
D I P L O M A R B E I T

Spectrum Slicing method for eigenvector
computation in

Density Functional Theory

ausgeführt am

Institut für

Analysis und Scientific Computing

TU Wien

unter der Anleitung von

Prof. Dr. Joachim Schöberl, TU Wien

in Zusammenarbeit mit Dr. Marc Torrent bei CEA
Bruyères-le-Chatel, Frankreich

durch

Clémentine Barat

Matrikelnummer: 12122462

Wien, 10. Oktober 2023

Kurzfassung

Mit der Entwicklung hybrider Supercomputer, die aus mit GPU gekoppelten Rechenein-

heiten bestehen, steigt das Potenzial für Parallelität in wissenschaftlichen Codes erheblich.

Die Programmiermodelle müssen an diese neue Computerhardware angepasst werden. Die

Abinit-Software ist ein internationales Projekt, mit dem Materialeigenschaften auf mikro-

skopischer Ebene berechnet werden können. Dabei werden die Gleichungen der Quanten-

physik für Elektronen und eine ebene-Wellen Basis verwendet. Ein iterativer Eigenwertlöser

wird verwendet, um die Schrödinger-Gleichung zu lösen. Heutzutage ist der Löser auf mo-

dernen Supercomputern durch die Anwendung des sogenannten Rayleigh-Ritz-Verfahrens

in seiner Leistung begrenzt.

In diesem Projekt erforschen wir die Möglichkeiten eines neuen Eigenwertlösers, bekannt

als Spectrum Slicing Eigenlöser, der die mit dem Rayleigh-Ritz-Verfahrens verbundene Re-

chenlast reduzieren und parallelisieren kann. Es beruht auf der Aufteilung des Eigenwert-

spektrums in slices, die jeweils von einem anderen parallelen Prozess verarbeitet werden.

In dieser Arbeit untersuchen wir diese Methode im Detail, mathematisch und mit einem

Prototyp-Code in der programmierungssprache Julia erstellt. Wir zeigen, dass der Spectrum

Slicing Löser tatsächlich große DFT-Berechnungen beschleunigen kann, verglichen mit den

bereits in Abinit implementierten Eigenwert-Solvern.

Abstract

With the development of hybrid supercomputers, made of computational units coupled with

GPU accelerators, the potential for parallelism in scientific codes is increasing significantly.

The programming models have to be adapted to these new computing hardware. The

Abinit software is an international project that allows to compute material properties at

microscopic scale, using the quantum physics equations for electrons and a plane wave

basis. An iterative eigenvalue solver is used to solve the Schrödinger equation. Nowadays

on modern supercomputers, the solver is limited in performance by the application of the

so-called Rayleigh-Ritz procedure.

In this project we explore the capabilities of a new eigenvalue solver, known as Spectrum

Slicing eigensolver, which potentially reduces and parallelizes the computational load asso-

ciated with the Rayleigh-Ritz procedure. It relies on splitting the eigenvalue spectrum into

slices, each processed by a different parallel process. In this work, we examine this method

in detail, mathematically and with a prototype code built in Julia language. We show that

the Spectrum Slicing solver can indeed speed up large DFT calculations, compared with

the existing eigensolvers already implemented in Abinit.

Acknowledgement

I want to express my deepest gratitude to Marc Torrent, who supervised my internship at

the CEA, during which this master thesis was written. He was a great help in familiarizing

me with the subject of DFT. Without his advice and the many discussions we had, this

work would not have been possible.

I would also like to thank the CEA for allowing me to carry out my internship with

them and write my master’s thesis in a pleasant and stimulating environment, as well as

my colleagues who make this environment pleasant and stimulating.

Special thanks to Antoine Levitt, who gave us his time for several fruitful discussions.

I would also like to thank my supervisor Joachim Schöberl, who was always available to

help me.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt

bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 10. Oktober 2023

Clémentine Barat

Contents

1. Introduction 1

1.1. Overview . 1

1.2. Thesis structure . 2

2. Density functional theory 5

2.1. The Schrödinger equation for a system of electrons 5

2.2. Hohenberg and Kohn theorems . 7

2.3. The Kohn-Sham density functional theory 8

2.4. Discretization of the problem . 10

2.5. Pseudopotential . 12

2.6. Solving the Kohn-Sham equations with self-consistent field iterations 13

3. Iterative Eigensolvers 15

3.1. The Rayleigh-Ritz method . 15

3.1.1. Convergence of the Rayleigh-Ritz method 16

3.2. Minimization algorithms . 21

3.2.1. Conjugate gradient . 22

3.2.2. LOBPCG . 23

3.3. Subspace iteration algorithms . 24

3.3.1. Filters . 25

3.3.2. Convergence of subspace iteration algorithms 26

3.3.3. Chebyshev-filtered subspace iteration 29

4. Slicing methods 34

4.1. Determining the slices . 35

4.1.1. Estimating the Density of states . 36

4.1.2. Different strategies for choosing slices based on an estimated DOS . 39

4.1.3. Slices evolution . 42

4.2. Filters . 44

4.2.1. Polynomial filters . 45

4.2.2. Rational filters . 47

i

Contents

4.3. Merging results between slices . 51

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering

method 54

5.1. Study of Chebyshev filtering and Spectrum Slicing on a simplified model . . 54

5.1.1. Chebyshev filtering . 54

5.1.2. Spectrum slicing . 55

5.2. Comparison of polynomial degrees needed in both methods 57

5.3. Time complexity of the different steps involved in the subspace iteration

method . 60

5.3.1. Application of the Hamiltonian to a vector 61

5.3.2. Inversion of the overlap matrix . 62

5.3.3. Rayleigh-Ritz method . 63

5.4. Comparison of calculation times . 64

5.4.1. Computation time with respect to the number of atoms in the system 65

5.4.2. Comparison on physical systems . 67

6. Conclusion 72

A. Chebyshev polynomials 74

A.1. Chebyshev polynomials of the first and second kind 74

A.2. Chebyshev series expansion . 77

A.2.1. Orthogonality of Chebyshev Polynomials 77

A.2.2. Formal Chebyshev series expansion 78

A.2.3. Relation between Chebyshev series expansion and Fourier series ex-

pansion . 78

A.2.4. Convergence of Chebyshev series expansion 79

A.2.5. Damping . 79

B. Code 81

Bibliography 94

ii

1. Introduction

1.1. Overview

This work was carried out during my internship at the CEA, a french public research

institution.

Created in 1945 to develop the applications resulting from the atomic sciences, the French

Atomic Energy and Alternative Energies Commission (CEA) is the instrument with which

the french public research has equipped itself to conduct research involving major strategic

and societal challenges. As part of this mission, the CEA develops new scientific knowl-

edge and transfers technological innovations to the industrial world. The historic mission

entrusted to the CEA has irrigated several fields of research directly or indirectly linked to

the atomic sciences. Atomic research remains strategic for applications in the field of new

technologies, low-carbon energies, digital technology, defense and health.

For its research needs and defense mission, the CEA co-develops supercomputers with

the french supercomputer manufacturer Atos, at the best level in the world. In particular,

the CEA operates the computers of the Très grand centre de calcul du CEA (TGCC) for

the benefit of industry and research. The three largest supercomputers of the TGCC,

ranked in the Top500 (list of the fastest 500 supercomputers in the world), are CEA

HF with a peak performance of 30 PFlop/s, Joliot-Curie with 15 PFlop/s and Topaze

with 5 PFlop/s. These supercomputers need to be constantly updated to remain at the

cutting edge of technology. The codes that run on these supercomputers must also evolve to

remain adapted to the computer hardware and achieve the best performance improvements.

Nowadays supercomputers are transitioning, with the addition of GPU-type accelerators

in the computing units, adding many new possibilities of parallel computing.

The laboratory I was welcomed into uses these supercomputers to work on the properties

of materials at microscopic level, in particular their electronic properties. The calculation

are made from first principles approaches, meaning that they are only based on the first

principles of quantum physics, with no experimental inputs. Notably, the researchers of this

laboratory study the equations of state of a large variety of materials like metals, hydrides or

alloys to determine their phase changes, stability under specific thermodynamic conditions,

1

1. Introduction

etc. A lot of these studies are made in extreme conditions of temperature or pressure. Most

of the computations are made using the Density Functional Theory (DFT) formalism with

the Abinit software in which the laboratory is one the main developer group.

The Abinit software ([GAA+20], [Gro23]) is a package whose main program allows one to

find the total energy, charge density and electronic structure of systems made of electrons

and nuclei (molecules and periodic solids) within Density Functional Theory (DFT), using

pseudopotentials (or PAW atomic data) and a planewave basis. This is an international

collaborative project, under an open-source licence. The main program consists essentially

in solving the Schrödinger equation, expressed as an eigenvalue problem. Because we are

using a very large plane wave basis (which make the construction of a matrix unfeasible)

and because we only need the lowest eigenvalues, the algorithms used are very specific (e.g.

iterative eigensolvers) and need to be continually adapted to the supercomputers.

The aim of this work is to study a new iterative ”matrix free” eigensolver, which could

be very well suited to CPU+GPU computers because of its high potential for parallelism.

As of today, there are two parallel eigensolvers implemented in Abinit, LOBPCG (Locally

Optimal Block Preconditioned Conjugate Gradient method) and ChebFi (Chebyshev Fil-

tering), which will be described below. Both algorithms use, as part of their process, the

Rayleigh-Ritz method which turns out to be the blocking factor on modern super com-

puters, as illustrated in figure 1.1, because of its lack of parallelizability. As illustrated

by the Amdahl law, increasing computational resources above a certain threshold won’t

speedup the computation because of the inevitable non-scalable step that is Rayleigh-Ritz.

Observing figure 1.1, we see that we are close to this threshold with the new GPU-based

computers.

In this work we study the Spectrum Slicing method that aims at reducing the time spent

in the Rayleigh-Ritz step, by parallelizing the code and applying the Rayleigh-Ritz on

a smaller subspace. We specifically study its applications in plane-wave DFT, involving

dense matrices, and estimate its potential efficiency compared to the already implemented

iterative eigensolvers.

1.2. Thesis structure

The thesis will be organised as follows.

Chapter 2 is devoted to the Density functional theory formalism. We first introduce the

physical problem that we are interested in, whose formulation is known but impossible to

solve in practice. Then we present the ground idea of Hohenberg and Kohn that support

DFT and reformulate the problem in lower dimension but with an unknown mathematical

2

1. Introduction

(a) CPU

(b) CPU+GPU

Figure 1.1.: Time spent in the filtering step and in the Rayleigh-Ritz step during one SCF
iteration with the Chebyshev filtering method.

expression. We present the Ansatz of Kohn and Sham allowing us to reformulate the prob-

lem as a non linear eigenvector problem, with a known expression, that can be realistically

solved. In the last two sections, we focus on the numerical resolution of the Kohn-Sham’s

equations, by presenting first their discretization in a plane wave basis and then the self-

consistent field (SCF) method used to solve the equations. This method calls for iterative

eigensolvers, that are the main topic of this work.

3

1. Introduction

In chapter 3, we present iterative eigensolver algorithms on Hermitian operators. The

first section is dedicated to the Rayleigh-Ritz procedure that allow one to retrieve an

estimation of eigenvectors from a subspace estimation. It is used in all the eigensolver

algorithms involved in this study. Iterative eigensolvers are presented in two categories.

Firstly, we introduce the algorithms used to solve the problem written in the form of

an optimization problem, which are the most commonly used algorithms in Abinit today

(e.g. LOBPCG). Secondly, we present algorithms acting on a subspace with filters (e.g.

Chebyshev Filtering). These type of algorithms show better scalability. The Spectrum

Slicing method belongs to the second category.

Chapter 4 adresses the Spectrum Slicing method in detail. It is organised in three parts,

covering the three crucial points of the method: the choice of slices, the choice of filters and

the merging of results. The idea of Spectrum Slicing is to split the eigenvalue spectrum

of the operator to diagonalize in slices and look for the eigenvectors corresponding to each

slice on different process in parallel. Choosing appropriate spectrum slices is essential to

ensure fast convergence and in the case of SCF calculations, we have to take into account

that the matrix to diagonalize is changing. Building the filters needed for Spectrum Slicing

is more challenging than for Chebyshev Filtering. Here we introduce two types of filters,

polynomial filters and rational filters.Finally we present the techniques used to merge the

results from each slices. This last step is not the most challenging but is crucial to ensure

correct results and convergence in SCF calculations.

Lastly in Chapter 5 we compare the time efficiency of Spectrum Slicing with Chebyshev

filtering. As this work focuses mainly on the mathematical aspect of the method, the

comparison is made analytically using a simplified modeling presented in the first section.

Then we estimate the time complexity of the different steps needed in both methods and

measure time on actual computation to estimate the time speedup. We can compare the

estimated computation times in both method and make a projection of the system size

at which Spectrum Slicing becomes cost-effective compared to Chebyshev Filtering. We

compare it on some examples of physical systems of interest.

Finally, in the appendix, we recall some theory about Chebyshev Polynomials and Cheby-

shev series expansions (A), which are used all throughout this work. In a second appendix,

we provide some parts of the Julia code used to implement Spectrum Slicing method (B).

4

2. Density functional theory

The density functional theory (DFT) is a computational modelling method used to solve

quantum systems. It has proven to be especially useful to study the electronic structure of

atomic systems, which are an example of many body systems. The theory rests on the two

theorems of Hohenberg and Kohn from 1964 [HK64]. It is widely use today in Physics as

well as Chemistry.

In this section we will present the theory behind DFT and more precisely behind Kohn-

Sham’s DFT to get the Kohn-Sham system, expressed as a non-linear eigenvector problem

and we will present its numerical resolution using iterative eigensolvers.

2.1. The Schrödinger equation for a system of electrons

In quantum mechanic, the state of a stationary system is represented by its wave function

Ψ, that must be a solution to the Schrödinger equation

HΨ = EΨ. (2.1)

The operator H, acting on the wave function space, is called the Hamiltonian, its formu-

lation depends on the system considered and E is the total energy of the system (scalar).

This is an eigenvalue problem in the space of wave functions, and we usually look for the

ground state of the system which is the unique solution with smallest energy E0.

Here we consider a collection ofm steady-state electrons under the influence of an external

potential and the mutual Coulomb repulsion. The corresponding Hamiltonian is given by

H = T + V + U (2.2)

where T , V and U are respectively the kinetic energy potential, external potential energy

and Coulombic interaction operators. For this system, the wave functions depend on the

5

2. Density functional theory

spin and position of each electron, that is

Ψ :
(R3 × �−1

2 ,
1
2

�
)m → C

(x1, . . . , xm) �→ Ψ(x1, . . . , xm)

with xi = (ri, σi) for i = 1, . . . ,m. The module of Ψ can be seen as the probability that

the electrons are at positions {ri}i and spins {σi}i. Then, the expressions of the operators

T , U and V (in atomic units) are

TΨ(x1, . . . , xm) = −
m�
i=1

1

2
∇2

riΨ(x1, . . . , xm) (2.3)

VΨ(x1, . . . , xm) =
m�
i=1

v(ri)Ψ(x1, . . . , xm) (2.4)

UΨ(x1, . . . , xm) =
m�
i=1

m�
j=i+1

1

|ri − rj |Ψ(x1, . . . , xm) (2.5)

where v(r) is the external potential. If we consider a collection of atoms with fixed positions,

v(r) is the Coulombic interaction with the nucleus, that is

v(r) =

M�
j=1

Zj

|Rj − r| (2.6)

where M is the number of nuclei, Z1, . . . , ZM are their atomic numbers and R1, . . . , RM

their positions.

Except for a some very simple cases such as the Hydrogen atom (m = 1), this system

is not possible to solve exactly, because of its very high dimension. The idea of DFT is to

get round this problem of dimension, by expressing the problem not in terms of the wave

function but in terms of the electronic density, which is only a function of the 3-dimensional

real space. This is made possible by the theorems of Hohenberg and Kohn [HK64].

6

2. Density functional theory

2.2. Hohenberg and Kohn theorems

The electronic density of the state described by the wave function Ψ is defined as

ρ(r) = ⟨Ψ,
�m

i=1 δ(r − ri)Ψ⟩

=

dσ1 . . . dσm

d3r2· · ·

d3rmΨ̄((r, σ1), x2, . . . , xm)Ψ((r, σ1), x2, . . . , xm)

+

dσ1 . . . dσm

d3r1

d3r3· · ·

d3rmΨ̄(x1, (r, σ2), x3, . . . , xm)Ψ(x1, (r, σ2), x3, . . . , xm)

+ . . .

+

dσ1 . . . dσm

d3r1· · ·

d3rm−1Ψ̄(x1, . . . , (r, σm))Ψ(x1, . . . , (r, σm)).

It describes the probability density of finding an electron at position r. Since electrons are

indistinguishable (these are fermions), ρ can be rewritten

ρ(r) = m

�
dσ1 . . . dσm

�
d3r2· · ·

�
d3rmΨ̄((r, σ1), x2, . . . , xm)Ψ((r, σ1), x2, . . . , xm).

At the ground state, the wave function Ψ is uniquely determined by the Hamiltonian op-

erator, and consequently, by the external potential. Therefore the density ρ is a functional

of the external potential v, meaning that there is a mapping

C(R3) → C(R3)

v �→ ρ

that associate potentials to their corresponding density. This mapping is called a functional

because it is between function spaces. From here, we will denote functional with their

parameter function in brackets e.g. ρ[v]. The first theorem of Hohenberg and Kohn states

that the reverse is also true, i.e. the potential is a unique functional of the electronic

density.

Theorem 2.2.1 (Hohenberg and Kohn 1964). The external potential (and hence the total

energy) is a unique functional of the electron density.

The proof, that is omitted here, is made by contradiction assuming that two different

potentials can yield the same electronic density. Then, the energy functional E[ρ] can be

expressed as

E[ρ] = F [ρ] + EV [ρ], (2.7)

where EV [ρ] is the external potential energy functional and F [ρ] = ET [ρ] + EU [ρ] is the

7

2. Density functional theory

universal Hohenberg and Kohn functional, containing the kinetic energy and Coulombic

interaction energy, that does not depend on the external potential.

Theorem 2.2.2 (Hohenberg and Kohn 1964). For a given potential v and number of atoms

m, the functional

Ev,m[ρ] = F [ρ] +

�
v(r)ρ(r)dr (2.8)

reaches its unique minimum on the densities ρ such that

ρ(r)dr = m at the ground state

density.

Proof. Let ρ0 the ground state density associated with this potential and number of atoms

and Ψ0 the corresponding wave function. By definition, the energy of the system is

E[ρ0] = Ev,m[ρ0] = ⟨Ψ0, VΨ0⟩+ ⟨Ψ0, (T + U)Ψ0⟩.

Now let ρ′ a different density. The density ρ′ is associated to a wave function Ψ′ and
describe the ground state of a potential v′. The energy is

⟨Ψ′, VΨ′⟩+ ⟨Ψ′, (T + U)Ψ′⟩ =
�

v(r)ρ′(r)dr + F [ρ′] = Ev,m[ρ′],

since F is universal and valid for any potential. Now from the variational principle on wave

functions, we have that Ev,m[ρ′] > Ev,m[ρ0].

Thus, if the expression of F [ρ] is known, our problem becomes a minimization problem on

the set of acceptable densities, which are only 3 dimensional. Unfortunately, the expression

of F is unknown and we will need to use some approximations, known as the equations of

Kohn and Sham.

2.3. The Kohn-Sham density functional theory

In 1965, Kohn and Sham [KS65] hypothesized that there exist a system ofm non interacting

electrons that has the same electronic density as the system of m interacting electrons in

the external potential v(r). This assumption is known as the Ansatz of Kohn and Sham. In

order for the two systems to have the same electronic density, we define a modified external

potential vs(r) that reproduces the effect of the interactions between electrons. This means

replacing the expression of the energy functional

E[ρ] = F [ρ] + EV [ρ] = ET [ρ] + EU [ρ] + EV [ρ]

8

2. Density functional theory

with

Es[ρ] = ETs [ρ] + EVs [ρ]

where Ts is the single particle kinetic energy potential. To ensure that the energy remains

the same, we need EVs [ρ] = EV [ρ]+EU [ρ]+(ET [ρ]−ETs [ρ]). At this point, no approximation

has been made.

Now it remains to find an expression of the modified potential Vs. Kohn and Sham have

expressed it using the Hartree potential and introducing a new term called exchange and

correlation,

Vs[ρ] = V [ρ] + VH [ρ] + Vxc[ρ]. (2.9)

The Hartree potential is defined as

vH(r) =
1

2

�
ρ(r)ρ(r′)
∥r − r′∥ dr′ (2.10)

and is an approximation of the Coulombic interaction term U . We note that the Hartree

potential includes a self-interaction term that does not exist in U . The exchange and corre-

lation term has an unknown expression that should compensate for all the approximations

made, in the kinetic energy operator and Coulomb operator, that is

Vxc[ρ] = T [ρ]− Ts[ρ] + U [ρ]− VH [ρ]. (2.11)

Its expression with respect to the density is unknown. To run DFT computation, one needs

an estimation of this term, many of which exist, but won’t be developed here. This is where

Kohn-Sham’s DFT becomes an approximation.

One of the benefit of this method is that we now have to solve the Schrödinger equation

for a system of non interacting electrons, which is much simpler. Indeed, for non inter-

acting electrons, the ground state many-body wave function can be expressed as a Slater

determinant

Ψ(x1, . . . , xm) =
1√
m!

