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Abstract
Objective  This retrospective study aimed to analyse the correlation between somatostatin receptor subtypes (SSTR 1–5) and 
maximum standardized uptake value (SUVmax) in meningioma patients using Gallium-68 DOTA-D-Phe1-Tyr3-octreotide 
Positron Emission Tomography ([68Ga]Ga-DOTATOC PET). Secondly, we developed a radiomic model based on apparent 
diffusion coefficient (ADC) maps derived from diffusion weighted magnetic resonance images (DWI MRI) to reproduce 
SUVmax.
Method  The study included 51 patients who underwent MRI and [68Ga]Ga-DOTATOC PET before meningioma surgery. 
SUVmax values were quantified from PET images and tumour areas were segmented on post-contrast T1-weighted MRI and 
mapped to ADC maps. A total of 1940 radiomic features were extracted from the tumour area on each ADC map. A random 
forest regression model was trained to predict SUVmax and the model’s performance was evaluated using repeated nested 
cross-validation. The expression of SSTR subtypes was quantified in 18 surgical specimens and compared to SUVmax values.
Results  The random forest regression model successfully predicted SUVmax values with a significant correlation observed 
in all 100 repeats (p < 0.05). The mean Pearson’s r was 0.42 ± 0.07 SD, and the root mean square error (RMSE) was 
28.46 ± 0.16. SSTR subtypes 2A, 2B, and 5 showed significant correlations with SUVmax values (p < 0.001, R2 = 0.669; 
p = 0.001, R2 = 0.393; and p = 0.012, R2 = 0.235, respectively).
Conclusion  SSTR subtypes 2A, 2B, and 5 correlated significantly with SUVmax in meningioma patients. The developed 
radiomic model based on ADC maps effectively reproduces SUVmax using [68Ga]Ga-DOTATOC PET.
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Introduction

Magnetic resonance imaging (MRI) is the gold standard to 
diagnose meningioma and represents an important imag-
ing tool for surgical as well as radiation treatment planning, 
monitoring and follow-up after treatment [1]. Following 
meningioma surgery, conventional neuroimaging with MRI 
has limitations in distinguishing between tumour remnants 
and adjacent anatomical structures, postoperative changes 
(e.g., scars) [2] and/or bone involvement [3]. This is par-
ticularly important for subsequent treatment planning such 
as (re-)resection or radiation therapy (i.e., definition of the 
target volume). A further challenge in meningioma man-
agement is the early prediction of tumour recurrence or 
progression. Studies have shown that positron emission 
tomography (PET) imaging can overcome some of these 
challenges.

Somatostatin receptors (SSTR) are one of the main tar-
gets for PET imaging of meningiomas. High levels of SSTR 
subtype 2 expression were found in meningioma compared 
to a very low expression in adjacent structures like brain 
tissue or bone [4–6]. Gallium-68 [68Ga]Ga–labeled SSTR 
ligands (DOTATOC, DOTATATE, DOTANOC) with high 
affinity to these receptors have therefore been shown to 
add valuable diagnostic information during meningioma 
management [2, 7–9]. [68Ga]Ga-DOTATOC PET has the 
ability to differentiate between tumorous and non-tumorous 
areas in regions with low MRI contrast [2, 8]. Due to the 
good tumour/non-tumour contrast, [68Ga]Ga-DOTATOC 
PET has also been used for radiation planning [10–13] with 
the goal to spare as much critical tissue as possible without 
missing tumour. It was also shown that [68Ga]Ga-DOTA-
TOC PET maximum standardized uptake value (SUVmax) 
predicted faster growth in World Health Organization 
(WHO) grades I and II meningioma [9]. To determine tracer 
uptake intensity in PET imaging, SUVmax is used to supple-
ment visual interpretation and it represents the tissue radio-
activity concentration [14]. A correlation between SSTR2 
expression and corresponding SUVmax was found [15] in 
neuronavigated tissue biopsies. No correlation of SSTR 
subtypes (especially 2A und 2B) with SUVmax from [68Ga]
Ga-DOTATOC PET has been done so far in meningioma 
patients. Although, SSTR-directed PET provides additional 
diagnostic information, it is not routinely integrated into 
the first-line diagnostic evaluation of meningiomas as not 
every neuro-oncologic center has the availability of a PET 
scanner. Hence, obtaining maximum information from MRI 
images which are acquired in clinical routine, is desirable.

