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Mitwirkung: Vincenzo De Maio, Ph.D.

Wien, 16. September 2023
Sabrina Herbst Ivona Brandić
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Kurzfassung

Da sich die Entwicklung klassischer (von-Neumann) Hardware verlangsamt und moderne
Machine Learning (ML) Modelle zunehmend mehr Rechenleistung und Speicherplatz
benötigen, versuchen Forscherinnen und Forscher neue Wege zu finden, aktuelle und
zukünftige Anforderungen zu bewältigen. Neue Post-Moore Architekturen werden stetig
weiterentwickelt, und, da sie eine vielversprechende Alternative, unter anderem aufgrund
theoretischer algorithmischer Speedups, darstellen, hat die Bedeutung von Quantencom-
putern zugenommen. In diesem Rahmen versucht der Bereich des Quantum Machine
Learning (QML), Quantenphänomene zu nutzen, um schnellere Algorithmen und eine
bessere Expressivität zu erzielen.

Variational Quantum Algorithms (VQAs) haben aufgrund ihrer Eignung für aktuelle
Quantenhardware Aufmerksamkeit erregt. VQAs besitzen jedoch zahlreiche Parameter,
einschließlich Datentransformation, Architektur und Training, die die Modelle stark
beeinflussen können. Zudem sind aktuelle Quantencomputer anfällig für Fehler, was das
Training erschweren und die Leistung der Modelle verringern kann. In dieser Arbeit
wollen wir verschiedene Konfigurationen vergleichen und ihre Performance in Gegenwart
von ebendiesen Fehlern bewerten, um die effektivsten Ansätze zu ermitteln.

Unsere Experimente zeigen, dass die Wahl des Optimierers und der Datentransformation
die Leistung der Modelle erheblich beeinflussen kann. Die Datentransformation allein
führt jedoch nicht zu einem leistungsfähigen Modell, sondern muss mit einem guten
Ansatz kombiniert werden, um Vorteile gegenüber anderen Konfigurationen zu erzielen.
Darüber hinaus verringern Fehler im Quantencomputer die Leistung der Modelle, und
beeinflussen insbesondere die besten Modelle.
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Abstract

As the development of classical (von-Neumann) hardware is slowing down and state-of-the-
art machine learning (ML) models require an ever-increasing amount of computational and
storage resources, the research community is tasked with finding ways to cope with current
and future demands. New Post-Moore architectures are therefore gaining importance, and,
being a promising alternative due to, among others, theoretical algorithmic speed-ups,
the significance of quantum computing has been steadily growing. Within this framework,
quantum machine learning (QML) seeks to use quantum phenomena to achieve speed-ups
and enhanced expressive power.

Among the QML approaches, variational quantum algorithms (VQAs) have attracted
attention for their suitability for near-term quantum hardware. However, VQAs require
the tuning of various parameters, including data transformation, model architecture,
and training, which can significantly impact the models. Additionally, current quantum
hardware is subject to noise, which can make training more difficult and reduce the
performance of the models. In this study, our objective is to compare different parameter
configurations and assess their performance in the presence of noise, with the aim of
identifying the most effective settings.

Our experiments show that the choice of optimizer and feature map can significantly
impact the performance of the models. The feature map alone does not lead to a
well-performing model, rather it needs to be combined with a good ansatz, to lead to
advantages over other configurations. Furthermore, we find that noise decreases the
performance, impacting the best-performing models the most.
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CHAPTER 1
Introduction

Advances in quantum computing (QC) and the availability of quantum machines in
the cloud have made it accessible to researchers of different disciplines [DL21]. Quan-
tum computing is a paradigm of computing that leverages the principles of quantum
mechanics. Unlike classical computers, which rely on binary digits (bits) to store and
process information, quantum computers use quantum bits (qubits) that can exist in
multiple states at once. This allows quantum computers to perform certain computations
significantly faster than classical computers and makes completely new and different
solutions possible [GI19].

Examples of significantly more efficient algorithms than currently known classical coun-
terparts are Shor’s algorithm [Sho97] and Grover’s algorithm [Gro96]. Shor’s algorithm
can factor large numbers in polynomial time, which is an exponential speed-up when
compared to the best known algorithm on classical computers, and can, in theory, break
RSA encryption ([RSA78]) [GI19]. Grover’s algorithm allows searching an unordered list
in O(

√
n), as opposed to O(n) of the classical counterpart, thus providing a quadratic

speedup [ABBB21].

In recent years, we have experienced an exponential growth of data, and analyzing it can
help researchers and organizations extract information from the raw data. Common use
cases are fraud detection, object recognition or medical informatics [GCA22]. However,
the amount of data is ever-growing and, due to Moore’s law slowly coming to an end,
researchers hypothesize that classical computers might not be sufficient anymore in the
near future [CHI+18, Mar14]. Hence, quantum machine learning (QML) has become an
important area of research.

Potentially, QML could offer improvements in terms of runtime and space complex-
ity [Pas23]. In [SK22], the authors mention two directions of research, namely (1)
speed-ups, where classical algorithms are translated into more efficient quantum ones
and (2) variational quantum algorithms (VQAs), which are models similar to classical
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1. Introduction

neural networks [ABBB21]. Main research interests for now are related to architectures,
gradients, trainability, expressive power and generalization [SK22].

The ultimate goal is to find a quantum advantage, i.e. proving that a quantum computer
can solve problems that a classical one cannot. For now, due to hardware limitations,
experiments are rather limited and can only happen on a small scale (currently, the
biggest available IBM quantum computer has 127 qubits1). Furthermore, deep learning
is highly effective at solving complex problems, due to its ability to automatically
learn representations of data through neural networks with multiple layers. Therefore,
some argue that small experiments and theoretical proofs will not be able to find this
advantage in machine learning for now, but rather should help us understand the methods
better [SK22].

1.1 Problem Statement & Research Objective
A big problem in QML is the translation of classical data into a quantum state. Typically,
in machine learning, the data encoding is crucial, hence, a lot of thought has to go
into initializing the data. Even if QML provides a significant speed-up to the classical
counterpart, this advantage should not be cancelled out by the costs of reading the
data [MKR+21]. Furthermore, as mentioned in [SK22], similarly to the design of classical
neural networks, the architectures of variational quantum circuits crucially affect their
performance.

Moreover, in the near future, only Noisy Intermediate-Scale Quantum (NISQ) technology
will be available, offering between fifty and a few hundred qubits. As the name suggests,
quantum computers are subject to noise [Pre18], which can emerge from various sources,
such as unwanted interactions with the environment, other qubits or imperfect operations
(e.g., over- or under-rotations) [RK21]. The error rate per two-qubit gates is above 0.1%,
and experts are not sure whether such small error rates are even possible on big quantum
computers with many qubits [Pre18].

The main goal of this thesis is to take a deeper look into quantum machine learning, in
particular variational quantum circuits, and compare different parameter configurations
and their susceptibility to noise in the quantum computer. Additionally, we want to
compare the results to a classical machine learning model to study how good quantum
machine learning models can already perform. In particular, the following research
questions will be investigated.

• How do quantum machine learning algorithms perform on standard regression and
classification problems in comparison to classical ones?

• How do hyperparameters, such as the ansatz and optimizer, affect the runtime and
performance of a variational quantum circuit?

1https://www.ibm.com/quantum/roadmap. Accessed 22.06.2023
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1.2. Expected Contributions

• How much does data encoding influence performance and runtime of a variational
quantum circuit?

• How susceptible is the performance of the ML models to noise in the quantum
computer?

We will use appropriate performance measurements for the problem at hand (accuracy
and f-1 score for classification, mean squared error (MSE) and mean absolute error
(MAE) for regression) and compare the models based on these results. By addressing
these research questions, we aim to gain a deeper understanding of the potential and the
limitations of QML.

1.2 Expected Contributions
We expect this thesis to shed light on the potential of QML, and highlight how different
quantum circuit hyperparameters influence the model. We want to demonstrate how
different choices for the main hyperparameters impact the runtime and performance of
the models, and provide an extensive evaluation and comparison.

Through the investigation of data encoding techniques, we aim to compare their efficiency
and runtime and highlight potential trade-offs between the two. We aim to identify the
most suitable approaches for achieving high accuracy in QML algorithms with reasonable
time requirements. Due to the noise in current quantum hardware, we want to find out
how susceptible the models are. Therefore, we run the algorithms with noise models as
well, and evaluate and compare the results to the noiseless ones.

We anticipate that this thesis will contribute to the ongoing effort to bridge the gap
between quantum and classical ML by providing a comprehensive evaluation and com-
parison of the performance of the two on standard regression and classification problems.
This could help researchers and practitioners to identify the strengths and weaknesses of
both approaches and to determine the most suitable approach for a given problem.

1.3 Outline
The thesis will be structured as follows. In Chapter 2, we will present theoretical aspects
of the thesis. In particular, Section 2.1 will give a brief overview on the relevant aspects
of quantum mechanics. Section 2.2 will provide an introduction to quantum computing,
whereas Section 2.3 will discuss quantum machine learning. We will focus on data
encoding and VQAs here.

Then, Chapter 3 will present related work. Section 3.1 will discuss literature and
experimental results with respect to data encoding. In Section 3.2, we will give an
introduction into recent advances in optimizing VQAs and in Section 3.3, recent literature
regarding the ansatz of VQAs will be presented. Then, in Section 3.4 we give an overview
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1. Introduction

of studies that tried to optimize the hyperparameters of VQAs for machine learning as
well.

Moreover, in Chapter 4, we will introduce our methodology. First, in Section 4.1, we will
present the four chosen datasets and give an overview of their characteristics. Then, in
Section 4.2, we will shortly provide an overview of the models and hyperparameters of
our classical ML baseline. Finally, in Section 4.3, we will present our methodology for
the QML models.

Then, in Chapter 5, we will present our results. Section 5.1 will discuss the experimental
setup and 5.2 will discuss the results from the classical ML baseline. Then, Section 5.3,
will present the results of the QML models. In Section 5.4, the results will be compared.

Finally, we will conclude the thesis in Chapter 6 and provide an outlook.
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CHAPTER 2
Quantum Computing

Fundamentals

Quantum mechanics (QM) is applicable in a variety of disciplines, such as chemistry,
physics, molecular biology or cosmology, and the theory has held up through countless
experiments. Various technologies, such as transistors, lasers or nuclear reactors, are
based on quantum theory, and it is estimated that quantum mechanics are exploited by
products that make up about 30% of the US gross national product. It is said to be the
most successful quantitative theory ever [Bli21, p.21-34].

The following chapter gives an introduction to the fundamentals of quantum computing
(QC). We will initially give an introduction to QM in Section 2.1. In particular, we
want to give an overview on the history and why classical mechanics is not sufficient.
Furthermore, we will introduce quantum states, superposition, and entanglement using
Dirac’s mathematical formulation of QM.

Moreover, in Section 2.2, we will give an overview of QC, starting with the motivation
and potential advantages. Then, we will write about current quantum hardware and
recent advances. Moreover, we give an introduction to quantum computing, including
quantum gates, circuits and how useful quantum algorithms can be built.

Finally, in Section 2.3, we will introduce QML. We will point out challenges and potential
advantages over classical machine learning. Then, we will introduce the field itself,
focussing on variational quantum circuits.

2.1 Quantum Mechanics Basics
Quantum mechanics (QM) is a theory that was formulated based on three phenomena
related to electromagnetic radiation that classical physics could not explain. These
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2. Quantum Computing Fundamentals

phenomena are (1) blackbody radiation, (2) the photoelectric effect, and (3) the origin of
line spectra. Starting in about 1900, Max Planck, Albert Einstein and Niels Bohr built
on top of each other to find theories explaining the behavior, which ultimately led to the
basic theory of QM. The principles of QM were then mainly formulated by Schrödinger,
Dirac, and Heisenberg in 1925/1926 [Bli21, p.1-34].

2.1.1 Classical vs. Quantum Mechanics
Determining the appropriate circumstances for applying classical or quantum mechanics
is a crucial consideration in understanding the behavior of physical systems. In [Dir58,
p.3-4], Dirac describes the difference based on the disturbances an observation causes. In
science, objects of observation are explored by manipulating external variables. Therefore,
the observable thing is disturbed by measuring it. If the disturbance is negligible, then
the object will be termed as big, otherwise it will be labelled as small. Some level of
care must always be taken in order to reduce disruptions when measuring, regardless
of the method used. Still, absolute precision (no disturbance at all) cannot be achieved
independently of the skill level or technique. Hence, if the inevitable disturbance when
observing the object of observation is negligible, it is big and classical mechanics apply,
else it is small and QM is necessary.

These definitions influence causality, which is found in undisturbed objects of observation.
When considering and exploring a small system, the disturbance is significant, thus,
the observations are not necessarily causal. Therefore, observations are themselves not
deterministic, but quantum theory gives the means to calculate probabilities of different
outcomes [Dir58, p.3-4].

2.1.2 Superposition
The indeterminacy of QM leads to a more complex theory, compared to classical mechanics
alone, which is not necessarily desirable. The principle of superposition compensates
this added complexity. In an atomic system made up of several particles, states are all
possible motions of the particles in such systems. There are connections between different
states, that is, if we know the system to be in one state, it is always in part in two or
more other states as well. The state we know the system to be in is a superposition of
the other states. Just as every state is a superposition of other states, every two or more
states can be superposed into another state [Dir58, p.11-12].

In particular, a superposition shares characteristics with the states making it up and
is something between them. Depending on the weight of the states, it is more similar
to one or the other and there is a higher probability of measuring one, if its weight is
higher. The result of a measurement is either one state or the other, but the probability
of measuring one or the other is influenced by the relative weights of the states in the
superposition. [Dir58, p.13].

Although attempts have been made to compare this principle to vibrating strings or
membranes in classical mechanics, such analogies are misleading because classical me-
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2.1. Quantum Mechanics Basics

chanics is deterministic, whereas QM is non deterministic. As Dirac notes in [Dir58,
p.14], the principle of superposition is a unique feature of QM that cannot be explained
by classical mechanics.

One of the most famous examples of a superposition is the paradox of Schrödinger’s
cat. In this thought experiment, a cat is placed in a sealed container with a device that
could release enough poison to kill the cat, which is triggered by a quantum mechanical
measurement. The two possible states in superposition are the cat being dead or alive,
and the overall state of the cat is not in either of them, but rather in a superposition
of them. However, once we look into the container, it is either dead or alive. The
paradox arises because the cat appears to be both dead and alive at the same time,
which contradicts common sense. For further information on the experiment, please refer
to [Vil86] for a detailed explanation and discussion.

2.1.3 The Uncertainty Principle

One of the most influential theories in QM is Heisenberg’s uncertainty principle. The
following notation will be used: q refers to the position of a particle, and p refers to the
momentum in the classical sense. Additionally, q′ and p′ denote quantum mechanical
observables that can only be measured probabilistically, with ∆p′ and ∆q′ representing
the uncertainties in measurement. The constant h is known as Planck’s constant [Dir58,
p.97-99].

∆q′∆p′ = h (2.1)

Heisenberg’s Principle of Uncertainty is defined in Equation 2.1. It follows that the
more certain one variable can be observed, the less certain one can be about the second
variable. Therefore, if either q′ or p′ are certain, the other one is completely unknown, i.e.,
all possible measurements have equal probability. This influences the view of a system,
because it implies that we can never know all details of it. Furthermore, it influences
quantum entanglement [Dir58, p.97-99].

2.1.4 Entanglement

Another interesting phenomenon in QM is entanglement. The original thought experiment,
called the Einstein-Podolsky-Rosen experiment [EPR35], considers two particles from
a common source that move into opposite directions triggered by some event. The
position of the first particle and the momentum of the second particle are measured at
the same time. As the conservation of momentum (total momentum in a closed system
remains constant) is also valid in QM, the momentum of the first particle equals the
negative momentum of the second particle. Hence, it is possible to know the position
and momentum of the first particle at the same time, which contradicts the uncertainty
principle [Bli21, p.342-345].

7



2. Quantum Computing Fundamentals

To overcome this inconsistency, it is suggested that when measuring the particles simul-
taneously, one must take into account their correlation due to them being part of an
indivisible quantum system. In simpler terms, measuring the position of the first particle
directly impacts the momentum of the second one. Therefore, the momentum of the
first particle is affected by this interaction, and given their dependency, the particles are
considered to be entangled. [Bli21, p.342-345].

Entanglement between particles is not dependent on their distance from each other,
meaning that even if the particles were separated by light-years, measuring one particle
would directly affect the other. This implies that communication (in this case, the
disturbance caused by measurement) could theoretically occur faster than the speed of
light, which would contradict the principle of locality in Einstein’s theory of relativity.
According to Bell’s Theorem, there is a fundamental incompatibility between the concept
of local relativity and quantum entanglement. Experiments have since confirmed this
prediction by demonstrating that our universe does not adhere to local relativity [Bli21,
p.342-348].

2.1.5 Mathematical Formulation
Paul Dirac introduced the widely used notation in QM known as the bra-ket notation.
The following information on the mathematical notation is based primarily on Sections 5
and 6 (pages 14-22) of his book [Dir58], unless otherwise noted. All equations referenced
can be found in the book.

The definition of states is an important starting point. One could argue superposition to
be a summation of two states to form a new one. Therefore, if one would want to come
up with a mathematical system, it should allow for such operations. Vectors are not
sufficient, as they only exist in finite dimensions. Dirac came up with his own notation,
calling them ket vectors. They are more powerful than classical vectors, as they allow
infinite dimensions. A ket vector A is denoted by |A⟩. It is possible to multiply them
with complex numbers, to add two or more ket vectors together or even integrate them.

The state of a system at a given point in time is represented by one ket vector. If a
new state is formed by a superposition of two other ones, it is possible to represent it
linearly with respect to the original two states, as can be seen in Equation 2.2. The two
ket vectors |A⟩ and |B⟩ are multiplied by a complex number each and added together
(forming a superposition) to create |R⟩.

c1|A⟩ + c2|B⟩ = |R⟩, c1, c2 ∈ C (2.2)

The ket vector |R⟩ is the same, independently of the order of |A⟩ and |B⟩. Equation 2.2
shows that it is also possible to use a superposition of |B⟩ and |R⟩ to get to |A⟩, meaning
the superposition relationship is symmetrical between the kets.

Furthermore, we look at Equation 2.2, to investigate how the state |R⟩ changes with c1
and c2. Multiplying them with the same number yields the same state |R⟩, only the ratio
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2.2. Quantum Computing Principles

of c1 and c2 influences the state. The ratio also influences the probability of measuring
one state or the other.

The superposition of a state with itself is the same state, as can be seen in Equation 2.3.
Hence, a state is defined only by the direction, not by the length. The direction of the
state carries information about physical properties of the system, whereas the length does
not. This stands in contrast to classical mechanics, i.e., a vibrating membrane, where
superposition with itself leads to different oscillations, hence, a different state.

c1|A⟩ + c2|A⟩ = (c1 + c2)|A⟩, c1, c2 ∈ C\{0} (2.3)

There exists a dual vector to the ket vector, called the bra vector. In particular, for
every ket vector, there exists a number ϕ, which is a linear function of the ket. The
number can be found by calculating the scalar product between the ket vector |A⟩ and
the corresponding bra vector ⟨A|, written as ⟨A|A⟩. The two vectors are called conjugate
imaginary of each other. The state of a system can be defined by both, the bra or the
ket vector, as there is a one-one correspondence between the two.

2.2 Quantum Computing Principles
In this section, we will provide an introduction to quantum computing. First, we will
explore the motivation and potential advantages of quantum computing in Section 2.2.1.
Next, we will discuss the current state of quantum hardware and challenges in Section
2.2.2. While quantum computing is still in its infancy, there has been rapid progress in
the development of quantum hardware, with several companies and research organizations
working to build quantum computers with increasingly larger numbers of qubits.

Afterwards, we will introduce the fundamental principles of quantum computing, starting
with quantum bits in Section 2.2.3. This will include an explanation of qubits, the basic
building blocks of quantum computers, and their unique properties. We will discuss
quantum gates, which operate on qubits, and quantum circuits afterward, in Section
2.2.4.

2.2.1 Motivation
The idea of quantum computers originated quite early, with the physicist Richard Feynman
already talking about its potential in 1982 [Bli21, p.355-378]. David Deutsch published a
paper in 1985 writing that quantum computers are a generalization of Turing machines,
that they can be created and that they have the potential to create fundamentally
different results due to their unique characteristics [Deu85].

Early on, researchers recognized the immense potential of the phenomena of superpo-
sition and entanglement in computing, as they can lead to a significant increase in
efficiency [Bli21, p.355-378]. Many researchers believe that quantum computers are more
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2. Quantum Computing Fundamentals

powerful than classical computers for several reasons. Notably, quantum computers
can solve certain problems that are difficult for classical computers, such as factoring
large numbers using Shor’s algorithm. Additionally, there exist quantum states that are
extremely challenging to replicate using classical methods, including the ability to sample
from distributions that are difficult to even approximate classically ([LBR17]) [Pre18].

Beyond classical algorithms, machine learning is another interesting area of research and
the center of this thesis. As the amount of data is ever-growing and having recently
entered the Post-Moore era, researchers hypothesize that classical computers might not be
sufficient anymore in the near future [CHI+18, Mar14]. Potentially, quantum computers
could offer improvements in terms of runtime and space complexity.

However, even beyond computer science, there are a lot of scientific disciplines that
could benefit from quantum computers. The theoretical physicist John Preskill describes
being fascinated by QC, as it offers the potential to simulate any processes in nature. In
particular, processes, such as the formation of the universe after the big bang, could be
simulated, allowing new insights into fundamental physics [Pre18].

2.2.2 Hardware and Near-Future Expectations

The field of quantum computing is rapidly advancing, and Tech companies are heavily
investing. According to McKinsey, 1.4 billion USD were invested in start-ups in 2021
and the market estimate for 2040 is at 90 billion USD1. Among the most prominent
companies developing quantum computers are IBM2, Google3 and Microsoft4.

One of the biggest challenges in QC arises from the definition of quantum mechanics (QM)
itself. In Section 2.1, the concept of a significant disturbance that happens when observing
a quantum system was explained. Hence, it is necessary to keep the system as isolated as
possible, while keeping the possibility to interact with the system. Furthermore, quantum
bits (qubits), the quantum computing counterparts of classical bits, have to interact
with each other, and it needs to be possible to read out the result in the end. These
requirements are quite restrictive and partly contradictory [Pre18].

With regard to these difficulties, we mentioned the terminology of a Noisy Intermediate-
Scale Quantum (NISQ) computer earlier. It refers to a quantum computer with fifty
to a few hundred qubit with significant levels of noise. Although there is a lot of effort
going into quantum error correction, ways to correct the effects from the noise, there
is a big overhead associated with it, and it is not possible to sufficiently mitigate the
consequences of noise yet [Pre18].

1https://www.mckinsey.com/featured-insights/themes/how-quantum-computing-c
ould-change-the-world. Accessed: 13.04.2023

2https://www.ibm.com/quantum. Accessed: 13.04.2023
3https://quantumai.google/. Accessed 13.04.2023
4https://azure.microsoft.com/en-us/solutions/quantum-computing/. Accessed:

13.04.2023
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2.2. Quantum Computing Principles

With respect to noise, one can roughly distinguish four different types in a quantum
computer, which are explained in the following and are listed in [RK21].

1. Environment: as already described earlier, it is not possible to keep a quantum
computer perfectly isolated as, in the least, we need to be able to execute commands
and retrieve the results.

2. Other qubits: entanglement is among the most important concepts in QC. However,
it is not possible to perfectly control which qubits are entangled. From time to
time, qubits may become entangled accidentally, leading to unwanted side effects.

3. Operations: operations are not guaranteed to be done perfectly, hence, small errors
(slight over or under rotations) can significantly impact the results. These errors
are among the most common.

4. Leakage: quantum computers do not necessarily only allow two states, rather two
of the possible states are defined to be |0⟩ and |1⟩ (which will be introduced later).
Should a qubit enter a different state unintentionally, it is called leakage.

Hence, there are several challenging aspects to building quantum systems. However, the
field is rapidly advancing. For example, IBM released their first quantum computer with
only five qubits in 20165. In 2019, they released their first 27 qubit quantum computer
Falcon and only presented their 433 qubit quantum computer Osprey in 2022. In 2023,
they are planning to release their first 1121 qubit machine Condor. According to their
roadmap6, they plan to scale their quantum systems to tens or hundreds of thousands
qubits by 2026, by joining multi-chip processors (so-far they have used only single-chip
processors) and quantum communication technologies.

2.2.3 Quantum Bits
A quantum computer is, essentially, a very simple physical system, containing a finite
number of smaller quantum-mechanical two-state systems (quantum bits, qubits) [Mer07,
p.xii]. In a classical sense, a bit can be in two orthogonal states (orthogonal being defined
equivalently as for vectors), namely |0⟩ and |1⟩, shown in Equation 2.4. In the case of two
bits, they are in one of four states (|0⟩|0⟩ = |00⟩, |01⟩, |10⟩, |11⟩), the states forming an
orthonormal basis. In general, n bits span a vector space of 2n dimensions [Mer07, p.6]

|0⟩ = 1
0 , |1⟩ = 0

1 (2.4)

The notation already implies that the bits are multiplied, in particular, the tensor product
⊗ is used. The tensor product of vectors a ∈ Rn and b ∈ Rm is a vector of size N ∗ M

5https://research.ibm.com/blog/quantum-five-years. Accessed: 13.04.2023
6https://www.ibm.com/quantum/roadmap. Accessed: 13.04.2023
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containing the product of all possible combinations of the two vectors (i.e. element (γ, η)
will return the product aγbη) [Mer07, p.6]. An example can be seen in Equation 2.5.