ϕ1(x1) ϕ2(x1) . . . ϕm(x1)

ϕ1(x2) ϕ2(x2) . . . ϕm(x2)

...
...

...

ϕ1(xm) ϕ2(xm) . . . ϕm(xm)

where ϕ1, . . . , ϕN are called the Kohn-Sham orbitals and solve the one electron Schrödinger

equation

(Ts + Vs)ϕi(r, σ) =

�
−1

2
∇2

r + vs(r)

�
ϕi(r, σ) = ϵiϕi(r, σ)

9

2. Density functional theory

for ϵ1, . . . , ϵN the m smallest electronic energies (counted with multiplicity). The use of the

Slater determinant ensure that Pauli’s exclusion principle is satisfied. The corresponding

density is

ρ(r) =
m�
i=1

|ϕi(r)|2.

If we don’t want to compute the ground state, but a higher energy one, we can use for

instance Fermi-Dirac statistics and the density will be given by

ρ(r) =
m′�
i=1

n̄i|ϕi(r)|2

where n̄i are the occupations factor of orbital ϕi for i = 1, . . . ,m′ with m′ > m. This

way, we have replaced one high dimensional equation with a system of m (or m′) smaller

dimensional ones.

This yields the Kohn-Sham’s equations in which we want to find the lower energy solu-

tions (ϕ1, ϵ1), . . . , (ϕm′ , ϵm′) of��
�−1

2∇2
r + V + VH [ρ] + Vxc[ρ]

�
ϕi = ϵiϕi for i = 1 . . .m′

ρ(r) =
�m′

i=1 n̄i|ϕi(r)|2
. (2.12)

2.4. Discretization of the problem

In order to solve this problem numerically, we need to discretize it. This means that we

want to find a basis of functions f1, . . . , fN from R3×{−1
2 ,

1
2} to C in which any Kohn-Sham

orbital ϕ can be expended as a linear combination:

ϕ =

N�
j=1

αjfj .

Then ϕ is described by its coefficient vector in CN

α =

�����
α1

...

αN

����� .

10

2. Density functional theory

The Hamiltonian applied to ϕ, Hϕ, is described by the matrix vector product H̄α with

H̄ =

�����
⟨Hf1, f1⟩ . . . ⟨Hf1, fN ⟩

...
...

⟨HfN , f1⟩ . . . ⟨HfN , fN ⟩

����� .

The matrix H̄ is hermitian since the Hamiltonian operator is self-adjoint.

Thus, the Kohn-Sham equations can be rewritten in CN as the non linear eigenvector

problem

H(U)U = UΛ (2.13)

for U ∈ CN×m and Λ ∈ Cm×m a diagonal matrix with the m smallest eigenvalues of H(U)

counted with multiplicity. Here H is function from CN×m to CN×N that associate to U

the hermitian matrix H(U) corresponding to the density obtained from the columns of U .

Now obviously the initial Kohn-Sham’s equation is in infinite dimension so it cannot

be exactly discretized with a finite number of functions. But we can hope to get a good

approximation with a well chosen basis.

In a code like Abinit, the discretization is done in a plane wave basis that is particularly

suitable for periodic systems. We consider a periodic system whose unit cell is described

by the Bravais lattice vectors a1, a2, a3 ∈ R3. We know from Bloch’s theorem [Blo29] that

the Kohn-Sham’s orbital can be written

ϕ(r, σ) = ei⟨k,r⟩u(r, σ)

with k ∈ R3 and u that has the same periodicity as the system (for α, β ∈ R3, ⟨α, β⟩
denote their canonical inner product). Then u can be expended in Fourier series, that is

u(r, σ) =
+∞�

j1,j2,j3=−∞
cj1,j2,j3e

i2π⟨j1b1+j2b2+j3b3,r⟩

for some cj1,j2,j3 in C and where b1, b2, b3 are the reciprocal lattice vectors, defined by

⟨bi, aj⟩ = δij for i, j = 1, 2, 3.

For G ∈ C3, the plane wave r �→ ei⟨G,r⟩ is the solution of the equation 1
2∇2

rϕ = ϵϕ with

ϵ = 1
2∥G∥2. The operator 1

2∇2
r is the kinetic operator for an electron in atomic units. Thus

the plane wave defined by G corresponds to the kinetic energy ϵ = ∥G∥2
2 Hartree.

Therefore, in Abinit, the wave functions are discretized by choosing a few vectors k ∈ R3

11

2. Density functional theory

called k-points and fixing a cut-off energy Ecut to expand the the Kohn-Sham’s orbitals as

ϕ(r, σ) =
�
k

�
G

ck,Ge
i⟨k+2πG,r⟩ (2.14)

with G in�
G ∈ R3 s.t. G = n1b1 + n2b2 + n3b3 with n1, n2, n3 ∈ Z and ∥G∥2 ⩽ 2Ecut

4π2

	
.

Since each k-point should correspond to a different set of orbitals, they can each be treated

separately.

Plane waves have many benefits: they are very well suited to the study of crystals, their

completeness is systematic (the more plane waves you have, the more complete the basis is),

the expression of the potentials projected onto plane waves are simply obtained by a Fourier

transform (which is an actual benefit for the Hartree potential). But the main drawback

is that the discretized Hamiltonian is a dense matrix, which would be very expensive to

store and compute. In Abinit the matrix is never entirely computed. Only its application

to a vector is computed when needed. Therefore, any algorithm used with the discretize

H needs to be matrix-free.

2.5. Pseudopotential

Most plane-wave DFT calculations are made using pseudopotentials. This method is based

on the assumption that only valence electrons contribute significantly to the physical and

chemical properties of a given system. Therefore, core electrons are frozen in their atomic

state, calculated once with DFT calculation on a isolated atom, and expressed in a basis of

Np projectors. Only valence electrons are explicitly treated in the DFT computation, which

significantly reduces the complexity of the system to solve. We consider that the valence

electrons evolve in a modified potential that accounts for interactions with the nucleus and

core electrons. Since the core electron potential is difficult to write down in plane-wave

form, we replace it with a pseudopotential that has the same effect on the valence electrons.

This greatly reduces the number of projectors needed to represent the electrons.

Hence a new pseudopotential term is introduced in expression of the Hamiltonian oper-

ator with a local and non local part. Hence we can rewrite

H = Ts + Vloc + Vnonloc (2.15)

where the external potential, Hartree potential and exchange and correlation potential, as

12

2. Density functional theory

well as the local part of the pseudopotential, have been included in Vloc.

There are several techniques to write pseudopotentials, one of which is called PAW for

Projector Augmented-Wave. This method is featured in Abinit and changes the eigenprob-

lem HU = UΛ to a generalized eigenproblem HU = ΛBU , where B is called the overlap

operator. However, in most of this work, we will focus on standard eigenproblems.

2.6. Solving the Kohn-Sham equations with self-consistent field

iterations

The system of discretized Kohn-Sham equations to solve is

H(U)U = UΛ (2.16)

for U ∈ CN×m matrix with orthonormal columns, Λ ∈ Cm×m a diagonal matrix with the

m smallest eigenvalues of H(U) counted with multiplicity and where H : CN×m → CN×N

associate to U the corresponding Hamiltonian matrix. Thus, it is a fix-point problem that

can be solve using self-consistent iterations (see algorithm 1). We start with a random

Hamiltonian matrix H0, then compute its smallest eigenpairs. Using the eigenvectors,

we can express the corresponding density ρ and the corresponding Hamiltonian operator

H1 = H[ρ]. We iterate the same process until convergence.

Algorithm 1 Self-consistent field in DFT

H ← RandomHamiltonian(N)
while H not converged do

Λ, U ← EigenSolver(H)
H ← Hamiltonian(U)

end while

The convergence of this algorithm is not guaranteed, actually it will most likely not

converged in this naive version. It requires some mixing and preconditioning, but this will

not be explored here as it is not the scope of this work.

Instead, we will focus on solving the eigenvalue problem efficiently. In Abinit, the di-

agonalization step is very expensive, especially since computing the application of the

Hamiltonian to a vector is highly resource intensive. Moreover, we only need a limited set

of eigenvalues (the smallest ones).

Therefore, to save computation time, we use iterative eigensolvers, to solve the problem

inexactly. This type of solvers also have the advantage of being matrix-free, which is

necessary. More precisely, we execute a few steps of the iterative eigensolver at each SCF

13

2. Density functional theory

step starting from the current estimation. This way, the resolution of the eigenproblem is

done more and more accurately as we approach convergence. This way, we avoid solving

with high precision a problem with an inaccurate Hamiltonian. This modified SCF routine

is presented in algorithm 2.

Algorithm 2 Double self-consistent field in DFT

X ← RandomVectors(N, m)
H ← Hamiltonian(U)
while H not converged do

Λ, X ← EigenSolverStep(H, X)
H ← Hamiltonian(U)

end while

14

3. Iterative Eigensolvers

In this section we will present two families of iterative algorithms to solve eigenvector

problems: vector-based algorithms, which make use of the fact that the solution to the

problem is also the solution to a constrained minimisation problem, and subspace-based

algorithms, in which the search is not directly for vectors but for the eigensubspace.

First of all, let’s define our problem. Let H be a hermitian matrix in CN×N . We

denote λ1, . . . , λN , its eigenvalues, in increasing order and u1, . . . , uN some corresponding

eigenvectors. Since H is hermitian, u1, . . . , uN can be chosen orthonormal. The objective is

to find the m smallest eigenpairs {(λ1, u1), . . . , (λm, um)}. We call U = Span{u1, . . . , um}
the the eigensubspace of sought eigenvectors.

Both types of algorithms use the Rayleigh-Ritz procedure, that will be presented next.

3.1. The Rayleigh-Ritz method

The Rayleigh-Ritz method is a numerical method to approximate eigenvalues and eigen-

vectors of a matrix or operator. Given a matrix H ∈ CN×N and a matrix X ∈ CN×m

with orthonormal columns, the Rayleigh-Ritz procedure is the following (also described in

algorithm 3):

1. Compute A = XHHX.

2. Solve the eigenproblem Ayi = µiyi.

3. Compute the Ritz vectors zi = Xyi.

4. The Ritz pair (µi, zi) is an approximate solution to the eigenproblem of H.

This method gives approximate eigenvectors in the subspace described by the columns of

X. If the subspace is already an eigensubspace, the method is exact.

Lemma 3.1.1. If X = Span{x1, . . . , xm} is an eigensubspace of H, the Rayleigh-Ritz

method on H with X = (x1| . . . |xm) gives the exact eigenpairs of H contained in X .

Proof. Let yi, µi such that Ayi = µiyi with A = XHHX. Then with zi = Xyi, we have

XXHHzi = µizi.

15

3. Iterative Eigensolvers

The product XXH is the orthogonal projector on X = Span{x1, . . . , xm} which is stable

by H since it is an eigensubspace. Thus, as zi ∈ X and Hzi ∈ X we have,

Hzi = XXHHzi = µizi.

Conversely, if Hzi = µizi with zi ∈ X , their is a yi ∈ Cm such that zi = Xyi and then,

XHHXyi = µiX
HXyi = µiyi because XHX = Im (X has orthonormal columns).

Algorithm 3 Rayleigh-Ritz

function RayleighRitz(H, X)
X ← Ortho(X)
A ← XHHX
λ, Y ← Eigen(A)
U ← XY
return λ, U

end function

3.1.1. Convergence of the Rayleigh-Ritz method

We will now study the convergence of Ritz pairs obtained from the Rayleigh-Ritz method,

in the case where the subspace X spanned by the columns of X converges towards U ,
following the work from [JS01]. To measure the distance between the two subspaces we

will use the sin∠(·,·) function defined bellow and we will denote ε = sin∠(X ,U).

Definition 3.1.1. Let V and W two subspaces of CN , V the column matrix of an or-

thonormal basis of V and W⊥ the column matrix of an orthonormal basis of W⊥. We

define

sin∠(V,W) = ∥W⊥HV ∥2. (3.1)

Here and in the rest of this work, the norm ∥ · ∥2 denote either the euclidean norm when

applied to a vector or the operator norm associated to the euclidean norm when applied to a

matrix. In this section, we denote Λ, the diagonal matrix with λ1, . . . , λm on its diagonal.

We also define W = XHU and W⊥ = X⊥HU , such that U = XW + X⊥W⊥. Then to

orthonormalize the columns of W , we introduce

Q =

�
WH W

�− 1
2

such that, with Ŵ = WQ we have ŴHŴ = ŴŴH = Im.

16

3. Iterative Eigensolvers

To study convergence, we will need to use Elsner’s theorem [Els85], that is recalled

hereunder.

Theorem 3.1.1 (Elsner). For A and B in Cn×n, with respective spectra {λ1, . . . , λn} and

{µ1, . . . , µn}, we have

max
1⩽j⩽n

min
1⩽i⩽n

|λi − µj | ⩽ (∥A∥2 + ∥B∥2)1− 1
n ∥A−B∥

1
n
2 . (3.2)

Convergence of Ritz Values

To begin with, we will study the convergence of Ritz values, using the following theorem

from [JS01].

Theorem 3.1.2. Let A = XHHX the matrix diagonalized in the Rayleigh-Ritz procedure.

There is a matrix E in Cm×m satisfying

∥E∥2 ⩽ ε√
1− ε2

∥H∥2 (3.3)

such that (Q−1ΛQ, Ŵ) is an eigenblock of A+ E.

Proof. The diagonal matrix Λ is such that,

HU − UΛ = 0.

Then, with X⊥ the matrix in CN×N whose columns form an orthonormal basis of X⊥, we
get

XHH

�
X X⊥

�� XH

X⊥H

�U −XHUΛ = 0

which gives

AW +XHHX⊥W⊥ −WΛ = 0.

Then, multiplying by Q from the right we get

AŴ +XHHX⊥W⊥Q− ŴQ−1ΛQ = 0

and we define

S = ŴQ−1ΛQ−AŴ

such that

∥S∥2 = ∥XHHX⊥W⊥Q∥2 ⩽ ∥XHHX⊥∥2∥W⊥Q∥2.

17

3. Iterative Eigensolvers

From the orthonormality of X and X⊥, we have ∥XHHX⊥∥2 ⩽ ∥H∥2. Furthermore,

ε = ∥X⊥HU∥2 = ∥W⊥∥2 and WHW = Im −W⊥HW⊥ so ∥WHW | ⩾ 1− ∥W⊥∥22 = 1− ε2.

Thus

∥S∥2 ⩽ ε√
1− ε2

∥H∥2.

Now we define E = SŴH , it is clear that ∥E∥2 ⩽ ε
�
1− ε2

�−1/2 ∥H∥2 and also

(A+ E)Ŵ = AŴ −AŴŴHŴ + ŴQ−1ΛQŴHŴ = ŴQ−1ΛQ

using ŴHŴ = Im.

This allows us to deduce the following corollary.

Corollary 3.1.1. Let µ1, . . . , µm be the eigenvalues of A = XHHX. Then there are

integers j1 . . . , jm such that

|λi − µji | ⩽ 4

��
2 +

ε√
1− ε2

�
∥H∥2

�1− 1
m
�

ε√
1− ε2

∥H∥2
� 1

m

. (3.4)

Proof. The eingenvalues of (A+E) are then the eigenvalues of Λ and using Elsner’s theorem

(3.1.1), we know that there is a permutation j1, . . . , jm of 1, . . . ,m such that

|λi − µji | ⩽ 4(∥A∥2 + ∥A+ E∥2)1− 1
m ∥E∥

1
m
2 .

The conclusion comes from ∥A∥2 < ∥H∥2 and ∥E∥2 ⩽ ε
�
1− ε2

�−1/2 ∥H∥2.

Now if we have a sequence {Xn}n⩾0 (associated to a sequence {Xn}n⩾0 of matrices

with orthogonal columns) of subspaces such that sin∠(Xn,U) = εn −−→
n∞ 0, we can write

µn
1 , . . . , µ

n
m the eigenvalues of An = Xn

HHXn such that for all n ⩾ 0 and 1 ⩽ i ⩽ m,

|λi − µn
i | ⩽ 4

��
2 +

εn√
1− εn2

�
∥H∥

�1− 1
m
�

εn√
1− εn2

∥H∥
� 1

m

, (3.5)

which implies µn
i −−→

n∞ λi.

Convergence of Ritz pairs

Now we want to investigate the convergence of Ritz pairs, that we denote (µn
i , z

n
i) for

i = 1, . . . ,m, returned by the Rayleigh-Ritz procedure. From the previous section we

already now that µn
i −−→

n∞ λi. Obviously, we can’t expect zni to converge towards ui,

because eigenvectors are not unique. To get around this lack of uniqueness, we will observe

18

3. Iterative Eigensolvers

the distances between eigensubspaces. We denote U1, . . .Ul the eigensubspaces associated

to each unique eigenvalue of Λ and λ̂1, . . . , λ̂l the associated eigenvalues such that for

j = 1, . . . , l, the dimension of Uj is the multiplicity of λ̂j . Then for j = 1, . . . , l we denote

Zn
j = Span{zi s.t. λi = λ̂j}. We want to show that the distance (measured with sin∠(·, ·))

between Uj and Zj goes to zero.

To study this convergence, we will use the following modified version of Davis and Kahan

sin θ theorem.

Theorem 3.1.3. Let A and B be two hermitian m×m matrices. We denote λ1 ⩾ . . . ⩾ λm

and µ1, . . . , µm their respective eigenvalues and u1, . . . , um and v1, . . . , vm some corre-

sponding eigenvectors. We assume λ1 = . . . = λk and λk > λk+1. Then we denote

U1 = Span{u1, . . . , uk}, U1 = (u1| . . . |uk), V1 = Span{v1, . . . , vk} and V1 = (v1| . . . |vk) the

eigensubspaces and matrices corresponding to the subspace associated with the eigenvalue

λ1 and µ1, . . . , µk. Then we have

sin∠(V1,U1)
2 ⩽

k�
i=1

|λ1 − µi|+ ∥B −A∥2
λ1 − λk+1

. (3.6)

Proof. Let x in Cm with norm 1. We denote x =
�m

i=1 αiui its expression in the basis

{u1, . . . , um}. Since x has norm 1,
�m

i=1 |αi|2 = 1. Then

xHAx =

m�
i=1

λiαix
Hui

=

m�
i=1

λi|αi|2

= λ1(|α1|2 + . . .+ |αk|2) +
m�

i=k+1

λi|αi|2

⩽ λ1(|α1|2 + | . . . |+ |αk|2) + λk+1

m�
i=k+1

|αi|2

= λ1 − (λ1 − λk+1)(
m�

i=k+1

|αi|2).

Thus
m�

i=k+1

|αi|2 ⩽ λ1 − xHAx

λ1 − λk+1
.

19

3. Iterative Eigensolvers

Now

sin∠(V1,U1)
2 = ∥U2

HV1∥2

= sup
v∈V1

∥v∥2=1

∥U2
Hv∥2

= sup
v∈V1

∥v∥2=1

m�
j=k+1

|uHj v|2

= sup
β1,...βk

|β1|2+...+|βk|2

k�
i=1

m�
j=k+1

βi|uHj vi|2

⩽
k�

i=1

m�
j=k+1

|uHj vi|2

⩽
k�

i=1

λ1 − vi
HAvi

λ1 − λk+1

=

k�
i=1

λ1 − µi − vi
H(B −A)vi

λ1 − λk+1

⩽
k�

i=1

|λ1 − µi|+ |viH(B −A)vi|
λ1 − λk+1

Then, for i = 1, . . . , k, we have from Cauchy-Schwarz that |viH(B − A)vi| ⩽ ∥vi∥2∥(B −
A)vi∥2 ⩽ ∥B −A∥2. This concludes the proof.

Now let j be in {1, . . . ,m}, without loss of generality, we can assume that λ̂j is the

largest eigenvalue of An+En (An+En can be replaced with (An+En− (λ̂j+ ϵ)Im)−1 that

has the same eigenvectors). We denote zni1 , . . . , z
n
ir

the eigenvectors in Zn
j and µn

i1
, . . . , µn

ir

the corresponding eigenvalues, such that

sin∠(Zj ,Uj)
2 ⩽

r�
k=1

|λ̂j − µn
ik
|+ ∥En∥2
δ

(3.7)

where δ > 0 is the difference between λ̂j and its closest distinct eigenvalue. Since |λ̂j − µn
ik
| n∞−−→

0 and ∥En∥2 n∞−−→ 0, we have

sin∠(Zj ,Uj)
n∞−−→ 0. (3.8)

This means that the subspaces returned by the Rayleigh-Ritz procedure indeed converges

20

3. Iterative Eigensolvers

towards the subspaces associated to each distinct eigenvalue of H in U provided that X
tends towards U .

3.2. Minimization algorithms

Let H(U) be the discretized Hamiltonian operator corresponding to U ∈ CN×m. The

discretized Kohn-Sham’s equation can be written as the non-linear eigenvalue problem�
H(U)U = UΛ

UHU = Im
(3.9)

for U ∈ CN×m and Λ ∈ Cm×m a diagonal matrix with the m smallest eigenvalues of H(U).

Now we consider the constrained minimization problem

min
U∈CN×m

E(U)

s.t. UHU = Im

(3.10)

where E(U) is the energy defined as E(U) = tr(UHH(U)U). The Lagrangian function

associated with this optimization problem is

L(U,Λ) = E(U)− tr(Λ(UHU − Im))

and its gradient with respect to U and Λ is

∇L(U, λ) =

�H(U)U − UΛ

UHU − Im

� .

