) = inf{t € Ry : Cy(w) = n}, neN,

which are stopping times due to [Sch23, Lemma 3.52(b)]. Obviously, C™ is therefore
pathwise bounded by n. Correspondingly, define the sets A,, as those subsets of the product
space R4 x €, on which 7, has not yet been called upon:

Ap ={(t,w) e Ry x Q: 7y(w) > t}, n € N.
Consider also the sets

A, = U ([O,q]x{wGQ:Tn(w)>q}), neN,
q€Qy

which are in Br, ® F, as [0,q] € Br, and {w € Q: 7,(w) > ¢} = {w € Q: 7(w) < ¢} €
Fy € Fforall g € Qp and n € N. Thus A, is simply the countable union of measurable sets
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and thus itself measurable. Fix now n € N and some (t,w) € A,. As such 7,(w) > ¢ holds.
Then there exists some ¢ € Q. satisfying 7,,(w) > ¢ > ¢, which implies (t,w) € A, and
consequently A,, C A,. For the next step consider (t,w) € A,,, which implies the existence
of a rational number ¢, such that ¢ < g and 7,,(w) > ¢ > t. Therefore the pair (¢,w) is also
an element of A, leading to A, C A, and consequently A, = A, for all n € N. As such,
all sets A, are also elements of the product o-algebra Br, ® F. The definition of 7, implies
that A, C A, for each n € N and as C is continuous, and therefore pathwise bounded on
compact intervals, also | J,,cy An = Ry x © holds. In the following one would like to make
use of the fact that for each n € N the set A, is predictable. Equivalently it will be shown
that 14, : Ry x Q — {0,1} is a ¥,-measurable stochastic process. This indicator function
can alternatively be written as 1jg ;, (.))(t). Unfortunately this shows that the process is
not left-continuous so it is at first glance not obvious that it is really predictable. To prove
this one can define for each n € N a series of stopping times (7,, ;)ken by

Tog(w) = inf{t € Ry : Cy(w) =n — %}_

Thus for each n € N the sequence (7, x)ren is an announcing sequence for 7, making
it a predictable stopping time (see [Sch23, Definition 6.38]). Consequently for each pair
(t,w) € R+ x Q

A o7 @) (8) = Ljor, () (8) = La, (8 w)
and 14, is then predictable as the pointwise limit of the predictable processes 1jg .

(see [Sch23, Remark 7.93]), which leads to A,, € ¥, for all n € N. Consequently, the measure
C ® P is o-finite, as for each n € N holds

co) = [

Q

= /Q(/R+ IlAn(s,w)CT”(ds,w))IP’(dw)
< /Q( . CT”(ds,w))IP’(dw)

< / C™(Ry,w)P(dw) < nP(2) =n < oc.
Q ———

<n

(/R 14, (s,w)C(ds, w))P(dw)

Analogously, one may define the stopping times
on(w) =inf{t € Ry : Vi(w) = n}, n € N,
where V denotes the total variation process of V', and the sets
B, ={(t,w) e Ry x Q: op(w) > t}, n € N.

By the same argumentation as above follows B, C B,,11, B, € ¥, and V" := Vyo, <n
for all n € N as well as |J,,cyy Bn = Ry x Q. As the total variation process of the stopped
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process Vo is bounded by n for each n € N, the same holds for the positive and the
negative variation of the real and imaginary part of V°». Thus the right-hand side of

Vo (A, w) = Vi (A,w) = Vil (A4, w) +i(Vi, (4,w) = Vi, (4,w))

consists of four R -valued terms for each A € Bg, , w € 2 and n € N. For readability, the
subscript V7" will be omitted in the following. Consequently, one may use Lemma 5.26 to
see that

(Vo @ P)(A) = /Q ( /R + 145,V (ds, ) ) B(do)
— (VR @ B)(A) - (VI @ B)(A) +i(VIF @ B)(A) - (V' 9 B)(4),  AcBs, &F

is a signed or complex measure on Bg, @ F and not only on the j-ring R ® F, as
(V @ P)(Ry x Q) = / ( / e, (s, 0) V9 (ds, ) ) P(dw)
o VR,

:/Q< Vj(ds,w))P(dw)

Ry
< / V/(Ry,w)P(dw) < nP(Q) =n < oo
P2

for each j € {(R,+), (R, —),(I,+),(I,—)}. Analogously it can be seen that V" also induces
a finite measure on B, ® F by defining

(e - |

(/ ]lA(s,w)V”(ds,w)>]P’(dw) <n < o0, AeBr, ®F, neN.
o R,

The total variation of V" ® P is bounded by
(VT @P)|(A) <2(V'@P)(A), AecBr ®F,
by Lemma 4.14.
Furthermore, by assumption holds

VIraP< VP CRP, n €N,
on the predictable o-algebra ¥, C Br, x F. Therefore, Theorem 4.13 is applicable, which
results for each n € N in the existence of a (C' ® IP)-almost everywhere unique K-valued
function f, € £! (]R+ x 0,5, C® IP’) satisfying
(Vo @ P)(A) = / fdCoP), Acs,
A

Therefore, one may use 4.12(iv) to see that for A € ¥, and n € N the integral

/A [ful A(C @ P) <2|(VI @ P)|(A) <4(V" @ P)(A) < oo
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is bounded. Furthermore, for each A € ¥, and n € N follows
/ ( / La(s,0)V o) (ds,) ) B(dw) = (V7 & B)(4)
Q MRy

= / fu(s,w)d(C @P)(s,w) = / 1a(s,w)fr(s,w)d(C @P)(s,w)
A R

+><Q

_/Q</R+ La(5, @) fa(5,)C(ds, w) | P(dw),

where in the last step Fubini’s theorem for transition kernels [Gril8, Satz 9.5] has been
used. Now consider sets of the form A x F' € X, where A € Bg, and F' € F. By using the
same arguments as in equation (4.5) the equality

Lreaeps) = [ Laravmias)pw)
- /(] () fu(s:)Clds, ) ()

_ /F ( /A fuls,w)C(ds,w) ) B(dw)

follows by Lemma 4.12(iii). Note that the map f,(-,w) : Ry — K for fixed w € Q is
Br, -measurable, due to Lemma 5.6, as f, is Bg, ® F-measurable, due to ¥, C Bg, ® F.
Furthermore, one may use again [Gril8, Satz 9.5] to see that f,(-,w) is P-almost surely
C(-,w)-integrable, as

/Q(/Hh\fn(s,w)\C(ds,w)>]P’(dw):A+Xﬂlfn(s,w)|d(C®P)(s,w) < 00,

which leads to f,(-,w) € L' (Ry, Br,,C(-,w)) for almost all w € Q and each n € N.
Fix now n € N, s,t € Ry satisfying s < t and some set F' € F,. Thus the set (s,t] x F'is

an element of ¥, by [JS13, Theorem 2.2(ii)] and one may use the second-to-last display to
obtain

t
/F Vo) (s, 4], w)P(dw) = /F ( / fn(u,w)C(du,w)>P(dw),

which then leads to
E[((Vtﬂn(w) (w) — V;f’n(”) (w)) - /: fn(u,w)C(du,w)) ILF(w)}
- /F Vo) ((s,1], w)P(dw) — /F ( / fn(u,w)C(du,w)>IP(dw) — 0.

Consequently,

E[(Vtan(w)(w) _ V;Gn(w)(w)) - /St fn(u,w)C(du, w) ’ .7:3} =0, s <t,



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.3. FOR SIGNED OR COMPLEX TRANSITION KERNELS 7

holds. Furthermore, the process Vo — fo fndC is adapted, continuous and starting at zero,
because Vo € Vi and Jo fndC is adapted, continuous and starting at zero by [Sch23, Lemma
5.49(c)]. Additionally, this process is also integrable, as

B[V - [ fatsw) Clts,e]] < BIW @)+ [ o) s
<E[V}(w)] —i—E[/Ot | fr(s,w)] C’(ds,w)} < oo

holds for all t € Ry. Consequently, the process Vo — fo fndC is a continuous martingale,
due to [Sch23, Remark 4.2(b)]. Furthermore, [Sch23, Lemma 5.49(c)| also implies that
fd frndC is of locally finite variation, and thus the same holds for Vo — fo fndC'. Therefore,
one may use [Sch23, Lemma 5.51] to obtain that

van—/ fadC =0
0

and equivalently
Von = / fndC
0

hold up to indistinguishability, i.e. the set

N, = U {w eQ: Vton(w)(w) =+ /Ot fn(s,w) C(ds,w)}

teR

is contained in a P-null set, for each n € N.

