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CONVERGENCE ANALYSIS OF TIME-DOMAIN PMLS FOR 2D
ELECTROMAGNETIC WAVE PROPAGATION IN DISPERSIVE WAVEGUIDES
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Abstract. This work is dedicated to the analysis of generalized perfectly matched layers (PMLs) for
2D electromagnetic wave propagation in dispersive waveguides. Under quite general assumptions on
frequency-dependent dielectric permittivity and magnetic permeability we prove convergence estimates
in homogeneous waveguides and show that the PML error decreases exponentially with respect to the
absorption parameter and the length of the absorbing layer. The optimality of this error estimate is
studied both numerically and analytically. Finally, we demonstrate that in the case when the waveguide
contains a heterogeneity supported away from the absorbing layer, instabilities may occur, even in the
case of the non-dispersive media. Our findings are illustrated by numerical experiments.
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1. Introduction

In this paper we are interested in 2D time-domain dispersive wave propagation in unbounded (or semi-
bounded) waveguides. Typically, a medium is called dispersive if properties of waves propagating in it depend
on their frequency. Some examples of dispersive media include metals and metamaterials.

For simulating wave propagation in unbounded domains using classical numerical approximation methods
(finite differences, finite elements, Discontinuous Galerkin etc), the computational domain has to be artificially
bounded. The perfectly matched layer (PML) method, first introduced by Bérenger for Maxwell’s equations
(1994 [8] in 2D, 1996 [9] in 3D), is one of the most popular methods because of its efficiency and ease of
implementation. The idea is to surround the computational domain with an absorbing layer (the PML region)
so that the coupled system possesses the property of generating no reflections at the interface between the free
medium and the artificial absorbing medium. PMLs have been widely used for the simulation of time dependent
electromagnetic waves, as well as Helmholtz-like equations e.g., [10, 30, 41, 42, 48, 49, 52]. The method has been
then extended to various non-dispersive models (the paraxial wave equations [22], the linearized Euler equations
[28,34,35,47], elastic wave propagation in isotropic and anisotropic media [14,24,33], etc.) and dispersive models
[12,16,17,26].
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However, PMLs are known to produce instabilities when applied to some anisotropic [2, 14, 27, 35, 36, 39] or
dispersive [12,16,17,26] media. Some of these have been overcome in the above-mentioned works, however, the
question of stabilizing the PMLs remains model-dependent. Moreover, even in situations when the PMLs remain
stable, their error control is rather difficult, because of the interplay of the various parameters of the PML and
the discretization errors, see [5, 20,23,38].

Concerning the mathematical analysis of PMLs in the time-domain, there are mainly three questions of
interest : (i) the well posedness, (ii) the stability and (iii) the convergence. It is important to precisely specify
these notions: The PML model is well-posed if there exists a unique solution such that the 𝐿2-norm of the
solution can be bounded by some norm of the initial conditions multiplied by a constant 𝐶(𝑡) (which can
possibly grow exponentially in time). The stronger notion of stability imposes that the constant 𝐶(𝑡) does not
grow faster than some polynomial (𝐶(𝑡) ≤ 𝐶𝑡𝑘). Finally, the question of convergence consists of estimating
the error between the exact solution and the PML solution with respect to the PML parameters (typically
parameters of the damping function and the length of the layer).

The question of the well-posedness of PMLs has been addressed very early in [1] for Maxwell’s equations and
has been then shown in various papers for several models including general hyperbolic systems and for a general
non-constant damping parameters [1, 3, 4, 11,14,32,37].

Concerning the stability, the situation is quite different and depends on the model considered. As previously
mentioned, standard PMLs can give rise to instabilities for some anisotropic and/or dispersive models, as soon
as there exist backward waves in the direction of the absorbing layer (i.e. waves for which the projections on
the PML transverse direction of the phase and group velocities are of opposite signs [14]). In most of the papers
the stability analysis is done in a simplified setting where all the absorption parameters are constant, based on
Fourier or Laplace analysis or on energy techniques: see e.g. [4, 7, 11, 15, 27] for the non-dispersive scalar wave
equation or Maxwell’s equation, [14, 29] for elastic wave, [28, 36, 39] for aeroacoustics, and [12, 16, 17] for some
dispersive models. Note that in [4, 14] general hyperbolic systems are also considered.

Up to our knowledge the only two works where the stability and convergence of PMLs for arbitrary (non-
negative) absorption parameters were proven are the article by Diaz and Joly [28] and in our previous work [13].
In [28], the authors construct an explicit representation of the solution using the fundamental solution for the
PML system for the 2D acoustic wave equation based on the Cagniard-de-Hoop contour deformation method
and the method of reflections. Then they derive convergence estimates for the PMLs, which, according to the
numerical experiments, are close to optimal. In [13], the case of a 3D acoustic waveguide is considered and
again some convergence estimates are obtained from explicit representations of the solution, based on modal
decompositions and some energy-like Laplace domain arguments.

In the present paper, we aim at extending the stability and convergence results obtained for a non-constant
absorption parameter in [13] to the case of isotropic dispersive semi-infinite waveguides. A very important
example of such media are metamaterials, i.e. artificial composite materials having extraordinary electromag-
netic properties. In particular, Negative Index Metamaterials (NIMs), also called left-handed media or double
negative metamaterials, have negative permittivity and permeability at some frequencies due to microscopic
resonating structures [46]. Since the 1990s, NIMs are the subject of active research due to their promising appli-
cations [25]: superlensing, cloaking, improved antennae, etc. Even in isotropic media in the free space, NIMs
naturally support backward waves (at least in some range of frequencies), which leads to instabilities of the
standard PMLs. Some generalized PMLs have been introduced to overcome these instabilities, see [17]. The
key point is to introduce a damping parameter which depends on the frequency 𝜔 so that it can be adapted
to the presence of backward waves. The stability of these generalized PMLs have been analysed for a constant
absorption parameter (for the free space) in [17] using Fourier techniques and in [12] using Laplace techniques.

We proceed as follows. Section 2 is dedicated to the presentation of the problem, and listing as well as deriving
new properties of the dispersive media crucial for our analysis. We recall the generalized perfectly matched layers,
introduced in [26] and further generalized in [17] and studied in [12]. Section 3 is of technical nature and is
dedicated to a discussion of the well-posedness of the PML problem for the dispersive media, as well as deriving
an explicit representation of the solution. Section 4 presents the convergence analysis. Section 5 is dedicated to



CONVERGENCE ANALYSIS OF TIME-DOMAIN PMLS 2453

the case when the waveguide is no longer homogeneous. We study the cases of waveguides composed of piecewise-
constant non-dispersive and dispersive media, and, using semi-analytic arguments, demonstrate that in general,
perfectly matched layers, even while being stable for the homogeneous media, may exhibit instabilities in the
presence of the compact perturbations away from the PMLs. Finally, we finish our exposition with numerical
experiments in Section 6 and conclusions in Section 7.

2. Problem setting

2.1. Physical preliminaries and the scope of the problem

Let R+ := {𝑥 ∈ R : 𝑥 ≥ 0} and R+
* = {𝑥 ∈ R : 𝑥 > 0}. We consider electromagnetic wave propagation in

the two-dimensional semi-unbounded dispersive waveguide Ω = R+
* × (0, ℓ), ℓ > 0, whose boundary is denoted

by Γ and the respective exterior normal by 𝑛 = (𝑛𝑥, 𝑛𝑦)𝑇 . In particular, we study the TM system of Maxwell’s
equations for the electromagnetic field 𝐸 = (𝐸𝑥, 𝐸𝑦)𝑇 : R+ × Ω → R2 and 𝐻 : R+ × Ω → R:

𝜕𝑡𝐷 − curl𝐻 = 0,
𝜕𝑡𝐵 + curl 𝐸 = 0, in R+

* × Ω,
(M)

which we later on equip with initial and boundary conditions (the results of the paper will extend naturally to
the case when there are source terms in the formulation (M)).

The relations between the electric induction 𝐷 and the electric field 𝐸, and between the magnetic induction
𝐵 and the magnetic field 𝐻 are given in the Laplace domain. To describe them we introduce the Laplace
transform, defined for causal (i.e., vanishing on R−* ) functions 𝜑 ∈ 𝐿1(R) by

𝜑(𝑠) = (ℒ𝜑)(𝑠) =
∫︁ +∞

0

e−𝑠𝑡𝜑(𝑡) d𝑡, 𝑠 ∈ C+
* = {𝑧 ∈ C : Re 𝑧 > 0} .

Provided the respective dielectric permittivity and magnetic permeability of the medium 𝜀, 𝜇 : C+
* → C, we

equip the system (M) with the constitutive laws

�̂�(𝑠,𝑥) = 𝜀(𝑠)𝐸(𝑠,𝑥), �̂�(𝑠,𝑥) = 𝜇(𝑠)�̂�(𝑠,𝑥). (1)

Rewriting the system (M) in the Laplace domain in its second order formulation for the field �̂� yields in
particular the scalar wave equation (where we assumed that the initial conditions vanish):

𝑠2𝜇(𝑠)𝜀(𝑠)�̂� −Δ�̂� = 0 in Ω. (2)

The dielectric permittivity and the magnetic permeability are such that in the time domain the constitutive
relations (1) can be written in the form of convolutions of causal tempered distributions, which a priori requires
that 𝜀 and 𝜇 are analytic in C+

* :

𝐷 = 𝜀(𝜕𝑡)𝐸 = ℒ−1(𝜀(𝑠)�̂�), 𝐵 = 𝜇(𝜕𝑡)𝐻 = ℒ−1(𝜇(𝑠)�̂�). (CR)

In the following paragraph we will discuss various properties that may be satisfied by 𝜀 and 𝜇, which will
be important at different stages of the analysis. Some of these properties have been already studied in the
literature and/or have some physical meaning behind, cf. [12, 19], while some of them seem to be of a more
technical nature.

Let us remark that here we work in the dimensionless setting of the Maxwell’s equations, where the dielectric
permittivity of the vacuum and its magnetic permeability are 𝜀0 = 𝜇0 = 1.
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2.1.1. Properties of the dielectric permittivity, the magnetic permeability and the relation between them

We call the media dispersive if the dielectric permittivity 𝜀 and/or magnetic permeability 𝜇 depend on the
Laplace frequency 𝑠 non-trivially. Otherwise, if 𝜇(𝑠) = 𝜀(𝑠) = 1 in C+, we will call the media non-dispersive.
We will restrict our considerations to the materials satisfying the following mathematical assumptions. Let
𝜂 : C+

* → C denote 𝜀 or 𝜇. We call a function 𝜂 which is analytic in C+
*

– time-real, if 𝜂(𝑠) = 𝜂(𝑠), for all 𝑠 ∈ C+
* .

This property is related to the fact that ℒ−1𝜂(𝑠) is a real-valued causal distribution.

– passive if

Re(𝑠𝜂(𝑠)) > 0, for all 𝑠 ∈ C+
* . (P)

Passivity is related to the stability of the problem, as discussed in e.g. [12, 19]. When written with the
Fourier transform convention, rather than the Laplace transform one, with 𝑠 = −𝑖𝜔, it reduces to requiring that
Im(𝜔𝜂(−𝑖𝜔)) > 0 for 𝜔 ∈ C with Im(𝜔) > 0, i.e. that 𝜔𝜂(−𝑖𝜔) is a Herglotz function.

– non-dispersive at high frequencies if, for all 𝛼 ∈ (−𝜋
2 ,

𝜋
2 ), lim𝑅→+∞ 𝜂(𝑅e𝑖𝛼) = 1.

The above properties have already appeared in the literature, cf. e.g., [19] (with a slightly different formulation
of the non-dispersivity at high frequencies).

Definition 2.1. We will call the function 𝜂 : C+
* → C admissible if 𝜂 is analytic in C+

* , time-real, passive and
non-dispersive at high frequencies.

In the present paper we will limit our discussion to admissible materials.

Assumption 2.2. The functions 𝑠 ↦→ 𝜀(𝑠) and 𝑠 ↦→ 𝜇(𝑠) are admissible.

It can be shown, see [19], that this class of materials includes the media considered in the Ph.D. thesis [50],
some results of which are summarized in the article [17], where the perfectly matched layers were constructed for
non-dissipative media. The idea of [17] was extended to more general media, including in particular materials
satisfying the above assumption, in [50].

A standard example of such media is given by so-called Lorentz materials:

Definition 2.3. The medium (𝜀, 𝜇) is called Lorentz, if

𝜀(𝑠) = 1 +
𝑁𝜀∑︁
𝑗=0

𝜀𝑗

𝜔2
𝜀,𝑗 + 𝑠2

, 𝜀𝑗 > 0, 𝜔𝜀,𝑗 ≥ 0, 𝑗 = 0, . . . , 𝑁𝜀, 𝑁𝜀 ∈ N,

𝜇(𝑠) = 1 +
𝑁𝜇∑︁
𝑗=0

𝜇𝑗

𝜔2
𝜇,𝑗 + 𝑠2

, 𝜇𝑗 > 0, 𝜔𝜇,𝑗 ≥ 0, 𝑗 = 0, . . . , 𝑁𝜇, 𝑁𝜇 ∈ N.

In the particular case when 𝑁𝜀 = 𝑁𝜇 = 0 and 𝜔𝜇,0 = 𝜔𝜀,0 = 0, the corresponding medium is called Drude.

Lorentz media are non-dissipative: plane waves propagate rather than decay in such media.

Example 2.4. Other examples of dispersive media are given e.g. by

– Havriliak–Negami dielectrics (see [31]):

𝜀(𝑠) = 1 +
𝜀0

(1 + (𝑠𝜏)𝛼)𝛽

with 𝜏, 𝛼, 𝛽 > 0, which reduce to Cole–Cole dielectrics (see [21]) for 𝛽 = 1, and
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– dissipative Drude materials:

𝜀(𝑠) = 1 +
𝜀0

𝑠2 + 𝛾𝜀,0𝑠
, 𝜇(𝑠) = 1 +

𝜇0

𝑠2 + 𝛾𝜇,0𝑠
, 𝛾𝜀,0, 𝛾𝜇,0 > 0.

It can be shown that any (even dissipative) medium that satisfies Assumption 2.2 can be viewed as a general-
ization of the Lorentz materials. More precisely, repeating the proof of Theorem 4.5 in [19] almost verbatim,
one obtains the following refinement of the famous Herglotz–Nevanlinna representation theorem.

Theorem 2.5 (cf. Theorem 4.5 in [19]). Let 𝜂 : C+
* → C be analytic, passive, time-real and satisfy lim

𝑟→+∞
𝜂(𝑟) =

1. Then there exists a Borel regular measure 𝜈 s.t.

𝜂(𝑠) = 1 +
∫︁

R

𝑑𝜈(𝜉)
𝜉2 + 𝑠2

, 𝑠 ∈ C+
* , with

∫︁
R
𝑑𝜈(𝜉)/(1 + 𝜉2) <∞.

An immediate corollary of the above is

Lemma 2.6. Let analytic 𝜂 : C+
* → C be admissible (cf. Def. 2.1). Then

Re(𝑠𝜂(𝑠)) ≥ Re 𝑠, 𝑠 ∈ C+
* . (3)

Another technical property that we encountered during the analysis is stated in the lemma below.

Lemma 2.7. Let analytic 𝜂 : C+
* → C be admissible (cf. Def. 2.1). Then

Re(𝑠𝜂(𝑠)) ≥ Re(𝑠) max {|𝜂(𝑠)|, 2− |𝜂(𝑠)|} , for all 𝑠 ∈ C+
* . (MP)

Proof. First of all, by Theorem 2.5,

Re(𝑠𝜂(𝑠)) = Re 𝑠
(︂

1 +
∫︁

R

|𝑠|2 + 𝜉2

|𝑠2 + 𝜉2|2
d𝜈(𝜉)

)︂
. (4)

A straightforward computation yields⃒⃒⃒⃒∫︁
R

d𝜈(𝜉)
𝑠2 + 𝜉2

⃒⃒⃒⃒
=
⃒⃒⃒⃒∫︁

R

𝑠2 + 𝜉2

|𝑠2 + 𝜉2|2
d𝜈(𝜉)

⃒⃒⃒⃒
≤
∫︁

R

|𝑠|2 + 𝜉2

|𝑠2 + 𝜉2|2
d𝜈(𝜉) =: 𝑝(𝑠).

Obviously,
1− 𝑝(𝑠) ≤ |𝜂(𝑠)| ≤ 1 + 𝑝(𝑠), and also 2− |𝜂(𝑠)| ≤ 1 + 𝑝(𝑠).

The above inequalities combined with (4) yield the desired statement of the lemma. �

2.1.2. Stability of the problem (M, CR)

First of all, let us rewrite the problem (M, CR) in a more convenient form. We introduce the polarization 𝑃
and the magnetization 𝑀 , related to 𝐸, 𝐻 via the identities

𝑃 = 𝜒𝑒(𝑠)𝐸, �̂� = 𝜒𝑚(𝑠)�̂�, 𝜒𝑒(𝑠) = 𝜀(𝑠)− 1, 𝜒𝑚(𝑠) = 𝜇(𝑠)− 1. (5)

This allows to rewrite the problem (M), (CR), which we equip with initial and boundary conditions, in the
following form:

𝜕𝑡𝐸 + 𝜕𝑡𝑃 − curl𝐻 = 0,
𝜕𝑡𝐻 + 𝜕𝑡𝑀 + curl 𝐸 = 0, in R+

* × Ω,
𝐸𝑥𝑛𝑦 − 𝐸𝑦𝑛𝑥 = 0, on R+

* × Γ,
𝐸(0,𝑥) = 𝐸0(𝑥), 𝐻(0,𝑥) = 𝐻0(𝑥), 𝑃 (0,𝑥) = 0, 𝑀(0,𝑥) = 0 in Ω.

(6)

We recall the following result, which is a reformulation of ([19], Thm. 4.8) and its proof, see also [13].
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Proposition 2.8 ([19]). Under Assumption 2.2, for every (𝐸0, 𝐻0) ∈
(︀
𝐿2(Ω)

)︀3, for all 𝑇 > 0, the problem (6),
(5) has a unique solution (𝐸, 𝐻) ∈ 𝐿2(0, 𝑇 ;

(︀
𝐿2(Ω)

)︀3) and (𝑃 ,𝑀) in a class causal tempered (𝐿2(Ω))3-valued
distributions. Moreover, for any sufficiently regular solution, the electromagnetic energy is uniformly bounded:

ℰ(𝑡) =
1
2
(︀
‖𝐸(𝑡)‖2 + ‖𝐻(𝑡)‖2

)︀
≤ ℰ(0), 𝑡 ∈ (0, 𝑇 ).

The difficulty in the numerical simulation of (5), (6) lies in the unboundedness of the domain. To deal with
it, we will use the perfectly matched layer method.

2.2. Perfectly matched layer method

2.2.1. Generalized PMLs

It was demonstrated in [26] that Bérenger’s classical perfectly matched layers can exhibit instabilities when
applied to dispersive media. Such instabilities are induced by the presence of backward propagating waves, as
explained in [17]. A remedy, originally suggested in [26] for Drude materials, and further generalized in [12,17],
to treat the cases of more general media is altering the perfectly matched layer change of variables in order to
account for the dispersion of the problem. Let us describe the respective procedure in more detail.

First of all, we assume that

Assumption 2.9. supp 𝐸0, supp𝐻0 ⊂ [0, 𝑅)× (0, ℓ).

Our goal is to compute the solution to the original problem (6) in the physical domain Ω𝑝ℎ := (0, 𝑅) × (0, ℓ),
by constructing a perfectly matched layer at 𝑥 = 𝑅 of width 𝐿. For this we first rewrite the problem (6), (5) in
the Laplace domain, which yields, after eliminating 𝑃 and 𝑀𝑧,

𝑠𝜀(𝑠)𝐸 −𝐸0 − curl �̂� = 0,

𝑠𝜇(𝑠)�̂� −𝐻0 + curl �̂� = 0, in Ω,

�̂�𝑥𝑛𝑦 − �̂�𝑦𝑛𝑥 = 0, on Γ.