Diffusion-weighted imaging (DWI) is a broadly available 
MRI sequence used to provide quantitative information on 
the diffusion of water molecules within the brain tissue and 
is an integral part of standard brain tumour imaging [16]. 

Radiomics is a method introduced to characterize complex 
structural properties from imaging data such as texture, 
shape, or decencies among neighbouring voxels. Radiomics 
has been shown to have numerous applications in neuro-
radiology [17] and could help the assessment of tumour 
phenotypes from routine medical images by providing 
additional quantitative information. Indeed, several studies 
investigating radiomics features derived from DWI MRI in 
meningioma patients already exist [18].

In this study, we aim to investigate the pathophysiologi-
cal background of the SUVmax signal by comparing it to 
the expression of SSTR subtypes in meningioma tissue. As 
DWI MRI and ADC maps have been associated to infor-
mation on cellular density [19] and properties of the extra-
cellular matrix [20, 21] we hypothesize that the complex 
information described by radiomic features may contain 
signal related to [68Ga]Ga-DOTATOC PET/CT SUVmax 
values. For this purpose, we trained and evaluated a pre-
dictive model for inferring SUVmax values from radiomic 
features of the meningioma derived from ADC maps.

Materials and methods

Patient data and imaging

The protocol for our retrospective study was reviewed 
and approved by the local independent ethics committee 
(UN5202, 328/4.16). From January 2006 to February 2020, 
all patients who underwent a cranial MRI and [68Ga]Ga-
DOTATOC PET/CT prior to surgery for cranial meningi-
oma (first diagnosis and recurrent tumour) were evaluated. 
All meningiomas included in this study were surgically 
resected and the histologic analysis was done according the 
WHO criteria 2006 and 2016 (depending on the time point 
of study inclusion of the patients) [22, 23]. The inclusion 
criteria for the imaging part of the study were as follows: 
(1) histologically confirmed meningioma, (2) preoperative 
MRI (including T1 sequences with and without contrast 
enhancement, T2/FLAIR sequences, DWI-MRI with ADC 
maps) and [68Ga]Ga-DOTATOC PET/CT images within 
a time interval of 180 days, (3) determination of extent of 
surgical resection (Simpson Grade) by reviewing of surgi-
cal documentations in combination with pre- and postopera-
tive MRI findings. The exclusion criteria were as follows: 
(1) ADC maps with other b-values than 0 and 1000 s/mm2, 
(2) incomplete or severe artefacts in MRI or PET images/
sequences, (3) in case of recurrent meningioma, other inter-
ventions (e.g. chemotherapy, radiation therapy) except for 
prior surgery. In case of multiple meningiomas, the resected 
meningioma was used for analysis. Immunohistochemi-
cal analysis was performed in patients with sufficient and, 
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above all, good tissue quality for immunohistochemical 
staining.

After consideration of the inclusion and exclusion cri-
teria, 51 consecutive patients were included in this study 
with 35 low grade (WHO I) and 16 high grade (WHO II and 
III) meningiomas. Twelve (23,5%) patients had recurrent 
tumour. Importantly, these recurrent tumours were treat-
ment naive, hence no other therapy (i.e., radiation) except 
for surgery has been applied before. See Table 1 for further 
patient details.

MRI and PET data acquisition

Patients have been investigated on different MRI scanners 
using 3 Tesla (T) and 1,5T (Siemens Symphony Vision 
(n = 5), Siemens Symphony Tim (n = 26), Siemens Avanto 
(n = 1), Siemens Sonata (n = 1), Siemens Aera (n = 5), Sie-
mens Skyra (n = 9), GE Optima (n = 1) and Philips Achieva 
(n = 3)). Importantly, diffusion weighting was applied with 
b-values at 0 and 1000  s/mm2 in all patients. For details 

on the imaging protocol, please see Supplement Table 1. 
[68Ga]Ga-DOTATOC PET/CT scans were performed at 
the Department of Nuclear Medicine at Innsbruck Medi-
cal University using a dedicated PET/CT system General 
Electric (GE Discovery 690).[68Ga]Ga was obtained from 
a [68Ge]/[68Ga] radionuclide generator (Eckert & Ziegler, 
Berlin; Germany). The described method by Decristoforo 
et al. [24] was used for synthesis of [68Ga]Ga-DOTATOC 
and it was applied intravenously followed by a tracer uptake 
phase of 60  min. A contrast enhanced low-dose CT scan 
(Siemens Medical Solutions, Erlangen, Germany) of the 
head was performed for attenuation correction. The PET 
scan was acquired in a single bed position and the duration 
of acquisition was 5 min in emission mode, starting 60 min 
after application. PET emission data were reconstructed as 
axial, coronal and sagittal [25].

