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Abstract

An open challenge in solid state physics is to understand the behaviour of

strange metal systems governed by strong correlations. One way to probe

and characterize this quantum critical behaviour is to use magnetic neutron

scattering experiments together with tools from entanglement theory. This

thesis investigates how the depth and range of entanglement may be verified

and bounded by witnesses based on collective angular momentum observables.

In particular, we focus on how to obtain the quantum Fisher information as

a multipartite entanglement witness from neutron scattering data.
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1 Introduction

An open challenge in solid state physics is to understand systems that are

governed by strong correlations. Some of these systems, such as strange metals,

feature interesting topological phases. Neutron scattering experiments in

combination with tools from entanglement theory provide one way to probe

and characterize these systems’ behaviour. Here, the notion of long-range

entanglement and its verification is of special interest. This will become

evident in the following review where we address some important concepts

from condensed-matter physics, quantum information theory, and neutron

scattering, and see how and to what extent these concepts may complement

each other in the study of quantum correlations in solid state systems.

1.1 Why phases matter

The basic states of thermodynamic systems are typically described in terms

of phases such as gas, liquid, and solid states of matter. Within a given

phase, the physical properties of a system do not change. In order for the

physics to change, a state must undergo a phase transition. Phases and

phase transitions are often characterized as functions of external parameters

such as temperature, pressure, or magnetic field. This is usually summarized

graphically in one or many phase diagrams.

A remarkably successful and widely used framework that describes the ther-

modynamic and structural changes of materials undergoing phase transitions

is known as Landau theory. Here, the idea is to explain phase transitions

through some symmetry-breaking mechanism that is characterized by an

order parameter. For this purpose, the free energy of a system is an impor-

tant mathematical quantity describing the thermodynamics of a system. In

Landau theory, the free energy is written as a functional that is an analytic

function of the order parameter. The exact form of this functional depends

on the symmetries of the system and type of phase transition under con-

sideration. Phase transitions take place at points where the free energy is

minimized. Landau theory is also useful in the study of critical phenomena

that occur near such phase transition points.
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Nowadays, there exists a more comprehensive framework than Landau theory,

known as renormalization group and scaling theory. These methods are more

widely applicable and involved than Landau theory due to their use of the

concept of universality that describes how critical phenomena depend only

on the dimension and symmetries of a system and not on its microscopic

details.

Nevertheless, Landau theory remains very useful until today. One of the

reasons for this is that the phases it describes can be probed with the help

of linear response functions that can be obtained from experiments such

as inelastic neutron scattering or magnetization measurements. However, it

turns out that Landau theory cannot characterize all phases of matter because

there exist distinct phases of the same symmetry, such as quantum Hall states.

These phases are known as topological phases. They are characterized by

non-local topological properties, are often robust against local perturbations,

and phases may be classified using topological invariants. Topological phase

transitions can be explained within the framework of renormalization group

(RG) and scaling theory using methods based on effective field theories, scaling

laws, (quantum) criticality studies, RG flow, or topological quantum field

theories. Note that the application of such methods can be quite demanding,

and that it requires some level of expertise to find and implement the right

approach for a given topological phase being studied. A framework for both

symmetry breaking and topologically ordered phases and phase transitions

is presented in [1]. In particular, topological phases are characterized as

patterns of entanglement, i.e. entanglement distributed among many different

parties. In that sense, topologically ordered systems are said to be long-range

entangled where long-range entanglement can be defined as non-convertibility

to a product state under a special type of local transformation known as

generalized stochastic local transformations [1]. Thus, topological phases

are connected to the entanglement structure of the system. Consequently,

it would be interesting to probe and distinguish between both symmetry-

breaking and topologically ordered phases with the help of entanglement

witnesses. In particular, topological ground states are often found to be
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highly entangled, and it is possible to study how this entanglement changes

with time and other physical parameters.

Solid state physicists find topological phases interesting mainly because they

describe new quantum states of matter with unique properties that cannot

be described within the traditional framework of Landau theory. These

novel states may have unique properties. Due to their robustness against

local perturbations and disorder, these phases show little susceptibility to

impurities or imperfections, which is important for practical considerations.

Some notable phases feature what is known as topologically protected edge

or surface states, topological insulators, and superconductors.

For similar reasons, many solid state physicists study a special type of

phase transition occurring at absolute zero temperature. This is known as

a quantum critical (QC) point and leads to the emergence of a QC phase.

These phases often exhibit universality and can be characterized in terms of

scaling laws, i.e. physical observables diverge or show power-law behaviour

near a QC point. Such phases are extensively studied because they often

feature phenomena arising from strong correlations between particles, such

as unconventional superconductivity or exotic magnetic phases. This is also

very interesting from a quantum information point of view, as quantum

correlations are generally related to the entanglement structure of the system.

In [2], entanglement is viewed as a resource for a condensed matter system

that makes it possible to characterize the change in its ground state wave

function as the system approaches a QC point. Such considerations are useful

when looking at condensed matter setups where the scaling behaviour may

be used as a tool to evaluate entanglement and vice versa.

Now we know why it is worthwhile to study strongly correlated systems that

can give rise to interesting phases, and that quantum information theory

may provide a framework to study and characterize strong correlations in

quantum many-body systems. Let us now introduce some important and

relevant concepts from this framework.
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1.2 General concepts from entanglement theory

To begin, let us introduce the notion of entanglement by considering a

bipartite system. Bipartite means that there are two parties, traditionally

referred to as Alice and Bob. Alice’s subsystem is described by the Hilbert

space HA, while Bob’s subsystem is described by the Hilbert space HB.

Together, the composite bipartite Hilbert space is written as a tensor product

HA ⊗HB. Bipartite quantum states are then defined on HA ⊗HB. An

entangled state of a bipartite system is defined as a state that cannot be

written as a product. A state that can be written as such a product state is

known as a separable state. In general, separable states are defined through

convex combinations of pure product states. In many cases, one considers a

system of two qubits, such as two spin-12 particles. A given spin state can

then be defined in terms of the “up” ∣↑⟩ and “down” ∣↓⟩ eigenstates of the
corresponding σz spin operator. The four possible product states of such a

bipartite system are then given by ∣↑⟩A ⊗ ∣↑⟩B, ∣↓⟩A ⊗ ∣↓⟩B, ∣↑⟩A ⊗ ∣↓⟩B, and∣↓⟩A ⊗ ∣↑⟩B. Such product states have well-defined measurement outcomes.

For the state ∣↑⟩A ⊗ ∣↓⟩B, this means that if Alice and Bob measure the spin

of many particles in this state along the z-direction, Alice will always get the

result “up”, while Bob will always get the outcome “down”.

Now it is also possible to consider linear combinations of these product

states such as 1√
2
(∣↑⟩A ⊗ ∣↑⟩B ± ∣↓⟩A ⊗ ∣↓⟩B) or 1√

2
(∣↑⟩A ⊗ ∣↓⟩B ± ∣↓⟩A ⊗ ∣↑⟩B).

These states are known as Bell states. Because they cannot be written as

product states of their components, they are (maximally) entangled. If Alice

and Bob measure the states in their respective bases, they cannot be sure

which outcome they will get, since “up” and “down” now occur with equal

probability. This means that no useful information about an individual

system can be obtained from a single measurement outcome. However, if

Alice and Bob communicated their seemingly random outcomes they would

eventually notice that their measurements are correlated. If Alice measures

“up” and the system is in either of the states 1√
2
(∣↑⟩A ⊗ ∣↑⟩B ± ∣↓⟩A ⊗ ∣↓⟩B),

Bob must find his qubit to be in the same position. On the other hand,

Bob’s qubit would be pointing in the opposite direction in the case of either
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of the states 1√
2
(∣↑⟩A ⊗ ∣↓⟩B ± ∣↓⟩A ⊗ ∣↑⟩B). Note that if both Alice and Bob

change their measurement basis to ∣±⟩ = 1√
2
(∣0⟩± ∣1⟩), and rewrite their states

accordingly, they will similarly be able to distinguish between symmetrized

and anti-symmetrized states.

So far, we have mainly considered pure states, i.e. states that can describe

the system using only a single ket vector ∣Ψ⟩. This is different from a mixed

state that can be written as a statistical ensemble of pure states. This is

usually written in terms of density matrices ρ = ∑m pm ∣Ψm⟩ ⟨Ψm∣. As an

example, the Bell state ∣Ψ+⟩ = 1√
2
(∣↑⟩A ⊗ ∣↑⟩B + ∣↓⟩A ⊗ ∣↓⟩B) is a pure state.

The reduced states, ρA = TrB(ρAB) and ρB = TrA(ρAB), however, are mixed

states. Thus, a state is entangled if it is pure and its subsystems are in a

mixed state. In Schrödinger’s formulation, one would say that ”the system

as a whole has less uncertainty than its parts.”

Note that a mixed state may have many decompositions, of which some can

be entangled even if the state itself is separable. Thus, a state is separable if

there exists at least one decomposition in which it is a convex combination

of pure product states.

In solid state physics, one often considers a lattice ofN nodes, where each node

represents a d-level quantum system. This means that we are also considering

a Hilbert space of N d-level systems. The density matrix describing such a

system is fully separable if there exists at least one decomposition (among

the infinitely many) that is of the form

ρsep = ∑
i

pi(ρ1 ⊗ ⋅ ⋅ ⋅ ⊗ ρN)i (1)

with pi ≥ 0,∑i pi = 1. Otherwise, it is called entangled.

The structure of entanglement can be further characterized using the concepts

of depth and range of entanglement. For these purposes, let us first introduce

the notion of k-producibility. A state is k-producible if it can be written as
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ρk−prod = ∑
i

pi(ρS1 ⊗ ⋅ ⋅ ⋅ ⊗ ρSM
)i (2)

with pi ≥ 0,∑i pi = 1, and with ρSi describing a partition of the Hilbert

space into a subsystem containing at most k d-level systems. If a state is not

k-producible, it has a depth of entanglement of (k + 1).
As an example, consider the two-particle system described above. The four

product states are separable and have a depth of entanglement k = 1. The
four Bell states, however, are maximally entangled with k = N = 2.
As indicated by the name, the range or width of entanglement contains

information about the spatial structure of entanglement. Thus, the range

of entanglement is always defined based on the spatial arrangement of the

N d-level systems. In solid state physics, atoms are usually arranged on a

lattice, such as a triangular, square, or hexagonal lattice where the number

of neighbours of each atom as well as the spacing between the atoms are

assumed to be constant. For a pure state, the range of entanglement is

defined as the maximum distance of two entangled particles within the states

w(∣Ψ⟩).
Hence, the system is required to be arranged in space in a way that allows

the characterization of such a distance, such as a string or lattice of any

geometry, as is shown in Fig. 1.