Next, let us define the absorption function 𝜎 : (0, 𝑅+ 𝐿) → R+ satisfying

𝜎 ∈ 𝐿∞(0, 𝑅+ 𝐿) and 𝜎 = 0 on (0, 𝑅). (7)

With this definition, the [17]-PML change of variables reads

̃︀𝑥 = 𝑥+
1

𝑠𝜁(𝑠)

∫︁ 𝑥

𝑅

𝜎(𝑥′) d𝑥′, (8)

where the function 𝜁 is analytic in C+
* , and is responsible for stabilizing the PMLs for dispersive media. Note

that in the classical Bérenger PML 𝜁(𝑠) = 1. We also introduce the average damping �̄� by

�̄� =
1
𝐿

∫︁ 𝐿+𝑅

𝑅

𝜎(𝑥) d𝑥. (9)

The interface between the PML and the physical media will be denoted by Σ = {𝑅} × (0, ℓ), and the PML
media by Ω𝜎 = (𝑅,𝑅+ 𝐿)× (0, ℓ). See Figure 1 for an illustration of the geometry.

Remark 1. In [12,17], the PML change of variables (8) was written in the form

̃︀𝑥 = 𝑥+
𝜓(𝑠)
𝑠

∫︁ 𝑥

𝑅

𝜎(𝑥′) d𝑥′,

i.e., with 𝜓 = 𝜁−1. Because we will limit our discussion to the choices of 𝜓(𝑠) suggested in [12,17], we will take
𝜓, s.t. 𝜓−1 is admissible in the sense of Definition 2.1. Thus we feel that it is more natural to introduce 𝜁 = 𝜓−1.
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Figure 1. Sketch of the decomposition of the waveguide into the physical domain Ω𝑝ℎ, PML
domain Ω𝜎, and the computational domain Ω𝑐 = int(Ω𝑝ℎ ∪ Ω𝜎).

After performing this change of variables and truncating the PML system, we look for (𝐸
𝜎
, �̂�𝜎) that solve

the following problem in the computational domain Ω𝑐 = (0, 𝐿+𝑅)× (0, ℓ), with the boundary Γ𝑐:

𝑠𝜀(𝑠)�̂�𝜎
𝑥 − 𝜕𝑦�̂�

𝜎 = 𝐸0𝑥, in Ω𝑐,

𝑠𝜀(𝑠)�̂�𝜎
𝑦 +

(︂
1 +

𝜎

𝑠𝜁(𝑠)

)︂−1

𝜕𝑥�̂�
𝜎 = 𝐸0𝑦, in Ω𝑐,

𝑠𝜇(𝑠)�̂�𝜎 +
(︂

1 +
𝜎

𝑠𝜁(𝑠)

)︂−1

𝜕𝑥�̂�
𝜎
𝑦 − 𝜕𝑦�̂�

𝜎
𝑥 = 𝐻0, in Ω𝑐,

�̂�𝜎
𝑥𝑛𝑦 − �̂�𝜎

𝑦 𝑛𝑥 = 0 on Γ𝑐.

(10)

It remains to rewrite the above problem in the time domain. For this, however, we need to choose a function 𝜁
that ensures that the time-domain counterpart of the above system is stable.

2.2.2. Choice of 𝜁 for any media satisfying Assumption 2.2 and the corresponding PML system in the time-
domain

In [12,17] a choice of 𝜁, depending on 𝜀, 𝜇, was proposed based on the stability analysis performed for the case
when 𝜎 = const > 0 in (0, 𝑅+ 𝐿) (or even in the case when Ω𝑐 = R𝑑, cf. [17]). Numerical experiments indicate
that the time-domain counterpart of (10), provided the choice of 𝜁 based on the analysis for 𝜎 = const > 0,
is stable as well. Therefore, we will limit our choice of the parameter 𝜁 to the one suggested in [12, 17], more
precisely, to the one described in ([12], Thm. 3.7) well adapted to our setting.

Assumption 2.10. 𝜁 is an analytic in C+
* function which is admissible in the sense of Defn. 2.1 and

Re
(︀
𝑠𝜇(𝑠)𝜀(𝑠)𝜁(𝑠)−1

)︀
> 0, 𝑠 ∈ C+

* ,

i.e., 𝜇(𝑠)𝜀(𝑠)𝜁(𝑠)−1 is also admissible.

Evidently, 𝜁 = 𝜇 or 𝜁 = 𝜀 satisfy the above assumption. The advantage in choosing different functions 𝜁 lies
in the possible reduction of the number of auxiliary unknowns required for the implementation of the PML
system. Let us remark that, as shown in [12], this choice of 𝜁 covers the stabilizing functions suggested in [17]
for Lorentz materials.
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We rewrite the PML system (10) in the time-domain (where the choice of the auxiliary PML unknowns will
be explained after equation (14)), for (𝑡,𝑥) ∈ R+

* × Ω𝑐,

𝜕𝑡𝐸
𝜎
𝑥 + 𝜕𝑡𝑃

𝜎
𝑥 − 𝜕𝑦𝐻

𝜎 = 0,

𝜕𝑡𝐸
𝜎
𝑦 + 𝜕𝑡𝑃

𝜎
𝑦 + 𝜕𝑥𝐻

𝜎 − 𝜎 ̃︀𝐸𝜎 = 0,

𝜕𝑡
̃︀𝐸𝜎 + 𝜕𝑡

̃︀𝑃𝜎 + 𝜎 ̃︀𝐸𝜎 − 𝜕𝑥𝐻
𝜎 = 0,

𝜕𝑡𝐻
𝜎 + 𝜕𝑡𝑀

𝜎 − 𝜎 ̃︀𝐻𝜎 + 𝜕𝑥𝐸
𝜎
𝑦 − 𝜕𝑦𝐸

𝜎
𝑥 = 0,

𝜕𝑡
̃︀𝐻𝜎 + 𝜕𝑡

̃︁𝑀𝜎 + 𝜎 ̃︀𝐻𝜎 − 𝜕𝑥𝐸
𝜎
𝑦 = 0,

(11)

equipped with the constitutive relations in R+
* × Ω𝑐:

𝑃 𝜎 = 𝜒𝑒(𝜕𝑡)𝐸𝜎, 𝑀𝜎 = 𝜒𝑚(𝜕𝑡)𝐻𝜎, ̃︁𝑀𝜎 = 𝜒𝜁(𝜕𝑡) ̃︀𝐻𝜎, ̃︀𝑃𝜎 = 𝜒𝜁(𝜕𝑡) ̃︀𝐸𝜎, (12)

with 𝜒𝜁(𝑠) = 𝜁(𝑠)− 1, initial conditions in Ω𝑐:

𝐸𝜎(0) = 𝐸0, 𝐻𝜎(0) = 𝐻0, 𝑃 𝜎(0) = 0, 𝑀𝜎(0) = 0, ̃︀𝐻𝜎(0) = ̃︀𝐸𝜎(0) = ̃︁𝑀𝜎(0) = 0, (13)

and the boundary conditions
𝐸𝜎

𝑥𝑛𝑦 − 𝐸𝜎
𝑦 𝑛𝑥 = 0 on R+

* ×Γ𝑐. (14)

Let us briefly comment on how we obtained (11) from (10) in the time domain. The first equation in (10) does
not involve the PML change of variables, hence remains the same as in the system without the PML. As for the
second equation, we rewrite it by introducing the new unknown ̃︀𝐸𝜎. More precisely, the term with the PML
change of variables is rewritten as follows:(︂

1 +
𝜎

𝑠𝜁

)︂−1

𝜕𝑥�̂�
𝜎 = 𝜕𝑥�̂�

𝜎 − 𝜎

𝑠𝜁 + 𝜎
𝜕𝑥�̂�

𝜎 = 𝜕𝑥�̂�
𝜎 − 𝜎ℒ ̃︀𝐸𝜎, where

(𝑠𝜁 + 𝜎)ℒ ̃︀𝐸𝜎 − 𝜕𝑥�̂�
𝜎 = 0.

We see that the latter equation resembles the equations for electromagnetic field in the original Maxwell system
(M), (CR), had we defined the induction term as ̃︀𝐷𝜎 := 𝜁(𝑠) ̃︀𝐸𝜎 (modulo the term 𝜎 ̃︀𝐸𝜎). Therefore we rewrite it
in the time domain in the same manner as we rewrote the system (M), (CR), by introducing the polarization-like
term ̃︀𝑃𝜎 as defined in (12) (compare with (6)).

Finally, the third equation in (10) is treated similarly to the second equation; the new unknown ̃︀𝐻𝜎 satisfies

(𝑠𝜁 + 𝜎)ℒ ̃︀𝐻𝜎 − 𝜕𝑥�̂�
𝜎
𝑦 = 0,

and we rewrite this equation in the time domain like explained above.
For the well-posedness and stability analysis, we will not work with (11)–(14) directly, but rather with its

Laplace domain counterpart. In particular, we start with (10), and express all the unknowns with the help of
�̂�𝜎, which yields the following 2D Helmholtz equation with the PML change of variables:

𝑠2𝜇𝜀

(︂
1 +

𝜎

𝑠𝜁

)︂
�̂�𝜎 − 𝜕𝑥

(︂
1 +

𝜎

𝑠𝜁

)︂−1

𝜕𝑥�̂�
𝜎 −

(︂
1 +

𝜎

𝑠𝜁

)︂
𝜕2

𝑦�̂�
𝜎 = 𝑓 in Ω𝑐,

∇�̂�𝜎 · 𝑛 = 0 on Γ𝑐,

(15)

where 𝑓 = 𝑠𝜀(𝑠)𝐻0 − curl 𝐸0.
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2.3. Principal result of the paper

The principal goal of this paper is to prove convergence of the perfectly matched layers in homogeneous
waveguides and the main result Theorem 2.11 is given below. We formulate it with respect to the field 𝐻;
for the field 𝐸 the respective results can be obtained similarly, but for the price of some additional technical
computations.

In what follows, for 𝑢 ∈ 𝐻1(Ω𝑝ℎ), we will denote by 𝛾0𝑢 its trace on 𝜕Ω𝑝ℎ.

Theorem 2.11. Let 𝑇 > 0, 𝐻 be a sufficiently regular solution of (6) with the initial data satisfying Assump-
tion 2.9, for 0 < 𝑡 < 𝑇 , more precisely, 𝐻 ∈𝑊 1,2(0, 𝑇 ;𝐻1(Ω)).

Let 𝜇, 𝜀 be admissible materials in the sense of Definition 2.1 and 𝜁 be chosen such that Assumption 2.10 holds.
Let 𝐿 > 0 and 𝜎 satisfy (7). Then a unique solution of the PML problem (11)–(14) 𝐻𝜎 ∈ 𝐿∞(0, 𝑇 ;𝐿2(Ω𝑝ℎ))
satisfies the following error bound, with 𝑒𝜎 = 𝐻𝜎 −𝐻:

‖𝑒𝜎‖𝐿∞(0,𝑇 ;𝐿2(Ω𝑝ℎ))

{︃
= 0, 𝑇 ∈ [0, 2𝐿),
≤ 𝐶e−4𝐿2�̄�𝑇−1 𝑇 3/2

�̄�1/2𝐿
max

(︀
1, 𝑇

�̄�𝐿2

)︀
‖𝛾0𝜕𝑡𝐻‖𝐿2(0,𝑇 ;𝐿2(Σ)) , 𝑇 ≥ 2𝐿,

where the constant 𝐶 > 0 in the inequality is independent of 𝑇, 𝐿, �̄�,Ω𝑝ℎ and the solution of (6).

Remark 2. The fact that the error vanishes for 𝑡 < 2𝐿 can be explained by the finite speed of wave propagation
inside the PML region (remember the high-frequency assumption on 𝜇, 𝜀, cf. [19], Thm. 4.9 for a related result
for the media without the PML). As we assume vanishing initial data in Ω𝜎, the PML truncation may only
generate an error in Ω𝑝ℎ after the wave has traveled from Ω𝑝ℎ to the truncation boundary and is reflected back
into Ω𝑝ℎ.

This result is in accordance with or extends known results: in [28] the authors prove a similar exponential
bound with respect to the PML parameter and length for Cartesian perfectly matched layers applied to the
acoustic wave propagation in vacuum. Since Theorem 2.11 includes also the case of non-dispersive materials
(i.e., 𝜇 = 𝜀 ≡ 1) it extends the bound from [13] to the case of dispersive waveguides. Note that the factor 4 in
the exponential in the work at hand refines the bound from [13] to the best achievable one.

Remarkably the exponential convergence of the PML truncation is independent of the specific materials 𝜇, 𝜀
and the choice of the function 𝜁. However, the choice of 𝜁 (cf. [17]) greatly influences the ease of implementation
of the PML system. On the other hand, as argued in the recent article [6] for the case of the Klein–Gordon
equation, different choices of 𝜁 behave differently if long-time errors are considered; unfortunately, the above
error bound does not capture this effects.

The rest of the paper is dedicated to the proof of Theorem 2.11.

Remark 3. We will use the notation 𝑎 . 𝑏 to indicate that 𝑎 ≤ 𝐶𝑏, for a generic constant 𝐶 > 0 independent
of any parameters of the problem (final time, Laplace parameter 𝑠, geometry or PML parameters).

3. Well-posedness and explicit representation of the solution

We analyze the stability and the convergence of the PML based on the Laplace-domain techniques, as
suggested e.g. in [13]. For this recall the class 𝑇𝐷(𝑋) defined by Sayas [43].

Definition 3.1 (cf. [43]). Let 𝑋 be a Banach space. Then the class 𝑇𝐷(𝑋) consists of causal (i.e., vanishing on
(−∞, 0)) 𝑋-valued distributions, s.t. for each Φ ∈ 𝑇𝐷(𝑋), there exists a causal continuous function 𝜑 : R → 𝑋
and constants 𝐶, 𝑝, 𝑚 ≥ 0, s.t. for all 𝑡 ≥ 0,

‖𝜑(𝑡)‖ ≤ 𝐶(1 + 𝑡𝑝), and Φ =
d𝑚𝜑

d𝑡𝑚
·
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Here d
d𝑡 is understood as a distributional derivative.

Such distributions are characterized by bounds on their Laplace transforms.

Theorem 3.2 (Props. 3.1.1–3.1.3 in [43]). A function Φ : C+
* → 𝑋 is a Laplace transform of 𝜑 ∈ 𝑇𝐷(𝑋) if

and only if:

(1) Φ is holomorphic in C+
* , and

(2) Φ satisfies the following bound in C+
* :

‖Φ(𝑠)‖ ≤ |𝑠|𝜇𝐶Φ(Re 𝑠), 𝜇 ∈ R, (16)

where 𝐶Φ : R+ → R+ is non-increasing and satisfies, for some 𝑚 ≥ 0 and 𝐶 > 0,

𝐶Φ(𝜂) ≤ 𝐶𝜂−𝑚, for all 𝜂 ∈ (0, 1].

Therefore, we start by proving the well-posedness of the following problem: given 𝑓 ∈ ̃︀𝐻−1(Ω𝑐) = (𝐻1(Ω𝑐))′,
find �̂�𝜎 ∈ 𝐻1(Ω𝑐) that satisfies (15), for 𝑠 ∈ C+

* . Moreover, per Theorem 3.2, the solution to this problem
should satisfy the stability bound⃦⃦⃦

�̂�𝜎
⃦⃦⃦

𝐻1(Ω𝑐)
. |𝑠|𝑚 min(1,Re 𝑠)−𝜈

⃦⃦⃦
𝑓
⃦⃦⃦
̃︀𝐻−1(Ω𝑐)

, 𝑚 ∈ Z, 𝜈 ≥ 0. (17)

These results are achieved by proving an inf-sup condition satisfied by the sesquilinear form associated to (15)
(let us remark that it relies on some non-local in time and space constructions, and thus cannot be easily applied
to waveguides with perturbations). The bound (17) implies in particular that with 𝑓 given after equation (15),
the solution to (15) is a causal tempered distribution, and, in particular, a distributional derivative of some order
of a continuous causal function of polynomial growth. The time-domain stability estimates on this function can
be obtained by e.g. the Plancherel theorem or contour integration techniques, see [43] for more details. The
drawback of this approach is that the obtained stability bounds are quite far from optimal. Significantly finer
stability estimates on the solution 𝐻𝜎 can be obtained by exploiting an explicit representation of the solution
and the Plancherel theorem, cf. [13]. This is the point of view we are going to pursue in this article.

3.1. Existence and uniqueness for the PML problem (15)

Let us consider the following problem: given 𝑝 ∈ ̃︀𝐻−1(Ω𝑐), find 𝑢 ∈ 𝐻1(Ω𝑐) that satisfies

𝑎𝑠(𝑢, 𝑣) = ⟨𝑝, 𝑣⟩, 𝑣 ∈ 𝐻1(Ω𝑐),

𝑎𝑠(𝑢, 𝑣) = 𝑠2𝜇(𝑠)𝜀(𝑠)
∫︁

Ω𝑐

(︂
1 +

𝜎

𝑠𝜁(𝑠)

)︂
𝑢 𝑣 +

∫︁
Ω𝑐

(︂
1 +

𝜎

𝑠𝜁(𝑠)

)︂−1

𝜕𝑥 𝑢 𝜕𝑥𝑣 +
∫︁

Ω𝑐

(︂
1 +

𝜎

𝑠𝜁(𝑠)

)︂
𝜕𝑦𝑢 𝜕𝑦𝑣.

(18)

We have the following result, which generalizes Lemma 3.6 in [13].

Lemma 3.3. For any 𝑠 ∈ C+
* , the form 𝑎𝑠 : 𝐻1(Ω𝑐) ×𝐻1(Ω𝑐) → C is continuous, and satisfies the following

estimate:

inf
𝑢∈𝐻1(Ω𝑐)

sup
𝑣∈𝐻1(Ω𝑐)

|𝑎𝑠(𝑢, 𝑣)|
‖𝑢‖𝐻1(Ω𝑐)‖𝑣‖𝐻1(Ω𝑐)

≥ 𝑐𝑠,

where 𝑐𝑠 = 𝑐(𝜎)min(1,(Re 𝑠)ℓ)
|𝑠|𝑘 , for some ℓ, 𝑘 ≥ 0.

Proof. See Appendix A. �

As discussed in the beginning of Section 3, this implies in particular that the respective PML system admits
a unique solution. Let us denote by 𝑈 = (𝐸𝜎

𝑥 , 𝐸
𝜎
𝑦 , ̃︀𝐸𝜎

𝑦 , 𝐻
𝜎, ̃︀𝐻𝜎

𝑦 ), ̃︀𝑈 = (𝑃𝜎
𝑥 , 𝑃

𝜎
𝑦 , ̃︀𝑃𝜎

𝑦 , 𝑀
𝜎, ̃︁𝑀𝜎

𝑦 ) the solution of
(11).
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Corollary 3.4. The PML system (11), equipped with the boundary conditions (14), constitutive relations (12),
initial conditions 𝑈 |𝑡=0 = 𝑈0 ∈ (𝐿2(Ω𝑐))5 and vanishing initial conditions for the rest of unknowns, admits a
unique solution (𝑈 , ̃︀𝑈) ∈ 𝑇𝐷((𝐻1(Ω𝑐))10).

Remark that the result holds true for initial conditions supported inside Ω𝑐. Moreover, one can show some a
priori stability bounds, by proving that 𝑈 = d𝑚

d𝑡𝑚 𝑢 (where d/d𝑡 is a distributional derivative), with 𝑢 being a
continuous causal function, s.t. ‖𝑢(𝑡)‖𝐻1(Ω𝑐) . (1 + 𝑡)𝑘‖𝑈0‖𝐿2(Ω𝑐), cf. the techniques of Chapter 3 of [43].

