
Constraint-basierte 3D
Manipulation für molekulare

Modellierung im Web

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Lucas da Cunha Melo
Matrikelnummer 01429462

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dr.techn. MSc Manuela Waldner

Wien, 4. September 2023
Lucas da Cunha Melo Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Constraint-Based 3D
Manipulation for Molecular

Modelling on the Web

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Lucas da Cunha Melo
Registration Number 01429462

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr.techn. MSc Manuela Waldner

Vienna, 4th September, 2023
Lucas da Cunha Melo Manuela Waldner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lucas da Cunha Melo

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. September 2023
Lucas da Cunha Melo

v

Kurzfassung

Computer-Aided Molecular Design (MolCAD), oder molekulare Modellierung, beschäf-
tigt sich mit dem computergestützten Entwurf und der Manipulation von molekularen
Strukturen. Dieses Gebiet erlebt derzeit einen Aufschwung an Interesse und Entwicklung,
wobei der Fokus oft auf fortschrittlichen Visualisierungstechniken liegt. Allerdings mangelt
es den bestehenden MolCAD-Tools oft an der Benutzerfreundlichkeit und effizienten
Interaktion, die in traditioneller CAD-Software üblich sind. Diese Arbeit befasst sich mit
dieser Lücke durch drei Methoden: (1) eine Untersuchung der etablierten CAD- und Mol-
CAD-Literatur und -Software, (2) die Implementierung identifizierter vielversprechender
Interaktionstechniken und (3) Case Studies zu deren Validierung.

Im Rahmen dieses Prozesses werden zwei Interaktionstechniken in einer webbasier-
ten Umgebung implementiert: ein PCA-basiertes Ausrichtungstool und ein Echtzeit-
Kollisionserkennungssystem. Die Entscheidung, diese Tools für das Web zu implementie-
ren, wurde getroffen, um eine einfache Zugänglichkeit und Bereitstellung auf verschiedenen
Plattformen zu ermöglichen, da keine Installation erforderlich ist.

Die durchgeführten Case Studies zielten darauf ab, diese beiden implementierten Ansätze
zu validieren. Das Echtzeit-Kollisionserkennungssystem erhielt positives Feedback und
zeigte großes Potenzial, den MolCAD-Prozess weniger frustrierend und effizienter zu
gestalten. Das PCA-basierte Ausrichtungstool erhielt jedoch gemischte Feedbacks, was
auf Bereiche für zukünftige Arbeiten hindeutet. Dennoch demonstrieren beide Funktionen
das Potenzial, die Benutzerzufriedenheit und Effizienz in MolCAD zu verbessern.

vii

Abstract

Computer-Aided Molecular Design (MolCAD), or molecular modelling, is the compu-
tational design and manipulation of molecular structures. This field is experiencing a
surge in interest and development, where the focus is often on advanced visualization
techniques. However, existing MolCAD tools often lack the level of usability and efficient
interaction commonly found in traditional CAD software. This thesis addresses this gap
through three methods: (1) a survey of established CAD and MolCAD literature and
software, (2) the implementation of identified promising interaction techniques; and (3)
case studies to validate their effectiveness.

As a result of this process, two interaction techniques are implemented in a web-based
environment: a PCA-based alignment tool, and a real-time collision detection system.
The decision to implement these tools for the web was made with the aim to provide ease
of accessibility and deployment across various platforms, as no installation is required.

The case studies conducted were aimed at validating these two implemented approaches.
The real-time collision detection system received positive feedback, and showed great
potential to make the MolCAD process less frustrating and more efficient. The PCA-
based alignment tool, however, received mixed responses, indicating areas for future work.
Nonetheless, both features demonstrate the potential to improve user satisfaction and
efficiency in MolCAD.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Background 5
2.1 Nanostructures and Their Building Blocks 5
2.2 Software . 8

3 Existing MolCAD Software 9

4 Design Challenge 13
4.1 Preliminary Interviews . 13
4.2 Core Tasks . 15
4.3 Survey on CAD . 21
4.4 Constraint-Based Molecular Interaction 23
4.5 Discussion . 30

5 Technical Challenges 31
5.1 PCA . 31
5.2 Collision Detection Computation . 32
5.3 Collision Rendering . 38
5.4 Performance . 41
5.5 Discussion . 49

6 Case Studies 51
6.1 Procedure, Setup, and Participants . 51
6.2 Interviews . 52
6.3 Discussion . 56

7 Discussion 59

xi

List of Figures 63

List of Tables 69

List of Algorithms 71

Acronyms 73

Bibliography 75

Appendix 81
Semi-structured interview questions . 81
Open coding from case studies . 82

CHAPTER 1
Introduction

The topic of Molecular Modelling has recently gone through an increasing growth in
interest and development. Modern graphics hardware, combined with newer algorithms
and advancements in nanotechnology led and continues to lead to a more widespread usage
of in-silico protein/DNA design. Tools such as Adenita [dLMA+20] and oxDNA [vRO+12]
show how far this topic has come, with advanced multiscale visualization of nanostructures
and web tools for Molecular Dynamics Simulations (MDS) respectively, among other
advancements (analysed further in Chapters 2 and 3).

Biotechnology is vulnerable to disruption in the next decades due to its lack of digital
transformation [SPG18]. As user interviews conducted at early stages of the work
presented in this thesis have shown, one area is most crucially lagging behind when it
comes to the modelling of protein/DNA nanostructures: advanced interaction techniques.
We observed and queried experienced biotechnologists working in the field of DNA/protein
nanotechnology to find out about their difficulties in their in-silico work despite the
available advanced technology. We concluded that one crucial reason holding these tools
back from becoming more widespread is a lack of usability.

Another aspect that emerged in the preliminary user interviews is the difficulty of setting
up Computer-Aided Molecular Design (MolCAD) systems. The majority of them require
the software’s installation in the user’s computer, which is not only an extra (sometimes
cumbersome) step, but may result in incompatibilities with the user’s operating system.
Moreover, installing software in corporate hardware often requires the approval of an
information technology (IT) or cybersecurity department. A solution to these issues,
and therefore a central point in this thesis, is the implementation of MolCAD tools in a
web-based environment.

While Computer-Aided Design (CAD) systems have long been the subject of extensive
usability research (explored further in Section 4.3), the same cannot be said for MolCAD.

1

1. Introduction

Usability in MolCAD presents its own set of challenges, distinct from those in traditional
CAD. Several factors contribute to this increased complexity:

1. The intricate nature of molecular structures, often defined by their low-level atomic
structure, while requiring higher level interaction depending on the specific do-
main (e. g., DNA/protein-hybrid structures, DNA origami structures).

2. Traditional CAD software for engineering and architecture may have a natural point
of reference (such as the floor, a room, or the surface of other objects) that allows
for straightforward modelling. Modelling and movement in MolCAD software,
on the other hand, has no up-vector, and thus no immediately obvious point of
reference. Moreover, in CAD software, objects in a 3D scene are typically inherently
hierarchical, such as a window belonging to a building, or a gear belonging to a
machine.

3. Atomic structures are only loosely related to each other, at most forming higher-
level structures together (nucleotides form nucleic acid strands, which form DNA;
or amino acids form proteins, etc.)

4. Atomic structures are very densely packed and in many cases must be tightly and
precisely aligned to each other, or else the entire structure may not be suitable for
further steps in a validation pipeline, such as MDS.

5. One of the most fundamental interaction principles in traditional CAD is constraint-
based interactions [ASF+13, SMS+16]. In order to constrain MolCAD interactions
in a similar way, it is necessary to detect (and perhaps correct) collisions between
molecular structures. This creates the need for efficient collision calculations that
can be performed in real-time. This is particularly challenging for web environments,
as widely established computation tools are becoming obsolete, lacking support for
state-of-the-art general-purpose GPU computations.

Research Questions Observing the potential for improvement in MolCAD software
and its challenges, this master’s thesis aims to explore, design, and implement novel ways
to perform 3D modelling in the MolCAD context. More specifically, we aim to answer
the following research questions:

RQ1. Which CAD interaction techniques exist that are also applicable for MolCAD and
are currently not in use yet, but could be useful?

RQ2. How can the novel MolCAD constraint-based interaction methods be implemented
efficiently (in real-time) in a web-based environment?

RQ3. Which of the novel MolCAD constraint-based interaction methods increases user
satisfaction and efficiency for constraint-based MolCAD?

2

Methodology To implement the technical contribution of this thesis while keeping
user satisfaction (a qualitative measure) in a central position, the design study method-
ology [SMM12] is used. This methodology is a structured approach commonly used in
visualization research to address specific real-world problems faced by domain experts. It
involves a series of steps that begin with the analysis of the research problem, followed
by the design of a visualization system tailored to that problem. The methodology
emphasises the importance of validating and refining the design with real users and
real data. As for the technical aspects of this thesis, Catana [KMS+22] (a web-based
MolCAD framework) is at the core of this work. The algorithms presented throughout
this thesis are implemented on top of it. To validate them, benchmarks are performed.

Contribution In summary, the contribution of this master’s thesis is two-fold: (i) to
achieve a deeper understanding of useful interaction techniques facilitating MolCAD
(RQ1., design contribution); and (ii) a prototypical implementation, demonstrating that a
real-time web-based MolCAD implementation is technically feasible, even with the addi-
tional challenge of integrating newer computing technologies (namely WebGPU [Webb])
on top of an older standard (WebGL [Weba]) (RQ2., technical contribution). These
two contributions are further qualitatively evaluated, to ensure their robustness (RQ3.).
Together, they provide a blueprint for future MolCAD tools.

This thesis is structured as follows: Chapters 2 and 3 respectively explain introductory
concepts necessary to understand this thesis and offer a brief discussion of existing
technical solutions for MolCAD. Each research question is then explored and answered in
a respective chapter. Chapter 4 answers RQ1., Chapter 5 answers RQ2., and Chapter 6
answers RQ3.. A final discussion then takes place in Chapter 7, followed by a summary
of potential future work.

3

CHAPTER 2
Background

Before delving deeper into the related work, methods, and results of this thesis, biological
and software concepts must be presented. The following sections give a brief introduction
to these concepts.

The biological part starts with an introduction to nucleic acids (more specifically, DNA
and RNA) and proteins. The uses of these components to build nanostructures are also
described, together with a short description of the work of the biotechnologists designing
and synthesizing these structures.

The software part starts with an introduction of MolCAD software. Finally, MDS is
briefly explained, as it is often the next step after molecular modelling in the work
pipeline of biotechnologists.

2.1 Nanostructures and Their Building Blocks
In biotechnology, nanostructures are essentially molecular constructs made up of bio-
logical molecules. Among the key components used to build them are DNA, RNA, and
proteins. They are a crucial part of MolCAD, as they are high-level building blocks for
nanostructures.

In this thesis, the term “nanostructures” refers to functional DNA-protein hybrid molec-
ular assemblies. In this section, fundamental aspects of nucleic acids (specifically DNA
and RNA) as well as proteins are briefly explained.

5

2. Background

2.1.1 Proteins

Proteins comprise amino acid chains, and are essential building blocks for nanostructures.
The amino acids are held together in a chain by what is called the protein’s “backbone”,
which helps provide the protein’s function and the structure upon which the protein
is built. An amino acid chain has two ends, which are called the N-terminus and the
C-terminus. All of these components are illustrated in Figure 2.1.

A protein’s highly specific binding sites enable targeted interactions, making them crucial
for applications like drug delivery and diagnostics. Additionally, proteins have the
capability to fold into intricate three-dimensional shapes, self-assemble, and alter their
conformation in response to environmental changes, all reducing the need for external
manipulation. Because of that, they may serve various roles within a nanostructure from
structural elements to enzymes. Finally, their biocompatibility minimises the risks of
adverse immune responses, making them ideal for medical applications.

A B C

D E F

C

NC N

Figure 2.1: The protein 1HRP from the PDB is visualised with different representations
and different colour schemes. The left column (A, D) uses the “ball-and-stick” repre-
sentation, the middle column (B, E) uses the “cartoon” representation, and the right
column (C, F) uses the “backbone” representation (where the tube goes through the
protein’s backbone). In the top row (A, B, C), the proteins are coloured according to
their amino acids, while in the bottom row (D, E, F), the proteins are coloured according
to their chains (this protein contains two chains, represented here in yellow and red). In
the enlarged view on the right, which has the same representation and colour scheme
as F, the N- and C-termini are labelled.

6

2.1. Nanostructures and Their Building Blocks

2.1.2 Nucleic Acids

Nucleic acids (primarily DNA and RNA) are large biomolecules fundamental for the
storage and transfer of genetic information in cells. They consist of strands of nucleotides
(analogous to a protein’s chain of amino acids) and follow base pairing rules (C with G,
and A with T – or A with U for RNA).

Atoms and molecules, in general, have the intrinsic property of self-organisation. This
is a fundamental property that biologists take advantage of to create nanostructures.
What makes nucleic acids special in this regard is the predictable nature in which they
assemble. This property was first demonstrated to be able to produce 2D rasters [Rot06],
and shortly after, demonstrated to also be able to produce 3D shapes [DDL+09].

This process and its resulting nanostructure are called DNA origami, currently one of the
most popular approaches for the design of DNA nanostructures [dLMA+20]. The name
comes from the fact that the DNA is designed to fold into desired shapes. One example
of such a DNA origami structure is the one presented by Ahmadi [ANW+20], where a
(nanomechanical) DNA rotor is developed. Such structures are becoming increasingly
popular due to their potential application in fields including nanocomputing, robotics,
and drug delivery.

Figure 2.2: On top, for scale, a DNA strand with 118 nucleotides (59 per strand). Below
it, a DNA origami structure with 16,670 nucleotides is shown. To the right, the same
DNA origami structure is shown, but combined with a second DNA origami structure to
form a larger structure with 32,383 nucleotides.

7

2. Background

2.2 Software
Several software tools have been developed to facilitate the design of DNA-only nanostruc-
tures. One prominent example is caDNAno [DMT+09], and its web-based variant scaD-
NAno [DLS20]. These platforms can be integrated with molecular dynamics/relaxation
software, such as oxDNA [vRO+12] (shown in Figure 2.3), to simulate their folding
behaviour before synthesis in the laboratory.

Figure 2.3: A DNA origami structure assembled in caDNAno [DMT+09] (left) is imported
into oxDNA [vRO+12] (centre), where it undergoes a spring-force-based rigib-body
relaxation process to assemble into its final tridimensional shape (right). Images taken
from https://www.youtube.com/watch?v=bwmUpTdrXdk (accessed 2023-09-04).

However, when considering the integration of proteins, there is a lack of comprehen-
sive tools that support the design of protein/DNA-hybrid nanostructures. Traditional
platforms, such as PyMol [SD], are antiquated, with algorithms that lack the required
performance to execute essential computations without disrupting the user’s flow of
thought [Nie93], like collision detection between atoms (found in this thesis to be a
crucial component of MolCAD). Furthermore, these tools require command-line input
for basic operations, which can be cumbersome and inefficient, especially compared with
the advancements experienced in the field of general CAD.

2.2.1 Molecular Dynamics Simulations
MDS are computational techniques for studying the physical movements and interactions
of atoms and molecules over time. This capability is particularly useful for gaining
insights into the structural and dynamic properties of molecular structures without the
need to synthesise them in a laboratory environment. The simulations work by solving
equations of motion for a system of interacting particles. This enables researchers to
model complex biological phenomena, including protein folding, ligand binding, and
enzymatic reactions, all crucial for the application of the nanostructures assembled with
MolCAD.

8

https://www.youtube.com/watch?v=bwmUpTdrXdk

CHAPTER 3
Existing MolCAD Software

This chapter provides an overview and discussion of existing MolCAD software, graphics
processing on the web, and collision detection algorithms . A more in-depth analysis of
further related work and the aspects of CAD and MolCAD software most relevant to
this work is provided in Chapter 4, where a survey on academic contributions to CAD is
also available (in Section 4.3).

