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Kurzfassung

Virtuelle Realität stellt eine Computersimulation dar, bei der ein Tracking-System die
Haltung des Benutzers erfasst und sensorisches Feedback für einen oder mehrere Sinne
ersetzt, um den Benutzer in eine virtuelle Umgebung zu versetzen. Das System muss die
Aktionen und Bewegungen des Benutzers genau und schnell erfassen und ihre Darstel-
lungen an die Sinne weitergeben, um den Benutzer in diese Umgebung eintauchen zu
lassen. Mess- und Schätzungsfehler sind ein häufiges Problem für solche Systeme, kön-
nen aber durch den Einsatz von Filteralgorithmen abgeschwächt werden. Diese Arbeit
dokumentiert den Entwurf und die Implementierung eines Tracking Filter Framework
(TFF) und bewertet seine Fähigkeit Tracking-Fehler zu reduzieren und die Benutzerer-
fahrung zu verbessern. Das TFF wendet Filteralgorithmen auf Tracking-Daten an und
liefert das Ergebnis als Ausgabe. Das Lighthouse Tracking System (LHTS) mit Valve’s
Index wird als Tracking-Datenquelle verwendet, es unterstützt sechs Freiheitsgrade, um
die Haltung des Benutzers zu erfassen und nutzt optisches und inertiales Tracking. Die
experimentelle Bibliothek libsurvive gewährt Zugriff auf die Inertial-Tracking-Daten. Die
Double Exponential Smoothed Prediction (DESP), ein Doppelexponentialfilter, und der
Error-state Kalman Filter (ESKF), ein Kalman-Filter mit Fehlerstatus, der optische und
inertiale Daten fusionieren kann, werden vorgestellt. Die Benutzerakzeptanz des Systems
wird durch die Durchführung einer Benutzerstudie innerhalb einer virtuellen Umgebung
mit einem Within-Subject-Design bewertet. Die Ergebnisse zeigen, dass die von libsur-
vive zur Verfügung gestellten Tracking-Daten mit deaktivierten Optimierungen sich als
zu verrauscht und instabil für die vorgestellten Filter erwiesen haben. Die vorgestellten
Filter können die auftretenden Tracking-Fehler nicht in dem Maße kompensieren, wie es
für eine virtuelle Realitätsanwendung notwendig ist. Die DESP verursacht beim Versuch,
verrauschte Tracking-Daten zu filtern, eine erhebliche zeitliche Verzögerung, die für ei-
ne virtuelle Realitätsanwendung nicht akzeptabel ist. Der ESKF bietet eine signifikante
Verbesserung bei simulierten Tracking-Daten. Bei libsurvive-Trackingdaten ist er jedoch
aufgrund der verrauschten und instabilen Daten unzureichend, wie die Ergebnisse der
Benutzerstudie zeigen.
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Abstract

Virtual reality is a computer simulation wherein a system tracks the user’s pose and
replaces sensory feedback for one or more senses to place the user into a Virtual envi-
ronment (VE). In order to immerse users into this environment, the system needs to
be accurate and fast in capturing their actions and feed their representations back to
the senses. Measurement and pose estimation errors are a common problem for such
systems but can be mitigated through the use of filter algorithms. This work documents
the design and implementation of a Tracking Filter Framework (TFF), and evaluates
its ability to reduce tracking errors and enhance the user experience. The TFF applies
filter algorithms to tracking data and provides the result as an output. The Lighthouse
Tracking System (LHTS) with Valve’s Index is used as tracking data source, it supports
six Degrees Of Freedom (DOF) to track the user’s pose and uses optical and inertial
tracking. The experimental library libsurvive is used to access the inertial tracking data.
The Double Exponential Smoothed Prediction (DESP), a double exponential filter, and
the Error-state Kalman Filter (ESKF), an error-state Kalman filter capable of fusing
optical and inertial data, are introduced. The user acceptance of the framework is evalu-
ated by conducting a user study within a VE, using a within-subject design. The results
show that the provided tracking data by libsurvive with disabled optimizations turned
out to be too noisy and unstable for the introduced filters. The filters cannot compen-
sate for the occurring tracking errors to the degree that would have been necessary for
a Virtual Reality Application (VRA). The DESP causes a significant delay when trying
to filter noisy tracking data, which is not acceptable for a VRA. The ESKF provides
a significant improvement with simulated tracking data. However, it falls short with
libsurvive tracking data because of its noisy and unstable nature, as the results of the
user study show.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Virtual reality systems track the position and orientation of real objects in physical
space in relation to a reference system. This information is then used to display these
objects within a Virtual environment (VE), which allows the user to interact with virtual
objects. There are different tracking technologies, and every tracking technology has its
advantages and disadvantages. The precision, accuracy, and latency of a tracking system
play an important role in fully immersing the user into the experience. In order to provide
an enjoyable and immersive experience for the user, an accurate tracking of its pose -
namely tracking the user’s head, feet and hands - is required. Popular virtual reality
solutions for consumers, like Valve’s Lighthouse system, use optical and inertial tracking
and fuse positioning data to determine the position and orientation of tracked objects.
The absolute position and orientation of an object in 3-dimensional space is determined
through optical tracking at a specific time interval. The inertial measurements in between
these intervals are used to predict the position and orientation by integrating the linear
acceleration and angular velocity [28]. Measurement and pose estimation errors impact
the user experience. Pose estimation errors can cause unpredictable glitches, residual
noise causes jitter, prediction errors can cause drifts, and a latency between movements
and their representation causes dizziness or nausea for the user. The goal of this research
is to implement and evaluate a filter framework to reduce measurement noise of sensors
and improve the pose estimation, in order to provide a better user experience.

1.2 Aim of the Work
The goal of this work is to implement and evaluate a Tracking Filter Framework (TFF),
that allows to apply different filters to tracking data, in order to smooth and predict
position and orientation. The focus of this work lies on optical and inertial tracking
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1. Introduction

systems. The framework is implemented as a standalone C++ library and integrated
into the Unreal Engine (UE), to use the results within a VE. The processing of tracking
data for head and hands is supported. The chosen filters to implement and evaluate
are a double exponential filter and a Kalman filter. The Kalman filter allows combining
and fusing optical and inertial tracking data. Both filters use quaternions to represent
rotations and have the ability to predict the pose in between absolute positioning mea-
surements. Filter parameters used to control an algorithm are configurable. Parameter
values are selected by analyzing the filter output and the impact they have on the subjec-
tive experience. The performance of the TFF will be evaluated both quantitatively and
qualitatively. The results of the filter algorithms are plotted and analyzed qualitatively.
Furthermore, the results are tested from the user’s perspective within the VE by con-
ducting a user study. Quantitative data is collected by measuring the user’s performance
and gathering subjective feedback through a questionnaire. The qualitative data is then
analyzed to assess the performance of the filter algorithms.

This work addresses the following research questions:

• What types of tracking errors occur for an optical/inertial system?

• Are the selected filter algorithms capable to correct the tracking data?

• Are the selected filters able to improve the user experience?

• Can the filter performance be improved by adjusting its parameters and what are
possible unwanted side effects?

• Do tracking errors affect the user’s ability to perform tasks?

1.3 Outline
This section outlines the structure of this thesis. Chapter 2 introduces virtual reality,
and discusses related tracking technologies and errors. Furthermore, the stochastic fun-
damentals and related filter algorithms are introduced. Chapter 3 provides an overview
of the investigated concepts and design decisions to implement and evaluate a TFF for
virtual reality systems. It also describes the selected filter algorithms in detail. Chapter
4 describes the system design and documents the implementation and evaluation ap-
proach. Chapter 5 discusses the quantitative and qualitative results, of the performance
evaluation and the user study. The last chapter 6 summarizes this work and its findings,
as well as addresses issues and shortcomings that are subject for future work.
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CHAPTER 2
State of the Art

This chapter introduces the basics of virtual reality and related tracking technologies.
Furthermore the fundamentals, which are the basis of the filter algorithms, and the
algorithms themselves are introduced.

2.1 Virtual Reality
Virtual reality represents an interactive computer simulation, where the system measures
the user’s state and interactions and replaces or augments sensory feedback information
for one or more senses. This gives the user the feeling of being immersed in the VE
or simulation. [33] The VE describes objects, rules and relationships between objects
within the simulation [44].

The simulation enables to observe and interact with objects of the VE. The content of
this VE can be perceived by the user through vision, hearing and touch. Objects of the
VE have properties such as color, texture and shape. These properties can be observed
by the user through visual, aural and haptic modalities. [33]

Presence can be described as the feeling of being immersed in the VE and is strengthened
by the user through observation and interaction with objects inside the VE. Presence
is composed of physical and mental presence. Physical presence is a feeling of being
actually in another environment and is created artificially by presenting synthetic stimuli
feedback to one or more senses in response to the user’s actions. Mental presence is a
form of "trance" and describes the degree of engagement with the virtual environment.
A high level of mental presence lets the user forget about the real world. [33]

The virtual reality system uses a feedback loop to allow the user to interact with the sys-
tem through motion. It tracks the user’s pose and actions with equipment, information
about these actions are incorporated by the system and the changes within the VE are
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2. State of the Art

shown to the user from his perspective. This two way exchange of information enables
the user to interact with the virtual reality. [33]

Objects of the VE have positions and orientations within the virtual space. These
properties can be influenced by processes within the scene as well as interactions of the
user. The position and orientation of tracked objects of the real world - like head, hands
and feet of the user - are determined relative to a reference coordinate frame and then
translated to the virtual environment. Movement and rotation of objects in the real
world and the virtual world are limited by the boundaries defined by the equipment and
specifications.

2.2 The Human Factor

A few human factors have to be considered in order to simulate the real world and
provide this simulation to the user’s senses, as introduced in [27].

The requirement is that the user must be fully immersed into the VE but the solution
to achieve this must also be feasible. Figure 2.1 illustrates the contribution of the five
human senses according to [18], demonstrating that the vision sense contributes 70% of
the information. The quality of the simulation for this sense plays therefore an important

70 %

20 %

 5 %  4 %  1 %

Sight Hearing Smell Touch Taste

Figure 2.1: Contribution of the five human senses. [18]

role in immersing the user into the experience, and it is the only sense this work focuses
on. Two other critical aspects for a system, as mentioned in [41, 42], are the system
synchronization and its design. The main cause of the phenomenon called simulator
sickness is the synchronization of the stimuli with the user’s actions. The design should
also address the psychological aspects and is responsible for the depth of immersion in
the VE. [27]
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2.2. The Human Factor

2.2.1 Visual Perception
As previously mentioned, visual information is the most critical aspect of the human
perception to create an immersion into a VE. As stated in [19], the generated feed-
back should ideally equal or surpass the limits of the human visual system. However,
some compromises have to be considered, as current technologies are not yet capable of
achieving this level of performance.

Provided below is a brief summary of critical visual perception characteristics [27]:

Field of view: A human eye has a vertical and horizontal Field of View (FOV) of
approximately 180◦. The vertical view is limited by the cheeks and eyebrows to
about 150◦, while the horizontal view is constrained by the nose to around 150◦, as
noted in [18]. The total FOV for both eyes combined is then approximately 180◦

with a binocular overlap of 120◦.

Visual acuity: The term visual acuity describes the sharpness of one’s vision. It is
measured as the fraction of a pixel, equivalent to one minute of arc or 1/16 of a
degree, as explained in [16], and it varies with the arc distance from the line of
sight. The fovea, a part of the retina, is capable of resolving the finest details and
possesses the highest visual acuity. This area is located approximately two degrees
from the line of sight, and sharpness declines rapidly beyond it.

Temporal resolution: The temporal resolution describes the perceived flickering phe-
nomena of screens and is related to the refresh or update rate. This effect can be
avoided by using a refresh rate higher than the so called critical fusion frequency
[16].

Luminance and color: The human eye can differentiate approximately 10 million col-
ors, as noted in [16]. Special color mapping techniques, discussed in [14], must be
used for displays with a lower dynamic color range.

Depth perception: The brain is capable of extracting depth information from the
state of the eyes and the stereoscopic images provided by both eyes. The depth
perception is affected by physiological and psychological aspects, as discussed in
[40], and both of these aspects need to be taken into account.

2.2.2 Simulator Sickness
There are potentially many sources responsible for the phenomenon of simulator sickness.
However, according to [27], system latency and the frame rate variation play a major
contribution to this phenomenon. The studies [26, 37] have identified the most common
symptoms that occur in virtual reality systems. These symptoms can be categorized as
follows [27]:

• Oculomotor dysfunctions: Eye strain, blurred vision
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2. State of the Art

• Mental dysfunctions: Concentration problems, dizziness

• Physiological dysfunctions: Headache, discomfort, nausea, stomach awareness,
vomiting

Here is a brief summary of the two major contributors to the phenomenon of simulator
sickness [27]:

Latency and synchronization: The immersion into the VE depends on the quality of
the simulation and its resemblance to the real world. This includes image quality as
well as the naturalness of the simulation. The response of the system should be fast
and accurate. According to [34, 32], one major component responsible for latency
is the rendering of the VE. Therefore, the frame rate has the most significant
impact on the sense of presence and the efficiency of tasks conducted within the
VE [8, 36, 46, 2]. Latencies below 100 ms are sufficient for flight simulators [9],
and frame rates of 15 Hz represent the lower limit for establishing a sense of
presence within VEs [2]. However, frame rates higher than 60 Hz are preferred
[12] and are required to register faster movements [1]. The physiological causes of
simulator sickness could be related to the mismatch between visual motion cues
and the information received by the vestibular system [19], as humans without a
functioning vestibular system are not subject to simulator sickness [13].

Frame rate variations: Users will become disorientated, if the updates of information
delivered to the senses do not arrive at the expected time or are delayed. The
development of constant frame rate algorithms is required, as discussed in [15], in
order to counter the negative impact of non-constant frame rates on the sense of
presence and their contribution to simulator sickness.

2.3 Tracking
Tracking allows a seamless interaction and communication between the user and the
virtual world [33]. Tracking methods are used to capture the user’s movement and
actions to create a sense of presence [39].

These methods can be either active or passive. Active tracking methods are triggered by
the user with some device, while passive methods track the user’s movement and actions.
Both methods transmit the tracking information directly to the virtual reality system.
[33]

In general tracking systems can be distinguished by delivering absolute data (total posi-
tion and orientation values) and relative data (change of position and orientation values
since the last state). The minimum device requirement for a virtual reality system is
a head mounted display to track the position and orientation of the user and to show
the rendered images of the VE to the user. Furthermore hands, chest or legs can be
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2.3. Tracking

tracked to enable interactions and display the correct state of the user’s posture. Track-
ing 3-dimensional objects requires six Degrees Of Freedom (DOF) to track the position
coordinates x,y and z as well as the orientation angles yaw, pitch and roll. [27]

It is required for each tracker to support this data or a subset of it [20]. The object’s
DOF is defined by the number of independent axes of translation and rotation around
it can move [33].

2.3.1 Tracking Requirements and Properties
In order to create an immersive experience for the user inside a virtual world a few goals
need to be achieved [47]:

• The user needs to feel presence in the virtual world.

• Objects that are still need to appear as stationary within the simulation, even if
the user is moving his head. This is called perceptual stability.

• The user should not experience motion sickness.

• Tracking artifacts should not affect the performance of the task.

• Ideally tracking artifacts should not be recognized by the user.

The quality of a 3-dimensional tracking system is defined by the following properties:

Sampling rate: Specifies how many measurement per second (Hz) will be performed.
Higher sampling rates lead to smoother tracking data but require more processing
work. [27]
The sampling rate of a tracking system should ideally be running at 1000 Hz or
less than 1 millisecond [47].

Latency: The time it takes that the system starts to react to the user’s physical action.
The latency is usually measured in milliseconds. Lower latencies increase the
systems performance and immersiveness. [27]

Accuracy: Describes the measurement errors in absolute values of the system for po-
sition and orientation data. The smaller these errors are, the better the systems
performance is. Ideally the accuracy should be better then 1 mm for positions and
0.1 degree for orientations. [47]

Resolution: Represents the smallest possible change in position and orientation the
system can detect, measured in absolute values. The smaller these values are, the
better the systems performance is. [27]

Range: Describes range of the system within the tracked position and orientation data
is as accurate as specified [27].
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2. State of the Art

Robust: The system should be resilient against external influences such as temperature,
moisture, magnetic field, etc. [33].

Occlusion: The occlusion of sensors is an issue for tracking systems, but a robust system
should be able to handle temporarily or partially occlusions [33].

Other properties: Other properties of the system like size, weight, usability, etc. are
also important to describe its usefulness and applicability for different applications
[27].

2.3.2 Tracking Errors

There are different types of tracking errors which can affect the sense of presence in
varying degrees. Tracking errors that affect human perception of the virtual world, can
occur while an object is still or moving and result in motion sickness or impact the
performance of the task at hand. [47]

Static errors occur if the object is still and can be distinguished as [47]:

Spatial distortion: Reproducible errors at different poses, including sensor scale errors,
misalignments, nonlinearity calibration residuals and environmental distortions.

Spatial jitter: Tracker noise that gives the impression that the object is shaking when
it is actually still.

Stability or drift: Slow but steady changes in the tracker output that are causing a
drift in position or orientation.

Dynamic error occur if the object is moving, and can be distinguished as [47]:

Latency: The mean of the time delay it takes to transmit the corresponding data of a
motion.

Latency jitter: A variation in the latency between updates, causing stepping, twitching
or spatial jitter along the direction the object is moving.

Dynamic error: Any type of error that can’t be accounted for by latency or static
inaccuracy. This includes prediction errors from algorithms and sensor errors that
are not caused by motion.

Jitter and drift can be considered as representing the high-frequency and low-frequency
components of a continuous noise spectrum [47].
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2.3. Tracking

Figure 2.2: Strapdown INS [47]

2.3.3 Tracking Technologies

There are many different tracking algorithms available but relatively few sensing tech-
nologies. Available technologies measure electromagnetic fields, electromagnetic waves,
acoustic waves or physical forces. Motion tracking system often derive pose estimates
from electrical measurements of sensors. There are various types of sensors that can
be used in motion tracking systems, including mechanical, inertial, acoustic, magnetic,
optical, and radio frequency sensors. Each tracking technology has is advantages and
limitations, these limitations arise from the physical medium, the measurement, the
signal-processing and the application. [47]

Intertial Principle

The inertial principle combines gyroscopes and accelerometers [33]. A modern system
called strap down Intertial Navigation System (INS) is illustrated in figure 2.2, it com-
bines silicon based accelerometers and gyroscopes [47, 33]. The target’s orientation is cal-
culated by integrating the measured angular-rates of three orthogonal gyroscopes, which
are strapped down to a frame [33]. Three orthogonal linear accelerometers, also strapped
to the frame, are used to calculate the position [47]. First the measured acceleration
vector is rotated into the navigation frame, using the current orientation determined by
the gyroscopes, then gravity compensated and double integrated to estimate the position
(see figure 2.3) [47, 33].

Inertial sensors are self-contained and do not require a line of sight to another sensor,
and are not sensitive to interfering electromagnetic fields. They have a very low latency
of less than a millisecond, provide a high sampling rate of over a thousand samples per
second and have a very low jitter. A disadvantage of inertial trackers is drift, the biases
of a accelerometers lead to integration errors, which over time stack up and lead to a
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Figure 2.3: Inertial principle algorithm [33]

divergence from the true position. [47]

Optical Principle

Optical tracking systems rely on visual information to track the movement of a user,
they use analog or digital sensor devices to measure reflected or emitted light [33, 47].
Active or passive markers in combination with photosensors and light sources can be
used to perform these measurements [33].

Analog sensors measure the light intensity or position, while digital sensors provide a
discrete image of the scene. Both sensor types can be 1- or 2-dimensional. 2-dimensional
sensors provide more information but have lower sampling and processing rates. Lenses
and apertures can be used to project images onto the sensor and calculate the angle to
the source. The light intensity can be used to estimate the distance to the source. Filters
allow to process only certain wavelengths of light, thus infrared light sources combined
with filters provide the possibility to operate within the infrared light spectrum, separate
from ambient visible light. [47]

A simple analog photosensor changes resistance in relation to the quantity of light reach-
ing it. Photosensors are simple and fast and it is possible to estimate the position with a
set of photosensors using relative or ratiometric amplitudes. An analog Position Sensing
Detector (PSD) is a semiconductor device, which measures the total light reaching the
sensor and produces as set of currents, which can be used to estimate the position of
the light source. A Charge Couple Device (CCD) creates a digital image by using a
dense array of pixel sensors, that convert light into an electrical charge. The image is
created by accumulating the light energy over a short time interval. This process takes
time and limits the sampling rate, allowing relatively few measurements per unit of time
compared to sensors like the PSD. However a CCD allows to extract pose features like
shape, shading or motion from multiple images, but they are computational costly. Vari-
ation in lighting, surface properties, independent object motion or occlusion can cause
problems for the pose estimation. [47]

The combination of multiple sensors is a common practice to obtain more information
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2.3. Tracking

for pose estimation. If the locations of multiple sensors are known, it is possible to
estimate the position of a light source with respect to the sensors using triangulation
and multibaseline correlation. There are two approaches for an optical system, putting
the light sources on the tracked target and the sensors in the environment or the other
way around. A system that measures the bearing angles to reference points from the
outside to the inside is called outside-in and inside-out when it measures them from the
inside to the outside. [47]

Optical systems need a clear line of sight between the light source and the sensor, which
is a disadvantage. Analog photosensors and PSDs have problems with partial occlusions,
which can lead to plausible but incorrect results. Image producing sensors are better in
recognizing and rejecting partial occlusions but have problems with feature recognition,
signal strength and complex error-models that are difficult to predict. The combination
of active light sources with analog PSDs allows high spatial precision with high update
rates. Systems that use passive image forming devices are slower, but are able to operate
in natural environments without a previous setup. [47]

2.3.4 Lighthouse
The Lighthouse Tracking System (LHTS) relies on optical (see chapter 2.3.3) and inertial
(see chapter 2.3.3) tracking principals, and can be classified as outside-in tracking system.

The LHTS 1.0 supports up to two base stations, a base station is light sources that
transmits infrared light. It consists of two rotating line lenses with mirrors inside that
divert a laser generating a fan of light or sweep, and a Light-Emitting Diode (LED)
array (see figure 2.4a) [23, 48].

The rotating infrared fans are perpendicular to each other and sweep the environment
with an angle of 120◦ alternately (see figure 2.4b). Tracked devices use photo diodes

(a) LHTS 1.0 base station[29]

LED Array

Elevation
Azimuth

(b) LHTS 1.0 base station illustration [23]

Figure 2.4: Lighthouse 1.0

sensitive to the infrared light (see figure 2.5a) to detect the laser sweeps and an Inertial
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Measurement Unit (IMU) to track the angular velocity and acceleration. Between laser
sweeps the LED array flashes and floods the environment with infrared light. This
indicates the start of a laser sweep and is also used to synchronize two base stations
with each other. The time difference between the laser flash, marking the start of the
sequence, and the time the sweep is hitting each sensor can be measured. [23]

This measurement cycle is illustrated in figure 2.5b, it repeats for each sweep and each
base station [47]. Because each rotor is rotating at a constant speed, the time measure-
ment of each sweep can be used to determine the azimuth and elevation angles of a
sensor on the receiver hardware in reference to the base station [23, 48].

(a) Photo diode sensor [30]

0

1

Synchronisation
pulse(master)

Synchronisation
pulse(slave)

Laser
sweep

∆ t

Time

Lo
gi
c
Le
ve

l

(b) Measurement cycle [29]

Figure 2.5: Lighthouse hardware and measurement cycle

The LHTS 2.0 base stations (see figure 2.6a) use only one rotor with a “V” shaped
sweep pattern, instead of two rotors with a perpendicular pattern (see figure 2.6b) [29,
45]. The second generation uses a sync-on-bream signal to eliminate the necessity of the
synchronization flash between sweeps [29, 45]. This also enables the support of more
than two base stations [45].

(a) LHTS 2.0 base station [29] (b) Sweep pattern [30]

Figure 2.6: Lighthouse 2.0 and sweep patterns
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2.3.5 libsurvive
libsurvive is an open source repository on Github and provides tools and a library that
enables six DOF tracking with LHTSs. It supports the Lighthouse generation 1.0 and
2.0 and can run on any device [10].

The library decodes IMU and lightcap data signals. The lightcap data contains a sensor
ID, a light pulse length and the time of the light pulse. IMU data contains the angular
velocity and acceleration of a device. The light data together with the sync or sweep
pulse is used to calculate the angles to each base station for each sensor. [3]

The library calibrates the devices and base stations, estimates the position and orienta-
tion for each tracked device, and provides the estimated pose as well as IMU and light
data through an Application Programmming Interface (API). The libsurvive library and
its API has been used for this work to implement and test the Tracking Filter Framework
(TFF) with real tracking data.

2.4 Quaternion
A Quaternion provides a convenient way to represent a rotation, offers better numerical
stability than rotation matrices, can be converted to and from rotation matrices, and
avoids the issue of a gimbal lock. It follows its definition and fundamental characteristics
as described in [43].

2.4.1 Definition
A quaternion can be derived by the Cayley-Dickson construction, constructing the com-
plex numbers

A = a + bi, C = c + di, Q = A + Ci (2.1)

and defining k ≜ ij yields a complex number Q with four dimensions in the hypercomplex
number space H,

Q = a + bi + cj + dk ∈ H, (2.2)

as described in [43]. Where {a, b, c, d} ∈ R are real numbers and {i, j, k} imaginary unit
numbers so that

i2 = j2 = k2 = ijk = −1, (2.3)

from which the rules

ij = −ji = k, jk = −kj = i, ki = −ik = j (2.4)

can be derived. Quaternions are a four dimensional extension of complex numbers, a
quaternion of unit length q = euxi+uyj+uzk)θ/2 can be used to encode rotations in 3D
space. [43]

13
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2.4.2 Alternative Representation
The notation 2.2 is not always convenient. The algebra 2.3 and 2.4 can be used to
represent a quaternion as sum of a scalar and vector,

Q = qw + qxi + qyj + qzk ⇔ Q = qw + qv, (2.5)

where qw is denoted as real or scalar part and qv = qxi + qyj + qzk = (qx, qy, qz) as
imaginary or vector part. In this work we represent a quaternion Q as four dimensional
vector q,

q ≜
�
qw

qv

�
=


qw

qx

qy

qz

 , (2.6)

the vector notation allows the usage of matrix algebra for operations involving quater-
nions. [43]

2.4.3 Properties
Sum

The sum of a quaternion is defined as

p ± q =
�
pw

pv

�
±

�
qw

qv

�
=

�
pw ± qw

pv ± qv

�
(2.7)

and is commutative p + q = q + p and associative p + (q + r) = (p + q) + r [43].