2

3
4


 ⊗ 1

2 =





2 ∗ 1
2 ∗ 2
3 ∗ 1
3 ∗ 2
4 ∗ 1
4 ∗ 2




=





2
4
3
6
4
8




(2.5)

The state of a qubit is defined as a normalized superposition of the base states, as can
be seen in Equation 2.6, subject to the condition shown in Equation 2.7. Geometrically
speaking, the state of a qubit is in the vector space that is spanned by the orthogonal
base vectors |0⟩ and |1⟩. α0 and α1 are called the amplitude of the state. A qubit does not
have the value |0⟩ or |1⟩, rather, qubits are described by or associated with states [Mer07,
p.17-19].

|ψ⟩ = α0|0⟩ + α1|1⟩ = α0
α1

, α0, α1 ∈ C (2.6)

|α0|2 + |α1|2 = 1, (2.7)

Similarly, the state of two qubits is defined in Equation 2.8 (the amplitude has to be
normalized) and the state made up of n qubits can be seen in Equation 2.9. The set
of possible states (0 ≤ x < 2n) is called the computational basis. The subscript n here
denotes the number of qubits in the computational basis state. Combining two states is
done by taking the tensor product [Mer07, p.17-19].

|Ψ⟩ = α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩ (2.8)

|Ψ⟩ =
0≤x<2n

ax|x⟩n,
0≤x<2n

|ax|2 = 1, n ∈ N (2.9)

The biggest difference between classical bits and qubits is that classical bits are always
in one of the 2n computational basis states and can be expressed by the individual
bits. This is not true for states of two or more qubits, as they are in a superposition,
where it is not necessarily possible anymore to associate a state with a single qubit.
If it is not possible to describe individual qubits of a state independently of other
qubits, the qubits are called entangled [Mer07, p.17-19]. Entanglement and superposition
are often a fundamental building block of efficient quantum algorithms (i.e. Grover’s
algorithm [Gro96]) [ABBB21].
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2.2.4 Operations on Qubits
Quantum computers operate on qubits by performing linear, reversible operations,
meaning the operation can be undone again. There are two reversible operations on a
single qubit, leaving it as-is or flipping it. The not operator X shown in Equation 2.10
turns |0⟩ into |1⟩ and vice versa, whereas the identity operator I, shown in Equation 2.11,
leaves it as-is. The operators are usually represented as matrices, which are multiplied
with the state vectors [Mer07, p.8-11].

X = 0 1
1 0 (2.10)

I = 1 0
0 1 (2.11)

One of the simplest operations on multiple qubits is swapping two of them, using the
Swap gate Si,j . The controlled NOT (cNOT) operator Ci,j performs a not operation on
qubit j if qubit i is in state |1⟩ and it is among the most fundamental operators in QC.
A lot of two-qubit gates can be constructed out of cNOT gates. For example, one can
construct the Si,j gate from three cNOT gates, as Si,j = Ci,jCj,iCi,j [Mer07, p.8-11].

Further important gates are the Z gate, shown in Equation 2.12, and the Hadamard
transformation H, shown in Equation 2.13 [Mer07, p.13].

Z = 1 0
0 −1 (2.12)

H = 1√
2

1 1
1 −1 (2.13)

It is essential, after having performed an operation on a state, to end up with a unit
vector again. Such operations are called unitary. Furthermore, unitary operations always
have a unitary inverse (i.e., reversing an operation always results in a unit vector as
well) [Mer07, p.19].

Unitary transformations on one qubit are called 1-qubit gates, those that act on two
are called 2-qubit gates. Physically building qubit gates grows more difficult with an
increasing number of qubits. Therefore, the focus is on 1- and 2-qubit gates, which are
already a challenge to build reliably. However, this is not a limitation. Any unitary
transformation on a quantum computer can be represented by 1- and 2-qubit gates. This
has been proven in [DiV95]. For a concise proof, please refer to the paper. For classical
computers, 3-bit gates are required [Mer07, p.20]

While one can always look at the values of classical bits to read them without a problem,
it is never possible to read the state of a quantum computer. Hence, it is not possible
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to read the amplitude of a state. One can extract information from qubits by making a
measurement, which is the only irreversible operation one can make, where each qubit
will take on either |0⟩ or |1⟩ [Mer07, p.23-24].

The probability of what we measure was figured out by Max Born and is called the
Born Rule, In particular, the amplitude is representative of the probability of measuring
|0⟩ or |1⟩. State |ψ⟩ = α0|0⟩ + α1|1⟩ will have a probability of |α0|2 of measuring |0⟩
and a probability of |α1|2 of measuring |1⟩. Generally speaking, if we measure state
|Ψ⟩ in Equation 2.14, the probability of measuring the integer x is given by Equation
2.15. [Mer07, p.23-24]

|Ψ⟩ =
0≤x<2n

αx|x⟩n (2.14)

p(x) = |αx|2 (2.15)

Born’s rule should not be misinterpreted as the ’real’ state of a qubit being in |0⟩
with probability |α0|2 and vice versa. The qubit does not carry a value beforehand, it
only takes on a value when measuring it [Mer07, p.26-27]. This works analogously to
Schrödinger’s cat not being dead or alive before we look at it, rather it is something
in-between (a superposition). The following analogy describes well how one should
interpret a measurement.

"While measurement in quantum mechanics is not at all like measuring
somebody’s weight, it does have some resemblance to measuring Alice’s IQ,
which one can argue, reveals no preexisting numerical property of Alice, but
only what happens when she is subjected to an IQ test." [Mer07, p.25]

Measuring is done using a n-qubit measurement gate. As stated earlier, the operation
is not reversible, once measured, the set of qubits take on the measured value, and it
is not possible to reconstruct the state again [Mer07, p.25]. An excellent resort would
therefore be to clone the state beforehand. Unfortunately, this has been proven to be
impossible in [WZ82]. For a concise proof, please refer to the original paper. In other
words, by measuring the state of n qubits, it becomes impossible to reconstruct the state
again. The process is called reduction or collapsing of the state [Mer07, p.26]

The computational process therefore seems pretty restrictive. In order to retrieve
reasonable results from quantum computers, the goal is usually to end up in a state where
most of the amplitudes are (close to) zero, and only one is not. With a high probability,
one retrieves the desired result [Mer07, p.26].

It is not possible to know the state of qubits or potential entanglements with other qubits
prior to starting off with an algorithm without measuring it. Therefore, measurement plays
an important role in the beginning as well. The process of measuring and transforming
the desired qubits (usually into |0⟩n) before using them is called state preparation. The
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process consists of (1) measuring them and (2) applying an X gate to all qubits in state
|1⟩ [Mer07, p.30-31].

Finally, we want to introduce the term quantum circuit, referring to a set of operations on
qubits. In particular, a circuit uses quantum gates to manipulate the state of qubits [Bli21,
p.358].

2.2.5 Quantum Algorithms
To conclude this section, we want to provide an idea of how quantum algorithms can
actually be built, given that the previously defined constraints seem to be quite restrictive.

Beforehand, however, we want to clarify notations. When looking at quantum algorithms,
we usually consider a set of qubits for the input (input register) and one for the output
(output register). The output register is required to make sure everything is reversible, if
an algorithm assigns different inputs to the same output. Additional qubits are of course
possible too.

Now, Equation 2.16 shows the notation, where |x⟩n is the input register, |y⟩m is the
output register and f(x) the function applied. Uf is the unitary transformation in which
we apply f(x). The symbol ⊗ is a bitwise exclusive or (XOR). If the initial state of the
output register is |0⟩m, it is easy to see that |y ⊕ f(x)⟩m = |f(x)⟩m. Additionally, note
that |x⟩n stays as-is [Mer07, p.36-40].

Uf (|x⟩n|y⟩m) = |x⟩n|y ⊕ f(x)⟩m (2.16)

We will introduce a simple quantum algorithm here to showcase how we can use quantum
computers to solve problems more efficiently. In particular, we will look at Deutsch’s
problem, which was first introduced by David Deutsch in [DJ92]. It was one of the first
proposed problems that could be much more efficiently solved on quantum computers.
However, in the first proposal, the answer was correct only half the time. It was efficiently
and properly solved in [CEMM98].

In particular, we are looking at a function f : {0, 1} → {0, 1}, for which, trivially, only
exist four different realizations. The same function as in Equation 2.16 is given, i.e. one
can evaluate the function but does not explicitly know which of the four functions f(x) it
is. Classically, to find out the function, one would run Uf (|0⟩|0⟩) and Uf (|1⟩|0⟩) to find
the answer, but for Deutsch’s problem, the function can be invoked only once [Mer07,
p.41-46].

Now, we want to find out whether the underlying function f is constant (f(0) = f(1)).
It is easy to see that the only way to figure this out is to run the algorithm twice. On a
quantum computer, however, we only need one run, which we will explain shortly. In
the quantum algorithm, however, we lose the possibilities of getting the values f(0) and
f(1) themselves, we only look at the relation between them. Interestingly, this is the QC
realization of the Uncertainty Principle (see Section 2.1.3) [Mer07, p.40-46].
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To solve the problem, we create a superposition of qubits in the beginning. In particular,
the Hadamard transformation (shown in Equation 2.13) can be used for this purpose,
as shown in Equation 2.17. We apply a Hadamard transformation to the n input
qubits (the transformation is a tensor product of n Hadamard transformations) and an
identity transformation to the output qubits. We now have a superposition of all possible
computational basis states [Mer07, p.36-40].

Uf (H⊗n ⊗ 1m)(|0⟩n|0⟩m) = 1
2n/2

0≤x<2n

Uf (|x⟩n|0⟩m)

= 1
2n/2

0≤x<2n

|x⟩n|f(x)⟩m

(2.17)

Hence, the state of the whole input registry is now defined by the result of all 2n function
evaluations, which is termed quantum parallelism. However, this does not mean it is
possible to read out all the function evaluations, as it is never possible to know the state.
If we measured the state at this point, we will get one random (all states have the same
probability) state [Mer07, p.36-40].

For Deutsch’s problem, both the input and the output registry have only one qubit.
Applying the Hadamard transformation to the input registry yields Equation 2.18.
Measuring this state gives the result of f(0) with a 50% probability and f(1) with a
probability of 50%. However, as noted before, we are not interested in the exact values
themselves [Mer07, p.41-46].

Uf (H ⊗ 1)(|0⟩|0⟩) = 1√
2

|0⟩|f(0)⟩ + 1√
2

|1⟩|f(1)⟩ (2.18)

Applying first NOT (X) and then Hadamard (H) gates to both registers, yields Equation
2.19.

(H ⊗ H)(X ⊗ X)(|0⟩|0⟩) = (H ⊗ H)(|1⟩|1⟩)
= ( 1√

2
|0⟩ − 1√

2
|1⟩)( 1√

2
|0⟩ − 1√

2
|1⟩)

= 1
2(|0⟩|0⟩ − |1⟩|0⟩ − |0⟩|1⟩ + |1⟩|1⟩)

(2.19)

When applying the unitary transformation Uf , we can use the linearity to arrive at
Equation 2.20. To explain the second line, we define x̃ = 1 ⊕ x, i.e., if x = 1, the XOR
will yield 0, else 1. We do the same for our function ˜f(x) = 1⊕f(x). Note that |1⊕f(x)⟩
is simply the inverse of |0 ⊕ f(x)⟩ (from the definition of the XOR) [Mer07, p.41-46].
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1
2(Uf (|0⟩|0⟩) − Uf (|1⟩|0⟩) − Uf (|0⟩|1⟩) + Uf (|1⟩|1⟩))

= 1
2(|0⟩|f(0)⟩ − |1⟩|f(1)⟩ − |0⟩| ˜f(0)⟩ + |1⟩| ˜f(1)⟩)

(2.20)

If f(x) is constant, f(0) = f(1) and ˜f(0) = ˜f(1), if it is not, ˜f(1) = f(0) and ˜f(0) = f(1).
If the function is constant, Equation 2.20 reduces to Equation 2.21, otherwise, it reduces
to Equation 2.22 [Mer07, p.41-46].

1
2(|0⟩|f(0)⟩ − |1⟩|f(0)⟩ − |0⟩| ˜f(0)⟩ + |1⟩| ˜f(0)⟩)

= 1
2(|0⟩ − |1⟩)(|f(0)⟩ − | ˜f(0)⟩)

(2.21)

1
2(|0⟩|f(0)⟩ − |1⟩| ˜f(0)⟩ − |0⟩| ˜f(0)⟩ + |1⟩|f(0)⟩)

= 1
2(|0⟩ + |1⟩)(|f(0)⟩ − | ˜f(0)⟩)

(2.22)

Furthermore, we can apply more transformations after the function, for example another
Hadamard transformation to the input registry, which will suffice. The final equation is
shown in Equation 2.23 (we show how to get there from Equation 2.22 in Equation A.1
in Appendix A). Therefore, by measuring the input register, it is possible to answer the
question. The remarkable thing here is, that we learn nothing about the function itself
(we still do not know which function underlies the algorithm), we just learn about the
relation between f(0) and f(1) [Mer07, p.41-46].

(H ⊗ 1)Uf (H ⊗ H)(X ⊗ X)(|0⟩|0⟩)

=

f(0) = f(1), |1⟩ 1√
2(|f(0)⟩ − | ˜f(0)⟩

f(0) ̸= f(1), |0⟩ 1√
2(|f(0)⟩ − | ˜f(0)⟩

(2.23)

2.3 Quantum Machine Learning
Finally, in this section, we want to give an overview of quantum machine learning (QML).
We will start by giving an introduction to the potential and promises of QML. Afterward,
we will quickly give an overview of machine learning (ML). Furthermore, we will present
different data encoding techniques and, finally, introduce variational quantum algorithms
(VQAs).
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Algorithm Quantum Tool Quantum Speedup
PCA Phase estimation Exponential

K-Medians Grover + Qdist Quadratic
Hierarchical clustering Grover + Qdist Quadratic

K-Means Qdist Exponential
Several classifiers Qdist Exponential

SVM HHL algorithm Exponential
Neural Networks Variational Quantum Algorithms ?

Table 2.1: Overview QML Speedup [Pas23, p.4]

Table 2.1 gives a quick overview of ML algorithms, quantum tools used to implement
them on quantum hardware and the speedup obtained. The original table can be found
in [Pas23, p.4]. In particular, it shows that QC is able to obtain significant speedups
when compared to classical ML.

We will not dive deep into the quantum tools, except for VQAs, but phase estima-
tion [Kit95] is used to calculate eigendecompositions and Qdist [Pas23, p.54-56] is used
to calculate Euclidean distances efficiently. The HHL algorithm [HHL09] can solve linear
systems of equations efficiently. Due to the discrepancy between theory and empirical
evidence of classical neural networks, the advantage for them is not clear yet [Pas23, p.5].

2.3.1 Potential and Promises
Although the field of QML only really took off in the past years due to advances in
quantum computers, the first QML algorithms were already published twenty years
ago [Pas23, p.1]. In 2003 an algorithm for pattern recognition was proposed. Using the
Quantum Fourier Transformation, it obtained an exponential speed-up compared to the
classical counterpart [Sch03].

One of the main motivations behind QML is that, although the computational power
of classical computers increased drastically (see Moore’s law [Sha20]), the improvement
is slowing down. Current ML models are very computationally intense and state-of-
the-art models train days or months, i.e., Meta’s biggest LLAMA model took 1,022,362
GPU-hours to train [TLI+23]. Therefore, alternatives may be necessary in the near
future [Pas23, p. 2-4].

Still, the goal of quantum computing for ML goes well beyond speed-ups. There are
possible quantum advantages to be found in space efficiency, performance, and expres-
siveness of models. Similarly to classical ML, neural networks (NNs) are of particular
interest. However, due to the gap between classial NN theory and experimental results,
it is quite difficult to prove any quantum advantages [Pas23, p.4-5].

It is often argued that simply showing that quantum computers can enhance the field of
machine learning might not be the best goal for QML. Rather, it should be seen as a
new paradigm, not only influencing the models themselves, but also data representation
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and feature encoding. That way, QML can even influence ML, i.e., with the so-called
quantum-inspired machine learning (see [SGF19]) [Pas23, p.vii].

2.3.2 Machine Learning
The goal of ML is to use data to make computers find patterns in phenomena. The field
has existed for quite some time, but more powerful computers have accelerated the field
drastically in recent times [Pas23, p.2-4].

In general, one distinguishes between three different ML types, supervised, unsupervised
and reinforcement learning. The interested reader is referred to [Pas23] for an explanation
of the three. While there already exist quantum algorithms for all three, the experiments
in this thesis are based on supervised learning, where we have a target value for every
sample and try to find a ML model describing their relationship. [Pas23, p.2-4].

We therefore define a data point as a vector of numbers (each being called a feature). In
particular, a data point of a dataset with d features lies in Rd. In our case, each data
point xi is associated with a label yi ∈ R, which we want to capture in our model [Pas23,
p.2-4].

2.3.3 Data Encoding
Working with classical data on quantum computers requires an effective strategy for
encoding this information into a quantum state. In general, superposition and entangle-
ment are powerful tools that can be leveraged to achieve higher efficiency [Pas23, p.25-28].
Several approaches have been proposed, and we will dive into the most important ones
in this section.

As usual in machine learning (ML), data encoding plays a crucial part for the performance
of the models. In particular, in [SSM21] the authors show that, essentially, independently
of the architecture of a quantum circuit, the data encoding defines and may restrict the
functions the circuit is able to express afterward. More specifically, they show that a
quantum model with one variable can be represented as a partial Fourier series. The data
encoding defines the frequencies it is able to approximate, whereas the architecture only
affects the coefficients. Hence, data encoding asymptotically allowing a sufficient number
of frequency encodings makes quantum circuits universal function approximators.

Moreover, quantum computing has frequently been compared to kernel methods in
classical ML. There are some non-negligible parallels between the two, which are worth
highlighting. Specifically, in the course of data encoding, the classical data is mapped
into a highly-dimensional Hilbert space. The objective is to obtain a representation that
enables efficient computation of the intended task [SK19].

A quantum feature encoding should possess multiple desirable characteristics. Initially,
the number of gates used should increase linearly with the number of qubits. The
encoding process should be bijective, meaning that each unique feature vector must
correspond to a unique quantum state. Additionally, the circuit’s depth should be
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subpolynomial, and the entire transformation should be efficient in terms of hardware.
In this context, hardware efficiency refers to the extra resources required by the gates
used in the transformation. [LC20].

The following three approaches are commonly used, and we will introduce them shortly
to give an intuition about data encoding. Afterward, we will introduce a feature map
based encoding with desirable properties, which is commonly used in QML.

Basis Encoding We consider a set of samples X of length |X|. Essentially, we convert
all samples x ∈ X into the orthonormal basis states of a Hilbert space of dimension
|X|. These orthonormal basis states, represented as {|x⟩}x∈X , serve as computational
basis states. A classical bit can be transformed using 0 → |0⟩ and 1 → |1⟩. Hence, by
using n qubits, a n-bit string can be encoded as an orthonormal basis to represent a
data point. The Hilbert space now has a dimension of 2n. Through superposition, one
can exploit quantum parallelism, which is used in almost all quantum algorithms, such
as Grover’s algorithm [Gro96]. Nonetheless, there exist more space-efficient methods to
encode classical data into a quantum state. [Pas23, p.25-26].

Amplitude Encoding Instead of using the computational basis states, it is possible
to encode the data into the amplitudes of the qubits. We now represent the data point
as a complex vector of size d (x ∈ Cd), and the Hilbert space H has dimensionality
d. The quantum state is |ψx⟩ = i∈{1,...,d} xi|ϕi⟩. |ϕi⟩ signifies a computational basis
in H. From the definition of a qubit follows that our vector x needs to be normalized
( i∈d x2

i = 1). The significant advantage when compared to basis encoding is that we
can encode complex vectors of size 2n, instead to n classical bits [Pas23, p.25-26].

Angle Encoding Angle encoding is characterized by a constant depth and is computed
as follows: |x⟩ = ⊗N

i=1cos(xi)|0⟩ + sin(xi)|1⟩. It can be observed that we need n
qubits to encode n features. However, there exists another alternative known called
dense angle encoding, which employs one qubit for two features, which is expressed as
|x⟩ = ⊗⌈N/2⌉

i=1 cos(πx2i−1)|0⟩ + e2πix2i−1sin(πx2i−1)|1⟩. This encoding technique can also
be extended to work for any two functions [LC20].

To eventually get to a quantum advantage, it is favorable to choose a feature representation
that is hard to obtain or simulate on a classical computer. Therefore, the main objectives
are to find a mapping that is (1) useful for ML tasks and (2) difficult to get or approximate
classically. Based on this, it is even more interesting to study how expressive such
mappings are and can be in compared to classical ML [GTN21].

In [HCT+19], the authors propose a feature mapping that exploits the dimensionality
of the Hilbert space, as shown in Equation 2.25, where the Z transformation (Equation
2.24) is used as the Pauli matrix. Using X, Y, Z and the identity I are all viable options
for the Pauli matrices.
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n refers to the number of features, and S describes the connections between the qubits
with S ∈ n

k , with k ∈ 1 . . . n. The connections are influenced by the entanglement
parameter and the Pauli matrices. ϕS(x) refers to a non-linear function. A commonly
used non-linear function can be seen in Equation 2.26. The feature mapping can be
applied to the input registry |0⟩n an arbitrary number of times, adding Hadamard gates
in-between. An example with two repetitions can be seen in Equation 2.27.

The authors in [HCT+19] expect the feature map to be difficult to estimate classically,
even with a depth of only two. They base their argument on the similarity of the feature
map to the circuit of another problem [BLSF19]. For further information, please refer
to [HCT+19]. Due to its desirable properties, this feature mapping is widely used for
QML, and we will also employ it in our experiments.

Z = 1 0
0 −1 (2.24)

Uψ(x) = exp(i
S⊆[n]

ϕS(x)
i∈S

Zi) (2.25)

ϕS(x) = x0, if k = 1
j∈S(π − xj), else

(2.26)

|ψ(x)⟩ = Uψ(x)H
⊗nUψ(x)H

⊗n|0⟩n (2.27)

2.3.4 Variational Quantum Algorithms
In the following, we will introduce variational quantum algorithms (VQAs). Specifically,
we will first introduce the general notion of a VQA and introduce advantages and
challenges. Afterward, we will give an overview on ansatzes, in particular, the ones we
will use in our experiments. Finally, we will provide an introduction to optimization in
VQAs.

In the beginning, we want to remark that VQAs are known under a lot of different names.
When reading QML literature, the reader may come across many terms. Such include
parametrized quantum circuits, quantum circuit learning, quantum neural networks, or
trainable quantum circuits. They all refer to the same concept [SSM21].

VQAs are strongly related to classical machine learning models. Essentially, they consist
of an architecture, loss function and an optimization method. Given the drawbacks of
NISQ technology, the simplicity and optimization-based approach of VQAs makes them
a strong candidate for achieving a quantum advantage in the near term [CAB+21].

VQAs are trained in a hybrid setting, i.e., quantum circuits with parameters to be
optimized are created on the quantum computer, whereas the optimization is done on a
classical one. This mechanism has the advantage of using shallow circuits (few qubits
and gates), resulting in less noise. Several other algorithms have already been developed
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Figure 2.1: VQA: Adapted from [BBF+22]

for future fault-tolerant systems, but VQAs have the advantage of already being relevant
today [CAB+21].

Essentially, they consist of (1) a cost function for a given problem, (2) an ansatz, defining
the parameters to be optimized, and depending on the type of problem they can have (3)
a training set. Trivially, for ML problems, a training set is required. We will dive into
the individual components in the following [CAB+21].

We show an outline of a VQA in Figure 2.1. The model takes classical data as the input
in step 1 and maps the data points onto qubits using a feature map in step 2. In step 3,
it executes the circuit and measures the output. The result is then transferred to the
classical computer in step 4, where the parameter update is determined using the cost
function. The updates are then propagated to the quantum computer. Steps 3 and 4 are
iteratively repeated until convergence or until a stopping criterion is fulfilled.

Cost Function The first step when building a VQA is to find a cost function. In
machine learning, it is usually a straightforward process since it is standardized. However,
VQAs are also relevant for other tasks, such as combinatorial optimization problems,
where finding the loss function may be more challenging. The cost function is a mapping
from the parameters of the circuit to a real number, where lower values indicate better
solutions. The cost function is shown in Equation 2.28, where U is the circuit with
parameters θ, p represents the input states from the dataset, and O represents the
observables [CAB+21].

C(θ) = f(p, O, U(θ)) (2.28)

A good cost function should meet several criteria, including being faithful (i.e., zero cost
represents the optimal solution), allowing for estimation by classical post-processing of
measurement outcomes, producing meaningful values (with smaller values indicating
better solutions), and being amenable to optimization. Additionally, with respect to
NISQ devices, the circuit depth should be kept small. The cost function is a critical
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component of the algorithm, and its effectiveness determines the success of the algorithm
in finding optimal solutions [CAB+21].

Ansatz The ansatz is a critical component of any VQA as it defines the architecture
and parameters of the quantum circuit. The choice of ansatz is often dependent on the
specific task at hand, with some ansatzes designed specifically for certain problems, while
others are more general. Essentially, an ansatz can be thought of as a sequence of unitary
transformations applied to the quantum state. The choice of ansatz can significantly
impact the performance of the algorithm, with certain ansatzes being better suited to
particular problems than others [CAB+21]. We will delve deeper into this issue in a later
section.

Training Set The training set used for the VQA depends on the type of problem being
addressed, whether supervised or unsupervised, or not related to machine learning at
all. Essentially, it is a set of instances that serve as input to the algorithms, though they
need to be encoded into a quantum state first [CAB+21].

2.3.4.1 Applications

VQAs have become popular in a variety of field, including mathematics, machine learning
or optimization. In particular, researchers in [Bia21] have shown that they are univer-
sal with respect to other quantum computations, i.e., theoretically, they are equally
powerful as any other quantum algorithm. In the following, we list several possible
applications [CAB+21].

• Ground and exciting states: VQAs have so-far been used to estimate the energy
of a molecule. These are encoded into a Hamiltonian, and the task at hand is to
estimate the eigenvalue and eigenstates of it.

• Optimization: Similarly, it is possible to use VQAs to solve optimization problems.
More specifically, several methods for tackling combinatorial optimization (such as
the MAX-SAT problem) have been proposed. Among the most important is the
quantum approximate optimization algorithm (QAOA) [FGG14].

• Mathematics: VQAs have also been used to solve mathematical problems, such
as (non-)linear equations or integer factorization. Although there exist exact
algorithms, such as Shor’s algorithm [Sho97] for integer factorization, these cannot
be sufficiently correctly implemented on NISQ technology.

• Compilation: Given that so-far shallow quantum circuits are necessary to get
accurate results, a lot of thought has to go into the compilation. Given the
complexity of the problem, they are difficult to optimize on classical computers.
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• Error correction: Although error correction algorithms exist, they come with a
large overhead and cannot be implemented on NISQ technology. Still, researchers
have suggested using VQAs to mitigate errors on a small scale (e.g., [JRO+17]).

• Machine learning: Given the already mentioned similarity between classical ML
models and VQAs, it is hardly a surprise that they are frequently used for machine
learning as well.

2.3.4.2 Ansatzes

An ansatz serves as a blueprint for defining the parameters θ that are to be optimized.
It also outlines the general architecture for solving a problem, which can be specific to
a particular problem or more general. Typically, an ansatz is expressed as a unitary,
where the parameters are part of the unitary itself. However, when using NISQ devices,
it is crucial to consider the circuit depth and overhead required to implement the ansatz.
There are different types of ansatzes that are designed for different purposes, and each
of them has its strengths and weaknesses [CAB+21]. We will introduce a few in the
following.