MolCAD and Visualization Software have seen widespread use since at least the early
2000s. PyMol [SD] is one of the first such tools. It enables modelling and visualization,
much of it via written commands and scripting. Chimera [PGH+04], which is equivalent
to PyMol, also has widespread use and was released 4 years later in 2004. Similarly, it
does not provide modern interaction capabilities like modern CAD software (such as
basic translation/rotation gizmos, illustrated in Figure 3.1).

Figure 3.1: Translation and rotation gizmos have become a standard tridimensional
widget in CAD applications. Image taken from [MCG+18].

9

3. Existing MolCAD Software

SAMSON Connect [SAM] is a modern tool that, among other uses, provides tools for
MolCAD. However, as stated by biotechnogists during interviews conducted in early
stages of the work presented in this thesis (described in Section 4.1), it is currently not
as widespread as PyMol and Chimera. It supports fine-grained control over the creation
and editing of molecules, as shown in Figure 3.2. It also uses constraints to add atoms,
where freely added atoms are placed on a fixed plane and further atoms can be created
with a bond to it by clicking on hydrogen atoms bound to previously placed atoms.

Three reasons came up in the interviews as to why it did not gain popularity with
domain experts: (1) the already widespread presence of PyMol and Chimera provides
easy support from peers and early familiarity with these tools (starting in university
courses), (2) the fact that they are open-source (while SAMSON is proprietary), and (3)
difficulty of setting up the software (which this thesis aims to overcome by providing a
web tool).

Figure 3.2: SAMSON Connect [SAM] supports fine-grained control over the creation and
editing of molecules. In this figure, a nitrogen atom is added by first selecting nitrogen
from the periodic table, and then clicking on a hydrogen atom that shares a bond with a
previously placed carbon atom. By doing that, two new hydrogen atoms will be automat-
ically added to the newly added nitrogen atom. The assembly of a molecule can continue
by clicking on further hydrogen atoms. Clicking anywhere else on the 3D environment
other than an existing atom will place a new atom in that position, without bonds
to other atoms present in the scene. Images taken from https://documentation.
samson-connect.net/users/latest/page_building_molecules.html.

Tools specialized in DNA origami have also grown in the last years. For instance,
caDNAno [DMT+09] enabled DNA modelling using combined 2D views to generate a 3D
DNA Origami structure. It heavily constrains the design space to allow for simple and
intuitive interactions, limiting the freedom in how nanostructures are assembled, and
what kinds of structures can be designed (DNA only). A web version with additional

10

https://documentation.samson-connect.net/users/latest/page_building_molecules.html
https://documentation.samson-connect.net/users/latest/page_building_molecules.html

features has also been released: scadnano [DLS20].

Adenita [dLMA+20] is another DNA origami modelling tool, where interaction takes
place in a 3D environment. It implements multiscale representations of DNA and was
developed as an extension to SAMSON Connect. Although the extension from 2D to
3D designs expands the space of design possibilities, it presents the challenges inherent
to the loss of one dimension (when interacting with a 3D scene through a 2D display).
Because the tool was developed as an extension to SAMSON Connect, it presents the
same problems as the base application.

Another tool, VIVERN [KSB+21] (shown in Figure 3.3), offers similar functionalities in
virtual reality as an attempt to solve the challenges of interacting with the 3D environment.
One advantage that virtual reality applications have over traditional 3D applications
is that the 3D interaction is inherent to the space where the user is immersed, rather
than relying on a 2D display and the loss of a dimension. Despite of this advantage,
it requires a virtual reality setup (e. g., a virtual reality headset) to function, which is
an extra barrier for domain experts, not only in the setting up of the application, but
also in actively using it over long periods of time. This is especially a problem when
the MolCAD must take place in parallel with other activities, such as consulting papers,
external computer applications, or other external resources.

Figure 3.3: VIVERN [KSB+21] is a virtual reality application that enables the design
and visual examination of DNA origami nanostructures. Image taken from [KSB+21].

NGL Viewer [RBV+18] is another example of a molecular visualization tool. While
it does not offer modelling capabilities, its web-based nature aligns closely with the
objectives of this thesis.

11

3. Existing MolCAD Software

This capability made it a viable candidate to power the molecular visualization present
in Catana [KMS+22], shown in Figure 3.4. Built on top of the NGL Viewer molecular
visualization engine, Catana offers DNA/protein-hybrid modelling capabilities, allow-
ing users to work with all-atom models (such as those found on the PDB, where each
atom is described), as well as coarse-grained models (such as those created with caD-
NAno [DMT+09]). Catana [KMS+22] offers the possibility for both importing and
creating structures from scratch, although the latter does not offer that with the detail
that SAMSON Connect does.

Figure 3.4: Catana [KMS+22] is a web-based MolCAD application, on top of which this
thesis’ work is implemented.

12

CHAPTER 4
Design Challenge

The design challenges faced in this thesis arise through RQ1. (Which CAD interaction
techniques exist that are also applicable for MolCAD but are currently not in use yet, but
could be useful?). In order to answer this question, the following plan is devised:

1. Interview domain experts and observe real MolCAD scenarios

2. Study the scenarios, and compile the tasks involved

3. Survey the available literature for existing CAD solutions

4. Identify the design challenges and propose constraint-based MolCAD interaction
methods to solve the design challenges

Each step of this plan is described in its respective section below, with an added fifth
section where RQ1. is answered. The technical feasibility and implementation of the
interactions proposed in this chapter are explored and discussed in detail in Chapter 5.

4.1 Preliminary Interviews
As a first step in defining the design challenges (and ultimately answering RQ1.), user
interviews are conducted to identify key real scenarios that domain experts face with
MolCAD software. These scenarios will then be used to evaluate the usability and
performance of the tool through case studies [SP06] in Chapter 6. Due to our close contact
with domain experts and the subjective, human-centred nature of our measure of success
of this work, this methodology in the context of the Design Study Methodology [SMM12]
is suitable because it encourages constant inclusion of the target users into the design
and implementation process in multiple rounds.

13

4. Design Challenge

The interviews were conducted with 5 domain experts (two biotechnologists and three
biophysicists). The format of the interviews is unstructured, without a specific set of
questions to steer the interview. Instead, users are encouraged to show their typical
MolCAD tasks with their own data while describing their thought process.

One prominent aspect observed during the interviews is that the most widely tools
used to design nanostructures are very old. Two prime examples are Pymol [SD] and
VMD [HDS96], released in the years 2000 and 1995 respectively. These tools rely heavily
on text commands to perform certain tasks such as mutating a protein’s amino acid,
lack basic 3D modelling tools such as translation/rotation gizmos [CSH+], and have
poor performance for modern standards (for instance, for collision detection, an essential
aspect of MolCAD discussed further in Section 4.2). The reason that specialists continue
to use them is not only because of their familiarity (as these tools are introduced early in
university courses), but also because they feel that there is no better alternative.

Two users expressed that a step in the right direction was made with SAMSON Con-
nect [SAM] (discussed in Chapter 3). However, the conducted interviews showed that
tools needed for DNA nanostructure design are not present in it, such as the support
for the caDNAno [DMT+09] format. The participants mentioned that support for
plugins/add-ons helps, such as Adenita [dLMA+20], but added that it crashes often,
leading to their progress being lost when unsaved.

Another problem raised by the interviewees was the lengthy and complicated installation
process of SAMSON Connect, which includes creating an account. In academic and
business environments, such installation processes often require the approval of system
managers. That is aggravated by the additional requirement of installing Adenita plugin.
The frustration that the users showed by this stresses the importance of a web-based
MolCAD application.

Another software solution that arose during the interviews is caDNAno [DMT+09],
which simplifies the DNA design process by decomposing the 3D scene into 2D views.
However, this alternative only supports DNA in a field where protein-DNA hybrid
nanostructures are essential. Additionally, caDNAno heavily constrains the user, and
free 3D movement becomes no longer possible, which is a requirement in structural
biology (the branch of biology that focuses on understanding molecular structures: their
shapes and arrangements, and how they relate to a molecule’s function and interactions).

Several tasks performed by the users faced no challenges. For instance, exporting
nanostructures after changes have been made, mutating (i. e., changing the type of amino
acids in a protein, or mutating a nucleotide in a DNA strand) were all well supported by
the applications used.

Some scenarios, however, caused difficulties, frustration, and were found to be excessively
time-consuming. Three of these concrete scenarios were collected and are explained
in detail below. They are real tasks performed by the users and show the importance
of certain tasks (some tasks are present in multiple scenarios) and allow us to get to
conclusions about which ones are most essential in MolCAD.

14

4.2. Core Tasks

S1. This scenario (shown in Figure 4.1) consists of aligning a newly-created DNA strand
with an imported large DNA origami nanostructure.

S2. This scenario (shown in Figure 4.2) consists of loading a protein-DNA hybrid
nanostructure from the Protein Data Bank (PDB), removing its DNA part, and
replacing it with a newly-create DNA strand with a custom sequence.

S3. This scenario (shown in Figure 4.3) consists of loading two proteins from the PDB
and aligning them in such a way that one protein’s N-terminus.

A B A B

B

A

B

A

Figure 4.1: The first scenario (S1.) consists of aligning a double DNA strand (B) with a
large DNA origami nanostructure (A) (top-left). Through rigid-body transformations
alone (translation and rotation, top-right), the DNA strand can be positioned at the
desired position (bottom-left). After positioned, small adjustments may be necessary to
avoid collisions or ensure that the DNAs bind as intended.

4.2 Core Tasks
The scenarios discussed in Section 4.1 can be narrowed down into tasks. These represent
the core tasks observed during the preliminary interviews. From them, the design

15

4. Design Challenge

A

BA

Figure 4.2: Left to right: (1) The second scenario (S2.) starts with a protein-DNA hybrid
structure (3UGM) loaded from the PDB (left). (2) The DNA is then removed, and (3)
A new one is created with a specific desired sequence and it must be placed where the
initial DNA strand used to be. This can be achieved with rigid-body transformations.
(4) After alignment, additional precise alignment may need to be performed to avoid
collisions and ensure that DNA and protein bind as intended.

challenges are derived. The core tasks are categorised as follows:

CT1. Add: The first step of all three scenarios is being able to add a certain kind of
nanostructure, either by importing it (e.g., from the PDB) or by creating one from
scratch (create DNA based on a given sequence).

CT2. Remove: The “remove” task is present in Scenario S2., as it involves the removal of
a DNA strand.

CT3. Align: All scenarios require the adjustment of a structure with rigid transformations
(translation and rotation) in relation to a specific point or axis. Scenarios S1. and S2.
require that the DNA strand is not only moved into position (align a strand’s
helical axis with another’s), but also rotated along its helical axis (the axis around
which the nucleic acid strands coil). Scenario S3. requires that two structures are
positioned at a specific point in relation to each other, as well as that they are able
to be rotated around a pivot point. In all scenarios, it is also essential to detect
whether atoms collide or whether bonds would be formed (i. e., an atom’s covalent
radius collides with another’s).

Core tasks CT1. and CT2. were both found to already be well supported in MolCAD
software. However, the conducted interviews show that current tools implemented in
MolCAD software do not account for the challenge that is alignment (CT3.). Users
expressed that this task is cumbersome, time-consuming, and frustrating.

As mentioned in Section 4.1, one reason for the magnitude of the alignment challenge is
the fact that the user interaction takes place through a 2D display, while the alignment
takes place in 3D space [HvDG94, SW10]. Because of that, it becomes challenging to

16

4.2. Core Tasks

A

B

AB

Figure 4.3: (left) Two proteins (1HRP and 7R0I) are loaded from the PDB. The goal is
to align one protein’s N-terminus with the other protein’s C-terminus, so that they form
a bond. (right-top) First, the termini are brought together. (right-centre) Then, they
are oriented in order to avoid collisions between them. (right-bottom) Once they are
positioned and oriented as roughly as desired, small adjustments can be made to make
sure the bonds between the termini are formed, or to fix remaining collisions.

translate and rotate objects [MCG+18]. The loss of a dimension makes it difficult to
perceive the depth of objects, whether they are closer or farther from the camera. This
problem is illustrated in Figure 4.7.

This challenge may be solved by virtual reality applications, such as the one by Ku-
tak et al. [KSB+21], as the user then acquires a more accurate depth perception via the
stereo 2D displays. However, domain experts have expressed the difficulty of working
with VR applications, which, during the interviews, came mainly from two factors:
(1) the cumbersomeness and discomfort of the setup, and (2) the necessity to switch
between work environments, e. g., to consult a scientific article or laboratory protocol
while working on a molecular design.

Traditional CAD software naturally also faces the same problem. One example of a

17

4. Design Challenge

situation where alignment plays a crucial role in general CAD is shown in Figure 4.4.
When creating two adjacent rectangles, the designer must make sure that both rectangles
share a common edge. Allowing the user to freely draw a shape is a very powerful feature
that gives a paper sketch-like feel to the user, as that too allows for unconstrained drawing.
However, the software may give the designer the ability to draw with precision by offering
snapping (first introduced as snap-dragging [Bie]) functionality, where interactions that
occur close to certain object features are assumed to be taking place on that particular
feature, as also shown in Figure 4.4.

Figure 4.4: SketchUp [Ske] is a CAD application heavily reliant on constraint-based
interactions. When dragging the plane with the mouse cursor and following the green
line (green axis), the corner of the plane that is being dragged follows the axis. In this
process, when the mouse cursor is near enough to the other plane’s vertex (right), the
plane being dragged snaps in position.

Another way in which constrained interactions are crucial in the example shown in
Figure 4.4 is in deciding in which orientation the rectangle is to be drawn. When a
rectangle is only defined by its two corner points, there are infinite ways to orient it in
3D space. By using constraints, the software can allow the designer to have intuitive
control over the orientation of the objects being interacted with. They achieve that by
limiting the range of possible orientations, ensuring that objects align as intended and
reducing errors, thus simplifying the task. Figure 4.5 shows one example of this scenario.

Some degree of alignment functionalities are also present in MolCAD software. Several
of them (such as PyMol [SD] and NGL Viewer [RBV+18]) offer that in the form of
structural superposition. Superposition works by aligning one structure onto another by
performing translations and rotations in such a way that they “match”. There are several
measures for how to define a match (e. g., simple root-mean square deviation, or more
complex algorithms that take into account a structure’s sequence). Figure 4.6 shows two
proteins that have been superposed.

18

4.2. Core Tasks

Figure 4.5: SketchUp [Ske] is a CAD application heavily reliant on constraint-based
interactions. When creating a plane and placing the mouse cursor near the origin (top-
left), the plane-creating tool snaps to it. After a mouse click, a plane starts being created.
When there is no other geometry on the scene, the plane will always be created at ground
level (top-right). If a new plane is created from already-existing geometry (bottom-left),
then it is possible to create it in other orientations (bottom-right).

Although very helpful, this method only covers the cases where two molecular structures
are similar in their shape (atomic arrangement) and/or sequence. In many cases, such as
those described in Scenarios S1., S2., and S3., the structures that we wish to align are
very different.

Together with the alignment interaction, CT3. also shows the importance of collision
detection in the studied scenarios. Typically, general CAD software does not have special
handling of collisions. All AutoCAD [Auta], SketchUp [Ske], and Blender [Ble] (three
of the most well-established CAD software) allow the user to place objects in positions
where they intersect/collide. Instead, the responsibility to ensure that objects do not

19

4. Design Challenge

Figure 4.6: Structural superposition allows two nanostructures to be aligned/registered in
space while taking into account their structural properties, such as their sequence. (left)
In this case, the protein at the bottom is being aligned with the structure on top. They
both have very similar amino acid sequences. (right) After alignment, the structures
are registered in space, with closely matching positions and orientations. The structures
were obtained from the PDB, with codes 1QO4 (bottom) and 1W4Y (top).

overlap is left entirely to the user.

