
 

                 

Master thesis 

Consideration of Ergonomic Aspects in Human-
Robot Task Allocation Methods  

carried out for the purpose of obtaining a Double Degree Master by EIT 
Manufacturing Master School in the specialization People and Robots for Sustainable 
Work (PR) with partner universities Mondragon Unibertsitatea (Entry University) and 

Technische Universität Wien (Exit University) 

under the supervision of 

Univ.-Prof. Dr.-Ing. Sebastian Schlund 

(E330 Institute for Management Sciences, Area: Human-Machine Interaction, TU Wien) 

submitted to  

 Technische Universität Wien 

Faculty of Mechanical Engineering and Business Administration 

and  

Mondragon Unibertsitatea 

Faculty of Engineering  

from 

Manisha Vijay Sampat 

Matr. no. 12202177 (TU Wien) and 44190 (MU) 

 

 

Vienna, October 2023         Manisha Vijay Sampat  
  



 

                              

 

I therefore acknowledge the printing of my work under the designation 

Master Thesis 
is only authorized with the approval of the examination board. 

I also declare in lieu of an oath that I have carried out my diploma thesis independently 
according to the recognized principles for scientific papers and have named all the aids 
used and the literature on which they are based. 

As a part of the dual Master program, I also authorize EIT Manufacturing Master 
School, Mondragon Unibertsitatea and Technische Universität Wien to publish the 
work in this thesis with the discretion of my permission. 

Furthermore, I declare that I have not submitted this thesis topic either in Austria or 
abroad (to an assessor for assessment) in any form as an examination paper and that 
this work corresponds to the work assessed by the assessor. 

 

 

 

 

 

 

 

 

 

 

Vienna, October 2023            Manisha Vijay Sampa



I 

Acknowledgement 
I, Manisha Sampat write this thesis as a part of the EIT Manufacturing Double degree 
Master Program with specialization in People and Robot for Sustainable work as a part 
of Mondragon Unibertsitatea, Spain and Technische Universität Wien, Austria. 

I am deeply thankful to Professor Sebastian Schlund and TU Wien Institute of 
Management Science whose exceptional guidance and profound knowledge have left 
an indelible mark on my master thesis. The insightful feedback and constructive 
criticism have challenged me to think critically and approach problems from diverse 
perspectives, fostering my growth. I am truly grateful for his mentorship and the 
invaluable lessons I have learned under his tutelage. 

To my family, words cannot express the extent of my gratitude. Throughout this 
arduous journey, you have been my unwavering support system. The boundless love, 
understanding, and encouragement from my parents and grandparents; Mr Vijay 
Sampat, Mrs Sharda Sampat, Mr Chandrakumar Sampat, and Mrs Taraben Sampat 
have propelled me forward during moments of doubt and fatigue. The strong support 
and unwavering belief in my abilities by my sister Ritika Sampat has instilled in me the 
confidence to overcome obstacles and strive for excellence. Their patience, sacrifices, 
and unwavering faith in my potential have been the bedrock of my success, and for 
that, I am forever thankful. 

I also extend my heartfelt appreciation specially to Raj Khatri, who has been a strong 
pillar and solid rock in my journey with this Master thesis and has contributed in any 
and every way at each stage without which this thesis wouldn’t be the way it is today. 
Thank you for engaging in stimulating discussions and for providing valuable insights 
that have helped shape the direction of my research. Also, the support that my 
colleagues from both academia and work has given me in terms of feedback, fruitful 
discussions, and active and passive motivation. 

Furthermore, I express my gratitude to the administrative staff and support personnel 
at TU Wien and Mondragon University who have diligently assisted me during my 
studies and importantly during the thesis. I would like to acknowledge the financial 
support I have received from EIT Manufacturing. Your generous contributions have 
relieved the financial burden and allowed me to fully devote myself to my academic 
pursuits and put my best foot forward with this Master thesis. 

In conclusion, I am profoundly grateful to every person who has played a role, big or 
small, in the realization of this master thesis. I am humbled by your contributions and 
forever thankful for the profound impact you have had on my life and scholarly pursuits. 



II 

Abstract 
Human Robot Collaboration (HRC) has opened opportunities of task sharing between 
human and robots under an open workspace in manufacturing environment. 
Traditional task sharing philosophy in human robot teams have followed the leftover 
approach, where human is assigned task which are difficult for robot to perform. 
Contemporary research is now increasingly centered on developing flexible and 
adaptive task allocation strategies that ensure equitable sharing. However, majority of 
the algorithms present today still lack the focus on overall human well-being. The aim 
of this work is to consider human factors in task allocation. It addresses this in three 
folds: first addressing the task analysis and assignment that includes a thorough study 
of the factors to be considered for task allocation and the methodology used. The 
factors for analysis range in the focus from human, robot, process, and production 
perspective. Secondly, visualizing the task allocation strategy using digital tool Ema 
Work designer and finally the evaluation framework for ergonomics. This study 
therefore develops an algorithm and evaluation method designed to consider human 
factors in task allocation.  The evaluation framework was tested on a ski assembly 
process, showcasing comparison of the ergonomic evaluation: physical and cognitive 
in two different case scenarios. Physical ergonomics details on the Ergonomic 
Assessment Worksheet (EAWS) score pertaining to load, posture, and repositioning 
score. The cognitive ergonomics framework defines a Mental Workload Index (MWLI) 
considering task demand, level of performance, level of resources, level of information 
processing, and level of decision making.  

Keywords: Human Robot Collaboration, task allocation, ergonomics, Ergonomic 
assessment worksheet, Mental Workload Index 
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1 Introduction 

1.1 Motivation and Relevance 

Collaborative robots, or cobots, are becoming increasingly popular in various 
industries, including manufacturing, logistics, and healthcare over the past decade. 
This rise is fuelled by the increasing demand for flexible, efficient, and safe 
manufacturing and assembly processes. With the wave of Industry 4.0, collaborative 
robots and adoption of collaborative processes has gained attention. It has played a 
significant role in promoting the use of collaborative robots, as it emphasizes the 
integration of digital technologies and automation in manufacturing. According to the 
International Federation of Robotics (IFR) report in 2022, the installations of 
collaborative robots have increased by nearly 50% between 2020 and 2021 and the 
same report predicts that by end of 2023 the sales of collaborative robots will reach 
160,000 units per year, representing a Compound Annual Growth Rate (CAGR) of 
30.4% [1]. 

The adoption of collaborative robots has revolutionized the way humans and robots 
interact and collaborate in manufacturing. Unlike traditional industrial robots that work 
behind safety barriers, collaborative robots work alongside humans, sharing the same 
workspace and tools. These features are making collaborative robots more appealing 
to industry and several businesses [2][3]. Collaborative robots are more affordable and 
easier to program than traditional industrial robots, making them accessible to small 
and medium-sized enterprises (SMEs)1 that may not have the resources or expertise 
to implement industrial robotic solutions. However, the limited pay-load capacity and 
speed make them a choice limited to medium load type assembly and manufacturing. 
The lower price of collaborative robot arms in comparison to industrial robot is an 
alluring factor in manufacturing [5], however we still see the adoption of collaborative 
robots less in comparison to the traditional industrial robots, posing a gap and question 
of ways in which human and collaborative robots collaborate effectively [6]. An 
empirical study on adoption of collaborative robots in Portugal and France in six 
companies show that lack of enhanced operational efficiency and de-railing 
ergonomics are a blocker for industry to have an organizational shift to collaborative 
robots [7]. 
Human-robot collaboration has become an increasingly important aspect of modern 
manufacturing, with various processes used today to facilitate collaboration between 
humans and robots. Currently, the most prominent use of collaborative robot in the 
industry is for assembly applications [8] which desire the most extend of collaboration 
between the human and robot. With the technical improvements in sensing, actuation, 

 
1 Small and Medium size enterprises are defined so basis the number of employees, turnover and 
financials in the balance sheet [4] 
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and artificial intelligence, more use cases of human robot collaboration have surfaced. 
However, major challenges in such interaction are the reconfigurability, safety, 
ergonomics, and task flexibility [9]. Task allocation methods have been a topic of 
research to gain interest of the industry and resolve the challenges faced in Human-
Robot Collaboration (HRC), however, the prevalent method of task allocation between 
the human and robot is the traditional 'leftover approach'[10]. There have been several 
research interests in exploring more feasible, dynamic and capability based 
complementary task allocation methods [11]. These methods define task allocation 
based on the 'best fitting' approach but are rarely applied in the industry. The leftover 
approach poses threats in lack of worker satisfaction due to low task diversity and no 
specific focus on worker cognitive and physical load. Musculoskeletal disorder (MSD)2 
is a common collateral effect observed in three out of five workers in the industry as 
per European Agency for Safety and Health at Work (EU-OSHA) [12]. As methods of 
dynamic task allocation are popular research areas in the past of couple of years, 
ergonomics and worker safety is now gaining interest. Nevertheless, there exists a gap 
in devising task allocation methods that are optimized based on worker discretion and 
ergonomic safety level to reduce the MSDs. The goal of this research is to understand, 
identify and implement task allocation methods in human robot teams3 that utilize the 
situation of environment and task at hand, human and robot capability and focus on 
balancing the physical and cognitive load on worker. 

1.2 Problem definition and research questions 

With the inception of Industry 4.0 and new technologies (including collaborative 
robots), the demand for highly trained individuals and workers has increased and so is 
the need for increased safety and employee well-being. According to the EU Strategic 
Framework on Health and Safety at Work 2021-2027 [14] “Nobody should suffer from 
job-related diseases or accidents. It is also an important aspect of both the 
sustainability and competitiveness of the EU economy”. Irrespective, MSD remain the 
highest reason for work-place related injuries or disorder in the EU and contribute to 
about 60% of the total injuries or disorders [16]. It also elaborates that about three in 
every five workers in the EU284 countries report backache or muscular pain in upper 
limbs. Due to the workdays and productivity lost due to MSDs, Germany lost about 

 
2 As per OSHA, Musculoskeletal Disorder (MSD) is a condition that affect the muscles, nerves, blood 
vessels, ligaments, and tendons [13] 
3 Human robot teams are defined as “humans and robots, who perform joint tasks, share common goals, 
interact socially and exhibit task interdependencies.” [14] 
4 EU28 refers to countries in the European Union namely, Austria, Belgium, Bulgaria, Croatia, Republic 
of Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, 
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, 
Slovenia, Spain and Sweden, (including the United Kingdom (UK), however from February 2020 
onwards it is called as EU27 [18] 
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€17.2 Billion in production loss in 2016. It has therefore become a focus in the EU to 
work towards and adapt towards improving the working conditions of the industries. 
This has forced the businesses to adopt a human-centric design approach for their 
new processes and workplaces [17]. According to ISO 9241-210 [19], a human centric 
design is defined as “an approach to systems design and development that aims to 
make interactive systems more usable by focusing on the use of the system and 
applying human factors/ergonomics and usability knowledge and techniques”. It aims 
at providing more comfortable and accessible workspace for the worker to be able to 
focus on their desired effectiveness for prolonged time. Industrial and collaborative 
robots served as a mean to aid human in substituting for tasks that were repetitive, 
unsafe, or compromised human ergonomics in the long term. However, this does not 
hold true for the current scenario in the industries, the task sharing between human 
and robot is carried out mainly on the approaches of leftover tasks where the human 
is allocated tasks that are either difficult to be automated or require higher investment 
in automating and therefore serve as an economical substitute[10]. Human and robot 
collaboration was introduced also as a mean for enhancing human talents [2] with the 
aim of enhancing on the pros of individual member of the team. This is completely 
defied currently by the compensatory approach followed for task allocation. These 
allocation methods restrict the use and enhancement of human skills and does not 
offer any worker flexibility and work satisfaction [10][11]. In addition, these methods 
compromise on the human factors of ergonomics for human collaboration. Task 
allocation in the most adaptive way is a topic of research from as far as in the 90’s. In 
[20] the authors propose a method of evaluating the task and resources and therefore 
decide a robot trajectory, however this method also raised safety concerns. Similarly, 
in [21], the author describes a quantitative algorithm that takes into consideration task 
balancing with the final aim of reducing assembly time with no focus on safety or 
ergonomics. More lately, there are also methods studied to achieve a collaboration by 
understanding the human monitoring using machine learning (ML) models [22]. 
Increased concerned over safety in both the hardware and software approach of these 
technologies has also awaken many research interests. In [23][24][25] the authors 
present a laser sensor-based solution to monitor the proximity between the robot and 
worker to condition the speed of the robot and in severe cases even stop it. While all 
these research deal with either productivity, flexibility or safety, ergonomics is a factor 
not considered very extensively in many research. Authors in [26][27] briefly study the 
ergonomic impact due to human robot collaboration, nevertheless the focus on specific 
ergonomic factor has been minimal and the work in this research aims to fill that gap 
and identify ergonomic factors that can optimize the task allocation methods in human 
robot teams. Therefore, the main research question of this thesis is: 

How can task allocation algorithms in human-robot collaboration be optimized 
for ergonomics? 
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The term collaborative robot will be extensively used as a substitute to robot as the 
research aims at devising optimal methods of task allocation between a human and 
collaborative robot (cobot) to improve ergonomic conditions in an assembly process. 
Developing a new task allocation method is not the scope of this study, rather 
integrating and evaluating ergonomic factors in existing methods is studied. The study 
focuses intensively only on the physical and cognitive ergonomics of the worker. The 
sub-objectives of the study will be to examine the existing task allocation algorithms 
and optimize them considering physical and cognitive ergonomics which can then be 
modelled and visualized on a process simulation tool with appropriate evaluation 
methods to define the optimization in the presented algorithm. Hence the sub-
objectives of this study are formulated as follows. 

I. What are the various methods for task allocation that can be analysed? 
II. How will the task allocation method be modelled and visualized for 

ergonomics?  
III. How can task allocation methods be evaluated for ergonomics? 

1.3 Research Methodology and approach  

The study in this thesis is conducted with the amalgamation of the system development 
approach described by Nunamaker et al. in [28] , design science research methodology 
proposed by Johannesson and Perjons [29] and the simulation-based research 
methodology studied by Yin et al. in [30]. The approach of the thesis deals with the 
iterative approach of constructing a conceptual framework, developing a structural 
architecture, analyzing the design of the system, building the model, evaluation of the 
system. In this structure the simulation-based methods are integrated in the analysis 
and evaluation methods as described in Figure 1. 

 

Figure 1: Research methodology and approach (Own figure adapted from [28], [29] 
and [30]) 

The development of methodology of integrating ergonomics to task allocation in 
human-robot teams is broadly classified into five steps also described in Chapter 4.  
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i) Describing the ergonomic factors  

The initial objective to work upon the developed research framework is to study the 
literature and identify the major ergonomic factors that would contribute to the overall 
design, development, and evaluation of ergonomics in task allocation. Major factors 
along the physical, cognitive, and organizational ergonomics are listed to develop the 
task assignment methodology. 

ii) Designing a task assignment framework  

The task analysis is carried out to understand the task along various domains of human 
and robot considering their benefits and limitations. In addition, economic factors are 
considered to compare the cost as well as the efficiency and productivity to meet the 
forecasted demands. The work defined in this thesis also considers the nature of the 
part and process to analyze and assign tasks to the most appropriate agent. 

iii) Modelling the ergonomic factors  

With the focus on ergonomics, the factors narrowed during the analysis phase are 
mathematically described and modeled to be integrated into the evaluation of task 
allocation for ergonomics. The physical ergonomic factors are further integrated into 
the visualization for ergonomics and the cognitive and organizational factors are 
mathematically modelled for evaluation.  

iv) Visualization of assembly  

Once the factors are selected and mathematically modelled, the digital simulation 
platforms for ergonomics are described and finally selected based on factors of 
availability, functionality, and experience in the use of the platform. The use case is 
visualized directly as used in the Digital Simulation of Ergonomics and Robotics 
(DSER) course for Ski assembly using the Ema Work designer platform. The direct 
ergonomic and time cycle evaluation functions are used elaborated in Section 4.2. 

v) Evaluation of ergonomics  

The evaluation of the task allocation is considered in two stages, using the digital tools, 
and second empirically using the formulas devised for each of the ergonomic factors. 
Based on the evaluation and input, the task assignment is altered suitably and 
iteratively worked upon. Two scenarios of task allocation are compared and evaluated. 
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1.4 Composition and structure of the work   

Chapter 2 Theoretical fundamentals of this thesis delves into the theoretical basics 
of human-robot collaboration. This includes understanding collaborative robots in 
assembly processes, safety in human-robot collaboration, human-robot relationship, 
and human-robot interaction methods. Additionally, it addresses the significance of 
ergonomics in human-robot collaboration and how it can be optimized to ensure safety 
and well-being of associates. Through this exploration, the aim is to provide a 
comprehensive understanding of the theoretical foundations that underlie the effective 
design and implementation of collaborative manufacturing systems. 

Chapter 3 State of Art/Literature survey a systematic literature survey is conducted 
to determine the state of art in task allocation methods in human robot teams. The 
initial methodology of the literature review is described. The results are summarized 
with respect to the research questions, presenting a structured meta-analysis followed 
by a summary of the total reviewed literature both qualitatively and quantitatively.  A 
detailed study on existing literature for human robot task allocation methods and 
methods used for visualizing these task allocation methods. To incorporate 
ergonomics in task allocation, ergonomic factors are studied.  

Chapter 4 Methodology is devoted to quantitative implementation of task allocation 
algorithms. It defines the overall structure of task analysis, factors influencing the task 
assignment based on factors including human, robot, part, and process analysis. The 
second part of the chapter addresses the overall visualization of the task assignment 
using the digital simulation tool for ergonomics and finally addresses the evaluation of 
task allocation for ergonomics. It focuses on the physical, cognitive, and organizational 
ergonomics aspects described and narrowed in Chapter 3. 

Chapter 5 Implementation and evaluation builds and implements on the existing 
framework described in Chapter 4. It implements the framework on the ski assembly 
use case using the Ema Work designer platform. The use case is studied for initial task 
assignment for the process steps based on factors analyzed in Chapter 4 addressing 
human, robot, part, and process factors. The assembly sequence is then visualized for 
the use case and developing some improvements based on the evaluated ergonomic 
scores for postures, load handling, forces, and duration. It also describes the enhanced 
detailed method of analyzing the cognitive and organizational factors related to an 
overall Mental workload index (MWLI). 

Chapter 6 Discussion and Outlook encompasses the discussion of the overall work. 
It apprehends the results obtained, overall benefits and limitations of the approach and 
summarizes the work, also highlighting and discussing the possible enhancements to 
the work described in this thesis. 
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2 Theoretical basics  
In this Chapter, the essential basics that are needed as a background for this study 
are explained. The topic of this work deals with considering ergonomic factors for 
human-robot task allocation method and hence this chapter will deal with topics of 
Collaborative Robots, Human Robot Collaboration and Ergonomics. 

2.1 Collaborative robots in assembly systems 

Collaborative robots have gained significant attention in academia and research and 
have gradually made their way into industrial manufacturing and assembly 
applications, working alongside human operators. Unlike traditional industrial robots, 
which are typically confined to separate workspaces with protective barriers, these 
collaborative robots, or collaborative robots, have enabled enhanced productivity and 
reduced costs by safely operating alongside human workers. This chapter aims to 
provide a comprehensive overview of collaborative robots, including their concept, 
practical applications, and associated advantages and disadvantages. 

2.1.1 History of Robots 

Looking back at history, it is evident that the fascination with robots existed long before 
the first robot was invented. Karel Capek, a Czech author, contributed significantly to 
the naming of robots by introducing the term "robot" in his play "Rossum’s Universal 
Robots" in 1921 [31]. From the Czech word “robota” a robot means “to work unfree”. 
The play depicts the concept of cheap labor through artificial humans and how the 
robots eventually outlive their human creators. In industry, two types of robots are 
prominent, namely classical industrial robots and collaborative robots. 