MRI processing

Individual 3D T1 weighted MR images were segmented 
into gray matter, white matter and cerebrospinal fluid (CSF) 
compartments using statistical parametric mapping (SPM, 
Wellcome Department of Cognitive Neurology, London, 
United Kingdom). To compensate for eddy currents, DWI 
images were registered to an individual reference image 
without diffusion weighting (3D T1) using SPM [26]. Regis-
tered DWI were visually verified for correct calculation and 
reconstruction for every subject. Individual T1 post contrast 
enhanced images were used to segment the contrast enhanc-
ing tumour region and generate volumes of interest (VOIs). 
T2 weighted images were used to segment the T2 hyper-
intense voxels surrounding the tumour (edema). A semiau-
tomatic segmentation method based on a signal intensity 
threshold and margin-based algorithms (ITK-SNAP 3.8.0) 
was used for this segmentation. This approach was previ-
ously shown to have high efficiency and produce reliable 3D 
segmentations [27]. Necrotic tissue was excluded from the 
segmentation. The manual labelling was performed by one 
experienced investigator (SI) in image segmentation with 8 
years of experience.

In order to standardize ADC values among MRI scan-
ners, previously delineated areas of the tumour and edema 
as well as the compartment of the CSF were deduced from 
the gray and white matter compartments. Consecutively, 
the ratio of ADC values of each individual voxel within the 
individual compartments (tumour, edema and the tumour-
free compartment) was calculated. In order to avoid con-
tamination from CSF and non-brain compartments due to 
partial volume effects, ADC voxel values that were outside 
a threshold of mean CSF ADC of 2 SD (standard devia-
tions), determined for each individual, were excluded.

Table 1  Patients’ and meningioma characteristics
Patients 51

male : female (ratio) 21 : 30 (1 : 1,4)
median age at resection (range) 54 years (21 – 

85 years)
multifocal meningioma 12 (23,5%)

Meningiomas 51
World Health Organization (WHO) grade
I 35 (68,6%)
II 11 (21,6%)
III 5 (9,8%)
primary : recurrent 39 (76,5%) : 

12 (23,5%)
Histological classification of meningiomas

Meningothelial 22 (43,1%)
Fibroblastic 2 (3,9%)
Microcystic 1 (2,0%)
Secretory 3 (5,9%)
Transitional 7 (13,7%)
Atypical 11 (21,6%)
Anaplastic 5 (9,8%)
Tumor site
Olfactorius nerve 1 (2,0%)
Sphenoidal 11 (21,6%)
Petroclival/clival 3 (5,8%)
Frontoparietal/-basal 7 (13,7%)
Sphenoorbital 4 (7,8%)
Parasagittal/falx 13 25,5%)
Infratentorial 1 (2,0%)
Convexity 11 (21,6%)

Extent of Resection (Simpson grading for 
meningioma)

Gross-total resection (Simpson grade I-III) 39 (76,5%)
Subtotal resection (Simpson grade IV-V) 12 (23,5%)
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were tuned to optimize the model. Details can be found in 
the online documentations of the according software pack-
ages mRMRe (2.1.2) [32] and caret (6.0–93) as well as fea-
ture selection and model tuning [33]. Default settings were 
used. The final model was applied on the test data within 
each fold. The cross-validation was repeated 100 times to 
obtain a realistic distribution of the prediction accuracy. 
This resulted in 100 predicted SUVmax values for each of the 
51 subjects. For each repeat, the predicted and the observed 
values were compared by calculating the root mean square 
error (RMSE) and a Pearson correlation test. The signifi-
cance of the correlation for each repeat and the variance of 
the RMSE over all repeats were considered. Furthermore, 
the mean and the standard error across all repeats was cal-
culated for each case and summarized in a plot.

To extract the relevance of the different features, the fre-
quency of the features selected for the model after mRMR 
and rfe within the 1000 computed models (10 folds, 100 
repeats) was analysed. The modelling and statistical data 
analysis was implemented in R, version 4.2.1 [34] and 
SSPS, version 26.0 [35].