In MolCAD applications, however, this problem cannot be left for the user alone to solve.
This is because molecular structures do not have a defined surface, but instead, their
definition of collision depends on what measure is used (e. g., “Covalent” or “van der
Waals”). On top of that, tens of thousands to millions of atoms may be present in a
structure. This not only causes a very large number of occlusions (making it impossible
to visually detect collision), but also it becomes extremely difficult to assess the depth of
an atom (it may look like two atoms collide, where one is merely behind another. Lastly,
molecular structures do not always display all the atoms, but often rely on alternative
representations, such as the “ribbon”/“cartoon” representation for proteins. These issues
are illustrated in Figures 4.7 and 4.8 respectively.

20

4.3. Survey on CAD

Figure 4.7: Visually determining whether a nanostructure contains atom collisions is
unfeasible. Algorithms are needed to support this task. The structure was obtained from
the PDB, with code 3UGM.

4.3 Survey on CAD
As a starting point for the short survey provided in this thesis, three extensive surveys
are explored [JH12, MCG+18, BYK+21]. These surveys are essential in identifying the
challenges of 3D interaction and the solutions proposed. The large body of literature
around this topic further supports the emphasis this thesis puts on the need for careful
consideration when developing CAD interactions.

General CAD software for architecture, engineering, and other applications benefits from
decades of iterative development. AutoCAD [Auta], for instance, has been a staple in
the industry since its inception in the 1980s. Its developer, Autodesk, provides a list of
their publications [Autb], with a wide range of topics, from general interaction studies,
to domain-specific techniques, to virtual reality experiments, since 1988. This shows the
extensive amount of work over the decades to develop successful CAD software.

While general CAD software like AutoCAD has undergone decades of refinement, the
literature available falls short in exploring and explaining the principles that contribute
to its success and widespread use. The study by Sadeghi et al. [SDRP16] is an example
of such a case. While it explores the intricacies of structured models and user interaction

21

4. Design Challenge

Figure 4.8: With the so-called “cartoon” representation (left), it appears that the two
proteins do not collide. However, if a representation that displays the atoms is chosen,
such as “ball-and-stick” (centre), it becomes clear that the two structures do collide
(right). The structures were obtained from the PDB, with codes 1QO4 (bottom) and
1W4Y (top).

in the context of a specific CAD software, it does not investigate broad aspects that
contribute to making CAD software easy to use. This gap in the literature shows a need
for comprehensive studies that aim to understand the user experience in CAD.

Earlier research, however, was more focused on dissecting 3D interaction methods. For
example, Hand [Han97] presents a survey with an overview of techniques for object
manipulation in 3D virtual environments. The paper also discusses the evolution from
2D mouse-based systems to more advanced 3D input devices, showing the need for
interactions that bridge the gap between CAD’s 3D environments and the 2D displays
they are mostly presented on.

The challenge in solving the problem of 2D interaction with 3D environments is also
made evident by Wang et al. [WPP11]. In their work, they propose a bimanual hand
tracking system for CAD. The system uses two consumer-grade webcams to track the
user’s hands with 6 degrees of freedom, while explicitly emphasising the importance of
exact constraints for precise alignment.

Alignment is also a central topic in the paper by Chaouch et al. [CVB09]. In it, a
Principal Component Analysis (PCA)-based auto-alignment technique is discussed. The
difficulties of 3D alignment are extensively discussed, further confirming the identification
of alignment as a core task in this thesis (CT3.).

22

4.4. Constraint-Based Molecular Interaction

Constraint-based interactions have also been the target of studies. Stuerzlinger and
Wingrave [SW10] provide an overview of the challenges for developing 3D user interfaces,
offering a set of guidelines that promote the use of appropriate constraints for effective
interaction in 3D environments. These constraints help users navigate and interact with
the 3D environment.

4.4 Constraint-Based Molecular Interaction
Core tasks CT1. and CT2. did not pose a challenge to the users during the interviews.
Both of them were found to already be well supported in MolCAD software, including
Catana [KMS+22], which is the application that is used to implement the tools explored
in this thesis. Core task CT3., however, was found to be especially difficult, and where
users showed the most frustration in the interviews.

Observing this gap, alignment (CT3.) is considered to be where the design challenges
lie in the context of this thesis. We also observe that the alignment task can be divided
into two separate design challenges that are difficult to overcome with currently available
tools:

DC1. Alignment

DC2. Collision detection

In order to solve the design challenges and answer RQ1., we first seek inspiration from
academic work, as well as established CAD and MolCAD software. The following sections
delve into the design challenges (DC1. and DC2.) in more detail and propose solutions
that were inspired by the user interviews together with the extensive survey, applied to
MolCAD.

4.4.1 Alignment
As discussed in Section 4.2, the constraint-based approach of snapping is a potential
candidate for an effective alignment tool. The question remains, however, of whether it
may be translated to MolCAD. One of the factors that enable snapping to often work
in CAD applications is the existence of inherent geometries, such as lines, vertices, or
faces. In MolCAD, these properties are not inherent, as nanostructures are typically not
defined by a high-level geometry, but by their atoms.

One potential approach is to calculate a structure’s principal axes and use those for
alignment [CVB09]. Doing that gives us the axes of largest variance within a structure’s
atomic structure. For Scenarios S1. and S2., this is a potentially promising method to
find a good alignment between the two structures.

The principal axes can be obtained by performing PCA, a technique that is most
commonly used to reduce the dimensionality of a set of points. That is because PCA

23

4. Design Challenge

outputs a sequence of unit vectors, in order of best-fitting for the data (defined most
often as minimizing the average squared distance from the input points to the output
vector/line). In the proposed method, however, PCA is not used to reduce dimensionality,
but to acquire the vectors along the axis of most variance.

Based on these two principles, two ideas for constraint-based alignment techniques in
MolCAD emerge. They are listed below:

1. The first idea is based on the “snapping” paradigm, where the placement of objects
in a scene takes into account other objects in the scene. [Bie] The precise position of
the mouse cursor is merely a suggestion of the placement of an object, as the system
will use it as a basis to suggest a nearby position that matches other objects (see
Figure 4.4 for an example).

2. The second idea is to use the principal components computed from the atoms
of a structure and enable not only automatic alignment based on them, but also
constrained movement and orientation via the typical translation and rotation
gizmos (as shown in Figure 3.1). Though less elaborate than the first alternative, it
has the potential to enable a large set of new alignment possibilities (as shown by
Chaouch and Verroust-Blondet [CVB09]), especially those presented in Scenarios S1.
and S2..

Because of its simplicity and reliability, we decided to pursue Idea 2. Although Idea 1
is based on a very familiar concept present in numerous design software such as
SketchUp [Ske], it can become less reliable depending on the complexity of the scene and
its structures.

For instance, enabling snapping along the backbone of a protein can lead to a confusing
experience for the user, as the backbone can wind seemingly arbitrarily due to the protein
folds, as illustrated in Figure 4.9. Alternatively, snapping could be enabled only for
simple lines, such as the principal axes of a structure (a concept which overlaps Idea 2).
However, performing snapping onto the principal axes would be equivalent to performing
an automatic PCA-based alignment, followed by translating in the direction of the
principal axes, as illustrated in Figure 4.1.

Because of that, and for the sake of simplicity, we concluded that Idea 2 would be
sufficient, and Idea 1 remains an open concept to be explored in future work (as mentioned
in Chapter 7). Its implementation of Idea 2 is described in Algorithm 4.1.

The complexity of this algorithm depends on the complexity of the PCA implementation,
which can be achieved in O(n) for n atoms. This is discussed in detail in Section 5.1

The algorithm may result in the two structures colliding, since it ends with the position of
structure A being assigned structure B’s position. This effect is illustrated in Figure 4.11.
For certain use cases, such as the one shown in Figure 4.12, this is desirable, as it is
expected that structure B has reasonable space to accommodate structure A. In scenarios

24

4.4. Constraint-Based Molecular Interaction

Figure 4.9: A protein (left), and its backbone highlighted (right). Employing snapping
at the backbone of a protein could cause confusion, as it winds through space due to its
folding. The structure was obtained from the PDB, with code 1HRP.

Figure 4.10: The principal axes of a nanostructure could be used for snapping, or as the
axis of translation and rotation gizmos (see Figure 3.1) The structure was obtained from
the PDB, with code 1HRP.

where this is not desirable, the PCA axes may continue to be used to orient translation
and rotation tools, thus facilitating their alignment, as shown in Figure 4.13.

4.4.2 Collision Detection

To address the design challenge of detecting collisions on atomic structures, the trivial
solution is the pairwise comparison of each atom, interpreted as a sphere. The radius
ri of an atom i can be defined by several different metrics, such as “van der Waals” or
“Covalent”. In this trivial method, for every atom i, every other atom j is checked for
whether a collision occurs, as shown in Algorithm 4.2. This results in an algorithmic
complexity of O(n2).

25

4. Design Challenge

Algorithm 4.1: PCA-based alignment of two molecular structures A and B

Input: Two molecular structures A and B, with nA and nB atoms respectively
1
2 // pc are the principal components (three orthogonal 3D

unit vectors), which can each be pre-computed in O(n)
3 pcA ← PCA(A);
4 pcB ← PCA(B);
5
6 // Rotation: Change basis of A to match basis of B
7 basispcA ← MatrixFromColumnVectors(pcA);
8 basispcB ← MatrixFromColumnVectors(pcB);
9 A.rotation ← B.rotation · basispcB · inverse(basispcA);

10
11 // Translation: Assign B’s position to A
12 A.position ← B.position;

Algorithm 4.2: Trivial collision detection of n atoms (spheres)
Input: A list atoms of n atoms
Output: A list of booleans, each corresponding to an atom, where true means

that the respective atom collides with another, and false means that
the respective atom does not collide with any other atom

1 collisions ← List of n booleans initialized with false;
2 for i ← 0 to n do
3 for j ← i + 1 to n do
4 d ← EuclideanDistanceBetween(atoms[i].position, atoms[j].position);
5 if d < atoms[i].radius + atoms[j].radius then
6 collisions[i] ← true;
7 collisions[j] ← true;
8 end
9 end

10 end
11 return collisions;

26

4.4. Constraint-Based Molecular Interaction

Figure 4.11: When using PCA auto-alignment to align the protein on the top to the
DNA strand on the bottom (left), there is a heavy overlap of the two structures. The
DNA strand was created using Catana [KMS+22], while the structure was obtained from
the PDB, with code 5DO4.

This trivial approach is already available in several MolCAD applications, such as
PyMol [SD] and VMD [HDS96]. Because of the complexity of this approach, and the
fact that the algorithm runs sequentially, it may take up to several seconds for the
computation to finish. Even with a parallelised version (discussed and described in
Section 5.2.2), it becomes unfeasible to perform collision detection in real-time (i. e., at
least 20 times per second) for a large number of atoms.

More efficient implementations exist [KAK+18, Pau22] and are discussed in Section 5.2.1.
These approaches present a considerable improvement, and prove the possibility of
achieving real-time performance for a very large number of atoms (2 million [Pau22]),
while also solving the collisions (i. e., when a collision occurs, the colliding objects
move away from each other, hopefully closer to a state where no more collisions occur).

27

4. Design Challenge

Figure 4.12: When using PCA auto-alignment to align the DNA strand with the protein
(left), the structures do not overlap heavily (right), as there is space inside the protein’s
helix for the DNA to fit. The DNA strand was created using Catana [KMS+22], while
the structure was obtained from the PDB, with code 3UGM and modified with Catana.

Although they are not implemented for the web (but instead for desktop applications),
the concepts presented are directly translatable to a modern web environment where
compute shaders are available (i. e., WebGPU [Webb]).

The algorithm used is the Fast Fixed-Radius Nearest Neighbor (FFRNN) algorithm and
it is described in Algorithm 4.3. It improves on the trivial method (Algorithm 4.2) by
checking for collisions only on atoms that are close to each other, rather than with every
other atom.

The algorithm starts by subdividing the space into a uniform grid. Each atom is then
assigned to a cell in the grid. Next, the atoms are sorted by the cell they belong to, this
promoting cache locality (i. e., atoms close to each other in space are more likely to be
close to each other in memory). Finally, the collisions can be determined by looking at
the neighbourhood of an atom.

The concrete implementation of this algorithm is discussed further in Section 5.2, where
a complexity analysis is also provided.

28

4.4. Constraint-Based Molecular Interaction

Algorithm 4.3: FFRNN collision detection of n atoms (spheres)
Input: A list atoms of n atoms, and the number of cells w, h, d (width, height,

depth) for each dimension of the neighborhood grid
Output: A list of booleans, each corresponding to an atom, where true means

that the respective atom collides with another, and false means that
the respective atom does not collide with any other atom

1
2 collisions ← List of n booleans initialized with false;
3
4 // Assign atoms to a uniform grid (i.e., neighborhoods)
5 atomCounts ← Array of w · h · d unsigned integers, initialized with 0;
6 gridCellIds ← Array of n unsigned integers, initialize with null;
7 for t ← 0 to n − 1 do in parallel
8 cellId ← Index3DTo1D(atoms[t].position, w, h, d);
9 gridCellIds[t] ← cellId;

10 AtomicIncrement(atomCounts[cellId]);
11 end
12
13 // Sort atoms by cellId (for spatially-efficient memory

access)
14 prefixSum ← ParallelScan(atomCounts);
15 atomsSorted ← ParallelCountingSort(atoms, gridCellIds, prefixSum);
16
17 // Check for collisions
18 for t ← 0 to n − 1 do in parallel
19 atom ← atomsSorted[t];
20 for each neighborCellId in GetNeighborCellIds(atom.position) do
21 firstNeighborAtomId ← prefixSum[neighborCellId];
22 lastNeighborAtomId ← prefixSum[neighborCellId + 1] − 1;
23 #neighborAtoms ← lastNeighborAtomId + 1 − firstNeighborAtomId;
24 for i ← 0 to #neighborAtoms − 1 do
25 neighbor ← atomsSorted[firstNeighborAtomId + i];
26 d ← EuclideanDistanceBetween(atom.position, neighbor.position);
27 if d < atom.radius + neighbor.radius then
28 collisions[t] ← true;
29 end
30 end
31 end
32 end
33
34 return collisions;

29

4. Design Challenge

Figure 4.13: Heavy overlaps (as the one caused by PCA auto-alignment in Figure 4.11)
can be solved by adjusting the position of the aligned structure. For this task, the
principal components can be used as the basis for the translation gizmo. In this case,
that allows the protein to be moved along its axis of highest variance, until the small
DNA structure attached to the protein gets in close contact with the DNA strand. The
DNA strand was created using Catana [KMS+22], while the structure was obtained from
the PDB, with code 5DO4.

4.5 Discussion
After interviewing domain experts, conducting a survey on both CAD software and
academic work, and recognizing the main design challenges that emerged from this
process, RQ1. can finally be answered: Which CAD interaction techniques exist that are
also applicable for MolCAD but are currently not in use yet, but could be useful?. While
we cannot determine all CAD interaction techniques that can be applied for MolCAD, we
found that constraint-based alignment tools are in particular a weak point in established
MolCAD software. Based on our interviews and survey, we decided to implement two
concrete techniques that show promise in increasing user satisfaction and efficiency: a
PCA-based automatic alignment tool and a real-time collision detection algorithm. Their
implementation is explained and analysed in Chapter 5 (RQ2.) and their success in
improving user experience is validated in Chapter RQ3..

30

CHAPTER 5
Technical Challenges

In previous chapters, we have analysed the design challenges (see Section 4.4 of efficient
and intuitive MolCAD. With those in mind, we then gathered the algorithms that support
them (Algorithms 4.1, 4.2 and 4.3). This chapter expands on that by going into detail
about the concrete implementation challenges and their solutions. Section 5.4 concludes
this chapter and answers RQ2. (How can the novel MolCAD constraint-based interaction
methods be implemented efficiently (in real-time) in a web-based environment?).