Product

The product operator of two quaternions is denoted as ⊗, the product can be constructed
using 2.2 and 2.4

p ⊗ q =


pwqw − pxqx − pyqy − pzqz

pwqx + pxqw + pyqz − pzqy

pwqy − pxqz + pyqw + pzqz

pwqz + pxqy − pyqx + pzqw

 , (2.8)

which can also be represented in scalar and vector parts

p ⊗ q =
�

pwqw − pT
v qv

pwqv + qwpv + pv × qv

�
. (2.9)

[43]
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In general the quaternion product is not commutative

p ⊗ q #= q ⊗ p, (2.10)

except when pv × qv = 0, one quaternion is real p = pw or q = qw, or both parts are
parallel pv||qv. However the quaternion product is associative

(p ⊗ q) ⊗ r = p ⊗ (q ⊗ r), (2.11)

and distributive over the sum

p ⊗ (q + r) = p ⊗ q + p ⊗ r and (p + q) ⊗ r = p ⊗ r + q ⊗ r. (2.12)

[43]

The product of two quaternions is bi-linear and can also be expressed in form of the two
matrix products

q1 ⊗ q2 = [q1]L q2 and q1 ⊗ q2 = [q2]R q1. (2.13)

[43]

The left- and right quaternion-product matrices [q]L and [q]R can be derived from 2.8
and 2.13 [43]:

[q]L =


qw −qx −qy −qz

qx qw −qz qy

qy qz qw −qx

qz −qy qx qw

 = qwI +
�

0 −qT
v

qv [qv]×

�
, (2.14)

[q]R =


qw −qx −qy −qz

qx qw qz −qy

qy −qz qw qx

qz qy −qx qw

 = qwI +
�

0 −qT
v

qv −[qv]×

�
(2.15)

The skew operator [•]x produces the skew-symmetric [a]T× = −[a]× cross-product matrix

[a]× ≜

 0 −az ay

az 0 −ax

−ay ax 0

 , (2.16)

which is equivalent to the cross product

[a]×b = a × b, ∀a, b ∈ R3, (2.17)

as described [43].

15



2. State of the Art

Identity

The identity quaternion with respect to the quaternion product is defined as

q1 = 1 =
�

1
0v

�
, (2.18)

so that q1 ⊗ q = q ⊗ q1 = q [43].

Conjugate

The conjugate of a quaternion is gives as

q∗ ≜ qw − qv =
�
qw

0v

�
, (2.19)

and has the following properties [43]:

q ⊗ q∗ = q∗ ⊗ q = q2
w + q2

x + q2
y + q2

z =
�
q2

w + q2
x + q2

y + q2
z

0v

�
(2.20)

(p ⊗ q)∗ = q∗ ⊗ p∗. (2.21)

Norm

The norm of a quaternion is defined by

||q|| ≜  
q ⊗ q∗ =

 
q∗ ⊗ q =

�
q2

w + q2
x + q2

y + q2
z ∈ R (2.22)

and has the property

||p ⊗ q|| = ||q ⊗ p|| = ||p|| ||q||, (2.23)

as described in [43].

Inverse

A quaternion q times its inverse q−1 gives the identity quaternion q1

q ⊗ q−1 = q−1 ⊗ q = q1, (2.24)

the computation of the inverse quaternion can be done with

q−1 = q∗

||q||2 , (2.25)

as described in [43].
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Unit or Normalized

In case of a unit quaternion ||q|| = 1 the inverse equals the conjugate [43]:

q−1 = q∗ (2.26)

The inverse rotation of a quaternion, that represents a rotation operator or orientation
specification, equals its conjugate. A unit quaternion can be represented as

q =
�

cos θ
u sin θ

�
(2.27)

where u = uxi + uyj + uzk is a unit vector and θ a scalar. [43]

2.5 Rotation
This chapter is a summary of the introduction into rotations in 3-dimensional space from
[43]. It describes the vector rotation formula and its relationship to the rotation action
formula, as well as the the Special Orthogonal group SO(3) and its relationship to the
rotation matrix and the quaternion. Additionally the exponential map, a tool to deal
with continuous change within the rotational space, will be introduced.

2.5.1 The Vector Rotation Formula

α

ϕ u

x⊥ϕ

x⊥

x||

xϕ

x

x = x|| + x⊥
x|| = u uT x

x⊥ = x − u uT x

Figure 2.7: Rotation of vector x, by the angle ϕ, around the axis u. [43]

The figure 2.7 illustrates the right-hand rule rotation of the 3-dimensional vector x,
rotated by the angle ϕ, around the axis defined by the unit vector u. The vector x is
composed of x|| parallel to u, and x⊥ orthogonal to u. It is given by

x = x|| + x⊥. (2.28)

[43]
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The vector x|| and x⊥ can be calculated with [43]:

x|| = u(||x|| cos α) = u uT x (2.29)
x⊥ = x − x|| = x − u uT x. (2.30)

The parallel part x|| does not rotate, therefore

x||ϕ = x||, (2.31)

and the orthogonal part x⊥ is rotated along the planar plane normal to u. The orthogonal
base {e1, e2} of this plane is given by

e1 = x⊥ (2.32)
e2 = u × x⊥ = u × x. (2.33)

[43]

If e1 and e1 are unit vectors ||e1|| = ||e2||, then x⊥ = e1 · 1 + e2 · 0. A rotation on this
plane by ϕ rad can by calculated with

x⊥ϕ = e1 cos ϕ + e2 sin ϕ = x⊥ cos ϕ + (u × x)sin ϕ. (2.34)

[43]

The rotated vector xϕ = x||ϕ + x⊥ϕ is then given by the vector rotation formula [43]:

xϕ = x|| + x⊥ cos ϕ + (u × x) sin ϕ (2.35)

2.5.2 The Rotation Group SO(3)
A rotation is a linear transformation that preserves distances, angles and relative orien-
tations of a rigid body upon motion. The Special Orthogonal group SO(3) is the group
of all possible rotations around the origin in 3-dimensional Euclidean space R3 under
the operation of composition that preserve vector length and relative vector orientations.
[43]

A rotation operator r : R3 → R3; v �→ r(v) acting on the vector v ∈ R3 that preserves
these properties can be defined from metrics of Euclidean space, using the dot and cross
product, as follows [43]:

• Vector norm

||r(v)|| =
�

�r(v), r(v)� =
�

�v, v� ≜ ||v||, ∀v ∈ R3 (2.36)

• Angles between vectors

�r(v), r(w)� = �v, w� = ||v|| ||w|| cos α, ∀v, w ∈ R3 (2.37)
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• Relative orientation of vectors

u × v = w ⇐⇒ r(u) × r(v) = r(w) (2.38)

The first two conditions are equivalent so that the rotation group SO(3) can be defined
as [43]:

SO(3) : {r : R3 → R3/ ∀v, w ∈ R3, ||r(v)|| = ||v||, r(v) × r(w) = r(v × w)} (2.39)

Rotations can be represented as rotation matrixes or quaternions, both representations
are equally valid. One of the most important differences is that the unit quaternion
group constitutes a double cover of SO(3), which is technically not SO(3) itself, but is
not critical in most applications. [43]

2.5.3 The Rotation Group and its Relationship to the Rotation
Matrix

The operator r() is defined by linear scalar and vector products and is therefore also
linear. It can be represented by a matrix R ∈ R3×3, which rotates vectors v ∈ R3

through the matrix product

r(v) = Rv. (2.40)

[43]

The orthogonality condition on R can be derived by injecting the dot product �a, b� = aT b
into the vector norm condition 2.36, which results in [43]:

RT R = I = RRT (2.41)

The Orthogonal group O(3) represents the set of transformations which preserves vector
norms and angles. This group includes rotations, which are rigid, and reflections, which
are not rigid. The group implies that the product of two orthogonal matrices is also an
orthogonal matrix, and that an inverse matrix for each orthogonal matrix exists. [43]

The orthogonality condition 2.41 implies that each column vector of the rotation matrix
is of unit length and orthogonal to each other, and that the inverse of the rotation matrix
equals its transposed matrix [43]:

R−1 = RT (2.42)

Adding the relative orientation condition 2.38 discards reflections and guarantees rigid
body motion by adding another constraint on R [43]:

det(R) = 1 (2.43)

Orthogonal matrices with a positive unit determinant are called special. This set of
special orthogonal matrices is called Special Orthogonal group SO(3) and is a subset of
O(3). The group implies that the product of two rotation matrices is always a rotation
matrix. [43]
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The Exponential Map exp()

The exponential map is an essential tool for estimation problems in the space of rotations
and orientations. It provides a corpus of infinitesimals calculus to work with continu-
ous change within the rotational space and allows to properly define and manipulate
derivatives, perturbations and velocities. [43]

Rotations are rigid motions, this allows to define a continuous rotation on a path r(t)
in SO(3). A rigid body continuously rotates along this path from its initial orientation
r(0), to its current orientation r(t). Looking into the time-derivate of the orthogonality
condition 2.41 we get

d

dt
(RT R) = RT �

R + RT R� = 0 ⇒ RT R� = −(RT R�)T , (2.44)

where matrix RT R� is skew-symmetric. The set of skew-symmetric 3 × 3 matrices is
called Lie algebra of SO(3) and is denoted as so(3). The skew-symmetric 3 × 3 matrix
has been introduced in 2.16, it corresponds to the cross-product matrix (see 2.17) and
has 3 DOF. This defines the one-to-one mapping ω ∈ R3 ↔ [ω]× ∈ so(3) so we can write

RT R� = [ω]×, (2.45)

which gives us

R� = R[ω]× , (2.46)

denoted as the Ordinary Differential Equation (ODE). [43]

For rotations around the origin R = I applies, which reduces the ODE to R� = [ω]×. The
Lie algebra so(3) describes the space of derivatives of r(t) at the origin, meaning it is the
tangent space to SO(3) also called velocity space. The vector ω represents instantaneous
angular velocities. [43]

If the vector ω is constant, the ODE (2.46) can be time-integrated [43]:

R(t) = R(0) e[ω]×t = R(0) e[ωt]× (2.47)

The exponential term e[ωt]× is defined by its Taylor series and is also a rotation matrix.
Defining the vector Φ ≜ ω∆t, which describes the full rotation over the time period ∆t,
we receive

R = e[Φ]× . (2.48)

[43]

This is the exponential map, which is an application from so(3) to SO(3) [43]:

exp : so(3) → SO(3) ; [Φ]× �→ exp([Φ]×) = e[Φ]× (2.49)
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The Capitalized Exponential Map Exp()

To avoid possible ambiguities we further define the mapping R3 �→ SO(3) denoted as
capitalized Exp [43]:

Exp : R3 �→ SO(3) ; Φ �→ Exp(Φ) = e[Φ]× (2.50)

Its relationship to the exponential map is defined as [43]:

Exp(Φ) ≜ exp([Φ]×) (2.51)

Rotation Matrix and the Rotation Vector

The rotation or angle-axis vector Φ = ω∆t = ϕu encodes the angle ϕ and axis of rotation
vector u. The rotation matrix is be defined by mapping the rotation vector Φ through
the exponential map exp([Φ]×) (2.48), using the the cross-product matrix [Φ]× = ϕ[u]×
(2.17). The Taylor expansion of R = eϕ[u]× (see [43]) leads to the rotation matrix through
the rotation vector, the Rodrigues rotation formula

R = I + sinϕ[u]× + (1 − cosϕ)[u]2× , (2.52)

which is denoted as R{Φ} ≜ Exp(Φ). [43]

The Rotation Action

The rotation of a vector x by the angle ϕ around the unit axis u can be achieved with
the linear product

xϕ = Rx , (2.53)

where R = Exp(ϕu). [43]

Note that the validity of the rotation action 2.53 can be proven by deriving the vector
rotation formula 2.35 using the Rodrigues rotation formula 2.52 (see [43]).

2.5.4 The Rotation Group and its Relationship to the Quaternion
In this chapter the relationship between quaternions and rotation matrices as represen-
tations of the rotation group SO(3) are highlighted. The quaternion rotation action
formula is given by

r(v) = q ⊗ v ⊗ q∗, (2.54)

injecting this formula into the orthogonality condition 2.36 and using 2.23 to develop

||q ⊗ v ⊗ q∗|| = ||q||2||v|| = ||v|| ⇒ ||q||2 = 1, (2.55)
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we receive the unit norm condition on the quaternion

q∗ ⊗ q = 1 = q ⊗ q∗ , (2.56)

which is similar to the orthogonality condition 2.41 of the rotation matrix (see [43] for
details). The relative orientation condition 2.38 is also satisfied. [43]
The set of unit quaternions under operation of multiplication form a group, which is
topologically a 3-sphere. The surface of this 3-sphere is a 3-dimensional unit sphere of
R4 and is denoted as S3. [43]

The Exponential Map exp()

We consider a unit quaternion q ∈ S3, for which the orthogonally condition q∗ ⊗ q = 1
applies and look into its time derivative

d(q∗ ⊗ q)
dt

= q∗� ⊗ q + q∗ ⊗ q� = 0 ⇒ q∗ ⊗ q� = −(q∗� ⊗ q) = −(q∗ ⊗ q�)∗ (2.57)

where the term q∗ ⊗ q� is the pure quaternion denoted as Ω, meaning it is equal to minus
its conjugate and its real part is zero. This gives us

q∗ ⊗ q� = Ω =
�

0
Ω

�
∈ Hp, (2.58)

which yields the differential equation

q� = q ⊗ Ω. (2.59)

[43]
Around the origin q = 1, so that q� = Ω ∈ H. The pure space of quaternions Hp is
isomorphic to the Lie algebra so(3), which describes the space of infinitesimal rotations in
3-dimensional space. It is also isomorphic to the tangent space of the 3-dimensional unit
sphere S3, which allows to use quaternions to represent infinitesimal rotations around
any point on S3. In the case of quaternions, it actually is the space of half-velocities,
as will be explained later. Given a constant Ω, the differential equation 2.59 can be
time-integrated as:

q(t) = q(0) ⊗ eΩt (2.60)

[43]
Since q(0) and q(t) are unit quaternions, the exponential term eΩt is also a unit quater-
nion. Defining the quaternion V ≜ Ω∆t we receive [43]:

q = eV (2.61)

This gives us the exponential map for quaternions, an application from the space of pure
quaternions Hp to the space of infinitesimal rotations S3 represented by unit quaternions
[43]:

exp : Hp ← S3; V �→ exp(V ) = eV (2.62)
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The Capitalized Exponential Map

The pure quaternion V = θu = ϕ u/2 in the exponential map 2.62 encodes the rotation
axis u and only half of the rotation angle θ = ϕ/2. The rotation is accomplished by the
double product xϕ = q ⊗ x ⊗ q∗, meaning the vector x is rotated twice the angle encoded
in q, or q only encodes only half the intended rotation. The direct relationship between
the angle-axis rotation Φ = ϕu ∈ R3 and the quaternion V , can be expressed with the
capitalized exponential map:

Exp : R3 ← S3; Φ �→ Exp(Φ) = eΦ/2 (2.63)

[43]

The relation to the exponential map is defined as [43]:

Exp(Φ) ≜ exp(Φ/2) (2.64)

We define the vector of angular velocities ω = 2Ω ∈ R3 and so that differential equation
2.59 becomes

q� = 1
2q ⊗ ω (2.65)

and its time-integral 2.60

q = eωt/2. (2.66)

[43]

Quaternion and Rotation Vector

The rotation vector Φ = ϕu represents a rotation of an angle ϕ in rad around the axis u.
The exponential map can be developed using the Euler formula, which gives us:

q ≜ Exp(ϕu) = eϕu/2 = cos
ϕ

2 + u sin
ϕ

2 =
�

cos(ϕ/2)
u sin(ϕ/2)

�
(2.67)

[43]

This equation is called the rotation vector to quaternion formula, which is denoted as
q = q{Φ} = Exp(Φ) [43].

The Rotation Action

The rotation of a vector through a quaternion is done with the double quaternion product

x� = q ⊗ x ⊗ q∗, (2.68)
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where the quaternion q = Exp(uϕ) ∈ S3. The vector x is written in quaternion form

x = xi + yi + zk =
�

0
x

�
∈ Hp. (2.69)

[43]

Note that the rotation action 2.68 can be proven by deriving the vector rotation formula
2.35, using the quaternion product 2.9 and the previously defined rotation vector to
quaternion equation 2.67. [43]

The Double Cover of the Manifold of SO(3)

The angle θ between a unit quaternion q and the identity quaternion q1 = [1, 0, 0, 0]
representing the origin of orientation is

cos θ = qT
1 q = q(1) = qw. (2.70)

[43]

The rotation of an object in 3-dimensional space, about the angle ϕ, by the quaternion
q is given by [43]:

q =
�
qw

qv

�
=

�
cos ϕ/2

u sin ϕ/2

�
. (2.71)

This shows that qw = cos θ = cos ϕ/2, meaning that the angle between a quaternion
and the identity in 4-dimensional space is half the angle rotated by the quaternion in
3-dimensional space, so that [43]:

θ = ϕ/2. (2.72)

The Figure 2.8 illustrates the rotation in 3-dimensional and 4-dimensional space. A
rotation of the angle θ = 2π in 4-dimensional space results in a rotation of the angle
ϕ = 2θ = 4π in 3-dimensional space. [43]

2.5.5 Rotation Matrix and its Relationship to Quaternion
Given the rotation vector Φ = uϕ, the exponential map produces the operator q =
Exp(uϕ) for a unit quaternion and R = Exp(uϕ) for the rotation matrix. These operators
rotate the vector x by the angle ϕ around the axis u. This means that

∀Φ, x ∈ R3, q = Exp(Φ), R = Exp(Φ) ⇒ q ⊗ x ⊗ q∗ = R x. (2.73)

[43]
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θ

q

q1

π

u

xϕ

x

ϕ = 2θ
θ ϕ

1
Figure 2.8: Double cover of the rotation manifold [43]

The left illustration shows the angle θ between the quaternion q and the identity q1 in the
unit 3-sphere. The illustration in the middle shows the resulting 3-dimensional rotation
of xϕ = q ⊗ x ⊗ q∗, which has double the angle of θ. The right illustration shows the 4-
and 3-dimensional rotation planes. Red represents the one turn of the quaternion over
the 3-sphere and blue represents two turns of the rotated vector in 3-dimensional space.
[43]

Both sides of this identity are linear in x, therefore the quaternion to rotation matrix
formula can be derived as

R =

q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z

 , (2.74)

which is denoted as R = R{q}. Using the matrix form of the quaternion product 2.13 -
2.15 and some easy developments we get

R = (q2
w − qT

v qv)I + 2qvqT
v + 2qw[qv]× . (2.75)

[43]

The following properties apply to the relationship between the rotation matrix R and
the quaternion q [43]:

R{[1, 0, 0, 0]T } = I (2.76)
R{−q} = R{q} (2.77)
R{q∗} = R{q} (2.78)

R{q1 ⊗ q2} = R{q1}R{q2} (2.79)

We note that [43]:

2.76: The identity quaternion encodes the null rotation.
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2.77: A quaternion encodes the the same rotation as its inverse.

2.78: The conjugate of a quaternion encodes the inverse rotation.

2.79: The order of consecutive rotations using quaternion products is the same as for
matrix multiplications.

2.6 Time Derivatives and Integration

For this work we use a local local reference frame, it follows an introduction into local
perturbations, their time derivatives and integration.

2.6.1 Local Perturbations

A perturbed orientation q̃ can be expressed as a composition of the unperturbed orien-
tation q and a small local perturbation ∆qL. So that we have,

q̃ = q ⊗ ∆qL R̃ = R ∆RL, (2.80)

for the quaternion and matrix composition. Note that the local perturbation appears
on the right side of the composition, because of the Hamilton convention. The local
perturbations ∆qL and ∆RL can be obtained through their equivalent vector form ∆Φ =
u∆ϕL, using the exponential map. Which gives us

q̃L = qL ⊗ Exp(∆ΦL) R̃L = R̃L · Exp(∆ΦL) (2.81)

which leads to the following expression of the local perturbation

∆ΦL = Log(q∗
L ⊗ q̃L) = Log(RT

L · R̃L). (2.82)

[43]

It is possible to approximate a small perturbation angle ∆ΦL by the Taylor expansions
of 2.67 and 2.48 up to the linear terms with [43]:

∆qL ≈
�

1
1
2∆ΦL

�
∆RL ≈ I + [∆ΦL]×. (2.83)

This means that perturbations can be specified in the local vector space ∆ΦL tangent
to the manifold of 3-dimensional rotations, denoted as SO(3), at the actual orientation.
[43]
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2.6.2 Time Derivatives
The specification of local perturbations in a vector space allows to develop their time-
derivatives. We define the original state as q = q(t), the perturbed state as q̃ = q(t+∆t)
and apply the definition of the time-derivative

dq(t)
dt

≜ lim
∆t→0

q(t + ∆t) − q(t)
∆t

, (2.84)

which gives us the local angular rates vector ωL of the local angular perturbation ∆ΦL
defined by q

ωL ≜ dΦL
dt

≜ lim
∆t→0

∆ΦL
∆t

. (2.85)

[43]

Developing the time-derivative results in [43]:

q� ≜ 1
2q ⊗

�
0

ωL

�
(2.86)

Defining

Ω(ω) ≜ [ω]R =
�

0 −ωT

ω −[ω]×

�
=


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 , (2.87)

and applying 2.13 and 2.86 we get

q� = 1
2Ω(ωL) q = 1

2q ⊗ ωL R� = R[ωL]× . (2.88)

[43]

The expressions above are identical to the developments 2.65 and 2.46 of the rotation
group SO(3). However in this case the angular rates vector ωL refers to the local frame
defined by the orientation q or R. [43]

2.6.3 Time Integration
The local rotation rate can be estimated by integrating the differential equation 2.88.
The measurements ω(tn) are provided by local sensors at discrete times tn = n∆t. The
differential equation 2.88 is

q�(t) = 1
2q(t) ⊗ ω(t). (2.89)
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[43]

The zeroth order integration can be accomplished using the Taylor expansion of q(tn+∆t)
around the time t = tn. Defining

q ≜ q(t), qn ≜ q(tn), ω ≜ ω(t), ωn ≜ ω(tn), (2.90)

the Taylor series is given as

qn+1 = qn + q�
n∆t + 1

2!q
��
n∆t2 + 1

3!q
���
n ∆t3 + 1

4!q
���
n ∆t4 + · · · . (2.91)

[43]

Zeroth Order Forward Integration

If the angular rate ωn is constant over the time period [tn, tn+1], then ω� = 0 and 2.91
reduces to

qn+1 =qn ⊗
�

1 + 1
2ωn∆t + 1

2!

�1
2ωn∆t

�2
+ 1

3!

�1
2ωn∆t

�3
+ · · ·

�
, (2.92)

where we can identify the Taylor series of the exponential term eωn∆t/2 (see [43] for
details). We can see from from the rotation vector to quaternion formula 2.67 that
this exponential term corresponds to the quaternion, which represents the incremental
rotation ∆θ = ωn∆t

eω∆t/2 = Exp(ω∆t) = q{ω∆t} =
�

cos(
ω
∆t/2)
ω

�ω� sin(
ω
∆t/2)

�
. (2.93)

[43]

The forward integration is then given as [43]:

qn+1 = qn ⊗ q{ωn∆t} (2.94)

2.7 Exponential Smoothing
Exponential smoothing was first introduced by Brown in 1950 [6], and extended by Holt
in 1957 to deal with trends [21]. Since then a variety of different exponential smoothing
variations have been proposed [11].

It follows a brief overview about the basic principals of exponential smoothing as intro-
duced in [22]. The exponential smoothing algorithms used in this work are not based on
statistical models. The presented algorithms therefore generate point forecasts instead
of forecast distributions like the Kalman filter. The naive method treats the most recent
observation as the only important one,

ŷT +h|T = yT , h = 1, 2, 3 . . . , (2.95)
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where T is the total number of observations and h and the number of steps ahead in
time. All forecasts are equal to the last observed value of the series. This method
assumes that previous observations provide no information and are therefore ignored.
The average method on the other hand forecasts by averaging past observations,

ŷT +h|T = 1
T

T!
t=1

yt, h = 1, 2, 3 . . . , (2.96)

this method assumes that all previous observation are of equal importance, no matter
how far back in time they have been made. Exponential smoothing is in between those
two extremes. It uses weighted averages of past observations to smooth current or
forecast future values. The applied weights decay exponentially over time, meaning
more recent observations have a higher associated weight. Exponential smoothing is
considered to be a suitable and effective algorithm to smooth and forecast linear time
series. [22]

It follows a brief introduction to simple exponential smoothing, and double exponential
smoothing with one and two parameters. Furthermore a specific double exponential
variation called Double Exponential Smoothed Prediction (DESP) will be introduced.

2.7.1 Brown’s Simple Exponential Smoothing

The simplest form of exponential smoothing is called simple exponential smoothing. This
method is suitable to forecast data without a clear trend or seasonal pattern. Simple
exponential smoothing uses weighted averages to smooth current or forecast future values,
the weights applied to observations decrease exponentially over time. A weighted average
is given by

ŷT +h|T = αyT + α(1 − α)yT −1 + α(1 − α)2yT −2 + . . . , 0 ≤ α ≤ 1, (2.97)

where α represents the smoothing parameter that controls the rate at which the weights
decrease, meaning the further an observation lies in the past the smaller is the associated
weight. The forecast

ŷT +1|T = αyT + (1 − α)ŷT |T −1, (2.98)

is one step ahead in time, it is a weighted average of all past observations in the series
y1... yT , which is equal to the weighted average between the most recent observation yT

and the previous forecast ŷT |T −1. The fitted values can be written as

ŷt+1|t = αyt + (1 − α)ŷt|t−1, (2.99)
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for observations at the times t = 1 . . . T . Given the first fitted value, denoted as ℓ0, we
get

ŷ2|1 = αy1 + (1 − α)ℓ0

ŷ3|2 = αy2 + (1 − α)ŷ2|1
ŷ4|3 = αy3 + (1 − α)ŷ3|2
· · ·

ŷT |T −1 = αyT −1 + (1 − α)ŷT −1|T −2

ŷT +1|T = αyT + (1 − α)ŷT |T −1.