Step 2 (The density for the unstopped process). To avoid ambiguousness, one can now define
B, = B\ B,,—1 for each n € N, where By := @, and see that | J,,cy B, = Unen Bn = Ry xQ.
Note that the above argued predictability of each of the sets B, implies that also B, is
predictable for each n € N. Therefore, set

flt,w) = fult,w), for (t,w) € By,

As f may also be written as 7 | fp1 B, and B, € Y, it is also X,-measurable. Note at this

point that f, [B,= fm |5, holds outside of a set N, which is contained in a (C' ® P)-null set
for all n < m, due to the uniqueness in Theorem 4.13. As stated in the proof of [Gril8, Satz
9.1] for each w € Q and n € N the set

Bn('aw) = {t eRy: (t’w) € Bn} = {t eRy: o'nfl(w) <t< Un(w)} = [Unfl(w)van(w))v

with o¢ := 0, is an element of Bgr,, which leads to the Bg,-measurability of the map
f(,w) Ry = C, and |,y Bu(+,w) = Ry for almost all w € Q.
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Consider now the unstopped process V. Due to the previous findings of this proof holds

Vilw) = Vi), 5, (@) = 3 Viw)lp (tw) = 3 V(@)1 (tw)

neN neN

_Zﬂén<t’w)/0 fn(s,w)C(ds,w)—/o Z]lén(t,w)fn(s,w)C(ds,w)

neN neN

:/0 Zﬂén(s,w)fn(s,w)(}’(ds,w):/0 f(s,w)C(ds,w)

neN

for all t € Ry and w € N€, where N := J,cy Nn is contained in a P-null set, such that
(t,w) € N¢, i.e. V = f o C up to indistinguishability. Note that in the second-to-last step
the above mentioned fact f, [, = fm |B, for all n < m has been used and the interchange
of the formally infinite sum and the integral is valid, as at most one summand is greater
than zero for the fixed pair (t,w) € Ry x Q.

Fix now n € N and consider the interval [0, n]. Note that the set £ := {(a,b] : a,b € [0, n],
such that a < b} generates the Borel-c-algebra on [0,7], denoted by By . Furthermore,
the set £ is intersection stable, as for two sets (a1, b1] and (ag,be] in € the intersect is either
@ € &€ or the interval (a1 V ag, by A be], which is also in €. Fix now w € Q outside of a P-null
set, such that V' = f e C' and consider V as well as f e C' pathwise as two signed or complex
measures on ([0,n], Bjg ;). Thus for each ¢ € [0,n] holds

V((0,8],w) = Va(w) = Vo(w) = Va(w) = /O f(s,w)C(ds,w) = (f ¢ C)((0,1],w),

which leads to

V((a,b],w) = V((O, b},w) — V((O,a],w) =(fe C)((O,b],w) —(fe C)((O,a],w)
= (foC)((a,b],w)

Thus the measures V(-,w) and (f @ C)(-,w) agree on £. Furthermore, the continuity of V'
and f e C imply

V([O,n],w) = V((O,n],w) =(fe C)((O,n],w) =(fe C)([O,n],w).

Thus Lemma 5.14 in the appendix is applicable, resulting in V(A,w) = (f ¢ C)(A4,w) for
all A € o(€) = B,y for each n € N. Consider now a set A € R = (J,,cy Bjo,n]- Then there
exists an n € N, such that A € B ,,) and thus V(A,w) = (f e C)(A,w) holds for each A € R.
As Br, = c(R) and f is a Bg_ -measurable function satisfying V (A, w) = (feC)(A,w) for all
A € R, f(-,w) may be P-almost surely seen as the C(-,w)-almost everywhere unique Radon—
Nikodym derivative of V(-,w) w.r.t. C(-,w) on R and be denoted by Sgg’zi, according to
Theorem 4.11.

Step 3 (Uniqueness). To proof the (C' ® P)-almost everywhere uniqueness define now for
each n € N the predictable trace-c-algebra ¥} = {AN B, : A € ¥,} on B, and let f denote
a predictable process satisfying V = f e C' up to indistinguishability. As stated above,
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f= dCE w; holds for P-almost all w € Q and C(-,w)-almost all ¢ € R... Consequently, f(-,w)

is almost surely locally integrable w.r.t. C'(-,w), as Lemma 4.12(iv) implies
dV (s,w) bavy (s,w)
< -~ 7
/ |f(s,w)|C(ds,w) = / ac(s, w)‘C(ds,w)_Q/a a0 (5, o) C(ds,w)
=2Vy ((a,b],w) <2V ([0,b],w) < oco.

for each pair of non-negative real numbers satsisfying a < b. View now again V as well
as its total variation Vy and C again as a signed or complex and two o-finite transition
kernels from 2 to R4 according to Lemma 5.28 and Lemma 5.27, respectively. The by Vi
induced measure Vy ® P on X7 is finite for each n € N, as it coincides on B, with V" @ IP,
which leads to

L]t 10 0)00s.0) 2t
<2 [ ([ 1alo) Vilds,o) JPide) = 20y @ P)(4) <

for each A € X7, i.e. 14(-,w) is P-almost surely integrable w.r.t. (f e C)(-,w). Thus the
chain rule for LebesguefStieltjes integrals (see for example [Sch23, Lemma 16.6]) results via

/Q</R+ ]lA(s,w)|f(s,w)|C(ds,w))P(dw) = /Q(/]R+ 1a(s,w) (|f] oC’)(dS’w))P(dw) <

in the almost sure integrability of 14(-,w)f(-,w) w.r.t. C(-,w) for each A € 7. This in
turn leads to

(V& P)(A) = /Q ( /R 14(5,0) V(ds,0) ) P(d)

:/Q(/R+ 14(5,w) ( » C)(ds, ) | P(dw)

:/Q(/R+ La(s,w)f(s,w) C(ds,w)>IP’(dw)
:/ (s, w) f(s,w) d(C @ P)(s,w)
R4 xQ

:/f(S,w) d(C @ P)(s,w)
A

due to the chain rule for Lebesgue—Stieltjes integrals in the third and [Gril8, Satz 9.5] in
the sixth step. Consequently, as f [p, is also Xj-measurable, it can be viewed as a Radon-
Nikodym derivative of V ® P w.r.t. C® P on Y7, according to Theorem 4.13 and is as such
(C'® P)-almost everywhere unique on B, for all n € N. Therefore, as | J,,cy Bn = Ry xQ the
process f is also (C®P)-almost everywhere unique on R xQ, which concludes the proof. [
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5 Appendices

5.1 Appendix on measurable functions and measure theory

As the following lemmata are used on more than one occasion throughout this thesis, the
appendix starts with some theory of R-valued measurable functions on a measurable space
(€2, F).

Lemma 5.1. Let (f,)nen be a series of R-valued F-measurable functions. Then the
pointwise supremum sup,cy fn and pointwise infimum inf,cn fr, are also F-measurable
functions.

Proof. A function f: Q — R is defined to be F-measurable, if and only if for all A € Bg
the set f~1(A) = {w € Q: f(w) € A} is in F. By [Sch09, Satz 7.1.2] it suffices to show that
the sets {w € Q: f(w) < a} are elements of F for all @ € R to prove the F-measurability of f.

Fix now a € R. Thus

{weQ:sup fp(w) <a} ={weQ: fr(w) <aforallneN} = ﬂ{wEQ:fn(w)ga}
neN neN

isin F, as {w € Q: fp(w) < a} € F for each n € N and a o-algebra is closed under
countable intersection. Thus sup,,cy fr is F-measurable.

Similarly, [Sch09, Satz 7.1.2] also states that a R-valued function is F-measurable, if and
only of {w € Q: f(w) < a} € F for each a € R. Fix now a real number a and see that

{weQ:ilellfwfn(w)<a}:{w€§2:fn(w)<af0rsomeneN}: U{weﬂzfn(w)<a}
neN

is in F, which concludes the proof. O

From this observation the next lemma follows directly, as for a series (o )pen in R :=
R U {—00, 00} the limes inferior and limes superior are defined as

lim inf o, = sup inf a, and lim sup o, = inf sup ay,,
n—00 keNn>k n—00 keN n>k

respectively.

Lemma 5.2. Let (fu)nen be a series of R-valued F-measurable functions. Then the
pointwise limes inferior liminf, . f,, and pointwise limes superior limsup,,_,.. fn are also
F-measurable functions.

81
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Proof. For each k € N define the function g, = inf,,> f,, which is F-measurable as the
pointwise infimum of the sequence of F-measurable functions (f,4+x—1)nen. Consequently,
liminf, o fr = supgen gk is also F-measurable.

Analogously, one may define g, = sup,,>j, fn for each k € N and see that limsup,,_,, fn =
infren gi 1s F-measurable. O
Ultimately, this leads to the measurability of the pointwise limit of measurable functions.

Lemma 5.3. Let (fn)neNibe a series of R-valued F-measurable functions converging point-
wise for each w € Q0 to a R-valued function f. Then f is also F-measurable.

Proof. For a converging sequence of real numbers the limit coincides with the limes inferior
as well as the limes superior and the statement follows from the lemma above. O

Often times one has to consider measurable functions on a product space. Thus one at
first has to define a product o-algebra.

Definition 5.4 (Product o-algebra). Let (Q1,F1) and (22, F2) be two measurable spaces
and 7 and e be the canonical projections, i.e.

ﬂleleQB(wl,wg)lete and 7T2:Ql><929(w1,w2)'—>WQ€QQ.

Then the product o-algebra is being generated by the inverse images of sets in F; and Fa
under the corresponding canonical projection, i.e.

Fi@F=o({m; ' (4)): Aj € Fj, j=1,2}).

This definition obviously implies that the canonical projections are (F;®F3)-F;-measurable
for 7 = 1,2. Analogously one could define the product §-ring as

R1® Ry = 5({7rj_1(Aj) tAj €Rj, j=1,2}),
where R; is a d-ring on §2; for j =1,2.