I. Industrial robots  

The year 1960 marked the introduction of the very first industrial robot, dubbed 
"Unimate". The following year, General Motors (GM) had already implemented it in 
their production line. After the successful implementation of industrial robots in the 
automotive industry during the 1970s, other industries followed suit.  

According to ISO 10218-1:2011 (en) [32], an industrial robot is defined as an 
“automatically controlled, reprogrammable multipurpose manipulator, programmable 
in three or more axes, which can be either fixed in place or mobile for use in industrial 
automation applications.” An industrial robot should comprise of, but not limited to, a 
manipulator and end effector to perform the desired task at hand, sensors to act as the 
perceiving system of the robot, a controller that acts as the brain of the system, a 
programming device such as teach pendant to control the robot programs and a safety 
system such as emergency stops to ensure safe operations around the robot [33]. 
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As shown in the World Robotics Report 2022 [1] of the International Federation of 
Robotics (IFR), 517,000 industrial robots were installed worldwide in 2021 and the 
adoption has increased by 31% in 2023. Furthermore, the development since 2012 
shows annual growth (between 2012 and 2018), which is on average about 12% per 
year. Asia/Australia is by far the largest customer, followed by Europe and America. 

 

Figure 2: Annual Installations of industrial robots 2011-2021 [1] 

The industry is moving towards high-mix, low-volume type of manufacturing, industrial 
robots in many cases fail to justify the cost of installation due to lack of flexibility and 
adaptability to deliver towards lot size one. In addition, the high cost of industrial robots 
is not economical for SMEs and hence the need for a more flexible robot with 
economical cost and capability to work alongside human was born in the form of 
collaborative robots. 

II. Collaborative Robots (Cobots) 

In 1996, the concept of "Cobot" the acronym to Collaborative Robot was introduced by 
Colgate [35]. This term was derived from the aim of the original research project, which 
was to develop a safe robotic system that can work together with humans without the 
need for a safety fence, unlike conventional industrial robots. According to Colgate, “A 
“collaborative robot” is a robotic device which manipulates objects in collaboration with a 
human operator.”  

Collaborative robots are equipped with sensors and safety features such as 
force/torque sensors, capacitive skin, proximity sensors, etc, that allow them to interact 
with humans safely and efficiently. Unlike traditional industrial robots, collaborative 
robots are user friendly and easy to program, making them ideal for small-scale 
manufacturing and assembly operations. Additionally, collaborative robots are 
relatively inexpensive compared to traditional industrial robots, making them an 
attractive option. 
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2.1.2 Applications of Collaborative robots 

In an industry survey in Austria (n=85) [38], in general, the use of cobots in production 
has decreased by 2.5% between 2021 (29.5%) and 2022 (27.1%), while the use of 
collaborative robots in pilot environments has increased by 2.8% during the same 
period. This suggests that companies are continuing to experiment with collaborative 
robots in non-production settings. Additionally, there has been a decline by 6.5% in 
companies planning to use collaborative robots in the future. At the same time, there 
has been an increase in the number of companies that have no plans to use 
collaborative robots at all (+6.3%). 

In a survey in Sweden named “Strategies for implementing Collaborative Robots for 
Operator 4.0” in 2019 by Fast-Berglund and Romero [43] , the major application of 
collaborative robots was found in pre-assembly, inspection, kitting, joining, final 
assembly, packing, pick and place. The study found that Original Equipment 
Manufacturer (OEM) companies tended to prioritize assembly tasks, while SMEs 
ranked pick and place and material handling tasks higher. Cobot applications, 
specifically inspection and pick and place tasks, were ranked highest overall.  

A study by Bauer [44] conducted a study on companies initial experiences with 
lightweight robots, analyzing 25 use cases in Germany, with most cases in the 
automotive (40%) and electrical engineering sectors (36%), in-line with the report seen 
for installation of industrial robots in [39]. The most common tasks included gripping 
parts (52%), mounting/joining (44%), quality control (40%), pick & place (36%), 
gripping multiple parts (32%), and loading machines (32%). A survey on the market 
share growth of cobots in 2022 [41] revealed that more that automotive applications 
still hold the most share in the application of collaborative robot (>24%). Similarly, for 
cobot applications in 2022, assembly tasks (40%), pick and place (20%), load handling 
(13%) and packaging (11%) shared most of the share [42], in line with the studies 
conducted earlier. 

2.1.3 Features of Collaborative robots 

Cobots fill the space between fully automated and entirely manual production lines. 
These robots can function alongside human operators without any physical barrier as 
they come equipped with advanced safety features such as collision detection and 
force feedback making them more flexible and adaptive to production needs.  

Cobots are most distinguished with the traditional industrial robots in the following 
features as summarized in [2]: 

i) Batch size and variability: Suitable for low volume and high product mix 
applications 
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ii) Deployment and programming: Quick on-site deployment and flexibility with 
easy programming. However, there have been many studies in making the 
Human-Machine interaction with collaborative robots more intuitive. 

iii) Investment and Return on Investment (ROI): As already discussed, a 
collaborative robot is an economical option in comparison to its counterpart 
and generates an ROI in lesser duration. 

In addition, Carlsberg reported a significant decrease in accidents at their plant in 
Frederica, Denmark after incorporating collaborative robots into their production line 
[39]. This not only improved safety for employees but also brought the plant closer to 
zero accidents. The case studies presented by Wevolver [40] suggests the use case 
of cobots for adhesive bonding processes, headlight adjustment and installation of 
pump wells in industries that have ergonomically aided human counterparts. A more 
intensive study and findings were summarized in [37], which elaborated on the 
technical aspects of a cobot that differentiates it from the traditional industrial robot and 
is summarized below in Table 1. 

Characteristic Industrial Robot Collaborative Robot
Role Replace a worker Assist a worker

Human Interaction Commands via programming 
languages

Intutitive and intelligent interactions: 
Gesture , speech recognition and 

anticipation of operators moves with 
sensors

Camera and computer 
vision External camera and setup

Can be built-in and coupled with 
intelligent algorithms to support the 

application

Workspace
Separate workspace for robots 

and operators. Fenced 
workspace 

Sharing the workspace , no fenced 
workspace

Work enevelop Essential and rigid Not relevant
Rapid handling of 
disruptions and 

obstruction

Usually requires a full re-setup 
after any distruction/obstruction 

incidence

Built-in standard or feature to handle 
obstructions

Re-programming Rare Frequent 

Physical disruptions Mostly Hazardous.Setup 
required for re-initiation Safe with easy re-initiation

System self-awareness Basic failure detection Real-time monitoring of load , tactile 
pressure and axis locations

Agility Rapid motions Slow motions
Payload High payload Low payload

Acquisition cost High Low payload
Ability to work in 

dynamic environment, 
possibly with moving 

entities

No Yes

 

Table 1: Characteristics of Industrial Robot vs Collaborative Robot [37] 
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As seen in Section 2.1.1, the growth in adoption of industrial robots has been 
increasing year-over-year. However, the proportion of cobot adoption in comparison is 
less. There has been a 50% increase in 2021 adoption of cobots worldwide as shown 
in Figure 3, however it accounts for only 7.54% of the total sales and most of the 
applications are not used in direct interaction with humans to perform the task, for e.g., 
machine tending. Additionally, as highlighted in [38], the use of cobots is slowly 
stagnating due to reasons of economic turmoil and slowdown as far as Europe is 
concerned. The real costs of implementing a cobot in an industrial setting are typically 
about four times higher [46]. Safety aspects also present challenges that need to be 
met. When integrating a cobot into a factory, certification for each application may be 
necessary, depending on the country. ISO standard 10218 and technical specification 
TS 15066 are commonly used for this purpose. During the certification process, a risk 
assessment is required to evaluate dangerous situations [47]. However, every 
collaborative application must go through this process again, even if the same 
application has already been integrated in another company, resulting in high effort 
and costs. 

 

Figure 3: Sales of industrial robot vs collaborative robot [1] 

2.2 Human-Robot Interaction (HRI) 

Human-Robot Interaction (HRI) is a rapidly growing field that explores the integration 
of robots into human environments, particularly in the industrial setup. However, this is 
currently not limited to the industrial setup and many humanoid robots interact with 
humans in a more social gathering. As defined in [53], “Human–robot interaction (HRI) 
is the interdisciplinary study of interaction dynamics between humans and robots. 
Researchers and practitioners specializing in HRI come from a variety of fields, 
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including engineering (electrical, mechanical, industrial, and design), computer science 
(human–computer interaction, artificial intelligence, robotics, natural language 
understanding, and computer vision), social sciences (psychology, cognitive science, 
communications, anthropology, and human factors), and humanities (ethics and 
philosophy).”  

Human-Computer Interaction (HCI) is the parent field that encompasses Human-Robot 
Interaction (HRI). In the simplest terms, it is defined as the way the human and 
computer (machines) interact with each other. The literature defines HCI as "Human–
Computer Interaction (HCI) is the study of the way in which computer technology 
influences human work and activities." [5] "HCI is a discipline concerned with the 
design, evaluation and implementation of interactive computing systems for human 
use and with the study of major phenomena surrounding them."[50]  

To comprehend HCI, it is crucial to acknowledge that it extends beyond the design of 
human-computer interfaces and encompasses multiple interdisciplinary areas as 
comprehended nicely by Becker in [51]. The works highlights as HCI being an 
interdisciplinary field comprising of design and media, computer science and 
engineering, human factors and ergonomics, behavior science and psychology, other 
professionals including cultural anthropology and user research. The applications of 
HRI are seen in various fields such as industrial, medical, agricultural, service, and 
educational. It aims to combine the capabilities of robots with human skills to assist in 
precision, speed, force, experience, knowledge, intuition, and control strategies. 

2.2.1 Types of Human Robot Interaction (HRI)  

Bauer [44] have defined a classification based on the interaction between human and 
robot, where a distinction is made between the following five types as seen in Figure 
4. 

 

Figure 4: Various levels of interaction between human and robot [44] 
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i) Cell: In this scenario the robot and the human being work independent of each 
other. They have complete different workspaces of their own and are usually 
separated by a fence as seen in the first part of Figure 4. 

ii) Coexistence: This scenario is like that of the cell, however, in this case the robot 
has no protective fence which allows for the human and robot to work together 
still in separate workspaces. The absence of fence in such a mode of interaction 
does call for the need of having safety regulations as the worker has free access 
to robot work area.  

iii) Synchronized: In this type of interaction, both human and robot share the work- 
place. However, at a given time only one agent is active and works on the 
desired task either the robot or human. 

iv) Cooperation: The "Cooperative" mode of interaction is like “Synchronized" as 
both the human and robot share the same workspace, however they work 
simultaneously on the desired task and are active at the same time. 
Nevertheless, the work is done by both the agents on different workpieces. 

v) Collaboration: In this scenario, which represents the most flexible form of 
interaction, both the human and the robot work in the same workspace, on the 
same part and at the same time. 

To understand this better, Wang [54] summarizes the features of each of these 
interaction types better as seen in Table 2. 

Feature Cell Co-existence Synchornization Cooperation Collaboration

Open workspace
Sgared workspace
Direct contact
Shared working tasks
Shared resource
Simultaneous process
Seqeuntial process  

Table 2: Human Robot interaction-based relationships [54] 

In such a type of division between the forms of interaction, there exist some gaps which 
are identified majorly in the cooperation and collaboration mode as it is ambiguous if 
the interaction is dependent on each other. This is elaborated in the work by Chang 
Liu [55]. He divides the mode of interactions into two aspects: 

i) Parallel HRI: In this kind of interaction, there exist a peer-to-peer interaction 
where the human and robot make their own decisions. In such a form of 
interaction, the agents either synchronize or asynchronize their actions. The 
synchronized form of action is called as synchronization as seen in the list by 
Bauer [44] and asynchronization is called as competition which is said to be a 
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form in which the agents occupy the space in the workspace one at a time but 
have no dependency. 

ii) Hierarchical HRI: Hierarchical interaction mode is where the robot is designed 
to operate in a hierarchical manner with respect to the human operator. In this 
approach, the robot has different levels of autonomy, with each level 
representing a different degree of interaction with the human. 

2.2.2 Human Robot collaboration (HRC) 

Human Robot Collaboration (HRC) is defined as “the relationship between humans 
and robots aimed at achieving a mutual goal by sharing respective resources and 
intrinsic skills through joint action” [54]. Collaboration is the highest form of interaction 
between humans and robots. In such collaborations, the strengths of both humans and 
robots are leveraged, with robots performing tasks that are repetitive, dangerous, or 
require high precision, while humans perform tasks that require complex decision-
making or dexterity. HRC has the potential to increase productivity, improve product 
quality, and enhance workplace safety. However, it also poses challenges related to 
ensuring safety, designing effective communication interfaces, and managing the 
effective division of task between humans and robots. 

2.2.2.1.1 Types of Human Robot Collaboration 

In the work by Beer [56], ten levels are used to describe the involvement of human and 
robot across three dimensions of sense, plan and act as shown in Figure 5. The 
framework explicitly addresses the sense, plan, and act dimensions attributed to the 
human and/or robot. However, the dimension of control is also relevant but not 
explicitly defined in the original work. The framework includes shared control with 
human initiative, where the human has the final say on actions and can continuously 
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monitor the robot. In higher levels of robot autonomy, the robot has full control while 
the human has limited intervention and direction possibilities. 

 

Figure 5: Human Robot collaboration dimensions [56] 

H – Human, R- Robot 

The work by Zatari [58] summarizes four ways in which human and robot collaborate 
also considering the fact if the human and robot are working on the same piece. 

i) Independent: In this scenario the human and robot share the workspace but 
work on different workpieces. 

ii) Simultaneous: In this case the human and robot work on the same workpiece 
with different processes. 

iii) Sequential: This type of collaboration consists of a time dependent relation 
between human and robot as seen in process P1 and P2. A simple example 

Figure 6: Types of Human-Robot collaboration by Zatari [50] Figure 6: Types of Human-Robot collaboration by Zatari [58] 
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could be assembly operation where the robot picks up the part and provides it 
to the human for assembly operation. 

iv) Supportive: In this type of collaboration, the human and robot work on the same 
workpiece and process together, a situation that can occur in assembly 
processes. 

2.2.2.1.2 Safety in HRC 

Ensuring physical safety in HRC is crucial for workplace design and practical 
implementation. The primary objective is to safeguard humans from the potential harm 
caused by unintended collisions between their body parts, robot systems, or workplace 
elements while simultaneously maintaining efficient production systems. As stated by 
Gualtieri et al. [59], the goal is to maintain proper performance while mitigating the 
consequences of such incidents. 

Asimov laws since the origin in 1947, have been a footprint in robotic safety in the form 
of science fiction and now has become an unconscious choice of how robots should 
behave and exist [60]. However there have been multiple studies that have 
contradicted and debated on the background and the actual applicability of these laws 
in new-age robotics. One such is highlighted in [61] as law of “Responsible robotics” 
an extend or modified version of Asimov’s laws as seen in Figure 7. 

 

Figure 7: Alternative laws for "Responsible Robotics" [57] 

Collaborative robots have given rise to specific ISO safety standards that highlight the 
need for limiting force applied, speed and safety features for the entire system as per 
the Machine Directive 2006/42/EC, 2016 which considers the collaborative robot, tool, 
fixtures, and physical components as an entire system [62] 

In addition, the safety standards to be followed are as follows: 

i) DIN ISO/TS 15066:2016 Robots and robotic devices - Collaborative robots 
[63] 

ii) DIN EN ISO 10218-1:2020: Robotics – Safety requirements for robot systems 
in an industrial environment – Part 1: Robots (Draft) [64] 
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iii) DIN EN ISO 10218-2:2020: Robotics – Safety requirements for robot systems 
in an industrial environment – Part 2: Robot systems, robot applications and 
robot cells integration (Draft) [65]  

A classification of safety concepts for collaborative systems are elaborated in [64] are 
presented in Figure 8. 

i) Safety-Monitored stop: This type of safety collaboration suggests that the 
collaborative robot stops working while humans enter the workspace.   

 

Figure 8:Human Robot Collaboration: Safety [64] 

ii) Hand guiding: In this scenario, the robot is operated through a manual controller 
that is placed near the robot.  

iii) Speed and Separation monitoring: In this type of collaboration safety, 
collaborative application can be witnessed where the human and robot work in 
the same workspace simultaneously, however keeping a required safe distance.  

iv) Power and force limiting: In case of a collision that exists in collaboration 
between human and robot, the power and force with which must be under safety 
limits and norms to not hurt or injure the human worker.  

2.2.3 Human centric design approach (HCD) 

Human centric design of the workplace is a philosophy that prioritizes the well-being, 
productivity, and satisfaction of employees by creating environments that cater to their 
needs and preferences. This approach recognizes that the success of any organization 
relies heavily on its people and their ability to thrive in their work settings. The key 
principle and focus rely on comfort, flexibility, biophilic elements, inclusivity, and 
accessibility, resulting in better collaboration, productivity, creativity, and well-being. 



  20 
 

2.2.4 Skills of Humans and Robots 

Fitts List [11], popularized in the 1951 was a list of things “men (human) do better than 
machines and vice versa”. The list also allocated what is called the Human are better 
at/Machine are better at (HABA-MABA) approach for function allocation [66]. The 
original Fitts list highlighted the supremacy of humans over machines in flexibility, 
judgement, dexterity and have long term memory as summarized below [66]. 

Human strengths: 

i) Good at making complex 
decisions based on incomplete 
or ambiguous information 

ii) Skilled at adapting to changing 
situations 

iii) Capable of handling multiple 
tasks simultaneously 

iv) Able to learn from experience 
and improve performance over 
time 

v) Can be creative and generate 
new ideas 

 

Machine strengths: 

i) Highly accurate and consistent in 
performing repetitive tasks 

ii) Capable of performing tasks that 
are dangerous or difficult for 
humans 

iii) Can operate in environments 
that are hazardous or 
inaccessible to humans 

iv) Can perform tasks that require 
great physical strength or speed 

v) Can process and analyse large 
amounts of data quickly and 
accurately 

Traditionally, the HABA-MABA approach has inclined research programs to partition 
work responsibilities between humans and machines, without due consideration for 
their potential collaborative interaction. This approach was deemed acceptable, 
provided the machines were straightforward. However, with advancements in 
automation technologies, the nature of human-robot interaction has undergone 
significant transformation, prompting the need for more sophisticated and nuanced 
approaches to address complex interaction dynamics [66]. This gave rise to the need 
to study the same approach for the present-day advanced machines as compared to 
the ones in 1951.  

In a survey conducted in Delft University of Technology (TU Delft, Netherlands), 2016 
[68], revealed that current day machines outsmart the humans in the areas of 
detection, perception and long-term memory as opposed to the Fitts list [11]. It also 
discusses that the trends and development in sensor technology, artificial intelligence 
and computer processing and storage capabilities have seen this shift. While there 
have been technological advances, humans still hold an upper hand over machines in 
creativity, analytical thinking, resilience, flexibility and agility, talent management and 
technology design and formulation [69]. 



  21 
 

Nevertheless, with the aim of increasing collaboration between human and robots and 
not competing against one another, it is necessary to focus on how a human-robot 
teamwork can together with maximum efficiency and safety. To leverage on the 
strengths of both, Woods [68] presents what is surprisingly called an ‘Un-Fitts list’ that 
fills the gap and comprehends a list for the new age machines and human-robot teams 
in Figure 9. 