For a general mixed state, the range of entanglement is defined as the

minimum distance out of all maximum distances between two entangled

particles over all (infinitely many) pure state decompositions [3]

w(ρ) = min
D(ρ)w(∣Ψi⟩ ⟨Ψi∣) (3)

where D(ρ) is the set of all decompositions {(pi, ∣Ψi⟩)}i for which ρ =∑i pi ∣Ψi⟩ ⟨Ψi∣ with 0 ≤ pi ≤ 1 and ∑i pi = 1.
Note how the depth of entanglement provides a lower bound to the range.

7



Further efforts to characterize the structure of entanglement have been made,

in particular in [4], where the depth of entanglement k and the h-inseparability,

i.e. into how many subsets a system can be divided, are characterized with

the help of Young diagrams, as can be seen in Fig. 1. Separately, k and h

contain only very limited information about the structure of entanglement in

the entire system, since k only considers the largest entangled subset, and h

does not contain any information about the size of the entangled subsets. To

combine the information present in k and h, Dyson’s rank r = k − h can be

introduced and related to observable quantities such as the quantum Fisher

information that will be of great relevance in the following chapters [4].

1.3 Entanglement verification and quantification

In general, it is a hard problem to determine whether a state is entangled, i.e.

whether among the infinitely many pure-state decompositions there exists

any decomposition of a given state into separable states.

First, let us introduce a fundamental tool in entanglement theory known as

the Schmidt decomposition. For a general bipartite system in HA ⊗HB , the

Schmidt decomposition can be written as

∣Ψ⟩AB = ∑
k

λk ∣kA⟩ ∣kB⟩ , (4)

where ∣kA⟩ and ∣kB⟩ are orthonormal states for the systems A and B, respec-

tively, and the λk ≥ 0 are the Schmidt coefficients, for which ∑k λ
2
k = 1.

Many important entanglement quantifiers are based on the states’ squared

Schmidt coefficients λ2
k, and their number which is known as the Schmidt

rank rS(Ψ). One way to define the Schmidt number for mixed states is to

maximize over all states within a given decompositions and then take the

minimum over all such decompositions, i.e. [5]

rS(ρ) = inf
D(ρ)( max∣Ψi⟩∈{(pi,∣Ψi⟩)}i r(∣Ψi⟩ ⟨Ψi∣)) . (5)
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Figure 1: Describing the structure of entanglement with the help of the range of

entanglement [3] and a Young diagram [4]. The top part of the figure shows how the

entanglement structure of a system of N = 6 particles can be described in terms of

its entanglement depth k = 3 and its separability into h = 3 subsystems. Combining

this information, we can obtain Dyson’s rank r, and draw the Young diagram; the

width and height of the diagram correspond to k and h, respectively. The bottom

part of the figure depicts the range of entanglement w for the system corresponding

to a string of N particles situated at equal distance.

For pure states, the Schmidt number is equal to the Schmidt rank, and for

separable states the Schmidt number is equal to 1.

A prominent example based on the Schmidt decomposition is the entangle-

ment entropy as the Shannon entropy of the squared Schmidt coefficients.

While these measures have a very straightforward interpretation and can be

generalized for mixed states, they are not very practical for large systems due

to the sheer size and exponential scaling of the systems under consideration,

especially in the case of multipartite entanglement.
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In fact, it is only possible to lower-bound the amount of entanglement

present in any given system. This may generally be achieved by means

of entanglement monotones that are non-increasing under local operations

and classical communication (LOCC). One way this can be realized in the

bipartite system A∪B would be to perform a local operation on the subsystem

A, and then classically communicate the result to subsystem B, e.g. Alice

calls Bob on the phone and tells him about her outcome. Based on this new

information, Bob may then perform another local operation on his subsystem.

In practice, entanglement witnesses [6] are most commonly used to verify

and quantify the entanglement present in a system. Consider the space of

all separable states S that is a convex subset of all quantum states Q (i.e.

separable and entangled states). By the Hahn-Banach theorem, there exists

an entanglement witness (EW) for every entangled state characterized by an

observable W , i.e. a hyperplane that separates the state from S such that⟨W ⟩ = Tr(Wρ) ≥ 0 ∀ρ ∈S, see Fig. 2. Thus, a given state ρ is entangled if

Tr(Wρ) < 0. For each entangled state, there exists a witness that detects it,

as was proven in [7]. Note that W is not a separability witness, i.e. finding

Tr(Wρ) ≥ 0 does not imply that the state is separable but that it is part

of the subset of states that are not detected as entangled by the witness

under consideration. For general systems, there exists a plethora of EWs as

functionals of the system’s density matrices designed to probe a subspace

characterized by some specific entanglement structure. In practice, EWs can

easily be constructed from experimentally measurable quantities such as the

expectation values of spin operators, as we will see in the following sections.

1.3.1 In solid state physics

Ideally, measures for entanglement verification and characterization can be

simulated numerically and probed experimentally. Consequently, in most

experiments and theoretical models designed to probe entanglement, entan-

glement measures are applied to very specific and/or well-controlled systems

where the number of particles is known, or can be estimated with some

uncertainty. There are setups in which the individual parties can be directly
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Figure 2: The idea of an entanglement witness. S denotes the set of all separable

states, and E the set of all entangled states. The dark purple line represents the

entanglement witness that separates the set of all states in such a way that for any

state ρ on the right-hand side of the line, the expectation value ⟨W ⟩ = Tr(Wρ) < 0.
Hence, ρ is entangled. For any state ρ′ on the left-hand side of the line, we have

that ⟨W ⟩ = Tr(Wρ′) ≥ 0. This means that this witness cannot determine whether ρ′
is entangled or not.

probed, e.g. in some photonic systems. When working with pure states, one

can look at specific subspaces of the system’s Hilbert space, and at entangle-

ment measures that are directly derived from the reduced density matrices,

such as the entanglement entropy for bipartite entanglement. In other setups,

such as cold atom systems, however, local parties cannot be probed and only

global measurements are possible.

Strange metals and strongly correlated electron systems, however, are very

different from these almost ideal systems in that they are complex many-

body systems that are usually challenging to understand theoretically and

model numerically. Also, in macroscopic systems we can usually only probe

bulk and surface properties instead of individually addressing few-party
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subspaces. Consequently, it is important to understand that there exists

a big discrepancy between what is theoretically understood and possible

and what is experimentally reasonable, and that an important challenge is

to find general, non-trivial measures that are feasible to implement. Some

efforts have been made in this direction, such as in [8–10] for neutron

scattering experiments, where they tested measures based on tangles, the

concurrence, and the quantum Fisher information. Since all of them have been

experimentally implemented for a spin-12 quasi-Heisenberg antiferromagnet,

they may provide a good starting point for probing entanglement in magnetic

systems.

For a system of three qubits, the tangle [11] was introduced as a means to

characterize how the entanglement between two qubits restricts the entan-

glement between the third qubit and each of the two qubits. It is related

to a quantity known as entanglement of formation, which measures the

entanglement entropy of a bipartite system and can be generalized to mixed

bipartite states. In particular, the one-tangle characterizes the entanglement

of a subsystem with its complement. It has a straightforward implementation

for pure states in the XY model, i.e. τ1 = 1
4 −⟨Sz

j ⟩ for the entanglement of the

site j with the remaining system [12]. For mixed states, one must consider

the minimum average of ⟨Sz
j ⟩ evaluated on all possible decompositions of

the density matrix [12]. An experimentally accessible expression in terms of

the magnetization can then be found by introducing M z = ⟨Sz⟩ = ⟨∑j s
(j)
z ⟩.

Since the one-tangle is based on the entanglement of a single pure state

with its complement system, it is only defined at T = 0 K. However, at low

temperatures one may expect the measure to hold within kBT relative to the

energy of the elastic line at zero energy transfer [8], where it may be written in

terms of the structure factor as t1 ≈ 1−4∑α,β=x,y,z ∫ kBT−kBT dω ∫B.Z dq⃗Sαβ(q⃗, ω).
For long-range entanglement, one would consequently expect a large value of

t1 within the appropriate temperature regime. Unfortunately, the one-tangle

is a very involved concept and difficult to compute, as it cannot generally be

expressed in terms of the magnetization. [8] makes use of a special case that

is of very limited practical relevance.
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The concurrence was originally defined as an entanglement monotone quanti-

fying entanglement in a system of two qubits [13, 14] and was subsequently

generalized to multi-particle states [15, 16] in arbitrary dimensions with

extensions to continuous-variables in infinite dimensions [17]. To illustrate,

for a bipartite pure state in HAB = HA ⊗HB the concurrence can be written

as C(∣Ψ⟩) = √2(1 −Tr(ρA)). This expression can be generalized to n-partite

systems by minimizing over the set of all possible bi-partitions [18], and

to mixed states by taking the convex roof C(ρ) = infpi,∣Ψi⟩∑i piC(∣Ψi⟩). In
this form, the concurrence is very hard to compute and measure experimen-

tally. Similar to the one-tangle, there exist some experimentally relevant

generalizations for pairs of spins in a spin-12 -system separated by some dis-

tance r that can be probed through the measurement of the two-tangle[8]

τ2 = 2∑r≠0C2
r by spin-spin correlations and magnetization measurements.

However, for highly correlated systems that cannot be easily modelled by

a simplified version of the Heisenberg Hamiltonian, it may not be possible

to find similar generalizations of the one-tangle or the concurrence that can

still be calculated.

In [8–10], it was found that the quantum Fisher information shows promising

results, which will be of particular interest to us since it can be obtained

from neutron scattering observables and is applicable to general multipartite

systems of arbitrary spin. In what follows, we will see that the quantum

Fisher information can be viewed as a special case of measures based on

collective variances and has a “complementary” measure in terms of the

global variance of a given observable.

Recently, the work on the quantum Fisher information has been generalized

and complemented in [19] where the authors investigate the spatial structure

of quantum correlations compared to classical correlations in a system of

weakly coupled spin-12 Heisenberg chains. To characterize this spatial depen-

dence, the quantum coherence length is introduced and found to be finite at

finite temperatures, irrespective of the magnetic order correlations.

Further difficulties arise in interesting systems that we do not know how to

describe well theoretically. Such difficulties will become quite apparent in
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this project, where the experimental interest is to consider strange metal

systems in a QC state. For such a “black box” state, it is already difficult to

make any statement about entanglement at all, as will become clear in the

following chapters.

A more exhaustive review of entanglement in condensed matter systems

is given in [20]. In particular, the authors show important results for the

entanglement of pure states present in a system that is partitioned in real

space into two areasA andB. Analyzing the eigenvalues of the reduced density

matrix of a subsystem is referred to as entanglement spectroscopy, while the

computation of the von Neumann entropy from the reduced density matrix is

known as the entanglement entropy. The latter leads to the emergence of the

area law, which tells us that the entanglement present in a subsystem often

grows like the area of its boundary (and not like its volume). Corrections of

the area law can be used to characterize the order of physical systems.