Lemma 5.5 (F; ® Fo-measurable functions). Consider another measurable space (S,S) and
amap f:S — Q1 x Q. Then f is S-(F1 @ Fa)-measurable, if and only if mjo f S — Q;
is S-Fj-measurable for j =1,2.

Proof. As stated above, the canonical projections are (F; ® F3)-F;-measurable for j =1, 2.
Consequently, the S-(F; ® Fa)-measurablity of f implies the S-Fj-measurability of 7; o f
for j =1,2.

Assume now the S-Fj-measurability of m; o f for j = 1,2. Then one may define & =
{Ac Fi®Fy: f71(A) € S}. This set is again a o-algebra, as

(1) f_l(Ql X Qg) =S5 € S and thus Q1 x Q9 € &,
(ii) for each A € & the complement is also in &, because

FHA) ={seS: f(s) e A ={s€S: f(s) ¢ A} ={s€5: f(s) € A} = fTH(A)",
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(iii) and for a sequence (Ay)nen in ® and its union

FHU An) ={se€5:f(s) e | An}

neN neN
= {s € S : there exists a n € N such that f(s) € 4,}

= U{ses:f(s) e A} = | F1(4n)

neN neN

follows, which is therefore again in S leading to (J,,cry An € 6.

Per assumption, for each j = 1,2 and A; € F; the inverse image (mj o f)"1(A;) =
f‘l(wj_l(Aj)) is in §. Consequently, as 7rj_1(Aj) € F1 ® Fa, the sets 7Tj_1(Aj) are in &
for all j = 1,2 and A; € F;. This leads to /7 ® F2 C &, because those sets generate
the product o-algebra and as such it is the smallest one containing all those sets. By the
definition of & it is apparent that also & C F; ® Fo and thus & = F; ® Fo. Therefore f is
S-(F1 ® F)-measurable [Sch23, p. 435]. O

Lemma 5.6. In the setting of Definition 5.4 let f : Q1 xQo — K be (F1®@F2)-Bg-measurable.
Then the functions f(-,we) : Q1 — K for fired we € Qo and f(wi,-) : Qo — K for fized
wy € Qy are F1-Bg- and Fao-Bg-measurable, respectively.

Proof. For fixed we € Q9 consider at first f(-,ws) : Q1 3 wy — f(wi,w2). Then one can
define gy, : 1 D w1 — (w1,w2) € 1 x Q9 and see that

Wlogw2:919w1'—>w1€§21 and 7T20gw22919wli—>(,U2€QQ,

are the identity and a constant function, respectively. As such they are Fi-Fi- and Fi-Fo-
measurable, respectively, which implies the Fi-(F; ® F2)-measurabiliy of g,, for each
wg € 9, due to Lemma 5.5. Consequently, f(-,ws) = f o g, is Fi-Bg-measurable for all
wo € QQ.

Analogously, one can define g, : Q2 3 wo — (w1,w2) € Q1 x Qg for each wy € Q. By
the same steps as above one can show that this function is Fs-F7 ® Fo, which leads to the
Fa-Bg-measurability of f(w,-) = f o g., for all w; € Q. O

The First Borel-Cantelli Lemma is one of the most famous lemmata in probability theory.
It can, however, be quite easily extended to more general measures, not only probability
measures. Let (2, F,v) be therefore a measure space, not necessarily a probability space.
The more well-known, but also more restrictive Borel-Cantelli Lemma can for example be
found in [Wil91, p. 27].

Lemma 5.7 (Generalized First Borel-Cantelli Lemma). For a sequence (A, )nen of elements
of F define B = limsup,,cy An. Then the property > o v(A,) < oo implies that v(B) = 0.

Proof. For each m € N define B, = U,,>,, An- As B = (,,en Up>m An per definition, one
obtains - -

v(B) < v(Bm) < > v(Ay).

n>m
As this remains true for each m € N and > 7 | v(A4,) < oo the lemma is proven by taking
the limit m — oo on the right-hand side. O
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5.2 Appendix on martingale convergence

Doob’s almost sure convergence theorem bears the existence of a limit for ¢ — oo for some
sub- or supermartingales. In this theory, however, we only need a special case of this
theorem, where the underlying process is a martingale. The following theorem will therefore
only be concerned with this special case. For the more general theorem as well as a proof
the reader is referred to [Sch23, Theorem 7.57].

Theorem 5.8 (Doob’s almost sure convergence theorem). Let T'C Ry and M = (My)er be
a K-valued martingale satisfying componentwise (in the case K = C the real and imaginary
part of each component have to fulfill this condition separately) either

supE[(M{)*] <00 or supE[(M!)7] < oo,
terT teT

where (1) and ()~ denote the positive and negative parts of the process, respectively. If
t* := supyer ¢ T there exists a limiting K?-valued, integrable and Fy--measurable random
vector My in the sense that
My = lim M; a.s.
teF
L+

for each countable FF C T satisfying sup F' = t*.

Unfortunately, without further conditions, the almost sure convergence of the above
theorem cannot be extended to more useful convergence types, such as the £!'-convergence.
For this matter, a new kind of stochastic processes is needed, namely uniformly integrable
processes, which will be defined below. For readability and because we do not need the
general case in this thesis, only R-valued random variables will be discussed. Just note that
the extensions to C or even more general C? can be done straightforwardly by viewing the
real and imaginary parts separately and the multiple dimensions componentwise.

Definition 5.9 (Uniformly integrable families of random variables). Let X = (X;);er be
a family of R-valued random variables on a set 7" C R;. X is then said to be uniformly
integrable, if and only if for each € > 0 there exists ¢, > 0, such that

E[’Xt|]l{|Xt|>ce}] < €, tel.
Such families are bounded in £', because
E[[ X[} = B[ Xe[Lq1x, 5 e03] + Bl Xe| Ly x,)<ep3] < 141 < o0
The following lemma shows the usefulness of uniformly integrability.

Lemma 5.10. For a sequence (X,)nen and a random variable X, which are both real-valued
and in L' that satisfy X, — X in probability and (X, )nen is uniformly integrable, the limit
X, — X also holds in L, i.e. E[|X,, — X|] = 0 for n — oo.
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Proof. Let for ¢ € [0,00) the function . : R — [—¢, ] be defined as

—c if x < —c,
Ye(x) =% @ if —c<x<eg,
c ifx>ec

Fix € > 0. Due to X € £! there exists ¢ € [0,00), such that

Eflpe(X) — X]]
= Effec(X) = X[Tx>q] + Ellee(X) = X[Tix<—cj] + Ellpe(X) — X[1q1x)<c)]
3

€ €
= EHC - X|]]-{X>c}] +E[|C—|— X|]]_{X<7C}] +0< 6 + 6 —
Similarly, due to the uniformly integrability of (X, ),en, there exists also a ¢ € [0, 00), for
which

Ellps(X,) — Xu|] < g neN

holds. By defining C' := max{c, ¢} both expectations above are bounded by §. Apparently,
loc(x) — we(y)] < |z — y| holds and therefore one knows that ¢co(X,) — ¢c(X) in
probability, as n — oo. By using the bounded convergence theorem [Wil91, Theorem 13.6]
there exists an ng € N such that

Ellpc(Xn) — pc(X)]] <

W m

holds for all n > ng. This leads to
E[[Xn — X[] < E[lpc(Xn) — Xul] + Ellpc(Xn) — oo (X)|] + Ellpc(X) — X[] <€
for all n > ng by the triangle inequality, which concludes the proof. ]

Definition 5.11 (Uniformly integrable martingales). Quite naturally, a martingale M =
(My)ier is called a uniformly integrable martingale, if and only if the family (My)ier is
uniformly integrable.

Theorem 5.12. For every real-valued uniformly integrable martingale M = (My,)eN the
limit
My = lim M,

n—o0

exists not only almost surely, but also in L.

Proof. As stated above, the uniformly integrabiliy of M causes its boundedness is L.
Therefore, by Doob’s almost sure convergence theorem Theorem 5.8, My, exists almost
surely. This implies the convergence of (M,,)cn to My, in probability as n — co. Lemma
5.10 therefore proves this theorem [Wil91, p. 1271f]. O]
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5.3 Appendix on set theory

For some set 2 define P(12) as the set of all subsets of 2, also known as the power set. The
following Lemma is often times helpful when trying to proof the equivalence of two signed or
even complex measures on a measure space, when one knows they agree on some subset of the
o-algebra. The proof relies heavily on Dynkin‘s -\ lemma (see for example [Sch23, Theorem
15.66]) that states that for every intersection-stable subset £ C P(S)) the generated Dynkin
system D(E) agrees with the generated o-algebra o(€). Therefore the definition of a Dynkin
system is provided beforehand.

Definition 5.13 (Dynkin system). A set D C P(Q) is called a Dynkin system, if and only
if the three conditions below are fulfilled:

(i) Q eD,
(ii) for every D € D also its compliment D¢ must be in D, and

(iii) if a sequence (Dy,)nen € D satisfies D, N D,,, = @ for all n # m, then |, oy Dy has
to belong to D.