 

Figure 9: The "Un-Fitts List" [68][69] 

The "Un-Fitts List" provides a comprehensive perspective that does not solely focus 
on human limitations. The list, presented in Figure 9, highlights human strengths and 
how they leverage technology to amplify their abilities. One example of this is the 
development of algorithms that are well-suited for confined scenarios, which helps to 
counterbalance human limitations in getting trapped in localized viewpoints and action 
patterns. By prioritizing human capabilities and understanding the contexts in which 
machines can support them, the Un-Fitts List offers a promising approach to human-
robot interaction design [66]. It encourages designers to consider the ways in which 
robots can complement and enhance human abilities, rather than replacing or 
minimizing them. This perspective not only benefits humans, but it also leads to more 
effective and efficient robot performance in various domains. Therefore, this approach 
promotes a symbiotic relationship between humans and machines, which can lead to 
improved collaboration and productivity. 

2.3 Human Factors and Ergonomics (HFE) 

Human factors and ergonomics (HFE) play a critical role in the industrial context today. 
With the advent of advanced technologies and automation, it has become increasingly 
important to ensure that the workplace is designed to optimize human performance, 
safety, and comfort. This is particularly important as many industrial processes require 
repetitive and physically demanding tasks that can lead to musculoskeletal disorders 
and other health issues. The word HFE is synonymous with ergonomics and is often 
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used interchangeably. The goal of HFE is to make human interaction with systems 
error free, safe, comfortable and enhance productivity [70]. HFE deals with developing 
tools and workspaces in a way to achieve these goals as seen in Figure 10.  

The cycle highlights five major factors in the improvement cycle for human factors 
namely: Environment, Tasks, Equipment Design, Selection and Training. 

 

Figure 10: Cycle of Human Factors [72] 

It shows that various approaches can be used to address and improve system 
problems, and after applying these approaches, performance can be assessed to 
ensure success. However, the focus of our discussion has been on fixing deficient 
systems (Point A). It is essential to note that good human factors practices are not only 
relevant to fixing deficient systems but also to designing effective systems. Anticipating 
human factors deficiencies before they arise and incorporating human factors early in 
the design process (Point B) can lead to significant cost savings and prevent human 
suffering. Therefore, the role of human factors in the design process is critical and 
should be considered early in the design stage. 

2.3.1 Ergonomics and Types  

According to the International Ergonomics Association (IEA,2000) [71], ergonomics is 
defined as “the scientific discipline concerned with the understanding of interactions 
among humans and other elements of a system, and the profession that applies theory, 
principles, data, and methods to design in order to optimize human well-being and 
overall system performance”. Historically, ergonomics is defined as the “study of work” 
[71] or “science of work” [66], with the Greek works ergon (work) + nomos (laws). 
Ergonomics is usually considered as a design related concept in which the methods 
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and ways of interactions between human and machine (robot) is designed to be more 
flexible, safe, and efficient. Kawoski [73], defines ergonomics as an inter-disciplinary 
field that encompasses a variety of fields across the natural, artificial products 
processes and surrounding environments as seen in Figure 11. Each of these aspects 
plays an essential role in creating an ergonomically sound environment that promotes 
safety, productivity, and overall well-being [72]. 

 

Figure 11: General dimensions of Ergonomics discipline [72] 

2.3.1.1 Types of ergonomics 

In the broader spectrum ergonomics as a domain is classified as Micro, Macro and 
Meso Ergonomics [77]. These are classified based on the level implement site, 
decision making output, users’ organizational level, type of applications, size of 
involvement, scope of workspace, area of work [72]. 

Micro Ergonomics deals with the design of an overall work system which poses a 
broader scope including the Organization design (OD). It designs the structure of 
organization and the relation between the elements in this structure. The major 
features scoped under this type are human-machine relationships, displays and 
workspace settings, work system optimization and macro work system design. 

Macro Ergonomics is the traditional and the most perceived idea of ergonomics. It 
deals with the analyses of worker movements, postures, designing work tools to 
improve worker posture, enhance workspaces to meet ergonomic needs. It more 
specifically works on design of work systems in a way to provide flexibility and enhance 
human working capabilities. On the other hand, Meso Ergonomics is an area in 
ergonomics that lies between both micro and macro ergonomics, with very bleak 
boundaries. It caresses the relationship between human, OD, and sociotechnical 
systems [78]. It considers the human as in focus and works around HCD and 
processes. 
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Physical and cognitive workloads are most majorly studied as a part of these 
ergonomic methods. Physical workload comprises of all and any aspects that 
adversely affect the working health of the human. These include factors pertaining to 
the physical environment, working postures, materials handling, repetitive movements, 
work-related musculoskeletal disorders, safety, and health.  These also include the 
robot related parameters such as type, automation level and adaptability [72]. 

Dimension Macro Ergonomics Meso Ergonomics Micro Ergonomics

Level of implementation Organizational Multilevel:Organization-
Group-Individual Work station

Decision making output Decision making and 
policy Decision making

Design work 
procedure and 

methods

Users (Organizational level) Top management Middle management Operational 
workers

Types of Applications Decision making System creation Work system 
improvement

Size of involvement Organizational Group/Department Individual 

Scope of workspace Compmay wide Individual and socio-
technical

Individual 
workstation

Area of work Environment and 
social relation in OD

Group and Human-
Machine relation

Workstructure and 
workflow

Tools Organizational work 
design system Interface and software Kaizen , SMED

 

Table 3: Types of Ergonomics as per desired work level dimensions [77] 

Similarly cognitive loads refer to the stress, mental or emotional processes that impact 
humans internally. Mental stress can have a significant impact on work performance, 
both in the short and long term. When workers are experiencing high levels of stress, 
they may have difficulty concentrating, making decisions, and completing tasks 
efficiently. This can lead to decreased productivity, errors, and lower quality work. 
Chronic stress can also have more serious long-term effects on workers' physical and 
mental health. Prolonged exposure to stress hormones can weaken the immune 
system, increase the risk of cardiovascular disease, and contribute to mental health 
conditions such as anxiety and depression. 

2.3.2 Ergonomic assessment methodologies 

Ergonomic assessment aims at measuring various aspects of the workplace 
environment depending on the type of ergonomics at focus. The most common agenda 
of the assessment is to gauge the physical and cognitive factors including, but not 
limited to mental workload, climate/environment (internal and external), work postures, 
repetition, cycle duration, etc. The aim of these assessment methods is to identify the 
loopholes in the form of bad conditions and/or practices and eliminate or improve them 
to improve safety, reduce errors and improve system performance. In the perspective 
of users and workers, it is necessary to improve the working environment, aesthetics, 
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ease of use and more specifically the user acceptance [79], to achieve the desired 
tangible outputs needed for company performance discussed earlier. It is with this aim 
that the evaluation methods are designed that use either subjective judgement (self-
questionnaires filled by the workers), systematic observations (collected by visual 
inspection on-site or via video recordings), or actual physical measurements 
(performed on site or via virtual simulations) [72][79].  

2.3.2.1 Subjective Judgement 

The most common methods for evaluation used are in the form of checklists, surveys, 
questionnaires, forms etc. These aim at understanding both the physical and 
cognitive/mental workload on the worker. Physical load addresses the workload on 
human body due to stress, discomfort, muscle activity, repetition, force, duration of 
exposure and posture.  

I. Physical ergonomics  
i) Body mapping 

Body mapping behaves as a questionnaire or checklist filled by workers themselves to 
highlight their area of discomfort [81]. The checklist aims at understanding the specific 
body part which is facing major discomfort alongside the discomfort level: “Just 
noticeable, Moderate and Intolerable”. In granularity, it also understands the kind of 
discomfort being felt ranging from “Aching, Burning, Paining, Itching, Swelling and/or 
Weakness” amongst others.  

ii) Rating scales 

As the name suggest, rating scales is a generic method working on scales defined by 
the examiner per basis depending on the application, it can range from 1-10, with 1 
being no discomfort and 10 being more discomfort to be more granular in the approach 
and have a scale from 1-5, as the need of the application be. An assessment of chair 
in terms of ergonomic was done in [82], where the authors defined the scale of 1-5 
defined as: “Perfectly comfortable, quite comfortable, barely comfortable, 
uncomfortable, restless and fidgety”. A similar descriptive approach was followed in 
[83], to assess the impact of noise and vibration in the atmosphere as an impact. It 
was also discussed that such a method poses a disadvantage in understanding the 
ratings around the boundaries of these ratings and fire can make it difficult and 
sometimes even misunderstood in making decisions. 

iii) Checklist 

Checklists serve as the simplest way of understanding the ergonomic situation and 
condition of the worker in the workplace (industrial setup or office setup) based on a 
range of questions to understand their working condition, duration of prolonged work, 
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weight (physical load) dealt with, posture, force, etc. [84]. However, the method is still 
highly subjective and does not help in any concrete findings that can be utilized to 
enhance further on the workplace conditions. 

iv) NASA-TLX 

The NASA Task Load Index (TLX) is a pen and paper 5 based questionnaire developed 
by NASA Ames Research Centre’s (ARC) Sandra Hart in 1980 [85]. This method is 
used to evaluate both the physical and cognitive load across six dimensions as 
summarized in Figure 12. The users rate each of these dimensions in the form of a 
scale rating shown below or in some methods give a numeric rating between 1-100. 
After the ratings are completed, a weighted average score is calculated, which provides 
an overall workload score. 

 
Figure 12: NASA Task load Index: Paper/Pencil Version [85] 

II. Cognitive ergonomics  

Cognitive or mental workload refers to the level of cognitive processing and demand 
imposed on an individual while performing a task. It can affect various aspects of work 
performance, such as attention, decision-making, and memory. Thus, it is essential to 
assess cognitive workload levels to ensure that work demands do not exceed the 
individual cognitive capacity [86]. There are several methods available for cognitive 
workload assessment, including subjective, objective, and physiological measures. 

 
5 The method is called as pen- paper as it was initially originated as a method that required hand-written 
assessment, however now the digital version is available. 
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Subjective measures include self-reporting and rating scales, where individuals report 
their perceived level of cognitive workload. Objective measures include task 
performance, reaction time, and error rates, where performance is analyzed to 
determine workload. 

i) Subjective Workload Assessment Technique (SWAT) 

Subjective Workload Assessment Technique (SWAT) is an assessment technique 
developed specifically to evaluate the mental workload. It divides the assessment into 
three factors: Time Load, Mental effort Load and Psychological Load. The levels are 
described by descriptors indicating the lowest (level 1) and the highest (level 3) mental 
workload for each dimension. During the task scoring procedure, participants rank the 
cards in order from the one that represents the lowest mental workload to the one that 
represents the highest [87][88]. 

a) Time Load: Operationally time load takes into consideration the time available 
and the time overlap [87]. A worker is under “Time-Load” when the time taken 
to perform a task exceeds the total available time. According to [87], the sub-
factors of this dimension are Time Required, Time Available, Time 
Required/Time available (divide) and Time stress. 

b) Mental Effort Load: The second dimension comprises of task factors like 
difficulty, complexity and level of effort needed. It comprises of aspects like 
reasoning, cognitive thinking, problem solving, reasoning, memory retrieval, 
including but not limited to performing calculations, paying attention to 
information sources, and retrieving information. Hence the sub-factors were 
then named as Task Complexity, Perceived Difficulty, Effort, Expenditure of 
Energy, Interrelating Expenses, and Information input [87]. 

c)  Psychological Stress Load: Stress seemed to affect the workers motivation, 
enthusiasm, health, fatigue, inquisitiveness, and emotional state. This includes 
but is not limited to external factors like physical harm, organizational culture 
and environment and internal factors such as fear of failure, tension, personal 
life conditions. Hence this dimension takes into consideration anything that adds 
to the stress, fatigue, anxiety, frustration, and mood of the worker. The 
subfactors in [87] were then called Psychological Stress, Fatigue, Motivation, 
Emotional Stress, Stress, Uncertainty of Risk, Probability of Failure, Tension 
and Task Performance. 
 

ii) Cognitive Load Assessment for Manufacturing (CLAM) 

The CLAM approach is an assessment technique that is primarily intended for 
proactive evaluation and design of workstations. It is designed to quickly evaluate 
cognitive workload associated with tasks and workstation design, with the goal of 
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identifying relevant issues proactively, and facilitating efficient and effective changes 
in the manufacturing environment. The overarching aim of the CLAM method is to 
adopt a cost-efficient and holistic perspective, encompassing the entire workstation 
and work task, and saving time and resources when evaluating the cognitive workload 
of assembly workers in a manufacturing setting [89][87]. The CLAM Assessment 
method consists of 11 factors across the domain of task based and workstation-based 
factors as summarized in Table 4 [90]. 

Task Based Factors Description
Saturation Amount of work planned on a workstation

Variant Flora The variety of product mix

Level of difficulty How difficult is the task?

Production awareness Focused attention needed on the task by the 
worker (depends on the routine work)

Difficulty of tool use Is complex tools needed for the task?

Workstation Factors Description
Number of tools available Number of tools used in the workstation 

Mapping of Workstation How well does the workstation comply with the 
assembly sequence?

Parts identification What is the method used for part identification?

Quality of instructions Focused on the readability and visibility of the 
instructions

Information cost How much effort is needed to utilize the 
information (physical and cognitive)

Poke-a-yoke constraints Are there any error-proofing solutions 
implemented?  

Table 4: CLAM Assessment: Factors and Description [90] 

Each of the factors described in Table 4 are rated and weighted to find a final score in 
the CLAM Assessment. The rating scale for CLAM ranges from Level 0-8, the scale 
from 0-2 indicate very low, 2-4 indicate low, 4-6 indicate moderate and 6-8 indicate 
high [90]. Each of these factors also have corresponding weights that are used while 
calculating the weighted average in the final score. 

2.3.2.2 Systematic Observations 

Systematic observation is an ergonomic assessment method that involves the 
structured and methodical collection of data through direct observations of tasks and 
work environments. It is a qualitative method that helps ergonomists understand how 
workers interact with their work environment and identify potential ergonomic risk 
factors that may contribute to discomfort, pain, or injury. The data collected through 
systematic observation can include information about postures, movements, tools, and 
equipment used, environmental factors such as lighting and noise, and the frequency 
and duration of task performance. The assessment is carried out normally using either 
on-site observations or via a video of the process. 
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i) Ovako Working Posture Assessment System (OWAS) 

OWAS was developed in Finland in a steel company, Ovako Oy, in 1973 to describe 
the workload in the overhauling of iron smelting ovens. It identifies the most common 
postures for the back (4 postures), arms (3 postures), and legs (7 postures). The 
OWAS assessment sheet comprises four main sections: task identification and time 
proportion determination, back posture evaluation (straight, bent, twisted, or a 
combination), assessment of arm postures (below shoulder level, above shoulder 
level, or a combination), and evaluation of leg postures (sitting, standing, squatting, or 
walking) as seen in Figure 13. It also considers load weight (less than 10 kg, 10-20 kg, 
or over 20 kg) and assigns a code, categorizing the action needed based on the 
assessment into four categories: no special attention required, postures requiring 
further examination, examinations needed soon, or urgent and immediate re-
examination and modification. 

 
Figure 13: IOSH OAWS Assessment sheet [91] 

ii) Rapid Upper Limb Assessment (RULA) 

Rapid Upper Limb Assessment (RULA) is an ergonomic tool used to swiftly evaluate 
musculoskeletal risks in the upper limbs and neck at work. It assesses postures, 
muscle exertion, and loads. RULA assessment process involves three parts: 
evaluating arm and wrist positions, scoring, and analyzing neck, leg, and trunk 
positions. In Part A, upper arm and wrist angles are measured, adjustments made for 
deviations. Muscle exertion and force are assessed. The final score categorizes risk 
into four levels: acceptable, further investigation, changes needed soon, and changes 
needed now as seen in Figure 14. This approach provides a quick and clear 
understanding of posture-related risks and the urgency for addressing them. 
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Figure 14: RULA Assessment sheet [92] 

iii) Rapid Entire Body Assessment (REBA) 

Rapid Entire Body Assessment (REBA) is an ergonomic tool designed to evaluate 
musculoskeletal risks in workplace tasks. It considers factors like posture, force 
exertion, repetition, and exertion level. REBA divides the body into segments and 
assigns scores (1-3) based on musculoskeletal risk severity. Posture and load handling 
are evaluated, and coupling (beyond hands) is considered. Scores are totaled to 
calculate a final score (1-15), categorized into low to very high risk. Higher scores 
indicate greater risk. Based on the score, appropriate actions are determined, 
potentially involving changes in the work environment, equipment, or practices. REBA 
offers a comprehensive assessment of posture-related risks, aiding in risk mitigation 
[94][95]. 

iv) European Assembly Worksheet or Ergonomic Assessment Worksheet 
(EAWS):  

The Ergonomic Assessment Worksheet (EAWS) is a comprehensive tool designed to 
assess manual load handling in the workplace. It considers key factors like strength, 
posture, force, load, and repetition. The assessment sheet is organized into sections: 
worker information, task details, body part analysis (including upper limbs, lower limbs, 
trunk, and neck), risk level assessment, and recommended actions. During the 
assessment, the posture and movements of the worker are evaluated, and each body 
part is assigned a score reflecting its ergonomic risk level. These scores are then 
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combined to determine an overall risk level for the worker and task, which is plotted on 
a risk matrix. Based on the identified risk level, the EAWS provides tailored 
recommendations for mitigating ergonomic risks, potentially involving adjustments to 
the work environment, equipment, or processes. The EAWS score ranged from a scale 
of 0 to infinity; points between 0-25 are classified in the green zone where no action is 
needed, between 25-50 is the yellow zone where there is a possible risk, and points 
above 50 depict the red zone suggesting action must be taken to reduce the risk. 

 
Figure 15: Ergonomic assessment worksheet [96] 

v) Quick Exposure Check (QEC)  

The Quick Exposure Check (QEC) is a method developed by the UK's Health and 
Safety Executive (HSE) to address manual handling risks and prevent musculoskeletal 
disorders (MSDs) at workplaces. Introduced in 1999, it focuses on identifying disorders 
and pain in areas like the neck, shoulders, back, wrists, hands, and arms. The 
assessment involves both the practitioner and the task performer and examines 
physical and psychosocial aspects of the work environment. The QEC questionnaire 
covers various risk factors such as weight and force of the load, posture and 
movement, task duration and frequency, and environmental conditions. Each question 
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is scored to gauge risk, and the cumulative score indicates the overall risk level of the 
task, aiding prioritization for further intervention [97]. Other methods, such as the 
National Institute for Occupational health and safety (NIOSH) Lifting Equation for back 
injury risk and the Strain Index (SI) for repetitive hand-intensive tasks, also contribute 
to ergonomic assessment and control in the workplace [98].  

2.3.2.3 Direct measurements and Virtual evaluation 

Direct ergonomic measurement methods encompass various quantitative approaches 
to assessing physical ergonomics. Anthropometry involves measuring human body 
dimensions and characteristics to inform workstation and equipment design. 
Biomechanical analysis quantifies forces, torques, and movements exerted on the 
body during tasks using techniques like electromyography (EMG) and motion capture 
[99]. Inclinometry measures angles and postures of body segments, aiding in 
identifying poor postures and the need for ergonomic adjustments. Force 
measurement assesses grip strength, push/pull forces, and forces applied to objects, 
providing insights into ergonomic risks related to force exertion [100]. Vibration 
analysis quantifies whole-body or hand-arm vibrations, guiding the implementation of 
control measures. Postural analysis evaluates body postures during tasks, employing 
observational techniques, motion capture, or wearable sensors to identify postural 
issues and aid in ergonomic improvements [101]. These direct ergonomic 
measurement methods offer objective data to assess ergonomic risks, optimize the 
work environment, and promote employee health and safety. 

2.3.2.3.1 Computer Aided Ergonomics  

Incorporating human factors in workplace design and engineering has been an area of 
major concern and importance lately. One of the ways of getting this done is the use 
of Digital Human Models (DHM) that replicate human characteristics for simulation and 
analysis. DHM involves the creation and manipulation of computer-generated human 
models to simulate human anthropometry, movements, and capabilities. It is a valuable 
tool used in ergonomics and human factors research to evaluate and optimize the 
design of workspaces, products, and environments. Human models designed as 
computer aided drawing (CAD) models help in simulating the real-life interaction of the 
human in the workplace environment and enables a reduction in the design time, cost, 
labor hours and improves quality, efficiency, and productivity [102][101]. 