To summarize, it is interesting to investigate whether and to what extent

the experimentally accessible observables used to characterize these systems

can be used to understand the entanglement properties of these materials.

Vice versa, one may ask what the entanglement structure of the quantum

correlations present in the system may teach us about the physical observables

and phases of the system. In what follows, we will investigate how to construct

entanglement witnesses for solid state systems.

1.4 Neutron scattering fundamentals

Neutron scattering is a useful technique to probe the dynamics of a system

since neutrons do not interact much with the sample compared to other

(charged) probes. In general, there are two interaction mechanisms: the

strong interaction between the neutrons and the atomic nuclei that leads to

nuclear scattering, and the electromagnetic interaction between the neutrons’

magnetic moments and the sample’s magnetic structure that gives rise to

magnetic scattering. The strength of these interactions can be characterized

by the nuclear and magnetic interaction potentials, the subsequent expres-

sions are often referred to as scattering length operators [21]. We focus on
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unpolarized neutron scattering and want to measure the double differential

cross-section, which can be written as the sum of both contributions:

( d2σ

dΩdE
) = ( d2σ

dΩdE
)
nuclear

+ ( d2σ

dΩdE
)
magnetic

. (6)

Both terms can be further decomposed as the sum of their coherent and

incoherent contributions. The incoherent contribution is proportional to the

variance in the scattering length and results from the behaviour of individual

particles. The coherent contribution is proportional to the average of the

scattering length and contains information about the structure of the material

and collective behaviour such as the nuclear and magnetic Bragg peaks.

In addition, each term can be written as the sum of their elastic, quasi-

elastic and inelastic contributions. Elastic scattering occurs at ω = 0, i.e.

where there is no energy exchange between the incoming neutron and the

sample. Inelastic scattering allows us to probe excitations that interact

with the incoming neutron, such as phonons, and yields peaks centered at

specific energies. Quasi-elastic scattering results from diffusive dynamics and

leads to a broadening of the elastic peak. In the following data analysis, we

performed our measurements in the absence of Bragg peaks, and will focus

on distinguishing between contributions from incoherent elastic scattering

and quasi-elastic scattering.

1.4.1 Magnetic neutron scattering

Since we are dealing with magnetic materials, we will be interested in the

magnetic scattering cross section that we will derive from the total scattering

cross section written as [22]

d2σ

dΩdEf
= kf

ki
( mn

2πh̵2
)2∑

λi

pλi∑
λf

∣ ⟨σfλf ∣V (q⃗) ∣σiλi⟩ ∣2δ(Eλf
−Eλi

− h̵ω), (7)

where kf and ki are the final and initial neutron wave vector, respectively,

and mn is the mass of the neutron. The sum is taken over all possible initial
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and final states of the neutron and sample, with σi and σf describing the

initial and final neutron spin states, and λi and λf summarising the quantum

numbers of the sample’s initial and final state. The Eλi
and Eλf

denote the

initial and final neutron energy, and V (q⃗) is the interaction potential that

depends on the momentum transfer q⃗ that is also known as the scattering

vector.

Note that the interaction potential contains both a magnetic and a nuclear

contribution, V (q⃗) = VN(q⃗) + VM(q⃗). Since this expression is squared, one

must in principle account for and distinguish between magnetic, nuclear,

and nuclear-magnetic interference scattering. For unpolarized neutrons, the

interference term vanishes. Another useful simplification comes from the fact

that magnetic form factors generally decrease with an increase in q, whereas

nuclear form factors show an increase with q2 [22], allowing for the separation

of nuclear and magnetic contributions in many cases. In this project, we

are dealing with cerium compounds. In [23], the magnetic form factor of Ce

has been investigated in great detail, and it was found that the form factor

is generally dominated by the 4f contribution, and highly sensitive to the

crystal field.

The magnetic contribution then corresponds to [22]

VM(q⃗) = −2γµN s⃗n ⋅M⊥(q⃗),
where γ is the gyromagnetic ratio, µN is the nuclear magneton, s⃗n is the

spin of the neutron, and M⊥(q⃗) is the magnetic interaction vector, i.e. the

component of the magnetization perpendicular to q⃗. This leads to a magnetic

response function of

S(q⃗, ω) = ∑
λi

pλi∑
λf

∣2 ⟨σf ∣ s⃗n ∣σi⟩ ⋅ ⟨λf ∣M⊥(q⃗) ∣λi⟩ ∣2δ(Eλf
−Eλi

− h̵ω).
Working with unpolarized neutrons, this expression can be written as [22, 24]
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S(q⃗, ω) = ∑
λi

pλi∑
λf

∣ ⟨λi∣M⊥(q⃗) ∣λi⟩ ∣2δ(Eλf
−Eλi

− h̵ω)
= ∑

αβ

(δαβ − q̂αq̂β)Sαβ(q⃗, ω), (8)

with α ∈ {x, y, z}, and
Sαβ(q⃗, ω) = 1

2πh̵
∫ ∞
−∞ dt⟨M †

α(q⃗)Mβ(q⃗, t)⟩e−iωt
= N

2πh̵
∫ ∞
−∞ dt∫ d3rΓαβ(r⃗, t)e−i(q⃗r⃗−ωt). (9)

Γαβ(r⃗, t) = 1
N ∫ d3r′⟨M †

α(r⃗′,0)Mβ(r⃗′ + r⃗, t)⟩ is defined as the magnetic pair-

correlation function.

If one makes the assumption that the magnetic moments are localized, and

that scattering does not lead to a change in the atomic motion, it is possible

to write this expression as [22]

Sαβ(q⃗, ω) = 1

2πh̵
∑
jk

e−Wj−Wkeq⃗(r⃗k−r⃗j) ⋅ ∫ ∞
−∞ dt⟨M †

αj(q⃗)Mβk(q⃗, t)⟩e−iωt. (10)

Now it is also possible to divide the magnetic response function into an

elastic part, i.e. magnetic Bragg peaks, and a non-elastic part, [22, 24]

Sα,β(q, ω) =⟨Mα(q)⟩⟨Mβ(−q)⟩δ(h̵ω)
+ ∫ ∞
−∞ e−iωt⟨∆Mα(q)∆Mβ(−q, t)⟩ dt

2πh̵
.

(11)

The dynamic part is then written as

S̃α,β(q, ω) = ∫ ∞
−∞ e−iωt⟨∆Mα(q)∆Mβ(−q, t)⟩ dt

2πh̵
. (12)

This expression is often referred to as the dynamic (magnetic) structure

factor. The entire expression is often considered as the dynamic structure
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factor. However, for our purposes it is only the non-elastic part that is to be

considered; the first term merely accounts for the static order of the magnetic

moments and contains no information about the dynamics of the system.

The dynamic structure factor further obeys several sum rules, as well as the

detailed-balance constraint and the fluctuation-dissipation theorem (FDT).

The most important relations are those that relate the cross section [22]

dσ

dΩdEf
= kf

ki
( γr0
2µB
)2S(q⃗, ω) (13)

to S(q⃗, ω) = ∑αβ(δαβ − q̂αq̂β)Sαβ(q⃗, ω) for unpolarized neutrons where

Sαβ(q⃗, ω) = 1

2πh̵
∫ ∞
−∞ dt⟨M †

α(q⃗)Mβ(q⃗, t)⟩e−iωt, (14)

whose dynamical part can be related to the imaginary part of the generalized

susceptibility by the FDT [22]

S̃αβ(q⃗, ω) = (1 + n(ω)) 1
π
χ′′αβ(q⃗, ω), (15)

where n(ω) is the Bose-Einstein distribution.

This is a useful result, as will become evident in the following sections. It is

also important to note that these particular sum rules should be applied to

scattering cross sections obtained in absolute units. This is not usually the

case, as normalized data is not required in most experiments.

Dipole approximation

The idea of the dipole approximation [22] is to assume that the directions

of spin and orbital magnetization within the atom are fixed, and that the

magnetization is isotropically distributed. This applies well if q is smaller

than the reciprocal of the atomic radius, and may still yield reasonable results

for larger q. Note that the approximation neglects contributions from filled
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shells and assumes atomic-like orbitals for unpaired electrons. As a general

result of the dipole approximation we have [22]

M(q⃗) ≅ −2µB[⟨j0(q)⟩S⃗ + 1

2
(⟨j0(q)⟩ + ⟨j2(q)⟩)L⃗],

where the ⟨jn(q)⟩ denote the radial integrals of nth-order spherical Bessel

functions, and L⃗ is the angular momentum operator. The values of these

integral expressions can be found in tables for most atoms. In the usual

case where the orbital angular momentum is fully quenched by the crystal

field in the absence of spin-orbit coupling, the moment we observe will be

determined by the spin moment with an additional small contribution due

to spin-orbit coupling, i.e. we have [22]

M(q⃗) ≅ −gµBf(q)S⃗ with f(q) = ⟨j0(q)⟩ + g − 2
g
⟨j2(q)⟩,

where f(q) is the magnetic form factor that accounts for the shape of the

magnetization cloud associated with the atomic spin and orbital variables.

If, on the other hand, the crystal field is very small and the spin-orbit coupling

large, the total angular momentum J⃗ = L⃗ + S⃗ is well defined, which leads

to the substitution S⃗ → J⃗ and slightly different expressions for g and f(q)
based on the Landé factor gJ [22]. Both situations nicely illustrate how the

dipole approximation allows us to consider observables based on angular

momentum algebra.

If there is only one type of magnetic ion in the sample, the magnetic response

function simplifies to [22]

S(q⃗, ω) = g2µBf
2(q)e−2W∑

αβ

(δαβ − q̂αq̂β)Sαβ(q⃗, ω), (16)

where Sαβ(q⃗, ω) is now a reduced partial response function that excludes the

g- and magnetic form factors, µB, and the Debye-Waller factor e−2W .
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Now we can use the dipole approximation to express the magnetic response

function in terms of the spin operator S in the case of small spin-orbit

coupling and an intermediate crystal field (or J for large spin-orbit coupling),

i.e. [22]

Sαβ(q⃗, ω) = ∑
jk

eq⃗(r⃗k−r⃗j) ⋅ 1

2πh̵
∫ ∞
−∞ dt⟨Sj

αS
k
β(t)⟩e−iωt. (17)

If there is more than one magnetic atom in the sample, no reduced form is

possible and one must consider a more involved expression, i.e. [22, 24, 25]

S(q⃗, ω) = ∑
αβ

(δαβ − q̂αq̂β)Sαβ(q⃗, ω) (18)

with

Sαβ(q⃗, ω) =∑
jk

gjgkfj(q)fk(q)e−Wj−Wkeq⃗(r⃗k−r⃗j)
⋅ 1

2πh̵
∫ ∞
−∞ dt⟨Sj

αS
k
β(t)⟩e−iωt. (19)

In practice, the assumptions for the dipole approximation are often fulfilled

and it is widely used, especially for materials where the magnetization density

is carried by electrons localized in atomic-like orbitals. However, it is not

always easy to determine whether its use is justified, and it can be difficult

to find the magnetic form factors and g-factors that vary with q, and may

need to be measured first in some additional experiments. We also note that

the magnetic form factors written in the dipole approximation are not very

accurate. Thus, it is sometimes necessary to work with the more general

expression in terms of the Fourier transform of the magnetization vector.
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2 Methods

The idea of this project is to consider entanglement detection and quan-

tification in solids from both a theoretical and an experimental point of

view.