A hardware-efficient ansatz is a type of ansatz with a small depth and minimal overhead.
These circuits are versatile and can be used in various applications. However, one must be
cautious when initializing them, as random initialization can lead to problems. Another
type of ansatz is the unitary-coupled cluster ansatz, which is particularly important in
quantum chemistry [CSV+21].

The quantum alternating operator ansatz, on the other hand, is universal for sets
of graphs and hyper-graphs. This ansatz is inspired by the quantum approximate
optimization algorithm (QAOA) and has the advantage of having a feasible subspace
that is smaller than the full Hilbert space. This feature may lead to better performance.
The variational Hamiltonian ansatz is also inspired by the QAOA ansatz and is very
versatile, often used in quantum chemistry, optimization, and simulation. It is designed
to optimize the parameters of a Hamiltonian, and its versatility makes it suitable for
various applications [CSV+21].

The variable structure ansatz changes circuit elements instead of just the parameters,
making it more flexible than other ansatzes. This type of ansatz was initially introduced
in adapt-VQE [GEBM19], and it presents a challenging problem for optimization due
to the large search space. Finally, the sub-logical ansatz and quantum optimal control
include device-level parameters in the parameters, providing additional flexibility. There
is evidence that this can help mitigate the effects of noise.

In the following, we present four popular ansatzes for QML, namely, Two-Local, Real
Amplitudes, EfficientSU2, and Pauli Two-Design. These ansatzes share a common
structure, starting with a layer of single-qubit rotations followed by entanglement layers.
The details of each ansatz can be found in the documentation, which we reference for a
more comprehensive description.

24



2.3. Quantum Machine Learning

Two-Local The Two-Local ansatz is a variational quantum circuit composed of repeated
rotation and entangling layers. The rotations are implemented using single-qubit gates,
while the entangling gates are two-qubit gates. The specific rotations and entangling
gates can be customized to suit the problem at hand. Overall, the Two-Local ansatz
provides a flexible tool for constructing variational circuits that can be used for a wide
range of quantum applications7. We show the ansatz in Figure 2.2a. The RX|Y |Z gates
represent rotations around the X, Y or Z axis of the Bloch sphere, which is a way to
represent a qubit geometrically. The angle is defined by the learnable parameters θ.
The gates spanning two qubits represent entanglement gates, in this case controlled-X
(CNOT) gates.

Pauli Two-Design The Pauli Two-Design ansatz is a variational that is derived
from the Two-Local ansatz. It involves repeated entanglement layers that use pairwise
controlled-Z gates to enable efficient quantum computation. The ansatz starts with an
initial rotation around the Y -axis with an angle of π

4 . The subsequent layers consist
of alternating rotations around the X, Y , or Z axis, which are chosen at random, and
entangling layers8. We show the ansatz in Figure 2.2b. It is built similarly to the
Two-Local ansatz, except that it uses controlled-Z gates, instead of controlled-X ones.
Furthermore, the qubits are rotated with an angle of π

4 around the Y axis in the beginning.

Real Amplitudes The Real Amplitudes ansatz is derived from the Two-Local ansatz
too. It creates a trial wave function by repeatedly applying Y rotations to the qubits
and controlled-X gates to entangle them. As the name implies, the amplitudes of the
wave function are restricted to be real, which can simplify the optimization problem in
some cases9. The ansatz is shown in Figure 2.2c.

EfficientSU2 The EfficientSU2 ansatz is a hardware-efficient variational quantum
circuit. It uses single-qubit transformations, including rotations around the X, Y , and
Z axes, as well as two-qubit entangling gates like the controlled-not (CNOT) gate, to
create the circuit. The name SU2 refers to the special unitary group of size 2, which
includes all 2 × 2 complex matrices with determinant 1. The EfficientSU2 ansatz can also
be repeated multiple times to create a deeper circuit and increase its expressive power10.
We show the ansatz in Figure 2.2d. It can be seen that it uses a lot more rotation gates
than the other ones do, using both Y and Z rotation gates in every repetition.

The entanglement strategy for the CNOT gates used in the Two-Local, Real Amplitudes,
and EfficientSU2 ansatzes can be specified. Such include full entanglement, linear

7https://qiskit.org/documentation/stubs/qiskit.circuit.library.TwoLocal.h
tml#qiskit.circuit.library.TwoLocal. Accessed 02.05.2023

8https://qiskit.org/documentation/stubs/qiskit.circuit.library.PauliTwoDe
sign.html#qiskit.circuit.library.PauliTwoDesign. Accessed 02.05.2023

9https://qiskit.org/documentation/stubs/qiskit.circuit.library.RealAmplit
udes.html#qiskit.circuit.library.RealAmplitudes. Accessed 02.05.2023

10https://qiskit.org/documentation/stubs/qiskit.circuit.library.EfficientS
U2.html#qiskit.circuit.library.EfficientSU2. Accessed 02.05.2023
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q0 : RY (θ[0]) • RY (θ[3]) • RY (θ[6]) • RY (θ[9])

q1 : RY (θ[1]) • RY (θ[4]) • RY (θ[7]) • RY (θ[10])

q2 : RY (θ[2]) • RY (θ[5]) • RY (θ[8]) • RY (θ[11])

(a) TwoLocal

q0 : RY (π4 ) RZ (θ[0]) • RX (θ[3]) • RZ (θ[6]) • RX (θ[9])

q1 : RY (π4 ) RX (θ[1]) • • RX (θ[4]) • • RY (θ[7]) • • RX (θ[10])

q2 : RY (π4 ) RX (θ[2]) • RZ (θ[5]) • RX (θ[8]) • RY (θ[11])

(b) PauliTwoDesign

q0 : RY (θ[0]) • RY (θ[3]) • RY (θ[6]) • RY (θ[9])

q1 : RY (θ[1]) • RY (θ[4]) • RY (θ[7]) • RY (θ[10])

q2 : RY (θ[2]) RY (θ[5]) RY (θ[8]) RY (θ[11])

(c) RealAmplitudes
q0 : RY (θ[0]) RZ (θ[3]) • RY (θ[6]) RZ (θ[9]) • RY (θ[12]) RZ (θ[15]) • RY (θ[18]) RZ (θ[21])

q1 : RY (θ[1]) RZ (θ[4]) • RY (θ[7]) RZ (θ[10]) • RY (θ[13]) RZ (θ[16]) • RY (θ[19]) RZ (θ[22])

q2 : RY (θ[2]) RZ (θ[5]) RY (θ[8]) RZ (θ[11]) RY (θ[14]) RZ (θ[17]) RY (θ[20]) RZ (θ[23])

(d) EfficientSU2

Figure 2.2: Ansatzes

entanglement (where each qubit is entangled with its subsequent neighbor), reverse-linear
entanglement, pairwise entanglement (where qubits are paired, and each pair is entangled
in alternating layers), circular entanglement (which is similar to linear entanglement,
but the last qubit is also entangled with the first qubit) and sca entanglement (shifted-
circular-alternating, which is essentially circular, but the connection between the last
and first qubit is shifted by one and the control and target qubits are swapped in each
block)7.

2.3.4.3 Optimization

Similarly to the optimization of classical NNs, the optimization of VQAs on classical
computers is a non-convex problem (NP-hard), meaning it has many local optima, making
it computationally expensive. Additional to the problems faced in classical NNs, there
are other challenges such as noise, and barren plateaus (BPs) (introduced later on) that
make optimization even more difficult [CAB+21].

One approach to optimize VQAs is to use gradient-based methods. These methods
involve taking a step in the opposite direction of the gradient, which indicates the
direction of steepest descent. One such method is Stochastic Gradient Descent (SGD),
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which is inherited from classical ML and backpropagation [RHW86]. Another popular
method is Adam [KB15], which adapts the step size to achieve faster convergence.
Furthermore, natural gradient descent [Ama98] is a gradient-based method that works
on a space that takes into consideration the changes in the loss function when changing
the parameters [CAB+21].

Another approach to optimization is through meta-learning, i.e. learning to learn. Meta-
learning involves training a NN to make good updates based on past and gradient
information. This approach has high potential and can be useful for optimizing VQAs.
Another frequently used method is Simultaneous Perturbation Stochastic Approximation
(SPSA). This method takes one partial derivative in a randomly chosen direction, which
makes it more efficient than computing the gradient [CAB+21].

There are various optimization approaches available for VQAs, including gradient-based
methods, meta-learning, and gradient-free methods, each with their own strengths and
weaknesses. Overall, optimizing VQAs on classical computers is a challenging task
due to the non-convexity of the problem, noise, and BPs. However, due to the many
local extrema in the optimization landscape, convergence guarantees are difficult to
achieve [CAB+21].

The three optimizers we will consider are COBYLA, SPSA, and Nelder-Mead, which will
be introduced in the following. Each of these optimizers has different characteristics that
make them suitable for different types of optimization problems. They are widely-used for
QML and we believe that their different characteristics make them interesting candidates
for our experiments.

COBYLA [Pow94] is a gradient-free optimization algorithm commonly used in QML due
to its ability to handle numerous constraints. Nelder-Mead [NM65] is a simplex-based
optimization algorithm that is well-suited for low-dimensional optimization problems
and is commonly used in QML for tasks such as variational quantum eigensolver (VQE)
calculations. SPSA [Spa98] is a gradient-based method that often works well in presence
of noise. In fact, in the Qiskit documentation, it is recommended to use SPSA when
working with noise11.

COBYLA The Constraint Optimization BY Linear Approximation (COBYLA) al-
gorithm was first introduced in [Pow94]. It is an iterative, gradient-free optimization
algorithm. In each iteration, COBYLA estimates the objective function and creates a
trust region surrounding the current solution candidate. Within this region, the algorithm
constructs an approximation of the objective function based on function evaluations. The
trust region size is then adapted based on the agreement between the approximation
and the true function values, which determines the allowable range of movement for the
current solution candidate in the subsequent iteration. The solution candidate is then

11https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.SPSA
.html. Accessed 17.06.2023
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moved to the minimum within the trust region. By iteratively refining the approximation
and adjusting the trust region, COBYLA converges towards the optimal solution.

SPSA The simultaneous perturbation stochastic approximation (SPSA) [Spa98] algo-
rithm is a gradient-based method. It offers the advantage of calculating the objective
function using only two measurements, irrespective of the number of parameters involved
in the optimization problem. This property makes the SPSA algorithm an efficient
optimization technique. The author suggested that when dealing with many parameters,
the SPSA algorithm may serve as a favorable alternative due to its ability to provide
effective optimization results with minimal measurements.

Nelder-Mead The Nelder-Mead algorithm [NM65] is a popular gradient-free opti-
mization method. It works by maintaining a simplex, which is a set of n + 1 points in
the search space that form a geometric shape resembling a simplex (a triangle in 2D, a
tetrahedron in 3D, etc.). The vertex with the highest objective is replaced by another
vertex, leading to the exploration of the search space. The algorithm terminates when
the simplex becomes sufficiently small, meaning that the points are close together.

The optimization of VQAs faces a significant obstacle known as the barren plateau
(BP). This issue causes the loss landscape to become flat, which renders gradient-based
and gradient-free methods ineffective since there is no information on where to go.
The problem is particularly pronounced when using a general ansatz, regardless of the
problem’s complexity, due to the vast search space. In most cases, initializing randomly
makes it almost impossible to find the optimal solution [MBS+18].

Furthermore, the barren plateau (BP) problem is known to be dependent on the cost
function used. Global cost functions suffer more from this problem than local cost
functions [CSV+21]. Noise can also contribute to the formation of BP, further aggravating
the problem [WFC+21]. To overcome this issue, careful selection of ansatz architectures
that minimize the occurrence of the BP is necessary [CAB+21].

2.3.4.4 Challenges and Opportunities

One of the major challenges in implementing VQAs is trainability, which is often hindered
by the occurrence of the BP. A lot of research is currently going into methods that try
to mitigate or overcome this plateau [CAB+21].

Another important challenge in developing VQAs is ensuring efficiency. This means that
the cost function and the expectation values need to be efficiently calculable. In addition,
the occurrence of BPs may require higher precision, particularly in measurements, which
are crucial for the success of the algorithm. One strategy to address this is to reduce
the number of measurements needed, for example, by partitioning into simultaneously
measurable subsets. We will not go into detail of such strategies, the interested reader
may refer to [CAB+21] for further information.
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Another critical challenge in VQAs is ensuring accuracy, especially for near-term quantum
devices like NISQ computers that have high levels of noise and errors. To address this,
error correction and mitigation techniques are essential. Noise can affect the optimization
landscape and make the optimal solution harder to find. The presence of noise can slow
down the training process by reducing the gradients, which becomes more severe with
larger circuits. To overcome these effects, error mitigation techniques can be applied
to correct for errors and improve the accuracy of the algorithm. However, it is worth
noting that VQAs are inherently noise-resilient, and there are methods available, such
as zero-noise extrapolation, which allow for the estimation of error-free results based on
measurements at different noise levels [CAB+21].

VQAs offer exciting opportunities for solving complex problems in various fields, including
chemistry, nuclear, and particle physics [CSV+21]. In chemistry, VQAs can be used to
simulate molecules and electronic systems, which is particularly relevant to protein folding
and drug-receptor interactions [CRAG18, CRO+19, OSS+21]. In nuclear and particle
physics, VQAs have the potential to solve a range of problems, including finding nuclear
ground states [DMH+18, LKL+19] or simulating neutrino-nucleon scattering [RLC+20].

The large dimension of the Hilbert space in quantum computing provides a unique
opportunity for both optimization and machine learning tasks, due to being able to store
a lot of data. One leading candidate for combinatorial optimization is the Quantum
Approximate Optimization Algorithm (QAOA) [FGG14]. Quantum neural networks
can have a higher capacity than comparable classical NNs, as measured by the effective
dimension [ASZ+21]. Additionally, even deep reinforcement learning has been proposed as
a way to utilize the power of quantum computing in training complex models [CYQ+20].

QML is an exciting and rapidly growing field with many challenges and opportunities
for innovation. As quantum computing technology continues to advance, the potential
for groundbreaking applications in areas such as drug discovery, financial modeling, and
data analysis is becoming increasingly evident. With its potential to solve previously
intractable problems, quantum machine learning is a field with immense promise [Pas23].
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CHAPTER 3
Related Work

In the following chapter, we will delve into related work on quantum machine learning
(QML). Specifically, we will discuss research related to three main aspects: feature
encoding, optimization, and variational quantum algorithms (VQAs). First, we will
examine recent work for encoding classical data into quantum states, which is a crucial
step in quantum machine learning, in Section 3.1.

Next, we will take a look at recent progress and important research areas with respect
to optimization in Section 3.2 and the ansatz in Section 3.3. Finally, we will explore
state-of-the-art research on VQAs in general in Section 3.4.

Through this comprehensive review of related work, we aim to provide a clear under-
standing of the current state-of-the-art in quantum machine learning and the challenges
that lie ahead.

In general, according to Alchieri et al. [ABBB21], one can distinguish two different
approaches in QML, namely (1), the translational approach, where classical machine
learning models are converted to quantum ones with the goal to obtain a speed-up and
(2), the exploratory approach, which has the goal to exploit the underlying quantum
mechanics to train a model. The latter are usually more innovative, as they are specially
built to exploit quantum effects.

Another way of categorizing current research is by the benefit researchers are looking
for. These include (1) computational complexity, (2) sample complexity (number of data
points to get a model that generalizes), (3) robustness to noise (in the data, not the
computer) and (4) model complexity [ABBB21].

In [OM20], the authors provide an extensive review about recent advances in QML. This
includes notable advancements such as the implementation of a neural network based on
the perceptron algorithm as described in the work by Tacchino et al. [TMGB19]. Another
significant development highlighted in the review is the implementation of a quantum
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support vector machine, which achieved an exponential speed-up compared to classical
counterparts, as demonstrated by Rebentrost et al. [RML14]. For further information on
the development of QML, we refer to the aforementioned review. In our discussion here,
we will mainly discuss work related to VQAs.

3.1 Feature Encoding
Numerous research initiatives have delved into exploring quantum support vector machines
and feature maps due to the similarity of QC and kernel methods. Suzuki et al. [SYG+20]
provide a lower bound on the training accuracy of a kernel-based quantum classifier for
two qubits. Notably, they only use the input dataset and the feature map to obtain
the lower bound. However, the authors question the practical utility of the lower
bound, due to computational scaling. The calculations scale with the dimension of the
Hilbert space, which is exponential in the number of qubits. Nevertheless, despite the
computational hurdles, the ability to calculate reasonable lower bounds on the training
accuracy is intriguing and contributes to the understanding of the potential capabilities
of kernel-based quantum classifiers.

Daspal provides a method called ’OptiPauli’ to find the optimal Pauli feature map
in [Das22]. The Pauli feature map involves applying sequences of Pauli transformations,
such as X, Y , and Z rotations, to the input data. The optimization of the feature map
can become computationally challenging due to the large search space. Therefore, the
authors split the problem into subproblems and employ a genetic algorithm to optimize
the feature map.

In the context of feature encoding, various theoretical proofs have been established.
Knowing that classical feed-forward neural networks with just one hidden layer are
universal approximators [HSW89] (which has been extended to many more architectures),
it is interesting to find out in how far this applies to VQAs. In the paper by Goto et
al. [GTN21], the authors show that quantum feature maps, in their typical configuration,
are universal approximators of continuous functions.

Furthermore, Schuld et al. [SSM21] investigate the expressiveness of a VQA. Specifically,
they explore the representation capabilities of VQAs with a single variable. The authors
demonstrate that such VQAs can be represented as partial Fourier series, where the
feature encoding determines the accessible frequencies, and the ansatz influences the
coefficients. In their analysis, the authors highlight that a single qubit rotation limits
the frequency to only one sine wave. Then, they continue to show that VQAs can,
given a sufficiently wide frequency spectrum, act as universal function approximators.
They conclude that the number of rotations applied to the circuit has a great influence
on the expressiveness of the model. The models tend to learn periodic functions, and
appropriately scaling the data and preprocessing techniques can impact the accessible
frequency range [SSM21].

Casas and Cervera-Lierta [CCL23] extend this approach to VQAs with multiple qubits

32



3.1. Feature Encoding

(meaning multi-dimensional data). They find that for multi-dimensional data, the degrees
of freedom of the Fourier series surpass the tunable parameters in the model. Therefore,
it cannot be generalized that VQAs can approximate any multi-dimensional Fourier
series.

Metric learning takes a distance metric, i.e. the L2 distance, and tries to maximize the
distance between data points of different classes. Xing et al. [XNJR02] established the
foundation of this field by demonstrating that metric learning can be formulated as a
convex optimization problem. Lloyd et al. [LSI+20] propose a quantum version, quantum
metric learning, that tries to maximize the distance in the Hilbert space. The authors
argue that when suitable feature maps can be constructed, the corresponding ansatz can
be relatively simple and implemented using shallow circuits. The results are difficult to
reproduce classically, but the authors recognize that they are not sure whether it will
give a quantum advantage.

To reduce the number of qubits required and the feature encoding time, researchers
continuously explore new techniques. Ovalle-Magallanes et al. [OMACAC+23] propose
a novel feature map for quantum convolutional neural networks (which employ VQAs),
which reduces the number of qubits from O(N) to O(⌈log2(N)⌉), N = k × k (k being the
filter size).

Sierra-Sosa et al. [SSPT23] conduct a study investigating the influence of data, classical
transformations on data, and feature encoding techniques on QML models. In their
research, they focus on two specific feature encoding methods, namely, amplitude encoding
and the previously mentioned feature map based encoding. To evaluate the impact of
different rotations on the models, the researchers generate datasets and apply various
rotations to them. They observe that amplitude encoding is less affected by the different
rotations compared to the feature map based one. Interestingly, they find that rotating
the dataset can actually improve the results. Based on their findings, the authors propose
a strategy of rotating the dataset to create a different representation. The approach
aligns with the idea presented by Schuld et al. [SSM21], suggesting that appropriately
scaling the data may be beneficial in QML [SSPT23].

Furthermore, in the field of QML, feature reduction is frequently employed due to the
limited number of available qubits. Mancilla and Pere [MP22] employ classical and
quantum ML and compare different feature reduction techniques for the quantum models.
In their study, the authors find that linear discriminant analysis (LDA) outperforms
principal component analysis (PCA) on their two datasets when applied in the context of
quantum machine learning. Hancco-Quispe et al. [HQBCTC22] report the same results.
However, at present, there are no hypotheses or proofs provided, explaining the superior
performance of LDA compared to PCA in these scenarios.
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3.2 Optimizer
Optimization plays a crucial role in VQAs, highlighting the significance of this area of
study. The barren plateau (BP) stands out as a common occurrence during optimization
processes, where the cost function fails to provide information about the location of the
minimum even when the current candidate if far away from it. Consequently, extensive
research is dedicated to exploring optimization methods, such as the utilization of Bayesian
learning for improved parameter initialization by Rad et al. [RSL22]. Moreover, novel
optimization techniques are frequently reported in the literature. For instance, Boyd et
al. [BK22] introduce a method that calculates covariances and estimating derivatives at
each step.

Schuld et al. [SBG+19] examine the significance of gradients in optimization processes
and propose a technique for estimating gradients of expectation values using a similar or
nearly identical VQA. The study suggests that it is often sufficient to run the original
circuit twice, with a single gate parameter shifted, to obtain the component in the
gradient.

Moreover, a study by Bittel and Kliesch [BK21] on the asymptotic time complexity of
optimizing VQAs demonstrates that the classical optimization problem is NP-hard. It
is robust, meaning that for every polynomial algorithm, there are instances where the
relative error can be arbitrarily large (assuming P ̸= NP ). The authors additionally
emphasize the presence of numerous local optima in the loss function of VQAs, causing
algorithms to frequently converge far from the optimal solution. The convergence point
heavily depends on the initialization.

Joshi et al. [JKA21b] investigate local optimizers in VQAs using EfficientSU2 as the
ansatz and ZFeatureMap as the feature map. The researchers compare the performance
of VQC with AQGD (Analytic Quantum Gradient Descent, a variant of classical gradient
descent) and COBYLA to classical machine learning models, namely SVM, GB, and RF,
in analyzing sentiment data. The study finds that the VQA with AQGD outperforms
the other models on this task.

In another study by Bonet-Monroig et al. [BMWV+23], the authors compare the per-
formance of four optimization algorithms (SLSQP, COBYLA, CMA-ES, and SPSA, for
information please refer to the paper) in finding ground state energies in chemistry and
material science tasks. The study highlights the importance of hyperparameter tuning
of optimizers in VQCs. They find that CMA-ES can be tuned to outperform SPSA.
The need for tuning increases with increasing noise in the circuit, and the landscape is
highly dependent on the setup and problem. Furthermore, the study reveals substantial
differences in performance through hyperparameter tuning for CMA-ES, whereas SPSA
demonstrates relatively little sensitivity, suggesting that SPSA may possess a more
versatile nature and applicability across different scenarios.

Huembeli and Dauphin [HD21] discuss the open questions regarding convergence and
trainability of VQAs and introduce a technique that computes the Hessian. The primary

34



3.3. Ansatz

objective is to identify effective approaches for analyzing the loss landscape in these
models. They argue that analyzing the Hessian and its eigenvalues and eigenvectors
can lead to a better understanding of the landscape and the optimization process as a
whole. However, a significant limitation lies in the computational expenses associated
with implementing this technique.

Another study by Sung et al [SYH+20] proposes two novel surrogate model-based opti-
mization methods, namely Model Gradient Descent (MGD) and Model Policy Gradient
(MPG). Both MGD and MPG are iterative algorithms that involve sampling from the
environment surrounding the current candidate solution and constructing quadratic
models. These quadratic models are then utilized in the optimization process. The
study reveals that stochastic optimizers such as MGD, MPG, and SPSA exhibit greater
resilience to variations in problem domains. On the other hand, deterministic optimizers
can benefit from tuning but are more reliant on specific variations. The authors emphasize
the importance of relevant cost models and hyperparameter optimization of optimizers.

Rivera-Dean et al. [RDHAB21] present a unique approach, using a classical neural network
to help optimize a VQA. Interestingly, the NN utilized in this context is unrelated to
the specific problem being addressed. Instead, its purpose is to modify the landscape
of the loss function, thereby preventing the optimizer from becoming trapped in local
optima. The authors apply this method to solve a Max-Cut problem and observe that
their approach converges in deeper local optima compared to the original algorithm.

3.3 Ansatz
Moreover, a significant amount of research is focussed on the optimization of the ansatz.
Du et al. [DHY+22] argue that, while more complex ansatzes lead to better results, the
noise introduced by the many gates compensates for the improved results. Consequently,
they propose a quantum architecture search method, inspired by classical neural archi-
tecture search, for VQAs. This approach aims to design an ansatz tailored to a specific
problem, taking into account the noise inherent in quantum computers. Similarly, Bilkis
et al. [BCV+23] propose a variable ansatz, that dynamically adds or removes gates based
on predefined rules. Their objective is to optimize the trainability of the ansatz and
address challenges related to noise in quantum systems.

In 2019, Grimsley et al. [GEBM19] introduced the ADAPT-VQE algorithm for building
ansatzes for the simulation of chemical systems. They start with a very shallow ansatz
and adaptively add operators, depending on the molecule being simulated. Patil et
al. [PWK22] build on top of ADAPT-VQE and introduce an adaptive ansatz, focussing
on solving a system of linear algebraic equations. Their objective is to adapt the
architecture step by step until a certain performance is achieved. Concurrently, they
strive to minimize the computational resources required for the task.

Ostaszewski et al. [OTM+21] use reinforcement learning to optimize the ansatz of a
variational quantum eigensolver. Their approach focuses on adapting the complexity of
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the ansatz based on the specific problem at hand, while aiming to maintain a low circuit
depth to minimize the effect of noise. The proposed method is applied to estimate the
ground-state energy of lithium hydride, resulting in state-of-the-art outcomes. Moreover,
Zhao et al. [ZTK+20] address the vast number of measurements that need to be done
in a VQA. They use a unitary partitioning [IYLV20] approach to reduce the number of
measurements.

Furthermore, Choquette et al. [CDPB+21] introduce a novel class of ansatzes, called
quantum-optimal-control inspired ansatzes. They demonstrate that, on certain problems,
these ansatzes exhibit faster convergence compared to traditional ansatzes. While common
ansatzes aim to preserve the symmetry of the Hamiltonian to limit the search space,
the authors argue that maintaining symmetry does not always provide an advantage.
Consequently, their approach intentionally seeks to break the symmetries in order to
explore a broader range of possibilities. They showcase the ansatz for physics and
chemistry problems and show that it performs well in these settings.

