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Kurzfassung

Sportturniere ziehen Millionen von Fans und Sportler auf der ganzen Welt in ihren Bann.
Die erfolgreiche Organisation und Planung dieser Turniere spielt eine wichtige Rolle bei
der Gewährleistung eines fairen Wettbewerbs, der Maximierung der Einnahmen und der
Verbesserung des Gesamterlebnisses für die Zuschauer. Heutzutage bringen die Größe
und Bedeutung solcher Veranstaltungen jedoch so viele verschiedene Faktoren mit sich,
dass es für die Organisatoren fast unmöglich ist, bei der Erstellung von Zeitplänen für
solche Turniere jedes Detail zu berücksichtigen. Aus diesem Grund wurden in den letzten
Jahren viele verschiedene Ansätze entwickelt, um solche Spielpläne automatisch mit Hilfe
von Computern zu erstellen.

Viele solcher Tools sind im Rahmen des International Timetabling Competition 2021
(ITC2021) entstanden, die sich speziell auf die Suche nach guten Heuristiken für schwieri-
ge Instanzen des zeitbeschränkten Double-Round-Robin-sports tournament (DRRST)
Problem konzentrierte, welches ein sehr häufiges Format bei Sportveranstaltungen ist.
Während viele Algorithmen bereits sehr gute Ergebnisse zeigen, hat der Wettbewerb auch
deutlich gemacht, wie schwierig es ist, zufriedenstellende Zeitpläne für solche Turniere
zu entwickeln. Viele der im Rahmen des Wettbewerbs entwickelten Ansätze mussten
eine übermäßige Menge an Ressourcen einsetzen, um qualitativ hochwertige Lösungen
zu erzeugen. Darüber hinaus haben bis heute nur 3 der 45 Instanzen, die während
des Wettbewerbs vorgestellt wurden, Lösungen, die bewiesenermaßen optimal sind. In
dieser Arbeit schlagen wir eine Adaptive Large Neighborhood Search vor, die weniger
Rechenressourcen verbraucht als bisherige LNS-Ansätze und dennoch Ergebnisse erzielt,
die dem Stand der Technik nahe kommen. Diese Effizienzsteigerung resultiert aus einer
Kombination von multi-armed bandit-Methoden aus dem Reinforcement Learning, sechs
neu entwickelten Nachbarschaftstypen sowie der Einführung neuer Heuristiken, die von
der Tabu-Suche und Methoden der manuellen Optimierung inspiriert sind. Mit Hilfe
dieser Techniken sind wir in der Lage, trotz unseres geringeren Ressourcenverbrauchs für
3 der 45 Instanzen des Wettbewerbes neue beste bekannte Lösungen zu finden. Unsere
Forschung zeigt, wie wichtig der Einsatz adaptiver Methoden ist, wenn die Ressourcen
nicht im Überfluss vorhanden sind. Schließlich zeigen wir auch, dass selbst bei ausschließ-
licher Betrachtung von LNS-basierten Ansätzen verschiedene Instanzen unterschiedliche
Nachbarschaftstypen und Algorithmuskonfigurationen bevorzugen.
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Abstract

Sports tournaments captivate millions of fans and athletes all around the world. The
successful organization and scheduling of these tournaments play an important role
in ensuring fair competition, maximizing revenue, and enhancing the overall spectator
experience. However, nowadays the size and importance of such events introduce so many
different factors that it becomes almost impossible for organizers to factor in every detail
when creating schedules for such tournaments. For this reason in recent years, many
different approaches have been developed to create such schedules computationally.

Many such tools have emerged in the International Timetabling Competition in 2021
(ITC2021) that focused specifically on finding good heuristics for difficult instances of
the time-constraint double-round-robin sports tournament (DRRST) problem which is
a very common format in sporting events. While many algorithms already show very
good results, the competition has also highlighted just how hard it is to come up with
satisfactory schedules for such tournaments. Many of the approaches developed during
the competition had to use an excessive amount of resources to find high-quality solutions.
Furthermore, to this date, only 3 out of the 45 instances featured during the competition
have solutions that were proven to be optimal. In this thesis, we propose an Adaptive
Large Neighborhood Search, that uses fewer computational resources than previous LNS
approaches while still achieving results close to the state of the art. This increase in
efficiency stems from a combination of multi-armed bandit methods from reinforcement
learning, six newly developed neighborhood types as well as the introduction of new
heuristics that are inspired by tabu search and methods of manual optimizations. With
the help of those techniques, we are able to find new best-known solutions to 3 out of
the 45 competition instances despite our lower resource usage. Our research highlights
the importance of using adaptive methods when resources are not abundant. Finally,
we also show that even when only considering LNS-based approaches different instances
favor different neighborhood types and algorithm configurations.
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CHAPTER 1
Introduction

Competition is part of human nature and has existed as long as mankind. Of course, the
ways in which we compete have developed over time from hunting and fighting towards
more civilized sports and games. Nowadays, competitions usually follow strict rules and
formats to ensure fairness for all involved parties while also providing a good experience
to fans who follow such events. Creating a schedule for a sports competition is a hard
computational task because of the many factors that come into play which range from
reserving venues to balancing out home advantages.
In this thesis, we focus on a specific tournament format called the time-constraint double-
round-robin sports tournament (DRRST) which has received recent attention through the
ITC2021 [VG23b]. The DRRST format is amongst the most popular formats for sports
tournaments and is probably best known through various football leagues. Because of the
ITC2021 competition many different approaches [LFMSP21, RPGS22, POW21, FT22] for
finding close-to-optimal schedules have been developed and it has become apparent that
ILP solvers are a very good tool for this problem. However, only one team [POW21] has
tried to combine the promising aspects of a large neighborhood search (LNS) with elements
from reinforcement learning to create a more adaptive form of the LNS commonly called
adaptive large neighborhood search (ALNS) [RP06]. While this approach by Phillips
et al. [POW21] only achieved mediocre results in most instances from the competition,
the general idea of using an ALNS seems very promising considering that the first place
in the competition, which was achieved by Lamas-Fernandez et al. [LFMSP21], used a
variant of LNS that essentially exhaustively searched for possible improvements without
using any forms of learning except for changing the sizes of neighborhoods used.
The competition also highlighted the general difficulty of the DRRST. Only 3 out of
45 instances were solved to optimality even though the instances only used between 16
and 20 teams which is a realistic amount for a real sports tournament. This difficulty
combined with the fact that the competition imposed no limit on time and computational
resources used (except a final deadline to send in solutions) results in most teams using
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1. Introduction

very long runtimes, in some cases combined with a lot of computing power to achieve
competitive results.

Finding ways to acquire good solutions to the DRRST problem automatically will make
it much easier for sports tournaments in the future to create more optimal schedules.
But considering that not only big tournaments that have a lot of money to spend on lots
of computational power are interested in holding well-organized events, looking into ways
of making the search for optimal schedules more adaptive and therefore more efficient in
regards to time and resources is essential.

1.1 Aims of This Thesis
Our main objective for this thesis is to develop and analyze a new ALNS approach for
solving the time-constraint DRRST that does not rely on excessive computational power
or time.

This goal entails researching the following topics:

• Finding and comparing new methods for adaptive selection of neighborhoods.

• Improving upon previous methods to more efficiently generate feasible solutions for
the problem instances.

• Developing new neighborhoods that can be used to improve LNS based algorithms.

• Statistically evaluating our results with the help of tools for automated parameter
tuning and comparing them to the current state-of-the-art.

1.2 Contributions
The main contributions of this thesis are:

• A new multi-stage algorithm for generating feasible solutions to the DRRST prob-
lem.

• Six new neighborhood types for ILP-based methods to the DRRST problem.

• An examination of pre-existing and new neighborhood types to find out which are
most effective.

• An ALNS algorithm that finds good solutions to DRRST faster than other state-of-
the-art ILP-based methods.

• A new heuristic that helps to escape local minima in LNS-based approaches for the
DRRST problem and potentially other scheduling problems.

• New best-known solutions for three of the instances of the ITC2021 [VG23b].

2



1.3. Structure of the Thesis

1.3 Structure of the Thesis
The following thesis is split into four chapters. In Chapter 2 we present an overview of the
DRRST including a problem definition and a summary of the state-of-the-art. In Chapter
3 we describe our novel ALNS approach in detail including six new neighborhood types,
a new approach to generating feasible solutions as well as new strategies that increase
adaptivity. In Chapter 4 we evaluate our ALNS and compare both the end results and
intermediate stages with other approaches and variants of our ALNS. Finally, in Chapter
5 we will sum up our findings and give an outlook on possible future research directions.
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CHAPTER 2
The Double Round Robin Sports

Tournament Problem

2.1 Problem Definition
Sports Tournaments are celebrated all around the world attracting large viewerships.
Scheduling the individual games of such events can be very challenging [Bri08], especially
since there is no one-size-fits-all solution that is ideal for every tournament. Each event
comes with different constraints that can range from very general constraints, like the
number of consecutive games that can be played in the home stadiums of the respective
teams, to very specific constraints like team A not being allowed to play against team B
in the first three days of the tournament. To manage the different formats and constraints
of sports tournaments Van Bulck et al. [VBGSG20] have created a framework called
RobinX that makes it possible to encode the various tournaments in a unified format.
Because of the large interest in optimized solutions to the sports tournament problem,
the International Timetabling Competition in 2021 (ITC2021) [VG23b] has hosted a
competition for the time-constrained double-round-robin sports tournament (DRRST).
The time-constrained (also called compact) DRRST is a subset of the general sports
tournament problem that only considers tournaments with a schedule where each team
plays all other teams exactly twice and every team plays exactly one match per day (this
implies an even number of teams). Furthermore, they specify the constraints that are
relevant to the competition.

The following categories and corresponding constraints are used in the ITC2021 [VG23b]:

• Capacity Constraints: Consists of four individual constraints that limit the number
of home/away games during certain time slots and the amount of games teams (or
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2. The Double Round Robin Sports Tournament Problem

sets of teams) can play against each other during certain time slots (or sets of time
slots). The four individual constraints are referred to as CA1, CA2, CA3, and CA4.

– CA1: Limits the maximum amount of home or away games for a single team
during a set of slots. An example of this could be that team 1 is allowed to
play at most 2 home games in the first 5 timeslots of the tournament.

– CA2: Limits the maximum amount of home games, away games, or both a
single team is allowed to play against a set of other teams during a set of time
slots. An example of this could be that team 1 is allowed to play at most 1
away game against teams 3 and 4 in the last 7 timeslots of the tournament.
However, in this example, team 1 can play away games in all 7 timeslots as
long as not more than 1 is against teams 3 or 4.

– CA3: This constraint is similar to CA2 except that we don’t specify any
timeslots but instead use a parameter called "intp". This parameter is an
integer that specifies that in any interval of intp consecutive timeslots, the
team can only have a limited amount of home games, away games, or both
against a set of other teams.

– CA4: With this constraint, we use two sets of teams (teams1 and teams2) and
limit the total amount of home games, away games, or both between those
sets. We can either specify certain slots like in CA1 and CA2 or this constraint
is applied globally so that the constraint has to hold on each individual slot.

• Game Constraints: Contains a single constraint (GA1) that imposes restrictions on
specific matches (pairs of two teams + location).

– GA1: Given a set of time slots and matches only a given amount of those
matches can be played during those time slots. One example of this could
be the match between team 1 and team 2 with team 1 being the home team
(written as (1, 2)) and the match (3, 4) can not both happen on the third
timeslot of the tournament.

• Break Constraints: Is made up of two different constraints that limit the number
of breaks. A break is defined as playing either at home or away multiple days in a
row. We differentiate between home breaks and away breaks depending on if the
break occurs because of consecutive home or away games. The two constraints of
this category are called BR1 and BR2.

– BR1: Limits the total number of home breaks, away breaks, or both for a
single team during certain time slots. E.g. team 1 can not have consecutive
games at home on the first 3 days of the tournament.

– BR2: This constraint is very similar to BR1 except that it will not look at
an individual team but a set of teams and it does not differentiate between
home and away breaks but always considers both. E.g. teams 1, 2, and 3
cant have more than 5 breaks (either at home or away) in the first half of
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the tournament. In practice, this constraint is often used to limit the total
amount of breaks in the whole tournament.

• Fairness Constraints: Only consists of a single constraint (called FA2) that enforces
balance on the number of home breaks each individual team has

– FA2: Limits the difference of home breaks between multiple teams at certain
time slots. E.g. at time slots 2 and 3 the difference in the number of home
breaks between Teams A and B can not be higher than 2. In practice, this
is used to ensure fairness at various points in the competition because it is
considered to be an advantage if a team plays at home more often than another
team.

• Separation Constraints: Limits how far apart the home and away games between
pairs of teams can be. The only constraint in this category is called SE1.

– SE1: Given a pair of teams the constraint limits the amount of timeslots
between the first match and the second match of those teams. E.g. if the pair
consisting of teams 1 and 2 have their first match in the third timeslot the
return game can not be any later than the eighth timeslot.

Fairness and Separation Constraints only appear as soft constraints, meaning that they
don’t have to be fulfilled for a solution to be feasible. All other constraints can appear
both as soft and hard constraints. If a soft constraint is violated it adds a penalty to our
objective function. The exact penalty depends on the kind of constraint and how close
we are to fulfilling it. For example, if we look at a violated CA1 constraint the penalty is
equal to the amount of home or away games more than the given maximum (so if the
maximum is two home games but there are four home games the penalty would be two).
The exact penalty terms for each constraint can be found in [VG23b].

The instances used in the ITC2021 all have between 16 and 20 teams. This closely
resembles real-world tournaments in, for example, soccer [GS12] while also being very
challenging to solve using state-of-the-art techniques. The concrete instances were
generated by Van Bulck and Goossens [VG23b] using instance space analysis [SB15a]
to generate a variety of difficult problems with diverse features. The results of the
competition [VG23b] also suggest that the problems are indeed non-trivial as only 2
out of 45 instances were solved to proven optimality. Furthermore, the competition has
shown that various different state-of-the-art techniques, some of which we will discuss
in Section 2.2, have varying degrees of success depending on the exact instances which
indicates that the instances are indeed diverse.
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2.2 State of the Art
Creating optimized timetables for sporting events is a long-standing problem with early
research coming from the 1970s [BW77]. The current state-of-the-art was shown in the
very recent ITC2021 competition [VG23b] where an ILP model from Lamas-Fernandez et
al. [LFMSP21] had the best performance. They used a so-called fix-and-relax approach
where they fixed a large portion of the variables (with different strategies for deciding
which variables to fix for adaptability). While this does not follow the exact steps of
an ALNS, since nothing ever gets truly destroyed or repaired, the similarities are quite
obvious. The fixated variables can be interpreted as variables that are not destroyed
(and therefore remain unchanged) while the free variables are put into an ILP solver that
finds an optimal assignment for the sub-problem (which is almost like destroying the old
assignments for those variables and finding new ones). So in a way, Lamas-Fernandez
et al. have implemented something that resembles an ALNS. However, they have not
really considered many ways to be adaptive. They simply iterated over all five of their
neighborhoods and all currently unfulfilled constraints to exhaustively search for possible
improvements. Every time all neighborhoods failed to make any further improvement they
increased the size of their neighborhoods by one until the ILP solver did not terminate
in a reasonable amount of time anymore. While this outperformed all other teams it also
had one of the longest runtimes in the competition and used very high computational
resources. Concretely a single run on a single instance took up to 6 days of runtime while
also using 60 multi-start runs using 4 CPUs (2.6GHz Intel Sandy Bridge) with 16GB of
memory.