Immunohistochemical analysis and semi-
quantitative assessment of somatostatin receptors

Out of the 51 patients we identified 18 surgical specimens 
from histologically confirmed meningioma patients who 
had good tissue quality for immunohistochemical staining 
of SSTR. Please see Supplement 2 for detailed description 
of the immunohistochemical analysis of somatostatin recep-
tors (SSTR1, SSTR2A, SSTR2B, SSTR3, SSTR4, SSTR5). 
Semi-quantitative assessment of tissue receptor expression 
was performed using the immunoreactive-score (IRS). The 
IRS gives a range of 0–12 as a product of multiplication 
between staining intensity score (0 = no staining; 1 = 0.1–
29%; 2 = 30–59.9%; 3 = 60–100%) and positive cells pro-
portion score (0 = no positive cells, 1 = < 10% of positive 
cells, 10–50% positive cells, 51–80% positive cells, > 80% 
positive cells) [36]. SUVmax from [68Ga]Ga-DOTATOC 
PET/CT was calculated in these patients and Spearman rank 
test was used to correlate IRS with SUVmax.

Results

Radiomic feature selection and prediction 
performance evaluation

The SUVmax values predicted by the random forest regres-
sion models correlated significantly with the observed val-
ues (p < 0.05) for all 100 repeats with a mean Pearson’s 
r = 0.42 ± 0.07 SD and a RMSE = 28.46 ± 0.16. The mean 

Radiomic features

Radiomic features were extracted from the ADC maps 
within the manually defined VOI using PyRadiomics v3.0.1 
[28]. PyRadiomics implements 8 pre-processing filters 
and 7 classes of radiomic feature leading to a total of 1940 
unique radiomic features. The radiomic features included 
first order features, shape features (3D and 2D), gray 
level co-occurrence matrix (GLCM) features, gray level 
size zone matrix (GLSZM) features, gray level run length 
matrix (GLRLM) features, neighbouring gray tone differ-
ence matrix (NGTDM) features and gray level dependence 
matrix (GLDM) features. Detailed descriptions of the pre-
processing filters and radiomic features can be found in the 
online documentation (https://pyradiomics.readthedocs.io).

Analysis of [68Ga]Ga-DOTATOC PET/CT imaging

The PET/CT images were interpreted visually and semi-
quantitatively by an experienced nuclear medicine physician 
(CU, 10 years of experience). Regions of interest (ROIs) 
were drawn manually around the hypermetabolic tumour 
lesions by a nuclear medicine physician on a Hermes Work-
station (Hermes Medical Solutions, Stockholm, Sweden). 
To discriminate between tumour and non-tumoural tissue, 
we utilized the established SUVmax threshold of 2.3, as 
determined by Rachinger et al. [8]. The ROIs were adjusted 
in 3 planes so that the entire meningioma was included. 
SUVmax within the ROI was calculated by determining the 
maximum PET tracer uptake and correlating it with the 
applied dose and patients body weight. The highest SUVmax 
was recorded and used for further analysis.

Statistical analysis, feature selection and model 
construction

Within the statistical data analysis, the radiomics derived 
from the ADC maps are further used as predictor variables 
to establish a model for the corresponding SUVmax values. 
Therefore, a random forest regression model (ranger 0.14.1) 
[29] was used. The model was evaluated using a repeated 
nested cross-validation (CV) design with 100 repeats and 
10 and 5 folds for the outer and nested loops, respectively. 
To reduce the correlation between the features, optimize 
performance and avoid overfitting, a two-step feature selec-
tion was performed within each fold. Firstly, the number of 
features was narrowed down from 1940 to 30 using mini-
mum redundancy maximum relevance (mRMR) feature 
selection [30]. Secondly, the number of features was fur-
ther reduced using recursive feature elimination (rfe) [31]. 
Following this, the hyperparameters of the random forest 
regression models (mtry, split rule and minimum node size) 
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the features used in more than 500 out of 1000 models is 
shown in Fig. 2. Within this top ranked features, five dif-
ferent groups of radiomics can be identified: six first-order 
features, one gray-level dependence matrix (GLDM) fea-
ture, two gray-level co-occurrence matrix (GLCM) features, 
one neighboring gray-tone difference matrix (NGTDM) and 
three 3D Shape features (Table 2).

predicted values plotted against the observed values are 
shown in Fig. 1.