(2.100)

[22]

Substituting each of the above equations into the following, we get the forecast equation
[22]:

ŷT +1|T =
T −1!
j=0

α(1 − α)jyT −j + (1 − α)T ℓ0 , 0 ≤ α ≤ 1 (2.101)

The component form provides an alternative representation. It considers only the level
component ℓt of the time series at the time t and consists of a forecast and a smoothing
equation

Forecast equation
Smoothing equation

ŷt+h|t = ℓt

ℓt = αyt + (1 − α)ℓt−1, 0 ≤ α ≤ 1.
(2.102)

[22]

Setting h = 1 gives estimated values, so called fitting values, one step ahead in time
and setting t = T gives true forecast beyond the observed training data. Looking at the
forecast equation, the forecast value at time t + 1 equals the estimated level at time t.
The estimated level at each period t can be obtained by the smoothing equation (level
equation). [22]

2.7.2 Brown’s Linear Exponential Smoothing
This method, which is also called one-parameter exponential smoothing, is an extension
of the simple exponential smoothing method and is able to deal with trends. The
component form of this method consists of a forecast ŷt+h|t, a level ℓt and a trend
bt equation, as well as equations for the smoothing statistics Sy�

t and Sy��
t :

Forecast equation
Level equation

Trend equation
First smoothing statistic

Second smoothing statistic

ŷt+h|t = ℓt + hbt

ℓt = 2Sy�
t − Sy��

t

bt = α

1 − α
(Sy�

t − Sy��
t )

Sy�
t = αyt + (1 − α)Sy�

t−1, 0 ≤ α ≤ 1
Sy��

t = αSy�
t + (1 − α)Sy��

t−1, 0 ≤ α ≤ 1

(2.103)
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[5]

The level and trend component use the double smoothing statistics, denoted as Sy�
t and

Sy��
t , and the same smoothing parameter α is used to control both, the level and the

trend. Note that Sy�
t smooths the observation of the time series y1 . . . yt and Sy��

t smooths
the values produces by the equation Sy�

t. [5]

2.7.3 Holt�s Linear Exponential Smoothing
The component form of this method consists of a forecast equation, as well as a level
and a trend smoothing equation [22]:

Forecast equation
Level equation

Trend equation

ŷt+h|t = ℓt + hbt

ℓt = αyt + (1 − α)(ℓt−1 + bt−1), 0 ≤ α ≤ 1
bt = β(ℓt − ℓt−1) + (1 − β)bt−1, 0 ≤ β ≤ 1

(2.104)

The estimate of the level of the time series at time t is denoted as ℓt and the estimate
of the trend or slope of the time series at time t is denoted as bt. The level smoothing
parameters is denoted as α and the trend smoothing parameter is denoted as β. The
level equation ℓt is a weighted average of the observation yt and a one step ahead forecast
ℓt−1 + bt−1 for the time t. The trend equation bt is a weighted average of the estimated
trend ℓt − ℓt−1 and the previous estimated trend bt−1. [22]

2.7.4 Double Exponential Smoothing Based Prediction
Double Exponential Smoothed Prediction (DESP) is a double exponential smoothing
method that extends Brown’s linear exponential smoothing. It models a time series
with a linear regression and its component form is given as:

Forecast equation
Level equation

Trend equation
First smoothing statistic

Second smoothing statistic

ŷt+h|t = ℓt + bt+h

ℓt = 2Sy�
t − Sy��

t − tbt

bt = α

1 − α
(Sy�

t − Sy��
t )

Sy�
t = αyt + (1 − α)Sy�

t−1, 0 ≤ α ≤ 1
Sy��

t = αSy�
t + (1 − α)Sy��

t−1, 0 ≤ α ≤ 1

(2.105)

[31]

Applying some algebraic manipulations (see [31]) the forecast equation is as follows,

ŷt+h =
�
2 + αh

1 − α

�
Sy�

t − �
1 + αh

1 − α

�
Sy��

t . (2.106)

This method interpolates between the low ŷt+�h	 and high ŷt+�h� forecast values to
predict with real numbers as time steps h instead of integers. An interpolated forecast
is given by the equation

ŷt+h = (ŷt+�h� − ŷt+�h	)(h − �h�) + ŷt+�h	. (2.107)
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[31]

For rotations represented as quaternions, the spherical linear interpolation is used. The
interpolated forecast equation for a rotations is then given as [31]:

q̂t+h =
q̂t+�h	sin((1 − ρ)Ω) + q̂t+�h�sin(ρΩ)

sinΩ
ρ = h − �h�
Ω = arccos(q̂t+�h	 � q̂t+�h�)

(2.108)

Where � stands for a quaternion dot product. The predictions q̂t+�h	 and q̂t+�h� have to
be normalized before applying the spherical linear interpolation to ensure their rotational
representation lies on the unit sphere of S3. The initial smoothing statistics for both
position and orientation at time zero are equal to their initial observation. [31]

2.8 Stochastic Fundamentals
This chapter introduces stochastic fundamentals the Kalman filter builds upon.

2.8.1 Probability
This section summarizes the basics of probability theory from [4]. The probability of the
occurrence of a discrete event A is defined as

p(A) = Number of outcomes of event A

Total number of possible outcomes
(2.109)

The probability that either event A or B will occur is given by

p(A ∪ B) = p(A) + p(B) − p(A ∩ B), (2.110)

if the two events are mutually exclusive then

p(A ∩ B) = 0, (2.111)

so that 2.110 reduces to
p(A ∪ B) = p(A) + p(B). (2.112)

Two events are called independent if one does not affect the other. If the events A and
B are independent from each other, the probability that both will occur is equal to the
product of their probabilities:

p(A ∩ B) = p(A)p(B) (2.113)

The conditional probability that A occurs after B has occurred, is given by:

p(A|B) = p(A ∩ B)
p(B) (2.114)
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2.8.2 Random Variables and Density Function

This section introduces random variables and the density function as described in [4]. A
random variable is a function that maps each point in the sample space to a real number.
In a tracking scenario a random variable X(t) maps time to a position and gives for any
time t the expected position. For a continuous variable the probability p(A) of a single
discrete event A equals zero, p(A) = 0. Therefore we use the cumulative distribution
function to evaluate the probability of events within some interval:

FX(x) = P (−∞, x] (2.115)

[4]

The function FX(x) stands for the cumulative probability of the continuous random
variable X, for all uncountable events up to and including x, and has the following
properties [4]:

• FX(x) → 0 as x → −∞

• FX(x) → 1 as x → +∞

• FX(x) is a non-decreasing function of x.

The probability density function is given by the derivative of the cumulative distribution
function 2.115 [4]:

fX(x) = d

dx
FX(x) (2.116)

The probability density function has, additionally to the properties of the cumulative
distribution function, the following properties [4]:

• fX(x) is a non-negative function

•
� ∞

−∞
fX(x)dx = 1

The probability of all uncountable events within some interval [a, b] for a random variable
X, as illustrated in figure 2.9, is given by the integration of its density function [4]:

P (a ≤ X ≤ b) =
� b

a
fX(x)dx (2.117)
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Figure 2.9: Probability within some interval [a, b]

2.8.3 Expected Value and Variance
This section introduces the expected value and variance as described in [4]. The average
of a sequence of numbers also called sample mean of a discrete random variable X with
N samples is given by [4]:

X = X1 + X2 + · · · + XN

N
(2.118)

In tracking scenarios continuous signals have an uncountable sample space with an infi-
nite number of samples. A discrete random variable can be approximated by averaging
probability weighted events for each of the n possible outcomes of x1 . . . xn [4]:

X ≈ p1Nx1 + · · · + pnNxN

N
(2.119)

By drawing samples indefinitely, we get the definition of the expected value for discrete
random variables with n possible outcomes x1 . . . xn and their corresponding probabilities
p1 . . . pn [4]:

Expected value of X = E(X) =
n!

i=1
pixi (2.120)

For a continuous random variable the expected value is defined as [4]:

Expected value of X = E(X) =
� ∞

−∞
xfX(x)dx (2.121)

Applying a function of a random variable X to the equations 2.120 and 2.121 will give
us

E(g(X)) =
n!

i=1
pig(xi), (2.122)
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and,
E(g(X)) =

� ∞

−∞
g(x)fX(x)dx. (2.123)

[4]

The expected value of a random variable is called first statistical moment. Applying
g(X) = Xk to the equation 2.123, we obtain the kth statistical moment of a continuous
random variable X,

E(Xk) =
� ∞

−∞
xkfX(x)dx. (2.124)

[4]

The second moment of a continuous random variable is given by [4]:

E(X2) =
� ∞

−∞
x2fX(x)dx (2.125)

Applying g(X) = X − E(X) to the equation 2.125, we get the variance of the signal
about the mean [4]:

Variance of X = E[(X − E(X))2] = E(X2) − E(X)2 (2.126)

The variance indicates how much a signal deviates from its mean and is a useful charac-
teristic to determine how much jitter or noise is present within a signal. Another useful
characteristic is the standard deviation, which is always positive and has the same unit
as the original signal

Standard deviation of X = σX =
√

Variance of X. (2.127)

[4]

2.8.4 Joint Probability of Continuous Random Variables
Joint random variables are called multivariate and deal simultaneously with more then
one random variable. The case of two joint random variables is called bivariate. The
cumulative distribution function for the bivariate case is

FXY (x0, y0) = P ({X ≤ x0}) and {Y ≤ y0}) =
� y0

−∞

� x0

−∞
fXY (x, y)dxdy, (2.128)

where x0 lies within X and y0 within Y [7].

The probability that both X and Y lie within a region R is given by [7]:

P ({X, Y } ∈ R) =
� �

R
fXY (x, y)dxdy (2.129)

The joint probability density function is a complete description of the probabilistic re-
lationship between the random variables X and Y . Note that two continuous random
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variables X and Y are statistically independent if the product of their individual proba-
bilities fX(x) and fY (x) is equal to their joint probability fXY (x, y):

fXY (x, y) = fX(x)fY (y) (2.130)

[7]

2.8.5 Bayes’ Theorem
The Bayes’ theorem describes the probability of an event, based on prior knowledge
related to this event and can be derived from the conditional probability 2.114. The
Bayes’ theorem is given by [38]:

P (A|B) = P (B|A)P (A)
P (B) (2.131)

The posterior probability P (A|B) describes the probability of the event B given that
the event A has occurred. P (B|A) represents the likelihood, which is the probability of
event B given that A has ocurred. P (A) and P (B) are the observed probabilities for
event A and B, called prior and marginal probability. [38].

The Bayes’ theorem for continuous random variables is given by [4]:

fX|Y (x) =
fY |X(y)fX(x)

fY (y) (2.132)

2.8.6 Recursive Bayesian Estimation
The Bayesian estimation is applied recursive so that the prior and the current measure-
ment are fused to compute the new posterior estimate. If another measurement is taken
we can use that and our previous posterior estimate as prior estimate to compute a new
posterior estimate, which is based now on two observations. [35]

At each time step k an estimate for the state, considering all observations up to that
time (Z1:k = z1 . . . zk), will be obtained with [35]:

fX|Z1:k(x)� �� �
posterior

=

measurement model� �� �
fZ|X(zk)

prior� �� �
fX|Z1:k−1(x)

fZ|Z1:k−1(zk)� �� �
normalization constant

(2.133)

The posterior probability function fX|Z1:k(x) is a result of incorporating all measurements
up to and including time k. The measurement model fZ|X(zk) represents the likelihood
of the kth measurement and fX|Z1:k−1(x) the prior estimate. The recursive Bayesian
estimator allows to add new information by simply multiplying the prior and the current
likelihood, whatever form of probability density functions they have. The Kalman filter
is using this mechanism with a Gaussian prior and likelihood to create estimates. [35]
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2.8.7 Correlation and Covariance
The expected value of the product of two random variables X and Y is given by [7]:

E(XY ) =
� ∞

−∞

� ∞

−∞
xyfXY (x, y)dxdy (2.134)

In the case that X and Y are independent (see 2.130), fXY from the equation 2.134 can
be factored and reduced to [7]:

E(XY ) =
� ∞

−∞
xfX(x)dx

� ∞

−∞
yf(y)dy = E(X)E(Y ) (2.135)

The two random variables X and Y are uncorrelated, if the equation 2.135 applies. Fur-
thermore the random variables X and Y are orthogonal, if E(XY ) = 0. The covariance
of X and Y is defined as:

Covariance of X and Y = Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] (2.136)

[7]

2.8.8 Spectral Signal Characteristics
Additionally to the previously introduced spatial characteristics of a random variable we
can look at its temporal, hence spectral characteristics. The magnitude of the variance
tells us how much noise or jitter is present within the signal, but it doesn’t say anything
about the rate of jitter over time. A useful spectral characteristic is the autocorrelation,
its the correlation of a random signal with itself over time. [4]

The autocorrelation of a random signal X(t) for the arbitrary sample times t1 and t2 is
given by

RX(t1, t2) = E[X(t1)X(t2)], (2.137)

it is a measure for how much a process is correlated at two different times with itself [7].

If a process is stationary - meaning its density is invariant over time - the equation 2.137
can reduced to a function of the time difference τ = t2 − t1 [7]:

RX(t1, t2) = E[X(t)X(t + τ)] (2.138)

If the underlying process is changing rapidly over time, the autocorrelation function
will decrease rapidly with an increase of τ . The auto correlation is a function of time,
meaning it has also a spectral interpretation in the frequency domain. For a stationary
process the temporal-spectral relationship is given by the Wiener-Khinchine relation:

SX(jω) = F [RX(τ)] =
� ∞

−∞
RX(τ)e−jωτ dτ (2.139)

[4]
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Where F [·] stands for the Fourier transformation, and ω indicates the number of 2π cycles
per second [7]. The power spectral density function of the random signal is denoted as
SX . This equation describes the relationship between time and frequency spectrum of
the underlying signal [4].

White noise can described as autocorrelation function of a dirac delta function δ(τ), with
a value of zero everywhere and a constant magnitude A when τ = 0. The dirac delta
function is given by:

RX(τ) =
�

if τ = 0 then A

else 0
(2.140)

[4]

In that case the autocorrelation function is a spike and results in a constant frequency
spectrum through the Fourier transformation. This means white noise has in theory
power at all frequencies in the spectrum and is completely uncorrelated with itself at
any time except the present. In reality random signals can be modelled as filtered white
noise which is both band-limited in the frequency domain and more correlated in the
time domain. [4]

2.8.9 Normal or Gaussian Distribution

Many naturally occurring random processes appear to be normally distributed or very
close [4]. Furthermore the central limit theorem states that “under moderate conditions
the sum of random variables with any distribution tends towards a normal distribution”
[4]. The probability density function for a normally distributed continuous random
process X ∼ N (µ, σ2) with a mean µ and a variance σ2 is given by [4]:

fX(x) = 1√
2πσ2

e− 1
2

(x−µ)2

σ2 , −∞ < x < ∞ (2.141)

The bell shaped Gaussian distribution function is shown as graph in figure 2.10.

2.8.10 Multivariate and Covariance Matrix

Multivariate random variables can be represented as a random vector X with k random
variables X1, X2 . . . Xk [7]:

X =


X1
X2
...

Xk

 (2.142)
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Figure 2.10: Gaussian density function

The random variables of X may be correlated and have non-zero means [7]. The mean
values µ1, µ2, . . . µk of these random variables can be written as a vector µ [7]:

µ =


µ1
µ2
...

µk

 (2.143)

The variances and correlation of the k variates of the random vector X can be represented
with the covariance matrix [7]:

C =


E[(X1 − µ1)2] E[(X1 − µ1)(X2 − µ2)] . . . E[(X1 − µ1)(Xk − µk)]

E[(X2 − µ2)(X1 − µ1)] E[(X2 − µ2)2] . . . [E(X2 − µ2)(Xk − µk)]
...

... . . . ...
E[(Xk − µk)(X1 − µ1)] [(Xk − µk)(X2 − µ2)] . . . E[(Xk − µk)2]


(2.144)

The terms along the major diagonal of the covariance matrix C represent the variances
and the off-diagonal terms the covariances [7]. The random variables X1, X2, . . . Xk are
called jointly normal or jointly gaussian if their joint probability can be described with
the density function [7]:

fX(x1, . . . xk) = 1�
(2π)k|C|

e− 1
2 (x−µ)T C−1(x−µ) (2.145)

Note that in order for fX to be properly defined C−1 must exist, meaning C must be
non-singular [7].
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Figure 2.11: Bivariate gaussian normal density function

Figure 2.11 illustrates different bivariate gaussian density functions. The center of the
gaussian density function is defined by the mean values µX and µY of X and Y . The
form of the gaussian bell curve is shaped by the covariance matrix C. If the random
variables are uncorrelated, meaning E[(X −µX)(Y −µy)] = 0, the bell curve is distorted
vertically or/and horizontally, otherwise it is also distorted diagonally.

2.9 State-Space-Model
A state-space-model uses state variables to estimate and control the state of a system,
and keeps track of otherwise untraceable system dynamics [4]. It can be described by
an n-th order difference equation [4]:

yi+1 = a0,iyi + · · · + an−1,iyi−n+1 + ui, i ≥ 0 (2.146)

Where ui represents a white noise random process with a zero-mean and an autocorre-
lation of [4]:

E(ui, uj) = Ru = Qiδij (2.147)

The initial random variables {y0, y−1, . . . , y−n+1} have a zero-mean and a known n × n
covariance matrix [4]:

P0 = E(y−j , y−k), j, k ∈ {0, n − 1} (2.148)
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It is also assumed that [4]:

E(ui, yi) = 0 for − n + 1 ≤ j ≤ 0 and i ≥ 0 =⇒ E(ui, yi) = 0, i ≥ j ≥ 0 (2.149)

This means that the noise is statistically independent from the estimated process [4].
The difference equation 2.146 can also be written as [4]:

x̀i+1 ≡


yi+1
yi

yi−1
...

yi−n+2

 =


a0 a1 . . . an−2 an−1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


� �� �

F


yi

yi−1
yi−2

...
yi−n+1


� �� �

x̀i

+


1
0
0
...
0


����

G

ui (2.150)

Which gives us the state-space-model [4]:

x̀i+1 = Fx̀i + Gui (2.151)

ỳi = Hx̀i (2.152)

The new state x̀i+1 is a linear combination of the previous state x̀i and the process
noise ui. The process measurement or observation denoted as ỳi and is derived from the
internal state x̀i. The equation 2.151 is referred to as process model and the equation
2.152 as measurement process. These two equation are the basis of linear estimation
methods such as the Kalman filter. The process model describes the transformation of
the process state over time and the measurement model the relationship between the
process state and the measurements. [4]

2.9.1 Measurement and Process Model
Sensors measurements are typically noisy, additionally electrical noise is added to the
signal through electrical circuits. Each type of sensor has its own limitations related to
the physical medium they depend on, pushing the envelope on those limitations causes
a degradation of the signal. The time varying noise applied to the signal affects the
quantity and the quality of information provided by a sensor. A solution for this prob-
lem is to interpret a result obtained from a sensor as one part of an overall sequence of
estimates and use analytical measurement models to incorporate some notion of mea-
surement noise or uncertainty. Another problem is that the actual state transform model
is unknown, but it is possible to establish models based on recent state transformations
and make predictions over relatively short intervals. The models and their predications
are not always accurate, therefore similar to sensor information, ongoing estimates are
qualified as they are combined with measurements and previous estimates. Like measure-
ment models, process models incorporate some notion of random motion or uncertainty.
Which leads us to the observer design problem, a general problem of linear systems the-
ory. The basic problem is that a linear systems internal state has to be estimated by its
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output. This is a also known as black box problem, where one can access the systems
output signals but cannot observe what’s inside. This problem can be tackled with the
previously introduced state-space model. [4]

The process model and its corresponding process noise, denoted as random variable wk,
can be represented as difference equation similar to equation 2.151 [4]:

xk = Fxk−1 + Buk + wk−1 (2.153)

The measurement model and its corresponding measurement noise, denoted as random
variable vk, can be represented as linear expression similar to equation 2.152 [4]:

zk = Hxk + vk (2.154)

The measurements, represented as the dependent variable zk, do do not have to be
elements of the state, but can be any linear combination of the states elements [4].

2.10 Linear Kalman Filter
2.10.1 Process Description
The Kalman filter relies on the state-space model (see section 2.9) to estimate the state
x ∈ Rn of a discrete process, which changes over time and is controlled by the stochastic
linear difference equation

xk = Fxk−1 + Buk + wk, (2.155)
and the measurement z ∈ R, which can be described by the linear expression

zk = Hxk + vk. (2.156)

[4]

The equation 2.155 is also called time update equation and predicts a new estimate. The
n×n matrix F represents the state transition matrix and relates the previous state xk−1
to the current state xk, while the n× l matrix B relates the optional control input u ∈ Rl

to the current state xk. The random variable wk represents the process noise of the time
update. The equation 2.156 is also referred to as measurement update equation. The
m × n matrix H relates the state xk to the measurement zk. The random variable vk

represents the measurement noise. [4]

Note that the random variables w and v are white noise, are independent from each
other, and have normal probability distributions [4]:

fW (w) ∼ N (0, Q) (2.157)

fV (v) ∼ N (0, R) (2.158)
The process covariance matrix is denoted as Q and the measurement covariance matrix
as R. In reality the matrices F, B, H, Q and R might change with each time step, but
for simplicity we assume they are constant. [4]
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2.10.2 Derivation
Measurement Update

The measurement model can be represented as linear expression [35]:

zk = Hxk + vk (2.159)

The measurement zk is corrupted by a Gaussian noise fV (v) ∼ N (0, R), which has a
mean of zero, a covariance R and number of dimensions n, using 2.145 we have [35]:

fV (v) = 1 
(2π)n|R|e

− 1
2 vT R−1v (2.160)

Assuming that the measurement likelihood and the prior density functions are Gaussian
distributed, the measurement likelihood is given by [35]:

fZ|X(z) = 1 
(2π)n|R|e

− 1
2 (z−Hx)T R−1(z−Hx) (2.161)

We define the prior state estimate x̂k|k−1 ∈ Rn and the n × n covariance matrix Pk|k−1
at the time step k, which are representing prior knowledge of the process. Additionally
we define the posterior state estimate x̂k|k ∈ Rn, the n × n covariance matrix Pk|k and
the measurement zk at time step k. [4]

The prior probability is then given by[35]:

fX|Z1:k−1(x) = 1�
(2π)n|Pk|k−1|

e
− 1

2 (x−x̂k|k−1)T P −1
k|k−1(x−x̂k|k−1)

. (2.162)

The posterior probability fX|Z1:k(x) can be calculated for every time step k by applying
the Bayes theorem recursively (see 2.8.6) [35]. Applying the measurement likelihood
2.161 and the prior 2.162 to the posterior equation 2.133 we get [35]:

fX|Z1:k(x) =
1√

(2π)n|R|e
− 1

2 (z−Hx)T R−1(z−Hx) 1√
(2π)n|Pk|k−1|e

− 1
2 (x−x̂k|k−1)T P −1

k|k−1(x−x̂k|k−1)

C(z)
(2.163)

Since a Gaussian multiplied with a Gaussian equals a Gaussian, the resulting posterior
fX|Z1:k(x) will also be a Gaussian. The scale factor and the exponential function of the
equation 2.163 can be ignored which gives us [35]:

(z − Hx)T R−1(z − Hx) + (x − x̂k|k−1)T P −1
k|k−1(x − x̂k|k−1) (2.164)

The equation above can be expressed in a quadratic way [35]:

(x − ˆxk|k)T P −1
k|k (x − ˆxk|k) (2.165)
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It is possible to derive the Minimum mean square error (MMSE) estimate x̂k|k and the
covariance Pk|k with some lengthy algebraic modifications, by expanding and rearranging
the equation 2.164 and 2.165 (see [35]).

Given a measurement zk, its uncertainty covariance matrix R, the prior state estimate
x̂k|k−1 and the covariance Pk|k−1, the new estimate and covariance are given as [35]:

Sk = HPk|k−1HT + R

Kk = Pk|k−1HT S−1
k

x̂k|k = x̂k|k−1 + K(zk − Hx̂k|k−1)
Pk|k = Pk|k−1 − KkSkKT

k

(2.166)

The term zk − Hx̂k|k−1 is denoted as Innovation, the covariance matrix S as Innovation
Covariance and the Kalman gain as K. [35]

Time Update

The time update process can be modelled using the stochastic linear difference equation
[4]:

xk = Fxk−1 + Buk + wk (2.167)

The uncertainty in the time update process model is incorporated by adding the Gaus-
sian noise fW (w) ∼ N (0, Q) [35]. The new MMSE estimate x̂k|k−1 at time step k,
incorporates measurements up to and including time step k − 1, and is given by [35]:

x̂k|k−1 = E[xk|Z1:k−1] (2.168)
= E[Fxk−1 + Buk + wk|Z1:k−1] (2.169)
= FE[xk−1|Z1:k−1] + Buk + E[wk|Z1:k−1] (2.170)
= Fx̂k−1|k−1 + Buk + 0 (2.171)

This means our time update process model gives us the new best estimate x̂k|k−1 at time
step k [35]. The covariance matrix of the prediction step is given by [35]:

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |Z1:k] (2.172)

Applying the equations 2.167 and 2.171 to 2.172 we receive [35]:

Pk|k−1 = E[(F (xk−1 − x̂k−1|k−1) + wk)(F (xk−1 − x̂k−1|k−1) + wk)T |Z1:k−1] (2.173)

Assuming that the previous best estimate x̂k−1|k−1 and the noise vector wk are uncorre-
lated, and expanding 2.173, causes all cross terms between x̂k−1|k−1 and wk to disappear
[35]. Which gives us the prior covariance matrix [35]:

Pk|k−1 = FPk−1|k−1F T + Q (2.174)
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2.10.3 Equations

The Kalman filter is a recursive algorithm where its output becomes the input of the
next iteration and consists of a time update (prediction) and a measurement update [4,
35]. The initial values for x̂0|0 and P0|0 are derived based on knowledge of the data [35].
The Kalman filter is a predictor-corrector algorithm where the time update functions as
predictor and the measurement update as corrector [4].

Time update equations (predictor) [4]:

x̂k|k−1 = Fx̂k−1|k−1 + Buk (2.175)
Pk|k−1 = FPk−1|k−1F T + Q (2.176)

The time update projects the current state and error covariance estimates forward in
time to obtain the prior estimates for the next time step [4].

Measurement update equations (corrector) [4]:

Sk = HPk|k−1HT + R (2.177)
Kk = Pk|k−1HT S−1

k (2.178)
x̂k|k = x̂k|k−1 + K(zk − Hx̂k|k−1) (2.179)
Pk|k = Pk|k−1 − KkSkKT

k (2.180)

The measurement update corrects the prediction by fusing the prior with a new mea-
surement to obtain the improved posterior estimate [7, 35].

The difference between the measurement zk and the prediction Hx̂k|k−1 is called inno-
vation. They are both identical, if the prediction is in complete agreement with the
measurement. The measurement update does not have to happen every iteration. In-
stead if no new measurement is available the last best estimate at time k is simply the
prediction x̂k|k−1. At each time update Q is added to covariance matrix Pk|k−1, which
gets therefore inflated. This means the time update increases the uncertainty, because
our model is inaccurate. The measurement update on the other hand deflates the co-
variance matrix Pk|k, because KkSkKT

k gets subtracted from the prior covariance Pk|k−1.
Each measurement update adds information to the state estimate x̂k|k, which increases
its certainty. [35]
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2.11 Extended Kalman Filter

2.11.1 Process Description
The linear Kalman filter from section 2.10 is only applicable to linear processes, but the
majority of real world applications require non-linear models [35].

The extended Kalman filter is able to solve this problem and deal with non-linear sce-
narios like rotations. In order to deal with non-linear processes the estimation can be
linearized with a Taylor series approximation around the current estimate using the par-
tial derivatives of the prediction and measurement function. This makes it possible to
compute estimates for non-linear relationships [4].

We want to estimate the state vector x ∈ Rn of a non-linear process governed by the
non-linear stochastic difference equation

xk = f(xk−1, uk, wk), (2.181)

and the measurement z ∈ Rn,
zk = h(xk, vk). (2.182)

[4, 35]

The time update process noise is denoted as wk and the measurement update process
noise as vk. The non-linear function f relates the previous state xk−1 at time step k − 1
to the current state xk at time step k. The input parameters of the time update function
are the control input uk and the zero mean process noise wk. The non-linear function h
relates the state xk to the measurement zk. In the practice we do not know the values
of wk and vk, but the state and measurement can be approximated without them. [4]

2.11.2 Derivation
Time Update

The process and measurement model are given by [35]:

xk = f(xk−1, uk) + wk (2.183)
zk = h(xk, uk) + vk (2.184)

The extended Kalman filter linearizes the non-linear prediction and measurement model
around the current estimate, by using a Taylor series expansion [35]. Let’s assume that
we have x̂k−1|k−1 so that xk is given by [35]:

xk = f(x̂k−1|k−1, uk) + Fx(xk−1|k−1 − x̂k−1|k−1) + . . . (2.185)

The term Fx represents the Jacobian matrix of the function f with respect to the state
x [35]. The jacobian matrix contains all the first order derivatives of the vector function
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f(x) and is specified as [35]:

Fx = ∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xn

]
... . . . ...