DHM incorporates multiple data and functions to model, simulate and gather data for 
the ergonomic evaluation of the worker in the environment [102]. Firstly, it incorporates 
anthropometric data, encompassing body measurements and characteristics, ensuring 
accurate representation of diverse populations. Secondly, DHM employs 
biomechanics to mimic human movements and assess ergonomic aspects like posture 
and muscle activity. Thirdly, cognitive factors, including workload and attention, are 
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considered to gauge the impact of design on human cognition. Fourthly, ergonomics 
and workstation design are analyzed to optimize physical work environments. DHM 
also addresses HCI principles for assessing digital interfaces and usability. Lastly, user 
preferences and demographics are factored in to customize models, catering to 
individual needs and diverse user groups effectively. This holistic approach aids in 
designing products and environments that better suit human capabilities and 
preferences.  

These factors are bucketed into three main functions viz, manipulation functions, 
analysing functions and output functions as seen in Figure 16. By incorporating these 
various components and human factors, DHM aims to create realistic representations 
of human characteristics, movements, and interactions in virtual environments. This 
comprehensive approach helps evaluate and optimize designs from multiple 
perspectives, considering physical, cognitive, and ergonomic factors to enhance user 
comfort, performance, and overall satisfaction. 

 

Figure 16: Functions of DHM [102] 

DHM software empowers the creation of virtual human models that faithfully replicate 
the diversity of human populations, encompassing body dimensions, movements, and 
capabilities to accommodate a wide spectrum of individuals. Prominent DHM platforms 
include Siemens' Jack, renowned for its ergonomic analysis and simulation 
capabilities, Human Solutions' RAMSIS, notably used in the automotive industry for 
ergonomic evaluations, Dassault Systems' CATIA Human Builder, facilitating 
ergonomic analysis and virtual human modeling, the AnyBody Modeling System, a 
robust DHM tool for biomechanical analysis, and SIMULIA's ManneQuinPRO, 
designed for ergonomic analysis and simulation [103][105]. The most prevalent DHM 
models encompass CATIA's Human Builder, Siemens' Jack/Jill, and Human Solutions' 
RAMSIS, with numerous other models available to cater to various needs. These DHM 
platforms, illustrated in Figure 17, empower professionals to evaluate and enhance 
ergonomic aspects effectively, contributing to improved product designs and work 
environments. Jack, Human Builder, and RAMSIS are widely embraced platforms 
offering extensive tools for simulating human attributes, movements, and interactions, 
enabling the evaluation and optimization of ergonomic elements across diverse 
industries. 
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Figure 17: DHM Human Builder, Jack and RAMSIS [104] 

While all three platforms share the common goal of improving ergonomics, they differ 
in terms of features, capabilities, and target industries. Table 5 summarizes the major 
capabilities of these human models. 

 

Table 5: Usability of Human Builder, Jac/Jill and RAMSIS (Own table) 
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3 State of the art / literature analysis 
This chapter provides an overview of the state of the art in the field of human-robot 
task allocation, with a specific focus on ergonomics. The primary objective of this 
section is to gain a comprehensive understanding of the existing research and 
methodologies related to task allocation. To achieve this, the work will address the 
following research question “How can task allocation algorithms in human-robot 
collaboration be optimized for ergonomics?”. This will be divided into sub-sections 
each to answer and throw light on the sub-research questions highlighted in Section 
1.2.  

The first section summarizes the methods and quantitative results of the literature 
review and identifies relevant research work. The second section qualitatively 
evaluates the studied literature. The first part will explore existing task allocation 
methods that are widely used and researched in task sharing in human and robot 
teams. The second section will investigate the role of human factors in task allocation 
methods, recognizing the importance of considering human capabilities, limitations, 
and preferences. In this context, the various tools and frameworks used for modeling 
and visualizing ergonomics in task allocation scenarios will also be discussed. It will 
delve into the modeling and visualization aspects of task allocation, particularly in 
relation to ergonomics. The question of how the task allocation methods can be 
effectively modeled and visualized for ergonomic considerations will be thoroughly 
examined.  Tools and techniques available for representing and assessing the 
ergonomic aspects of task allocation will be addressed. Lastly, the evaluation methods 
for task allocation approaches in the context of ergonomics. This section will delve into 
the different techniques and metrics used to assess the ergonomic performance of task 
allocation methods. By thoroughly investigating these research questions, the work in 
this thesis aims to provide a comprehensive understanding of the current landscape of 
human-robot task allocation, with a specific focus on ergonomics.  

3.1 Literature Review 

3.1.1 Structured Literature Review (SLR) 

Structured Literature Review is a comprehensive analysis on the existing literature 
aimed at organizing the findings from the existing work in relation to the topic. The 
methodology is used from the works of Okoli [106]. According to Okoli, there is a 
comprehensive methodology to conduct a systematic literature review with includes 
identifying and structuring the purpose of the study, conduct a literature search using 
databases, extracting the data, synthesizing the data extract, and writing a 
summarized review. The literature review is carried out to answer the research 
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questions formulated in this study. The databases utilized for the literature investigation 
were IEEE Xplore®, Scopus and SpringerLink.  

Each of the databases were searched with a specific set of keywords and the results 
were exported into a ‘csv’6 file. The basic sanity checks on the results included 
checking the available information like the author names, publication data (title, date, 
and link) and abstract. The results were then scrutinized at a first level for the relevance 
of the title to the topic and were filtered out for non-relevant topics. The filtered results 
were examined by proofreading the abstract to gain the primary essence of the work 
in the literature and non-relevant works were eliminated from the review.  

First the IEEE Xplore®7 database was searched for keywords “human-robot” AND 
“task allocation”. These keywords were used specifically to be able to satisfy the first 
sub-research question to investigate the existing methods of task allocation. This 
search resulted in 78 results. Of the total results, only 30 were found with the 
appropriate title while 6 search results either had multi or swarm robotics involved 
which was then removed from scope. The other titles either dealt with human robot 
teams and safety and trust in their collaboration but did not address the task allocation 
algorithms. Some titles also catered to the applications in social robotics and settings 
such as shopping malls, elderly care homes and banks, therefore limiting the scope to 
manufacturing and assembly, these were removed. About 5 results were not 
categorized and approved publications due to lack of further detailed information like 
authors, topics or abstract itself. On a careful consideration and proofreading the 
abstracts, only a total of 19 were found relevant for the topic since they delved in m: n8 
human-robot teams, methods of reducing or allocating task to reduce human idle times, 
or load balancing and scheduling problems with focus on high robot utilization. 

The Scopus database9 was queried using the keywords “human-robot” AND “task 
allocation” AND “ergonomics” AND NOT “mobile robot” AND NOT “Swarm” AND NOT 
“multi”. This search resulted in 58 searches. A scrutiny on the title of the results had 
24 relevant results with appropriate titles. The results consisted mostly of work in the 
field of ergonomic designs for workstations, several works also devised ergonomic 
stations for the inclusivity and accessibility of partially or completely disabled workers. 
Prominent results were seen around improving human robot collaboration with the aim 
of efficiency and productivity improvement. A total of 17 studies had a suitable abstract 
as the rest focused on either one robot interacting with multiple heterogenous robots 

 
6 Csv stands for comma-separated values, a file type that stores information in more than one field 
separated by comma. 
7 The search on IEEE Xplore® was conducted on 2023/05/08. 
8 M: n is a terminology that depicts the relationship between multiple entities in this case multiple humans 
to multiple robot teams. 
9 The search on Scopus was conducted on 2023/05/15. 
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or on tracking human motions to aid in improving cognitive load and therefore exploring 
the task scheduling issue. 

The Springer Link10 database was reviewed with the input “Human-robot AND task-
allocation AND ergonomics” which resulted in 73 searches; however, only 15 were 
found relevant in their titles. A further deep dive in the abstract revealed a relevance 
of 11 studies in total as summarized in the Figure 18. 

 

Figure 18: Quantitative Results of Structured Literature Review 

Finally, after removing the duplicates across the databases about 48 papers were 
shortlisted as relevant in the domain of human robot task allocation. 

3.1.2  Meta Analysis  

The 48 pertinent publications were studied and scrutinized in the context of ergonomics 
in task allocation. The work from these publications were further bifurcated into three 
major buckets: Human Factors, Productivity and Empirical work. 

i) Human Factors: Physical, cognitive and/or psychological factors considered as 
primarily important for improvising on the workplace design and/or task 
allocation  

ii) Productivity: Reduction in assembly/production times and in addition in some 
cases improving quality and addressing load balancing problem between the 
human and robot 

iii) Empirical: Mathematical development in efficient task allocation (might or might 
not integrate ergonomics) 

 
10 The search on Springer Link was conducted on 2023/05/20. 

Keywords used: 
 
IEEE: “human-robot” AND “task allocation” 
Scopus: “human-robot” AND “task allocation” AND “ergonomics” AND 
NOT “mobile robot” AND NOT “Swarm” AND NOT “multi” 
Springer: “Human-robot AND task-allocation AND ergonomics” 
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Figure 19: Results of Meta Analysis 

In summary to literature is identified to answer the sub-research questions as follows: 

i) Task allocation methods: 68.1% of the total literature dealt with improving the 
task allocation methods from static and fixed to online and dynamic, or 
improving strategies of task distribution to enhance automation 

ii) Modelling and visualization: It comprise of the publications that aimed at 
devising a graphical or numerical algorithms related to task allocation between 
human and robots and comprised of 25.5% of the literature analyzed 

iii) Evaluation for Ergonomics: Ergonomic evaluation in task allocation is a scarce 
topic in literature and hence comprised of only 6.5% of the total scrutinized work 
(48) 

3.2 Human Robot task allocation  

The field of human-robot task allocation has witnessed significant evolution over the 
years, driven by advancements in robotics, artificial intelligence, and human-robot 
interaction. Early approaches focused on predefined task assignments, where humans 
and robots were assigned, fixed roles based on their capabilities. However, as the 
complexity of tasks and the capabilities of robots increased, more sophisticated 
methods emerged. These methods incorporated human preferences, skills, and 
expertise into the allocation process, aiming to optimize the overall team performance. 
Recent developments have also explored collaborative approaches, where humans 
and robots work together in a symbiotic manner, leveraging the strengths of each team 
member. This evolution has led to more adaptive, efficient, and flexible task allocation 
methods that can cater to diverse application domains, from manufacturing and 
healthcare to search and rescue missions. 



  39 
 

Task sharing between human and robot in a team consists of two major aspects, task 
analysis and allocation to make sure a suitable task is allocated to the most appropriate 
agent in the team. There are several methods studied from the existing literature 
described in the following sub-sections. 

I. Task analysis 
 

i) AND/OR Graphs 

In task allocation, an AND/OR graph represents the relationship between tasks and 
their dependencies. Nodes in the graph represent individual tasks performed by either 
the human or robot, and edges represent the relationships between them which can 
share either an AND or OR type relationship. AND/OR graphs are widely used 
representation for task allocation between human and robots. In the simplest form 
shown in Figure 20, AND OR graphs comprise of a final task called Tm which has a 
series of tasks that must be carried out to complete the final task categorized as T1, 
T2, T3, T4, T5, T6 and T7. 

 

 

Figure 20: AND/OR graph nodal representation [107] 

The node (T1 to T7) represents the individual tasks to be completed by either of the 
agents, the arcs seen between T2 and T3 depict the relationships between some tasks. 
It illustrates that these tasks are dependent and related to each other in nature. AND 
dependency depicts that one task must be completed before the other begins. For 
example, Task T1 must be completed for T5 to be executed. OR dependency (not 
illustrated in Figure 20) is normally depicted using a dotted line showing that a 100% 
dependency does not exist on the preceding task. 

Most of the algorithms optimizing task allocation use AND/OR graphs in conjunction 
with either a best first or breadth first search method to optimize the overall cost 
incurred in the combinations of task sharing thereby improving productivity. The work 



  40 
 

presented by Merlo in [107] is an example of using AND/OR graph with A* search 
algorithm for online task allocation. Similar approaches have also been adopted in the 
works [108][109].In a similar approach, Johannsmeier and Haddadin [110] integrated 
the disparities between humans and robots by incorporating them into cost functions, 
thereby treating humans and robots as equivalent resources. They formulated cost 
functions based on workload and ergonomic factors to ensure fair allocation of tasks 
using such representations. 

ii) A* graph search algorithms 

A* algorithm is a popular path finding algorithm that has been adopted to the field of 
human robot task allocation in many literatures. Briefly, the A* algorithm defines a task 
graph consisting of each task node and defines heuristic values for each of the tasks 
which helps in estimating the cost of the heuristic function. The cost assigned depends 
and is based on the capabilities and considerations taken in the study. The algorithm 
then does a search across the nodes and selects the node with the lowest cost. 

Tom and Murthy [111] in their work addresses the problem of optimal task allocation 
in a distributed computing system. Two models are considered: one with 
communicating tasks but no precedence relations, and another model with both 
communicating tasks and precedence relations. The focus is on finding an optimal 
allocation without assuming any specific connection structure for the processors. 
Gombolay in his series of works [129][130] has devised task allocation frameworks in 
human robot teams that consider the preference of human in task allocation algorithms. 
Johannsmeier and Haddadin [110] also deployed an A* algorithm for the defining the 
cost function which resulted in intuitiveness of use.  

iii) Assembly Sequence graphs 

Assembly process graphs are a generic way of visualizing tasks and exchanging 
information about the task details. One such method is also called Business process 
modelling and notation (BPMN) widely used for task visualization in granular ways. 
Petzoldt et al. [112] effectively makes use of assembly sequence graphs to visualize 
the difference in static and dynamic task allocation methods as seen in Figure 21 for a 
cardboard and few block assembly sequence. Similar analysis is researched in [66] to 
use BPMN as a way of dynamically allocating tasks between human robot teams 
online.  

II. Task allocation 

Task allocation algorithms in human robot teams have been a topic of prevalent 
research in recent years. Task allocation algorithms follow multiple approaches and 
methods including but not limited to skill-based allocation, capability-based task 
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allocation, agent-based decision-making task allocations, heuristic approaches, 
deterministic approaches as well as static and dynamic. 

 

Figure 21: Assembly sequence graphs [112] 

Deterministic task allocation algorithms utilize predefined rules and optimization 
techniques to allocate tasks. They consider factors such as task complexity, resource 
availability, and individual capabilities to determine the most efficient and optimal task 
assignment strategy. Heuristic task allocation algorithms, on the other hand, rely on 
practical and intuitive strategies for task allocation. These algorithms may use rules of 
thumb, simple decision-making processes, or prioritization criteria to assign tasks. 

Ranz et al. [113] introduced a compensating strategy for task distribution which at first 
separated the procedure into several related steps. Then, "variable tasks," or tasks that 
could be completed by either agent, were assessed using capability indicators such 
process time, additional investment, and process quality. The human capability indicator 
was estimated by the authors as the average of these three criteria, and the robot 
capability indicator was obtained by deducting one from the human capability indicator.  

A similar compensatory approach was also adopted by Müller et al. [114] for-
manufacturing processes. They examined the product specifications as well as human 
and robot skills. The authors emphasized the variations in human attention and 
performance throughout the day compared to robots as one example of how people and 
robots differ from one another. While acknowledging the excellent precision and lifting 
capacity of robots, they also addressed the benefits of humans in terms of touch 
sensitivity, mobility, adaptability, and visual inspection capabilities. The distribution of 
tasks considered factors like difficult-to-reach places, intricate part designs, and the 
length of time required for robot programming. 
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Modular capability-aware strategy for work allocation between a cobot and a human in 
quickly reconfigurable industrial contexts was proposed by Lamon et al.[115]. in their 
study. Agent, team, and assembly levels were chosen as the three layers they would 
use to model the issue. To illustrate the assembly plan, AND/OR graphs were used to 
coordinate the assignment of assembly tasks at the assembly layer. Task distribution 
decisions were greatly influenced by the physical capabilities of the agents, considering 
elements like task difficulty, agent dexterity or kinematic reachability, agent effort or 
human and robot weariness.  

A dynamic task allocation technique using a tree structure with sequential, non-ordering, 
and alternate execution routes was proposed by Anima et al. [124] in their work. To 
coordinate task distribution, the robot tracked the human movement hand-by-hand and 
developed a recognition model. A continuous message was transferred between the 
task representations to enhance cooperation and prevent the human and robot from 
working on the same task component at the same time.  

The work from [110] represents a footprint in planning human robot interaction across 
three layers: team level, agent level and finally execution level. The overall objective of 
the framework using A* was to reduce the cost function considering the overall execution 
time, resource cost, process interruptions and pickup. To optimize task allocation, 
Fechter et al. [125] took into account multiple resources that could satisfy the needs of 
a certain product, process, or resource. They investigated two strategies: a heuristic 
search algorithm with a fitness function targeted at reducing cycle time, and full 
combination using Cartesian product. A greedy algorithm and a hybrid technique 
combining simulated annealing and evolutionary algorithm were used in the search 
algorithm. According to experimental findings, the single-crossover hybrid algorithm 
excelled in a condensed example use-case. 

Machine learning approaches have also been used in many literatures. Machine 
learning approaches offer adaptability to dynamic environments, optimization for 
improved resource utilization, handling complex problems, decision-making under 
uncertainty, and learning from experience for continuous improvement. Wu et al. [126]  
presented a method for modeling human trust using a Markov Decision Process (MDP) 
algorithm in their study. Markov Decision Process is a mathematical framework used in 
machine learning algorithms for decision-making under uncertainty, involving states, 
actions, and transition probabilities to optimize choices based on expected rewards or 
costs. The MDP architecture considered probable robot malfunctions as well as 
unpredictability in human worker responses, including weariness and trust. The aim of 
optimal task allocation was to maximize the chance of satisfying linear temporal logic 
using linear temporal logic, a frequently used logic, to express the necessary system 
features in HRI. 
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Roncone et al. [127] used an automated method to transform low-level partially 
observable MDP from hierarchical task models. It showed through their evaluation that 
shorter completion times and less cognitive work were required of individuals. In 
addition, Srivastava et al. [128] research also used the MDP framework and a dynamic 
queuing system that took latency penalties into account. The authors also offered 
performance constraints for their system and offered tips for deciding on the queues 
mean arrival rate.  

3.3 Ergonomics in Task allocation 

Given that they cover a wide range of elements relating to human capacities, 
preferences, and constraints, human factors are important in job allocation. In order to 
achieve effective and efficient job distribution in human-robot teams, human 
considerations must be taken into account. When assigning tasks, considerations 
including human capacities, knowledge, cognitive capabilities, physical constraints, 
and workload capacity must be made. Including ergonomic considerations into task 
design and minimizing physical stress and exhaustion can improve worker safety and 
wellbeing. Therefore, a comprehensive understanding of human factors is vital for 
developing task allocation methods that optimize both human and robot performance, 
while also promoting human-centric considerations in the allocation process. 

3.3.1 Human Factor Analysis 

As summarized by the IEA in [71], human factors in three forms are the most important 
when designing work tasks: Physical ergonomics, Cognitive ergonomics, and 
Organizational ergonomics. Physical factors are mainly concerned about human body 
anthropometric details, postures, handling workload which trace to the attributes of a 
physical activity. Cognitive factors deal more with the mental aspects of human 
thinking, decision making, processing information and mental workload. Similarly, 
organization factors correspond to the external environment, management, policies at 
work as comprehensively elaborated in Section 2.3.1.1. [73][74] A detailed study on 
these three types of ergonomics revealed the factors that are to be considered in task 
allocation considering the focus on ergonomics as summarized in Table 6. 