Another state-of-the-art technique from the ITC2021 competition uses Multi-neighborhood
Simulated Annealing [RPGS22]. Rosati et al. achieved second place in the competition
by using six different neighborhoods in three stages of Simulated Annealing. Each stage
on its own represents a full run of the classic Simulated Annealing Metaheuristic. In the
first stage, they focus purely on hard constraints. In the second phase, all constraints are
considered but moves that violate hard constraints are penalized. Finally, in the third
phase, moves that violate hard constraints are completely forbidden. Using this heuristic
each run takes roughly between 1,5 and 13 hours on a single virtual core (of an AMD
Ryzen Threadripper PRO 3975WX processor with 64 virtual cores) which is much faster
than the previously discussed method by Lamas-Fernandez et al. [LFMSP21]. However,
it is noteworthy that in order to achieve such a high placement in the competition each
instance was run a minimum of 48 times. Nevertheless, even the average reported results
of each instance are quite competitive, especially considering the comparably low runtime.

As previously mentioned there also exists an approach to optimize the timetables using
an ALNS. Phillips et al. [POW21] have also taken part in the ITC2021 and have to
the best of our knowledge implemented the most novel ALNS technique for the time-
constraint DRRST. They used four different neighborhoods and treated the selection
of neighborhoods as a multi-armed bandit problem. The size of the neighborhood they
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destroyed is determined based on the runtime of the previous iteration. Concretely if the
ILP manages to repair the schedule in less than 5 minutes the size of the neighborhood is
increased by one and if it takes more than 30 minutes it is decreased by one. They also
used a lot of computing resources for their approach using almost ten days of computing
time on a c2-standard-30 computing instance from Google Cloud. Their results were not
quite as good as other strategies when they were starting from scratch (achieving 7th

place in the competition), but they manged to find several best-known solutions by using
the previously best-known solutions as their starting schedule.

In a very recent paper Van Bulck and Goossens have developed a first-break-then-schedule
(FBST) approach [VG23a] where the problem is split into two different problems that are
solved one after the other. In the first stage, for each time slot they fixed which teams
play at home and which play away, therefore solving the break constraints without fixing
the exact matches and creating a so-called home-away pattern (HAP). In the second stage,
an opponent schedule was generated on top of the HAP, meaning they fixed the exact
matchups according to the previously created assignments for match locations. Both stages
are solved using different ILP formulations. Because it is very likely that the generation
of the HAP can lead to infeasibility, they used benders decomposition [Ben05, BG23]
which essentially means they forbade certain infeasible variable assignments for the HAP
set using Bender’s infeasibility cuts or in case the second stage found a feasible solution
strengthened it using Benders’ optimality cuts. Using this technique they were able to
find 10 new best-known solutions for several instances of the ITC2021 instances [VG23b].
However, similar to many approaches from the ITC2021 competition the computational
resources needed for this approach are comparably high. They allowed up to 24 hours of
runtime per instance on 10 cores for generating the HAP set and then used 50 different
random seeds each running an average of 1 hour and 45 minutes on a single core.

It is noteworthy that almost all approaches that we looked at in this section (excluding
the one by Rosati et al. [RPGS22]) used strategies to look at small sub-problems instead
of the whole schedule at once. Therefore, we are convinced that using the ALNS approach,
which focuses on solving many small problems instead of one big problem will produce
very good results in a shorter time than most other approaches. Additionally, we use new
techniques to select the neighborhood type and size based on learned qualities, making a
metaheuristic that is more adaptable than existing solutions. Furthermore, we came up
with a novel approach to generating feasible solutions that found feasible solutions faster
than the current approaches from the literature. We also introduce six new neighborhoods
and analyze their effectiveness and the effectiveness of the four neighborhoods that were
used in previous methods.

9





CHAPTER 3
An ALNS Approach for

Generating DRRST Schedules

In this chapter, we present a new ALNS approach that builds upon approaches from
the ITC2021 [VG23b] using both established and innovative new neighborhoods and
techniques for adaptivity.

On a high level, we build upon the ALNS approach that was originally designed for
vehicle routing problems [RP06] which in turn extends the Large Neighborhood Search
(LNS) developed by Shaw [Sha98]. This means we start off by creating some likely
infeasible schedule iteratively destroy parts of it and optimally reconstruct the destroyed
parts using ILP. To determine how much of the schedule and which exact parts we should
destroy we treat neighborhood type selection as a multi-armed-bandit problem [Rob52]
while learning over time the size we need to use for each neighborhood to achieve similar
runtimes in the reconstruction step of each neighborhood type. The time target for the
reconstruction time then changes over time depending on how frequent improvements
are found.

Similar to other approaches [LFMSP21, RPGS22] tackling this problem, we also split the
problem into first creating a feasible schedule (ignoring all soft constraints) and afterward
we start to improve the schedule without allowing any infeasible solutions as intermediate
results.

In Section 3.1 we will describe the neighborhoods we analyzed and used as part of our
ALNS. We will then discuss a new addition to a common approach to creating a good
initial solution that not only satisfies the structural constraints and BR2 constraints but
also many of the other hard constraints in Section 3.2. In Section 3.3 we will describe
the used ILP that was heavily influenced by Lamas-Fernandez et al. [LFMSP21] who
won the ITC2021 as well as our novel additions to a multi-stage approach. Afterward,
in Section 3.4 we will describe our methods for neighborhood selection in regards to
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3. An ALNS Approach for Generating DRRST Schedules

neighborhood type, neighborhood size, and exact team and slot selection. In Section 3.5
we will describe some additional heuristic improvements. Finally, in Section 3.6 we will
show the complete algorithm including pseudo-code.

3.1 Neighborhood Types
In total, we analyze ten different neighborhood types. Four of the neighborhoods
(Slots, Teams, Team Pairs, and Combi) are established in the literature, four are simple
extensions of the existing neighborhoods (Slots Phased, Teams Phased, Slots Home Away,
Teams Home Away) and two are to the best of our knowledge completely novel (Grouping
Teams and Grouping Slots). We analyze the effectiveness of the ten neighborhoods in
Section 4.2 and determine which subset of neighborhood types is most effective on which
size of schedule.

Slots: We select n days (slots) of the tournament and delete the current matches
on those days. This neighborhood was used by many previous approaches to this
problem [LFMSP21, POW21, VG23a] and is perhaps the most straightforward of all the
neighborhoods.

Team Pairs: We select n teams and delete all matches where both participants are part
of the n teams. This neighborhood is established in the literature and was also used in
state-of-the-art approaches [LFMSP21, POW21].

Teams: We select n teams and delete all matches where one of the participants is part
of the n teams. While this neighborhood is very similar to the Team Pairs neighborhood
it puts more focus on the n selected teams since all the matches of them are deleted.
Phillips et al. [POW21] have demonstrated that the two neighborhoods are working well
together and this neighborhood has also been used in other approaches [VG23a].

Combi: This neighborhood combines the Teams and Slots neighborhoods. We select two
teams and n slots and delete all matches that either happen on the selected days or those
in which one of the two teams is participating. This neighborhood was introduced by
Lamas-Fernandez et al. [LFMSP21] and has also been used in the more recent approach
by Van Bulck and Goossens [VG23a].

Slots Phased: An adaptation of the Slots neighborhood for phased schedules where n
slots are all selected from either the first or second half of the tournament.

Teams Phased: An adaptation of the Teams neighborhood for phased schedules where n
teams are selected and all matches in either the first or the second half of the tournament
are deleted if they contain one of the teams.

Slots Home Away: In this neighborhood we select n Slots and allow all location swaps
for all matches that are part of this slot (which also swaps the location of the rematch
that might not be part of the n selected Slots). This neighborhood was designed because
Lamas-Fernandez et al. [LFMSP21] reported that globally allowing location swaps creates
a very challenging ILP therefore we tried to simplify the problem.

12



3.2. Initial Solution

Teams Home Away: This neighborhood is similar to the Slots Home Away neighborhood
but instead of allowing swaps on specific days we choose n teams and all matches where
one of the n teams plays can change location.

Grouping Teams: In this neighborhood we group all teams that are part of the
tournament into groups of size n (if the total amount of teams is not divisible by n then
there will be one group of smaller size). We then allow teams that are all part of the
same group to switch matches with each other, essentially creating multiple small Team
Pairs neighborhoods. Creating multiple groups that are solved simultaneously by the
ILP solver allows us to make adaptations to the whole schedule at once without running
into the problem of very long solving times. Note that this is also not equal to simply
running the n groups sequentially, since assignments inside the groups can depend on
assignments of other groups.

Grouping Slots: This neighborhood is similar to the Grouping Teams neighborhood
but instead of grouping teams together, we create slot groups of size n (again there
might be one smaller group). We then allow matches scheduled on one of the days of the
group to be moved to any other day of the group. This again has the same effect as the
Grouping Teams neighborhood where we look at the whole schedule at once but limit the
number of possible adaptations to reduce runtime. This is similar to running multiple
iterations of the Slots neighborhood but also considers dependencies across groups.

3.2 Initial Solution
There are multiple ways [RUdW23] to generate initial schedules that follow the structural
constraints of the tournament in polynomial time. Which of those to use is not a
trivial decision since it highly depends on the exact constraints of the tournament. One
particularly popular approach originally developed by de Werra [dW81] uses a canonical
factorization to minimize the total amount of breaks in a single round-robin tournament.
The reason that this approach is particularly popular is that in a lot of cases, BR2
constraints are amongst the hardest to solve.

By using the canonical factorization and mirroring the days and matches of the tournament
for the second half (meaning that if a match (i, j) occurs on the last day of the first half
of the tournament match (j, i) will occur on the first day of the second half and vice
versa) our resulting initial schedule is guaranteed to contain the least amount of breaks
possible.

Proof: Let us call the number of teams n. We know that the first half of the tournament
has exactly n − 2 breaks [RUdW23]. Mirroring the days of the tournament does not
change the number of breaks since a break is defined as a relationship between two
consecutive days, where the order of those days has no influence on the existence of a
break. Changing the location of all days in the second half of the tournament flips the
home-away status off all teams on all days and therefore transforms away breaks into
home breaks and vice versa, but this won’t change the total amount of breaks. This
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means that the second half of the tournament also has n − 2 breaks which we know is the
least amount possible. Finally, between the last day of the first half of the tournament
and the first day of the second half of the tournament, there won’t be any breaks since the
matchups are the same with flipped home-away status therefore each team that played
at home on the last day of the first half plays away on the first day of the second half.
Therefore, the overall tournament has 2n − 4 breaks.

However, using this method also has some negative side effects compared to simply
copying the first half of the tournament and flipping the locations of all games to create
the second half of the tournament creating 6n-4 breaks [RUdW23]. In particular, using the
mirroring approach means that every team will play back-to-back against the opponent
they face in the last round of the first half of the schedule. For many tournaments, this
is undesirable which is why many of the instances use separation constraints (SE1). We
decided to use the mirroring of days only for tournaments that do not use SE1 constraints.

To further improve starting schedules we apply a heuristic that reduces the number
of hard GA1 violations without increasing the number of breaks. The pseudo-code is
provided in Algoritm 3.1 To understand how exactly this works we first have to clarify
that in the canonical factorization by de Werra [dW81] they used a sorted list of teams
from 1 to n and created the schedule based on the position of each team in the list.
Clearly, the ordering of the list does not change the total amount of breaks as switching
the positions of two teams in that list is equivalent to switching two teams in the final
schedule. What we then do is iterate over the hard GA1 constraints (Line 2) and see if
the current ordering of the list would fulfill them by finding all team pairs that currently
contribute to the left-hand side (LHS) of the GA1 ILP constraint (Line 3) and the
ones that could potentially contribute but currently don’t (Line 4). If the constraint is
violated we would switch the positions of teams to increase (Line 17-26) or decrease (Line
7-16) (depending on if the constraint is violated because of having more games than the
maximum scheduled or less than the minimum) the number of games that affect the LHS.
After a constraint is fulfilled we fix the positions of all teams in the list and continue with
the next constraint. This guarantees that we do not violate the constraint when trying to
satisfy others. However, this also makes it possible that we can’t fulfill a GA1 constraint
because of previously fixed teams. While this approach is very trivial and results in most
of the list being fixed before all GA1 constraints are satisfied it heuristically reduces
the amount of GA1 violations without increasing the overall amount of breaks. This
approach could be improved by adding methods like backtracking, however, since the
analysis in Section 4.3 shows that the effect of reducing GA1 constraints is only minimal
we did not explore further improvements.

Additionally since creating initial schedules is very quick we create 1000 schedules and
choose the one with the best weighted objective value. To weight the objective value we
use the analysis by Rosati et al. [RPGS22] where they analyzed good weights for the
individual hard constraints in the context of simulated annealing. The weights of the
soft constraints remained unchanged.
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Algorithm 3.1: Canonical Pattern with GA1 reduction
Input: Random order list of teams T , list of GA1 constraints G
Output: Initial DRRST schedule with min breaks and reduced GA1 hard

violations S
1 fixed_teams ← list(); # list of teams with fixed position in T starts empty
2 for g in G do
3 c_LHS ← get_LHS_contributions(g, T); # current LHS contributions
4 p_LHS ← get_potential_LHS_contributions(g, T); #

potential LHS contributions that currently do not contribute to LHS
5 count ← 0;
6 while len(c_LHS) > g[max] or len(c_LHS) < g[min] do
7 if len(c_LHS) > g[max] then
8 for team_pair in c_LHS do
9 if not both_teams_fixed(team_pair, fixed_teams) then

10 success ←
move_team_in_pair_to_non_contributing_position(team_pair,
p_LHS, T );

11 if success then
12 break for;
13 end
14 end
15 end
16 end
17 if len(c_LHS) < g[min] then
18 for team_pair in c_LHS do
19 if not both_teams_fixed(team_pair, fixed_teams) then
20 success ←

move_team_in_pair_to_contributing_position(team_pair,
p_LHS, T );

21 if success then
22 break for;
23 end
24 end
25 end
26 end
27 c_LHS ← get_LHS_contributions(g, T);
28 p_LHS ← get_potential_LHS_contributions(g, T);
29 count ← couint + 1
30 if count > 100 then
31 break for;
32 end
33 end
34 if count ≤ 100 then
35 fix_team_in_GA1_constraint(g, fixed_teams);
36 end
37 end
38 S ← getScheduleFromOrder(T ); #

use canonical factorization algorithm by de Werra [dW81]
39 return S
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3.3 Linear Programming Formulation
For the repair step of our ALNS, we use ILP, specifically Gurobi 10.0.1. For the basic
ILP, we use the formulation by Lamas-Fernandez et al. [LFMSP21] since at the point
of writing the thesis this is the most successful approach that made use of an ILP. We
also make some adaptions in order to solve the neighborhood’s Grouping Teams and
Grouping Slots. Further, we develop a new multistage approach where the creation of
the first feasible solution is split into a separate stage for each constraint type. We will
describe in detail which constraints are active at what stages.