∂fm

∂x1
. . . ∂fm

∂xn

 (2.186)

Knowing that
x̂k|k−1 = E[xk|Z1:k−1] (2.187)

and
x̂k−1|k−1 = E[xk−1|Z1:k−1], (2.188)

we can substitute the equation 2.185 into 2.187, and apply 2.188 to get the estimate [35]:

x̂k|k−1 = E[f(x̂k−1|k−1, uk) + Fx(xk−1 − x̂k−1|k−1) + · · · + wk|Z1:k−1]
= E[f(x̂k−1|k−1, uk)|Z1:k−1] + Fx(x̂k−1|k−1 − x̂k−1|k−1)
= f(x̂k−1|k−1, uk)

(2.189)

This means that our new prediction at time step k is the result of our non-linear pre-
diction model f given the last best estimate x̂k−1|k−1 and the control signal uk as input
parameters. Next we derive the covariance by looking at the behavior

x̃k|k−1 = xk − x̂k|k−1, (2.190)

because we know that

Pk|k−1 = E[x̃k|k−1x̃T
k|k−1|Z1:k−1]. (2.191)

[35]

The Jacobians of f are evaluated at x̂k−1|k−1, so that we can write [35]:

x̃k|k−1 = xk − x̂k|k−1 (2.192)
≈ f(x̂k−1|k−1, uk) + Fx(xk−1 − x̂k−1|k−1) + wk − f(x̂k−1|k−1, uk) (2.193)
= Fx(xk−1|k−1 − x̂k−1|k−1) + wk (2.194)
= Fx(x̃k−1|k−1) + wk (2.195)

so that [35]:

Pk|k−1 = E[x̃k|k−1x̃T
k|k−1|Z1:k−1] (2.196)

≈ E[(Fxx̃k−1|k−1 + wk)(Fxx̃k−1|k−1 + wk)T |Z1:k−1] (2.197)
= E[Fxx̃k−1|k−1x̃T

k−1|k−1F T
x |Z1:k−1] + E[wkwT

k |Z1:k−1] (2.198)
= FxPk−1|k−1F T

x + Q (2.199)
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The prediction model is then given as

xk = f(xk−1, uk, wk), (2.200)

where the noise wk is not simply additive. The posterior equations can be deriving by
applying a multivariate Taylor series expansion. The derivation procedure is complex
but the end result is intuitive. The state estimate remains unchanged and the posterior
covariance matrix becomes :

Pk|k−1 = FxPk−1|k−1F T
x + WwQW T

w (2.201)

[35]
The jacobian matrix Ww is defined as [4]:

Ww = ∂f

∂w
(2.202)

Measurement Update

We assume our non-linear measurement model is given by [35]:

zk = h(xk) + vk (2.203)

The predicted measurement zk|k−1 is given by projecting the last best estimate x̂k|k−1
through the measurement model [35]:

zk|k−1 = E(zk|Z1:k−1) (2.204)
zk|k−1 = h(x̂k|k−1) (2.205)

The innovation, which is the difference of the actual measurement zk and its prediction
zk|k−1, can be derived using a Taylor series [35]:

zk ≈ h(x̂k|k−1) + Hx(x̂k|k−1 − xk) + · · · + vk (2.206)
z̃k|k−1 = zk − zk|k−1 (2.207)

= h(x̂k|k−1) + Hx(x̂k|k−1 − xk) + . . . vk − h(x̂k|k−1) (2.208)
= Hx(x̂k|k−1 − xk) + vk (2.209)
= Hx(x̃k|k−1) + vk (2.210)

Where the term Hx is the Jacobian matrix [4]:

Hx = ∂h

∂x
(2.211)

The innovation covariance matrix S is then given by [35]:

S = E[z̃k|k−1z̃T
k|k−1|Z1:k−1] (2.212)

= E[(Hx(x̃k|k−1) + vk)(Hx(x̃k|k−1) + vk)T |Z1:k−1] (2.213)
= HxE[x̃k|k−1x̃T

k|k−1|Z1:k−1] + E[vkvT
k |Z1:k−1] (2.214)

= HxPk|k−1HT
x + R (2.215)
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The term E[x̃k|k−1vT
k |Z1:k] is zero because the measurement noise and the prediction

error are expected to be uncorrelated [35]. Let’s assume we have a gain K to relate the
prediction and the innovation with the posterior [35]:

x̂k|k = x̂k|k−1� �� �
prediction

+ K����
gain

( zk����
measurement

− h(x̂k|k−1)� �� �
predicted measurement

)

� �� �
innovation

(2.216)

We can now look at the expansion of x̃k|k and take its square to get the covariance matrix
Pk|k [35]:

Pk|k = E[x̃k|kx̃T
k|k|Z1:k] (2.217)

x̃k|k = x̂k|k − xk (2.218)
= x̂k|k − xk (2.219)
= x̂k|k−1 + K(zk − h(x̂k|k−1)) − xk (2.220)
= x̂k|k−1 + Kz̃k|k−1 − xk (2.221)

Substituting our innovation estimate z̃k|k−1 with 2.210

= x̂k|k−1 + K(Hxx̃k|k−1 + vk) − xk (2.222)
= x̃k−1 + KHxx̃k|k−1 + Kvk (2.223)
= (I − KHx)x̃k|k−1 + Kvk (2.224)

The covariance matrix Pk|k is now given by [35]:

Pk|k = E[x̃k|k−1x̃T
k|k−1|Z1:k] (2.225)

= E[((I − KHx)x̃k|k−1 + Kvk)((I − KHx)x̃k|k−1 + Kvk)T |Z1:k] (2.226)
= (I − KHx)E[x̃k|k−1x̃T

k|k−1|Z1:k](I − KHx)T + KE[vkvT
k |Z1:k]KT (2.227)

= (I − KHx)Pk|k−1(I − KHx)T + KRKT (2.228)
The expected value of x̃ is zero, the cross-terms of the expansion are therefore also zero
[35]. Using a calculus and some algebraic modifications we receive the Kalman gain K
[35]:

S = HxPk|k−1HT
x + VvRV T

v (2.229)
K = Pk|k−1HT

x S−1 (2.230)
Substituting the equation

Pk|k−1HT
x = KS (2.231)

into the equation 2.228 gives us the posterior covariance matrix [35]:
Pk|k = Pk|k−1 − KSKT (2.232)

The jacobian matrix Vv is defined as [4]:

Vv = ∂f

∂v
(2.233)

49



2. State of the Art

2.11.3 Equations
The extended Kalman filter allows to estimate non-linear relationships [4]. Similar to
the linear Kalman filter it consists of a time and measurement update.

Time update equations (predictor) [4]:

x̂k|k−1 = f(x̂k−1|k−1, uk) (2.234)
Pk|k−1 = FxPk−1|k−1F T

x + WwQW T
w (2.235)

The time update of the extended Kalman filter projects the state and covariance esti-
mates from the previous time step k − 1 to the current time step k. The function f
represents the state vector approximation. Fx and Wv are the process Jacobian matrices
and Q the process noise at time step k − 1. [4]

Measurement update equations (corrector) [4]:

S = HxPk|k−1HT
x + VvRV T

v (2.236)
K = Pk|k−1HxS−1 (2.237)

x̂k|k = x̂k|k−1 + K(zk − h(x̂k|k−1)) (2.238)
Pk|k = Pk|k−1 − KSKT (2.239)

The measurement update corrects the state and covariance estimates with the measure-
ment zk. The function h represents the measurement approximation, Hx and Vv the
measurement Jacobian matrices and R the measurement noise at time step k. [4]

2.12 Error-State Kalman Filter

2.12.1 Introduction
The Error-state Kalman Filter (ESKF) utilizes dead-reckoning to determine the posi-
tioning by integrating accelerometer and gyrometer readings of the IMU. The readings
are fused with absolute positioning data, such as vision tracking data, to avoid a drift
with time caused by accumulated integration errors of IMU readings. [43]

The ESKF has the following properties:

• It relies on a minimal error-state to avoid issues related to over-parameterization
and the risk of singularity of the involved covariance matrices [43].
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• “The error-state is always operating close to the origin” [43], thus preventing pos-
sible parameter singularities, gimbal lock issues and it guarantees the validity of
the linearization [43].

• “The error-state is always small, meaning that all second-order products are negli-
gible. This makes the computation of Jacobians very easy and fast.” [43].

• The procedure to apply Kalman filter corrections, in order to observe the errors,
is slow because all the large-signal dynamics have to be integrated in the nominal-
state, but the corrections are applied at a lower rate than the predictions [43].

2.12.2 Process Description
The ESKF distinguishes between true-, nominal- and error-state values. The true-state
xt is a composition of the nominal-state x and error-state δx. The nominal-state is con-
sidered as large-signal (non-linear integrable) and the error-state as small-signal (linear
integrable). High frequency IMU data um is integrated into the nominal-state x, while
the noise terms w and other possible model imperfections are not considered, which leads
to the accumulation of errors. These accumulated errors are collected in the error-state
δx and estimated with the ESKF, to incorporate all the noise w and perturbations i. The
error-state estimates a discrete time-varying process, consists of small-signal magnitudes
and its process is governed by the linear system dynamic

δx ← f(x, δx, um, i) = Fx(x, um) δx + Fi i, (2.240)

where Fx and Fi are the Jacobians of f in respect to the error and perturbations vec-
tors. Note that x ← f(x, •) stands for a discrete time update of xk = f(xk−1, •k−1).
The ESKF uses values of the nominal-state to compute the dynamic, control and mea-
surement matrices and predicts the Gaussian estimate of the error-state. At this stage
the ESKF only predicts, because no absolute measurement is available to correct the
estimate. The observation of the true-state by the measurement

z = h(x, v), (2.241)

allows to correct the filter state upon the availability of absolute positioning information.
This is happening at a lower rate then integration phase. The function h of the system
state is generally nonlinear and v is a Gaussian noise v ∼ N {0, V } with a covariance
V . The measurement renders the error observable and provides a posterior Gaussian
estimate of the error-state. Next, the error-state’s mean is injected into the nominal-
state and reset to zero. Additionally the corresponding covariance matrices are updated
to reflect the reset. This process repeats itself with each newly available IMU reading
or observation. [43]

2.12.3 Variables of the ESKF
All the involved ESKF variables are summarized in table 3.2. We use angular rates
that are locally defined with respect to the nominal quaternion. This means that the
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Magnitude True Nominal Error Composition Measured Noise
Full state 1 xt x δx xt = x ⊕ δx

Position pt p δp pt = p + δp
Velocity vt v δv vt = v + δv
Quaternion qt q δq qt = q ⊗ δq
Rotation Matrix Rt R δR Rt = R δR

Angles vector δθ
δq = eδθ/2

δR = e[δθ]×

Accelerometer bias abt ab δab abt = ab + δab aω

Gyrometer bias ωbt ωb δωb ωbt = ωb + δωb ωw

Gravity vector gt g δg gt = g + δg

Acceleration at am an

Angular rate ωt ωm ωn

1 The symbol ⊕ stands for a generic composition.
Table 2.1: Variables of the ESKF [43]

gyrometer measurements ωm can be used directly, because the provided angular rates
are referenced in the body-frame and the angular error δθ is therefore also defined locally
[43].

2.12.4 System Kinematics in Continuous Time

This section outlines the kinematic equations for continuous time (see [43] for proof).

We define a kinematic system

x�
t = ft(xt, um, w), (2.242)

with a state xt, noisy IMU readings um and a perturbing white Gaussian noise w,

xt =



pt

vt

qt

abt

ωbt

gt


, um =

�
am − an

ωm − ωn

�
, w =

�
aw

ωw

�
. (2.243)

[43]
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The true-state kinematics for this system are given by [43]:

p�
t = vt (2.244)

v�
t = Rt(am − abt − an) + gt (2.245)

q�
t = 1

2qt ⊗ q(ωm − ωbt − ωn) (2.246)

a�
bt = aw (2.247)

ω�
bt = ωw (2.248)
g�

t = 0 (2.249)

Note that the system estimates the gravity vector gt, for simplicity an initial orientation
of q0 = (1, 0, 0, 0) is usually taken and the initial rotation matrix is therefore R0 =
R{q0} = I. [43]

Nominal-State Kinematics

The nominal-state kinematics ignore noise and perturbations and are given by [43]:

p� = v (2.250)
v� = R(am − ab) + g (2.251)

q� = 1
2q ⊗ (ωm − ωb) (2.252)

a�
b = 0 (2.253)

w�
b = 0 (2.254)

g� = 0 (2.255)

Error-State Kinematics

The linearized error-state dynamics can be determined by solving each composite equa-
tion of the table 3.2 for the error-state and simplifying all second order infinitesimals
[43]:

δp� = δv (2.256)
δv� = −R[am − ab]×δθ − Rδab + δg − Ran (2.257)
δθ� = −[ωm − ωb]×δθ − δωb − ωn (2.258)
δa�

b = aω (2.259)
δω�

b = aw (2.260)
δg� = 0 (2.261)

2.12.5 System Kinematics in Discrete Time
The differential equations of the system kinematics in continuous time need to be in-
tegrated into difference equations to account for discrete time intervals ∆t > 0. The
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integration has to be done for the subsystem of the nominal-state and the error-state.
The error-state consists of a deterministic part, incorporating the state and control dy-
namics, and a stochastic part, incorporating noise and perturbations. [43]

The nominal-state vector x, the error-state vector δx, the input vector um and the
perturbation impulses vector i for these equations are defined as [43]:

x =



p
v
q
ab

ωb

g


, δx =



δp
δv
δθ
δab

δωb

δg


, um =

�
am

ωm

�
, i =


vi

θi

ai

ωi

 (2.262)

Nominal-State Kinematics

The difference equations for the nominal-state are given by [43]:

p ← p + v∆t + 1
2R((am − ab) + g)∆t2 (2.263)

v ← v + (R(am − ab) + g)∆t (2.264)
q ← q ⊗ q{(ωm − ωb)∆t} (2.265)

ab ← ab (2.266)
ωb ← ωb (2.267)
g ← g. (2.268)

The rotation matrix R ≜ R{q} represents the rotation of the current nominal orientation
q and q{r} represents the quaternion of the rotation r, (see 2.67). [43]

Error-State Kinematics

The integration of the error-state’s deterministic and the stochastic part (see [43]) results
in:

δp ← δp + δv∆t (2.269)
δv ← δv + (−R[am − ab]×δθ − Rδab + δg)∆t + vi (2.270)
δθ ← RT {ωmδt}δθ − δω∆t + θi (2.271)

δab ← δab + ai (2.272)
δωb ← ωb + ωi (2.273)
δg ← δg (2.274)

The random impulses vi, θi, ai and ωi “are applied to velocity, orientation and bias
estimates and are modeling white Gaussian processes” [43]. They have a mean of zero
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“and their covariance matrices are obtained by integrating the covariances of an, ωn, aw

and ωw over the step time ∆t” [43], which gives us:

Vi = σ2
an

∆t2I (2.275)
Θi = σ2

ωn
∆t2I (2.276)

Ai = σ2
aω

∆tI (2.277)
Ωi = σ2

ωω
∆tI (2.278)

The covariances σ2
an

, σ2
ωn

, σ2
aω

and σ2
ωω

can be obtained from the IMU datasheet or by
measurements [43].

2.12.6 Procedure Description

As explained in detail in section 2.12.2 the ESKF makes predictions using IMU data and
corrects these predications with absolute positioning data [43]. The whole procedure
consists of the following steps [43]:

1. Predication of the error-state δx by incorporating all the noise and perturbations.

2. Observation of the error-state by calculating the error via filter correction.

3. Injecting the observed error into the nominal-state.

4. Reset the error-state.

Prediction of the Error-State

Following the definition of the error-state equation 2.240 the ESKF prediction equations
are given by[43]:

Prediction of the error-state

δx̂ ← Fx(x, um) δx̂ (2.279)
P ← FxPF T

x + FiQiF
T
i (2.280)

The error-state δx is a Gaussian random variable with δx ∼ N {δx̂, P}. Fx and Fi are
the Jacobian matrices of f with respect to the error and perturbation vectors. The
covariance matrix of the perturbation impulses is denoted as Qi. [43]
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The Euler form of the system’s transition matrix Fx is given by [43]:

Fx = ∂f

∂δx

####
x,um

=



I I∆t 0 0 0 0
0 I −R[am − ab]×∆t −R∆t 0 I∆t
0 0 RT {(ωm − ωb)∆t} 0 −I∆t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


(2.281)

All the state-related values are directly extracted from the nominal-state. Since the
mean error δx is initialized with zero, the linear equation 2.279 will always return zero.
Its calculation can therefore be omitted. [43]

The matrices Fi and Qi are defined as [43]:

Fi = ∂f

∂i

####
x,um

=



0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0


, Qi =


Vi 0 0 0
0 Θi 0 0
0 0 Ai 0
0 0 0 Ωi

 (2.282)

The term FiQiF
T
i will grow continuously for every prediction step [43].

Observation of the Error-State

Following the definition of the observation equation 2.241 the correction equations are
given by [43]:

Observation of the error-state

K = PHT (HPHt + V )−1 (2.283)
P ← (I − KH)P (2.284)
δx̂ ← K(z − h(x̂t)) (2.285)

(2.286)

“The Jacobian matrix H is defined with respect to the error-state δx, and evaluated at
the best true-state estimate x̂t = x⊕δx̂.” [43] Because the mean of the error-state is zero
- since it has not been observed yet - the true-state estimate equals the nominal-state
x̂t = x, leading to [43]:

H ≡ ∂h

∂δx

####
x

(2.287)
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The Jacobian can be computed using the chain rule [43]:

H ≜ ∂h

∂δx

####
x

= ∂h

∂xt

####
x

∂xt

∂δx

####
x

= HxXδx (2.288)

The term Hx is the standard Jacobian of h with respect of the true-state. The second
term Xδx is the Jacobian of the true-state with respect to error-state. This term can be
derived using the ESKF composition of states, which results in all identity 3 × 3 blocks
expect the 4 × 3 Quaternion term. [43]

This leaves us with the form [43]:

Xδx ≜ ∂xt

∂δx

####
x

=

I6 0 0
0 Qδθ 0
0 0 I9

 (2.289)

Using the chain rule, the equations 2.13 - 2.15 and the limit δq −−−→
δθ→0

�
1

1
2δθ

�
the quater-

nion term Qδθ can be derived and is given by [43]:

Qδθ = 1
2


−qx −qy −qz

qw −qz qy

qz qw −qx

−qy qx qw

 (2.290)

Injection of the Observed Error

After the observation of the error-state, the nominal-state gets updated using the appro-
priate compositions x ← x ⊕ δx̂ (see table 3.2) [43]:

Injection of the error-state

p ← p + δp̂ (2.291)
v ← v + δv̂ (2.292)
q ← q ⊗ {δθ̂} (2.293)
a ← ab + δâb (2.294)
ω ← ωb + δω̂b (2.295)
g ← g + δĝ (2.296)

Reset of the Error-State

After the injection of the observed error into the nominal-state, the error-state mean δx̂
gets reset. To complete the ESKF update, the covariance of the error-state needs to be
updated accordingly. [43]
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We define an error reset function g, so that [43]:

δx ← g(δx) = δx � δx̂ (2.297)

The � stands for the inverse of the composition ⊕ [43]. The ESKF error reset operation
is than given by [43]:

Reset of the error-state

δx̂ ← 0 (2.298)
P ← GPGT (2.299)

Where the Jocobian matrix G is defined as [43]:

G ≜ ∂g

δx

####
δx

(2.300)

Similarly to the Jacobian of the of the true-state with respect to the error-state Xδx, this
Jacobian matrix is the identity on all diagonal blocks expect for the orientation error
[43]. The derivation of the orientation error block is ∂δθ+

∂δθ = I −



1
2δθ̂

�
×, so that [43]:

G =

I6 0 0
0 I −



1
2δθ̂

�
× 0

0 0 I9

 (2.301)

For most cases, the error term δθ̂ can be neglected, leading to a Jacobian G = I18 and
to a trivial error reset [43].

2.13 Unscented Kalman Filter
This section provides a brief overview of the Unscented Kalman Filter (UKF), an alterna-
tive to the extended Kalman filter. The extended Kalman filter propagates the Probility
density function (PDF) by utilizing a linear approximation of the system’s function
around the operating point at each time instant. The required Jacobian matrices can be
difficult to obtain for higher order systems. Furthermore, the linear approximation intro-
duces errors which cause the state to diverge over time. The nonlinear state estimator
UKF propagates the PDF in a simple way and can overcome the mentioned drawbacks.
The UKF can estimate the mean and covariance up to second order. [25]
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2.13.1 Principle
Consider a random vector x ∈ Rn and a nonlinear function g : Rn → Rm. The goal
is to calculate the PDF of y given the PDF g of x, meaning in the case of g(x) being
Gaussian to compute the mean ȳ and covariance Py of y. [25]
The extended Kalman filter linearizes a nonlinear function g(x) around the current esti-
mate of x, in order to get the mean and covariance of y. The mean ȳEKF and covariance
P EKF

y of y are given by the mean x̄, covariance Px of the PDF of x, and the Jacobian
∇g of g(x) at x̄:

ȳFKF = g(x̄), P EKF
y = (∇g)Px(∇g)T (2.302)

[25]
The discrete process and observation update equations are given by,

xk = f (xk−1, vk−1, uk−1) (2.303)
yk = h (xk, nk, uk) , (2.304)

where x ∈ Rnx represents the system state, v ∈ Rnv stands for the process noise, n ∈ Rnn

for the observation noise, u for the input and y for the noisy observation of the system’s
state. [25]
The UKF operates differently by computing the PDF of y given the PDF of x. In the
case of a Gaussian, the mean ȳUKF and covariance P UKF

y of y are determined. The
UKF uses a set of sigma points x(i), i ∈ {1, . . . , p}, p = 2n + 1, where each point has a
weight w(i) associated. It propagates each sigma point through the nonlinear function
y(i) = g(x(i)). The mean is approximated by the weighted average of the transformed
points,

ȳUKF =
p!

i=0
w(i)y(i), Σw(i) = 1 (2.305)

and the covariance is then computed by the weighted outer product of the transformed
points,

P UKF
y =

P!
i=0

w(i)(y(i) − ȳ)(y(i) − ȳ)T. (2.306)

[25]

2.13.2 Algorithm
The system is represented by the process update equation 2.303 and observation update
equation 2.304. Consider an augmented state at the time instant k,

xa
k ≜

 xk

vk

nk

 , (2.307)
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with the dimensions N = nx + nv + nn, and an augmented state covariance matrix,

P a ≜

 Px 0 0
0 Pv 0
0 0 Pn

 , (2.308)

where Pv and Pn denote the process and observation noise covariance matrices. [25]

The algorithm initializes at k = 0 with,

�x0 = E [x0] , Px0 = E


(x0 − �x0) (x0 − �x0)T

�
(2.309)

�xa
0 = E [xa] = E [�x0 0 0]T (2.310)

P a
0 = E



(xa

0 − �xa
0) (xa

0 − �xa
0)T

�
=

 Px 0 0
0 Pv 0
0 0 Pn

 , (2.311)

and continues for k = 1, 2, . . . , ∞ with [25]:

1. First, 2N + 1 sigma-points are calculated using the present state covariance,

Xa
i,k−1

��
≜ x̂a

k−1, i = 0,

≜ �xa
k−1 + γSi, i = 1, . . . , N,

≜ �xa
k−1 − γSi, i = N + 1, . . . , 2N,

(2.312)

where Si represents the i-th column of the matrix, S =
�

P a
k−1. The a scaling

parameter γ is given by the tuning parameters α and κ,

γ =
√

N + λ, λ = α2(N + κ) − N. (2.313)

The sigma point matrix is defined as,

Xa
i,k−1 =

 Xx
i,k−1

Xv
i,k−1

Xn
i,k−1

 , (2.314)

where each column i represents a sigma point, and x, v and n refer to a partition
of the state, process noise and measurement noise, respectively.

2. Second, for the time-update the sigma points are transformed through the state-
update function,

Xx
i,k/k−1 = f

�
Xx

i,k−1, Xv
i,k−1, uk−1

�
, i = 0, 1, . . . , 2N. (2.315)
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Calculate the prior state estimate and covariance matrix,

�x−
k =

2N!
i=0

�
w(i)

m Xx
i,k/k−1

�
, (2.316)

P −
xk

=
2N!
i=0

w(i)
c

�
Xx

i,k/k−1 − �x−
k

� �
Xx

i,k/k−1 − x̂−
k

�T
. (2.317)

The weights w
(i)
m and w

(i)
c are given as,

w(0)
m = λ

N + λ
, i = 0, (2.318)

w(0)
c = λ

N + λ
+

�
1 − α2 + β

�
, i = 0, (2.319)

w(i)
m = w(i)

c = 1
2(N + λ) , i = 1, . . . , 2N, (2.320)

where β represents a non-negative weighting parameter, which affects the weighting
of the zeroth sigma-point required for the calculation of the covariance.

3. Finally, the measurement-update transforms the sigma points through the mea-
surement function,

Yi,k/k−1 = h
�
Xx

i,k/k−1, Xn
k−1, uk

�
, i = 0, 1, . . . , 2N (2.321)

and the mean and covariance are calculated,

�y−
k =

2N!
i=0

w(i)
m Yi,k/k−1, (2.322)

Pȳk
=

2N!
i=0

w(i)
c

�
Yi,k/k−1 − ŷ−

k

� �
Yi,k/k−1 − ŷ−

k

�T
. (2.323)

The cross covariance is given by,

Pxkyk
=

2N!
i=0

w(i)
c

�
Xx

i,k/k−1 − �xk

� �
Yi,k/k−1 − �yk

�T
. (2.324)

Finally, the Kalman gain is defined as,

Kk = Pxkyk
P −1

ȳk
, (2.325)

and the UKF estimate and covariance are given by,

x̂k = x̂−
k + Kk

�
yk − ŷ−

k

�
, (2.326)

Pxk
= P −

xk
− KkPȳk

KT
k . (2.327)
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CHAPTER 3
Design and Methods

This chapter gives on overview of the investigated concepts and design decisions to imple-
ment and evaluate a TFF for virtual reality systems. The requirements and the design
approach of the TFF, as well as the filter algorithms DESP and ESKF are introduced.

3.1 Requirements
Virtual reality systems should provide an immersive experience for users. In order to
provide such an immersive experience, the user’s state and interactions need to be ac-
curately measured and represented within the VE, and the related changes need to be
traced back to the user’s senses. Any error related to measurement, process or feedback
impacts this experience.