Lemma 5.14. Let (2, F) be a measurable space, p,v : F — K be two signed or complex
measures on it and £ C F be intersection-stable, meaning that the implication E1, Fy €
E = E1NE;y €& holds. If then u(E) = v(E) for all E € (E£UK), then the same remains
true for all sets in the generated o-algebra o(E).

Proof. Define D = {D € o(€) : u(D) = v(D)} as the subset of ¢(&), on which the to be
proven proposition holds. Naturally, D = (&) has to be shown. By definition £ C D C o (&).
It is also apparent that D is a Dynkin system, as

(i) © € D, per assumption,
(ii) for D € D p(D) = p(Q2) — (D) = v(Q) — v(D) = v(D°) and therefore D¢ € D, and

(iii) if a sequence (Dy,)nen € D satisfies Dy, N Dy, = () for all n # m, then p(lJ, ey Dn) =
Yonen H(Dn) = > enV(Dn) = v(U,en Dn), due to the o-additivity of signed or
complex measures, leading to |, ey Dn € D.

Consequently, as D is a Dynkin system and a superset of £, D(E) C D C o(€). Dynkin‘s
-\ lemma states D(E) = o(€), which in turn leads to D(£) = D = o(€) concluding the
proof. O

Another special kind of subset of P(Q2) are monotone classes, which will be defined and
discussed in the following.

Definition 5.15 (Monotone class). A set 0t C P () is a monotone class, if and only if the
following four criteria are met:

(i) @ as well as Q are in M,
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(ii) for each two sets A C B both in 9t also B\ A € 9,
(iii) for all A, B € 9 satisfying AN B = & also AU B € M, and

(iv) for an increasing sequence (A ),eny € M also |J,, oy An € M.

Lemma 5.16 (Monotone class lemma). Let £ C P(2) be intersection stable as defined in
Lemma 5.14. Thus it follows that

where M(E) denotes the generated monotone class and o(E) the generated o-algebra.

Proof. Tt is quite clear to see that every o-algebra is also a monotone class and therefore
o(€) D M(E). Thus it remains to show that M(E) is a o-algebra. Therefore it will be
proven in the following that () is intersection stable. To do so one may define for each
set A € M(E)

My ={BeME): ANB e M(&)}.

Take any set A € £. As per assumption, AN B € £ for each B € £ and therefore £ C M 4.
Note that 914 defines a monotone class, as

(i) AN =0 ecME) and ANQ =A € M(E), therefore both & and 2 are in M 4.

(i) for each two sets B; C Bg both in M4 follows AN(B2\B1) = (ANB2)\(ANDBy) € M(E),
because both (AN B;) and (AN By) are elements of M(E) and (AN By) C (AN Ba)
holds, which results in By \ By € M 4.

(iii) for all By, By € M4 satisfying By N By = & follows AN (B UBy) = (AN By) U
(AN By) € M(E), because both (AN By) as well as (AN By) are in M(E) satistying
(ANB1)N(ANBy) € BiN By = &. Therefore AN(ByUB3) € M(E) and consequently
By UBy € My,

(iv) for an increasing sequence (Bp)neny € My follows AN (U, en Bn) = Upen(A N By) €
M(E), as (AN By)nen is an increasing sequence in M(E), whereby J,, ey Bn € M 4.

Because () the smallest monotone class containing £ and as just now shown 9y is
also a monotone class containing &, it is apparent that 9(E) C M 4 holds. Thus for every
A€ & BeM(E) it was shown that AN B € M(E).

Take now some A € M(E). By switching places of A and B in the last sentence one
obtains again £ C 4. One can now perform the same steps as before with this now more
general set A and get the same result, namely that 914 is a monotone class for general
A € M(E) and thus M(E) C My. In other words: For each A, B € M(E) the intersect
AN B is also in M(E), i.e. M(E) is intersection stable for two and therefore also finitely
many sets.
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From that it follows that for A, B € 9(£) the union AU B = (A°N B°)° € M(E), as
monotone classes are by definition stable w.r.t. complementary sets, and 9t(€) is thus stable
under finite unions. For the last step fix some general sequence (Ap,)nen € M(E) and define

n
B,=|J4;, neN
j=1

By the previous findings of this proof, B,, € M(E) as a finite union and also B,, C By, 41 for
each n € N. Consequently, by the definition of a monotone class, |J,cn An = U,en Bn €
M(E). Thus M(E) is not only a monotone class, but also a o-algebra, which concludes the
proof [LG16, p. 261f]. O

5.4 Appendix on scalar products and pre-Hilbert spaces

The appendix now switches topics and will in this section concern itself with some linear
algebra and more precisely symmetric bilinear or Hermitian sesquilinear forms on vector
spaces, depending on K = R or K = C. In order to improve readability and to not take the
focus away from the findings and conclusions of this section, only the vocabulary of the
complex case will be stated in the following. When considering K = R, the reader is asked
to switch to the correct names for the real case, for example think of a symmetric bilinear
form when reading Hermitian sesquilinear form.

Definition 5.17 (Hermitian sesquilinear forms and scalar products). A function (-,-) :
V xV — K, where V denotes a vector space over K is said to be a Hermitian sesquilinear
form, if and only if it satisfies the three equalities below for all z,y,z € V and a € K,
namely

(i) (ax+y,z) = alz, 2) + (y, 2),

(ii) (z,ay+ 2z) = a(z,y) + (z,z) and

(iii) <:1:,y> = <y7$>'

One may call these conditions linearity in the first argument, semilinearity in the second
argument and Hermitian symmetry. Depending on the subject the linearity and semilinearity
may also be switched. A scalar product is defined as a positive definite Hermitian sesquilinear
form and induces the norm ||z|| := /(z,x) for all z € V.

Note at this point that one can use the conditions (i) and (iii) in of Definition 5.17 to
obtain

(z,ay + z) = (ay + 2,2) = &y, =) + (2,7) = &(x,y) + (z,9),

which is condition (ii). Thus if one wants to check, if a given function is a Hermitian
sesquilinear form, it suffices to show (i) and (iii). However, throughout this thesis, all three
conditions are being shown, as the proof of (ii) is typically not too hard.
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The following theorem is one of the most well-known inequalities in the field of linear
algebra and normed vector spaces. In most cases, the theorem is stated for general norms
on a vector space or those generated by some scalar product. This thesis however extends
the conclusion also for not necessarily positive definite symmetric or Hermitian sesquilinear
forms but positive semidefinite ones. The more restrictive case can be found as [Hav12, Satz
11.3.3] from where the proof is being extended.

Theorem 5.18 (Generalized Cauchy—Schwarz inequality). Let V' be a vector space over
K and (-,-) : V. x V — K be a positive semidefinite Hermitian sesquilinear form. Then the
mequality

[z, y)[* < (2, 2)(y, )

holds for all x,y € V.

Proof. Note at first that due to the assumed positive semidefiniteness (z,z) > 0, i.e.
R4 -valued, holds for all x € V. Fix now some ¢ > 0 and define

QZMGK.

(Y, y) + €

Positive semidefiniteness and the definition of a Hermitian sesquilinear form suffice to prove

0< (2~ ay,z—ay) = (r,2) — alz,y) — aly,2) + |af*(y,y)

R V) B  C7Y ) NN S (23 )]

= &) <y,y>+6< ) <y,y>+e<’ >+(<y,y>+e)2

2z, ) (2, 9)?
() +e  ((y,y) +¢)?

Equivalently, one may write

(v, y)

= (z,7) (Y, )

(y,v)

TR <(z,7)({y,y) +€)

2z, y)* — {2, y)I”

for all € > 0. Now there are two cases two be differentiated: In the first one (y,y) = 0 holds.
Therefore the fraction on the left-hand side is equal to zero for each € > 0 and can thus be
disregarded. This leads to

2|z, y)* < (@, 2)((y,9) +¢)
and, by taking the limit € \, 0 on the right-hand side and dividing both sides by 2,
‘<$7y>‘2 =0 (: <3:,a:)<y,y>),

which trivially proves the inequality. Let’s now consider the other case, i.e. (y,y) > 0. Then
one can again take the limit € \, 0 on both sides of the equation and obtain

2/(z, y)|* — [z, > = (=, 9)[* < (,2)(y, ). O

In order to use this theorem in the earlier parts of this thesis, the following lemmata
prove useful.
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Lemma 5.19. Every K¢ valued Hermitian matriz 7 induces a Hermitian sesquilinear
form (-,-) : K% x K¢ — K by defining

(w,y) = aTng.
Furthermore, (-,-) inherits the positive or negative (semi)definiteness of .

Proof. As in Definition 5.17 let x, 7, z € K% and « € K. Thus

T

() (ax +y,2) = (ax+y) 7z =a(z"12) +y"7z = alz, 2) + (y, 2),

(i) (z,ay +2) =2 n(ay + 2) = a(z"my) + 27z = alz, y) + (x, z) as well as

N =gT7z =yTnz = (y,x)

(iii) (z,y) =2Tmg = (zTmg)T =5 n" (2
follow directly.