In terms of theoretical efforts, it is very instructive and in many ways easier

to study the entanglement structure present in solids when working with toy

models and facilitating assumptions. This is why we begin by investigating

entanglement witnesses based on collective angular momentum observables

from a purely theoretical point of view. Starting with the general concept

of witness construction from macroscopic observables, we look at existing

criteria and strategies, and investigate generalizations for non-Hermitian

collective operators.

However, working only with ideal or close-to-ideal systems is of limited

interest in the study of real systems and phenomena, such as quantum criti-

cality in complex many-body systems. Thus, the challenge is to see if and

how we can utilize and customize existing entanglement witnesses, explore

and accommodate for both theoretical and experimental limitations, and

eventually combine our methods to better understand the physics of our

system and improve our models. Now, the idea is to relate some theoreti-

cal entanglement witnesses to observables accessible to neutron scattering

experiments, perform said experiments, and analyse the outcome. Here, we

focus on neutron scattering experiments, and investigate the role of the

quantum Fisher information as an entanglement witness. We must note

that it is already rather difficult to perform any type of neutron scattering

experiment, as this requires not only expertise with the experimental setup

but also access to special facilities. Such access is quite limited. This is why

the initial data of interest for this study was not taken specifically for the

purpose of entanglement detection. Nevertheless, it has been very instructive

to investigate the difficulties that arise in the process of obtaining observables

relevant for entanglement studies, and to find strategies to overcome them

in the prospect of facilitating future studies.
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2.1 Thermodynamic observables as entanglement witnesses

In theory, constructing an entanglement witness is quite simple. All that is

needed are criteria that are violated by at least one entangled state. The

difficulty is then to optimize a given witness such that it detects as many

entangled states as possible.

For the purpose of witnessing entanglement in solids, we will focus on ther-

modynamic observables and response functions such as energy, specific heat,

or susceptibilities, or combinations thereof. Witnesses for these observables

often depend on assumptions about the underlying spin system, and are

defined at thermal equilibrium, or close to T = 0 K. Consequently, it is crucial

to bear in mind the applicability and limitations of such assumptions. For

models that are not well-known, the challenge is to work in the most general

setting possible while still being able to make any meaningful statements.

To illustrate the process of constructing an entanglement witness, consider

the energy E as an observable. We can find a witness based on the system’s

Hamiltonian,

W = E − inf
Ψ∈S[⟨Ψ∣H ∣Ψ⟩], (20)

where S again denotes the set of separable states. For many spin models,

this optimization is easy to perform. For systems in thermal equilibrium, the

state can be written as τ = 1
Z e

βH with β = 1/kBT and Z = Tr(eβH). Using
this expression, it is possible to derive a temperature bound so that states

with T < TE must be entangled [26].

To illustrate the process of constructing a witness from a Hamiltonian,

consider the example given in [27] of the spin-12 Heisenberg Hamiltonian for

a d-dimensional cubic lattice of N spins with an external magnetic field B

HH = ∑⟨ij⟩ sixsjx + siysjy + sizsjz +Bsix. (21)
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Minimizing the function fH(s⃗A, s⃗B) = s⃗As⃗B+B
2 (sAz +SB

z ) for the most general

product state ∣A⟩ ∣B⟩, i.e. minimizing

⟨A∣ ⟨B∣fH(s⃗A, s⃗B) ∣A⟩ ∣B⟩ =
sin(2θA) cos(ϕA) sin(2θB) cos(ϕB)+ sin(2θA) sin(ϕA) sin(2θB) sin(ϕB)+ cos(2θA) cos(2θB)+ B

2
(cos(2θA) + cos(2θB))

yields the energy bound

Emin
sep = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−dN(1 +B2/8) if ∣B∣ ≤ 4−dN(∣B∣ − 1) else.

Similar approaches can be used to find bounds for states of a particular

entanglement depth based on linear witnesses [28, 29]. Without detailing

the entire process, two useful observations from these approaches should

be emphasized. One, it is generally possible to find a bound based on pure

k-producible states by solving a k-body problem. Second, this bound can be

extended to any mixed k-producible state because any linear function takes

its maximum in a pure k-producible state which is an extremal point of the

convex set formed by all mixed k-producible states [29].

In addition to the energy, there are many complementary macroscopic observ-

ables and response functions that can be investigated, such as the magnetic

susceptibility considered in [30] and [31]. Here, we focus on observables that

probe the spin and orbital angular momentum correlations, such as the

magnetic response function that can be obtained from neutron scattering

experiments because the neutron’s magnetic moment is susceptible to both

orbital and spin angular momentum. Consequently, we will focus on observ-

ables corresponding to Fourier-transformed spin-spin correlators of collective

angular momentum operators
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Jα(q) = ∑
n

eiqnj(n)α , (22)

where q is a real phase.

For instance, if we can extract a quantity of the form

D(q⃗) = ∑
α

cαJ
†
α(qα)Jα(qα) (23)

with the index α = x, y, z, the wave-vector transfer q⃗, and the collective spin-

spin correlators J†
α(qα)Jα(qα) = ∑n<m eiqα∣n−m∣⟨j(n)α j

(m)
α ⟩, we can essentially

follow the approach described in [32] and consider the expectation value of

H(q⃗) = 1

2
(D(q⃗) +D(q⃗)†) = 1

2
(D(q⃗) +D(−q⃗)). (24)

To find a bound for separable states, we can consider a pure product ansatz

state

ρsep = ∣Ψ1⟩ ⟨Ψ1∣ ⊗ ...⊗ ∣ΨN ⟩ ⟨ΨN ∣ . (25)

Using the property that for such states

⟨j(n)α j(m)α ⟩ = ⟨j(n)α ⟩⟨j(m)α ⟩ (26)

we arrive at

⟨H(q⃗)⟩ρsep = ∑
α

cα ∑
n<m cos(qα∣n −m∣)⟨j(n)α ⟩⟨j(m)α ⟩. (27)

Then we can use the fact that ∣cα∣ ≤ 1 and that ∣cos(qα∣n −m∣)∣ ≤ 1 to find

the bound
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∣⟨H(q⃗)∣⟩ρsep ≤ ∑
α
∑
n<m⟨j(n)α ⟩⟨j(m)α ⟩

= ∑
α

1

2
∑
n

[(∑
n

⟨j(m)α ⟩)2 −∑
n

⟨j(m)α ⟩2]
≤ 1

2
∑
α

(N − 1)∑
n

⟨j(m)α ⟩2 ≤ 1

2
N(N − 1)j2

where we applied the Cauchy-Schwarz inequality

(∑
n

⟨j(m)α ⟩)2 ≤ N∑
n

⟨j(m)α ⟩2 (28)

and the property that

∑
α

⟨j(m)α ⟩2 ≤ j2. (29)

Thus we can create an entanglement witness that serves as both an upper

and an lower bound, i.e.

W (q⃗) = 1

2
N(N − 1)j21 ±H(q⃗). (30)

Note that for different q⃗ witnesses of this type generally detect different

states.

The above witness takes into account correlations between all particles in the

system. However, it is also possible to derive a similar witness for particles

with limited interaction distances. To illustrate, consider a ring of N particles

situated at equal distances from one another. If we only consider interactions

up to a distance w, we may write

⟨Hw(q⃗)⟩ρsep = ∑
α

cα∑
n
∑

1≤d≤w cos(qαd)⟨j(n)α ⟩⟨j(n+d)α ⟩. (31)

Now we can divide our ring into (Nw ) groups with d ∈ 1, ...,w and find a

similar bound,
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⟨Hw(q⃗)⟩ ≤ (N
w
)2∑

α
∑
d

⟨j(n)α ⟩⟨j(n+d)α ⟩
≤ 1

2
(N
w
)2w(w − 1)j2 = 1

2
N2w − 1

w
j2,

(32)

now solving an (Nw )-particle problem, for simplicity assuming that N is

divisible by w.

2.2 Collective variances and the quantum Fisher information

In some cases, it is easier to work with nonlinear witnesses based on second or

even higher-order moments. An additional advantage is that it is possible to

obtain stronger entanglement criteria when working with nonlinear witnesses.

In order to construct such witnesses for general collective observables of

the form O = O(q⃗) = ∑n o
(n)e−iq⃗r⃗n , we want to formally introduce collective

variances and the quantum Fisher information, and point out their useful

properties.

The variance of such a collective observable is defined as

(∆O)2ρ ∶= ⟨O†O⟩ρ − ⟨O†⟩ρ⟨O⟩ρ = Tr(O†Oρ) −Tr(O†ρ)Tr(Oρ), (33)

where ρ is a density matrix. This variance has several useful properties, i.e.

it is

1. positive for all quantum states and observables, (∆O)2ρ > 0,
2. concave under mixing a quantum state, (∆O)2ρ ≥ ∑k pk(∆O)2Ψk

where ρ = ∑k pk ∣Ψk⟩ ⟨Ψk∣, as well as its own concave roof, (∆O)2ρ =
maxpk,∣Ψk⟩∑k pk(∆O)2Ψk

,

3. additive for quantum states composed of uncorrelated parties such as

ρ = ρ1⊗ρ2 and single-body collective observables O = o(1)⊗1+1⊗ o(2),(∆o)2ρ = (∆o(1))2ρ1 + (∆o(2))2ρ2 .
Similar properties hold for covariances, i.e.
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Cov(O⃗)jk = ⟨O†
jOk⟩ρ − ⟨O†

j⟩ρ⟨Ok⟩ρ.
The quantum Fisher information (QFI) can be viewed as a complementary

quantity to this variance. In parameter estimation theory, the QFI can be

used as a figure of merit to characterize the estimation of a parameter, and

its inverse lower-bounds the variance of an estimator in what is known as the

quantum Cramér-Rao bound. The formal definition of the QFI [33, 34] is

FQ[θ] ∶= Tr(ρL2
θ) = ⟨L2

θ⟩ (34)

where Lθ is the self-adjoint symmetric logarithmic derivative operator (SLD)

that fulfills

∂θρθ = 1

2
(ρθLθ +Lθρθ).