Du et al. [DTYT22] measure the expressivity of a VQA using the concept of a covering
number. They state that the expressivity of a VQA is heavily influenced by the choice
of gates and measurements employed. Notably, when utilizing NISQ devices, they find
that the expressivity of the VQA diminishes as the circuit depth increases. Using their
measurement for expressivity in simulations, they conclude that difficulties arise with
insufficient or excessive expressivity.

3.4 Variational Quantum Algorithms
Finally, we study literature on parameter configurations on VQAs, similarly to the
experiments we conduct. Suryotrisongko and Musashi [SM22] use a security dataset
to compare the performances of a novel hybrid deep learning model and a VQA. They
consider a variety of different feature map, ansatz and optimizer combinations for the
VQA and find significant differences in performance. Furthermore, their novel architecture
outperforms the VQA on this dataset.

Piatrenka and Rusek [PR22] perform experiments using different configurations for the
iris dataset. They experiment using ZFeatureMap, ZZFeaturemap and a PauliFeaturemap
with gates [’Z’, ’Y’, ’ZZ’]. Regarding the ansatz, they only experiment using the Re-
alAmplitudes one, but try different numbers of repetitions. For the optimizer, they
consider SPSA, COBYLA and Sequential Least SQuares Programming (SLSQP). They
obtain the best results using one repetition of the PauliFeatureMap and two repetitions
of the RealAmplitudes ansatz. Furthermore, they report that COBYLA and SLSQP
outperform SPSA. The authors run their experiments on both simulators and a real
quantum computer and find big performance differences.

Moreover, Katyayan and Joshi [KJ23] propose a model for classifying questions from two
categories of the SelQA dataset. They use a TwoLocal ansatz using ’ry’ and ’rz’ as the
rotation gates, and ’cz’ as the entanglement ones. Furthermore, they experiment with all
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three of Qiskit’s feature maps beforehand, finding that the PauliFeatureMap works best,
which they use for the experiments. They find that a small depth is advantageous and
that the features strongly influence the output.

Finally, Joshi et al. [JKA21a] compare classical ML models to quantum ones on sentiment
analysis. They find that quantum models slightly outperform the classical models in
their configuration. They employ a PauliFeatureMap using [’X’, ’XX’, ’YY’, ’XY’, ZXZ’]
as the Pauli gates. Furthermore, they use the Efficient SU2 and RealAmplitudes ansatz,
using 100 and 150 epochs. COBYLA is used as the optimizer. All in all, the EfficientSU2
ansatz with 100 epochs outperforms all other models.
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CHAPTER 4
Methodology

In this chapter, we present our experimental methodology. First, we describe the datasets
used for our experiments in Section 4.1. Specifically, we provide an overview of the
datasets we selected, which include two regression and two classification problems.

In Section 4.2, we introduce our classical machine learning (ML) baseline. The methodol-
ogy is based on traditional algorithms and techniques that are commonly used in the
field of ML. Such include grid search and cross validation.

In Section 4.3, we describe our proposed quantum machine learning (QML) methodology.
We provide a detailed explanation of our QML approach. In particular, we employ
an exhaustive search on a subset of the training data to tune the most important
hyperparameters.

4.1 Data

We choose the following datasets to ensure their suitability for our research objectives.
We select low-dimensional datasets to account for the limited public availability of current
quantum computers, allowing only seven qubits for free on IBM machines1.

This approach allows us to obtain meaningful results, while avoiding the pitfalls associated
with processing high-dimensional data. If we had chosen data with higher dimensionality,
we would have had to reduce much more features, which would have made the comparison
with classical ML even more difficult, as the quantum models would have been trained
with significantly less information.

1According to the ’Open Plan’ at https://www.ibm.com/quantum/access-plans. Accessed: 06.04.2023
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Attribute Description Datatype
Longitude how far east/west a block is real
Latitude how far north/south a block is real

Housing median age median age of houses in a block in years integer
Average rooms avg number of rooms per household in a block real

Average bedrooms avg number of bedrooms per household in a block real
Population number of people living in the block integer

Average occupancy avg number of household members real
Median income median income of households in a block real

Median house value in hundreds of thousands of dollars real

Table 4.1: California Housing Dataset

4.1.1 California Housing
The California Housing dataset2 [KPB97] is a well-known public dataset commonly
used for regression tasks. The dataset contains features that describe block groups
(geographical units for which the U.S. Census Bureau publishes data) with between 600
and 3, 000 people in California at around 1990. The dataset has 8 numeric features, a
real-valued target and 20, 640 instances. The goal is to predict the median house value
in $100, 000. The dataset can be loaded through the Scikit-learn [PVG+11] function
fetch_california_housing().

In particular, Table 4.1 shows all features provided. We list the names with a short
description and datatype. The dataset description can be found in the Scikit-learn user
guide3.

There are no missing data points in the dataset. Furthermore, we examine summary
statistics of the different attributes. Interestingly, the standard deviation is very high, and
the associated minimum and maximum values are far away from the mean for population
and average occupancy. We give an overview of the summary statistics in Appendix B in
Table B.1.

Furthermore, when looking at box plots of the different columns, several outliers can be
observed. This is in particular true for the average rooms, average bedrooms, population,
and average occupation attributes. Examples are shown in Figure 4.1.

Moreover, pairwise correlations are shown in Figure 4.2. Although there is a high positive
correlation between the average number of rooms and the average number of bedrooms
(85%), we believe that this correlation is still small enough to not significantly affect
the performance of the models negatively. Furthermore, there is a correlation of 69%
between the target variable price and the median income, which seems plausible, as
people with higher incomes can afford more expensive houses. Lastly, the high negative

2https://www.dcc.fc.up.pt/ ltorgo/Regression/cal_housing.html. Accessed: 21.03.2023
3https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset. Accessed:

22.03.2023
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(a) Average Bedrooms (b) Population

Figure 4.1: California Housing: Distribution of Bedrooms and Population

(a) Correlations (b) Distribution of Target

Figure 4.2: California Housing Dataset Characteristics

correlation of 92% between latitude and longitude can be explained by the geographical
shape of California. Blocks in the south (smaller latitude) are further in the east (higher
longitude) and vice versa.

Moreover, we take a look at the distribution of the target variable in Figure 4.2b. We can
see that there is a peak at $100, 000 – $200, 000. There are significantly fewer houses with
a price between $300, 000 – $480, 000, but many are in the last bucket. We hypothesize
that the models could have difficulties predicting the price of these houses and bad
prediction could, when taking the mean squared error as the measurement, significantly
impact the results.

After loading the data, we randomly split it into a training, validation and test set of
size 60%, 20%, and 20% respectively and persist it to ensure we use the same splits for
all experiments.
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Attribute Description Datatype
Date string
Hour of the day integer

Rented Bike Count target integer
Temperature in Celsius real

Humidity in % integer
Wind Speed in m/s real

Visibility in 10m integer
Dew Point Temperature in Celsius real

Solar Radiation in MJ/m2 real
Rainfall in mm real
Snowfall in cm real
Seasons current season categorical
Holiday current day is (not) a holiday categorical

Functional Day functional vs. non-functional hours categorical

Table 4.2: Seoul Bike Sharing Dataset

4.1.2 Seoul Bike Sharing
The Seoul Bike Sharing dataset [SY20, SJY20] is available at the UCI Machine Learning
Repository4 [DG17]. The dataset consists of 13 attributes, an integer target and 8,760
instances. The goal is to predict bike sharing demand for every hour of the day based on
the weather conditions.

The dataset description can be found at the UCI Machine Learning Repository4. Table 4.2
gives an overview of the attributes, short descriptions and data types.

There are no missing data points. Table B.2 in Appendix B shows the summary statistics
of the dataset. We can see that the target variable has a big span (between 0 and 3,556,
with a mean of 704), which might make the prediction difficult. The temperature, dew
point temperature, humidity, and visibility attributes have a high standard deviation.

Figure 4.3a shows the correlation matrix for the attributes. We can see that the dew
point temperature and temperature are highly correlated (91%). It might be favorable to
remove one of the attributes in the experiments to prevent the collinearity from affecting
model performance. Furthermore, the rented bikes have a correlation of 54% with the
temperature, which seems plausible, as does the dew point with the humidity (54%).
The highest negative correlation is between visibility and humidity (-54%).

The distribution of the target variable is very unequal for this dataset, as there are a
lot of very small values, especially in the morning hours. Therefore, we plot instead the
mean and standard deviation of bike count per hour, which can be seen in Figure 4.3b.
It can be seen that the standard deviation is smaller in the morning hours (2-6), but

4https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand. Accessed: 21.03.2023
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(a) Correlations (b) Bike Count vs. Hour

Figure 4.3: Seoul Bike Sharing Dataset Characteristics

(a) Rainfall (b) Functioning Day

Figure 4.4: Seoul Bike Sharing: Rainfall and Functioning Day

the target shows a high standard deviation in the afternoon and evening. Therefore, we
believe that the hour attribute will be very important to the models.

To check for outliers, we examine the box plots of the numerical variables. We find
that the rainfall and snowfall attributes have particularly many outliers. Furthermore,
we look at the distribution of the categorical variables. The distribution of holiday
and functioning day are very unequal. Figure 4.4 shows the box plot for rainfall and a
histogram for functioning day.

After loading the data, we split the data into a training (60%), validation (20%), and
test (20%) set, keeping in mind that one day has multiple entries, one for each hour. To
avoid data leakage, we use a group split to ensure all data points of the same day are in
the same split. Afterward, we store the splits.
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Attribute Description Datatype
Elevation in meters integer
Aspect in degrees azimuth integer
Slope in degrees integer

Horiz. hydrology distance nearest surface water features in meters integer
Vert. hydrology distance nearest surface water features in meters integer
Horiz. roadway distance distance to nearest roadway in meters integer

Hillshade 9am/noon/3pm index at time in summer solstice integer
Horizontal fire point distance nearest wildfire ignition points in meters integer

Wilderness area wilderness area designation (4 types) categorical
Soil type soil type designation (40 types) categorical

Cover type cover type designation (1-7) categorical

Table 4.3: Cover Type Dataset

4.1.3 Cover Type
The cover type dataset5can be found in the UCI Machine Learning Repository [DG17].
It is a well-known classification dataset, where the goal is to predict the cover type
of 30 times 30 meter forest squares based solely on cartographic attributes. It can be
loaded through the Scikit-learn function fetch_covtype() and comprises 581,012
data points.

Table 4.3 summarizes the different attributes, descriptions and datatype. The information
can be found on the UCI Machine Learning Repository page5 and the linked dataset
description.

The following represent the different classes to be predicted.

1. Spruce/Fir

2. Lodgepole Pine

3. Ponderosa Pine

4. Cottonwood/Willow

5. Aspen

6. Douglas-fir

7. Krummholz
5From UCI Machine Learning Repository, by Jock A. Blackard, Dr. Denis J. Dean and Dr. Charles

W. Anderson, 1998, https://archive.ics.uci.edu/ml/datasets/Covertype. Copyright by Jock A. Blackard
and Colorado State University. Accessed: 21.03.2023
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(a) Correlations (b) Distribution of Target

Figure 4.5: Cover Type Dataset Characteristics

There are no missing values. Table B.3 in Appendix B shows summary statistics. The
aspect column has a high standard deviation, as do all horizontal or vertical distances.
Furthermore, when comparing the minimum, maximum and mean values, one can,
especially for the hill shade attributes, see that the minimum values are far away from
the mean values, meaning there could be several outliers. The same applies to the slope
parameter, where the mean value is at 14, standard deviation 7 and the maximum value
is at 66.

Figure 4.5 shows the correlation matrix for the dataset. The biggest negative correlation is
between hill shade at 9am and 3pm (-78%), which makes sense given the sun’s trajectory.
It is still negligible because of the relatively small value. There are no other significant
correlations.

Furthermore, in Figure 4.5b, the distribution of the target variable is shown. It can be seen
that it is again very unequal, which might make the prediction for the underrepresented
classes difficult. Looking at the distribution of the attributes shows that the hill shade
attributes do have outliers, especially on the lower spectrum. The same holds true for
the slope parameter.

4.1.4 KDD Cup 1999
The KDD Cup dataset [LHF+00] is a well-known public classification dataset for in-
trusion detection. It consists of a set of network traffic data that was collected in a
simulated environment. It has 41 features and a categorical target with 21 classes. The
sample size is 494,021 and the dataset can be loaded using the Scikit-learn function
fetch_kddcup99().

In Table 4.4, the attributes are explained. These and the following information can be
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Attribute Description Datatype
Duration duration of the connection in seconds integer
Protocol type of protocol categorical
Service network service categorical

Flag status of connection categorical
Source Bytes bytes transferred to destination integer

Destination Bytes bytes transferred to source integer
Land if connection is from/to the same host/port binary

Wrong Fragment number of wrong fragments integer
Urgent number of urgent packets integer
Count connections to same host in past 2 seconds integer

SYN Error Rate rate of SYN errors of count real
REJ Error Rate rate of REJ errors of count real

Same Service Rate rate of conn. to same service of count real
Diff. Service Rate rate of conn. to diff. services of count real

Serv. Count connections to same service in 2 two seconds integer
Serv. SYN Error Rate rate of SYN errors of serv. count real
Serv. REJ Error Rate rate of REJ errors of serv. count real
Serv. Diff Host Rate rate of conn. to diff. hosts of serv. count real

Hot number of ’hot’ indicators integer
# Failed Logins login attempts integer

Logged In if user logged in successfully binary
# Comprised comprised conditions integer

Root Shell if root is obtained binary
Su Attempt if command attempted binary

# Root number of root accesses integer
# File Creations number of file creations integer

# Shell number of prompts integer
# Access Files operations on access control files integer

# Outbound Commands in an ftp session integer
Is Hot Login if login on the ’hot’ list binary

Is Guest Login if login is guest binary
Attack type of attack categorical

Table 4.4: KDD Cup 1999 Dataset

found in task description of the KDD Cup 19996.

The following list the different categories. In particular, they can be divided into 4 bigger
categories, Denial-of-Service, Probing, User-to-Root and Root-to-Local attacks. We will
not explain the different types of attacks. Instead, the interested reader is referred to
introductory cybersecurity literature. Additionally, normal, meaning no attack, can be

6https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Tasks. Accessed: 25.03.2023
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predicted.

• Denial-of-Service: back, land, smurf, teardrop, neptune

• Probing: ipsweep, nmap, portsweep, satan

• User-to-Root: buffer overflow, loadmodule, perl, rootkit

• Root-to-Local: ftp write, guess password, imap, multihop, phf, spy, warezclient,
warezmaster

There are again no missing values. Tables B.4, B.5, B.6 and B.7 in Appendix B show
summary statistics of the dataset. The distribution of the duration variable is quite
interesting. The standard deviation is very high (707.75), even though the 25th, 50th
and 75th quantiles are all at 0. The maximum value lies at 58, 329. The count and
transferred bytes attributes also show a very high variance.

Furthermore, Figure 4.6 shows the correlation matrix for the dataset. One can see
that the first attributes are very uncorrelated. However, the traffic features considering
the host are highly correlated (i.e. REJ error rate and Service REJ error rate have a
correlation > 98%). Therefore, during preprocessing, it may be necessary to eliminate
some of these features to prevent unwanted effects from collinearity.

Moreover, Figure 4.7 shows a log-scaled histogram of the target variable. The distribution
of classes is very skewed, potentially making it difficult for the models to make correct
predictions.

When considered in combination with box plots of the attribute values, one can see that
the majority of variables follow a very skewed distribution. We hypothesize that this
may make it a lot more difficult to find reasonable machine learning models.

4.2 Classical Machine Learning Baseline
In the following, we will discuss the methodology for the ML baseline. All models,
preprocessing techniques and model selection techniques are implemented in the Scikit-
learn [PVG+11] package.

As already discussed in the Section 4.1, it is necessary to delete some attributes in the
datasets to prevent collinearity from affecting model performance. Hence, we delete the
’dew point temperature’ in the Seoul dataset and all attributes with a correlation > 90%
in the KDD Cup 1999 dataset.

To account for different dataset characteristics, we experiment with five models, namely
linear models (logistic regression and linear regression), k-nearest neighbors (K-NN),
support vector machine (SVM), random forest (RF), and gradient boosting (GB). We
adopt three different scaling methods for each dataset, namely no scaling, standard
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Figure 4.6: KDD Cup 1999 Dataset: Correlations

scaling (remove mean and scale to unit variance), and min-max scaling (scale all values
into [0, 1], 0 being the originally smallest and 1 the originally highest value). Furthermore,
as the VQA for regression only predicts in range [−1, 1], we scale all regression values to
[0, 1] by dividing by the biggest target value in the training set.

We use a grid search cross-validation with 5 folds to optimize the hyperparameters of
each model. We choose a subset of 400 samples for hyperparameter optimization and a
subset of 250 samples for the evaluation on the validation set, for consistency with the
QML experiments. Table 4.5 shows all tested hyperparameters. The hyperparameters do
not differ between regression and classification models, except for the linear models.

For each model class, we take the best hyperparameters, which are determined during
grid search, to evaluate the performance on the validation set. Based on the validation
performance over all model and scaling combinations, we determine the best model.
Finally, we train the model again using a subset of 5,000 samples from the training data
and evaluate its performance on the held-out test set.
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Figure 4.7: KDD Cup 1999 Dataset: Distribution of Target

Model Hyperparameter Values
Logistic
Regression

penalty None, l2
C 0.01, 0.1, 1, 10

Linear Regression fit_intercept True, False

K-Nearest
Neighbors

n_neighbors 5, 10, 15, 20, 25, 30
weights uniform, distance

algorithm auto, ball_tree, kd_tree, brute

Support
Vector
Machine

kernel linear, rbf, poly
C 0.1, 1, 10

Gamma 0.01, 0.001 (rbf)
Degree 2, 3 (poly)

Random
Forest

n_estimators 50, 100, 200
max_features sqrt, log2
max_depth 4, 6, 8

Gradient
Boosting

n_estimators 50, 100, 200
max_features sqrt, log2
max_depth 4, 6, 8

criterion friedman_mse, squared_error

Table 4.5: Classical Machine Learning: Hyperparameters
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For regression, we use the mean squared error as the criterion and the mean absolute
error as an additional performance metric. For the classification task, we use the weighted
f-1 score as the criterion and the accuracy as an additional measure. Furthermore, we
measure the time for hyperparameter optimization, fitting of the final model and the
inference time on the test set.

4.3 Quantum Machine Learning
Optimizing hyperparameters is an essential step in building effective ML models. However,
it becomes especially challenging when working with complex model classes like VQAs.
These algorithms have various feature encodings, ansatzes, and optimizers, each with many
hyperparameters that require tuning. As a result, providing a comprehensive evaluation
of all possible combinations of hyperparameters can be a daunting and time-consuming
task.

To address this challenge, we choose only a subset of hyperparameters. However, even
with the reduced set of configurations, the optimization process is still computationally
intensive. The models run longer than their classical counterparts, as we will show in
Section 5, which further limits our ability to extensively explore hyperparameters. Still,
while the optimization process can be cumbersome, we take steps to evaluate a reasonable
amount of configurations that are, presumably, likely to provide valuable insights into
the performance of VQAs for our specific use case.

We use the preprocessing techniques as they are implemented in the Scikit-learn [PVG+11]
package. Furthermore, we use the open source package Qiskit [con23] for the QML
components.

4.3.1 Preprocessing
To prepare our data for training the VQAs, we follow a similar preprocessing approach as
the classical baseline. We begin by removing highly correlated features, where necessary,
to prevent collinearity of affecting the performance of our models. However, since we are
dealing with quantum hardware, we have to limit our experiments to using only seven
qubits. This restriction is crucial, as we want to be able to run and evaluate the final
models on real quantum hardware, and IBM’s free plan only allows for the use of five
or seven qubit machines. Therefore, we employ the popular approach of using principal
component analysis (PCA).

PCA works by creating new features using a linear combination of the existing ones,
while keeping most of the variance contained in the data. This technique is unsupervised,
meaning that the labels are not used for feature reduction. It is important to scale the data
appropriately, as PCA uses distances between data points to create new features [RRC19].

Apart from PCA, we also experiment with another preprocessing technique called linear
discriminant analysis (LDA), which is only relevant for classification. We discovered
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that LDA outperformed PCA as a preprocessing step in two previous studies [MP22,
HQBCTC22]. Unlike PCA, LDA is a supervised technique, meaning that the labels
are used to reduce the dimensionality of the data. The goal of LDA is to obtain a
representation of the data where points belonging to different classes are far apart, while
points of the same class are clustered together [TGIH17].

Unfortunately, the Qiskit implementation of a VQA for regression only predicts in range
[−1, 1]. We therefore divide by the biggest value in the training set to scale our target
into [0, 1].

4.3.2 Feature Encoding
As discussed in Section 2.3.3, the feature mapping proposed in [HCT+19] exhibits
desirable properties because it is hard to reproduce classically and space efficient. It is
therefore widely used in QML and will be used for our experiments as well.

Qiskit implements the feature map as the PauliFeatureMap7, which allows the usage
of (combinations of) the Pauli matrices I, X, Y, Z. From the extended version, two
subclasses, the ZFeatureMap8 and the ZZFeatureMap9 are derived. The ZFeatureMap
sets k = 1 and P0 = Z, hence not entangling the qubits, and the ZZFeatureMap sets
k = 2, P0 = Z and P0,1 = ZZ. We experiment with these two instantiations, given
that it is possible to use them out-of-the-box without running extensive experiments
tuning the Pauli matrices. Furthermore, we believe it is interesting to compare them, as
ZFeatureMap does not entangle the qubits, whereas ZZFeatureMap does.

For the ZZFeatureMap, we vary the entanglement strategy used by the entangling blocks.
The entanglement options we choose are ’full’, ’linear’, ’sca’, ’pairwise’, and ’circular’,
as explained in the Ansatzes section of Section 2.3.4. We decide to leave out ’reverse
linear’, due to the similarity to ’linear’. We do not perform hyperparameter tuning for
the ZFeatureMap.

4.3.3 Ansatz
Regarding the ansatzes, we implement four popular approaches: PauliTwoDesign, Effi-
cientSU2, RealAmplitudes, and TwoLocal, as discussed in Section 2.3.4. Each ansatz
has different hyperparameters that can be optimized to improve the performance of the
quantum circuit.

For the PauliTwoDesign ansatz, we only set the seed to a fixed number to make the
experiments more reproducible. RealAmplitudes, on the other hand, requires optimization

7https://qiskit.org/documentation/stable/0.24/stubs/qiskit.circuit.library.
PauliFeatureMap.html. Accessed 24.04.2023

8https://qiskit.org/documentation/stable/0.24/stubs/qiskit.circuit.library.
ZFeatureMap.html. Accessed 24.04.2023

9https://qiskit.org/documentation/stable/0.24/stubs/qiskit.circuit.library.
ZZFeatureMap.html. Accessed 24.04.2023
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Dataset Optimizer Iterations Plain Iterations Noise
KDD COBYLA 500 250
KDD SPSA 250 125
KDD Nelder-Mead 250 100

Covertype COBYLA 500 250
Covertype SPSA 300 125
Covertype Nelder-Mead 150 75

California Housing COBYLA 500 250
California Housing SPSA 250 125
California Housing Nelder-Mead 250 100
Seoul Bike Sharing COBYLA 500 250
Seoul Bike Sharing SPSA 250 125
Seoul Bike Sharing Nelder-Mead 250 100

Table 4.6: Iterations for Optimizer

of the entanglement parameter, which has the same options as the ZZFeatureMap does,
except for ’pairwise’, which is not supported. We will not be tuning other hyperparameters
for this ansatz.

EfficientSU2 also supports the entanglement parameter, with the same options as Re-
alAmplitudes. We leave the other hyperparameters to their default values. Finally, for
the TwoLocal ansatz, we experiment with the entanglement parameter as well. This
ansatz supports the same strategies as the ZZFeatureMap does. Moreover, the rotation
and entanglement blocks need to be set here. We chose ’ry’ as the rotation block and ’cx’
as the entanglement block, which is a recommended setting in the documentation.

4.3.4 Optimizer

In Section 2.3.4, we discussed three different classical optimization algorithms that we
used for our experiments: COBYLA, SPSA and Nelder-Mead. For each dataset and
optimizer combination, we do some exploratory checking to see how many iterations it
would take to converge. We do so by plotting the loss in every iteration step. Furthermore,
running the simulators with noise models increases the training time drastically, hence, we
choose a separate iteration count, depending on the convergence of the models. Table 4.6
shows the iteration count for all configurations.

Furthermore, we set a tolerance value of 0.1. Both COBYLA and Nelder-Mead support
the parameter out-of-the-box, unfortunately SPSA does not.

Other than that, we leave the hyperparameters to their default values for COBYLA
and SPSA. For Nelder-Mead, we set the adaptive parameter to ’True’, which adapts the
hyperparameters specifically for the dimensionality of the problem. In the beginning,
we found that a lot of times, the loss function did not change at all, as can be seen in
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(a) Nelder-Mead Non-Adaptive (b) Nelder-Mead Adaptive

Figure 4.8a. After changing it, some configurations improved (i.e., Figure 4.8b), we did
not see great improvements, however.

4.3.5 Noise Models
For the noise models, we use noise models from real machines, which are available through
Qiskit. There are four different 7-qubit machines to be considered, all of them have the
same basis gates, instructions that are noisy, qubits with noise (all of them) and the
specific qubit errors. An example of a noise model is shown in the following.

<IBMBackend(’ibm_perth’)> NoiseModel:
Basis gates: [’cx’, ’delay’, ’id’, ’if_else’, ’measure’,

’reset’, ’rz’, ’sx’, ’x’]
Instructions with noise: [’id’, ’x’, ’measure’, ’reset’,

’sx’, ’cx’]
Qubits with noise: [0, 1, 2, 3, 4, 5, 6]
Specific qubit errors: [

(’id’, (0,)), (’id’, (1,)), (’id’, (2,)), (’id’, (3,)),
(’id’, (4,)), (’id’, (5,)),(’id’, (6,)),

(’sx’, (0,)), (’sx’, (1,)), (’sx’, (2,)), (’sx’, (3,)),
(’sx’, (4,)), (’sx’, (5,)), (’sx’, (6,)),

(’x’, (0,)), (’x’, (1,)), (’x’, (2,)), (’x’, (3,)),
(’x’, (4,)), (’x’, (5,)), (’x’, (6,)),

(’cx’, (6, 5)), (’cx’, (5, 6)), (’cx’, (4, 5)),
(’cx’, (5, 4)), (’cx’, (3, 5)), (’cx’, (5, 3)),
(’cx’, (3, 1)), (’cx’, (1, 3)),(’cx’, (2, 1)),
(’cx’, (1, 2)), (’cx’, (0, 1)), (’cx’, (1, 0)),

(’reset’, (0,)), (’reset’, (1,)), (’reset’, (2,)),
(’reset’, (3,)), (’reset’, (4,)),
(’reset’, (5,)), (’reset’, (6,)),
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Step Object Configurations

Preprocessing PCA -
LDA -

Feature
Encoding

ZZFeatureMap ’ent.’:[’full’, ’linear’, ’sca’, ’pairwise’, ’circular’]
ZFeatureMap -

Ansatz

PauliTwoDesign -
EfficientSU2 ’ent.’:[’full’, ’linear’, ’sca’, ’circular’]

RealAmplitudes ’ent.’:[’full’, ’linear’, ’sca’, ’circular’]
TwoLocal ’ent.’:[’full’, ’linear’, ’sca’, ’pairwise’, ’circular’]

Optimizer
COBYLA ’maxiter’, ’tol’=0.1

SPSPA ’maxiter’
Nelder-Mead ’maxiter’, ’tol’=0.1

Table 4.7: Summary: QML Hyperparameters
Abbrev.: ent. = entanglement

(’measure’, (0,)), (’measure’, (1,)), (’measure’, (2,)),
(’measure’, (3,)), (’measure’, (4,)),
(’measure’, (5,)), (’measure’, (6,))]

4.3.6 Hyperparameter Tuning
Table 4.7 shows a summary of all hyperparameter configurations we test. In total, they
sum up to 168 configurations for classification per optimizer, i.e., 672 configurations per
dataset, and 84 configurations for regression per optimizer.