3.3.1 Basic ILP
The basic ILP essentially deals with three different problems. First, it ensures that the
schedule is a valid time-constraint (possibly phased) double-round robin schedule. Second,
it encodes the nine different constraint types into ILP constraints which are either hard
and therefore have to be fulfilled or soft. If they are encoded as soft constraints we use
deviation variables that show how far we are from fulfilling the constraint. Finally, the
ILP’s objective function uses the deviation variables to calculate the objective value of
the whole schedule according to the rules of the ITC2021 [VG23b].
We will now list the objective function, variables, and constraints using the same formu-
lation as Lamas-Fernandez et al. [LFMSP21] that have again used established formula-
tions [DGM+07] for the DRRST problem. T represents the set of all Teams, S represents
the set of all Slots, S’ the time slots in the first half of the tournament and C represents
the set of all constraints.
Variables and Constants:

• First we use binary variables xijs to denote if in slot s there is a game between
team i and team j happening at the home venue of team i. If that is the case the
variable is set to 1 otherwise it is set to 0.

xijs ∀i, j ∈ T | i ̸= j, ∀s ∈ S (3.1)

• Next we use binary variables bH
is , bA

is, bHA
is to denote if in slot s team i has a home

break, away break, or either home or away break. If that is the case the respective
variable is set to 1.

bH
is ∀j ∈ T, ∀s ∈ S (3.2)

bA
is ∀j ∈ T, ∀s ∈ S (3.3)

bHA
is ∀j ∈ T, ∀s ∈ S (3.4)

• For the separation constraints we have to know if the game (i, j) or (j, i) happens
first. For this, we use the binary variables yij . yij is 1 if match (i,j) is scheduled at
an earlier slot than match (j, i).

yij ∀i, j ∈ T | i ̸= j (3.5)
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• Finally for each constraint c there is a constant tc and an integer variable dc that
denote the threshold and deviation respectively. The threshold represents a certain
maximum or minimum that is part of the constraint e.g. for CA1 constraints this
could be the maximum number of home games a team is allowed to play during
a set of slots. The deviation variable represents how far away we are from that
threshold. Meaning that if we use the same example and the team is allowed to
play three games at home but the schedule contains five such games dc has to be
two. Note also that a constraint might require multiple constants and variables to
be represented but in that case, we can always take the sum of the variables to get
an overall constraint variable.

tc c ∈ C (3.6)
dc c ∈ C (3.7)

Constraints:

The constraints can be split into structural constraints (including linking of variables)
and encodings of the nine different constraint types. We start by listing the structural
constraints:

• Every team has to play at every time slot:

j∈T \{i}
xijs + xjis = 1 ∀i ∈ T, ∀s ∈ S (3.8)

• Every match is part of the schedule:

s∈S

xijs = 1 ∀i, j ∈ T | i ̸= j (3.9)

• For phased tournaments exactly one of the games of each matchup is in the first
half of the tournament:

s∈S′
xijs + xjis = 1 ∀i, j ∈ T | i ̸= j (3.10)

• Linking xijs variables with bH
is variables:

j∈T \{i}
xijs + xij(s+1) ≤ 1 + bH

is ∀i ∈ T, ∀s ∈ S (3.11)

• Linking xijs variables with bA
is variables:

j∈T \{i}
xjis + xji(s+1) ≤ 1 + bA

is ∀i ∈ T, ∀s ∈ S (3.12)

17



3. An ALNS Approach for Generating DRRST Schedules

• Linking bA
is and bH

is variables with bHA
is :

bA
is + bH

is = bHA
is ∀i ∈ T, ∀s ∈ S (3.13)

• Linking xijs variables with yij variables:

s∈S

s(xjis − xijs) ≤ Myij ∀i, j ∈ T | i ̸= j, M ≥ |S| (3.14)

s∈S

s(xijs − xjis) ≤ M(1 − yij) ∀i, j ∈ T | i ̸= j, M ≥ |S| (3.15)

Next, we need one or more constraints for each of the nine constraint types that exist
for the problem. The description of the constraint types can be found in Section 2.1 as
well as the paper of the ITC2021 [VG23b]. We will refer to slots and teams that are part
of a specific constraint c as Sc and Tc respectively. Further, if a constraint focuses on a
specific team i we will refer to that team as ic, and if the constraint specifies a set of
games we call them Gc.

• The set of CA1 constraints consists of two subsets. Those concerning the maximum
number of home games (CA1H) and those concerning the maximum number of
away games (CA1A). The first is encoded as constraints 3.16 the latter is encoded
as 3.17.

j∈T \{i} s∈Sc

xijs ≤ tc + dc i = ic, ∀c ∈ CA1H (3.16)

j∈T \{i} s∈Sc

xjis ≤ tc + dc i = ic, ∀c ∈ CA1A (3.17)

• Similar to CA1 constraints CA2 constraints are also split into multiple subsets
(CA2H , CA2A, CA2HA), again CA2H and CA2A constraints are referring to home
games and away games while CA2HA constraints are referring to both.

j∈Tc s∈Sc

xijs ≤ tc + dc i = ic, ∀c ∈ CA2H (3.18)

j∈Tc s∈Sc

xjis ≤ tc + dc i = ic, ∀c ∈ CA2A (3.19)

j∈Tc s∈Sc

xijs + xjis ≤ tc + dc i = ic, ∀c ∈ CA2HA (3.20)

• CA3 constraints are split just like CA2 constraints. We use an additional set
K = {0, . . . , |S| − Ic} where Ic is referring to the size of the interval that is part of
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the CA3 constraint.

j∈Tc

k+Ic

s=k+1
xijs ≤ tc + dc i = ic, ∀c ∈ CA3H , ∀k ∈ K (3.21)

j∈Tc

k+Ic

s=k+1
xjis ≤ tc + dc i = ic, ∀c ∈ CA3A, ∀k ∈ K (3.22)

j∈Tc

k+Ic

s=k+1
xijs + xjis ≤ tc + dc i = ic, ∀c ∈ CA3HA, ∀k ∈ K (3.23)

• CA4 constraints consist of two different groups of constraints: Those that are applied
globally (CA4G) and those that specify certain time slots and the constraint has
to hold on every single time slot in the set (CA4E). Both of those groups can
then deal with either home games, away games, or both similar to CA2 and CA3
constraints. Also since there are two different sets of teams in each CA4 constraint
we will refer to them as Tc1 and Tc2.

i∈Tc1 i∈Tc2 s∈Sc

xijs ≤ tc + dc ∀c ∈ CA4H
G (3.24)

i∈Tc1 i∈Tc2 s∈Sc

xjis ≤ tc + dc ∀c ∈ CA4A
G (3.25)

i∈Tc1 i∈Tc2 s∈Sc

xijs + xjis ≤ tc + dc ∀c ∈ CA4HA
G (3.26)

i∈Tc1 i∈Tc2

xijs ≤ tc + dc ∀s ∈ Sc, ∀c ∈ CA4H
E (3.27)

i∈Tc1 i∈Tc2

xjis ≤ tc + dc ∀s ∈ Sc, ∀c ∈ CA4A
E (3.28)

i∈Tc1 i∈Tc2

xijs + xjis ≤ tc + dc ∀s ∈ Sc, ∀c ∈ CA4HA
E (3.29)

• GA1 constraints have a lower bound tcL and an upper bound tcU . The lower and
upper bounds are encoded using separate constraints.

(i,j)∈Gc s∈Sc

xijs ≤ tcU + dc ∀c ∈ GA1 (3.30)

(i,j)∈Gc s∈Sc

xijs ≥ tcL + dc ∀c ∈ GA1 (3.31)

• BR1 constraints are split into three sets like many of the capacity constraints. The
difference is that BR1 constraints differentiate between home breaks (BR1H), away
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breaks(BR1A), or both(BR1HA).

s∈Sc

bH
is ≤ tc + dc i = ic, ∀c ∈ BR1H (3.32)

s∈Sc

bA
is ≤ tc + dc i = ic, ∀c ∈ BR1A (3.33)

s∈Sc

bHA
is ≤ tc + dc i = ic, ∀c ∈ BR1HA (3.34)

• BR2 constraints only consist of constraints that focus on both home and away
breaks.

i∈Tc s∈Sc

bHA
is ≤ tc + dc ∀c ∈ BR2HA (3.35)

• FA2 constraints deal with two individual teams which we will call ic1 and ic2.

j∈Tc

s′

s=1
(xijs + xi′js) ≤ tc + dc i = ic1, i′ = ic2, ∀s′ ∈ Sc, ∀c ∈ FA2 (3.36)

• SE1 constraints can be encoded using a single constraint.

s∈S

s(xijs + xjis) ≥ tc + 1 − dc − Myij ∀i, j ∈ Tc, ∀c ∈ SE1, M ≥ |S| (3.37)

Objective Function:

Each constraint c ∈ C (with C being the set consisting of all nine constraint types) has an
assigned penalty wc that is applied for each unit of deviation (saved in the corresponding
dc variables) the goal is to minimize the overall penalty. The corresponding function is
given in 3.38

min
c∈C

wcdc (3.38)

Gurobi Parameters:

To use Gurobi to its fullest potential it is important to choose meaningful parameters.
This can significantly increase the performance of the models. The most important
parameters for which we did not just use the default are as follows:

• TimeLimit: We chose two times the current time target which is explained in
detail in Section 3.4.
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• Cutoff: Is set as the objective value of the previous iteration minus one. This
essentially tells Gurobi to stop searching for solutions once it has proven that it is
definitely not better than our current objective value, which significantly reduces
the average time spent on each neighborhood since we are not always trying to
prove optimality.

• Threads: For all experiments except the final evaluation in Section 4.5.1 we used
a single thread for the final evaluation we used two threads. While more threads
would increase performance it would also limit us in how many experiments we can
conduct since our resources are limited. Also, the performance does not increase
linearly with the amount of threads used so we would expect diminishing returns if
we used a very high amount of threads.

• MIPFocus: We experimented with different values but found that MIPFocus=1
which tells the solver to find feasible solutions as quickly as possible rather than
focusing on proving optimality got the best results. The same results were also
reported by Phillips et al. [POW21].

3.3.2 Encode Neighborhoods Into ILP

Most neighborhoods are straightforward to implement using ILP. As described in many
previous approaches [LFMSP21, POW21, VG23a] we fix the values of all variables that
are not part of the neighborhood, meaning we assign the value one to the game variable
xijs if a game is currently scheduled on day s between teams i and j at the home venue of
team i (using constraints of the form xijs = 1) and leave the variables that are part of the
neighborhood free, essentially deleting the prior knowledge of this part of the schedule to
find a possibly better alternative.

Encoding the new neighborhoods Grouping Teams and Grouping Slots involves fixing
a lot of values to zero rather than one since we allow the whole schedule to change
simultaneously while restricting the possible assignments for each game.

We will now go into more detail on how to encode each neighborhood.

Slots/Slots Phased: We leave the variables xijs free for all slots s ∈ S where S are
the slots that are selected as part of the neighborhood. For all xijs′ with s′ /∈ S we add
constraints that fix the game variables to one as described above.

Teams/Teams Phased: All variables xijs where either team i or j ∈ T with T being the
teams that are part of the neighborhood are left free (if they are part of the selected half
of the tournament for the phased variant). All other variables xijs are fixed as described
above.

Team Pairs: Similar to the Teams neighborhood with the exception that both team i
and team j have to be part of T.
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Combi: We combine the Teams neighborhood with the Slots neighborhood and leave
all variables free that would be free in at least one of the two neighborhoods and fix all
others.

Slots Home Away/Teams Home Away: We fix the same variables to one as in the
Slots/Teams neighborhood. For the Slots/Teams that are part of the neighborhood we
look at the current schedule and for each match (i, j) currently scheduled on day s we
leave the variables xijs and xjis free but fix all other matches that do currently not occur
at that time slot to zero.

Grouping Teams: In this neighborhood we fix variables xijs to zero unless teams i and
j are in the same group or either xijs or xjis is one in the currently best-known schedule.
All other variables are free.

Grouping Slots: For each group consisting of n slots that create a set S, we fix all
variables xijs to zero if team i and j do not play against each other at the home venue of
i at any of the slots in S. This means any game that is scheduled during one of the slots
in S is free to be scheduled on any other slot in S but no slot outside of S.

3.3.3 Multi-stage Approach
Our ALNS consists of two main stages. First, we try to create a feasible solution and
afterwards we enter the improvement phase.

Our novel idea is to split the first stage into 7 separate stages, one for each constraint
type that appears as a hard constraint. The idea behind this is that some constraint
types become much harder to fulfill if the schedule has become very rigid from fulfilling
other constraints. Concretely we noticed in our experiments that GA1 constraints would
often take a very long time to be fulfilled if a lot of other constraints already restrict
the schedule. From a logical perspective, this makes sense since a GA1 constraint often
requires a specific game to be scheduled in a specific time slot which can be hard if a lot
of other constraints are affected by that time slot or game already. We also support our
claims by experiments in Section 4.3, where we compare this setup to several variations
including approaches that deal with all hard constraints at the same time.

To solve this issue we arrange the constraints according to the analysis done by Rosati
et al. [RPGS22] where they analyzed what weights to use for each constraint type in
simulated annealing. Concretely they assigned a weight of 1 to 10 to each hard constraint
which led to the algorithm prioritizing the constraint with high weights. While we could
have done the same and changed the weights of each constraint, we decided to go a
step further and solve the different constraint types sequentially. The resulting order
(excluding SE1 and FA2 because they do only appear as soft constraints) from first solved
to last solved is:

”GA1”, ”CA2”, ”CA4”, ”CA1”, ”BR2”, ”CA3”, ”BR1”
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What is interesting to observe about this order is that it roughly sorts the constraints
based on how easy they are to maintain once they are fulfilled for the first time. To
go into more detail about how we solve the feasibility stage we will explain step by
step how the ILP changes over time until we get a feasible solution. The corresponding
pseudo-code can be found in Section 3.6:

1. Start with a randomized initial schedule like described in Section 3.2.

2. Take the first element from the list and add all the hard constraints of that type as
soft constraints.

3. Apply neighborhoods until the objective function becomes 0 (while potentially
changing parameters over time).

4. Change the soft constraints to hard constraints.

5. Delete the first element from our list of unsolved constraint types.

6. Go back to step 2 until the list is empty and therefore the solution becomes feasible.

As a further improvement to this strategy, we multiply the weights of all constraints
by a factor of 10000 and add another set of soft constraints that work in the following
way: Take the set of all hard capacity and break constraints, and replace the constant
threshold tc by zero. We exclude GA1 constraints from this process because they specify
a minimum value as well and it is unclear if a value close to the minimum is good for a
schedule. This process has the effect of creating more room for change in the schedule.
So for example, if the BR2 constraints are already fulfilled we will still try to lower the
overall amount of breaks and this might make it possible to later make a change in the
schedule that increases the number of breaks that would not have been possible if the
number of breaks was close to the maximum. Additionally adding the soft constraint
makes it so that while the initial constraint types are processed we do have the incentive
to keep as many hard constraints satisfied as possible even if they would only be added
to the model with the concrete threshold values at a later point. A thorough evaluation
of this approach can be found in Section 4.3.

For the improvement stage, we keep all hard constraints and add all soft constraints. Note
that we could also decide to simply set the penalty of hard constraints to a higher value
so that we could still enter infeasible regions like Lamas-Fernandez et al. [LFMSP21],
however, this comes with a significant decrease in ILP performance which we suspect
is due to the much larger feasible space. We then apply neighborhoods, looking for
improvements, until the time runs out. As the schedule improves and gets closer to an
optimal objective value it becomes harder to find further improvements. That is why we
on the one hand have to learn over time which neighborhoods have the highest chance
of success in finding improvements and on the other hand we have to look into bigger
neighborhoods when the smaller ones fail to find better schedules. This is why we have
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to carefully adapt parameters over time. What those parameters are and how we change
them over time is explained in Section 3.4.

3.4 Adaptivity

As the objective values get better it becomes harder and harder to find improvements
to a solution, which in turn means that we must invest more time for each improve-
ment. Furthermore, with each transformation of the schedule, it becomes unclear if
the same neighborhood types keep being effective or if others have a better chance to
find enhancements. To solve those problems we use a multi-armed bandit formulation
described in Section 3.4.1 to determine which neighborhood type to use at what point
and subsequently we use heuristics to determine which (and how many) teams or slots to
destroy. What influences said selection is described in Section 3.4.2.

3.4.1 Multi-Armed Bandit Problem

The basic idea of the multi-armed bandit problem is that a bandit with k arms can
perform an action with each arm (e.g. pull the lever of a slot machine). Each action gives
the bandit a reward that might change over time. The bandit now tries to find out which
of its k arms will give him the biggest reward over time. The first formulation of the
multi-armed bandit problem stems from Robbins [Rob52] but since then many different
variants have been proposed [VM05, SWS+22]. It is not a new idea to use a multi-armed
bandit formulation for selecting the neighborhood type in an ALNS. In fact, Phillips et
al. [POW21] have used a multi-armed bandit formulation for their ALNS approach in
the ITC2021 competition using the Upper Confidence Bound (UCB) formulation [SB18]
of the problem.

Because it is unclear to us if the same neighborhoods that are effective for improving the
solution quickly when it is still far from optimal are also effective for finding improvements
when the schedule is already very good we experiment with two different variants of the
multi-armed bandit problem.