Tracing over this expression, Tr(∂θρθ) = 0 = 1
2(Tr(ρθLθ) + Tr(Lθρθ)) =

Tr(ρLθ) = ⟨Lθ⟩, it can be seen that the QFI must be the variance of L,

i.e.

FQ[θ] = (∆Lθ)2. (35)

For a density matrix written in its eigenbasis ρ = ∑k λk ∣k⟩ ⟨k∣, the QFI can

then be written as

FQ[θ] = 2∑
k,l

∣ ⟨k∣∂θρθ ∣l⟩ ∣2(λk + λl)
with λk + λl > 0 in the summation over k and l. Similar to the variance, the

QFI is positive for all ρ and O, and additive for product states. Contrary to

the variance, however, it is convex under mixing.

For states undergoing unitary perturbations, ρ = Uρ0U
†, with U = e−iθO and

O = O†, we have that ∂θρθ = iU[O,ρ0]U †, and the QFI can be written as [35]
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FQ[ρ,O] = 2∑
k,l

(λk − λl)2(λk + λl) ∣ ⟨k∣O ∣l⟩ ∣2. (36)

For pure states and Hermitian observables we have λ0 = 1 and λi>0 = 0.

Hence,

FQ[∣Ψ⟩ ⟨Ψ∣ ,O] = 2 ⋅ 2∑
k≠0 ∣ ⟨k∣O ∣0⟩ ∣2= 4∑

k≠0 ⟨0∣O ∣k⟩ ⟨k∣O ⟨0∣= 4 ⟨0∣O∑
k≠0 ∣k⟩ ⟨k∣O ⟨0∣= 4 ⟨0∣O(1 − ∣0⟩ ⟨0∣)O ⟨0∣= 4(⟨0∣O2 ∣0⟩ − ⟨0∣O ∣0⟩2)= 4(∆O)2 (37)

the QFI is equal to four times the variance. This important observation can

be generalized to mixed states in terms of their pure-state decompositions

FQ = 4 min
pk,∣Ψk⟩∑k (∆O)2ρ (38)

with ρ = ∑k pk ∣Ψk⟩ ⟨Ψk∣. Thus, the QFI is actually the convex roof of the

variance.

For non-Hermitian observables O ≠ O†, similar results can be obtained, in

particular

FQ[∣Ψ⟩ ⟨Ψ∣ ,O] = 4(⟨O†O⟩θ − ⟨O†⟩θ⟨O⟩θ),
which reduces to Eq. (37) if O = O†.

Now, both collective variances and the QFI can be used to construct entan-

glement witnesses.
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Because the collective variance is additive on pure product states, we can

find bounds for linear combinations of variances based on the sum of the

local variances. Thus, it suffices to consider the problem restricted to a local

subspace instead of heaving to deal with the global space.

There are two options to extend such variance bounds for pure states to

all mixed states. One is to extend lower bounds by looking at the largest

concave function of the variance, i.e. its concave roof; this is simply known

as the variance itself. In fact, a whole set of linear inequalities based on

such variances is known as generalized spin-squeezing inequalities. The other

option is to extend upper bounds by looking at the convex roof, as is the

idea of the QFI.

In general, we can note that inequalities based on the QFI are more likely

to detect states close to pure states with a large values of some collective

variance, whereas variance-based criteria are more likely to detect states

close to pure states with small values of some collective variances, e.g. close

to antiferromagnetic states. This is why these approaches should be viewed

as complementary, and investigated separately.

In what follows, we will introduce both notions in some detail, and ex-

plore their connection to the neutron-scattering observable relevant to our

experiment.

2.2.1 Generalized spin-squeezing inequalities

There exist well-known inequalities specifically designed for detecting entan-

glement based on the measurements of expectation values and variances of

collective angular momentum operators Eq. (22). These are known as gener-

alized spin-squeezing inequalities [36–38]. A complete set of such inequalities

exists for spin-12 particles [39]. Further generalizations can be made for a

system of N particles of arbitrary spin j, yielding a set of criteria

(N − 1) ∑
α∈I(∆̃Jα(qα))2 − ∑

α∉I⟨J̃2
α(qα)⟩ +N(N − 1)j2 ≥ 0, (39)
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where I is a subset of indices of {x, y, z} and ⟨J̃2
α(qα)⟩ is the modified second

moment that is defined as

⟨J̃2
α(qα)⟩ ∶= ⟨J2

α(qα)⟩ −∑
n

⟨(j(n)α )2⟩ = ∑
n≠m eiqα(m−n)⟨j(n)α j(m)α ⟩ (40)

and where we used Eq. (29).

Every inequality in this set is fulfilled by all separable states.

Proof. To see that this holds, we can use a strategy very similar to our

derivation of Eq. (32). Again, we begin by looking at the modified collective

variance

(∆̃Jα(qα))2 = ∑
n

N∑
l=1 e−iqαl⟨j(n)α j(n+l)α ⟩ −∑

n

N∑
l=0 e−iqαl⟨j(n)α ⟩⟨j(n+l)α ⟩. (41)

For product states Eq.(26) holds, and thus

(∆̃Jα(qα))2 = −∑
n

⟨j(n)α ⟩2. (42)

Similarly, for product states we can write

⟨J̃2
α(qα)⟩ = (∑

n

e−iqαn⟨j(n)α ⟩)(∑
n

eiqαn⟨j(n)α ⟩) −∑
n

⟨j(n)α ⟩2, (43)

and, using the Schwarz inequality in the form

(∑
n

e−iqαn⟨j(n)α ⟩)(∑
n

eiqαn⟨j(n)α ⟩) ≤ ∑
n

∣eiqαn∣2⟨j(n)α ⟩2 = N∑
n

⟨j(n)α ⟩2, (44)

the modified second moment is upper-bounded by

⟨J̃2
α(qα)⟩ ≤ (N − 1)∑

n

⟨j(n)α ⟩2. (45)
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From this, we can write that for product states, Eq. (39) becomes

−(N − 1)∑
α
∑
n

⟨j(n)α ⟩2 +N(N − 1)j2. (46)

Because of Eq. (29), we see that Eq. (39) holds for product states. Since the

left-hand side of this expression is concave, this proof can be extended to all

separable states. ∎
Note that this bound holds independently of qα. Thus, we see that in this

case it does not matter whether we consider collective operators with or

without a local phase factor. Based on this observation, this notion may be

extended to more general cases of q⃗-dependent collective operators.

2.2.2 The quantum Fisher information as an entanglement witness

The QFI is a popular witness for multipartite entanglement. To illustrate

this point, consider that for any separable state and collective operator O,

the following inequality holds [40]:

FQ[ρsep,O] ≤ 4(∆O)2, (47)

due to the convexity of the QFI and the concavity of the variance. For an

ensemble of N spin-j particles, and a collective angular momentum operator

Jα = ∑k j
k
α with α = x, y, z, the maximum variance becomes (∆Jα)2 = Nj2,

and thus for pure states we have FQ[∣Ψ⟩ ⟨Ψ∣ , Jα] ≤ 4Nj2 [41]. Consequently,

for separable states, FQ[ρsep, Jα] ≤ 4Nj2 holds as well. For general states,

FQ ≤ 4N2j2 holds [42]. Importantly, the entanglement depth can be bounded

by

FQ ≤ 4kNj2, (48)

such that if N is divisible by k a violation of this inequality indicates a depth

of entanglement of at least (k + 1) [43].
Note that this bound may be trivially extended to collective spin operators

Eq. (22). To see this, consider that for pure k-producible states of the form
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⊗n ∣Ψn⟩, where Ψn are states of kn particles and ∑n kn = N , with N divisible

by k, we have the following constraint for the maximum variance:

(∆Jα(q))2 = ∑
n

(∆j(n)α ) ≤ ∑
n

k2nj
2 ≤ Nkj2. (49)

Another aspect of experimental interest to our study is the fact that the

QFI obeys universal scaling laws at very low temperatures that are linked to

a diverging entanglement depth k, and a diverging universal entanglement

length scale lent ⪆ f1/d
Q for fQ = FQ/N ≈ k [44].

2.2.3 Relation to the dynamic structure factor

Now that we know how (co-)variances and the QFI are generally useful

in the construction of entanglement witnesses, let us explore how they are

connected to neutron scattering observables in particular. From [44], it is

known that under the assumption of thermal equilibrium

FQ[τ,O] = 4

π
∫ ∞
0

dω tanh(βω
2
) ⋅ χ′′O(q⃗, ω), (50)

with

χ′′O(q⃗, ω) = tanh βω

2
S̃(q⃗, ω), (51)

where S̃(q⃗, ω) is the dynamical part of the structure factor given in Eq. (14).

Proof. For a thermal-state we have τ = ∑n λn ∣n⟩ ⟨n∣ with λn = exp(−βEn)/Z
and Z = ∑m exp(−βEm). Consequently, [44]
(λk − λl)(λk + λl) = tanh(β(El −Ek)

2
) = 2∫ ∞

0
dω tanh(βω

2
)δ(ω +El −Ek). (52)

Next, we consider the thermal-state expansion of the imaginary part of the

dynamic susceptibility from linear response theory, χ′′Okl
= ∑nm πδ(Em−En+

ω)(pn − pm) ⟨n∣Ok ∣m⟩ ⟨m∣Ol ∣n⟩.
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Comparing the above expressions with the definition of the QFI in Eq. (36),

one immediately obtains Eq. (50).