Physical Ergonomics Cognitive ergonomics Organizational ergonomics
Repetitive movements Mental workload Communication 

Loads and duration of load Stress Resource management
Working posture Decision making Work design
Material handling Work fatique Task complexity
Workplace layout Work instructions Task type  

Table 6: Ergonomic factors impacting task allocation (Adapted from [73] , [75] and [76]) 
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Furthermore, studies from [75][76]  summarized that each of these ergonomic factors 
are contributed to be by either the human agent or its counterpart robot agent related. 
Hancock et al. [75] in his work considered factors like worker demographics, self-
confidence, work experience, workload as some human related factors that impact 
ergonomics. Parameters like robot anthropomorphism11, level of automation, 
configuration, failure rate and alarms as robot related factors that impact the 
collaboration [75]. In the study by Ogorodnikova, she classified human factors into 
three buckets that impact ergonomics in workplace: Information processing (hinting 
towards cognitive ergonomics), Human error and physical ergonomics [76].  

3.3.2 Physical ergonomics in task allocation 

Physical ergonomics is a topic of research and highlight over the past years due to the 
increase injuries because of MSDs at workplace. Physical ergonomics that 
encompasses the likes of posture, load carried, frequency of movements and material 
handling as summarized in Table 6. Maurice et al. [116] tabulates an approach to 
address the MSDs issue to focus on ergonomics while sharing space with collaborative 
robots. The human factors in this study are segregated according to constraint and 
goal-oriented indicators. Constrained oriented indicators highlight the joint, position, 
velocity constraints whereas the goal-oriented constraints focus on the balance, vision, 
force of the digital human model in simulation. 

Busch et al. [117] describes a postural optimization framework by considering task 
constraints for reducing MSDs. The methodology implies a motion and posture tracking 
mechanism which evaluates the current posture based on a cost function find the most 
safe and suited posture. Similar works are also seen by Sisbot et al. [119] and Suay et 
al. [120].Colim et al. [118] proposes an algorithm to alter the workstation attributes 
based on the anthropometric data of the workers performing the task. 

Borges et al. [131] develops a dynamics-based model for designing feedback 
mechanisms in HRC systems. It designs a close loop diagram-based model to 
understand the physical workload on the human worker. Similar is the study by Petzoldt 
et al. [111] which considers the physical workload on the human as a method to devise 
task allocation routines.  

3.3.3 Cognitive ergonomics in task allocation 

As described in Table 5, cognitive ergonomics deals with decision making, analyzing 
and stress due to workload. Neerincx [121] in his work describes a comprehensive 3D 
cube model that describe the impact of level of information to be processes, task 

 
11 Anthropomorphism in the context of robotics, generalizes a robot that resemble the shape and 
construct of a human body. 



  45 
 

rotation, and time taken as three important factors that describe the overall cognitive 
load that ranges from underload, vigilance, lock up and overload.  

Wolter et al. [122] in their work emphasize on the cognitive demands needed from 
workers during performing their tasks and how these impact their performance at their 
workplace. The major demands are time related, decision making related, task 
complexity related and the external environment. In the survey conducted in this study, 
it was found that workers who had clock ticking to complete their tasks or difficult and 
complex assemblies to do in a defined space and time ended up making more errors 
and loosing focus impacting their efficiency negatively.  

Papantonopoulos and Selvandy [123] in their work propose a framework for cognitive 
task allocation which define a framework to identify the task, cognitive process needed 
in completing the task (memorizing, visualizing, logical reasoning, information 
sequencing, mathematical reasoning), describe the performance criteria and define 
the final task allocation to an agent (human, robot or a human/robot controller).  

In addition, more general methods are also used to measure the cognitive load of the 
human worker subjectively and therefore consider task sharing. It involves techniques 
such as interviews, observations, and protocol analysis to uncover the underlying 
cognitive activities, decision-making strategies, and mental models used by 
individuals. Cognitive task analysis therefore provides insights into how people think, 
solve problems, and make decisions, which can inform the design of training programs 
and decision support systems [134]. Situation Awareness Global Assessment 
Technique (SAGAT) is another method used to measure situation awareness, which 
is the understanding of the current situation and the ability to anticipate future events 
as used in the study in [135]. It involves presenting participants with a series of 
scenarios and assessing their ability to detect changes, make predictions, and 
maintain situational awareness. The method helps evaluate the effectiveness of 
information displays, training programs, and decision support systems in enhancing 
situation awareness [136]. Multiple methods to capture the motions, sensation and 
emotions of the worker have been proposed in studies to study and detect the mental 
load and fatigue of the worker. Eye tracking mechanisms, automatic emotion 
recognition [137], expression synthesis [138], mental load fluctuation via the 
electroencephalogram (EEG) [139] , has also been under implementation. 

Longo et al. [164], summarizes how cognitive workload has been defined across 
literatures as an index comprising of multiple factors. Hancock and Caird [165], define 
mental load as a characteristic defined by the demands of the task being carried out. 
A similar definition was also put forward by Byrne [166] and in addition it also highlights 
the factor of the level of performance of the operator. According to the cognitive load 
theory, the working memory plays a major role in the overall mental workload on the 
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human counterparts. The amount of information processing, memorizing and decision 
making are factors that are owed to the working memory. Stuiver et al. [167] and Wilson 
and Eggemeier [168], agree to consideration of the level of information-processing as 
an important factor in completing the task at hand. Another highlighted factor in 
literature is the level of performance required to complete the task in time. It is the 
amount of energy one puts in performing the task to a desired level in desired time 
[169][170]. Lin et al. [171] interestingly posts as the lack of resources within the existing 
and desired capabilities is what contributes to higher mental workload. Similar theories 
describing the level of processing capabilities, level of mental and physical resources 
and workers capabilities to do the task is described in [172][173][174]. Level of 
attention, decision making and time are another important factor that are considered 
in describing the mental workload [175][176][177][178]. 

3.4 Evaluation of ergonomics in task allocation 

Several ergonomic evaluation based techniques are discussed in Section 2.3.2. These 
methods assess factors like posture, load handling, biomechanics, cognitive workload, 
and task constraints to determine ergonomic suitability, both physical and cognitive 
ergonomics. The ergonomic evaluation methods consider a single or multiple criteria 
of human factors when evaluating task allocation methods for ergonomics. In addition, 
task allocation algorithms as per the legacy methods are mostly pen and paper based. 
Physical ergonomic evaluation methods like EAWS, RULA, REBA are traditionally pen-
paper based methods. Similarly, cognitive evaluation methods such as CLAT and 
SAGAT are questionnaires filled using user input via handwritten input. However, lately 
there has been a paradigm shift and there have been multiple platforms that support 
digital simulation and evaluation for ergonomics as discussed in the section earlier.  

3.4.1 Single Factor Evaluation  

Study conducted by Colim et al. [118] is to apply a human-centered approach to the 
design of a collaborative robotics workstation in order to minimize the musculoskeletal 
risk associated with a manual assembly task in industrial furniture manufacturing. The 
study aims to identify workers’ complaints and risk factors that can be mitigated with 
future implementations of human-robot collaboration. The authors use Strain index and 
RULA for evaluation of ergonomics. The work only considers the use of worker 
postures for the evaluation of ergonomic condition.  

Yetkin and Ultutas [140] present a consolidated review of the literature addressing 
ergonomics in human robot collaboration. It points out literature that deals with 
designing the workspace and workstation to improve the physical ergonomics of the 
human agent. Tsarouchi et al. [141] in their work develop a decision-making framework 
using a simulation and mathematical framework to design the workstation in a way that 
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is ergonomically safe and feasible for the human counterpart. The model uses the 
strain index percentage from the worker muscle activity to evaluate and alter the model 
accordingly. The model was also used to evaluate the task allocation framework where 
the algorithm tests all possible alternatives suitable for task allocated to human or 
robot. However, the ergonomic aspect in the allocation framework was highly limited 
and the major focus was paid to productivity and cycle time in the task allocation.  

While most of the single criteria studies consider human posture for an optimal 
ergonomic design, the study by Cherubini et al. [142] considers the load of the 
workpieces in developing an ergonomic workstation design.  The study aimed to 
develop a collaborative human robot manufacturing cell for homokinetic joint assembly 
that considers ergonomics. The article discusses how the robot alternates between 
active and passive behaviors to assist the operator and comply with their needs. The 
goal is to reduce the workload on the operator and decrease the risk of strain injuries.  

3.4.2 Multi-factor Evaluation  

The online role allocation strategy proposed in the study by Merlo et al. [143] assigns 
actions among the agents of a human robot team according to the physical human-
worker status. It is based on an adapted AND/OR graph that models all the possible 
assembly sequences of an assembly task. The evaluation for ergonomics is conducted 
using the RULA technique. The main contribution of the method is the integration of a 
human joint-level status indicator, which they call kinematic wear, that can account for 
the usage of each joint during the execution of an assembly task of lightweight pieces.  

A more granular is the approach followed by Petzoldt et al. [112] with considers multiple 
factors and evaluation methods for overall productivity and user experience 
improvement (inclusive of ergonomics). Process effectiveness, process efficiency, 
HRC process efficiency, workload, worker satisfaction, user preference. Rather 
subjective evaluation methods such as the System Usability Scale (SUS) and NASA-
TLX score. The study also compares the difference in task allocation with static and 
dynamic task allocation using assembly sequence graphs.  

 Similarly, Pearce et al. [144] develops an optimization framework for integrating 
collaborative robots into manufacturing processes. It considers the improvement in 
both cycle time and ergonomics by generating task assignments and schedules for 
human robot teams.  The SI is estimated from video data and reviewed with 
experienced job analysts. The duration of the task is also considered, and the optimizer 
uses a time-index approach. The authors use the SI method to quantify human physical 
stress and create a set of solutions with assigned priorities on each goal. 
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3.4.3 Digital Methods 

Digital evaluation methods offer significant benefits in the consideration of ergonomic 
factors during human-robot task allocation. These methods enable objective 
assessments, facilitate simulation and visualization, support iterative design and 
optimization, enhance cost, and time efficiency, and enable predictive analysis. 
Several digital tools are readily available to be able to use in the context of process 
visualization for ergonomics and add-in evaluation for ergonomics as discussed in 
Chapter 4.  

The focus of the study by Rinaldi et al. [145] is to investigate the ergonomic risk of a 
manual assembly station, changing the anthropometric characteristics of the worker. 
The study proposes a new approach to improve a real system and reduce the 
ergonomic risk among operators. Different potential workers with different 
anthropometric characteristics have been tested, and the critical situations have been 
identified and solved proposing different job rotation solutions. The simulation results 
confirm that job rotation is a good approach to reduce the ergonomic risk and they 
provide practical guidelines for task allocation. The authors do not explicitly mention 
the simulation tool used and the OWAS ergonomic evaluation method is used.   

Another study by Messeri et al. [146] focuses on a dynamic task allocation strategy to 
mitigate human physical fatigue in collaborative robotics. The study proposes a novel 
digital evaluation using OpenSim dynamic musculoskeletal model of the entire human 
upper body, which is used to collect offline data encoding the complex mapping 
between human motions and muscle activations using a deep neural network (DNN). 
The DNN learns mapping and to predict online how the muscles activate during the 
workers motions to dynamically allocate the task activities to human and robot. The 
study includes experimental validation and evaluation using the RULA methodology, 
and the results show the effectiveness of the proposed strategy in mitigating human 
physical fatigue in collaborative robotics.  

The simulation study by Borges et al. [131] aimed to improve ergonomics and 
productivity in assembly workstations by simulating HRC. The authors compared two 
workstations, one with a human robot simulated scenario and the other replicating the 
current situation. The results showed that the robot-simulated scenario led to increased 
productivity, reduced posture exposure time, decreased overall workload, and 
provided insights for better understanding the system. The work mentions the use of 
Xsens MVN software to capture the motions of workers during the study and apply the 
RULA algorithm to assess physical workload. 
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3.5 Summary  

After conducting a thorough review of the results from the SLR and conducting a 
forward and backward search of more related literature. Overall, the most relevant 
ones are summarized in Table 7. 71.93% of the literature summarized was a part of 
the original literature review.  

 

Sr 
No  Author   Year  Task 

allocation   
Ergonomic 

design  
Ergonomic 
Evaluation  

Digital 
ergonomics  

Part of 
SLR  

1  Merlo   2022  x     x     Y  
2  Alirezazadeh  2022  x           Y  
3   Messeri   2022        x  x  Y  
4  Li  2022     x        Y  
5  Malik  2019  x           Y  
6  Merlo  2023        x     Y  
7  Colim  2020     x        Y  
8  Euchner  2023  x           Y  
9  Yetkin  2022  x  x  x     Y  

10  Rücker  2018              Y  
11  Borges  2022     x  x  x  Y  
12  Borges  2021     x  x     Y  
13  Murali  2020  x           N  
14  Karami  2020              N  
15  Johannsmeier  2016  x           N  
16  Ajith  1999  x           N  
17  Ranz  2017  x  x        Y  
18   Müller  2017  x  x        Y  
19  Lamon  2019  x  x        Y  
20  Anima  2019  x  x        N  
21   Fechter  2019  x  x        N  
22  Wu  2017     x  x     N  
23  Roncone   2017  x           Y  
24  Karwowski  2005     x        N  
25  Srivastava  2014     x        N  
26  Gombolay  2015     x        Y  
27  Gombolay  2013     x        Y  
28  Clark  2008     x        N  
29  Endsley  1988     x        N  
30  Roy  2020     x        N  
31  Kliensmith  2013     x        N  
32  Tsarouchi  2017        x     N  
33  Colim   2021        x  x  Y  
34  Liu  2022  x  x        Y  
35  Tram  2020  x           Y  
36  Izghouti  2022  x           Y  
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37  Makrini  2022  x           Y  
38  Schmidbauer  2020  x           Y  
39  Schmidbauer  2023  x           Y  
40  Monguzzi   2022  x           Y  
41  Cai  2022  x     x     Y  
42  Pearce  2018        x     N  
43  Noormohamadi  2022  x           Y  
44  Badiloa  2022  x           Y  
45  Pupa   2021  x  x        Y  
46  Chen   2013  x           Y  
47  Schmidbauer  2021  x           Y  
48  Petzoldt  2022  x     x     Y  
49  Makrini  2019  x  x        Y  
50  Faccio   2023  x  x        Y  
51  Castro   2019     x        Y  
52  Yuan  2021  x           Y  
53  Kousi  2022  x           Y  
54  Sheikh  2022     x        Y  
55  Linsinger  2018  x           Y  
56  Markis   2021  x           Y  
57  Cherubini  2016     x  x     N  

Table 7: Summary of Literature review 

3.6 Research gap  

From the literature summarized in Table 6, most of the literature (59.65%) focused on 
ways of allocating task using static or dynamic methods based on human capabilities 
and human preference. Of this, only 29.44% (10/34) considered ergonomic conditions 
mainly focused on workstation and organizational design. However, there were only 
three literatures (5.26%) that dealt with using digital ergonomic visualization and 
evaluation techniques.    

Cobots for their adaptivity and intuitiveness are slowly becoming the choice of the 
industry [9]. Integrated with lean manufacturing, human robot collaboration is a popular 
topic with high focus on operator well-being, which is believed to be achieved using 
cobots [10]. When interacting with cobot, trust, safety and ergonomics play a major 
role in the performance of the team. While research in the field of task allocation has 
been prevalent, ergonomics has been in the light for quite some years. Literature over 
the past years is adapting to focus on ergonomics but still, very few exploit the digital 
resources available for ergonomic visualization and evaluation. To address this, the 
research focuses on answering the question:  

How can task allocation algorithms in human-robot collaboration be optimized 
for ergonomics? 
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4 Methodology 
Chapter 4 describes the detailed analysis of the factors that are selected for the task 
analysis and the evaluation methods. The first section will deal with the analysis of the 
task and elaborate in depth each of the factors and the usability in task allocation in 
human robot teams. This section is aimed at answering the sub-research question 
“What are the various methods for task allocation that can be analysed?”  The second 
section will delve into the visualization methods available in the form of digital tools to 
visualize the situation for ergonomics and evaluate the ergonomic score based on the 
methodology described in Section 1 for task allocation using digital evaluation methods 
and will answer the following sub-research questions “How will the task allocation 
method be modelled and visualized for ergonomics?” and “How can task allocation 
methods be evaluated for ergonomics?” 

4.1 Task analysis and assignment 

Initially, the process is divided into sub tasks each consisting of basic assembly 
operations. Each of these subtasks then based on the criteria are evaluated for 
feasibility for allocation to either of the agents (human or robot). The cost for allocation 
of the task is then computed and final task allocation is carried out.  

4.1.1 Human task analysis  

Since the focus of the work is mainly on ergonomics, task allocation for human 
counterparts will be matched for feasibility checking the physical, cognitive, and 
organizational factors described in upcoming sections.  

I) Physical Ergonomics  

Physical factors in ergonomics define the physical capabilities and limitations of 
individuals. It involves the study of how people interact with their work environment, 
tools, and equipment to optimize productivity, efficiency, and safety. Studies highlight 
the ergonomic modelling for physical factors should consider the anthropometric data, 
biomechanical models and entail the concept of DHM [132]. Human posture, load 
handled, duration of load handling are widely described factors in literature 
[149][150][151][152] and will be considered as important factors in understanding the 
physical comfort of the worker while carrying out the desired work.  

Load handling limit as per the NIOSH for humans in standing position is 15kg [155]. 
However, it is important to understand that the repetition of this load handling 
(frequency) is an important factor in conjunction, hence the final product is two-fold. If 
the weight of part (Load, l) is greater than the maximum specified load as per the law 
in country (lmax), it is directly to be allocated to the robot (R) counterpart. However, 
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when the load is less than the limit, the frequency (Frequency, f) of handling the load 
must be considered. If weight is less than lmax, but the frequency of handling is less 
than once per minute [156], then either the human (H) should be allocated the task or 
option of sharing the task (S) should be explored. These conditions can be put forward 
as: 

IF (l >= lmax) 

THEN R 

ELSE IF (l < lmax AND f < 1/min) 

THEN S or H 

ELSE R 

END 

These conditions are answered in the form of binary answers to questions: “Is the load 
of the part > lmax?” and “Is the number of times to handle the load in 1 min greater than 
1?”. The answers of Yes (1) to these questions hint that the task is allocated to R, else 
if No (0) then, S or H. 

In addition, static loads are highly harmful for muscle contraction and aggravating the 
MSD risk, hence task requiring handling static loads for greater than 1 min [152] are 
not suitable for human, hinting at the duration (Duration, d) of static load handling. 

IF (d > 1 min) 

THEN R 

ELSE S or H 

END  

This condition answers the question “Is the duration of handling the static load > 1 
min?”, if answer is Yes (1), task is allocated to R, else S or H. 

Posture remains one of the most important factors in describing the physical 
discomfort, hence the major factors indicating towards posture are described via the 
question, “Is the material outside the span of human reach?” (Reach of human, rh). If 
the answer to this question is Yes (1), indicate task to be allocated directly to R, else 
S or H.  

Finally, the evaluation criteria also include the scores from ergonomic assessment 
scales of EAWS. EAWS defines the scores as green (0-25 points; no action needed), 
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orange (25-50 points; possible risk, take measures) and red (>50 points, high risk, 
immediate action needed).  

II) Cognitive Factors 

Cognitive factors focus on optimizing the interaction between humans and cognitive 
processes in various tasks and work environments. It involves studying how individuals 
perceive, process, and comprehend information, make decisions, solve problems, and 
allocate their attention and mental resources. Cognitive factors modelled in the form of 
questionnaires are rather subjective based on once capabilities and conditions. 
Nevertheless, use of measurement sensors such as EEG, EMG described in Section 
3.3 address this and aim at making the measurement and evaluation more stand alone. 
It is therefore important to factor them correctly in the task assignment model. Cognitive 
ergonomics encompass the factors of user, task and the environment surrounding 
them [157]. Valery et al. [158] discuss how cognitive load is a function of the work 
efficiency the work strategy and the way human interact with the socio-technical 
systems in the vicinity. The quality of HRC/HCI plays a very important role in the overall 
cognitive load of the human in interacting with the system. The needs, abilities, and 
limitations of the skills of the human is also to be considered for cognitive analysis 
[159]. 