3.2. An explicit solution in the Laplace domain for the data supported in the physical
domain

Our analysis relies on the modal decomposition. In particular, we denote by (𝜆2
𝑚, 𝜑𝑚(𝑦)) the eigenvalues and

eigenfunctions of the transverse Neumann Laplacian:

− 𝜕2
𝑦𝜑𝑚 = 𝜆2

𝑚𝜑𝑚, 𝜕𝑦𝜑𝑚(0) = 𝜕𝑦𝜑𝑚(ℓ) = 0,

0 < 𝜆2
0 ≤ 𝜆2

1 ≤ · · · → +∞, ‖𝜑𝑚‖𝐿2(0,ℓ) = 1.

For 𝑢 ∈ 𝐿2(Ω𝑐), let us denote by 𝑢𝑚(𝑥) its decomposition into Fourier series in 𝜑𝑚: 𝑢(𝑥, 𝑦) =
∑︀∞

𝑚=0 𝑢𝑚(𝑥)𝜑𝑚(𝑦).

3.2.1. The symbol of the PML DtN map

Using the same argument as in the proof of Lemma 3.3 it follows that the following problem: given 𝑔 ∈
𝐻1/2(Σ), find 𝑢 ∈ 𝐻1(Ω𝜎) s.t.

𝑠2𝜇𝜀

(︂
1 +

𝜎

𝑠𝜁

)︂
𝑢− 𝜕𝑥

(︂
1 +

𝜎

𝑠𝜁

)︂−1

𝜕𝑥𝑢−
(︂

1 +
𝜎

𝑠𝜁

)︂
𝜕2

𝑦𝑢 = 0 in Ω𝜎, (19)

∇𝑢 · 𝑛 = 0 on 𝜕Ω𝜎 ∖ Σ, 𝑢 = 𝑔, on Σ, (20)

is well-posed. We call the symbol of the PML DtN map the operator 𝑇𝜎 : 𝐻1/2(Σ) ↦→ (𝐻1/2(Σ))′, defined for
sufficiently regular functions 𝑢 as follows:

𝑇𝜎𝑔 = 𝛾1𝑢(𝑅, 𝑦),

where 𝛾1 is a conormal derivative on Σ, defined for sufficiently regular 𝜎 (e.g. piecewise-constant) and 𝑢 by

𝛾1𝑢(𝑅, 𝑦) =
(︂

1 +
𝜎(𝑅+)
𝑠

)︂−1

𝜕𝑥𝑢(𝑅, 𝑦).

To obtain an explicit representation of the DtN we apply the modal decomposition to (19), which yields the
family of one-dimensional problems: find 𝑢𝑚 ∈ 𝐻1(𝑅,𝑅+ 𝐿), s.t.

𝑠2𝜇𝜀

(︂
1 +

𝜎

𝑠𝜁

)︂
𝑢𝑚 − 𝜕𝑥

(︂
1 +

𝜎

𝑠𝜁

)︂−1

𝜕𝑥𝑢𝑚 +
(︂

1 +
𝜎

𝑠𝜁

)︂
𝜆2

𝑚𝑢𝑚 = 0 in (𝑅,𝑅+ 𝐿),

𝜕𝑥𝑢𝑚(𝑅+ 𝐿) = 0, 𝑢𝑚(𝑅) = 𝑔𝑚.

(21)

A computation similar to [13] yields with

𝜅(𝑠, 𝜆) =
√︀
𝑠2𝜀(𝑠)𝜇(𝑠) + 𝜆2, (22)

the identity

𝛾1𝑢𝑗(𝑅) = 𝑇𝜎
𝑗 (𝑠)𝑔𝑗 , 𝑇𝜎

𝑗 (𝑠) = −𝜅(𝑠, 𝜆𝑗)
1− exp(−2𝜅(𝑠, 𝜆𝑗)𝛾(𝑠))
1 + exp(−2𝜅(𝑠, 𝜆𝑗)𝛾(𝑠))

,
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where 𝛾(𝑠) is defined by

𝛾(𝑠) = 𝐿+
1

𝑠𝜁(𝑠)

∫︁ 𝐿+𝑅

𝑅

𝜎(𝑥)𝑑𝑥 = 𝐿

(︂
1 +

�̄�

𝑠𝜁(𝑠)

)︂
. (23)

This allows us to define the symbol of the PML-DtN map by

𝑇𝜎(𝑠)𝑔 =
∞∑︁

𝑚=0

𝑇∞𝑚 (𝑠)
1− e−2𝜅(𝑠,𝜆𝑚)𝛾(𝑠)

1 + e−2𝜅(𝑠,𝜆𝑚)𝛾(𝑠)
𝑔𝑚𝜑𝑚,

where 𝑇∞𝑚 (𝑠) = −𝜅(𝑠, 𝜆𝑚) is the symbol of the modal radiating DtN map.

3.2.2. An explicit expression for the solution

Any solution of (15) satisfies the following problem (recall that supp 𝑓 ⊂ (0, 𝑅)):

𝑠2𝜀𝜇�̂�𝜎 −Δ�̂�𝜎 = 𝑓, in Ω𝑝ℎ,

∇�̂�𝜎 · 𝑛 = 0 on 𝜕Ω𝑝ℎ ∖ Σ, ∇�̂�𝜎 · 𝑛 = 𝑇𝜎�̂�𝜎 on Σ.

On the other hand, the exact solutions satisfies

𝑠2𝜀𝜇�̂� −Δ�̂� = 𝑓 in Ω𝑝ℎ,

∇�̂� · 𝑛 = 0 on 𝜕Ω𝑝ℎ ∖ Σ, ∇�̂� · 𝑛 = 𝑇∞�̂� on Σ.

Hence the error 𝑒𝜎 = �̂�𝜎 − �̂� satisfies

𝑠2𝜀𝜇𝑒𝜎 −Δ𝑒𝜎 = 0 in Ω𝑝ℎ, (24)

∇𝑒𝜎 · 𝑛 = 0 on 𝜕Ω𝑝ℎ ∖ Σ, ∇𝑒𝜎 · 𝑛 = 𝑇𝜎𝑒𝜎 + (𝑇𝜎 − 𝑇∞)�̂�. (25)

The (unique) solution to the above problem can be found explicitly by using the modal decomposition (cf. [13]
for a similar computation), which yields the explicit expression of the error

𝑒𝜎 =
∞∑︁

𝑚=0

𝜑𝑚(𝑦)𝑒𝜎
𝑚, 𝑒𝜎

𝑚(𝑠, 𝑥) = 𝑐𝑚(𝑠, 𝑥)e−2𝜅(𝑠,𝜆𝑚)𝛾(𝑠), (26)

𝑐𝑚(𝑠, 𝑥) =
(︁
1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

)︁−1 (︁
e𝜅(𝑠,𝜆𝑚)(𝑥−𝑅) + e−𝜅(𝑠,𝜆𝑚)(𝑥+𝑅)

)︁
�̂�𝑚(𝑠,𝑅).

We give the expression for the error between the exact solution and the PML solution in this way, since the
term e−2𝜅(𝑠,𝜆𝑚)𝛾 plays an important role in the convergence estimates.

Remark 4. Our goal is to obtain 𝐿∞(0, 𝑇 ;𝐿2(Ω)) estimates on the error between the exact solution and the
PML solution. If we wanted to obtain the 𝐿∞(0, 𝑇 ;𝐻1(Ω))-norm of the error, it would have been simpler to
rewrite the above expression by introducing auxiliary volume problems as it was done [13]. Since we want to
keep the presentation as simple as possible, we stick to the above expression and concentrate on the estimate
of the 𝐿∞(0, 𝑇 ;𝐿2(Ω))-norms.

Let us remark that (26) indeed defines a Laplace transform of a TD(𝐻1(Ω𝑐))-distribution of 𝑒𝜎.

4. Convergence analysis

In this section we present the proof of the main result of this work Theorem 2.11. The proof of this theorem
can be done in at least either of the two ways (cf. a similar discussion in [13]):
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Bromwich formula and contour deformation: An application of the Bromwich formula for the inverse
Laplace transform to the Laplace-domain error 𝑒𝜎 yields

𝑒𝜎(𝑡, 𝑥, 𝑦) =
1

2𝜋𝑖

∞∑︁
𝑚=0

𝜑𝑚(𝑦)
∫︁

𝜂+𝑖R
e𝑠𝑡−2𝜅(𝑠,𝜆𝑚)𝛾(𝑠)𝑐𝑚(𝑠, 𝑥) d𝑠,

for every 𝜂 > 0. Recall that 𝛾(𝑠) = 𝐿
(︀
1 + �̄�

𝑠𝜁(𝑠)

)︀
. Since we want to prove convergence for �̄�, 𝐿 → +∞, and

𝑐𝑚 is bounded for large �̄�, 𝐿, the only way to control the exponential growth of the integrand with respect
to 𝑡 is to bound the expression 𝑠𝑡− 2𝜅(𝑠, 𝜆𝑚)𝛾(𝑠) on the integration contour.
The main idea is then to use the fact that the integrand is holomorphic and deform the integration contour
from the straight vertical line 𝜂 + 𝑖R to a contour 𝒞𝑚(𝜔) = 𝑖𝜔 + 𝜂𝑚(𝜔), 𝜔 ∈ R, for a smooth, bounded
function 𝜂𝑚 > 0 in a way that the expression sup𝑠∈𝒞𝑚

|𝑒𝑠𝑡−2𝛾𝜅(𝑠,𝜆𝑚)| is minimized. Such a procedure would
yield the bound ⃒⃒⃒⃒∫︁

𝜂+𝑖R
e𝑠𝑡−2𝜅(𝑠,𝜆𝑚)𝛾𝑐𝑚(𝑠, 𝑥) d𝑠

⃒⃒⃒⃒
=
⃒⃒⃒⃒∫︁
𝒞𝑚

e𝑠𝑡−2𝜅(𝑠,𝜆𝑚)𝛾𝑐𝑚(𝑠, 𝑥) d𝑠
⃒⃒⃒⃒

≤ sup
𝑠∈𝒞𝑚

⃒⃒⃒
e𝑠𝑡−2𝛾𝜅(𝑠,𝜆𝑚)

⃒⃒⃒ ∫︁
𝒞𝑚

|𝑐𝑚(𝑠, 𝑥)||d𝑠|, (27)

where
∫︀
𝒞𝑚
·|𝑑𝑠| denotes the real line integral along the curve 𝒞𝑚 in the complex plane. Assuming that the

contour is regular enough, to bound the remaining integral, one can proceed similarly to the proof of ([43],
proof of Prop. 3.2.2) which exploits the regularity of the time-domain counterpart of 𝑐𝑚; this procedure
would allow to obtain a bound on the error in terms of a certain 𝑊 𝑘,1-norm of the time-domain 𝑐𝑚.

Plancherel’s identity: Alternatively, we can use Plancherel’s identity∫︁ ∞

0

exp(−2𝜂𝑡) ‖𝑔(𝑡) ‖2 d𝑡 =
1

2𝜋𝑖

∫︁
𝑖R+𝜂

‖𝑔(𝑠) ‖2 d𝑠.

for 𝑔 ∈ 𝐿2(R+, 𝑋) on some Banach space 𝑋 and 𝜂 > 0. Proceeding as in ([13], proof of Lemma 4.2) enables
us to obtain the bound of the following form, for some 𝜂𝑚 > 0,

‖𝑒𝜎‖𝐿2(0,𝑇 ;𝐿2(Ω)) ≤ 𝐶(𝑇 ) sup
𝜆𝑚

sup
𝑠∈𝜂𝑚+𝑖R

⃒⃒⃒
e𝜂𝑚𝑇−2𝛾(𝑠)𝜅(𝑠,𝜆𝑚)

⃒⃒⃒
‖𝛾0𝐻‖𝐿2(0,𝑇 ;𝐿2(Σ)),

where 𝐶 depends polynomially on 𝑇 , cf. this expression with (27). It remains to find suitable parameters
𝜂𝑚 > 0 to minimize the supremum on the right hand side (uniformly in 𝜆𝑚).

Comparing the two techniques described above one notices that in both cases one has to find a contour 𝒞𝑚 (in
the latter case a straight line) in C+

* connecting −𝑖∞+ 𝜂− and 𝑖∞+ 𝜂+, 𝜂−, 𝜂+ > 0, such that the quantity

𝐴(𝑠, 𝜆𝑚, 𝑡) = Re (𝑠𝑡− 2𝛾(𝑠)𝜅(𝑠, 𝜆𝑚)) , 𝑠 ∈ 𝒞𝑚, (28)

can be bounded on this contour by a negative number, so that e−𝐴(𝑠,𝜆𝑚,𝑡) is small. For convergence, it is
necessary that this bound decreases with �̄�, 𝐿 (but, possibly, deteriorates with 𝑡). Also this bound has to be
uniform in 𝜆𝑚.

When using the first method one may use more general contours, while when using Plancherel’s identity one
is limited to straight, vertical lines. Thus, a priori the first technique might lead to a better bound. However, as
we shall see in the following Subsection 4.1, a properly chosen straight line leads to error bounds which are in
some sense optimal. Therefore, we will present in Subsection 4.2 the proof of Theorem 2.11 using Plancherel’s
identity.
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4.1. On obtaining the error bounds by deforming the Laplace inversion contour

Due to the considerations above we have to find a contour 𝒞𝑚 in the complex right half plane connecting
−𝑖∞+ 𝜂−, 𝑖∞+ 𝜂+ for some 𝜂+, 𝜂− > 0 such that

𝐴(𝑠, 𝜆𝑚, 𝑡) ≤ 𝛽𝑚 < 0, 𝑠 ∈ 𝒞𝑚, (29)

with 𝐴 given by (28) and some 𝛽𝑚 < 0.
First, we will show how to do so in the non-dispersive case, next discuss the dispersive case, and finally argue

that the bounds obtained using this approach, in general, do not improve over the use of the usual Plancherel
bound, cf. [13].

Let us emphasize that the approach presented here is different from the one presented in [13] for the non-
dispersive case, and the goal of this small section is actually to show that, in general, a naively more optimal
approach would not necessarily lead to better uniform error estimates.

4.1.1. Non-dispersive case

For the remainder of this subsection we assume that 𝜇 = 𝜀 ≡ 1 and 𝑡 > 2𝐿. Due to the fact that we consider
the non-dispersive case, we choose the classical, Bérenger’s PML with 𝜁 ≡ 1, which leads to

𝐴(𝑠, 𝜆𝑚, 𝑡) = Re
(︁
𝑠𝑡− 2𝐿

(︁
1 +

�̄�

𝑠

)︁√︀
𝜆2

𝑚 + 𝑠2
)︁
. (30)

To obtain the best bound on the error we want to find an integration contour 𝒞𝑚, such that the constant 𝛽𝑚 in
(29) is minimized. Remark that such a contour should lie in C+

* , and, moreover, connect 𝜂−− 𝑖∞ and 𝜂+ + 𝑖∞,
𝜂± > 0.

The principal result of this section reads.

Theorem 4.1. Let 𝜆𝑚 > 0, 𝑡 > 2𝐿, and �̄� be fixed. Then there exists an optimal contour 𝒞𝑚 (in a sense
that 𝛽𝑚 in (29) is minimized), which passes through the two unique saddle points 𝑠0, 𝑠0 of 𝐴(·, 𝜆𝑚, 𝑡) in C+

*
and connects 𝐴(𝑠0,𝜆𝑚,𝑡)+2𝐿�̄�

𝑡−2𝐿 − 𝑖∞ and 𝐴(𝑠0,𝜆𝑚,𝑡)+2𝐿�̄�
𝑡−2𝐿 + 𝑖∞. Moreover, one can choose this contour so that

𝐴(𝑠, 𝜆𝑚, 𝑡) = 𝐴(𝑠0, 𝜆𝑚, 𝑡) = 𝛽𝑚 ∈ (−2𝐿�̄�, 0) for all 𝑠 ∈ 𝒞𝑚.

Remark 5. The case 𝜆𝑚 = 0 is quite simple: 𝐴(𝑠, 0, 𝑡) = (𝑡− 2𝐿)Re 𝑠− 2𝐿�̄�. Therefore, the value of 𝐴(𝑠, 0, 𝑡)
is constant along the lines 𝑖R + 𝜂, 𝜂 > 0, and is increasing in Re 𝑠.

Since the proof of Theorem 4.1 is long and technical we merely present a sketch, the full proof can be found
in Appendix D. It relies on the following two technical propositions, which we prove in Appendices B and C.
The first proposition describes the behaviour of the level sets of real parts of holomorphic functions.

Proposition 4.2. Let 𝐷 ⊆ C be a possibly unbounded domain, and 𝜑 be non-constant and holomorphic in 𝐷.
Let 𝜑 have a finite number of stationary points. For 𝜑𝑅 = Re𝜑, it holds that

(1) the level sets of 𝜑𝑅 are finite unions of piecewise-smooth curves, which may intersect only in stationary
points of 𝜑;

(2) the level sets of 𝜑𝑅 do not contain closed contours;
(3) each component of a level set of 𝜑𝑅 approaches 𝜕𝐷 or is unbounded;
(4) each stationary point of 𝜑𝑅 is a point of a self-intersection of the level set; moreover, the branches of the

level set curves intersecting in 𝑠0 divide the vicinity 𝐵𝜀(𝑠0) for 𝜀 → 0 into 2 + 2𝑚 sectors where 𝑚 is the
order of the stationary point.

The second proposition shows that 𝑃 (𝑠) := 𝑠𝑡− 2𝛾(𝑠)𝜅(𝑠, 𝜆𝑚) has only two saddle points in C+
* , cf. (30).

Proposition 4.3. For all �̄� > 0, 𝐿 > 0, 𝑡 > 2𝐿, the function 𝑠 ↦→ (𝑠𝑡 − 2𝛾(𝑠)𝜅(𝑠, 𝜆𝑚))′ has precisely two
complex conjugate roots with a positive real part.
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Sketch of the proof of Theorem 4.1. The main idea is to define the contour 𝒞𝑚 as part of a level set of 𝐴. As 𝐴
is the real part of a holomorphic function 𝑃 (𝑠) in C+

* , we may use Proposition 4.2 to conclude that level sets of
𝐴 may only intersect in the stationary points of 𝑃 , i.e. points where 𝑃 ′(𝑠) = 0. Moreover, they do not contain
closed contours in C+

* .
By Proposition 4.3, there exist precisely two stationary points in C+

* . By studying the behavior of 𝑠 ↦→ 𝐴(𝑠)
on the imaginary axis, positive real axis and at infinity, we deduce that there exists a component of the level
set passing through the two stationary points which connects ±𝑖∞ as in the statement of the theorem. It is this
component of the level set that we choose as the contour 𝒞𝑚.

The optimality of the chosen contour can be deduced from the monotonicity of 𝐴 on the positive real axis
and the asymptotic monotonicity of 𝐴 on the lines Im 𝑠 = const as Im 𝑠 → +∞, geometric considerations and
the fact that level sets of different values are disjoint. �

Let us provide several comments about the result of the above theorem.

Non-uniqueness of the contour. Theorem shows that an optimal contour exists, but of course such a contour is
non-unique. As we see in Figure 2, we could have taken instead of a level set a straight line passing through 𝑠0𝑚.
Optimality of the error and the use of the result of the theorem for an a priori error estimate. The proof of the
theorem is constructive: it allows to find an optimal bound on 𝐴(𝑠, 𝜆𝑚, 𝑡), which, in turn, gives quite a good
indication of the behaviour of the PML error for each mode 𝜆𝑚. In particular, it says that the optimal value 𝛽𝑚

is given by 𝐴(𝑠0𝑚, 𝜆𝑚, 𝑡), and 𝑠0𝑚 can be found numerically as one of the roots of the equation 𝐷(𝑠) = 0, where

𝐷(𝑠) = 𝑃 ′(𝑠) = (𝑠𝑡− 2𝛾(𝑠)𝜅(𝑠, 𝜆𝑚))′. (31)

However, for the moment we did not provide any analytic bounds on 𝐴(𝑠0𝑚, 𝜆𝑚, 𝑡).
As for deriving a uniform in 𝜆𝑚 bound, it appears that as 𝜆𝑚 → +∞, the quantity 𝛽𝑚 converges. Then a

uniform in 𝜆𝑚 error bound cannot be better than the one given by the limit of 𝛽𝑚.