We preprocess the data in the same way as for the baseline and fit the PCA (applying a
StandardScaler before) and the LDA, the latter only if we employ classification. Afterward,
we sample 400 samples for hyperparameter tuning. Due to the extensive runtime, we
cannot consider more samples. For validation, we take a subset of 250 samples from the
validation set.

Then, we start an exhaustive search for all configurations, by creating and training the
models. We then calculate the accuracy and f1 score for classification, or the MSE and
MAE for regression on the validation set. Finally, we take the best model, according
to the validation performance, and retrain the model again using a larger dataset of
5,000 samples (again from the training data). We evaluate the test performance on the
held-out test set.
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CHAPTER 5
Results

In the following, we will present the results from our experiments. In particular, we will
first explain our experimental setup in Section 5.1 to set the reported running times into
perspective.

Then, in Section 5.2, we will discuss the results for the classical ML baseline for every
dataset separately. In Section 5.3 we will do the same for the QML models.

Afterward, in Section 5.4, we will provide an extensive evaluation and comparison between
the two.

5.1 Experimental Setup
The classical baseline experiments are conducted on the following Linux-based computer:

• Operating System: Fedora Linux 38

• CPU: Intel(R) Xeon(R) W-2123 CPU (8 cores @ 3.60 GHz)

• Memory: 64 GB

Furthermore, we use a Linux-based computer with the following configuration for the
QML experiments.

• Operating System: Debian/GNU Linux 11

• CPU: Intel(R) Xeon(R) CPU E5-2623 v4 (16 cores @ 2.60GHz)

• Memory: 128 GB
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IBM offers quantum computers with up to seven qubits and quantum simulators in the
cloud through their ’Open Plan’ and their open source Python package Qiskit [con23].
Furthermore, through Qiskit Aer it is possible to run simulators with and without noise
locally. The noise models can be custom-built, as well as derived from actual quantum
machines. The three possibilities can be used interchangeably by changing only the
backend in the code. To offer the possibility of running the experiments on real quantum
hardware with minimal additional effort, we decide to use Qiskit for our experiments.
Furthermore, all relevant QML models and components are conveniently implemented in
the package.

We use the following packages and versions.

• Python: 3.11.4

• Qiskit: 0.42.1

• Scikit-learn: 1.2.2

5.2 Classical Machine Learning Baseline
Table 5.1 gives an overview of the results we achieved on the different datasets. In
particular, it lists the dataset, best model and scaling, metric and achieved values for the
metric.

It can be seen that the predictions for the California Housing dataset are very accurate
according to their MSE. The same holds true for the Seoul bike sharing dataset. However,
as already discussed in Section 4.1, the variance, especially for the afternoon hours, is very
high, which makes it difficult to make reasonable predictions there. We will discuss the
results in more detail later on to compare the prediction accuracy to the hour attribute.

Looking at the classification datasets, we can see that there is hardly any difference
between the f-1 scores and the accuracy. For the cover type dataset, we achieve only
a 71% accuracy. We believe a pitfall was tuning using 400 samples only, leading to
difficulties producing models that generalize well to unseen data. Furthermore, for the
KDD Cup dataset, the final model achieves a 99% accuracy.

5.2.1 California Housing Dataset
We obtain a MSE of 0.0105 and a MAE of 0.0691 for the final model. GB models often
work great on a variety of problems, hence, we are not surprised that the best model was
a gradient boosted one.

Initially, we want to analyze where big residuals in the predictions occur. Therefore, we
plot the predicted vs. the actual values in Figure 5.1, the x-axis showing the true values
and the y-axis the predictions. Unfortunately, the model predicts the same values for
almost all data points. The plot shows that, given the input data, it is favorable and
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Dataset Model Measurement Value
California
Housing

Gradient Boosting, MinMax
Scaling

MSE 0.0105
MAE 0.0691

Seoul Bike
Sharing Gradient Boosting MSE 0.0063

MAE 0.0539

Cover Type Support Vector Machine, Standard
Scaling

F-1 0.71
Accuracy 0.71

KDD Cup Random Forest F-1 0.99
Accuracy 0.99

Table 5.1: Classical Machine Learning: Results

Figure 5.1: Baseline California Housing: Predicted vs. Actual

leads to the lowest MSE when the model predicts approximately the mean every time.
We believe that training using only a small subset could be the reason for that.

Furthermore, we summarize all grid search configurations in Appendix C in Table C.1.
Ensemble models work well for this dataset, with GB and RF scoring best. Many
estimators are favorable, the optimal number for GB was 300, for the RF it was 200 or
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Figure 5.2: Baseline Seoul Bike Sharing: Predicted vs. Actual

250. Nonetheless, linear regression and SVM did not show big performance differences
either. Another thing that stands out is the excessive grid search tuning time for the
SVM with no scaling, as compared to standard and minmax scaling, even though the
same parameters are tested.

5.2.2 Seoul Bike Sharing Dataset

We achieve a MSE of 0.0063 and a MAE of 0.0539 on the Seoul Bike sharing dataset. We
choose the same approach as for the California housing dataset to analyze the predictions
for the bike sharing dataset further. Figure 5.2 shows the predicted vs. actual values,
with the black line showing the optimal predictions.

One thing that stands out, is that the model predicts negative values. Interestingly
enough, most of the strongly negative values have a true value of 0 or close to zero,
hence, setting all negative values to zero automatically (which is reasonable as a negative
demand does not make any sense at all), could improve the results. By doing so, we
can reduce the MSE to 0.0061, representing a decrease of 3%, and the MAE to 0.0518,
representing a decrease of 4%.

Furthermore, we can look at the prediction accuracy per hour. We plot the residuals vs.
the hour attribute in Figure 5.3. As hypothesized earlier, the hours with the greatest
standard deviation (7-9 and 17-19) are the most challenging to predict. Furthermore,
the afternoon demand is more difficult to predict than the forenoon demand. There are
discrepancies between the predictive performances of different hours.

The grid search results are shown in Appendix C in Table C.2. Similarly to the results of
the California housing dataset (see Section 5.2.1), ensemble models again outperform all
other ones. Many estimators for the models are favorable (300 and 250 for GB and RF
respectively). Interestingly, a simple K-NN regressor with 10 neighbors for MinMax or
Standard Scaling returns quite good results already.
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Figure 5.3: Baseline Seoul Bike Sharing: Residual vs. Hour

5.2.3 Cover Type Dataset
The final models for the cover type dataset achieve an f-1 score and accuracy of only
71%. In the following, we will investigate the results further to see where potential
improvement could be made.

Confusion matrices, which we adopt for our experiments, are popular tools to analyze the
results of classification tasks further. The confusion matrix for the cover type dataset can
be seen in Figure 5.4. In particular, the x-axis shows the predicted labels, whereas the
y-axis shows the true ones and the matrix is normalized by row. They allow analyzing
which classes are often confused with each other and which classes are particularly
easy/difficult to predict.

We can see that the classifier often predicts spruce/fir or lodgepole pine, which
are the classes that are most often represented in the dataset. The predictive performance
for class cottonwood/willow is a lot lower than for other classes, which could be due
to the class having the least samples in the training set. With accuracies ≥ 70%, the
predictive performance for spruce/fir, lodgepole pine and ponderosa pine
are good, however, it fails to correctly predict the other classes.

The difficulties in predicting the different classes may be due to an imbalanced dataset,
plus using only 5,000 samples for the final training. For a comparison of the dis-
tributions in the different datasets, please refer to Figure 5.5. It can be seen that
spruce/fir, and lodgepole pine make up the majority of samples, whereas aspen
and cottonwood/willow are underrepresented. Still, the distribution of classes is
mostly kept in our training, validation and test sets.

The grid search results are again shown in Appendix C in Table C.3. The validation
accuracies hardly differ from the final test performance, which is interesting, given that
we trained and evaluated only on a small subset of data. It can be seen that tuning the
SVM takes substantially longer without scaling than with. SVM with standard scaling
outperforms other models, interestingly, also the relatively simple Logistic Regression
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5. Results

Figure 5.4: Baseline Cover Type: Confusion Matrix

with MinMax scaling performs comparable to the best model. K-NN seems to not be
able to capture meaningful connections. Many estimators are again favorable for the GB
(200 or 250).

5.2.4 KDD Cup 1999 Dataset
Finally, we achieve a 99% accuracy for the KDD Cup dataset. Still, in the following,
we investigate which classes were easy to predict and which were hard. One thing that
stands out is that even relatively simple logistic regression or K-NN models are already
able to perform that well on the dataset (with a 97% validation accuracy).

We choose to plot confusion matrices for the KDD Cup predictions as well, which can
be seen in Figure 5.6. While some attacks (back neptune, smurf, teardrop) have
an almost perfect accuracy. the most dangerous misclassifications are those that are
misclassified as being normal. Unfortunately, almost all buffer overflow and imap
attacks are classified as being normal. Also, a big fraction of guess password, nmap
and warezclient attacks are classified as being normal.
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5.3. Quantum Machine Learning

Figure 5.5: Target Distribution Cover Type

We show the results of the grid search in Appendix C in Table C.4. There is no one best
performing model, as RF and GB all achieve a 98% accuracy and all others either 96%
or 97%. The results are in particular interesting, as we get good validation performances,
even though tuning with only a subset again. The dataset seems to allow good predictions
based on only few samples already.

5.3 Quantum Machine Learning
In the following, we will present the results we obtained on the four datasets. In particular,
for each dataset, we will discuss the results of the hyperparameter optimization with and
without noise and the final performance of the best model.

We give an overview of the final performances of our models in Table 5.2. There are big
discrepancies between the performances of the classical machine learning models and the
quantum ones, which we will dive deeper into in the following analysis.

When we refer to the best configurations in the following, we mean all configurations that
are within 10% accuracy (classification) or 10% span (max-min) of the MSE (regression)
of the best configuration. The worst configurations are similarly defined. They are within
10% accuracy and 10% span of the MSE of the worst configuration.

Furthermore, we perform significance tests with a significance level of 5%. We choose non-
parametric tests. In particular, we choose a Friedman Test for dependent distributions of
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Figure 5.6: Baseline KDD Cup 1999: Confusion Matrix

more than two groups and the Wilcoxon Signed Rank test for comparing two dependent
distributions. Moreover, we use the Kruskal-Wallis test for independent distributions of
more than two groups and the Mann-Whitney-U test for independent distributions of
two groups.

In addition to comparing the experiments with and without noise separately, we compare
each configuration with and without noise as well. We perform paired Wilcoxon tests
to see if they differ significantly. Whenever we refer to ’differences’ in this context, we
talk about the mean absolute difference in performance for the configurations with and
without noise.

Whenever we provide convergence plots, the values on the x-axis do not represent the
actual iterations for SPSA and Nelder-Mead. The methods ’probe’ candidate solutions
and afterward decide to (1) take it as the next candidate or (2) go back and try a different
one. In the callback function, we do not have access to whether or not the step is accepted
or not, therefore, we plot the whole sequence. Nevertheless, the graphs show whether the
loss converges.
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Dataset Model Metric Value

California Housing SPSA, ZFeatureMap, EfficientSU2
- full

MSE 0.1315
MAE 0.2798

California Housing
with Noise

COBYLA, ZFeatureMap,
EfficientSU2 - full

MSE 0.1141
MAE 0.2543

Seoul Bike Sharing SPSA, ZFeatureMap, EfficienSU2 -
circular

MSE 0.0467
MAE 0.1627

Seoul Bike Sharing
with Noise

SPSA, ZFeatureMap,
RealAmplitudes - circular

MSE 0.0547
MAE 0.1687

Cover Type COBLYA, ZFeatureMap,
TwoLocal - pairwise, LDA

F-1 0.5808
Accuracy 0.5957

Cover Type with
Noise

COBYLA, ZFeatureMap,
RealAmplitudes - circular, LDA

F-1 0.5581
Accuracy 0.5828

KDD Cup SPSA, ZFeatureMap, TwoLocal -
circular, PCA

F-1 0.5765
Accuracy 0.5432

KDD Cup with
Noise

COBYLA, ZFeatureMap,
TwoLocal - circular, PCA

F-1 0.5589
Accuracy 0.5748

Table 5.2: Quantum Machine Learning: Results

5.3.1 California Housing Dataset

We will now present the results for the California housing dataset, first on a perfect
simulator, then with noise and, finally, we will compare the two and point out significant
differences.

5.3.1.1 Noiseless Configuration

We find big discrepancies between the test performance of the final model and the
performance of the best model during hyperparameter optimization. The final test
MSE is at 0.1315 and the MAE at 0.2798. Looking at the predicted vs. actual plot in
Figure 5.7a, reveals that the model fails to find reasonable patterns.

Interestingly, while the convergence is very smooth, as can be seen in Figure 5.7b, the final
training loss is still quite high, at an MSE of about 0.1. Nonetheless, the hyperparameter
tuning experiments give us valuable insights, which we will discuss in the following.

Table 5.3 lists the ansatz, optimizer, feature map, ansatz entanglement, MSE, MAE and
time for the top five configurations during hyperparameter tuning. It can be observed
that EfficientSU2 ansatz configurations are very common, and the majority uses SPSA
as the optimizer. Furthermore, all configurations use the ZFeatureMap.

Furthermore, in Appendix D in Table D.1, we list the top 40 configurations. The MSE
values range from 0.04-0.3, so we can observe significant differences depending on the
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(a) Predicted vs. Actual (b) Convergence

Figure 5.7: QML California: Final Predictions

Ansatz Optimizer FeatMap Ans.Ent. MSE MAE Time
EfficientSU2 SPSA Z full 0.0460 0.1758 31843s
EfficientSU2 SPSA Z sca 0.0511 0.1757 26506s
EfficientSU2 COBYLA Z circular 0.1774 0.1774 15496s

RealAmplitudes SPSA Z sca 0.0546 0.1854 21318s
EfficientSU2 SPSA Z circular 0.0558 0.1939 26568s

Table 5.3: QML California: Top 5 Configurations

configurations. We will present our observations for every parameter separately in the
following.

Optimizer We can observe significant differences depending on the optimizer used. In
particular, Nelder-Mead, with a mean MSE of 0.24, is outperformed by both COBYLA
(0.20) and SPSA (0.18). Furthermore, SPSA performs significantly better than COBYLA.
Still, the set of best configurations (within 10% span of the best one) are made up of
five COBYLA and eight SPSA configurations, so there are several very good COBYLA
configurations as well. Figure 5.8a visualizes the performance of different optimizers. It
can be seen that some configurations from both COBYLA and SPSA work really well,
however, usually, the SPSA configurations are slightly better.

While there are usually some configurations for the optimizers that return above-average
results, such behavior cannot be observed for Nelder-Mead. Looking at the convergence
plots, such as Figure 5.8b, reveals that the optimizer has troubles finding any useful
optimization path.

Ansatz There are significant differences between the ansatzes. In particular, we find
RealAmplitudes (mean MSE 0.20) and TwoLocal (0.20) to be significantly better than
PauliTwoDesign (0.22). We can observe no significant differences for EfficientSU2, with a
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(a) Optimizer (b) Nelder-Mead Convergence

Figure 5.8: QML California: Optimization

mean MSE of 0.21. Nonetheless, EfficientSU2, TwoLocal and RealAmplitudes are equally
represented among the set of best performing configurations. Figure 5.9a compares them
visually. It can be seen that the ansatzes using Nelder-Mead as the optimizer perform
equally bad, however, EfficentSU2, TwoLocal and RealAmplitudes all have some good
configurations for the other optimizers. The range of PauliTwoDesign configurations is
very narrow all in all.

Ansatz Entanglement We find no significant differences between the ansatz entan-
glement strategies, neither when considering them on their own, nor in combination
with the different ansatzes. Nevertheless, only ’circular’, ’full’ and ’sca’ entanglement
configurations are among the best-performing ones.

Feature Map ZFeatureMap significantly outperforms ZZFeatureMap with a mean
MSE of 0.12 and 0.22 respectively. All best configurations use the ZFeatureMap and the
performances are compared in Figure 5.9b. It can be seen that almost all ZFeatureMap
configurations for SPSA and COBYLA outperform the ZZFeatureMap ones, however,
the advantage cannot be observed for Nelder-Mead.

Feature Map Entanglement When we compare the feature map entanglement, we
find that no entanglement (ZFeatureMap) significantly outperforms all other entanglement
strategies. Furthermore, both ’linear’ and ’pairwise’ entanglement outperform ’circular’,
’full’ and ’sca’.

Moreover, we can analyze which configurations make up the worst-performing ones. We
find only three configurations within 10% span of the worst configuration, and all of
them use Nelder-Mead as the optimizer and ZZFeatureMap as the feature map. There is
one configuration for each of the ansatzes except PauliTwoDesign, and all of them use
’full’ as the entanglement strategy.
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(a) Ansatz (b) Feature Map

Figure 5.9: QML California: Ansatz and Feature Map

(a) Predicted vs. Actual (b) Convergence

Figure 5.10: QML California with Noise: Final Predictions

5.3.1.2 Noisy Configuration

The results with noise are similar to the ones without noise, with a MSE of 0.1141 and
MAE of 0.2543. The prediction plot, in Figure 5.10a, looks very similar. Interestingly,
the convergence plot shows the optimization happens in stages, with only small changes
for some time, followed by bigger drops in loss repeatedly. Unfortunately, it converges
quite early at a training loss of about 0.11. We hypothesize that it got stuck in a barren
plateau (BP).

Table 5.4 lists the ansatz, optimizer, feature map, ansatz entanglement, MSE, MAE and
time for the top five configurations. Furthermore, in Appendix D in Table D.2, we list
the top 40 configurations. The MSE ranges from 0.05 to 0.23. Interestingly, while the
best configurations are slightly worse than when running the experiments without noise,
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Ansatz Optimizer Feature Map Entang. MSE MAE Time
EfficientSU2 COBYLA Z full 0.0558 0.1792 30269s
EfficientSU2 SPSA Z sca 0.0566 0.1906 26742s

TwoLocal COBYLA Z sca 0.0573 0.1803 18172s
TwoLocal COBYLA Z full 0.0576 0.1846 21107s

RealAmplitudes COBYLA Z full 0.0576 0.1820 16235s

Table 5.4: QML California with Noise: Top 5 Configurations

(a) Optimizer (b) Ansatz

Figure 5.11: QML California with Noise: Optimization and Ansatz

the performances of the worst solutions actually increase.

Optimizer We can observe significant differences depending on the optimizer used. In
particular, Nelder-Mead, with a mean MSE of 0.23, is significantly outperformed by both
COBYLA (mean MSE 0.20) and SPSA (0.20). There are no significant differences between
COBYLA and SPSA, and they are equally represented among the best configurations.
Figure 5.8a visualizes the performance of different optimizers. It can be seen that some
configurations from both COBYLA and SPSA can be found among the best ones, however,
Nelder-Mead ones consistently underperform. The same convergence behavior as has
been reported before (see Figure 5.27) can be found for Nelder-Mead.

Ansatz We find no significant differences between the ansatzes. Figure 5.9a compares
them. All of them perform poorly when using Nelder-Mead and on average for the other
ansatzes, however, there are several positive outliers for EfficientSU2, TwoLocal and
RealAmplitudes. PauliTwoDesign configurations show no such behavior. In addition
to that, they perform worse in mean than the other ansatzes and no PauliTwoDesign
configurations are among the best performing ones.
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Figure 5.12: QML California with Noise: Feature Map

Ansatz Entanglement Similarly, no significant differences can be observed regarding
the ansatz entanglement strategies. However, only ’full’, ’sca’ and ’circular’ entanglement
configurations can be found among the best performing ones. When we consider the
ansatz combined with the entanglement, we find no significant differences for any ansatz.

Feature Map ZFeatureMap significantly outperforms ZZFeatureMap with a mean MSE
of 0.14 and 0.22 respectively. All best configurations use the ZFeatureMap. Figure 5.12
compares the performances. It can be seen that almost all ZFeatureMap configurations
using SPSA and COBYLA outperform the ZZFeatureMap ones, however, the advantage
cannot be observed for Nelder-Mead.

Feature Map Entanglement When we compare the feature map entanglement, we
find that no entanglement (ZFeatureMap) significantly outperforms all other entanglement
strategies. Furthermore, ’linear’ and ’sca’ entanglement outperform ’full’.

Moreover, we analyze the set of worst-performing configurations. Only Nelder-Mead
configurations can be found within the set of worst configurations. Interestingly, we find
configurations for all ansatzes except PauliTwoDesign, insinuating that the ansatz has a
relatively stable performance with little deviations. Interestingly, the ratio of ZFeatureMap
configurations (7% out of all) in the set is a lot higher than for ZZFeatureMap (1%),
implying a similar behavior than the PauliTwoDesign ansatz. Only ’circular’, ’full’ and
’sca’ ansatz entanglement configurations can be found in the set, while we can only find
’linear’ and ’pairwise’ feature map entanglement strategies there.

Furthermore, we look at the performances of feature map and ansatz combinations in
Figure 5.13a. It can be seen that ZFeatureMap provides an advantage to ZZFeatureMap.
However, the difference is a lot bigger for RealAmplitudes, TwoLocal and EfficientSU2,
than for PauliTwoDesign.
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(a) Ansatz vs. Feature Map (b) Feature Map Entanglement vs. Optimizer

Figure 5.13: QML California with Noise: Correlations

Finally, Figure 5.13b compares feature map entanglement and optimizers. Interestingly,
COBYLA works best when using no feature map entanglement (ZFeatureMap) and slightly
better than the other optimizers when considering ’full’ feature map entanglement. For
the other strategies, SPSA seems to provide an advantage.

5.3.1.3 Comparison

Finally, we compare the results with and without noise. We find that the same configu-
ration with and without noise has an average MSE difference of 0.015 and a standard
deviation of 0.018. There are configurations that have almost no difference, but the max-
imum is at 0.13. Figure 5.14a shows how the differences are distributed. The differences
are quite small, however, there are several outliers.

As mentioned before, we observe that noise actually increases the performance of the
worst configurations, but also decreases the performance of the best ones. We show the
behavior in Figure 5.14b, for every ansatz separately. Introducing noise in the circuit
actually decreases the span of the box plots. The best and worst configurations are all
no-noise ones.

In the following, we compare each configuration with and without noise, i.e., we conduct a
paired non-parametric Wilcoxon test. We extract the most and least similar configurations
by taking those that are within a 10% span of the smallest and biggest difference.

Optimizer We find significant differences for SPSA, where the noisy experiments
perform worse, and Nelder-Mead, where noisy experiments perform better. While we
find all three optimizers in the set of most similar configurations, only one Nelder-Mead
one makes up the set of least similar ones. SPSA is, however, slightly underrepresented
among the most similar configurations with only 23% of the configurations being there,
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(a) Absolute Difference in Accuracy (b) Ansatz vs. Noise

Figure 5.14: QML California: Absolute Differences and Ansatz

(a) Optimizer (b) Ansatz

Figure 5.15: QML California: Comparison of Optimizer and Ansatz

compared to 34% and 36% for COBYLA and Nelder-Mead, respectively. Figure 5.15a
shows that the mean difference for COBYLA and Nelder-Mead is a lot smaller than for
SPSA. Furthermore, except for some outliers, the Nelder-Mead configurations do not
perform too differently with and without noise.

Ansatz We find significant performance differences for PauliTwoDesign and RealAm-
plitudes. Interestingly, the largest ratio of ansatzes among the set of most similar
configurations is PauliTwoDesign (38%), with EfficientSU2 (34%) in second place. Only
30% and 29% of TwoLocal and PauliTwoDesign configurations make it into the set.
Similarly, the set of least similar configurations consists of only one RealAmplitudes one.
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(a) Feature Map (b) Feature Map Entanglement

Figure 5.16: QML California: Comparison of Feature Map and Entanglement

Ansatz Entanglement We do not find significant differences for any ansatz entangle-
ment strategy. The least similar configuration uses ’sca’ entanglement. ’Pairwise’ and
’linear’ entanglement are most often represented in the set of most similar configurations
with 36% and 33% of configurations, respectively. Only 26% of ’full’ entanglement
configurations are in the set, compared to 31% for both ’sca’ and ’circular’.

Feature Map We find significant differences for the ZFeatureMap, with noisy con-
figurations having a 0.015 higher MSE on average. No such difference can be observed
for ZZFeatureMap. Therefore, we find 34% of ZZFeatureMap configurations in the
set of most similar ones, compared to only 19% for ZFeatureMap. The least similar
configuration uses ZFeatureMap. Figure 5.16a visualizes the differences depending on
the feature map. It can be seen that the differences are a lot higher for the ZFeatureMap
than the ZZFeatureMap.

Feature Map Entanglement We find no significant differences for any entanglement
strategy, except for ’none’ (ZFeatureMap). ’full’ and ’sca’ entanglement configurations
being slightly overrepresented with 39%, compared to only 28% and 29% for ’linear’ and
’pairwise’. Figure 5.16b visualizes this pattern.

5.3.2 Seoul Bike Sharing Dataset
In the following, we will discuss our results for the Seoul Bike Sharing dataset. We will
again first discuss the experiments without noise and afterward in the presence of noise.