We see that if (U,Λ) is a solution of (3.9), it satisfies

∇L(U,Λ) = 0. (3.11)

Thus solutions of the minimization problem are solutions of the eigenvalue problem. Con-

versely if V is a global minimizer of (3.12), there is a unitary matrix R ∈ Cm×m such that

V = UR where U solves (3.9). Indeed, the matrix V HHV ∈ Cm×m is Hermitian so there

is a unitary matrix R ∈ Cm×m so that RHV HHV R = M with M ∈ Cm×m diagonal. The

eigenvalues µ1, . . . , µm of M are eigenvalues of H and since E(V) = µ1 + . . . + µm, they

must be the m smallest one (otherwise the solutions of (3.9) give smaller energies). Thus

V R is a solution of the non linear eigenvalue problem. This means that the subspaces

21

3. Iterative Eigensolvers

associated to the solutions of both problems are the same.

Thus, iterative minimization algorithms can be used to solve Kohn-Sham equations in

their minimization form. Since the objective function E is quite complicated, minimization

algorithms are not used directly on E. Instead, we use self-consistent iterations, that is at

each iteration, the Hamiltonian operator H(Xk) is fixed so that the minimization problem

becomes quadratic :

min
U∈CN×m

tr(UHH(Xk)U)

s.t. UHU = Im

. (3.12)

Then a few iterations of the chosen minimization technique are applied, starting from Xk

and yield the new estimate Xk+1, which is then used again at the next iteration to fix the

Hamiltonian. This is repeated until convergence.

We will present here two iterative minimization algorithms that are commonly used in

DFT calculations: conjugate gradient and LOBPCG algorithm.

3.2.1. Conjugate gradient

The conjugate gradient algorithm solves quadratic programming problems

min
x∈CN , ∥x∥=1

xHAx− xHb (3.13)

where A ∈ CN×N is hermitian positive definite and b is a vector RN . The idea is to

find a basis {p1, . . . , pN} of CN whose elements are mutually conjugated with respect to

A i.e. pHi Apj = δij for all 1 ⩽ i, j ⩽ N . Then the optimal solution x∗ can be written

x∗ =
�N

i=1 αipi. We note that the optimal solution x∗ is such that the gradient of f : x �→
xHAx− xHb is zero i.e. Ax∗ − b = 0. This gives αi =

pi
Hb

piHApi
. If the directions pi are well

chosen, we don’t need to have a complete basis of CN to have a good approximation of x∗.
The iterative conjugate gradient algorithm consists in building the directions pi iteratively

in order to reduce f as much as possible at each step. At step i ⩾ 0, we have an estimate

xi =
�i

j=0 αjpj (wlog. x0 = 0) and we compute ri = b− Axi which is the opposite of the

gradient of f at xi and thus indicate the direction of steepest descent. Then, since we want

the new direction pi+1 to to be conjugate to the already computed directions, we take

pi+1 = ri −
�
j⩽i

ri
HApj

pjHApj
pj .

This gives some simple recurrence formula, that allow us to compute a new iteration from

the previous one only. Another benefit of this method is that it allows preconditioning.

22

3. Iterative Eigensolvers

The use of the iterative conjugate gradient algorithm in DFT computation is described

in [PTA+92] and [KF96]. In the case of DFT calculations, we want to solve

min
X∈CN×m

XHHX (3.14)

with an orthonormality condition

XHX = Im. (3.15)

To solve this, we apply m successive conjugate gradient algorithms, with the additional

condition that an estimated xn (1 ⩽ n ⩽ m) solution to (3.14) must also be orthogonal to

the already computed estimate solutions x1, . . . , xn−1. This is done by forcing the directions

pi in the conjugate gradient algorithm to also be orthogonal to x1, . . . , xn−1 with

pi+1 = ri −
i�

j=0

ri
HHpj

pjHHpj
pj −

n−1�
k=1

rHi xk

xk
H
xk

xk.

This modified algorithm is called the projected conjugate gradient algorithm. In practice,

at each SCF step, a fixed number of directions is chosen for each chosen eigenpairs, starting

with the result of the previous iteration.

This method does not directly gives the solution to the eigenproblem but a basis of the

solution subspace U . To retrieve the solution, we need to apply the Rayleigh-Ritz method

on X = (x1| . . . |xm) once each vector has been updated.

3.2.2. LOBPCG

The Locally-Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm is

an evolution of the Conjugate Gradient algorithm developed by Knyazev in [Kny01]. This

method is implemented in Abinit as the default eigensolver and is the most commonly used.

The term ”Block” in LOBPCG means that several vectors are computed simultaneously

in blocks. That is we replace the vectors xi and pi from above with some matrices Xi and

Pi containing several vectors. Each vector of Xi should approximate one of the sought

eigenvectors. The matrix of directions Pi is computed similarly to the conjugate gradient

case and used to update Xi. Then we need to apply the Rayleigh-Ritz method to compute

the next estimation Xi+1. The computation in blocks allows calculations to be parallelized.

The ”Locally-Optimal” part of the name refers to the fact that the two dimensional

optimization method used to determine αi+1 such that xi+1 = xi+αi+1pi+1 minimizes the

residual is replaced with a 3 dimensional optimization problem on Xi, Xi−1 and Pi+1. This

speeds up the convergence.

Lastly, the LOBPCG, like the conjugate gradient method can be very efficiently precon-

23

3. Iterative Eigensolvers

ditioned, which also speeds up the convergence.

Once all the blocks X1, . . . , Xm′
are updated, we need to apply the Rayleigh-Ritz method

on (X1
i+1| . . . |Xm′

i+1) to retrieve the actual eigenvectors of H, just like in the conjugate

gradient method. This method works very well and converged fast due to preconditionning.

Its major drawback is the numerous calls to the Rayleigh-Ritz procedure.

3.3. Subspace iteration algorithms

In subspace iteration methods, we want to estimate the subspace U , rather than the vectors

u1, . . . , um directly. To do so, we begin with a random initial subspace X0 = {x01, . . . , x0m}
and the for k ⩾ 0, we compute

Xk+1 = f(Xk) = Span{f(xk1), . . . , f(xkm))} (3.16)

where f : CN → CN is called the filter and should be chosen to enhance the component in U
and reduce the component in U⊥ (or any other complementary subspace) of every vectors

in CN . Then, for an estimate Xk of U , we can retrieve an estimate of the eigenvectors

u1, . . . , um via the Rayleigh-Ritz method.

If the subspace iteration method is applied to a constant matrix, the Rayleigh-Ritz step

can be done only once when Xk has converged, as illustrated in algorithm 4. However, due

to numerical instabilities it might be best to use the Rayleigh-Ritz step more often to ensure

that the basis vectors of Xk remain linearly independent. Even thought mathematically

the Rayleigh-Ritz step does not change the subspace, it makes a big difference numerically.

Now, when the method is used in the self-consistent field algorithm, we need an estimate

of u1, . . . , um at each SCF step to update H so the Rayleigh-Ritz step must be done at

each iteration as illustrated in algorithm 5.

Algorithm 4 Subspace iteration algorithm on a constant matrix H

X ← RandomVectors(N,m)
while X not converged do

X ← f(X)
end while
λ,X ← RayleighRitz(H,X)

24

3. Iterative Eigensolvers

Algorithm 5 Subspace iteration algorithm in the self-consistent field

X ← RandomVectors(N,m)
H ← Hamiltonian(X)
while H not converged do

X ← f(X)
λ,X ← RayleighRitz(H,X)
H ← Hamiltonian(X)

end while

3.3.1. Filters

The filter f should be a function from CN to CN enhancing or maintaining the components

in U of each vector and reducing their components in U⊥. Also, the application of f to a

vector in CN should be easy and fast to compute.

Ideally, the range of f would be U and its kernel would be a complementary subspace of

U , so that X1 = U . For instance, the orthogonal projector p onto U is ideal. However, such

a filter can only be build with previous knowledge of U . In the following, we will describe

polynomial and rational filters whose main benefit is that they only require the knowledge

of the eigenvalues λ1, . . . , λN of H.

Let v be a vector in CN . It can be expressed in the orthonormal basis {u1, . . . , uN} :

v =
N�
i=1

αiui

with α1, . . . , αN ∈ C. Then since, for n ⩾ 1,

Hnui = Hn−1λiui = . . . = λi
nui

we have for P a polynomial in C[X],

P (H)ui = P (λi)ui

and therefore,

P (H)v =
N�
i=1

P (λi)αiui.

The same goes for rational function. For n ⩾ 1,

ui =
1

λi
λiui =

1

λi
Hui =

1

λi
nH

nui

25

3. Iterative Eigensolvers

so

H−nui =
1

λi
nui.

Thus, for a rational function Q ∈ C(X), Q(H)ui = Q(λi)ui and

Q(H)v =

N�
i=1

Q(λi)αiui.

This way, if we choose a polynomial or rational function Q that is small on [λm+1, λN]

and large on [λ1, λm], the filter f = Q(H) will reduce the components of v in U⊥ and

enhance those in U . More precisely, the component in ui (i = 1, . . . , N) of any vector will

be increased or reduced by a factor Q(λi) when the filter is applied.

The most straightforward example of polynomial filter is the power method, that is used

to compute the largest (in absolute value) eigenvalue of the matrix H, using the fact that

the eigenvalues of Hn are the eigenvalues of H to the power n. When n is big, only the

largest eigenvalue dominate. Thus the eigenvector is approximated with

xn = Hnx0

and the approximated eigenvalue is given by the Rayleigh quotient

µn =
xn

HHxn
xnHxn

=

�
i λi

n+1|αi|2�
i λi

n|αi|2
n∞−−→ argmax

λ=λ1,...,λN

|λ|

with x0 =
�N

i=1 αiui. This correspond to the subspace iteration method with simply H

as the filter and a wanted subspace of dimension 1 (meaning the Rayleigh-Ritz step is not

needed).

3.3.2. Convergence of subspace iteration algorithms

In this section, we will investigate the convergence properties of the subspace iteration

method, following the work from [Saa11] and [Saa16].

To begin with, we state theorem 3.3.1, from [Saa16] that gives us the convergence rate

of the subspace iteration method when applied to a constant matrix.

Theorem 3.3.1. Let A ∈ CN×N be an hermitian matrix, we denote γ1, . . . , γN its eigen-

values ordered so that that |γ1| ⩾ . . . ⩾ |γN | and v1, . . . , vN some corresponding orthogonal

eigenvectors. Then we denote Π =
�m

i=1 vivi
H the projector onto Span{v1, . . . , vm} orthog-

26

3. Iterative Eigensolvers

onally to Span{vm+1, . . . , vN}. Let X be a subspace of CN of dimension m ⩾ 1, such that

dimΠX = m, we denote X̃ = AX the subspace X filtered by A.

Then, for each vector vi, with 1 ⩽ i ⩽ m, there is a unique vector xi ∈ X such that

Πxi = vi. In addition, x̃i =
1
γi
Axi ∈ X̃ satisfies Πx̃i = vi and

∥x̃i − vi∥2 ⩽ |γm+1|
|γi| ∥xi − vi∥2. (3.17)

Proof. Let 1 ⩽ i ⩽ m. ΠX has dimension m, therefore, by dimension equality, ΠX =

Ran(Π) so vi ∈ ΠX i.e. there is a xi in X such that vi = Πxi. We denote wi = (IN −Π)xi,

such that xi = vi + wi. Then, we define

x̃i =
1

γi
Axi =

1

γi
A(vi + wi) = vi +

1

γi
Awi.

We have Πx̃i = Πvi +
1
γi
ΠAwi so from ΠA = AΠ, we get

Πx̃i = vi.

Now, ∥x̃i − vi∥2 = ∥ 1
γi
Awi∥2 and we have (IN − Π)wi = wi and ΠA = AΠ so Awi =

(IN −Π)A(IN −Π)wi. Thus,

∥x̃i − vi∥2 ⩽ 1

|γi|∥(IN −Π)A(IN −Π)∥2∥wi∥2 = |γm+1|
|γi| ∥xi − vi∥2

because the spectrum of (IN −Π)A(IN −Π) is {0, γm+1, . . . , γN}.

This theorem shows that the orthogonal distance between the subspace X̃ and vi is

multiplied by a factor µ = |γm+1|
|γi| compared to the orthogonal distance between X and vi.

This factor µ is called the convergence rate and convergence is ensured as long as µ < 1. In

our case, the matrix A from the theorem is the filter Q(H) for a rational (or polynomial)

function Q so the convergence rate is given by the quotient

µ = max
m+1⩽j⩽N

|Q(λj)|
|Q(λi)| . (3.18)

Thus we want to choose a filter that maximizes the quotient between the biggest unwanted

filtered eigenvalue and the smallest wanted one.

In the case of self-consistent iterations, the matrix H is updated at each iteration with

the current estimate of the eigenvectors. Therefore, the above convergence analysis cannot

be directly applied, but needs to be modified to account for the change in H, which creates

27

3. Iterative Eigensolvers

a change in the filter, at each iterations. This analysis was done in [Saa16] from which the

following theorem is also taken.

Theorem 3.3.2. Let A ∈ CN×N an hermitian matrix and E ∈ CN×N an hermitian

perturbation matrix, we denote γ1, . . . , γN the eigenvalues of A ordered so that |γ1| ⩾ . . . ⩾
|γN | and v1, . . . , vN some corresponding orthogonal eigenvectors. We also denote Π =�m

i=1 vivi
H the projector on Span{v1, . . . , vm} orthogonally to Span{vm+1, . . . , vN}. Let X

be a subspace of CN of dimension m ⩾ 1, such that dimΠX = m, we denote X̃ = (A+E)X
the subspace X filtered by (A+ E) and K the projector on X̃ orthogonally to U = RanP .

Then, for each vector vi, for 1 ⩽ i ⩽ m, there is a unique vector xi ∈ X such that

Πxi = vi. In addition, there is a x̃i ∈ X̃ that satisfies Πx̃i = vi and

∥x̃i − vi∥2 ⩽ |γm+1|+ ∥(I −K)E∥2
|γi| ∥xi − vi∥2 + ∥(I −K)Evi∥2

|γi| . (3.19)

Proof. Let 1 ⩽ i ⩽ 0. The proof of the existence of xi is the same as in theorem 3.3.1. Now

with x̂i =
1
γi
(A+ E)xi, we have

Πx̂i = Π
1

γi
Axi +Π

1

γi
Exi = vi +Π

1

γi
Exi

so we will define a correction term f = K 1
γi
Exi so that with x̃i = x̂i − f ∈ X̃ ,

Πx̃i = vi +Π(IN −K)
1

γi
Exi = vi

since Ran(IN −K) = kerΠ. Then

∥x̃i − vi∥2 = ∥ 1

γi
(A+ E)(xi − vi)−K

1

γi
Exi∥2

⩽ |γm+1|+ ∥(I −K)E∥2
|γi| ∥xi − vi∥2 + ∥(I −K)Evi∥2

|γi| .

The bound given by this theorem on the distance between X̃ and vi is degraded compared

to theorem 3.3.1, but we will show that if the perturbation matrix E goes to 0, convergence

remains ensured, provided that the projector (IN −K) is bounded.

From here, we denote with upper index n the value of E, K, X and xi at iteration n

(with X n+1 = (A+ En+1)X n). Using ∥vi∥ = 1 we have

∥xni − vi∥2 ⩽ |γm+1|+ ∥(I −Kn)En∥2
|γi| ∥xn−1

i − vi∥2 + ∥(I −Kn)En∥2
|γi| ,

28

3. Iterative Eigensolvers

which can be rewritten, for n ⩾ 1,

dn ⩽ (α+ βn)dn−1 + βn

using the notations dn = ∥xni − vi∥2, βn = ∥(I−Kn)En∥2
γi

and α = |γm+1|
|γi| . From the assump-

tion that En goes to 0 and (IN −Kn) is bounded, we have βn
n∞−−→ 0 and since α < 1, there

is a γ < 1 and n0 > 1 such that, for all n ⩾ n0,

α+ βk < γ.

Then, for n ⩾ n0,

dn ⩽ βn + βn−1γ + . . .+ γn−n0βn0 ⩽
p�

k=n0

βkγ
n−k +

n�
k=p+1

βkγ
n−k (3.20)

for any n0 ⩽ p ⩽ n. For ε > 0, there is a p0 such that for all n ⩾ p0, βn ⩽ ε(1− γ). This

yield, for the second term in (3.20),

n�
k=p0+1

βkγ
n−k ⩽ ε(1− γ)

n�
k=p+1

γn−k ⩽ ε.

Since the sequence {βk}k goes to zero, it has an upper bound β that we use to bound the

first term in (3.20).

p0�
k=n0

βkγ
n−k ⩽ β

p0�
k=n0

γn−k = βγn−p0 1− γp0−n0+1

1− γ
⩽ β

γn−p0

1− γ

n∞−−→ 0.

Thus for big enough n, this term is smaller than ε. This proves that ∥xni − vi∥2 goes to

zero.

This ensure that if the self-consistent iterations are convergent. Thus the iterative sub-

space method will also converge. And, for the speed of convergence, unless the Hamiltonian

operator converges linearly with a convergence rate smaller than |γm+1|
|γi| , its speed of con-

vergence will dominate the convergence of the eigenvalues. This means that improving the

convergence of the iterative eigensolver above a certain threshold is not useful.

3.3.3. Chebyshev-filtered subspace iteration

Chebyshev-filtered subspace iteration [ZSTC06] is an example of a subspace iteration

method using Chebyshev polynomials as filters. The method is implemented in Abinit

and yield very good results, with a better scalability than LOBPCG, as studied in [LT15].

29

3. Iterative Eigensolvers

Chebyshev filtering is used to determine the smallest (or largest) eigenpairs of a Hermitian

matrix. Chebyshev polynomials of the first kind are such that cos(kθ) = Tk(cos θ) and

cosh(kθ) = Tk(cosh θ). Therefore, |Tk(t)| ⩽ 1 for t ∈ [−1, 1] and |Tk| grows rapidly outside

of this interval. Some Chebyshev polynomials of various degree are displayed in figure 3.1.

This makes it possible to construct filters using translated Chebyshev polynomials, where

the unwanted part of the spectrum [λm+1, λN] is sent to [−1, 1] to be attenuated while the

rest of the spectrum is amplified. Thus Chebyshev filters are defined as follows

Pk(X) = Tk

�
1

r
(X − c)

�
(3.21)

with r = 1
2(a− b) and c = 1

2(a+ b) for some a, b ∈ R such that b > λN and a > λm. Since

Chebyshev polynomials are monotonic outside [−1, 1], we don’t necessarily need to have

λm < a < λm+1.

Figure 3.1.: Chebyshev polynomials Tk of degree k = 2, 4 6 and 10.

To implement the method, we need to determine the interval [a, b] to be translated on

[−1, 1], where b is an upper bound of the largest eigenvalue λN and a is an upper bound

of the largest sought eigenvalue λm. In the general case, the bound b can be determined

using a few iterations of the power method. However, in plane-wave based DFT, an upper

bound is readily available. The spectrum of the discretized Hamiltonian is bounded by

the input parameter Ecut which is the maximal energy of the plane waves on which the

operator is discretized. For the bound a, we can take the largest Rayleigh quotient of the

current estimate, which is the largest eigenvalue of the matrix H projected in the current

subspace estimate (of dimension m).

Algorithms 6 and 7 describes Chebyshev-filtered subspace iteration for a constant matrix

and in the self-consistent loop. The recursive definition of Chebyshev polynomials allow us

30

3. Iterative Eigensolvers

to compute the filters efficiently.

Algorithm 6 Chebyshev filtering algorithm on a constant matrix H

X ← RandomVectors(N,m)
Λ, X ← RayleighRitz(H,X)
b ← UpperBound(H)
while X not converged do

a ← maxΛ
c ← b+a

2 , r ← b−a
2

P0(H)X ← X
P1(H)X ← 1

r (H − cI)X
for l = 2 to k do

Pl(H)X = 2
r (HPk−1(H)X − cPk−1(H)X)− Pk−2(H)X

end for
X ← Pk(H)X
Λ, X ← RayleighRitz(H,X)

end while

Algorithm 7 Chebyshev filtering algorithm in the self-consistent field

X ← RandomVectors(N,m)
Λ, X ← RayleighRitz(H,X)
H ← Hamiltonian(X)
b ← Ecut

while H not converged do
a ← maxΛ
X ←ChebyshevFilter(H, a, b,X)
Λ, X ← RayleighRitz(H,X)
H ← Hamiltonian(X)

end while

Chebyshev polynomials are not the only type of polynomials that are small on an interval

and rapidly growing outside. For instance, monomials Xk could also be good candidates,

with a simpler one-term recurrence formula. It turns out that Chebyshev polynomials have

some optimal properties that make the very good for subspace methods. This is described

in [Saa11] from which the following theorem is taken.

Theorem 3.3.3. Let [a, b] be a non-empty interval in R and let γ be any real scalar with

γ > b. then the minimum

min
P∈Rk[X], P (γ)=1

max
t∈[a,b]

|P (t)| (3.22)

where Rk[X] denote the set of real polynomials of degree smaller or equal k, is reached by

31

3. Iterative Eigensolvers

the polynomial

Ck(X) =
Tk

�
1 + 2 t−b

b−a

�
Tk

�
1 + 2γ−b

b−a

� . (3.23)

The proof of this theorem can be found in [Che82]. In the subspace iteration method,

with a filter P (H) where P ∈ R[X], the convergence rate of the i-th eigenpair is given by

max
m+1⩽j⩽N

|P (λj)|
|P (λi)| .