Across all folds and repeats, out of the 1940 unique 
radiomics features, a total of 220 different radiomic features 
were selected by the mRMR. The second step of feature 
reduction, the recursive feature elimination (rfe) within the 
random forest modelling, resulted in a feature sets of 2 to 30 
features (median number of features is 25) for the prediction 
within each fold. The most dominant feature was selected 
as input data for 992 out of 1000 models. To give an over-
view on feature analysis results, the relative frequency of 

Fig. 2  Radiomic features selected 
in more than 50% of all models
 

Fig. 1  Mean SUVmax values 
predicted by the random for-
est models plotted against the 
observed SUVmax values for 
the 51 considered patients. The 
error bars indicate the standard 
deviation. The yellow line is the 
identity line. The green line and 
corresponding shaded area repre-
sents a linear regression fit to the 
data and its confidence interval
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The IRS for SSTR2A, SSTR2B and SSTR5 correlated sig-
nificantly with the SUVmax on PET (p < 0.001, R2 = 0.669 
for SSTR2A; p = 0.001, R2 = 0.393 for SSTR2B; p = 0.012, 
R2 = 0.235 for SSTR5) (Fig. 3).

Discussion

In this retrospective study we immunohistochemically 
quantified SSTR subtypes in patients with resected menin-
gioma and showed that SSTR subtypes 2A, 2B and 5 
correlate significantly with SUVmax signal in [68Ga]Ga-
DOTATOC PET/CT. In a second step we showed the poten-
tial of radiomic features derived from ADC maps from DWI 
MRI to model the [68Ga]Ga-DOTATOC PET/CT SUVmax 
signal in meningioma patients of different grades. The fea-
tures with high explanatory value (selected in > 50% of all 
models) were dominated by first order, GLDM, GLCM, 
NGTDM and 3D Shape features.

In the first part of our study, we aimed to provide a patho-
physiological background for SUVmax signal in [68Ga]Ga-
DOTATOC PET. In PET, SUV came to be used as a tool to 
supplement visual interpretation and measures relative tis-
sue uptake in comparison to other structures considering an 
optimal diagnostic threshold [37] thereby gaining additional 

Correlation between [68Ga]Ga-DOTATOC PET/CT and 
the SSTR expression intensity

Within the 18 tumour specimens, SSTR2A showed the high-
est immunoreactivity with a median IRS of 8, while SSTR1, 
SSTR2B und SSTR5 had a median IRS of 3 and SSTR3 
und SSTR4 showed no immunoreactivity (median IRS = 0).

Analyses from preoperative [68Ga]Ga-DOTATOC PET/
CT revealed a median SUVmax of 12,3 (range 1.3–44.9). 

Table 2  Top ranked radiomic features categorised into five groups
First order square_firstorder_10Percentile

exponential_firstorder_Median
exponential_firstorder_10Percentile
wavelet.HHH_firstorder_Mean
exponential_firstorder_Mean
wavelet.HHL_firstorder_Skewness

GLDM wavelet.
HLH_gldm_DependenceNonUniformityNormalized

GLCM exponential_glcm_ClusterProminence
log.sigma.2.0.mm.3D_glcm_lmc1

NGTDM exponential_ngtdm_Complexity
3D Shape 
features

original_shape_flatness
original_shape_Maximum3DDiameter
original_shape_Elongation

GLDM: Gray-level dependence matrix, GLCM: Gray-level cooccur-
rence matrix, NGTDM: neighboring gray-tone difference matrix

Fig. 3  A. Significant correlation of IRS for SSTR2A with SUVmax (p < 0.001, R2 0.669). B. Significant correlation of IRS for SSTR2B with 
SUVmax (p = 0.001, R2 0.393). C. Significant correlation of IRS for SSTR5 with SUVmax (p = 0.012, R2 0.235)
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GLDM and NGTDM are examples of textural features that 
are computed from gray level matrices extracted from a pre-
segmented tumour. These features are then organized into 
groups based on the respective gray level matrices used in 
their extraction [45]. GLCM and GLDM provide valuable 
information on determining the optimal width for analys-
ing invasiveness and peritumoural regions in meningioma 
[46]. GLCM features are utilized as biomarkers of hetero-
geneity, offering valuable insights into the tumour micro-
environment [47]. In the case of meningiomas, NGTDM 
features, along with the other textural features, have demon-
strated their usefulness in predicting Ki-67 and p53 status, 
as well as showing good performance in predicting proges-
terone receptor expression in high-grad meningiomas [48, 
49]. Shape features, including 3D shape features, consist 
of descriptors that characterize the three-dimensional size 
and shape of ROI. These features are independent of the 
gray level intensity distribution of ROI. Several clinical trial 
have demonstrated that shape features extracted from MRI 
serve as informative imaging biomarkers for predicting high 
WHO grade and histological brain invasion in meningioma 
[50, 51].