5.3.2.1 Noiseless Configuration

We show the predicted vs. actual plot for the final results in Figure 5.17a. It can be seen
that the model predicts only in range [−0.2, 0.5]. Unfortunately, the test performance is
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(a) Predicted vs. Actual (b) Convergence

Figure 5.17: QML Seoul: Final Predictions

Ansatz Optimizer Feature Map Entanglement MSE MAE Time
EfficientSU2 SPSA Z circular 0.0209 0.1074 23993s

RealAmplitudes SPSA Z full 0.0219 0.1113 27585s
TwoLocal SPSA Z sca 0.0227 0.1172 22055s

EfficientSU2 SPSA Z full 0.0229 0.1161 31995s
TwoLocal SPSA Z linear 0.0245 0.1209 21314s

Table 5.5: QML Seoul: Top 5 Configurations

a lot worse than the best validation performance during hyperparameter tuning, with a
MSE of 0.0467 and MAE of 0.1627. In particular, the model predicts only a very narrow
range, leading to unsatisfying results. The convergence plot shows steady convergence,
although at a high loss, hence, we hypothesize that it got stuck in a BP.

The results from the hyperparameter tuning show that the MSE values range from 0.02
to 0.10. The MAE ranges from 0.10-0.25. We show the top five models and parameters
in Table 4.2. We will again analyze the results separately for every parameter below.

Optimizer We find that Nelder-Mead does not find a reasonable optimization path,
similar to the California housing dataset. Therefore, both COBYLA and SPSA perform
significantly better than Nelder-Mead. Furthermore, SPSA is significantly better than
COBYLA, with the top five configurations being SPSA ones. Figure 5.18a shows the
behavior as a scatter plot. SPSA configurations again take a lot longer to train than
COBYLA ones do.

Ansatz We find no significant differences between the ansatzes. Nonetheless. PauliT-
woDesign is not represented among the best-performing configurations, while five out of
the best eight configurations use EfficientSU2. We show the performances in Figure 5.18b.
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(a) Optimizer (b) Ansatz

Figure 5.18: QML Seoul: Optimizer and Ansatz

It can be seen that the RealAmplitudes and EfficientSU2 configurations tend to perform
slightly better on average than the other ones, however, not when using Nelder-Mead.

Ansatz Entanglement We find no significant differences regarding the ansatz entan-
glement neither overall, nor when testing in combination with the respective ansatz.

Feature Map ZFeatureMap performs significantly better than ZZFeatureMap, and we
find that the best 27 configurations all use ZFeatureMap. Interestingly, we also observe
a substantially higher standard deviation of the MSE for ZFeatureMap configurations
(0.02), than we do for ZZFeatureMap ones (0.005). Figure 5.19a shows the performance
of the feature maps as box plots. It can be seen that the advantage of ZFeatureMap is
only given if COBYLA or SPSA are used for optimization.

Feature Map Entanglement No entanglement (ZFeatureMap) significantly outper-
forms all other strategies. Among the strategies for the ZZFeatureMap we find no
significant differences. Figure 5.19b visualizes the entanglement.

Only Nelder-Mead configurations make up the set of worst configurations. Interestingly,
no PauliTwoDesign configurations are in the set, i.e. while they do not perform the best,
they do not make up the set of worst configurations either. We find a larger percentage
of ZFeatureMap (4%) than ZZFeatureMap (0.9%) configurations in the set, suggesting,
that the performance range grows bigger, but not necessarily all configurations perform
well. Finally, we want to point out that all ZZFeatureMap configurations in the set of
worst configurations use ’full’ feature map entanglement.

Moreover, we want to investigate interesting patterns we found among the different
parameters. When we combine the ansatz and feature map, we find that ZFeatureMap
outperforms ZZFeatureMap for all ansatzes, but the advantage is not independent of the
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(a) Feature Map (b) Feature Map Entanglement

Figure 5.19: QML Seoul: Feature Map and Entanglement

Figure 5.20: QML Seoul: Ansatz vs. Feature Map

ansatz. We plot the behavior in Figure 5.20. It can be seen that the advantage that
ZFeatureMap can provide, is a lot smaller for the PauliTwoDesign ansatz than for the
other ansatzes.

5.3.2.2 Noisy Configuration

We show the predicted vs. actual plot for the final results in Figure 5.21a and the
convergence plot in Figure 5.17b. The predictions are similar to the noiseless experiments.
The MSE is at 0.0547, hence, slightly better than without noise, and the MAE is at
0.1687. Both the noisy and noiseless models use SPSA as the optimizer. When comparing
the convergence plots, we can observe that the noisy model’s optimization path is a lot
more volatile. While the final loss is very similar to the noiseless one, it can be seen that
it has problems finding a reasonable path.
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(a) Predicted vs. Actual (b) Convergence

Figure 5.21: QML Seoul with Noise: Final Predictions

Ansatz Optimizer Feature Map Entanglement MSE MAE Time
RealAmplitudes SPSA Z circular 0.0218 0.1182 23993s

EffiienSU2 SPSA Z linear 0.0227 0.1169 27585s
TwoLocal SPSA Z circular 0.0270 0.1245 22055s

EfficientSU2 SPSA Z circular 0.0279 0.1237 31995s
TwoLocal SPSA Z sca 0.0245 0.1264 21314s

Table 5.6: QML Seoul with Noise: Top 5 Configurations

We give an overview of the best configurations with noise in Table 5.6. Again, all best
configurations use the ZFeatureMap and SPSA as the optimizer. As before, we will
elaborate on each hyperparameter separately in the following.

Optimizer Similarly to previous experiments, COBYLA and SPSA perform signifi-
cantly better than Nelder-Mead, with a mean MSE of 0.064, 0.062 and 0.071 respectively.
Furthermore, SPSA is significantly better than COBYLA. All best configurations use
SPSA. We show a scatter plot, highlighting the different optimizers in Figure 5.22a.

Ansatz We find no significant differences between the different ansatzes. However, no
PauliTwoDesign configurations are among the best-performing ones, and EfficientSU2
configurations are the most frequently used ones in the set (three times, compared to
two TwoLocal and one RealAmplitudes).

Ansatz Entanglement We cannot observe significant differences between the different
entanglement strategies. This holds even if we compare the entanglement strategies for
every ansatz separately. However, ’circular’ entanglement is used most frequently in the
set of best configurations (three times, compared to one for ’full’, ’linear’ and ’sca’).
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(a) Optimizer (b) Feature Map

Figure 5.22: QML Seoul with Noise: Optimizer and Feature Map

Feature Map As previously observed, ZFeatureMap is significantly better than ZZFea-
tureMap with a mean MSE of 0.0489 compared to 0.0697. All best configurations use
ZFeatureMap. The feature maps with respect to the optimizer is plotted in Figure 5.22b.
It can be seen that the span of ZFeatureMap configurations is higher than the ones for
ZZFeatureMap, but the Nelder-Mead configurations still perform similarly in mean for
both feature maps.

Feature Map Entanglement Besides no entanglement (ZFeatureMap) being signif-
icantly better than any other entanglement strategy, we find no significant differences
between the strategies.

The set of worst configurations is made up of only Nelder-Mead configurations, using
the EfficientSU2 ansatz with full entanglement. Interestingly, the ratio of ZFeatureMap
configurations (2%) is bigger than the ZZFeatureMap one (0.4%).

Finally, we can again observe the interplay between ansatz and feature map as previously
reported, showing that the advantage of ZFeatureMap over ZZFeatureMap is dependent
on the ansatz used.

5.3.2.3 Comparison

Finally, we want to directly compare the configurations with and without noise. The abso-
lute differences between the configurations are quite small, as can be seen in Figure 5.23.
The mean difference is at 0.6% and the standard deviation at 0.5%. The maximum we
observe lies at 3%.

While we again find that the best configurations are most impacted by noise in the
quantum computer, we see that noise can improve the mean performance.
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Figure 5.23: QML Seoul: Absolute Differences

Optimizer We find significant differences in performance for all optimizers, with the
noisy configurations performing slightly better in mean. The difference is not too big, with
0.3%, 0.7% and 0.2% mean absolute difference in accuracy for COBYLA, Nelder-Mead
and SPSA respectively.

Ansatz Similarly to the optimizers, we find significant differences with and without noise
for all ansatzes, with the noisy configurations performing slightly better in mean (between
0.2%-0.4%). Interestingly, we find a higher ratio of PauliTwoDesign configurations (25%)
than for the other ones (18%-19%) in the set of most similar configurations.

Ansatz Entanglement There are significant differences in entanglement as well. This
holds if we consider the entanglement strategies alone, as well as in combination with
the respective ansatz. For the latter, there are significant differences for all but the
EfficientSU2 ansatz with ’sca’ entanglement. We plot the strategies in Figure 5.24a. ’Full’
entanglement exhibits some outliers and shows a bigger IQR than the other strategies do.
Nonetheless, ’pairwise’ performs worst in mean, which is also represented in the set of
most similar configurations, where only 13% of ’pairwise’ configurations can be found, as
compared to 16%-21% for the other strategies.

Feature Map We find significant differences for the ZZFeatureMap, with the noisy
configurations achieving 0.5% more accuracy in mean. We cannot report significant
differences for ZFeatureMap, however. Interestingly, we still find 20% of ZZFeatureMap
configurations in the set of most similar ones, compared to 13% of ZFeatureMap ones.

Feature Map Entanglement Similarly, all but ’none’ feature map entanglement
(ZFeatureMap) show significant differences with and without noise. We show box plots
with absolute differences for every entanglement strategy in Figure 5.24b. It can be
seen that ’linear’, ’sca’ and ’circular’ seem to lead to smaller differences, except for some
outliers.
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(a) Ansatz Entanglement (b) Feature Map Entanglement

Figure 5.24: QML Seoul: Absolute Differences Entanglement

5.3.3 Cover Type Dataset

In the following, we will present the results for the cover type dataset first on a perfect
machine, then with noise.

5.3.3.1 Noiseless Configuration

The best-performing model during hyperparameter tuning uses COBYLA, the ZFea-
tureMap, the TwoLocal ansatz with pairwise entanglement and LDA for feature reduction.
After retraining the model using 5,000 samples, we obtain an accuracy of 0.596 and an
f-1 score of 0.581. It takes about 14 hours to train.

We show the confusion matrix in Figure 5.25. It can be seen that the model primarily
predicts classes spruce/fir and lodgepole pine, which are the ones that are most
common in the dataset. It manages to predict 23% of the krummholz samples correctly
and about 16% of the cottonwood/willow ones. The results show that the model
fails to generalize.

The convergence graph reveals that, while the process is quite smooth, it converges with
a relatively high loss. The final training loss is about 1.8, as can be seen in Figure 5.26,
which is still high. As a reference, some of the best configurations during tuning converged
at a loss of 1.6.

We will now discuss the different configurations during tuning. Table 5.7 shows the
ansatz, optimizer, feature map, ansatz entanglement, preprocessing, validation accuracy,
validation f-1 score and training time for the best five configurations. Furthermore, in
Appendix D in Table D.5, we list the top 40 configurations. The validation accuracies
range from 8%-58%, i.e. there are significant performance differences between the
configurations.
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Figure 5.25: QML Cover Type: Confusion Matrix

Figure 5.26: QML Cover Type: Convergence
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Ansatz Optimizer Feature Map Entang. Prepr. Acc. F-1 Time
TwoLocal COBYLA Z pairwise LDA 0.588 0.583 606s

EfficientSU2 SPSA Z sca LDA 0.576 0.576 3171s
EfficientSU2 SPSA Z circular LDA 0.572 0.569 3208s

TwoLocal COBYLA Z circular LDA 0.584 0.564 1035s
EfficientSU2 SPSA Z linear LDA 0.588 0.563 3158s

Table 5.7: QML Cover Type: Top 5 Configurations

Figure 5.27: QML Cover Type: Nelder-Mead Convergence

Optimizer We find that both COBYLA and SPSA significantly outperform Nelder-
Mead, which has a mean accuracy of only 16% (compared to 22% and 25%, respectively).
Furthermore, SPSA significantly outperforms COBYLA. We visualize the performance,
highlighting different optimizers in Figure 5.28a. It can be seen that the average SPSA
and COBYLA configuration has an accuracy between 10%-30% and is slightly better
than Nelder-Mead ones. Furthermore, while there are several SPSA and COBYLA
configurations that outperform all others, there exists no such Nelder-Mead configuration.
We find that Nelder-Mead fails to find a reasonable optimization path. Figure 5.27 shows
an example of a convergence plot.

Ansatz There are no significant differences between the ansatzes. Nonetheless, we can
observe that there are no PauliTwoDesign configurations among the best performing ones
(the best is in place 37, with an accuracy of 40%). Figure 5.28b shows the performances
of the different ansatzes as box plots. It can be seen that they perform similarly on
average. While there are only few positive outliers for the PauliTwoDesign ansatz, there
are several for the other three ansatzes.

Ansatz Entanglement Looking at the entanglement strategy for the ansatz, we cannot
observe any significant differences. The same holds true when we consider combinations
of ansatz and entanglement.
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(a) Optimizer (b) Ansatz

Figure 5.28: QML Cover Type: Optimizer and Ansatz

Feature Map ZFeatureMap significantly outperforms ZZFeatureMap in our experi-
ments, with a mean accuracy of 35% and 19% respectively. The best 56 configurations
all use ZFeatureMap. Figure 5.29a visualizes the feature map performances. The perfor-
mance range of ZFeatureMap is a lot bigger than the one of ZZFeatureMap, suggesting
that the performance of a configuration does not depend solely on the feature map, but
rather multiple factors.

Feature Map Entanglement When considering the entanglement strategy for the
ZZFeatureMap, we see that ’linear’ entanglement outperforms all other strategies with a
mean accuracy of 20%. Moreover, ’pairwise’ (19%) works significantly better than ’full’
(17%) and ’circular’ (18%), and ’sca’ (18%) works significantly better than ’full’.

Preprocessing We find that LDA (mean accuracy 22%) and PCA (21%) show no
significant differences. Still, when considering the scatter plot in Figure 5.29b, it can
be seen that all top-performing configurations use LDA as a preprocessing step. The
techniques perform similarly in mean, but the best LDA configurations perform better
than the best PCA configurations.

Furthermore, we analyze the set of worst configurations, which make up 40% of all
configurations. We find that 66% of Nelder-Mead configurations are in the set, 36% of
COBYLA and only 17% of the SPSA ones are. Moreover, 50% of the configurations using
the PauliTwoDesign ansatz are among the worst-performing ones, with only 37%-40%
for the other three ansatzes. 45% of the ’linear’ ansatz entanglement configurations are
in the set. The smallest fraction of ansatz entanglements among the worst-performing
configurations is ’pairwise’ entanglement, with a ratio of 33%.

Unsurprisingly, there are a lot less ZFeatureMap configurations (22%) than ZZFeatureMap
(43%) in the set. When looking at the feature map entanglement, 54% of ’circular’
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(a) Feature Map (b) Preprocessing

Figure 5.29: QML Cover Type: Feature Map and Preprocessing

entanglement configurations can be found in the set. The smallest percentage is ’linear’
entanglement with 30%, which is interesting, given that the only difference between the
two is that the last qubit is not entangled with the first. Finally, slightly more LDA
configurations (41%) than PCA configurations (38%) are among the worst-performing
ones.

Lastly, we analyze correlations between different parameters. In particular, Figure 5.30a
visualizes the performance of different ansatzes, highlighting the feature map applied. It
can be seen that the ZZFeatureMap configurations perform similarly across all ansatzes.
The performance range increases for the ZFeatureMap, i.e., one can find worse and
better configurations than with the ZZFeatureMap. The performance when using the
ZFeatureMap does, however, seem to be dependent on the ansatz used, especially the
PauliTwoDesign ansatz performs worse than the others. It is still worth mentioning that,
while no particularly good configurations are achieved, the performance range for the
ansatz is quite narrow, and they do not make up the worst configurations overall either.
The configurations using the ansatz therefore have a very stable performance.

Furthermore, we plot the performance of the feature map and optimizer combinations in
Figure 5.30b. In particular, we want to point out that ZFeatureMap does not as a general
rule outperform the ZZFeatureMap. The performance depends a lot on the optimizer, and
an advantage is only achieved if the optimizer manages to find a reasonable optimization
path. The ZFeatureMap with Nelder-Mead performs on average worse than it does with
ZZFeatureMap and makes up for the worst configurations overall.

5.3.3.2 Noisy Configuration

The best model obtained during parameter tuning uses COBYLA, the ZFeatureMap, the
RealAmplitudes ansatz with circular entanglement and LDA for feature reduction. We
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(a) Ansatz vs. Feature Map (b) Feature Map vs. Optimizer

Figure 5.30: QML Cover Type: Feature Map/Ansatz vs. Optimizer

Ansatz Optimizer Feature Map Entang. Prepr. Acc. F-1 Time
RealAmplitudes COBYLA Z circular LDA 0.560 0.550 2230s

TwoLocal COBYLA Z pairwise LDA 0.564 0.549 1730s
RealAmplitudes SPSA Z linear LDA 0.544 0.536 3016s
RealAmplitudes SPSA Z circular LDA 0.528 0.532 3043s

TwoLocal COBYLA Z sca LDA 0.532 0.528 2536s

Table 5.8: QML Cover Type with Noise: Top 5 Configurations

obtain an accuracy of 0.583, an f-1 score of 0.558, and the model trains for about 33
hours.

The confusion matrix is shown in Figure 5.31. We essentially see the same behavior as
we did without noise, with the model mainly predicting the majority classes. The third
highest per-class score is obtained on class ponderosa pine, where it only predicts
the correct class in about 6.9% of the cases.

We will now again focus on the parameter tuning part. Table 5.8 shows the ansatz, opti-
mizer, feature map, ansatz entanglement, preprocessing, validation accuracy, validation
f-1 score and training time for the best five configurations when noise is introduced in the
simulator. Furthermore, in Appendix D in Table D.6, we list the top 40 configurations.
The validation accuracies range from 18%-56%. Interestingly, while the performances of
best models decrease when noise is when noise is introduced, the mean accuracy again
increases.

In the following, we will elaborate on the performance depending on the different
parameters separately.
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Figure 5.31: QML Cover Type: Confusion Matrix

Optimizer We find that both SPSA (mean accuracy 26%) and COBYLA (24%)
outperform Nelder-Mead (18%). Additionally, SPSA is significantly better than COBYLA.
While SPSA statistically outperforms COBYLA, we find that more configurations using
COBYLA can be found among the top performing configurations (13 for COBYLA,
compared to 10 for SPSA). Figure 5.32a visualizes the performances of the different
optimizers. Moreover, Figure 5.32b again plots an example of the convergence of a
Nelder-Mead configuration, showing that it fails to find a reasonable optimization path.

Ansatz We again find no significant differences regarding the chosen ansatz. How-
ever, PauliTwoDesign is underrepresented among the best configurations with only one
candidate, as opposed to seven or eight for the other ansatzes.

Ansatz Entanglement There are no significant differences regarding the choice of
entanglement. However, ’circular’ and ’linear’ entanglement can be found more often
within the top configurations, occurring six and seven times, compared to one to four
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(a) Optimizer (b) Nelder-Mead Convergence

Figure 5.32: QML Cover Type with Noise: Optimizer

times for the others. When we consider the entanglement in combination with the ansatz,
we find that for the EfficientSU2 ansatz, ’circular’ (mean accuracy 23%) and ’full’ (23%)
outperform ’linear’ (22%) and ’sca’ (22%). Nonetheless, they are equally represented
among the top-performing configurations.

Feature Map ZFeatureMap outperforms ZZFeatureMap with a mean accuracy of 34%,
as compared to 20%. All the best-performing configurations use ZFeatureMap. We show
box plots in Figure 5.33b, suggesting that using ZFeatureMap does not automatically
lead to a better result. The performance still depends a lot on the optimizer used.

Feature Map Entanglement No entanglement (ZFeatureMap) outperforms all other
strategies. There are no significant differences among the strategies otherwise.

Preprocessing PCA significantly outperforms LDA, with a mean accuracy of 22.9%
compared to 22.8%. While the mean does not differ too much, the standard deviation is
at 6% compared to 10% respectively, explaining the results of the significance tests. We
visualize the performance of the different preprocessing techniques, depending on the
optimizer, in Figure 5.33a. It can be seen that, while PCA performs significantly better,
the best performing configurations use LDA.

Furthermore, we take a look at the set of worst configurations. We find that 12% of all
Nelder-Mead configurations are in the set, compared to 3% and 0.5% of COBYLA and
SPSA configurations. Interestingly, 11% of the ZFeatureMap configurations are among
the worst performing ones, while it is only 4% of the ZZFeatureMap ones. Moreover,
while only 1% and 2% of ’full’ and ’pairwise’ ansatz entanglement configurations are in
the set, the ratio for ’linear’ is 9%.
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(a) Preprocessing (b) Feature Map

Figure 5.33: QML Cover Type with Noise: Preprocessing and Feature Map

Figure 5.34: QML Cover Type with Noise: Ansatz vs. Feature Map

Finally, we plot the performance depending on the ansatz and feature map, separately for
each optimizer, in Figure 5.34. It can be seen ZFeatureMap has a worse performance than
ZZFeatureMap for many Nelder-Mead configurations. Furthermore, the performance
range of the feature map depends on the ansatz. It can be seen that EfficientSU2 and
TwoLocal tend to have a bigger range for COBYLA and SPSA, whereas PauliTwoDesign
and RealAmplitudes have a more narrow one.

5.3.3.3 Comparison

Finally, we compare the results with and without noise. We find that the same configura-
tion with and without noise has an average difference in accuracy of 3% and a standard
deviation of 2%. There are configurations that have no difference, but the maximum is at
17%. Figure 5.35 shows how the differences are distributed. There are only few outliers.

We will now delve into the different parameters again and report on significant differences.
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Figure 5.35: QML Cover Type: Absolute Difference in Accuracy

Optimizer We find no significant differences for SPSA (mean accuracy of 25% without
and 26% with noise) but significant ones for COBYLA (22% without and 24% with)
and Nelder-Mead (16% without and 18% with). Still, SPSA configurations make up the
majority of configurations with the biggest performance difference. Figure 5.36a shows,
however, that the differences between the optimizers are minimal.

Ansatz We find significant performance differences for all ansatzes. The mean accuracies
for the noisy experiments are usually 1%-2% bigger than without noise, however, the
standard deviation for EfficientSU2, RealAmplitudes and TwoLocal are with 8%-9% bigger
than the PauliTwoDesign ones with 5%-6%. None of the PauliTwoDesign configurations
are among the least similar configurations, while 0.5%-0.6% of the configurations using
other ansatzes are in the set.

Ansatz Entanglement Significant differences can be found for ’circular’, ’full’ and
’linear’ entanglement (with between 1%-2% mean difference). None of the ’full’ entan-
glement configurations are among the least similar ones. Figure 5.36b visualizes the
differences between the strategies. It can again be seen that the box plots for different
entanglement strategies look very similarly, i.e., there are no clear differences between
the different hyperparameter choices.

Feature Map We find significant differences for ZFeatureMap, where the noisy ex-
periments perform worse (34% mean accuracy without compared to 25% with noise),
but not for ZZFeatureMap (19% without and 20% with noise). 2% of the ZFeatureMap
configurations are among the least similar configurations, whereas only 0.2% of ZZFea-
tureMap are in the set. Similarly, 38% of the ZZFeatureMap configurations are among
the most similar ones, compared to only 32% for ZFeatureMap. Figure 5.37 visualizes
the differences depending on the feature map.
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(a) Optimizer (b) Entanglement

Figure 5.36: QML Cover Type: Comparison Optimizer and Entanglement

Figure 5.37: QML Cover Type Comparison: Feature Map

Feature Map Entanglement Significant differences can be found for ’circular’, ’full’,
’pairwise’ and ’sca’ entanglement with a 1%-3% mean difference in accuracy. No ’circular’,
’full’ or ’pairwise’ feature map entanglement configurations can be found among the least
similar configurations.

Preprocessing Both LDA and PCA perform significantly different with and without
noise, with a 0.7% and 1.7% difference in mean accuracy and a slightly higher standard
deviation with no noise.

5.3.4 KDD Cup 1999 Dataset
In the following, we will first discuss the results without noise, and then in presence of
noise.
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Figure 5.38: QML KDD: Confusion Matrix

5.3.4.1 Noiseless Configuration

The loss for the final model stagnated quite early on at about 2.0, while it decreased to
about 1.25 during the hyperparameter tuning phase. The final accuracy was at 54%,
which is 37% lower than the best result obtained during hyperparameter tuning.

We show the confusion matrix in Figure 5.38, normalized by the true values. Some classes
are hardly ever predicted (i.e. ftp write, land, load module, multihop, ...),
while smurf and neptune attacks, which make up the classes in the dataset that are
most often represented, are predicted frequently. Interestingly, it does not predict class
normal too often, even though it is one of the majority classes in the dataset.

When looking at the tuning results, it can be seen that the validation performances range
from 2% to 91% accuracy. All in all, we find that some configurations work very well,
while certain hyperparameter configurations underperform altogether. Table 5.9 lists
the ansatz, optimizer, feature map, entanglement, preprocessing, validation accuracy,
validation f-1 score and time for the best five configurations. Furthermore, in Appendix
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Ansatz Optimizer Feature Map Entang. Prepr. Acc. F-1 Time
TwoLocal SPSA Z full PCA 0.912 0.905 2016s

EfficientSU2 COBYLA Z circular PCA 0.904 0.896 2907s
RealAmplitudes SPSA Z sca PCA 0.884 0.890 2576s
RealAmplitudes SPSA Z circular PCA 0.888 0.886 2612s

EfficientSU2 COBYLA Z sca PCA 0.880 0.886 2457s

Table 5.9: QML KDD: Top 5 Configurations

(a) Convergence Nelder-Mead (b) Optimizer

Figure 5.39: QML KDD: Nelder-Mead Convergence and Optimizer

D in Table D.7, we list the top 40 configurations. We will discuss the performance for
each parameter separately in the following.

Optimizer We find that both COBYLA and SPSA perform significantly better than
Nelder-Mead. While both have a mean accuracy of about 66%, Nelder-Mead obtains
only 18% in mean. We find the convergence plot for Nelder-Mead to be very unstable;
an example can be seen in Figure 5.39a. There are no significant differences between
SPSA and COBYLA. Figure 5.39b plots the time vs. accuracy, highlighting the different
optimizers. It can be seen that there are few Nelder-Mead configurations with comparable
performance to SPSA or COBYLA. Furthermore, SPSA takes, as a general rule, longer
to fit than COBYLA.

Ansatz We find no significant differences between the performance of the different
ansatzes, all of them achieving about 50% accuracy in mean. Still, the best PauliTwoDe-
sign configuration is only in place 66 overall, with an accuracy of 72%. While it performs
comparably to the other ansatzes in mean, there are no above-average configurations
as can be observed for the other ansatzes. Figure 5.40a shows the time vs. accuracy,
highlighting different ansatzes. While there is no clear correlation between ansatz and
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(a) Ansatz (b) Entanglement

Figure 5.40: QML KDD: Ansatz and Entanglement

accuracy, it can be seen that EfficientSU2 usually takes longer to fit. Furthermore, as
discussed previously, the PauliTwoDesign configurations lie mostly in the center.