Assume 7 to be positive definite, the other cases can be shown analogously. Thus

272 > 0 holds for all x € K¢\ {0}. Fix now x € K¢\ {0} and consider its complex

conjugate vector T, which leads to

0< iMrz = @) 7z =2 7z = (z,2),

which proves the positive definiteness of (-, ). O

Lemma 5.20. Let 7 be a K %-valued positive semidefinite Hermitian matriz and (-,-) :
K¢ x K¢ — K the corresponding positive semidefinite Hermitian sesquilinear form. Then
for all z,y € K¢ the inequality

(¢ + o) w@T5) < (VaTnz + VyTmg)
holds.
Proof. Let’s at first consider the left-hand side of the inequality and obtain
(z4+y) 7@ Fty)=a" 72 +a"7g+y 7i+y 7§ = 7%+ 2Re(z" 7g) +y 7y, (5.1)

because y'm& = &' 7y = xT 7. Now one can focus on the term Re(z'7g) and see that its
square is bounded from above by

[Re(z"ng)]” < [aTngl* = |(x,9)]* < (2, 2){y. y) = («T7z)(y " 7p),

due to the Cauchy—Schwarz inequality in Theorem 5.18. As both sides are R -valued, one
my take the square-root on both sides and the inequality still remains true. Therefore by
revisiting equation (5.1) one obtains

2
(e +y) 7@ FY) < a"mi + 20/ (T (yTrg) +yTmg = (VaTmi + VyTmp)
which proves the lemma. ]

The absolute values of positive semidefinite matrices are in some sense bounded by their
diagonal elements, which may often times be helpful when trying to bound sesquilinear
forms such as the one defined above.
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Lemma 5.21. Let m € K¢ be a positive semidefinite Hermitian matriz. Then 77 is a
non-negative real number for each j=1,...,d and

7| < VAVl (i G) € {1, dYR

Proof. Consider for each j = 1,...d the unit vector e; € {0,1}¢, which consists of all zeros
except for a one in the j-th entry. Then the positive semidefiniteness of 7w implies

0 < (eN)red = (/) Tred = 7ied = wId,

where 77" denotes the j-the row of 7. Furthermore, the function (-,-) : K¢ x K¢ 3 (z,y) —
z 7y € K is a positive semidefinite Hermitian sesquilinear form, as stated in Lemma 5.19.
Thus one can use again the Cauchy—Schwarz inequality in Theorem 5.18 in the third step
to obtain

7| = lef wej| = [(eire))| < v <€i,€i>\/<ej7€j> = \/eiTWEi\/ejTﬂéj = ViVl

for each pair (7,75) € {1,...d}%. O

Keep in mind that a pre-Hilbert space (H, | - ||z) is normed vector space, where the norm
is induced by a positive definite Hermitian sesquilinear form, i.e. ||z| g = +/(z,z) for all
x € H. If H is complete w.r.t. || - ||z then it is called a Hilbert space. If (-, -) is only positive
semidefinite, then || - ||z is a seminorm, as the Cauchy—Schwarz inequality in Theorem 5.18
holds for positive semidefinite Hermitian sesquilinear forms and not only for scalar products.
Thus the triangle inequality holds for || - ||z, due to

lz+yllE = Kz +y, 2+ y)| < (x,x) + [(2,9)] + [y, 2)| + (v, 9)

< (a,2) + 23/ (2, 2) (g, ) + (,9) = (Vi 2) + (5, 9)”

for each pair (z,y) € H?. Furthermore,

lazl} = V{az, az) = Vad(z, ) = V]aP(z,2) = o ||},  a€K, zeH,

and thus || - |z meets all criteria of a seminorm.

Lemma 5.22. Let (z)nen and (Yn)nen be two sequences in a K-vector space H converging
to x andy, respectively, with respect to the seminorm ||-|| g induced by the positive semidefinite
Hermitian sesquilinear form (-,-) on H. Then the sequence ({Zyn,Yn))nen converges to (z,y)
in (K, |- |)

Proof. Note at first that z, — z for n — oo in H means for every € > 0 exists a ng € N such
that for all n > ng follows ||z, — z||g < e. Furthermore, a convergent sequence is bounded,
i.e. there exists a M > 0, such that ||z,|| gz < M for all n € N as well as ||z||g < M. Define
M as such a bound holding simultaneously for both convergent sequences (x,)nen and

(yn)nEN-
Fix € > 0 and take ng € N, such that

n > no

M|z — ||z < % as well as M]|yn — yllr < % >
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holds. Thus for such n > ng it follows that

’<‘T’nayn> - <‘Tuy>| = ‘<$n7yn> - <‘T’nay> + <xn7y> - <$,y>’
< @, yn) = (@n, Y+ (@, y) — (@, 9) ] = Kzn, yn — )| + (o0 — 2, 9)],
where in the second step the triangle inequality satisfied by |- | and in the last one the

linearity of the scalar product have been used. By the Cauchy—Schwarz inequality, Theorem
5.18, as well as the previously in this proof discussed upper bounds it follows that

‘(wnvyn> - <377y>| < |<xn7yn - y>| + |<xn - :c,y>|
< \/<$mxn>\/<yn —YYn —Y) + \/<93n —T,Tp — ) \/<y,y)

= |znllaz lyn — ylla + |l2n — 2|l lylla
<My, —yllg + Ml|zn — 2|l

<€+€_
=5 T 76

which concludes the proof. O

5.5 Appendix on transition kernels

In the following, a new kind of “measure-like” functions will be introduced and briefly
discussed. For more information on this topic as well as a proof of Lemma 5.24 the reader
is referred to [Sch23, Section 15.8]. Note that throughout this section the existence of a
sequence of sets (A, )nen in S satisfying (J,cny An = S is being assumed. The findings
of this section have been used in the earlier parts of this thesis on the measure space
(S,S) = (R4, Br, ), for which for example the sequence of intervals ([0, n]),en satisfy this
assumption.

Definition 5.23 (Finite and o-finite transition kernels). Fix two measurable spaces (S, S)
and (2, F). Then a function K : § x Q — Ry is a transition kernel from Q to S, if and
only if the following two criteria are met:

(i) The function K(-,w):S — R, is a measure for each w € .

(ii) The function K(A4,-):Q — R, is F-measurable for each A € S.

If K(-,w) is a finite measure on (S5,S) for each w € , i.e. K(S,w) < oo, then K is called a
finite transition kernel. Furthermore, K is said to be o-finite, if one can find a sequence
(Ap)nen € S with | J,,cy An = S in such a way that K(A,,w) < oo holds for all w €  and
n € N.

Lemma 5.24. In the same setting as above, let K : S x Q — R be a o-finite transition
kernel and p a measure on (Q,F). Then the function

(Ken) = [

Q</S ]lA(s,w)K(ds,w))u(dw), AcSaF,

is a measure on (S x 2,8 @ F).



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.5. TRANSITION KERNELS 93

Intuitively, those ideas can be extended to K-valued transition kernels. As per [Sch23,
Remark 15.131] the set

R(K):={AeS: K(A,w) < for all w € Q}
defines a d-ring for each transition kernel K.

Definition 5.25. Let again (S5, S) and (2, F) denote two measurable spaces and K : SxQ —
C be a function. If there exists a decomposition of K = K1 — Ko +i(K3— K4), where for each
j =1,...,4 the function K, : S x 0 — R is a transition kernel according to definition 5.23,
K : R xQ — Cis a complex transition kernel, where R C R(K) := R(K1)N---NR(Ky) is
a o-ring. If K3 = K4 =0, K is a signed transition kernel. Analogously to Lemma 5.24, for
each measure p on (€2, F) one can define the signed or complex measure

(K © p)(A) = (K1 © p)(A) — (K2 @ p)(A) +1((K3 © u)(4) — (K4 © p)(4)), AER®F.

Lemma 5.26. The defining equality

(K en)= [

Q</S ]lA(s,uz)K(ds,w))u(dw), AeRSF

of Lemma 5.2/ holds also for signed or complex transition kernels K : R x Q — K.

Proof. Due to the linearity of the Lebesgue integral in the integrator as well as the integrand,
one may also write in the setting of the definition above

(K ® p)(A) = (K1 @ p)(A) — (K2 ® p)(A) +1i((Ks ® p)(4) — (K3 @ p)(A))

L ([ 1atsmi@s)n@e) = [ ([ 1a6s.0)Ka(as0)) nfa)

i [ ([ 1aeamas)ua - [ ([ 1awris9)u@)
-/ ( | i @mise) = [ 1a oK)

i /S 1a(s,w) Ka(ds,w) — i /S 1A<s,w>K4<ds,w>)u<dw>

= [ ([ 1atew) (Kats.) ~ Ka(dsw) + (Ko 0) = Ki(ds.)) )

:/</ ]lA(s,w)K(ds,w))u(dw)
QNS
foreach Ac RIFCSQF. O
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Lemma 5.27. On the two measurable spaces (R4, Bgr,) and (2, F) each process V € Vi
can be viewed as a o-finite transition kernel from ) to R.

Proof. Note that by [Sch23, Lemma 5.49] the total variation process is R -valued, increasing,
continuous and adapted.

By Definition 2.4 the total variation process V is pathwise finite on intervals of the form
[0,¢] (and thus also on (0, t]) for each ¢ € R;. Thus one can simply consider the sequence
({0}, ((0,n])nen) of sets in B, and see that {0} UJ,cn(0,n] = {0} U (0,00) = R; and
V({0},w) = 0 (which will be shown below) as well as V((0,n],w) < oo for all n € N and
w € Q, proving the o-finiteness of V.