The first approach is to use a non-stationary ϵ-greedy variant [Wat89] with optimistic
initial rewards of the multi-armed bandit formulation. The reason we decided to experi-
ment with this variant is that initial experiments showed that some neighborhoods lead
to very good improvements while the schedule is still far from the optimum but in later
stages, other neighborhoods outperform them, we also maintain a fixed exploration rate ϵ
(of 10%) since we suspected that even if a neighborhood might be worse on average it can
be beneficial to keep exploring with it to escape potential local optima. Concretely, our
estimation function for the reward of an action a after the action was already performed
t times is calculated as follows:

24



3.4. Adaptivity

Qt(a) = initial_weight ∗ (1 − α)t +
t−1

i=1
α ∗ (1 − α)t−i ∗ ri (3.39)

The initial weight is chosen to be higher than the objective value of the schedule which
results in all neighborhood types being explored in the beginning. The variable ri repre-
sents the reward at the ith time the neighborhood type was used.

The second approach is to use the UCB formulation from Sutton and Barto (2.8) [SB18]
that is based on the UCB1 algorithm by Auer et al [ACF02]. While the UCB algorithm
represents the state-of-the-art of multi-armed bandit formulations it is not ideal if the
expected rewards of actions change too much over time [SB18]. This is because the way
the UCB algorithm works is to split the expected reward function for each action into
two parts. The first part calculates the average reward of the previous times the action
was taken while the second part is where the name of the algorithm has its origin because
it adds the uncertainty of the calculated average on top of it. The formula from Sutton
and Barto (2.8) [SB18] that we use can be found as Equation 3.40.

At = argmaxa Qt(a) + c
ln t

Nt(a) (3.40)

Here Qt(a) represents the expected reward when taking action a which is the average of
all past instances where this action was taken, t is the total amount of actions taken up
to this point, and Nt(a) is the amount of time action a was taken up to this point.

Additionally, as time progresses, rewards tend to get smaller which might have a negative
effect on neighborhood selection because the hard improvements later on are not rewarded
as much as the easier, usually bigger, improvements at the beginning. While this still
gives each neighborhood the same chance it sometimes happens that a neighborhood
that is usually not making a lot of improvements gets one lucky big improvement at the
start and is then over-selected for a long time. To balance this out we experimented
with multiplying rewards by an exponential function (exponential in the number of
attempted neighborhoods) with a very low base (1.025) to balance out the exponential
decrease of improvements that were shown by Phillips et al. [POW21] and Fonseca and
Toffolo [FT22]. However, to prevent too high rewards we limited the multiplier to be at
most 100 which is reached after 187 iterations. Therefore, we mainly balance out the very
early rewards. We also experimented with other functions as a multiplier (logarithmic,
linear, and exponential with various bases) but the one described above led to the best
results. We did however only conduct the experiments on a small subset of the Early
instances so it is possible that different functions lead to even better results when looking
at the wider instance space. The overall effects of this method seem to be rather small
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and the main benefit is that we do not over-select a neighborhood for quite as long
just because it was successful in improving the schedule at a time when every other
neighborhood could have been just as successful.

Our experiments have shown that the UCB method led to significantly better results.
While we did not anticipate this for this specific problem because of the perceived
change of effectiveness of the different neighborhood types it is also not completely
unexpected since the UCB method generally is seen as the state-of-the-art of the bandit
methods [SB18]. A formal comparison between ϵ-greedy and UCB multi-armed bandit
methods as well as random neighborhood type selection can be found in Section 4.4.

3.4.2 Selecting Teams and Days
After selecting the neighborhood type the next step is to determine the exact neighbor-
hood. To determine which and how many teams and slots to use, we made adaptations
and improvements to the winning approach by Lamas-Fernandez et al. [LFMSP21].

To determine what teams and slots will become part of the neighborhood we iterate over
all violated constraints and determine which teams and slots contribute to the left-hand
side (LHS) of the ILP equations that describe the constraints and add up the total
amount of violation contributions for each team and slot. This means that we find out
which teams and slots are most responsible for the violations of constraints. This gives
us a map structure M that maps each team and slot to the number of constraints that
are violated partially because of the matches of that team or slot. A high number in M ,
therefore, indicates that there is a high potential for improvements if the team or slot is
destroyed.

Next, we determine the size of the destroyed neighborhood. To do that we work with
a time target that increases and decreases over time based on the number of found
improvements. Specifically, every time we find an improvement to the current schedule
the time target is multiplied by a factor td, and if we don’t find any improvements for
k iterations the time target is multiplied by a factor ti. The values for td, ti, and k are
determined during parameter tuning. For each neighborhood, we then maintain a list of
reconstruction times, and if the average reconstruction time of the last n iterations is
more than 5% bigger than the time target we decrease the size of the neighborhood. Vice
versa if the average reconstruction time is more than 5% smaller than the time target
we increase the neighborhood size. Initial testing using this approach showed that the
fluctuation in neighborhood sizes was too big and we wasted a lot of time on either too
small or too big neighborhoods. To prevent this we keep separate lists of reconstruction
times for each possible size of each neighborhood type. We then only allow an increase in
neighborhood size if both the overall average of reconstruction times using this neighbor-
hood type is 5% smaller than the time target and the current average reconstruction time
using the current size of the neighborhood is also smaller than the time target. Similarly,
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if the average reconstruction time is 5% bigger, the average reconstruction time using the
current size also has to be bigger to trigger a decrease of the neighborhood size. Finally,
we do not allow two consecutive increases or decreases in neighborhood size but instead,
require at least two iterations with the same neighborhood size in order to have a little
more stability. Using those improvements we observe stable neighborhood sizes that
almost always switch between the two sizes whose average reconstruction time surrounds
the time target. This approach has the effect that the neighborhoods are evaluated
fairly using the multi-armed bandit formulation without having the reconstruction time
as a direct factor since all neighborhoods use the same time on average. To the best
of our knowledge, this is a novel approach for selecting the size of neighborhoods and
brings significant benefits compared to the more common method of directly increasing or
decreasing neighborhood size. The main benefits are that, as previously mentioned, each
neighborhood takes the same time on average making it easier to compare them fairly as
well as a more fine-grained setting for neighborhood sizes since it now becomes possible
to choose an arbitrary time target that lies somewhere between two neighborhood sizes,
which implicitly makes the algorithm choose both neighborhood sizes a certain portion of
the time. Each slight increase or decrease in time target then changes said portion so that
one of the two sizes gets used slightly more and the other a little less. This is beneficial
since it is not always clear if the smaller neighborhood size is still worth exploring or if it
is better to invest more resources and explore the bigger neighborhood.

Now that we have both the map structure with global information about promising teams
and slots to destroy and the size and type of the destroyed neighborhood, we have to
determine the actual teams and slots that we will select. To do that we select a random
violated constraint and look at its LHS contributions. Depending on the neighborhood
type we either look at only teams, only slots, or both. If the amount of contributing
teams or slots k is smaller than the determined neighborhood size n we will destroy
all k of them and then probabilistically select n − k from the remaining teams or slots.
The probabilistic selection works by looking at M and then doing a weighted random
selection with the weights being the squares of the violation contributions + a small
constant. This has the effect that teams and slots that are part of many violations are
selected more frequently but at the same time, we do not completely neglect other parts
of the schedule. Similarly, when k is bigger than n we use the probabilistic weighted
selection to determine which n of the k teams to include in the neighborhood. To the
best of our knowledge, this is the first attempt at using global information in the form of
M to select neighborhoods for a LNS and is a potential improvement to the approach by
Lamas-Fernandez et al. [LFMSP21] that performed random selections based on the LHS
of a single violated constraint.

It should also be noted that the neighborhood selection above does not apply to the
Grouping Teams and Grouping Days Neighborhood, since those two neighborhoods will
always be applied to the whole schedule using random groups. The size of the groups is
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determined in the same way as for all the other neighborhoods.

In Section 4.4 we analyze the effects of using LHS contributions and our map structure
for team and slot selection.

3.5 Heuristic Improvements
While the general approach has been described in the previous sections there are some
improvements to make the ALNS more effective.

Firstly, since we are putting more weight on some teams than others we found that we
would sometimes look at the exact same neighborhoods that were already determined to
be ineffective without much of the schedule having changed since the last usage of that
neighborhood. To prevent that we introduce a Taboo List which is part of the Taboo
Search metaheuristic developed by Glover [Glo89]. What this does is to remember the
last n selected neighborhoods and prevent them from being used again until enough of
the schedule has changed so that there is a good chance that the neighborhood can lead
to further improvements. The parameter n is determined during parameter tuning.

The second problem we encountered was that we would get stuck in local optima. To
escape such a local optimum we allowed worse solutions after a certain amount of iterations
(determined by parameter tuning). In order to create a promising worse solution we
select one of the unfulfilled soft constraints and increase the penalty using the following
formula:

wnew
c = max(100/dc, wc + 10) (3.41)

This new weight guarantees that the penalty is increased by at least 10 points per current
deviation, but potentially the weight is increased to up to 100 if the current deviation
is only one. The constants in the equation above were carefully manually selected such
that the objective value does not increase so much that it would take a long time to
potentially find a better solution but also the penalty of the changed constraint increases
enough so that it is quickly solved by the ILP (unless solving the constraint would involve
violating a lot of other constraints, in which case the constraint is usually a bad choice).
After changing the weights and saving the currently best-known solution we continue
the optimization with the changed weight for k iterations. After the k iterations we
will reset the weight of the constraint and continue for another n iterations. If at any
point we find a schedule that is better than the best-known schedule (evaluated using the
original weight wc) we will immediately reset the weight of the constraint and continue
our optimization. If after the n iterations we still have not found a better schedule than
the best-known schedule we will reset to the best-known schedule, try to optimize it
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for a small number of iterations (we got the best results using only 5 iterations here),
and then choose another constraint. During parameter tuning, we found that once a
schedule reaches the point where penalties are changed it is very time-consuming to find
improvements by attempting to improve the best-known schedules. While increasing the
size of the neighborhood does help with that, it also leads to much longer reconstruction
times. Therefore it is more effective to go into a worse schedule like described above and
then try to improve that to go beyond the best-known schedule. It is noteworthy that
for quite a few of the iterations, the schedule with the changed penalties is still the same
as the best-known schedule since it takes a while for the ILP to find a way to solve the
constraint with the changed penalty. Therefore, we spend a lot more time still trying to
improve on the best-known schedule than apparent at first glance. Good values of k and
n are also determined during parameter tuning.

An interesting fact about this approach is that it has a lot of similarities with what a
human might try when manually optimizing the schedule. While we have not conducted
a survey with experts who have manually tuned such schedules before, this is how we
would personally approach the task:

• Start with a schedule that is already fairly good.

• Select a constraint that looks promising. (Resembles our random constraint selection
in heuristic.)

• Try to somehow fulfill the constraint changing up a bit of the schedule. (In the
heuristic this happens through the penalty change.)

• If the schedule looks too messed up after the fix change it back. (We do not allow
such a schedule because we implicitly limit how bad it can get by deciding on the
new penalty.)

• Try to fix everything that got worse because of the changes made. (The k + n
iterations we spend on the worse schedule)

• If the result does not look better after a while go back to the schedule before
any constraint was selected. (Our reset to the best-known solution after k + n
iterations)

• If at any point the schedule is better than anything that was seen before use this
schedule for all further changes.

We believe that a real survey with experts could potentially show us new ways to either
improve the above-mentioned approach or give us ideas for potentially even better ways
to tackle the problem. While this is not part of the scope of this thesis it is something to
look into for future research.
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One promising idea with this approach is to parallelize it, changing the penalty of a
different violated constraint in each branch. We could then run each branch for a certain
amount of iterations before choosing the one with the biggest improvement. This is
particularly promising as we were not able to identify any patterns that could help
us select a promising constraint that has a high chance of leading to an improvement.
However, this might be possible using some methods from Reinforcement Learning.
Evaluating such a parallel approach, and identifying good constraints to destroy goes
beyond the scope of this thesis. Nevertheless, we hope to explore both things in the
future to potentially further improve the results of our approach. Further, instead of
using the constants in formula 3.41 it is likely that a better approach would be to choose
the values based on the state of the schedule. specifically its current objective value and
previous attempts at penalty changes. However, the constants above work well, and
improving the method will be part of future research.

3.6 The Complete ALNS
Now that we have looked at all the individual parts of our ALNS, it is also important
to go over the algorithm as a whole to understand how the individual parts interact
with each other. Algorithm 3.2 describes how we generate feasible solutions from an
initial schedule and then Algorithm 3.3 describes how we optimize feasible schedules. The
algorithms have quite a few similarities and share certain sections like the maintenance
of neighborhood selection (Lines 17-19 and 10-12), the tabu list (Lines 20-24 and 13-17),
updates of the time target (Lines 29-41 and 22-41), changes of neighborhood sizes (Line
42 and 57) as well as the initialization of some structures used for the various parts
of the algorithms. Additionally, in Algorithm 3.2 we see how we select the current
constraint type focus in Lines 9-16, which affects the ILP used in Line 26. Meanwhile, in
Algorithm 3.3 the ILP used in Line 19 stays the same but the penalties of some constraints
may change over time as described in Section 3.5 (Lines 42-56) and we have to maintain
a best-known schedule since the penalty changes implicitly allow worse solutions.
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Algorithm 3.2: Algorithm for creating feasible schedule
Input: Initial schedule created with Algorithm 3.1 S, list of constraints C, list of neighborhood

types N , hyperparameters from automatic tuning h, sorted list of constraint types in
order of consideration ctl

Output: Feasible schedule that fulfills all hard constraints S
1 fct ← list(); # fulfilled constraint types
2 Nrew ← init_rewards(N); # rewards per neighborhood
3 Nrec ← init_reconstruction_times(N); # reconstruction times per neighborhood type and size
4 Ns ← init_neighborhood_sizes(N); # neighborhood sizes
5 tt ← h[min_time_target] # current time target
6 lc ← 0; # last change
7 tabu ← list(); # tabu list
8 while not is_feasible(S) do
9 for ct in ctl do

10 if constraint_type_fulfilled(ct, S) then
11 ctl.remove(ct) fct.append(ct)
12 else
13 break for;
14 end
15 end
16 foc_ct ← ctl[0] # currently focused constraint type
17 rc ← choose_random_unfulfilled_constraint_of_current_focus(S, focct, C)
18 M ← get_map_of_LHS_hard_constraint_deviations_teams_and_slots(S)
19 Nu ← select_neighborhood_using_UCB_bandit_selection(Nrew, Ns, rc, M); #

neighborhood chosen based on reward, current Neighborhood size, a random unfulfilled
constraint and general state of schedule using UCB multi-armed bandit approach

20 if tabu.contains(Nu) then
21 continue while;
22 else
23 tabu.append_uppdate_iterations_and_delete_old(Nu, h[tabu_length])
24 end
25 Sdes ← destroy_schedule(S, Nu);
26 S, reward, time ← repair_schedule(Sdes, fct, focct, C); # repair schedule using Gurobi

with ILP described in Section 3.3 and extra soft constraints; reward describes the
improvement in objective value

27 Nrew ← update_rewards(Nrew, Nu, reward);
28 Nrec ← update_reconstruction_times(Nrec, Nu, time);
29 if reward = 0 then
30 lc ← lc + 1;
31 if lc > h[iter. without change before increase] and
32 tt < h[max_time_target] then
33 tt ← tt * h[time_change_bigger];
34 lc ← 0;
35 end
36 else
37 lc ← 0;
38 if tt > h[min_time_target] then
39 tt ← tt * h[time_change_smaller];
40 end
41 end
42 Ns ← update_neighborhood_sizes(Nrec, tt);
43 end
44 return S
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Algorithm 3.3: Algorithm for optimizing feasible schedules
Input: Feasible schedule created with Algorithm 3.2 Sbest, list of constraints C, list of

neighborhood types N , hyperparameters from automatic tuning h
Output: Optimized schedule that fulfills all hard constraints S