Ansatz Entanglement There are no significant differences between the different
entanglement strategies, not even in combination with the ansatz. Figure 5.40b com-
pares different entanglement strategies. Entanglement ’none’ corresponds to using the
PauliTwoDesign ansatz. It can be seen that it performs well on average, but there are
hardly any negative or positive outliers.

Feature Map We find that the ZFeatureMap significantly outperforms the ZZFea-
tureMap with a mean accuracy of 56% and 49% respectively and all best configurations
use the ZFeatureMap. We compare the feature maps visually in Figure 5.41a. It can be
seen that ZFeatureMap is not always better than ZZFeatureMap, rather the span of the
performance is bigger. Furthermore, the two feature maps perform about the same when
using Nelder-Mead as the optimizer.

Feature Map Entanglement No entanglement (ZFeatureMap) outperforms all other
strategies significantly. Furthermore, we find ’circular’ (mean accuracy of 50%) and
’pairwise’ (49%) to outperform ’full’ (48%), and ’pairwise’ to outperform ’linear’ (48%).
A box plot is shown in Figure 5.41b. It can again be seen that the performance strongly
depends on the optimizer.

Preprocessing Lastly, we compare the results of PCA and LDA. We find that PCA
performs significantly better than LDA, with a mean accuracy of 53%, as compared to
47%. We visualize the different performances in Figure 5.42. It is interesting to see that
the range of the LDA configurations is quite narrow, i.e., they mostly have about the
same performance. For PCA, there are several positive outliers.
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(a) Feature Map (b) Entanglement Feature Map

Figure 5.41: QML KDD: Feature Map and Entanglement Feature Map

Figure 5.42: QML KDD: Preprocessing

Furthermore, we look at the worst configurations (within 10% of the worst accuracy). We
find 58% of Nelder-Mead configurations in the set, and no configurations of other opti-
mizers. Interestingly, only 12% of the configurations using ’sca’ as entanglement strategy
are within the worst configurations, compared to 20%-22% for the other entanglement
strategies.

20% ZZFeatureMap configurations compared to 16% of the ZFeatureMap ones are within
the set of worst configurations. We also find differences depending on the entanglement of
the ZZFeatureMap. 27% and 25% of the ’linear’ and ’pairwise’ configurations, compared
to 14% and 15% of the ’linear’ and ’sca’ configurations, are among the worst performing
ones.

Finally, we look at correlations between different parameters. Figure 5.43a plots the
performance of different ansatz and feature map combinations. Although ZFeatureMap
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(a) Ansatz vs. Feature Map (b) Preprocessing vs. Feature Map

Figure 5.43: QML KDD: Ansatz/Preprocessing vs. Feature Map

significantly outperforms ZZFeatureMap, we find that the ansatz impacts the extent
to which this holds true. It can be seen that the difference in performance of feature
map is a lot smaller for the slightly underperforming PauliTwoDesign ansatz. The plot
insinuates that ZFeatureMap does not, as a general rule, lead to better results, rather it
amplifies the strengths of a good ansatz.

Furthermore, Figure 5.43b compares the feature map with the applied preprocessing. We
observe a similar behavior with ZFeatureMap working better when using PCA as the
preprocessing method.

5.3.4.2 Noisy Configuration

We observe a similar behavior as we do without noise, when looking at the results of
the final model. We obtain an accuracy of 57% and again observe a big discrepancy
(29%) between the obtained results during hyperparameter tuning and final training.
The confusion matrix in Figure 5.44 shows that it mainly predicts the classes smurf,
buffer overflow and normal.

When we analyze the hyperparameter tuning results, we observe that the accuracies
range from 0.8%-86%. We list the top five configuration in Table 5.10. Furthermore, in
Appendix D in Table D.8, we list the top 40 configurations.

Optimizer We find that the optimizers perform significantly different. In particular,
both COBYLA (mean accuracy 66%) and SPSA (65%) outperform Nelder-Mead (15%).
Additionally, we find that COBYLA is significantly better than SPSA. Still, they are
equally represented among the best configurations. Figure 5.45a plots the time vs.
accuracy, comparing the optimizers visually.
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Figure 5.44: QML KDD with Noise: Confusion Matrix

Ansatz Optimizer Feature Map Entang. Prepr. Acc. F-1 Time
TwoLocal COBYLA Z circular PCA 0.864 0.859 7677s

EfficientSU2 SPSA Z circular PCA 0.860 0.854 10241s
TwoLocal SPSA Z linear PCA 0.860 0.852 9142s

EfficientSU2 COBYLA Z sca PCA 0.836 0.846 8504s
RealAmplitudes SPSA Z circular PCA 0.848 0.839 9245s

Table 5.10: QML KDD with Noise: Top 5 Configurations
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(a) Optimizer (b) Ansatz

Figure 5.45: QML KDD with Noise: Optimizer and Ansatz

Ansatz Analyzing the ansatz, we find no significant differences between the different
choices. However, it can again be seen that PauliTwoDesign is not represented at all
among the best configurations. Figure 5.45b shows the performance of the ansatzes
depending on the used optimizers. It can be seen that PauliTwoDesign does not in
general perform worse. Rather, the performance range is quite narrow, without a lot of
positive or negative outliers.

Ansatz Entanglement There are no significant differences between the entanglement
strategies. This holds true overall, but also when comparing the entanglement strategies
for every ansatz separately.

Feature Map Furthermore, we find that, similarly to the no-noise scenario, ZFea-
tureMap is significantly better than ZZFeatureMap, with an average accuracy of 51%
and 48% respectively. Still, four configurations using the ZZFeatureMap made it into the
best configurations. Figure 5.46a visualizes the results as box plots. It can be seen that
the span of the performances of ZFeatureMap is larger than the ZZFeatureMap one, and
that it is not, as a general rule, better. It is also interesting to see that there are a lot of
positive outliers for Nelder-Mead configurations with ZZFeatureMap.

Feature Map Entanglement When considering the different entanglement strategies,
we find no significant differences between them, except for ’no entanglement’ (ZFea-
tureMap) outperforming all other configurations.

Preprocessing Finally, we consider the preprocessing applied. It can be seen that
PCA works significantly better than LDA, with a mean accuracy of 51% compared to
46%. Figure 5.46b shows that the advantage is only given if a reasonable optimizer is
employed.
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(a) Feature Map (b) Preprocessing

Figure 5.46: QML KDD with Noise: Feature Map and Preprocessing

When looking at the worst configurations, we find a large fraction (52%) of Nelder-Mead
configurations, while no configurations for SPSA and COBYLA made it into the set. 21%
of the ZFeatureMap configurations are in the set, compared to 16% of the ZZFeatureMap
ones. Moreover, ’sca’ and ’linear’ ansatz entanglements are slightly underrepresented, with
11% and 15% respectively, as compared to 19%-21% for the other strategies. Interestingly,
only 4% of the ’full’ feature map entanglement configurations are in the set, as compared
to 15%-26% for the other entanglement strategies. The difference between PCA and
LDA is less pronounced with 19% and 15% respectively.

Finally, we look at how different parameters affect each other. In particular, we consider
how ansatz and feature map work with each other. Interestingly, we find significant differ-
ences between the Z- and ZZFeatureMap only for the EfficientSU2 and RealAmplitudes
ansatz. The two feature maps do not show any significant differences when considering
the PauliTwoDesign and TwoLocal ansatz. We plot the configurations, facetted by
the optimizer used, in Figure 5.47. The plots for SPSA and COBYLA look similarly.
Interestingly, the pattern seems to be reversed for Nelder-Mead, i.e., the ZZFeatureMap
configurations appear to work better on average.

5.3.4.3 Comparison

Finally, we directly compare the configurations with and without noise and look for
significant differences. We find that the same configurations have an average difference
in accuracy of 6% and a standard deviation of 8%. There are configurations that have
no difference, but the maximum is at 55%. Figure 5.48 shows how the differences are
distributed. Although 75% of the configurations have a difference of less than 10%, there
are a lot of outliers.

We will now delve into the different parameters again and report on significant differences.
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Figure 5.47: QML KDD with Noise: Ansatz vs. Feature Map

Figure 5.48: QML KDD: Absolute Difference in Accuracy

Optimizer We find that there are no significant differences for any optimizer. However,
the least similar configurations consist of only Nelder-Mead configurations and while
about 36% of COBYLA and SPSA configurations are within the most similar ones, only
27% of the Nelder-Mead ones are in the set. We visualize the results in Figure 5.49a.

Ansatz When considering the ansatz, we find significant performance differences for
all except PauliTwoDesign. 40% of the PauliTwoDesign configurations are within the
most similar ones, whereas only 30%-34% are in the most similar configurations from
the other ansatzes. Interestingly, the least similar configurations are only made up from
RealAmplitudes configurations. We show the accuracy differences of the ansatzes in
Figure 5.49b.

Ansatz Entanglement We find no significant differences neither when considering the
entanglement parameter alone, nor in combination with the ansatz. However, the least
similar configurations are up of only ’sca’ ones, hence, all of them use RealAmplitudes
with ’sca’ entanglement.

97



5. Results

(a) Optimizer (b) Ansatz

Figure 5.49: QML KDD: Comparison Optimizer and Ansatz

Feature Map We find that the results for the ZFeatureMap are significantly different
(mean accuracy of 51% with noise compared to 56% without). Interestingly, there are no
significant differences for ZZFeatureMap (48% with and 49% without noise). 34% of the
ZZFeatureMap configurations are within the most similar configurations, as compared
to 28% for the ZFeatureMap. All configurations within the least similar ones use the
ZZFeatureMap as well (0.1%). The results are interesting, as in the visualization in
Figure 5.50a, there are a lot more outliers for ZZFeatureMap. Still, the minimum, 25, 50
and 75 quantile are lower for ZZFeatureMap than ZFeatureMap.

Feature Map Entanglement Similarly, we find that the performance for no fea-
ture map entanglement (ZFeatureMap) differs significantly, however, no differences can
be found for the entanglement strategies of ZZFeatureMap. Interestingly, 38% of the
’full’ feature map entanglement configurations are within the most similar configura-
tions, compared to 31%-34% for the other strategies. Furthermore, all the least similar
configurations use ’circular’ entanglement.

Preprocessing We run the same analysis for the applied preprocessing and find no
significant differences for LDA, but a significant difference for PCA (51% mean accuracy
with noise and 53% without). All the least similar configurations use PCA. Furthermore,
with 36% of the configurations, LDA is represented a lot more frequently among the set
of most similar configurations than PCA with 29%. Figure 5.50b shows that the range
for PCA is bigger than for LDA.
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(a) Feature Map (b) Preprocessing

Figure 5.50: QML KDD Comparison: Feature Map and Preprocessing

5.4 Comparison of the Models
It is evident that classical ML currently maintains a significant advantage over QML
in terms of runtime. Nonetheless, our experiments have revealed interesting patterns,
which we want to summarize in the following. We will first begin by comparing the
performances of the final classical and quantum models, answering our first research
question, and finally, draw concrete recommendations for building QML models, thus
answering the remaining research questions.

In addition to significantly longer fitting times, substantial differences in performance exist
between classical ML models and their quantum counterparts. We were unable to achieve
superior model performance using VQAs. Notably, both classical and quantum models
exhibit a similar tendency in classification tasks, favoring the prediction of majority
classes rather than considering all classes.

We believe this limitation was reinforced by the necessity of reducing the training sample
size due to the excessive runtime of quantum models. It is widely recognized that a larger
dataset often leads to improved ML model performance. Thus, using more samples could
have potentially led to models that generalize better to unseen data.

When comparing different QML models across the datasets, certain consistent patterns
can be observed despite the specific characteristics of each dataset. In the following, we
will discuss these separately for each hyperparameter.

Optimizer One of the patterns which we found most consistently throughout all
datasets was that Nelder-Mead had difficulties converging (as was depicted in Figure 5.39a).
Not one Nelder-Mead configurations was among the best ones, and COBYLA and SPSA
outperformed it on all experiments we conducted. We sometimes found significant
differences for COBYLA and SPSA, however, overall neither one clearly outperformed
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the other one. Even when we found significant differences across all configurations, the
best configurations were usually made up of equal shares of both optimizers. However,
given that COBYLA was usually a lot faster than SPSA, we would argue to employ
COBYLA in the beginning and only switch to a different optimizer if problems arise.

Feature Map Another pattern we found consistently across all experiments was that
ZFeatureMap was significantly better than ZZFeatureMap. Therefore, we believe that it is
a good option to start with, and to only switch if the performance is bad. ZZFeatureMap
could be a reasonable alternative, but we also want to point out that PauliFeatureMap is
a highly customizable alternative. The Pauli gates can be specified freely, and tuning
them properly could lead to significant performance gains. However, one can choose
between four gates and concatenate them arbitrarily, so the search space grows quite
quickly.

Feature Map Entanglement Should a different feature map than the ZFeatureMap
be used, the entanglement strategy can be set as well. Our experiments did not give
us clear insights into the strategies, however, we found ’full’ entanglement to often be
significantly outperformed by other strategies.

Ansatz In most of our experiments, we did not find significant differences between
different ansatz choices. Nonetheless, PauliTwoDesign could consistently not be found
among the best performing ansatzes, while also not being among the worst performing
ones either. We found no significant differences among the other ansatzes, however, given
that EfficientSU2 usually had a longer runtime, we would advise starting with either
TwoLocal or RealAmplitudes.

TwoLocal is a highly customizable ansatz, and rotation and entanglement blocks have to
be set accordingly. Again, tuning the one qubit rotation and two qubit entanglement
gates accordingly might lead to significant performance gains. However, due to the vast
possibilities of setting the blocks, the search space also grows quite quickly. We would
therefore advise starting with the RealAmplitudes ansatz, as it can be used out-of-the-box,
without having to think about rotation and entanglement blocks.

Ansatz Entanglement We found no significant differences regarding the ansatz
entanglement consistently across our experiments, neither performance- nor runtime-wise.
Choosing the default strategy and only tuning it should the performance not be sufficient
seems like a viable option.

Preprocessing In the majority of our experiments, PCA significantly outperformed
LDA. Still, for the cover type dataset, all the best configurations used LDA as the
preprocessing step, and for the KDD dataset, the best configurations use PCA. We
therefore cannot advise using one or the other, but rather recommend testing, which one
works best beforehand.
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We found that noise does not necessarily decrease the performance of the models overall,
but often even increases it. However, it negatively affected the performance of the best-
performing models throughout our tuning experiments. Nonetheless, our experiments
did not reveal any clear patterns about which parameter choices are more and which
ones are less affected by noise in the circuit.
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CHAPTER 6
Conclusion

This thesis has explored quantum machine learning (QML), emphasizing the potential
of quantum computing in the post-Moore age. The ability of quantum systems to
process vast amounts of information and obtain significant algorithmic speed-ups has the
potential to unlock new frontiers in machine learning (ML). When looking at the results
and runtime, however, it is important to keep in mind that, while a lot of research has
gone into classical ML for decades, the field of QML and quantum computing (QC) in
general are still in early stages of development.

Several papers have been published that try to optimize the performance of a QML
model on a single dataset. In this thesis, we have extended the approach, trying to find
configurations that work well on a variety of problems, by comparing QML and classical
ML models on four different datasets for classification and regression.

Our results suggest that classical ML still has a head start over QML, both in terms of
runtime and performance. We found big performance differences across the datasets. One
of the biggest limitations is, in our opinion, that the runtime of a variational quantum
algorithm (VQA) quickly increases with more training data, hence, we had to tune the
models using only 400 samples and train the final models on 5,000 data points. Both
the classical and quantum models showed that they had problems predicting minority
classes for classification and outliers for regression. The limited samples made it difficult
to produce models that generalize.

Nonetheless, we have gained valuable insights into tuning parameters for VQAs. In
particular, the choice of feature map and optimizer is crucial. COBYLA and SPSA
seem to both be reasonable choices for the optimizer, while Nelder-Mead consistently
underperforms. ZFeatureMap outperforms ZZFeatureMap across all our experiments.
Among the entanglement strategies for ZZFeatureMap, we find that ’full’ entanglement is
often significantly worse than other strategies, and it might be favorable to use ’pairwise’,
’linear’ or ’sca’.
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The ansatzes perform similarly on average, however, some are more likely to lead to
higher-performing outliers. Therefore, we advise starting with RealAmplitudes, which
can be used out-of-the-box and is often faster than EfficientSU2. Furthermore, TwoLocal
is a good option as well, however, the entanglement and rotation gates have to be selected
manually. We find hardly any significant differences between the chosen entanglement
strategy, and therefore believe using the default option is a good start.

Regarding preprocessing for classification, we were not able to reproduce the results
reported in [MP22, HQBCTC22]. In the majority of experiments, PCA was significantly
better than LDA. Notably, however, the best configurations for the cover type dataset
all used LDA, whereas PCA was favorable for the KDD Cup dataset.

Overall, there is an enormous amount of parameters one can tune in a VQA. For our
exhaustive search, we had to restrict our search space to the most fundamental ones,
which poses a limitation to our goal of finding configurations that lead to high performing
models. Notably, we believe replacing the exhaustive search and switching to a more
stochastic setup (such as an f-race) would allow testing more hyperparameters, while
eliminating consistently underperforming ones already in the very beginning.

Furthermore, it would be interesting to investigate the impact of different levels of
noise more thoroughly. Qiskit allows building complex noise models, and it would be
fascinating to see how the different errors and error probabilities affect the performance
of the models.

Finally, using only seven qubits to represent the data is a limitation as well. We believe
it may be interesting to investigate how the performance changes with a higher number
of qubits.
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APPENDIX A
Additional Mathematical

Explanations

Equation A.1 describes a calculation step that was skipped in Section 2.2.5. We add it
here for clarification, but note that it is just a mere multiplication and tensor product of
the different gates.

(H ⊗ 1) ∗ (1
2 ∗ (|0⟩ + |1⟩) ∗ (|f(0)⟩ − | ˜f(0)⟩) =

(H ⊗ 1) ∗ (1
2 ∗ (|0⟩|f(0)⟩ − |0⟩| ˜f(0)⟩ + |1⟩|f(0)⟩ − |1⟩| ˜f(0)⟩) =

1
2 ∗ (H|0⟩ ⊗ 1|f(0)⟩ − H|0⟩ ⊗ 1| ˜f(0)⟩ + H|1⟩ ⊗ 1|f(0)⟩ − H|1⟩ ⊗ 1| ˜f(0)⟩) =
1
2( 1√

2
(|0⟩ + |1⟩) ⊗ |f(0)⟩ − 1√

2
(|0⟩ + |1⟩) ⊗ | ˜f(0)⟩+

1√
2

(|0⟩ − |1⟩) ⊗ |f(0)⟩ − 1√
2

(|0⟩ − |1⟩) ⊗ | ˜f(0)⟩ =

1
2( 1√

2
(2|0⟩ ⊗ |f(0)⟩ − 2|0⟩ ⊗ | ˜f(0)⟩)) =

1√
2

|0⟩(|f(0)⟩ − | ˜f(0)⟩)

(A.1)
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APPENDIX B
Data Summary Statistics

This chapter contains summary statistics of the datasets as described in Section 4.1.
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B. Data Summary Statistics
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B. Data Summary Statistics
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APPENDIX C
Classical Machine Learning

This chapter contains the results of the classical machine learning models. These are
described and interpreted in Section 5.2. The time is measured in seconds.
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C. Classical Machine Learning

Model Scaler MSE MAE Time Value
Gradient Boosting MinMax 0.02 0.09 19.62 criterion: friedman_mse

19.62 max_depth: 4
19.62 max_features: sqrt
19.62 n_estimators: 300

- 0.02 0.09 14.15 criterion: squared_error
14.15 max_depth: 4
14.15 max_features: sqrt
14.15 n_estimators: 300

Standard 0.02 0.09 19.79 criterion: squared_error
19.79 max_depth: 4
19.79 max_features: sqrt
19.79 n_estimators: 300

Random Forest - 0.02 0.10 18.81 criterion: friedman_mse
18.81 max_depth: 10
18.81 max_features: log2
18.81 n_estimators: 250

Linear Regression Standard 0.02 0.10 0.01 fit_intercept: True
MinMax 0.02 0.10 0.01 fit_intercept: True
- 0.02 0.10 2.07 fit_intercept: True

Random Forest Standard 0.02 0.10 24.18 criterion: friedman_mse
24.18 max_depth: 8
24.18 max_features: log2
24.18 n_estimators: 250

MinMax 0.02 0.10 23.94 criterion: friedman_mse
23.94 max_depth: 8
23.94 max_features: log2
23.94 n_estimators: 200

Support Vector Machine Standard 0.02 0.10 0.59 C: 1
0.59 kernel: linear

- 0.02 0.10 667.86 C: 0.01
667.86 kernel: linear

MinMax 0.02 0.11 0.42 C: 1
0.42 kernel: linear

K Nearest Neighbors Standard 0.02 0.11 0.16 algorithm: brute
0.16 n_neighbors: 10
0.16 weights: distance

MinMax 0.02 0.11 0.20 algorithm: brute
0.20 n_neighbors: 10
0.20 weights: distance

- 0.06 0.18 0.46 algorithm: auto
0.46 n_neighbors: 30
0.46 weights: uniform

Table C.1: Classical Baseline: California Housing128



Model Scaler MSE MAE Time Value
Gradient Boosting - 0.01 0.06 12.99 criterion: squared_error

12.99 max_depth: 2
12.99 max_features: sqrt
12.99 n_estimators: 300

MinMax 0.01 0.06 14.56 criterion: squared_error
14.56 max_depth: 2
14.56 max_features: sqrt
14.56 n_estimators: 300

Standard 0.01 0.06 14.90 criterion: squared_error
14.90 max_depth: 2
14.90 max_features: sqrt
14.90 n_estimators: 300

Random Forest MinMax 0.01 0.06 20.43 criterion: friedman_mse
20.43 max_depth: 10
20.43 max_features: sqrt
20.43 n_estimators: 250

Standard 0.01 0.06 20.41 criterion: friedman_mse
20.41 max_depth: 10
20.41 max_features: sqrt
20.41 n_estimators: 250

- 0.01 0.06 16.87 criterion: friedman_mse
16.87 max_depth: 10
16.87 max_features: sqrt
16.87 n_estimators: 250

K Nearest Neighbors MinMax 0.01 0.07 0.17 algorithm: auto
0.17 n_neighbors: 10
0.17 weights: distance

Standard 0.01 0.07 0.18 algorithm: auto
0.18 n_neighbors: 10
0.18 weights: distance

Support Vector Machine Standard 0.01 0.08 0.57 C: 10
0.57 gamma: 0.01
0.57 kernel: rbf

MinMax 0.01 0.08 0.27 C: 10
0.27 gamma: 0.1
0.27 kernel: rbf

Linear Regression Standard 0.02 0.10 0.01 fit_intercept: True
MinMax 0.02 0.10 0.01 fit_intercept: True
- 0.02 0.10 1.90 fit_intercept: True

Support Vector Machine - 0.02 0.10 313.61 C: 0.1
313.61 kernel: linear

K Nearest Neighbors - 0.02 0.11 0.47 algorithm: auto
0.47 n_neighbors: 30
0.47 weights: distance

Table C.2: Classical Baseline: Seoul Bike Sharing
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C. Classical Machine Learning

Model Scaler Acc. F-1 Time Value

Support Vector Machine Standard 0.69 0.69 0.34 C: 1
0.34 kernel: linear

Logistic Regression MinMax 0.65 0.65 0.33 C: 0.001
0.33 penalty: None

Gradient Boosting

Standard 0.65 0.64

146.78 criterion: friedman_mse
146.78 max_depth: 2
146.78 max_features: sqrt
146.78 n_estimators: 250

- 0.65 0.64

146.47 criterion: friedman_mse
146.47 max_depth: 2
146.47 max_features: sqrt
146.47 n_estimators: 250

Logistic Regression Standard 0.64 0.64 0.37 C: 10
0.37 penalty: l2

Gradient Boosting MinMax 0.64 0.63

150.62 criterion: friedman_mse
150.62 max_depth: 10
150.62 max_features: sqrt
150.62 n_estimators: 200

Support Vector Machine
- 0.64 0.63 342.96 C: 0.01

342.96 kernel: linear

MinMax 0.62 0.62 0.26 C: 10
0.26 kernel: linear

Random Forest

- 0.63 0.61

14.97 criterion: gini
14.97 max_depth: 8
14.97 max_features: log2
14.97 n_estimators: 100

Standard 0.63 0.61

14.87 criterion: gini
14.87 max_depth: 8
14.87 max_features: log2
14.87 n_estimators: 100

MinMax 0.63 0.61

14.84 criterion: gini
14.84 max_depth: 8
14.84 max_features: log2
14.84 n_estimators: 100

Logistic Regression - 0.58 0.57 1.98 C: 0.01
1.98 penalty: l2

K Nearest Neighbors

Standard 0.57 0.55
0.39 algorithm: auto
0.39 n_neighbors: 15
0.39 weights: distance

MinMax 0.56 0.54
0.27 algorithm: auto
0.27 n_neighbors: 15
0.27 weights: uniform

- 0.56 0.53
0.47 algorithm: auto
0.47 n_neighbors: 25
0.47 weights: distance

Table C.3: Classical Baseline: Cover Type
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Model Scaler Acc. F-1 Time Value

Random Forest

- 0.98 0.98

13.58 criterion: entropy
13.58 max_depth: 8
13.58 max_features: log2
13.58 n_estimators: 100

Standard 0.98 0.98

13.40 criterion: entropy
13.40 max_depth: 8
13.40 max_features: log2
13.40 n_estimators: 100

Gradient Boosting

- 0.98 0.97

66.86 criterion: friedman_mse
66.86 max_depth: 2
66.86 max_features: sqrt
66.86 n_estimators: 200

Standard 0.98 0.97

66.77 criterion: friedman_mse
66.77 max_depth: 2
66.77 max_features: sqrt
66.77 n_estimators: 200

MinMax 0.98 0.97

66.75 criterion: friedman_mse
66.75 max_depth: 2
66.75 max_features: sqrt
66.75 n_estimators: 200

Random Forest MinMax 0.98 0.97

13.54 criterion: gini
13.54 max_depth: 8
13.54 max_features: log2
13.54 n_estimators: 250

Support Vector Machine - 0.97 0.96 1.65 C: 0.1
1.65 kernel: linear

Logistic Regression Standard 0.97 0.96 0.33 C: 0.1
0.33 penalty: l2

K Nearest Neighbors - 0.97 0.96
0.55 algorithm: auto
0.55 n_neighbors: 5
0.55 weights: distance

Logistic Regression
- 0.97 0.96 2.06 C: 0.01

2.06 penalty: l2

MinMax 0.96 0.96 0.25 C: 0.001
0.25 penalty: None

Support Vector Machine Standard 0.96 0.96 0.18 C: 1
0.18 kernel: linear

K Nearest Neighbors Standard 0.96 0.95
0.30 algorithm: auto
0.30 n_neighbors: 10
0.30 weights: distance

Support Vector Machine MinMax 0.97 0.95 0.16 C: 0.1
0.16 kernel: linear

K Nearest Neighbors MinMax 0.96 0.95
0.29 algorithm: auto
0.29 n_neighbors: 10
0.29 weights: distance

Table C.4: Classical Baseline: KDD Cup 1999
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APPENDIX D
QML Hyperparameter Tuning

The following contains the top 40 configurations from the QML experiments. The
following abbreviations are used. The time is measured in seconds.