Proposition 4.4. Let 𝛽𝑚 and 𝑠0𝑚 be as in Theorem 4.1; 𝑡 > 0. Then, as 𝜆𝑚 → +∞,

𝑠0𝑚 = 𝑖𝜆𝑚

√︂
𝑡2

𝑡2 − 4𝐿2
+

4𝐿2�̄�

𝑡2
+𝑂(𝜆−1

𝑚 ), 𝛽𝑚 = 𝛽∞ +𝑂
(︀
𝜆−1

𝑚

)︀
, 𝛽∞ = −4𝐿2�̄�

𝑡
·

Proof. It suffices to find the roots of 𝐷(𝑠) defined in (31) with a positive real part for 𝜆𝑚 → +∞ (recall that
by Proposition 4.3, there is one complex-conjugate pair of roots in C+

* ). For this we rescale 𝑠 := 𝜆𝑚𝑠𝑚, which
yields ̃︀𝐷(𝑠𝑚, 𝜆

−1
𝑚 ) = 𝐷(𝜆𝑚𝑠𝑚) = 𝑡− 2𝐿𝑠𝑚√︀

𝑠2𝑚 + 1
+

2𝐿�̄�
𝜆𝑚𝑠2𝑚

√︀
𝑠2𝑚 + 1

·

Remark that the function 𝑠 ↦→ ̃︀𝐷(𝑠𝑚, 𝜆
−1
𝑚 ) is continuous in the quarter-plane 𝐿+ = {𝑧 ∈ C : Im 𝑧 > 1, Re 𝑧 > 0},

and
√︀
𝑠2𝑚 + 1 =

√
𝑠𝑚 + 𝑖

√
𝑠𝑚 − 𝑖 in 𝐿+. The branch cut of the latter function (recall that we use the principal

branch of the square root) coincides with the segment [−𝑖, 𝑖]. Then ̃︀𝐷(𝑠𝑚, 𝜆
−1
𝑚 ), defined with

√︀
𝑠2𝑚 + 1 replaced

by
√
𝑠𝑚 + 𝑖

√
𝑠𝑚 − 𝑖 can be extended to an analytic function in the half-plane 𝐿 = {𝑧 ∈ C : Im 𝑧 > 1} (and

even to a larger set C ∖ [−𝑖, 𝑖]).
It remains to apply the implicit function theorem. Indeed, we can find explicitly the roots of ̃︀𝐷(𝑠𝑚, 0). Inside

𝐿+, the only root is 𝑖
√︁

𝑡2

𝑡2−4𝐿2 . Then, as 𝜆−1
𝑚 → 0, we have the following expansion for the roots of ̃︀𝐷(𝑠𝑚, 𝜆

−1
𝑚 ):

𝑠*𝑚 = 𝑖

√︂
𝑡2

𝑡2 − 4𝐿2
+

4𝐿2�̄�

𝑡2𝜆𝑚
+𝑂

(︀
𝜆−2

𝑚

)︀
.

Remarking that √︀
(𝑠*𝑚)2 + 1 =

1
𝑡

(︂
2𝐿𝑠*𝑚 − 2𝐿�̄�

𝜆𝑚(𝑠*𝑚)2

)︂
,
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Figure 2. Behavior of the function 𝐴(𝑠, 𝜆𝑚, 𝑡) for �̄� = 𝐿 = 1, 𝑡 = 4 in the non-dispersive
case (see Prop. 4.4 for the notation 𝛽∞). The circles mark the (imaginary parts) of the saddle
points and the dashed line the global bound 𝛽∞ = 1. (a) Level sets, stationary and paths of
integration for the function 𝐴(., 𝜆𝑚, 𝑡) for 𝜆𝑚 = 1 and (b) 𝐴(𝑠, 𝜆𝑚, 𝑡) along the Re 𝑠 = Re 𝑠0𝑚
for two different values of 𝜆𝑚.

we can compute the expansion of 𝛽𝑚, as 𝜆𝑚 → +∞,

𝛽𝑚 = 𝐴 (𝜆𝑚𝑠
*
𝑚, 𝜆𝑚, 𝑡) = −4𝐿2�̄�

𝑡
+𝑂

(︀
𝜆−1

𝑚

)︀
.

�

We will see in the section that follows that the above limit provides the best uniform in 𝜆𝑚 error bound.

Remark 6. The fact that finding a stationary point of 𝐴(·, 𝜆𝑚, 𝑡) can be reduced to the root finding of𝐷(𝑠) = 0,
where 𝐷(𝑠) is defined in (31), which, in turn can be recast as a sixth order polynomial equation, leads to a
method to compute the optimal bounds numerically, in the case when the data is highly regular in space.

4.1.2. Dispersive media: open questions

For the dispersive media, the reasoning as above applies as well: we look at the contour where 𝐴(·, 𝜆𝑚, 𝑡) is
minimized as a sub-contour of a level set passing through a saddle point of 𝑠𝑡 − 2𝛾(𝑠)𝜅(𝑠, 𝜆𝑚). However, the
difficulty in choosing this contour lies in the fact that for dispersive media more than one stationary point might
exist, as illustrated in Figure 3.

On the other hand, because of the non-dispersivity at high frequencies (cf. Sect. 2.1.1) we can expect that
the behaviour of 𝐴(𝑠, 𝜆𝑚, 𝑡) for large |𝑠| in the dispersive case resembles the behaviour of 𝐴(𝑠, 𝜆𝑚, 𝑡) in the
non-dispersive case, and, therefore, one can conjecture that the best uniform error bound for 𝐴 in this case is
also given by the result of Proposition 4.4.

4.1.3. Discussion

The above numerical experiments and semi-analytical arguments indicate that
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Figure 3. Behavior of the function 𝐴(𝑠, 𝜆𝑚, 𝑡) for �̄� = 𝐿 = 1 and Drude media with 𝜇0 =
𝜀0 = 1. Remark that we use the notation 𝐴(𝑠) for 𝐴(𝑠, 𝜆𝑚, 𝑡). (a) Level sets, stationary points
and paths of integration for the function 𝐴(., 𝜆𝑚, 𝑡) for 𝜆𝑚 = 1 and (b) 𝐴(𝑠, 𝜆𝑚, 𝑡) along the
lines Re 𝑠 = Re 𝑠0𝑚 for two different values of 𝜆𝑚 and 𝑡 = 3 (left) and 𝑡 = 2.1 (right). The circles
mark the (imaginary parts) of the saddle points and the dashed line the global bound 𝛽∞.

– we can hope to find a contour along which the function 𝐴(𝑠, 𝜆𝑚, 𝑡) is uniformly bounded by looking at the
contours with Re 𝑠 = const, cf. Figures 2 and 3. Remark however that, as Figure 3b illustrates, the maximum
value of 𝐴 along the straight line with Re 𝑠 = Re 𝑠0𝑚 is not necessarily given by 𝐴(𝑠0𝑚, 𝜆𝑚, 𝑡), contrary to
what numerical experiments indicate in the non-dispersive case.

– for large 𝜆𝑚, we expect that an upper bound for 𝐴(𝑠, 𝜆𝑚, 𝑡) that would be close to the optimal one is given
by 𝛽∞ = −4𝐿2�̄�/𝑡, cf. Proposition 4.4 and the discussion in the end of Section 4.1.2. Moreover, the numerical
experiments in Figure 2 and the argument of Proposition 4.4 indicate that in this case a “good” choice of
the contour is given by Re 𝑠 = 4𝐿2�̄�

𝑡2 · Let us remark that this choice is close to the one suggested in [13] for
all 𝜆𝑚 (Re 𝑠 = 4𝐿2�̄�

𝑡2 𝑐, with 𝑐 = (1 + 16𝐿2

𝑡2 )−1).
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4.2. Proof of Theorem 2.11

We have seen above that choosing a contour along a level set 𝐴(𝑠, 𝜆𝑚, 𝑡) = 𝛽𝑚 < 0 allows us to bound the
error, cf. (27). The results of the previous section show that such a contour can be chosen for any 𝜆𝑚 and,
moreover, for 𝜆𝑚 → +∞, 𝛽𝑚 → 𝛽∞ = −4𝐿2�̄�2𝑡−1. In this section we show that this latter bound is suitable
for all 𝜆𝑚, 𝑚 ∈ N; moreover, it can be also achieved by using the contour 𝒞 = {𝑠 ∈ C : Re 𝑠 = 𝜂} for a
suitable 𝜂 > 0, independent of 𝑚. We conclude this subsection by filling in the remaining details of the proof of
Theorem 2.11 where we make use of Plancherel’s Theorem.

4.2.1. Several auxiliary technical results

We start with the following result about 𝜅(𝑠, 𝜆) =
√︀
𝑠2𝜀(𝑠)𝜇(𝑠) + 𝜆2.

Lemma 4.5. For 𝜆 ∈ R, the function 𝑠 ↦→ 𝜅(𝑠, 𝜆) is analytic in C+
* . Moreover,

Re𝜅(𝑠, 𝜆) ≥ Re 𝑠.

Proof. Analyticity. The analyticity of 𝑠 ↦→ 𝜅(𝑠, 𝜆𝑚) =
√︀
𝑠2𝜀(𝑠)𝜇(𝑠) + 𝜆2

𝑚 in C+
* follows from the passivity

assumption (3): indeed, Re(𝑠𝜀(𝑠)) > 0, Re(𝑠𝜇(𝑠)) > 0 in C+
* , therefore Arg(𝑠2𝜀(𝑠)𝜇(𝑠)) ∈ (−𝜋, 𝜋), and thus

Arg(𝑠2𝜀(𝑠)𝜇(𝑠) + 𝜆2
𝑚) ∈ (−𝜋, 𝜋).

Next, to prove a lower bound on 𝜅, let us recall that for 𝑧 ∈ C ∖ R≤0, the principal square root is

√
𝑧 =

1√
2

(︁√︀
|𝑧|+ Re(𝑧) + sign(Im(𝑧)) 𝑖

√︀
|𝑧| − Re(𝑧)

)︁
. (32)

Hence 𝑥 ↦→ Re
√
𝑥+ 𝑖𝑦 is non-decreasing in 𝑥 ∈ R. Hence

Re𝜅(𝑠, 𝜆) ≥ Re𝜅(𝑠, 0) = Re
√︀
𝑠2𝜇(𝑠)𝜀(𝑠).

From (32) it follows that, for 𝑧𝑘 = 𝑧𝑘𝑟 + 𝑖𝑧𝑘𝑖, 𝑘 = 1, 2,

(Re
√
𝑧1𝑧2)

2 =
1
2

(|𝑧1𝑧2|+ 𝑧1𝑟𝑧2𝑟 − 𝑧1𝑖𝑧2𝑖) =
1
2

(︂√︁
𝑧2
1𝑟 + 𝑧2

1𝑖

√︁
𝑧2
2𝑟 + 𝑧2

2𝑖 + 𝑧1𝑟𝑧2𝑟 − 𝑧1𝑖𝑧2𝑖

)︂
≥ 1

2
(|𝑧1𝑟𝑧2𝑟|+ |𝑧1𝑖𝑧2𝑖|+ 𝑧1𝑟𝑧2𝑟 − 𝑧1𝑖𝑧2𝑖) ,

where the last inequality was obtained from the Cauchy-Schwarz inequality. Applying the above with 𝑧1 = 𝑠𝜇(𝑠)
and 𝑧2 = 𝑠𝜀(𝑠) yields

Re𝜅(𝑠, 0) ≥
√︀

Re(𝑠𝜇(𝑠))Re(𝑠𝜀(𝑠)) ≥ Re 𝑠,

where the last inequality follows from the passivity condition (3). �

We will also need the following technical result (whose role will be clear later).

Lemma 4.6. For all 𝑠 ∈ C+
* and 𝜆 ∈ R

Re𝜅(𝑠, 𝜆) Re
(︂
𝜅(𝑠, 𝜆)
𝑠𝜁(𝑠)

)︂
≥ Re 𝑠. (33)

Proof. Let 𝑠 ∈ C+
* . For brevity of notation, we write 𝜅 for 𝜅(𝑠, 𝜆) and 𝜁 for 𝜁(𝑠) (resp. 𝜇, 𝜀). We rewrite the left

hand side of (33) by replacing Re𝜅 from equation (32), and recalling that Im𝜅2 = 2Re𝜅 Im𝜅

Re𝜅Re
𝜅

𝑠𝜁
=

Re𝜅
|𝑠𝜁|2

(Re𝜅Re(𝑠𝜁) + Im𝜅 Im(𝑠𝜁))

=
1

2|𝑠𝜁|2
(︀(︀
|𝜅|2 + Re

(︀
𝜅2
)︀)︀

Re(𝑠𝜁) + Im
(︀
𝜅2
)︀
Im(𝑠𝜁)

)︀
=

1
2|𝑠𝜁|2

Re(𝑠𝜁)
(︀⃒⃒
𝑠2𝜀𝜇+ 𝜆2

⃒⃒
+ Re

(︀
𝑠2𝜀𝜇+ 𝜆2

)︀)︀
+

1
2|𝑠𝜁|2

Im(𝑠𝜁) Im
(︀
𝑠2𝜀𝜇+ 𝜆2

)︀
.
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Since Re(𝑠𝜁) > 0 by the passivity of 𝜁 we use the inverse triangle inequality for the first term in the above⃒⃒
𝑠2𝜀𝜇+ 𝜆2

⃒⃒
+ Re

(︀
𝑠2𝜀𝜇+ 𝜆2

)︀
≥ |𝑠2𝜀𝜇|+ Re

(︀
𝑠2𝜀𝜇

)︀
to obtain

Re𝜅Re
𝜅

𝑠𝜁
≥ 1

2|𝑠𝜁|2
[︀
Re(𝑠𝜁)

(︀
|𝑠2𝜀𝜇|+ Re

(︀
𝑠2𝜀𝜇

)︀)︀
+ Im(𝑠𝜁) Im

(︀
𝑠2𝜀𝜇

)︀]︀
=

1
2

[︃
|𝜀𝜇|Re(𝑠𝜁)

|𝜁|2
+

Re
(︀
𝑠2𝜀𝜇

)︀
Re(𝑠𝜁) + Im(𝑠𝜁) Im

(︀
𝑠2𝜀𝜇

)︀
|𝑠𝜁|2

]︃

=
1
2

[︃
|𝜀𝜇|Re(𝑠𝜁)

|𝜁|2
+

Re
(︀
𝑠𝜁𝑠2𝜀𝜇

)︀
|𝑠𝜁|2

]︃
=

1
2

[︂
|𝜀𝜇|Re(𝑠𝜁)

|𝜁|2
+ Re

(︂
𝑠𝜀𝜇

𝜁

)︂]︂
≥ 1

2

(︂
Re 𝑠

⃒⃒⃒⃒
𝜇𝜀

𝜁

⃒⃒⃒⃒
+ Re

(︂
𝑠𝜇𝜀

𝜁

)︂)︂
,

where the last bound follows from (MP) in the form Re(𝑠𝜁)
|𝜁| ≥ Re 𝑠.

Finally, applying again (MP) and next using the inequality 𝑎+ max(𝑎, 2− 𝑎) ≥ 2 yields the desired bound:

Re𝜅Re
𝜅

𝑠𝜁
≥ 1

2
Re 𝑠

(︂⃒⃒⃒⃒
𝜇𝜀

𝜁

⃒⃒⃒⃒
+ max

(︂⃒⃒⃒⃒
𝜇𝜀

𝜁

⃒⃒⃒⃒
, 2−

⃒⃒⃒⃒
𝜇𝜀

𝜁

⃒⃒⃒⃒)︂)︂
≥ Re 𝑠.

�

4.2.2. Proof of Theorem 2.11

The two Lemmas 4.5 and 4.6 allow us to prove the principal proposition about the choice of the contour that
allows to control the quantity (28).

Proposition 4.7. Let 𝜇, 𝜀, 𝜁 such that Assumptions 2.2 and 2.10 hold. Then for given 𝜆𝑚 ∈ R and 𝑡, 𝐿, �̄� ≥ 0
we have that the function 𝐴 defined in (28) is holomorphic in C+

* and fulfills

𝐴

(︂
4𝐿2�̄�

𝑡2
+ 𝑖𝑠𝑖, 𝜆𝑚, 𝑡

)︂
≤ −4𝐿2�̄�

𝑡
, 𝑠𝑖 ∈ R. (34)

Before proving this proposition, we remark that the quantity 𝐴 controlling the error is uniformly bounded in
𝜆𝑚 on a straight line 4𝐿2�̄�

𝑡2 + 𝑖𝑠𝑖. According to Proposition 4.4, as 𝜆𝑚 → +∞, in the non-dispersive case, this
line gets closer and closer to the straight line passing through the saddle point 𝑠0𝑚 (see previous section for the
discussion of the role of the saddle points in the error bounds). Moreover, the upper bound is consistent with
the best upper bound of Proposition 4.4.

Proof of Proposition 4.7. Recall that 𝐴 is given by

𝐴(𝑠, 𝜆, 𝑡) = Re(𝑠𝑡)−
(︂

2𝐿Re𝜅(𝑠, 𝜆) + 2𝐿�̄�Re
(︂
𝜅(𝑠, 𝜆)
𝑠𝜁(𝑠)

)︂)︂
.

By Lemma 4.5 𝐴(·, 𝜆, 𝑡) is holomorphic in C+
* . We next apply the Young inequality 𝑎+ 𝑏 ≥ 2

√
𝑎𝑏 with

𝑎 = 2𝐿Re𝜅(𝑠, 𝜆), 𝑏 = 2𝐿�̄�Re
(︂
𝜅(𝑠, 𝜆)
𝑠𝜁(𝑠)

)︂
,

and use the bound of Lemma 4.6 for
√
𝑎𝑏 to obtain

𝐴(𝑠, 𝜆, 𝑡) ≤ 𝑡Re 𝑠− 4𝐿
√
�̄�Re 𝑠.

This shows that on straight vertical lines 𝐴 can be bounded independently of Im 𝑠 and 𝜆. An ’optimal’ line
can be found by minimizing 𝐴 in Re 𝑠 > 0. In particular, we remark that the function 𝑔(𝑥) = 𝑡𝑥 − 4𝐿

√
�̄�
√
𝑥,

takes its global minimum at 𝑥0 = 4𝐿2�̄�
𝑡2 , and this minimum is equal to 𝑔(𝑥0) = − 4𝐿2�̄�

𝑡 · Hence the result in the
statement of the proposition follows. �
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Now we are in position to prove Theorem 2.11.

Proof of Theorem 2.11. First of all, let us remark that the PML problem admits a unique solution, as per
Corollary 3.4. The proof of Theorem 2.11 follows like in the proof of Theorem 4.1 from [13].