Without precise knowledge of the position of the eigenvalues, this can be approximated by

max
t∈[λm+1,λN]

P (t)

P (λi)

which is precisely minimal for the shifted Chebyshev polynomial, for a given maximal

degree. This property, together with their definition by recurrence, which makes the cal-

culation very practical, justifies the choice of Chebyshev polynomials.

This method has many benefits, the first one being that it works well with very low

degree polynomials. For instance, the default degree in Abinit is 4. In addition, it has

good scalability, in particular because the filter can be applied to the different vectors in

parallel. This has enabled a significant improvement in performances when moving from

CPU to GPU supercomputers, as illustrated in figure 3.2. Unfortunately, this evolution

also highlighted a new bottleneck that is the Rayleigh-Ritz step, for which increasing the

number of processors is of no help. A potential way to overcome this problem is the use of

Slicing methods that will be presented in the next section.

32

3. Iterative Eigensolvers

(a) CPU

(b) GPU

Figure 3.2.: Time spent in the filtering step and in the Rayleigh-Ritz step during one SCF
iteration with the Chebyshev filtering method, on CPU and GPU.

33

4. Slicing methods

This section is the main part of this work, in which we will present in detail the Spectrum

Slicing method, whose objective is to get around the lack of parallelizability of the Rayleigh-

Ritz step. The idea of Spectrum Slicing is to apply the Rayleigh-Ritz procedure to smaller

subspaces, in parallel. This smaller subspaces should be eigensubspaces (or approximations

of) so that the vectors obtained on each of them are directly eigenvectors of H. To obtain

such subspaces, the spectrum of H is split into ns slices [σ1, σ2], [σ2, σ3], . . . , [σns , σns+1]

chosen so that

[λ1, λm] ⊂ [σ1, σ2] ∪ . . . ∪ [σns , σns+1].

Then, filtering methods are used to approximate the subspaces

Ui = Span{uj |λj ∈ [σi, σi+1]}

that are such that U = U1 ⊕ . . .⊕ Uns .

In short we want to apply some subspace iteration method to determine each subspace

Ui with 1 ⩽ i ⩽ ns and then reconstruct U . The eigensubspace are chosen based on the

spectrum since we know how to build polynomial or rational filters from it. Each Ui can

be treated individually and the Rayleigh-Ritz step only needs to be applied in smaller

dimension. Ideally, we would have to execute ns Rayleigh-Ritz procedures in dimension
m
ns

in parallel. Since the time complexity of Rayleigh-Ritz is cubic, this can yield to some

substantial gain. However we will see that this gain in the Rayleigh-Ritz step also come

with some loss in other steps. The question is whether the loss is compensated or not.

The Spectrum Slicing method is described in algorithm 8 and in 9 when integrated in

the self-consistent loop. Both algorithms calls some functions named Slices, Filter and

Merge. These three functions correspond to the points that need to be worked on to make

the slicing method work and that will be developed in the next tree sections.

34

4. Slicing methods

Algorithm 8 Spectrum slicing eigensolver

Σ ← Slices(H)
for (σi, σi+1,mi) ∈ Σ do

fi ← Filter(H,σi, σi+1)
Xi ← RandomVectors(N,mi)
while Xi not converged do

Xi ← fi(Xi)
Λi, Xi ← RayleighRitz(Xi)

end while
end for
Λ, X ← Merge(X1, . . . , Xns ,Λ1, . . . ,Λns)

Algorithm 9 Self-consistent field iterations using Spectrum Slicing

X ← RandomVectors(N,m)
H ← Hamiltonian(X)
while H not converged do

Σ ← Slices(H)
for si ∈ Σ do

Xi ← SelectVectors(X, si)
fi ← Filter(H, si)
Xi ← fi(Xi)
λi, Xi ← RayleighRitz(Xi)

end for
λ,X ← Merge(X1, . . . , Xns)
H ← Hamiltonian(X)

end while

4.1. Determining the slices

To begin with, we will tackle in this section the challenges regarding the choice of the slices.

For Spectrum Slicing to work well, the slices must be chosen such that :

• They cover entirely the part of the spectrum [λ1, λm] that we are interested in.

• The dimensions of the subspaces associated with each of the slices are close, so that

the computational load is distributed evenly.

• The distance between two eigenvalues in different slices is large, to have good con-

vergence rates (see section 3.3.2).

• The widths of the slices are as large and homogeneous as possible, as it is more

difficult to filter a thin slice (see section 4.2).

35

4. Slicing methods

4.1.1. Estimating the Density of states

In order to chose some appropriate slices, that satisfy the requirements above, one need an

estimation of what the matrix eigenvalue spectrum looks like. Therefore, we will present

here some method to approximate the Density of States (DOS).

Definition 4.1.1 (Density of states). The density of states of a matrix A ∈ CN×N with

spectrum λ1, . . . , λN is defined as

ϕ(t) =
1

N

N�
j=1

δ(t− λj) (4.1)

where δ is the Dirac distribution.

Two common methods to estimate the DOS of a matrix are the Kernel Polynomial

method (KPM) and the Lanczos method, that will be described next. Here we consider

an hermitian matrix A with eigenvalues λ1, . . . , λN and some corresponding orthonormal

eigenvectors u1, . . . , uN .

Kernel Polynomial Method

The idea of this method, described in [XLS18] and [LSY16] is to expand the Dirac δ-function

in Chebyshev series (see appendix A.2). Chebyshev series expansions give approximation of

function in [−1, 1], so we assume, without loss of generality, that the eigenvalues λ1, . . . , λN

of A are in [−1, 1].

We define

ϕ̂(t) =
�
1− t2ϕ(t) =

�
1− t2

1

N

N�
j=1

δ(t− λj)

that will be expanded in Chebyshev series instead of ϕ for convenience. Then

ϕ̂(t) =

∞�
k=0

µkTk(t)

with the expansion coefficients

µk =
2− δk0

π

� 1

−1

1√
1− t2

Tk(t)ϕ̂(t) =
2− δk0
nπ

N�
j=1

Tk(λj).

The sum
�N

j=1 Tk(λj) is the trace of the matrix Tk(A), which can be approximated (theorem

3.1 in [LSY16]) using a large number of vectors v1, . . . , vnvec whose component are obtained

36

4. Slicing methods

from a normal distribution with zero mean and unit deviation and then normalized, with

Tk(A) ≈ 1

nvec

nvec�
l=1

vl
H
Tk(A)vl = ζk.

The computation of the vl
H
Tk(A)vl can be done using the induction definition of Chebyshev

polynomials, so that if the Chebyshev series expansion is truncated toM , a total ofM×nvec

matrix vector multiplications are needed, that can be fully parellelized with nvec process.

The approximate DOS is then given by

ϕ̃M (t) =
1√

1− t2

M�
k=0

ζkTk(t). (4.2)

Lanczos Method

The Lanczos method is an iterative algorithm for determining the eigenvalues of a square

matrix, which can therefore be used to estimate the DOS of a matrix. The method

works by building iteratively an orthonormal basis {v1, v2, . . . , vM} of the Krylov sub-

space Span{v1, Av1, . . . , AM−1v1} in a way that the matrix TM = VM
HAVM , from the

Rayleigh-Ritz procedure (with VM the matrix with columns v1, . . . , vM), is tridiagonal,

that is

TM =

�������������

α1 β1

β1 α2 β2

β2
. . .

. . .

. . .
. . . βM−1

βM−1 αM

�������������
where the coefficients βi and αi are computed by induction (see [GVL13]). The tridiagonal

matrix TM can then be relatively easily diagonalized. The application of this method to

compute the DOS is described in [XLS18] and [LSY16] also.

The Lanczos algorithm works so that the columns of VM can be expressed as vk =

pk−1(A)v1, for 0 ⩽ k ⩽ M where pk ∈ Ck[X], form a set of orthogonal polynomials with

respect to the weighted spectral distribution

ϕv1(t) =
N�
j=1

|γj |2δ(t− λj)

37

4. Slicing methods

where the coefficients γ1, . . . , γN are such that v1 =
�N

j=1 γjuj . Indeed, for 1 ⩽ k1, k2 ⩽ M ,

⟨pk1 , pk2⟩ϕv1
=

�
R
pk1(t)pk2(t)ϕv1(t)dt

=

N�
j=1

|γj |2
�
R
pk1(t)pk2(t)δ(t− λj)dt

=
N�
j=1

|γj |2pk1(λj)pk2(λj)

= ⟨
N�
j=1

γjpk1(λj)uj ,

N�
j=1

γjpk2(λj)uj⟩2

= ⟨pk1(A)v1, pk2(A)v1⟩2
= ⟨vk1 , vk2⟩2
= δk1,k2

The polynomials pk are generated with a 3 term recursion

pk+1(X) =
1

βk+1
(Xpk(X)− αkpk(X)− βkpk−1(X)) .

The Gaussian quadrature rule with this type of orthogonal polynomials was studied in

[GW69] and yield the following approximation, for any function f ,

�
R
f(t)ϕv1(t)dt ≈

M�
k=1

wkf(θk) =

�
R
f(t)

M�
k=1

wkδ(t− θk)dt

where (θk, yk), k = 1, . . . ,M , are the eigenpairs of TM and wk = (1 0 ... 0)yk is the first

coordinate of yk. So we will take the approximation

ϕ̂v1(t) =
M�
k=1

wkδ(t− θk).

It remains to choose v1 so that |γ1|2, . . . , |γN |2 are close to 1
N . This is done again by

choosing nvec random vectors whose components are obtained from a normal distribution

with zero mean and unit deviation and then normalized. This yields to the Lanczos DOS

approximation

ϕ̃v1(t) =

nvec�
l=1

N

nvec

M�
k=1

wl
kδ(t− θlk). (4.3)

This method also require M×nvec matrix vector products, that can be computed in parallel

38

4. Slicing methods

with nvec processes.

Some DOS estimations obtained with both methods are displayed in figure 4.1. In this

few examples, we have observed better results with the Lanczos method, which is supported

by the order of convergence of the two methods given in [XLS18] that are linear for KPM

and quadratic for Lanczos. Morevover the KPM approximation is bad at both ends of the

spectrum, and that is where we need a good approximation of the DOS. Therefore, in our

algorithmic applications, we have always chosen the Lanczos approximation.

When applying the slicing method to constant matrices, we compute an estimated DOS

at the very beginning and then choose some slice accordingly. However, when slicing is used

in DFT, the matrix to diagonalize changes at each iteration, meaning that the estimated

density of state might not remain correct all through the iterations and might need to be

recomputed. When this happen, there is a third method that can be used which is simply

to use the results of the previous iteration to compute the DOS.

4.1.2. Different strategies for choosing slices based on an estimated DOS

Once an estimation of density of states ϕ̃ is known, it remains to use it to choose the slices.

This can be done in various ways. The tree strategies that will be presented here where

described in [WYBY20].

The first and most straightforward strategy would be to minimize the computational

load discrepancy, by choosing some slices [σ1, σ2], . . . , [σns , σns+1] so that
 σi+1
σi

ϕ̃(t)dt is a

constant for all i = 1, . . . , ns. That is, we begin by estimating a lower bound λmin of λ1,

with the power method for instance. Then we set σ1 = λmin and use numerical integration

to find σ2 such that
 σ2

σ1
ϕ̃(t)dt = m

ns
and repeat the process until we have ns slices. This is

described in algorithm 10.

Algorithm 10 Uniform weight strategy for choosing slices

λmin ← lowerBound(H)
σ1 ← λmin

for i = 1 . . . ns do
t ← σi
while

 t
σi
ϕ̃(τ)dτ < m

ns
do

t ← t+∆t
end while
σi+1 ← t

end for

39

4. Slicing methods

Figure 4.1.: Density of state estimation, computed with the Lanczos and kernel polynomial
methods, for different values of M and nvec, with Gaussian blurring, for a
Hamiltonian H corresponding to a gold crystal.

The main drawback of this method is that the bounds of the slices σi can be chosen very

close to the eigenvalues, which is very bad regarding the convergence.

A second possible strategy is to find the minima of the estimated DOS to place there the

bounds of the slices. More precisely, we first estimate a lower bound λmin of λ1 (e.g. with

the power method) and then find the last upper bound b that is such that
 b
λmin

ϕ̃(t)dt = m.

Then, we search for the local minimam1,m3, . . . ,ml of ϕ̃ that are between λmin and b. With

m0 = λmin and ml+1 = σns+1, we now have l + 2 slices. In case l + 2 ⩾ ns i.e. we have to

many slices, we compute the estimated number of eigenvalues (with multiplicity) in each

slices with
mi+1

mi
ϕ̃(t)dt and merge the two neighboring slices with the smallest combined

number of eigenvalues, up until we are left with ns slices. In case l+2 < ns, we have chosen

in our application to use only l+ 2 slices, because splitting a slice in two would likely lead

40

4. Slicing methods

to having a slice boundary close to an eigenvalue. The strategy is described in algorithm

11.

Algorithm 11 Minima strategy for choosing slices

λmin ← LowerBound(H)
t ← λmin

while
 t
λmin

ϕ̃(τ)dτ < m do
t ← t+∆t

end while
b ← t
m1, . . . ,ml ← Minima(ϕ̃, [λmin, b])
m0 ← λmin

ml+1 ← b
while l + 2 > ns do

i ← ArgMin(i �→ mi+2

mi
ϕ̃(t)dt, [0, l − 1])

l ← l − 1
mi+1, . . . ,ml+1 ← mi+2, . . . ,ml+2 ▷ [mi,mi+1] and [mi+1,mi+2] merged

end while
σ1 . . . , σl+2 ← m0, . . . ,ml+1

This strategy is the best regarding the convergence rate as it yields well separated slices.

The load balancing might be bad for this choice of slices, but we note that the strategy for

merging slices in case we find to many minima is chosen to minimize load discrepancies. Also

we might not have the amount of slices we wanted if not enough minima have been found.

When using the Lanczos DOS estimation, one needs to use some Gaussian blurring. By

playing with the width of the Gaussian, we can have more or less minima in the estimated

DOS and thus improve load balancing and avoid cases where we don’t have enough slices.

However, if the Hamiltonian operator has many clustered eigenvalues, there is not much

that can be done.

The last strategy requires to have some estimate of the eigenvectors, for instance from

the previous iteration and consists in using a clustering algorithm (here the k-means) to

compute clusters of eigenvalues that minimize the sum of distances in each of them and

then choose the slice boundaries accordingly. This method will always give the wanted

number of slices while avoiding placing close eigenvalues in two different slices. However

the load balancing might be quite bad and if the spectrum don’t have enough ”natural”

clusters, it could still have to put close eigenvalues in different clusters.

Figure 4.2 displays the slices obtained with these 3 different strategies for a density of

states corresponding to the Hamiltonian of a gold crystal. We note that with the uniform

41

4. Slicing methods

method and the k-means method, a slice boundary is placed very close to the second peak

which is quite bad regarding convergence. Also with the minima strategy we have only

been able to create 3 slices and not 5 like in the two other methods. Still its seems to be

the best strategy as the eigenvalues are split into 3 dense clusters.

Figure 4.2.: Slices obtained using the three strategies presented in section 4.1.2, for the
density of states obtained with a gold crystal, where the estimated DOS is
obtained from the Lanczos method with M = nvec = 50 for the uniform and
minima strategies and with a Gaussian noise added to the eigenvalues for the
k-means strategy.

4.1.3. Slices evolution

So far we have presented the DOS estimation and its use for choosing some slices. Now in

this section we will tackle the filling of the slices and their evolution. Indeed, for the Spec-

trum Slicing method to work properly, we need the dimension of the estimated subspace

of each slices to be greater or equal to the dimension of the actual eigensubspace corre-

sponding to the slice. Otherwise, we might miss some eigenvalues and in the case of SCF

iterations, this will completely ruin the convergence. Furthermore, in the self consistent

field, the matrix H to diagonalize evolves. Therefore, we might need to adjust the slices as

H changes.

In my implementation of the slicing method, the slices are determined as follow :

At the very first iteration, the DOS is estimated with the Lanczos method and then the

slices are determined accordingly using one of the method above (section 4.1.2). In every

42

4. Slicing methods

slice, we have an estimated number mest of eigenvectors given by the DOS and we search

for mest + nextra vectors, where nextra is a chosen parameter.

Then, for each slice [σj , σj+1], we check if it is full. To do so, we check if one of the

computed pair (µi, xi) is an estimation of an eigenpair of H that is outside of the slice. For

this check, we use lemma 4.1.1.

Lemma 4.1.1. Let H ∈ CN×N a hermitian matrix and x ∈ CN of norm 1. We denote

µ = xHHx
xHx

∈ R the Rayleigh quotient of x and r = ∥Hx− µx∥2 its residue. Then, there is

an eigenvalue of H in [µ− r, µ+ r].

Proof. As H is hermitian, we can write

H = UHΛU (4.4)

with U a unitary matrix and Λ ∈ RN×N a diagonal matrix. Then,

r = ∥Hx− µx∥2
= ∥UHΛUx− µUHUx∥2
= ∥UH(Λ− µIN)Ux∥2
⩽ ∥Λ− µIN∥2 = min

λ∈S(H)
|λ− µ|

(4.5)

so λ = argminλ∈S(H) |λ− µ| is in [µ− r, µ+ r].

Thus, we check if [µi−ri, µi+ri]∩ [σj , σj+1] = ∅ where ri = ∥Hxi−µixi∥2 is the residual

of the estimated eigenpair (µi, xi). If at least one estimated eigenpair is outside of the

slice, we know that it is full. If the slice isn’t full, we add some new random vectors at the

next iteration. Precisely, we add ⌈p×mi⌉ new vectors, where mi is the current number of

vectors in the slice and p > 0 is a chosen parameter.

In case the slicing method is applied to a constant matrix, this is enough to ensure that

we will not miss any eigenpair.

In case the method is used in the self-consistent field, we also want to update the slices

when the Hamiltonian matrix H changes. This is done as follows: Whenever we detect

that a slice is not full, we increase a counter kup and after several iterations, governed by

a parameter nupdate (see algorithm 12), the slices are updated. To update the slices, we

use the current estimate of the eigenvalues, that gives us an approximation of the DOS,

on which we apply one of the method above (section 4.1.2) to determine new slices. Then

we need to allocate the estimated eigenvectors to their new slices. This correspond to

the function SubspaceUpdate in algorithm 12, which is not detailed. The vectors are

allocated to their slice using their Rayleigh quotient and in each slice we also add nextra

43

4. Slicing methods

vectors that should belong to the neighboring slices. These vectors are duplicated and

should therefore be removed at one point but they are very useful to improve convergence

and ensure that each slice is full.

This update is necessary to maintain load balancing between slices and ensure that the

slices are well chosen all through the iterations. The update step isn’t done at each step

to avoid instabilities and to let time to each new eigenvector to converge in its slice before

the slice is updated.

Algorithm 12 Slices evolution in the self-consistent loop

H ← RandomHamiltonian(N)
a1, . . . , ans+1 ← SlicesInit(H)
X1, . . . , Xns ← SubspacesInit(H)
kup ← 0
while H not converged do

for j = 1 to ns do
µj , Xj ← EigenSolverSlice(H,Xj , (aj , aj+1))
mj ← MissingVect(H,µj , Xj , (aj , aj+1))
kup ← kup +m1 + . . .+mns

end for
µ,X ← Merge(µ1, . . . , µns ;X1, . . . , Xns)
H ← Hamiltonian(X)
if kup ⩾ nupdate then

a1, . . . , ans+1 ← SlicesUpdate(H,X)
X1, . . . , Xns ← SubspacesUpdate(H,X)
kup ← 0

else
X1, . . . , Xns ← SubspacesAdd(X1, . . . , Xns ,m1, . . . ,mns , p) ▷ Adding new

vectors in the slices that aren’t full
kup ← 2× kup

end if
end while

4.2. Filters

Filtering is an essential part of the Spectrum Slicing method, and requires an important

work to be able to filter a slice effectively and qualitatively. Indeed, filtering a slice, inside

the spectrum, is much harder than filtering some of the extreme eigenvalues. For instance,

using plain Chebyshev polynomials will not work here.

In this section, we describe different types of filters that have been used in the literature,

separated in two categories, the polynomial filters and the rational filters.

44

4. Slicing methods

Let [a, b] with a, b ∈ R be the slice we want to filter.

4.2.1. Polynomial filters

To create a polynomial filter, we need a polynomial approximation of the characteristic

function χ[a,b] of the slice. Up to translation, we will assume here that our spectrum is

contained in [−1, 1].

Square filters

This first type of filter was presented in [SCS12] and consist in using the Chebyshev series

expansion of the characteristic function χ[a,b]. That is, for t ∈ [−1, 1],

χ[a,b](t) =
∞�
i=0

γiTi(t) (4.6)

with

γi =
2− δi0

π

� 1

−1
χ[a,b](t)Ti(t)

1√
1− t2

dt =
2− δi0

π

� arccos a

arccos b
cos(nt)dt

i.e.

γi =

��
1
π (arccos a− arccos b) if i = 0

2
π
sin(i arccos a)−sin(i arccos b)

i if i > 0.