The following requirements have been considered:

Tracking system: The tracking system should ideally posses the properties introduced
in chapter 2.3.1. Properties that should be considered are a high sampling rate to
provide smooth tracking, a low latency to prevent nausea, and accuracy as well
as robustness to enable an immersive experience without glitches. The system is
required to have optical and inertial tracking, to fuse tracking data for improved
performance. Additionally tracking of head, hand and feet should be supported.

Implementation: The implementation of the TFF should be done in the form of an
independent C++ library to be performance efficient. It should read tracking data
from a source, apply a filter algorithm and provide the result as an output. A filter
algorithm needs to be able to smooth positions and rotations, and use quaternions
as a representation for rotations. It needs be possible to control a filter algorithm
with configurable filter parameters. A Kalman filter algorithm with the ability to
fuse sensor data, as well as an exponential filter algorithm has to be implemented.
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Evaluation: The performance of the TFF should be evaluated by analyzing its output
through graphs and from the user’s perspective in the form of a user study. A VE
in which the user has to perform various tasks is to be implemented, to test each
filter implementation and the frameworks performance. The evaluation should
consider quantitative and qualitative data.

3.2 Design

Figure 3.1: Lighthouse 2.0 system [24]

This section outlines the design decisions and gives an overview of this work. The LHTS
is chosen as tracking system and the libsurvive library is used to access the tracking
data. The filter implementation is done with Matlab and C++, and the integration of
the TFF into the UE through a custom plugin that receives the data through websocket.
The implementation is evaluated by analyzing its output with Matlab and by conducting
a user study at which users carry out tasks for each filter system within a VE.

It follows a description of the individual parts of this work:

Tracking system: The LHTS 2.0 (see chapter 2.3.4) is used as a tracking system for
this work. It consists of two tracking base stations, a Head Mounted Display
(HMD) to track head movements and display the VE from the user’s perspective,
and two Knucke Controller (KC) to track hand movements (see figure 3.1). It
provides optical (see chapter 2.3.3) and inertial (see chapter 2.3.3) tracking.

libsurvive: The Steam Virtual Reality (SVR) software only provides position and ro-
tation for poses, because of that the open source library libsurvive (see chapter
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Figure 3.2: Design flow

2.3.5) is used to get the position, rotation, as well the angular velocity and accel-
eration from the IMU. The libsurvive library uses its own positioning algorithm to
estimate position and orientation based on the LHTS lightcap data. It needs to be
compiled and configured via parameters to disable it’s built-in Kalman filter. It
provides two ways to access the tracking data, by parsing the executables standard
output or linking the library and using the high or low-level API.

Filter algorithms: The first chosen algorithm is the DESP (see chapter 2.7.4). It
smooths the position and orientation of poses delivered by the tracking system,
and has the capability to predict in between pose updates. The second algorithm
is the ESKF (see chapter 2.12), it smooths and fuses tracking information from
two different tracking sources. In theory this should result in a better and more
accurate pose prediction. Both algorithms use quaternions as representation for
rotations.

TFF: First the filter algorithms are implemented and evaluated with Matlab using
tracking data recorded with libsurvive (see figure 3.2a). This makes it possible
to gain understanding on the theory and implementation of filter algorithms. It
also provides a reference for the TFF’s standalone C++ library implementation.
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This library takes libsurvive tracking data as input, applies the filter algorithms
and provides the result as an output. Matlab is used as assisting tool to plot and
compare libsurvive tracking data with the output of a filter.

UE integration : The filter output is transferred to the UE through websocket, due
to compatibility issues of the UE with the C Standard General Utilities Library
and the requirement of an independent implementation. A standalone application
hosts a websocket server, and links and runs the C++ filter library. An UE plu-
gin links the websocket client, connects to the websocket server and receives the
filter output. This plugin together with a modified version of the open source UE
plugin StreamVR allows the use of poses for objects within the virtual world from
alternative data sources other the SVR (see figure 3.2b).

Evaluation : The evaluation of the TFF covers measurements of important tracking
properties, the analysis of the filter outputs with Matlab, and the conduction of
a user study. Participants of the user study have to complete tasks within a VE,
which is hosted within the Virtual Reality Application (VRA). Qualitative data
is collected by asking the users for subject feedback on the filter performance.
Quantitative data is collected by recording the time and number of interactions it
takes to complete a task.

3.3 Double Exponential Filter
The DESP described in chapter 2.7.4 has been chosen as exponential filter algorithm
for this work. The DESP variables are listed in table 3.1. An exponential filter uses
weighted averages to smooth observation values (see chapter 2.7.1). The applied weights
decrease exponentially over time, meaning the longer an observation lies in the past
the less impact it has on the current estimate. The DESP is an extensions of Brown’s
linear exponential smoothing (see chapter 2.7.2). It uses the parameter α to control the
smoothing rate, and the first Sy�

t and second smoothing statistic Sy��
t , representing the

weighted average of level and trend from the time series y1 . . . yt. The parameter h is a
factor and stands for the number of Prediction Time Steps (PTS) into the future. The
parameter h and booth calculated smoothing statistics are used to predict the forecast
ŷt+h of the observed time series. The DESP is able calculate forecasts for position p̂t+h

and rotation q̂t+h time series provided by the tracking system.

3.3.1 Parameters
The parameter α controls the rate at which the level and trend for position and rotation
is smoothed. The condition 0 ≤ α ≤ 1 applies to the smoothing rate, low values result
in strong and high values in weak smoothing. The prediction time frame ∆t is the
time interval between the last measurement tm and the time of the prediction tn. The
sampling rate fs stands for the number of observations per second. The parameter h
represents the PTS from the last measurement to the time of the prediction.
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3.3. Double Exponential Filter

Variable Parameter Measurement Prediction
First

smoothing
statistic

Second
smoothing
statistic

Smoothing rate α
PTS h
Current time tn

Measurement time tm

Delta time ∆t
Sampling rate fs

Position pt p̂t+h Sp�
t Sp��

t

Rotation qt q̂t+h Sq�
t Sq��

t

Table 3.1: Variables of the DESP

3.3.2 Procedure

[is Pose]

[is IMU]

Type Smooth Statistics
[is initialized]

 
[not initialized]

 
 

Init?

Reset h

Predict
[is initialized]

[not initialized]

Init?

Initialize

Calculate h

Figure 3.3: DESP procedure workflow

Figure 3.3 illustrates the workflow of the DESP algorithm. The DESP uses the global
coordinate system of libsurvive. On the first pose measurement the algorithm initializes
the smoothing statistics. At the arrival of new pose measurements the algorithm updates
the smoothing statistics and calculates an estimate. On IMU measurements the PTS h
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is calculated and used to predict an estimate. This predicted estimate is based on the
smoothing statistics, the sampling rate and the time since the last measurement. The
procedure is repeated for every new pose and IMU measurement.

It follows a detailed descriptions of the individual steps:

Initialize: Initialize the first and second smoothing statistic on the first pose measure-
ment.

a) Position:

Sp�
t−1 = Sp��

t−1 = pt (3.1)

b) Rotation:

Sq�
t−1 = Sq��

t−1 = qt (3.2)

Smooth statistics: Calculate the first and second smoothing statistics for every pose
measurement (see chapter 2.7.2).

a) Position:

Sp�
t = αpt + (1 − α)Sp�

t−1 (3.3)
Sp��

t = αSp�
t + (1 − α)Sp��

t−1 (3.4)

b) Rotation:

Sq�
t = αqt + (1 − α)Sq�

t−1 (3.5)
Sq��

t = αSq�
t + (1 − α)Sq��

t−1 (3.6)

Reset h: Reset the PTS h and update the last measurement time stamp tm to the
current time tn on pose measurements:

h = 0 (3.7)
tm = tn (3.8)

Calculate h: Calculate the time span ∆t since the last pose measurement tm and the
PTS h on IMU measurements.

∆t = tn − tm (3.9)
h = ∆tfs (3.10)

(3.11)

Predict: Predict estimates for position and rotation using the smoothing statistics (see
chapter 2.7.4).
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3.4. Kalman Filter

a) Low and high PTS: Calculate the low �h� and high �h� PTS required for the
interpolation at the prediction step.

�h� = floor(h) (3.12)
�h� = ceil(h) (3.13)

b) Position: Calculate the low p̂t+�h	 and high p̂t+�h� estimates for the position.

p̂t+�h	 =
�
2 + α�h�

1 − α

�
Sp�

t − �
1 + α�h�

1 − α

�
Sp��

t (3.14)

p̂t+�h� =
�
2 + α�h�

1 − α

�
Sp�

t − �
1 + α�h�

1 − α

�
Sp��

t (3.15)

(3.16)

The final estimate for the position p̂t+h is given by the linear interpolation of
the high and low estimates.

p̂t+h = (p̂t+�h� − p̂t+�h	)(h − �h�) + p̂t+�h	 (3.17)

c) Rotation: The low q̂t+�h	 and high q̂t+�h� estimates for the rotation are given
by (note that the estimates have to be normalized):

q̂t+�h	 =
"""�

2 + α�h�
1 − α

�
Sq�

t − �
1 + α�h�

1 − α

�
Sq��

t

""" (3.18)

q̂t+�h� =
"""�

2 + α�h�
1 − α

�
Sq�

t − �
1 + α�h�

1 − α

�
Sq��

t

""" (3.19)

(3.20)

The final estimate for the rotation q̂t+h is then given by spherical linear inter-
polation.

ρ = h − �h� (3.21)
Ω = arccos(q̂t+�h	 � q̂t+�h�) (3.22)

q̂t+h =
q̂t+�h	sin((1 − ρ)Ω) + q̂t+�h�sin(ρΩ)

sinΩ (3.23)

3.4 Kalman Filter
The ESKF described in chapter 2.12 is used as Kalman filter for this work. For an
overview of the filter variables see table 3.2. The Kalman filter is a best practice approach
combining several stochastic fundamentals.

The true-state of a system xt is estimated by the Kalman filter. Each dimension within
the true-state represents a continuous random variable with a density function (see
chapter 2.8.2). Each of these continuous random variables is a normally distributed
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process (see chapter 2.8.9) and can therefore described by their mean and variance (see
chapter 2.8.3). The true-state xt combines multiple continous random variables (see
chapter 2.8.4) into a random vector. Joint continuous random variables are also referred
to as multivariate (see chapter 2.8.10). A random vector can be represented as a vector
of means and a matrix of correlated variances also called covariance matrix (see chapter
2.8.7). The nominal-state x holds the mean and the covariance matrix P the correlated
variances of these continuous random variables.

The Kalman filter builds on the state-space-model to keep track of the system dynamics
(see chapter 2.9). The state space model allows to model a continuous random process,
it assumes that each random process can be described by a difference equation and that
the noise present within this process is white, meaning it has a mean of zero and is
statistical independent (see chapter 2.8.8). It enables to model the process (predict),
the measurement (correct) and noise of continuous random variables.

The Kalman filter applies the Bayes’ theorem (see chapter 2.8.6) recursively to estimate
the posterior, meaning prior knowledge and the measurement is used to predict the
posterior estimate. The linear Kalman filter (see chapter 2.10) can only deal with linear
processes and the extended Kalman filter (see chapter 2.11) is able to deal with non-
linear processes like rotations. The extended Kalman filter linearizes about the current
estimate with a Taylor series approximation using partial derivations of the process and
measurement function with respect to the state.

The libsurvive framework provides optical pose estimates (position and rotation) and
IMU measurements (acceleration and angular velocity). The ESKF (see chapter 2.12)
allows to fuse these two different data sources to improve the pose estimation. It uses a
nominal-state x for large-signal (non-linear) and an error-state δx (linear) for small-signal
system dynamics. The small signal IMU readings are integrated into the nominal-state x
during the time-update/prediction phase (see chapter 2.12.5). The large signal estimates
position and rotation, allows to observe the error-state δx and correct the nominal-state
x during the observation/correction phase.

The nominal-state vector x and the error-state vector δx are defined as:

x =



p
v
q
ab

ωb

g


, δx =



δp
δv
δθ
δab

δωb

δg


(3.24)

3.4.1 Parameter
The observation/correction phase can be controlled by the noise covariance vector σ2

pn

and σ2
qn

, representing the gaussian noise for position and rotation. They determine the
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3.4. Kalman Filter

Variable True Nominal Error Measurement Noise Dimensions
Position pt p δp pm pn

3 × 1

Velocity vt v δv
Rotation qt q δq qm qn

Angles vector δθ
Acceleration bias abt ab δab aω

Gyrometer bias ωbt ωb δωb ωω

Gravity vector gt g δg
Acceleration at am an

Angular velocity ωt ωm ωn

Rotation Rt R δR 3 × 3
State xt x 19 × 1
Error-state δx 18 × 1
Error-State covariance P 18 × 18
Nominal noise V 19 × 19
Time-update f(x, •) 18 × 1
Time-update Jacobian Fx 18 × 18
Perturbation Jacobian Fi 18 × 12
Perturbation noise Qi 12 × 12
True-state Jacobian Hx 19 × 19
True-to-error-state q. Qδθ 4 × 3
True-to-error-state Xδx 19 × 18
Measurement Jacobian H 19 × 18
Kalman filter gain K 18 × 19
Measurement z 19 × 1Measurement h(x)
Reset Jacobian G 18 × 18

Table 3.2: Variables of the ESKF

noise covariance matrix V which impacts the Kalman filter gain K. The gain is used to
correct the covariance matrix P and to observe the error-state δx.

The time-update/prediction phase can be controlled by the noise covariance vectors
σ2

an
, σ2

ωn
, σ2

aω
and σ2

ωω
, representing the gaussian noise for acceleration, angular velocity,

acceleration bias and angular velocity bias. They will be added to the covariance matrix
P for each time-update, meaning the covariance matrix will grow continuously with each
prediction.

3.4.2 Procedure
Figure 3.4 illustrates the workflow of the ESKF algorithm. The ESKF uses the local
coordinate system of libsurvive and translates poses using the translation vector men-
tioned in chapter 4.2.6. On the first pose measurement the algorithm initializes the state
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[is pose]

[is imu]

Type Observe/Correct
[is initialized]

[not initialized]

Init?

Predict
[is initialized]

[not initialized]

Init?

Initialize

Figure 3.4: ESKF procedure workflow

vectors and covariance matrices. At the arrival of any pose measurement the algorithm
observes the error-state, injects it into the nominal-state and performs a reset. On IMU
measurements the acceleration and angular velocity are integrated into the nominal-state
and the prior covariance matrix is calculated. These steps are repeated for every pose
and IMU measurement.

It follows a detailed descriptions of the individual steps:

Initialize: Set the nominal-state x and the covariance matrix P on the first optical
tracking update.

x =



pm

0
qm

0
0
0


, P = I19 (3.25)

Predict on IMU updates: Integrate the acceleration am and angular velocity ωm

measurement into the nominal-state x and calculate the prior covariance matrix
P .

1. Calculate the angular rate ω and the acceleration a by correcting the mea-
surements am and ωm with the biases ab and ωb from the nominal-state x
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3.4. Kalman Filter

(2.243).
a = am − ab, ω = ωm − ωb (3.26)

2. Calculate the relative rotation q{ω∆t} with the angular velocity ω and the
time span ∆t since the last IMU measurement.
a) First calculate the relative angle vector ∆ω for the time span ∆t, then

determine the angle ϕ and the axis vector u:

∆ω = ω∆t, ϕ = 
∆ω
, u = ∆ω

ϕ
(3.27)

b) Then calculate the relative rotation quaternion with (2.71):

θ = ϕ/2, q{ω∆t} =
�

cosθ
u sin(θ)

�
. (3.28)

3. Determine the rotation matrices R and R{ω∆t} for the rotation q of the
nominal-state x and the relative rotation q{ω∆t}. Using the rotation matrix
equation (2.75)

R = (q2
w − qT

v qv)I + 2qvqT
v + 2qw[qv]×, (3.29)

we can calculate
R = R{q}, R{ω∆t}. (3.30)

4. Integrate the IMU measurements into the nominal-state (2.12.5)

x =



p + v∆t + 1
2(Ra + g)∆t2

v + (Ra + g)∆t
q ⊗ q{ω∆t}

ab

ωb

g


(3.31)

5. Determine the skew matrix [a]× for the acceleration a (2.16).

[a]× =

 0 −az ay

az 0 −ax

−ay ax 0

 (3.32)

6. Determine the state transition Jacobian matrix Fx of f with respect to the
error-state δx using the skew matrix [a]×, the rotation matrices R, R{ω∆t}
and the time span ∆t (2.281).

Fx =



I I∆t 0 0 0 0
0 I −R[a]×∆t −R∆t 0 I∆t
0 0 RT {ω∆t} 0 −I∆t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


(3.33)
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7. The Jacobian matrix Fi of f with respect to the perturbation vector i is given
as (2.262, 2.282):

Fi =



0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0


(3.34)

8. The covariance vectors Vi,Θi,Ai and Ωi are obtained by integrating the co-
variance of their respective noise an, ωn, aω and ωω over the time span ∆t.
The covariances can be obtained by the IMU datasheet or measured while
the system is still. In our case the acceleration noise an and the angular ve-
locity noise ωn are provided by the libsurvive tracking system for each device
(2.275).

Vi = σ2
an

∆t2I (3.35)
Θi = σ2

ωn
∆t2I (3.36)

Ai = σ2
aω

∆tI (3.37)
Ωi = σ2

ωω
∆tI (3.38)

9. The covariance matrix Qi of the perturbation vector i is defined as (2.282):

Qi =


Vi 0 0 0
0 Θi 0 0
0 0 Ai 0
0 0 0 Ωi

 (3.39)

10. Finally we can update the covariance matrix P with with the Jabobian matrix
Fx and add the process noise covariance with the Jacobian matrix Fi and the
covariance matrix Qi (2.280).

P = FxPF T
x + FiQiF

T
i (3.40)

Observe on optical tracking updates: Observe the error-state δx by incorporating
the position pm and rotation qm measurement. Inject the error-state δx into the
nominal-state x and perform a reset.

1. Derive the Jacobian matrix Hx of h with respect to the true-state xt (2.211).

Hx = ∂h

∂xt
=



I 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.41)
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2. Calculate quaternion term Qδθ of the Jacobian matrix Xδx with the measured
rotation qm (2.290):

Qδθ = 1
2


−qx −qy −qz

qw −qz qy

qz qw −qx

−qy qx qw

 (3.42)

3. Determine the Jacobian matrix Xδx of the true-state xt with respect to the
error-state δx defined as (2.289):

Xδx =

I6 0 0
0 Qδθ 0
0 0 I9

 (3.43)

4. Calculate the Jacobian matrix H of h with respect to the error-state δ (2.288):

H = HxXδx (3.44)

5. Determine observation noise covariance matrix V with the observation noise
pn and qn for the position and rotation.

V =



σ2
pn

3×3
0 0 0 0 0

0 0 0 0 0 0
0 0 σ2

qn
4×4

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.45)

6. Calculate the Kalman filter gain K with the covariance matrix P , the Jabo-
bian matrix H and the observation noise covariance matrix V (2.283).

K = PHT (HPHT + V )−1 (3.46)

7. Correct the covariance matrix P with the Jacobian matrix H and the filter
gain K (2.284).

P = (I − KH)P (3.47)

8. Set the measurement vector z and the apply the measurement function h.

z =



pm

0
qm

0
0
0


, h(x̂t) = h(x) =



p
0
q
0
0
0


(3.48)
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9. Calculate the observed error-state δx with the filter gain K, the measurement
vector z and the measurement function h (2.285).

δx̂ = K(z − h(x̂t)) (3.49)

10. Inject the observed error-state δx into the nominal-state x (2.12.6).

x = x ⊕ δx̂ =



p + δp̂
v + δv̂

q ⊗ {δθ̂}
ab + δâb

ωb + δω̂b

g + δĝ


(3.50)

11. Determine the skew matrix []× of the term 1/2 δθ̂ and the Jacobian matrix G
of the reset function g in respect to the nominal-state x (2.301).

G =

I6 0 0
0 I −



1
2δθ̂

�
× 0

0 0 I9

 (3.51)

12. Reset the covariance matrix P with the reset covariance matrix G and set the
error-state δx to zero (2.298, 2.299).

δx̂ = 0 (3.52)
P = GPGT (3.53)
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CHAPTER 4
Implementation and Evaluation

This chapter documents the system design, and the implementation and evaluation of
the TFF.

4.1 System Design

This section gives an overview of the TFF’s implementation, it describes selected hard-
and software technologies, experimental setup, the project structure, dependencies, used
tools and frameworks.

2.91 m
2.44 m

Floor

62°
64°

5.0 m

BS1

BS2

1
Figure 4.1: LHTS 2.0 base station setup (BS = Base station).
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4.1.1 Experimental Setup
The experimental room setup for the Lighthouse tracking base stations is illustrated in
figure 4.1. The LHTS setup consists of two base station, the tracked HMD and the two
KC devices. Each base station has a 150-degree horizontal field of view and a 110-degree
vertical field of view. The two base stations are placed facing each other 5 m apart. The
first base station is positioned at a height of 2.91 m and an angle of approximately 62◦

to the wall. The second one at a height of 2.44 m and an angle of 64◦.

The computer specifications used for the implementation and evaluation of the TFF are
as follows:

CPU AMD Ryzen 7 5800X 8-Core Processor
Mainboard MSI MEG X570 UNIFY (MS-7C35)

Memory G.Skill Trident Z Neo DIMM Kit 32GB, DDR4-3600,
CL16-19-19-39, 1799.6 MHz

Graphics GIGABYTE Aorus GeForce RTX 3080 Master 10G
Harddisk GIGABYTE Aorus NVMe Gen4 SSD 1TB

Power supply be quiet! Straight Power 11 850W ATX 2.4
Operating system Microsoft Windows 10 (10.0) Professional 64-bit (Build 19043)

SVR is part of the Steam software and can be download and installed from here https:
//store.steampowered.com/about/. The hardware and firmware revisions of the
SVR LHTS 2.0 used for this work are:
Base station Valve SR Imp

Hardware Rev.: Valve Corp. 1004, 0.0, FB02922CF8 V001017-20.A
Firmware: 3008

Headset Index Valve
Hardware Rev.: product 34 rev 21.65.9 lot 2000/0/0 0
Firmware: 1601324091/1623823641

Controller Knuckles Valve
Hardware Rev.: product 17 rev 14.0.9 lot 2020/7/3 0
Firmware: 1562916277/0 (2019-07-12)

SteamVR Version 1.20.4 (1634602223)

4.1.2 System Architecture
The TFF consists of two applications, the websocket server (TFF.Server) and the VRA
(TFF.VRA). Both are standalone executables and depend on other components as il-
lustrated in figure 4.2. The application TFF.VRA is built with the UE and is im-
plemented in C++ and the visual scripting language Blueprint. The application uses
a modified version of the SteamVR plugin, which utilizes the TFF.Plugin, both plug-
ins are built with the UE and implemented in C++. TFF.Plugin uses the websocket
client library TFF.Client. The websocket client relies on the libraries TFF.Websocket,
TFF.Shared and the external framework boost. The application TFF.Server, and the li-
braries TFF.Client, TFF.Process, TFF.Websocket and TFF.Shared are all implemented
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TFF.Server TFF.Client

libsurvive BoostEigen

TFF.Process

TFF.Shared

TFF.WebSocket

TFF.VRA

TFF.Plugin

SteamVR

Unreal Engine

Tracking Filter Framework

Figure 4.2: TFF applications and dependencies

in C++ and built using CMake on Windows. The TFF.Server utilizes the libraries
TFF.Filter, TFF.Websocket, TFF.Shared, as well as the external dependencies libsur-
vive, Eigen and boost.

4.1.3 Tracking Data Processing Workflow
The developed TFF prototype measures user movements, processes them through filters
and feeds the processed data back to the user in the form of an updated scene on the
HMD display. This processing sequence is illustrated in figure 4.3.

4.1.4 Applications and Components
All listed applications and components below, with the exception of the SteamVR plugin,
have been implemented with the help of third party libraries by me. The SteamVR plugin
has been copied and modified, see section 4.5 for details.

TFF.VRA: This is the prototype of the VRA, it enables to use SVR with an alternative
tracking data source, receives tracking data via websocket and hosts the VE that is
used to conduct the user study. It manages user interaction with the virtual world,
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User

LHTS TFF.Server

process

TFF.VRA

update posesend pose

update scene

interact
read data

view scene

Figure 4.3: TFF processing sequence
The application TFF.Server captures user interactions from the LHTS with libsurvive,

processes the data through filter algorithms and sends the new pose estimate to the
TFF.VRA. The application TFF.VRA updates the pose, renders and updates the scene,

and in the end the LHTS views the updated scene to the user through the HMD.

updates poses of tracked objects based on received tracking data and renders the
scene shown within the HMD.

StreamVR: This unreal plugin is part of the UE and is copied to the VRA project and
modified in order to use tracking poses from other sources then SVR. It is loaded
at runtime of the VRA, retrieves TFF poses through the unreal plugin TFF.Plugin
and applies them to the tracked HMD and KC’s.

TFF.Plugin: This unreal plugin is loaded at runtime of the VRA, it loads the websocket
library TFF.Client and uses the websocket client to connect to and receive tracking
data from the websocket server application TFF.Server. It also prints transmission
metrics generated by the TFF.Client to the Unreal log.

TFF.Client: This library contains a websocket client that connects to and receives
tracking data from the websocket server, and calculates transmissions metrics of
received updates.

TFF.Server: This standalone prototype application opens a websocket server and ac-
cepts connections from clients. It initializes and runs the tracking source, which
is libsurvive in our case, reads and processes the tracking data through filter al-
gorithms and pushes the updates to all connected clients that have subscribed for
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tracking data. The applications runs three separate threads, the first thread gets
data from the tracking source, the second processes the data through filters and the
third sends them to connected clients. The application can be controlled though
Command Line Interface (CLI) parameters and commands sent by a websocket
client.

TFF.Process: This library reads data from a tracking source, processes the data through
filters and provides the result as output. It contains a dummy or passthrough filter
implementation, and the DESP and ESKF filter implementations.

TFF.Websocket: This library holds the shared websocket implementations for the
FF.Server and the TFF.Client. It contains the functionality to open a websocket
server, connect with a client and transmit data in the form of JavaScript Object
Notation (JSON) strings.

TFF.Shared: This library contains shared implementations for tasks like concurrency,
analysis and reporting.

4.1.5 Frameworks, tool and libraries
This section describes all 3rd party frameworks, tools and libraries used for this work.

Eigen: A C++ template library for linear algebra, it provides a rich set of tools for
matrix and vector computation. It is an open-source library and released under the
Mozilla Public License 2.0. It can handle complex and high-performance operations
efficiently, and provides data structures and functionality to operate with vectors,
matrices and quaternions. The version 3.3.9 is used for this work to implement
the filter algorithms.

boost: A C++ set of libraries that provide structures and tools for linear algebra, log-
ging, pseudorandom number generation, multithreading, regular expression and
many more. It is portable across different platforms operating systems and hard-
ware architectures. Boost is open-source, peer-reviewed, considered to be very
stable, and published under the Boost Software License. This work uses the ver-
sion 1.75.0 and uses the features logs, json, unit tests, regex patterns, date time,
filesystem, threading, websocket communication, serialization and program argu-
ments.