(i) As V is pathwise non-decreasing and continuous, it induces for all w € Q a unique
measure V(-,w) : Br, — Ry, due to [Gril8, Satz 3.1]. Furthermore, [Sch23, Definition
5.20] directly implies that the total variation of any function on the degenerate interval
{t} = [t] is zero for each t € R} and thus V({0},w) = 0 for all w € Q.

(ii) Now for each A € Bgr, take a closer look at the function V(A4,-) : Q> w— V(4,w).
As stated above, the funnction w — V({0},w) = 0 and as a constant function it is
measurable for all o-algebras on 2. In order to show that the second condition of
Definition 5.23 also holds for all A € Bg,\ (0}, the monotone class lemma will be used.
At first, define the sets

E=A{(a,b]:a,be Ry, a<b}

and
My, = {A € Bg_\q0y : V(AN (0,n],-) is F-measurable}, n € N.

Note at this point that & generates the Borel-o-algebra By, \ (0} and & C I, for all
n € N, as for each a,b € Ry witha <b

V(z,)=0 ifn<a,
V((a,b]N(0,n],-) =< V((a,n],") =V,() = V() if a <n <b,
V((a> b]v) :Vb(') _Va(') ifb<n

holds, where the right-hand side is F,jn(np)- and F,-measurable, respectively, due to
the adaptedness of V and consequently F-measurable. Furthermore, V(A N (0,n],w)
is finite for all n € N, w € Q and A € By, \ (). Now it will be demonstrated that the
set 901, is a monotone class for fixed n € N.

(1) The set @ € My, as V(@ N (0,n],-) = V(2,-) = 0. Furthermore, V((R; \ {0}) N
(0,n],-) =V((0,n],-) = V() is Fy and thus also F measurable.
(2) Let A, B € M, satistying A C B. Then
w— V((B\A)N(0,n],w) =V(BN[0,n])\ (AN (0,n]),w)
=V(BnN(0,n],w) — V(AN (0,n],w)
implies the F-measurability of V((B\ 4) N (0,n],-) due to [Gril8, Satz 4.4] and

thus B\ A € M,,. As already mentioned, all terms in the equation above are
finite.
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(3) Now consider A, B € 9M,,, such that AN B = &. Thus one can use
w— V((AUB)N (0,n],w) = V(AN (0,n],w) + V(BN (0,n],w)

and again [Gril8, Satz 4.4] to see that AU B € M, as V((AUB) N (0,n],-) is
JF-measurable.

(4) Last but not least, fix an increasing sequence (Ag)ren € M, and define for each
k € N the set By = Ay, \ Ax—1, where Ap := &, which is again in 9, which was
already proven in part (ii). Obviously, Jp—; Ax = Uz Bk holds. Thus, due to
the o-additivity of the measures V(-,w) for all w € Q,

o= 9((U 400 00) =¥((U B0 0 0.1 s) =7 (U (B0 00,

Z (B N (0,n], )_hm V(Bm(On] w)

holds, where the last term is the pointwise limit of the sequence of F-measurable
functions (Z?Zl V(B; N (0,n], '))keN and as such is itself F-measurable, due to
Lemma 5.3. Therefore | J;2; Ay € M,,, which is sufficient to show that 91, is a

monotone class for all n € N.

For the next step fix two sets in £. Then the two intervals are (a1, b1] and (ag, ba], for
some a1 < b and ag < by, where ay, by, az, by are in Ry, and the intersect is either
a, or (a1 V ag, by A bg]. Either way, the intersect is again an element of £ making it
intersection stable. By its definition, 90, is a subset of Bg,\ (o1 One can now use the
monotone class lemma Lemma 5.16 in the second equality to obtain

Bg,\{0y = o(&)=MmE) CMm,,

from which 9M,, = By \ (0} follows for all n € N. This implies the F-measurability of
Q3w V(AN (0,n],w) for all n € N and A € By, \(0}- Furthermore, as ((O,n])neN
is an increasing sequence satisfying lim,, . (0,n] = R \ {0}, the function

Q5w V(A w) =sup V(AN (0,n],w)
neN

is the pointwise supremum of F-measurable functions and as such also F-measurable,
which was proven in Lemma 5.1, for all A € By, (¢}

For a more general A € Bg, it is clear that either A € By, \fo) or there exists a
Ae B\ {0}, such that A = AU{0}. In the first case, the F-measurability of V(A,-)
has already been proven. In the second case, this function is also F-measurable,
because

w— V(A,w) = V(AU {0},w) = V(4 ,w) + V{0},w) = V(4,w),

which concludes the proof. O
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Lemma 5.28. Each V € V} can be viewed as a finite signed or complex transition kernel
from Q to Ry on the §-ring R := U,y Bjo,n) C Br, -

Proof. At first, the case K = R is assumed. Therefore, due to the right-continuity and
locally finite variation of V', it can be pathwise represented as the difference of two real,
right-continuous and non-decreasing functions, namely V. (w) = Fi(-,w) — F5(:,w) for each
n € N [Gril8, Satz 6.5]. As per [Gril8, Satz 3.1] the function Fi(-,w) : Ry — Ry for
k = 1,2 can be viewed as the distribution function of a unique o-finite measure fix(-,w) on
(R4, Br, ). For a,b € Ry satisfying a < b one may then define

V((a, b]?“) = Fl(bvw) - Fl(avw) - F2(67w) + FQ(aﬂ-’u) = /11((6% b]vw) - ﬂQ((avb]vw)v

where both terms on the right-hand side are finite. As in the lemma above, it is only natural
to set fi1 ({0}, w) = f12({0},w) = 0 for all w € Q.

As per [Sch23, Example 15.107(d)] the countable union R = (J,,cy Bjo,) is the set of all
relatively compact Borel sets of Ry and also a é-ring. For each A € R there exists a b € R,
such that A C ({0} U (0,8]) and thus

ﬂk(A>w) < ﬂk({o} U (07 b]vw) = ﬂk({0}7w) + ﬂk’((oab]vw) = ﬂk((()? b]vw) <oo, k=12

More generally, V(-,w) : R — R can then be viewed as a finite signed measure on the d-ring
R via
V(Aaw) :ﬂl(A?w)_,a2(A>w)7 A€R7 w € .

As such, there exists a unique Jordan decomposition (see [Sch23, Theorem 15.119], such that
V(-,w) = pf(-,w) — pf(-,w) into mutually singular R -valued measures. As per [Sch23, p.
165f] for two real numbers 0 < a < b and all w € Q the measures ,uﬁ((a, b],w) and
,u}_%((a, b],w) coincide with the positive and negative variation of V. (w) on the interval
(a, b], namely V‘}E’Jr([a, b]) and Vl‘j’*([a, b)), respectively, and thus are R -valued, increasing,
continuous, adapted and starting at zero, see [Sch23, Lemma 5.49(b)].

In the general case, where K = C, the real and imaginary part of the process V
have to be considered separately. This leads pathwise to the complex measure V (-,w) =
V§’+(-, w) — V‘}j’_(-, w) + i(V{/’Jr(-, w) — V{/’_(-, w)) being composed of four finite measures
on the d-ring R denoting the postive and negative variation of the real and imaginary part
of the covariation process, respectively.

Consequently, the lemma is proven by showing that V(A4,-) : Q@ — R, is a transition
kernel for each V € {V@’JF,V‘}}’_,V{,’JF,V{;_}. As stated above, those positive and negative
variation processes are continuous, adapted and starting at zero. Consequently, they are
also in V3, as they are of locally finite variation. Thus the last lemma implies that they can
be viewed as o-finite transition kernels from €2 to R.. O

The following theorem provides a very useful upper bound of integrals with respect to
the total variation of some covariation process. In this thesis, only the result is stated and
for the proof the reader is referred to [Sch23, Theorem 5.92].
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Theorem 5.29. For two K-valued continuous local martingales M and N let Vy =
Viar,n([0,2]) denote the total variation of their covariation process. As always the notation
of total and quadratic variation processes will be abused in the sense that the same symbols
will also be used for their induced o-finite transition kernels on (R, Bg, ), respectively.
Then there exists a P-null set, such that outside of it

1/2 1/2
/|<Us,vs>\dvs§ (/ |Us|2d[M]s> (/ \V;Fd[NL) ,  AcBg, (5.2)
A A A

holds simultaneously for all Bg, & F-measurable processes U,V : Ry x {1 — K<. Note that
in the above inequality the convention 0 -0co = 0o -0 = 0 is used, as the integrals may be
nfinite.

Lemma 5.30. Let M, N be two K-valued continuous local martingales, V denote the total
variation of their covariation process and consider it as well as [M] and [N] as o-finite
transition kernels. Then

V(4,w) < V[M](A,w)V[N](A,w)
holds for every set A € Br, and all w € Q outside the aforementioned P-null set.