1 Nrew ← init_rewards(N); # rewards per neighborhood
2 Nrec ← init_reconstruction_times(N); # rec. times per neighborhood type and size
3 Ns ← init_neighborhood_sizes(N); # neighborhood sizes
4 tt ← h[min_time_target] # current time target
5 lc ← 0; # last change
6 tabu ← list(); # tabu list
7 li ← 0; # last improvement
8 pc ← False; # indicates if a penalty is currently changed
9 while not reached_time_limit() do

10 rc ← choose_random_unfulfilled_constraint(S, C)
11 M ← get_map_of_LHS_hard_constraint_deviations_teams_and_slots(S)
12 Nu ← select_neighborhood_using_UCB_bandit_selection(Nrew, Ns, rc, M);
13 if tabu.contains(Nu) then
14 continue while;
15 else
16 tabu.append_uppdate_iterations_and_delete_old(Nu, h[tabu_length])
17 end
18 Sdes ← destroy_schedule(S, Nu);
19 S, reward, time ← repair_schedule(Sdes, C); # using Gurobi with ILP described in

Section 3.3
20 Nrew ← update_rewards(Nrew, Nu, reward);
21 Nrec ← update_reconstruction_times(Nrec, Nu, time);
22 if reward = 0 then
23 li ← li + 1;
24 lc ← lc + 1;
25 if lc > h[iter. without change before increase] and
26 tt < h[max_time_target] then
27 tt ← tt * h[time_change_bigger];
28 lc ← 0;
29 end
30 else
31 if objective_value(S) < objective_value(Sbest) then
32 Sbest ← S; # save best-known schedule
33 C ←reset_penalty_changes(C); # if already reset nothing happens
34 pc ← False;
35 end
36 li ← 0;
37 lc ← 0;
38 if tt > h[min_time_target] then
39 tt ← tt * h[time_change_smaller];
40 end
41 end
42 if li > h[iter. before penalty changes] and not pc then
43 li ← 0;
44 C ←change_penalty_of_random_soft_constraint(C);
45 pc ← True;
46 end
47 if li > h[iter. before reset of penalty changes] and pc then
48 C ←reset_penalty_changes(C);
49 pc ← False;
50 end
51 if li > h[max iter. before resetting to best-know] and S != Sbest then
52 li ← h[iter. before penalty changes] - 5;
53 C ←reset_penalty_changes(C);
54 pc ← False;
55 S ← Sbest;
56 end
57 Ns ← update_neighborhood_sizes(Nrec, tt);
58 end
59 return Sbest
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CHAPTER 4
Computational Results

In this chapter, we will evaluate the ALNS described in the previous section. We will
start by describing the instances and our general setup in Section 4.1. We will then
discuss how we automatically tuned the parameters of our ALNS using state-of-the-art
parameter tuning software in Section 4.2. Next, we will analyze the performance of our
multi-stage approach by comparing it to other approaches in Section 4.3 and look into
the impact of our strategies for adaptivity in Section 4.4. Finally, we will evaluate our
ALNS using 45 instances and compare the results to other state-of-the-art methods in
Section 4.5.

4.1 Setup
4.1.1 Instances
The instances we use come from the ITC2021. The paper [VG23b] by the organizers of
the competition describes exactly how the instances featured in the competition were
generated. To create a diverse set of instances that offers different challenges they used
instance-space analysis [SL12, SBWL14, SB15b] which is a framework that tries to visu-
alize similarities and differences between instances of a problem by distributing them in a
2D space, grouping similar instances together. They checked for each problem that it can
not be easily solved using modern algorithms, verified that all problems do have feasible so-
lutions, and tried to model problems that are as similar to real-world instances as possible.

Their analysis resulted in 45 instances that were split into three sets of 15 each. The sets
are called Early, Middle, and Late and each of the sets tries to cover the full instance
space using three instances of size 16, six of size 18, and six of size 20, with the size
referring to the number of teams in the tournament. Approximately half of the instances
(22 out of 45) are phased (meaning each half of the tournament is a single round-robin
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tournament). Difficulty vise there should be no significant difference between the three
sets, they were merely split for the sake of the competition and released at different times.
The different release dates resulted in teams having six and a half months to optimize the
Early instances, three months for the Middle instances, but only two weeks for the set of
Late instances. We list the instances including some metadata about them in Table 4.1.
Note that the exact count of soft and hard constraints split by constraint type and for
each instance can be found in the paper about the organization of the competition by
Van Bulck and Goosens [VG23b].

4.1.2 Testing Environment
All experiments except for the final evaluation were done using exclusively the Early
instances. The Early instances represent our training set and were used to find good
hyperparameters and to evaluate various strategies for creating feasible solutions. We de-
cided to use only the Early instances in order to avoid overfitting on competition instances.
The advantage of using this set is that as described above the Early set covers the instance
space fairly well. Further, using this set for tuning is the fairest comparison to the teams
that participated in the competition as they would have used this set as well for all ini-
tial design choices because it was the only set available for the majority of the competition.

The parameter tuning and evaluation of the multi-stage approach were performed using
a VM with 8 processor cores (and 16 threads) of an Xeon Silver processor and 16GB of
RAM and up to 3.2 GHz. The final evaluation described in Section 4.5 was done on a
13th Gen Intel i7 13700KF with 16 cores and 24 logical processors that can overclock
to up to 5.4 GHz which has significantly better single-core performance and 32GB of
RAM (which are not fully utilized). We limited Gurobi to use a maximum of two threads
per instance in order to experiment with multiple instances in parallel. Further, to
guarantee that the parallel tasks do not interfere with each other we never run more
than 8 instances in parallel also guaranteeing that no processor cores have to be shared.
Finally, all experiments use Gurobi version 10.0.1.
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Table 4.1: Intances of the ITC2021 [VG23b] listed with the amount of hard and soft
constraints as well as types of constraints used in each instance and whether the instance
is phased or not.

Instance Phased Size Hard Soft Types
Early 1 TRUE 16 83 113 BR1, BR2, CA1, CA2, CA4, FA2, GA1, SE1
Early 2 TRUE 16 53 114 BR1, BR2, CA1, CA3, FA2, GA1
Early 3 TRUE 16 148 186 BR1, BR2, CA1, CA2, CA3, FA2, GA1
Early 4 TRUE 18 164 268 BR1, BR2, CA1, CA2, CA4, GA1, SE1
Early 5 TRUE 18 207 587 BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1
Early 6 TRUE 18 192 797 BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1
Early 7 FALSE 18 175 1159 BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1
Early 8 FALSE 18 70 582 BR1, CA1, CA2, CA3, CA4, FA2, GA1
Early 9 FALSE 18 90 102 BR1, BR2, CA1, CA2, CA3, FA2, GA1
Early 10 TRUE 20 246 1015 BR1, BR2, CA1, CA2, CA3, CA4, SE1
Early 11 FALSE 20 246 1108 BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1
Early 12 TRUE 20 179 35 BR1, BR2, CA1, CA2, CA3, CA4, GA1
Early 13 FALSE 20 100 432 BR1, BR2, CA1, CA2, CA3, GA1
Early 14 FALSE 20 56 56 BR1, BR2, CA1, FA2, GA1
Early 15 FALSE 20 187 1224 BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1
Middle 1 TRUE 16 144 993 BR1, BR2, CA1, CA2, CA4, SE1
Middle 2 TRUE 16 246 1231 BR2, CA1, CA2, CA3, CA4, GA1, SE1
Middle 3 FALSE 16 237 1212 BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1
Middle 4 TRUE 18 97 168 BR1, CA1, CA2, CA3, CA4, GA1
Middle 5 TRUE 18 151 197 BR1, BR2, CA1, CA2, CA3, FA2, GA1
Middle 6 TRUE 18 162 154 BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1
Middle 7 FALSE 18 141 476 BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1
Middle 8 FALSE 18 62 224 BR1, CA1, CA2, CA3, CA4, GA1
Middle 9 FALSE 18 94 201 BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1
Middle 10 TRUE 20 198 714 BR1, BR2, CA1, CA2, CA4, GA1
Middle 11 TRUE 20 176 1048 BR1, CA1, CA2, CA3, CA4, FA2, GA1
Middle 12 TRUE 20 63 241 BR1, BR2, CA1, CA2, CA3, FA2, GA1, SE1
Middle 13 FALSE 20 219 350 BR1, CA1, CA2, CA3, CA4, GA1, SE1
Middle 14 FALSE 20 63 817 BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1
Middle 15 FALSE 20 95 133 BR1, BR2, CA1, CA2, CA3, GA1, SE1
Late 1 FALSE 16 235 542 BR1, CA1, CA2, CA3, CA4, FA2, GA1
Late 2 FALSE 16 246 1077 BR1, BR2, CA1, CA2, CA3, CA4, GA1
Late 3 FALSE 16 127 439 BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1
Late 4 TRUE 18 96 34 BR1, CA1, CA4, GA1, SE1
Late 5 TRUE 18 176 747 BR2, CA1, CA2, CA3, CA4, FA2, GA1
Late 6 TRUE 18 163 159 BR1, BR2, CA1, CA2, CA4, GA1, SE1
Late 7 FALSE 18 126 738 BR1, BR2, CA1, CA2, CA3, GA1, SE1
Late 8 TRUE 18 110 195 BR1, BR2, CA1, CA2, CA3, GA1, SE1
Late 9 FALSE 18 102 402 BR1, BR2, CA1, CA2, CA3, FA2, GA1
Late 10 TRUE 20 233 694 BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1
Late 11 TRUE 20 52 366 BR1, BR2, CA1, CA2, CA3, FA2, GA1
Late 12 FALSE 20 244 1009 BR1, BR2, CA1, CA2, CA3, CA4, SE1
Late 13 FALSE 20 169 134 BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1
Late 14 FALSE 20 116 993 BR1, CA1, CA2, CA3, CA4, FA2, GA1
Late 15 FALSE 20 51 41 BR1, BR2, CA1, CA3, FA2, GA1
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4.2 Parameter Tuning
Since our ALNS depends on many different parameters that are not independent of each
other, parameter tuning is essential to the performance of our heuristic. We use the
hyperparameter optimization library SMAC3 [LEF+22] to determine good values for
our parameters. We decided upon this library because it is effective at finding good
hyperparameters in comparably few evaluations. This is crucial to our approach since a
single run has to run for multiple hours before it becomes clear if the parameters are
effective or not. Specifically, the parameters concerning the change of penalties described
in Section 3.5 only become relevant once we get close to local optima. For this reason,
we decided on a runtime of 3 hours for each set of parameters. However, when trying
to optimize without any further adjustments the results seemed to be almost random.
We identified that the issue was that since there is a lot of randomnesses involved in our
approach some run that does not necessarily have great hyperparameters essentially gets
lucky and the parameters are wrongfully identified as better than some more effective
parameters that did not get as lucky. To solve this problem we decided to evaluate each
set of parameters over three runs and use the average objective value for tuning.

In our initial tests, we also found that some parameters work much better on instances
involving 16 teams than those involving 20 teams. Therefore, we decided to optimize for
each schedule size separately. It is also noteworthy that we only used three instances
(with different features and only selecting from the early instances of the competition)
per schedule size for tuning. This prevents overfitting on the competition instances and
gives us an objective evaluation. The results of the parameter tuning can be found in
Tables 4.2- 4.4. Most of the parameters have been discussed in previous sections but we
want to once again give a quick overview:

• tabu length: Indicates how many iterations (one iteration being one explored
neighborhood) after a specific neighborhood is used we can not use it again. So if
we use the Teams neighborhood with teams 1, 2, and 3 being destroyed we can not
select the same 3 teams again for tabu length iterations.

• max reconstruction time: The time target can not get bigger than this
parameter effectively limiting the maximum neighborhood size we explore for each
neighborhood type.

• min reconstruction time: The time target can not get smaller than this
parameter. This prevents neighborhoods from getting too small to the point where
they are ineffective. Note that this also is our initial time target.

• iter. before penalty changes: Indicates the number of iterations before we
change the penalty of a constraint, making the solution worse.

• iter. before reset of penalty change: Indicates the number of iterations before
we restore the original penalty of a constraint after making the solution worse.
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• max iter. before resetting to best-known: Indicates the maximum number of
iterations we explore a worse schedule before resetting to the best-known solution.

• iter. without change before increase: After this amount of iterations without
improvement, we will increase the time target.

• time increase factor: Whenever we increase the time target we calculate the
new time target by multiplying the old time target with this factor.

• time decrease factor: Every time we find an improvement to the schedule we
decrease the time target by multiplying with this factor.

• exploration rate: Indicates the exploration rate of the UCB multi-armed bandit
method. Note that in literature [SB18, ACF02] you mostly find values between 1
and 10, however, the choice of the constant depends on the average reward size
you expect. Since we have rewards in the magnitude between the 10s and the
100s (because of the exponential factor discussed in Section 3.4) we expect the
exploration rate to also be higher than in the literature where rewards are often
normalized or generally lower.

• use . . . neighborhood: Indicates whether to use the neighborhood type or not.

As we can see in Tables 4.2- 4.4 the results of the parameter tuning do indeed indicate that
different schedule sizes have different optimal parameters using our ALNS. For example,
we see a trend that as schedule size increases the minimum time target becomes bigger,
the increase factor rises, and the iterations before we perform increases and reset the
schedule get larger. Other parameters, like exploration rate, tabu length, iterations before
the reset of a penalty change, and the time decrease factor do not change significantly
enough to say for sure that their values depend on the schedule size. Another interesting
fact to observe is what neighborhoods are used for each neighborhood size. There are five
neighborhoods that get used on every size of schedule namely Days, Days Phased, Teams,
Teams Phased, and Combi. Our new neighborhoods’ Grouping Teams and Grouping
Days are only used in schedules of sizes 16 and 18 our suspicion as to why it is not used
for neighborhoods of size 20 is, that they become fairly slow on this schedule size, and
mostly only group very few teams or days together. Finally, the neighborhood Team
Pairs (which was used by the winners [LFMSP21] of the ITC2021) as well as Teams
Home Away and Days Home Away were deemed ineffective by our tuning. While it is
not a huge surprise that the Home Away swap neighborhoods are not high-performing
since many of the other neighborhoods implicitly also allow swaps, it is rather surprising
to us that the established Team Pairs neighborhood has such poor performance. For the
schedules of sizes 16 and 18, we attribute the lack of performance of this neighborhood to
the Grouping Teams neighborhood that due to its nature essentially performs multiple
Team Pairs neighborhoods at the same time across the schedule and could therefore make
the Team Pairs neighborhood obsolete. However, the schedules of size 20 do neither use
the Team Pairs nor the Grouping Teams neighborhood so it might be the case that the
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Team Pairs neighborhood similar to the Grouping neighborhoods is not efficient enough
for schedules of this size.