The imaginary part of the dynamic susceptibility is related to the dynam-

ical structure factor as S̃(q⃗, ω) = h̵
π
1−e−βω
1+e−βω ⋅ ∑k,l(χ′′Okl

(q⃗, ω) + χ′′Olk
(q⃗, ω)) =

1+e−βω
1−e−βωχ′′O(q⃗, ω). Thus, χ′′O(q⃗, ω) = 1−e−βω

1+e−βω S̃(q⃗, ω) = tanh βω
2 S̃(q⃗, ω). ∎

Similar to the expression for the QFI in Eq. (50), it holds that, in thermal

equilibrium,

Cov(O)ρ = 1

π
∫ ∞
0

dω coth(βω
2
) ⋅ χ′′O(q⃗, ω). (53)

Proof. First, we look at the expansion of the imaginary part of the dynamic

susceptibility:

χ′′Ok,l
(q⃗, ω) = ∑

nm

πδ(Em −En + ω)(e−βEn − e−βEm) ⟨n∣Ok ∣m⟩ ⟨m∣Ol ∣n⟩
= ∑

nm

πδ(Em −En + ω)e−βEn(1 − e−βω) ⟨n∣Ok ∣m⟩ ⟨m∣Ol ∣n⟩ .
Second, we can expand the covariance matrix of the operators O(t) =
eiHtO(0)e−iHt with O(0) = O in terms of the energy eigenbasis,
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Cov(Ok(t),Ol(0))τ = 1

2
∫ ∞
−∞ eiωt⟨Ok(t)Ol(0) +Ol(0)Ok(t)⟩

= 1

2
∫ ∞
−∞ eiωtTr(τeiHtOk(0)e−iHtOl(0) + τOl(0)eiHtOk(0)e−iHt)

= 1

2
∫ ∞
−∞ eiωt ∑

n,m

(⟨n∣ τeiHtOk(0)e−iHt ∣m⟩ ⟨m∣Ol(0) ∣n⟩
+ ⟨n∣ τOl(0) ∣m⟩ ⟨m∣ eiHtOk(0)e−iHt) ∣n⟩)
= 1

2
∑
n,m

2π(δ(ω +En −Em)e−βEnei(En−Em)t ⟨n∣Ok ∣m⟩ ⟨m∣Ol ∣n⟩
+ δ(ω +Em −En)e−βEnei(Em−En)t ⟨n∣Ol ∣m⟩ ⟨m∣Ok ∣n⟩)= ∑
n,m

π(δ(ω +En −Em)e−βEn ⟨n∣Ok ∣m⟩ ⟨m∣Ol ∣n⟩
+ δ(ω +En −Em)e−β(En+ω) ⟨m∣Ol ∣n⟩ ⟨n∣Ok ∣m⟩)= (1 + e−βω) ∑

n,m

πδ(ω +En −Em)e−βEn ⟨n∣Ok ∣m⟩ ⟨m∣Ol ∣n⟩
= (1 + e−βω)(1 − e−βω)χ′′Ok,l

(q⃗, ω) = coth(βω
2
)χ′′Ok,l

(q⃗, ω).
∎

2.3 A spin-squeezing inequality for non-Hermitian collective

observables

In what follows, we want to focus on finding bounds for the range of entangle-

ment. One approach to do so is based on the minimization of a two-particle

variance for pure states and presented in [3]. This has motivated us to look

for a similar bound on the range of entanglement as the solution of a two-

body problem that can be related to neutron scattering observables. For

this purpose, we take an approach based on the strategy of finding planar

spin-squeezing criteria for the depth of entanglement presented in [45].

If the assumptions for the dipole approximation hold, we may consider

the dynamic structure factor containing the correlators of collective spin

operators as in Eq. (12) and (19). When working with the expression for the
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magnetic neutron scattering cross section in the dipole approximation, one

may consider the expression Eq. (18). From this, we consider the observable

∑⃗
q∈Q∑α,β(δαβ − q̂αq̂β)∆Sα(q)∆Sβ(q),

where the Sα(q) = ∑r
n=1 eiqnj(n)α for α = x, y are collective operators of r

parties. Thus, we see only the squared expectation values of the collective

operators perpendicular to q⃗. Without loss of generality we may then consider

(∆S⊥(q))2 = (∆Sx(q))2 + (∆Sy(q))2. (54)

Consider now ansatz states of the form

ρP = ⊗(n,m)∈P ρnm (55)

where the ρnm are two-particle states and P is one pairing of particle indices.

With this ansatz state, it holds that

(∆Sα(q))2 = ∑(n,m)∈P(∆jnmα (q))2ρnm
(56)

with jnmα (q) = eiqnj(n)α ⊗ 1 + eiqm1 ⊗ j
(m)
α . Introducing d = ∣m − n∣, we may

write j
n(n+d)
α (q) = j(n)α ⊗ 1 + eiqd1⊗ j

(n+d)
α which leads to

(∆S⊥(q))2N = ∑
α=x,y ∑(n,n+d)∈P (2(∆j(n)α )2 + 2cos(qd)(⟨j(n)α ⊗ j(n+d)α ⟩
− ⟨j(n)α ⟩⟨j(n+d)α ⟩))

for pure k-producible states of N particles with a fixed depth of entanglement

r at a given range of entanglement w. For simplicity, we also assume that

the particles are arranged at equal spacing.
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Following the idea of [46], generalized by [47], [48], and [45], we want to find

bounds for such states of the form

(∆S⊥(q))2 ≥ N

2
Gw(⟨Sx(q)⟩/N), (57)

with

Gw(X) ∶= min
d∈{1,...,w} min

ϕ∈(C(2j+1))⊗2(∆S⊥(q))2ϕ, (58)

such that ⟨Sx(q)⟩ϕ = X for any given value of q. The function Gw(⋅) is

convex and acts as a lower bound for the range of entanglement for a given

combination of observables (∆S⊥(q))2 and ⟨Sx(q)⟩.
By definition of Gw, we have that for pure two-producible states of N particles

and a range of entanglement w at fixed q, and for 0 < d < w
∑(n,n+d)∈P(∆j

n(n+d)⊥ (q))2 ≥ ∑(n,n+d)∈P Gd(⟨jn(n+d)x (q)⟩). (59)

The Gd are decreasing for increasing indices, i.e. Ga < Gb for a > b because

in the latter case the minimization is performed on a larger space. Thus, we

see that

∑(n,n+d)∈P Gd(⟨jn(n+d)x (q)⟩) ≥ ∑(n,n+w)∈P Gw(⟨jn(n+w)x (q)⟩)
≥ N

2
Gw(Sx(q)/N),

where for the last inequality we used that the Gd are convex functions and

applied Jensen’s inequality, i. e. that for any convex function g and probability

distribution it holds that g(∑i pixi) ≤ ∑i pig(xi).
To find Gw(X), we minimize (∆S⊥(q))2/N for every given value of X =⟨Sx(q)⟩ρ/N and ansatz state ρ of a given depth and width. Following the ap-
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proach detailed in [45], this directly translates into the optimization problem

of finding the ground state ∣Ψλ⟩ of the following Hamiltonian

H = S†
x(q)Sx(q) + S†

y(q)Sy(q) − λ ⋅Re{Sx(q)}. (60)

Once we have found this ground state, we can calculate the expectation

values of the above observables. For a system of two spin-12 -particles, this

becomes

Gw = (∆S⊥(q))2,
X = ⟨Sx(q)⟩. (61)

Note that we can extend this method to general k-producible states and find

bounds for the range of entanglement w and depth of entanglement r where

it suffices to consider a subspace of r particles. We can repeat this procedure

for any q and λ ∈ N. Taking the convex hull of the set of points in the plane

of ((∆S⊥(q))2/N, ⟨Sx(q)⟩/N) for every λ, we have found the boundary for

all states.

To find the range of entanglement, we may consider ansatz states that are

two-body entangled at an arbitrary range. For our purpose, this means that

in order to compute the bound for a given bipartite state, all we need to do

is to consider a specific q corresponding to the range that we are interested

in, and plot the result for many values of λ. To illustrate, we consider the

case where q = π and w = 2 in Fig. 3, and note that this bound coincides

with the bound for the case q = 0.
This indicates that in this case the bound of the depth coincides with the

bound for the range. Here, we cannot find a separate bound for the range of

entanglement based on the solution of a two-body problem. Instead, we will

have to look at three-body or even r-body problems to find bounds for the

range of entanglement.

We further note that to verify the depth of entanglement r, it is generally

necessary to look at all N !
r!(N−r)! combinations of r particles along our string
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Figure 3: G2(X) for q = π. The figure shows the convex roof (dark blue line) of the

set of points in the plane given by ((∆⊥S(q))2, ⟨Sx(q)⟩) calculated for λ ∈ [0,500].
with N being the total number of particles. In the case of a bipartite system,

this corresponds to optimizing over all possible values of dq. For r > 2, this
would generalize to probing all possible combinations of r-body entangled

states for all q ∈ 2π n
N , n ≤ r.

2.4 Experimental neutron scattering

In order to obtain the dynamic structure factor from the magnetic scattering

cross section, we perform our measurements at the ThALES experiment at

the ILL. The setup in Fig. 4 consists of a triple axis spectrometer setup,

magnets, and cooling. First, the incoming cold neutrons traverse the velocity

selector and monochromator that allow only neutrons with an energy of

Ei ±∆E to proceed to the first collimator and diaphragm that focus the

beam onto the sample. The sample itself is placed on a sample holder inside

a magnetic field, and may be rotated by any angle. Both sample and sample

holder are cooled using liquid helium. The neutrons that traverse the sample

proceed to the analyzer, a rotating monochromator, that allows only neutrons
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with a specific energy to hit the detector. That way, energy-resolved count

rates can be obtained.

ThALES operates at high neutron-flux rates and very low background. Thus,

it is ideal for the study of magnetic materials, as it can resolve even weak

signals in low-temperature environments. ThALES also allows the users to

perform experiments with polarized neutrons.

Throughout our experiments, the initial energy and orientation of the incom-

ing neutrons are fixed, and the outgoing neutrons’ energy and position are

measured with a time-of-flight detector. The neutrons traverse bulk samples

of strange metal compounds.

2.4.1 Practical considerations

First, the sample needs to be prepared. Since it is often quite difficult to

produce the compounds of interest in good quality, samples are often small

and uneven. Once prepared, the sample is mounted onto a sample holder

with a goniometer, and placed on a rotating axis inside a cooling cell and a

magnetic field.

Prior to the actual measurements, the sample needs to be aligned. If the

crystal structure is known, this means finding a Bragg peak along which

to orient the crystal and define the orientation and origin of the (h, k, l)-
plane. If the sample consists of multiple samples glued together, the internal

alignment is also important to consider. For instance, multiple Bragg peaks

may appear in misaligned samples. Once the alignment has been completed

and the scattering plane is defined, we can proceed with our measurements.

Regarding these measurements, another important consideration is that we

do not directly measure Eq. (6) but rather the scattering intensity that can

in practice be approximated as [49]

I(q⃗, E) = d2σ

dΩdE
R0(q⃗, E), (62)
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Figure 4: The Three Axis Low Energy Spectrometer (ThALES). The im-

age was taken with permission from the ThALES instrument’s website, last

accessed on October 20 at https://www.ill.eu/users/instruments/instruments-

list/thales/description/instrument-layout.
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whereR0(q⃗, E) is the resolution volume which only depends on the instrument.

The limited instrumental resolution results mainly from the finite beam

divergence and mosaicity of the monochromator crystals. In practice, this

is written as the resolution ellipsoid and needs to be known in order to

perform measurements in the focusing direction, i.e. the direction where the

energy dispersion relation is in alignment with the tilt of the ellipsoid. This

resolution volume can be calculated theoretically (for instance using the takin

package), or simulated numerically with the help of Monte-Carlo methods.

In general, the resolution volume is described as a tilted cigar-shape in phase

space. At the instrument, it is then measured using a vanadium standard

that scatters isotropically.