Case 𝑡 > 2𝐿. Using Plancherel’s theorem, for 𝜂 > 0 one has that, cf. (26) for the definition of 𝑐𝑚:∫︁ ∞

0

e−2𝜂𝑡 ‖𝑒𝜎
𝑚(𝑡)‖2𝐿2(0,𝑅) d𝑡 =

1
2𝜋𝑖

∫︁
𝜂+𝑖R

e−4Re(𝜅(𝑠,𝜆𝑚)𝛾(𝑠))‖𝑐𝑚(𝑠, .)‖2𝐿2(0,𝑅) d𝑠. (35)

A straightforward computation yields the following bound:

‖𝑐𝑚(𝑠, .)‖2𝐿2(0,𝑅) ≤ 2
⃒⃒
⃒�̂�𝑚(𝑠, 𝑅)

⃒⃒
⃒
2 ⃒⃒
⃒1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒
⃒
−2

e−2Re 𝜅(𝑠,𝜆𝑚)𝑅

∫︁ 𝑅

0

(︁
e2Re 𝜅(𝑠,𝜆𝑚)𝑥 + e−2Re 𝜅(𝑠,𝜆𝑚)𝑥

)︁
d𝑥

.
⃒⃒
⃒1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒
⃒
−2 1

Re 𝜅(𝑠, 𝜆𝑚)

⃒⃒
⃒�̂�𝑚(𝑠, 𝑅)

⃒⃒
⃒
2

. (Re 𝑠)−1|1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)|−2
⃒⃒
⃒�̂�𝑚(𝑠, 𝑅)

⃒⃒
⃒
2

, (36)

where the last bound follows from Lemma 4.5.
Inserting this bound into (35) and using the Plancherel identity again yields
∫︁ ∞

0

e−2𝜂𝑡 ‖𝑒𝜎
𝑚(𝑡)‖2𝐿2(0,𝑅) d𝑡 . 𝜂−1 sup

𝑠∈𝜂+𝑖R

(︂
e−4Re(𝜅(𝑠,𝜆𝑚)𝛾(𝑠))

⃒⃒
⃒1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒
⃒
−2
)︂∫︁ ∞

0

e−2𝜂𝑡 |𝐻𝑚(𝑡, 𝑅)|2 d𝑡.

Next, one can use the causality argument (cf. [13]) which allows to truncate the above integrals to finite intervals.
More precisely, for each 𝑇 > 0, it holds that
∫︁ 𝑇

0

e−2𝜂𝑡 ‖𝑒𝜎
𝑚(𝑡)‖2𝐿2(0,𝑅) d𝑡 . 𝜂−1 sup

𝑠∈𝜂+𝑖R

(︂
e−4Re(𝜅(𝑠,𝜆𝑚)𝛾(𝑠))

⃒⃒
⃒1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒
⃒
−2
)︂∫︁ 𝑇

0

e−2𝜂𝑡 |𝐻𝑚(𝑡, 𝑅)|2 d𝑡.

Finally, we bound the above integrals to obtain

‖𝑒𝜎
𝑚‖

2
𝐿2(0,𝑇 ;𝐿2(0,𝑅)) . 𝜂

−1 sup
𝑠∈𝜂+𝑖R

(︂
e2𝜂𝑇−4Re(𝜅(𝑠,𝜆𝑚)𝛾(𝑠))

⃒⃒⃒
1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒⃒−2
)︂
‖𝐻𝑚(., 𝑅)‖2𝐿2(0,𝑇 ) .

Repeating the above arguments with 𝑒𝜎
𝑚 replaced by 𝜕𝑡𝑒

𝜎
𝑚, and using the fact that 𝜕𝑡𝐻𝑚(0, 𝑅) = 0, we

get the same bound for ‖𝜕𝑡𝑒
𝜎
𝑚‖2𝐿2(0,𝑇 ;𝐿2(0,𝑅)). Finally, since 𝑒𝜎

𝑚(0) = 0, we have that ‖𝑒𝜎
𝑚‖𝐿∞(0,𝑇 ;𝐿2(0,𝑅)) ≤

𝑇 1/2‖𝜕𝑡𝑒
𝜎
𝑚‖𝐿2(0,𝑇 ;𝐿2(0,𝑅)). Therefore,

‖𝑒𝜎
𝑚‖

2
𝐿∞(0,𝑇 ;𝐿2(0,𝑅)) . 𝑇𝜂

−1 sup
𝑠∈𝜂+𝑖R

(︂
e2𝜂𝑇−4Re(𝜅(𝑠,𝜆𝑚)𝛾(𝑠))

⃒⃒⃒
1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒⃒−2
)︂
‖𝜕𝑡𝐻𝑚(., 𝑅)‖2𝐿2(0,𝑇 )

. 𝑇𝜂−1 sup
𝑠∈𝜂+𝑖R

exp(2𝐴(𝑠, 𝜆𝑚, 𝑇 )) sup
𝑠∈𝜂+𝑖R

⃒⃒⃒
1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒⃒−2

‖𝜕𝑡𝐻𝑚(., 𝑅)‖2𝐿2(0,𝑇 ) .

(37)

Since by Proposition 4.7 we are able to bound the first exponent in the supremum by setting 𝜂 = 4𝐿2�̄�𝑇−2, it
remains to bound the term |1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)|−2. We use⃒⃒⃒

1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)
⃒⃒⃒
≥ 1− e−2Re(𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅))

and the fact that 𝐴(𝑠, 𝜆, 𝑇 ) = Re 𝑠𝑇 − 2Re(𝜅(𝑠, 𝜆)𝛾(𝑠, 𝜆)), as well as Lemma 4.5, which allows to rewrite for
Re 𝑠 = 𝜂, ⃒⃒⃒

1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)
⃒⃒⃒
≥ 1− e𝐴(𝑠,𝜆𝑚,𝑇 )−Re 𝑠𝑇−2Re 𝑠𝑅 ≥ 1− e−8𝐿2�̄�𝑇−1−8𝐿2𝑅𝑇−2�̄�.
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With the inequality 1− e−𝑥 ≥ 1
2 min(1, 𝑥), 𝑥 ≥ 0, we have

⃒⃒⃒
1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)

⃒⃒⃒−1

. max
(︂

1,
𝑇

�̄�𝐿2(1 +𝑅𝑇−1)

)︂
. max

(︂
1,

𝑇

�̄�𝐿2

)︂
.

Combining the above bound and the bound of Proposition 4.7 into (37) yields

‖𝑒𝜎
𝑚‖𝐿∞(0,𝑇 ;𝐿2(0,𝑅)) . e−4𝐿2�̄�𝑇−1 𝑇 3/2

�̄�1/2𝐿
max

(︂
1,

𝑇

�̄�𝐿2

)︂
‖𝜕𝑡𝐻𝑚(., 𝑅)‖𝐿2(0,𝑇 ) .

Case 𝑡 ≤ 2𝐿. Again, following the same argument as used in [13], it is sufficient to verify that ‖𝑒𝜎
𝑚(𝑠)‖𝐿2(0,𝑅) .

e−2𝐿Re 𝑠|𝑠|𝑘 max(1, (Re 𝑠)−ℓ), for some 𝑘, ℓ ≥ 0. This is straightforward from (26):

‖𝑒𝜎
𝑚(𝑠)‖𝐿2(0,𝑅) ≤ ‖𝑐𝑚(𝑠)‖𝐿2(0,𝑅)e−2Re 𝜅(𝑠,𝜆𝑚)𝛾(𝑠) ≤ ‖𝑐𝑚(𝑠)‖𝐿2(0,𝑅) e−2Re 𝑠𝐿,

where the last bound follows from the definition of 𝛾(𝑠) = 𝐿(1 + �̄�
𝑠𝜁 ) and the technical Lemmas 4.5 and 4.6

(the latter implying in particular that Re(𝜅(𝑠, 𝜆𝑚)/𝑠𝜁(𝑠)) > 0). Finally, the bound on 𝑐𝑚(𝑠) follows from (36).
Because �̂�𝑚 itself is a Laplace transform of a function of 𝑇𝐷(𝐻1(Ω𝑝ℎ)) (this is seen in particular from the same
argument as the one used to derive Cor. 3.4), we have the desired bound in 𝑠 on |�̂�𝑚(𝑠,𝑅)| from Theorem 3.2.
It remains to consider the term⃒⃒⃒

1− e−2𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)
⃒⃒⃒
& 1− e−2Re(𝜅(𝑠,𝜆𝑚)(𝛾(𝑠)+𝑅)) & 1− e−2Re 𝑠𝐿 & min(1,Re 𝑠),

where the last two bounds were obtained from the technical Lemmas 4.5 and 4.6 and the inequality 1− e−𝑥 ≥
1/2 min(1, 𝑥) used before. �

5. Extension of the results: examples and counterexamples for a waveguide
with a heterogeneity

Since the techniques for the stability and convergence analysis from the previous section are largely based on
the modal decomposition, it is natural to ask whether the respective results can be extended to waveguides with
a perturbation (e.g. when 𝜀 and 𝜇 depend on the spatial variable away from the PMLs, when Ω𝑝ℎ is no longer
a rectangle, but a curved waveguide, or when there is an inclusion present in the domain). It is not difficult to
verify that once the stability of the PML system is proven, the convergence can be shown by comparing the
DtN operators, cf. the equation (24). Example when 𝜀, 𝜇 depend on 𝑥, one can start by proving the stability
of the problem satisfied by the error of the PML. Provided the data 𝑔, this problem in the Laplace domain can
be written as:

𝑠2𝜇(𝑠,𝑥)𝑒𝜎 − div 𝜀−1(𝑠,𝑥)∇𝑒𝜎 = 0 in Ω𝑝ℎ, (38)
∇𝑒𝜎 · 𝑛 = 0 on 𝜕Ω𝑝ℎ ∖ Σ, ∇𝑒𝜎 · 𝑛 = 𝑇𝜎𝑒𝜎 + 𝑔. (39)

Next, one uses the same arguments as in the proof of Theorem 2.11 to show that in the case when 𝑔 =
(𝑇𝜎 − 𝑇∞)�̂�, the error is small thanks to the stability and the ’smallness’ of the error between the two DtNs.

The main difficulty is to prove stability in this case. In this section we present two counter-examples, where we
will prove that even if the heterogeneity is bounded away from the PMLs, the solution can exhibit instabilities
in the time domain.
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5.1. Piecewise-constant dispersive media

Let us consider wave propagation in media given by parameters of the following form:

𝜀(𝑠,𝑥) = 1 +
𝜔2

𝑒(𝑥)
𝑠2

, 𝜔𝑒(𝑥) = const > 0 for 𝑥 < 𝑅/2, 𝜔𝑒(𝑥) = 0 for 𝑥 > 𝑅/2,

𝜇(𝑠,𝑥) = 1 +
𝜔2

𝑚(𝑥)
𝑠2

, 𝜔𝑚(𝑥) = const > 0 for 𝑥 < 𝑅/2, 𝜔𝑚(𝑥) = 0 for 𝑥 > 𝑅/2.

We consider the boundary-value problem written in the Laplace domain:

𝑠2𝜇�̂�𝜎 − div 𝜀−1∇�̂�𝜎 = 0, 𝑥 > 0,

∇�̂�𝜎 · 𝑛 = 0 on R+
* × Γ,

∇�̂�𝜎 · 𝑛 = 𝑔 on {0} × Γ.

Let us remark that the time-domain counterpart of the above problem is stable, as can be shown by energy
techniques.

Next, we apply a PML with the parameter 𝜁 (because the media parameters are piecewise-constant rather
than constant as before, we do not impose the conditions of Assumption 2.10 on 𝜁). We thus obtain

𝑠2𝜇

(︂
1 +

𝜎

𝑠𝜁

)︂
�̂�𝜎 − 𝜕𝑥𝜀

−1

(︂
1 +

𝜎

𝑠𝜁

)︂−1

𝜕𝑥�̂�
𝜎 − 𝜀−1

(︂
1 +

𝜎

𝑠𝜁

)︂
𝜕2

𝑦�̂�
𝜎 = 0, 𝑥 > 0,

∇�̂�𝜎 · 𝑛 = 0 on (0, 𝑅+ 𝐿)× Γ ∪ {𝑥 = 𝑅+ 𝐿}, ∇�̂�𝜎 · 𝑛 = 𝑔 on {0} × Γ.

(40)

Because the PML and the dispersive media are separated by a layer of vacuum, the so-called backward prop-
agating waves which cause the instability of the PMLs do not reach the absorbing layer. Therefore one would
expect that a ’good’ (leading to a stable problem) choice of a PML would be the classical, Bérenger’s PML with
𝜁 = 1.

On the other hand, arguing like in Section 3.2, one can formally reduce the above problem to the problem
on the subdomain (0, 𝑅)× (0, ℓ) with the boundary condition at 𝑥 = 𝑅 written in the form 𝜀−1𝜕𝑥�̂�

𝜎 = ̃︀𝑇𝜎�̂�𝜎,
where ̃︀𝑇𝜎 is the DtN associated to the coupled vacuum-PML problem posed on (𝑅/2, 𝑅+𝐿)× (0, ℓ). From this
point of view it is less clear whether it is the PML change of variables with 𝜁 = 1 or 𝜁 satisfying Assumption 2.10
that leads to a stable problem.

In this short section we will argue, semi-analytically and numerically, that neither of the choices leads to a
stable formulation in this case.

For this it is sufficient to show that there exists 𝑠0 ∈ C+
* , s.t. that the solution to (40) is not unique.

Thus, we will look for the solution to the problem (40) in the following form:

�̂�𝜎(𝑠, 𝑥, 𝑦) =

⎧⎪⎨⎪⎩
∑︀∞

𝑚=0 𝑔𝑚

(︀
𝑎+

𝑚e𝜅𝑑(𝑠,𝜆𝑚)𝑥 + 𝑎−𝑚e−𝜅𝑑(𝑠,𝜆𝑚)𝑥
)︀
𝜑𝑚(𝑦), 𝑥 < 𝑅

2 ,∑︀∞
𝑚=0 𝑔𝑚

(︀
𝑏+𝑚e𝜅0(𝑠,𝜆𝑚)(𝑥−𝑅/2) + 𝑏−𝑚e−𝜅0(𝑠,𝜆𝑚)(𝑥−𝑅/2)

)︀
𝜑𝑚(𝑦), 𝑅

2 < 𝑥 < 𝑅,∑︀∞
𝑚=0 𝑔𝑚

(︀
𝑐+𝑚e𝜅0(𝑠,𝜆𝑚)(𝑥𝜎−𝑅) + 𝑐−𝑚e−𝜅0(𝑠,𝜆𝑚)(𝑥𝜎−𝑅)

)︀
𝜑𝑚(𝑦), 𝑅 < 𝑥 < 𝑅+ 𝐿,

𝑥𝜎(𝑠) = 𝑥+
1
𝑠𝜁

∫︁ 𝑥

𝑅

𝜎(𝑥′) d𝑥′,

where 𝜅𝑑(𝑠, 𝜆) =
√︀
𝑠2𝜀(𝑠)𝜇(𝑠) + 𝜆2 and 𝜅0(𝑠, 𝜆) =

√
𝑠2 + 𝜆2.

The coefficients satisfy the following equation, which is obtained from the boundary conditions at 𝑥 = 0,
the transmission conditions at 𝑥 = 𝑅

2 , the transmission conditions at 𝑥 = 𝑅 and the boundary condition at
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𝑥 = 𝑅+ 𝐿:

⎛⎜⎜⎜⎝
𝑀

(11)
𝑚 0 0

𝑀
(21)
𝑚 𝑀

(22)
𝑚 0

0 𝑀
(32)
𝑚 𝑀

(33)
𝑚

0 0 𝑀
(44)
𝑚

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝑎+

𝑚

𝑎−𝑚
𝑏+𝑚
𝑏−𝑚
𝑐+𝑚
𝑐−𝑚

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
𝑔𝑚

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ,

where the matrix 𝑀𝑚 is given by

𝑀 (11)
𝑚 =

(︀
1 −1

)︀
,

𝑀 (21)
𝑚 =

(︃
e𝜅𝑑(𝑠,𝜆𝑚) 𝑅

2 e−𝜅𝑑(𝑠,𝜆𝑚) 𝑅
2

𝜅𝑑(𝑠,𝜆𝑚)
𝜀 e𝜅𝑑(𝑠,𝜆𝑚) 𝑅

2 −𝜅𝑑(𝑠,𝜆𝑚)
𝜀 e−𝜅𝑑(𝑠,𝜆𝑚) 𝑅

2

)︃
, 𝑀 (22)

𝑚 =
(︂

−1 −1
−𝜅0(𝑠, 𝜆𝑚) 𝜅0(𝑠, 𝜆𝑚)

)︂
,

𝑀 (32)
𝑚 =

(︂
e𝜅0(𝑠,𝜆𝑚) 𝑅

2 e−𝜅0(𝑠,𝜆𝑚) 𝑅
2

𝜅0(𝑠, 𝜆𝑚)e𝜅0(𝑠,𝜆𝑚) 𝑅
2 −𝜅0(𝑠, 𝜆𝑚)e−𝜅0(𝑠,𝜆𝑚) 𝑅

2

)︂
, 𝑀 (33)

𝑚 =
(︂

−1 −1
−𝜅0(𝑠, 𝜆𝑚) 𝜅0(𝑠, 𝜆𝑚)

)︂
,

𝑀 (44)
𝑚 =

(︀
𝜅0(𝑠, 𝜆𝑚)e𝜅0(𝑠,𝜆𝑚)𝛾(𝑠) −𝜅0(𝑠, 𝜆𝑚)e−𝜅0(𝑠,𝜆𝑚)𝛾(𝑠)

)︀
.

The matrices 𝑀 (21)
𝑚 and 𝑀 (33)

𝑚 are invertible for all 𝑠 ∈ C+
* (their determinants are respectively −2𝜅𝑑(𝑠, 𝜆𝑚)/𝜀

and −2𝜅0(𝑠, 𝜆𝑚), which do not vanish for any 𝑠 ∈ C+
* by passivity of 𝜀(𝑠) and Lemma 4.5). We thus express

𝑎𝑚 = (𝑎+
𝑚 𝑎−𝑚 )𝑇 and 𝑐𝑚 = ( 𝑐+𝑚 𝑐−𝑚 )𝑇 via 𝑏𝑚 = ( 𝑏+𝑚 𝑏−𝑚 )𝑇 . This allows us to reduce the problem to a linear

equation on 𝑏𝑚:(︂
− 𝜀

2𝜅𝑑

(︀
e−𝜅𝑑𝑅/2

(︀
𝜅𝑑

𝜀 + 𝜅0

)︀
− e𝜅𝑑𝑅/2

(︀
𝜅𝑑

𝜀 − 𝜅0

)︀)︀
− 𝜀

2𝜅𝑑

(︀
e−𝜅𝑑𝑅/2

(︀
𝜅𝑑

𝜀 − 𝜅0

)︀
− e𝜅𝑑𝑅/2

(︀
𝜅𝑑

𝜀 + 𝜅0

)︀)︀
e𝜅0(𝛾𝑚+𝑅/2) −e−𝜅0(𝛾𝑚+𝑅/2)

)︂
𝑏𝑚 =

(︂
𝑔𝑚

0

)︂
.

The above matrix is not invertible if and only if, with 𝜉 = 𝜅𝑑−𝜀𝜅0
𝜅𝑑+𝜀𝜅0

,

𝐹 (𝑠) = e−𝜅0𝛾𝑚

(︁
e−(𝜅𝑑+𝜅0)𝑅/2 − 𝜉e(𝜅𝑑−𝜅0)𝑅/2

)︁
+ e𝜅0𝛾𝑚

(︁
𝜉e(𝜅0−𝜅𝑑)𝑅/2 − e(𝜅0+𝜅𝑑)𝑅/2

)︁
= 0. (41)

Our goal is thus to show that there exists 𝑠0 ∈ C+
* , s.t. 𝐹 (𝑠0) = 0. Because 𝐹 is analytic in C+

* , any such value
of 𝑠0 would be a root of 𝐹 of a finite multiplicity.

Because estimating the sign of the real part of the roots of 𝐹 seems fairly cumbersome, even in the asymptotic
regime 𝜎 → 0, we propose instead to look at the evolution of some of the roots, computed numerically, as 𝜎
increases.

We proceed to show numerically that for a certain choice of parameters the function (41) has roots in C+
* .