Table 4.2: Parameter Tuning results for schedules with 16 teams

parameter name range default value post tuning value
tabu length 10 - 1000 500 175
max reconstruction time target 30 - 90 60 71
min reconstruction time target 3 - 30 10 8
iter. before penalty changes 35 - 200 105 70
iter. before reset of penalty change 10 - 50 30 30
max iter. before reset to best-known 51 - 125 75 58
iter. without change before increase 10 - 75 35 30
time increase factor 1.0 - 2.0 1.15 1.16
time decrease factor 0.5 - 1.0 0.8 0.82
exploration rate 1.0 - 300.0 100 26
use Teams neighborhood T / F T T
use Team Pairs neighborhood T / F T F
use Teams Home Away neighborhood T / F T F
use Days neighborhood T / F T T
use Days Home Away neighborhood T / F T F
use Combi neighborhood T / F T T
use Grouping Teams neighborhood T / F T T
use Grouping Days neighborhood T / F T T
use Teams Phased neighborhood T / F T T
use Days Phased neighborhood T / F T T
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Table 4.3: Parameter Tuning results for schedules with 18 teams

parameter name range default value post tuning value
tabu length 10 - 1000 500 248
max reconstruction time target 30 - 90 60 84
min reconstruction time target 3 - 30 10 12
iter. before penalty changes 35 - 200 105 107
iter. before reset of penalty change 10 - 50 30 37
max iter. before reset to best-known 51 - 125 75 88
iter. without change before increase 10 - 75 35 40
time increase factor 1.0 - 2.0 1.15 1.17
time decrease factor 0.5 - 1.0 0.8 0.88
exploration rate 1.0 - 300.0 100 32
use Teams neighborhood T / F T T
use Team Pairs neighborhood T / F T F
use Teams Home Away neighborhood T / F T F
use Days neighborhood T / F T T
use Days Home Away neighborhood T / F T F
use Combi neighborhood T / F T T
use Grouping Teams neighborhood T / F T T
use Grouping Days neighborhood T / F T T
use Teams Phased neighborhood T / F T T
use Days Phased neighborhood T / F T T
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Table 4.4: Parameter Tuning results for schedules with 20 teams

parameter name range default value post tuning value
tabu length 10 - 1000 500 221
max reconstruction time target 30 - 90 60 88
min reconstruction time target 3 - 30 10 16
iter. before penalty changes 35 - 200 105 117
iter. before reset of penalty change 10 - 50 30 30
max iter. before reset to best-known 51 - 125 75 89
iter. without change before increase 10 - 75 35 57
time increase factor 1.0 - 2.0 1.15 1.22
time decrease factor 0.5 - 1.0 0.8 0.92
exploration rate 1.0 - 300.0 100 34
use Teams neighborhood T / F T T
use Team Pairs neighborhood T / F T F
use Teams Home Away neighborhood T / F T F
use Days neighborhood T / F T T
use Days Home Away neighborhood T / F T F
use Combi neighborhood T / F T T
use Grouping Teams neighborhood T / F T F
use Grouping Days neighborhood T / F T F
use Teams Phased neighborhood T / F T T
use Days Phased neighborhood T / F T T
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Finally, we also compare the performance of the ALNS pre- and post-tuning: Table 4.5
shows the difference in objective value between using the default parameters and the
post-tuning parameters. Instances 1-3 have 16 teams, 4-9 have 18 teams and 10-15 have
20 teams in their schedule. We see that the results did improve significantly in almost all
instances with the biggest difference being Early 14 where the default parameters had an
objective value almost 4 times higher. There seems to be a trend that the bigger instances
are affected more by the tuning of the parameters. This can have three reasons: Either
the parameters we found for the small instances are not that good, the small instances
are easier so even "bad" parameters produce good results or the default parameters are
closer to the optimal parameters of small instances than big instances. Given that our
very early experiments from which the default parameters stem were mostly performed
on instance Early 1 and comparing the default values to the tuned ones we arrive at the
conclusion that the third option is the most likely. Considering the explained difficulty
in parameter tuning for this problem described above we are very happy with the results,
but it is likely that with more time spent on automatic tuning even better parameters
are achievable.

Table 4.5: Comparison of objective value between tuned and default parameters. The %
difference indicates the difference in the average objective value of each instance. We
use 10 runs with a time limit of 3 hours each. Infeasible results are excluded from the
calculations.

Instance tuned: obj. val. std. dev. default: obj. val. std. dev. % dif.
Early 1 543 86 544 35 100,2
Early 2 358 18 394 33 110,1
Early 3 1281 61 1260 53 98,4
Early 4 1319 123 1684 113 127,7
Early 5 INF INF INF INF -
Early 6 4499 229 4438 202 98,6
Early 7 7470 217 8172 841 109,4
Early 8 1549 83 1769 118 114,2
Early 9 723 77 800 52 110,7
Early 10 INF INF INF INF -
Early 11 7236 801 8401 691 116,1
Early 12 1024 68 1113 93 108,7
Early 13 402 29 502 67 124,9
Early 14 297 67 1174 105 395,3
Early 15 5099 104 6076 175 119,2
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4.3 Comparison of Strategies for Creating Feasible
Solutions

The instances presented in the ITC2021 [VG23b] are very challenging. In fact, multiple
teams [LFMSP21, POW21] participating in the competition have reported that modern
ILP solvers are unable to come up with feasible solutions in a reasonable amount of
time when not splitting the problem into smaller subproblems. However, there are
many different approaches to splitting the problem. In this section, we will evaluate
existing approaches and compare them to the results of our new approach presented in
Section 3.3.3. We also will look into some variants of our new approach and discuss the
advantages of each.

As mentioned in Section 3.3.3 previous approaches tackling the DRRST looked at all hard
constraints at the same time. This has the advantage of always having a global overview
of the schedule and enables the solver to only accept strict improvements (meaning
schedules that have strictly less hard constraint violations). But, what we identified is
that this also can lead to situations where most hard constraints are fulfilled but the
remaining few are very hard to solve because at that point the schedule has become
much more rigid. This leads to a long time to feasibility where the most time is spent
eliminating the last few hard constraint violations. Some teams have also identified this
problem and come up with solutions. For example, Rosati et al. [RPGS22] have come
up with the idea to analyze the "difficulty" of each constraint type and they changed
the penalties accordingly. Lamas-Fernandez et al. [LFMSP21] have chosen a different
approach where they try to find a feasible solution and once they find no more improve-
ments they increase the coefficients of the dc variables in the ILP and restart from the
beginning. Our new multi-stage approach takes the idea of prioritizing certain constraints
over others a step further by fulfilling one constraint type at a time. Tables 4.6 and 4.7
compare the time and objective value of our new multi-stage approach to both a weighted
and unweighted version of the single-stage approach using the Early instances of the
competition. The weights for the weighted approach stem from the paper by Rosati et
al. [RPGS22]. Note that we also used GA1 reduction and the additional soft constraints
that were described in Section 3.3.3 in all experiments except when we mention otherwise.
The results indicate that the multi-stage approach outperforms the unweighted approach
on almost all instances in regard to time to feasibility. When comparing it to the weighted
approach the difference is less significant however it is still more than 10% faster on 6
out of the 15 instances while the single-stage approach only significantly outperforms the
multi-stage approach on instance Early 1. If we compare objective values we see that
there are no significant differences on the instances that reached feasibility on all 10 trials,
however, if the solutions do not become feasible the single-stage approach generally has
fewer hard constraint violations. This makes sense because if the multi-stage approach
is still working on e.g. CA3 constraints when the experiment reaches its time limit it
will not have considered BR1 constraints at all leading to a lot of extra violations even if
they would be easy to fix. The single-stage approach on the other hand will look at all
hard constraints solving the easy ones right away therefore resulting in a better objective
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value.

Table 4.6: Comparison of time (s) to reach feasibility for multi-stage approach, all
unweighted hard constraints at the same time (single stage unweighted) and all unweighted
hard constraints at the same time (single-stage weighted) using a 30-minute time limit.
The % difference indicates the difference to the multi-stage approach. Avg. of 10 runs.

Instance multi-stage single-stage unweighted % dif. single-stage weighted % dif.
Early 1 152 166 9,2 107 -29,6
Early 2 164 247 50,6 151 -7,9
Early 3 9,6 15,3 59,4 14,2 47,9
Early 4 1800 1800 0 1800 0
Early 5 1800 1800 0 1800 0
Early 6 1550 1800 16,1 1760 13,5
Early 7 1762 1799 2,1 1710 -3
Early 8 5,6 7,8 39,3 6 7,1
Early 9 5,8 6,9 19 6,6 13,8
Early 10 1800 1800 0 1800 0
Early 11 1800 1800 0 1728 -4
Early 12 595 1800 202,5 866 45,5
Early 13 112 158 41,1 144 28,6
Early 14 10,6 10 -5,7 18,6 75,5
Early 15 297 490 65 308 3,7
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Table 4.7: Comparison of weighted objective value after reaching feasibility or 30-minute
time limit. Comparing the multi-stage approach to all unweighted hard constraints at
the same time (single stage unweighted) and to all weighted hard constraints (single
stage weighted). The % difference indicates the difference to the multi-stage approach.
Weight of hard constraints = 10000. Avg. of 10 runs.

Instance multi-stage single-stage unweighted % dif. single-stage weighted % dif.
Early 1 2492 2259 -9,3 2326 -6,7
Early 2 820 833 1,6 816 -0,5
Early 3 4245 4363 2,8 4495 5,9
Early 4 149011 132189 -11,3 147053 -1,3
Early 5 510387 339322 -33,5 293249 -42,5
Early 6 16922 46880 177 7050 -58,3
Early 7 154842 36537 -76,4 31761 -79,5
Early 8 4400 4806 9,2 4596 4,5
Early 9 4395 4531 3,1 4235 -3,6
Early 10 449302 384224 -14,5 196180 -56,3
Early 11 166122 117245 -29,4 101197 -39,1
Early 12 1938 20849 975,8 1908 -1,5
Early 13 1435 1425 -0,7 1431 -0,3
Early 14 4159 5379 29,3 5324 28
Early 15 6857 6948 1,3 6872 0,2

As described in Section 3.3.3 we also add additional soft constraints that aim to keep the
schedule more flexible by incentivizing the solver to not just fulfill a constraint but also
stay as far from the maximum as possible. Tables 4.8 and 4.9 show the average difference
in runtime and objective value for the early instances of the competition with the added
soft constraints vs. without the added soft constraints, clearly indicating that the soft
constraints reduce both the time to feasibility and resulting objective value of the feasible
solution for a majority of the Early instances from the competition. We suspect that the
decrease in the runtime does indeed stem from the heightened flexibility of the schedule
while the decrease in objective value likely comes from a combination of the former and
the overall reduced amount of breaks which helps to fulfill more soft constraints once
reaching feasibility.
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Table 4.8: Comparison of time (s) to reach feasibility with vs. without using additional
soft constraints (SC). 30-minute time limit or stop on reaching feasibility. 10 runs avg..

Instance with SC without SC % dif.
Early 1 152 194 27,6
Early 2 164 513 212,8
Early 3 9,6 9,5 -1
Early 4 1800 1800 0
Early 5 1800 1800 0
Early 6 1550 1570 1,3
Early 7 1762 1800 2,2
Early 8 5,6 4,8 -14,3
Early 9 5,8 7,3 25,9
Early 10 1800 1800 0
Early 11 1800 1800 0
Early 12 595 990 66,4
Early 13 112 206 83,9
Early 14 10,6 12,8 20,8
Early 15 297 339 14,1

Table 4.9: Comparison of objective value with vs. without using additional soft constraints
(SC). 30-minute time limit or stopping once reaching feasibility. Weight of hard constraints
= 10000. Avg. from 10 runs.

Instance with SC without SC % dif.
Early 1 2492 2234 -10,4
Early 2 820 1779 117
Early 3 4245 4585 8
Early 4 149011 499073 234,9
Early 5 510387 836494 63,9
Early 6 16922 30749 81,7
Early 7 154842 264626 70,9
Early 8 4400 4899 11,3
Early 9 4395 4801 9,2
Early 10 449302 570267 26,9
Early 11 166122 315964 90,2
Early 12 1938 17994 828,5
Early 13 1435 1462 1,9
Early 14 4159 5994 44,1
Early 15 6857 6857 0
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We also looked into the effects of our strategy for reducing violated GA1 constraints.
Tables 4.10 and 4.11 respectively show that overall the GA1 reduction leads to a slight
improvement in runtime for 7 of the 15 instances and on 4 of the instances the runtime
was slightly better without the reduction. When ignoring differences of less than 10% that
could easily stem from the high variances in the tests this changes to 5 and 1 respectively
with the biggest relative differences in instance Early 8 (160% more runtime without GA1
reduction). This indicates that using the GA1 reduction is beneficial to reducing the
runtime, especially since the computational overhead is minimal. Regarding the objective
value of the schedules after the 30-minute time limit (or after reaching feasibility) most
differences can be attributed to having fewer hard constraint violations upon reaching
the time limit which directly correlates with having a better runtime. In those instances
that reached feasibility every time we only found significant differences in instances
Early 1 and Early 14 however, with instance Early 1 favoring the approach without GA1
reduction and instance Early 14 having a better objective value using the GA1 reduction.
However, looking at all other experiments described in this Section it appears that the
objective values of Early 1 and Early 14 seem to be statistical outliers with Early 1 having
the worst average objective value of all experiments and Early 14 having the best average
objective value (by a big margin). We therefore do not feel confident in reporting any
significant difference in objective value after reaching feasibility, which is expected since
we don’t see how reducing the initial amount of hard GA1 constraints could influence
the objective value that is only affected by soft constraints after reaching feasibility.

Table 4.10: Comparison of time (s) to reach feasibility with vs. without using GA1
reduction. 30-minute time limit or stopping once reaching feasibility. Avg. from 10 runs.

instance with GA1 reduction without GA1 reduction % dif.
Early 1 152 139 -8,6
Early 2 164 197 20,1
Early 3 9,6 15,2 58,3
Early 4 1800 1800 0
Early 5 1800 1800 0
Early 6 1550 1515 -2,3
Early 7 1762 1800 2,2
Early 8 5,6 14,6 160,7
Early 9 5,8 7,3 25,9
Early 10 1800 1800 0
Early 11 1800 1800 0
Early 12 595 675 13,4
Early 13 112 116 3,6
Early 14 10,6 10,1 -4,7
Early 15 297 247 -16,8
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Table 4.11: Comparison of objective value with vs. without using GA1 reduction. 30-
minute time limit or stopping once reaching feasibility. Weight of hard constraints =
10000. Avg. from 10 runs.

instance with GA1 reduction without GA1 reduction % dif.
Early 1 2492 2190 -12,1
Early 2 820 781 -4,8
Early 3 4245 4216 -0,7
Early 4 149011 192097 28,9
Early 5 510387 535198 4,9
Early 6 16922 14910 -11,9
Early 7 154842 217825 40,7
Early 8 4400 4761 8,2
Early 9 4395 4302 -2,1
Early 10 449302 478175 6,4
Early 11 166122 199134 19,9
Early 12 1938 1935 -0,2
Early 13 1435 1555 8,4
Early 14 4159 5343 28,5
Early 15 6857 6834 -0,3

Finally, we also explored different orders of constraint types in our multi-stage approach.
The first order, which was used in all previous experiments (except the single-stage
ones) is ["BR2", "GA1", "CA2", "CA4", "CA1", "CA3", "BR1"]. This order results from
ranking the constraint types according to the analysis by Rosati et al. [RPGS22] with
the exception that we moved the BR2 constraints to the front because they were fulfilled
as a result of our initially generated schedule. This order represents our default order.
As a second experiment we use the order ["GA1", "CA2", "CA4", "CA1", "BR2", "CA3",
"BR1"] where we use the same order but keep the BR2 constraints at the position that
would result out of the previously mentioned analysis. Finally, we also experimented
with the order ["BR2", "GA1", "CA2", "CA1", "CA4", "BR1", "CA3"] that ranks the
constraint not according to an empirically evaluated difficulty but instead tries to rank
the constraints by how much of the schedule they affect (except BR2 for the same reason
as the first order). The idea behind this final ranking is that it becomes very hard to
fulfill constraints that concern a very specific part of the schedule once a lot of other
constraints affect that part and make it rigid, whereas if a constraint affects a bigger
part of the schedule we suspected that there might be more opportunities to fulfill that
constraint even if a lot of the schedule is already more or less fixed. We therefore label
this new approach "most specific first". Tables 4.12 and 4.13 show that the order of
constraints has a significant impact on the runtime and objective value of the resulting
schedules. However, it is interesting to observe that it depends on the instance which
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order is better. For example, if we look at instances Early 2 and 3 we find that the
default order is significantly faster in finding feasible solutions than the other two orders.
When looking at instances Early 11 and Early 7 we see that the multi-stage approach
using the default order (almost) always timed out without finding a feasible solution
while the other two orders found feasible solutions in multiple of the 10 runs, with the
order default BR2 fifth being the most successful finding feasible solutions 7 and 5 times
out of 10 respectively. When looking at the comparisons of objective values we find that
for the instances that are feasible on every run, there is no significant difference between
the orders. However, looking at those instances that either stay infeasible on every run
or on a portion of the runs we observe that there are significant differences, with the
default with BR2 fifth having the best results for those instances most of the time. The
results of those experiments suggest to us that different instances favor different orders
of constraint types. However, since finding a feasible solution for as many instances as
possible is the most important part we use the order default BR2 fifth together with the
additional soft constraints and GA1 reduction, which we found to be beneficial, for our
experiments in Section 4.5.