(4.7)

Then, the polynomial filters of degree k > 0 are the truncated series with a damping

coefficient, that is

P a,b
k =

k�
i=0

dki γiTi. (4.8)

Here, dki is the damping parameter that reduces oscillations (see appendix A.2). We will

consider two types of damping: Jackson damping and Sigma damping i.e. dki = σk
i =

sinc iθk with θk = π
k+1 and also dki = 1 when we don’t want any damping. A few examples

of Square filters are displayed in figure 4.3.

Dirac filters

The idea behind this type of filter is that we don’t actually need our polynomial to be flat

on [a, b], but only to be steep in a and b. Therefore, instead of approximating χ[a,b], one can

only build bell-shaped filters. This can be done by using the Chebyshev series expansion of

the Dirac δ-distribution centered in some γ ∈ [a, b], denoted δγ , as described in the papers

[LXV+15] and [LXES19].

45

4. Slicing methods

Figure 4.3.: Square filters of degree k = 10, 50 and 100, for the slice [0.4, 0.6] with a spec-
trum contained in [−1, 1], with no damping, Jackson damping and σ-damping.

Even though δγ is not a function but a distribution, the integral� 1

−1
δγ(t)Ti(t)

1√
1− t2

dt =
Ti(γ)�
1− γ2

=
cos(i arccos γ)�

1− γ2

can still be computed, which allows us to define the sum

P γ
k =

k�
i=0

µkd
k
i Tk (4.9)

with

µk =

��
1
2 if k = 0

cos(i arccos γ) else

(4.10)

the Chebyshev expansion coefficients of δγ where the constant factors have been dropped

and dki , i = 0, . . . , k some damping coefficients. The width of P γ
n depends of the degree

k at which the Chebyshev series is truncated. The higher k, the ”closer” P γ
k is to δγ and

therefore the thinner, as illustrated in figure 4.4.

Thus, the degree k is adjusted according to the width of the slice. For a given parameter

τ ∈]0, 1[, k is chosen to be the smallest integer such that P γ0
k (a)

P γ0
k (γ0)

 < τ and

 P γ0
k (b)

P γ0
k (γ0)

 < τ

with γ0 = a+b
2 . Once k is fixed, we use a numerical optimization method to find γ such

that P γ
k (a) = P γ

k (b), so that the filter is well positioned and that there is no risk for a

filtered eigenvalue outside of [a, b] to be larger than one inside. The algorithm 13 describes

this routine to determine k and γ.

The major benefit of this method is that the degree k is determined by the width of the

46

4. Slicing methods

Algorithm 13

function ParamDirac(a, b, τ)
γ0 ← a+b

2
k = 0
while

 P
γ0
k (a)

P
γ0
k (γ0)

 < τ and
 P

γ0
k (b)

P
γ0
k (γ0)

 < τ do

k ← k + 1
end while
γ ← FindZero(γ �→ P γ0

k (b)− P γ0
k (a), [a, b])

return k, γ
end function

slice and not increased unnecessarily.

Figure 4.4.: Dirac filters of degree k = 10, 50 and 100, for the slice [0.4, 0.6] with a spectrum
contained in [−1, 1], with no damping, Jackson damping and σ-damping.

With polynomial filters, the degree k is the number of times we have to apply the

Hamiltonian operator to each vector. It is a costly operation, therefore we would like

to do it as little as possible, meaning we want to maintain small degree. On figure 4.4

we see that the thinner the slice, the higher the degree needs to be. In figure 4.4, we

have displayed Dirac filters with a degree up to 100 and the corresponding slice width is

something we can expect to have with the Slicing method. This is the major drawback

of the Spectrum Slicing method compared to Chebyshev filtering, where the polynomial

degree usually remains under 10.

4.2.2. Rational filters

Now we will present a few rational filters that can be used to filter a slice interior to the

spectrum. This filters can be very close to the characteristic function χ[a,b] (e.g. FEAST

[Pol09]) with a very low degree in the numerator and denominator. This makes them very

good when the inverted matrix H−1 or its application to a vector is easily accessible, as it

is the case with sparse matrices. In DFT, one has sparse discretized Hamiltonian when it

47

4. Slicing methods

is discretized in real space, due to the local nature of the operators. In this case rational

filters are highly suitable. However, in plane wave based DFT, the matrix H is dense and

iterative method would be needed to compute the application of its inverse to a vector.

This offsets the benefits given by lower degrees.

Shift-inverted filters

The first and most straightforward type of rational filter we will present here are Shift-

Inverted filters. This filters are simple inversion i.e.

Q(t) =
1

t− c
(4.11)

with c = a+b
2 the center of the slice. Then the quotient

 Q(λj)
Q(λi)

 = λi−c
λj−c

 is always smaller

than one when λi is in the slice [a, b] and λj is outside of it. Thus the convergence rate

will be smaller than one and convergence is ensured. This type of filters have been known

and used for a long time, associated with the Lanczos method (see [KR91]). They are also

studied in the more recent article [WYBY20]. Figure 4.5 represents a Shift-Inverted filter.

Figure 4.5.: Shift-inverted filter centered in 0,5.

FEAST

The method FEAST was first presented in [Pol09] and then in [PTP14]. The idea is to

approximate the contour integral

π(t) =
1

2πi

�
C

1

z − t
dz, t /∈ C

where C is a circle centered in c = a+b
2 with radius r = b−a

2 . From Cauchy’s integral

theorem, we know that π(t) = 1 when C circles t and π(t) = 0 else. Therefore, for

t ∈ R, π(t) = χ[a,b](t) is exactly the function we want to approximate. This integral is

approximated using a quadrature rule with the parametrization φ(ζ) = c + rei
π
2
(1+ζ) for

48

4. Slicing methods

−1 ⩽ ζ ⩽ 3. This gives

π(t) =
1

2πi

� 3

−1

φ′(ζ)
φ(ζ)− t

dζ

=
1

2πi

� 1

−1

φ′(ζ)
φ(ζ)− t

+
φ′(2− ζ)

φ(2− ζ)− t
dζ

=
1

2πi

� 1

−1

riπ2 e
iπ
2
(1+ζ)

c+ rei
π
2
(1+ζ) − t

− riπ2 e
iπ
2
(3−ζ)

c+ rei
π
2
(3−ζ) − t

dζ

=
r

4

� 1

−1

ei
π
2
(1+ζ)

rei
π
2
(1+ζ) + c− t

− e−iπ
2
(1+ζ)

re−iπ
2
(1+ζ) + c− t

dζ.

Then, we can use the Gauss-Legendre quadrature rule on [−1, 1] which gives

πq(t) =
r

4

q�
i=1

wi

�
ei

π
2
(1+ζi)

rei
π
2
(1+ζi) + c− t

− e−iπ
2
(1+ζi)

re−iπ
2
(1+ζi) + c− t

�
(4.12)

where (wi, ζi)i=1...q are the weighs and nodes given by the Gauss-Legendre quadrature rule

with q points (for some q ⩾ 1).

Some filters obtained with this method are displayed in figure 4.6. We see that this

filters are very good for relatively small q. Also the q terms of the sum can be computed in

parallel, which is why the FEAST method is said to have 3 levels of parallelization that are

the slices, the vectors in each slice and the quadrature points in each vector. This method

is used since 2013 as Intel-MKL’s principal HPC eigensolver which illustrate its practical

relevance.

Now as said above, when applied to dense matrices, we need to solve a linear system in

order to apply the filter to a vector. In practice, this would be done inexactly with iterative

solvers. The impact of this inexact inversion of the matrix was studied in [GP18].

Figure 4.6.: FEAST filters with q = 3, 5 and 10 quadrature points, for the slice [0.4, 0.6].

49

4. Slicing methods

Least Square filter

The last type of rational filters we present here are called Least Square rational filters

and where introduced in [XS16]. They are based on two observations: firstly it is not

necessary that the filter is flat inside [a, b] but only steep at its boundary and small on the

rest of the spectrum. Seconddly some shifted linear systems (H − σI)y = x are easier to

solve than other. For instance, the closer σ is to the real axis, the more iterations will be

needed to solve the system with iterative methods. This is a downside of FEAST where the

nodes obtained from the Gauss-Legendre quadrature tend to accumulate near the real axis.

Therefore, in Least Square filters, we want to choose some poles σ1, . . . , σp in C that are

advantageous for iterative linear solvers and then determine some coefficients α1, . . . , αp so

that

Q(t) =

p�
i=1

αi

t− σi
=

p�
i=1

αiφi(t) (4.13)

is a good filter (here we have denoted φi(t) =
1

t−σi
). In this section, we assume our slice to

be centered in 0 with radius r and the spectrum to be in [−1, 1].

Now to measure the quality of a filter, we introduce the scalar product ⟨·, ·⟩w defined by

⟨f, g⟩w =
 +∞
−∞ f(t)g(t)w(t)dt with

w(t) =

����������
0 if |t| > 1

β if |t| < r

1 else

where 0 < β < 1 is small. Then, we want to find the coefficients α1, . . . , αp that minimize

∥Q− χ[−r,r]∥w.

By using the weight function w, we can reduce the importance of the shape of our filter

between −r and r while ensuring that it remains small on the rest of the spectrum. The

optimization problem is equivalent to

min
α∈Cp

αHGα− ηHα− αHη

where G = (⟨φi, φj⟩w)1⩽i,j⩽p is a positive definite hermitian matrix in Cp×p, η is a vector

in Cp with ηH =
�⟨χ[−r,r], φ1⟩ . . . ⟨χ[−r,r], φp⟩

�
and α = (α1 . . . αp)

T is the vector of sought

50

4. Slicing methods

coefficients. The optimal solution of this convex quadratic minimization problem is

α = 2G−1η (4.14)

which can be computed numerically.

Some example of least square filters are displayed in figure 4.7. We note that these filters

are of good quality, with only 3 or 5 poles. Moreover, their quality improves when the poles

are chosen closer to the real axis.

Figure 4.7.: Least-square filters obtained with 4 different sets of poles, for the slice [0.4, 0.6].

4.3. Merging results between slices

Now that we know how to choose some slices and some filters to apply the filtering method,

we want to know how to put together the results obtained independently on each slices. If

we had an ideal algorithm giving us exactly the eigenpairs whose eigenvalues are in a given

slice, the entire set of sought eigenpairs would simply be the reunions of the ones found in

each slice. However, our algorithm is not perfect and taking the reunion of all computed

eigenpairs would give us a lot of duplicates. For instance, as described in section 4.1.3, we

need to compute more vectors than their are in a slice, to ensure that it is full and we are

not missing any. Therefore, we need a routine to identify duplicates between slices.

In most cases, using the residual r = ∥Hx − µx∥ of the eigenpair (µ, x) is enough to

determine whether it is inside the slice [a, b] in which it was computed or not. Indeed, using

lemma 4.1.1, we know that the eigenvalue λ of H approximated by µ is in [µ − r, µ + r].

Thus, if [µ − r, µ + r] ∩ [a, b] = ∅ we know that the eigenpair can be discarded because it

does not belong to the slice [a, b] on the contrary, if [µ − r, µ + r] ⊆ [a, b] the eigenpair is

kept. Now in the last case where [µ − r, µ + r] is neither outside [a, b] nor inside, a doubt

remains. This can happen for eigenpairs that are not yet well converged or very close to a

slice boundary.

51

4. Slicing methods

In case where the residual is not sufficient to make a decision, we will use the method

described in [SCS12] that compares principle angles between neighboring slices to identify

duplicates. Let [a, b] and [b, c] be two neighboring slices, (µ1, x1), . . . , (µl, xl) the estimated

eigenpairs computed on slice [a, b] such that, for i = 1 . . . l, [µi − ri, µi + ri] ∩ [a, b] ̸= ∅
and [µi − ri, µi + ri] ∩ [b, c] ̸= ∅ with r = ∥Hxi − µixi∥ and y1, . . . , yms the estimated

eigenvectors computed on [a, b] without the ones discarded from their residual. We want

to identify the vectors in x1, . . . , xl that have duplicates in y1, . . . , yms . However, since

eigenvectors are not unique, it can not be done by directly comparing the vectors one by

one, rather, we will check whether the two associated subspaces are orthogonal or not. We

denote Q = (x1| . . . |xl) and R = (y1| . . . |yms). Let

QHR = UΣV H

be the singular value decomposition of QHR. The diagonal of Σ is the cosines of the

principal angles between the two subspaces associated to Q and R ([BG73]) i.e.

Σ =

�����
cos θ1

. . .

cos θn

�����
with n = max(l,ms) and θ1, . . . , θn the principal angles. Then, the number k of singular

values of Σ close to one is the number of duplicate vectors and it remains to find to which

column of Q they correspond. We denote n1, . . . , nk the indices of the singular values close

to one, then for j = 1, . . . , k, the nj-th column Unj of U gives the coefficients of the linear

combination of x1, . . . , xl whose angle with an element of Span{y1, . . . , yms} is θnj . Since

we might have duplicate eigenvalues, we cannot simply examine the columns of U for their

maximum element because this could give us the same vector for different columns, as we

cannot expect each angle to be primarily associated with only one vector. Therefore, we

define, for i = 1 . . . l,

mi = max
1⩽j⩽k

|(Unj)i| (4.15)

the maximal contribution of the vector xi in the angles θi1 , . . . , θik . Then, the duplicates

vectors are the ones that contribute the most, that is xi1 , . . . , xik when mi1 ⩾ mi2 ⩾ . . . ⩾
mil .

When H is a constant matrix, we have to merge the results obtained in different slices

only once, when the algorithm has converged on every slice (see algorithm 8). Therefore,

52

4. Slicing methods

we can expect our estimated eigenpairs to have small residual and if our slices where well

chosen, the residual check should be enough to merge the slices. In DFT however, we have

to recalculate the matrixH at each step and to do so, we need to merge the vectors obtained

from each slice at each step (see algorithm 9). When the slices are not yet well converged,

we might need to compare principal angles. This is a crucial step because having duplicate

eigenpairs will prevent the Hamiltonian operator from converging.

53

5. Comparison of time efficiency in the

Slicing method and Chebyshev filtering

method

In this section we will study the time complexity of Spectrum Slicing and compare it to

that of Chebyshev filtering. The objective is to determine if and when the Slicing method

becomes profitable compared to Chebychev filtering. As explained above, Slicing is designed

to speed up the Rayleigh-Ritz stage. However, this involves more complex and therefore

more costly filters. We therefore want to know if the gain on the Rayleigh-Ritz compensates

for the loss on the filtering step.

5.1. Study of Chebyshev filtering and Spectrum Slicing on a

simplified model

To compare the two methods, we want to choose the degree of the polynomials correspond-

ing to the same rate of convergence in both methods. The next two sections will explicit

the relation between the degree of the polynomials and the convergence rate for Chebyshev

filtering and Spectrum slicing.

In order to study this dependence, we consider a model system where we want to compute

the m smallest eigenvalues of a N ×N hermitian matrix H whose eigenvalues λ1, . . . , λN

(sorted in increasing order) are evenly distributed in the interval [−1, 1] (i.e. λi = −1+ 2i−2
N−1 ,,

for 1 ⩽ i ⩽ N). We denote u1, . . . , uN some corresponding orthonormal eigenvectors and

U = Span{u1, . . . , um} the eigensubspace corresponding to the m smallest eigenvalues.

5.1.1. Chebyshev filtering

In the Chebyshev-filtered Subspace iteration method, the polynomials

Pk(X) = Tk

�
X − c

r

�
(5.1)

54

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

are used to filter U , with c = 1
2(λm+1 + λN) = m/(N − 1) and r = 1

2(λN+1 − λm+1) =

1−m/(N − 1) assuming distributed eigenvalues in [−1, 1]. The convergence properties of

the subspace iteration method was presented in section 3.3.2. Here the convergence rate

of the method as a whole corresponds to the rate of convergence of the eigenvalue that

converges the slowest, that is λm. Hence the convergence rate of Chebyshev filtering is

given by

µ =

 Pk(λm+1)

Pk(λm)

 =
 Tk(−1)

Tk(−1− 2
(N−1)r)

 .
Using lemma A.1.3 and A.1.4, we have T ′

k(−1) = (−1)k−1k2 so for large N we can approx-

imate Tk around −1 with a series expansion,

Tk(−1− 2

(N − 1)r
) = (−1)k − (−1)k−1k2

2

Nr
+O

�
1

N2

�
= (−1)k

�
1 +

2k2

Nr

�
+O

�
1

N2

�
which gives

µ = 1− 2k2

N(1−m/N)
+O

�
1

N2

�
. (5.2)

5.1.2. Spectrum slicing

For Spectrum Slicing, we will consider δ-Dirac filters with σ-damping, that is

P γ
k (X) =

k�
i=0

µiσi,kTi(X) (5.3)

where

µi = i cos(i arccos γ) and σi,k =

��
1 if i = 0

sin(i π
k+1

)

i π
k+1

else

for i, k ⩾ 0. (5.4)

We will call ns the number of slices which we will consider to be evenly distributed on

[λ1, λm] such that each slice contains about ms =
m
ns

eigenvalues.

We first consider a slice centered around 0 and containing ms eigenvalues. The last

eigenvalue in the slice is around ms
N = m

Nns
and the first one outside is around ms

N + 2
N .

Then an approximate convergence rate µ is given by

µ =

 P 0
k (

ms
N + 2

N)

P 0
k (

ms
N)

55

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

which can be approximated via the series expansion

P 0
k (

ms

N
+

2

N
) = P 0

k (
ms

N
) + P 0

k
′
(
ms

N
)
2

N
+O

�
1

N2

�
.

Then

µ =

 P 0
k (

ms
N) + P 0

k
′
(ms
N) 2

N +O �
1
N2

�
P 0
k (

ms
N)

 = 1+
P 0
k
′
(ms
N)

P 0
k (

ms
N)

2

N
+O

�
1

N2

�
= 1− p0k

2

N
+O

�
1

N2

�
where

p0k = −P 0
k
′
(ms
N)

P 0
k (

ms
N)

is positive.

We will compute p0k numerically. For a given slice of half-width ls, the degree is chosen as

explained in section 4.2.1, that is such that P 0
k (ls) = τP 0

k (0) for a given τ in]0, 1[. Figure

5.1 shows the value ls for which P 0
k (ls) = τP 0

k (0), with respect to k, for different values

of τ . We observe that for high degrees, ls evolves as 1
k . We write ls ≈ ατ

k . In our model

with evenly distributed eigenvalues, this means that the degree needed to filter (circa) ms

eigenvalues, in a slice centered around 0, can be approximated with

k =
ατN

ms
=

ατNns

m
. (5.5)

The degree varies linearly with the number of slices and inversely with the ratio m
N of sought

eigenpairs.

Figure 5.1.: Values of ls such that P 0
k (ls) = τP 0

k (0) with respect to the degree k, for different
values of τ .

Figure 5.2 shows the value of p0k = |P 0
k
′
(ls)/P

0
k (ls)| where ls is such that P 0

k (ls) = τP 0
k (0).

It seems that pk has a quasi-linear dependence to the degree k. Hence we write pk ≈ βτk.

56

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

Then the convergence rate µ can be estimated with

µ = 1 + pk
2

N
+O

�
1

N2

�
≈ 1 + βτατ

2ns

m
+O

�
1

N2

�
. (5.6)

Figure 5.2.: Value of p0k with respect to the degree k for different τ .

The hypothesis that the slice is centered in 0 is actually disadvantageous since this is

where the δ-Dirac filters are the widest (see figure 5.3). Therefore, we have computed

the width of the P γ
k for various γ and found that it sill evolves as 1

k , only the prefactor

ατ changes. The same goes for the values of pγk = |P γ
k
′
(γ − ls)/P

γ
k (γ − ls)| with ls such

that P γ
k (γ − ls) = τP γ

k (γ). Figure 5.4 shows the values of ατ and βτ with respect to γ.

Based on these graphs, we will consider that the convergence rate, that depends on ατβτ ,

does not depend on the position of our slices for a given τ . However the factor ατ for

the degree depends on γ. In our model, the center of the slices that is the closest to 0,

i.e. the one for which we will need the higher polynomial degree, can be estimated by

γ = min(2m/N−1, 0). Therefore we add an upper index m/N to the prefactors α and β to

express their dependency to the proportion of sought eigenpairs. This way, the estimated

polynomial degree needed to filter m eigenvalues with ns slices can be rewritten as

k = αm/N
τ ns

N

m
. (5.7)

The values α
m/N
τ and β

m/N
τ are computed numerically to be used in the rest of the calcu-

lations.

5.2. Comparison of polynomial degrees needed in both methods

Now that we know how the polynomial degree and the convergence rate are related in the

two methods, we will compare the degree needed to have the same convergence rate µ with

the Spectrum Slicing method and Chebyshev filtering method.

57

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

Figure 5.3.: Dirac filters of degree 50 on [−1, 1], with σ-damping, centered in different γ.

Figure 5.4.: Factors ατ , βτ and product ατβτ with respect to the position of the slice γ.

For a given degree kc of the Chebyshev filter, the convergence rate will be µ = 1 −
2kc

2/(N(1 −m/N)) and, for the Spectrum Slicing method to have the same convergence

rate, we will need δ-Dirac filters of degree

ks =
kc

2

β
m/N
τ (1−m/N)

(5.8)

Then since the width of the slices is determined by the degree (up to τ) this also determines

the number of slices

ns =
m

N

ks

α
m/N
τ

=
m

N

kc
2

ατβτ (1−m/N)
. (5.9)

Thus, the degree and number of slices in the slicing method are both multiples of k2c .