Task variety, diversity and worker preference are considered as major factors in 
assigning task to human-robot teams [66]. Similarly, the HABA-MABA and Fitts List 
discussed earlier also describe how at certain cognitive tasks the human counterpart 
supersedes the robot agent in the team and hence should be allocated to them. 
Gualtieri et al. [160] describes factors such as trust, usability, frustration, perceived 
enjoyment, acceptance, stress, and cognitive workload as important factors while 
assessing cognitive ergonomic in task allocation in human robot teams. 

Considering the work described, the following questions are understood before task 
allocation: 

i) Is the task mentally challenging? (Mental demand, md) 
ii) Carrying out the task is unpleasant? (Acceptance, ua) 
iii) Do you have to memorize steps or work instructions? (Work Instructions, wi) 
iv) The task is frustrating. (Frustration, uf) 
v) There is no variety in the current task assigned? (Task variety, tv) 

Answers to these questions as Yes (1) directly assign the task to R, else can be S or 
H.  

 

 



  54 
 

III) Organizational Factors 

Organizational ergonomics aims to create work environments that promote effective 
communication, collaboration, and coordination, while minimizing stress, burnout, and 
organizational constraints. Organizational ergonomics plays a crucial role in creating 
healthy and high-performing work systems. Organizational factors such as 
organizational structuring and stakeholder environment are difficult to model in 
empirical algorithms. Dul et al [161] discussed theoretical methodologies to add 
ergonomic principles into the strategic business functions and in conclusion 
intercepted the improvement in efficiency. They discussed how product design, 
marketing, and communication can be improved with ergonomic fundamentals. 
However, another aspect of organizational factors are the surrounding environmental 
conditions such as lighting, noise, temperature and working conditions such as 
workspace layout, worktable and resources provided as aid to complete the work. 

Optimal external environmental conditions are a work right for people and hence it is 
assumed the environmental conditions are perfect and not considered as factors in 
task allocation in human robot teams. The organizational factors mainly considered in 
this work will deal with availability of human resources, robot and task switching 
abilities. The following questions are therefore considered for task assignment: 

i) Task switching is not possible in the current scenario? (Task switching, ts) 
ii) Robot is available at least 90% of the work shift and functions well? (Robot 

mechanical function, avr) 
iii) Human handles two workstations at the same time? (No of workstation, nw) 

Answers to these questions as Yes (1) directly assign the task to R, else can be S or 
H depending on the task allocation process later. Table 8 provides a summary of the 
factors considered in human task analysis. 

4.1.2 Robot task analysis 

Similar to some hard-coded areas where tasks are always allocated to the robot, it is 
necessary to consider the feasibility of the robot factors in deciding task allocation as 
well. These factors range from the mechanical, operational, safety and economic 
perspective of using the robot. As described by Schmidbauer [66], reachability (r), 
critical issues (u), robot payload (p) and risk of collision (c) are considered in this work. 
These factors are formed as questions as below: 

i) Is the part to be manipulated within the robot workspace? (Reachability, r) 
ii) There are no critical issues in the mechanical functioning of the robot (Critical 

issues, u) 
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iii) Is the load to be handled less than the maximum payload of the robot? (Payload, 
p) 

iv) In any position the robot does not collide with either any surrounding part of 
human counterpart? (Risk of collision, c) 

Sr No Factor Notation Unit Type Score 

1 Load l kg Physical 1 (>15 kg - R) , 0 ( S or H)

2 Frequency f constant Physical 1 (>1/min - R) , 0 (S or H)
3 Duration d min Physical 1 (>1 min - R) , 0 (S or H)

4 Reach r h m Physical 1 (Yes (out of reach) - H) , 0 
(R) 

5 Ergonomic 
Score Es constant Physical EAWS (>50) ; RULA (>5)

6 Mental demand md - Cognitive 1 (Yes - R) , 0 (No , S or H)
7 Acceptance ua - Cognitive 1 (Yes - R) , 0 (No , S or H)

8
Work 

instruction/ 
Assistance

wi - Cognitive 1 (Yes - R) , 0 (No , S or H)

9 Frustation uf - Cognitive 1 (Yes - R) , 0 (No , S or H)
10 Task Variety tv - Cognitive 1 (Yes - R) , 0 (No , S or H)
11 Task switching ts - Organizational 1 (Yes - R) , 0 (No , S or H)

12 Robot 
mechanical avr - Organizational 1 (Yes - R) , 0 (No , S or H)

13 Workstation 
handled nw - Organizational 1 (Yes - R) , 0 (No , S or H)

 

Table 8: Summary of human task analysis factors and assignment criteria 

In addition to the above questions, it is important to consider that the robot does not 
reach singularity while dealing with any of the parts in the nearby position which is 
considered as a part of the collision factor discussed above. 

Sr No Factor Notation Score

1 Reachability r 1 (Yes - R) , 0 (No , S or H)

2 Critical issues u 1 (Yes - R) , 0 (No , S or H)

3 Palyload p 1 (Yes - R) , 0 (No , S or H)

4 Risk of collision c 1 (Yes - R) , 0 (No , S or H)  

Table 9: Summary of robot task analysis factors and assignment criteria 

4.1.3 Part and process analysis  

In many cases the task to be carried out also depends on the nature, value and 
expected result of the final assembly. In this case, as discussed by Schmidbauer [66], 
stickiness, grasping of parts, gluing is some of part related characteristics that are to 
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be considered. However, there can be extended considerations to understand the final 
product expectations as described in detail in the following questions. 

i) Is the part to be handled hazardous (i.e., does it classify as a hazmat part? 
(Hamzat, ph) 

ii) Is the part usual and can be grasped and handled by the robot (e.g., not sharp, 
small, uneven, sticky, etc)?  (Part nature, pn) 

iii) Is the part to be handled not of high retail value? (Retail value, hrv) 
iv) The task requires high accuracy and precision? (Accuracy, pa) 

Like the other factors, the answers Yes (1) to the questions suggest that the task is to 
be allocated to the Robot, and otherwise be considered for sharing or allocation to 
Human agent. 

Sr No Factor Notation Score

1 Hazmat ph 1 (Yes - R) , 0 (No , S or H)

2 Part nature pn 1 (Yes - R) , 0 (No , S or H)

3 Retail Value hrv 1 (Yes - R) , 0 (No , S or H)

4 Accuracy pa 1 (Yes - R) , 0 (No , S or H)  

Table 10: Summary of part and process factors 

One of the important factors also considered by Schmidbauer [66], is also the learning 
factor which represents that in case a worker is new and in the learning curve and have 
not reached the desired learning break even representing that the task will be allocated 
to the human. 

4.2 Visualization 

Based on the analysis conducted using the factors described in Section 4.1, the 
scenario is then visualized using either traditional or digital methods and further 
evaluated. This work focuses on digital visualization and evaluation and hence these 
methods are discussed in the upcoming sections. 

4.2.1 Digital Simulation  

Process simulation tools for ergonomics offer several advantages in evaluating and 
optimizing ergonomic factors within industrial settings. These tools provide a digital 
representation of the production processes, allowing for a comprehensive analysis of 
human interactions, movements, and work conditions. By integrating ergonomics into 
process simulation, it becomes possible to assess the impact of various factors on 
worker comfort, safety, and efficiency. Process simulation tools help evaluate 
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alternative process designs, identify potential bottlenecks, and assess the impact of 
process changes on ergonomics, productivity, and overall operational efficiency. Some 
of the popular platforms used are Technomatix Process Simulate by Siemens, DELMIA 
by Dassualt systems and Ema Work and Plant designer by imk Automotive GMBH. 

I. Technomatix Process Simulate  

Process Simulate, developed by Siemens, is a digital ergonomic simulation platform 
focused on industrial manufacturing processes. It allows for the simulation and analysis 
of human tasks and interactions within a virtual production environment. Process 
Simulate enables users to optimize ergonomic conditions and ensure efficient and safe 
manufacturing operations. Process Simulate uses the Jack and Jill digital human 
models. By utilizing a broad set of international anthropometric databases, these tools 
can effectively incorporate body dimensions and proportions specific to different 
regions and demographics, ensuring a comprehensive analysis [153]. 

These platforms help identify potential risks associated with awkward postures, 
excessive exertion, or repetitive movements, leading to informed design decisions and 
interventions to mitigate ergonomic issues as seen in Figure 22.  

 

Figure 22:Posture selection for human model [72] 

Process simulate uses RULA for the ergonomic assessment. Its analyses the upper 
limb for each of the posture and gives a specific score divided into the left and right 
limb ranging from 0-6 (0 being lowest and 6 being highest). It also represents the torso 
flexion as seen in red, alerting the high flex in torso which is unergonomic. 

II. DELMIA  

The platform DELMIA by CATIA is an integrated platform that allows the 3D CAD 
models built using CATIA to be used for DELMIA simulation platform. It provides tools 
and analysis techniques to assess factors like reach, vision, clearance, and space, 
enabling designers to optimize workstations and ensure optimal human-machine 
interactions. The software also facilitates the reduction of physical prototypes by 



  58 
 

enabling virtual validation of worker interactions within the work cell, saving time and 
costs. Its enhanced ease of use ensures rapid deployment, making it accessible and 
efficient for ergonomic analysis. It has the feature to dive deep and conduct an 
ergonomic assessment of each of body parts giving a detailed analysis as seen in 
Figure 23, an analysis for the forearm is being done. 

 

Figure 23: Ergonomic analysis in DELMIA [72] 

III. Ema Work Designer  

EMA Work Designer by IMK Automotive GmbH offers a comprehensive solution for 
designing and optimizing workstations and assembly lines with a focus on ergonomics. 
By leveraging digital design, ergonomic analysis, virtual validation, and collaboration 
features, the platform aims to enhance worker well-being, productivity, and overall 
operational efficiency. It allows flexibility in choosing various anthropometric data as 
seen in Figure 24.  

 

Figure 24: Human model selection in Ema Work designer (Own figure) 

Once the environment and activity description have been created, the scenario can be 
simulated. The simulation utilizes the user input to generate a 3D simulation of the 
planned workflow and generates motion sequences for the avatars involved. 
Additionally, complex dependencies such as time synchronization and human-
machine interactions are accurately represented, facilitating better planning. It helps in 
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understanding the postures in a detailed analysis and uses EAWS and NIOSH method 
for ergonomic assessment.  

The digital simulation and evaluation platform used in this work will be the Ema Work 
designer due to the available license and prior experience in using the platform. In 
addition, EAWS will serve as an apt evaluation considering the factors identified for 
physical ergonomics.   

4.3 Evaluation  

The evaluation for ergonomics will be conducted across two ways, one using the digital 
evaluation tools using ema Work designer with EAWS and the empirical evaluation 
using developed evaluation index. In addition to the physical ergonomic evaluation, the 
cognitive load will be evaluated based on factors defined and enumerated. The 
detailed description of these methods is described in Section 2.3. 

Ema Work designer uses the EAWS methodology for ergonomic evaluation and 
supports cycle time analysis using spaghetti diagram. The EAWS evaluation as shown 
in Figure 25 considers the points of the posture, forces, and load handling.   

 

Figure 25:Sample EAWS Ergonomic assessment in Ema Work designer (Own figure) 

The cognitive ergonomic evaluation is considered by computing the Mental Workload 
Index (MWLI). Strain index (SI) is a common method to evaluate the ergonomic 
workload including the workload, forces, postures, and strain on the muscles of the 
worker performing tasks [162]. A similar evaluation is also conducted by using the 
CLAM methodology for cognitive load assessment [163]. However, this works deal with 
improvising and optimizing the make span, energy, time taken and mental workload. 
However, the term mental workload in this work is left ambiguous and does not define 
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the sub-factors impacting or affecting the mental workload. Based on the factors 
discussed in Section 3.3 the MWLI is defined as a product of mainly five factors as 
described in Table 11. 

Factor Notation Scale Description 

Task demand Td 1-5 1 – Task is not mentally demanding 
5 - Task is highly demanding 

Level of performance Lp 1-5 

1 – No extra effort needed to keep 
up to the expected performance  

5- Very high effort needed to reach 
the level of performance 

Level of resources Lr 1-5 

1 – No extra resources needed to 
complete the task in the desired 

level and time  
5 – Most resources to bridge the 

gap in performance  

Level of information 
processing Li 1-5 

1 – No information processing or 
acquiring needed to complete the 

task 
5 – Task requires high level of 

information acquiring and 
processing  

Level of decision 
making Ld 1-5 

1 – No decision making required in 
the process 

5 – Frequent decision making 
required 

Table 11: Cognitive evaluation factors (Own table) 

i) Task Demand (Td) 

Task demand is the ask or insistent request of the task that requires cognitive 
interference by human. ElMaraghy et al. [180] models empirically the task complexity 
in engineering design, product development and manufacturing processes. They 
describe the nature of static and dynamic complexity in tasks. Task demand is highly 
dependent on the complexity of the task and assembly at hand. For instance, screwing 
task would not be considered highly demanding, however fixing solar cells in a panel 
could be more demanding. The irony here still being that the demand is highly 
subjective in nature. It is dependent on factors like the learning curve/level, experience 
of the worker in the same process as well as attributes to some extent on the 
personal/organizational circumstances. 

Jang and Park [181] describe and evaluate the task complexity measurement metric 
(TACOM) as a function of the task scope, structure, and uncertainty. They consider 
each of these metrics as a dependent score based on the weighted summation of 
information, number of actions, sequence of actions, knowledge, and the overall 
resources. These factors encompass accurately the cognitive portfolio and the task 
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demand based on complexity of the task. The TACOM adopted from [181] is described 
as 

Equation 1 

ܯܱܥܣܶ =  ට൫0.621 ௦ܶଶ൯ + ൫0.239 ௦ܶ௧ଶ൯ + (0.14 ௨ܶଶ)                  
Ts = 0.284 * Number of Actions (N) + 0.716 * Level of information processing (Li) 

Tst = 0.109 * Learning level (α) + 0.891 * logical sequence of actions (sa) 

Tu = Level of predictability/confidence in a task  

Learning level (α) is defined as a gap of the current learning level with respect to the 
desired company and/or task specific learning level. Schmidbauer [66] as shown in 
Figure 26, extrapolates a desired reference value xc necessary to be obtained and 
defined by individual task and the initial execution time t1. 

 

Figure 26: Learning curve [66] 

Tu the level of confidence is defined using the confidence probability curve for 
conducting the task at hand without exerting more time in thinking or perceiving any 
aspect of the task. The basic concept of confidence curve is adopted using the 
probability of successful decision making that results in higher level of confidence and 
hence cognitive load [186]. 

In [181] , the overall TACOM score is compared with the probability of an unsafe act, 
however in this work we will relate the TACOM score to the overall cognitive load. The 
TACOM scale is defined from 0 - 4.5 with an interval of 0.5 in the analysis by Jang and 
Park [181]. In consideration for cognitive load assessment the scale will be related to 
the evaluation in Table 10 as described below in Table 12. 

 

 



  62 
 

TACOM Score Task Demand Score 
0 – 2.5 1 

2.5 – 3.0 2 
3.0 – 3.5 3 
3.5 – 4.0 4 
4.0 – 4.5 5 

Table 12: Task demand cognitive score 

ii) Level of performance (Lp) 

Level of performance correspond to the “extra cognitive effort” needed to keep up with 
the desired level of performance. In more ways than one, the extra effort needed to 
keep up with the level of performance is governed by the task demand, nature of task 
and hence the task complexity. Mental effort is a highly broad and subjective term and 
Steele in his work in [182] rhetorically questions if at all mental effort is quantifiable. He 
also describes “Given how widely effort as a concept is employed in the cognitive 
sciences it seems that there should be interest in more precisely defining it, and as 
such improving the ability to consider how appropriate proposed.” Effort as an abstract 
concept is the gap between capacity and demand and can be modelled as a function 
of Capacity (C), Demand (D), for a task Pn, in time (t) such that En (Pn, tn, Cn, Dn). Effort 
is most frequently scoped as a percentage numerically to bridge the gap between the 
Capacity and demand.                                                 

Equation 2 

௡ܧ = ௡ܥ௡ܦ  ∗ 100 %                                                  
The Rasch model has been highly popular in empirically defining the demand and 
capacity as a logarithmic relation [182][185]. According to Rasch’s model                                                        

Equation 3 

௦ܲ =  ݁(஼೙ష ஽೙)1 +  ݁(஼೙ି஽೙)                                                    
Ps is the probability of taking the correct decision as a logistic function of capacity and 
demand. This however defines the probability of carrying out a task successively which 
is highly dependent on the factor representing Cn – Dn, which is closely defined as the 
cognitive effort. The higher the difference between the capability and demand, the 
higher the effort needed to complete the task and the lower the probability of 
successive decision making and vice versa. Hence capacity and demand highly and 
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closely relate to the overall cognitive effort and decision-making success. The scores 
obtained from Equation 2 are then normalized to the cognitive score as in Table 13. 

 
Score (%) Level of performance 

Score 
0 – 50 1 

50 - 100 2 
100 - 150 3 
150 - 200 4 

>200 5 

Table 13: Level of performance (Lp) score 

The percentage score represents the ratio of En in percentage. For instance, a score 
of 150% suggests that 1.5 times the current effort is needed to meet the desired 
process demand, incurring higher cognitive load.  

iii) Level of resources (Lr) 

Level of resources links back to the training needed. This metric emphasizes on the 
need of extra cognitive resource mainly in the form of training to meet the desired level 
of performance. Level of resources directly link to the training level as described in 
Task demand and Figure 26. 

iv) Level of information processing (Li) 

Level of information processing suggests the use of working memory12 to memorize 
the sequence of actions, or any extra information needed to complete the task. 
According to the Cognitive Load theory, the working memory would decay over time 
unless repetitive attention is enforced [183]. Oberauer and Lewandowsky [187] define 
that the cognitive load is a factor of time-based information processing represented as 
a ratio of the duration of attention, number of times it is needed and the overall available 
time to achieve the level of performance. The level of information processing relates to 
the working memory and the number of times information processing was needed in 
the task represented by Equation 4.                                                       

 
12 Working memory is defined as the limited capacity cognitive system that enables temporary storage 
for limited information to perform complex cognitive tasks such as learning and reasoning [183].  
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Equation 4 

௜ܮ = ௔ݐ ∗ ܰܶ                                                             
Where ta represents the time duration for which attention is needed to process the 
information, N the number of times information processing is needed in the overall 
process and T being the total demanded time to complete the task. The scores 
obtained are normalized as seen in Table 14 to meet a scale range of 1-5. 

 
Score (%) Level of 

information Score 
0 – 20 1 

20 – 40 2 
40 – 70 3 
70 – 85 4 

85 – 100 5 

Table 14: Level of information (Li) score 

v) Level of decision making (Ld) 

Some process has sub tasks that require decision making irrespective if the task is 
done by human or the robot counterpart. Increased frequency of decision making 
requires higher cognitive attention exerting higher cognitive load. Any et al. [184] 
describes entropy as a method in describing the cognitive model. Similar thought is 
also raised in [66].Computing the task demand and level of performance already 
describe the decision-making metric as an important one in measuring the overall 
cognitive load. Number of times decision making occurs is directly found proportional 
to the overall cognitive load. However, decision making also impacts the cognitive load 
based on the level of information processing needed in working memory, task demand 
and cognitive effort added. Overall load based on decision making is defined as                                          

Equation 5                                                   ܮௗ௜ =  ௗܰ ; such that Nd > 0                                          

                                                If Nd = 0, Ldi = 0                                            

Where Nd represents the number of times decision making is needed in the overall 
process. However, the cognitive load is not only a function of the number of times 
decision making is done but also a function of the successful decision making over 
time. Therefore,                                                  
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Equation 6 

ௗ௜ܮ                                                = ܲ(݅) =  ௗܰ  ∑ ௜ܲ௜                                             
Where Nd is the number of decisions and Pi is the probability of successful decision 
taken [182].The final Ld score for overall cognitive evaluation is then summarized as 
seen in Table 15. 