Table 4.12: Comparison of time (s) to reach feasibility for multi-stage approach comparing
different orders of constraint types namely default, default with BR2 on fifth instead of
first position (both resulting out of the research by Rosati et al. [RPGS22] as well as most
specific first. Using a 30-minute time limit. The % difference indicates the difference to
the default order. Avg. from 10 runs.

Instance default default BR2 fifth % dif. most specific first % dif.
Early 1 152 108 -28,9 76 -50
Early 2 164 260 58,5 199 21,3
Early 3 9,6 17,7 84,4 25 160,4
Early 4 1800 1800 0 1800 0
Early 5 1800 1800 0 1800 0
Early 6 1550 1445 -6,8 1642 5,9
Early 7 1762 1408 -20,1 1626 -7,7
Early 8 5,6 8,5 51,8 11,2 100
Early 9 5,8 6,3 8,6 11 89,7
Early 10 1800 1800 0 1800 0
Early 11 1800 1503 -16,5 1712 -4,9
Early 12 595 666 11,9 693 16,5
Early 13 112 171 52,7 115 2,7
Early 14 10,6 10,5 -0,9 11,7 10,4
Early 15 297 218 -26,6 268 -9,8
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Table 4.13: Comparison of weighted objective value after reaching feasibility or 30-minute
time limit. Comparing different orders using the multi-stage approach namely default,
default with BR2 on fifth instead of first position (both resulting out of the research
by Rosati et al. [RPGS22] as well as most specific first. The % difference indicates the
difference to the default order. Weight of hard constraints = 10000. Avg. from 10 runs.

Instance default default BR2 fifth % dif. most specific first % dif.
Early 1 2492 2454 -1,5 2320 -6,9
Early 2 820 816 -0,5 848 3,4
Early 3 4245 4248 0,1 4051 -4,6
Early 4 149011 90888 -39 187917 26,1
Early 5 510387 452211 -11,4 450302 -11,8
Early 6 16922 16911 -0,1 17799 5,2
Early 7 154842 25688 -83,4 61799 -60,1
Early 8 4400 4702 6,9 4642 5,5
Early 9 4395 4076 -7,3 4294 -2,3
Early 10 449302 499952 11,3 433157 -3,6
Early 11 166122 28909 -82,6 75448 -54,6
Early 12 1938 3984 105,6 1920 -0,9
Early 13 1435 1501 4,6 1483 3,3
Early 14 4159 5423 30,4 5404 29,9
Early 15 6857 6853 -0,1 6843 -0,2

4.4 Impact of Adaptivity
Since one of our main contributions is the use of adaptive techniques for a more efficient
generation of close-to-optimal schedules, it is important to directly compare the multi-
armed bandit selection to a baseline model that does not use adaptivity but instead
selects neighborhoods at random. In Table 4.14 we evaluate the effects of adaptivity on
the Early instances using ten runs with a three-hour time limit. The table shows that the
approach using adaptivity has better results in every instance except for Early 4, which
only got feasible twice in the case without adaptivity and four times with adaptivity. This,
of course, makes the average more volatile to outliers. In the case of this specific instance,
we believe that being feasible twice as often is more representative of the performance
of the adaptivity than the worse average objective value. For the other instances, the
differences in objective values look less impressive at first sight than they actually are.
While a 5-10% difference may initially not look like too much one must keep in mind that
each successive improvement becomes harder than the previous one. Also, the effects of
adaptivity increase over time because for the first approximately 30 minutes almost every
neighborhood has a very good chance of finding improvements since there is still a lot
left to improve upon. So with longer runs like we use in Section 4.5 the differences would
likely become much bigger. Nevertheless, the average improvement for a three-hour run
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is already 9,5% which clearly shows that using the UCB bandit formulation is beneficial.

Table 4.14: Comparison of objective value between using the UCB multi-armed bandit
method for neighborhood type selection vs. choosing the neighborhood type at random.
The % difference indicates the difference in the average objective value of each instance.
We use 10 runs with a time limit of 3 hours each. Infeasible results are excluded from
the calculations.

Instance UCB: obj. val. std. dev. no bandit: obj. val. std. dev. % dif.
Early 1 543 40 615 72 13,3
Early 2 350 32 374 41 6,9
Early 3 1267 74 1289 49 1,7
Early 4 1464 61 1353 150 -7,6
Early 5 INF INF INF INF -
Early 6 4428 149 4627 89 4,5
Early 7 8223 777 8283 892 0,7
Early 8 1533 91 1698 69 10,8
Early 9 732 80 803 39 9,7
Early 10 INF INF INF INF -
Early 11 6771 432 6803 481 0,5
Early 12 971 69 1135 55 16,9
Early 13 379 28 409 37 7,9
Early 14 320 49 493 51 54,1
Early 15 5009 177 5227 153 4,4

Next, we look into the effects of using the global map structure M we described in
Section 4.4. Table 4.15 shows that the results of using this structure are mixed. While
some instances like Early 13 clearly benefit from it others like Early 14 perform better
without it. If you take an average over all instances the results are approximately the
same. This indicates that there are days and teams that when selected have a higher
chance of yielding improvements. However, our structure does not reliably identify them,
thus we have very mixed results based on whether we identified the right ones or not. If
this was not the case we would expect less of a spread of results. This raises the question
for future research: What better methods of identifying the right days and teams for
each neighborhood do exist, that consistently outperform random choices?
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Table 4.15: Comparison of objective value between using a global map structure for team
and day selection vs. selecting them at random. The % difference indicates the difference
in the average objective value of each instance. We use 10 runs with a time limit of 3
hours each. Infeasible results are excluded from the calculations.

Instance with M : obj. val. std. dev. no M : obj. val. std. dev. % dif.
Early 1 543 40 525 39 -3,3
Early 2 350 32 351 28 0,3
Early 3 1267 74 1278 63 0,9
Early 4 1464 61 1546 336 5,6
Early 5 INF INF INF INF -
Early 6 4428 149 4513 218 1,9
Early 7 8223 777 7530 759 -8,4
Early 8 1533 91 1588 90 3,6
Early 9 732 80 724 64 -1,1
Early 10 INF INF INF INF -
Early 11 6771 432 6887 426 1,7
Early 12 971 69 999 103 2,9
Early 13 379 28 445 28 17,4
Early 14 320 49 287 77 -10,3
Early 15 5009 177 5031 138 0,4

Finally, we look into a comparison of using the UCB bandit method vs. the ϵ-greedy
bandit method for selecting neighborhood types. The α parameter for the ϵ-greedy
formulation was determined using automatic parameter tuning in SMAC3 with the same
amount of runs as the UCB formulation received. The resulting α parameters are all
between 0.65 and 0.75 depending on the instance size (with a trend of higher α on
the bigger instances). Table 4.16 shows a comparison between using the UCB and the
ϵ-greedy formulation. The results clearly indicate that most of the time the UCB method
performs better on average. Interestingly, there are also instances where the ϵ-greedy
formulation performs better, which possibly indicates that in those instances a shift of
best neighborhood type occurs over time as described in Section 3.4. This claim is also
supported by the fact that the two instances where this phenomenon occurs (Early 4
and Early 7) have almost equally good performance using the UCB method as when we
use no bandit method at all.
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Table 4.16: Comparison of objective value between using the UCB and the ϵ-greedy
formulation of the multi-armed bandit problem. The % difference indicates the difference
in the average objective value of each instance. We use 10 runs with a time limit of 3
hours each. Infeasible results are excluded from the calculations.

Instance UCB: obj. val. std. dev. ϵ-greedy: obj. val. std. dev. % dif.
Early 1 543 40 610 69 12,3
Early 2 350 32 361 35 3,1
Early 3 1267 74 1307 47 3,2
Early 4 1464 61 1308 169 -10,7
Early 5 INF INF INF INF -
Early 6 4428 149 4642 224 4,8
Early 7 8223 777 7614 404 -7,4
Early 8 1533 91 1603 64 4,6
Early 9 732 80 808 54 10,4
Early 10 INF INF INF INF -
Early 11 6771 432 6768 426 0
Early 12 971 69 1067 91 9,9
Early 13 379 28 434 32 14,5
Early 14 320 49 414 61 29,4
Early 15 5009 177 5138 117 2,6

4.5 Evaluation on ITC2021 Instances
In this chapter, we will look at the performance of our approach. Specifically, in
Section 4.5.1 we compare our solutions with the best-known solutions of each instance of
the ITC2021 [VG23b] and make some general remarks about the overall performance. In
Section 4.5.2 we compare our best results to the best results of four other teams to give a
better impression of where we are ranking compared to the state-of-the-art. Here we will
also look at how we would have ranked in the competition if we had participated back
in 2021. Finally, we will look at some strengths and weaknesses that tell us in which
instances the ALNS is working best.

4.5.1 Results

General Results

For our final evaluation, we use 10 runs with a time limit of 6 hours for instances
numbered 1 through 9 (16 and 18 teams) and 5 runs with a time limit of 9 hours for
instances numbered 10 through 15 (20 teams). Those time limits are very much on the
low end for ILP-based approaches, but our resource limit did not allow us to go beyond
this. The reason for the larger time target for instances with 20 teams is that after 6
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hours improvements were still very frequent while after 9 hours they started to slow
down. In general, almost all of the results listed in Table 4.17 can likely be improved
by simply extending the time limit, but our goal was to implement a resource-efficient
approach that competes with the runtimes of the simulated annealing approach by Rosati
et al. [RPGS22]. Table 4.17 shows that for many instances we are relatively far away
from the best-known solution but for 12 of them we have a less than 20% gap to the
optimum. For one instance we found a new best-known solution. However, we will see in
Section 4.5.2 that most of the time the best-known solution is not very representative
of how most approaches perform, since it usually involves either very high runtimes
(sometimes multiple days) or an excessive amount of trials (sometimes more than 100)
or a combination of both. We can see in the column of our theoretical placement in
the ITC2021 (the placement we would get if we had participated) that we usually rank
between third and sixth (out of 14 including us) in most instances. If we sum up the
points we would get from those ranking according to the competition rules we would
rank fourth overall. It is clear that it is hard to reach top results with only 6 to 9 hours
of runtime and 5 to 10 trials. This makes the fact that we did find a new best-known
solution for instance Middle 3 much more significant.

To get a better understanding of how longer runtimes might influence our results, we
decided to run the algorithm for 24 hours on each of our own best-known solutions.
Table 4.18 shows that the solutions do indeed improve significantly. With this single
run on each instance, we have found two more best-known solutions (Middle 10 and
Late 2). We also generated one additional feasible solution (Middle 1) and improved the
objective values of 35 out of 39 feasible but not proven to be optimal instances. The
extent of the improvement varies across the instances with some improvements only being
very minor while on some other instances we improved the objective value by almost
25 %. It is notable, that some instances still showed improvements towards the end of
the 24-hour runtime but many of the instances with 16 and 18 teams showed no further
improvements in the last 12 hours of the optimization. Generally, it seems to be very
instance-dependent how long it takes before no further solutions are found, so ideally
if there are enough computational resources the algorithm should only terminate if no
further improvements can be found after a certain amount of time.

Another promising aspect of this approach is that we got feasible solutions on 41 out of
45 competition instances and only 2 approaches [RPGS22, LFMSP21] managed to get
more than that. This shows that our strategy for coming up with feasible solutions is
working very well.
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Table 4.17: Evaluation of our ALNS on instances of the ITC2021 [VG23b]. Infeasible
results are excluded from the calculation of average objective value and standard deviation.
The feasible column indicates how many of the runs reached feasibility. The best-known
solution includes solutions from both the ITC2021 as well as all post-competition solutions.

Instance best obj. val. avg. obj. val. std. dev. feasible ITC pos. best-known: % dif.
Early 1 386 527 58 1.0 3 362 6,6
Early 2 247 321 32 1.0 3 160 54,4
Early 3 1105 1222 66 1.0 5 1012 9,2
Early 4 889 1590 298 0.3 5 512 73,6
Early 5 inf inf inf 0.0 inf 3127 -
Early 6 4058 4377 98 0.6 4 3352 21,1
Early 7 6342 7392 98 1.0 3 4763 33,2
Early 8 1371 1524 78 1.0 5 1051 30,4
Early 9 452 598 91 1.0 7 56 707,1
Early 10 inf inf inf 0.0 inf 3400 -
Early 11 5644 6302 645 1.0 6 4436 27,2
Early 12 765 826 40 1.0 4 320 139,1
Early 13 332 373 37 1.0 5 121 174,4
Early 14 65 104 27 1.0 6 4 1525
Early 15 4284 4517 167 1.0 5 3110 37,7
Middle 1 inf inf inf 0.0 inf 5177 -
Middle 2 inf inf inf 0.0 inf 7381 -
Middle 3 9426* 10943 568 0.7 1 9542 -1,2
Middle 4 9 13 3 1.0 8 7 28,6
Middle 5 472 524 37 1.0 3 295 60
Middle 6 1615 1844 133 1.0 3 1125 43,6
Middle 7 2742 3076 129 1.0 5 1784 53,7
Middle 8 180 239 36 1.0 4 129 39,5
Middle 9 1085 1185 59 1.0 8 440 146,6
Middle 10 1367 1487 93 1.0 3 1250 9,4
Middle 11 2923 3051 95 1.0 5 2511 16,4
Middle 12 954 1086 98 1.0 3 599 59,3
Middle 13 744 821 75 1.0 7 253 194,1
Middle 14 1418 1556 80 1.0 3 1140 24,4
Middle 15 1266 1337 45 1.0 6 495 155,8
Late 1 2113 2339 130 1.0 4 1969 7,3
Late 2 5860 5890 30 0.2 6 5400 8,5
Late 3 2617 2882 156 1.0 4 2369 10,5
Late 4 0* 0 0 1.0 1 0 0
Late 5 inf inf 0.0 inf 1939 -
Late 6 1216 1270 51 1.0 6 923 31,7
Late 7 2228 2627 283 1.0 4 1558 43
Late 8 1077 1138 44 1.0 4 934 15,3
Late 9 1059 1195 81 1.0 5 527 100,9
Late 10 2341 2341 0 0.2 3 1988 17,8
Late 11 236 286 37 1.0 3 207 14
Late 12 5004 5140 96 1.0 6 3689 35,6
Late 13 2779 2901 89 1.0 6 1820 52,7
Late 14 1490 1595 73 1.0 5 1202 24
Late 15 140 199 26 1.0 10 0 infinity
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Table 4.18: Results of continuing our optimization on our best-known solutions for an
additional 24h. Only a single run was performed.