Proof. Let A be an arbitrary set in Br, and w € € be not in the null set mentioned in the
theorem above. By defining U =V =1 in inequality (5.2), one obtains

1/2 1/2
V(4,w) = /A dwms(/A d[M]s«u)) ( /A d[N]s<w>> — VM4 @) /[N A&, @),

which concludes the proof. O

Definition 5.31 (Absolutely continuous transition kernels). In the setting of Definition
5.23 let K and K denote two o-finite transition kernels and p a measure on (€2, ). Then
K is said to be absolutely continuous w.r.t. Ky on the triple (S x Q,8§ ® F, ), which will
be denoted by K; < Kp, if and only if the measure K (-,w) is absolutely continuous w.r.t.
the measure Ks(-,w) on S for p-almost all w € Q.

Lemma 5.32. For two o-finite transition kernels Ky, Ko and a measure pn on (€, F) holds
Ki<Kyon(SxQUSRF,u)=K ou<KKs®@puonS®F.
Proof. Assume K; < Ky on (S xQ,8® F,u) and fix a set A € S ® F satisfying

(K2 ) (4) = |

Q

(/ ]lA(s,w)Kg(ds,w)),u(dw) =0.
S
As for fixed w € Q the integral [¢14(s,w)Ks(ds,w) is non-negative, it must be u-

almost everywhere equal to zero, i.e. there exists a set N € F with p(N) = 0 and
JsLa(s,w)K3(ds,w) = 0 for all w € N€. Fix now such a w. Then the function

S / 1a(s,w)Ks(ds,w) =0,
S
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which is equivalent to A(:,w), which is an element of S by Lemma 5.6, being a K»(-,w)-null
set. By assumption, there exists a y-null set N € F, such that K;(-,w) < Ka(-,w) on S for
each w € N€, which then leads to

(K1®M)(A):/Q(/S ]lA(s,w)Kl(ds,w))u(dw)

- /(NUN)C </S ]lA(s’w)Kl(dS7w))M(dw) + /NUN </S 1A($,w)K1(ds,w)),u(dw)
=/QOu(dw)+0:0,

as W(NUN) < u(N) + p(N) =0, whereby the lemma is proven. O

5.6 Appendix on the uniform approximation
of bounded measurable functions
As per [Gril8, Satz 4.6] each measurable function f on a measurable space (€2, F) can be

pointwise approximated by simple measurable functions. The following theorem modifies
those findings to the uniform approximation of bounded functions.

Definition 5.33. Let (V.|| - ||) be a normed vector space. A sequence of bounded V-valued
functions (f,)nen converges uniformly to a bounded V-valued function f, if and only if for
each € > 0 exists a ng € N, such that

[fn(w) = f@)l[ <& n=>no
holds simultaneously for all w € €2, see [Kall4, Definition 6.6.5].

Theorem 5.34. For every bounded F-measurable function f : Q@ — R there exists a sequence
of simple functions (fn)nen, where f, = Z;":"l Tn,jla, ;, such that for each n € N holds
Tnj €R and A, j € F forall j =1,...,my as well as U;nz"l Apj=Qand Ay jNAL L =0
for j # k, which is converging uniformly to f.

Proof. The above mentioned theorem [Gril8, Satz 4.6] is being proven by defining for each
n € Nand j =—4",...,4" — 1 the sets

Apj={we:j/2" < fo(w) < (j+1)/2"}

as well as A, _qgn_1 = {w € Q: fr(w) < 2"} and A, 4n = {w € Q : 2" < f(w)}.
Furthermore set

=2n for j = —4" -1,
Tnj =< j/2" for j = —4", ... 4" —1,
2n for j = 4™.
Therefore fp, := 2?1_471_1 Tpjla,; is a F-measurable, as Ay ; € F for all j = —4" —
1,...,4", which follows directly from the measurability of f, simple function (apart from
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an index-shift) satisfying

—2" for f(w) < =27,
falw) =4 3/2" for j/2" < fn(w) < (7 +1)/2",
2" for 2™ < fp(w).

Now fix some w € Q. Then there exists a n € N such that —2" < f(w) < 2" and as such a
je{—4", ..., 4" — 1} satistying j/2" < f,(w) < (j +1)/2". Consequently

Fnleo) = @) =13/2" ~ F@)| < o
and thus f,(w) — f(w) for all w € Q.

Fix € > 0 and define n, € N in a way that 2% < e for all n > n.. As f is bounded, there
exists an ny € N, such that || f||c := sup,cq |f(w)| < 2" for all n > ny. Thus for all w € Q

nl) = f@)] < g <6 12 o = max(ne,ng),

holds, which concludes the proof. O

Lemma 5.35. For every bounded F-measurable function f : Q — K% there exists a sequence
of simple functions (fn)nen, where fr, = ZT;} Tpjla,;, such that for each n € N holds
Tn,j € K¢ and Apj € F forallj=1,...,m, as well as U;":"l Apj=Qand A, jNA, L =0
for j # k, which is converging uniformly to f.

Proof. Consider at first a bounded F-measurable C-valued function f = f® +if!. Thus
by the theorem above there exist two sequences of simple R-valued functions ( ff)neN and
(f1,en converging uniformly to f% and f!, respectively, where

my, m{b
R R I I
i =2 wnglap, and  fi=3 an L
j=1 j=1
For j=1,...,m, = mfm{t and k£ = 1,...,mTIZ one can now define
_ AR I . R . R
Anj = Ay N An,j—(k—l)m§7 if (k—1)m,, <j<km,.

Thus for j, k € {1,...,m,} with j # k the intersect A, ; N A, = @ and

— _ R I

ATLJ - U A”y] - U (An,k a An ]—(kz—l)mﬁ)
Jj=1 k=1 j=(k—1)mE+1 k=1 j=(k—1)m&+1
— R I _ R 1
- U An,k N U n,j—(k l)mﬁ) - An,k n (U A”v])

k=1 j=(k—=1)mE+1 k=1 Jj=1

™, s
_ R _ R _
=Jakna=]J4af, =q

k=1 k=1
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Naturally, one can then define for eachn € N, j =1,...,m, and k = 1,...,m., the C-valued
coefficients
Tn,j = xﬁk + ix{z,j—(k—l)m,’f’ if (k—1)mkE < j <kmP,

and the simple function f, = Z;n:’ll Tpjla, ;. Consequently, for each n € N and w € Q
there exists exactly one j € {1,...,m,} such that w € A, ; and thus f,(w) = ;.

Fix now some € > 0. As fI* — £ uniformly for n — oo there exist n{f € N and such that

nZné%,

|[fa(w) = fRw)] <

N

holds simultaneously for all w € 2. That implies for each w € 2 and n > nOR the existence
of a unique j(w) € {1,...,m~%} satisfying w € Afj R(w) and consequently

nZné%.

28y — SR = [ w) — 1) <

N

Analogously, there exists an né such that for each w € Q2 and n > né there exists uniquely a
jh(w) € {1,...,ml} satisfying w € Al i1 () 8nd consequently

|2 1) = F (@) = [ falw) = flw)] < % n>nh.

Then, as stated before, for each w € Q and n > ng := max(nf,nl) there exists exactly one

Jn(w) € {1,. mn} such that w € A, ; (). Because all three sets {A,;:j =1,...,my},
{AR Jj = 1 mB} and {AI :j =1,...,ml} consist of pairwise disjoint sets, the
R (w) N A i1 (@) must hold for each w € 2 and n > ny.
Consequently for such a pair (w n) follows

Fa@) = F@) = [engu — F@)] = 128 r00 + 12k o) — (FF@) +if (@))]
— (@ n — FRw) + (5,j£(w)—ff<w>)|<|xw(w PR+ 121 — £ (@)

equality A, j () = A

IN

+

€ 6_
227

which suffices to show the uniform convergence of f,, to f as n — oo.

The multi-dimensional case can be shown analogously. For simplicity, assume that K¢ is
equipped with the norm ||z|; := Z;-lzl |27 O

Obviously, for each n € N a simple function f, = Z;”:"l Tnj1la, ,; is bounded by

Mn
1 fall = Hzxw | < ( max Jengl) Do 1., < max flans] < oo,
e{1,...,d} = Je{l,....d}
where || - || denotes any norm on K¢. Thus the following lemma is applicable for a sequence

of simple functions converging uniformly.
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Lemma 5.36. Let E be some non-empty set, (V|| -||) a normed vector space and (fp)nen
a sequence of bounded and uniformly converging functions, where E'> x w— fn(x) € V for
each n € N. Then the sequence is uniformly bounded, i.e. there exists a constant C' > 0,
such that

Ifa(@)]| <C, z€FE, neN. (5.3)

Proof. As (fn)nen is converging uniformly, there exists an ng € N, such that for all n,m € N
satisfying n > ng and m > ng holds

[fn(2) = fm(2)| <1, 2z €E.
Furthermore, as each function f, is bounded, there exists C}, > 0, such that

| fu(@)| <Cny,  z€E, neN.
Consequently,

[ (@) = 1fn(2) = fro () + o (@) | < N fn(@) = fao ()| + [[frg (@)[| <1+ Crg, € E,

for all n > ng. Thus one may now define C' = max{C1,...,Cy,—1,14+Chp, }, which is finite as
the maximum of only finitely many real numbers and does indeed fulfill inequality (5.3). [

5.7 Appendix on integral convergence theorems

When working with integrals and limits, being able to interchange them is often very useful.
In general, this is not possible. One needs to check, if some conditions are fulfilled. The
two most common theorems, stating under which criteria the limit and integral may be
exchanged, will be stated below. For the following two theorems, there will be assumed to
be an underlying measure space (€2, F, ). For the proofs of those theorems, the reader is
referred to [BRO7, Section 2.8].