Matlab: Matlab is an numerical computing environment and programming language.
It is used for data analysis, visualization and algorithm development and provides
a wide range mathematical functions such as linear algebra, statistics, calculus,
fourier analysis, interpolation, extrapolation and differential equations. Matlab
was utilized for this work to process libsurvive tracking data, prototype filter algo-
rithms and create visualizations of tracking data through various plots.
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UE: The UE is a powerful game development framework and tool that allows to create
interactive 3d applications. It provides support for virtual reality and augmented
reality development, allowing developers to create immersive, interactive experi-
ences for users. The engine is built on top of C++ and features the visual scripting
language Blueprint that allows to quickly prototype complex game logic without
having to write code. The version 5.0.2 has been used to implement the VRA and
conduct the user study.

libsurvive: An open-source library to access tracking data of LHTS systems (see chap-
ter 2.3.5).

CMake: A cross-platform, open-source build system, used to control the software compi-
lation process with platform- and compiler independent configuration files. CMake
provides a set of built-in commands for performing common build tasks, such
as compiling source code, linking libraries, and installing files and allows to find
and use external libraries, making it easy to incorporate third-party code into
projects. It is used in conjunction with native build environments. The appli-
cation TFF.Server and the libraries TFF.Client, TFF.Process, TFF.Websocket,
TFF.Shared were built using Cmake the build system Ninja.

4.2 libsurvive
This section introduces the external library libsurvive used as tracking data source for
this work. Specifically the build steps for the version used, the libsurvive CLI and API,
and provided tracking properties are documented. It is an experimental library and is
used for this work to access not only position and orientation, but also acceleration and
angular velocity of the IMU for each tracked device of the LHTS. The library needs
to be built in order to use its executables and DLLs. This work relies on the quality
of the data provided by libsurvive. The library uses a complex built-in Kalman filter
with multiple states and an iterative view-point optimization algorithm, which allows
libsurvive to filter raw light cap data before the poser estimates a position and rotation
of a tracked device. For this work the libsurvive Kalman filter, as well as the use of IMU
data for pose estimation is disabled, which removes all those optimizations leading to
noisy data and therefore more inaccurate poses.

4.2.1 Build
libsurvive is an experimental library and due to problems with crashes a specific version,
which turned out to be the most stable, was used. The libsurvive version used for this
work can be built using the following steps:

• Clone libsurvive repository and change directory:
git clone https://github.com/cntools/libsurvive.git
cd .\libsurvive\
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• Checkout specific revision:
git checkout d47c15a6a788e50092e936224332ddd6b911c216

• Create the project and start Visual Studio:
.\make.ps1
.\build-win\libsurvive.sln

• Build solution:
Run Build → Build solution in Visual Studio

• After the build the executables can be found at:
.\build-win\Release

• The libraries can be found at:
.\build-win\src\Release

4.2.2 Parameters

libsurvive can be configured using parameters, it follows a short introduction of the
parameters used for this work:

force-calibrate: Forces calibration and resets the origin of the coordinate system to the
current position of the head mounted display.

record-stdout: Prints the tracking data to stdout, this is used for testing and debugging.

use-imu: Determines if the IMU data is used as part of the pose solver. This parameter
is disabled for this work, in order to verify the impact of TFF algorithms.

use-kalman: Determines if the libsurvive kalman filter is used as part of the pose solver.
This parameter is disabled for this work, in order to verify the impact of TFF
algorithms.

record: Records the tracking data to a text file. This parameter is used to record a
tracking scenario.

playback: Playback a recorded tracking sample file. This parameter is used to playback
tracking scenarios.
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4.2.3 Executable and Tracking Sample
The libsurvive executable survive-cli.exe provides a direct way to access tracking data
through its CLI. Tracking data can be written to the standard output or a text file. This
allows to create tracking samples by recording a track scenario. The recorded tracking
samples are used to implement and test filter algorithms. A libsurvive tracking sample
contains configured options, as well as light cap, IMU, device, pose and velocity data.
Each tracking property entry contains a time stamp, device identifier and the property
values. The values of an entry are separated with a white space. The listing 4.1 shows
a tracking sample with an IMU, pose and velocity entry.

112.262440 T20 i 3 2230941945 -5544.000000 -2624.000000 5980.000000
-826.000000 -143.000000 1000.000000 0.000000 0.000000 0.000000 230

212.262461 T20 POSE 1.084901 1.378156 0.606235 0.344806 0.900690 -0.255425
0.068010

312.262465 T20 VELOCITY -0.001734 0.210562 -0.012106 -0.071972 0.004855
0.368428

Listing 4.1: libsurvive tracking sample

4.2.4 API
The libsurvive’s Dynamic Link Library (DLL) must be loaded and linked at runtime
to access its API. libsurvive provides a high-level and a low-level API. This work uses
the low-level API because provides access to IMU data. Listing 4.2 shows a C++ code
example that demonstrates the use of the low-level API and how to run libsurvive. The
TFF.Process library registers to this API for log, pose and IMU updates.

4.2.5 Tracking Data
It follows a description of the data provided by the low-level API used for this work.
Pose and IMU updates provide the struct SurviveObject (so) and a timecode. The
run time is obtained with survive_run_time(so->ctx) and represents the time duration
that libsurvive is running in seconds. Tracked devices are identified with so->codename,
libsurvive uses the code name T20 for the HMD, and KN0 and KN1 for the KCs. The
unique serial number (so->serial_number) of a tracked device can be used to distinguish
devices in case of an ambiguous code name. The pose of a device is available in local (so->
IMUPose) and global (so->OutPose) space. Applying the translation pose (so->head2imu)
allows to convert poses from the local to the global coordinate system. Each pose consists
of a position represented as vector of cartesian coordinates and a rotation represented as
quaternion. Time differences between updates can be calculated with timeCode / so->

timebase_hz, which provides a more accurate run time in seconds. IMU updates expose
the vector accelgyro, which holds the acceleration and angular velocity. libsurvive
provides variances as vectors for position (so->tracker->obs_pos_var), rotation (so->
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1#include "survive.h"
2// libsurvive hooks
3static void logCallback(SurviveContext *ctx, SurviveLogLevel logLvl, const

char *msg);
4static void imuCallback(SurviveObject *so, int mode, FLT *accelgyro,

survive_timecode timeCode, int id);
5static void poseCallback(SurviveObject *so, survive_long_timecode_type

timeCode, const SurvivePose *pose);
6...
7// Low level API access
8int main(int argc, char *argv[]) {
9SurviveContext *ctx = survive_init(argc, argv);
10// Register hooks
11survive_install_log_fn(ctx, logCallback);
12survive_install_imu_fn(ctx, imuCallback);
13survive_install_pose_fn(ctx, poseCallback);
14
15while (survive_poll(ctx) == 0) {
16survive_close(ctx);
17}
18}

Listing 4.2: libsurvive low level API example

tracker->obs_rot_var), acceleration (so->tracker->acc_var) and angular velocity (so
->tracker->gyro_var). When the Kalman filter and the use of IMU data for pose
estimation are enabled, libsurvive also provides a velocity (so->velocity.Pos) and an
angular velocity (so->velocity.AxisAngleRot).

4.2.6 Coordinate Systems

libsurvive uses a local and a global coordinate system upon calibration the origin of the
global system is set to the location of the HMD. The IMU acceleration and angular
velocity are referenced within the local system. In order to use them, one has to apply
the integrated acceleration and angular velocity to the local pose and translate the result
to the global system. The global position pg is given by

pg = rl ⊗ pt + pl, (4.1)

where rl denotes the local rotation, pt the translation vector and pl the local position.
The global rotation rg is given by

rg = rl ⊗ rt, (4.2)

where rl denotes the local rotation and rt the translation quaternion.
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4.3 Capture and Process Tracking Data
I developed the library TFF.Process, it captures tracking data provided by a source,
processes them through filters and provides the result as output. Figure 4.4 illustrates
the most important classes and interfaces that are involved. It follows an overview of
the interfaces and classes, and an outline of the general procedure.

4.3.1 Interfaces

IAnalyzer: This interface specifies functionality to add an IMetric object with addMetric

(...), remove it with removeMetric(...) and subscribe for reports of attached
metrics with onReport(...).

IController: This interface specifies functionality to register callbacks for log and filter
update events with onLog(...) and onFilterUpdate(...). It also allows to start
and stop the process of capturing and processing tracking data with start(...)

and stop(). The current thread can be blocked until the process has stopped with
join().

ISource: This interface specifies controls for a tracking source. It allows to start gather-
ing tracking data with start(...), stopping the source with stop() and to register
callbacks for log events of a tracking source with onLog(...).

IProcessor: The functionality of this interface allows to process a tracking update
through a filter with tryProcessUpdate(...) and to obtain the result upon suc-
cessful completion with getFilterData(...).

IProcessorRepository: Defines functionality to retrieve a processor for a specific de-
vice with getProcessor(...) and to set the underlying filter processor for all de-
vices with setFilterType(...). Available filter types are Passthrough, Desp and
Eskf.

IMetric: The internal calculations of a metric are triggered with onPulse(timeDelta :

...) where timeDelta represents the time since the last pulse in milliseconds and
a report is returned with getReport().

4.3.2 Data Object Classes

SourceDevice: This class holds properties of a tracked device provided by a tracking
source. These values are device id, serial number, accelerometer and gyroscope bias,
acceleration and gyroscope scale, observation variance for position and rotation,
and acceleration and gyroscope variance.

SourceData: This class holds the run time, update type, source device and other track-
ing properties provided by the tracking source. Supported tracking properties are
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global pose (PoseData), local pose (PoseData), IMU measurements (ImuData), local
to global transformation pose (PoseData).

FilterData: This data structure holds the output of a processor. The FilterData

object holds the SourceData object, the output pose (PoseData) and several other
properties depending on the processor.

PoseData: This class holds the position and rotation of a pose.

ImuData: Stores the acceleration and angular velocity of the IMU.

4.3.3 Classes Overview

Controller: This class implements the interface IController, it is constructed with an
instance of ISource, IProcessorRepository and IAnalyzer. On the function start

(...) the Controller runs two threads. The first thread runs the tracking source
object ISource with the function call start(...) and passes the configuration
arguments and a ConcurrentQueue object. The ISource object pushes SourceData

objects into ConcurrentQueue with the function push(...) for each new tracking
update. The second thread waits for and dequeues these updates with the function
waitAndPop(...), gets the IProcessor object of the device the update is related
to from the IProcessorRepository with the function getProcessor(...) and tries
to process the update with tryProcessUpdate(...). If the processing succeeds
the thread calls the function getFilterData(...), gets the object FilterData and
passes it to all callback functions that have been registered with onFilterUpdate

(...) by signaling the filter update event. Additionally the ControllerMetric is
updated for each filter update.

LibSurviveSource: This class implements the interface ISource, it registers to events
of the libsurvive low-level API (see 4.2.4) and runs libsurvive on the function start

(...). It creates a SourceData objects for each libsurvive update and pushes it
into the ConcurrentQueue object.

Processer: An abstract base class for a processor implementation, which implements
the interface IProcessor. It provides basic properties and functionality used by
all implementations of a processor. Each Processor is related to a tracked device
object SourceDevice, applies the filter logic and stores the filter state.

PassthroughProcessor: Derives from the base class Processor and implements a
passthrough logic, which transfers the tracking data of the SourceData object to
a FilterData object on tryProcessUpdate(...) without any modifications of the
underlying data.

DespProcessor: A Processor implementation that applies the DESP to the tracking
data on tryProcessUpdate(...).
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ErrorStateKalmanProcessor: A Processor implementation that applies the ESKF
to the tracking data on tryProcessUpdate(...).

ProcessorRepository: This class stores the Processor objects for the specified filter
type of each tracked device object SourceDevice. On the function call getProcessor
(...) the corresponding Processor object for a device is returned, if a Processor

for a device doesn’t already exist it will be created and initialized. On the function
setFilterType(...) a new filter type is set and all existing Processor objects are
cleared.

Analyzer: This class implements the interface IAnalyzer, it creates reports for all at-
tached Metric objects on a periodic pulse and invokes all the callback functions
that have been registered with onReport(...).

ControllerMetric: This class calculates update metrics for tracked devices, it keeps
track of the number pose and IMU updates, and creates a report on onPulse(...)

that can be retrieved with getReport(...).

ConcurrentQueue: A thread safe queue implementation with the ability to block a
thread, wait for new items, and to cancel the block on thread termination.

4.3.4 Procedure

1. Run: A Controller object is constructed with a tracking source (ISource), an
IProcessorRepository and an IAnalyzer object. A ControllerMetric object is
created on initialization and attached to the IAnalyzer with the function addMetric

(...). The Controller is then started with the function start(...).

2. Receive: On start the Controller runs the object ISource with run(...). The
ISource object pushes updates, for each tracked device object SourceDevice, in
the form of a SourceData object into the passed ConcurrentQueue with push(...).

3. Process: Next the Controller dequeues the ConcurrentQueue object with the func-
tion waitAndPop(...) and gets the IProcessor object, for the device the update is
related to, from the IProcessorRepository with getProcessor(...) and processes
this SourceData object through the Processor with the function tryProcessUpdate

(...). The function applies the filter implementation and getFilterData(...)

provides a FilterData object on success.

4. Analyze: The Controller also updates the ControllerMetric on successful pro-
cessing. The Analyzer produces reports on a specified interval and writes them to
the standard output.

5. Propagate: The Controller propagates the filter result on successful processing
by signaling the filter update event, which invokes all callback functions that have
been registered with onFilterUpdate(...).
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<<ISource>>

+ start(args : vec<string>,
    sourceQueue
         : ConcurrentQueue<...>*
    ) : void
+ stop() : void
+ isRunning() : bool
+ onLog(subscriber : ...
    ) : ConnectionType

LibSurviveSource

ConcurrentQueue
<u_ptr<SourceData>>

+ push(data : unique_ptr<SourceData>&)
    : void
+ empty() : bool
+ size(): long
+ waitAndPop(
    value : unique_ptr<SourceData>&)
    : void

Controller

<< IController >>

+ start(args : vector<string>) : void
+ stop() : void
+ join() : void
+ isRunning() : bool
+ onLog(subscriber : ...)
: ConnectionType
+ onFilterUpdate(subscriber : ...)
: ConnectionType

<<IProcessorRepository>>

+ getProcessor(
   const ISource* sourceDevice)
   : IProcessor&
+ setFilterType(
   filterType: const FilterType)
    : void

*

<<IProcessor>>

EskfProcessor DespProcessor

1

1

1

ProcessorRepository

Processor

TFF.SharedTFF.Process

SourceData

FilterData

*

1

1

ISourceDevice

1

SourceDevice

<<IAnalyzer>>

+ addMetric(
    metric : shared_ptr<IMetric>) : void
+ removeMetric(
    metric : shared_ptr<IMetric>) :void
+ onReport(subscriber : ...)
    : ConnectionType

1

<<IMetric>>

+ onPulse(
    delta: MillisecondsType) : void
+ getReport() : string&

*

Figure 4.4: Classes involved in capturing and processing tracking data 89
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4.4 Transmit Tracking Data

The application TFF.Server, receives, processes and propagates tracking data via web-
socket to all connected clients. The external client library TFF.Client is linked by the
UE plugin TFF.Plugin and allows to receive tracking data from a websocket server. The
library TFF.Websocket holds the shared websocket implementations to host a server, it
connects to a server with a client and transmits data between the two. Figure 4.5 gives
an overview of the relevant classes and their packages, and figure 4.6 gives a more de-
tailed overview of the relevant websocket classes. It follows an overview of the involved
classes, and an outline of the general procedure.

<< IController >>

+ start(args : vector<string>) : void
+ stop() : void
+ join() : void
+ isRunning() : bool
+ onLog(subscriber : ...) : ConnectionType
+ onFilterUpdate(subscriber : ...)
    : ConnectionType

ClientWrapper

- logCallbackType_ : LogCallbackType*
- poseCallbackType_ : PoseCallbackType*

+ FilterFrameworkClientWrapper(
    logCallbackType_ : LogCallbackType*,
    poseCallbackType : PoseCallbackType*)
+ connect(host: const char*, port : const char*,
     isEnabled : bool) : void
+ close() : void

WebSocketProvider

...

+ WebSocketProvider(
    analyzer : shared_ptr<IAnalyzer>)
+ listen(address : const char*, port : const char*) : void
+ connect(host : const char*, port : const char*) : void
+ stop() : void
+ sendMessage(message : MessageType&) : void
+ onMessageReceived(subscriber : ...) : ConnectionType
... 

Server

+ start(config : Configuration) : void

Configuration

...

+ Configuration(argc: int, argv : char *[])
...

TFF.Server TFF.Client

TFF.WebSocketTFF.Process

Figure 4.5: Websocket server and client classes
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4.4.1 Configuration, Server and Client Wrapper Classes

Configuration: The configuration class parses the command line arguments and ex-
poses the corresponding settings to other components. It uses boosts program
arguments feature.

Server: The function start(...) of this class reads the Configuration object, creates
and initializes the Controller object and its dependencies, subscribes for filter up-
date events of the Controller with the function onFilterUpdate(...) and runs it
with start(..). It creates a WebsocketProvider object to open a websocket server
and accepts incoming connections with the function listen(...). Once a client has
connected, a ServerSession object is created, which handles the communication
between the server and the client. Filter updates in the form of FilterData objects
from the Controller are serialized as JSON string and propagated to websocket
clients with the function sendMessage(...).

ClientWrapper: This class is as wrapper for the WebsocketProvider class and abstracts
external dependencies. It is designed to be used with the UE and avoids problems
with namespaces and macros. Is is initialized with callback functions for log and
pose update events. It connects to the websocket server with the function connect

(...), requests pose updates from the server, deserializes incoming messages and
invokes the callback function poseCallback_(...) on incoming pose updates.

4.4.2 Websocket Classes

WebSocketProvider: This class allows to open a websocket server with listen(...)

or connect to one with connect(...). It provides callbacks for the events con-
nect, disconnect, message received, log entry and a function to send a message
to connected clients or the server. On connect(...) the provider connects to a
server and creates a ClientSession object which handles the communication with
the server. On listen(...) the provider creates a Listener object which listens
for incoming websocket connections. The Listener creates a ServerSession object
for each incoming connection which handles the communication between the server
and the client. The function onMessageReceived(...) registers callbacks for mes-
sage received events and the function sendMessage(...) sends a message through
an open websocket connection to the server or to clients. The websocket and all
open connections are closed on the function stop().

SharedState: This class is used to share information and notify other components of
occurred events. It provides notifications for connect, disconnect, message received,
message send and log entry events, and allows to invoke message send events with
the function signalMessageSend(...) and message received events with function
signalMessageReceived(...).
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Listener: This class implements logic to open and bind a websocket endpoint, and to
listen for incoming connections on run(). It creates a new ServerSession object
for each incoming connection.

Session: An abstract class that implements basic functionality to asynchronously read
from and write to an open websocket connection with readAsync() and writeAsync

(...). It listens to message send events of the SharedState object with OnMessageSend

(...), and queues and sends these messages asynchronously. It signals session dis-
connects and invokes received message events with signalMessageReceived(...)

of the SharedState object.

ServerSession: This class derives from the base class Session, it accepts and runs a
websocket connections with a client on run(...), and notifies the SharedState

object about an established connection.

ClientSession: This class derives from the base class Session, it resolves and connects
to a websocket endpoint, runs a websocket connection with the server on run(...),
and notifies the SharedState object about an established connection.

TransmissionMetric: This class calculates transmission metrics, it counts the number
of received updates for each device, calculates the latency between server and
client for each message, averages it over the specified time interval, determines the
minimum and maximum latency and creates a report on onPulse(...) that can
be retrieved with getReport(...).

4.4.3 Procedure

1. Parse configuration: The application creates a Configuration object and passes
the CLI parameters, the object parses them and provides access to the specified
settings. If a settings is not specified a default value is returned.

2. Run server : A server objects is created and its function start(...) is invoked with
the Configuration object. The function wraps the logic to run a tracking source,
receive filter updates, open a websocket server, accept incoming connections and
distribute pose updates to clients.

a) Run controller: The Controller object and its dependencies are created, ini-
tialized and set up with settings provided by the Configuration object. A
filter update callback function is registered with onFilterUpdate(...). The
Controller is then started with start(...) to receive filter updates (see chap-
ter 4.3).

b) Run websocket server: A WebsocketProvider object is created and the func-
tion listen(...) is used to host and run a websocket server. It listens for
incoming connections, creates a session for each client, listens for incoming
messages and propagates pose updates to all connected clients that have re-
quested updates.
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3. Connect client: The wrapper class ClientWrapper connects to the websocket server
with connect(...), requests filter updates and provides callbacks for log entries
and incoming pose updates. It is designed to be used as a client with the UE and
acts as a wrapper for the WebsocketProvider object.

4. Transmit:

a) Server: The filter update callback function registered prior on the Controller

with onFilterUpdate(...) serializes the passed FilterUpdate object on invo-
cation as JSON string and passes it to the WebSocketProvider object with
sendMessage(...). Each ServerSession object sends this message then to
the connected client, if it has requested pose updates.

b) Client: The ClientWrapper objects deserializes the JSON string message on
the arrival of a pose update and invokes the pose update callback function
poseCallback_(...).

5. Disconnect client: A session between a client and server closes when the client
disconnects or the server shuts down.

93



4. Implementation and Evaluation

Session

- state_ : shared_ptr<SharedState>
...

+ Session(ws : socket,
    state : shared_ptr<SharedState> const&)
+ Session(ioc : io_context,
    state : shared_ptr<SharedState> const&)
initialize() : void
# writeAsync(message : PayloadType&) : void
# readAsync() : void
# processMessage(message : MessageType&)
...

ServerSession

...

+ ServerSession(socket : socket&& ,
    state : shared_ptr<SharedState> const &)
+ run(host : const char*,
    port : const char*) : void

Listener

- state_ : shared_ptr<SharedState>
...

+ Listener(ioc :  io_context&, 
    endpoint : endpoint,
    state : shared_ptr<SharedState> const&)
+ run() : void

ClientSession

...

+ ClientSession(ioc : io_context&,
    state : shared_ptr<SharedState> const&)
+ run(host : const char*,
    port : const char*) : void

*

WebSocketProvider

- state_ : shared_ptr<SharedState>
...

+ WebSocketProvider(
    analyzer : shared_ptr<IAnalyzer>)
+ listen(address : const char*, port : const char*) : void
+ connect(host : const char*, port : const char*) : void
+ stop() : void
+ sendMessage(message : MessageType&) : void
+ onMessageReceived(subscriber : ...) : ConnectionType
... 

SharedState

...

+ SharedState(analyzer : s_ptr<IAnalyzer>)
+ onMessageReceived(subscriber : ...) : ConnectionType
+ onMessageSend(subscriber : ...) : ConnectionType
+ signalMessageSend(message : MessageType& ) : void
+ signalMessageReceived(
    message : MessageType&) : void
...

1

1

1

1

1

TFF.WebSocket

Figure 4.6: Websocket classes
94



4.5. Apply and Visualize Tracking Data

4.5 Apply and Visualize Tracking Data
The application TFF.VRA, hosts the VE used to conduct the user study and logs reports
for analysis. It relies on the TFF.Plugin to connect to the TFF.Server and receive pose
updates, and uses the modified SteamVR plugin to apply those poses to objects within
the VE. The figure 4.7 illustrates the most important classes and interfaces that are
involved. The application is built with the UE version 5.0.2 and is based on the Virtual
Reality Game template.

The UE plugin TFF.Plugin copies the required dependencies to the UE build output
and loads the required DLLs on runtime. Due to compatibility issues of the UE with
the C Standard General Utilities Library and the requirement of an independent filter
framework, a websocket approach was implemented to transfer tracking poses to the
UE. The UE websocket component had latency issues causing messages to be delayed
by up to 40 ms, therefore a custom websocket approach was implemented using Boost
websocket.

The plugin SteamVR needs to be modified to inject poses provided by an alternative
source other them SVR. The integration requires to copy the SteamVR UE plugin folder
C:\Program Files\Epic Games\UE_5.0\Engine\Plugins\Runtime\Steam\SteamVR

to the projects plugin folder
..\Unreal_Project\Plugins

and to enable it under
Unreal Editor → Plugins → Project → Virtual Reality → SteamVR

with the UE Editor. The UE classes SteamVRHMD and SteamVRInputDevice are modified
to receive pose updates from the TFF.Plugin.

4.5.1 TFF Plugin Classes and Interfaces

IModuleInterface: This UE interface specifies the functionality to load and unload a
module with StartModule() and ShutdownModule(). An UE module can be accesses
from another UE components with FModuleManager::GetModulePtr<T>(...).

ITffSystem: This interface allows other components to get the pose of a tracked device
with the function TryGetPose(...). It also specifies controls to set and get the cur-
rent filter system with SetFilterSystem(...) and GetFilterSystem(). Available
filter systems are the TFF Passthrough, DESP and ESKF, as well as the SteamVR
system which does not use tracking data provided by the TFF.

FTffSystem: This class implements the interface ITffSystem. It sets up a ClientWrapper

object and its callback functions and connects to the websocket server with connect

(...). It received pose data from the server, stores the pose for each tracked device
internally and provides it to other components with TryGetPose(...)
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FTffPluginModule : This class implements the interface IModuleInterface and loads
external dependencies such as the TFF.Client at runtime. It creates an instance
of the class FTffSystem, establishes and runs a connection with the server on
StartupModule(...), executes a cleanup on ShutdownModule(...) and exposes the
FTffSystem object to other components through the function GetTffSystem().

Pose: A Data class that holds the pose and the code name of a tracked device.

4.5.2 SteamVR Plugin Classes

SteamVRHMD : This class is part of the UE StreamVR plugin and handles the
HMD, it has been modified in order to inject poses from the TFF. On startup this
class loads the module FTffPluginModule, gets the object ITffSystem with the
function GetTffSystem() and stores it locally. The modified function UpdatePoses

(...) uses the stored object ITffSystem to check the current filter system with
GetFilterSystem(...). If the filter system is set to anything other than StreamVR,
the modified function updates the pose of the tracked HMD with the result of the
ITffSystem objects function GetPose(...).

SteamVRInputDevice : This class is part of the UE StreamVR plugin and handles the
KCs, it has been modified in order to inject poses from the TFF. It loads the mod-
ule FTffPluginModule in the constructor and stores the object ITffSystem using
GetTffSystem(). The modified function GetControllerOrientationAndPosition

(...), maps the internal identifiers to the correct code name and uses the stored
object ITffSystem to check the current filter system with GetFilterSystem(...).
If the filter system is set to anything other than StreamVR, the modified func-
tion updates the pose of the tracked KC with the result of the ITffSystem objects
function GetPose(...).

4.5.3 Procedure

1. Initialization: On startup the application TFF.VRA creates instances of the mod-
ules TFF.Plugin and StreamVR. The module FTffPluginModule loads the exter-
nal TFF.Client dependency with LoadDependencies() and creates a FTffSystem

object. The SteamVR objects SteamVRHMD and SteamVRInputDevice load the
FTffPluginModule at startup, get the IFTffSystem object with GetFilterSystem()

and store it internally.