The framework on which the novel MolCAD tools are being implemented is Catana [KMS+22].
Catana is based on NGL Viewer [RBV+18], which implements several molecule visual-
ization features, such as a diverse set of visual representations and colouring options.
NGL Viewer [RBV+18], in turn, uses Three.js [thr] internally to achieve that. As of the
time of writing of this thesis, Three.js is predominantly based on WebGL (2.0), not yet
having fully implemented the novel WebGPU API.

The algorithms required to perform collision detection, however, need general-purpose
GPU capabilities (i. e., compute shaders). With rendering done in WebGL, and collision
detection performed in WebGPU, one additional challenge arises for the implementation
of the required MolCAD tools. That is: managing the interplay of these two APIs, which
currently do not have any interoperability features.

5.1 PCA
For the computation of PCA, a sequential algorithm running on the CPU is provided by
NGL Viewer [RBV+18] (a molecular visualization framework on which Catana [KMS+22]
is based) via the class PrincipalAxes. This algorithm is described in Algorithm 5.1.

In the PCA algorithm, first, a 3-component vector mean is created, containing the
mean x̂, ŷ, ẑ values of the positions of all n input atoms. The atoms are then centred
by subtracting each of their x, y, z components by x̂, ŷ, ẑ respectively. Then, a 3 × 3

31

5. Technical Challenges

Algorithm 5.1: PCA of n points
Input: A 3 × n matrix points containing, for each of the n rows, the position

xi, yi, zi of an atom
Output: The three principal axes of points, normalized and sorted by largest

variance first
1 mean ← meanRows(points);
2 pointsCentered ← subRows(points, mean);
3 covariance ← pointsCentered′ · pointsCentered;
4 W, U, V ′ ← SingularValueDecomposition(covariance);
5 axisA ← U.columns[0];
6 axisB ← U.columns[1];
7 axisC ← U.columns[2];
8 return axisA, axisB, axisC;

covariance matrix A of the centred positions is created. The principal axes can then be
acquired by decomposing the covariance matrix A into three matrices W , U , and V , such
that A = WUV ′ [Ger]. All the operations mentioned have a complexity of O(n).

The implementation provided by NGL Viewer is sequential and takes place on the CPU.
This is sufficient for our purposes, as this computation is not expected to take place
every frame (i. e., there is no real-time constraint). Instead, the principal axes can be
pre-computed when a structure is loaded, needing only to be recomputed when the
structure changes (i. e., when atoms are added or removed).

Concretely, whenever an atom is added or removed from a structure, the structure’s
principal axes are marked invalid, signalling that they need to be recomputed. The PCA
calculation itself is then triggered if the structure is marked invalid at the time when
one of the following user interactions occur: (1) the user clicks the “auto-align” button,
or (2) the user selects the translate tool or the rotate tool while in “Principal” mode
and then clicks on the structure in the 3D view. These interactions are illustrated in
Figure 5.1. After the principal axes are recalculated, they are marked as valid to prevent
unnecessary recomputation.

5.2 Collision Detection Computation
Because of their high number of cores (the NVIDIA GeForce RTX 4090 has 16,384
cores [Nvi]) and their hardware architecture (Single Instruction Multiple Data, or SIMD),
GPUs are ideal for the task of collision detection. This is because collision detection is a
highly parallelisable task, where each atom can, independently from each other, perform
a collision check.

That is crucial for the constraint-based interaction proposed in this thesis, as the real-time
constraint is essential to guarantee user satisfaction [RR86]. Collision detection does

32

5.2. Collision Detection Computation

Figure 5.1: The PCA implementation used in this work runs sequentially on the CPU.
However, the (re)calculation of the principal axes is triggered on demand on two occasions:
(left) When the “Principal axes” auto-alignment tool is used; and (right) when the
“Principal” movement orientation is selected while using a translation/rotation gizmo.
If the structure has not changed (i. e., no atoms were added or removed) since the last
computation, the principal axes will not change either, thus their (re)calculation is
averted. The DNA strand was created using Catana [KMS+22], while the structure was
obtained from the PDB, with code 5DO4.

not necessarily need to be performed every frame, but rather only when atom positions
change. However, because moving atoms and aligning structures is a real-time task in
MolCAD, the real-time requirement still applies to the collision detection computations
and rendering.

For those reasons, and the requirement that the proposed tools must work on the web,
the collision detection computation was implemented using WebGPU [Webb] compute
shaders. WebGPU is an API for performing rendering and general-purpose computations
on the GPU, in contrast to WebGL [Weba], which only provides rendering functionalities.
General-purpose computations are essential for the implementation of a collision detection
framework, as they enable direct and efficient access to GPU memory, as well as parallel
computing features, such as atomic operations and synchronisation barriers.

These features are supported in WebGPU via compute shaders. A shader is a program
written in its own programming language: WGSL in the case of WebGPU. The shader
code is compiled and executed on the GPU. Two other types of shaders are also available,
both used for rendering: vertex shaders and fragment shaders. Vertex shaders perform
computations on vertex data. Three vertices are then used to rasterise a triangle, and
each pixel is then processed by a fragment shader. These concepts are shared with all

33

5. Technical Challenges

major contemporary graphics APIs (OpenGL [Ope], Vulkan [Vul], Metal [Met]), while
WebGL only supports vertex and fragment shaders.

The FFRNN algorithm (discussed in Section 4.4.2 and described in Algorithm 4.3) was
implemented. Implementation details are presented in Section 5.2.1. For comparison,
the trivial (or “brute force”) version of the collision detection algorithm (described in
Algorithm 4.2) was modified to be efficiently parallelisable. The modified algorithm is
described in Section 5.2.2. The rendering of collisions is then presented in Section 5.3,
before finally analysing their performance and comparing it with previous work [Pau22]
in Section 5.4.

5.2.1 FFRNN

As presented in previous work [Pau22], FFRNN is an efficient method to perform collision
detection between spheres. Atoms are treated as spheres in the proposed framework. The
covalent radius is used for computations, as it measures the size of an atom that forms
part of one covalent bond. This means that, atoms that “collide” can be interpreted as
atoms that share a bond.

Typically in nanostructures, all atoms share a bond with at least one other atom. This
can be problematic for a collision detection algorithm that uses the covalent radius, as it
would determine that all atoms collide. However, in Catana [KMS+22], the framework
upon which the tools presented in this thesis are implemented, bond information is
calculated a priori when importing or creating a nanostructure. With this information,
the implemented algorithm can detect whether two atoms share a bond, and thus is able
to skip atom pairs that share a bond while detecting collisions.

The FFRNN collision detection is performed in a multi-step pipeline of compute shaders.
Section 4.4.2 provides a high-level description of the algorithm. Note that the FFRNN
pipeline must perform a prefix sum (also known as scan), which may need to be repeated
several times, as illustrated in Figure 5.2. This is because of the way that GPU com-
putations are executed, and consequentially how WebGPU’s “compute” functionality is
defined.

When the execution of a compute shader is invoked, it is necessary to provide the number
of workgroups that will be dispatched. A workgroup contains several threads. The
number of threads per workgroup is defined by the programmer in the compute shader
code. The optimal number of threads per workgroup depends on the specifications of the
hardware, but it is general knowledge that a choice of 32 to 256 threads per workgroup
leads to good performance.

A prefix sum is an array operation. For each element, the sum of all previous elements is
calculated. This can be done sequentially in O(n) for an array with n elements. This
operation is not trivially parallelisable, as the result of one element depends on the results
of all previous elements, and therefore cannot be performed independently.

34

5.2. Collision Detection Computation

With synchronisation functionality available, the prefix sum can be performed in parallel
in O(n) [Ngu07]. However, in WebGPU, synchronisation is not available globally across an
entire array (or “buffer”), but only within a workgroup. To solve that, multiple prefix sum
operations must be performed, and their results added recursively. Therefore, the number
of scans and additions performed (and thus also the total prefix sum complexity) depends
on both the number of elements and the workgroup size. This strategy is illustrated in
Figure 5.2.

Figure 5.2: The parallel scan algorithm implemented requires a barrier for all threads
involved. Because WebGPU only offers barriers on the workgroup level (which, in our
case, has a size of 256), the scan can only be performed on blocks of 256 elements. The
solution is to take the largest element of a scan block (which is equivalent to the sum of
all previous elements in the original data) and perform a scan on them. This process is
repeated recursively until the resulting data has fewer elements than the workgroup size
(256 in our case), and thus only one workgroup is needed. Once this point is reached,
the result is added to the scan of the previous recursion, and so on. This recursion
thus has a depth of ⌊logwm⌋ on the number m of grid cells and the workgroup size
w. Image taken from https://developer.nvidia.com/gpugems/gpugems3/
part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
(accessed 2023-09-04).

35

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

5. Technical Challenges

The list below describes all the steps of the WebGPU FFRNN pipeline. The algorithmic
complexity is also analysed for n atoms, m grid cells, p processors/cores, and a workgroup
size of w threads. Because the algorithm’s performance also depends on the number of
atoms contained in a grid cell and on a 3 × 3 × 3 neighbourhood of cells, the number
of atoms in a cell i is denoted by ki. The largest number of atoms in any cell is thus
denoted by max(k). Note that, to ensure that a 3 × 3 × 3 neighbourhood is sufficient,
one cell must be at least the size of an atom, otherwise a larger neighbourhood would be
necessary.

1. Grid cell assignment O(m/p + n/p max(k))

a) Fill-0: For every grid cell, set its atom count to zero. O(m/p)
b) Insert: For every atom, find which cell the atom is contained in. Assign the

atom to the cell: the atom keeps a reference to the grid cell, and the cell atom
count is incremented atomically. An atomic operation is generally considered
sequential when performed on the same variable. O(n/p max(k))

2. Sort atoms by the cell they are contained in O(m/p lowwm + n/p max(k))

a) Scan: Perform a prefix sum of the atom count of each grid cell. O(m/p logwm)
b) Fill-null: For every atom, prepare a separate atoms array/buffer that will

contain the sorted atoms. Counting sort [Ngu07] will be performed next,
which needs the output array to be initialized with null-type values. They
are implemented in this work as the maximum value of a 32-bit unsigned
integer (i. e., 0xffffffff). O(n/p)

c) Sort: For every atom, sort it by its grid cell using counting sort, thus assigning
it to a position in an output array. O(n/p max(k))

d) Map: The previous step outputs an array of sorted atom indices. In this step,
the data of the atoms (e. g., the positions of atoms, or an atom’s bonds) is
arranged to follow the same sorted order. This is done for each atom. O(n/p)

3. Detect collisions: For each atom, find all atoms in its 3×3×3 grid neighbourhood
and check for collisions. O(n/p max(k))

The WebGPU implementation of the FFRNN algorithm thus has a complexity of

O

m logwm + n max(k)

p

.

When following the recommended workgroup size in the range from 32 to 256, w has
a negligible influence on the complexity. What truly influences the efficiency of the
algorithm is the number of grid cells m, the number of atoms n, and the density of the
atoms max(k) (i. e., the largest number of atoms in any grid cell).

36

5.2. Collision Detection Computation

In conclusion, the efficiency of the algorithm is highly dependent on the size of the grid
cells. A cell size too small results in a very large number of grid cells m. On the other
hand, a cell size too big will result in a large number of atoms being assigned the same
grid cell, increasing the value of max(k). Pauscheinwein [Pau22] found that a cell size
matching the size of a single atom results in the best performance. Therefore, this cell
size is used for performance benchmarks in Section 5.4.

5.2.2 Brute Force
For comparison purposes, the trivial (brute force) version of the collision detection
algorithm (Algorithm 4.2) was implemented in WebGPU as well. As mentioned in
Section 4.4.2, this algorithm can be parallelised. This can be trivially done by parallelising
the outer for loop and having each thread perform the inner loop. However, the inner
loop’s variable j depends on the outer loop’s variable i. Two ways to implement this are
considered in this section.
In the first alternative where the outer loop is parallelised, each thread performs a
different amount of work (thread 0 performs n − 1 checks, while thread n − 1 performs
no checks). This would lead to poor performance on GPU hardware, as GPUs follow a
Single Instruction Multiple Data (SIMD) execution pattern. This means that computing
cores that perform less work would still have to wait until cores that perform more work
are finished in order to perform further computations.
The second alternative is to dispatch n2 threads (one for each pair of atoms). This has
the disadvantage that the algorithm must check whether two atoms being compared
are the same, to avoid self-collisions. Despite performing more collision checks than the
first alternative (n2 rather than n2−n

2), it would likely lead to faster execution on GPU
hardware due to the SIMD model.
The ideal solution to parallelise the trivial collision detection algorithm would involve
two properties: (1) an atom never checks for a collision with itself; and (2) one atom pair
is only checked for collisions once (as their collision is commutative, i. e., determining
the collision of atom a with atom b yields the same result as determining the collision of
atom b with atom a).
Keeping these properties while parallelising the trivial collision detection algorithm leads
to a pairwise comparison of atoms that can be expressed as the lower or upper triangle
of a matrix, as illustrated in Figure 5.3. In such a matrix, each element represents one
pair of atoms. An element in the diagonal represents the pair of an atom with itself. The
lower triangle contains exactly the same pairs as the upper triangle (symmetry property).
Checking collisions of only the atom pairs contained in either the lower or upper triangle
of this matrix would fulfil both properties discussed.
In order to achieve that in parallel, we take advantage of the triangular numbers as follows:
First, we number each element of the lower triangle of the n2 matrix with incrementing val-
ues, as illustrated in Figure 5.3. Then, using the triangular numbers, we formulate the map-
ping of this number to the atom’s position in the matrix as follows: Let a matrix element’s

37

5. Technical Challenges

Pair
1

2 3

4 5 6

7 8

11 12

9 10

13 14

16 17

22 23

18 19

24 25

15

20 21

26 27 28

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8Atom

Figure 5.3: The unique computation and indexing of atom pairs can be visualised as
a symmetric matrix. Each element of the matrix represents a pair of atoms, with the
elements in the diagonal representing pairs of an atom with itself. For collisions, only
unique pairs of atoms are necessary to compute, and self-collisions must be avoided. Such
pairs can be described as the lower/upper triangle matrix, which has n2−n

2 elements for
a number n of atoms.

number be denoted by t, and the number of atoms be denoted by n. The matrix contains
n2 elements, and its lower and upper triangles contain N = n2−n

2 elements. An element’s
position/coordinates i, j in the matrix is then defined by the following two equations:

i ← n − 2−
 −8t + 4n ∗ (n − 1) − 7

2

− 0.5, and

j ← t + i + 1 − N + (n − i)(n − i − 1)
2

With that, a parallel version of the trivial collision detection algorithm that still performs
n2−n

2 checks is enabled. This version of the algorithm is shown in Algorithm 5.2. Its
complexity for a p number of processors/cores is O(n2/p).

5.3 Collision Rendering
In order to perform rendering in both WebGL and WebGPU using HTML5 and Javascript,
a canvas element must be created. Once created, this canvas must be given a context.
For these two APIs, their respective contexts are "webgl"/"webgl2" and "webgpu".
This means that it is impossible to give one canvas two different contexts, and therefore

38

5.3. Collision Rendering

Algorithm 5.2: Parallel trivial collision detection of n atoms (spheres)
Input: A list atoms of n atoms
Output: A list of booleans, each corresponding to an atom, where true means

that the respective atom collides with another, and false means that
the respective atom does not collide with any other atom

1 collisions ← List of n booleans initialized with false;
2 N ← (n2−n)

2 ;
3 for t ← 0 to N − 1 do in parallel
4 // From thread ID t, compute two atom indices i and j

5 i ← n − 2−
√

−8t+4n∗(n−1)−7
2

− 0.5;

6 j ← t + i + 1 − N + (n−i)(n−i−1)
2 ;

7 d ← EuclideanDistanceBetween(atoms[i].position, atoms[j].position);
8 if d < atoms[i].radius + atoms[j].radius then
9 collisions[i] ← true;

10 collisions[j] ← true;
11 end
12 end
13 return collisions;

that the collision data calculated with WebGPU can only be rendered using WebGPU
via a separate canvas element.