• MSE: mean squared error

• MAE: mean absolute error

• Opt.: optimizer

• Feat.: feature map

• Ent.: ansatz entanglement

• Feat.Ent.: feature map entanglement

• Prep.: preprocessing
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D. QML Hyperparameter Tuning

MSE MAE Time Ansatz Opt. Feat. Ent. Feat.Ent.
0.046 0.176 31843.802 EfficientSU2 SPSA Z full -
0.051 0.176 26506.437 EfficientSU2 SPSA Z sca -
0.054 0.177 15496.522 EfficientSU2 COBYLA Z circular -
0.055 0.185 21318.924 RealAmplitudes SPSA Z sca -
0.056 0.194 26568.813 EfficientSU2 SPSA Z circular -
0.056 0.189 21693.524 TwoLocal SPSA Z sca -
0.056 0.191 21300.711 RealAmplitudes SPSA Z circular -
0.056 0.186 6846.013 TwoLocal COBYLA Z full -
0.057 0.187 5236.379 RealAmplitudes COBYLA Z sca -
0.057 0.192 21384.019 TwoLocal SPSA Z circular -
0.059 0.194 26908.049 RealAmplitudes SPSA Z full -
0.060 0.188 5692.743 RealAmplitudes COBYLA Z circular -
0.065 0.198 27078.418 TwoLocal SPSA Z full -
0.071 0.203 19527.893 EfficientSU2 COBYLA Z full -
0.075 0.211 21017.120 TwoLocal SPSA Z pairwise -
0.077 0.213 21262.278 TwoLocal SPSA Z linear -
0.078 0.216 25924.091 EfficientSU2 SPSA Z linear -
0.080 0.217 5868.035 TwoLocal COBYLA Z linear -
0.084 0.210 5788.658 TwoLocal COBYLA Z sca -
0.085 0.217 21081.794 RealAmplitudes SPSA Z linear -
0.086 0.217 6893.549 TwoLocal COBYLA Z pairwise -
0.088 0.230 19663.618 EfficientSU2 COBYLA Z linear -
0.092 0.232 6403.135 RealAmplitudes COBYLA Z full -
0.101 0.235 14108.135 EfficientSU2 COBYLA Z sca -
0.108 0.236 6180.985 RealAmplitudes COBYLA Z linear -
0.119 0.263 5259.155 TwoLocal COBYLA Z circular -
0.130 0.288 24322.481 PauliTwoDesign SPSA Z - -
0.135 0.283 31254.089 RealAmplitudes Nelder-Mead Z sca -
0.156 0.308 7197.127 PauliTwoDesign COBYLA Z - -
0.172 0.324 22179.464 TwoLocal SPSA ZZ sca linear
0.175 0.326 19152.350 TwoLocal SPSA ZZ linear pairwise
0.178 0.333 23610.080 TwoLocal SPSA ZZ circular linear
0.179 0.339 25874.655 RealAmplitudes SPSA ZZ sca pairwise
0.182 0.337 14083.206 TwoLocal SPSA ZZ pairwise linear
0.186 0.339 25461.979 RealAmplitudes SPSA ZZ linear pairwise
0.188 0.348 31031.320 EfficientSU2 SPSA ZZ circular circular
0.189 0.344 20801.656 TwoLocal SPSA ZZ sca pairwise
0.189 0.343 19712.909 TwoLocal SPSA ZZ linear linear
0.189 0.344 25518.044 RealAmplitudes SPSA ZZ linear linear
0.190 0.346 25699.995 RealAmplitudes SPSA ZZ circular linear
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0.056 0.179 30269.974 EfficientSU2 COBYLA Z full -
0.057 0.191 26742.804 EfficientSU2 SPSA Z sca -
0.057 0.180 18172.775 TwoLocal COBYLA Z sca -
0.058 0.185 21107.948 TwoLocal COBYLA Z full -
0.058 0.182 16235.631 RealAmplitudes COBYLA Z full -
0.058 0.191 28080.271 TwoLocal SPSA Z full -
0.059 0.185 20357.743 TwoLocal COBYLA Z circular -
0.060 0.178 24522.535 RealAmplitudes SPSA Z circular -
0.071 0.189 15913.069 RealAmplitudes COBYLA Z sca -
0.075 0.194 24212.491 RealAmplitudes SPSA Z sca -
0.087 0.211 16152.866 TwoLocal COBYLA Z linear -
0.087 0.228 26534.667 EfficientSU2 SPSA Z linear -
0.087 0.215 17680.557 RealAmplitudes COBYLA Z linear -
0.088 0.230 24204.161 TwoLocal SPSA Z linear -
0.089 0.219 27614.995 RealAmplitudes SPSA Z full -
0.092 0.221 16184.174 TwoLocal COBYLA Z pairwise -
0.096 0.224 26393.760 EfficientSU2 COBYLA Z sca -
0.100 0.236 23752.035 TwoLocal SPSA Z pairwise -
0.103 0.236 14749.277 RealAmplitudes COBYLA Z circular -
0.104 0.232 26600.699 EfficientSU2 COBYLA Z linear -
0.106 0.230 23996.865 TwoLocal SPSA Z circular -
0.109 0.245 24124.928 RealAmplitudes SPSA Z linear -
0.138 0.290 24023.441 TwoLocal SPSA Z sca -
0.139 0.297 30024.250 EfficientSU2 SPSA Z full -
0.140 0.274 26386.966 EfficientSU2 COBYLA Z circular -
0.164 0.323 26860.893 EfficientSU2 SPSA Z circular -
0.184 0.339 17797.217 RealAmplitudes COBYLA ZZ linear linear
0.184 0.352 16415.434 RealAmplitudes COBYLA ZZ circular linear
0.185 0.347 44202.730 TwoLocal Nelder-Mead Z full -
0.188 0.348 29748.183 PauliTwoDesign SPSA Z - -
0.190 0.367 41395.693 TwoLocal Nelder-Mead Z pairwise -
0.190 0.357 19067.599 TwoLocal SPSA ZZ linear pairwise
0.197 0.368 12713.526 TwoLocal COBYLA ZZ circular circular
0.197 0.367 28705.283 RealAmplitudes SPSA ZZ sca linear
0.198 0.369 25422.357 TwoLocal SPSA ZZ linear sca
0.198 0.372 28507.963 RealAmplitudes SPSA ZZ linear pairwise
0.199 0.368 31112.246 EfficientSU2 SPSA ZZ linear linear
0.200 0.374 19195.440 RealAmplitudes COBYLA ZZ linear circular
0.201 0.377 28547.934 RealAmplitudes SPSA ZZ linear linear
0.202 0.375 31129.704 EfficientSU2 SPSA ZZ linear pairwise
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MSE MAE Time Ansatz Opt. Feat. Ent. Feat.Ent.
0.021 0.107 26993.556 EfficientSU2 SPSA Z circular -
0.022 0.111 27585.848 RealAmplitudes SPSA Z full -
0.023 0.117 22055.667 TwoLocal SPSA Z sca -
0.023 0.116 31995.870 EfficientSU2 SPSA Z full -
0.025 0.121 21314.272 TwoLocal SPSA Z linear -
0.026 0.121 21674.199 RealAmplitudes SPSA Z circular -
0.026 0.125 15914.194 EfficientSU2 COBYLA Z circular -
0.028 0.121 26686.717 EfficientSU2 SPSA Z sca -
0.028 0.129 21340.496 RealAmplitudes SPSA Z linear -
0.028 0.128 21426.990 EfficientSU2 COBYLA Z sca -
0.030 0.128 6162.309 TwoLocal COBYLA Z sca -
0.030 0.136 4981.507 TwoLocal COBYLA Z pairwise -
0.031 0.126 21641.391 RealAmplitudes SPSA Z sca -
0.031 0.132 5291.243 RealAmplitudes COBYLA Z circular -
0.032 0.132 22108.573 TwoLocal SPSA Z circular -
0.033 0.127 15498.908 EfficientSU2 COBYLA Z linear -
0.033 0.135 21512.028 TwoLocal SPSA Z pairwise -
0.033 0.131 7890.611 RealAmplitudes COBYLA Z full -
0.034 0.129 6355.223 TwoLocal COBYLA Z circular -
0.035 0.140 26007.522 EfficientSU2 SPSA Z linear -
0.040 0.153 13296.613 EfficientSU2 COBYLA Z full -
0.040 0.141 26930.896 TwoLocal SPSA Z full -
0.040 0.159 5484.585 TwoLocal COBYLA Z full -
0.041 0.151 7953.380 RealAmplitudes COBYLA Z sca -
0.042 0.153 25314.528 PauliTwoDesign SPSA Z - -
0.044 0.155 5669.591 RealAmplitudes COBYLA Z linear -
0.045 0.155 5645.631 TwoLocal COBYLA Z linear -
0.057 0.181 6402.417 PauliTwoDesign COBYLA Z - -
0.058 0.178 24006.525 TwoLocal SPSA ZZ circular linear
0.061 0.190 31070.289 EfficientSU2 SPSA ZZ linear linear
0.063 0.189 26063.650 RealAmplitudes SPSA ZZ circular pairwise
0.063 0.184 31400.530 TwoLocal SPSA ZZ full linear
0.063 0.184 5905.821 TwoLocal COBYLA ZZ circular linear
0.064 0.191 26130.545 RealAmplitudes SPSA ZZ sca linear
0.064 0.193 26836.338 RealAmplitudes SPSA ZZ sca circular
0.064 0.189 26563.177 RealAmplitudes SPSA ZZ circular linear
0.064 0.189 4967.603 TwoLocal COBYLA ZZ circular pairwise
0.065 0.196 25824.144 RealAmplitudes SPSA ZZ linear pairwise
0.065 0.196 48161.706 EfficientSU2 Nelder-Mead Z sca -
0.065 0.195 31105.918 EfficientSU2 SPSA ZZ sca pairwise
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0.022 0.118 24221.327 RealAmplitudes SPSA Z circular -
0.023 0.117 26612.268 EfficientSU2 SPSA Z linear -
0.027 0.124 23840.443 TwoLocal SPSA Z circular -
0.028 0.124 26868.753 EfficientSU2 SPSA Z circular -
0.028 0.126 23862.986 TwoLocal SPSA Z sca -
0.028 0.121 29998.189 EfficientSU2 SPSA Z full -
0.033 0.137 26165.996 EfficientSU2 COBYLA Z linear -
0.034 0.134 13614.698 TwoLocal COBYLA Z sca -
0.034 0.132 19090.318 RealAmplitudes COBYLA Z sca -
0.034 0.132 23726.807 TwoLocal SPSA Z linear -
0.034 0.132 24255.181 RealAmplitudes SPSA Z sca -
0.035 0.144 16122.550 RealAmplitudes COBYLA Z linear -
0.036 0.142 23645.806 TwoLocal SPSA Z pairwise -
0.036 0.137 18323.561 TwoLocal COBYLA Z full -
0.037 0.147 24022.173 RealAmplitudes SPSA Z linear -
0.037 0.147 14867.535 TwoLocal COBYLA Z linear -
0.037 0.141 27906.740 RealAmplitudes SPSA Z full -
0.037 0.145 26697.718 EfficientSU2 SPSA Z sca -
0.038 0.143 15103.154 RealAmplitudes COBYLA Z circular -
0.041 0.150 29849.038 EfficientSU2 COBYLA Z full -
0.041 0.141 14220.316 TwoLocal COBYLA Z circular -
0.045 0.156 14085.185 RealAmplitudes COBYLA Z full -
0.047 0.160 12117.524 TwoLocal COBYLA Z pairwise -
0.047 0.159 21641.521 EfficientSU2 COBYLA Z circular -
0.050 0.163 27207.133 TwoLocal SPSA Z full -
0.054 0.178 17493.903 PauliTwoDesign COBYLA Z - -
0.056 0.172 21026.555 EfficientSU2 COBYLA Z sca -
0.056 0.166 29622.878 PauliTwoDesign SPSA Z - -
0.058 0.174 38422.478 RealAmplitudes Nelder-Mead Z linear -
0.060 0.177 29338.381 RealAmplitudes SPSA ZZ sca circular
0.061 0.178 28764.398 RealAmplitudes SPSA ZZ circular linear
0.062 0.183 31140.786 EfficientSU2 SPSA ZZ linear linear
0.062 0.181 24335.840 TwoLocal SPSA ZZ circular pairwise
0.062 0.177 35029.198 EfficientSU2 SPSA ZZ full pairwise
0.062 0.181 28877.776 RealAmplitudes SPSA ZZ sca linear
0.063 0.176 32311.150 RealAmplitudes SPSA ZZ full linear
0.063 0.186 50972.894 EfficientSU2 Nelder-Mead Z sca -
0.063 0.167 44613.772 RealAmplitudes Nelder-Mead Z full -
0.063 0.186 32356.753 TwoLocal SPSA ZZ full linear
0.064 0.182 51450.466 EfficientSU2 Nelder-Mead Z circular -
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Acc. F-1 Time Ansatz Opt. Feat. Ent. Feat.Ent. Prep.
0.588 0.583 606 TwoLocal COBYLA Z pairwise - LDA
0.576 0.576 3171 EfficientSU2 SPSA Z sca - LDA
0.572 0.569 3208 EfficientSU2 SPSA Z circular - LDA
0.584 0.564 1035 TwoLocal COBYLA Z circular - LDA
0.588 0.564 3185 EfficientSU2 SPSA Z linear - LDA
0.568 0.554 2640 RealAmplitudes SPSA Z circular - LDA
0.540 0.548 926 TwoLocal COBYLA Z full - LDA
0.548 0.547 2639 TwoLocal SPSA Z circular - LDA
0.560 0.546 2615 TwoLocal SPSA Z sca - LDA
0.548 0.540 2598 RealAmplitudes SPSA Z linear - LDA
0.540 0.536 2578 TwoLocal SPSA Z pairwise - LDA
0.540 0.534 2570 TwoLocal SPSA Z linear - LDA
0.544 0.533 1001 RealAmplitudes COBYLA Z circular - LDA
0.532 0.532 3579 EfficientSU2 SPSA Z full - LDA
0.528 0.525 2478 EfficientSU2 COBYLA Z circular - LDA
0.540 0.519 1865 EfficientSU2 COBYLA Z sca - LDA
0.520 0.517 2889 TwoLocal SPSA Z full - LDA
0.528 0.515 2295 EfficientSU2 COBYLA Z linear - LDA
0.524 0.512 2952 RealAmplitudes SPSA Z full - LDA
0.496 0.507 422 TwoLocal COBYLA Z linear - LDA
0.492 0.504 674 RealAmplitudes COBYLA Z sca - LDA
0.480 0.488 2661 RealAmplitudes SPSA Z sca - LDA
0.496 0.484 1132 RealAmplitudes COBYLA Z linear - LDA
0.464 0.483 989 RealAmplitudes COBYLA Z full - LDA
0.444 0.466 301 TwoLocal COBYLA Z sca - LDA
0.400 0.454 2634 PauliTwoDesign SPSA Z - - LDA
0.472 0.453 916 RealAmplitudes COBYLA Z circular - PCA
0.456 0.441 2201 EfficientSU2 COBYLA Z full - LDA
0.444 0.440 3143 RealAmplitudes SPSA Z sca - PCA
0.436 0.426 3783 EfficientSU2 SPSA Z linear - PCA
0.404 0.423 642 TwoLocal COBYLA Z linear - PCA
0.412 0.423 733 RealAmplitudes COBYLA Z sca - PCA
0.416 0.421 2218 EfficientSU2 COBYLA Z linear - PCA
0.412 0.412 3586 RealAmplitudes SPSA Z full - PCA
0.404 0.402 3805 EfficientSU2 SPSA Z sca - PCA
0.388 0.400 2420 EfficientSU2 COBYLA Z full - PCA
0.420 0.398 882 TwoLocal COBYLA Z full - PCA
0.416 0.397 3044 TwoLocal SPSA Z linear - PCA
0.436 0.395 4292 EfficientSU2 SPSA Z full - PCA
0.392 0.394 3092 RealAmplitudes SPSA Z linear - PCA
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0.560 0.551 2230 RealAmplitudes COBYLA Z circular - LDA
0.564 0.550 1730 TwoLocal COBYLA Z pairwise - LDA
0.544 0.536 3016 RealAmplitudes SPSA Z linear - LDA
0.528 0.532 3043 RealAmplitudes SPSA Z circular - LDA
0.532 0.528 2536 TwoLocal COBYLA Z sca - LDA
0.548 0.527 3362 EfficientSU2 COBYLA Z circular - LDA
0.540 0.526 3328 EfficientSU2 COBYLA Z linear - LDA
0.532 0.525 3007 TwoLocal SPSA Z pairwise - LDA
0.528 0.519 1856 TwoLocal COBYLA Z circular - LDA
0.536 0.518 3023 TwoLocal SPSA Z linear - LDA
0.528 0.517 2165 RealAmplitudes COBYLA Z sca - LDA
0.504 0.514 1682 TwoLocal COBYLA Z linear - LDA
0.516 0.510 3438 TwoLocal SPSA Z full - LDA
0.512 0.507 3389 EfficientSU2 SPSA Z circular - LDA
0.512 0.505 3748 EfficientSU2 SPSA Z full - LDA
0.520 0.499 3322 EfficientSU2 COBYLA Z sca - LDA
0.492 0.497 3696 EfficientSU2 COBYLA Z full - LDA
0.508 0.494 3028 TwoLocal SPSA Z circular - LDA
0.496 0.490 2260 RealAmplitudes COBYLA Z linear - LDA
0.492 0.481 2282 RealAmplitudes COBYLA Z full - LDA
0.452 0.480 3047 RealAmplitudes SPSA Z sca - LDA
0.484 0.474 5568 RealAmplitudes COBYLA Z linear - PCA
0.424 0.471 3053 TwoLocal SPSA Z sca - LDA
0.444 0.467 2481 TwoLocal COBYLA Z full - LDA
0.468 0.466 3393 EfficientSU2 SPSA Z linear - LDA
0.464 0.462 3562 PauliTwoDesign SPSA Z - - LDA
0.444 0.442 3387 EfficientSU2 SPSA Z sca - LDA
0.436 0.437 8864 TwoLocal SPSA Z full - PCA
0.416 0.434 8860 RealAmplitudes SPSA Z full - PCA
0.444 0.431 7686 TwoLocal SPSA Z linear - PCA
0.420 0.425 3387 RealAmplitudes SPSA Z full - LDA
0.428 0.424 4318 TwoLocal COBYLA Z linear - PCA
0.440 0.417 6506 RealAmplitudes COBYLA Z full - PCA
0.400 0.416 6240 TwoLocal COBYLA Z circular - PCA
0.432 0.413 7736 RealAmplitudes SPSA Z circular - PCA
0.432 0.408 6160 RealAmplitudes COBYLA Z circular - PCA
0.368 0.404 3795 TwoLocal COBYLA Z pairwise - PCA
0.356 0.397 9624 PauliTwoDesign SPSA Z - - PCA
0.380 0.391 9730 EfficientSU2 SPSA Z full - PCA
0.388 0.388 7723 RealAmplitudes SPSA Z sca - PCA
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Acc. F-1 Time Ansatz Opt. Feat. Ent. Feat.Ent. Prep.
0.912 0.905 2016 TwoLocal SPSA Z full - PCA
0.904 0.898 2906 EfficientSU2 COBYLA Z circular - PCA
0.884 0.890 2576 RealAmplitudes SPSA Z sca - PCA
0.888 0.886 2612 RealAmplitudes SPSA Z circular - PCA
0.880 0.886 2457 EfficientSU2 COBYLA Z sca - PCA
0.860 0.876 2969 RealAmplitudes SPSA Z full - PCA
0.872 0.872 2144 EfficientSU2 COBYLA Z linear - PCA
0.864 0.869 847 TwoLocal COBYLA Z sca - PCA
0.860 0.865 1385 TwoLocal COBYLA Z full - PCA
0.824 0.847 698 RealAmplitudes COBYLA Z sca - PCA
0.840 0.842 3292 EfficientSU2 COBYLA Z full - PCA
0.824 0.841 1144 RealAmplitudes COBYLA Z circular - PCA
0.852 0.839 2589 RealAmplitudes SPSA Z linear - PCA
0.844 0.836 993 TwoLocal COBYLA Z linear - PCA
0.832 0.833 3242 EfficientSU2 SPSA Z linear - PCA
0.824 0.831 3603 EfficientSU2 SPSA Z full - PCA
0.824 0.826 1162 RealAmplitudes COBYLA Z full - PCA
0.840 0.825 973 RealAmplitudes COBYLA Z linear - PCA
0.800 0.817 922 TwoLocal COBYLA ZZ circular pairwise PCA
0.820 0.816 803 TwoLocal COBYLA Z pairwise - PCA
0.828 0.810 1732 TwoLocal SPSA Z circular - PCA
0.792 0.803 1401 RealAmplitudes COBYLA ZZ circular pairwise PCA
0.784 0.798 3641 EfficientSU2 COBYLA ZZ full linear PCA
0.796 0.798 1198 RealAmplitudes COBYLA ZZ circular sca PCA
0.820 0.797 3256 EfficientSU2 SPSA Z circular - PCA
0.804 0.794 1314 TwoLocal COBYLA Z circular - PCA
0.760 0.789 3475 EfficientSU2 COBYLA ZZ sca linear PCA
0.812 0.787 3200 EfficientSU2 SPSA Z sca - PCA
0.760 0.786 1491 TwoLocal Nelder-Mead Z sca - PCA
0.760 0.777 3212 RealAmplitudes SPSA ZZ circular circular PCA
0.756 0.776 1244 TwoLocal COBYLA ZZ full sca PCA
0.736 0.776 3456 EfficientSU2 COBYLA ZZ circular sca PCA
0.744 0.776 3753 EfficientSU2 SPSA ZZ sca linear PCA
0.780 0.775 3318 EfficientSU2 COBYLA ZZ linear pairwise PCA
0.824 0.775 1707 TwoLocal SPSA Z linear - PCA
0.756 0.771 3610 RealAmplitudes SPSA ZZ full pairwise PCA
0.812 0.768 1690 TwoLocal SPSA Z pairwise - PCA
0.768 0.767 1554 RealAmplitudes COBYLA ZZ sca linear PCA
0.760 0.767 3445 EfficientSU2 COBYLA ZZ circular linear PCA
0.780 0.766 3418 EfficientSU2 COBYLA ZZ sca pairwise PCA

Table D.7: QML KDD: Top 40 Configurations
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0.864 0.859 7677 TwoLocal COBYLA Z circular - PCA
0.860 0.854 10241 EfficientSU2 SPSA Z circular - PCA
0.860 0.852 9142 TwoLocal SPSA Z linear - PCA
0.836 0.846 8504 EfficientSU2 COBYLA Z sca - PCA
0.848 0.840 9245 RealAmplitudes SPSA Z circular - PCA
0.820 0.833 9259 TwoLocal SPSA Z sca - PCA
0.836 0.832 6659 RealAmplitudes COBYLA Z sca - PCA
0.828 0.808 7895 TwoLocal COBYLA Z full - PCA
0.804 0.805 11634 EfficientSU2 SPSA Z full - PCA
0.788 0.799 8789 RealAmplitudes COBYLA Z full - PCA
0.816 0.793 7467 TwoLocal COBYLA Z sca - PCA
0.776 0.792 10209 RealAmplitudes COBYLA ZZ sca circular PCA
0.816 0.790 8525 EfficientSU2 COBYLA Z circular - PCA
0.756 0.788 11094 EfficientSU2 COBYLA ZZ linear sca PCA
0.776 0.788 13282 EfficientSU2 SPSA ZZ sca circular PCA
0.772 0.787 10558 TwoLocal SPSA ZZ circular sca PCA
0.808 0.782 8580 EfficientSU2 COBYLA Z linear - PCA
0.760 0.782 6779 TwoLocal COBYLA ZZ sca sca PCA
0.756 0.780 11049 EfficientSU2 COBYLA ZZ linear circular PCA
0.764 0.778 9368 TwoLocal COBYLA ZZ full linear PCA
0.796 0.778 7084 TwoLocal COBYLA Z linear - PCA
0.768 0.778 3526 TwoLocal COBYLA ZZ pairwise circular PCA
0.756 0.776 6083 RealAmplitudes COBYLA Z circular - PCA
0.812 0.771 9242 TwoLocal SPSA Z pairwise - PCA
0.756 0.766 12150 RealAmplitudes SPSA ZZ sca linear PCA
0.816 0.765 10232 EfficientSU2 SPSA Z linear - PCA
0.816 0.765 5906 RealAmplitudes COBYLA Z linear - PCA
0.752 0.761 10223 RealAmplitudes COBYLA ZZ circular circular PCA
0.784 0.757 9214 RealAmplitudes SPSA Z linear - PCA
0.732 0.756 12256 RealAmplitudes SPSA ZZ linear sca PCA
0.724 0.755 12281 RealAmplitudes SPSA ZZ circular circular PCA
0.724 0.755 14716 EfficientSU2 SPSA ZZ full circular PCA
0.756 0.755 14586 EfficientSU2 SPSA ZZ full pairwise PCA
0.744 0.754 11084 EfficientSU2 COBYLA ZZ sca circular PCA
0.728 0.753 12265 RealAmplitudes SPSA ZZ linear circular PCA
0.736 0.748 13350 EfficientSU2 SPSA ZZ linear sca PCA
0.768 0.747 10278 EfficientSU2 SPSA Z circular - LDA
0.720 0.747 9151 TwoLocal COBYLA ZZ full sca PCA
0.756 0.746 10614 RealAmplitudes COBYLA ZZ full pairwise PCA
0.744 0.745 7353 TwoLocal COBYLA ZZ pairwise pairwise PCA

Table D.8: QML KDD with Noise: Top 40 Configurations
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