2. Connect to websocket server: The module FTffPluginModule connects to the web-
socket server with the FTffSystem objects function connect() on StartupModule().
This creates a ClientWrapper object, registers the pose and log callback on creation,
connects with connect(...), and runs the connection within a separate thread. If
the connection to the server drops or server is not available the thread tries to
reconnect automatically.
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3. Receive pose updates: Once a connection to the server is established the object
ClientWrapper receives and deserializes the messages, and invokes a pose callback
for each one. The FTffSystem object stores the received pose for each device
internally on a callback function call.

4. Apply and visualize pose updates: The poses of SVR devices are updated at regular
intervals. The object SteamVRHMD updates the pose of the HMD with UpdatePoses

(...) and each SteamVRInputDevice object updates the pose of a KC with
GetControllerOrientationAndPosition(...). If the current filter system is set to
anything other than StreamVR, the FTffSystem objects function GetPose(...) is
used to get and apply a pose received from the server. Applying this new pose
results in a visualization update within the VE on the next render update.
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ClientWrapper

Pose

<<ITffSystem>>

+ TryPose(
    codeName : const FString&,
    pos : FVector&,
    rot : FQuat&) : bool
+ SetFilterSystem(filterSystem: ...) : void
+ GetFilterSystem() : void

*

FTffSystem

- poses_ : TMap<FString,Pose>
- codeNames_ : TMap<FString,FString>
- logCallback_ : FilterFrameworkLogCallbackType
- poseCallback_ : FilterFrameworkPoseCallbackType
- thread_ : FThread*
- mutex_ : FCriticalSection

+  Connect() : void

1

FTffPluginModule

- filterFramework_
    : TUniquePtr<FilterFrameworkSystem>
- filterFrameworkClientWrapperHandle : void*

- LoadDependencies() : void
+ GetSystem()
   : IFilterFrameworkSystem*

<<IModuleInterface>>

+ StartupModule() : void
+ ShutdownModule(): void

1

FSteamVRHMD

# FilterFrameworkSystem
    : IFilterFrameworkSystem*

+ Startup() : bool
+ UpdatePoses() : void
# UpdateLibSurvivePoses(
   trackingFrame : FTrackingFrame&)

1
FSteamVRInputDevice

# FilterFrameworkSystem
    : IFilterFrameworkSystem*

+ FSteamVRInputDevice(...)
+ GetControllerOrientationAndPosition(...) : bool
# GetLibSurvivePositionAndOrientation(
    codeName : const FString&,
    outRotation : FRotator&,
    outPosition : FVector&,
    worldMeterToScale : bool)

TFF.Plugin

SteamVR TFF.Client

Unreal Engine

1

Figure 4.7: UE integration class diagram
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4.6 Evaluation
The evaluation is designed to optimize and validate the performance of the TFF and its
implemented filter algorithms. The TFF relies on libsurvive as mentioned in chapter 4.2
and enables to apply the DESP (see chapter 3.3) and the ESKF algorithm (see chapter
3.4) to libsurvive tracking data. Important tracking properties (see chapter 4.6.1), the
existence of tracking errors (see chapter 4.6.2) and the impact of filter algorithms are ver-
ified. A VE is created with the UE, which makes it possible to test filter implementations
from the users perspective and compare them to SVR.

The evaluation consists of three parts, a direct assessment of performance measurements,
an analysis of the filter outputs, and the conduction of a user study within a VE:

TFF performance: The TFF measures and records the tracking properties sampling
rate and latency for each device as quality measure to be able to verify that they
do not negatively impact the tracking performance.

Filter performance: The TFF allows to save the output of filter algorithms to a text
file. The stored data is then imported into Matlab and plotted to analyze it.
This allows to run TFF with different filter parameters and select suitable ones by
analyzing their impact on the filter output. The created plots also allow to review
the occurrence of tracking errors.

User study: A user study is conducted to check the tracking systems accuracy, the
subjective occurrence of tracking errors, and the ability of a filter algorithm to
enhance tracking performance and therefore improve the user experience. A VE is
created with the UE, which makes it possible to evaluate the performance of the
filter algorithms from the user’s perspective inside the virtual world. The user has
to complete several tasks for each filter system, which covers different aspects of
interactions within the virtual world, to evaluate the filter performance. All tasks
have to be completed in one session for each filter system, the order for each filter
system is randomized. The user’s feedback is obtained after each session.

4.6.1 Performance Measurements
The TFF provides two different performance metrics, the controller and the transmission
metric. Both metrics have been implemented to simply assess the capability of the TFF
to provide and deliver the number of required updates in time to the UE.

The controller metric is part of the TFF server implementation and measures the
sampling rate. This metric gives feedback about the provided pose and IMU
updates of libsurvive to distinguish between server and client problems. It measures
the number of pose and IMU updates for each tracked device within a specified
interval and writes them to the standard output.
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The transmission metric is part of the TFF client implementation and is used by
the UE to measure the latency between the TFF server and client. This latency
including the processing time of an update by a filter. It was implemented to ensure
the TFF capability to process and transmit the number of required updates to the
UE within a few milliseconds. Upon the arrival of a libsurvive update, the system
adds the current time as timestamp to the update information, this timestamp
is appended to the pose update message that is sent to the UE. The TFF client
then counts the number of received updates for each device, calculates the time
difference, averages it over the specified time interval, determines the minimum
and maximum latency and prints a report to the UE log.

The transmission metrics is run over a time span of 10 minutes with all available tracking
devices, namely the HMD and both KC, within the virtual world to assess the systems
capability to transmit all the updates to the UE within a few milliseconds.

4.6.2 Tracking Errors
The evaluation checks the existence of tracking errors, which ideally should be mitigated
by a filter algorithm. This chapter discusses if and how the types of errors introduced
in chapter 2.3.2 can manifest in libsurvive.

Static errors are spatial distortion, spatial jitter and drift and can occur if the tracked
object is still.

Spatial distortion is a repeatable pose error where the real pose is not properly rep-
resented within the VE. Partial occlusion could cause spatial distortion in certain
areas where the line of sight to the LHTS is broken. The LHTS is very accurate
and spatial distortion is generally not an issue, but could occur if the user bows
down to pick up an object and breaks the line of sight of the tracked object to the
LHTS with his body.

Spatial jitter is caused by tracking noise and occurs when the tracked object within
the VE appears to be shaking but is actually still. The output of libsurvive is
inherently noisy, and it exhibits spatial jitter. However, by applying a filter, it is
possible to significantly reduce this jitter.

Stability or drift is a slow but steady change in position or orientation for a tracked
object within the VE but in reality the object is still. This error occurs if the
optical system is unable to estimate a pose and only IMU data is used to predict
a pose.

Dynamic errors can be categorized as latency and latency jitter while the tracked
object is moving, or any other type of error not caused by static inaccuracy.
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Figure 4.8: Filter performance analysis

Latency influences the time it takes to represent an actual movement within the VE.
A high latency breaks the immersion with a noticeable delay between movement
and representation and can cause nausea for the user.

Latency jitter is a variation in latency meaning the time from an actual movement to
its representation within the VE varies. If the variation is significantly enough the
user may experience twitching or spatial jitter along the path the object is moving.

Other types of error that can not be explained by static inaccuracy or latency, including
sensor and algorithm prediction errors.

Latency and latency jitter due to transmission issues are generally not present in libsur-
vive unless the system is working at its capacity and updates cannot be processed in
time or updates are delayed during transmission within TFF. The occurrence of other
dynamic errors due to TFF and libsurvive pose estimation algorithms is a possibility.
Pose distortion can be caused by the libsurvive poser algorithm and latency can occur
due to excessive smoothing of filter algorithms.

4.6.3 Filter Performance Review
The evaluation of the filter performance is done by analyzing their impact on simulated
and recorded tracking data. libsurvive and the TFF can be controlled through a CLI,
these interfaces are used to create plots based samples with Matlab. The recorded
samples used for this assessment are based on recordings of a conducted task performed
within the VE and the simulated samples are generated movement data.

It follows a description of this procedure as illustrated in Figure 4.8:

1. Simulated tracking data is generated and written to a text file or movements of
tracked devices are recorded to a text file as data samples with libsurvive by setting
the parameter --record file_path.

2. The generated tracking data or the recorded file is then used by the TFF. This
allows to run the same tracking scenario through different filters and parameter
configurations.
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3. Setting the TFF parameter -R file_path writes the filter output to a text file.
The TFF can be executed multiple times with different settings to create different
filter result samples that are based on the same tracking scenario.

4. Multiple TFF samples files can be loaded, processed and stored as binary file with
Matlab. A Matlab script is used to load these cached samples files into memory
to draw plots and compare the different results side by side. This allows to create
custom plots for the different tracking properties provided by each filter. Figure
4.3 demonstrates a simple Matlab custom plot script to compare libsurvive raw to
libsurvive Kalman filter positions.

5. The plots allow to analyze the filter output and compare the data side by side.
They are used to review the manifestation of tracking errors and verify the impact
of filters and their parameters.

1force = false;
2usesubplot = true;
3playback_file_path = "sample_data.txt";
4% Load sample data
5raw = imp.get("raw", playback_file_path,...
6"--filter Passthrough --pt-use-imu 0",...
7"--use-imu 0 --use-kalman 0 --playback "+ playback_file_path +" --

playback-factor 0", force);
8libsurvive = imp.get("libsurvive", playback_file_path,...
9"--filter Passthrough --pt-use-imu 0",...
10"--use-imu 1 --use-kalman 1 --playback "+ playback_file_path +" --

playback-factor 0", force);
11% Setup plot configuration
12pos_plot.file_name = file_name + "_pos";
13pos_plot.axes = ["X","Y","Z"];
14% Raw position
15pos_plot.data.rawP = raw.output.T20.P;
16pos_plot.legend.rawP = "[Raw]";
17% libsurive position
18pos_plot.data.lsP = libsurvive.output.T20.P;
19pos_plot.legend.lsP = "[LsEskf]";
20% Plot position
21imp.plot_data("[Position]", usesubplot, pos_plot);

Listing 4.3: Matlab plot

4.6.4 Virtual Environment and Tasks
The virtual environment is created with the UE (see figure 4.9). It consists of a play
area where the user can familiarize himself with the navigation and interaction within
the virtual world. All the objects used for tasks are available for the user to play around
with before a task has to be done. Additionally a short description before each task is
displayed and the user can inspect the task before it starts. The task starts as soon as
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Figure 4.9: Virtual environment

the user interacts with it. A display panel at the task shows the progress for each task
once it has started.

The user has to complete five tasks for each filter system:

Place cubes: Three tasks evaluates close up interactions by picking up cubes and plac-
ing them within a highlighted volume on a table. The first task requires to stack
cubes horizontally (see figure 4.10a), the second task to stack them vertically (see
figure 4.10b) and the third task to stack them horizontally and vertically into the
highlighted volume (see figure 4.10c). Cubes are highlighted by changing their
color from yellow to green once they have been properly placed (see figure 4.11).

Throw a ball: The fourth task evaluates faster movements, it checks the ability to
throw objects into a target by throwing a ball into a ring (see figure 4.12a). The
user has to do this three times, when the ball is thrown into the ring or hits the
ground it gets reset to its original position.

Shoot a target: The fifth task evaluates the ability to interact with a moving target by
shooting projectiles 50 times at a randomly moving sphere with a gun (see figure
4.12b). The sphere appears when the task starts and moves from one randomly
selected location to the next. It speeds up while moving to its next location and
slows down before reaching it. After the task has been completed the sphere is
removed.
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(a) Task 1 (b) Task 2 (c) Task 3

Figure 4.10: Place cubes

(a) Cube placed (b) Task completed

Figure 4.11: Interaction feedback

(a) Task 4 (b) Task 5

Figure 4.12: Throw a ball and shoot a moving target

4.6.5 User Study

The subjective evaluation of the TFF performance and the user acceptance is done in
the form of a user study. The SVR tracking, as well as the filtered libsurvive tracking
is being tested by letting the user perform tasks within a VE (see chapter 4.6.4). The
user is surveyed after each filter system about the difficulty of each task and potentially
occurred errors. Additionally the completion time and the number of interactions for
each task is measured and recorded. The whole experiment takes the user approximately
20 minutes to complete. The user study is structured into five parts (see figure 4.13)
where some of them have to be repeated for each filter system.
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Figure 4.13: User study procedure

In the first part the user needs to read and sign a consent form and answer questions
of a pre-questionnaire (see figure 4.14) with questions about the user’s age, gender and
prior experience with computer games and virtual reality. The question Q1 is answered
with the age of the user in years. The gender in Q2 is categorized as male, female and
other. The questions Q3 and Q4 have to be answered with the Likert scale:

1. 2. 3. 4. 5.
Not

experienced
at all

Slightly
experienced

Moderately
experienced

Very
experienced

Extremely
experienced

Q1 What is your age?

Q2 What is your gender ?

Q3 How experienced are you with computer games ?

Q4 How experienced are you with virtual reality ?

Figure 4.14: Pre-questionnaire

In the second part the user gets a brief introduction into potentially occurring tracking
errors and how they might manifest (see chapter 4.6.2), to help to identify them during
the test session. The user also gets a description of the tasks to perform within the VE,
followed up by an introduction to the virtual reality system. At the third part the user
is assisted to put the HMD and the KC on. This part allows the user to get familiar
with the system, explore the VE, and learn how to navigate and interact with objects
within the virtual world. During the fourth part each filter system is evaluated. The
user has to perform a variety of tasks within the VE for each filter system. These tasks
consist of stacking cubes, throwing a ball into a ring and hitting a moving target with
the projectiles of a gun (see chapter 4.6.4). The time and number of interactions it takes
to complete a task is recorded as quantitative data. The fifth part is a follow up for
each evaluated filter system, at which the user gives subjective feedback in the form of
a questionnaire. The questionnaire is grouped into four parts, the first group asks if
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the user experienced dizziness or nausea (see figure 4.15), the second part consists of
feedback about the perceived difficulty of each task (see figure 4.16), and the last two
groups gather feedback about potentially experienced tracking errors of the HMD (see
figure 4.17) and the KC (see figure 4.18). The question W1 is answered with the Likert
scale,

1. 2. 3. 4. 5.
Not dizzy

at all
Slightly
dizzy

Moderately
dizzy

Very
dizzy

Extremely
dizzy

,

and the question W2 with,

1. 2. 3. 4. 5.
Not

nauseous at
all

Slightly
nauseous

Moderately
nauseous

Very
nauseous

Extremely
nauseous

.

All T questions, about how challenging the tasks were perceived to be, are answered
with the Likert scale:

1. 2. 3. 4. 5.
Not

challenging
at all

Slightly
challenging

Moderately
challenging

Very
challenging

Extremely
challenging

The questions H6 and C6 are answered with free text, and the rest of the H and C
questions have to be answered with the Likert scale:

1. 2. 3. 4. 5.

Not at all Rarely Sometimes Often
Almost
always

After finishing the questionnaire for a filter system, the user continues to the fourth
part and repeats every task for the next filter system. The order of the filter systems
to be tested is randomized. Neither the instructor nor the user knows which system is
currently active. The quantitative data is collected as soon as the user starts the task
by interacting with it and is saved to a JSON file upon completion.

4.6.6 Data Acquisition
The UE stores a report in the form of a JSON file for each test session within the VE at
the file location Saved/Report-{GUID}.json. The listing 4.4 shows the structure of the
report, it contains all the collected quantitative data. The report contains a generated
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W1 Did you experience any dizziness ?

W2 Did you experience any nausea ?

Figure 4.15: Well-being post-questionnaire

T1 How challenging was the horizontal placement of the cubes in the first task?

T2 How challenging was the vertical placement of the cubes in the second task?

T3 How challenging was the horizontal and vertical placement of the cubes in the third
task?

T4 How challenging was it to throw the ball into the ring in the fourth task?

T5 How challenging was it to hit the moving target with projectiles in the fifth task?

Figure 4.16: Task post-questionnaire

H1 Have you experienced reoccurring distortions of your view for specific poses within
the virtual world? (Spatial distortion)

H2 Have you experienced any shaking of your view within the virtual world while
holding still? (Spatial jitter)

H3 Have you experienced any drifts in position or orientation of your view within the
virtual world? (Stability or drift)

H4 Have you experienced time delays between the movement of your head and the
actual motion shown in the head mounted display? (Latency)

H5 Have you experienced a variation in latency between movements of your head and
the displayed motion in the head mounted display? (Latency jitter)

H6 Have you experienced any other errors while using the head mounted displays that
cannot be classified by any of the above error descriptions? (Dynamic error)

Figure 4.17: HMD post-questionnaire
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C1 Have you experienced reoccurring distortions for specific poses of any controller
within the virtual world? (Spatial distortion)

C2 Have you experienced any shaking of a controller within the virtual world while
holding your hand still? (Spatial jitter)

C3 Have you experienced drifts in position or orientation of a controller within the
virtual world? (Stability or drift)

C4 Have you experienced time delays between the movement of one of your hand and
the actual motion of the controller within the virtual world? (Latency)

C5 Have you experienced a variation in latency between movements of your hand and
the related motion of the controller within the virtual world? (Latency jitter)

C6 Have you experienced any other errors while using a controller that cannot be
classified by any of the above error descriptions? (Dynamic error)

Figure 4.18: KC post-questionnaire

Globally Unique Identifier (GUID), the time of the reports creation and the status of
each task for each filter system. Each task can be identified by the filter system and the
task name, and contains the number of interactions, the time for completion and a flag
that indicates if the task has been successfully completed.

Listing 4.4: JSON report
{

"Time": "2022.12.08-11.53.18",
"GUID": "34B08D134D88304C0E2DDDAC73A55455",
"Tasks": [

{
"System": "Unreal",
"TestName": "Task␣01",
"Interactions": 33,
"Time": 120.23,
"Finished": true

},
...

]
}
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CHAPTER 5
Results and Discussion

This chapter documents and discusses the results of the TFF implementation. First we
take a look at its ability to deliver the filter updates in time to the UE. Next we analyze
the results of the TFF using generated as well as libsurvive tracking data. This chapter
also discusses some issues related to the data that libsurvive provides. Finally we take a
look at the subjective experience by analyzing the results of the conducted user study.

5.1 TFF Performance
As introduced in the section 4.6.1, we measure the TFF’s capability to deliver the number
of tracking updates provided by libsurvive in time to the UE.
The controller metric measures the number of pose and IMU updates provided by lib-
survive for each tracked device within a specified interval. The result for a time interval
of 1000 ms is,

Table 5.1: Controller metric report for a time interval of 1 second.

Device
name

Number of
pose updates

Number of
IMU updates

HMD 100 984
Left KC 100 250

Right KC 100 252

and shows that libsurvive provides around 100 pose updates per second for each device,
1000 IMU updates per second for the HMD and 250 IMU updates for a KC.
The result of the transmission metric, which is run over a time span of 10 minutes for
each filter with all available tracking devices, namely the HMD and both KCs, assesses
the systems capability to transmit all the updates to the UE within a few milliseconds.
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The transmission metric for the ESKF results in,

Table 5.2: ESKF Transmission metric report for a time interval of 10 minutes.

Device
name

Number of
updates

Average
latency
in ms

Minimum
latency
in ms

Maximum
latency
in ms

HMD 651390 0.200442 0 3.002
Left KC 163285 0.189505 0 3.001

Right KC 210359 0.176549 0 3.001

and for the DESP filter in:

Table 5.3: DESP Transmission metric report for a time interval of 10 minutes.

Device
name

Number of
updates

Average
latency
in ms

Minimum
latency
in ms

Maximum
latency
in ms

HMD 639950 0.165407 0 4
Left KC 170547 0.173136 0 3.001

Right KC 208643 0.162875 0 3.528

The transmission time for both filters includes the processing time. Looking at both ta-
bles above, the average latency is less than a millisecond, and the maximum peak latency
less than or equal to 4 milliseconds. This shows that the TFF is capable of processing
and transmitting the tracking data, provided by libsurvive for the hardware introduced
in section 4.1.1, to the UE within the required time period of a few milliseconds.

5.2 Filter Performance with Generated Tracking Data
As introduced in section 4.6.3, this section documents the generation and application of
simulated tracking data. We denote generated signals as true, noisy measurement signals
as input and the result of a DESP or ESKF as filtered signal. The generated input
tracking data represents position, orientation, acceleration and angular velocity data
with added noise, it is generated with Matlab and written to a text file. In order to use
this data with the TFF, a simulator data source has been implemented, which retrieves
the data from the text file instead of libsurvive. It reads and provides every entry from
the file as a pose or IMU update, which is then processed by a filter implementation.
The result is then imported into Matlab and plotted. This allows to analyze the ability
of filter algorithms to improve the noisy input data and compare it with the true signal.
Generated tracking data also allows to create a controllable scenario, which makes it
possible to modify and adapt the underlying data in order to quickly identify issues with
filter algorithms. However, the use of simulated tracking data removes many real-world
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problems and edge cases, limiting its application and reducing expressiveness when used
alone.

5.2.1 Generated Tracking Data
We generate two sets of simulated tracking data, one where the object is moving and an-
other one where the object is stationary. The moving object data is used to evaluate the
performance of each filter and the stationary object data to verify the ESKF’s correction
of the acceleration and angular velocity, and the proper estimation of the accelerometer’s
and gyroscope’s bias.

We define

f = 1000 d = 10 N = f · d, (5.1)

where f represents the frequency, d the duration of the data set in seconds and N the
total number of data samples. Our series of timestamps t is then given by

t = 1 . . . N

f
. (5.2)

For a moving object we define the true position kinematics as,

fp(t) = sin(x2) (5.3)
fv(t) = 2x cos(x2) (5.4)
fa(t) = 2(cos(x2) − 2x2sin(x2)). (5.5)

The function for the position is denoted as fp(t), for the velocity as fv(t) and for the
acceleration as fa(t). Furthermore we define the 3-dimensional vectors for the axes x, y, z,
of the position p(t), velocity v(t), gravity g(t) and acceleration a(t) as,

p(t) = [fp(t) fp(t + 1) fp(t + 2)] (5.6)
v(t) = [fv(t) fv(t + 1) fv(t + 2)] (5.7)
g(t) = [0 0 − 1] (5.8)
a(t) = [fa(t) fa(t + 1) fa(t + 2)] + g(t). (5.9)

We define the true rotation kinematics of a moving object as,

fr(t) = cos(x2) (5.10)

where fr(t) represents the rotation function and the rotation vectors r(t) around the
axes x, y, z are then given by,

r(t) = [fr(t) fr(t + 1) fr(t + 2)]. (5.11)
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The corresponding quaternion representation q(t) is given by,

q(t) = q{r(t)}. (5.12)

The rotation’s angular velocity vectors ω(t) are calculated with [17]:

ω(t) = 2
∆t

qw(t)qw(t + ∆t) − qx(t)qw(t + ∆t) − qy(t)qz(t + ∆t) + qz(t)qy(t + ∆t)
qw(t)qy(t + ∆t) + qx(t)qz(t + ∆t) − qy(t)qw(t + ∆t) − qz(t)qx(t + ∆t)
qw(t)qz(t + ∆t) − qx(t)qy(t + ∆t) + qy(t)qz(t + ∆t) − qz(t)qw(t + ∆t)


(5.13)

In order to test the filters with noisy data, we define the following 3-dimensional noise
vectors with a normal distributed noise,

pn ∼ N (0, 0.005) an ∼ N (0, 0.001) aw ∼ N ([0.05 0.01 − 0.06], 0.001) (5.14)
rn ∼ N (0, 0.005) ωn ∼ N (0, 0.001) ωw ∼ N ([−0.06 0.01 0.05], 0.001), (5.15)

and add them to the generated true kinematics vectors in order to get our noisy input
signal,

pin(t) = p(t) + pn(t) (5.16)
ain(t) = q{r(t)}−1 ⊗ a(t) + an(t) + aw(t) (5.17)
rin(t) = r(t) + rn(t) (5.18)
qin(t) = q{rin(t)} (5.19)
ωin(t) = w(t) + ωn(t) + ωw(t). (5.20)

Note that the acceleration a(t) must be rotated by the inverse rotation q{r}(t)−1 in order
to simulate the values that the IMU would provide and that the generated tracking data
is designed to provide nine IMU updates in between every pose update.

For a stationary tracked object we define the position kinematics,

fp(t) = 1, fv(t) = 0, fa(t) = 0, (5.21)

and the rotation kinematics,

fr(t) = 1, ω(t) = 0, (5.22)

and create the noisy input signal the same way we did for a moving object.

5.2.2 DESP
The DESP is applied to the input signal, and the filtered results are plotted with Matlab.
In order to find the optimal filter parameter α, different plots are created, and the results
are compared side by side. The figure 5.1 shows a sample of DESP filtered position
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results, and the figure 5.2 shows filtered rotation results. Both figures illustrate DESP
filtered results using a value of 0.1 for the filter parameter α. This value results in strong
smoothing, while smaller values introduce a noticeable lag, causing the filtered signal to
lag behind, and greater values result in a more noisy signal.

Looking at the result of the DESP filter a few things become apparent. The filtered
signal, while still being noisy, is an improvement compared to its noisy input. Looking
at the prediction results in between simulated optical updates, which can be identified
as group in between jumps where consecutive points are close to each other, it can be
seen that the slope of the signal is clearly lagging behind. The DESP is capable to filter
the input signal to some degree but adds a lag to the filtered signal. The algorithm only
provides one parameter to filter the level and trend, it is therefore not possible to filter
them independently.

We can summarize the results for simulated tracking data as follows:

• The result is an improvement compared to its noisy input.

• The slope of the predicted estimate is lagging behind. This causes a lag for faster
movements.

• Only one parameter is available to filter both level and trend.

5.2.3 ESKF
Similar to the DESP, we apply the ESKF to the input signal and plot the results with
Matlab. The variance parameters used for the ESKF are equal to the variances used to
generate the data, as introduced in chapter 5.2.1. Before looking into the position and
rotation results, we verify the correction of the acceleration and angular velocity, and the
proper estimation of the accelerometer’s and gyroscope’s bias. In order to do that we use
the generated tracking data of a stationary object, apply the ESKF and plot the results.
The figure 5.3 shows that the generated acceleration is correctly rotated and the gravity
removed. Furthermore the arbitrary defined acceleration bias of [−0.05 0.01 0.05] has
been approximately estimated by the ESKF, which leaves us with a noisy but corrected
ESKF acceleration of about zero. The figure 5.4 shows that the ESKF approximately
estimates the arbitrary defined gyroscope bias of [−0.06 0.01 0.05] and corrects the
provided angular velocity, resulting in a noisy but corrected angular velocity close to
zero.

Next we take a look at the filtered signal of a moving object. The figure 5.1 shows a
sample of ESKF filtered position results, and the figure 5.2 filtered rotation results. It
can be seen that the filtered results are close to the true signal, this means that the
ESKF is capable of filtering noisy tracking data. Analyzing the prediction results of
simulated IMU updates in between simulated optical updates shows that the trend is
correctly estimated.

We can summarize the results for simulated tracking data as follows:
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• The result is a significant improvement compared to its noisy input.

• The filter is able to estimate the accelerometer and gyroscope bias correctly.