To this end we choose
𝜔𝑒 = 3, 𝜔𝑚 = 0.2, 𝑅 = 1, 𝐿 = 0.5, 𝜆𝑚 = 1

and plot the values of |𝐹 (𝑠)| in the complex plane for different values of �̄�. Note that due to the fact that 𝐹 is
holomorphic in the right half plane, we obtain by the minimum principle that a level set which is a closed curve
in C+

* must enclose a root of 𝐹 . Figure 4 shows that such level sets exist for various choices of 𝜎 proving the
existence of unstable solutions for the according PML truncation.

This is confirmed by computing the full two-dimensional time-domain simulation, where Figure 6a shows
the instability in time. On the other hand Figure 6a also demonstrates the stability of the solution for the
homogeneous dispersive waveguide with the choice 𝜁 = 𝜇.

Moreover Figure 5 shows that the choice of 𝜁 = 𝜇 which would be the ’correct’ one for a homogeneous
dispersive waveguide leads again to unstable solutions.
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Figure 4. The values of |𝐹 | (cf. (41), remember that here 𝜁 = 1) for various choices of �̄�,
where yellow indicates larger and blue smaller values. The white contours are the level sets
corresponding to |𝐹 | = 0.5. (a) �̄� = 5 and (b) �̄� = 15.

Figure 5. The values of the function corresponding to |𝐹 | (cf. (41)) for 𝜁 = 𝜇 and for various
choices of �̄�, where yellow indicates larger and blue smaller values. The white contours are the
level sets corresponding to |𝐹 | = 0.5. (a) �̄� = 5 and (b) �̄� = 15.
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Figure 6. Exponential blow-up and stability of the time-domain solution for the inhomo-
geneous/homogeneous waveguide problems with ℓ = 𝜋, a time-harmonic source 𝑓(𝑡, 𝑥, 𝑦) =
sin(𝜔0𝑡)𝑦 exp

(︀
−20(𝑥2 + (𝑦 − 𝜋/2)2)

)︀
, a finite element mesh size ℎ = 0.1, third order finite

elements, a time step 𝜏 = 0.04 and an explicit time-stepping scheme. (a) Homogeneous and
inhomogeneous, dispersive Drude materials with source frequency 𝜔0 = 1 (for the remaining
parameters see Sec. 5.1) and (b) homogeneous and inhomogeneous, non-dispersive materials
with source frequency 𝜔0 = 0.8 (for the remaining parameters see Sec. 5.2).

5.2. Piecewise-constant non-dispersive media

The results of the previous section may seem quite surprising, since the instability in the PMLs is produced
even despite the fact that backward propagating waves do not reach the absorbing layer. This observation
has incited us to ask whether the PMLs can be unstable when the heterogeneities do not support backward
propagating waves at all. The goal of this section is to demonstrate semi-analytically and numerically that this
may be indeed the case. For this we will relax the high-frequency requirement on 𝜇 and 𝜀 (i.e. we do not require
that 𝜀(𝑠), 𝜇(𝑠) → 1 as 𝑠→ +∞), and will study the problem (40) with

𝜀(𝑠,𝑥) =
{︂
𝜀𝐻 , if 𝑥 < 𝑅/2,
1, 𝑥 > 𝑅/2, 𝜇(𝑠,𝑥) =

{︂
𝜇𝐻 , if 𝑥 < 𝑅/2,
1, 𝑥 > 𝑅/2, 𝜇𝐻 = const > 0, 𝜀𝐻 = const > 0.

In this case (40) describes wave propagation in two media characterized by different wave velocities. Evi-
dently, both decoupled problems are isotropic and non-dispersive; the stability of (40) in the time domain is
straightforward from energy estimates. It is thus natural to apply the standard, Bérenger’s PMLs to bound
the computational domain, i.e., we choose 𝜁 = 1. Repeating the same arguments as in the previous section, we
conclude that PML instabilities may occur if there exists the solution 𝑠0 ∈ C+

* to (41).
For this we choose the parameters as follows:

𝜀𝐻 = 𝜇𝐻 = 10, 𝑅 = 1, 𝐿 = 0.5, 𝜆𝑚 = 1.

As in the non-dispersive case we observe that there exist roots (cf. Fig. 7) of the resulting function 𝐹 (suitably
defined for the non dispersive case) in C+

* for certain parameters. Again this shows the existence of unstable
solutions (cf. Fig. 6b).

6. Numerical experiments

To underline our theoretical findings, we conduct numerical experiments studying the convergence of the
truncation error of the PMLs. To this end we use an implementation of the PML equations (11)–(14) by
high-order conforming finite elements on a triangular mesh using the software package NGSolve [44,45].
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Figure 7. The values of the function corresponding to |𝐹 | (cf. (41)) for the non dispersive case
(cf. Sec. 5.2) and various choices of �̄�, where yellow indicates larger and blue smaller values.
The white contours are the level sets corresponding to |𝐹 | = 0.5. (a) �̄� = 6 and (b) �̄� = 18.

6.1. Description of the experiments

We consider a one-sided waveguide with physical domain Ω𝑝ℎ = (0, 𝑅) × (0, 1) and PML domain Ω𝜎 =
(𝑅,𝑅+𝐿)× (0, 1) for 𝑅 = 0.5 and 𝐿 > 0. In all the experiments we used finite elements of the polynomial order
7 (and higher orders for the reference solution) and a mesh size ℎ = 0.1.

For our experiments we choose Lorentz materials with a single pole of the form (cf. Fig. 8)

𝜇(𝑠) = 1 +
𝜇2

1

𝑠2𝜇,1 + 𝑠2
, 𝜀(𝑠) = 1 +

𝜀21
𝑠2𝜀,1 + 𝑠2

with 𝜇1, 𝜀1 = 10 and 𝑠𝜇,1 = 6, 𝑠𝜀,1 = 8.
To be able to apply standard time-stepping methods to the system (11)–(14) we need to rewrite (12) as a

first order system in time. This is straightforward for our choice of material and the choice of 𝜁 equal to 𝜇 or 𝜀
by introducing additional unknowns.

Remark 7. As long as the materials 𝜇, 𝜀 are rational functions in 𝑠 it is always possible to introduce additional
unknowns to obtain a first order system in time, however the choice of unknowns and additional equations is by
far not unique. A usual choice (also of the scaling function 𝜁) would aim to minimize the number of unknowns
to keep the computational effort as small as possible.

We apply embedded Runge-Kutta 2(3) time-stepping methods to the resulting first-order system in time to
ensure that the time integration error is small.

Let us consider the dispersion relation of the plane waves e𝑖(𝜔𝑡−𝑘𝑥) propagating in the free space media
characterized by 𝜇 and 𝜀, namely,

ℱ(𝜔,𝑘) = 𝜔2𝜀(−𝑖𝜔)𝜇(−𝑖𝜔)− |𝑘|2 = 0. (42)

It can be shown that the above implicit equation defines six branches of the solution |𝑘| ↦→ 𝜔𝑗(|𝑘|), 𝑗 = 1, . . . , 6.
Depending on the range of frequencies, the following types of wave propagation can be observed (cf. [19] and
[17]):
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Figure 8. Materials used in the numerical experiments. The colors indicate the regions where
we expect propagating, backward and evanescent waves.

– for 𝜔 s.t. 𝜇(𝜔) ≥ 0, 𝜀(𝜔) ≥ 0 all the waves are forward propagating, more precisely, the group velocity
𝑣𝑔 = ∇𝑘𝜔(𝑘) and the phase velocity 𝑣𝑝ℎ = 𝜔

|𝑘|𝑘 satisfy:

(𝑣𝑔 · 𝑒𝑥) (𝑣𝑝ℎ · 𝑒𝑥) ≥ 0, (𝑣𝑔 · 𝑒𝑦) (𝑣𝑝ℎ · 𝑒𝑦) ≥ 0.

– for 𝜔 s.t. 𝜇(𝜔) < 0, 𝜀(𝜔) < 0 all the waves are backward propagating, more precisely

(𝑣𝑔 · 𝑒𝑥) (𝑣𝑝ℎ · 𝑒𝑥) < 0, (𝑣𝑔 · 𝑒𝑦) (𝑣𝑝ℎ · 𝑒𝑦) < 0.

– finally, for 𝜔 s.t. 𝜇(𝜔)𝜀(𝜔) < 0, the dispersion relation (42) has no real solutions, and thus the waves are
evanescent.

This analysis originally done in the free-space dispersive medium can be extended to the case of the dispersive
waveguide. As one can expect, cf. the seminal work [14] and a rigorous justification in [17], the Bérenger’s PML
instabilities occur due to the presence of the backward propagating waves. The choice of the scaling function
𝜁 = 𝜇 stabilizes the perfectly matched layer.

The PML damping is chosen as 𝜎(𝑥) ≡ 𝜎0 which leads to the average damping �̄� = 𝜎0.
Moreover, we introduce a time-dependent source by equipping the problem with the Neumann boundary

values at 𝑥 = 0 for 𝐻𝜎

∇𝐻𝜎(𝑡, 0, 𝑦) · 𝑛 = exp(−10𝑦2)𝜏(𝑡), 𝜏(𝑡) =
sin(𝜔0𝑡)

𝑡
exp

(︂
−1

2
ln2(𝑡)

)︂
, 𝜔0 > 0.

To obtain the reference solution, we solve the same problem in the domain (0, 𝑅+𝐿∞)×(0, ℓ) with a homogeneous
Neumann boundary condition for𝐻𝜎 on the right end and 𝐿∞ chosen so that for the considered time no reflected
wave re-enters the interior domain. We measure the relative (with respect to the reference solution) error of 𝐻𝜎

in the 𝐿2(0, 𝑇 ;𝐿2(Ω𝑝ℎ))-norm inside the interior domain only.
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Figure 9. Experiment 1: convergence of the PML-truncation for propagating waves with
respect to the damping parameter. The discretization error is ≈ 10−6.

Remark 8. Due to the fact that the source has a fixed distance 𝑅 to the start of the PML, we also might
consider the whole waveguide as a PML of length 𝐿+𝑅 with

𝜎(𝑥) =

{︃
0, 𝑥 ≤ 𝑅,

𝜎0, 𝑥 > 𝑅.

This leads to an average damping �̄� = 𝐿
𝐿+𝑅𝜎0 and thus to the exponential part of the error bound

𝜖(𝑇, 𝜎0, 𝐿,𝑅) = exp
(︂
−4𝐿(𝐿+𝑅)𝜎0

𝑇

)︂
.

6.2. Experiments and the related discussion

Experiment 1. In our first experiment we fix the PML length to 𝐿 = 0.5, the frequency 𝜔0 = 20, and vary
the damping parameter 𝜎0, as well as the final time 𝑇 ∈ {2, 6, 10}. Figure 9 shows the exponential convergence
of the PML-truncation with respect to 𝜎0 compared to the theoretical estimates. We also observe that the
asymptotic bound is sharp for 𝑇 = 2.

Experiment 2. We fix 𝜎0 = 4, 𝜔0 = 20, and vary the length of the PML 𝐿, as well as the final time 𝑇 ∈ {3, 4, 5}.
The results are shown in Figure 10. Again, we observe the exponential convergence in 𝐿(𝑅+ 𝐿), whose rate is
faster than the theoretical asymptotic rate.

Experiment 3. For the last experiment we vary the frequency 𝜔0 = 7, 10, 20 of the source to obtain solutions
in the three different regimes (cf. Fig. 11) and study again the convergence in the PML damping 𝜎0. For
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Figure 10. Experiment 2: convergence of the PML-truncation for propagating waves with
respect to the PML thickness. The discretization error is ≈ 10−6.

Figure 11. Experiment 3: convergence of waves in different regimes. As a comparison the error
of a non-dispersive waveguide is given.
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comparison, we have added to the figure the PML error measured in the analogous configuration with a non-
dispersive material. The observed exponential rate of convergence in this example depends very mildly on the
source frequency, but exhibits quite significant dependence on the material. Quite surprisingly, the PMLs for
the dispersive media show a better convergence rate than in the classical Bérenger’s PMLs in the vacuum.

The above results show the exponential convergence of the PML as predicted by the theoretical error bounds,
however, the numerically observed convergence rates do not always coincide with the theoretical ones (cf. Fig. 9).
This may be related to the way we derived the error bounds: by taking the maximal value of the error indicator
exp(𝐴(𝑠, 𝜆𝑚, 𝑡)) along the contour 𝑠 = 𝑠0 + 𝑖𝜔, while, as we see in Figure 2, if the source contains only high
frequencies in space and is e.g., time frequency band limited, it may happen that an actual PML error is much
smaller than the one that was predicted by Theorem 2.11.

Remark 9. In Figure 9 we observe that the errors of the first two experiments for 𝑇 = 6, 10 coincide for
the first two choices of 𝜎0 and settle in different asymptotic rate for larger damping parameters. A possible
explanation for this behavior would be that for smaller damping parameters the error induced by the first (or
an early) reflection on the truncation boundary dominates the later occurring reflections (recall that we use a
source with a decaying magnitude in time). A similar argument can be made for the corresponding results in
Figure 10.

7. Conclusions and open questions

In this article we have studied the convergence of generalized perfectly matched layers for the 2D electromag-
netic wave propagation in homogeneous dispersive media. We have obtained the same exponential convergence
bound as in the case of Brenger’s PMLs for non-dispersive media. Similar arguments can of course be applied
to the 2D/3D acoustic wave propagation in dispersive waveguides.

Our arguments can be extended to the case of waveguides with localized heterogeneities, as soon as stability
is proven. However, as we show using semi-analytic arguments and numerical experiments, even in the case of
localized heterogeneity in non-dispersive waveguides, the PMLs (Bérenger’s PMLs) may exhibit instabilities(!).
It is thus an open question how to construct stable PMLs for these cases.

Another interesting open question is investigating the stability and convergence of PMLs for 3D Maxwell
waveguides, both in the dispersive and the non-dispersive case.

Appendix A. Proof of Lemma 3.3

We will use the following bound from Lemma 2.4 of [12]: for any admissible 𝜂, it holds that

|𝜂(𝑠)| . |𝑠|max(1, (Re 𝑠)−3), 𝑠 ∈ C+
* . (A.1)

The proof below is nothing less but a generalization of the approach suggested in [13]. We start by considering
the PML sesquilinear form written using the modal decomposition

𝑎𝑠(𝑢, 𝑣) =
∫︁ 𝑅+𝐿

0

∞∑︁
𝑚=0

(︃(︀
𝑠2𝜀𝜇+ 𝜆2

𝑚

)︀(︂
1 +

𝜎

𝑠𝜁

)︂
𝑢𝑚𝑣𝑚 +

(︂
1 +

𝜎

𝑠𝜁

)︂−1

𝜕𝑥𝑢𝑚 𝜕𝑥𝑣𝑚

)︃
d𝑥.

Let us introduce ̃︀𝜇 := 𝜀𝜇
𝜁 , which, by Assumption 2.10, is admissible, cf. Definition 2.1. We then have

𝑎𝑠(𝑢, 𝑣) =
∫︁ 𝑅+𝐿

0

∞∑︁
𝑚=0

(︃(︀
𝑠2̃︀𝜇𝜁 + 𝜆2

𝑚

)︀(︂
1 +

𝜎

𝑠𝜁

)︂
𝑢𝑚𝑣𝑚 +

(︂
1 +

𝜎

𝑠𝜁

)︂−1

𝜕𝑥𝑢𝑚 𝜕𝑥𝑣𝑚

)︃
d𝑥.

First of all, remark that for 𝑠 ∈ C+, the form 𝑎𝑠 is continuous, because, on one hand, 𝜁, ̃︀𝜇 are analytic in
C+, and, on the other hand (𝑠𝜁 + 𝜎) is bounded for all Re 𝑠 > 0, 𝜎 ≥ 0, since Re(𝑠𝜁 + 𝜎) ≥ Re(𝑠𝜁) > 0, by
Assumption 2.10.

Let us now define 𝑠𝑖 := Im(𝑠̃︀𝜇) Im(𝑠𝜁). To prove the inf-sup condition, we consider two cases.
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(1) 𝑠𝑖 ≤ 0. It is then straightforward to verify that Re 𝑎𝑠(𝑢, 𝑢) ≥ 𝑐𝑠‖𝑢‖2𝐻1(Ω𝑐)
. Indeed,

Re 𝑎𝑠(𝑢, 𝑢) =
∫︁ 𝑅+𝐿

0

∞∑︁
𝑚=0

(︀
Re(𝑠𝜁)Re(𝑠̃︀𝜇)− ̃︀𝑠𝑖 + 𝜆2

𝑚 + 𝜎(𝑥)Re (𝑠̃︀𝜇) + 𝜎(𝑥)𝜆2
𝑚Re(𝑠𝜁)−1

)︀
|𝑢𝑚(𝑥)|2 d𝑥

+
∫︁ 𝑅+𝐿

0

∞∑︁
𝑚=0

|𝑠𝜁|2 + 𝜎(𝑥)Re(𝑠𝜁)
|𝑠𝜁 + 𝜎(𝑥)|2

|𝜕𝑥𝑢𝑚(𝑥)|2 d𝑥

&
∫︁ 𝑅+𝐿

0

∞∑︁
𝑚=0

(︀
(Re 𝑠)2 + 𝜆2

𝑚

)︀
|𝑢𝑚(𝑥)|2 d𝑥+ min

(︀
1, (Re 𝑠)2‖𝜎‖−2

∞
)︀ ∫︁ 𝑅+𝐿

0

∞∑︁
𝑚=0

|𝜕𝑥𝑢𝑚(𝑥)|2 d𝑥,

where the result follows by recalling the positivity result of (3), ̃︀𝑠𝑖 ≤ 0 and the following bound:

|𝑠𝜁|2 + 𝜎Re(𝑠𝜁)
|𝑠𝜁 + 𝜎|2

&
|𝑠𝜁|2

|𝑠𝜁|2 + ‖𝜎‖2∞
&

|Re(𝑠𝜁)|2

|Re(𝑠𝜁)|2 + ‖𝜎‖2∞
·

The latter bound is obtained by remarking that the function 𝑥 ↦→ 𝑥
𝑥+𝑎 grows in 𝑥 > 0. For the same reason

we can use (3) to bound Re(𝑠𝜁) from below by Re 𝑠:

Re
|𝑠𝜁|2 + 𝜎Re(𝑠𝜁)

|𝑠𝜁 + 𝜎|2
&

(Re 𝑠)2

(Re 𝑠)2 + ‖𝜎‖2∞
&

(Re 𝑠)2

max ((Re 𝑠)2, ‖𝜎‖2∞)
& min

(︃
1,
(︂

Re 𝑠
‖𝜎‖∞

)︂2
)︃
. (A.2)

(2) 𝑠𝑖 > 0. We will prove an inf-sup condition in terms of the 𝑇 -coercivity, cf. [18]. We define the operator
𝑇𝑠 : 𝐻1(Ω𝑐) → 𝐻1(Ω𝑐) by

𝑇𝑠𝑣 =
∑︁

𝜆2
𝑚<𝑠𝑖

𝑠𝜁(𝑠)𝑣𝑚𝜑𝑚 +
∑︁

𝜆2
𝑚≥𝑠𝑖

𝑣𝑚𝜑𝑚. (A.3)

Evidently, 𝑇𝑠 is invertible with a bounded inverse. We then have

Re 𝑎(𝑢, 𝑇𝑠𝑢) =
∫︁ 𝑅+𝐿

0

∑︁
𝜆2

𝑚<̃︀𝑠𝑖

(︂
|𝑠𝜁|2Re(𝑠̃︀𝜇) + 𝜆2

𝑚Re(𝑠𝜁) +
𝜎(𝑥)
|𝑠𝜁|2

(︁
|𝑠𝜁|2Re

(︀
𝑠̃︀𝜇𝑠𝜁)︀+ 𝜆2

𝑚Re
(︀
𝑠𝜁
)︀2)︁)︂ |𝑢𝑚|2⏟  ⏞  

𝐼1

+
∫︁ 𝑅+𝐿

0

∑︁
𝜆2

𝑚≥̃︀𝑠𝑖

(︀
Re(𝑠𝜁)Re (𝑠̃︀𝜇)− ̃︀𝑠𝑖 + 𝜆2

𝑚 + 𝜎(𝑥)
(︀
Re (𝑠̃︀𝜇) + 𝜆2

𝑚Re(𝑠𝜁)−1
)︀)︀
|𝑢𝑚|2⏟  ⏞  

𝐼2

+
∫︁ 𝑅+𝐿

0

∑︁
𝜆2

𝑚<̃︀𝑠𝑖

Re
(︂
|𝑠𝜁|2

𝑠𝜁 + 𝜎

)︂
|𝜕𝑥𝑢𝑚|2 +

∫︁ 𝑅+𝐿

0

∑︁
𝜆2

𝑚≥̃︀𝑠𝑖

Re
(︂
|𝑠𝜁|2 + 𝜎𝑠𝜁

|𝑠𝜁 + 𝜎|2

)︂
|𝜕𝑥𝑢𝑚|2.