Therefore, a canvas element with a WebGPU context is created and overlaid onto the
already existing WebGL canvas (set up as a part of Catana [KMS+22]). Each collision is
then rendered as a two-dimensional marker, as shown in Figure 5.4. That results in an
algorithmic complexity of O(n/p) for n atoms and p processors/cores.

Although this method of displaying collisions results in real-time benchmarks (later shown
in Section 5.4), its drawback is that it does not share the scene depth with the WebGL
context. Because of that, the markers of all collisions are always displayed, even if the
collision is occurring far away from the camera, where it would otherwise be occluded by
other atoms which are closer to the camera. This effect is desirable when an overview
of all collisions is required. However, when trying to determine the precise location of
collisions, it becomes ineffective.

In order for both APIs to share the depth of the scene, sharing data between them is
necessary. However, despite both technologies being developed for the web, their GPU
assets (such as textures and buffers) are not compatible. A texture defined in WebGL,
for instance, cannot be directly used in WebGPU. To pass any data between the APIs, it
is necessary to first copy the data from one API to the CPU, then copy it from the CPU
to the other API.

This approach was implemented by first copying the collision data calculated in WebGPU

39

5. Technical Challenges

Figure 5.4: WebGPU collision markers, overlaid on the WebGL render of the molecular
scene. The markers do not share the depth with the rest of the scene. Therefore, they
are not occluded.

Figure 5.5: WebGL collision markers. Unlike their WebGPU variant, they are in the
same molecular scene as the nanostructures, and are therefore subject to occlusions.

with FFRNN to the CPU. After that, the collision data is used to populate a WebGL
vertex buffer in such a way that each collision results in a sphere. This buffer is then
added to the same scene where all the nanostructures are rendered. By doing that, both
the nanostructures and the collision spheres share the same scene depth, and can thus be
occluded by each other. The result is shown in Figure 5.5.

40

5.4. Performance

5.4 Performance
With the two methods chosen to improve the MolCAD process (PCA for alignment and
FFRNN for collision detection – answering RQ1.), and verified to be possible to achieve in
a web-based environment, this section aims to verify that their implementation achieves
sufficient performance (RQ2.). For the alignment challenge (DC1.), because there is
no real-time requirement (as discussed in Section 5.1), a sufficiently fast performance
is considered to not be more than 1 second, to avoid interrupting the user’s flow of
thought [Nie93]. For collision detection (DC2.), however, real-time performance is
necessary (as discussed in Section 5.2).

There is no hardline definition for how many frames per second are required for an
application to be considered real-time. At 10 frames per second, a system can be
considered to be reacting instantaneously [Nie93]. For the purposes of this thesis, a
framerate of at least 20 frames per second (or 50 milliseconds per frame) will be used as
a threshold, as that is generally considered to be real-time in visualization applications.

The experiments were run on a laptop with an Intel(R) Core(TM) i7-11800H processor
with 8 cores (16 logical processors) running at 2.30GHz, using 16GB of RAM, running
Windows 11, with an NVIDIA GeForce RTX 3070 Laptop GPU. The Catana [KMS+22]
source code, where the algorithms were implemented, is directly modified to include the
time measurements. CPU times were measured with Javascript’s performance.now()
function, which returns a timestamp in milliseconds with up to microsecond preci-
sion. GPU times were measured with WebGPU’s TimestampQueries, which provide
timestamp values in nanoseconds, which are then converted to milliseconds for easier
interpretation and comparison.

The data used for the experiments consists of two proteins downloaded from the PDB.
Their codes are 1BNA, 5ES5, and 7A5J and they are shown in Figure 5.6.

These proteins were chosen based on their atom counts: 566, 10,783, and 106,132 re-
spectively. The structure with 566 atoms was chosen due to its low number of atoms,
to analyse how the algorithms perform with small structures The remaining two values
are convenient because of their proximity to 10,000 and 100,000 respectively. By dupli-
cating these proteins in the scene, larger values are achieved. For ∼50,000 atom and
∼100,000 atom benchmards, 5 and 10 5ES5 were used respectively. For ∼200,000 atoms
up to ∼4,000,000 atoms, the 7A5J protein was used (2 up to 40 of it).

These numbers go beyond the number of atoms that domain experts work with routinely.
DNA origami nanostructures can reach the hundreds of thousands of atoms (as the one
shown in Figure 2.2), and are considered unusually large. In the preliminary interviews
conducted (see Section 4.1), users reported facing very slow framerates with structures
of this size while using Adenita [dLMA+20], a modern tool tailored for DNA origami
nanostructures. With older software, such as PyMol [SD], the participants reported
that they were unable to load structures of this scale. Moreover, the PDB format only
supports up to 99,999 atoms per file [PDB]. For those reasons, the number of atoms

41

5. Technical Challenges

Figure 5.6: The PDB structures 1BNA (left), 5ES5 (center), and 7A5J used in the
benchmarks. They contain 566, 10,783, and 106,132 atoms respectively.

chosen for the benchmarks are regarded as not only well within practical purposes, but
beyond them.

5.4.1 PCA

For the PCA experiments, the loaded proteins were placed arbitrarily in space, as their
position does not influence the efficiency of the algorithm. The results are presented in
Table 5.1 and visualised in Figure 5.7. The values represent the average run time over 20
runs, after 5 warmup runs (25 runs per column in total). By increasing the number of
atoms, the processing time increases linearly. This is in accordance with the algorithm’s
complexity of O(n) mentioned in Section 4.4.1 and analysed in Section 5.1. The results of
this CPU implementation are satisfactory, as they remain far from the defined maximum
delay of 1 second, even for very large structures with over two million atoms. Because of
this, a GPU implementation was not considered.

Atoms 107,830 212,264 424,528 1,061,320 2,122,640
Time (ms) 3.61 6.40 12.42 29.90 61.12

Table 5.1: Computation times (in milliseconds) of the PCA algorithm. Averaged over 20
runs after 5 warmup runs.

42

5.4. Performance

Atoms

Ti
m

e
(m

s)

0.00

20.00

40.00

60.00

80.00

500000 1000000 1500000 2000000

Figure 5.7: Results of the performance measurements of PCA algorithm, plotted according
to Table 5.1.

5.4.2 Collision Detection
Both the FFRNN algorithm and the parallel trivial collision detection algorithm were
implemented on the GPU and, for comparison purposes, sequentially on the CPU (Algo-
rithms 5.2 and 4.3 respectively). Because they are both integrated in Catana [KMS+22],
the CPU versions are implemented in Javascript, while the GPU ones are implemented
using the WebGPU API [Webb]. On the CPU, the prefix sum algorithm does not use
the scheme presented in Section 5.2.1, as it is implemented sequentially, making its
implementation trivial (see Figure 5.2).

All times measured use a grid with fixed dimensions (i. e., number of cells), and each
cell with a fixed size. This was done in order to facilitate comparison with previous
work [Pau22], which only provides experiment results based on the number of atoms.

The size of the grid would otherwise be determined dynamically, and chosen in such a
way that it contains all atoms in the scene. Each cell in the grid is initially defined as a
cube where each edge has a length equivalent to the diameter of the largest atom in the
scene [Pau22]. If the number of grid cells exceeds the maximum imposed by WebGPU
limitations, the dimension of the grid’s cells must be increased such that it spans all
atoms in the scene.

WebGPU imposes a maximum number of 65,535 workgroups that can be dispatched in
one single call. In turn, each workgroup has a maximum size of 256. Because of that,
the maximum number of grid cells that can be processed in one call is 16, 776, 960 =
65, 535 × 256. Therefore, the largest cubic grid possible while computing collisions with
one single dispatch call is one where each side has 255 = ⌊ 3√16, 776, 960⌋ cells. With that,

43

5. Technical Challenges

the fixed-size grid contains a total of 255 × 255 × 255 = 16, 581, 375 cells.

A comparison of all implementations is provided in Table 5.2 and visualised in Figure 5.8.
The values represent the average run time over 20 runs, after 5 warmup runs (25 runs per
column in total). The CPU brute force variant was only executed for the smaller test cases,
as it was quickly found to be excessively slower than the other algorithms. Measurements
for GPU brute force could only be computed for up to the 1 061 320-atom test case, as
larger test cases would require a number of threads to be dispatched (2,252,799,223,480
threads for 2,122,640 atoms) that is too large for the test hardware, leading the application
to crash.

CPU WebGPU
Atoms BF FFRNN BF FFRNN Rendering

566 1.65 122.59 0.02 2.58 0.004
53,915 11,439.56 127.23 10.24 2.56 0.042

107,030 47,655.94 219.74 30.98 2.66 0.078
212,264 458.53 99.95 2.78 0.155
424,528 807.01 322.37 2.91 0.305

1,061,320 1,660.64 2,024.98 4.85 0.754
2,122,640 2,902.69 9.75 1.505
3,183,960 3,863.94 12.55 2.884
4,245,280 4,639.43 18.91 3.198

Table 5.2: Computation times (in milliseconds) of the Brute Force (BF) algorithm, and
the FFRNN algorithm. Averaged over 20 runs after 5 warmup runs.

Looking at the experiment results for 566 atoms, the overhead introduced by the fixed-
size grid of FFRNN becomes clear, as their times are much larger than brute force.
However, as the number of atoms grows, the difference in how they scale also becomes
clear, with brute force values quickly reaching times above the real-time threshold (i. e.,
50 milliseconds), while the FFRNN GPU implementation remains real-time for all test
cases, even when adding the rendering times. The CPU version of FFRNN, although
not delivering real-time results even for the smallest test case, shows the importance
of an efficient collision detection algorithm when compared to CPU brute force, even if
implemented sequentially.

The experiment results for each individual GPU FFRNN pipeline stage are also provided
in Figure 5.9. Table 5.3 contains the data used in the plots.

44

5.4. Performance

Atoms

R
un

 ti
m

e
(m

s)

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1000 10000 100000 1000000

CPU BF (dashed) CPU FFRNN (dashed) GPU BF GPU FFRNN Real-time theshold (50ms)

Figure 5.8: Results of the performance measurements of the Brute Force (BF) algorithm,
and the FFRNN algorithm, plotted according to Table 5.2. Dashed lines are the CPU
implementations, while solid lines are the GPU implementations. Both axes are loga-
rithmic. Even for a very low number of atoms, the CPU implementations are not able
to calculate collisions in real-time. The GPU BF variant loses that capability at a little
over one million atoms. The GPU FFRNN variant, however, is able to remain below the
real-time threshold even for a very large number of atoms.

45

5. Technical Challenges

Atoms

R
un

 ti
m

e
(m

s)

0.01

0.10

1.00

10.00

1000 10000 100000 1000000

Fill-0

Insert

Scan 1

Scan 2

Scan 3

Add 1

Add 2

Fill-null (dashed)

Sort

Map

Detect collisions

Render

Figure 5.9: Results of the performance of each stage of the WebGPU FFRNN algorithm,
plotted according to Table 5.3. Both axes are logarithmic.

46

5.4. Performance
In

se
rt

in
g

Sc
an

ni
ng

(p
re

fix
su

m
)

So
rt

in
g

C
ol

lis
io

n
#

A
to

m
s

Fi
ll-

0
In

se
rt

Sc
an

1
Sc

an
2

Sc
an

3
A

dd
1

A
dd

2
Fi

ll-
n
u
l
l

So
rt

M
ap

de
te

ct
io

n
R

en
de

rin
g

56
6

1.
59

0.
01

0.
63

0.
01

0.
01

0.
00

4
0.

29
0.

00
3

0.
01

0.
00

4
0.

03
0.

00
4

53
91

5
1.

48
0.

02
0.

59
0.

01
0.

01
0.

00
3

0.
33

0.
00

3
0.

02
0.

00
8

0.
10

0.
04

2
10

70
30

1.
48

0.
04

0.
59

0.
01

0.
01

0.
00

3
0.

33
0.

00
3

0.
03

0.
01

6
0.

15
0.

07
8

21
22

64
1.

30
0.

06
0.

52
0.

01
0.

01
0.

00
4

0.
29

0.
00

3
0.

04
0.

03
4

0.
26

0.
15

5
42

45
28

1.
31

0.
11

0.
52

0.
01

0.
01

0.
00

4
0.

29
0.

00
5

0.
10

0.
07

2
0.

49
0.

30
5

10
61

32
0

1.
30

0.
23

0.
52

0.
01

0.
01

0.
00

3
0.

29
0.

01
2

1.
15

0.
17

3
1.

16
0.

75
4

21
22

64
0

1.
60

0.
36

0.
63

0.
01

0.
01

0.
00

4
0.

29
0.

02
3

3.
81

0.
33

2
2.

68
1.

50
5

31
83

96
0

1.
30

0.
40

0.
52

0.
01

0.
01

0.
00

4
0.

29
0.

03
2

6.
42

0.
44

5
3.

13
2.

88
4

42
45

28
0

1.
31

0.
43

0.
52

0.
01

0.
01

0.
00

4
0.

29
0.

04
2

11
.7

4
0.

53
9

4.
03

3.
19

8

Ta
bl

e
5.

3:
R

es
ul

ts
of

th
e

pe
rfo

rm
an

ce
of

ea
ch

st
ag

e
of

th
e

W
eb

G
PU

FF
R

N
N

al
go

rit
hm

.
Va

lu
es

pr
ov

id
ed

fo
r

ea
ch

pi
pe

lin
e

st
ag

e
re

pr
es

en
t

th
e

ru
n

tim
e

in
m

ill
ise

co
nd

s.

47

5. Technical Challenges

For the measures with 566 atoms, a third nanostructure was used, with PDB code 1BNA.
Despite its small size, the stages that operate over each grid cell (Fill-0, Scan, and Add)
take virtually the same amount of time to compute as with very large scenes, as a fixed
grid size was used. This is noticeable in Figure 5.9, where these operations are represented
by a flat line.

The operations with purely linear algorithmic complexity O(n) on the number n of
atoms O(n) (i. e., Fill-null, Map, and Render), also scale as expected, with linear
growth. The remaining operations (Insert, Sort, and Detect collisions) also follow the
expected pattern, which additionally depends on the density max(k) of atoms (i. e., the
largest number of atoms contained in any single cell).

Since the number of cells in the grid and their size are kept at fixed values across the
experiments, the density of atoms increases together with the number of atoms. For this
reason, Insert, Sort, and Detect collisions are expected to follow a slight exponential
growth. In the experiments conducted, this effect is not visible for Insert and Detect
collisions, but very pronounced for Sort. This can be explained by the fact that, during
sorting, a large number of atoms that are located in the same cell execute several atomic
operations (atomicExchange) at the same time, on the same buffer location. This leads
to a loss of efficient parallelism of this stage, as concurrent atomic operations on the same
variable are sequential-like. Insert also relies on atomic operations (atomicAdd). The
difference is that the grid cells being manipulated at this stage are more spread-out, due
to the fact the atoms’ spatial proximity does not correspond to their memory proximity
yet.

The results obtained are comparable with those presented by Pauschenwein [Pau22], as is
shown in Table 5.4. The implementations scale similarly, with the brute force approach
scaling quadratically (quickly passing the real-time threshold), while FFRNN scales
linearly. This work was able to achieve much lower run times overall. However, this can
be attributed to the difference in GPU hardware,

∼ # Atoms
[Pau22] This work

BF FFRNN BF FFRNN
50,000 61.00 9.00 10.24 2.56

100,000 280.00 10.00 30.98 2.66
200,000 977.00 11.00 99.95 1.21
400,000 4,530.00 16.00 322.37 2.91

1,000,000 25,392.00 28.00 2,024.98 4.85
2,000,000 102,604.00 44.00 9.75
4,000,000 599,236.00 78.00 18.91

Table 5.4: Comparison of performance results (in milliseconds) of this work (NVIDIA
GeForce RTX 3070 Laptop GPU) with [Pau22] (NVIDIA Geforce GTX 970).