• The filter is able to process fast and slow movement data correctly.
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5.2. Filter Performance with Generated Tracking Data

Figure 5.1: Filtered position of a generated tracking data sample.
This figure illustrates the filtered position of a generated tracking data sample. The
different zoom levels highlight different aspects of the tracking data. The plots of X

and Y show that the DESP filtered result is still very noisy, introduces a significant lag
on the signal, and that the slope of the prediction is clearly lagging behind. It also
shows that the ESKF filters the noisy input correctly and predicts the slope of the

signal accurately. The last plot of Z gives an overview of the entire sample, it shows
that the DESP lags behind while the ESKF can filter the signal properly even for

faster movements.
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Figure 5.2: Filtered rotation, represented as quaternion, of a generated tracking data
sample.

This figure illustrates the filtered rotation, represented as quaternion, of a generated
tracking data sample. Again, different zoom levels highlight different aspects of the

tracking data. The results are similar to those of the filtered position. The plots of W
and X show that the DESP result is very noisy, lags behind and that the slope of the

prediction is lagging behind too. The ESKF on the other hand filters the signal
properly and predicts the slope accurately. The plot of Z shows the same result of the
entire signal, and also shows the results for faster movements at the end of the sample.
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Figure 5.3: Generated acceleration of a still object sample.

Figure 5.4: Generated angular velocity of still object sample.
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5.3 Filter Performance with libsurvive Data
5.3.1 libsurvive Data
Before discussing the results of the specific filter implementations, we take a look at
the data provided by libsurvive and discuss the related issues. libsurvive provides a
Run Time which marks the time of the provided pose or IMU update, and more precise
Internal Time representing the time of the IMU measurement or pose estimation. The
two Internal Time clocks which provide the time stamps for IMU measurements and
pose estimations are not aligned by default. libsurvive aligns these time measurements
only if the internal Kalman filter is enabled, which does not apply in our case. This
causes issues as the Internal Time for poses lie back in time, compared to the Internal
Time for IMU measurements (see figure 5.5), because of this we only use the Internal
Time stamps for IMU measurements.

Figure 5.5: Internal time to run time comparison.
This figure maps the two Internal Time clocks for IMU and pose updates to

libsurvive’s Run Time for comparison. It can be seen that the Internal Time for pose
estimations lies back in time.

Furthermore the LHTS provides measurements for each beacon and libsurvive estimates
a pose, but the time interval between these measurements is not consistent, which causes
the sampling rate to vary. This is an issue for the DESP, diminishing its ability to
estimate between pose updates, as it requires a stable sampling rate. In order to prevent
overshoots the implementation limits the parameter h to a maximum of 1 and uses the
time stamp of the first IMU update after each pose update as prediction start.

In order to integrate the accelerometer readings for the ESKF they have to be rotated
into the reference frame. Valve’s Index tracking devices do not use magnetometers
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therefore the estimated orientation of libsurvive is used to rotate these readings. The
libsurvive Kalman filter is applied at the level of lightcap data, and without it we are left
with a less accurate orientation (see figure 5.6), which causes acceleration integration
errors that lead to an inaccurately estimated velocity. The discrepancy between the

Figure 5.6: Rotation discrepancies.
This figure demonstrates the discrepancies of the rotation provided by libsurive and

shows the angle on the axis x for comparison. [Input] shows the raw signal with
disabled optimizations. [Eskf] shows the result of the ESKF filtered raw signal.

[libsurvive] shows the corrected signal with enabled optimizations.

position velocity and the integrated velocity causes a breakout of the acceleration bias,
which adds a lag to the integrated velocity (see figure 5.7) causing overshoots on turning
points. This subsequently applies also to the position. In order to mitigate this effect a
higher acceleration bias variance has been used.

5.3.2 DESP
The DESP is applied to the input signal and the results are plotted and then evaluated
with Matlab. Again, different plots for the control parameter α were created and com-
pared side by side to find the optimal value for the given sample. The figure 5.8 shows a
sample of DESP filtered position results and the figure 5.9 shows rotation results. The
optimal value for the filter parameter α turned out to be 0.1, as illustrated in the two
figures, it filters the signal but also introduces a negligible lag. The results are similar
to those of the simulated tracking data introduced in chapter 5.2.2.

The main difference is the unstable sampling rate of the input signal, which worsens the
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Figure 5.7: Integrated velocity comparison.
This figure illustrates the lag of the integrated velocity due to integration errors for a

sample on the x axis.

predicted estimate between pose updates. The filter results are not stable enough to be
used for the user study, especially the noisy rotation results are causing dizziness when
used within the VE.

In addition to the results documented in chapter 5.3.2, we can add the following points:

• The irregular sampling rate and improperly aligned timestamps cause the predic-
tion to not work properly.

• The results are too noisy, causing dizziness. Especially the noisy rotation is an
issue for the subjective experience.

Therefore, the filter is discarded for the user study.

5.3.3 ESKF
A stationary input signal is used for the ESKF to evaluate the correct accelerometer
and gyroscope bias estimation and to verify the proper rotation of the acceleration. The
figure 5.10 illustrates the rotation of the input acceleration signal provided by the IMU.
It is first rotated by the pose rotation and then adjusted by subtracting the gravity
and the estimated accelerometer bias. The resulting acceleration is approximately zero,
which is as expected for a stationary signal. The figure 5.11 shows the result of the
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gyroscope’s angular velocity subtracted by the estimated bias. The result of the angular
velocity for a stationary signal is, as expected, close to zero.

The stationary variances of position and orientation are around 10−8, and those of the
accelerometer and gyroscope around 10−6. However, the variances for position and
orientation of tracked devices in movement deviate greatly from the stationary variances.
This can also be observed using raw libsurvive tracking within the VE, holding still
greatly improves the subjective stability of the position and orientation. The optimal
parameters for the ESKF were determined by trial and error on a sample with movement
data. We started out with a variance of 0.001 for all parameters and ended up with:

pn = 0.001 rn = 0.001 an = 0.01 ωn = 0.01 aw = 100 ωw = 0.01 (5.23)

Due to errors of the orientation mentioned in section 5.3.1, we reduce the trust in the
acceleration and angular velocity by increasing their variances compared to the position
and orientation. The consequences of the resulting bias breakouts are mitigated by
increasing the bias variances of the angular velocity and the acceleration.

Looking at the results of the rotation for the HMD (see figure 5.9), we can see a clear
improvement to the input signal. Especially the stability of the rotation is important for
subjective experience. Moving on to the results of the position for the HMD (see 5.8) we
can see the introduction of a negligible lag on the filtered signal, but also an improvement
compared to the noisy input signal. The increased acceleration bias prevents the result
from drifting, but also makes it more noisy. As a consequence, the deviation of the
rotation results in an inaccurate velocity, which requires an increase of the acceleration
bias variance and prevents proper filtering of the position signal. The results of the KCs
are very similar to those of the HMD and are not further illustrated here.

The results allow this filter to be used for the user study and can be summarized as
follows:

• The filtering of the rotation is a significant improvement compared to its noisy
input signal.

• The filtering of the position is a minor improvement compared to its noisy input
signal.

• The filter is not able to compensate for the inaccurate rotation, causing integration
errors of the velocity. The resulting bias breakouts of the ESKF cause drifts. The
measures taken to mitigate this effect add a negligible delay and prevent proper
filtering of the position.

• The end result is subjectively good enough to be evaluated within the user study.
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Figure 5.8: Filtered positions sample of libsurvive HMD tracking data.
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Figure 5.9: Filtered rotation sample of libsurvive HMD tracking data.
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Figure 5.10: libsurvive acceleration of a stationary object sample.

Figure 5.11: libsurvive angular velocity of stationary object sample.
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5.4 User Study

This section discusses the results of the conducted user study (see section 4.6.5) within
the VE (introduced in section 4.6.4) to investigate the systems performance and user
acceptance. This work utilizes a within-subjects factorial design in which the indepen-
dent variables are the tracking systems or filters and the tasks to complete. A subject
refers to a participant within this context and the design allows for the manipulation of
independent variables within subjects. This means that each participant is tested in all
conditions of the experiment. The dependent variables are the number of interactions
with each task and the completion time for each task.

It has to be noted that the filter parameters of the ESKF were adapted for the user study
to further reduce the noise of the underlying tracking data delivered by libsurvive. This
was necessary because the performance of the cube placement tasks was impacted by
the remaining noise, which made it more difficult to place the cubes. As a result, there
is a negligible delay and a slightly less accurate but more stable position and orientation.
The following ESKF parameters were used for the experimental user study:

pn = 0.01 rn = 0.01 an = 0.001 ωn = 0.001 aw = 100 ωw = 0.01 (5.24)

5.4.1 Subjects

19 people have participated in the user study, 6 of these participants identified as female
and 13 as male. The age of the participants ranged between 28 to 65. 12 participants
stated that they had moderate or more experience with computer games and 7 had
moderate or more experience with virtual reality. The order in which the systems were
tested was unknown and randomized for each participant. 10 participants started with
SVR and 9 with the ESKF applied to the libsurvive tracking data. One person stated
that they felt extremely dizzy while conducting the tasks for a given system, but they
still were able to finish the session.

5.4.2 Collected Data and Statistical Tests

The quantitative variables, task completion time and task interactions, are recorded by
the VRA. The participants’ age, which is also a quantitative variable, is gathered by
the questionnaire. The task completion time has a continuous value, and the number
of task interactions as well as the participants’ age have discrete values. Furthermore,
the tracking system and the participants’ gender have categorical nominal values. The
tracking system is collected by the VRA and related to the quantitative variables, and
the participants’ gender is queried through the questionnaire. The rest of the categorical
variables are collected through the questionnaire and have ranked ordinal values. Namely
computer game experience, virtual reality experience, dizziness, nausea, HMD and KC’s
tracking errors, and task difficulty.
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Paired t-test

The paired t-test allows to compare collected pairs of dependent quantitative data. It is
used to compare the means of two groups with multiple samples, where each observation
in one group is paired with an observation in the other group, in order to determine if
there is a significant difference between the means of the two groups. The null hypothesis
H0 assumes that the mean xd of the random variable xd = x1 − x2, which represents
the differences between each pair of observations, is normally distributed and zero. The
alternative hypothesis H1 assumes that the mean xd is unequal to zero.

H0 : µd = µ1 − µ2 = 0 (5.25)
H1 : µd #= 0 (5.26)

The t-statistic t is given by the mean xd divided by the standard deviation sd of differ-
ences for each pair of observations n (sample size):

tdf = xd

sd/
√

n
(5.27)

The degrees of freedom df are defined as n − 1. The result of the t-test is given by the
t-statistic t and the p-value p. The p-value represents the probability of obtaining a test-
statistic by chance alone, the lower its value the more significant is the test. A p-value
of 0.05 indicates that there is less than a 5% chance that the difference in the mean
values was due to chance. A high t-value and a low p-value indicate the rejection of the
null hypothesis. The null hypothesis is rejected if the absolute value of the calculated t-
statistic is greater than the critical value of a t-distribution with n−1 degrees of freedom
for a chosen significance level α. Not rejecting the null hypothesis means that there is
no sufficient evidence to claim a significant difference, while rejecting the null hypothesis
means that there is a significant difference between the means of the two groups.

Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a non-parametric test, used to compare the difference
of two groups with multiple samples. It allows to compare the medians of two dependent
distributions and is able to compare ranked values from a Likert scale. The test statistic
is obtained as follows:

• First, the difference between the values of each dependent pair of observations is
calculated.

• Next, a rank from 1 to the number of samples n is assigned to the absolute difference
of each value pair.

• Pairs of equal values with a difference of zero are removed.

• All pairs with equal absolute differences form a group, the average of all the ranks
within a group is calculated, and assigned to each pair as rank value.
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H1 The number of interactions when performing tasks is less with SVR, than with
libsurvive and applied ESKF.

H2 The time needed to complete tasks is less with SVR, than with libsurvive and
applied ESKF.

H3 The task performance is perceived less difficult with SVR, than with libsurvive and
applied ESKF.

H4 Participants perceive fewer tracking errors during a test run with SVR, than with
libsurvive and applied ESKF.

H5 The use of SVR causes less dizziness for users, than libsurvive with applied ESKF.

H6 The use of SVR causes less nausea for users, than libsurvive with applied ESKF.

Figure 5.12: Tracking hypotheses

• Finally the signed ranks, which are the sums of absolute rank values for all negative
and positive differences, are calculated separately.

The test statistic W , which is the smaller signed rank value, is then compared to the
critical value from a Wilcoxon table for a chosen significance level α. The null hypothesis
H0 is rejected if the test statistic is less than or equal to the critical value, indicating
sufficient evidence to claim a significant difference between the two groups. [23]

5.4.3 Goals and Hypotheses

It is the goal of this user study to evaluate the performance and user acceptance of libsur-
vive with the applied ESKF compared to SVR. The performance is measured in terms of
the number of interactions and the completion time for each task. The user acceptance
is assessed by perceived task difficulty, tracking errors, and experienced dizziness and
nausea. The hypotheses for this experiment have been selected with the prior knowledge
from the performance analysis of applying the ESKF to libsurvive tracking data in mind
(see section 5.3.3), and are listed in figure 5.12.

5.4.4 Quantitative Evaluation Results

This section compares SVR to libsurvive with disabled internal optimizations and applied
ESKF. The comparison aims to verify if there are significant differences between the two
systems using paired t-tests. The tests compare the average completion time and number
of interactions for each system.
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Figure 5.13: Average completion time by task or group

Task Completion Time

Figure 5.13 illustrates the average task completion time for all tasks 1 to 5, as well as
for cube placement tasks 1 to 3, task 4 (throwing a ball) and task 5 (shooting a moving
target), separately. The average task completion time for all tasks indicates a significant
difference in favor of SVR between the two systems, with (t18 = −3.2932, p = 0.0040415).
For the averaged result of tasks 1 to 3, SVR significantly outperforms libsurvive and ap-
plied ESKF with (t18 = −3.32, p = 0.0038095). This difference can likely be attributed
to the remaining residual noise present in libsurvive tracking data of the KCs, which
makes it more challenging to accurately place cubes and consequently leads to an ex-
tended time for cube placement. For task 4, there was no significant difference detected
between the systems with (t18 = −2.0566, p = 0.054519). For task 5, SVR is also sig-
nificantly better than libsurvive and applied ESKF with (t18 = −2.5186, p = 0.021461).
This is most likely caused by libsurvive related tracking errors of the HMD and the KC,
which are affecting the hand-eye coordination and making it harder to follow and hit the
moving target.

Task Interactions

Figure 5.14 illustrates the average task interactions for all tasks 1 to 5, as well as for cube
placement tasks 1 to 3, task 4 (throwing a ball), and task 5 (shooting a moving target),
separately. The average task interactions for all tasks indicates a significant difference in
favor of SVR for the two systems with (t18 = −3.6084, p = 0.0020093). For the averaged
result of tasks 1 to 3, there was no significant difference detected between the systems
with (t18 = −1.9479, p = 0.067189). Again for task 4, there was no significant difference
detected between the systems with (t18 = −0.65727, p = 0.51932). For task 5, SVR
was significantly better than libsurvive and applied ESKF with (t18 = −3.8832, p =
0.0010894). Again, this is most likely caused by libsurvive related tracking errors of the
HMD and the KCs, which affect the hand-eye coordination, make it harder to hit the
moving target, and cause more misses.
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Figure 5.14: Average interactions by task or group

5.4.5 Subjective Evaluation
This section once again compares SVR to libsurvive with disabled internal optimizations
and applied ESKF. Similarly to the previously discussed analysis of the gathered quan-
titative performance data, the goal is to compare the two systems and verify if there are
significant differences. This time, the Wilcoxon signed-rank test is utilized to analyze
the subjective feedback provided by the participants in the form of Likert scales, with a
significance level of 0.05. The questions and possible answers were introduced in section
4.6.5. The participants provided feedback on the perceived dizziness, nausea, difficulty
and tracking errors.

Dizziness and Nausea
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Figure 5.15: Average dizziness and nausea.

The results of the perceived average dizziness and nausea are illustrated in figure 5.16.
The participants experienced significantly less dizziness, with (W = 0, p = 0.00022311),
and significantly less nausea, with (W = 0, p = 0.0019531), when using SVR compared
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to libsurvive with applied ESKF. The dizziness and the more severe nausea is most likely
caused by a discrepancy between executed movements and their perceived representation
in the VE. Even libsurvive with enabled optimizations introduces dizziness or a feeling
of "something is off", this is probability worsened with disabled optimizations and the
measures taken to reduce jitter with the ESKF.

Task Difficulty
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Figure 5.16: Average task difficulty.

Figure 5.16 illustrates the results for the perceived average task difficulty of all tasks
1 to 5, the place cube tasks 1 to 3, the throw a ball task 4, and the shoot a moving
target task 5. All tasks total, were perceived significantly less difficult using SVR with
(W = 0, p = 0.0039062). This also applies to the cube placements tasks 1 to 3 with
(W = 0, p = 0.00097656). Especially the close-up interactions required to place the
cubes can become more difficult with the presence of tracking errors. The occurrence of
spatial distortions and the remaining residual noise in libsurvive tracking data for the
HMD and KCs can make it more challenging to accurately place cubes. Again similar
to the quantitative data results, there was no significant difference detected in the task
difficultly between the two systems for the task 4 (throw a ball) with (W = 21.5, p =
0.37305). The difficultly of task 5 (shoot a moving target) was perceived significantly less
challenging when using SVR with (W = 0, p = 0.015625). Again, this is most likely due
to spatial distortions of the HMD and KCs, as well as dizziness introduced by latency,
both affect the hand-eye coordination.

HMD Tracking Errors

This section presents the results of the perceived tracking errors by participants using
the HMD. Figure 5.17 shows the average perceived tracking errors with the HMD for all
tracking errors, as well as for spatial distortion, spatial jitter, drift or stability, latency,
and latency jitter, separately. The overall perceived tracking errors for the HMD were
significantly lower when using SVR, compared to libsurvive with applied ESKF, with
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Figure 5.17: Average HMD tracking errors

(W = 0, p = 0.00019187). The perception of spatial distortions was significantly less for
SVR with (W = 0, p = 0.00024414). The pose estimation algorithm of libsurvive with
disabled optimizations can cause spatial distortions, especially while the user is moving
fast or the HMD is partially occluded. Participants experienced significantly more spatial
jitter while using libsurvive and ESKF compared to SVR with (W = 0, p = 0.00017376).
The measures taken to address the previously discussed acceleration integration errors
reduce the ESKF’s ability to eliminate the existing jitter from libsurvive tracking data.
Drift or stability issues were significantly less perceived on SVR with (W = 0, p =
0.0019531). The perception of a latency between movement and their representation
in the VE was significantly less for SVR with (W = 3.5, p = 0.027344). The measures
taken to reduce the position jitter most likely introduce a minor delay, which is only
noticeable during fast movements. Participants also perceived significantly less latency
jitter when using SVR with (W = 0, p = 0.0078125).

KC Tracking Errors

This section presents the results of participants’ perceived tracking errors using the KCs.
Figure 5.18 shows the perceived average tracking errors of KCs for all tracking errors, as
well as spatial distortion, spatial jitter, drift or stability, latency, and latency jitter. Sim-
ilar to the HMD, participants perceived significantly fewer tracking errors for KCs when
using SVR compared to libsurvive and applied ESKF with (W = 0, p = 0.00019187).
Participants perceived significantly fewer spatial distortions for KCs when using SVR
with (W = 0, p = 0.00024414). Similar to the HMD, the pose estimation algorithm of
libsurvive with disabled optimizations can cause spatial distortions, particularly when a
KC is partially occluded. Spatial jitter was perceived significantly less often when using
SVR with (W = 0, p = 0.00015195). Again similar to the HMD, the measures taken
to address the previously discussed acceleration integration errors reduce the ESKF’s
ability to eliminate the existing jitter from libsurvive tracking data for KCs. Drift or
stability errors were perceived more often with libsurvive and applied ESKF than with
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Figure 5.18: Average KC tracking errors

SVR, with (W = 0, p = 6.1035e − 05). If a KC was occluded the rotation could start to
spin, this was a common issue with libsurvive and could occur when participants bent
over to pick up a cube. Latency was perceived significantly less for the SVR system with
(W = 0, p = 0.00048828). Again similar to the HMD, the measures taken to reduce the
position jitter most likely introduce a minor delay, which is only noticeable during fast
movements of a KC. The latency was most noticeable for a KC during task 4 (Throw
a ball). Finally, participants also perceived significantly less latency jitter when using
SVR with (W = 0, p = 0.00097656).
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CHAPTER 6
Conclusion and Outlook

6.1 Tracking data
The LHTS with Valve’s Index has been used as data source for this work, in order to
get real tracking data of an optical/inertial system. SVR only provides filtered tracking
data and does not provide IMU measurements. The library libsurvive has been used
as an alternative to access LHTS data, including IMU measurements. The libsurvive
optimizations were disabled in order to work with noisy tracking data. The IMU mea-
surements are necessary for the ESKF, because it has the ability to fuse optical and
inertial tracking data. libsurvive is experimental and has a few problems with disabled
optimizations, as mentioned in section 5.3.1. The internal Kalman filter of libsurvive
filters the lightcap data prior to the estimation of a pose. Disabling this internal filter
causes additionally to the expected spatial jitter, spatial distortions and inaccurate poses.
The resulting inaccurate rotation causes problems for the integration of the acceleration.

libsurvive and its output with disabled optimizations is unstable. The noise and spatial
distortions turned out to be too much for both filters to compensate. There are two ways
to deal with the LHTS and libsurvive, either start with the implementation of a custom
poser and a much more complex Kalman filter algorithm, similar to what libsurvive does,
or find another tracking source that has fewer issues and verify if the introduced filters
are capable of producing better results.

6.2 Virtual Reality Application
The subjective feedback from users regarding the VE was very positive, and the tasks
were perceived as entertaining and fun. However, for future work, there are a few areas
that should be improved. A better collision handling system could be implemented to
improve close-up interactions, such as the placement of cubes. Currently, it is possible to
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grab an object and push it inside another object. Upon release, the two objects bounce
of each other, which caused frustrations for some participants. Additionally, a better
visualization for interactions could be implemented to indicate when an object can be
grabbed. The area of effect for a grab interaction extends the volume of the KC model,
which was not apparent for participants. The task 4 (throw a ball) was perceived as too
difficult for most users, because the ball itself had no momentum on its own. This lack
of momentum made it more challenging to accurately throw the ball. Additionally, the
distance to the hoop was perceived as too far for some participants.

6.3 Double Exponential Smoothed Prediction
The results for simulated tracking data (see section 5.2.2) show that the filter could
improve the noisy input, but introduces a lag in the signal. However, the result is still
very noisy.

The results for libsurvive tracking data (see section 5.3.2) turned out to be to noisy and
caused extreme dizziness due to the introduced lag. The prediction in between updates
turned out to be not working properly for libsurvive tracking data due to the the varying
sampling rate. The results of the DESP are not sufficient to filter libsurvive tracking
data. The DESP was therefore discarded for the user study.

The DESP is able to remove high frequency noise but not to the extend that the results
would be sufficient enough for a VRA. A control parameter α with a value of 0.1 already
introduces a lag in the signal, yet the result was still too noisy. This applies to both
simulated and libsurvive tracking data. Another problem of the filter is that it only
provides one parameter for filtering level and trend. The sample rate of a signal makes
a difference for the results, the more data is available the better an exponential filter
can estimate the underlying trend and remove high frequency noise. For future work,
exploring other exponential filters could lead to better results. The potential to apply
different control parameters to the level and trend, as well as the independence from a
fixed sampling rate, could potentially lead to improved outcomes. However, if the input
data is to noisy other exponential filters might still not provide acceptable results.

6.4 Error-state Kalman Filter
The ESKF results for simulated tracking data (see section 5.2.3) show a significant
improvement compared to its noisy input. Both the position and rotation results are
close to the true signal, this holds true even for faster movements. The algorithm
accurately estimates the arbitrary chosen accelerometer and gyroscope biases and can
estimate the velocity by integrating the simulated acceleration. The resulting velocity
is accurate and enables to estimate the position in between simulated optical updates.

The results for libsurvive tracking data (see section 5.3.3) show an improvement com-
pared to the noisy input. The rotation results show a significant improvement. However,
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the position shows only a minor improvement due to the issues discussed in section 5.3.1.
The incorrect rotation leads to an incorrect velocity, which ultimately leads to a drift in
the position. The measures taken to mitigate this drift prevent a proper filtering of the
position.

The results of the experimental user study show that there is a significant difference
between SVR and libsurvive with applied filter.

Looking at the results for tracking errors, the hypothesis H4 is supported. Participants
perceived significantly less tracking error for the HMD and KCs while using SVR. When
examining the perceived tracking errors for libsurvive with applied ESKF, a few things
become apparent. Spatial jitter was the most dominant perceived error, which occurred
for both the HMD and the KCs. The measures taken to prevent position drifts, as
discussed earlier, reduced the ESKF’s ability to remove the remaining jitter from the
position data. Another two major tracking errors were spatial distortion and the related
inaccurate orientation of the HMD. Some participants could even detect that the orien-
tation of the HMD was not always correct, as it gave them the impression that they are
standing crooked within the VE. Latency was experienced by some participants, which
was mostly noticeable during the task 4 (throw a ball). Faster movements of throwing a
ball for this task made the latency become more noticeable. Drifts could also occur for
the KCs, with occluded KCs showing orientation spinning.

Moving on to the perceived dizziness and nausea, the results also support the hypothesis
H5 and H6 as SVR caused significantly less dizziness and nausea. The emergence of
dizziness and nausea was due to a few factors. The delay between a movement and its
representation could often not be consciously identified, but was perceived as dizziness
or nausea. Even the use of libsurvive with enabled optimizations can cause a slight
sense of dizziness, and the measures to remove drifts for the position worsened this
delay. Furthermore, the spatial distortion of the HMD and the inaccurate orientation
also contribute to the feeling of dizziness and nausea.

The results also support the hypothesis H1 and confirm that the average number of
interactions for all tasks is significantly less with SVR than libsurvive with disabled
optimizations and applied ESKF. However, there was no significant difference detected
for the tasks 1 to 4. The number of interactions for task 1 to 3 are not as affected,
because participants pick up a cube and release it once it is in the right spot, reducing
the number of required interactions. The time factor to place a cube is more important,
as we will see later. The task 4 was more challenging in general, but once a participants
had figured out how to throw the ball, the number of interactions and the completion
time, as we see later, were not significantly different.

The user study results support the hypothesis H2 and confirm that the average com-
pletion time for all task is again significantly lower with SVR. The only exception was
task 4 (throw a ball), where no significant difference could be detected. The differences
can be attributed to the remaining noise, the occurring spatial distortions but also the
incorrect rotation. Participants took more time in order to be more accurate and to
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counteract the feeling of dizziness.

Finally, the hypothesis H3 is also supported by the findings and shows that performing
tasks with SVR was significantly less challenging. Again, the only exception here was
task 4 for which no significant difference could be detected. This means that, as excepted,
the occurrence of tracking errors made performing a task more difficult for participants.

As already mention in section 6.1, for future work on the ESKF another tracking data
source is required. The results with simulated tracking data show that the filter is capable
of significantly improving the tracking data, but falls short with libsurvive tracking data
because of the mentioned issues.
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