To date, ADC radiomics in meningioma have only been 
investigated to predict meningioma grade [52] and outcome 
[53]. In a study of 71 meningioma patients, four statisti-
cally independent radiomic features derived from FLAIR, 
T1 contrast enhanced MRI and DWI MRI showed strong 
association with meningioma grades [52]. Using a decision 
forest classifier in 152 meningioma patients, built with 23 
selected texture features and the ADC value an accuracy of 
79.51% to predict meningioma grade was found [54]. Morin 
et al. [53] analysed prognostic models using clinical, radio-
logic (including ADC maps), and radiomic features to pre-
operatively identify meningiomas at risk for poor outcomes. 
Investigating 314 meningioma patients (57% WHO grade I, 
35% grade II, and 8% grade III) at two independent institu-
tions, they found that low ADC values were associated with 
high-grade meningioma, and low sphericity was associated 
with increased local failure and worse overall survival and 
the prediction of meningioma grading from preoperative 
brain MRI demonstrated good results in a meta-analysis 
[55].

Our results show that radiometric features derived from 
ADC maps can be significantly linked to the SUVmax signal. 
Therefore, our MR-based methodology could be of particu-
lar value for centers with limited access to PET imaging. 
Based on our findings, radiomics of ADC maps could be uti-
lized in further studies to predict response to PRRT, similar 
to how it has been done by Park et al. in selecting radiother-
apy for meningioma WHO grade II [56]. Certainly, as a lim-
itation of this study, prospective studies are needed to show 
the full clinical utility of our model e.g. to detect tumour, 

information on tumour margins and tumour volume for pos-
sible radiotherapy or radionuclide therapy [13, 38].

So far, only one study [8] investigated the correla-
tion between SSTR expression and SUV signal in [68Ga]
Ga-DOTATOC PET in patients with meningioma. In 21 
meningioma patients the authors found a significant posi-
tive correlation between SUVmax and SSTR2 expression 
and by analysing locally different biopsies a SUVmax cut off 
value of 2.3 was set to define tumorous tissue. A correlation 
subtype analysis in meningioma patients however has not 
been done so far. In our study we could confirm the correla-
tion between SSTR2 and SUVmax signal. We furthermore 
could show that different subtypes correlate differently with 
SUVmax signal (SSTR2A correlated best followed by 2B 
and 5).

Only recently, a comprehensive analysis from 726 
tumour samples showed a clear distinction of SSTR expres-
sion in meningioma subgroups. Especially, SSTR1, 2A, 
and 5 showed high expression rates [39]. The expression 
of SSTR2A has also shown to be an independent prognos-
tic value regarding meningioma recurrence [40]. This find-
ing is also important for further therapeutic consideration, 
as it relates to SSTR-targeted peptide receptor radionuclide 
therapy (PRRT), which represents a promising approach for 
treating refractory meningiomas that progress after surgery 
and radiotherapy [41, 42]. A deeper understanding on the 
distribution and role of somatostatin receptors in meningio-
mas is essential to further develop and refine a differentiated 
targeted application. PET with [68Ga]Ga-labelled soma-
tostatin analogues has shown to assess the tumour radionu-
clide uptake in PRRT of meningioma prior to treatment and 
serves as an estimate of the achievable dose [38]. It has been 
demonstrated that a lesion-based analysis of SUVmax and 
SUVmean in [68Ga]Ga-DOTATOC could predict response to 
PRRT [43] making [68Ga]Ga-DOTATOC PET an important 
predictive biomarker for PRRT. By showing that not only 
SSTR2 but especially SSTR2A, 2B and SSTR5 are highly 
correlated with SUVmax signal from [68Ga]Ga-DOTATOC 
we also provide more insight into the pathophysiology of 
the SUVmax signal and refine this pretherapeutically used 
diagnostic tool.

In the second part of the study, we established a predic-
tive model to infer SUVmax values from radiomic features 
derived from ADC maps. Besides semantic or standard fea-
ture like tumour volume and signal intensity, radiomics has 
the ability to generate many more parameters that have been 
linked to specific tumour characteristics. In our study, 13 
top ranked features which have been selected in the MRI 
model, were classified into five groups, as shown in Table 2. 
First-order statistics describe the distribution of voxel inten-
sities within the VOI and showed to be a helpful tool in 
identifying brain invasion in meningiomas [44]. GLCM, 
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