Score (%) Level of decision-making 
Score 

0 – 20 1 
20 – 40 2 
40 – 70 3 
70 – 85 4 

85 – 100 5 

Table 15: Level of decision making (Ld) score 

The raw score is calculated considering the overall percentage of the score from the 
maximum possible score. The max score is calculated based on the number of times 
decision making is done (Nd) as a share of the total number of steps in the task (Nt), 
considering successful decision making each time and the Nd is based on the duration 
of entire shift. 
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5 Implementation and evaluation  
The use case considered in this work is for the assembly of a ski board. The assembly 
consists of the ski board, the brackets (2 pairs of 2 types) and screws to fix the brackets 
and complete the ski assembly. The assembly steps of the application are described 
in the modified Event-driven process chain diagram (EPC) described in Figure 27. 

 

Figure 27: Event-driven process chain diagram (AS-IS) (Own figure) 

Based on the designed process map the task is given the nomenclature from P1 – P11 
as summarized below in Table 16. The following factors for the task analysis are 
assumed.  

i) The weight of the ski board is considered as 3 kg and the bindings as 2 kg, with 
a total weight of the assembled ski as 5 kg [179] 

ii) Number of ski’s assembled in a day are assumed to be 100 as it is seasonal in 
nature 

iii) Average hourly wage in Austria as € 28 for skilled workforce [193] 
iv) The cost of cobot is assumed to be € 25000, cost of peripherals as €10000, 

installation and software cost as € 3000. 
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 Number Task 

P1 Pick and place up the ski board on 
the assembly table 

P2 Pick and place the Binding 1 on the 
ski board 

P3 Pick and place the Binding 2 on the 
ski board 

P4 Pick and place screws on the slots in 
the bracket 

P5 Pick the screw driver and screw the 
brackets on the ski board

P6 Pick and place second pair of 
Binding 1 on the ski board 

P7 Pick and place second pair of 
Binding 2 on the ski board 

P8 Pick and place screws on the slots in 
the bracket 

P9 Pick the screw driver and screw the 
bindings on the ski board

P10 Inspecting the assembly for any loose 
brackets or screws

P11 Place the assembled ski board on the 
drop area  

Table 16: Task summary and nomenclature for task allocation 

5.1 Task analysis and allocation   

Considering the factors analyzed and designed in Section 4.1, the tasks from P1 to 
P11 will be allocated. The task analysis is carried out based on the human factors, 
robot analysis, part and process analysis and efficiency analysis and finally 
summarized with the values.  

5.1.1 Human Task analysis  

The human factors are analyzed based on the physical, cognitive, and organizational 
ergonomic factors described in the earlier section. Considering these factors, the 
analyzed factors are summarized in Table 17. 

Factor P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Load 0 0 0 0 0 0 0 0 0 0 0

Frequency 0 0 0 0 0 0 0 0 0 0 0
Duration 0 0 0 0 0 0 0 0 0 0 0
Reach 0 0 0 0 0 0 0 0 0 0 0
Action 1 0 0 0 0 0 0 0 0 0 1  

Table 17: Human Task analysis 
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5.1.2 Robot task analysis  

Robot task analysis revolves around four aspects of reachability, critical issues, 
payload, and collision risk. Based on these factors, the analysis for each of the task is 
carried out in Table 18. 

Factors P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Reachability 1 0 0 0 0 0 0 0 0 0 1

Critical issues 0 0 0 0 0 0 0 0 0 0 0
Payload 0 0 0 0 0 0 0 0 0 0 0
Collision 1 0 0 0 0 0 0 0 0 1 1  

Table 18: Robot task analysis 

5.1.3 Part and process analysis  

Considering the inherit nature of the part to be handled and the retail value including 
the outcome of the product is important in deciding the task allocation to either human 
or the robot agent. Based on these criteria, the task analysis for the example of Ski 
assembly is summarized in Table 19. 

Factors P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Hazmat 0 0 0 0 0 0 0 0 0 0 0

Part nature 1 1 1 1 1 0 1 1 1 0 1
Retail value 1 1 1 1 1 1 1 1 1 1 1
Accuracy 0 0 0 0 1 0 0 1 0 1 1  

Table 19: Part and process task analysis 

5.1.4 Task assignment  

The task assignment based on the criteria discussed in Section 5.1 is evaluated in the 
upcoming sections under two scenarios. The use case of ski assembly for this work 
does not have flexible sequence of options for showcasing multiple alternatives and 
their impact. Considering the boundaries of the capabilities, for instance the robot is fix 
mounted and hence the tasks of picking placing the ski from an area outside of its 
reach is not interchangeable and has to be done by a human agent (can be replace by 
automation, however that is not the scope of this work) and therefore the task allocation 
will be considered fixed. 

I. Scenario 1 
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Considering the task analysis and factors discussed in the previous sections, it is highly 
evident that task P1, P10 and P11, cannot be performed by the robot agent due to the 
reachability and existing capabilities available. 

Agent P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Human x x x x x x x
Robot x x x x  

Table 20: Task assignment Scenario 1 

In the task assignment hinted in Table 20, Task P4 and P5 hint at the possibility of a 
shared task. The first scenario deals with the use case of conducting the screwing 
application by the human and the robot agent picking and placing the brackets, this is 
further visualized and evaluated in Section 5.2 and 5.3 respectively under title Scenario 
1. 

II. Scenario 2 

Considering the limited flexibility, and exorbitant boundaries of the task analysis, 
Scenario 2 will only have the scope to explore the task switching opportunity of having 
the robot conduct the screwing application and the pick and place of ski bindings via 
the human. However, to have the robot to do only the screwing operation would require 
extended screw head that feeds screw and conducts the screwing operation [192]. 
Based on this, the task assignment for Scenario 2, will be changed as seen in Table 
21. 

Agent P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Human x x x x x x x
Robot x x x x  

Table 21: Task assignment Scenario 2 

5.2 Task visualization 

I. Scenario 1 

The task visualization is carried out using the Ema Work Designer which enables to 
design, simulate and closely replicate scenarios for the assembly process considering 
both productivity and ergonomics. The layout of the simulated process is shown in 
Figure 28. 
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Figure 28: Task visualization Scenario 1 (Own figure) 

The use case is directly adopted from the theoretical use case as a part of the Digital 
Simulation of Ergonomics and Robotics (DSER) course at TU Wien. In this use case, 
the human model used is a 50th percentile, German female (Aged 40 years). The 
anthropometric data at the 50th percentile is used to establish the median values within 
a normal distribution, providing a comprehensive representation of the entire range of 
values. As a result, these data are regarded as a suitable choice for estimation. Initially 
the task is directly visualized as the initial scenario. No improvements in any aspects 
are simulated. On completing and running the simulation, the work designer provides 
an overall ergonomic score as well as spaghetti chart and time analysis as seen in 
Figure 29. The overall cycle time includes the sequence without any improvements in 
the design layout or workplace and workstation design. 74.3  seconds was taken to 
complete the entire sequence of one assembly with an overall ergonomic score of 44 
as seen in Figure 32 as discussed in the further section. 
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Figure 29: Overall time analysis of the task – Scenario 1 (Own figure) 

II. Scenario 2 

In this scenario, the visualization involved a human performing the task of picking up 
and placing the two ski binding brackets, while the robot handled the screwing task. 
Figure 25 depicts how the human picks and places the ski binding on the ski marking 
area. 

 

Figure 30: Task visualization Scenario 2 (Left: Pick Binding; Right: Place Binding) (own 

figure) 
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The simulation was then monitored for the cycle time and ergonomic aspects 
(discussed in Section 5.3). Overall, the cycle time reduced by 19.25% in comparison 
to scenario 1 from 74.3 seconds to 60 seconds per ski assembly as seen in Figure 31. 
However, there are certain consequences for cost and minor impact on ergonomics as 
discussed further. 

 

Figure 31: Overall time analysis of the task – Scenario 2 (Own figure) 

5.3 Evaluation 

I. Scenario 1 

The evaluation is conducted for physical and cognitive ergonomics following the 
methodology described in Chapter 4. Physical ergonomics is directly supported using 
the EAWS score provided by the simulation tool as seen in Figure 32. The score of 44 
does not belong to the red zone, but there is some scope of possible improvements. 
The high score is constituted by the repositioning score. This score is related to the 
need for adjustments in hand postures and handling techniques when retrieving the 
ski from the euro pallet. Furthermore, points are attributed to posture-related issues, 
particularly related to the act of kneeling when picking up and placing the pallet. To 
address these concerns, modifications were made, including altering the orientation of 
the ski and adjusting the height of the table or pallet from which the ski is retrieved and 
placed. These changes are depicted in Figure 32 and have led to an improved physical 
ergonomic score of 22.5, which falls within the green zone. 
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Figure 32: EAWS score: Before (Left) and After (Right) for Scenario 1  

Cognitive ergonomics is evaluated based on the factors of Task demand (Td), level of 
performance (Lp), Level of resources (Lr), Level of information processing (Li) and Level 
of decision making (Ld) as discussed in Section 4.3. Working backwards on the 
cognitive evaluation, the Li is defined first.  

The tasks in the sequence do not require any information processing since the 
comprise of basic actions except for P10, where the human should inspect the final 
assembly for quality checks. The overall cycle time of task P10 is 2.8 seconds (ta) 
hence from the Equation 4, 

௜ܮ = ௔ݐ  ∗ ܰܶ  

=  ଶ.଼ ∗ଵ଻଴.ସ ௜ܮ   = 0.039 = 3.9%   
A total of 3.9% of the time stringent information processing is needed in the task which 
is considered normal and has an overall rating of 1. Similarly, the decision making is 
only required in task P10, and since the level of decision making is also dependent on 
the probability of successful decision making, it is considered that it is successful at 
least 85% of the time. The calculation is considered using the data from [187] and 
considering a growth of 6% year over year and hence manufacturing about maximum 
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of 150 ski boards per shift per station. The overall cognitive load based on decision 
making will be cumulated over time across the shift and hence it is important to 
consider the number of times the decision making is needed in the shift. However, it is 
also important to consider this as a ratio of the total duration for which the work is done, 
the decision making is needed in P10 which has a duration of 2.8 seconds (total of 420 
seconds) 

ௗ௜ܮ =  ௗܰ ∗  ෍ ௜ܲ௜  

=  150 ∗ ௗ௜ܮ  150 =  22500  
The score is scaled using the guidance shown in Table 15, and therefore the final 
normalized score for Ld is 1. The maximum possible score for Ldi is 2,47,500 (150 
*11*150), therefore the obtained Ldi is 9.09% which equals a score of 1. Since the task 
does not have sub tasks that require high skill or learning level, it is considered that 
the cognitive load due to the level of resources will be considered theoretically nil. The 
learning curve is reached for the associates doing the task, hence Lr is considered as 
1. 

The level of performance (Lp) as described is highly described as the effort needed to 
gap the demand considering the existing capacity. As described, the ski industry is 
slowly rising at a rate of 6% at least, hence as opposed to the current demand of 136 
ski per shift per station, the rise as considered earlier is 150 skis, therefore the extra 
cognitive effort is enumerated as 

௡ܧ = ௡ܥ௡ܦ  ∗ 100 % 

=  150136 ∗ 100 % 

௡ܧ =  110.29%  
This score than suggests that extra efforts must be put in to keep up the demand, and 
as hinted in Table 13 and the final score is considered as 3.  

Finally, the Task demand, TACOM is measured using the formula described in 
Equation 1.  

ܯܱܥܣܶ =  ට൫0.621 ௦ܶଶ൯ + ൫0.239 ௦ܶ௧ଶ൯ + (0.14 ௨ܶଶ) 
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Where 

Ts = 0.284 * Number of Actions (N) + 0.716 * Level of information processing (Li) 

Tst = 0.109 * Learning level (α) + 0.891 * logical sequence of actions (sa) 

Tu = Level of predictability/confidence in a task  

The level of confidence in conducting the task is highly dependent on the learning level 
(α). As described in Figure 33, assuming that the ideal learning level is 85% and is 
achieved, therefore Tu is 0.85. Another variable, sa describes abstractly on the 
percentage of task that are sequenced that can be altered, if for instance 20% of the 
tasks can be re-shifted, then sa is 80%. In the two scenarios explore in this work 4 of 
11 tasks are switched in the two scenarios hence 36% of the task can be shifted , 
making sa as 64%. Using this information,  

௦ܶ = (0.284 ∗ 6) + (0.716 ∗ 0.039) = 1.73  
௦ܶ௧ = (0.109 ∗ 0.85) + (0.891 ∗ 0.64) = ܯܱܥܣܶ 0.66 =  ඥ(0.621 ∗ 1.73ଶ) + (0.239 ∗ 0.66ଶ) + (0.14 ∗ 0.85 ଶ) ܶܯܱܥܣ = 1.4  

The score of 1.4 in the TACOM corresponds to an overall score of task demand (Td) 
as 1. Overall, the MWLI is then defined as an average of these scores as in Equation 
7.                                    

Equation 7 

ܫܮܹܯ                                            =  ௗܶ + ௣ܮ + ௥ܮ  + ௜ܮ + ௗ5ܮ                                        
= ܫܮܹܯ 1.48 

An overall cognitive score of 1.48 suggest being in the green zone (Green: <2, Amber 
2 – 3, Red  >3).  

The evaluation for ergonomics overall considered the physical, cognitive, and 
organizational ergonomic aspects discussed in Section 3.3, Table 9. 

The primary aim of the work in this thesis is the inclusion of human factors impacting 
ergonomics into task allocation framework. However, it is equally important to consider 
the consequences of the same on efficiency and economical analysis. While 
considering efficiency the major factors considered are time and cost invested in 
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performing and completing a task, and a similar approach will be followed for this study. 
The time and cost for both the human and robot will be calculated to do a particular 
task and the agent with the least cost and time will be selected. 

Human Cost (Ch) is considered as the product of time taken by the human in seconds 
(Th) and the cost per labor hour (CPLH) of the labor. It is identified as the cost the 
human takes to complete the task as demonstrated in Equation 8. 

Equation 8 

௛ܥ                                                                       = ்೓∗஼௉௅ுଷ଺଴଴                                              
Similarly calculating the cost for a robot to conduct will give a comparison between the 
overall economic picture of conducting an action. However, there are multiple factors 
to be considered when considering the cost for robots (Cr) ranging from setup to 
installation cost. There the basic cost will be calculated in a similar manner to human 
cost considering the Time taken (Tr) and Cost per robot hour (CRPH). Cost per robot 
hours is calculated considering the cost of setup, auxiliaries, installation and required 
peripherals. The cost of each of these aspects is calculated per part based on the 
processed volume in ways summarized below. 

Equation 9 

ܪܴܲܥ = ோ௢௕௢௧ ஼௢௦௧ ା ூ௡௦௧௔௟௟௔௧௜௢௡ ௖௢௦௧ ା ஼௢௦௧ ௢௙ ௣௘௥௜௣௛௘௥௔௟௦ ା ௌ௬௦௧௘௠ ௜௡௧௘௚௥௔௧௜௢௡ ௖௢௦௧ெ௔௫௜௠௨௠ ௩௢௟௨௠௘ ௧௛௥௢௨௚௛௣௨௧ ௣௘௥ ௛௢௨௥                                            
Based on the CRPH, the robot cost is calculated as,                                                      

Equation 10 

௥ୀ ೝ்∗஼௉ோுଷ଺଴଴ܥ                                                                                                                          
In order to conduct the efficiency and economical analysis, the initial system and labor 
costs are already considered assumptions in the beginning of the section, however 
comparing the cycle time of doing the task is necessary. Based on these the time and 
cost for each of the tasks is summarized in Table 20 using Equations 1, 2 and 3 for 
Scenario 1. The time to complete the task is calculated using the MTM-UAS13 readings 
available in Ema Work designer. These costs depict the cost of a single cycle, since 
the maximum expected throughput is considered as 150 skis per shift, the total score 
is multiplied to 150.  

 
13 MTM stands for the Methods-Time Measurement, which is a standard technique used to analyse 
times required to perform a task. MTM-UAS is an extended standard of MTM used specifically for Europe 
[194] 
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Factor P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Th 10.4 - - - - 2.8 4.9
Ch 0.08 - - - - 0.02 0.04
Tr - 2.8 4.7 - - 2.8 4.7 - - - -
Cr - 0.02 0.04 - - 0.02 0.04 - - - -

18.4 18.2
0.14 0.14

 

Table 22: Efficiency analysis for Scenario 1  

Based on Equation 2, the CPRH is calculated as: 

ܪܴܲܥ = + ݐݏ݋ܥ ݐ݋ܾ݋ܴ + ݐݏ݋ܿ ݊݋݅ݐ݈݈ܽܽݐݏ݊ܫ  + ݏ݈ܽݎℎ݁݌݅ݎ݁݌ ݂݋ ݐݏ݋ܥ    ݎݑ݋ℎ ݎ݁݌ ݐݑ݌ℎ݃ݑ݋ݎℎݐ ݁݉ݑ݈݋ݒ ݉ݑ݉݅ݔܽܯݐݏ݋ܿ ݊݋݅ݐܽݎ݃݁ݐ݊݅ ݉݁ݐݏݕܵ 

=  25000 + 10000 + 300017  

ܪܴܲܥ =  ݏ݋ݎݑܧ 2235

In 2021, Austria manufactured 2.02 million ski boards [188]. Atomic, Fischer, Blizzard, 
Head and Kneissl represent the five market players [189][190] with largest share in ski 
market. It is assumed that 10% of the share is held by other players and on average 
each of these holds 18% of the market share, therefore manufacturing approximately 
350,000 skis a year. Average working hours per year as 2080 hours (40 h/week * 52 
weeks/year) and there are at least 10 assembly stations. 

Considering that the volume of the production and that ski is a seasonal product, it is 
beneficial to consider that the robot is employed as a service following the concept of 
Robot as a service (RaaS). Though Ai.nl [191] explain that the robot as a service cost 
about $8 per hour, for this use case we would still consider that the overall cost of the 
labor per hour and the robot per hour is the same.  

II. Scenario 2 

In comparison to scenario 1 for physical ergonomics, the EAWS score is 49.5 in the 
yellow zone with similar areas of high score as for the first scenario for positioning and 
handling of the parts. In this case since the human is now picking extra parts (ski 
bindings) it can be fairly said that the increase in the score is attributed to that. In this 
scenario, irrespective of the fact that the same improvements are done as in Scenario 
1, the repositioning error still prevails forbidding the EAWS score to be in the green 
zone as the bindings are picked by the human agent (4 times) which induces the 
repositioning factor.  

On the cognitive ergonomics aspect, just as the methodology is followed by Scenario 
1. Cognitive ergonomics is evaluated based on the factors of Task demand (Td), level 
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of performance (Lp), Level of resources (Lr), Level of information processing (Li) and 
Level of decision making (Ld). 

In this scenario, the information processing is not majorly required. The inspection 
(P10) like in Scenario 1 is still considered to have some level of information processing. 
In addition, since the ski binding is now placed by the human, it has to be placed over 
dedicated place in the ski framework hence task P2 and P7 will also incur some amount 
of information processing and retrieving. 