We want the number of slices to be high and the degree to be small. The quotient of the

two is ns/ks = (m/N)×1/α
m/N
τ which grows with m/N (see figure 5.5) so Spectrum Slicing

will work best for a high proportion of sought eigenpairs. Figure 5.6 shows the evolution of

ks and kc with respect to the number of slices (the convergence rate and therefore ks and

kc is determined by the width of the slices), for a few proportions of sought eigenpairs, this

58

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

illustrate again that wanting only a small proportion of eigenpairs is penalizing and that

the difference in degree between slicing and Chebyshev filtering is very significant.

Figure 5.5.: Quotient ns/ks for τ = 0, 5 with respect to m/N the proportion of sought
eigenpairs.

Figure 5.6.: Degree ks required in the Spectrum Slicing method (τ = 0, 5) with respect to
the number of slices ns and degree kc required in Chebyshev filtering method
for the same convergence rate, for different proportions of sought eigenpairs
m/N .

59

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

5.3. Time complexity of the different steps involved in the

subspace iteration method

We want to compare the Chebyshev filtering and Spectrum Slicing techniques. On the

one hand, Chebyshev filtering only requires a low degree filter, so few applications of the

Hamiltonian operator H, but then performs the Rayleigh-Ritz step in a m dimensional

space. On the other hand, the slicing method needs higher degree filters but then apply

the Rayleigh-Ritz step in smaller dimension. To be able to compare the two methods, we

need to estimate the time required for an application of the Hamiltonian to a vector and

for the Rayleigh-Ritz method. This is what we will focus on in this section.

For our analysis, we will use some time analysis that have been made on a GPU based

supercomputer with the Chebyshev filtering method, presented in table 5.1. Several DFT

calculations where made on 3 test cases named Ti255-A, Ti255-B and Ga2O3-A. Ti255-A

and Ti255-B are titanium crystals and Ga2O3-A is a gallium (III) oxide. For each of these

calculations, the total time spent in the application of the Hamiltonian H, the application

of B−1 and the Rayleigh-Ritz procedure where measured and correspond to the columns

T tot
H , T tot

B−1 and T tot
RR respectively. These calculations are made in the PAW formalism (see

section 2.5) so the eigenvalue problem to solve is actually a generalized eigenvalue problem

HX = BXΛ, where B is called the overlap matrix. It can be rewritten B−1HX = XΛ.

This is where the need of applying a matrix B−1 comes from. The table also contains

some parameters related to the computed physical systems. N is the number of plane wave

used to discretized the Hamiltonian (hence the size of the matrix H), Nat is the number of

atoms considered, Np is the number of projectors used to write the pseudopotentials, m is

the number of sought bands (i.e. eigenpairs), kc is the degree of the Chebyshev polynomial

used and nstep is the number of self-consistent steps. Finally, bpp stands for ”band per

processor” and is the number of eigenpairs that where handled by each processor.

Using these data, we fill the table 5.2 in which TH and TB−1 are the average time needed

for one application of H and B−1 to one vector and TRR is the average time needed for

one Rayleigh-Ritz step. TH and TB−1 are obtained by dividing the total time by kc, nstep

and bpp and TRR by dividing the total time with the number of steps only since it does not

depend on the number of processor used.

Table 5.2 will be used to give some computation time estimation of the application of H

and B−1 and the Rayleigh-Ritz step, depending on N , Np and m. This computation times

are related to the material used and the implementation but since we are mostly interested

in the relation between them it is sufficient.

60

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

bpp N Nat Np m kc nstep T tot
H (s) T tot

B−1 (s) T tot
RR (s)

Ti255-A 256 17092 255 4590 2048 4 17 4,002 7,944 6,31

Ti255-A 128 17092 255 4590 2048 4 17 2,2 4,608 5,938

Ti255-B 512 34590 255 4590 4096 4 22 20,132 21,527 35,325

Ti255-B 256 34590 255 4590 4096 4 22 10,386 11,201 32,693

Ga2O3-A 720 77396 1960 8640 8640 4 4 59,881 196,31 55,684

Ga2O3-A 360 77396 1960 8640 8640 4 4 32,852 96,91 50,055

Table 5.1.: Total execution time of the application of the Hamiltonian, the application of
B−1 and the Rayleigh-Ritz method, measured on a GPU based computer for
DFT simulations of different physical systems with their size parameters (N ,
Nat, Np and m), the degree kc of the Chebyshev polynomial used, the number
of SCF steps nstep and the number band per processor bpp.

N Nat Np m TH (ms) TB−1 (ms) TRR (s)

Ti255-A 17092 255 4590 2048 0,2299 0,4563 0,3711

Ti255-A 17092 255 4590 2048 0,2528 0,5294 0,3493

Ti255-B 34590 255 4590 4096 0,4468 0,4778 1,606

Ti255-B 34590 255 4590 4096 0,4610 0,4972 1,486

Ga2O3-A 77396 1960 8640 8640 5,198 17,04 13,92

Ga2O3-A 77396 1960 8640 8640 5,703 16,82 12,51

Table 5.2.: Average execution time of one application of the Hamiltonian, one application
of B−1 and one execution of the Rayleigh-Ritz method, measured on a GPU
based computer for DFT simulation of different physical systems with their size
parameters (N , Nat, Np and m), computed from table 5.1.

5.3.1. Application of the Hamiltonian to a vector

To analyse the time complexity of the application of the Hamiltonian operator, we follow

the work of [LT15].

When using pseudopotentials the Hamiltonian operator can be expressed as

H = Ts + Vloc + Vnonloc. (5.10)

The kinetic energy operator is a diagonal matrix in the plane wave basis, so its application is

in O(N). The local potential operator is a multiplication in real space so its application to a

61

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

vector can be computed using the inverse and direct Fourier transform of the vector. Using

FFT, its application is in O(N log(N)). Finally, the non-local potential operator depends

on the atomic data and can be expressed as Vnonloc = PDV P
H where P is a N×Np matrix

containing the projectors used to model the core electrons and DV ∈ CNp×Np is block

diagonal. Thus the application of Vnonloc is in O(NNp +Np
2).

Figure 5.7 shows the time spent for one application of the Hamiltonian with respect to

NNp for the data of table 5.2. we observe that the computation time seems to grow linearly

with respect to NNp hence we will ignore the O(N logN +Np
2) term and estimate

TH(N,Np) ≈ ANNp (5.11)

with A = 3× 10−12 s.

Figure 5.7.: Measured calculating time for one application of the Hamiltonian operator to
a vector on GPU calculators with respect to the product NNp.

5.3.2. Inversion of the overlap matrix

The overlap matrix B appears when using the PAW formalism for pseudopotentials. The

operator to diagonalize is then B−1H and B has the form

B = I + PDBP
H (5.12)

where P is the same N×Np projector matrix as above and DB ∈ CNp×Np is block diagonal.

Then B can be inverted using the Woodbury formula [Woo50] that yields

B−1 = I + P (DB
−1 + PHP)−1PH . (5.13)

62

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

Thus we now only need to inverse an Np×Np matrix. This inversion can be done in O(N2
p)

as explained in [LT15] and corroborated by our data. We then use table 5.2 to estimate

the time prefactor. This gives

TB−1(Np) ≈ CNp
2 (5.14)

with C = 3× 10−11 s (see figure 5.8).

Figure 5.8.: Measured calculating time for one application of the inverted overlap matrix
to a vector on GPU calculators with respect to the number of projector Np.

5.3.3. Rayleigh-Ritz method

For a matrixH ∈ CN×N and a matrixX ∈ CN×m with orthonormal columns, the Rayleigh-

Ritz method consist of 3 steps :

1. Compute the m×m matrix A = XHHX

2. Solve the eigenvalue problem AY = Y Λ

3. Compute the Ritz vectors Z = XY

to which we sometimes add the orthonormalization step of the matrix X. Here the most

time consuming step is the diagonalization of the matrix A, since matrix products are

accelerated by parallelization. We have to use an iterative algorithm, which scale in the

general hermitian case in O(m3). We estimate the timing scaling factor using table 5.2.

Figure 5.9 shows the time spent in the Rayleigh-Ritz step as a function of the subspace

dimension. From it, we estimate that the time per Rayleigh-Ritz step is

TRR(m) ≈ Bm3 (5.15)

63

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

with B = 2× 10−11 s.

Figure 5.9.: Measured calculating time for one execution of the Rayleigh-Ritz method on
GPU calculators with respect to the subspace dimension m.

5.4. Comparison of calculation times

Now that we know the time complexity of the Rayleigh-Ritz step and the Hamiltonian

application, we can write an approximation of the time needed for one Chebyshev iteration

and one Spectrum Slicing iteration:

TChebFi =
�
ANNp + CN2

p

�
kc +Bm3 (5.16)

and

TSlicing =
�
ANNp + CN2

p

�
ks +B

�
m

ns

�3

. (5.17)

For a fixed τ , the degree ks used for slicing polynomial is given by ks = N/mα
m/N
τ ns.

Thus, we can compute the optimal number of slices,

nopt
s =

�
3B�

ANNp + CN2
p

�
Nα

m/N
τ

�1/4

m (5.18)

that minimizes TSlicing. This optimum only accounts for one iteration and does not consider

the convergence rate µ. However, since in DFT, the convergence rate is mostly governed

by the variations of the Hamiltonian operator, this optimum probably makes sense. This

nopt
s also fixes the degree kopts = N/mα

m/N
τ nopt

s .

64

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

5.4.1. Computation time with respect to the number of atoms in the system

In order to reduce the number of parameters, we will express N , Np and m as a function

of the number Nat of atoms in the system, which will be our main scaling parameter.

N is the dimension of the matrix H that we want to diagonalize. In DFT, the dimension

of H is the number of plane waves in the basis BG, which is defined as

BG =

�
G ∈ R3 s.t. G = n1b1 + n2b2 + n3b3 with n1, n2, n3 ∈ Z and ∥G∥2 ⩽ 2Ecut

4π2

	
(5.19)

where (b1, b2, b3) are the reciprocal lattice vectors defined by ⟨ai, bj⟩ = δi,j for i, j = 1, 2, 3

with a1, a2, a3 the Bravais lattice vectors, that define the unit cell in real space. In Abinit,

a1, a2 and a3 are some parameters chosen by the user, depending on the geometry of the

system studied. In the case where a1, a2 and a3 form an orthogonal set, we simply have

b1 =
1

∥a1∥2a1, b2 =
1

∥a2∥2a2 and b3 =
1

∥a3∥2a3.

The number of basis vectors N can be approximated by the volume of the ellipsoid�
(x, y, z) ∈ R3 s.t. ∥xb1 + yb2 + zb3∥2 ⩽ 2Ecut

4π2

	
which is the same as�

(x, y, z) ∈ R3 s.t.
x2

∥a1∥2 +
y2

∥a1∥2 +
z2

∥a1∥2 ⩽ 2Ecut

4π2

	
if a1, a2 and a3 form an orthogonal set. This gives

N ≈ 4

3
π

�√
2Ecut

2π

�3

∥a1∥∥a2∥∥a3∥.

where ∥a1∥∥a2∥∥a3∥ is the volume of the unit cell, which we write with VatNat where Vat

is the volume of one atom, such that

N =
4

3
π

�√
2Ecut

2π

�3

VatNat = cNNat (5.20)

with

cN =
4

3
π

�√
2Ecut

2π

�3

Vat

65

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

a constant that depend on the physical system, it can vary very widely, from a few dozen

to a few thousand. With Vat = 100 Bohr3 and Ecut = 15 Ha, we have cN = 277.

Np is the number of projectors in the system which is equal to

Np = nlmnNat (5.21)

where nlmn is the number of core electrons per atoms (depending one the type of atoms).

Each core electron is modeled with one projector. Usually, nlmn varies between 1 and 40.

At zero temperature, the number of sought eigenpairs m is the number of occupied bands

and also depends on the number of atoms. When using pseudopotentials, m is the total

number of valence electrons so we can write

m = nvNat (5.22)

with nv the number of valence electron per atoms, that depends on the atom considered

and is usually smaller than nlmn. For Titanium, nlmn = 18 and nv = 4.

In DFT calculations, we sometimes need to compute more eigenpairs, for example when

the temperature is not 0, or in some other specific applications where ”excited” eigenstates

are needed for some post-processing. Therefore, we will keep the proportion of sought

eigenpairs m/N as a parameter.

Now we can express the total time needed for one step of Spectrum Slicing or one step

of Chebyshev filtering with respect to the number of atoms Nat. Here, we keep m/N as a

parameter. This gives

TChebFi =
�
ANNp + CN2

p

�
kc +Bm3

= Nat
2
�
AcNnlmn + Cnlmn

2
�
kc +Nat

3B
�
cN

m
N

�3 (5.23)

and

TSlicing =
�
ANNp + CN2

p

�
ks +B

�
m
ns

�3

= Nat
2
�
AcNnlmn + Cnlmn

2
�
ks +Nat

3B
�
cN

m
Nns

�3
.

(5.24)

66

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

Now if we focus on Spectrum Slicing with its optimal number of slices, we can express nopt
s

and kopts in terms of Nat, this gives

nopt
s = Nat

1/4

�
3BcN

3

AcNnlmn + Cnlmn
2

�1/4
m

N

and

kopts = Nat
1/4αm/N

τ

�
3B

AcNnlmn + Cnlmn
2

�1/4

.

Then

T opt
Slicing = Nat

(2+1/4)
�
AcNnlmn + Cnlmn

2
�3/4

B1/4

�
31/4αm/N

τ + cN
2+1/4 1

33/4

�
. (5.25)

Thus T opt
Slicing scales as Nat

(2+1/4) while TChebFi scales as Nat
3, thus there is always a number

of atoms at which Spectrum Slicing becomes more efficient than Chebyshev filtering, for a

well chosen number of slices.

Figure 5.10 shows TChebFi and T opt
Slicing with respect to the number of atoms, for different

parameters. We have displayed two curves for Chebyshev filtering, one with a fix degree

kc = 6 and the other with a degree kc =

�
kopts β

m/N
τ (1−m/N), that gives the same

convergence rate as the optimal Spectrum Slicing. In the domain where Spectrum Slicing

becomes profitable, the computation time for Chebyshev filtering is mainly due to the

Rayleigh-Ritz procedure, so the degree chosen is not so important. While some Ecut, Vat,

nlmn values are better suited to Spectrum Slicing than others, it is the proportion of sought

eigenvalues m/N that makes the biggest difference. At zero temperature, m/N is usually

closer to 0.01. This is unfavorable for Spectrum Slicing, that will only become better

than Chebyshev filtering for a large, but realistic, number of atoms. However for larger

proportion of sought eigenpairs, Spectrum Slicing is readily better the Chebyshev filtering.

Figure 5.11 also illustrate the importance of searching for a high proportion of eigenpairs,

by showing the minimal number of atoms to have Spectrum Slicing more efficient that

Chebyshev filtering with respect to m/N . The reason for that is that a small m/N most

likely yield to thin slices that are more difficult to filter.

5.4.2. Comparison on physical systems

In this section, we will review some particular physical systems of interest, to see if the

Spectrum Slicing method can yield better computation times than Chebyshev filtering in

this specific cases.

Table 5.3 gives the size parameters of the studied systems. UO2 is a Crystal of uranium

67

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

Figure 5.10.: Estimated calculation time with respect to the number of atoms for Spectrum
Slicing, Chebyshev filtering with the same convergence rate as Spectrum Slic-
ing and Chebyshev filtering with a degree 6.

dioxide with 54 atoms, it is relatively small and easy to compute with Chebyshev filtering.

Au107 is gold in the face-centered cubic crystal structure with 107 atoms ; it is also relatively

small. Ti255-A and Ti255-B are titanium crystals (in hexagonal close-packed structure).

In case B, Ecut is increased and we compute more eigenstates (m), which will lead to more

precise results at high temperature. This two cases are already expensive to compute.

Finally, Ga2O3-A and Ga2O3-B are gallium (III) oxides. In case B, the number of atoms

in the unit cell is increased, which drastically increases the number of plane waves N needed

to discretize the Hamiltonian. The number m of eigenpairs to compute which scales with

the number of atoms is also increased significantly. This two cases are very expensive to

run and Ga203-B could not yet be computed.

Tables 5.4 and 5.5 show the estimated computation times of one diagonalization step

with Chebyshev filtering and Spectrum Slicing, for different values of kc, the degree of the

polynomial in the Chebyshev filtering method, and the corresponding slicing parameters

(chosen to match the convergence rate given by kc with Chebyshev filters). The empty cells

in the table correspond to cases where it is impossible to filter the part of the spectrum we

68

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

Figure 5.11.: Estimated minimal number of atoms to have the optimal Spectrum Slicing
become more profitable than Chebyshev filtering, with respect to the pro-
portion of sought eigenpairs m/N , for different size parameters Ecut, Vat and
nlmn.

Physical systems Nat Np nlmn m N m/N Ecut Vat

UO2 54 1224 22,7 256 13543 0,0189 15 90,3

Au107 107 1926 18 640 33804 0,0189 15 114

Ti255-A 255 4590 18 2048 17092 0,120 5 126

Ti255-B 255 4590 18 4096 34590 0,118 8 126

Ga2O3-A 1960 23520 12 8640 77396 0,112 5 73,9

Ga2O3-B 4160 49920 12 18432 164270 0,112 5 74

Table 5.3.: Size parameters of some physical systems.

are looking for using polynomials of degree ks = kc
2
�
β
m/N
τ (1−m/N)

�−1
(for τ = 0, 5).

We observe that for the two smallest systems UO2 and Au107, the Spectrum Slicing

method is never cost-effective compared with the Chebyshev filtering method. Indeed,

since m is quite small, the computation time is dominated by the filtering step and not by

the Rayleigh-Ritz step (see table 5.6). For the other systems, the Spectrum Slicing method

becomes profitable for kc = 8 and kc = 16 i.e. for a number of slices between 5 and 20

approximately. When the number of slices is increased to around 80, the time saved in the

Rayleigh-Ritz step no longer compensate for the very high degree filter. This shows that

the number of slices must be chosen wisely. We see that the bigger the system is, the bigger

is the time difference between the two methods. For Ga2O3-B, with kc = 8, we can expect

69

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

the computation time to be reduced by a factor 14, which would make its execution time

similar to Ga2O3-A with Chebyshev filtering, thus making it possible to run.

kc = 4 kc = 8

Physical systems TChebFi (s) TSlicing (s) ks ns TChebFi (s) TSlicing (s) ks ns

UO2 0,000714 - - - 0,00109 - - -

Au107 0,00647 - - - 0,00770 - - -

Ti255-A 0,175 0,19 21 1 0,179 0,0742 84 5

Ti255-B 1,38 1,40 21 1 1,38 0,103 83 5

Ga2O3-A 12,0 13,4 21 1 13,0 1,89 81 5

Ga2O3-B 126 127 21 1 126 9,05 81 5

Table 5.4.: Estimated computation time for one eigensolver step, for a degree kc = 4 and
kc = 8 in the Chebyshev method and the corresponding parameters in the slicing
method (τ = 0, 5).

kc = 16 kc = 32

Physical systems TChebFi (s) TSlicing (s) ks ns TChebFi (s) TSlicing (s) ks ns

UO2 0,00185 0,0164 173 3 0,00337 0,0654 691 14

Au107 0,0101 0,0532 173 3 0,0150 0,212 691 14

Ti255-A 0,186 0,289 333 21 0,200 1,16 1332 87

Ti255-B 1,39 0,367 331 21 1,41 1,46 1323 86

Ga2O3-A 13,3 7,08 321 20 13,6 28,3 1282 80

Ga2O3-B 127 32,0 322 20 128 128 1286 81

Table 5.5.: Estimated computation time for one eigensolver step, for a degree kc = 16 and
kc = 32 in the Chebyshev method and the corresponding parameters in the
slicing method (τ = 0, 5).

All of this time estimations have been made considering a perfect (and infinite) paral-

lelization, with every slice computed in parallel and each application of the filters to the

vectors done in parallel on all the vectors, in each slice. If the parallelization is not per-

fect, the time spent on filtering is multiplied, penalising the Spectrum Slicing method more

than the Chebyshev method. Table 5.6 shows the details of the computation time on both

methods. We see that for example in the Ga2O3-B case, if each processor has more than

70

5. Comparison of time efficiency in the Slicing method and Chebyshev filtering method

15 eigenvectors to filter (thus filtering them sequentially), Spectrum Slicing is no longer

profitable. However the number of process needed to make the computations with full

parallelization is achievable with GPUs.

Chebyshev filtering Slicing methode

Physical systems Ttot (s) Tfiltering (s) TRR (s) Ttot (s) Tfiltering (s) TRR (s)

UO2 0,179 0,000757 0,000336 - - -

Au107 1,38 0,00245 0,00524 - - -

Ti255-A 0,179 0,00694 0,172 0,0742 0,0729 0,00137

Ti255-B 1,38 0,00887 1,374 0,103 0,0920 0,011

Ga2O3-A 13,0 0,176 12,9 1,89 1,79 0,1031

Ga2O3-B 126 0,795 125 9,05 8,05 1,00

Table 5.6.: Estimated computation time for a diagonalization step, for a degree kc = 8 in
the Chebyshev method and the corresponding parameters in the slicing method
(τ = 0, 5) with details of the time spent on filtering and Rayleigh-Ritz.

In this section we have shown the Spectrum Slicing method can be more time effective

than Chebyshev filtering in some specific cases, namely for very large systems or smaller

systems with a large proportion of sought eigenpairs. Spectrum Slicing is well suited, for

instance, for high-temperature calculations.