Instance before after % dif.
Early 1 386 372 -3,6
Early 2 247 247 0
Early 3 1105 1046 -5,3
Early 4 889 784 -11,8
Early 5 inf inf -
Early 6 4058 3855 -5
Early 7 6342 5880 -7,3
Early 8 1371 1277 -6,9
Early 9 452 367 -18,8
Early 10 inf inf -
Early 11 5644 5058 -10,4
Early 12 765 710 -7,2
Early 13 332 252 -24,1
Early 14 65 63 -3,1
Early 15 4284 4184 -2,3
Middle 1 inf 6062 infinity
Middle 2 inf inf -
Middle 3 9426* 9426* 0
Middle 4 9 9 0
Middle 5 472 469 -0,6
Middle 6 1615 1615 0
Middle 7 2742 2634 -3,9
Middle 8 180 175 -2,8
Middle 9 1085 1045 -3,7
Middle 10 1367 1228* -10,2
Middle 11 2923 2813 -3,8
Middle 12 954 914 -4,2
Middle 13 744 571 -23,3
Middle 14 1418 1384 -2,4
Middle 15 1266 1202 -5,1
Late 1 2113 2034 -3,7
Late 2 5860 5384* -8,1
Late 3 2617 2583 -1,3
Late 4 0 0 0
Late 5 inf inf -
Late 6 1216 1065 -12,4
Late 7 2228 1975 -11,4
Late 8 1077 1006 -6,6
Late 9 1059 985 -7
Late 10 2341 2090 -10,7
Late 11 236 226 -4,2
Late 12 5004 4429 -11,5
Late 13 2779 2296 -17,4
Late 14 1490 1251 -16
Late 15 140 120 -14,3
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Analysis of Neighborhood Usage

In Table 4.19 it is listed how many times each neighborhood type was used on average
during our analysis which strongly correlates with the average reward gained through the
neighborhood. The neighborhoods Team Paris, Teams HA, and Days HA were excluded
from the table since our parameter tuning determined it is better to not spend any time
using them. The first thing we observe when looking at the table is that we excluded the
Grouping Teams and Grouping Days neighborhoods from the large instances because of
our results from automatic parameter tuning and we excluded the Teams Phased and
Days Phased neighborhoods from non-phased instances. We can see that it is indeed
highly instance-dependent which neighborhoods are the most successful. However, there
are some patterns we can observe. First of all the Days Phased neighborhood is almost
always the most successful on phased instances. Next, we see that the Teams Phased
neighborhood is more successful than the ordinary Teams neighborhood on only 9 out
of 22 phased instances meaning that it is not strictly better to look at the two halves
of the tournament separately when working with Team based neighborhoods. This is
unexpected because when the time target is the same for both neighborhoods the Teams
Phased neighborhood usually destroys two to three times the amount of teams in a single
iteration. However, the Teams Phased neighborhood does not allow home-away swaps
along with the switches of matchups which likely contributes to the attribute of being
able to handle more teams at a time without an increase in average gained rewards.

Next, if we take a look at the Grouping Teams and Grouping Days neighborhoods we see
that in almost all instances it is more successful to group teams rather than days. The
cause for this could again be the heightened ability to change home-away patterns.

Finally, if we look at the Days, Teams, and Combi neighborhoods we see that they have
the greatest variance of success across instances. The Days neighborhood is usually very
successful on non-phased instances when the Days Phased neighborhood is not available.
The Teams neighborhood has a very hit-or-miss performance where it shines on some
instances like Late 10 and Middle 13 but is one of the least selected on others. We were,
however, not able to find what caused the performance of the Team neighborhood to
spike on some instances. Finally, the Combi neighborhood had good performances across
almost all instances, especially the non-phased ones where it did not have to compete
with the Days Phased Neighborhood. But there are also some non-phased instances
where the Combi neighborhood was completely outclassed by other neighborhoods like
Late 12.

Overall, this analysis of neighborhood usages shows us that adaptive neighborhood
selection is indeed very important for the DRRST problem as different instances show
very different patterns that are hard to pick up from just looking at the constraints.
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Table 4.19: Neighborhood usages across instances

Instance Days Teams Combi Grouping Teams Grouping Days Teams Phased Days Phased
Early 1 67 65 62 59 62 145 458
Early 2 109 69 169 74 79 148 341
Early 3 80 52 108 244 59 121 312
Early 4 68 52 92 70 44 56 165
Early 5 92 86 71 118 57 67 191
Early 6 35 42 43 87 44 68 403
Early 7 443 110 239 102 51 0 0
Early 8 322 69 196 199 38 0 0
Early 9 828 132 241 270 73 0 0
Early 10 90 141 274 0 0 79 383
Early 11 192 108 1003 0 0 0 0
Early 12 221 127 278 0 0 117 575
Early 13 927 234 540 0 0 0 0
Early 14 301 183 856 0 0 0 0
Early 15 734 173 514 0 0 0 0
Middle 1 100 125 114 113 78 68 109
Middle 2 80 105 130 119 72 72 93
Middle 3 316 155 187 114 64 0 0
Middle 4 173 137 194 138 126 160 277
Middle 5 188 112 174 284 193 84 852
Middle 6 337 40 226 65 44 74 380
Middle 7 262 588 615 93 40 0 0
Middle 8 501 170 342 123 117 0 0
Middle 9 508 217 570 116 85 0 0
Middle 10 210 147 164 0 0 163 1125
Middle 11 394 118 293 0 0 89 616
Middle 12 98 108 389 0 0 91 1119
Middle 13 395 1001 593 0 0 0 0
Middle 14 1025 148 431 0 0 0 0
Middle 15 160 106 1466 0 0 0 0
Late 1 701 262 363 498 158 0 0
Late 2 101 77 115 112 78 0 0
Late 3 815 215 667 161 135 0 0
Late 4 1 2 3 1 1 2 9
Late 5 51 70 76 104 48 52 160
Late 6 77 134 349 288 117 94 295
Late 7 355 163 683 54 141 0 0
Late 8 82 67 178 257 76 65 549
Late 9 983 87 206 69 57 0 0
Late 10 67 1206 87 0 0 53 568
Late 11 357 149 213 0 0 200 685
Late 12 898 21 612 0 0 0 0
Late 13 19 153 1438 0 0 0 0
Late 14 755 166 717 0 0 0 0
Late 15 961 329 562 0 0 0 0
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4.5.2 Comparison to Other Approaches
In this Section, we compare our ALNS to the only other ALNS approach by Phillips
et al. [POW21], the second place in the competition who used simulated annealing
(SA) [RPGS22] (they also improved their results post competition), the winners of the
competition who used an ILP-based fix and relax approach [LFMSP21] as well as the first
break heuristic by Van Bulck and Goossens [VG23a] which emerged after the competition.
We also provide the best-known objective values as well as the best objective values from
the ITC2021 [VG23b]. Table 4.20 compares the best objective values each method was
able to generate for the instances of the ITC2021. We see that our ALNS outperforms the
state-of-the-art ALNS method by Phillips et al. [POW21] on 33 out of the 45 instances.
We are also able to provide feasible solutions for three more instances than them. The
fix and relax heuristic as well as the break first heuristic both provide many of the
best-known solutions. While the approach by Lamas-Fernandez et al. [LFMSP21] has
great results on almost every instance the success of the break-first heuristic is highly
instance-dependent and they are only able to produce feasible results on 34 of the 45
instances. Note that the results shown in Table 4.20 do not include our 24-hour runtime
experiment shown in Table 4.18 since we only performed a single run which is not enough
data to draw strong conclusions. However, including those results, we would have three
unique best-known solutions instead of one.

Although it has been mentioned throughout the paper we also want to do a final
comparison of the various runtimes of the approaches. Even though the runtime highly
depends on the hardware used we think it is still worth mentioning in what approximate
time frame the solutions were produced. For this, we compare the runtime as it was
reported in the various papers. In the case of the other ALNS by Phillips et al. [POW21]
they used two measures namely the actual runtime (on 4 “c2-standard-30” virtual machine
instances) and the equivalent on a consumer CPU, we provide the latter in the Table 4.20.
We also exclude the runtime of instances that reached optimality within the timeframe
(Late 4) as it would skew the results (it took us between 30 seconds and 2 minutes to
reach optimality on this instance). Not all teams provided complete data regarding
runtime and amount of trials. The break-first heuristic is split into two parts. They use
three experiments for the generation which range from 12h to 24h runtime and afterwards,
they do 50 runs of variable neighborhood search with different random seeds that run for
1 hour and 45 minutes each. The fix and relax heuristic uses by far the most resources
with 60 runs per instance that each last up to 6 days (144 hours). Simulated annealing
uses a comparatively small runtime for each run but they do at least 48 and sometimes
more than 100 runs on each instance. Finally, our approach uses a much shorter runtime
than all other ILP-based approaches and while this means that we can’t quite compete
with their best-known solutions it provides a good alternative when the goal is to find
a good schedule with a low amount of resources and already outperforms the previous
state-of-the-art ALNS by Phillips et al. [POW21] both in runtime and solution quality.
Future experiments will show if with longer runtimes our approach will reach similar
objective values as shown by other teams.
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Table 4.20: Comparison of state-of-the-art methods from literature to our new ALNS
approach.

Instance Our ALNS Other ALNS SA Fix and Relax Break First Best ITC2021 Best-known
Early 1 386 666 423 362* 674 362 362
Early 2 247 379 318 222 320 160 160
Early 3 1105 1171 1068 1052 1084 1012 1012
Early 4 889 inf 556 536 inf 512 512
Early 5 inf inf 4117 3127* inf 3127 3127
Early 6 4058 4821 3927 3714 inf 3352 3352
Early 7 6342 7208 5205 4763* 6092 4763 4763
Early 8 1371 1191 1051* 1114 1620 1064 1051
Early 9 452 447 132 108 56* 108 56
Early 10 inf inf 4986 3400* inf 3400 3400
Early 11 5644 6713 4526 4436* 8769 4436 4436
Early 12 765 925 1010 510 320* 380 320
Early 13 332 382 173 121* 230 121 121
Early 14 65 106 63 47 42 4 4
Early 15 4284 4667 3556 3368 3110* 3368 3110
Middle 1 inf inf 5657 5177* inf 5177 5177
Middle 2 inf inf inf 7381* inf 7381 7381
Middle 3 9426* 11235 9542 9800 inf 9701 9426
Middle 4 9 7* 16 7* 55 7 7
Middle 5 472 681 510 494 295* 413 295
Middle 6 1615 2026 1701 1275 1485 1125 1125
Middle 7 2742 3317 2203 2049 3786 1784 1784
Middle 8 180 277 136 129* 235 129 129
Middle 9 1085 1315 640 450 440* 450 440
Middle 10 1367 2370 1357 1250* 1770 1250 1250
Middle 11 2923 3143 2696 2608 inf 2511 2511
Middle 12 954 911* 950 923 599* 911 599
Middle 13 744 1044 362 282 1835 253 253
Middle 14 1418 1704 1172 1323 1140* 1172 1140
Middle 15 1266 1401 985 965 1205 495 495
Late 1 2113 2406 2021 1969* 2279 1969 1969
Late 2 5860 inf 5715 5400* 5429 5400 5400
Late 3 2617 2900 2457 2369* 2772 2369 2369
Late 4 0* 0* 0* 0* 220 0 0
Late 5 inf inf 2341 2218 inf 1939 1939
Late 6 1216 1310 930 923* inf 923 923
Late 7 2228 2805 1765 1652 1997 1558 1558
Late 8 1077 1252 997 934* 1239 934 934
Late 9 1059 1343 715 563 527* 563 527
Late 10 2341 inf 2571 2031 inf 1988 1988
Late 11 236 376 207* 226 421 207 207
Late 12 5004 5542 3944 3912 4010 3689 3689
Late 13 2779 3099 1868 2110 2995 1820 1820
Late 14 1490 1714 1202* 1363 1219 1206 1202
Late 15 140 80 60 40 0* 20 0
Total feasible 40 37 44 45 34
Total unique best 1 1 3 15 9
Runtime (h) 6-9 24-48 1.5-12.7 ?-144 24 (+1.75)
Amount of runs 5-10 ? 48-101+ 60 3 + 50
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Lastly, we also believe that it provides value to compare average results rather than
the best-known objective values since this gives less importance to statistical outliers
that come from running the approach many times. However, the only state-of-the-art
approach that provides data on their average results is the SA approach by Rosati et
al. [RPGS22] which means that we can’t compare to any other ILP-based approaches.
However, this approach is the most similar in runtime to ours which gives a somewhat fair
comparison even though the heuristic methods are fundamentally different. Table 4.20
shows that our ALNS has a better average objective value on 14 of the instances while
the SA approach has a better objective value on 25 of the instances. Those are really
good results for us considering that we often stopped an experiment when there was still
a good chance for further improvement, while the SA method stopped when reaching the
minimal temperature at which point further improvements would have been unlikely (at
least without reheating methods).
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Table 4.21: Comparison of average objective value between our approach and SA by
Rosatti et al. [RPGS22]
.

Instance Our ALNS SA % dif
Early 1 527 541 -2,6
Early 2 321 385 -16,6
Early 3 1222 1177 3,8
Early 4 1590 1008 57,7
Early 5 inf inf -
Early 6 4377 4543 -3,7
Early 7 7392 6722 10
Early 8 1524 1152 32,3
Early 9 598 229 161,1
Early 10 inf inf -
Early 11 6302 5785 8,9
Early 12 826 1200 -31,2
Early 13 373 234 59,4
Early 14 104 82 26,8
Early 15 4517 3946 14,5
Middle 1 inf 6075 -
Middle 2 inf inf -
Middle 3 10943 11403 -4
Middle 4 13 33 -60,6
Middle 5 524 624 -16
Middle 6 1844 2186 -15,6
Middle 7 3076 2453 25,4
Middle 8 239 197 21,3
Middle 9 1185 772 53,5
Middle 10 1487 1688 -11,9
Middle 11 3051 2997 1,8
Middle 12 1086 1054 3
Middle 13 821 479 71,4
Middle 14 1556 1305 19,2
Middle 15 1337 1100 21,5
Late 1 2339 2373 -1,4
Late 2 5890 6086 -3,2
Late 3 2882 2718 6
Late 4 0 0 0
Late 5 inf inf -
Late 6 1270 1121 13,3
Late 7 2627 2227 18
Late 8 1138 1155 -1,5
Late 9 1195 881 35,6
Late 10 2341 3527 -33,6
Late 11 286 289 -1
Late 12 5140 4831 6,4
Late 13 2901 2286 26,9
Late 14 1595 1326 20,3
Late 15 199 83 139,8
Total better 14 25
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CHAPTER 5
Conclusion and Future Work

In this thesis, we looked at a new ILP-based ALNS approach to the DRRST problem
that involves a multi-armed bandit formulation for neighborhood type selection, a new
multi-stage approach for efficient generation of feasible solutions as well as some new
heuristics that help to escape local optima. We also designed six new neighborhood types,
that can be used for any ILP-based heuristic.

The evaluation of our ALNS approach shows that it is highly effective compared to previous
ALNS approaches even when using much lower computational resources. However, with
the current self-imposed time limits, we were only able to go beyond the best-known
solutions on 3 out of 45 instances of the ITC2021. Nevertheless, it is shown that we
achieved similar average results as the state-of-the-art in simulated annealing on most of
the instances which is the only modern heuristic that uses similar runtime.

Throughout the various experiments, some insights were gained into properties that can
be used to solve the DRRST more efficiently. The following statements can be considered
our main contributions:

• A thorough analysis was made of both existing and newly developed neighborhood
types and identified that the effectiveness of each neighborhood type is highly
instance-dependent. This speaks for the importance of using adaptive methods
since it is hard to predict the strength of the various neighborhood types based
on the metadata alone. We also found that some neighborhood types are not very
useful in general while others only work well for instances of smaller size.

• It is very important to handle the different constraint types with care when trying
to generate feasible solutions as some constraints become much harder to fulfill
once a lot of the schedule is fixed. We showed that handling those constraints first
usually results in a quicker generation of feasible solutions.
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• We identified that the DRRST problem has a very high amount of hard-to-escape
local optima, which is also the reason why the currently most successful heuristic
methods use a lot of separate runs to achieve the best possible objective values. In
this thesis, we show a way to escape such local optima in ILP-based approaches.

• In regards to adaptivity we showed that the UCB multi-armed-bandit method
outperformed the non-stationary ϵ-greedy formulation with optimistic initial rewards
for the selection of neighborhood types.

Our experiments also showed a lot of potential for future research. First of all, it is
interesting how an ALNS approach such as ours would perform with similar computational
resources as other ILP-based heuristics. There is also a lot of potential to further improve
the adaptive aspects of such a heuristic. Examples of such improvements include a more
adaptive selection of teams and slots once the neighborhood type is fixed, including
non-ILP-based methods for schedule improvements instead of following strict destroy and
repair cycles, and improved more flexible heuristics to escape local optima. In general,
we need more research in regards to how humans handle the problem when trying to
manually schedule such sports tournaments. The knowledge gained through such research
then has a high potential to improve the current automatic methods.
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