Regarding the resolution, one must also compare the resolution of the in-

strument to the energy scale of interest, i.e. is the experimental resolution

good enough for the energies that we are interested in? In our case, we are

interested in the quasi-elastic features close to zero meV. With ThALES, it

is possible to obtain good resolution in the sub-meV regime.

Lastly, concerning the resolution and instrumental effects, we must consider

that the experimental Gaussian is not a perfect Gaussian but has “feet”

resulting from the monochromator that generally overlap with the quasi-

elastic part of the cross-section. In our case, these feet are assumed to be

much smaller than the quasi-elastic contribution.

Normalization

For quantitative analysis, the data obtained needs to be normalized. Nor-

malization methods generally require extra measurement time and good

knowledge of the sample and reference properties. Consequently, normal-

ization procedures can be quite involved and are not usually carried out

in practice unless absolutely necessary. Unfortunately, such infrequent us-

age also means that there are no systematic studies of the accuracy and

robustness of these protocols. This is important information that must be

individually evaluated for every method and every experiment. Standard

procedures are described in [49] and include normalization based on sample
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incoherent scattering, phonon coherent scattering, and vanadium incoherent

scattering.

The first of these methods is quite simple, as all that is needed is the

measurement of the sample incoherent elastic scattering, i.e. an energy scan

far away from any Bragg peaks, and the values for the incoherent elastic

scattering cross section of the sample atoms that can be obtained from the

literature. Note that the normalization is performed per unit cell; it may

need to be rescaled to the number of magnetic atoms in the unit cell. This

method is not advisable in case the incoherent elastic scattering contribution

from the sample is small compared to the contributions from the sample

holders and environments, which can lead to a significant over-estimation of

the normalization factor [49]. This is why we favour the use of the following

more robust protocols.

While we cannot normalize the data from the Ce3Pd20Si6 measurements

without performing the experiment again, this has been of special relevance

for the CeRu4Sn6 measurements where we could select a protocol. We had

decided to measure both a phonon and the vanadium standard as both

methods are known to be robust, and it would have been interesting to

compare the result. Unfortunately, there were some complications during

the experiment and we ended up not having enough time to find a phonon,

leaving only the vanadium reference.

Because the incoherent cross-section of vanadium is much larger than its

coherent counterpart, it is often used as a normalization standard. Fol-

lowing [49], we scanned the elastic line of vanadium, see Fig. 5, and di-

vided the energy-integrated intensity Ivanadium by the theoretically calculated

incoherent scattering cross-section for all the atoms in the unit cell, i.e.

σinc = ∑j σ
inc
j e−2Wj , where e−2Wj is the Debye-Waller factor that is assumed

to be ≈ 1. This way, we obtain the normalization factor for vanadium,

NvanadiumkfR0 = 4πIvanadium/σinc, (63)
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where Nvanadium is the number of unit cells in the vanadium sample, and kf

is the outgoing neutron wave-vector.
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Figure 5: Scattering from the vanadium standard sample.

Because the resolution volume R0 depends only on the instrument and not

on any sample specifics, we can rescale the normalization to our sample based

on the mass of the vanadium mvanadium and the mass of our sample msample,

i.e.

NsamplekfR0 = NvanadiumkfR0 ⋅ msample

mvanadium
. (64)

Note that we also need to convert the measured intensity to meV−1, i.e.
the intensity needs to be multiplied by 13.77(b−1). To obtain the dynamic

structure factor, the intensity needs to be further deconvoluted, resulting in

dividing the intensity by g2e−2W ∣f(Q)∣2, where g is the g-factor, e−2W is the

Debye-Waller factor, and f(Q) is the magnetic form factor.

Note that due to delays and complications during the experiment, normalizing

the data is still a work in progress, the results of which will be shown in

future works.
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2.5 Ce3Pd20Si6

In this thesis, we look at the data obtained from the Ce3Pd20Si6 scattering

experiment. To motivate our analysis and further our understanding of the

underlying physics, we would like to introduce this compound.

2.5.1 Previous studies

Ce3Pd20Si6 is an inter-metallic compound and an example of a strongly

correlated electron system. The Ce3+-ion has a single localized 4f electron

with total angular momentum J = 5
2 . The crystal structure, shown in Fig. 6

(a), has two Ce sites formed by Ce1 at the 4a Wyckoff position arranged in

a simple cubic (sc) lattice inside a face-centered cubic (fcc) lattice formed

by Ce2 at the 8c Wyckoff position. In the appendix of [50], it is explained

how the crystallographic ordering is determined by the atoms at the 8c site,

whereas the 4a site is magnetically silent. Consequently, only the sc sublattice

is of interest to us. For this sublattice, the grounds state is given by a Γ8

quartet that includes three dipoles, five quadrupoles, and seven octupoles

that give rise to dipolar and quadrupolar ordering via the RKKY interaction.

Its spin and orbital states may be described in terms of two pseudospin

operators, σ and τ , acting on the Kramers and non-Kramers doublet states.

The interaction of the local moments with the conduction electrons through

Kondo coupling and with each other through RKKY exchange may then be

understood in terms of the multipolar Kondo model.

The multipolar Kondo model

The multipolar Kondo lattice model [50] is characterized by the Hamiltonian

HKL =Hf +HK +Hc. (65)

The first term describes the RKKY-interaction among the local moments

of the Γ8 quartet characterized by Iκij for κ = σ, τ, σ⊗ τ . The second term

corresponds to the Kondo coupling between these local moments and the
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conduction electrons characterized by Jκ
K . The last term represents the kinetic

energy of the conduction electrons.

In extended dynamical mean-field theory, we look at the multipolar Bose-

Fermi Kondo (BFK) model as an effective model for the Kondo lattice with

the corresponding Hamiltonian [50]

HBFK =HK +HBK +HB0(Φσ,Φτ ,Φ(σ⊗ τ)). (66)

As in the Kondo lattice Hamiltonian, HK describes the Kondo coupling

between the local moments and the conduction electrons. The second term

describes Bose-Kondo coupling between the local moments and the bosonic

baths whose dynamics are specified in the last term.

The ground state of this model is described by a fully Kondo-screened many-

body singlet, and has SU(4) symmetry [50], as can be seen in Fig. 6 (b). Its

time evolution can be studied with the help of the hybridization-expansion

continuous-time quantum Monte-Carlo method, in which the localization-

delocalization transitions of the spin and orbital degrees of freedom are

determined from calculations of their respective Binder cumulants. From

these studies, the zero-temperature phase diagram can be obtained. Kondo

destruction can be understood as a two-stage process in which the fully Kondo

entangled phase breaks up into a fully spin-screened phase at the second QC

point, and into a Kondo destroyed phase at the first QC point. In the destroyed

phase, the material is antiferromagnetic, while it is antiferroquadrupolarly

ordered in the screened phases.

2.5.2 Quantum criticality

Ce3Pd20Si6 exhibits two QC points. The QC point emerging at 1.73 T sep-

arates two distinct antiferroquadrupolar (AFQ) phases. It is of particular

interest to us because this is where our data were taken. However, it is also

known that there is another QC point at a lower field value that marks

the transition from an antiferromagnetic (AFM) phase at lower fields to

an AFQ phase at higher fields than the critical field value. The QC points
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(a) Crystal structure (b) Ground state

Figure 6: (a) Cubic crystal structure of Ce3Pd20Si6 taken from [50]. The lattice

parameter is a = 12.275 Å. The Ce1 site at 4a is shown in red, the Ce2 site at 8c in

blue. The polyhedra around Ce1 are formed by both Si and Pd, those around Ce2

by Pd. (b) Schematic ground state of the Γ8 quartet as described in [50].

may be understood as marking the transition from fully Kondo entangled

states to Kondo destroyed states where orbital and spin entanglement van-

ish consecutively [50]. In a heavy-fermion compound, Kondo entanglement

describes a state where the localized 4f-electron degrees of freedom couple

to the conduction electron’s orbital and spin degrees of freedom. The QC

phase can be characterized by a universal critical resistivity exponent, as is

illustrated in Fig. 7.
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Figure 7: Temperature-magnetic field phase diagram taken from [50] of Ce3Pd20Si6

for B = µ0Hk[0 0 1] . The colour corresponds to the resistivity exponent of ρel =
ρel0 +A0 ⋅ T a.
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2.6 Data analysis

The scattering data of the Ce3Pd20Si6 consist of several measurements taken

at different temperatures ranging from 0.06 K to 10 K, at a fixed orientation(h, k, l) = (0,−1,0), i.e. away from any Bragg peaks, and at magnetic field

values from 1.5 to 1.8 T, i.e. those close to the second QC point emerging at

1.73 T for T = 0 K.

Each measurement file contains the number of neutron counts at differ-

ent energies. For each temperature, there exist three files containing two

measurements to be averaged and an elastic line scan. The empty cryostat

background was also measured and needs to be subtracted from all other

measurements. Error bars are calculated based on Poisson statistics, i.e. the

error scales as
√
N where N is the number of counts for single measurements,

and a weighted average for multiple measurements.

Next, the data is fitted using a sum of a Gaussian that accounts for the

instrumental resolution around the elastic peak, and a Lorentzian that models

the broadening due to diffusion. In practice, it is not easy to correctly separate

the two contributions, as the exact resolution function is unknown. For our

purposes, it is important not to over-estimate the Lorentzian contribution.

Thus, we find the maximum Gaussian that can be fitted to all temperatures,

and apply this to all other measurements. An example of such a fit is shown

in Fig. 8.

We can then use these fits to divide the elastic and quasi-elastic contributions

of the neutron-scattering profile. In particular, the fits allow us to look at

the dynamics, i.e. the dynamic structure factor which can be extracted from

the data minus the Gaussian (Fig. 9). From this dynamic structure factor,

one can further calculate the magnetic dynamic susceptibilities (Fig. 10) and

the QFI (Fig. 12).

Note that it would generally be useful and interesting to compare the data

measured in the QC regime with data measured away from it, in different

(separable) phases, especially if the data cannot be normalized. For this

purpose, we looked at old measurements taken at different q⃗ in the material.
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Unfortunately, the data was too sparse in the energy range that we were

interested in, and it was not possible to perform the same kind of analysis

due to the significant statistical error.
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Figure 8: Fitting of Gaussian and Lorentzian of the lowest temperature sample.
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3 Experimental results

In this analysis, we extracted the quasi-elastic part of the scattering cross

section and see how this dynamic structure factor, in arbitrary units, illus-

trated in Fig. 9, and its derived quantities scale with different temperatures,

i.e. the imaginary part of the susceptibility in Fig. 10 and the QFI integrands

in Fig. 11. The structure factor and imaginary susceptibility are largest at

low temperatures, while getting suppressed as T increases, which generally

leads to the QFI being maximum at low temperatures, and decaying towards

higher temperatures, as can be seen in Fig. 12. This behaviour appears to

be consistent with the expectations from scaling theory.