48

5.5. Discussion

5.4.3 Collision Rendering

As shown in Table 5.2, the collision rendering times are a small fraction of the total
computation time. However, as mentioned in Section 5.3 and shown in Figure 5.4, the
collision markers do not share the same canvas element as the rest of the molecular
visualization. In order for them to share the same scene (and therefore the same depth
information), the collisions calculated with WebGPU are transferred to WebGL and
rendered, as shown in Figure 5.5.

This operation, however, is considerably slower than rendering the collisions directly in
WebGPU. Table 5.5 shows a comparison of the runtimes of the two methods. Its values
are plotted in Figure 5.10. Because of this, and in favour of user satisfaction [RR86],
the WebGPU rendering is used while structures are being moved by the user. Once the
movement (user interaction) stops, the WebGL rendering is triggered, and the delay of
the WebGL approach becomes imperceptible.

Atoms WebGPU WebGL
107,030 0.078 7.204
212,264 0.155 10.672
424,528 0.305 16.976

1,061,320 0.754 36.392
2,122,640 1.505 80.772
3,183,960 2.884 135.592
4,245,280 3.198 208.184

Table 5.5: Results of the performance of rendering atom collisions with WebGPU (directly
from the implemented FFRNN pipeline) against rendering atom collisions using WebGL.
The WebGL times include the time that it takes to download the collision data from the
WebGPU API, process it in the CPU, and upload it to the WebGL API. This means
that the rendering time of WebGL is excluded from this benchmark. Values provided
represent the run time in milliseconds.

5.5 Discussion

As for RQ2. (How can the novel MolCAD constraint-based interaction methods be imple-
mented efficiently (in real-time) in a web-based environment?), the benchmarks show that
the research question can be answered as follows: The PCA-based alignment technique
can be implemented efficiently on the CPU using singular value decomposition. Despite
this implementation not resulting in real-time results, the results achieved are considered
sufficient due to the fact that there is no real-time constraint in this operation, as it does
not need to occur every frame, but it can be pre-computed on demand. The collision
detection framework can also be implemented in real-time using the novel WebGPU API.
Both solutions were shown to run efficiently in a web-based environment. All results were

49

5. Technical Challenges

Atoms

Ti
m

e
(m

s)

0.1

1

10

100

1000000 2000000 3000000 4000000

WebGPU WebGL Real-time

Figure 5.10: Results of the performance of rendering atom collisions with WebGPU
against WebGL, plotted according to Table 5.5. The Y-axis is logarithmic.

determined based on a data scale that is relevant to the uses witnessed in the preliminary
interviews.

50

CHAPTER 6
Case Studies

In order to be able to answer RQ3. (Which of the novel MolCAD constraint-based inter-
action methods increases user satisfaction and efficiency for constraint-based MolCAD?),
we must first determine how to measure user satisfaction and efficiency. The objective of
validating a system is to determine whether it benefits the domain experts. This can
be achieved if users are able to perform tasks faster, more correctly, and/or with less
workload, as well as when the tasks were previously impossible [Rot06].

This qualitative validation is achieved through case studies. The case study method
consists of focusing on a select group of participants and observing them work in their
routine tasks while conducting interviews and accompanied by automated logging. This
method allows for a detailed insight into how domain experts use specific tools or
interfaces, including what they are able to achieve and the challenges they face [SP06].

The interviews are conducted in a semi-structured manner. This style of interview
combines a set of pre-defined open-ended questions which are aimed at initiating a
discussion. With this method, participants are able to speak freely while being steered in
a direction that enables validation of the software tools implemented. In the following
sections, the entire process (from planning to executing) of the semi-structured user
interviews is presented, as well as the user feedback.

6.1 Procedure, Setup, and Participants
As semi-structured interviews were conducted, a rough outline of the interview was
planned out, with space planned for the participating users to fully express themselves
and ask questions. The interviews are conducted in part only verbally, and in part while
interacting with Catana [KMS+22]. Because Catana is used, one point where special
attention is needed is to steer users into the particular parts of Catana we are interested
in (i. e., the design challenges presented in Section 4.4). Special focus is also given to

51

6. Case Studies

the user’s experience with previous tools and their interaction methods analogue to this
thesis’ requirements, how they compare to each other, while encouraging the interviewees
to contribute with new ideas about what is still missing.

While users interact with Catana and solve their typical domain-specific tasks using their
own data (both crucial requirements for the Design Study Methodology [Rot06]), we
encourage them to speak aloud and describe what their goal is, how they are achieving
it, and share any difficulties they may come across. Support is also given at any time in
case users need assistance in finding a specific tool in the user interface.

Before each interview, the user is asked to prepare the data they currently use for
their design/modelling tasks, or provide a list for the interviewer to prepare it. The
semi-structured interview questions are listed in the Appendix.

The implemented PCA alignment and real-time collision detection with WebGPU were
available for the users to interact with. The users had the knowledge that these tools
existed, since the users accompanied the development process of both these methods.
Because of this, the tools were not explained immediately prior to the interview.

The interviews were conducted in person using a laptop with a an Intel(R) Core(TM)
i7-6500U processor with 2 cores (4 logical processors) running at 2.5 GHz, using 8GB
of RAM, running Windows 10, with a AMD Radeon(TM) R5 M330 GPU. Internet
connection was provided (important for PDB access), and screen capture, as well as
audio recording for later reference, together with written notes.

The two participants of this case study are experienced in molecular modelling and tasks
that require alignment and/or collision detection. That is because these two tasks were
established in this thesis’ work to be the most crucial points that are lacking in currently
established software. This is crucial in order for them to compare the novel tools (and
their experience with them) with tools that are already established, and thus be able to
express whether and how the introduced tools are an improvement. Both domain experts
also participated in the preliminary interviews presented in Section 4.1.

6.2 Interviews
Both participants were asked to perform a task they recently or routinely perform with
their own data. The tasks and data are listed below.

52

6.2. Interviews

Interview 1, Task 1 The task requires the following structures from the PDB: 3UGM
and 1W4W. The 3UGM structure is loaded and its DNA is removed. Next, a new DNA
strand with a different sequence is created and aligned to the remaining protein of the
3UGM structure. This DNA-protein hybrid structure is when duplicated. A new DNA
strand is created to connect the DNA strands of each of the twin structured. Then, the
1W4W structure is loaded and split into two parts. Finally, each part is connected to a
terminus of each of the twin structures. While aligning the structures, the participant
makes sure to avoid collisions between the structures. The result is shown in Figure 6.1
and contains 19,404 atoms.

A

B

C

D E

Figure 6.1: The first structure produced in Interview 1 (Section 6.2). Two identical DNA
strands (A), each of them being wrapped/coiled by a protein (B) from the PDB structure
3UGM. A DNA strand (C) connects the two identical DNA strands (A). Two split parts
(D, E) of the protein 1W4W from the PDB are connected to the termini of each of the
identical 3UGM proteins (B).

53

6. Case Studies

Interview 1, Task 2 The task requires the following structure from the PDB: 4TSZ,
as well as a large DNA-origami structure with 662,417 atoms. While aligning the 4TSZ
structure with the DNA-origami structure, the participant makes sure to avoid collisions
between the structures. This task is illustrated in Figure 6.2.

Figure 6.2: The second structure produced in Interview 1 (Section 6.2). A pore (structure
4TSZ from the PDB) is aligned with a large hexagonal DNA-origami structure.

Interview 2 The task requires the following structure from the PDB: 5DO4. Several
DNA strands with different sequences are created in a brick-like structure. Then, the
four 5DO4 proteins are loaded and connected to the ends of four of the DNA strands
created previously. The result is shown in Figure 6.3 and contains 38,524 atoms.

A
B

Figure 6.3: The structure produced in Interview 2 (Section 6.2). A DNA-origami structure
resembling a brick (B) has several of its DNA strands connected with proteins (A) from
the PDB structure 5DO4.

54

6.2. Interviews

The qualitative feedback collected from the two semi-structured interviews is categorized
with open coding extracted from the transcribed feedback of the participants. The coded
answers are listed in the Appendix. For both interviews, the feedback received was
categorized using open coding. The five feedback categories are listed and described
below.

• Alignment in MolCAD tools: How users solve DC1. (alignment) with other
tools.

• Collision detection in MolCAD tools: How users solve DC2. (collision detec-
tion) with other tools.

• PCA alignment: Are users more satisfied and can they work more efficiently with
PCA alignment?

• WebGPU collision detection: Are users more satisfied and can they work more
efficiently with collision detection?

• What is still missing: What other possibilities users can think of to increase
satisfaction and efficiency?.

Alignment in MolCAD Overall, we observed that the participants seemed to not
feel confident with the alignment of structures in other tools. In Interview 1, the
participant reported having used PyMol [SD] for alignment, but only its structural
superposition feature (as introduced in Section 4.2). The participant also reported
having used Catana [KMS+22] for alignment (both its translation/rotation tools and its
structural superposing feature). In Interview 2, the participant reported having used
SAMSON Connect [SAM] previously, despite its loss of real-time performance when large
structures are added (such as the one shown in Figure 6.2). Like the participant of
Interview 1, this participant also reported having used Catana.

Collision detection in MolCAD tools Overall, we observed that the participants
do not have a clear idea of how to perform collision detection using established MolCAD
software. In Interview 1, the participant expressed that their common method of
estimating collisions is visual. The participant also expressed a likelihood that PyMol
has this feature, but a lack of certainty that they ever tried it before, but confidence that
it would not be a real-time feature. In Interview 2, the participant stated that they have
previously only estimated collisions visually, and that in some scenarios it is impossible
to do that (such as the one illustrated in Figure 4.7). The participant also shared their
experience with domain experts of biophysics and that they have “a trick” to detect
collisions.

PCA alignment Overall, we observed that the participants did not benefit greatly
from the novel PCA-based alignment method. In Interview 1, the participant did not

55

6. Case Studies

consider the PCA method when aligning structures, despite task 1 6.2 being an ideal case
for it. However, when showed the capability of the tool, they admitted its usefulness in
limited cases, such as when modelling DNA-protein hybrid structures. In Interview 2, the
participant used the novel tool in the task, but we observed that they seemed confused
about its use and capabilities. The user gave up after a few seconds and moved on to try
the novel collision detection feature.

WebGPU collision detection Overall, we observed that the participants were very
impressed with the novel collision detection method, and both saw potential in it
contributing to increased user satisfaction and efficiency. In Interview 1, the participant
seemed impressed with the tool and expressed their opinion about its potential use,
especially when working with large proteins. The participant also added that, for
estimating how close together two structures can get, MDS (a computationally expensive
task) would be needed without a tool to calculate collisions. In Interview 2, the participant
also seemed impressed. The participant also expressed how this tool has the potential
to detect and prevent collisions early before sending a structure to MDS (increasing
efficiency), and how the visual output facilitates this process (increasing user satisfaction).

What is still missing Overall, we observed three trends in the feedback from the
participants regarding what is still missing in MolCAD: (1) an “undo” button, (2) the
support of artificial intelligence methods, and (3) more or improved alignment tools.
Both participants stressed the need for the “undo” feature, which allows users to undo
previously performed commands (especially useful when the user makes a mistake).
In Interview 1, the participant suggested a simple new alignment method that would
potentially facilitate all tasks performed in the interview: by selecting two points, each
on a separate structure, one structure would be moved/translated such as the points
are in the same position (e. g., in Figure 4.3, the two selected points would be structure
A’s terminus and structure B’s terminus, which would then be aligned). Additionally,
the participants stated that protein structures predicted with AlphaFold [JEP+21] (an
artificial intelligence tool that predicts how proteins fold based on their amino acid
sequence) facilitated their work, as they showed to be accurate, and change very little
in structure when sent to simulations. In Interview 2, the participant further stressed
the rising need for artificial intelligence-based tools, giving an example of a novel system
that, for a given protein, matches it with other proteins that can bind to it.

6.3 Discussion
Based on the findings of the interviews, PCA alignment did not leave a strong impact
on users. Both interviewees did not understand how PCA could be useful to align
structures, instead preferring existing alignment techniques previously available in other
software, including Catana [KMS+22], such as structural superposition. This occurred
despite prior communication regarding the tool’s capabilities, making it evident that
PCA poses challenges for user comprehension. However, after being shown cases where

56

6.3. Discussion

PCA produces better results than structural superposition, users agreed that it can make
their workflow less frustrating and more efficient in certain scenarios.

One such scenario is when aligning structures with very different compositions. The
users highlighted that structural superposition (an alternative to PCA alignment) is
only applicable if two structures are very similar, as it takes the structure’s sequence
into account. However, proteins and DNA have different types of sequences (amino acid
and nucleotide, respectively). This may lead to structural superposition not supporting
protein/DNA-hybrid MolCAD. The implemented PCA method, on the other hand, works
universally, as it uses atom data, which is present regardless of the type of structure.

In contrast, collision detection emerged as a strong feature. Both users reported being
satisfied with it. The capacity of this functionality to efficiently locate molecular collisions
in a dynamic context was considered essential by interviewees. They emphasized its
potential in evaluating the structural plausibility of their molecular models, a necessary
step before moving on to MDS.

Finally, the insights gathered from the interviews allow us to address RQ3. (Which
of the novel MolCAD constraint-based interaction methods increases user satisfaction
and efficiency for constraint-based MolCAD?). As user feedback showed, PCA-based
alignment has the potential to increase user satisfaction and efficiency in certain situations,
while real-time collision detection showed strong signs to be an essential tool for increased
satisfaction and efficiency.

57

CHAPTER 7
Discussion

In this thesis, an approach to MolCAD was introduced through the implementation of
constraint-based interaction techniques on the web. These techniques were developed
to overcome the complexities inherent in molecular modelling tasks and make them
more usable and efficient. A review of existing methods in the field was conducted to
develop this constraint-based interaction system, where established CAD and MolCAD
interactions were surveyed, in order to find out which CAD aspects the MolCAD field is
missing out on (RQ1.). These were then described as the design challenges of this thesis
in Section 4.4: alignment DC1. and collision detection DC2..

Each design challenge then led to a technical challenge, and the PCA-based alignment
was implemented, alongside a WebGPU-based collision detection system. With that, it
was shown that their implementation is not only feasible in a web-based environment,
but also efficient (RQ2.). Additionally, through case studies, this thesis demonstrated
that these constraint-based interactions can enhance user experience and provide a more
intuitive workflow for complex molecular design tasks (RQ3.). Moreover, the answers to
the research questions can be summarised as follows:

1. RQ1. Which CAD interaction techniques exist that are also applicable for MolCAD
and are currently not in use yet, but could be useful? Constraint-based alignment
tools, commonly present in CAD solutions, hold great potential for MolCAD. Based
on the interviews conducted, two such techniques are chosen to be implemented: a
PCA-based alignment method, and a real-time collision detection algorithm.

2. RQ2. How can the novel MolCAD constraint-based interaction methods be imple-
mented efficiently (in real-time) in a web-based environment? The PCA-based
alignment method has no real-time constraint, as it can be pre-computed on demand.
Its CPU implementation on a web-based environment yielded sufficient performance

59

7. Discussion

for the user’s flow of thought to not be interrupted [Nie93]. The collision detec-
tion algorithm achieved real-time performance in a web-based environment with a
WebGPU [Webb] implementation.