 

Figure 33: EAWS score: Before (Left) and After (Right) for Scenario 2 

  The overall cycle time of task P3, P6 and P10 is 9.2 seconds (ta) hence from the 
Equation 7, 

௜ܮ = ௔ݐ  ∗ ܰܶ  

=  ଽ.ଶ ∗ଷସଷ.ଽ ௜ܮ   = 0.629 = 62.9%   
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A total of 62.9% of the time some kind of information processing is needed in the task 
which is considered which has an overall rating of 3.  

Similarly, the decision making is also required in task P3, P6 and P10, and since the 
level of decision making is also dependent on the probability of successful decision 
making, it is considered that it is successful at least 85% of the time as in Scenario 1. 
Assuming 150 skis as the production rate per shift per station for reasons discussed 
earlier and total duration ta of 9.2 seconds then Ld is  

ௗܮ =  ௗܰ ∗  ෍ ௜ܲ௜  

=  150 ∗ 3 ∗ ௗܮ  150 =  67500   
The score is scaled using the guidance shown in Scenario 1 and Table 14, therefore 
the final normalized score for Ld is 2. Since the task does not have sub tasks that 
require high skill or learning level, it is considered that the cognitive load due to the 
level of resources will be considered theoretically nil. The learning curve is reached for 
the associates doing the task, hence Lr is considered as 1. 

The level of performance (Lp) as described is highly described as the effort needed to 
gap the demand considering the existing capacity. Considering the assumptions 
assimilated for Scenario 1, the En will be considered similar as in Scenario 1  

௡ܧ = ௡ܥ௡ܦ  ∗ 100 % 

=  150136 ∗ 100 % 

௡ܧ =  110.29%  
This score than suggests that extra efforts have to be put in to keep up the demand, 
and as hinted in Table 12 and the final score is considered as 3.  

Finally, the Task demand, TACOM is measured using the formula described in 
Equation 1.  

ܯܱܥܣܶ =  ට൫0.621 ௦ܶଶ൯ + ൫0.239 ௦ܶ௧ଶ൯ + (0.14 ௨ܶଶ) 

Where 

Ts = 0.284 * Number of Actions (N) + 0.716 * Level of information processing (Li) 
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Tst = 0.109 * Learning level (α) + 0.891 * logical sequence of actions (sa) 

Tu = Level of predictability/confidence in a task  

The level of confidence in conducting the task is highly dependent on the learning level 
(α). As described in Figure 21, assuming that the ideal learning level is 85% and is 
achieved, therefore Tu is 0.85. Another variable, sa is considered as 66% same as 
Scenario 1.  

௦ܶ = (0.284 ∗ 6) + (0.716 ∗ 0.629) = 2.15 

௦ܶ௧ = (0.109 ∗ 0.85) + (0.891 ∗ 0.66) = ܯܱܥܣܶ 0.66 =  ඥ(0.621 ∗ 2.15ଶ) + (0.239 ∗ 0.66ଶ) + (0.14 ∗ 0.85 ଶ) ܶܯܱܥܣ = 1.7  
The score of 1.7 in the TACOM corresponds to an overall score of task demand (Td) 
as 1. Overall, the MWLI is then defined as an average of these scores as in Equation 
11.                                                

Equation 11 

ܫܮܹܯ                          =  ௗܶ + ௣ܮ ௥ܮ + + ௜ܮ + ௗ5ܮ                                        
= ܫܮܹܯ 2.14 

An overall cognitive score of 2.14 suggest being in the amber zone (Green: <2, Amber 
2 – 3, Red  >3). Though it is not necessary to consider immediate actions for improving 
the score, since it is impacting the overall cognitive score, it should be considered that 
changes be made for ease of mental demand. 

Similar efficiency and ergonomic analysis are conducted for Scenario 2 as seen in 
Table 23. 

Factor P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Th 10.4 3.0 5.0 - - 3.0 5.0 - - 2.8 4.9
Ch 0.08 0.02 0.04 - - 0.02 0.04 - - 0.02 0.04
Tr - - - - - - -
Cr - - - - - - -

8.7 9.2
0.06 0.07  

Table 23: Efficiency analysis in Scenario 2 
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5.4 Discussion 

Two different scenarios were tested for overall feasibility of the devised algorithm.  In 
both the scenarios, the ski assembly task involves fixed task allocation due to the 
limited reachability of robot, where certain tasks cannot be performed by the robot 
agent. In Scenario 1, the task of picking and placing the ski binding is assigned to the 
robot and in Scenario 2, the scope is to explore task switching opportunities with the 
robot conducting screwing operations and the human performing pick and place task 
of the ski binding. The evaluation is done through ergonomic aspects, considering 
physical and cognitive ergonomics and secondarily, the cycle time and efficiency are 
also compared. 

In Scenario 1 and 2, the task analysis indicates that tasks of picking and placing the 
ski from another table (P1, P10, and P11) cannot be performed by the robot due to 
reachability limitations. Simulation results in Ema Work designer for Scenario 1 
indicate an overall ergonomic score of 44, with an overall cycle time of 74.2 seconds 
for one assembly. Subsequent improvements in design, such as changing the 
orientation of the ski and adjusting table height, lead to a physical ergonomic score 
improvement to 22.5, indicating green zone status. On the other hand, Scenario 2 
depicts an overall initial physical ergonomic score of 49.5 and cycle time of 60 seconds 
for one assembly. The cycle time reduces by 19.25% compared to Scenario 1. Same 
improvements in the design and layout for visualization conducted in Scenario 2 
resulted an improvement of 27.5, with an amber status. Though the cycle time in 
Scenario 2 is less, the physical ergonomic score with EAWS remains in the amber 
zone. This is attributed to the allocation of pick and place of ski bindings (P2, P3, P6 
and P7) to the human agent that requires them to walk, bend, twist, and handle load 
of the binding over a period of the entire shift. On the overall EAWS scale spectrum (0 
- >50), the difference between 23.5 and 27.5 is not significantly high. In a deeper 
comparison between load and forces for physical ergonomics in both cases is 
summarized in Table 24. 

Factor Scenario 1 Scenario 2
Posture score 2 2

Repositioning load 19.5 23.5
Shoulder raised 2 2

EAWS Score 23.5 27.5  

Table 24: EAWS Ergonomic score comparison 

The difference between both the scores is caused by the repositioning load score. The 
repositioning score is calculated as a product of the average weight handled in the 
cycle and the average number of times the load must be handled. Between both the 
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cases, since Scenario 2 assigns humans to pick and place the binding, additional 
weight is added to the overall cycle average weight as seen in Figure 34. 

 

Figure 34: Repositioning load score: Scenario 1 (Top) and Scenario 2 (Bottom) 

Cognitive ergonomics assessment is conducted based on factors like task demand, 
performance level, resources, information processing, and decision making 
mathematically computed for the MWLI. The resulting MWLI score is 1.48 on a scale 
of 1-5, indicating a green zone (<2) cognitive score in Scenario 1. However, in the case 
of Scenario 2, an overall MWLI score of 2.14 highlights the need to mitigate the risk by 
taking preventive measures. In comparison to Scenario 1, Scenario 2 results in a 
higher level of information processing (Li) and decision making (Ld) due to the task of 
picking and placing the ski binding in the correct order at the dedicated place for 
accurate assembly. In addition to the ergonomic scores for Scenario 2, it is also 
important to consider the additional costs needed for the screw driving end effector 
head which will add to the CRPH. Additional cost for CE14 certification of this setup 
individually and the application overall would increase the cost which is currently not 
considered in the analysis. Table 25 summarizes the overall difference in the two 
scenarios for Ergonomic factors. 

Factor Scenario 1 Scenario 2
EAWS Score 22.5 27.5

Task Demand (Td) 1.4 1.7
Level of performance (Lp) 3 3

Level of resources (Lr) 1 1
Level of information 

processing (Li)
1 3

Level of decision making 
(Ld)

1 2

MWLI 1.48 2.14  

Table 25: Evaluation summary 

 
14 CE mark on products and application signify that it meets the safety, health, and environment 
protection standards in the European Economic Area (EEA) [196] 
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The overall cost is also compared for both the scenarios, where Scenario 1 
theoretically incurs more cost for the activities conducted by the human with 63.7815 in 
comparison to 39 for Scenario 2, attributed to the additional time human takes for 
screwing together in comparison to the robot.  

 
15 The cost compared here is the cost of conducting the assigned activities based on the time taken for 
the whole shift. This does not indicate the cost of the labor or the cost for the assembly in monetary 
terms. 
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6 Conclusion and Outlook 
This Chapter will summarize the work discussed in the thesis, with conclusions, 
possible extension of the work and answer each of the pre-defined research questions 
in Chapter 1. 

6.1 Conclusion 

The aim of this work is to present a methodology to incorporate ergonomic factors in 
the task allocation strategy between human and robot agent. It defines a detailed 
framework by analysing factors to analyse the task in the sequence, assign task based 
on certain pre-defined hardcoded guidance, visualize the task using digital tools and 
finally conduct the evaluation for ergonomics and re-iterate this process unless the 
best task allocation is found considering productivity, efficiency, economic factors with 
focus on ergonomics.  

The framework is defined as a three-step paradigm including task analysis and 
assignment, task visualization and evaluation. Task analysis considers four major 
aspects in terms of defining hardcoded rules for task assignment viz, human factors, 
robot factors, part, and process factors and finally efficiency factors. On deciding the 
pre-assignment based on the hardcoded factors, the task is visualized using the digital 
simulation tool Ema Work designer. The evaluation framework then describes an 
evaluation score for physical ergonomics using the EAWS evaluation method and a 
cognitive and organizational ergonomics index to incorporate major factors discussed 
in Section 4.3.  

The initial step of task analysis encompasses the discussion on analysing factors 
based on the aspects of human, robot, part, process, and efficiency. The requirement 
of the thesis stem from the need of incorporating and optimizing the way tasks are 
allocated also considering the well-being of the human counterpart, however it is also 
important to consider the overall limitations of the robot and process to meet the 
demands of production.  

The following framework is tested on the Ski assembly use case demonstrated in the 
DSER course of TU Wien Institute of Management science course at TU Wien Pilot 
Factory, Industry 4.0. Implementing the framework on this use case demonstrates that 
the flexibility and agility of introducing ergonomic factors in the task allocation 
framework. It considers various factors for ergonomics across three domains of 
physical, cognitive, and organizational ergonomics. 
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The main research question of the thesis is addressed in the work by developing an 
overall ergonomic metric that help evaluating the overall efficacy of task allocation and 
follow the iteration process. 

“How can task allocation algorithms in human-robot collaboration be optimized 
for ergonomics?” 

The developed method incorporates the physical and mental (cognitive and 
organizational) load to alter and reinstate the task allocation which can be adaptive in 
nature and dynamic. Several task allocation strategies are discussed in Chapter 2 that 
provide a rather laid-back allocation methodology; this work delves into a rather flexible 
approach of considering human factors at the centre.  

The initial work presented in Chapter 3, studied the literature that present task 
allocation algorithms, however a clear gap existed in task allocation since they were 
majorly focused on the overall cost of the allocation with minimal focus of HFE, which 
is addressed in this work. Task allocation methods including physical ergonomic 
evaluation using standard ergonomic evaluation tools have been discussed, however 
no work presented incorporated mental workload into the task allocation. Several 
factors impacting and affecting the overall mental workload have been studied and 
incorporated to form a Mental workload index that evaluates the potential mental 
workload.  

In addition to this several sub research questions were laid down to understand more 
deeply how ergonomics can be allocated in the existing task allocation algorithms and 
what are the best ways to visualize these task sequences and allocation to get the best 
allocation results. The answers to these questions are described briefly in the 
upcoming text. 

I. What are the various methods for task allocation that can be analysed? 

Robotics and human-robot interaction improvements have all contributed to the 
evolution of human-robot job allocation. As jobs and robot capabilities got more 
complicated, sophisticated procedures started to take shape. Initially, fixed roles were 
allocated to people and robots based on their capacities. To improve team 
performance, these techniques considered human preferences, aptitudes, and 
experience. The use of collaborative methods that emphasize symbiotic human-robot 
interactions has grown in popularity. Task analysis and allocation are the two 
fundamental components of task allocation. Task analysis techniques include AND/OR 
graphs, A* graph search methods, and assembly sequence graphs. Deterministic and 
heuristic algorithms, compensating tactics, capability-aware strategies, and dynamic 
procedures utilizing tree structures are a few task allocation methodologies discussed 
in Chapter 3. Machine learning methods using MDP are also discussed in the literature 
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for more real-time task allocation. The strategy of task allocation in this work stand 
alone does not represent the dynamic task allocation strategy, it resonates to the 
capability and HFE based task allocation describing and considering the limitations 
and pros of each agent for a given task in the sequence.  

II. How will the task allocation method be modelled and visualized for 
ergonomics?  

Several works have been discussed in literature as highlighted in the state of the art 
that use A* graphs, precedence graphs, assembly graphs or even real time BPMN to 
visualize the task and assembly sequences. Task analysis strategies discussed in sub-
research question I serve the purpose of visualizing the task allocation; however, they 
are not specifically meant for visualization for ergonomics. This work, however, deals 
with exploring and adopting the use of digital simulation tools. The simulation tool used 
in this case enables detailed analysis of physical ergonomics and addresses some 
aspects of organizational ergonomics related to workplace and task design. The tools 
discussed in the work are Ema Work designer, Technomatix Process Simulate and 
DELMIA. By simulating the planned workflow and generating motion sequences for 
DHM, Ema Work Designer accurately represents complex dependencies, and human-
machine interactions, facilitating informed design decisions and interventions to 
mitigate ergonomic issues. This platform plays a crucial role in optimizing workstations 
and assembly lines, enhancing worker well-being, productivity, and overall operational 
efficiency. 

III. How can task allocation methods be evaluated for ergonomics? 

In contrast to the existing methods discussed in the literature in Chapter 2 mostly use 
the cost of each allocation sequence. Basis the summary in Table 7, only 22.80% 
(13/57) of the literature studied evaluated ergonomics in their task allocation strategy, 
however none of them addressed the mental workload in their evaluation, they were 
majorly based on evaluation of physical factors. The evaluation method in this work 
adapts to the major factors of ergonomics discussed in Section 3.3. specifically 
focusing on digital evaluation tools using Ema Work Designer with the EAWS 
methodology. Additionally, the cognitive load is evaluated using MWLI based on 
various factors. Ema Work Designer uses the EAWS methodology for ergonomic 
evaluation and supports cycle time analysis using the spaghetti diagram. The EAWS 
evaluation considers posture, forces, and load handling points to assess ergonomic 
factors. The cognitive load is evaluated MWLI, which considers factors like task 
demand, level of performance, level of resources, level of information processing, and 
level of decision making. The overall MWLI index not only encompasses the cognitive 
factors and organizational factors. Task demand and sequence of actions represent 
the organizational factors. The hardcoded factors used in task analysis are also used 
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for evaluating the overall task allocation strategy. The individual factors used to 
contribute to the MWLI can be considered during the design and allocation stage for 
allocating tasks incurring higher mental workload to the robot agent. Considering the 
bifurcation of ergonomic factors analyzed in Section 3.3, Table 26 summarizes the 
factors used in overall ergonomic evaluation discussed. 

Physical ergonomics Cognitive ergonomics Organizational ergonomics
Postures Mental workload (MWLI) Work design (sa)

Load Decision making (Ld) Task Complexity (Td)
Forces Effort (Lp) Task type (Li)

Repetitive movements Stress (Tu)
Workplace layout  

Table 26: Summary of ergonomic evaluation factors 

6.2 Outlook 

This section on Outlook highlight and delve into the probable areas and points where 
the work can be extended. It gives guidelines for further enhancement and applicability 
of the designated framework. 

To fully comprehend cognitive demands, mental workload evaluation in HCI uses both 
macro and micro methodologies. Macro methods evaluate the entire mental burden 
imposed by a system or task by considering task complexity overall, cognitive 
demands, and user experience. The user experience of cognitive burden is commonly 
captured by these assessments, which also frequently include user questionnaires, 
arbitrary ratings, and performance indicators. Micro methods, on the other hand, focus 
on more minute details, examining cognitive processes and brain responses using 
tools like eye tracking, EEG, EMG, and functional magnetic resonance imaging (fMRI). 
These techniques give light on how various design features and interactions affect 
mental burden, revealing insights into certain cognitive processes including attention, 
memory, and decision-making. Using both macro and micro perspectives allow for a 
complete strategy. The work presented in this thesis addresses the macro analysis of 
the mental load, however this can be extended and integrated to the micro techniques 
for a real time assessment and allow for dynamic task allocation.  

In addition to the micro methods in cognitive load measurement, the framework 
described in the work can also be used to gain the real time micro measurements of 
physical factors such as posture, load handling and duration of load. Integrating 
wearable technologies here directly into the visualization and simulation platform will 
be able to integrate with utmost efficacy the real time scenario and therefore be 
integrated to a more flexible and adaptable task allocation in human robot teams. 
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The factors task demand, level of performance, level of resources, level of information 
processing, and level of decision making are used to compute the overall MWLI. 
However, there are several aspects of these factors and task sharing that would impact 
the overall evaluation and should be worked upon. Frequent task switching can have 
a significant impact on cognitive load, affecting both the human performance and their 
mental workload. When individuals switch between tasks frequently, they need to 
mentally disengage from one task and re-engage with another. This cognitive shifting 
requires attentional resources to process the information, which can lead to increased 
cognitive load.  

The cognitive factors are interconnected and can influence each other. It is important 
to investigate how these factors overlap and interact, as their relationships can impact 
the overall cognitive load experienced by the human. This can be validated by 
exploring scenarios of optimizing one cognitive factor which may lead to a trade-off 
with another. For instance, achieving a high level of performance might require more 
information processing or decision-making, thereby increasing cognitive load. 
Correlations between different cognitive factors should also be analyzed to find, for 
example if higher task demand tends to be associated with increased decision-making 
requirements. It is also worthy to establish if there is a hierarchical relationship to 
establish which factors affect directly and via multiple layers to another factor. 

Additionally, the assumption of equal weighing for all cognitive factors might not 
accurately represent their real-world influence on cognitive load. Assigning appropriate 
weights to these factors can lead to a more accurate assessment of cognitive load and 
better predictions of how changes in task allocation or sequence might affect the 
human. Some ways to delve into this would be to conduct subjective evaluations with 
human agents, quantitative analysis using statistical methods or machine learning 
techniques to determine data driven weights for the cognitive factors. However, it is 
also important to derive whether the importance of these factors varies dynamically 
based on the context. For instance, certain tasks or sequences might have higher 
demands for information processing compared to decision making. 

Multiple factors like task demand (Td) and level of resources (Lr) use the learning curve 
as their base for mathematical calculations. However, one important factor to be 
considered is the forgetting curve and its overall impact on the learning curve and vice 
versa. The forgetting curve greatly studied by Hermann Ebbinghaus, a German 
psychologist in the early 90’s suggests that there are four phases of information 
acquisition and remembering. The initial learning phase helps us acquire information 
and strongly remember it, however there is a sharp decline in the retained memory 
level which is called the rapid forgetting phase. During the third phase called stable 
forgetting where the rate of memory loss slows down, and forgetting becomes more 
gradual. Ultimately, without reinforcement, memory retention reaches a memory 
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plateau, where it stabilizes at a certain level, and any further forgetting occurs at a 
slower pace [197].  It would therefore be critical and hence important to consider the 
rate of forgetting while modelling the factors involving learning curve and formulate the 
impact of each over the other. 

The framework of this work is tested end-to-end on one man team, though in the 
organizational factors summarized in Table 8 for human factors, there is a factor that 
considers human being allocated in a team with two robots, but the full potential of this 
condition is not explored in the use case demonstrated , however it can be extended 
not limited to the factor discussed but extending to the overall algorithm in terms of 
ergonomics to multi robot or human teams as this situation will impact ergonomics 
significantly. 
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