Note that the QFI has been calculated from the data points minus their

Gaussian fit values, the lines are based on the Lorentzian fit and shown for

illustration purposes.

0.0 0.2 0.4 0.6 0.8 1.0

E [meV]

500

0

500

1000

1500

2000

S
(

)[
a
rb

. 
u
n
it

s
]

0.085 K

0.78 K

5.0 K

Figure 9: Scaling of the dynamic structure factor at different temperatures. The lines

represent the Lorentzian fits, whereas the data points correspond to the respective

data points minus their Gaussian fit value.
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Figure 10: Imaginary parts of the dynamic susceptibility at different temperatures.

The lines illustrate the imaginary part of the dynamic susceptibility again calculated

based on the Lorentzian fits, whereas the data points correspond to the calculation

based on the data points minus their Gaussian fit value.
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Figure 11: Integrand of the QFI at different temperatures. The lines show the

integrand of the QFI based the Lorentzian fits, while the data points correspond to

the calculation based on the data points minus their Gaussian fit value.
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4 Discussion

The presence and temperature scaling of quasi-elastic scattering in Ce3Pd20Si6

indicates that this and related strange-metal compounds featuring KD QC

points are good candidates for exploring entanglement structures close to

quantum criticality.

For this purpose, we investigated how to probe entanglement in general solid

state systems based on thermodynamic quantities. The applicability of any

type of witnesses depends very much on the complexity of the system. If

the compound is more complex, it is necessary to work with more general

assumptions and observables. In particular when working with neutron scat-

tering observables, we note that in systems where the dipole approximation

is a good assumption, it is possible to decouple the spin-spin correlators from

the cross section and use angular momentum algebra and spin squeezing

inequalities to construct witnesses. Regarding witnesses based on collective

operators, we observe that strategies used in the derivation of bounds for

Hermitian collective observables can be extended to the non-Hermitian case.

This allows for the generalization of existing inequalities to these more general

observables, such as the bound on the QFI or spin-squeezing inequalities.

While these inequalities hold for general collective observables of the form

Eq. (22), different phase factors q enable the detection of different states.

This may be useful in experimental setups that can probe different q, such

as neutron scattering.

Building on these theoretical insights, we focused on experimentally obtaining

the QFI from neutron scattering observables. In theory, the QFI allows

one to witness the entanglement depth of some entangled states, which is

directly related to the minimum range of entanglement. Hence, higher values

for the depth of entanglement also indicate longer ranges of entanglement.

Experimentally, we must note that the data obtained for Ce3Pd20Si6 is

not suitable for quantitative analysis due to it not being in absolute units.

Thus, we cannot actually determine whether the material is entangled or

not. However, considering the QFI in arbitrary units, we observe interesting

scaling behaviour with temperature. We note that this behaviour is similar
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to what has been obtained following a similar protocol in [8, 10] in the case

of compounds modelling Heisenberg spin chains.

To improve upon these results, we planned and conducted a follow-up ex-

periment investigating a similar compound, CeRu4Sn6, where we focused

on probing the predicted zero-field quantum criticality, and on measuring

the dynamic structure factor and its derived quantities in absolute units.

However, due to unfortunate complications and a delay in the experiment,

the analysis is more involved than in the case of Ce3Pd20Si6 and will be the

subject of futures studies.
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5 Conclusion

This thesis investigated the possibilities and problems that arise in detecting

and quantifying entanglement in a solid, attempting to better understand the

limitations of both theory and experiment, as well as the role of assumptions

and models in deriving entanglement witnesses.

In the theoretical part of this thesis, we explored how to derive entanglement

witnesses based on collective angular momentum observables. Building on

existing witnesses and protocols, we explored their connection to neutron

scattering observables and argued that we can extend witnesses based on

generalized spin-squeezing inequalities and the QFI to the case of non-

Hermitian collective observables.

The experimental focus of this thesis is to look for entanglement in the neutron

scattering data of Ce3Pd20Si6. While this study was not able to verify and

quantify entanglement in this compound, it may serve as a starting point

for further investigations and more conclusive experiments. In particular,

we highlight the importance of obtaining observables, such as the dynamic

magnetic structure factor, in absolute units to allow for quantitative analysis,

and we have explained how this can be done. Analysing our scattering data,

we could extract the dynamic structure factor in arbitrary units and observe

how this factors and its derived quantities scale with different temperatures

at the critical magnetic field value.
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6 Outlook

Because entanglement detection and quantification in solid state physics

is a relatively novel field, this thesis concludes with an overview of some

interesting ideas, related concepts, and experimental opportunities.

6.1 Experimental methods

Aside from (polarized) inelastic neutron scattering, there exist several other

techniques useful for the extraction of observables based on spin-spin corre-

lators and collective angular momentum observables. Back-scattering spec-

troscopy and neutron spin echo such as MIEZE [51] may be of particular

interest due to the high energy resolution that can be achieved. In addition,

it may be worthwhile to additionally measure the transverse magnetization

using polarized neutrons. However, these methods also have drawbacks that

one must consider, most importantly a significant loss of intensity when

working with polarized neutrons or spin echo, and the loss of q⃗-dependence

in a back-scattering setup. The intensity loss may be countered, to some

extent, by longer measurement times to obtain reasonable statistics.

Another interesting approach would be to use entangled neutron beams to

probe entanglement. In fact, an entire framework describing this method is

presented in [52] and related works.

Naturally, other experimental approaches that are not based on neutrons

are also being investigated. Of special interest would be methods based on

local probes, as we will discuss in Section 6.3, or methods that allow us to

directly probe second or higher-order spin-spin correlators such as spin-noise

spectroscopy (SNS) [53].

6.2 Models and simulations

From a simulations point of view, it is interesting to study experimental test-

beds such as frustrated Hamiltonians and topological systems due to their use

in describing many physical phenomena of interest that are of experimental
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relevance and go beyond the typically considered simplifications of the spin-

spin Heisenberg models.

Note that it is generally possible to find a Hamiltonian that simulates the

physics of a given strongly correlated system in a toy-model setup and

numerically study it, for instance with RG analysis and QMC methods, as is

done in [54] for a spin-12 -Heisenberg chain coupled via a Kondo interaction

to two-dimensional Dirac fermions. Their model Hamiltonian is written in

second quantization as [54]

H = −t ∑⟨i,j⟩,σ(e 2πi
ϕ0
∫ j
i Adl

c†
icj + h.c.) + Jk

2

L∑
l=1 cl†σcl ⋅ Sl + Jh L∑

l=1Sl ⋅ Sl+∆l,

where the first term describes the electron hopping with a tunable gauge

factor, the second term describes the AFM Kondo coupling between the

conduction electrons and the adatoms, and the third term describes the

Heisenberg coupling between the adatoms.

It is indeed more challenging to find bounds similar to Eq. (2.1) for this

Hamiltonian.

An obvious drawback in deriving witnesses based on Hamiltonians, however,

is that such an approach requires knowledge of the Hamiltonian. Indeed, any

such method can only be as good as the model describing the physics of the

system. Thus, while entanglement witnesses based on this measure could lead

to a better understanding of our numerical model and its limitations, they

will not teach us any new physics outside of the model under consideration.

6.3 Local probes of entanglement

Instead of using global macroscopic observables, it may also be possible

to measure local observables and construct witnesses based on those. For

instance, using the additivity of the QFI, we have that for a bipartite state

ρ12 = ρ1 ⊗ ρ2 where O12 = O1 ⊗ 1 + 1 ⊗ O2 to be separable the following

inequality must hold
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FQ[ρ12,O12] ≤ 4[(∆O1)2ρ1 + (∆O2)2ρ1].
This concept can be expanded to general partitions and the sum of the

variances of the corresponding local operators. If the bound is violated, there

exists entanglement between different partitions of the system. Thus, this

inequality can in theory be used to verify the range of entanglement between

distant partitions of a system.

When working in a continuous setting, we can define O as the Fourier trans-

form of a generally non-Hermitian collective observable, i.e. O = O(q) =∫ dxe−iqxO(x). We can further discretize the continuous space into small

regions 1,2, ..., n where we have ρ = ∑i pi(⊗N
n=1 ρn)i. By checking the entan-

glement bounds across all possible partitions of this quasi-discrete space, we

can determine whether the regions feature entanglement beyond classical

correlations. This way, we can probe how homogeneous the entanglement

structure of a larger system is.

Is it experimentally possible to access subregions of a sample instead of the

entire sample in order to probe the spatial distribution of entanglement?

Considering a lattice of N sites, one may coarse-grain it by considering

clusters of M sites grouped together in this lattice. Long-range entanglement

would remain unperturbed by the clustering process. In neutron scattering

experiments, the propagation of the neutron beam is described using the

laws of geometrical optics. Similar to lasers or beams of charged particles, it

is possible to narrow the incoming neutron beams using an aperture. This

way, one may produce a neutron beam with a diameter of a few millimeters.

In combination with a thin homogeneous sample of a few centimeters in

diameter and collimation of the outgoing beam, this could be a viable starting

point. However, several difficulties remain. One, defining an interaction

volume remains difficult because the neutrons do not generally interact

with all the atoms in the sample, and one must consider the effects of

absorption and interaction with the environment and sample holder. Second,

an important experimental consideration is the loss of intensity due to fewer

neutrons reaching the sample. Bearing in mind that the error in measuring
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the scattering intensity scales as
√
N , with N being the number of detector

counts, it becomes more difficult to obtain good statistics at lower count rates.

Third, it may be very difficult or even impossible to synthesise appropriate

samples of the compounds we want to investigate for this type of experiment.

At present, we are limited to global measurements as we are dealing with

small bulk samples that are assumed to be completely penetrated by the

neutron beam. It would not be reasonable to steer the beam in such a way

that the neutron-sample interaction would be limited to a specific volume

within the sample.

An alternative approach worth mentioning, however, is to probe such samples

with photons or electrons instead of neutrons. Unlike neutron beams, photon

beams are often easier to control and focus. There exist several techniques to

probe only specific regions of a sample, such as M-EELS [55], which achieves

meV-resolution. The imaginary part of linear response functions

χOO(x,x′, t, t′) = −i⟨[O(x, t)O(x′, t′)]⟩θ(t − t′)
can be probed with scattering experiments. Whereas in neutron scattering

we consider the spin response with O = S, in M-EELS one may look at the

charge-density response with O = ρ. Note that the charge density response is

not the same as the electron-density response, and that the former is directly

related to the density-density correlation function, i.e. the charge structure

factor. Thus, electrons may be used to probe charge entanglement.
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