3. RQ3. Which of the novel MolCAD constraint-based interaction methods increases
user satisfaction and efficiency for constraint-based MolCAD? The PCA-based
alignment tool received mixed feedback from users at first due to a lack of under-
standing of how it works and what it can achieve. When presented with examples
of its use, users admitted its usefulness. In contrast, the interviewed users were
pleased with the real-time collision detection tool and emphasized its practical
utility. From the case studies, it can be concluded that PCA-based alignment
holds potential in increasing user satisfaction and efficiency, (but requires explicit
communication of its benefits), while collision detection shows strong signs of being
an essential tool for increased satisfaction and efficiency.

While the results of this thesis show two promising MolCAD techniques, several aspects
emerged that hold potential for future work and improvement in MolCAD tools. These
are summarised below.

Alignment design challenge The alignment design challenge (DC1.) stems from the
dichotomy between the 3D nature of molecular scenes and the 2D constraints of computer
displays. This thesis explored PCA-based alignment as a potential solution. However,
feedback from case studies indicates a mixed reception from users. They expressed
confusion about its utility until they were shown examples of its efficacy in tasks that
previous features could not address efficiently. As a future direction, other alignment
methods, such as “snapping” [Bie], could be explored to find improved solutions to this
challenge.

Collision handling The real-time collision detection tool was received well by users
in the case studies. However, an addition to this system can be made that has the
potential to further improve the workflow of users: automatically solving the collisions.
Without collision handling, users must manually find all collisions and push atoms apart,
a task that becomes unfeasible for structures with millions of atoms. This feature has
been shown to work in real-time [Pau22] using OpenGL, and it has the potential to be
implemented on the web as well, using WebGPU.

Undo button Feedback from the case studies highlighted the importance of an “undo”
button in MolCAD. And “undo” button allows the user to revert actions, which is
especially crucial in complex tasks.

Artificial intelligence methods Another aspect stressed by the case study par-
ticipants is the growing use of artificial intelligence systems in MolCAD. The users
expressed satisfaction with AlphaFold [JEP+21], a tool that is already integrated into

60

Catana [KMS+22], and mentioned the potential to improve their workflow further with
more such tools. This shows that not only there is potential for future work in developing
these systems, but also that their integration in MolCAD software has the potential to
improve user experience.

Larger and more elaborate case studies While the two case studies conducted
for this thesis were sufficient to answer RQ3., there is potential for broader and more
detailed studies in future work. Users of MolCAD can have very different backgrounds:
molecular biologists, biophysicists, chemists, structural biologists, biotechnologists, etc.
Because of that, they have diverse user needs. Understanding these needs gives MolCAD
tools the potential to rival established CAD software in terms of user satisfaction and
efficiency.

Formal comparison While the tools explored and implemented in this work have
been shown to increase user satisfaction and efficiency on its own, there remains a need
to compare these results with established CAD as well as MolCAD software. This step is
crucial to understanding two aspects of the newly implemented methods: (1) whether
they are comparable with well-established CAD tools, and (2) whether they outperform
well-established MolCAD software. A comparison with existing virtual reality MolCAD
software (such as [KSB+21]) also holds potential for insights on the efficacy of the
presented techniques.

61

List of Figures

2.1 The protein 1HRP from the PDB is visualised with different representations
and different colour schemes. The left column (A, D) uses the “ball-and-stick”
representation, the middle column (B, E) uses the “cartoon” representation,
and the right column (C, F) uses the “backbone” representation (where the
tube goes through the protein’s backbone). In the top row (A, B, C), the
proteins are coloured according to their amino acids, while in the bottom
row (D, E, F), the proteins are coloured according to their chains (this protein
contains two chains, represented here in yellow and red). In the enlarged view
on the right, which has the same representation and colour scheme as F, the
N- and C-termini are labelled. 6

2.2 On top, for scale, a DNA strand with 118 nucleotides (59 per strand). Below
it, a DNA origami structure with 16,670 nucleotides is shown. To the right,
the same DNA origami structure is shown, but combined with a second DNA
origami structure to form a larger structure with 32,383 nucleotides. . . 7

2.3 A DNA origami structure assembled in caDNAno [DMT+09] (left) is im-
ported into oxDNA [vRO+12] (centre), where it undergoes a spring-force-
based rigib-body relaxation process to assemble into its final tridimensional
shape (right). Images taken from https://www.youtube.com/watch?
v=bwmUpTdrXdk (accessed 2023-09-04). 8

3.1 Translation and rotation gizmos have become a standard tridimensional widget
in CAD applications. Image taken from [MCG+18]. 9

3.2 SAMSON Connect [SAM] supports fine-grained control over the creation and
editing of molecules. In this figure, a nitrogen atom is added by first selecting
nitrogen from the periodic table, and then clicking on a hydrogen atom that
shares a bond with a previously placed carbon atom. By doing that, two new
hydrogen atoms will be automatically added to the newly added nitrogen atom.
The assembly of a molecule can continue by clicking on further hydrogen atoms.
Clicking anywhere else on the 3D environment other than an existing atom will
place a new atom in that position, without bonds to other atoms present in the
scene. Images taken from https://documentation.samson-connect.
net/users/latest/page_building_molecules.html. 10

63

https://www.youtube.com/watch?v=bwmUpTdrXdk
https://www.youtube.com/watch?v=bwmUpTdrXdk
https://documentation.samson-connect.net/users/latest/page_building_molecules.html
https://documentation.samson-connect.net/users/latest/page_building_molecules.html

3.3 VIVERN [KSB+21] is a virtual reality application that enables the de-
sign and visual examination of DNA origami nanostructures. Image taken
from [KSB+21]. 11

3.4 Catana [KMS+22] is a web-based MolCAD application, on top of which this
thesis’ work is implemented. 12

4.1 The first scenario (S1.) consists of aligning a double DNA strand (B) with a
large DNA origami nanostructure (A) (top-left). Through rigid-body trans-
formations alone (translation and rotation, top-right), the DNA strand can
be positioned at the desired position (bottom-left). After positioned, small
adjustments may be necessary to avoid collisions or ensure that the DNAs
bind as intended. 15

4.2 Left to right: (1) The second scenario (S2.) starts with a protein-DNA hybrid
structure (3UGM) loaded from the PDB (left). (2) The DNA is then removed,
and (3) A new one is created with a specific desired sequence and it must be
placed where the initial DNA strand used to be. This can be achieved with
rigid-body transformations. (4) After alignment, additional precise alignment
may need to be performed to avoid collisions and ensure that DNA and protein
bind as intended. 16

4.3 (left) Two proteins (1HRP and 7R0I) are loaded from the PDB. The goal
is to align one protein’s N-terminus with the other protein’s C-terminus, so
that they form a bond. (right-top) First, the termini are brought together.
(right-centre) Then, they are oriented in order to avoid collisions between
them. (right-bottom) Once they are positioned and oriented as roughly as
desired, small adjustments can be made to make sure the bonds between the
termini are formed, or to fix remaining collisions. 17

4.4 SketchUp [Ske] is a CAD application heavily reliant on constraint-based
interactions. When dragging the plane with the mouse cursor and following
the green line (green axis), the corner of the plane that is being dragged
follows the axis. In this process, when the mouse cursor is near enough to the
other plane’s vertex (right), the plane being dragged snaps in position. . 18

4.5 SketchUp [Ske] is a CAD application heavily reliant on constraint-based
interactions. When creating a plane and placing the mouse cursor near the
origin (top-left), the plane-creating tool snaps to it. After a mouse click, a
plane starts being created. When there is no other geometry on the scene,
the plane will always be created at ground level (top-right). If a new plane is
created from already-existing geometry (bottom-left), then it is possible to
create it in other orientations (bottom-right). 19

64

4.6 Structural superposition allows two nanostructures to be aligned/registered
in space while taking into account their structural properties, such as their
sequence. (left) In this case, the protein at the bottom is being aligned with
the structure on top. They both have very similar amino acid sequences.
(right) After alignment, the structures are registered in space, with closely
matching positions and orientations. The structures were obtained from the
PDB, with codes 1QO4 (bottom) and 1W4Y (top). 20

4.7 Visually determining whether a nanostructure contains atom collisions is
unfeasible. Algorithms are needed to support this task. The structure was
obtained from the PDB, with code 3UGM. 21

4.8 With the so-called “cartoon” representation (left), it appears that the two
proteins do not collide. However, if a representation that displays the atoms
is chosen, such as “ball-and-stick” (centre), it becomes clear that the two
structures do collide (right). The structures were obtained from the PDB,
with codes 1QO4 (bottom) and 1W4Y (top). 22

4.9 A protein (left), and its backbone highlighted (right). Employing snapping at
the backbone of a protein could cause confusion, as it winds through space due
to its folding. The structure was obtained from the PDB, with code 1HRP. 25

4.10 The principal axes of a nanostructure could be used for snapping, or as the
axis of translation and rotation gizmos (see Figure 3.1) The structure was
obtained from the PDB, with code 1HRP. 25

4.11 When using PCA auto-alignment to align the protein on the top to the DNA
strand on the bottom (left), there is a heavy overlap of the two structures.
The DNA strand was created using Catana [KMS+22], while the structure
was obtained from the PDB, with code 5DO4. 27

4.12 When using PCA auto-alignment to align the DNA strand with the protein
(left), the structures do not overlap heavily (right), as there is space inside
the protein’s helix for the DNA to fit. The DNA strand was created using
Catana [KMS+22], while the structure was obtained from the PDB, with code
3UGM and modified with Catana. 28

4.13 Heavy overlaps (as the one caused by PCA auto-alignment in Figure 4.11)
can be solved by adjusting the position of the aligned structure. For this
task, the principal components can be used as the basis for the translation
gizmo. In this case, that allows the protein to be moved along its axis of
highest variance, until the small DNA structure attached to the protein gets
in close contact with the DNA strand. The DNA strand was created using
Catana [KMS+22], while the structure was obtained from the PDB, with code
5DO4. 30

65

5.1 The PCA implementation used in this work runs sequentially on the CPU.
However, the (re)calculation of the principal axes is triggered on demand on
two occasions: (left) When the “Principal axes” auto-alignment tool is used;
and (right) when the “Principal” movement orientation is selected while using
a translation/rotation gizmo. If the structure has not changed (i. e., no atoms
were added or removed) since the last computation, the principal axes will
not change either, thus their (re)calculation is averted. The DNA strand was
created using Catana [KMS+22], while the structure was obtained from the
PDB, with code 5DO4. 33

5.2 The parallel scan algorithm implemented requires a barrier for all threads
involved. Because WebGPU only offers barriers on the workgroup level (which,
in our case, has a size of 256), the scan can only be performed on blocks
of 256 elements. The solution is to take the largest element of a scan block
(which is equivalent to the sum of all previous elements in the original data)
and perform a scan on them. This process is repeated recursively until the
resulting data has fewer elements than the workgroup size (256 in our case),
and thus only one workgroup is needed. Once this point is reached, the result
is added to the scan of the previous recursion, and so on. This recursion thus
has a depth of ⌊logwm⌋ on the number m of grid cells and the workgroup
size w. Image taken from https://developer.nvidia.com/gpugems/
gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
(accessed 2023-09-04). 35

5.3 The unique computation and indexing of atom pairs can be visualised as a
symmetric matrix. Each element of the matrix represents a pair of atoms,
with the elements in the diagonal representing pairs of an atom with itself.
For collisions, only unique pairs of atoms are necessary to compute, and self-
collisions must be avoided. Such pairs can be described as the lower/upper
triangle matrix, which has n2−n

2 elements for a number n of atoms. . . . 38

5.4 WebGPU collision markers, overlaid on the WebGL render of the molecular
scene. The markers do not share the depth with the rest of the scene.
Therefore, they are not occluded. 40

5.5 WebGL collision markers. Unlike their WebGPU variant, they are in the same
molecular scene as the nanostructures, and are therefore subject to occlusions.
. 40

5.6 The PDB structures 1BNA (left), 5ES5 (center), and 7A5J used in the bench-
marks. They contain 566, 10,783, and 106,132 atoms respectively. 42

5.7 Results of the performance measurements of PCA algorithm, plotted according
to Table 5.1. 43

66

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

5.8 Results of the performance measurements of the Brute Force (BF) algorithm,
and the FFRNN algorithm, plotted according to Table 5.2. Dashed lines
are the CPU implementations, while solid lines are the GPU implementa-
tions. Both axes are logarithmic. Even for a very low number of atoms,
the CPU implementations are not able to calculate collisions in real-time.
The GPU BF variant loses that capability at a little over one million atoms.
The GPU FFRNN variant, however, is able to remain below the real-time
threshold even for a very large number of atoms. 45

5.9 Results of the performance of each stage of the WebGPU FFRNN algorithm,
plotted according to Table 5.3. Both axes are logarithmic. 46

5.10 Results of the performance of rendering atom collisions with WebGPU against
WebGL, plotted according to Table 5.5. The Y-axis is logarithmic. . . . 50

6.1 The first structure produced in Interview 1 (Section 6.2). Two identical DNA
strands (A), each of them being wrapped/coiled by a protein (B) from the
PDB structure 3UGM. A DNA strand (C) connects the two identical DNA
strands (A). Two split parts (D, E) of the protein 1W4W from the PDB are
connected to the termini of each of the identical 3UGM proteins (B). . . . 53

6.2 The second structure produced in Interview 1 (Section 6.2). A pore (structure
4TSZ from the PDB) is aligned with a large hexagonal DNA-origami structure.
. 54

6.3 The structure produced in Interview 2 (Section 6.2). A DNA-origami structure
resembling a brick (B) has several of its DNA strands connected with proteins
(A) from the PDB structure 5DO4. 54

67

List of Tables

5.1 Computation times (in milliseconds) of the PCA algorithm. Averaged over 20
runs after 5 warmup runs. 42

5.2 Computation times (in milliseconds) of the Brute Force (BF) algorithm, and
the FFRNN algorithm. Averaged over 20 runs after 5 warmup runs. . . . 44

5.3 Results of the performance of each stage of the WebGPU FFRNN algorithm.
Values provided for each pipeline stage represent the run time in milliseconds.
. 47

5.4 Comparison of performance results (in milliseconds) of this work (NVIDIA
GeForce RTX 3070 Laptop GPU) with [Pau22] (NVIDIA Geforce GTX 970). 48

5.5 Results of the performance of rendering atom collisions with WebGPU (directly
from the implemented FFRNN pipeline) against rendering atom collisions
using WebGL. The WebGL times include the time that it takes to download
the collision data from the WebGPU API, process it in the CPU, and upload it
to the WebGL API. This means that the rendering time of WebGL is excluded
from this benchmark. Values provided represent the run time in milliseconds.
. 49

69

List of Algorithms

4.1 PCA-based alignment of two molecular structures A and B 26

4.2 Trivial collision detection of n atoms (spheres) 26

4.3 FFRNN collision detection of n atoms (spheres) 29

5.1 PCA of n points . 32

5.2 Parallel trivial collision detection of n atoms (spheres) 39

71

Acronyms

CAD Computer-Aided Design. vii, ix, 1, 2, 8, 9, 13, 17–19, 21–23, 30, 59, 61, 63, 64

FFRNN Fast Fixed-Radius Nearest Neighbor. 28, 29, 34, 36, 40, 41, 43–49, 67, 69, 71

MDS Molecular Dynamics Simulations. 1, 2, 5, 8, 56, 57

MolCAD Computer-Aided Molecular Design. vii, ix, 1–3, 5, 8–14, 16, 18, 20, 23, 24,
27, 30, 31, 33, 41, 49, 51, 55–57, 59–61, 64, 81, 82

PCA Principal Component Analysis. vii, ix, 22–28, 30–33, 41–43, 49, 55–57, 59, 60, 65,
66, 69, 71, 82

PDB Protein Data Bank. 6, 12, 15–17, 20–22, 25, 27, 28, 30, 33, 41, 42, 48, 52–54,
63–67

SIMD Single Instruction Multiple Data. 32, 37

73

Bibliography

[ANW+20] Yasaman Ahmadi, Ashley L. Nord, Amanda J. Wilson, Christiane Hütter,
Fabian Schroeder, Morgan Beeby, and Ivan Barišić. The brownian and
flow-driven rotational dynamics of a multicomponent DNA origami-based
rotor. Small, 16(22):2001855, may 2020.