However, all these estimates have been made with a number of simplifications, the most

important of which is likely that of homogeneously distributed eigenvalues. Also, in actual

computation, we would compute more eigenpairs than needed in Chebyshev filtering and

in each slice when using the Spectrum Slicing method, to improve convergence. Thus the

next step would be to compare these estimates with reality by implementing the Spectrum

Slicing method in Abinit. This will allow us to test the relevance of our approximations.

In addition, we could then also observe the effects of communications between processors,

which have not been considered at all here.

71

6. Conclusion

This Master’s thesis reviewed the Spectrum Slicing method and its application for DFT

calculations in plane waves. The study of this specific eigensolver was motivated by the

observation of the calculation time allocated to the Rayleigh-Ritz step in DFT calculations,

in particular the evolution of this time during the transition from purely CPU calculators

to CPU+GPU calculators. We have found that, while the other computational steps are

reduced by the addition of GPUs in the two iterative solvers implemented in Abinit, namely

LOBPCG and ChebFi, this is not the case for the Rayleigh-Ritz step. So, if the computation

time of this step was not to be taken into account until now, this is no longer the case. We

need an iterative solver which reduces and/or parallelizes the calculation time related to

the Rayleigh-Ritz. This is the whole point of the Spectrum Slicing method.

In this study, we were particularly interested in applying this method to dense matrices.

This adds complexity because it becomes very difficult to invert the matrices and even to

store them. Moreover, using this solver within the DFT framework adds certain stability

and optimization challenges, as the matrix to be diagonalized is no longer constant.

The first step in this work was a bibliographical study of iterative eigensolvers, in par-

ticular ”Subspace iteration” type of methods, of which Spectrum Slicing belongs. This

allowed me to take the subject in hand. A large part of this work is therefore a study and

description of the variety of existing strategies for Slicing methods. The first sections of

this work report on this bibliographical study.

A second important part of the work was the implementation of a prototype in Julia

to test and experiment with the method. This highlighted a number of difficulties, in

particular the importance of choosing the right slices and correctly merging the results

obtained on each processor, especially in DFT calculations. We were also able to verify

that plane-wave DFT calculations converge with the Spectrum Slicing eigenvalue solver.

Finally, the last but not least aim of this work was to assess the usefulness and applica-

bility of this method. This was done in the last section. Indeed, while Spectrum Slicing

reduces the computational load of Rayleigh-Ritz, the other steps are extended. With our

naive modeling, we were able to estimate that Spectrum Slicing will be more efficient than

Chebyshev filtering (considered here as a reference) in certain cases. For Spectrum Slicing

72

6. Conclusion

to be of interest, the problem must be of large size, so that the Rayleigh-Ritz computation

time has a significant weight in the Chebyshev method, and the proportion of eigenstates

sought must be large enough not to penalize the filtering too much. This corresponds to

specific applications, like high temperatures calculation for instance.

The implementation of this iterative eigensolver in Abinit was not part of this work. It

should be the next step as it will allow us to test Spectrum Slicing on larger systems and also

to compare our complexity model with reality. We have made a number of simplifications to

estimate computation times with Chebyshev Filtering and Spectrum Slicing. In particular,

we have assumed an homogeneous distribution of eigenvalues, which is never the case for

real materials and the distribution has a large influence on the choice of slices and therefore

on the convergence rate and on filtering complexity. Regarding the time complexity of the

paralellization, we have also not taken into account the communications between processors.

These increase computation time.

In most of this work, we were interested in solving standard eigenproblems. However, in

PAW formalism for instance, we need to solve generalized eigenvalue problems. These can

always be rewritten as standard problems by inverting the overlap matrix, but some filters

(e.g. rational filters) can be directly adapted to generalized eigenvalue problems. The effect

of adding an overlap matrix needs to be studied since the PAW formalism is widely used

in Abinit.

73

A. Chebyshev polynomials

In this appendix, we will study Chebyshev polynomials, that are use full to build the

eigensolvers used in this work.

A.1. Chebyshev polynomials of the first and second kind

Definition A.1.1. Chebyshev polynomials of the first kind are defined by the following

recurrence relation

T0(X) = 1

T1(X) = X

∀n ⩾ 1, Tn+1(X) = 2XTn(X)− Tn−1(X).

(A.1)

Lemma A.1.1. For θ in R, Chebyshev polynomials of the first kind are such that, for

n ⩾ 0,

cos(nθ) = Tn(cos θ) (A.2)

and

cosh(nθ) = Tn(cosh θ). (A.3)

Proof. This is proven by induction. Let θ ∈ R, we have cos 0 = 1 = T0(cos θ), cos θ =

T1(cos θ), cosh 0 = 1 = T0(cosh θ) and cosh θ = T1(cosh θ). Then we assume that cosnθ =

Tn(cos θ) and cos(n− 2)θ = Tn−2(cos θ), then, then using the usual trigonometry formulae,

cos(n+ 1)θ = cosnθ cos θ − sinnθ sin θ

= cosnθ cos θ − [cos((n− 1)θ) sin θ + sin((n− 1)θ] cos θ) sin θ

= cosnθ − cos((n− 1)θ)(1− cos2 θ) + sin((n− 1)θ) sin θ cos θ

= cosnθ cos θ + cos θ[sin((n− 1)θ) sin θ − cos((n− 1)θ) cos θ)]− cos((n− 1)θ)

= 2 cosnθ cos θ − cos((n− 1)θ)

= Tn(cos θ) cos θ − Tn−1(cos θ)

= Tn+1(cos θ)

(A.4)

74

A. Chebyshev polynomials

and similarly, we assume that coshnθ = Tn(cosh θ) and cosh(n− 2)θ = Tn−2(cosh θ), then

using the usual hyperbolic trigonometry formulae,

cosh(n+ 1)θ = coshnθ cosh θ + sinhnθ sinh θ

= coshnθ cosh θ + [sinh((n− 1)θ) cosh θ + sinh θ cosh((n− 1)θ)] sinh θ

= coshnθ + cosh θ[sinh((n− 1θ) sinh θ + cosh θ cosh((n− 1)θ)]− cosh((n− 1)θ)

= 2 cosh(nθ) cosh(θ)− cosh((n− 1)θ)

= Tn+1(cosh θ)

(A.5)

which concludes the proof.

Definition A.1.2. Chebyshev polynomials of the second kind are defined by the following

recurrence relation

U0(X) = 1

U1(X) = 2X

∀n ⩾ 1, Un+1(X) = 2XUn(X)− Un−1(X).

(A.6)

Lemma A.1.2. For θ in]0, 2π[, Chebyshev polynomials of the second kind are such that,

for n ⩾ 0,

Un(cos θ) =
sin(n+ 1)θ

sin θ
. (A.7)

Proof. This is proven by induction. Let θ in R, we have

U0(cos θ) = 1 =
sin θ

sin θ
(A.8)

and

U1(cos θ) = 2 cos θ = 2
cos θ sin θ

sin θ
=

sin 2θ

sin θ
. (A.9)

75

A. Chebyshev polynomials

Then for n in N we have

sin(n+ 1)θ = cosnθ sin θ + cos θ sinnθ

= sin θ cos θ cos(n− 1)θ + sin θ sin θ sin(n− 1)θ + cos θ sinnθ

= sin θ cos θ cos(n− 1)θ + (1− cos2 θ) sin(n− 1)θ + cos θ sinnθ

= cos θ (sin θ cos(n− 1)θ + cos θ sin(n− 1)θ + sinnθ)− sin(n− 1)θ

= 2 cos θ sinnθ − sin(n− 1)θ

= sin θ (2 cos θUn(cos θ)− Un−1(cos θ))

= sin θUn+1(cos θ).

(A.10)

Hence the induction is proven.

Lemma A.1.3. For n ⩾ 1 and t ∈ R, T ′
n(t) = nUn−1(t).

Proof. Let θ ∈ R and n ⩾ 0, Tn(cos θ) = cos(nθ) so

d

dθ
cosnθ = −n sinnθ = −T ′

n(cos θ) sin θ (A.11)

thus,

T ′
n(cos θ) =

n sinnθ

sin θ
= Un−1(cos θ). (A.12)

The equality is proved on [−1, 1] and by d’Alembert–Gauss theorem, the equality is proved

on R.

Lemma A.1.4. For n ⩾ 0,

Un(1) = n+ 1 (A.13)

Un(−1) = (−1)n(n+ 1) (A.14)

Proof. We have U0(1) = 1, U1(−1) = 2 and for n ⩾ 0

Un+2(1) = 2Un+1(1)− Un(1) = 2(n+ 2)− (n+ 1) = n+ 3.

Then in −1 we have U0(−1) = 1, U1(−1) = −2 and for n ⩾ 0

Un+2(1) = 2Un+1(1)− Un(1) = 2(−1)n+1(n+ 2)− (−1)n(n+ 1) = (−1)n+2(n+ 3).

76

A. Chebyshev polynomials

A.2. Chebyshev series expansion

To study Chebyshev series expansion, we mostly used the book [Riv20].

A.2.1. Orthogonality of Chebyshev Polynomials

The weight function associated with Chebyshev polynomials of the first kind is

w :
[−1, 1] → R+

t �→ 1√
1−t2

. (A.15)

Using this weight function, we define the following scalar product.

Definition A.2.1 (Chebyshev scalar product). For f, g real functions defined on [−1, 1],

⟨f, g⟩w =

� 1

−1
f(t)g(t)w(t)dt (A.16)

Theorem A.2.1. Chebyshev polynomial of the first kind form an orthogonal system with

respect to the Chebyshev scalar product ⟨·, ·, ⟩w.

Proof. Let m,n ∈ N,

⟨Tn, Tm⟩ =
� 1

−1
Tn(x)Tm(x)

1√
1− x2

dx =

� π

0
cos(nθ) cos(mθ)dθ (A.17)

with the substitution x = cos θ. Then using cos a cos b = 1
2(cos(a+ b)+cos(a− b)), we have

⟨Tn, Tm⟩ = 1

2

� π

0
cos((n+m)θ) + cos((n−m)θ)dθ (A.18)

If n ̸= m this gives

⟨Tn, Tm⟩ =

sin((n+m)θ)

n+m

�π
0

+

sin((n−m)θ)

n−m

�π
0

= 0 (A.19)

otherwise if n = m ⩾ 1,

⟨Tn, Tn⟩ = 1

2

� π

0
1dθ =

π

2
(A.20)

and

⟨T0, T0⟩ = 1

2

� π

0
2dθ = π (A.21)

77

A. Chebyshev polynomials

Furthermore, since Chebyshev polynomials form a basis of the vector space R[X], we

have from the Weierstrass approximation theorem, that Chebyshev polynomials form a

complete orthogonal system on [−1, 1].

A.2.2. Formal Chebyshev series expansion

Since Chebyshev polynomials form a complete orthogonal system on [−1, 1], we can define

Chebyshev polynomial series expansion as generalized Fourier series. Let f a function

defined on [−1, 1], its Chebyshev series expansion is defined as the formal sum

f̃ =
∞�
i=0

ci(f)Ti (A.22)

where

ci(f) =
⟨f, Ti⟩w
⟨Ti, Ti⟩w . (A.23)

A.2.3. Relation between Chebyshev series expansion and Fourier series

expansion

Let f : [−1, 1] → R a function, We define

g :
R → R

θ �→ f(cos θ).

(A.24)

Thus, g is a function with period 2π and its real Fourier series expansion is

1

2
a0 +

∞�
i=1

ai cos iθ + bi sin iθ (A.25)

with, for i ⩾ 0,

ai =
1

π

� π

−π
g(θ) cos iθdθ (A.26)

and

bi =
1

π

� 1

−1
g(θ) sin iθdθ = 0 (A.27)

since g is even. So the Fourier series reduces to the cosine expansion

1

2
a0 +

∞�
i=1

ai cos iθ. (A.28)

78

A. Chebyshev polynomials

Then, using the substitution θ = arccos t and the fact that g is even, we have

ai = 2× 1

π

� 1

−1
g(arccos t) cos(i arccos t)

dt√
1− t2

=
2

π

� 1

−1
f(t)Ti(t)

dt√
1− t2

. (A.29)

This means that the Chebyshev series expansion of f is the same as the Fourier cosine series

expansion of g. Thus, we will be able to apply known convergence properties of Fourier

series to Chebyshev series.

A.2.4. Convergence of Chebyshev series expansion

Theorem A.2.2 (Jordan-Dirichlet). If f is a periodic function of bounded variation on

each period, its Fourier series converges at each point t to

lim
ε→0

f(t+ ε) + f(t− ε)

2
. (A.30)

In particular, this means that we have convergence for all piecewise C1 functions, as for

instance χ[a,b] for two real a < b.

A.2.5. Damping

Expansion of discontinuous functions in Fourier series lead to oscillations near the disconti-

nuity. This is known as the Gibbs phenomenon. These unwanted oscillations are present in

Chebyshev series expansions and can be attenuated using well chosen damping coefficients,

that is by replacing
k�

i=0

ciTi (A.31)

with
k�

i=0

dki ciTi (A.32)

for some smoothing coefficients dki . Here, we will present two choices of damping coefficient

that are Jackson damping and σ-damping.

Jackson damping Jackson damping is presented in [Jac30] and [Riv81].

σ-damping σ-damping is presented in [Lan88] and defined as follows :

dk0 = σk
0 = 1 (A.33)

79

A. Chebyshev polynomials

and for j = 1, . . . , k,

dki = σk
i =

sin iθk
iθk

= sinc iθk with θk =
π

k + 1
. (A.34)

This will attenuate the higher frequency coefficient, thus reducing the oscillations. More

precisely, the sine cardinal function sinc is the Fourier transform of a characteristic func-

tion which means that that the sum
�k

i=0 ciσ
k
i cos iθ is the truncated Fourier series of g

convoluted with the function π
2θk

χ[−θk,θk], of integral π, which can be seen as smoothing of

g.

80

B. Code

This appendix contains some of the code functions written in Julia language used to test

and study the Spectrum Slicing method. The code is not given in its entirety. However, it

is a good illustration of the points covered in this work. For the DFT, we used the DFTK

package [HLC21], which allows you to set a custom eigensolver as parameter.

Slices

1 function maxDOSClusteringSlices(lambda , ns, lmin , lmax; n=1000)

2 # Returns at most ns slices , according to lambda

3 nv = length(lambda)

4 phi = DOS(lambda)

5 blast = min(maximum(lambda), lmax) # It doesn ’t matter if the max is

underestimated

6 T = range(lmin , blast; length=n)

7 phi_T = [phi(t) for t in T]

8 mins = findLocalMinima(phi_T)

9 mins = [1; mins] # adding lmin index

10 push!(mins , n) # adding blast index

11 l = length(mins) - 1

12 ms = [integral(mins[i], mins[i+1], T, phi_T)*nv for i in 1:l]

13 S = []

14 for i in 1:l

15 push!(S, (T[mins[i]], T[mins[i+1]], ms[i]))

16 end

17 while l > ns

18 ms_merged = [ms[i] + ms[i+1] for i in 1:l-1]

19 i_min = argmin(ms_merged)

20 s_new = (S[i_min][1], S[i_min +1][2] , ms_merged[i_min])

21 S[i_min] = s_new

22 ms[i_min] = ms_merged[i_min]

23 deleteat !(S, i_min +1)

24 deleteat !(ms, i_min +1)

25 l -= 1

26 end

27

28 return S

81

B. Code

29 end

30

31 function slicesUpdate(H, X0, ns, lmin , lmax , X0s_old;

32 return_info=false ,

33 slicesDist=maxDOSClusteringSlices ,

34 n_extra=1,

35 random=0,

36 args ...

37)

38 # Slices chosen depending on the previous slices with slicesDist

39

40 lambda = RayleighQuotients(H, X0) # Liste of Rayleigh quotients

41

42 S = slicesDist(lambda , ns , lmin , lmax; args ...)

43 blast = last(S)[2]

44 ns = length(S)

45

46 # New X0s allocation

47 X0s_old_concat = X0s_old [1]

48 for i in 2:ns

49 X0s_old_concat = [X0s_old_concat X0s_old[i]]

50 end

51 lambdas_old_concat = RayleighQuotients(H, X0s_old_concat)

52 I_sup = findall(lambda -> lambda .> blast , lambdas_old_concat) #

eigenvalues indexes (lambdas_old_concat) higher than the new slices

53 X = X0

54 # We add to X and lambda the eigenvectors/values calculated in previous

iterations greater than blast

55 # These vectors correspond to lambda_m+1, lambda_m +2 ... we don ’t need

to calculate them , but they are useful for convergence.

56 if !isnothing(I_sup)

57 ress_old_concat = Residuals(H, lambdas_old_concat , X0s_old_concat)

58 res = Residuals(H, lambda , X0)

59 lambda_sup , X_sup , = removeDuplicate(blast , lambda , X0 , res ,

lambdas_old_concat[I_sup], X0s_old_concat [:, I_sup], ress_old_concat[

I_sup], []; right=true)

60 X = [X0 X_sup]

61 lambda = vcat(lambda , lambda_sup)

62 end

63

64 p = sortperm(lambda)

65 X = X[:, p]

66 lambda = lambda[p]

67

68 n = size(X, 2)

82

B. Code

69 N = size(X, 1)

70 # Construction of new subspaces X0s

71 X0s_new = []

72 for i in 1:ns

73 (a, b, m) = S[i]

74 i1 = findfirst(lambda -> lambda .>= a, lambda)

75 i2 = findlast(lambda -> lambda .<= b, lambda)

76 X0i = X[:, i1:i2]

77

78 # We add (n_extra) vectors to make the slice "overflow ".

79

80 # New random vectors

81 Xnew_rand = rand(ComplexF64 , (N, n_extra))

82 # Already calculated vectors that are the closest to the slice

83 d = [min(abs(a-lambda[i]), abs(lambda[i]-b)) for i in 1:n]

84 dist_slice = [(i1 <= i <= i2 ? Inf : d[i]) for i in 1:n]

85 p = partialsortperm(dist_slice , 1: n_extra)

86 Xnew_old = X[:, p]

87 # Mixing the two

88 Xnew = random * Xnew_rand + (1-random) * Xnew_old

89

90 X0i = [X0i Xnew]

91

92 push!(X0s_new , X0i)

93 end

94

95 if return_info

96 return S, X0s_new , "Slices update"

97 else

98 return S, X0s_new

99 end

100 end

Filters

1 function scalarChebyDirac(t, k, gamma; damping=sigma , arg ...)

2 # entre -1 et 1

3 T = Chebyshev(t, k)

4 Tg = Chebyshev(gamma , k)

5 rho = 1/2* damping(0,k)*T[1]

6 rhog = 1/2* damping(0,k)*Tg[1]

7 for j in 2:k+1

8 mu = cos((j-1)*acos(gamma))

9 rho += mu*damping(j-1,k)*T[j]

10 rhog += mu*damping(j-1,k)*Tg[j]

83

B. Code

11 end

12 return rho/rhog

13 end

14

15 function degChebyDirac(a_, b_; tau=0.5, maxDeg =200, damping=sigma)

16 gamma = (a_+b_)/2

17 Ta = Chebyshev(a_, maxDeg)

18 Tb = Chebyshev(b_, maxDeg)

19 Tg = Chebyshev(gamma , maxDeg)

20 rhoa = 1/2*Ta[1]

21 rhob = 1/2*Tb[1]

22 rhog = 1/2*Tg[1]

23 k=1

24 while (abs(rhoa/rhog) > tau && abs(rhob/rhog) > tau && k < maxDeg)

25 k += 1

26 mu = cos((k-1)*acos(gamma))

27 rhoa += mu*Ta[k]

28 rhob += mu*Tb[k]

29 rhog += mu*Tg[k]

30 end

31 k = max(k, 5) # degree at least 5

32 f = x -> scalarChebyDirac(b_ , k, x; damping)-scalarChebyDirac(a_ , k, x;

damping)

33 delta = 0 #(b_ -a_)*1e-5 # to avoid calculating f to close to -1

34 if f(max(a_, delta -1))*f(min(b_, 1-delta)) < 0

35 gamma = find_zero(f, (max(a_ , delta -1), min(b_ , 1-delta)))

36 else

37 @warn "Filter not centered : some eigenvalues could be missed"

38 end

39 return k, gamma

40 end

41

42 function ChebyDirac(H, a, b, lmin , lmax; damping=one , tau=0.8, maxDeg =200,

deg=0, gam=0, count_matvec=false)

43 c = (lmin+lmax)/2

44 r = (lmax -lmin)/2

45 a_ = (a-c)/r

46 b_ = (b-c)/r

47 if deg > 0

48 if gam == 0

49 gam = (a_+b_)/2

50 end

51 else

52 deg , gam = degChebyDirac(a_, b_; tau=tau , maxDeg=maxDeg , damping)

53 end

84

B. Code

54

55 function filterH(V; count_matvec=false)

56 THV = [V, 1/r*(H*V-c*V)]

57 FHV = 1/2* damping(0, deg)*THV [1]

58 FHV += gam*damping(1, deg)*THV [2]

59 Tg = Chebyshev(gam , deg)

60 fg = 1/2*g(0,deg)*Tg[1] + gam*damping(1, deg)*Tg[2]

61 for i = 3:deg+1

62 mu = cos((i-1)*acos(gam))

63 THV = push!(THV , (2/r*(H*THV[i-1]-c*THV[i-1])-THV[i-2]))

64 FHV += mu*damping(i-1, deg)*THV[i]

65 fg += mu*damping(i-1, deg)*Tg[i]

66 end

67 if count_matvec

68 return FHV./fg, deg

69 else

70 return FHV./fg

71 end

72 end

73

74 return filterH

75 end

Spectrum slicing eigensolver

1

2 function subspaceProj(filterH , Q; count_matvec=false)

3 m = size(Q, 2)

4 if count_matvec

5 fQ , n_matvec = filterH(Q; count_matvec)

6 V = qr(fQ).Q[:, 1:m] # Orthonormalisation

7 return V, n_matvec

8 else

9 fQ = filterH(Q; count_matvec)

10 V = qr(fQ).Q[:, 1:m] # Orthonormalisation

11 return V

12 end

13 end

14

15 function eigenSolverSlice(H, X0, a, b, lmin , lmax;

16 filter=ChebyDirac ,

17 argf=Dict(), # Dictionnary containing the keyword arguments of filter

18 maxiter =100,

19 miniter=1,

20 tol=1e-10,

85

B. Code

21 to=DFTK.timer

22)

23 N, nv = size(X0)

24 @debug " Entering eigenSolverSlice"

25 # Filtrage

26 filterH = filter(H, a, b, lmin , lmax; argf ...)