The latter term in the above is bounded from below using (A.2). The previous term can be bounded using
(3) and (A.2)

Re
(︂
|𝑠𝜁|2

𝑠𝜁 + 𝜎

)︂
&
|𝑠𝜁|2Re(𝑠𝜁)
|𝑠𝜁 + 𝜎|2

& Re 𝑠min

(︃
1,
(︂

Re 𝑠
‖𝜎‖∞

)︂2
)︃
.

It remains to study the signs of 𝐼1 and 𝐼2. In 𝐼1, the only term that is not a priori sign-definite (cf. Assump-
tion 2.10) is developed below:

|𝑠𝜁|2Re
(︀
𝑠̃︀𝜇𝑠𝜁)︀+ 𝜆2

𝑚Re
(︀
𝑠𝜁
)︀2 ≥ |𝑠𝜁|2 (︀Re(𝑠̃︀𝜇)Re(𝑠𝜁) + ̃︀𝑠𝑖 − 𝜆2

𝑚

)︀
≥ |𝑠𝜁|2Re(𝑠̃︀𝜇)Re(𝑠𝜁), because 𝜆2

𝑚 < ̃︀𝑠𝑖 in 𝐼1.
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This yields the lower bound

𝐼1 ≥ (Re(𝑠𝜁))2 Re (𝑠̃︀𝜇)
∑︁

𝜆2
𝑚<̃︀𝑠𝑖

|𝑢𝑚|2 +
∑︁

𝜆2
𝑚<̃︀𝑠𝑖

Re(𝑠𝜁)𝜆2
𝑚|𝑢𝑚|2 ≥ (Re 𝑠)3‖𝑢‖2 + Re 𝑠

∑︁
𝜆2

𝑚<̃︀𝑠𝑖

𝜆2
𝑚|𝑢𝑚|2,

where the last bound follows from (3).
Let us now consider the term 𝐼2. The term 𝐼2 is clearly bounded from below by Re(𝑠𝜁)Re(𝑠̃︀𝜇)‖𝑢‖2 &

(Re 𝑠)2‖𝑢‖2, since 𝜆2
𝑚 ≥ ̃︀𝑠𝑖, and it remains to argue that 𝐼2 &

∑︀
𝜆2

𝑚≥̃︀𝑠𝑖
𝜆2

𝑚|𝑢𝑚|2.
For any 0 < 𝜀 < 1 (to be chosen), it holds that

𝐼2 ≥
∫︁ 𝑅+𝐿

0

∑︁
𝜆2

𝑚(1−𝜀)≥̃︀𝑠𝑖

(︀
(Re 𝑠)2|𝑢𝑚|2 +

(︀
𝜆2

𝑚 − ̃︀𝑠𝑖

)︀
|𝑢𝑚|2

)︀
+
∫︁ 𝑅+𝐿

0

∑︁
(1−𝜀)̃︀𝑠𝑖≤𝜆2

𝑚(1−𝜀)≤̃︀𝑠𝑖

(Re 𝑠)2|𝑢𝑚|2

≥
∫︁ 𝑅+𝐿

0

∑︁
𝜆2

𝑚(1−𝜀)≥̃︀𝑠𝑖

(︀
(Re 𝑠)2|𝑢𝑚|2 + 𝜀𝜆2

𝑚|𝑢𝑚|2
)︀

+
∫︁ 𝑅+𝐿

0

∑︁
(1−𝜀)̃︀𝑠𝑖≤𝜆2

𝑚(1−𝜀)≤̃︀𝑠𝑖

(︂
(Re 𝑠)2

2
|𝑢𝑚|2 +

1− 𝜀

2̃︀𝑠𝑖
𝜆2

𝑚(Re 𝑠)2|𝑢𝑚|2
)︂
.

Let us remark that ̃︀𝑠𝑖 ≤ |𝑠|4 max(1, (Re 𝑠)−6), by (A.1). We choose e.g. 𝜀 = 1/2, so that we finally obtain the
following bound:

𝐼2 & (Re 𝑠)2
∑︁

𝜆2
𝑚≥̃︀𝑠𝑖

‖𝑢𝑚‖2𝐿2(0,𝑅+𝐿) + min
(︂

1,
1
|𝑠|4

)︂
min(1, (Re 𝑠)6)

∑︁
𝜆2

𝑚≥̃︀𝑠𝑖

𝜆2
𝑚|𝑢2

𝑚|

& (Re 𝑠)2
∑︁

𝜆2
𝑚≥̃︀𝑠𝑖

‖𝑢𝑚‖2𝐿2(0,𝑅+𝐿) + |𝑠|−4 min(1, (Re 𝑠)10)
∑︁

𝜆2
𝑚≥̃︀𝑠𝑖

𝜆2
𝑚|𝑢2

𝑚|,

where the last bound follows from min(1, |𝑠|−4) ≥ |𝑠|−4 min(|𝑠|4, 1) ≥ |𝑠|−4 min((Re 𝑠)4, 1).
Finally, gathering all the bounds in the statement of the lemma, we notice that, for ̃︀𝑠𝑖 ≤ 0,

|𝑎𝑠(𝑢, 𝑢)| & (Re 𝑠)2‖𝑢‖2 + ‖𝜕𝑦𝑢‖2 + ‖𝜎‖−2
∞ min(1, (Re 𝑠)2)‖𝜕𝑥𝑢‖2 ≥ 𝐶𝜎 min(1, (Re 𝑠)2)‖𝑢‖2𝐻1(Ω𝑐)

.

For ̃︀𝑠𝑖 > 0,

|𝑎(𝑢, 𝑇𝑠𝑢)| ≥ 𝑐𝜎
(︀
min(1, (Re 𝑠)3)‖𝜕𝑥𝑢‖2 + (Re 𝑠)2 min(1,Re𝑠)‖𝑢‖2 + min(Re 𝑠, |𝑠|−4 min(1, (Re 𝑠)10))‖𝜕𝑦𝑢‖2

)︀
.

Because min(Re 𝑠, |𝑠|−4 min(1, (Re 𝑠)10)) ≥ |𝑠|−4 min(1, (Re 𝑠)10), we can conclude that

|𝑎(𝑢, 𝑇𝑠𝑢)| & 𝑐𝜎|𝑠|−4 min(1, (Re 𝑠)10)‖𝑢‖2𝐻1(Ω𝑐)
.

Finally, the operator 𝑇𝑠 is bounded, and we have that, by (A.1),

‖𝑇𝑠‖ ≤ max (1, |𝑠𝜁(𝑠)|) ≤ max
(︀
1, |𝑠|2 max(1, (Re 𝑠)−3)

)︀
≤ |𝑠|2 max

(︀
(Re 𝑠)−2,max(1, (Re 𝑠)−3)

)︀
≤ |𝑠|2 max

(︀
1, (Re 𝑠)−3

)︀
.

This implies the desired bound in the statement of the lemma.

Appendix B. Level sets of harmonic functions

For an open set 𝐷 ⊂ C, let 𝜑 : 𝐷 → C be holomorphic. Then 𝜑𝑅 := Re(𝜑) is a harmonic function. Harmonic
functions have the following well-known properties.

Proposition B.1. Let 𝜑𝑅 : 𝐷 → R be the real part of a holomorphic function 𝜑. Then 𝜑𝑅 fulfills the min-max
principle: for every simple closed curve 𝒞 ⊂ 𝐷 with 𝒞 = 𝜕𝑀 for an open set 𝑀 ⊂ 𝐷 we have

inf
𝑠∈𝑀

𝜑𝑅(𝑠) = min
𝑠∈𝑀

𝜑𝑅(𝑠) = min
𝑠∈𝒞

𝜑𝑅(𝑠), sup
𝑠∈𝑀

𝜑𝑅(𝑠) = max
𝑠∈𝑀

𝜑𝑅(𝑠) = max
𝑠∈𝒞

𝜑𝑅(𝑠).
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Proof of Proposition 4.2. (1) Follows from the implicit function theorem.

(2) Suppose that a level set contains a closed curve. Then by the min–max-principle it would follow that the
function 𝜑𝑅 is constant in the interior of the said curve. From the Cauchy–Riemann equations the same
follows for 𝜑 and thus 𝜑 would have to be constant also in the whole domain.

(3) A level set cannot be compact since it would be a closed curve in this case.
(4) The proof is similar to the reasoning of Lemma 3 in [51]. Let 𝑧0 ∈ 𝐷 be a stationary point of 𝜑, i.e.,

𝜑′(𝑧0) = 0. Then, since 𝜑 is not constant there exists an index 𝑚 ∈ N,𝑚 ≥ 2, such that

𝜑(𝑧) = 𝜑(𝑧0) + 𝜑𝑚(𝑧 − 𝑧0)𝑚 +𝑂
(︀
(𝑧 − 𝑧0)𝑚+1

)︀
,

for some 𝜑𝑚 ̸= 0 and 𝑧 sufficiently close to 𝑧0. Thus

𝜑𝑅 (𝑧0 + 𝜀 exp(𝑖𝜃))− 𝜑𝑅(𝑧0) = |𝜑𝑚|𝜀𝑚 cos(𝑚𝜃 + arg(𝜑𝑚)) +𝑂(𝜀𝑚+1),

for 𝜀 > 0 small enough and 𝜃 ∈ [0, 2𝜋). We now may choose 𝜀 > 0 small enough such that the function
𝜃 ↦→ 𝜑𝑅(𝑧0 + 𝜀 exp(𝑖𝜃)) − 𝜑𝑅(𝑧0) has 2𝑚 different roots in [0, 2𝜋). This shows that 2𝑚 branches of the
level set meet in the point 𝑠0. Because for sufficiently small 𝜀 in 𝐵𝜀(𝑠0) they do not intersect but in 𝑠0, the
statement follows.

�

Appendix C. Proof of Proposition 4.3

Let us recall the result to prove.

Proposition C.1. For all �̄� > 0, 𝐿 > 0, 𝑡 > 2𝐿, 𝜆 > 0, the function 𝑠 ↦→ (𝑠𝑡− 2𝛾(𝑠)𝜅(𝑠, 𝜆))′ has precisely two
complex conjugate roots with a positive real part.

Let us explain our strategy to prove the above proposition. First,

𝐷(𝑠) = (𝑠𝑡− 2𝛾(𝑠)𝜅(𝑠, 𝜆))′ = 𝑡− 2𝑠𝐿√
𝑠2 + 𝜆2

(︁
1 +

�̄�

𝑠

)︁
+

2�̄�𝐿
𝑠2

√︀
𝑠2 + 𝜆2 = 𝑡− 2𝐿𝑠√

𝑠2 + 𝜆2
+

2𝐿�̄�𝜆2

𝑠2
√
𝑠2 + 𝜆2

·

Because the number of roots in C+
* remains constant under multiplication by

√
𝑠2 + 𝜆2𝑠2, instead we can

consider
𝑝(𝑠) = 𝑡𝑠2

√︀
𝑠2 + 𝜆2 − 2𝐿𝑠3 + 2𝐿�̄�𝜆2.

We proceed as follows. By a suitable rescaling 𝑠 = 𝜆𝑧, we have that

𝑝(𝑠) = 𝜆3̃︀𝑝(𝑧), ̃︀𝑝(𝑧) = 𝑡𝑧2
√︀
𝑧2 + 1− 2𝐿𝑧3 + 2𝐿

�̄�

𝜆
·

Let 𝐿 > 0 be fixed, and let us consider the family of the analytic in C ∖ 𝑖R and continuous in C ∖ {𝑧 : 𝑧 =
𝑖𝑥, 𝑥 ∈ R, |𝑥| ≥ 1} functions ̃︀𝑝(𝑧, �̄�) = ̃︀𝑝(𝑧), �̄� ≥ 0, defined as above. First of all, we remark that the roots of
𝑧 ↦→ ̃︀𝑝(𝑧, �̄�) in C depend on �̄� continuously. The proof of this fact follows exactly like in the classical proof of
the dependence of the continuity of the roots of a polynomial on its coefficients ([40], Thm. 3.1.1).

Lemma C.2. Let �̄�0 > 0, and let 𝑧0
𝑖 , 𝑖 = 0, . . . , 𝑁 , be the roots of ̃︀𝑝(𝑧, �̄�0) = 𝑡𝑧2

√
𝑧2 + 1− 2𝐿𝑧3 + 2𝐿 �̄�0

𝜆 .

(1) 𝑧0
𝑘 /∈ 𝑖R, 𝑘 = 0, . . . , 𝑁 .

(2) There exists 𝜃0 > 0, s.t. for all 0 < 𝜃 < 𝜃0, inf𝑧∈𝜃+𝑖R |𝑝(𝑧, �̄�0)| > 0.
(3) There exists 𝜀0 > 0, s.t. for each 0 < 𝜀 < 𝜀0 there exists 𝛿 > 0, s.t. the roots 𝑧𝑖 of ̃︀𝑝(𝑧, �̄�0 +𝛿) can be ordered

to satisfy: ⃒⃒
𝑧𝑖 − 𝑧0

𝑖

⃒⃒
< 𝜀.
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Proof of (1). For �̄�0 > 0, 𝑧 ↦→ ̃︀𝑝(𝑧, �̄�0) does not vanish on the imaginary axis. Indeed, for 𝑧 = 𝑖𝜔 with |𝜔| < 1,
we have that Im ̃︀𝑝(𝑧, �̄�0) = 2𝐿𝜔3, which vanishes only in 0, however, ̃︀𝑝(0, �̄�0) = 2𝐿 �̄�0

𝜆 ̸= 0. For |𝜔| ≥ 1, we have
that Re ̃︀𝑝(𝑧, �̄�0) = 2𝐿 �̄�0

𝜆 ̸= 0.

Proof of (2). First of all, for |𝑧| → +∞, ̃︀𝑝(𝑧, �̄�0) = (𝑡− 2𝐿)𝑧3 + 𝑜(𝑧3), where 𝑡 > 2𝐿. From this and the fact that̃︀𝑝 does not vanish on the imaginary axis, it follows that there exists 𝜃0 > 0, s.t., for all 0 < 𝜃 < 𝜃0,

inf
𝑧∈𝑖R±𝜃

|𝑝(𝑧, �̄�0)| = min
𝑧∈𝑖R±𝜃

|𝑝(𝑧, �̄�0)| > 𝜈0 > 0. (C.4)

Proof of (3). Remark that ̃︀𝑝(𝑧, �̄�) has at most six roots: indeed, any root of ̃︀𝑝(𝑧, �̄�) solves the polynomial equation
of the 6th degree: (︁

𝑡𝑧2
√︀
𝑧2 + 1

)︁2

=
(︁
2𝐿𝑧3 − 2𝐿

�̄�

𝜆

)︁2

. (C.5)

Next, let us fix 𝜀 > 0 sufficiently small so that 𝐵(𝑧0
𝑖 , 𝜀) ∩𝐵(𝑧0

𝑗 , 𝜀) = ∅ for 𝑖 ̸= 𝑗, and 𝐵(𝑧0
𝑖 , 𝜀) ∩ 𝑖R = ∅, for all 𝑖.

Let
𝜈 := min

𝑖
min

𝑧∈𝜕𝐵(𝑧0
𝑖 ,𝜀)

|̃︀𝑝(𝑧, �̄�0)|.

Evidently, 𝜈 > 0 by continuity of ̃︀𝑝.
– remark that |̃︀𝑝(𝑧, �̄�0)−̃︀𝑝(𝑧, �̄�)| = 2𝐿 |�̄�0−�̄�|

𝜆 · If 2𝐿 |�̄�0−�̄�|
𝜆 < 𝜈, then |̃︀𝑝(𝑧, �̄�0)−̃︀𝑝(𝑧, �̄�)| < |̃︀𝑝(𝑧, �̄�0)| on 𝜕𝐵(𝑧0

𝑖 , 𝜀),
and, by Rouché’s theorem applied to 𝐵(𝑧0

𝑖 , 𝜀), the analytic in C∖ 𝑖R function 𝑧 ↦→ ̃︀𝑝(𝑧, �̄�) has one root inside
𝐵(𝑧0

𝑖 , 𝜀).
– to show that all the roots of ̃︀𝑝(𝑧, �̄�) are given by perturbations of roots ̃︀𝑝(𝑧, �̄�0), we remark that Rouché’s

theorem can be applied in the following setting. For any 𝑅 > 0 sufficiently large we have

inf
|𝑧|=𝑅

|̃︀𝑝(𝑧, �̄�0)| > 𝜈1 > 0.

Then the above reasoning can be applied by taking 2𝐿 |�̄�0−�̄�|
𝜆 < min(𝜈, 𝜈0, 𝜈1) (𝜈0 as in (C.4)) and remarking

that on
Γ+

𝑅 = {𝑧 ∈ 𝑖R + 𝜃, |𝑧| < 𝑅} ∪ {|𝑧| = 𝑅, Re 𝑧 > 𝜃} ∪ ∪𝑖: Re 𝑧0
𝑖 >0𝜕𝐵

(︀
𝑧0
𝑖 , 𝜀
)︀
,

we again have |̃︀𝑝(𝑧, �̄�) − ̃︀𝑝(𝑧, �̄�0)| < |̃︀𝑝(𝑧, �̄�0)|, and therefore both ̃︀𝑝(𝑧, �̄�0) and ̃︀𝑝(𝑧, �̄�) do not have roots in
the domain {𝑧 : Re 𝑧 > 𝜃, |𝑧| < 𝑅} ∖ ∪𝑖: Re 𝑧0

𝑖 >0𝐵(𝑧0
𝑖 , 𝜀). Because the above is valid for any sufficiently large

𝑅 and sufficiently small 𝜃, we conclude that the result holds true for C+ ∖ ∪𝑖: Re 𝑧0
𝑖 >0𝐵(𝑧0

𝑖 , 𝜀).

Similar reasoning applies to C− ∖ ∪𝑖: Re 𝑧0
𝑖 <0𝐵(𝑧0

𝑖 , 𝜀).
�

Besides the fact that the roots of 𝑧 ↦→ ̃︀𝑝(𝑧, �̄�) for �̄� > 0 are located in C ∖ 𝑖R, the above result also means that
the number of roots of ̃︀𝑝(𝑧, �̄�) in the right-half is the same for any �̄� > 0 (by continuity of the roots of the
function 𝑧 ↦→ ̃︀𝑝(𝑧, �̄�) on �̄� in C ∖ 𝑖R, changing �̄� would lead to roots getting close to the imaginary axis, which
is impossible as shown above). Therefore, it suffices to study the distribution of the roots of 𝑧 ↦→ ̃︀𝑝(𝑧, �̄�) for
�̄� → 0. Remark that a root 𝑧 of (C.5) is a root of ̃︀𝑝(𝑧, �̄�) if and only if the following additional condition holds
true (which stems from the chosen branch of

√
𝑧)

Re
(︂

1
𝑡𝑧2

(︁
2𝐿𝑧3 − 2𝐿

�̄�

𝜆

)︁)︂
> 0. (C.6)

The polynomial equation (C.5) can be reduced to

𝑃 (𝑧, �̄�) := 𝑡2𝑧4(𝑧2 + 1)−
(︁
2𝐿𝑧3 − 2𝐿

�̄�

𝜆

)︁2

= 0. (C.7)
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For �̄� = 0 it has a root 𝑧0
0 = 0 of multiplicity 4 and two simple roots 𝑧0

± = ±𝑖(1− 4𝐿2

𝑡2 )−1/2.
The above can be formalized as follows. Denoting by 𝒵(𝑝, �̄�) the set of the roots of 𝑝(., �̄�) and by 𝒵(𝑃, �̄�)

the set of the roots of 𝑃 (., �̄�), we have that

𝒵(𝑝, �̄�) = {𝑧 ∈ 𝒵(𝑃, �̄�) : (C.6) holds true} , �̄� > 0.