Theorem 5.37 (Dominated convergence theorem). Let (fn)nen be a sequence of F-
measurable, p-integrable and K-valued functions, such that there exists a F-measurable
and p-integrable R -valued function g satisfying

[fa(@) <g(w), neN,

for p-almost all w € Q. If the sequence (fn)nen converges p-almost everywhere to a F-
measurable function f for n — oo, then f is p-almost everywhere K-valued and p-integrable
and

hm fn /f )du(w) as well as hm/|fn — f(w)| du(w) = 0.

If (fn)nen converges for all w € Q) to a function f, then the F-measurability of [ follows
from [Sch23, Lemma 15.29).
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Theorem 5.38 (Monotone convergence theorem). Let now (fn)nen be a sequence of F-
measurable and p-integrable R -valued functions, such that for each w € )

fn(w) < fn—l—l(w), n € N.

Furthermore, assume sup,cy [o fn(w)dpu(w) < oo. Then the pointwise limit f(w) :=
limy, 00 fr(w) is again F-measurable, p-integrable and p-almost everywhere R -valued
satisfying

lim ; fn(w / f(w)dp(w) as well as nl;ngo/gl |fr(w) — f(w)]dp(w) = 0.

n—oo

If one does not require sup,cy [o fn(w) dp(w) < oo in the last theorem, the pointwise
limit f is still F-measurable and

fim [ fale /f ) dp(w

n—00

holds, the integral on the right-hand side as well as f(w) may however be infinite [CE15,
Theorem 1.3.29].
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Notation and Symbols

Notation

The different notations used throughout this thesis below may be found in alphabetical
order, where Greek letters are ordered in the way the are spelled in the Latin alphabet.

A, a K?%valued process of locally finite variation, see Definition 2.4, or a specified set
a, an element of K, unless specified otherwise

Bg, Borel-g-algebra of the set E, being most of the time a subset of R

Br, ® F, the product o-algebra on Ry x

C:= Z;'l:l[MjL see Theorem 2.7

C, the field of complex numbers

cadlag, continue a droite, limite & gauche, meaning right-continuous with left-hand
limits at each point of the domain except its smallest point

d-ring, see [Sch23, Definition 15.106]

%, Radon—Nikodym derivative of p w.r.t. v, see Chapter 4

e, Euler’s number

@ :={}, empty set

E[X], the expectation of a measurable random variable X, i.e. fQ XdP

e; € {0, 1}, j-th unit vector consisting of zeros except for a one in the j-th entry
F, o-algebra (most of the time on 2)

F = (Ft)ter, , filtration of F, which is per assumption right-continuous and contains
all P-null sets of Fio

H, a predictable process, unless stated otherwise

H?, Banach space of all K-valued continuous martingales M, for which || M|,z =
E[sup;er, |M;|?]*/? < oo holds, see Definition 3.4

7—[(2), Hilbert space of all processes in H? starting at zero combined with the norm
[[M][2, see Lemma 3.6 and Lemma 3.7

103
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i:=+/—1, imaginary unit
Im(z) = y, the imaginary part of the complex number z = x + iy
14, the (d x d)-dimensional identity matrix

i.e., abbreviation of the Latin phrase id est, being used as which means or in other
words

K: Ror C

L(A), vector space of predictable processes that are integrable with respect to a
K9%valued continuous process of locally finite variation A, see Definition 3.15

LP(Q, F,v), space of all F-measurable functions satisfying || f||z»(,) := Jo lfIPdv < o0

LP(Q, F,v), Banach space of all equivalence classes in £P(2, F,v) w.r.t. the norm
I llzr )

LP(M), see Definition 2.9

Ll20c (M), vector space of predictable processes that are integrable with respect to a

K9%valued continuous local martingale M, see Definition 2.11

L(X), vector space of predictable processes that are integrable with respect to a
K% valued continuous semimartingale X, see Definition 3.25

liminf, o0 o, 1= suppey inf, >k oy, limes inferior of a sequence (v, )nen in R
lim sup,,_, o, Q1= infren SUP,,> 4 i, limes superior of a sequence (v )ney in R
liminf, oo An = Upen ﬂnzk Ay, limes inferior of a sequence (A;,)nen of subsets of

limsup,, o An = peny Un>i An, limes superior of a sequence (A, )nen of subsets of

Q

M, a K%valued continuous local martingale, unless specified otherwise, see [Sch23,
Definition 4.132]

M, vector space of all K-valued continuous martingales

Mo, vector space of all K-valued continuous local martingales
i, (signed or complex) measure one a o-algebra or d-ring

N, set of natural numbers, i.e. {1,2,3,...}

v, (signed or complex) measure one a o-algebra or -ring

), underlying sample space

w, an element of 2
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(Q, F, IP’) , probability space

(Q, F.F = (Fier +,}P’), filtered probability space

[P, probability measure (most of the time on ()

P2, vector space of predictable processes, see Definition 2.1

P(Q), power set, i.e. set of all subsets of {2, sometimes also denoted by 2%
7, a positive semidefinite process, according to Theorem 2.7

positive semidefinite process, see Definition 2.6

predictable step process H = @olo+ Y 0", onl( see Definition 2.2

TasTng])
Q- the set of non-negative rational numbers

R, the field of real numbers

R = [~00,00] = RU {—00, 00}, the extended real numbers

R4 = [0,00), the set of real numbers greater than or equal to zero
R, =[0,00] = Ry U {oo}

R, a d-ring, see [Sch23, Definition 15.106]

Re(z) = z, the real part of the complex number z = z + iy

S, vector space of all K-valued semimartingales

¥, predictable o-algebra, see Definition 2.1

simple function, see Lemma 5.35

stopping time 7 :  — Ry, such that {7 < t} € F; for each t € R, see [Sch23,
Definition 3.7]

t, an element of R, unless stated otherwise
T, a stopping time, unless specified otherwise
tr(m) = Z;lzl 797 the trace of a (d x d)-dimensional matrix 7

transition kernel, see Definition 5.23

up to indistinguishability, two stochastic processes X and Y are equal up to in-
distinguishability, if and only if Ute]R+ {X; # Yi} is a subset of some P-null set,
see [Sch23, Definition 2.96(b)]

V', the total variation of a function F, see [Sch23, Definition 5.20]
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106 NOTATION AND SYMBOLS

° VJ : the space of all adapted, continuous, real-valued and non-decreasing processes,
see Definition 2.5

e V% the space of all K%valued continuous adapted processes, of locally finite variation,
see Definition 2.4

° V(‘]i: the space of all processes in V? starting at zero, see Definition 2.4

e w.r.t., abbreviation of with respect to

e X, a K%valued continuous semimartigale with canonical decomposition X = A + M,
unless specified otherwise, see [Sch23, Definition 5.105]

e 14, indicator function of the set A

Symbols

e X oY integral process of X w.r.t. Y, if it exists

e H e M, where M denotes a K%valued predictable step process, is the stochastic
integral of H w.r.t. M, according to Definition 3.1, Definition 3.8 and Definition 3.12,
depending on if H is a K%valued predictable step process, an element of H?(M) or
an element of HZ (M), respectively

o HeA where A € Vg is the stochastic integral of H w.r.t. A, according to Definition
3.15

e [M, N], covariation process of the K9%valued continuous local martingales M and N,
see Definition 1.5

e [M] = [M, M), covariation process of the K?-valued continuous local martingale M

e For a signed or complex measure p let || denote the total variation measure, which
is not to be confuse with |u(A)|, which is the absolute value of p(A) for some set A,
see Definition 4.10

e <, absolute continuous

e AC the complement of a set A

e 7', the transpose of a K"*%-valued matrix =, i.e. 7% = (7 7)7 for (i,7) € {1,...,n} x
{1,...,d}

e 71 the Hermitian adjoint of a K"*?-valued matrix =, i.e. 7 = (77)/ for (i,5) €
{1,...,n} x{1,...,d}

e || - |l»(ar), see Definition 2.9

e |- [|p, the p-norm on K¢ or an LP-norm, depending on the context and the input
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Z := a — ib, the complex conjugate of a complex number z = a + ib

|z| := Va2 4 b2 = /2%, the absolute value of a complex number z = a + ib

0,7] ={(t,w) € Ry x Q:t < 7(w)}, the stochastic interval for a stopping time 7.
C, non-strict subset

DO, non-strict superset

U, J, union of two or more sets

N, [, intersection of two or more sets

x, Cartesian product of two sets

®, product of o-algebra, d-rings, (possibly signed or complex) measures or between a
o-finite transition kernel or a signed or transition kernel and a measure, according to
Lemma 5.24 and Lemma 5.26, respectively

A, minimum of two real numbers or pointwise minimum of two stopping times

|| - ||, unspecified norm on some vector space

(-, -), unspecified inner product in some vector space

=, when a function is constantly equal to some value, for example f =a € R

f Ta, where f is a function and A a subset of its domain, is the restriction of f on A
(fog)(w) = f(g(w)), composition of two functions f and g

—, defines a function, where the left side is mapped to the right side
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