27

28 # First filtering

29 n_matvec = 0

30 @timeit to "Filtering" X, n = subspaceProj(filterH , X0; count_matvec=true)

31 n_matvec += n

32 deg = n

33 @timeit to "Rayleigh -Ritz" lambda , X, res , n = RayleighRitz(X, H;

count_matvec=true)

34 n_matvec += n

35 res_hist = zeros(maxiter+1, nv)

36

37 max_res = maximum(res)

38 n_ite = 1

39 @debug " First iteration done"

40 while (max_res > tol && n_ite < maxiter) || n_ite < miniter

41 # Projection

42 @timeit to "Filtering" X, n = subspaceProj(filterH , X; count_matvec=true

)

43 n_matvec += n

44 # Rayleigh -Ritz

45 @timeit to "Rayleigh -Ritz" lambda , X, res , n = RayleighRitz(X, H;

count_matvec=true)

46 n_matvec += n

47 res_hist[n_ite , :] = res

48 n_ite += 1

49

50 max_res = maximum(res)

51 end

52

53 (; lambda , X, res , res_hist , n_matvec , iterations=n_ite , converged =(

max_res <tol), deg)

54 end

55

56 function slicingEigenSolver(H, X0;

57 ns=1,

58 filter=ChebyDirac , # Filtre

59 argf=Dict(), # Keyword arguments pour le filtre

60 n_extra=0,

61 slices=maxDOSClusteringSlices ,

86

B. Code

62 random=0,

63 n_iterations=nothing ,

64 n_update =16,

65 p=0.1,

66 save_logs=true ,

67 exact_eigenvalues=false ,

68 to=DFTK.timer ,

69 solving_data=nothing , # Must be specified : used to

70 #know the current kpoint and SCF step

71 # store information about the previous

iteration that will be needed

72 # store the solving history

73 maxiter =100,

74 miniter=1,

75 tol=1e-10,

76 prec=I,

77 n_conv_check=nothing

78)

79

80 N, nv = size(X0)

81 if !isnothing(n_iterations) # constant number of iterations per SCF step

82 maxiter = miniter = n_iterations

83 end

84

85 n_matvec = 0 # warning : matvec count not done correctly in all the code

86

87 lmin , lmax , n = spectrumBounds(H; count_matvec=true)

88 n_matvec += n

89 i_kpt = solving_data [: n_slicing][] % solving_data [:nkpt] + 1 # Index of

the current kpoint

90 i_ite = div(solving_data [: n_slicing][], solving_data [:nkpt]) +1 # Index of

the SCF iteration on this kpoint

91

92 # Slices

93 info_slices = ""

94 if i_ite == 1 # Slices initialization

95 @timeit to "slicesInit" S, X0s , info_slices , n = slicesInit(H, X0, ns,

lmin , lmax; slicesDist=slices , return_info=true , n_extra , count_matvec=

true)

96 n_matvec += n

97 elseif (solving_data [: update_slices])[i_kpt] > n_update # Slices update

98 X0s_old = last((solving_data [: Xs_history])[i_kpt])

99 @timeit to "slicesUpdate" S, X0s , info_slices = slicesUpdate(H, X0, ns,

lmin , lmax , X0s_old; random , slicesDist=slices , n_extra , return_info=

true)

87

B. Code

100 (solving_data [: update_slices])[i_kpt] = 0

101 else # Slices fixes

102 S_old = last((solving_data [: S_history])[i_kpt])

103 X0s_old = last((solving_data [: Xs_history])[i_kpt])

104 missing_vectors = (solving_data [: missing_vect])[i_kpt]

105 @timeit to "slicesConst" S, X0s , info_slices = slicesConst(S_old ,

X0s_old , missing_vectors; p, return_info=true)

106 (solving_data [: update_slices])[i_kpt] *= 2

107 lmin = S[1][1]

108 lmax = max(lmax , last(S)[2])

109 end

110

111 ns = length(S) # We might have less slice than wanted (if there is less

than ns clusters of eigenvalues)

112 converged = true

113 iterations = 0

114 lambdas = []

115 Xs = []

116 ress = []

117 residual_history = []

118 missing_vect = [true for j in 1:ns]

119 degree = []

120 info_remove = ["" for i in 1:ns]

121

122 result_slices = []

123

124 # Solving the eigenvalue problem on each slice

125 n_matvec_max = 0

126 for i in 1:ns

127 (a, b, m) = S[i]

128 X0i = X0s[i]

129

130 @timeit to "eigenSolverSlice" eSlice = eigenSolverSlice(H, X0i , a, b,

lmin , lmax;

131 filter ,

132 argf ,

133 maxiter ,

134 miniter ,

135 tol ,

136 to

137)

138

139 lambda , X, res , res_hist = eSlice.lambda , eSlice.X, eSlice.res , eSlice.

res_hist

140

88

B. Code

141 push!(lambdas , copy(lambda))

142 push!(Xs , copy(X))

143 push!(ress , copy(res))

144 push!(degree , eSlice.deg)

145

146 # Removing vectors that are outside the slice

147 if i < ns

148 @timeit to "removeOutside" lambda , X, res , list , info , removed =

removeOutside2(a, b, lambda , X, res , [res_hist]; return_info=true) #

removing eigenpairs that are for sure outside the slice

149 res_hist = list[]

150 info_remove[i] *= " "*info

151 else

152 # last slice : we don ’t remove vectors that are to big because

153 # they will be removed at the end with remove_extra

154 @timeit to "removeOutsideInf" lambda , X, res , list , info , outside =

removeOutsideInf(a, b, lambda , X, res , [res_hist]; return_info=true) #

removing eigenpairs that are for sure below the slice

155 res_hist = list[]

156 info_remove[i] *= " "*info

157 removed = outside # Outside vectors exist (maybe not removed)

158 end

159

160 missing_vect[i] &= !(removed) # The slice is full if we have removed

some vectors

161

162 push!(result_slices , (lambda , X, res , res_hist))

163

164 if n_matvec_max < eSlice.n_matvec

165 n_matvec_max = eSlice.n_matvec

166 end

167 converged &= eSlice.converged

168 iterations = max(iterations , eSlice.iterations)

169 end

170 n_matvec += n_matvec_max

171

172 # Initializing merged results

173 @debug " Merging results"

174 lambda = []

175 X = Array{Float64 }(undef , (N, 0))

176 residual_norms = []

177 residual_history = Array{Float64 }(undef , (maxiter+1, 0))

178 S_ind = []

179

180 # Comparing neighboring slices to remove duplicates

89

B. Code

181 for i in 1:ns

182 (a, b, m) = S[i]

183

184 # Remove duplicate between slices

185 lambda_ , X_ , res_ , res_hist_ = result_slices[i]

186 if i > 1 # removing duplicates with the left slice

187 lambdal , Xl , resl , res_histl = result_slices[i-1]

188 @timeit to "removeDuplicate" lambda_ , X_, res_ , list , info , removed =

removeDuplicate2(a, lambdal , Xl , resl , lambda_ , X_ , res_ , [res_hist_];

return_info=true , right=true)

189 res_hist_ = list[]

190 info_remove[i] *= "\n Duplicates with slice $(i-1) : "*info

191 missing_vect[i] &= !(removed)

192 end

193 if i < ns # removing duplicates with the right slice

194 lambdar , Xr , resr , res_histr = result_slices[i+1]

195 @timeit to "removeDuplicate" lambda_ , X_, res_ , list , info , removed =

removeDuplicate2(b, lambda_ , X_ , res_ , lambdar , Xr , resr , [res_hist_];

return_info=true)

196 res_hist_ = list[]

197 info_remove[i] *= "\n Duplicates with slice $(i+1) : "*info

198 missing_vect[i] &= !(removed)

199 end

200

201 result_slices[i] = lambda_ , X_ , res_ , res_hist_

202 lambda = vcat(lambda , lambda_)

203 X = [X X_]

204 residual_norms = vcat(residual_norms , res_)

205 residual_history = [residual_history res_hist_]

206 S_ind = vcat(S_ind , [i for k in 1: length(lambda_)])

207 end

208

209 # Removing extra eigenpairs to keep only nv of them

210 if length(lambda)<nv # To many vectors removed

211 missing_vect[ns] = true

212 end

213 @timeit to "removeExtra" lambda , X, list , info_extra , removed =

removeExtra(H, lambda , X, nv, [residual_norms , residual_history , S_ind];

return_info=true)

214 residual_norms , residual_history , S_ind = list

215

216 # Sorting the eigenvalues

217 @timeit to "Sorting eigenvalues" p = sortperm(real(lambda))

218 lambda = real(lambda[p])

219 X = X[:, p]

90

B. Code

220 ortho = norm(X’*X - I) # Measure of the orthonormality of X

221 residual_norms = residual_norms[p]

222 residual_history = residual_history[p]

223 S_ind = S_ind[p]

224

225 converged |= !isnothing(n_iterations)

226

227 # Writing logs

228 if save_logs

229 # removed for this document

230 end

231

232 # Updating solving_data

233 solving_data [: n_slicing][] += 1

234 push !((solving_data [: lambda_history])[i_kpt], lambda)

235 push !((solving_data [: X_history])[i_kpt], X)

236 push !((solving_data [: residual_history])[i_kpt], residual_norms)

237 push !((solving_data [: H_history])[i_kpt], H)

238 push !((solving_data [: S_history])[i_kpt], S)

239 push !((solving_data [: S_ind_history])[i_kpt], S_ind)

240 push !((solving_data [: lambdas_history])[i_kpt], lambdas)

241 push !((solving_data [: Xs_history])[i_kpt], Xs)

242 push !((solving_data [: residuals_history])[i_kpt], ress)

243 push !((solving_data [: degree_history])[i_kpt], degree)

244 (solving_data [: missing_vect])[i_kpt] = missing_vect

245 (solving_data [: update_slices])[i_kpt] += sum(missing_vect)

246 if (solving_data [: update_slices])[i_kpt] > 0 # Les slices not converged

yet

247 (solving_data [: n_conv_slices])[i_kpt] = i_ite

248 end

249 (; lambda , X, residual_norms , n_matvec , iterations , converged ,

residual_history)

250 end

251

252 function call_slicingEigenSolveur (;

253 ns=1,

254 filter=ChebyDirac , # Filter

255 argf=Dict(), # Keyword arguments for the filter

256 n_extra=0,

257 slices=maxDOSClusteringSlices ,

258 random=0,

259 n_iterations =1,

260 n_update =16,

261 p=0.1,

262 save_logs=true ,

91

B. Code

263 exact_eigenvalues=false ,

264 to=DFTK.timer ,

265 solving_data=init_solving_data_slicing (1) # must be specified

266)

267 function f(H, X0; kwargs ...) # kwargs ... for DFTK ’s arguments

268 @timeit to "slicingEigenSolver" return slicingEigenSolver(H, X0;

269 ns ,

270 filter ,

271 argf ,

272 n_extra ,

273 slices ,

274 random ,

275 n_iterations ,

276 save_logs ,

277 exact_eigenvalues ,

278 n_update ,

279 p,

280 to ,

281 solving_data ,

282 kwargs ...

283)

284 end

285 return f

286 end

This custom solver can then be used through the Julia package DFTK as done in the

following example.

1 slicing_param_default = Dict(

2 :ns => 3,

3 :filter=>ChebyDirac ,

4 :argf=>Dict(:tau=>0.5, :damping=>sigma),

5 :n_extra => 10,

6 :random => 0.,

7 :n_iterations => 1,

8 :n_update => 16,

9 :p => 0.1,

10 :slices => maxDOSClusteringSlices

11)

12

13 solving_data = init_solving_data_slicing(slicing_param_default [:ns], 1)

14

15 scfres_slicing = self_consistent_field(basis;

16 tol=1e-6,

17 maxiter =20,

18 eigensolver=call_slicingEigenSolveur (;

92

B. Code

19 solving_data ,

20 slicing_param ...

21)

22)

93

Bibliography

[BG73] ke Björck and Gene H Golub. Numerical methods for computing angles between

linear subspaces. Mathematics of computation, 27(123):579–594, 1973.

[Blo29] Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern.

Zeitschrift für physik, 52(7-8):555–600, 1929.

[Che82] Elliott Ward Cheney. Introduction to approximation theory. Chelsea Publishing

Company, 1982.

[Els85] Ludwig Elsner. An optimal bound for the spectral variation of two matrices.

Linear algebra and its applications, 71:77–80, 1985.

[GAA+20] Xavier Gonze, Bernard Amadon, Gabriel Antonius, Frédéric Arnardi, Lucas

Baguet, Jean-Michel Beuken, Jordan Bieder, François Bottin, Johann Bouchet,

Eric Bousquet, Nils Brouwer, Fabien Bruneval, Guillaume Brunin, Théo Cav-

ignac, Jean-Baptiste Charraud, Wei Chen, Michel Côté, Stefaan Cottenier,

Jules Denier, Grégory Geneste, Philippe Ghosez, Matteo Giantomassi, Yannick

Gillet, Olivier Gingras, Donald R. Hamann, Geoffroy Hautier, Xu He, Nicole

Helbig, Natalie Holzwarth, Yongchao Jia, François Jollet, William Lafargue-

Dit-Hauret, Kurt Lejaeghere, Miguel A. L. Marques, Alexandre Martin, Cyril

Martins, Henrique P. C. Miranda, Francesco Naccarato, Kristin Persson, Guido

Petretto, Valentin Planes, Yann Pouillon, Sergei Prokhorenko, Fabio Ricci,

Gian-Marco Rignanese, Aldo H. Romero, Michael Marcus Schmitt, Marc Tor-

rent, Michiel J. van Setten, Benoit Van Troeye, Matthieu J. Verstraete, Gilles

Zérah, and Josef W. Zwanziger. The abinit project: Impact, environment and

recent developments. Comput. Phys. Commun., 248:107042, 2020.

[GP18] Brendan Gavin and Eric Polizzi. Krylov eigenvalue strategy using the feast

algorithm with inexact system solves. Numerical Linear Algebra with Applica-

tions, 25(5):e2188, 2018.

[Gro23] The ABINIT Group. Abinit, 2023.

94

Bibliography

[GVL13] GH Golub and CF Van Loan. Matrix Computation, 3̂{nd} edition. Johns

Hopkins University Press, Baltimore, MD, 2013.

[GW69] Gene H Golub and John H Welsch. Calculation of gauss quadrature rules.

Mathematics of computation, 23(106):221–230, 1969.

[HK64] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,

136:B864–B871, Nov 1964.

[HLC21] Michael F. Herbst, Antoine Levitt, and Eric Cancès. Dftk: A julian approach

for simulating electrons in solids. Proc. JuliaCon Conf., 3:69, 2021.

[Jac30] Dunham Jackson. The theory of approximation, volume 11. American Mathe-

matical Soc., 1930.

[JS01] Zhongxiao Jia and GW Stewart. An analysis of the rayleigh-ritz method for ap-

proximating eigenspaces. Mathematics of computation, 70(234):637–647, 2001.

[KF96] Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab ini-

tio total-energy calculations using a plane-wave basis set. Physical review B,

54(16):11169, 1996.

[Kny01] Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally

optimal block preconditioned conjugate gradient method. SIAM journal on

scientific computing, 23(2):517–541, 2001.

[KR91] L Komzsik and T Rose. Substructuring in msc/nastran for large scale parallel

applications. Computing Systems in Engineering, 2(2-3):167–173, 1991.

[KS65] W. Kohn and L. J. Sham. Self-consistent equations including exchange and

correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.

[Lan88] Cornelius Lanczos. Applied analysis. Courier Corporation, 1988.

[LSY16] Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of

large matrices. SIAM review, 58(1):34–65, 2016.

[LT15] Antoine Levitt and Marc Torrent. Parallel eigensolvers in plane-wave density

functional theory. Computer Physics Communications, 187:98–105, 2015.

[LXES19] Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. The eigenvalues

slicing library (evsl): Algorithms, implementation, and software. SIAM Journal

on Scientific Computing, 41(4):C393–C415, 2019.

95

Bibliography

[LXV+15] Ruipeng Li, Yuanzhe Xi, Eugene Vecharynski, Chao Yang, and Yousef Saad.

A thick-restart lanczos algorithm with polynomial filtering for hermitian eigen-

value problems. SIAM J. Sci. Comput., 38, 2015.

[Pol09] Eric Polizzi. Density-matrix-based algorithm for solving eigenvalue problems.

Physical Review B, 79(11):115112, 2009.

[PTA+92] Mike C Payne, Michael P Teter, Douglas C Allan, TA Arias, and ad JD

Joannopoulos. Iterative minimization techniques for ab initio total-energy cal-

culations: molecular dynamics and conjugate gradients. Reviews of modern

physics, 64(4):1045, 1992.

[PTP14] Ping Tak Peter Tang and Eric Polizzi. Feast as a subspace iteration eigensolver

accelerated by approximate spectral projection. SIAM Journal on Matrix Anal-

ysis and Applications, 35(2):354–390, 2014.

[Riv81] Theodore J Rivlin. An introduction to the approximation of functions. Courier

Corporation, 1981.

[Riv20] Theodore J Rivlin. Chebyshev polynomials. Courier Dover Publications, 2020.

[Saa11] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition.

SIAM, 2011.

[Saa16] Yousef Saad. Analysis of subspace iteration for eigenvalue problems with evolv-

ing matrices. SIAM Journal on Matrix Analysis and Applications, 37(1):103–

122, 2016.

[SCS12] Grady Schofield, James R Chelikowsky, and Yousef Saad. A spectrum slic-

ing method for the kohn–sham problem. Computer Physics Communications,

183(3):497–505, 2012.

[Woo50] Max A Woodbury. Inverting modified matrices. Department of Statistics,

Princeton University, 1950.

[WYBY20] David B Williams-Young, Paul G Beckman, and Chao Yang. A shift se-

lection strategy for parallel shift-invert spectrum slicing in symmetric self-

consistent eigenvalue computation. ACM Transactions on Mathematical Soft-

ware (TOMS), 46(4):1–31, 2020.

[XLS18] Yuanzhe Xi, Ruipeng Li, and Yousef Saad. Fast computation of spectral den-

sities for generalized eigenvalue problems. SIAM Journal on Scientific Com-

puting, 40(4):A2749–A2773, 2018.

96

Bibliography

[XS16] Yuanzhe Xi and Yousef Saad. Computing partial spectra with least-squares

rational filters. SIAM Journal on Scientific Computing, 38(5):A3020–A3045,

2016.

[ZSTC06] Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Self-

consistent-field calculations using chebyshev-filtered subspace iteration. Jour-

nal of Computational Physics, 219(1):172–184, 2006.

97

	Introduction
	Overview
	Thesis structure

	Density functional theory
	The Schrödinger equation for a system of electrons
	Hohenberg and Kohn theorems
	The Kohn-Sham density functional theory
	Discretization of the problem
	Pseudopotential
	Solving the Kohn-Sham equations with self-consistent field iterations

	Iterative Eigensolvers
	The Rayleigh-Ritz method
	Convergence of the Rayleigh-Ritz method

	Minimization algorithms
	Conjugate gradient
	LOBPCG

	Subspace iteration algorithms
	Filters
	Convergence of subspace iteration algorithms
	Chebyshev-filtered subspace iteration

	Slicing methods
	Determining the slices
	Estimating the Density of states
	Different strategies for choosing slices based on an estimated DOS
	Slices evolution

	Filters
	Polynomial filters
	Rational filters

	Merging results between slices

	Comparison of time efficiency in the Slicing method and Chebyshev filtering method
	Study of Chebyshev filtering and Spectrum Slicing on a simplified model
	Chebyshev filtering
	Spectrum slicing

	Comparison of polynomial degrees needed in both methods
	Time complexity of the different steps involved in the subspace iteration method
	Application of the Hamiltonian to a vector
	Inversion of the overlap matrix
	Rayleigh-Ritz method

	Comparison of calculation times
	Computation time with respect to the number of atoms in the system
	Comparison on physical systems

	Conclusion
	Chebyshev polynomials
	Chebyshev polynomials of the first and second kind
	Chebyshev series expansion
	Orthogonality of Chebyshev Polynomials
	Formal Chebyshev series expansion
	Relation between Chebyshev series expansion and Fourier series expansion
	Convergence of Chebyshev series expansion
	Damping

	Code
	Bibliography