Because
𝒵(𝑃, 0) = {0} ∪

{︀
𝑧0
±
}︀
,

for small �̄�, the roots of 𝒵(𝑝, �̄�) are given by perturbations of 𝑧0
± and 0, as summarized in the lemma below.

Lemma C.3. For all 𝜀 > 0, there exists 𝛿 > 0, s.t. for all 0 < �̄� < 𝛿,

𝒵 (𝑝, �̄�) ⊂ 𝐵(0, 𝜀) ∪𝐵
(︀
𝑧0
+, 𝜀
)︀
∪𝐵

(︀
𝑧0
−, 𝜀

)︀
. (C.8)

Let us now study the behaviour of the roots close to 𝑧0
±.

Lemma C.4 (“Large” roots of ̃︀𝑝). For �̄� → 0, two of the roots of ̃︀𝑝 are given by

𝑧�̄�
± = 𝑧0

± +
4𝐿2

𝜆𝑡2
�̄� + 𝑜(�̄�), �̄� → 0.

Proof. Let us study the roots 𝑧�̄�
± of 𝒵(𝑃, �̄�) close to 𝑧0

±. We have that

𝜕𝑧𝑃
(︀
𝑧0
±, 0

)︀
= ±2𝑖𝑡2

(︂
1− 4𝐿2

𝑡2

)︂−3/2

, 𝜕�̄�𝑃
(︀
𝑧0
±, 0

)︀
= ∓𝑖8𝐿

2

𝜆

(︂
1− 4𝐿2

𝑡2

)︂−3/2

.

By the implicit function theorem we then have that

𝑧�̄�
± = 𝑧0

± +
4𝐿2

𝜆𝑡2
�̄� + 𝑜(�̄�), �̄� → 0.

It remains to verify that these roots are indeed roots of ̃︀𝑝(𝑧, �̄�), i.e. the condition (C.6). It automatically holds
true, since it can be rewritten as follows:

Re

(︃
1

𝑡
(︀
𝑧�̄�
±
)︀2 (︁2𝐿 (︀𝑧�̄�

±
)︀3 − 2𝐿

�̄�

𝜆

)︁)︃
=

2𝐿
𝑡

Re
(︀
𝑧�̄�
±
)︀
− 2𝐿Re

�̄�

𝜆𝑡
(︀
𝑧�̄�
±
)︀2 = �̄�

2𝐿
𝑡

4𝐿2

𝜆𝑡2
+ 2𝐿

�̄�

𝜆𝑡|𝑧0
±|2

+ 𝑜(�̄�),

which is indeed positive for �̄� sufficiently small. �

The above result shows in particular that for sufficiently small �̄� at least two roots of ̃︀𝑝 are located in C+.

Lemma C.5 (“Small” roots of ̃︀𝑝). For �̄� → 0, the function ̃︀𝑝 has two roots in the vicinity of zero. Moreover,
they have a strictly negative real part for �̄� > 0.

Proof. The roots of ̃︀𝑝(𝑧, �̄�) satisfy

̃︀𝑝(𝑧, �̄�) = 𝑡𝑧2
√︀
𝑧2 + 1− 2𝐿𝑧3 +

2𝐿
𝜆
�̄� = 0.

We denote the last term of the above by 𝜀 and introduce the corresponding polynomial ̃︀𝑝𝜀(𝑧). Remark that for
all 𝜀 > 0 sufficiently small there exists 𝛿 > 0, 𝛿 < 𝐶

√
𝜀 with some 𝐶 > 0, s.t. |𝑡𝑧2

√
𝑧2 + 1−2𝐿𝑧3+𝜀−𝑡𝑧2| < 𝑡|𝑧|2

for all |𝑧| = 𝛿. Therefore by Rouché’s theorem, ̃︀𝑝𝜀(𝑧) = 𝑡𝑧2
√
𝑧2 + 1− 2𝐿𝑧3 + 𝜀 and ̃︀𝑝(1)

𝜀 (𝑧) = 𝑡𝑧2 have the same
number of roots inside 𝐵(0, 𝛿) (i.e. two roots).

It remains to prove that these two roots have a negative real part.
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Let us now introduce ̃︀𝑧 = 𝜀−1/2𝑧. Then the roots of ̃︀𝑝𝜀(𝑧) are (scaled) roots of

̃︀𝑝(2)
𝜀 (̃︀𝑧) = 𝑡̃︀𝑧2

√︀
1 + 𝜀̃︀𝑧2 + 1− 2𝐿𝜀1/2̃︀𝑧3 = 0.

After setting 𝜂 = 𝜀1/2, we can define ̃︀𝑝(3)
𝜂 = ̃︀𝑝(2)

𝜂2 , i.e.

̃︀𝑝(3)
𝜂 (̃︀𝑧) = 𝑡̃︀𝑧2

√︀
1 + 𝜂2̃︀𝑧2 + 1− 2𝐿𝜂̃︀𝑧3 = 0.

The polynomial ̃︀𝑝(3)
0 (̃︀𝑧) has two simple roots ̃︀𝑧0

± = ±𝑖/
√
𝑡. It remains to use an implicit function theorem to

obtain an expansion of the roots of ̃︀𝑝(3)
𝜂 (̃︀𝑧) as 𝜂 → 0:

̃︀𝑧𝜂
± = ±𝑖/

√
𝑡− 𝜂𝐿/𝑡2 + 𝑜(𝜂),

and this translates into the following expansion of the roots of ̃︀𝑝𝜀(𝑧) w.r.t. a small parameter 𝜀:

𝑧𝜀
± = 𝜀1/2

(︁
±𝑖/

√
𝑡− 𝐿/𝑡2𝜀1/2 + 𝑜(𝜀1/2)

)︁
.

�

We finally can prove Proposition C.1.

Proof. As argued before, the number of roots of 𝑝(𝑧, �̄�) in C+
* (resp. C−* ) remains constant for all �̄� > 0.

Lemmas C.3–C.5 show that for small �̄� > 0 𝑝(𝑧, �̄�) has two roots in C+
* and two roots in C−* . The roots are

complex conjugate since 𝑝(𝑧) = 𝑝(𝑧). �

Appendix D. Proof of Theorem 4.1

Proof of Theorem 4.1. Our idea is to look for the contour 𝒞𝑚 as a component of the level set 𝐴(𝑠, 𝜆𝑚, 𝑡) = 𝛽𝑚.
The function 𝑠 ↦→ 𝐴(𝑠, 𝜆𝑚, 𝑡) is the real part of the function 𝑃 (𝑠) = 𝑠𝑡 − 2𝛾(𝑠)𝜅(𝑠, 𝜆𝑚). The function 𝑃 is

holomorphic in C+
* and can be extended by continuity, together with its first derivative, to C+ ∖ {0,±𝑖𝜆𝑚}.

By Proposition 4.3 we know that 𝑃 has precisely two complex conjugate stationary points 𝑠0𝑚, 𝑠0𝑚 with a
positive real part. Since 𝐴 = Re𝑃 , the points 𝑠0𝑚, 𝑠0𝑚 are unique stationary points of 𝑠 ↦→ 𝐴(𝑠, 𝜆𝑚, 𝑡) in C+

* .
We assume without loss of generality that Im(𝑠0𝑚) > 0.

Step 1. Properties of a level set passing through a saddle point. Our goal is to show that there exists a
piecewise-smooth curve passing through 𝑠0𝑚, s.t. 𝐴(𝑠, 𝜆𝑚, 𝑡) = const < 0 along this curve; this curve would lie
in C+

* , and connect the real axis to 𝐴(𝑠0
𝑚,𝜆𝑚,𝑡)+2𝐿�̄�

𝑡−2𝐿 + 𝑖∞. Note that due to symmetry of the function 𝐴 with
respect to the complex conjugation this is sufficient.
Step 1.1. Behaviour of 𝐴 in C+

* .

Step 1.1.1. Behaviour of 𝐴 on the real axis. Studying

𝐷(𝑠) := 𝑃 ′(𝑠) = 𝑡− 2𝑠𝐿√︀
𝑠2 + 𝜆2

𝑚

(︁
1 +

�̄�

𝑠

)︁
+

2�̄�𝐿
𝑠2

√︀
𝑠2 + 𝜆2

𝑚 = 𝑡− 2𝐿𝑠√︀
𝑠2 + 𝜆2

𝑚

+
2𝐿�̄�𝜆2

𝑚

𝑠2
√︀
𝑠2 + 𝜆2

𝑚

, (D.9)

we immediately obtain (using 𝑡 > 2𝐿) that 𝐷(𝑟) > 𝑡− 2𝐿 > 0 for 𝑟 > 0. Since

lim
𝑟→0+

𝐴(𝑟, 𝜆𝑚, 𝑡) = −∞, lim
𝑟→+∞

𝐴(𝑟, 𝜆𝑚, 𝑡) = +∞,

we have that the mapping 𝐴|R+
*
→ R is bijective.
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Step 1.1.2. Behaviour of 𝐴 on the imaginary axis. Remark that the continuation of 𝐷 : C+
* → C on 𝑖R satisfies

Im(𝐷(𝑖𝜔)) < 0 for 𝜔 ∈ (0, 𝜆𝑚) and Im(𝐷(𝑖𝜔)) > 0 for 𝜔 > 𝜆𝑚. Thus, using the limits

lim
𝜔→0+

𝐴(𝑖𝜔, 𝜆𝑚, 𝑡) = −2𝐿𝜆𝑚, lim
𝜔→+∞

𝐴(𝑖𝜔, 𝜆𝑚, 𝑡) = −2𝐿�̄�,

and the fact that 𝐴(𝑖𝜆𝑚, 𝜆𝑚, 𝑡) = 0 we have that the mappings

𝐴|𝑠∈𝑖(0,𝜆𝑚) → (−2𝐿𝜆𝑚, 0), 𝐴|𝑠∈𝑖(𝜆𝑚,∞) → (−2𝐿�̄�, 0), (D.10)

are bijections.
Moreover, in the vicinity of 𝑖𝜆𝑚 in C+

* , we have that

𝐴(𝑖𝜆𝑚 + 𝛿, 𝜆𝑚, 𝑡) = −2𝐿
√︀
𝜆𝑚

(︂
1 +

�̄�

𝜆𝑚

)︂
𝛿1/2 +𝑂(𝛿), 𝛿 → 0.

This shows in particular that the level sets in C+ along which 𝐴 = 0 do not pass through 𝑖𝜆𝑚.
Step 1.1.3. Behaviour of 𝐴 on the lines 𝑟 + 𝑖𝜔, 𝑟 > 0, |𝜔| ≫ 1. We see that as |𝑠| → +∞,

𝐷(𝑠) = 𝑡− 2𝐿+𝑂(1/|𝑠|3), 𝐴(𝑠, 𝜆𝑚, 𝑡) = Re 𝑠(𝑡− 2𝐿)− 2𝐿�̄� +𝑂(1/|𝑠|), (D.11)

and therefore, on the lines 𝑟 + 𝑖𝜔, 𝑟 ≥ 0, with 𝜔 being a large constant, the function 𝑟 ↦→ 𝐴(𝑟 + 𝑖𝜔, 𝜆𝑚, 𝑡) is
strictly monotonically increasing, from −2𝐿�̄� + 𝑜(1) to +∞.
Step 1.1.4. Behaviour of 𝐴 on the lines 𝑟 + 𝑖𝜔, 𝑟 ≫ 1, 𝜔 ∈ R. By the same argument as before, on the lines
𝑟 + 𝑖𝜔, 𝜔 ∈ R, with 𝑟 being a large constant, the function 𝐴(𝑟 + 𝑖𝜔, 𝜆𝑚, 𝑡) = 𝑟(𝑡− 2𝐿) + 𝑜(1).
Step 1.1.5. Behavior of 𝐴 at 𝑠 = 0. Expanding 𝐴 in the series in the vicinity of the origin yields

𝐴(𝑠, 𝜆𝑚, 𝑡) = −2𝐿𝜆𝑚
�̄�

|𝑠|2
Re 𝑠− 2𝐿𝜆𝑚 +𝑂(|𝑠|), 𝑠→ 0,

which gives 𝐴(𝑠, 𝜆𝑚, 𝑡) < −2𝐿𝜆𝑚 for 𝑠 ∈ C+
* sufficiently close to 0.

These results are summarized in Figure D.1.
Step 1.2. Proof that 𝐴(𝑠0𝑚, 𝜆𝑚, 𝑡) ∈ (−2𝐿�̄�, 0). Let us set now 𝛽𝑚 := 𝐴(𝑠0𝑚, 𝜆𝑚, 𝑡). Then we know by Proposi-
tion 4.2 that in 𝑠0𝑚 the level set self-intersects, and there are at least 4 different curves originating at 𝑠0𝑚, along
which 𝐴(·, 𝜆𝑚, 𝑡) is constant, and which do not intersect but in 𝑠0𝑚 and, possibly, in 𝑠0𝑚.

First of all, by Proposition 4.2, these curves should intersect the boundary of the domain

𝐷𝜀,𝑅 = {𝑧 ∈ C+
* , 𝜀 < Im 𝑧, Re 𝑧 < 𝑅, |𝑧| > 𝜀},

for any 𝜀 > 0, 𝑅 > 0. However, because of the monotonicity properties of the function 𝐴 discussed above, we
have that, for sufficiently large 𝑅 and sufficiently small 𝜀 > 0,

– the level set 𝐴(𝑠0𝑚, 𝜆𝑚, 𝑡) = 𝛽𝑚 intersects the real axis at most once;
– for sufficiently large 𝑅 it does not intersect the boundary along which Re 𝑧 = 𝑅;
– the imaginary axis and 𝜕𝐵𝜀(0) ∩ 𝜕𝐷 can be intersected only if 𝛽𝑚 < 0 (remark in particular the behaviour

of 𝐴 in the vicinity of 𝜆𝑚 and 0).

This immediately implies that 𝛽𝑚 < 0, cf. Figure D.2, left.
Next, let us show that 𝛽𝑚 > −2𝐿�̄�. As follows from the behaviour of the function 𝑠 ↦→ 𝐴(𝑠, 𝜆𝑚, 𝑡) in C+

* , the
level set on which 𝛽𝑚 ≤ −2𝐿�̄�

– does not intersect the boundaries Im 𝑧 = 𝑅, Re 𝑧 = 𝑅 for 𝑅 sufficiently large;
– intersects the real axis at most once;
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Figure D.1. Behaviour of 𝐴 in the right-half complex plane.

Figure D.2. “Forbidden” components of the boundary of the domain 𝐷𝜀,𝑅, for 𝜀 sufficiently
small and 𝑅 sufficiently large. Left: the components of boundaries of 𝐷𝜀,𝑅 that cannot be
crossed by level sets 𝐴(𝑠, 𝜆𝑚, 𝑡) = const > 0 are marked in red, and those that can be crossed
at most once in blue. Right: the components of boundaries of 𝐷𝜀,𝑅 that cannot be crossed by
level sets 𝐴(𝑠, 𝜆𝑚, 𝑡) = const ≤ −2𝐿�̄� are marked in red, and those that can be crossed at most
once in blue (resp. green).

– intersects at most once (𝜕𝐵𝜀(0) ∩ 𝜕𝐷𝜀,𝑅)∪ (𝑖𝜀, 𝑖𝜆𝑚) (in particular, if 𝛽𝑚 ≤ −2𝐿�̄� and −2𝐿�̄� > −2𝐿𝜆𝑚, this
level set would intersect (𝑖𝜀, 𝑖𝜆𝑚), for −2𝐿�̄� ≤ −2𝐿𝜆𝑚, it would intersect 𝜕𝐵𝜀(0) ∩ 𝜕𝐷𝜀,𝑅).

This is illustrated in Figure D.2, right. Because in total in 𝐷𝜀,𝑅 there are at least four non-intersecting curves
emanating from 𝑠0𝑚, we arrive at a conclusion that 𝛽𝑚 > −2𝐿�̄�.

Step 2. Construction of the contour 𝒞𝑚. Let us now prove that there exists a curve connecting 𝑧𝑟,0 + 𝑖∞ the
saddle point 𝑠0𝑚 and a point on R*+, s.t. 𝑧𝑟,0 > 0 and 𝐴 is constant along this curve.

Let us consider the branches of the level set curve starting at the point 𝑠0𝑚. Because 𝛽𝑚 ∈ [−2𝐿�̄�, 0), by
(D.10), at most two of these branches 𝛾1, 𝛾2 intersect (𝑖R ∪ 𝜕𝐵𝜀(0)) ∩ 𝜕𝐷𝜀,𝑅: they intersect correspondingly
the interval 𝑖(𝜆𝑚,+∞) and either the interval (0, 𝑖𝜆𝑚) or 𝜕𝐵𝜀(0) ∩ 𝜕𝐷𝜀,𝑅 for sufficiently small 𝜀 > 0. For the
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remaining branches the following holds true: either the branch is unbounded in C+ ∩{Im 𝑧 > 0} or it intersects
the real axis. However, by studying the behaviour of 𝐴 at infinity (and its monotonicity properties), we see
that only a single branch can be unbounded, and only one branch can intersect the real axis. The unbounded
branch 𝒞+,∞

𝑚 necessarily intersects all the lines {𝑟 + 𝑖𝜔, 𝑟 > 0}, for all 𝜔 sufficiently large (since 𝐴 < 0 along
this branch). By (D.11), this branch connects 𝑧𝑟,0 + 𝑖∞ with 𝑧𝑟,0 as in the statement of the theorem, and 𝑠0𝑚.
The remaining branch 𝒞+,0

𝑚 then intersects the real axis.
Denoting by 𝒞−,∞

𝑚 = {𝑧, 𝑧 ∈ C+,∞
𝑚 }, and using a similar convention for 𝒞−,0

𝑚 , we obtain

𝒞𝑚 = 𝒞−,∞
𝑚 ∪ 𝒞+,∞

𝑚 ∪ 𝒞−,0
𝑚 ∪ 𝒞+,0

𝑚 .

Step 3. Optimality of the contour. It remains to show that the chosen curve is optimal. Assume that there
exists another contour 𝒞′𝑚 passing through the real axis and joining 𝜂− + 𝑖∞ and 𝜂+ + 𝑖∞, with 𝜂± ≥ 0, along
which 𝐴(𝑠, 𝜆𝑚, 𝑡) ≤ 𝛽𝑚 − 𝜀, for some 𝜀 > 0. Let us denote the point where the contour 𝒞′𝑚 crosses the real
axis by 𝑥′0, and the point where the contour 𝒞𝑚 crosses the real axis by 𝑥0. By monotonicity of 𝐴 on the real
axis, 𝑥′0 < 𝑥0. From the considerations in Step 2 we see that there is a curve passing through 𝑠0𝑚 and joining a
point (𝑥, 0) on the real axis and some point on the imaginary axis, along which the function 𝐴 equals to 𝛽𝑚.
Because 𝑥′0 < 𝑥0, any contour joining 𝑥′0 to 𝜂+ + 𝑖∞, 𝜂+ > 0, would cross this curve. However, on this curve
𝐴(𝑠, 𝜆𝑚, 𝑡) = 𝛽𝑚, and thus we have arrived at a contradiction with our assumption. �
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