[ASF+13] Murat Arikan, Michael Schwärzler, Simon Flöry, Michael Wimmer, and
Stefan Maierhofer. O-snap. ACM Transactions on Graphics, 32(1):1–15, jan
2013.

[Auta] Autocad. https://www.autodesk.com/products/autocad/
overview. Accessed: 2023-09-04.

[Autb] Autodesk research. https://www.research.autodesk.com/
publications. Accessed: 2023-03-08.

[Bie] Eric A. Bier. Snap-dragging in three dimensions. In Proceedings of the 1990
symposium on Interactive 3D graphics - SI3D '90. ACM Press.

[Ble] Blender. https://www.blender.org/. Accessed: 2023-09-04.

[BYK+21] Lonni Besançon, Anders Ynnerman, Daniel F. Keefe, Lingyun Yu, and
Tobias Isenberg. The state of the art of spatial interfaces for 3D visualization.
Computer Graphics Forum, 40(1):293–326, jan 2021.

[CSH+] Brookshire D. Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C.
Robbins, Robert C. Zeleznik, and Andries van Dam. Three-dimensional
widgets. In Proceedings of the 1992 symposium on Interactive 3D graphics -
SI3D '92. ACM Press.

[CVB09] Mohamed Chaouch and Anne Verroust-Blondet. Alignment of 3D models.
Graphical Models, 71(2):63–76, mar 2009.

[DDL+09] Shawn M. Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska
Graf, and William M. Shih. Self-assembly of DNA into nanoscale three-
dimensional shapes. Nature, 459(7245):414–418, may 2009.

75

https://www.autodesk.com/products/autocad/overview
https://www.autodesk.com/products/autocad/overview
https://www.research.autodesk.com/publications
https://www.research.autodesk.com/publications
https://www.blender.org/

[dLMA+20] Elisa de Llano, Haichao Miao, Yasaman Ahmadi, Amanda J Wilson, Morgan
Beeby, Ivan Viola, and Ivan Barisic. Adenita: interactive 3D modelling and
visualization of DNA nanostructures. Nucleic Acids Research, 48(15):8269–
8275, jul 2020.

[DLS20] David Doty, Benjamin L Lee, and Tristan Stérin. scadnano: A browser-based,
scriptable tool for designing DNA nanostructures. In 26th International
Conference on DNA Computing and Molecular Programming. arXiv, 2020.

[DMT+09] Shawn M. Douglas, Adam H. Marblestone, Surat Teerapittayanon, Alejandro
Vazquez, George M. Church, and William M. Shih. Rapid prototyping of 3D
DNA-origami shapes with caDNAno. Nucleic Acids Research, 37(15):5001–
5006, jun 2009.

[Ger] Jan J. Gerbrands. On the relationships between SVD, KLT and PCA, year =
1981, issn = 0031-3203, note = 1980 Conference on Pattern Recognition, num-
ber = 1, pages = 375-381, volume = 14, doi = https://doi.org/10.1016/0031-
3203(81)90082-0, keywords = Image processing, Statistical analysis, Sta-
tistical pattern recognition, Orthogonal image transforms, Singular value
decomposition, Karhunen-Loeve transform, Principal components, url =
https://www.sciencedirect.com/science/article/pii/0031320381900820,. Pat-
tern Recognition.

[Han97] Chris Hand. A survey of 3D interaction techniques. Comput. Graph. Forum,
16:269–281, 12 1997.

[HDS96] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual
Molecular Dynamics. Journal of Molecular Graphics, 14:33–38, 1996.

[HvDG94] Kenneth P. Herndon, Andries van Dam, and Michael Gleicher. The challenges
of 3D interaction. ACM SIGCHI Bulletin, 26(4):36–43, oct 1994.

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A.
Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina
Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol
Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis
Hassabis. Highly accurate protein structure prediction with AlphaFold. Na-
ture, 596(7873):583–589, July 2021.

[JH12] Jacek Jankowski and Martin Hachet. A survey of interaction techniques for
interactive 3D environments, 2012.

76

[KAK+18] Tobias Klein, Ludovic Autin, Barbora Kozlikova, David S. Goodsell, Arthur
Olson, M. Eduard Groller, and Ivan Viola. Instant construction and visualiza-
tion of crowded biological environments. IEEE Transactions on Visualization
and Computer Graphics, 24(1):862–872, jan 2018.

[KMS+22] David Kuťák, Lucas Melo, Fabian Schroeder, Zoe Jelic-Matošević, Natalie
Mutter, Branimir Bertoša, and Ivan Barišić. CATANA: an online modelling
environment for proteins and nucleic acid nanostructures. Nucleic Acids
Research, may 2022.

[KSB+21] David Kutak, Matias Nicolas Selzer, Jan Byska, Maria Lujan Ganuza, Ivan
Barisic, Barbora Kozlikova, and Haichao Miao. Vivern a virtual environment
for multiscale visualization and modeling of DNA nanostructures. IEEE
Transactions on Visualization and Computer Graphics, pages 1–1, 2021.

[MCG+18] D. Mendes, F. M. Caputo, A. Giachetti, A. Ferreira, and J. Jorge. A survey
on 3D virtual object manipulation: From the desktop to immersive virtual
environments. Computer Graphics Forum, 38(1):21–45, apr 2018.

[Met] Metal. https://developer.apple.com/metal/. Accessed: 2023-10-
01.

[Ngu07] Hubert Nguyen. Gpu Gems 3. Addison-Wesley Professional, first edition,
2007.

[Nie93] Jakob Nielsen. Response times: the three important limits. Usability
Engineering, 1993.

[Nvi] NVIDIA GeForce RTX 40 series. https://www.nvidia.com/en-gb/
geforce/graphics-cards/40-series/. Accessed: 2023-09-01.

[Ope] Opengl. https://www.opengl.org/. Accessed: 2023-09-04.

[Pau22] Johannes Pauschenwein. Real-Time Collision Detection and Handling of
Molecules for Animation and Modelling. Bachelor’s thesis, Research Unit of
Computer Graphics, Institute of Visual Computing and Human-Centered
Technology, Faculty of Informatics, TU Wien, Favoritenstrasse 9-11/E193-02,
A-1040 Vienna, Austria, January 2022.

[PDB] Protein data bank specificatios. https://www.cgl.ucsf.edu/
chimera/docs/UsersGuide/tutorials/pdbintro.html. Accessed:
2023-10-01.

[PGH+04] Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gregory S. Couch,
Daniel M. Greenblatt, Elaine C. Meng, and Thomas E. Ferrin. UCSF chimera
– a visualization system for exploratory research and analysis. Journal of
Computational Chemistry, 25(13):1605–1612, 2004.

77

https://developer.apple.com/metal/
https://www.nvidia.com/en-gb/geforce/graphics-cards/40-series/
https://www.nvidia.com/en-gb/geforce/graphics-cards/40-series/
https://www.opengl.org/
https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html
https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html

[RBV+18] Alexander S Rose, Anthony R Bradley, Yana Valasatava, Jose M Duarte,
Andreas Prlić, and Peter W Rose. NGL viewer: web-based molecular
graphics for large complexes. Bioinformatics, 34(21):3755–3758, may 2018.

[Rot06] Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and
patterns. Nature, 440(7082):297–302, mar 2006.

[RR86] Avi Rushinek and Sara F. Rushinek. What makes users happy? Communi-
cations of the ACM, 29(7):594–598, jul 1986.

[SAM] Samson connect. https://www.samson-connect.net. Accessed: 2023-
09-04.

[SD] LLC Schrödinger and Warren DeLano. Pymol. http://www.pymol.org/
pymol. Accessed: 2023-09-04.

[SDRP16] Samira Sadeghi, Thomas Dargon, Louis Rivest, and Jean-Philippe Pernot.
Capturing and analysing how designers use cad software. Tools and Methods
for Competitive Engineering (TMCE’16), dec 2016.

[Ske] Sketchup. https://www.sketchup.com/. Accessed: 2023-09-04.

[SMM12] Michael Sedlmair, Miriah Meyer, and Tamara Munzner. Design study
methodology: Reflections from the trenches and the stacks. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2431–2440, dec
2012.

[SMS+16] B. Steiner, E. Mousavian, F. Mehdizadeh Saradj, M. Wimmer, and P. Mu-
sialski. Integrated structural-architectural design for interactive planning.
Computer Graphics Forum, 36(8):80–94, oct 2016.

[SP06] Ben Shneiderman and Catherine Plaisant. Strategies for evaluating infor-
mation visualization tools. In Proceedings of the 2006 AVI workshop on
BEyond time and errors: novel evaluation methods for information visual-
ization. ACM, May 2006.

[SPG18] Cornelia Johanna Franziska Scheitz, Lawrence J Peck, and Eli S Groban.
Biotechnology software in the digital age: are you winning? Journal of
Industrial Microbiology and Biotechnology, 45(7):529–534, jul 2018.

[SW10] Wolfgang Stuerzlinger and Chadwick A. Wingrave. The value of constraints
for 3D user interfaces. In Virtual Realities, pages 203–223. Springer Vienna,
oct 2010.

[thr] three.js. https://threejs.org/. Accessed: 2023-09-04.

78

https://www.samson-connect.net
http://www.pymol.org/pymol
http://www.pymol.org/pymol
https://www.sketchup.com/
https://threejs.org/

[vRO+12] Petr Šulc, Flavio Romano, Thomas E. Ouldridge, Lorenzo Rovigatti,
Jonathan P. K. Doye, and Ard A. Louis. Sequence-dependent thermo-
dynamics of a coarse-grained DNA model. The Journal of Chemical Physics,
137(13):135101, 2012.

[Vul] Vulkan. https://www.vulkan.org/. Accessed: 2023-10-01.

[Weba] Webgl. https://www.khronos.org/api/webgl. Accessed: 2023-09-
01.

[Webb] Webgpu working draft. https://www.w3.org/TR/webgpu/. Accessed:
2023-09-04.

[WPP11] Robert Wang, Sylvain Paris, and Jovan Popović. 6d hands. In Proceedings of
the 24th annual ACM symposium on User interface software and technology.
ACM, oct 2011.

79

https://www.vulkan.org/
https://www.khronos.org/api/webgl
https://www.w3.org/TR/webgpu/

Appendix

Semi-structured interview questions
The following questions were used a a basis to conduct the final case studies presented in
Chapter 6.

1. Understand interviewee’s current work and experience:

a) What are you currently working with that requires in-silico molecular design?
b) What tools are you currently using? or in case they use Catana;
c) Which tools did you use before Catana?

2. Understand interviewee’s modelling/design workflow and wishes:

a) What modelling/design tasks are you currently working on?
b) How do you achieve that with established software? (not Catana)
c) What could be improved? (encourage interviewee to contribute with ideas)
d) Present our ideas, then ask: Do you think they could be helpful? How?

3. Observe interviewee’s workflow:

a) Could you please show us in Catana what your work is about? (encourage to
explain what they’re doing and what their goals are)

b) Can you perform all required actions? Or is any external software needed?
c) Are you having difficulties? (provide assistance whenever necessary)

4. Reflect on interview and implemented MolCAD tools:

a) What challenges did you encounter?
b) Which steps were particularly tedious, frustrating, and/or time-consuming?
c) What do you think was lacking that could have made your experience easier?
d) How would you fix/implement it? (encourage them to let their imagination

run free, not constrained by what they think is technically possible/feasible)

81

e) What would you gain from it? (e. g., faster or easier interaction, new possibilities
previously impossible)

5. Compare interview’s experience with experience with other MolCAD software:

a) Come back to beginning of the interview and the other software the interviewee
used previously. How does it compare with Catana?

b) What was harder?
c) What was slower?
d) What was easier?
e) What was faster?

Open coding from case studies
The feedback gathered from the case studies presented in Chapter 6 were categorized
with open coding. Below, the categories and the respective answers of the participants
are listed.

1. Alignment in MolCAD tools: How users solve DC1. (alignment) with other
tools

a) “In PyMol I still have no clue how to do it. You can zoom in and stuff, but to
move stuff, especially in relation to something else which you have positioned,
I have no clue.”

b) “I think I used only structural superimposing because I had two proteins.”

2. Collision detection in MolCAD tools: How users solve DC2. (collision
detection) with other tools

a) “I looked a little bit [and tried to make sure] that they were not clashing.
But for a moment, you introduced [a feature that lets you] see where [the
structure] is clashing. That, we didn’t have to this point. [...] But that would
be useful to see.”

b) “I think with PyMol you can calculate it as a seed, but I’m not sure if I ever
tried it. [...] In real time for sure not. You have a structure and [the collision
detection algorithm] is calculating something.”

c) “When you look at the all-atom [representation], you have no idea which ones
are colliding. [...] The biophysicists have tricks to [fix], but it’s much easier
with the visual tool and then you can select individual atoms and adjust them
a little bit and avoid it.”

3. PCA alignment: Are users more satisfied and can they work more efficiently with
PCA alignment?

82

a) “[...] It depends on what use case you have: if you want to align DNA or if
you want to align proteins, or maybe even if you would have a peptide, I guess
this could be also useful because they often have also small helical structures.”

b) When asked about alignment, the user said, referring to structural superposi-
tion: “This is a very nice tool so...”. Then, they try to align a protein with
a DNA strand but fail. Then, the user selects the principal axes option and
the result is unexpected to the user (protein goes inside DNA). Later, when
queried, the user stated that they did not know what the principal axes tool
means or how it works.

4. WebGPU collision detection: Are users more satisfied and can they work more
efficiently with collision detection?

a) “Oh yeah, now it’s clashing. [...] That is cool. It’s a little bit like playing
games.”

b) “This way that you really move it and see where it’s clashing. I’m sure that’s
not available. [...] That is quite fun. Especially if you have bigger proteins
and want to do fusion and stuff.”

c) “Yeah, we would like to have it most probably closer together that we have
less link and whatever. When doing here, we cannot assume how close it really
can come together. For this, we would need the [simulations].”

d) “I think it’s cool. Because especially if you do this fusion, it is an issue that
you do not overlap structures or anything.”

e) “[This is useful] because, when we were drawing the artificial systems, we
couldn’t go through all the molecular dynamics simulations, because when
atoms were too close, they were exploding. And, especially in such a dense
[system], you have no idea which atoms are colliding. [...] It’s much easier
with a visual tool.”

5. What is still missing: What other possibilities users can think of to increase
satisfaction and efficiency

a) “Undo button [...] That would make life much easier because this way either
you try to undo manually whatever you did, but often you start clicking and
then whatever happened and. . . no clue. [...] And depending which changes
and how you save people and that can be painful.”

b) “The new structures, which were predicted with AlphaFold, work better than
what we do manually. If we add, for example, a HIS-tag [...] at one end, that
was more accurate and for [the biophysicists it was] easier to do the model as
the simulations on.”

c) “Sometimes I think a grid or something would be nice to see where you end
up.”

83

d) “If I have, for example, the ends as two points and I would put a line directly,
the task or something on this, that could be. . . [...] For example, saying I
select the two ends of the protein and they get more or less tracked close
together or something. That would make a lot easier. You would need less
moving around, but it’s...”

84

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Nanostructures and Their Building Blocks
	Software

	Existing MolCAD Software
	Design Challenge
	Preliminary Interviews
	Core Tasks
	Survey on CAD
	Constraint-Based Molecular Interaction
	Discussion

	Technical Challenges
	PCA
	Collision Detection Computation
	Collision Rendering
	Performance
	Discussion

	Case Studies
	Procedure, Setup, and Participants
	Interviews
	Discussion

	Discussion
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography
	Appendix
	Semi-structured interview questions
	Open coding from case studies

